
A non–dominated sorting hybrid algorithm for multi–objective
optimization of engineering problems

Hossein Ghiasi (Corresponding Author)
PhD Student
Department of Mechanical Engineering, McGill University
Macdonald Engineering Building, Room 368
817 Sherbrooke West
Montreal, QC, Canada H3A 2K6
Phone: +1(514) 398–6292
Fax: +1(514) 398–7365
Email: hossein.ghiasi@mail.mcgill.ca

Damiano Pasini
Assistant Professor
Department of Mechanical Engineering, McGill University
Macdonald Engineering Building, Room 372
817 Sherbrooke West
Montreal, QC, Canada H3A 2K6
Phone: +1(514) 398–6295
Fax: +1(514) 398–7365
Email: damiano.pasini@mcgill.ca

Larry Lessard
Associate Professor
Department of Mechanical Engineering, McGill University
Macdonald Engineering Building, Room 362
817 Sherbrooke West
Montreal, QC, Canada H3A 2K6
Phone: +1(514) 398–6305
Fax: +1(514) 398–7365
Email: larry.lessard@mcgill.ca

 2

A non–dominated sorting hybrid algorithm for multi–objective
optimization of engineering problems

Hossein Ghiasi, Damiano Pasini, Larry Lessard

Department of Mechanical Engineering, McGill University
Macdonald Engineering Building, 817 Sherbrooke West
Montreal, QC, Canada H3A 2K6

Abstract
Among numerous multi–objective optimization algorithms, the Elitist Non–dominated
Sorting Genetic Algorithm (NSGA–II) is one of the most popular methods due to its
simplicity, effectiveness and minimum involvement of the user. In this paper, we develop
a multi–objective variation of the Nelder–Mead simplex method which is then hybridized
with NSGA–II to improve the convergence rate and ability of NSGA–II to capture a wide
extent of the Pareto front. The proposed hybrid algorithm, called Non–dominated Sorting
Hybrid Algorithm (NSHA), is compared to NSGA–II on several constrained and
unconstrained mathematical test functions. The higher convergence rate and wider spread
of solutions obtained with NSHA makes this algorithm a good candidate for engineering
problems that require time–consuming simulation and analysis. To demonstrate this
point, NSHA is applied to the design of a carbon fiber bicycle stem simultaneously
optimized for strength, weight and processing time.

Keywords: multi–objective optimization; genetic algorithm; non–dominated sorting; hybrid
algorithm

1 Introduction

Optimizing multiple performance criteria is a goal governing the design of

engineering products in today’s competitive and demanding market. A good example

of a multi–criterion problem is designing with composite materials, where the

structural and the manufacturing parameters are often strongly coupled (Le Riche et

al., 2003; Park et al., 2005; Ghiasi et al., 2008) and must be optimized

simultaneously. Here the challenge consists in solving an optimization problem with

multiple conflicting objectives. The solution of such a multi–objective optimization

problem is a set of optimum solutions, representing the trade–off among objectives.

The set of solutions is called a Pareto optimal set or a Pareto front (Deb, 2001).

 3

Because of using a population–based approach, evolutionary algorithms (EAs)

have a good potential to be used for multi–objective optimization. Contrary to

classical optimization methods that provide only one optimum for each run, EAs have

the potential to achieve multiple optimum solutions just in one run. In their previous

works, the authors (Ghiasi et al., 2008, 2009b) showed that using a globalized form of

a classical simplex method and a multi–objective optimization approach can be more

efficient than an evolutionary method, when one or a small number of Pareto

solutions is required. When a large number of Pareto solutions for multi–objective

optimization problems is required, EAs are better suited than classical optimization

methods (Ghiasi et al., 2009b). Because of their simplicity, robustness and

independency on gradient information, EAs have received significant attention from

the researchers in this field. Several EAs have been developed to solve multi–

objective problems, examples of which are: Pareto–archived evolution strategy

(PAES; Sayin and Karabati, 1999), strength Pareto–evolutionary algorithm (SPEA2;

Zitzler et al., 2001) and multi–objective differential evolution (MODE; Babu and

Anbarasu, 2005). An overview of the earlier works using EAs for multi–objective

optimization can be found in Fonseca and Fleming (1995) and in Coello (1999, 2002),

who provided a comprehensive survey and a critical review of the evolutionary–based

multi–objective algorithms.

