
 

 

 

 

 

Technologies to promote neural interface stability 

 

 

 

 

Maran Ma 

 

 

 

Integrated Program in Neuroscience 
Montreal Neurological Institute 

Faculty of Medicine 
McGill University  

Montreal, Quebec, Canada  
 

 

December 2020 

 

 

A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of 
Doctor of Philosophy in Neuroengineering 

© Maran Ma, 2020 

 

  



2 
 

Table of Contents 

Table of Contents ............................................................................................................................ 2 

Abstract ........................................................................................................................................... 5 

Resumé ............................................................................................................................................ 7 

Acknowledgements ....................................................................................................................... 10 

Contributions of Authors .............................................................................................................. 11 

List of Figures and Tables............................................................................................................. 13 

List of Abbreviations .................................................................................................................... 14 

Chapter 1 – Introduction ............................................................................................................... 15 

1.1 Preface ................................................................................................................................. 15 

1.2 Literature Review ................................................................................................................ 16 

1.2.1 Challenges in brain-machine-interfacing ...................................................................... 16 

1.2.2 Existing strategies to address challenges ...................................................................... 18 

1.2.3 How to improve BMI functionality .............................................................................. 23 

1.3 Rationale and Objectives ..................................................................................................... 29 

1.4 References ........................................................................................................................... 32 

Chapter 2 – Surface modification with microstructures promote neuronal connectivity with 
substrate ........................................................................................................................................ 35 

2.1 Preface ................................................................................................................................. 35 

2.2 Introduction ......................................................................................................................... 36 

2.3 Results ................................................................................................................................. 38 

2.3.1 Polymerization of microstructures ................................................................................ 38 

2.3.2 Assay ............................................................................................................................ 40 

2.3.3 Protein accumulation .................................................................................................... 42 

2.3.4 Conductive recipe ......................................................................................................... 44 

2.4 Methods ............................................................................................................................... 46 

2.4.1 Fabrication of transparent microstructures ................................................................... 46 

2.4.2 Fabrication of conductive microstructures ................................................................... 46 

2.4.3 Sample preparation & neuronal culture ........................................................................ 47 

2.4.4 Immunohistochemistry ................................................................................................. 48 

2.4.5 Imaging, image analysis & statistical analysis ............................................................. 48 

2.5 Discussion ........................................................................................................................... 51 



3 
 

2.6 References ........................................................................................................................... 53 

Chapter 3 – Practical utility of impedance monitoring for neural recording microelectrodes ..... 54 

3.1 Preface ................................................................................................................................. 54 

3.2 Introduction ......................................................................................................................... 55 

3.3. Results ................................................................................................................................ 58 

3.3.1 Impedance in context .................................................................................................... 58 

3.3.2 Characterization of electrode surface changes ............................................................. 60 

3.3.3 Frequencies of interest .................................................................................................. 62 

3.3.4 Cost effective EIS ......................................................................................................... 64 

3.4 Methods ............................................................................................................................... 66 

3.4.1 MEA adapter board ...................................................................................................... 66 

3.4.2 Biofouling and PDL coating ......................................................................................... 66 

3.4.3 Astrocyte culture........................................................................................................... 67 

3.4.4 EIS recording on multi-potentiostat ............................................................................. 67 

3.5 Discussion ........................................................................................................................... 69 

3.6 References ........................................................................................................................... 72 

Chapter 4 – A standard for rapid and reproducible screening of neural interface stability .......... 73 

4.1 Preface ................................................................................................................................. 73 

4.2 Abstract ............................................................................................................................... 74 

4.3 Introduction ......................................................................................................................... 75 

4.4 Results ................................................................................................................................. 80 

4.4.1 Description of method .................................................................................................. 80 

4.4.2 Performance evaluation by simulation ......................................................................... 86 

4.4.3 Performance comparison with supervised spike-sorted results .................................... 89 

4.4.4 Application to chronically implanted Utah-array dataset ............................................. 91 

4.5 Methods ............................................................................................................................... 93 

4.5.1 Rule-based reasoning .................................................................................................... 93 

4.5.2 Nengo simulation .......................................................................................................... 97 

4.5.3 Testbench ...................................................................................................................... 98 

4.5.4 FPT evaluation via custom testbench and Nengo simulation ..................................... 100 

4.5.5 Analysis of Utah-array data and stable-unit quantification ........................................ 101 

4.6 Discussion ......................................................................................................................... 103 



4 
 

4.7 References ......................................................................................................................... 106 

Chapter 5 – Discussion and conclusions ..................................................................................... 109 

5.1 General Discussions .......................................................................................................... 109 

5.2 Conclusions and summary ................................................................................................ 111 

References ................................................................................................................................... 112 

 

 

  



5 
 

Abstract 

Brain-machine-interfaces (BMIs), more broadly, neural interfaces, is a challenging 

frontier in biomedical engineering because of extensive differences between the nervous system 

and electronic systems. Neuronal activity is embodied by the flow of ions in an aqueous 

environment, making the signal difficult to detect. Implanting hardware into neural tissue causes 

injury to the tissue due to its softness and fragility, and corrosion of the hardware due to its 

vulnerability to a saline environment. As well, the parallel-processing nature of the brain 

necessitates recording from a large neuronal population in order to decode a neurological 

function. Despite these challenges, BMIs may be the most direct avenue to compensate certain 

disorders of the nervous system. For spinal cord injury for example, even limited use of BMI 

mediated assistive robotics could have a life changing impact for the patient.  

Here we aimed to address three challenges in BMI literature. Clinical recording implants 

suffer from inconsistent connectivity between neurons and electrodes, which is severely 

disruptive for the operation of prostheses. Since neurons have been shown to grow synapses onto 

microbeads coated with synaptogenic polymers, we developed a method to attach bead-like 

features (micro-pillars) onto any surface, so that neurons may be directed to form hemi-synaptic 

connections directly onto electrodes enhanced with these features. We tested the response of 

neurons in vitro and observed significant accumulation of synaptic proteins around the micro-

pillars, providing evidence that this approach could be effective.  

From existing literature, it is unclear to what degree the recording ability of an electrode 

is compromised by proteins and glial cells that encapsulate the electrode, which typically occurs 

after implantation. We induced these conditions on an in vitro electrode array, performed 
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electrochemical impedance spectroscopy, and obtained evidence that neither condition affects 

electrode impedance at 1KHz. We also proposed a circuit representation of extracellular 

recording that reconciles the role of impedance. The circuit further illustrates that changes to the 

electrode surface should not have a significant impact on the amplitude of the recorded signal.  

The aforementioned instability in the population of neurons recorded by an implant is 

difficult to measure, thus the state of the art of BMI stability is ambiguous in the literature. 

Existing approaches to evaluate stability include measuring signal-noise-ratio, which does not 

reflect the consistency of recorded neurons, and tracking neurons by spike-sorting, which is 

sensitive to noise and relies on extensive human supervision. We examined a Utah array dataset 

and found a spike-rate statistic that is related to the relatively unique stimulus-response curve of 

each neuron. Via this relationship, we formalized a method for stability evaluation that can be 

reliably automated and built a software tool. We anticipate that the application of this tool may 

provide the neural interface community an avenue for more standardized stability assessment.  

The findings presented in this thesis aim to facilitate the development of enhanced BMIs 

via technologies that function to bridge the differences between the nervous system and 

electronic systems.  
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Resumé 

Les interfaces cerveau-machine (ICMs), ou, plus généralement, les interfaces neurales, 

constituent un défi important en ingénierie biomédicale du fait des différences fondamentales 

existant entre le système nerveux et les systèmes électroniques. L’activité neuronale est 

matérialisée par un flux d’ions dans un environnement aqueux, ce qui complexifie la détection du 

signal. L’implantation d’un matériau électronique provoque des blessures au tissu neural, dues 

d’une part à la souplesse et à la fragilité du tissu, et d’autre part à la corrosion de l’implant, causée 

par sa vulnérabilité à un environnement salin. Par ailleurs, le fonctionnement cérébral nécessite le 

traitement en parallèle d’informations provenant d’une large population de neurones pour décoder 

une fonction neurologique. Malgré ces défis importants, les ICMs constituent peut-être la piste la 

plus directe pour compenser certains troubles neurologiques. Dans le cas d’une blessure à la moelle 

épinière par exemple, l’utilisation, même limitée, d’une assistance robotisée pilotée via une ICM 

peut avoir un profond impact sur la vie du patient.  

Nous ambitionnons ici de répondre à trois problématiques soulevées dans la littérature. Les 

implants cliniques présentent des défauts de connectivité entre les neurones et les électrodes, ce 

qui est particulièrement préjudiciable pour le bon fonctionnement des prothèses. Il a été montré 

que les neurones ont la capacité de produire des synapses à la surface de microbilles recouvertes 

de polymères synaptogéniques. Nous avons développé une méthode permettant l’arrimage sur 

n’importe quelle surface de protrusions, dénommées micro-piliers, qui possèdent des 

caractéristiques similaires à ces microbilles. Des électrodes disposant de telles caractéristiques 

pourraient ainsi entraîner la formation par les neurones de connections hémisynaptiques. Nous 

avons testé la réponse de neurones à ce type de dispositif in vitro, et avons observé une 
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accumulation significative de protéines synaptiques autour des micro-piliers, montrant le potentiel 

d’une telle approche. 

Il n’est pas clairement établi dans la littérature à quel point le fonctionnement d’une 

électrode peut être compromis par les protéines et les cellules gliales qui, typiquement, 

s’accumulent autour de l’électrode après l’implantation. Nous avons reproduit de telles conditions 

sur un réseau d’électrodes in vitro, et une spectroscopie d’impédance électrochimique nous a 

permis de montrer qu’aucune de ces conditions ne modifie l’impédance des électrodes à 1 kHz. 

Nous proposons également une représentation en circuit des enregistrements extracellulaires, 

permettant de visualiser le rôle de l’impédance au niveau tissulaire. Cette représentation permet 

également de montrer que les changements à la surface des électrodes n’ont pas d’impact 

significatif sur l’amplitude du signal enregistré. 

L’instabilité susmentionnée de la population de neurones enregistrés par un implant étant 

difficile à mesurer, l’état de l’art concernant la stabilité des ICMs reste ambigu. Les approches 

actuelles d’évaluation de la stabilité comprennent d’une part la mesure du rapport signal/bruit, ce 

qui ne reflète pas la régularité des neurones enregistrés, et d’autre part le suivi des neurones grâce 

à l’étude des pics de potentiel d’action, qui est sensible au bruit et nécessite une importante 

supervision humaine. Nous avons étudié une série de données produite en Utah et avons identifié 

une statistique liée au taux de pics de potentiels d’action associée à la courbe stimulus-réponse 

relativement unique de chaque neurone. De par cette association, nous avons formalisé une 

méthode d’évaluation de la stabilité qui peut être automatisée de façon fiable, et avons mis au point 

un outil logiciel. Nous nous attendons à ce que l’application de cet outil fournisse une piste sérieuse 

à la communauté travaillant sur les interfaces neuronales pour une meilleure standardisation de 

l’évaluation de la stabilité des ICMs.  
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Les conclusions présentées dans cette thèse ont pour but de faciliter le développement 

d’ICMs optimisés via des technologies permettant de concilier les différences de fonctionnement 

du système nerveux et des systèmes électroniques.  
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Chapter 1 – Introduction  

1.1 Preface 

Brain machine interfaces (BMI), and more broadly, neural interfaces, is a frontier in 

biomedical engineering with tantalizing potential. Clinically, an electronic connection with the 

nervous system would enable more intuitive control of prosthetic hardware; as well as the 

possibility of prosthetic software that compensate for disorders within the brain. For the healthy 

population, depending on implementation, BMI may transform our relationship with technology. 

In the literature review that follows, we take a brief look at the nature of the interfacing 

challenge, existing approaches to BMI, and focus on specific areas for further research based on 

clinical motivation.  
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1.2 Literature Review 

1.2.1 Challenges in brain-machine-interfacing 

Given the anticipated benefits of brain-machine-interfaces (BMI) and the innovative 

capacity of the electronics industry, why does the technology still have critical limitations and 

low clinical adoption? This section discusses the challenges of BMI, and in particular, how 

incompatibility between the nervous system and electronic systems exist at many levels.  

 

1.2.1.1 Signal format and location 

While both nervous and hardware systems propagate electric signals, they have very little 

similarity at the device level. Most electronic circuits operate on the flow of electrons through 

solid state components. “Circuit theory”, upon which circuits are conventionally built and 

analysed, assumes that electrical effects happen instantaneously throughout a system (Nilsson 

and Riedel 2004). In such idealized lumped-parameter systems, components are discrete with 

concentrated resistance, capacitance, gain, etc. and are interconnected by ideal wires of perfect 

conductivity. None of the above applies to a neuron, which operates on the flow of ions across 

semi-permeable membranes arranged in complex continuous structures. And between neurons, 

signals are typically converted to chemical form. Hence, a precise “equivalent circuit” analysis 

of even a single unit of neuronal circuitry is non-trivial, because a cell exhibits mixed attributes 

throughout its body and environment, and signals propagate incrementally via molecular 

machinery.  

 



17 
 

Voltages in electronic systems are easily accessible at input/output terminals or at simple wire 

elements. A neuron in contrast, only exhibits voltages across its cell membrane, which if 

breached is harmful to the cell. Therefore, long term neural recordings, if performed electrically, 

must rely on very weak extracellular electric field transients (Blum 2007) that exist in a 

conductive aqueous environment (Katz 1966), further contributing to measurement difficulty. 

 

1.2.1.2 Hardware substrate and rejection 

The massive difference in substrate mechanical properties causes harm to neural tissue 

when regular electronics are implanted. Similar to the requirement of restoring historic 

architecture with physically matching – or more pliant – material because motion/expansion 

differences result in deterioration of the weaker material first (Park 1988), rigid components 

implanted into soft tissue will injure the surrounding cells during unavoidable displacements 

from motion or breathing / vascular pulsation (Sridharan et al. 2015; Minev et al. 2015).  

Existing recording implants that are used clinically, such as the Utah array, become 

surrounded by a layer of scar tissue over time, which is exacerbated by the stiffness of the 

foreign body (Minev et al. 2015; Moshayedi, Ng, and Kwok 2014). Since there is no direct 

anchoring between target neurons and electrodes, individual neurons fade in and out of the 

recorded ensemble, with one study finding that only 8% of the initial pool had persisted over 9 

months (Vaidya, Dickey, and Best 2014).  