Among numerous multi–objective optimization methods, some listed in

preceding paragraph, genetic–based algorithms (GAs) have attracted the most

attention (Coello, 1999) because of their ability in addressing discontinuous,

nondifferentiable and nonconvex functions having multiple peaks and supporting

parallel computation. The potential of GAs in multiobjective optimization was

 4

initially hinted by Rosenberg in the 1960s, and later by Goldberg (1989). But, this

research area remained unexplored until recently when many GA–based methods

have been developed. Due to the large number and diversity of applications, this paper

can not include a comprehensive review and comparison of GA–based methods, thus

only the most popular multi–objective genetic algorithms are briefly explained in the

following paragraphs.

Hajela and Lin’s genetic algorithm (HLGA; Hajela and Lin, 1992) used the

weighted–sum approach to assign fitness to each individual. The weighting

coefficients were included in the chromosome, thus GA evolves solutions and weight

combinations simultaneously. Difficulty in determining appropriate weights is the

main drawback of this method (Bingul, 2006). Vector evaluated genetic algorithm

(VEGA; Schaffer, 1984) avoids this problem by creating a number of sub–populations

and performing the selection according to each objective function in turn. In this

method no weighting coefficient is required; however, the population may tend to

split into different species, each of them particularly strong in one of the objectives.

As Opposed to the mentioned methods, recent works on multi–objective

optimization are generally based on the definition of Pareto optimality. Multi–

objective genetic algorithm (MOGA; Fonseca and Fleming, 1993) uses a rank–based

fitness assignment procedure, in which each individual is ranked by number of

individuals dominating the selected solution. Fitness sharing in the objective value

domain, rather than the decision variable domain, and only between pairwise non–

dominated individuals, was used to evolve a uniformly distributed representation of

the global trade–off surface. This method was later improved to a real–coded

algorithm called rMOGA (Purshouse and Fleming, 2001). Niched Pareto genetic

algorithm (NPGA; Horn et al., 1994) also uses Pareto domination tournament. The

 5

tournament selection included picking two (or more) candidate solutions at random

and comparing them with a random comparison set. The candidate solution which is

not dominated by the comparison set is selected for reproduction. If the candidate

solutions are either both dominated or both non–dominated, fitness sharing was

applied. Fonseca and Fleming’s multi–objective genetic algorithm (FFGA; Fonseca

and Fleming, 1993) also uses niche formation methods but with a modified fitness

assignment which allows intervention of an external decision maker. The details about

how the decision maker can interact with the genetic algorithm can be found in

(Fonseca and Fleming, 1993). Non–dominated sorting genetic algorithm (NSGA;

Srinivas and Deb, 1994) and its improved form, elitist non–dominated sorting genetic

algorithm (NSGA–II; Deb et al., 2002a) are the other examples of GA–based methods

using Pareto optimality to rank individuals within the population.

More information about VEGA, MOGA, NPGA, NSGA and their comparative

strengths and weaknesses can be found in Coello (2002). Also, Zitzler et al. (2000)

provided a comparison among a number of multi–objective evolutionary methods

using six test functions. They ranked algorithms regarding the distance of the final

solutions to the Pareto front. Several algorithms were applied to six test functions, and

the algorithms were ranked as follow: NSGA, VEGA, HLGA, NPGA and FFGA. In

this research we used an improved version of the first algorithm in this list, called

NSGA–II. This algorithm is explained in detail in section two.