The long-term immersion of electrodes in biological fluid also compromises the implant 

itself. Some investigators suggest hardware breakdown and specifically the deterioration of 

insulation material are leading causes of signal loss (Prasad et al. 2014; Barrese et al. 2013). 
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1.2.1.3 Organization and size 

The nervous system relies on parallel processing at every level (Kandel, Schwartz, and 

Jessell 2013), and its pathways are largely “line based”, i.e. individual sensory inputs, such as a 

region of skin, a temperature threshold, occupy a separate axon; similarly, distinct muscles 

receive signals from distinct fibres in the spinal cord. This is unlike electronic architectures 

where data can be encoded into 1-2 signals (e.g. USB protocol) to facilitate cabling and 

connection points. Therefore, to fully interface functionally with a nervous system will require 

numerous connections. E.g. an ideal artificial eye should conceivably stimulate ~1 million fibers 

bundled in the optic nerve, which is only ~4 mm in diameter (Jonas et al. 1992).  

Processing in the neocortex is argued to be dynamic, distributed, and utilize population 

encoding. Models suggest that the same neural network outputs can be generated by different 

internal states, which is supported by the observation that for a given movement, motor cortex 

population responses exhibit expansive and contractive dynamics that rotate with time 

(Pandarinath et al. 2015). These characteristics complicate the task of decoding from cortical 

activity, as the information of interest may be distributed over large/multiple cortical areas and 

depend on past internal states. 

 

1.2.2 Existing strategies to address challenges  

1.2.2.1 Signal format and location 

The typical transducer for converting neuronal activity to electronic signals is the 

electrode. Broadly speaking electrodes exist in two categories: polarisable and non-polarisable / 

reversible (Blum 2007).  In experiments where dissected tissue or cells in culture are probed, it is 

more effective (or necessary) to enter the cell and measure voltages across the membrane. In this 
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scenario, reversible electrodes such as AgCl (mediated by intermediary Cl- solution in a pipette) 

are suitable because currents can directly convert between ions and electrons, and thus not create 

junction voltages at the electrode interface, which would block DC measurements (Katz 1966).  

For long term cell cultures or in vivo recordings, where signals must be picked up 

extracellularly to avoid injuring the cells, polarisable electrodes such as gold or platinum are 

more suitable. Due to a layer of water molecules (the hydration sheath) that accumulate at the 

electrode surface, signals are detected indirectly as induced voltages via capacitive coupling. 

While DC measurements are not possible (which is satisfactory if the signals of interest are 

mainly action potentials), capacitive coupling gives lower input impedance and thus lower noise, 

which is beneficial given the extremely small extracellular signal amplitudes. To optimise for 

low impedance, the electrode-electrolyte coupling could be enhanced for high capacitance, 

which is a function of surface area. For example, some planar MEA electrodes are made with 

platinum-black for its rough texture and hence larger equivalent surface area (Blum 2007).  

Computationally, simulations using finite-element-models have been employed to better 

understand and predict factors that affect recorded signals and measured impedances in vivo, 

including the impact of changes at the electrode-electrolyte interface and increased resistivity 

due to gliosis (Malaga et al. 2015).  

 

1.2.2.2 Hardware substrate and rejection 

In attempt to mitigate trauma to cortical tissue, efforts are being made to reduce implant 

stiffness and volume of tissue displacement. E-Dura (Minev et al. 2015), a soft implant for 

stimulating and recording in the spinal cord is fabricated from a thin silicone substrate with 

embedded cracked gold wires and platinum-silicone polymer electrodes. This device maintained 



20 
 

its integrity over 1 million stretching cycles (to 120% original length) and was shown to cause no 

additional harm than the surgery itself in animal models, while a stiffer implant generated 

debilitating spinal compression and increased scar tissue. Xie et al. (2015) developed a 

“macroporous” implant that unfurls microwires out of a wire frame, providing a threefold 

improvement in sampling efficiency and 20-fold reduction in tissue volume destroyed per 

electrode when employed as a long term implant. 

To improve the integration of implants into the CNS, a myriad of approaches are being 

investigated (Hofmann and Krüger 2015), including:  more flexible/thin implant substrates, 

coating implants with neural cells encapsulated in soft fibrin hydrogel, and coating implants with 

conductive polymers enabling anti-inflammatory drug release. Other types of coating, such as 

PEG, improve the ability for electrodes to avoid protein adsorption, which may affect electrode 

impedance and contribute to signal quality decline (Sommakia et al. 2014). 

Worth noting is a biomimetic strategy that has achieved the best stability to-date. Yang et 

al. (2019) developed NeuE, an implant consisting of electrodes comparable in size to neuronal 

cell bodies, linked by a network of extremely thin interconnects (0.9 μm thick by 1 μm wide) that 

are comparable to the diameter of axons and the flexibility of a myelin sheath. The implant is 

injected precisely into the brain via a glass capillary. Signal stability was observed on all of 16 

electrodes for over 3 months, where the number of neurons recorded per electrode (identified by 

spike sorting) increased over time and stabilized, and the spike waveforms were remarkably 

consistent in principle component space. The authors attributed this performance to the physical 

similarity between the implant and neurons. It would be beneficial to understand exactly why 

this technology is able to deliver unprecedented stability, to allow engineering of implants that 
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can be disentangled / removed from the CNS when required, or are otherwise suitable for clinical 

applications.  

An alternative strategy is to avoid invasive contact: the completely non-invasive 

approach to brain-machine-interfacing is EEG, which is only effective for very large and event 

driven cortical activity. A promising semi-invasive alternative is ECoG, where electrode pads are 

placed over the surface of the cortex. Notably, the signals recorded are sufficient to predict 

object recognition (Miller et al. 2016) and drive individual fingers of a robot prosthesis (Hotson 

et al. 2016). ECoG however still requires a craniotomy and recent efforts to further reduce 

invasiveness of neuro-prosthesis have led to ECoG equivalent probes built on stents that can be 

inserted into cortical veins. This approach would allow ECoG quality signals to be sampled 

without major surgery for the user, via a catheter angiography (Oxley et al. 2016). 

 

1.2.2.3. Organization and size 

Conceptually, the difficulty of the line-based architecture of the brain, the small size of 

the fibers (~1 μm in diameter), and the self-contained nature of neural tracts can potentially be 

managed if the pathway of interest connects to a sensory organ. At these biological interfaces, 

innervation is often spread out into organized, more widely spaced 2-dimenstional arrangements. 

For example, the cochlear implant, which stimulates the auditory ganglion cells, is positioned on 

the cochlea where the auditory nerves fan out tonotopically (Guiraud et al. 2007). For patients 

with retinitis pigmentosa, which degrades photoreceptors of the eye but leaves the optic nerve 

intact, the state of the art prosthesis, the retinal implant,  is seated against the retina where inputs 

to the optic nerve are distributed geometrically over the fovea (Chuang 2014), giving the user a 
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low resolution image. In contrast, methods that directly stimulate the optic nerve bundle using a 

cuff electrode (Veraart et al. 1998) can only induce abstract patterns of phosphenes.  

For applications that require connectivity with the cortex, NeuraLink (Musk 2019) has 

demonstrated a possible strategy of distributing the interface over 96 independent thread like 

probes. In this system, each thread contains 32 electrode sites, providing a total of 3072 

recording channels, with each thread individually inserted by a surgical robot. The robot not only 

is able to avoid blood vessels, but also serves to precisely implant the interface at locations of 

interest over a large area (4 cm x 4 cm) on the cortex at high speed. NeuraLink has a significant 

advantage both in channel count and in spatial coverage compared to traditional arrays bound by 

a fixed backplane. This platform is complemented by high density electronics that incorporate 

amplification, digitization, and spike detection within a wireless, fully implanted controller 

module (Metz 2020; Musk 2019). 

Once recorded, signal processing techniques and software design allow for further 

improvements to the utility of the BMI. Intracortical recordings do not naturally separate 

individual neurons, as each electrode will pick up all neurons within its recording range and 

superimpose their activity. For applications (in most cases scientific studies) where neuron 

identification is required, the technique of spike sorting (Quiroga 2007) theoretically allows data 

from a single electrode to be decomposed into activity of individual neurons. Due to the spatial 

arrangement of neurons with respect to the electrode tip, each neuron’s action potential will 

exhibit a slightly different shape, which, together with the inter-spike-interval histograms 

(Dickey et al. 2009), provides a means to track individual neurons. For decoding algorithms, 

augmenting the decoding process by taking into account oscillatory wave data, multi-unit 

recordings, and field potentials, has been shown to produce more consistent BMI performance 
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(Flint et al. 2013). At the final step, a user interface that continually adapts to signal instability 

has been demonstrated on a typing prosthesis, which sustained functionality for over a month 

without explicit retraining (Jarosiewicz 2015).  

 

1.2.3 How to improve BMI functionality 

Based on the above, it is unlikely that there will be a “one size fits all” brain-machine-

interface for every application. Each implant should be designed according to the biological 

conditions and specific requirements of the clinical application. One of the most compelling 

motivations for BMI technology is function restoration for spinal cord injury (SCI). This section 

discusses relevant background information and potential strategies toward this goal.  

 

1.2.3.1 Spinal cord injury 

The spinal cord is comprised of clusters of neuronal cell bodies, local neural circuitry and 

bundles of axons that send long distance projections. These circuits mediate sensation, muscle 

activation, and reflex responses. When spinal cord injury occurs, nearby neuronal cell bodies 

may die, leading to functional loss at nearby spinal segments; at the same time, axonal pathways 

are interrupted, resulting in paralysis and loss of sensation due to disconnection of all the 

segments below the injury. 

The concept of solving the challenge of spinal cord injury by “reconnecting” across the 

lesion is not trivial because 1) regeneration in the CNS is very limited due the inhibitory nature 

of the local environmental and the reduced intrinsic capacity of mature neurons to regenerate, 

and 2) the ultimate targets of regeneration are far and complex, because the segment of axon that 
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becomes separated from the cell body cannot survive and the entire length of track requires 

regeneration, rather than just bridging the gap. 

Significant efforts in drug therapy, cell transplantation, and tissue engineering (Kabu et 

al. 2015) aim to improve the cellular environment at the lesion site and bridge the cavity with 

scaffolding to facilitate axon re-growth into the lesion and further into the tract beyond the injury 

site. Perfecting these approaches would be the most natural way to cure SCI and endeavors 

toward this end are currently work in progress by many laboratories.  

 

1.2.3.2 Neuro-prosthesis approach 

A closer look at the organization of CNS motor and sensory pathways provides 

background on what theoretically needs to be bridged to restore function. 

Sensation largely concerns two major spinal cord tracts: the dorsal column medial 

lemniscal (DCML) pathway, and the anterolateral pathway. DCML conveys proprioception 

(body position sense) and fine touch sensation. Axons of first order PNS neurons travel directly 

up the spinal cord and synapse onto the dorsal column nuclei in the brain stem. After SCI, the 

fibers transected at the lesion location up to the brain stem will degenerate. A hypothetical 

prosthesis could pick up sensory inputs trapped at the lesion level, and stimulate the target nuclei 

in the brainstem – this of course raises a major concern of implanting stimulators into a critical 

collection of cell bodies that gather input from the whole body. The anterolateral pathway has 

more complex projections, but it would be a lower priority for function restoration as it carries 

temperature, pain and itch sensation, and lesions on this tract tend to mainly result in loss of pain 

sensation.  
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Most voluntary motor movements are activated via the ventral and lateral corticospinal 

tracts. These tracts contain the downward projecting axons of neurons in the primary and 

secondary motor areas of the cortex, which at the appropriate spinal segment will synapse onto 

motor neurons in the ventral horn of the spinal cord. After SCI, the fibers below the lesion 

location will degenerate. Some quantity of motor neurons populating segments below the lesion 

level will survive (as the cell bodies are intact in the ventral horn, but lack of stimulation from 

descending axons will also result in loss of population (Kandel, Schwartz, and Jessell 2013)). A 

hypothetical prosthesis could pick up activity from axon bulbs that remain at the lesion level, and 

transmit decoded data to electrical stimulators implanted at lower spinal cord segments.  

In current efforts toward functional restoration of quadriplegia, rather than stimulating 

motor neurons in the spinal cord, which has all the challenges of an interface in the CNS 

environment, the target muscles or the motor nerves driving the target muscles are stimulated 

directly via functional electrical stimulation (FES). To this end, cuff electrodes with four 

circularly positioned electrodes are implanted around the motor nerves (Memberg et al. 2014). 

The cuff electrodes are engineered to curl to the right tightness and the four sites enable some 

level of specificity in triggering target fibers. One bottleneck in such a scheme, where a 

computer can activate upper body movements, is how to best extract motor intent from the user. 

The most sophisticated FDA approved solution to date is Brain-Gate, a motor cortex implant 

based on the Utah array device, which unfortunately suffers from poor chronic stability, with as 

few as 8% of initial neural units persisting after 9 months (Vaidya, Dickey, and Best 2014).  
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1.2.3.3 Better recordings for prosthesis control 

Effective and reliable decoding is a key requirement for a neural prosthesis that controls 

computing, FES or robotics. If decoding accuracy deteriorates during a task, it will be highly 

disruptive for the user experience (Jarosiewicz 2015). The duration that a decoder can maintain 

performance varies significantly, which, depending on implant circumstances, may be as short as 

1-2 days (Nuyujukian et al. 2014).  

A fundamental issue to consider is why decoders come out of calibration so easily. To 

elucidate decoder sensitivity, Perge et al. (2013) analysed the within-day changes in single unit 

data from a Utah array, and found spike rates biased decoded movements in 56% of performance 

assessments, but only 15% of rate changes can be attributed to movement related recording 

artefacts, with the remaining 85% likely due to neuron dynamics. Therefore, a major factor in 

recalibration is volatile cortical dynamics rather than implant performance.  However, this issue 

appears compensable in two ways: motor learning / plasticity, and ensemble decoding. It was 

found that when decoders are deliberately kept fixed, neural representation will stabilize over 

time. Monkeys manipulating a cursor via fixed decoders with only 10-15 stable inputs for 19 

days eventually gained reliable control (Ganguly and Carmena 2009a). Another study showed 

that while cursor manipulation grew stable, the system is no better at predicting hand position 

(Flint et al. 2013). These results indicate that prosthesis specific plasticity can develop within the 

implant region, but it is task specific and not generalizable to other roles of the local neurons. 

More promising are reports of circumstances that permitted calibration-free intracortical 

prostheses, which relied on ensemble decoding (Carmena et al. 2005). One study involving two 

monkeys with Utah arrays found that when an implant provided over 30 equally contributing 

channels, the same decoder was effective for two years; while another implant with only a dozen 
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contributing channels required recalibration every couple of days (Nuyujukian et al. 2014). This 

finding suggests that if the existing clinical implant technology can simply be enhanced to keep 

more of its channels active, the user experience may be vastly improved.  