In this paper, NSGA–II is hybridized with a multi–objective adaptation of the

Nelder–Mead simplex method (NM). The proposed hybrid method, called non–

dominated sorting hybrid algorithm (NSHA), maintains all above–mentioned features

of NSGA–II, while it improves the convergence rate and the scope of solutions. Using

 6

the same number of function evaluations, the proposed hybrid algorithm is able to

achieve a better quality of the results than the ones obtained by NSGA–II.

The remainder of this paper is organized as follows: First, the NSGA–II is

explained and the corresponding modifications proposed in the literature are

reviewed. Most of these modifications can be equally applied to the proposed hybrid

algorithm. The next section describes the proposed hybrid method called NSHA.

Section 4 compares NSHA with NSGA–II on some mathematical unconstrained and

constrained test problems. After demonstrating the superiority of NSHA to NSGA–II,

the hybrid algorithm is applied to a composite design problem in Section 5. Section 6

concludes the paper.

2 Non–dominated Sorting GA

The elitist non–dominated sorting GA (NSGA–II), proposed by Deb et al. (2002a),

has been demonstrated to be one of the most efficient and popular algorithms for

multi–objective optimization. Its performance has been proved through mathematical

test functions to be superior to that of other evolutionary multi–objective methods

(Deb et al., 2002a). After providing a few necessary definitions, this section briefly

describes NSGA–II and reviews the modifications and improvements suggested in the

literature.

Definition 1 (Domination): Considering a general multi–objective optimization

problem formulated as:

⎪⎩

⎪
⎨
⎧

≥==

≥=≥

≥=

0;...,,1;:)(;0)(

0;...,,1;:)(;0)(
..s

}2;...,,1;:)({min

KKkRRxhxh

JJjRRxgxg
t

mmiRRxf

n
kk

n
jj

n
i

x

a
rr

a
rr

a
r

 (1)

 7

a feasible solution 1x
r

is called dominating a feasible solution 2xr , if solution 1x
r

is no

worse than 2xr in all objectives and the solution 1x
r

is strictly better than 2xr in at least

one objective.:

⎩
⎨
⎧

<≤≤∃
≤≤≤∀

⇔
)()(;1:

)()(;1:
dominate

21

21
21 xfxfmjj

xfxfmii
xx

jj

ii
rr

rr

 (2)

A set of solutions is said to be at the same non–domination front, if none of which

dominates or is dominated by any other solution in the set.

Definition 2 (Crowding distance; Deb et al., 2002a): Crowding distance is a

measure of the density of the solutions in the neighbourhood of a selected solution.

Crowding distance is calculated as the summation of the major dimensions of the

cuboid formed by using the nearest neighbours of the selected solution as the vertices.

For instance, the crowding distance for a problem with two objectives is the

summation of the length and width of the rectangle with two vertices located at the

two solutions on either side of the selected solution (shown in Figure 1). For a

problem with three objectives, the crowding distance is the summation of length,

width and height of the cube formed around the candidate solution. This parameter is

used in order to maintain the diversity of the solutions; therefore, the genetic selection

operator gives higher chance of selection to the individual with a higher crowding

distance than the one with the lower crowding distance.

2.1 NSGA–II
Fast and elitist non–dominated sorting genetic algorithm or NSGA–II, proposed by

Deb et al. (2002a), is a multi–objective evolutionary algorithm that uses non–

dominated sorting and crowded–comparison approach to find a set of evenly

distributed solutions to a multi–objective optimization problem. NSGA–II was

proposed to reduce the computational complexity, to improve the diversity of the

 8

solutions and to add elitism to its ancestor called non–dominated sorting genetic

algorithm (NSGA) (Srinivas and Deb, 1994). Simplicity, effectiveness, modularity

and independency on user–defined parameters, are the main factors determining the

popularity of NSGA–II among multi–objective optimization methods (Deb, 2008).

As other GA–based methods, NSGA–II starts with a random population of

solutions (or individuals). The initial population is then sorted by the non–domination

front. In this ranking procedure, all non–dominated solutions are ranked “1” and are

temporarily removed from the population. The next set of non–dominated solutions in

the population is then defined and ranked “2”. The procedure is continued until all the

solutions are ranked. To achieve a better computational performance, the actual

ranking procedure is different than what is explained here, for which the details can be

found in Deb et al. (2002a). A population of solutions, called parents, is generated by

applying a binary tournament selection to the current population. The binary

tournament selection randomly picks two solutions from the current population and

selects the better solution with respect to the non–domination rank. Solutions at the

same non–domination front are compared by the crowding distance. The genetic

operators (i.e. recombination and mutation) are then applied to the population of

parents to create a population of off–springs. The next population is formed by taking

the best solutions from the combined population of parents and off–springs. The

selection procedure is based on the non–domination rank and then the crowding

distance. The procedure is terminated when a user–defined maximum number of

generations is reached.

Deb (2008) provided a functional decomposition of NSGA–II into three main

operations: (i) elitism to achieve fast and reliable convergence towards better

solutions, (ii) non–domination sorting to emphasize non–dominated solutions and

 9

achieve a progress towards the entire Pareto front, and (iii) crowding distance to put

emphasis on less crowded solutions for maintaining the diversity of the solutions.

Over the years, various extensions of NSGA–II are proposed through the modification

of each of these three aspects. These modifications are studied in this section,

according to the part of the algorithm they are targeting.

2.1.1 NSGA–II with modified genetic operators
Genetic operators in NSGA–II are in charge of generating new solutions (e.g.

mutation and recombination) and preserving the fittest individuals (i.e. selection and

elitism operators). These operators play a key role in the performance of NSGA–II,

thus their modification may change the performance significantly. Deb et al. (2002b)

reported improvement in convergence of NSGA–II by proposing a Parent–centric

based recombination (PCX) operator, which uses more than two parents to create one

descendant. Iorio and Li (2004) replaced the real–coded crossover and mutation with

a differential evolution scheme that uses the difference between solutions to perturb

the population. Another modified operator is the jumping gene operator, in which a

randomly selected part of the chromosome is replaced by a new randomly generated

set of binary numbers (Agarwal and Gupta, 2008; Kasat and Gupta, 2003). To

improve the diversity of the solutions, Yijie and Gongzhang (2008) forced the

crossover operator to be more likely performed on genes located far from each other

within the design space. Murugana et al. (2009) recommended a controlled elitist and

a virtual mapping procedure for the same purpose. Methods with modified operators

have been tested on a number of test problems, for which, in most cases, mixed

improved convergence rate and spread of solutions were reported. Not a noticeable

improvement in convergence and spread was reported for a general test problem.

 10

Not only the genetic operators, but also the structure of the chromosome and

the population has been altered to improve the performance of NSGA–II.

Maneeratana et al. (2005) and Praveen Kumar et al. (2007) proposed a co–evolution

of multiple species by splitting the population into a number of sub–populations or

species that share a gene similarity. Hierarchical genotype encoding proposed by

Kumar et al. (2009) is another modification. Tran (2005) suggested running multiple

populations with different population sizes simultaneously, in order to automatically

select the population size. In some cases, an improvement was reported in the quality

of the solutions; however, additional computation due to working with multiple

populations is the main drawback of these methods.

2.1.2 NSGA–II with modified non–dominated sorting
Altering the non–dominated sorting procedure affects the progress towards the

Pareto–optimal front. Using a more severe definition for domination may speed up the

search process (Deb, 2008). Examples of efforts in modifying the non–dominated

sorting procedure in NSGA–II are ε–MOEA, a proper domination, fuzzy domination

(Deb, 2008) and quick sort (Zheng et al., 2004). The aims of these improvements

were to reduce the time to converge to the Pareto front and to reduce the

computational complexity, but the subsequent penalty is that part of the real Pareto

front may be excluded.