Therefore, a more practical question is why the recorded signal declines over time 

(Barrese et al. 2013). The literature on chronic implant performance points to multiple potential 

causes (Hofmann and Krüger 2015): electrode impedance changes,  chronic glial ensheathment 

(speculated to insulate the electrode), material failure, and breaking the blood-brain barrier 

(Prasad et al. 2014). While the latter two factors have clear supporting data, the former two 

factors are not fully understood or have conflicting evidence, for instance, the observation that a 

small subset of channels could perform well for years (Vaidya, Dickey, and Best 2014), and that 

signal amplitudes increase in the first two weeks before leveling off to more or less constant 

values (Malaga et al. 2015). Malaga et al. (2015) analyzed neural recordings and impedance 

measurements from chronically implanted Utah arrays, and compared the in vivo results with 

simulation results generated by a FEM model of a Utah array electrode and a NEURON model 

of a cat layer V pyramidal cell. The authors noted that in the in vivo results, while electrode 

impedance increased over the first three weeks, signal amplitudes increased over only the first 

two weeks, demonstrating that impedance does not correlate with signal amplitude. And in the 

simulations, which modeled glial ensheathment with a high resistivity layer between the neuron 

and implant, results showed that the gliotic tissue does not negatively impact signal amplitude 

unless it displaces the neurons.  
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1.2.3.4 New discoveries to leverage 

Previous work in the McGill NeuroEngineering group provides important new insight 

into neuron-substrate adhesion and synaptogenesis, which may enable biological anchoring of 

neurons onto implants or even precise links between synaptic terminals and electrodes. It was 

observed that the movement/migration ability of neurons on a surface can be modulated by 

controlling the ratio of low vs.  high affinity coating molecules (PEG and PDL) (Ricoult et al. 

2013). More importantly, the neuron’s tendency to adhere and form terminal like structures onto 

poly-lysine coated curved substrates (sub 50 μm beads) (Burry 1980) was studied in detail. 

Presynaptic specializations formed onto poly-lysine coated microbeads were demonstrated to 

recycle synaptic vesicles like natural synapses (Lucido et al. 2009), and the hemi-synaptic 

adhesions formed were found strong enough to pull neurites away using atomic force 

microscopy (Magdesian et al. 2016). Artificial cell membranes (lipid bilayer with mixed 

domains) were shown to be similarly synaptogenic when coated on microbeads (Gopalakrishnan 

et al. 2010). Notably, these lipid coatings are extremely robust and may be embedded with 

proteins to potentially enhance their synaptogenic capacity. The addition of netrin-1 protein to 

the bead assay further induced rapid recruitment of both presynaptic and postsynaptic 

specializations, with extensive local reorganization of F-actin within neurites via DCC and SFK 

signaling (Goldman et al. 2013). Leveraging the synaptogenic biochemical interactions may 

ultimately promote the long term stability of such “synthetic synapses”.   
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1.3 Rationale and Objectives 

As described in the literature, BMI research is a highly interdisciplinary area with many 

challenging problems to solve. The studies described in this thesis aimed to contribute to three 

aspects:  

1) Toward enhancing clinical implants to promote stable connectivity with neurons.  

We know that clinical MEA technology such as the Utah array suffers from loss of active 

channels over time, and the inability to record consistently from the same neurons. At the same 

time, a few arrays have been reported to maintain just enough stable or active channels to 

support compensatory strategies and allow for reasonable long-term decoding performance. 

Therefore, it would be beneficial to incrementally enhance either the connectivity with neurons 

or signal fidelity, without significantly changing the implant design. (This is because each 

implant design has already been optimized for an application, especially for medical devices in 

terms of safety.) Results from the synaptogenic microbead assays offer a potential means for 

such improvements. If an electrode could be modified with features or coatings that promote 

synaptogenesis onto the electrode, the synaptic adhesion could serve as a physical anchor that 

keeps the same neurons connected to the same electrodes. Additionally, the physical contact 

between electrodes and neural processes will improve signal-noise ratio and conceivably allow 

spikes to be decerned for a longer time period. Thus, the first research objective is to develop a 

method to modify surfaces with microbead-like features and investigate neuronal response to 

these surface features.  

 



30 
 

2) Better understanding of physical phenomena at the electrode-tissue interface and the role of 

impedance.  

We know that after implantation, various physical changes occur to the MEA hardware, 

neural tissue, and the electrode-tissue interface, all of which may play a role in eventual signal 

loss. However, it is necessary to understand the degree of impact of each factor in order to 

inform the best electrode engineering strategies. More specifically, from existing literature it is 

not clear how exactly biofouling and glial ensheathment negatively affects the neural interface. 

Impedance measurement, which is currently the most direct means of monitoring electrode and 

tissue status in vivo, is often reported as an indication of stability. Yet its relationship with the 

recorded signal and the aforementioned physical changes are not clear in the existing literature. 

Thus, the second research objective is to investigate biofouling and glial ensheathment under 

controlled conditions (i.e. separately on an in vitro platform) in terms of their contributions to 

impedance changes, and in the process, elucidate what the impedance measure can tell us.   

 

3) Efficient and reproducible methodology for assessment of signal stability.  

For a BMI intended to decode and control assistive technology, the true measure of 

stability would be task performance efficacy over time on a full prosthesis system. Human trials 

or monkey behavioral studies however, are not suitable for investigators working on the 

fabrication aspect of the implant technology, which often involve novel materials and interim 

prototypes. More feasible and prevalent are smaller scale studies that look for some indication of 

stability in the recorded data, using for instance, rodent models. At the moment, there is a lack of 

consensus in the community on a stability metric, and a variety of different measures are 

reported, ranging from physical measures such as signal-noise-ratio, to spike-sorting based 
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quantities such as “stable unit” count. Although spike-sorting could decern individual neurons, 

the method relies on waveform shape and is sensitive to noise and implant shift related 

confounds. Therefore, it often relies on human supervision to ensure accuracy, which hinders the 

reproducibility and efficiency of the method. Consequently, the stability data on novel neural 

interfaces is not comparable across different reports, and the state of the art is ambiguous. Thus, 

the third research objective is to seek patterns in recorded data, without relying on waveform 

classification, which reflect the stability of the electrode-neuronal connection and formalize this 

into a stability assessment method.   
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Chapter 2 – Surface modification with microstructures promote neuronal 
connectivity with substrate 

2.1 Preface 

We begin with the fundamental goal of promoting better connectivity between electrodes 

and neurons. This chapter is a brief manuscript describing an optical microlithography technique 

to attach conductive microstructures a substrate, and in vitro experiments with cortical neurons to 

test for biocompatibility and levels of synaptic proteins around the structures.  
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2.2 Introduction 

It is a remarkable phenomenon that a neuron will differentiate a hemi-synaptic 

specialization onto a poly-lysine coated microbead (Burry 1980, 1982; Peng et al. 1987). Here, 

we wanted to know if this phenomenon could be leveraged for electrode engineering, and 

whether it may occur with pillar shaped microstructures attached to a larger substrate.  

If this is possible, neural electrodes could then be made with such microstructures that 

would induce synapse formation directly onto the electrode. Synapses are critical in the central 

nervous system as they are the point of connectivity between neurons in neuronal networks, and 

synapses are known to engage strong adhesive connections between pre- and post-synaptic 

elements. Thus, identifying a way to establish synaptic connection between neurons and 

electrodes would potentially create a means to 1) anchor neurons onto electrodes, 2) improve 

signal noise ratio due to close physical contact between a neuron and an electrode, and 3) 

integrate the electrode into the neuronal network.  

Key differences between this investigation and existing synaptogenic bead assays are: 1) 

the cylindrical microstructure we created are curved along only one axis and will appear different 

to neurites than a spherical bead, in spite of its curvature; and 2) the microstructures are attached 

to the substrate and will be a part of the landscape as immature neurites initially extend on the 

surface. In contrast, beads are typically added to a mature neural culture. We anticipate that the 

results obtained will increase our understanding of the salient attributes of the substrate that 

neurons respond to as synaptogenic, and provide practical fabrication methods for electrode 

engineering. 
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We devised a technique to polymerize micropillars onto arbitrary substrates by extending 

the work of Costantino et al. (2005), and tested the response of cultured cortical neurons to these 

microstructures. We optimized a biocompatible and conductive formula that is compatible with 

our technique, using a silver nitrate and polyvinylpyrrolidone (PVP) composite (known for its 

photopolymerization properties (Maruo and Saeki 2008)), and examined synaptogenesis by 

neurons. 
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2.3 Results 

2.3.1 Polymerization of microstructures 

Our engineering objective was to devise a method to build bead like features on an 

arbitrary surface. The desired features required similar curvature as microbeads used in 

synaptogenesis assays (5-10 μm diameter), be secure enough that they are not shifted or detached 

by cells and can be precisely positioned at desired locations on the surface. We initially explored 

the possibility of adhering existing microbeads with micropatterned surfaces via avidin-biotin 

binding, but found that cells readily pulled off the beads.  

Hence, we investigated using optical microlithography and light curable resins to 

fabricate microstructures (Figure 1). We optimized a protocol where we coated coverslips with 

NOA61 resin and focused a two-photon microscope (Ti:Sa laser) at locations of interest to 

polymerize patterns of dots. Due to the distribution of energy at the focal point, the polymerized 

zones form short pillars with rounded dome shaped tops. By controlling the laser power and 

exposure time, it was possible to control the diameter of the pillars. And by automating the 

microscope stage, arrays of microstructures can be automatically created with precise spatial 

arrangements. Our final parameters (800 nm laser at 500 mW, 300 ms; with 20x, 0.7 NA 

objective) produced microstructures with an average height of 6.7±0.8µm and diameter of 

5.3±0.3 µm at midpoint. A contributing factor to uncertainties in height was some amount of tilt 

of the substrate, which affected the quality of focus.   
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Figure 1.  Schematic of the microscope setup to 

polymerize resin into microstructures on a coverslip (A). 

A single polymerized microstructure is viewed from the 

top and on its side in bright field (B), and after one week 

incubation in cell culture media – rendered from its 

autofluorescence in confocal images (C). An array of 

microstructures on a coverslip that is intended for cell 

culturing (D), and arranged in the shape of a snowflake 

for demonstration of the technique’s ability to precisely 

control their positions (E). 
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2.3.2 Assay  

For testing with primary neuronal cultures, we optimized the substrate preparation 

protocol to remove residual unpolymerized resin but not weaken the microstructure’s attachment, 

as well as ensure its sterility. – We found that a brief 100% ethanol wash cleaned the residue and 

prevented toxicity, but did not result in detached microstructures during immunohistochemistry, 

and that plasma cleaning was suitable for sterilization.  

Traditionally, the analysis of bead experiments involves manual processing of 

microscopy images: drawing regions of interest (ROI) around tissue contacting beads, and 

quantifying signal levels relative to nearby tissue not contacting beads. Since our fabrication 

technique could easily generate thousands of microstructures, it was advantageous to also 

automate the image analysis process rather than quantify images by hand. We wrote a Matlab 

application that performed the following (Figure 2): selecting the best focused slice, subtracting 

cell bodies, subtracting image background using Tubulin immunocytochemistry as a mask, and 

automatically creating ROIs and control zones at each microstructure. Our strategy was to 

compare a ring-shaped region, which captures the perimeter of each microstructure, and compare 

the florescence intensity (indicative of protein accumulation) with an immediately adjacent flat 

control zone of equal surface area. The center cutout is necessary to minimize including 

autofluorescence of the polymer in the quantification. We defined a second control zone beside 

each ROI to monitor that different flat areas have similar intensity. ROI area is calculated using 

its outer circumference, without subtracting the center cutout. This is because any neurites 

entering the outer circle must go around the “obstacle” of the microstructure (i.e. are forced to 

travel the ring-shaped area), and thus for the control zone, neurites that travel anywhere within 

an equivalent outer circle, including through the center, should be counted.  
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Figure 2. Automated image processing steps. A: selection of best focused slice 

(shown left to right are fluorescence channels for tubulin, synaptophysin, and a 

bright-field image for microstructures). B: image mask generated after 

detection of cell bodies. C: image mask generated after detection of 

background areas, via segmenting the tubulin channel. D: outlined perimeters 

of microstructures, after detection of their locations using the bright-field 

image E: outlined a ring-shaped ROI around one microstructure and two 

adjacent control zones, after background and cell body subtraction using masks 

from B & C. 

A 

B C D 

E 
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2.3.3 Protein accumulation  

As the biological feature of interest is the synapse, we stained samples with two synaptic 

protein markers (Synaptophysin, found in presynaptic terminals, and PSD95, typically in 

postsynaptic terminals) as well as a marker for cytoskeleton (Beta III tubulin). Comparing the 

ring shaped ROI around each microstructure to an adjacent control zone (a flat area of the same 

size), we found a significant accumulation of tubulin (p < 0.001, n = 246), synaptophysin (p = 

0.006, n = 246), and PSD95 (p < 0.001, n = 126) around the microstructures (Figure 3, bottom).  
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Figure 3. Top: Composite image of neuronal culture 

and polymer microstructures. Bottom: Comparison of 

the accumulation of tubulin, synaptophysin, and 

PSD95 (left to right) around each microstructure vs. 

an adjacent control zone (***p < 0.001, **p < 0.01), 

and between two control zones (n.s.). Boxplot box 

shows median, 25th & 75th percentile; whiskers 

cover all data points not considered outliers.    
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2.3.4 Conductive recipe 

As the rationale is to modify electrodes, it is important that the microstructures are 

conductive to augment electrical access to neurons. We tested recipes for a conductive polymer 

and found that a composite of silver nitrate and PVP can be polymerized using the same optical 

microlithography setup as the NOA61 resin. We verified that after photoreduction the composite 

is conductive, at 4E-3 Ωm, and is biocompatible with primary neuronal cultures. During the 

optimization process, we adjusted the ratio of PVP vs. silver nitrate to balance biocompatibility 

and conductivity. Too little PVP resulted in reduced neural density within the grid of 

microstructures, compared to elsewhere on the same coverslip. The final conductive 

microstructures made had an average height of 4.5±0.6 µm and an average diameter of 

8.8±1.6µm at midpoint.  

We repeated the cell culture experiment and observed a similar significant synaptic and 

cytoskeletal protein accumulation associated with the structures (Synaptophysin, p < 0.001; 

PSD90, p < 0.001; and Tubulin, p < 0.001; Figure 4). The silver-PVP microstructures exhibited 

more variations in diameter and shape than the transparent polymer, which is due to the non-

homogenous distribution of silver in solution. Compared to bulk silver (1.59E-8 Ωm) this 

composite has lower conductivity due to the presence of residual PVP in the silver matrix.  
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Figure 4. Top: Composite image of neuronal culture 

and silver-PVP microstructures. Bottom: Comparison 

of the accumulation of tubulin, synaptophysin, and 

PSD95 (left to right) around each microstructure vs. 

an adjacent control zone (***p < 0.001), and 

between two control zones (n.s.). Boxplot box shows 

median, 25th & 75th percentile; whiskers cover all 

data points not considered outliers.    
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2.4 Methods 

2.4.1 Fabrication of transparent microstructures 

Transparent microstructures were made from UV curing polymer (NOA61) purchased 

from Norland Inc. The liquid polymer was spread over the substrate by spin coating: first 

depositing a drop onto a coverslip, attaching it to a rotary tool, then spinning for 15 s at 5000 

rpm. Polymerization into desired structures was induced by two-photon absorption using a Ti:Sa 

laser set to 800 nm directed through a custom built microscope. A 20x objective with 0.70 

numeric aperture was used (20x UPlanSApo, Olympus), and precise focused was achieved by 

observing the laser spot that exits the microscope when the laser is reflected by a glass coverslip 

exactly at the focal point. Laser power was set to 500 mW, measured after the objective. To 

automate the process, a mechanical shutter (SH04, Thorlab) was programmed to give exposures 

of 300ms, and a motorized stage (Thorlab) was programmed to control the position and speed of 

the laser, both via a custom-made program (LabVIEW 8.1). We fabricated approximately 1000 

transparent microstructures using this method.   