2.1.3 NSGA–II with modified crowding distance
The diversity preservation procedure may also be altered in order to achieve a better

distribution of solutions or to emphasise specific part of the Pareto front. Clustered

NSGA–II (Deb, 2008) claimed to find a better distribution of points by replacing the

crowding distance operator with a K–mean clustering approach. Li et al. (2008) tried

to achieve the same goal by replacing the crowding distance operator with an

 11

algorithm based on minimum spanning tree (MST). In another attempt, the selection

procedure was modified to accept a point to be in the new population only if its

distance to all current points in the new population is greater than a user–defined

value (Ghomsheh et al., 2007). Other similar attempts are reviewed by Deb (2008),

including: projection–based diversity preservation, niching, Omni–optimizer,

extreme–point preference, and other methods. Although these methods generally

require a longer computational time, the modified algorithm can find a better

distribution of Pareto optimal solutions than the original NSGA–II. The crowding

distance may also be altered in order to find important points of the Pareto front, such

as knee points (Deb, 2008), where a small gain in one objective requires a large

penalty in at least one of the other objectives.

2.2 NSGA–II in hybrid algorithms
Even an improved version of NSGA–II usually requires a very large number of

generations to approach the Pareto front. The population initially moves fast towards

the real Pareto front but slows down further into the process and finally approaches

the Pareto front only asymptotically (Lahanas et al., 2003). In addition to the low

convergence rate, which may not meet the speed requirement for complicated

industrial problems, NSGA–II may not efficiently generate a Pareto set that covers the

entire true Pareto front within a reasonably low number of generations (Gao et al.,

2008). The deficiency is due to the fact that the crossover and mutation operators do

not allow intensifying the search sufficiently. One promising approach to increase

convergence rate and solution diversity is to hybridize this method with a local search.

The local search operator replaces or follows the mutation operator and helps to

intensify the search in various areas pointed by the genetic mechanisms. This type of

 12

hybrid algorithm is called a Memetic Algorithm (MAs; Moscato, 1989) and they have

been shown to be more efficient than a genetic algorithm (Hart and Belew, 1996).

Many hybrid algorithms with different combinations of genetic algorithm and

local search methods have been reported in literature. A review of some of these

hybrid methods can be found in El–Mihoub et al. (2006) and the cited references in

this paper. This section provides a summary of the hybrid multi–objective

optimization tools that uses NSGA–II as the global optimizer.

Sequential quadratic programming (SQP) is the most common gradient–based

local search method hybridized with NSGA–II. Hu et al. (2003) used a SQP algorithm

by means of the modified ε–constraint method. The hybrid form was judged to be

successful regarding the convergence rate, and not deteriorating in terms of diversity

of solutions. Another hybrid form was proposed by Kumar et al. (2007), who resort to

SQP in order to locally improve one objective in the set of non–dominated solutions

obtained. The mixed performance was reported considering the convergence and

diversity of the solutions. Gao et al. (2008) also proposed a hybrid form, where

NSGA–II and SQP run almost independently, but with some exchange of information.

The SQP module sought a Pareto set using the weighted sum approach with equal

weight for all objectives, while the NSGA–II module generated another set of Pareto

points with an even distribution of solutions. Then, the SQP module updated its set of

weights by using results from NSGA–II, and NSGA–II used the results from the SQP

as elites. The proposed hybrid form was found more efficient than NSGA–II in terms

of convergence, particularly in the earlier steps.

SQP requires calculation of the function gradient and the optimum step length

in each iteration, which can be costly for a practical engineering problem. To reduce

the computational cost, Hernandez–Diaz et al. (2008) proposed using the gradient

 13

information only at the beginning of the search process. The steepest descent method

was adapted to generate a number of non–dominated points which formed the initial

population for NSGA–II. Lahanas et al. (2003) used a similar approach but with a

different local search called L–BFGS. The proposed methods by Hernandez–Diaz et

al. (2008) and Lahanas et al. (2003) required considerably less computational time but

presented a lower performance than the previously mentioned hybrid forms.