 

2.4.2 Fabrication of conductive microstructures 

For conductive microstructures, the liquid polymer was made by combining two 

solutions: 200 mg of polyvinylpyrrolidone (PVP) (average molecular mass 40,000) dissolved in 

0.5 mL of 100% ethanol; and 50 mg of silver nitrate (AgNO3) (99.9999% Sigma-Aldrich Co.) 

dissolved in 0.5 mL of ddH2O. A 200 μL drop of the solution was deposited onto a coverslip and 

left to dry overnight. The result was a thin transparent layer of yellow to orange colour. Using 

the same process as described above, conductive microstructures were created by photo-
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reduction of the silver nitrate using a Ti:Sa laser. Laser power was set to 17 mW, measured after 

the objective, and exposure time was set to 500 ms. We fabricated approximately 400 conductive 

microstructures using this method.  

 

2.4.3 Sample preparation & neuronal culture 

Coverslips with microstructures were handled by adding 100% ethanol to the container, 

and then transferring them inside a TC hood into a sterile 6-well plate. The plate of coverslips 

was then washed 3 times in sterile ddH2O and aspirated as much as possible, and plasma treated 

for approximately (no more than) 30 seconds. PDL diluted to 100 μg/mL in HBSS was added 

(2mL per well) and incubated for 2 hrs at 37°C. The PDL was then aspirated and washed 3 times 

in sterile ddH2O and left to dry in the TC hood.  

Dissociated embryonic cortical neurons from Sprague Dawley rats (E17-E18) were 

prepared as previously described (Banker and Goslin 1998; Hilgenberg and Smith 2007). Each 

well was seeded with 200-300K cells with DMEM and 10% FBS and incubated at 37°C. After 

four hours or overnight, media was replaced with supplemented Neurobasal (Gibco) and 

incubated at 37°C. After 7 days, half of the media was replaced with fresh supplemented 

Neurobasal. At 14 days in vitro, the cultures were fixed by replacing the medium with ice cold 

methanol for 8 minutes (at -20°C), then washing 3 times for 5 minutes with 1xPBS, and were 

stored at 4°C.  
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2.4.4 Immunohistochemistry 

Fixed cultures were blocked and permeabilized with 1xPBS with 5% BSA and 0.25% 

Triton for 1 hr at rt. The samples were divided into two groups to stain for different synaptic 

proteins. Group 1 primary antibodies, diluted in blocking solution, consist of anti-PSD95 (rabbit, 

Cell Signaling D27E11, 1:250 dilution) and anti-Beta 3 Tubulin (mouse, Sigma T8660, 1:250 

dilution). Group 2 primary antibodies, diluted in blocking solution, consist of anti-Synaptophysin 

(mouse, SynapticSystems 101011, 1:500) and anti-Beta 3 Tubulin (rabbit, Abcam AB18207, 

1:250 dilution). An additional antibody, anti-MAP2 (chick, GeneTech GTX85455, 1:300) was 

added to both groups. Samples were incubated with primary antibodies over night at 4°C, and 

then washed 3 times for 5 min with blocking solution.  

Secondary antibodies, also diluted in blocking solution, consisted of goat anti-rabbit 

(Alexa 488, ThermoFisher A11034, 1:500), goat anti-mouse (Alexa 546, ThermoFisher A11003, 

1:250), and goat anti-chick (Alexa 647, ThermoFisher A21449, 1:250). Samples were incubated 

with secondary antibodies for 1 hr at rt, protected from light. Lastly, samples were washed 2 

times for 5 min with 1xPBS and 0.25% Triton, and 2 times for 5 min with 1xPBS. Each sample 

was quickly submerged in ddH2O and mounted using 5 μL of mounting medium (Prolong Gold) 

and left to dry at rt (protected from light).  

 

2.4.5 Imaging, image analysis & statistical analysis 

Stained samples were imaged using a Zeiss motorized microscope with AxioCam MRm 

monochrome camera, as a stack of 7 images at different focal planes. Images were automatically 

processed in Matlab using the following algorithm:  
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1) Find best focused slice in each stack by comparing the focus score of the Tubulin 

image using variance of Laplacian method, (Pech-Pacheco et al. 2000; Pertuz, Puig, 

and Garcia 2013). 

2) Detect cell bodies by summing all florescence channels, thresholding and eroding to 

remove thin neural processes, eroding the inverse image to round out objects, and 

filtering by size to keep large objects. Keep as cell body mask. 

3) Segment Tubulin channel by thresholding and closing the image. Keep as Tubulin 

mask.  

4) Cut out cell bodies by applying the cell-body mask. Subtract background by 

calculating the mean pixel value of areas not covered by the Tubulin mask, then 

subtracting it from the entire image (for each channel separately).  

5) Detect microstructures, using the brightfield channel, by thresholding and closing the 

image, then filtering by size to isolate structures. Fill holes and delete any objects 

touching the edge of the image. Shrink each object to obtain center zones of the 

microstructure (which should be cut out of the ROI), as well as find their centroids.  

6) Create ROIs by creating circle areas around the centroids of each microstructure, then 

subtracting the uniquely shaped center zones obtained in step 5.  

7) Create 2 control zones adjacent to the ROIs. This was decided to be circles of the 

same outer diameter as the ROI but not removing the cutout. (See Results section for 

rationale).  

8) Tabulate the total of pixel values for each ROI and control zone.  
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Statistical tests for the effect of the microstructure were performed using an unpaired, two 

tailed Student’s t-test, comparing the ROI and one control zone, another was performed to 

compare between the two control zones.  
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2.5 Discussion 

From literature, we know that synaptogenesis by neurons can be rapidly triggered using 

robust artificial substrates, such as beads of a small curvature that are coated with PDL (Lucido 

et al. 2009). This assay has been expanded and used to investigate different conditions that are 

sufficient for synaptogenesis (Gopalakrishnan et al. 2010; Goldman et al. 2013). One direction 

that is yet unexplored is to integrate this knowledge with electrode engineering. The key 

potential benefit being the possibility of building enhanced stable connections between artificial 

and neuronal networks. This could provide a vast improvement over a common cause of 

instability suffered by existing long-term neural electrode implants, which rely on coincidental 

proximity of electrodes and the neurons recorded. 

Thus, we aimed to develop a versatile method of fabrication that could modify 

commercial electrodes with conductive bead-like features, and test whether a cylindrical 

curvature could still trigger formation of a hemisynaptic specialization, which would circumvent 

the challenge of robustly attaching spheres to electrodes.  

Our results indicated that optical microlithography can create micron scale pillars with 

dome shaped tops, of similar dimension as commonly used synaptogenic beads (Lucido et al. 

2009; Goldman et al. 2013), precisely onto substrate surfaces. We also found that this technique 

is effective for silver-PVP composite and optimized a recipe and protocol to fabricate conductive 

microstructures that are biocompatible with neurons. We observed that such microstructures 

significantly increased the concentration of pre- and post-synaptic proteins at its edges compared 

to adjacent flat surfaces of equivalent area. This can be interpreted to mean that given the same 
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device, such as a brain implant, the addition of microstructures could induce or at least boost the 

adhesion of both axons and dendrites to the device surface at precisely controllable locations.  

Some limitation to these finding include: we only tested the fabrication technique on 

glass substrates, thus the parameters will need to be adjusted for other materials. Focus is very 

sensitive for the microstructures to be securely attached, and not all microscopes allow the 

reflection method of focus testing. Additionally, the precise distribution of synaptic proteins on 

the microstructures were not tested to confirm if they are true synapses.  

Overall, our work offers a practical means to modify commercial electrodes to potentially 

enable enhanced connectivity with a neuronal network, and brings us one step closer to 

establishing stable communication with neurons.   
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Chapter 3 – Practical utility of impedance monitoring for neural 
recording microelectrodes 

3.1 Preface 

Next, we delve into physical phenomena at the electrode-tissue interface and the subject 

of impedance. This chapter is a manuscript describing in vitro experiments to precisely 

characterize impedance changes caused by protein adsorption and a single layer of adhered 

astrocytes. The manuscript also aims to clarify what the impedance measure represents, its 

relationship with the recorded neuronal signal, and provide recommendations to improve the 

utility of impedance monitoring for neural interfaces.  
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3.2 Introduction 

Impedance is a ubiquitous term in the context of recording microelectrodes, but there 

remains some confusion in its significance and utility. For electrophysiologists accustomed to 

traditional types of electrodes, such as glass pipettes and tungsten probes, describing electrode 

impedance is akin to describing electrode tip size (since material conductivity is consistent). --

The physical size of an electrode tip is of course critically important for sensitivity, i.e. the 

ability to discern signals from individual neurons. In this case, testing electrodes for particularly 

low impedance values would be helpful for identifying breaches in insulation material. 

With the development of optimized materials and surface treatments, such as PEDOT-

PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate) and platinum black, it is possible 

to significantly lower impedance (by means of increased surface texture/area) while maintaining 

the same electrode footprint. Neto et al. (2018) investigated the performance of low impedance 

electrodes in vivo, by coating half of the electrodes on a polytrode (closely spaced array of ~20 

micron pitch) with PEDOT-PSS, and thus the same neuron is recorded by multiple electrodes 

(some at ~1 MΩ and some ~100 KΩ). The authors found that while there was an improvement in 

noise (~30%) with low impedance electrodes, there appeared to be no impact on the amplitude of 

recorded extracellular action potentials.    

These examples illustrate that useful understanding/interpretation of impedance values 

requires knowledge of the underlying cause. For a microelectrode implanted in vivo, measured 

impedance not only depends on electrochemical active area, insulation integrity, but also 

biofouling, gliosis, and extracellular conductivity. However, it is not uncommon to see reports of 
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impedance measurements made for chronically implanted microelectrodes and attempts to derive 

meaning from its trend without adequate strategy to tease apart contributing factors.  

A method to thoroughly examine impedance is to make measurements across a wide 

range of frequencies, via electrochemical impedance spectroscopy (EIS). EIS interrogates a 

system of interest by applying sinusoidal stimulation signals over a large frequency spectrum 

(e.g. in our experiment, from 1Hz - 100KHz), and recording voltage vs. current at each 

frequency, from which magnitude and phase components of impedance can be extracted. 

Magnitude is the ratio between voltage and current of an AC signal (analogous to conventional 

resistance), while phase shift is the lag between peaks in current and voltage. Energy storing 

components such as capacitive cell membranes will cause phase shifts (for example, during 

depolarization of an action potential, there can be a peak in current flow while the membrane 

potential is passing through 0V). Using full EIS data, it is possible to derive a model circuit of 

individual elements that make up an impedance, and if properly fitted, each parameter of each 

element, including the electrode-electrolyte interface (charge transfer resistance, double layer 

capacitance), a protein rich layer, glial cells with capacitive cell membranes, and the extracellular 

space, could all be estimated (Williams et al 2007, Frampton et al 2009). This in theory offers a 

powerful means to monitor changes in the neural tissue and at the electrode surface.  

In practice however, EIS analysis is not readily accessible to complement neural interface 

applications, due to both the cost of EIS instrumentation and the expertise required to model and 

fit recorded data.  

Thus, this report aims to facilitate practical impedance monitoring for recording 

microelectrodes. Several aspects are addressed: 1) Clarify the relationship between recorded 
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neuronal signal, electrode impedance, and impedance measured in vivo; by suggesting a 

simplified circuit representation of the system. 2) Improve understanding of impedance 

contributions of electrode surface phenomena, such as biofouling and adhered astrocytes, by 

performing EIS on each condition in vitro. 3) Help facilitate accessible impedance monitoring by 

investigating cost effective EIS hardware and most sensitive test frequencies. 

 

  



58 
 

3.3. Results 

3.3.1 Impedance in context 

As impedance relates voltage and current, it is present in numerous aspects of 

electrophysiological recording. Most often mentioned are the physical impedance of the 

electrode prior to contact with tissue, and the impedance measured in vivo (typically at 1KHz), 

which changes over time. From these values, users hope to glean information on surface 

stability, tissue changes, and implications on the electrode's ability to detect signals, which is 

often a confusing endeavor. We suggest a simple circuit representation to help reconcile these 

relationships.   

 

Figure 1. Simplified representation of electrically relevant components of an in vivo recording 
microelectrode. A: An electrode is depicted in the vicinity of an axon that is depolarizing and acting as a 
current source I_ion. At the electrode tip, intrinsic impedance and surface phenomena make up the 
impedance Z_surf; beyond the electrode tip, the impedances of neurons, glia, and extracellular matrix 
constitute Z_tissue; and the recorded voltage or impedance (V_meas & Z_meas) reflect values from the 
electrode tip (position X) with respect to the reference point, a distance beyond where I_ion is 
imperceptible. Note that I_ion will travel in all directions and could travel around the electrode (i.e. not 
be hindered by changes in Z_surf). B: The circuit diagram, in which the recorded voltage is schematized 
as only dependent on electrode position (I_ion at X) and tissue impedance, while the recorded 
impedance includes tissue, electrode, and surface phenomena.  

As an action potential propagates through a neuron, the large membrane potential spike is 

mediated by ionic current flow across the cell membrane at that location on the cell. The exact 

Electrode 

Axon 

Reference 
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transmembrane current is determined by the mechanisms that underlie the generation of the 

action potential and the cell membrane properties, and thus is considered a fixed current source. 

The current then dissipates via volume conduction into the aqueous environment. A certain 

distance away, shown as a sphere in Figure 1A, the current is almost imperceptible; this will be 

considered equivalent to "ground". We can detect the action potential if a recording 

microelectrode is placed within the volume where the current is dissipating (ideally as close as 

possible to the current source), and a reference electrode outside of it.  

The resulting extracellular potential (i.e. signal of interest) near a neuron is a function of 

the ionic current at that point in space and extracellular conductivity (Pettersen et al. 2012). 

Consider, as ionic current from the neuron travels in all directions that lead to "ground", the 

current will favour paths of least resistance, and thus the presence (and intrinsic impedances) of 

an electrode nearby will have negligible impact on the net path to ground perceived by the 

current source. With this premise, we represented the ionic current at the electrode’s location as a 

current source that is a function of distance to the neuron, and represented the extracellular 

conductivity and the electrode related impedance as parallel paths to ground (Figure 1B). The 

extracellular potential is labeled to emphasize that the voltage signal we record is primarily 

determined by electrode's distance to the neuron and tissue impedance (assuming of course the 

electrode tip is sufficiently small). And the electrode impedance as well as interface phenomena 

could thus be considered a part of the recording equipment.  

In this circuit representation, the electrode and its surface related impedances (lumped 

into Z_surf) is in series with the extracellular potential and the recording amplifier. Therefore, 

Z_surf only poses a problem if a significant voltage divider is formed with the amplifier's internal 

resistance (as mentioned by Neto et al. (2018)).  
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The circuit also illustrates that when impedance is measured in vivo, the result 

incorporates both Z_surf and tissue impedance (Z_tissue, which includes the extracellular matrix, 

other neurons, and glia). As described above, Z_surf has a negligible impact on signal amplitude, 

while Z_tissue plays a significant role. Z_tissue is also  a function of tissue composition, where 

glial scars are more dense than typical healthy neural tissue and has higher impedance (Williams 

et al. 2007).  

We suggest that based on this circuit representation, it is reasonable to investigate and 

interpret gliosis progression using impedance measurements in vivo. Since measured impedance 

is the sum of Z_tissue and Z_surf, then Z_tissue can be estimated by subtracting Z_surf from the 

measured impedance. Z_surf in turn consists of an electrode’s intrinsic impedance and effects of 

surface phenomena. Intrinsic impedance can be measured before implantation (if not provided by 

the manufacturer), and material changes can be stress tested separately (Xie et al. 2014). In 

subsequent results we show EIS data for common surface phenomena (i.e. biofouling and a 

single layer of adhered astrocytes), which can serve as a reference for the contribution of these 

elements to Z_surf.   

 

3.3.2 Characterization of electrode surface changes 

To understand the contributions of surface phenomena in the cumulative impedance of 

implanted electrodes, we tested common surface conditions using an in vitro array designed for 

neural electrophysiology (AxionBioSystems, M64-GL1-30Au200). The MEA pads were gold 

(30 μm diameter, 200 μm spacing), with traces insulated by 5 μm thick SU8, on a glass substrate, 

integrated into a cell culture well. We built a custom adapter with a 3D printed socket to seat and 
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connect to the MEA well. Via the adapter, it was possible to freely access the 64 microelectrode 

pads and 4 large ground pads of the device.  

We performed EIS using a multi-potentiostat (Bio-Logic VSP-300) in 3-input 

configuration: the working input was connected to an electrode of interest; the counter input was 

connected to the 4 ground pads (to source/sink current for the working input); and the reference 

input was connected to a silver/silver chloride (Ag/AgCl) wire that was dipped into the MEA 

well. The reference wire was verified against a mercury sulphate standard before each recording 

session.    

Biofouling 

The biofouling condition was created by incubating the MEA in 100% fetal bovine serum 

(FBS), and measured using on day 0 (before incubation), after 2 days, and after 5 days. The 

measurements were made across a frequency range of 1Hz - 100KHz on 10 gold microelectrode 

sites in DMEM solution. We observed that at 1KHz, the central frequency for action potentials, 

impedance was unaffected, both in magnitude and phase shift (raw data in Figure 2A, t-test 

results in Table 1).  

Adhered cells and PDL coating 

The surface glial encapsulation condition -- a single layer of adhered cells, was created 

by culturing astrocytes on a PDL coated MEA. Measurements were made on 12 gold 

microelectrode sites in PBS solution: on a new MEA, after PDL coating, and after 2 days of 

astrocyte growth. We observed that at 1KHz, impedance magnitude was not affected by either 

PDL coating or the astrocytes, but that the phase shift was more negative (i.e. surface is more 

capacitive) after PDL coating (raw data in Figure 2B, t-test results in Table 1).  
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3.3.3 Frequencies of interest 

From the raw EIS data (Figure 2), it is apparent that lower and higher ends of the 

measured frequency spectrum are more sensitive to surface changes, while 1KHz, the most often 

reported measure in literature, was the least affected. We performed paired t-tests with 

Bonferroni-adjustment at frequency points closest to each order of magnitude (Table 1). Indeed, 

for the 30μm diameter gold microelectrodes we used there was no significant magnitude 

difference due to any of the tested surface changes at 1KHz.  

This result makes the 1KHz in vivo impedance uniquely useful for similar 

microelectrodes, and suggests that there are frequencies where observed impedance changes 

mostly reflect changes in tissue composition beyond the immediate surface of the electrode. 

This, of course, assumes that the electrode’s intrinsic impedance is stable, which could be stress 

tested without implanting in vivo (Xie et al. 2014). At the same time, if electrode surface 

phenomena are of interest, single frequency impedance testing should be performed at more 

sensitive frequencies. Our observations indicated that the phase data at 10KHz and at very low 

frequencies (10Hz or below) are the most effective at detecting surface changes.    
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Figure 2. Raw EIS data presented in Bode plot format, where impedance magnitude and phase shift 

components are plotted separately over the range of stimulation frequencies. A:  biofouling experiment, 

recorded on 10 microelectrodes on bare (cleaned) electrodes, after 2 days, and 5 days of protein 

adsorption. B: astrocyte experiment, recorded on 12 microelectrodes on bare (new) electrodes, after 

PDL coating, and after culturing a layer of astrocytes, .  

Table 1. Impedance differences tested at 6 frequencies assessed using paired Student’s t-test. Significant 

differences are shown as the mean change in impedance (average of 10 or 12 electrodes), followed by 

Bonferroni adjusted p-values.  

Frequency: 1.0Hz 10.2Hz 105Hz 1.07KHz 11.0KHz 100KHz 

Impedance Magnitude 

New vs. PDL coated  
 

    
 

PDL vs. astrocytes      +54KΩ 
p=0.017 

Clean vs. 2-day 
biofouling 

-440MΩ 
p<0.001 

-39MΩ 
p=0.036 

    

2-day vs. 5-day 
biofouling 

+149MΩ 
P<0.01  

   
 

Impedance Phase shift 

New vs. PDL coated -74° 
p<0.001 

-52° 
p<0.001 

-30° 
p<0.001 

-16° 
p=0.013 

  

PDL vs. astrocytes     +11° 
p=0.015 

 

Clean vs. 2-day 
biofouling 

+21° 
p<0.001 

+22° 
p<0.001 

+8° 
P<0.01  

+1° 
p<0.001 

-6° 
p<0.001 

2-day vs. 5-day 
biofouling 

-10° 
p<0.001 

-13° 
p<0.001 

-5° 
p=0.013  

+3° 
p<0.001  

A B 
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3.3.4 Cost effective EIS 

Accurate EIS instrumentation is generally prohibitively expensive for many non-

specialist research laboratories; for this reason, prior to recording with the multi-potentiostat we 

briefly explored a cost-effective alternative: the AD5933 12-bit impedance converter chip from 

Analog Devices. AD5933 is available on a ready-to-use evaluation board (EVAL-AD5933EBZ) 

with USB connectivity and software interface. This technology offers a unique opportunity for 

EIS to be portable and extremely affordable (at ~$60 USD).  

Although the recorded data we obtained are not of sufficient accuracy for impedance 

research, some results are summarized here. The accessibility of this technology may allow 

impedance monitoring that complement neural interfaces to be one step more sophisticated than 

the single-frequency magnitude-only data found in literature.    

The EVAL-AD5933EBZ board by default employs a 16 MHz oscillator. We replaced the 

oscillator with a 4MHz component in order to record in the 1KHz-10KHz range. The rest of the 

setup consists of the same MEA and custom adapter as described above. As AD5933 only 

supports two input mode (where the second input serves as both reference and counter), we used 

the large ground pads of the MEA for the second input. Although gold pads do not serve as a 

good reference, it would be more stable than an Ag/AgCl wire when a current is driven across it.  

Surface conditions tested include PDL coating and growing HEK293 cells (Shaw et al. 

2002), a cell line derived from human embryonic kidney cells, at two confluence levels. The 

PDL coating was detected with statistical significance at 10KHz in phase shift. Other differences 

can be seen in the averaged impedance plots (Figure 3A) but were not significant, likely due to 

the low number of electrodes tested (4 electrodes). Comparatively, the measurements derived 
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from two different MEA plates under identical conditions appear very closely matched (Figure 

3B). These findings support the precision of AD5933 as a tool to detect relative impedance 

changes. However, a key drawback is reflected in Figure 3C (upper graph): it is necessary to 

preset the device with the anticipated range of the impedance under test. Due to the hardware 

design, impedances beyond the upper end of the preset range will be affected by artefacts while 

impedances beyond the lower end will be clipped. Therefore, another method of impedance 

measurement is still needed to support the AD5933, but at its price point, the findings obtained 

indicate that this is a valuable tool for gathering qualitative impedance insights.  

 

 
Figure 3. EIS data recorded using AD5933 impedance converter: PDL coating and HEK cell culture 
conditions (A), and baseline condition from two MEA plates (B). Each condition was averaged over 4 
recorded microelectrodes and smoothed to reduce artefact and noise. Example of raw data (C) 
illustrates artefacts and clipping at the upper and lower end of calibrated range respectively.   

 
 
 

A B C 
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3.4 Methods 

3.4.1 MEA adapter board 

A custom printed circuit board (PCB) was made to gain access to output pins of the MEA 

(AxionBioSystems, M64-GL1-30Au200). The MEA's 64 electrodes (in an 8x8 matrix) are 

connected out from the glass substrate to pads on a small circuit board at the base of the MEA 

plate in a non-standard layout. The base of the MEA was first photographed on a scanner in order 

to measure the dimensions and positions of the output pads. The custom PCB was laid out with 

pads of identical footprint as the MEA, which were then connected out to a large matrix of plugs. 

The plugs were arranged such that the position of each plug matched the position of its 

connected electrode inside the MEA. (This is so that if an electrode of interest is observed under 

the microscope it will be easy to find its plug.)  

To enable electrical connectivity between the MEA and the PCB, a custom socket was 

made via 3D printing and mounted onto the PCB. The socket has two elements, an outer element 

that the MEA plate securely seats into, and an inner element that holds 4 pieces of Z-axis 

elastomer (Z-Axis Connector Company). Z-axis elastomer is a material that is an insulator in 2 

(X and Y) dimensions but a conductor in the 3rd (Z) dimension when it is compressed in this 

dimension. Therefore, the material allows two devices with matching footprints to be electrically 

connected when the elastomer is sandwiched between them.  

 

3.4.2 Biofouling and PDL coating 

The biofouling condition was created with heat inactivated fetal bovine serum (FBS). The 

FBS was sterilized by filtering, added to a cleaned (previously used) MEA at 100% 
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concentration, and incubated at 37°C. Before an EIS measurement, the FBS was slowly poured 

out, the MEA well was then gently filled with medium so as to not disturb the adsorbed layer of 

protein. 

A new MEA was prepared for the astrocyte culture condition. The MEA was first 

sterilized with 70% ethanol for 5 min, washed 3 times in ddH2O, dried with a vacuum, and then 

plasma treated for 30 sec. The sterile MEA was then coated with PDL, which is necessary for 

cell adhesion. PDL was first diluted to 100 μg/mL in HBSS, filtered, then added to the MEA and 

incubated for 2 hrs at 37°C. The solution was then aspirated and the MEA washed 3 times in 

sterile ddH2O and left to dry in the TC hood. 

 

3.4.3 Astrocyte culture 

Astrocytes were obtained from a P1 postnatal rat glia culture, after a shake off procedure 

that is used to harvest oligodendrocytes, leaving behind astrocytes and some microglia in the 

culture flask (Armstrong 1998). The flask was first filled with 1X trypsin-EDTA and incubated 

for 2 min to detach the cells. The mixture was spun down, resuspended in DMEM and passed 

through a cell strainer. The resuspended cells were counted and ~ 0.25 million seeded on the 

MEA, in DMEM with 10% FBS, and incubated at 37°C.   

 

3.4.4 EIS recording on multi-potentiostat 

EIS recordings were made using the multi-potentiostat (Bio-Logic VSP-300) with a high 

sensitivity probe, controlled through its software interface (EC-Lab V10.44). The MEA was 
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seated into the custom adapter described above, which along with the probe was placed inside a 

grounded faraday cage.  

The potentiostat was configured to make 3-input recordings. The working input was 

connected to electrode(s) of interest on the MEA, manually connected one at a time. The counter 

input, which serves to source/sink currents for the working input, was connected to the four large 

ground pads of the MEA, which were linked together with wires on the adapter board. The 

reference input was connected to an Ag/AgCl wire that was dipped into the MEA well. The 

reference wire was prepared by soaking a silver wire in bleach, and stored in saturated KCl.  

Before each recording session, the reference wire was tested against a mercury sulphate 

standard electrode. Before recording from each electrode, a constant voltage of 50 mV was 

driven for 5 min in CA mode in order to stabilize transient surface effects. Recordings were then 

made in PEIS - floating mode, sweeping from 1Hz to 100KHz over 100 logarithmically space 

points, with a stimulation signal at 50 mV offset (Frampton et al 2009) and 10 mV amplitude.  
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3.5 Discussion 

Impedance is often a point of discussion relating to neural recording electrodes. 

Generally, people are interested to know if an electrode design is suitable for an application, and 

for long term implants, to track how the implant and surrounding brain tissue is faring over time, 

for which impedance testing is the only way to interrogate the system in vivo.  

Long term reliability of neural implants is itself an active and challenging area of 

research. Loss of signal may be attributed to a number of factors, including insulation break 

down, biofouling, gliosis, and neuronal death (Prasad et al. 2014). To build the most stable 

interface, it is important to know which factors contribute most to the decline of recorded activity 

and select engineering strategies accordingly. Since impedance measured in vivo is a function of 

most of these factors, it could provide valuable insights for improving electrode design.  

Given the all encompassing nature of impedance however, it can be difficult to interpret 

the data and understand its significance. Taking intrinsic impedance as a specific example, while 

classical electrophysiologists consider a high value a positive indication, this is valid only when 

the quantity reflects electrode size. Neto et al. (2018) showed that given the same electrode size, 

impedance differences due to material/texture do not affect signal amplitude.  

The technique of electrochemical impedance spectroscopy potentially allows 

investigators to harness the full power of impedance monitoring for neural implants. The raw 

data, by inspection, could reveal signs of extensive reactive gliosis (Williams et al. 2007), and an 

equivalent circuit could further be derived and fitted to provide estimates of each physical and 

biological element (Frampton et al. 2009). These techniques however are not generally 
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accessible outside of dedicated impedance research due to equipment cost and expertise required 

for modelling.  

Our report aimed to shed light on the information provided by impedance measurements 

in the context of neural recording electrodes, and how to monitor it more effectively for different 

purposes.  

To this end, we suggested a simple circuit representation of the electrically relevant 

elements of a recording implant. This representation relies on the mathematical model of the 

origin of extracellular spikes (Pettersen et al. 2012) and delineates which elements contribute to 

the measured action potential vs. the measured impedance. It was simplified as much as possible 

to facilitate an intuitive view.  