One way to avoid time–consuming calculation of gradient information is to

opt for a direct search method, which needs no gradient information. An example of

hybrid methods with direct local search is PHC–NSGA–II by Bechikh et al. (2008)

that uses Pareto Hill Climbing (PHC) as a local search. Using a mutation operator,

PHC generates several solutions at the neighbourhood of the selected solution. A

solution that is not dominated by any other solution in this neighbourhood replaces the

original solution. A higher convergence rate was reported compared to the original

NSGA–II; however, not a significant improvement in the diversity of the solutions

was achieved. Another similar hybrid form is S–MOGLS by Ishibuchi and Narukawa

(2004), who used the r–opt algorithm as a local search. The r–Opt is a heuristic

optimization method that improves the current solution by sequentially replacing one,

two or three adjacent genes in the chromosome. Xu et al. (2008) also used a similar

hybrid form, but the r–Opt was used only during the initialization process. Although

faster in convergence; these algorithms do not perform an efficient local search,

because of using a heuristic local search method. A more efficient local search is

suggested to better exploit the computational resources.

The Nelder–Mead (NM) (Nelder and Mead, 1965) simplex method is the most

common direct search method. Effective in producing a rapid initial improvement in

the objective function values (Lagarias et al., 1998), NM has been extensively applied

 14

to different single–objective problems. Numerous hybrid forms of this simplex

method with genetic algorithm are proposed for solving single–objective optimization

problems (e.g.: Yen et al., 1998, Chelouah and Siarry, 2003; Hongfeng et al., 2009);

however, application of such a hybrid form for multi–objective optimization is less

studied due to the fact that using NM requires aggregating multiple objectives into

one single objective. Koduru et al. (2005) used the concept of fuzzy dominance to

solve this problem and to assign a single measure of fitness to each individual

considering multiple objectives. In their proposed hybrid algorithm, called FSGA, K–

means clustering was used to break up the population into closely spaced clusters.

Some sufficiently populated clusters were picked, from which a simplex was

randomly selected for the application of the NM method. The major difficulty

associated with this method is the computational time required for the clustering

procedure, which requires calculation of the distance matrix among the individuals in

the current population. The second problem is the shape of the initial simplex, which

may be poorly scaled, for the simplex is randomly selected and no control can be

applied to its geometry. Finally, in this method NM is being called in every generation

of NAGA–II. Since the difference between the two subsequent populations is usually

very small, a local search may not lead to a considerable improvement when it is

applied every generation.

Martinez and Coello (2008) alleviated the last problem by performing the local

search only after a certain number of generations by NSGA–II. In their proposed

method, called NSS–GA, solutions with the best value for each objective were

selected to be locally improved with respect to that objective. If the problem has only

one objective, golden section search was used as the local search, but if more than one

objective was involved NM, was used as the local search. To avoid the tendency

 15

toward the anchor points, using an aggregating objective, which minimizes a weighted

sum of all the objectives, was suggested. Although effective, the use of one

aggregating objective is not sufficient to compensate the tendency toward the anchor

points and provide an even distribution of solutions on the Pareto front. In addition,

since the efficiency of the NM method is strongly dependent on the number of design

variables (Han and Neumann, 2004), this method is not efficient for problems with a

large number of design variables.

The hybrid form presented in this paper also uses NM method as the local

search due to its good convergence rate and simplicity of the algorithm. NM method

typically requires only one or two function evaluations per iteration (except in shrink,

which is rare in practice), while many other direct search methods that use a finite–

difference approximation of the function gradient, such as derivative free conjugate

direction method, model–based methods, implicit filtering, etc. (Nocedal and Wright,

2006) require O(n) or O(n2) function evaluations per iteration. This is very important

in applications where the function evaluation is expensive or time–consuming. Pattern

search methods, such as coordinate search (Nocedal and Wright, 2006), Hooke and

Jeeves method (Hooke and Jeeves, 1961) or Method of Rosenbroke (Nocedal and

Wright, 2006), also require more function evaluations than NM method, because of

the line search that must be performed at each iteration.