The circuit model shows that 1) the amplitude of the measured action potential mainly 

depends on tissue impedance and ionic current that is a function of the distance to the neuron. 2) 

The electrode/surface impedance is in series with the headstage amplifier and can be considered 

a part of the recording equipment. 3) The measured in vivo impedance incorporates all these 

impedances. This could fit and reconcile relevant findings in literature. For instance, simulation 

results presented by Malaga et al. (2015) indicate that effects at the interface such as biofouling 

and glial encapsulation should not negatively affect recorded signal amplitude, but increased 

distance to the neurons due to displacement by scar tissue would significantly reduce signal 

amplitude. As mentioned above, Neto et al. (2018) provide evidence that intrinsic electrode 

impedance does not affect signal amplitude, but the voltage divider with the amplifier may 

become an issue. And the fact that impedance measured in vivo seems to consistently follow a 

time course related to healing and scar development (Barrese et al. 2013; Malaga et al. 2015), but 

does not have a simple correlation with action potential amplitude, could plausibly be due to 
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gliosis both increasing tissue resistance in the neighbourhood of recorded neurons, but also 

increasing the distance to these neurons.  

The circuit also implies that tissue impedance can be estimated if the electrode and 

surface related impedances (Z_surf) is accounted for. This is feasible by characterizing surface 

phenomena in a controlled environment. We performed EIS for the surface conditions of 

biofouling and a single layer of adhered astrocytes, and found that different frequencies have 

different sensitivity to these conditions. Therefore, at a frequency where surface changes are 

"invisible", changes in tissue impedance, which can reflect gliosis progression, could be 

observed directly. 

Here, we also briefly tested an affordable EIS tool, the AD5933 impedance converter, and 

found it has promising precision/sensitivity, but is encumbered by the requirement for 

calibration.  

In summary, we recommend the following practices to improve the utility of impedance 

monitoring: 1) Augmenting measurements to complex impedance at 3 frequency points (e.g. 

10Hz, 1KHz, and 10KHz), with baselines taken before and after implantation. 2) For novel 

electrode materials, observing if its impedance has a stable profile over time (e.g. in PBS at 

physiological temperatures) to account for this variable. 3) A few rules of thumb for data 

interpretation -- at 1KHz, values above the post-implant baseline likely reflect tissue reactivity, 

values below likely reflect compromised insulation; and to look for phase shifts at 10KHz/10Hz 

to detect changes at the electrode surface.   
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Chapter 4 – A standard for rapid and reproducible screening of neural 
interface stability  

4.1 Preface 

Lastly, we work with the recorded signal to address a gap in the available tools for 

stability assessment. This chapter is a manuscript advocating a method and software, the Firing 

Profile Test (FPT), for systematically detecting changes in firing patterns related to changes in 

the recorded neuronal population. Also included in the report are an estimate of FPT accuracy 

determined by simulated ground-truth data, a comparison against spike-sorting based methods, 

and stability results from applying FPT to two long-term Utah array datasets.   
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4.2 Abstract 

Neural interface technologies, such as microelectrode-arrays, provide high-fidelity 

recordings of neuronal activity for neurological research and to drive prosthetic devices, yet, 

widespread clinical adoption is hindered by unstable connections between neurons and recording 

sites. Developers and users lack effective and reproducible methods for stability assessment. 

Current approaches are labour intensive and prone to bias that confounds reproducibility, 

limiting the capacity to interpret neural interface data and constraining progress in the field. To 

address this, we developed the Firing Profile Test (FPT), a fully automated stability evaluation 

method that analyzes spike rate attributes to detect changes in a neural population. We 

demonstrate that FPT delivers comprehensive stability profiles of microelectrode-arrays, to 

provide high-speed reproducible stability assessment that will facilitate neural interface R&D, 

enhance the utility of existing interfaces, and enable the development of neural decoders that 

adapt to instability.     
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4.3 Introduction 

Microelectrodes are employed in brain-machine-interfaces (BMI) for neuroprostheses 

and electrophysiology studies to capture spiking activity of individual neurons. Array devices 

with up to hundreds of channels (electrode sites) are available as implants for the central nervous 

system (CNS) or peripheral nervous system (PNS) (Hochberg et al. 2012; Normann and 

Fernandez 2016). Long-lasting microelectrode implants that deliver stable recordings are 

necessary for practical prostheses and for tracking neural correlates of behavior, learning and 

plasticity. However, achieving stable neural-implants is particularly challenging, due to factors 

such as the small size of the signal source and amplitude, hardware deterioration and fouling, 

softness and fragility of neural tissue, and the foreign body response (Salatino et al. 2017; 

Barrese et al. 2013; Prasad et al. 2014). Consequently, a significant volume of research is 

directed toward developing more biocompatible and robust implants (Rivnay et al. 2017; 

Bettinger 2018).  

Essential to innovation is performance assessment. Without precise and timely testing of 

a novel design, another R&D iteration cannot proceed due to the lack of clear targets for 

improvement and the loss of expertise and momentum. Equally important is reproducibility. If a 

test relies on human decisions, reports from different groups are not directly comparable, hence, 

the literature becomes ineffective at elucidating the state of the art for user adoption and for 

groups advancing the state of the art to compare and evaluate progress.  

Lacking consensus on evaluation criteria (Durand, Ghovanloo, and Krames 2014), the 

neural interface community currently employs a variety of stability evaluation methods 

(summarized in Table 1). The likely cause of this disparity of methods is that each approach has 
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notable advantages and limitations in ease of implementation, reproducibility, and correlation to 

application performance. 

BMI applications, such as mind-controlled assistive devices, are driven by information 

decoded from neural activity, and thus their performance depends on the capacity of the 

microelectrodes to deliver information. In the nervous system, information is represented by 

activities of populations of neurons, with each neuron playing a partial and somewhat unique 

representational role. Multi-electrode implants provide channels of access to these populations, 

with each electrode recording electrical activity from a few immediately adjacent neurons. An 

effective microelectrode array should access a sufficient neuronal population to allow 

distinguishing representations of different thoughts or movements (Li 2014). As well, the device 

should ensure consistent connectivity to the same neurons at each channel, as the decoding of 

neural activity relies on custom decoding functions, which are built by characterising how each 

channel, or neuron, in some decoding schemes, uniquely contributes to the represented 

information of interest (Green and Kalaska 2011; Wallisch 2014). Consequently, regardless of 

physical electrode attributes (e.g. impedance, signal-noise-ratio), if the neurons recorded are 

changing over time, decoding will be miscalibrated and application performance impaired. 

Although decoding from larger neuronal ensembles can improve reliability (Nuyujukian et al. 

2014), optimally engaging a BMI will likely require active neural adaptation (Shenoy and 

Carmena 2014), which relies on consistently recorded neurons (Ganguly and Carmena 2009b).   

The existing metric to address consistency in recorded neurons is to count “stable units”, 

accomplished via spike-sorting and related techniques (Williams, Rennaker, and Kipke 1999; 

Liu et al. 1999; Dickey et al. 2009). As multiple neurons fall within an electrode’s recording 

vicinity, spike-sorting distinguishes the action potentials (spikes) of individual neurons by 
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grouping each spike according to its waveform. The basis is that an individual neuron’s 

waveform (termed “single unit”) is unique due to cell morphology, position with respect to the 

electrode, and heterogeneity of extracellular composition. Any single unit persisting from 

previous sessions – matched in attributes that include waveform and inter-spike-interval 

distribution, is scored as a stable unit. In practice however, due to noise and concurrent neural 

activity, counting stable units is labour intensive and prone to subjective bias: spike-sorting 

typically requires human supervision/intervention for every session for every channel, where 

each result will vary across different software and experts (Harris et al. 2000; Einevoll et al. 

2012). While recent developments offer unsupervised alternatives (Takekawa, Isomura, and 

Fukai 2010; Eleryan et al. 2014), it remains problematic that waveform properties of a neuron 

fluctuate rapidly (Linderman et al. 2006). Furthermore, identifying stable units by waveform 

precludes against stable neurons undergoing changes in morphology, position, or local 

environment – a likely scenario at the site of a foreign body response in reaction to an implanted 

electrode (Linderman et al. 2006; Kozai et al. 2015). The accuracy of stable unit identification 

can be improved by examining the response of each single unit to a stimulus or behavior, but 

such experimental protocols are much more involved than a general recording of neural activity 

(McMahon et al. 2014; Liu et al. 2006). The stable unit count is also more exigent than necessary 

to predict application performance, as newer BMI implementations directly decode from channel 

activity (i.e. using all above-threshold spikes) rather than from sorted single units (Gilja et al. 

2012; Fraser et al. 2009; Hochberg et al. 2012).  

We present here a novel data analysis technique, the Firing Profile Test (FPT), that 

specifically tests whether each channel is recording the same group of neurons over time. We 

aimed to create a stability assessment method that is fast, reproducible, and effective for 
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predicting application performance. This technique focuses on channel level stability without 

isolating individual neurons, comparing spike rate statistics between sessions to detect instances 

of instability (i.e. the loss, addition, or change of neurons at a microelectrode site). FPT is 

automated and available as MATLAB functions. It is applicable to any dataset where each 

recording session utilized the same protocol and engaged the probed neural population with an 

adequate variety of stimulus conditions. 
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Table 1: Summary of currently employed methods of microelectrode stability evaluation 

Metric Quantity targeted Minimum requirements  Correlation to decoding 
reliability,  
Ease of implementation, 
Reproducibility 

Impedance 
(Barrese et al. 2013; 
Prasad et al. 2014; 
Rousche and Normann 
1998; Malaga et al. 2015) 

Electrical conductivity and 
phase shift - Impedance instrumentation 

- Any intervention that affects electrode  
  surface 

Low, High, Moderate 

Amplitude 
(Malaga et al. 2015; 
Chestek et al. 2011)  
or SNR 
(Barrese et al. 2013; 
Prasad et al. 2014; Suner 
et al. 2005) 

Amplitude of target signal or 
its ratio to noise floor 

- Electrophysiology instrumentation 
- Live culture/tissue that generate bio 
  electricity 

Low, High, High 

Above-threshold events 
(Barrese et al. 2013; Wang 
et al. 2014) 

Large amplitude spikes 
(single units and multi units) 

- Electrophysiology instrumentation 
- Short term in-vivo implant experiment 

Moderate, Moderate, High 

Single units 
(Prasad et al. 2014; 
Rousche and Normann 
1998; Suner et al. 2005; 
Wang et al. 2014) 

Spikes originating from 
discernible single neurons - Electrophysiology instrumentation 

- Short term in-vivo implant experiment 
- Spike sorting 

Moderate, Low, Moderate 

Stable units 
(Vaidya et al. 2014; 
Eleryan et al. 2014) 

Single units that persisted 
over multiple sessions  

- Electrophysiology instrumentation 
- Short term in-vivo implant experiment 
- Spike sorting  
- Stable unit analysis 

High, Low, Low 

Stable units supported by 
representation  
(McMahon et al. 2014; Liu 
et al. 2006) 

Stable units that are 
consistent to specific stimuli 
or behaviors 

- Multi-channel electrophysiology  
  instrumentation 
- Short term in-vivo implant experiment 
- Stimulus-response or behavioral protocol 
- Spike sorting 
- Stable unit representation analysis 

Very High, Very Low, High 

BMI performance 
(Nuyujukian et al. 2014; 
Perge et al. 2013) 

Performance / throughput 
on neuro-prosthetic systems 

- Multi-channel electrophysiology  
  instrumentation 
- BMI application system/simulation 
- Long term in-vivo implant experiment 
- Behavioral training 
- Decoder building 
- Performance/throughput analysis 

Very High, Very Low, High 

FPT  
(proposed method) 

Distribution of spike-rates 
under assorted stimuli 

- Electrophysiology instrumentation 
- Short term in-vivo implant experiment 
- Consistent stimulation or behavioral  
  sequence 

High, Moderate, High 
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4.4 Results 

A key obstacle to traditional neuron tracking methods, which rely on analysis of action 

potential waveforms, is that waveforms are noisy and change over time in stable neurons. The 

approach we describe here works directly with firing rates, which only require thresholding the 

analog signal to extract neural population information. Typically, firing rates have significant 

variability and cannot easily be used to identify neurons. Rather than interpreting firing rates 

discretely, our method constructs a higher level signature of neural firing capability via a variety 

of stimuli. Then, relationships between the signatures and neural tuning curves are identified and 

leveraged to deduce whether a detected change in a signature reflects instability (Figure 1).     

 

4.4.1 Description of method  

4.4.1.1 Data input 

 The input data is the raw recording, organized by channel number and recording session, 

and the timestamps corresponding to stimulus onset. Datasets that have been converted to spike 

rasters can be directly used as input data.  

 

For FPT to be effective, the recording experiment should satisfy the following criteria:  

1) The recording protocol engages the probed neural population with an adequate 

variety of test conditions, e.g. on the order of a hundred different images for a visual 

cortex implant, or movement targets for a motor cortex implant. The ideal range and 

selection of conditions should be sufficiently wide that each neuron encounters some 

within and some outside of its criteria for firing, as well as sufficiently nuanced that 
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each neuron will be activated differently than its neighbouring neurons for some 

conditions. 

2) Each condition should be held for an adequate time window to capture a neuron’s 

spike rate (e.g. if the slowest spike rate of interest is 2 Hz, each condition should be 

maintained for at least 0.5 s). 

3) In each experimental session, recordings should be made using the same protocol 

(sequence of conditions). 

 

4.4.1.2 Spike raster extraction 

If the input data are raw recordings, the software tool first performs a conventional spike 

raster extraction by filtering and thresholding the signal. Users can configure the default settings 

or replace this step with a custom module. Typically, the threshold level is selected such that 

spikes exceeding this amplitude are single-units or distinct multi-units. Outputs from this step are 

the timestamps of above-threshold spikes. Spike waveforms are not relevant to FPT.  

 

4.4.1.3 Descriptive statistics and channel stability visualization 

FPT focuses on spike rate statistics at the channel level, where the output of one channel 

is the superimposition of multiple neurons within its recording range. For brevity, these neurons 

will be termed the “channel-population”. The descriptive statistic of interest, i.e. the high-level 

firing signature, is the spike-rate-histogram of each channel-population from each recording 

session. Spike-rate-histograms are generated automatically from spike raster data by the software 

tool, by performing the following: 1) divide the data into epochs by test condition onset, 2) count 

spikes (averaging repetitions of the same condition), and convert to spike-rate (Hz) per 
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condition, 3) plot histograms of the tabulated spike rates, akin to a frequency domain 

distribution, that includes all test conditions. Thus, a histogram displays the number of 

occurrences of each spike rate, where each occurrence reflects one test condition.  

Intuitively, the spike-rate-histogram illustrates a channel-population’s firing capability. 

The shape of the distribution shows the population’s tendency or preference to fire at each 

frequency, and the area under the distribution represents how many test conditions, in total, had 

induced spiking activity. The spike-rate-histogram is suitably sensitive for visualizing stability 

when different sessions are compared, as it does not discern the specific neural activity per 

condition, which would exhibit significant trial to trial variability (Azouz and Gray 1999), yet it 

is perturbed by differences in the channel-population’s characteristic output levels and size of its 

representation domain (i.e. receptive field or behavioral target). The software tool outputs a 

collection of histograms and displays them as a heatmap to allow users to directly inspect each 

channel’s stability profile (Figure 1, panel III).    

 

4.4.1.4 Stability detection and summary of implant performance  

Next, FPT formally tests for instability by inspecting the salient features of each spike-

rate-histogram, according to its relationship to the neural tuning curve. This method is designed 

to assess the consistency of channel-populations over time, thus, instability is defined as the 

addition, loss, or replacement of neurons. The current version of FPT uses a rule-based reasoning 

(RBR) function to compare each spike-rate-histogram with that of the previous session to discern 

instances of population change (unstable) vs. natural modulations (stable).  
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Figure 1: Workflow of the Firing-Profile-Test for microelectrode stability assessment 
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The RBR logic relies on the following facts and assumptions (Figure 2):  

1) Features of the spike-rate-histogram describe attributes of the neural tuning curve 

(Figure 2A), which is a unique property that distinguishes individual neurons.  

2) A channel-population’s combined tuning curve is the linear combination of its 

constituent’s individual tuning curves.  

3) Natural modulations that alter neural firing rates manifest as a contained shift in 

tuning curve height and x-intercept, while the addition/loss/replacement of neurons 

alters the combined tuning curve drastically (Figure 2B).  

 

The rules that govern the RBR are listed below. Derivations and a larger set of logic to 

estimate the cause of recording instability (i.e. added/dropped/changed units) are detailed in the 

Methods section. Default parameters, derived from the literature (Kayser et al. 2015; Connor et 

al. 1996; Anton-Erxleben, Stephan, and Treue 2009; Singh et al. 2014), are included in the 

software tool, and should be customised where possible according to the specific use-case and 

the characteristics of neurons in the implanted area. Instability has occurred if there is a: 

- change in upper or lower bound of the distribution that exceeds anticipated effects of 

natural modulation 

- change in width of the distribution that is bidirectional 

- change in area under the distribution that exceeds anticipated effects of natural 

modulation  

- shift in the position of peaks within the distribution 
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From RBR output, the FPT software tool generates summary charts of the full implant 

performance, including a map of Channel Status by Session, and a plot of Stability by Time. For 

these summaries, the software also optionally filters for minimum activity level, such that only 

stable and sufficiently active channels will be counted. 

 

 

Figure 2: Using the spike-rate-histogram to infer tuning curve changes 

A. Relating features of the tuning curve (shown in black) of a hypothetical sensory neuron, to the 

resulting spike-rate-histogram (shown in blue) when its receptive field is fully stimulated. The highest 

and lowest histogram bins reflect maximum and minimum curve values, area under the histogram 

reflects curve length on the x-axis, and histogram peaks reflect ranges with minimum slope. B. How a 

tuning curve may change due to natural fluctuations, such as attention. C-E. How a tuning curve may 

change due to the linear combination of two neurons (red is the resulting tuning curve); where C 

illustrates 2 neurons with non-overlapping curves significantly increasing the resulting receptive field, D 

illustrates 2 neurons with slightly overlapping curves producing another preferred firing rate, and E 

illustrates 2 neurons with fully overlapping curves significantly increasing the resulting maximum firing 

rate. 
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4.4.2 Performance evaluation by simulation 

Simulation has the advantages of creating datasets with known ground truth and 

unlimited manipulation of experimental parameters, which enables precise evaluation of an 

algorithm’s accuracy and comprehensive testing of its robustness. As FPT only analyzes spike 

raster data, physical modeling of neurons and analog signal simulation were not required. 

A simulated ensemble of “leaky integrate and fire” neurons was generated using Nengo 

(Eliasmith and Anderson 2003) neural simulator software (Figure 3A). In the ensembles 

generated, all neurons have the same input dimensions (i.e. number of scalar variables encoded 

in activity) and physiological parameters but each has a unique tuning curve, characteristic of 

population encoding. A recording experiment was then simulated within Nengo. The virtual 

ensemble received a sequence of inputs spanning its representation domain, and each neuron’s 

activity (in spike raster form) was collected. 

To simulate channel level instability and automatically test FPT, a self-checking 

testbench was developed in MATLAB. For each trial, the testbench randomly selects several 

neurons from the Nengo ensemble as a simulated channel-population and superimposes these 

neurons’ spike rasters to create “recording 1”. The testbench then creates “recording 2” by 

applying a randomly selected testcase: for an unstable testcase, by revising the channel-

population (i.e. adding, replacing or removing neurons), and for a stable case, by modulating the 

same channel-population (i.e. duplicating “recording 1” and manipulating spike rates by a 

random percentage). Finally, the testbench calls FPT to test the stability between “recording 1” 

and “recording 2” and determines whether the verdict matches the ground truth (i.e. the selected 

testcase). 
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To quantify FPT accuracy, ten sets of one hundred trials were run by the testbench per 

configuration. For nominal cases, i.e. one or two-dimensional neurons of maximum 200 Hz 

firing rate, with up to three neurons per channel-population, FPT performed at 90% accuracy (in 

correctly identifying if a pair of simulated recordings were stable or unstable to each other). To 

evaluate robustness, testing was repeated with more challenging simulation parameters, 

including: lower firing rates, larger channel-populations, and reduced coverage of the 

representation domain. Results from the testbench are summarized in Figure 3B.  
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Figure 3: Performance evaluation by simulation  

A. Example of a simulated ensemble of neurons with assorted tuning curves, where neural responses are 

plotted against the range of possible stimuli (e.g. the frequency of a tone for auditory neurons) (top), 

and an excerpt of simulated spiking activity (bottom) when stimulated with an incrementally increasing 

input. B. Accuracy of the current version of FPT, evaluated using 10 sets of 100 random test cases per 

test condition (as labeled below bar plot). Error bars show s.e.m. Note the accuracy for detecting stable 

cases is higher than unstable cases, thus the final stability estimates will be conservative. 

  



89 
 

4.4.3 Performance comparison with supervised spike-sorted results 

To compare FPT with the alternative approach of supervised spike-sorting and human 

stable-unit quantification, recordings from a Utah-array implanted in a macaque monkey, where 

11 sessions were sorted by human experts using Wave-Clus (Quiroga, Nadasdy, and Ben-Shaul 

2006) software, was analysed with the FPT software tool. In the experiment, the baseline dataset 

recorded at the beginning of each session (see Methods) included adequate stimulus conditions 

to meet the requirements of FPT. Raw data and the stimulus timing file were fed into the 

software tool and analyzed automatically. To assess stability using the sorted units, single-units 

were manually analyzed via inspection of waveform shape and inter-spike-interval plots to find 

stable-units across sessions. To mitigate human error, both conservative and liberal decisions of 

unit stability were recorded (see Methods). Results from all approaches are shown in Figure 4. 

Inspection at the single-unit level showed perfect corroboration between techniques, where every 

session that failed FPT exhibited identifiable instability in its sorted units (Figure 4A). Counting 

the number of channels that are stable over time per implant, stability determined by FPT falls 

between conservative and liberal manual estimates for 7/10 sessions (Figure 4B). Importantly, 

the criteria applied by FTP to assess stability are consistent and independent of human variability 

due to differences in human judgement, generating absolutely reproducible and comparable 

outcomes between different experimental trials and laboratories. 
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Figure 4: Comparison with stable-units 

A. Inspection of sorted units shows that FPT verdicts closely follow instabilities exhibited in single-units: 

between sessions 2 and 3 (S2-3), one of two units dropped out of recording; between S3-4-5, the 

remaining unit faded out and back (spike count decrease by ~75%); and between S9-10-11, the two 

units alternated in their presence in the recording. B. Implant level comparison of the FPT method vs. 

liberal and conservative manual counting of stable-units. Estimates for stable channel count from FPT 

falls within the bounds of human counting for 7/10 sessions. 
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4.4.4 Application to chronically implanted Utah-array dataset 

To demonstrate advantages of FPT stability screening, two large datasets from another 

macaque monkey implanted with two Utah-arrays were analysed, with results illustrated in 

Figure 5. Such an undertaking would be highly problematic using previously available methods 

due to requirements on time and human expert labour. 

The quantified totals of stable channels are summarized in the Stability by Time plot. 

Implant 1, an iridium oxide Utah-array located in the left inferotemporal cortex for 8 months 

duration, provided an average of 8.5 stable channels (out of 96); while implant 2, of the same 

type and located in the right prefrontal cortex of the same monkey, provided an average of 16 

stable channels. The performance of individual channels is illustrated in the Channel Status by 

Session map, where global failures are easily identifiable as a simultaneous loss of stability 

across all channels (e.g. sessions 21, 25, 39, 42). Such instances point to implant shift or a 

system level malfunction. This map also revealed that in spite of activity persisting, implant 1 

experienced a catastrophic event 66 days into the recording while implant 2 stability lasted 

approximately 5 months. The detailed performance of channels of interest are illustrated in the 

Histogram by Session map (Figure 5). Any active but unstable channel could be examined in this 

fashion to determine how it introduces variability into the recorded dataset. 
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Figure 5: Stability results of two chronically implanted 96-channel Utah-arrays 

Datasets from iridium oxide Utah-arrays, implanted in the left inferotemporal (A) and right prefrontal (B) 
cortices of a macaque monkey over the course of 230 days, were analysed with the FPT method. Plots 
included are: an overview of mean spike-rates (upper left); Stability over Time (lower left), showing 
approx. 10-20 channels were stable on average while most channels provided active recordings; Channel 
Status by Session (middle), showing several channels performed very stably (long green rows) and 
several sessions encountered global stability failure (long yellow/white columns); as well as Histogram 
by Session maps (right) for example channels, showing channels 13 & 162 maintained better stability 
than channels 4 & 176, as their histograms remain vertically aligned over many sessions --provided for 
reference in the left most bin is FPT’s stability verdict for each session.  
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4.5 Methods 

4.5.1 Rule-based reasoning 

Rules were developed based on the hypothetical tuning curve of a sensory neuron that 

encodes for one input variable.  

1. Relationship between spike-rate-histogram and tuning curve (Figure 2A): 

If stimulus conditions are selected to uniformly span a neuron’s representation domain, 

each condition within its receptive field will probe a point along the neuron’s tuning 

curve and solicit a response at the encoded spike-rate. Each response will add a single 

count to the spike-rate histogram, in the corresponding spike-rate bin. Consequently, the 

number of conditions that fall within the receptive field equals the total number of counts 

in the spike-rate-histogram, or its area. The neuron’s maximum and minimum spike-rates 

correspond to the highest and lowest filled bins. The shallowest segment of its tuning 

curve maps to the peak of the histogram (since the largest quantity of conditions evokes 

this spike-rate).  

2. Properties of basic cases of change:  

A neuron undergoing natural modulations (stable case) will have observable changes of 

the following:  

- Peak spike-rate is modulated by a percentage 

- Receptive field does not change significantly 

- Modulation is congruent over various levels of firing 



94 
 

with equivalent tuning curve changes of (respectively) the following: 

- Maximum y-value changes up to a percentage 

- X-intercept has minor shifts 

- Whole curve scales in consistent direction 

The addition of another neuron to the same recording channel (unstable case) will have 

observable changes of, 

- spikes from each neuron superimposed into one stream of activity 

- maximum and minimum firing rates redefined by the combined firing pattern 

- total receptive field becomes the union of individual receptive fields 

with equivalent tuning curve changes of (respectively), 

- the combined curve becomes the linear combination of individual tuning curves 

- Y-values that summate at each point along the x-axis 

- the X-intercept redefined by the combined curve 

This case can be further clarified by the following characteristic scenarios: 

A. No overlap between receptive fields  

- Union of receptive fields 

- Maximum spike rate becomes that of the faster neuron, because neurons 

rarely fire at the same time. 

B. Edge overlap between receptive fields 

- Union of receptive fields for non-overlapping areas 
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- Maximum spike rate become that of the faster neuron 

- Minimum spike rate increases significantly, because tuning curve has no 

edge where spike rate drops off 

C. Center overlap between receptive fields 

- Receptive field becomes that of the broader neuron 

- Maximum spike rate increases significantly, because both neurons may 

fire at maximum rate for the same stimulus 

D. Full overlap between receptive fields 

- Receptive field does not change 

- Maximum spike rate increases significantly, because both neurons may 

fire at maximum rate for the same stimulus 

3. Logical rules: 

Detection of instability: test if the differences between two histograms exceed the effects 

attributable to natural modulation, via the relationship between tuning curves and 

histograms (Table 2A). Prediction of cause of instability: if instability was detected, 

check if changes are consistent with gain vs. loss of neurons (Table 2B). 

  



96 
 

Table 2. Rules for detection of instability (A) and estimation of type of change (B).  

 A 

B 

Rule Implication 

If difference in area > 0 AND difference in highest bin 
position ≥ 0, OR 

If difference in highest bin position > 0 AND difference 
in area ≥ 0, OR  

If difference in lowest bin position > 0 AND difference in 
area ≥ 0 AND difference in highest bin position ≥ 0 

Receptive field increased while maximum spike-rate 
did not decrease, OR 
Maximum spike-rate increased while receptive field 
did not decrease, OR 
Minimum spike-rate increased while maximum-spike 
rate and receptive field did not decrease 

 Addition of neurons 

If difference in area < 0 AND difference in highest bin 
position ≤ 0, OR 

If difference in highest bin position < 0 AND difference 
in area ≤ 0, OR 

If difference in lowest bin position < 0 AND difference in 
area ≤ 0 AND difference in highest bin position ≤ 0 

Receptive field decreased while maximum spike-rate 
did not increase, OR 
Maximum spike-rate decreased while receptive field 
did not increase, OR 
Minimum spike-rate decreased while maximum-
spike rate and receptive field did not increase 

 Loss of neurons 

 Change of neurons (if none of the above are true) 

  

Rule Implication 

If difference in histogram area > FIELD_THRES Receptive field size has changed beyond threshold of 
anticipated modulatory effects 

If difference in highest bin position > RATE_THRES Spike-rate has changed beyond threshold of 
anticipated modulatory effects 

If sign of difference in highest bin position ≠ sign of 
difference in lowest bin position 

Maximum and minimum spike-rates have changed in 
conflicting directions 

If sign of difference in area ≠ sign of difference in 
highest bin position 

Receptive field size has changed in conflicting 
direction to maximum spike-rate change 

If difference in peak position > PEAK_SHIFT_THRES Preferred spike-rate did not scale proportionally 

 Not stable (if any of the above is true) 
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4. Default threshold values 

RATE_THRES = 45%, acceptable change in the maximum firing rate (from literature: 

45% due to LFP phase (Kayser et al. 2015), 26% due to attention (Connor et al. 

1996), 29-85% due to exercise (Singh et al. 2014)) 

FIELD_THRES = 10%, acceptable change in the range of representation domain, e.g. 

receptive field size (from literature: 5-14% due to attention (Anton-Erxleben, 

Stephan, and Treue 2009))    

PEAK_SHIFT_THRES = 10%, flexibility for the preferred firing rate to change 

disproportionally from maximum firing rate  

 

4.5.2 Nengo simulation 

The Neural Engineering Framework, Nengo (v1.4.0), was used to simulate ensembles of 

leaky-integrate-and-fire (LIF) neurons. A Nengo ensemble consists of neurons with the same 

attributes but assorted tuning curves, which is capable of collectively representing input variables 

in the manner of population encoding. Thus, neurons within a Nengo ensemble are a fitting 

approximation for neurons in close proximity to an electrode, as they are likely to have relatively 

homogenous roles.  

Nengo ensembles have input and output terminals that could be connected to form 

networks. Input terminals could also be driven by function generators that produce a user 

specified stimulus. While stimulation is applied to the network, ensembles were recorded via 

virtual probes to collect spike rasters of each neuron in the ensemble (Figure 3A).  
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Several simulations were created: 

1. One-dimensional case (neurons encode for a single variable x): 

- Two ensembles of 100 LIF 1D neurons linked together, each having maximum 

firing rates between 100-200Hz and radius (representation domain magnitude) of 

1.0.  

- Stimulus gradually increases from -1 and 1 using the expression x = 0.025t -1 

- 80 second simulation time – to allow x to reach 1, while collecting spikes from the 

second ensemble.  

2. Two-dimensional case (neurons encode for x & y): 

- Ensemble of 100 LIF 2D neurons with maximum firing rates between 100-200Hz 

and radius of 1.0. 

- Stimulus draws an ellipse using the expressions x = 0.5sin(t), y = cos(t) 

- 63 second simulation time – to allow the ellipse to repeat 10 times (each loop 

requires 2 seconds), while collecting spikes from the ensemble. 

3. Slower firing neurons: 

- Same as above with maximum firing rates between 1-30Hz 

 

4.5.3 Testbench 

An automated testbench was developed in MATLAB to assess the accuracy of the RBR 

logic via Nengo simulated datasets. The testbench script, EvalAccuracy, consists of the 

following elements: 
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1. Configurations 

For creating test cases 

- Number of cases to generate 

- Limit on size of electrode-population 

- Limit on excitability modulation 

For executing RBR  

- Dataset attributes (specifically for Nengo simulations) 

- Stability and activity thresholds (replicates configurations in the FPT software) 

2. Generate test cases and populate with spike-rate-histograms 

- Randomly select neurons from the Nengo simulated ensemble to form an electrode-

population. 

- Merge spike rasters of selected neurons and generate spike-rate-histogram 1 (via the 

Nengo_GenSpikeRateHist function). 

- Randomly select a stability case from list: STABLE, ADD_NEURONS, 

LOSE_NEURONS, SWITCH_NEURONS. 

- If selected case is not STABLE, modify the current electrode-population by adding, 

removing, or replacing a random number of neurons – using other randomly selected 

neurons from the simulated ensemble. 

- Randomly select a modulation amount. 

- Merge spike rasters of the revised electrode-population, apply modulation, and 

generate spike-rate-histogram 2 (via the Nengo_GenSpikeRateHist_modExcitability 

function).  

- Repeat above to generate the required number of test cases 
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3. Run RBR module and collect test results 

- For each test case call the RBR logic (TestStability function).  

- Save all RBR outputs along with the ground truth (the selected cases in step 2).  

4. Report accuracy 

- Check RBR results against ground truth 

- Tabulate and display accuracy for stable vs. unstable cases, and details on RBR 

performance (false positives, false negatives, and error rate of each detection rule).   

 

4.5.4 FPT evaluation via custom testbench and Nengo simulation 

The custom testbench was used to test FPT under various configurations, detailed below. 

(Note each configuration is incremental, the unspecified parameters are the same as the previous 

configuration). 

Configuration 1:  

Neuron model = LIF 
Dimension (number of scalar variables encoded) = 1 
Ensemble size = 100 (2 ensembles) 
Maximum firing rate = 100 – 200Hz 
Radius (representation domain) = 1.0 
Function generator expression = x = 0.025t -1 
Simulation (recording) duration = 80s 
 
Number of test cases = 100 
Maximum electrode-population size = 3 
Maximum modulation = 40% 
 
RATE_THRES = 40% 
FIELD_THRES = 10% 
PEAK_SHIFT_THRES =10% 

 

Configuration 2: 
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Dimension = 2 
Function generator expression = x = 0.5sin(t), y = cos(t) 
Simulation duration = 63s 

Configuration 3: 

Maximum electrode-population size = 1 
 

Configuration 4: 

Maximum electrode-population size = 5 
 

Configuration 5: 

Maximum electrode-population size = 3 
Maximum firing rate = 1 – 30Hz 

 

Configuration 6: 

Function generator expression = x = 0.4sin(t), y = 0.8cos(t) 

Configuration 7: 

Function generator expression = x = sin(t), y = 0.5cos(t) 

 

4.5.5 Analysis of Utah-array data and stable-unit quantification 

Existing datasets from long-term visual system studies of macaque monkeys were 

analyzed with FPT. In these experiments, iridium oxide Utah-arrays were implanted in the left 

inferotemporal and right prefrontal cortices of monkey M and monkey F. MEA output was 

collected at 30Khz. Before each experiment an 8-minute baseline was recorded using the same 

fixation point and series of visual stimuli (10 repetitions of 100 natural images per session). The 

baseline recordings were used for FPT stability analysis. Some sessions recorded from Monkey 
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M were previously spike-sorted by human experts using Wave-Clus (Quiroga, Nadasdy, and 

Ben-Shaul 2006) software. 

The spike sorted sessions from monkey M were manually analyzed for stable-units. For 

each channel for each session, the waveform and ISI distribution of each single-unit was visually 

compared to that of single-units in the previous session. Observations were recorded as three 

tallies: count of single-units, conservative count of stable-units, and liberal count of stable-units. 

If both (waveform and ISI) attributes appeared to match for a unit, it was counted as a stable-

unit; if only one attribute matched while the other is ambiguous, it was still counted in the liberal 

tally but excluded from the conservative tally. This is to compensate for bias against neurons that 

may have changed in morphology or local environment (impacting its waveform) and errors in 

the original spike-sorting (impacting its ISI distribution).  

FPT parameters used: 

Raw signal filtering = 250Hz-7.5KHz (Gilja et al. 2012) 
Thresholding for spike detection = -4.5RMS (Gilja et al. 2012) 
RATE_THRES = 40% 
FIELD_THRES = 10%  
PEAK_SHIFT_THRES = 10%  
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4.6 Discussion 

We have developed a data analysis method, the Firing-Profile-Test implemented in 

MATLAB, that automatically analyzes large electrophysiology datasets, screens active implants 

for electrode stability, and provides detailed channel profiles over the recording history. 

Comprehensive stability assessment with the speed and objectivity that we demonstrate here was 

previously unattainable.  

Previous approaches to assess neural interface stability track neurons by sorting the 

analog waveform of action potentials. Here we show that it is possible and advantageous to track 

neuronal populations using only the time of occurrence of action potentials (i.e. the spike raster). 

More specifically, FPT identifies changes in the distribution of action potential firing-rate under 

varied stimuli, as a signature of firing capability, to determine shifts in neuronal tuning curves. 

Vast improvement in speed and reproducibility arise from two distinctions: 1) FPT consists of 

simple operations that are ideally suited for automation, while spike-sorting requires input from 

an experienced user and apt usage of complex computations. 2) FPT analyzes spike rates, 

congruent with the neural code and BMI decoding, and leverages signal cleanliness afforded by 

the all or nothing nature of action potentials; while spike-sorting focuses on analog waveform 

features imparted by physical heterogeneity, which is impacted by many of the noise sources in 

the biological and recording systems.  

We applied FPT to long term recordings from two 96-channel iridium oxide Utah-arrays 

implanted in the inferotemporal and prefrontal cortices of macaque monkeys. The analysis 

identified approximately 10-20 stable channels over an eight-month duration for the two 

implants, punctuated by global stability failures, until a catastrophic occurrence that terminated 
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stability permanently. As FPT results are absolutely reproducible, these findings can serve as a 

first stability benchmark of the FDA approved Utah-array for investigators to begin 

benchmarking alternative neural interfaces. FPT offers an avenue toward standardizing MEA 

stability assessment. If adopted, such a standard would accelerate progress in the field by 

providing the means to evaluate new MEA prototypes against other emerging technologies, and 

give users and system builders the clarity and confidence to adopt novel technologies.  

FPT provides clear benefits for neurologists and electrophysiologists that record from 

MEAs. Active implants can be screened regularly with FPT to monitor interface stability, 

allowing timely medical attention and troubleshooting, as well as aligning recording sessions to 

periods of stability, thus saving time and eliminating data holes. Research questions that require 

consistent neural connectivity, such as in learning and plasticity, becomes accessible with 

simplified hardware and protocols. Furthermore, existing datasets can be filtered to eliminate 

confounds caused by instances of instability, or reconsolidated to generate large contiguous 

datasets to analyze long-term phenomena and train machine learning models.   

A powerful potential application of FPT is stability compensation for neural decoders, to 

promote robustness and reliability of neural interfaces for end users – currently a major 

roadblock to BMI adoption. As detecting instability is a critical pre-requisite to compensating 

instability, FPT would facilitate a new paradigm of adaptive decoding. Despite day-to-day 

alterations in neural function and recording fidelity, the same neurons reside by each electrode 

site. Therefore, in the simplest implementation, a database of decoders can be created via a 

training period (e.g. several weeks of implant activity) that encompass various states of each 

channel, indexed by FPT signatures. Hence during daily use of the neural interface, such a 

system would regularly assess implant stability with FPT and apply the most optimal decoders; 
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or if too few stable channels remain, direct the performance of custom calibration for critical 

channels.  

Another roadblock to BMI adoption is the cumbersome hardware required to amplify and 

transmit neural activity. – Small, fully-implanted wireless solutions are essential for end user 

safety and convenience. Recent advances in BMI directly decode from spike raster data (Gilja et 

al. 2012; Fraser et al. 2009; Hochberg et al. 2012), forgoing spike-sorting. FPT complements this 

approach and directly tracks neuronal populations from spike raster data. This suite of techniques 

obviates the need for analog signal analysis for BMI operation; paving the way for dramatically 

miniaturized and lower power devices that only transmit spike raster data.  

Accuracy of FPT relies on appropriate thresholds for firing-rate parameters, which will 

benefit from user customization according to the use-case and the specific neurons that populate 

the implanted area. A theoretical limitation of FPT is that if a neuron is replaced by another with 

a very similar tuning curve, the instability will not be detected; however, such instability is also 

imperceptible to most BMI applications.  

FPT provides high-speed reproducible stability assessment of microelectrode-arrays that 

will facilitate neural interface R&D, enhance the utility of existing interfaces, and enable the 

development of next generation software and hardware for practical BMI technology.    
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Chapter 5 – Discussion and conclusions 

5.1 General Discussions 

Seamless connectivity with the nervous system is almost an insurmountable goal due to 

the extensive incompatibility between neural and electronic systems. Yet, the pursuit of an 

effective bridge is both clinically significant, and in some ways, a natural progression of 

electronic technology –many of which serve to augment ourselves and our experiences in the 

first place. Perhaps benefiting from ideological motivation, tremendous progress has been made 

in spite of the challenges, to develop better neural interfaces, understand causes of device failure, 

and make the best use of existing interface technology. 

There would likely not be one perfect BMI for all applications, nor one key feature that 

“solves” the interface problem. Rather, the multiple aspects presented by the overall challenge 

will require sophisticated solutions, combined into a concerted interface platform. NeuraLink is 

an example of such a platform (Musk 2019): the soft, thread-like probes aim to minimize chronic 

scaring; the surgical robotics fitted with cameras and image recognition ability are designed to 

minimize blood vessel damage, and be able to efficiently implant a large number of probes over 

a greater cortical area; and the low-power, high-density proprietary electronics, which allows the 

system to be fully implanted and wireless, have the goal of minimizing/eliminating risks of 

infection and connector breakage.    

At the same time, all encompassing systems are built upon incremental research results 

that elucidate specific problems and strategies. The studies described in this thesis aimed to 

advance three specific areas in the BMI literature. 
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In the first study, we devised a method for attaching conductive micro-pillars onto an 

existing substrate, and cultured cortical neurons on a coverslip modified with the features. We 

observed that both the amounts of synaptophysin and PSD95 (indicative of pre-synaptic and 

post-synaptic specializations, respectively) are significantly increased around the micro-pillars. 

As synapses are sites of strong adhesion, the result suggests this method is an effective strategy 

to boost the physical connectivity between neurons and electrodes.  

In the second study, we performed EIS on an in vitro MEA, and investigated impedance 

spectra changes after adsorbing protein and culturing astrocytes on the MEA. The EIS data 

indicated that neither of the experimentally induced surface changes affected electrode 

impedance at 1Khz. This suggests that biofouling and minor glial ensheathment is acceptable on 

an electrode and can be a low priority design consideration. This result also has implications for 

interpreting in vivo impedance data, which is often reported at 1Khz -- if surface changes are 

invisible at this frequency, then the impedance increase typically observed post-implantation 

should primarily reflect gliosis progression beyond the electrode surface. Other contributions of 

this study include a circuit representation of extracellular recording that reconciles the role of 

impedance, and recommendations on more sensitive frequencies for impedance monitoring.   

In the third study, we identified a relationship between the spike-rate-histogram and the 

tuning curve of neurons when exposed to a suite of stimulation conditions. Several metrics of the 

spike-rate-histogram were found to be effective indicators of tuning curve changes that are 

associated with neuron population change at an electrode site. This is a useful alternative to 

waveform based methods to detect neuron population change because it can be reliably 

automated. A software tool was developed, which gives the neural interface community an 

avenue for more standardized stability testing.  
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5.2 Conclusions and summary 

Brain-machine-interfaces (BMIs), more broadly, neural interfaces, is a challenging 

frontier in biomedical engineering due to extensive differences between the nervous system and 

electronic systems. Despite these challenges, BMIs may be the most direct avenue to compensate 

certain disorders of the nervous system. We have made progress in three aspects: 1) a technique 

for improving electrode connectivity to neurons via microstructures that are designed to induce 

synaptogenesis; 2) findings to help prioritize electrode design considerations, clarify the role of 

impedance, and facilitate impedance monitoring; and 3) an automated method for rapid and 

reproducible evaluation of electrode stability using spike-rate statistics. Together the findings 

presented in this thesis aim to facilitate the development of enhanced BMIs. 
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