In the next section, we propose a hybrid algorithm that improves the

performance of NSGA–II and does not suffer from the shortcomings of the previous

hybrid algorithms. The main features and benefits of the proposed hybrid algorithm

include: 1) the use of a multi–objective form of NM method as a local search, 2) not

having a tendency toward a certain region(s) of the Pareto front, 3) using the full

benefit of the local search by its proper initialization, 4) maintaining the efficiency of

 16

the local search even for high–dimensional problems, 5) maintaining the simplicity of

NSGA–II, 6) not requiring additional user–defined parameters that need prior insight

into the problem, and, finally, 7) using the same building blocks as NSGA–II and

preserving the similar modular aspect of this popular method.

3 Non–dominated Sorting Hybrid Algorithm (NSHA)

The hybrid algorithm proposed in this paper integrates the Nelder–Mead (NM)

simplex method into NSGA–II in order to improve the quality of the solutions and to

accelerate the advancement of the non–dominated front toward the true Pareto front.

The non–domination rank, which is assigned by the same sorting algorithm as the one

used in NSGA–II, is considered as the objective to be minimized. The local search,

which is performed after a certain number of generations by NSGA–II, is applied only

to a part of the best individuals of the current population. In addition, rather than the

whole set of design variables, only a random subset of design variables is considered

for the local search in order to maintain the high performance of the local search for

high–dimensional problems. In order to avoid a poorly scaled initial simplex, the NM

method is initialized around the selected solution by a regular hyper–polygon. Next

subsection describes the main optimization loop of NSHA in more details.

3.1 The main optimization loop
As shown in Figure 2, NSHA starts with a randomly generated population with a

user–defined size. Using this initial population, only a few generations are proceeded

by NSGA–II. The number of generations proceeded by NSGA–II before calling the

local search is defined by the number of non–dominated solutions in the current

population. The local search will start only after all the individuals of the current

population are located at the first non–domination front.

 17

When the local search is called, a subset of lα percent of the current population

is selected. The selected solutions are improved by the local search algorithm, called

non–dominated sorting Nelder–Mead (NSNM), explained in the next section. Only a

randomly selected subset of three to five design variables are used in the local

optimization algorithm, all other variables are kept constant at their current value. The

reduced number of design variables helps to increase the efficiency of the local search

algorithm. For each selected solution, the local search generates an initial simplex, a

regular hyper–polygon with a predefined size, a , where the selected solution is located

at one of its vertices. The local optimization process is terminated when either a user–

defined maximum number of function evaluations, max,lnf , is reached or any other

stopping criteria indicating convergence to a local optimum is satisfied. The selected

solutions in the current population are then replaced by the improved solutions found

by the local search, creating a locally improved population.

The locally improved population is used as an initial population for the next

few generations by NSGA–II. The number of generations performed by NSGA–II

before calling the local search is defined by the maximum number of function

evaluations allowed for NSGA–II. This parameter called max,gnf is defined by the user

at the onset of the process. The values for max,lnf and max,gnf specify the share of

NSGA–II and NSNM in the optimization process. It also specifies the frequency and

duration for which each algorithm is performed. The value of max,gnf should be

selected sufficiently large to give NSGA–II the chance to improve the population

before the next local search is called. On the other hand, max,lnf must be selected large

enough to allow convergence of the local search. The main optimization loop is

 18

repeated until either the total maximum number of function evaluations, tnf , or any

other user–defined stopping criterion is reached.

3.2 The local search algorithm (NSNM)
The local optimization method used in NSHA is called non–dominated sorting

Nelder–Mead (NSNM) method. NSNM (shown in Figure 3) differs from the original

NM method in the number of objective functions it can handle. NSNM deals with

multiple objectives by using the non–domination rank as a single objective to be

optimized. To sort the points within the simplex, the non–domination sorting

procedure of NSGA–II is adapted. As such, the most dominated point (i.e. the worst

solution) within the simplex is reflected with respect to the centroid of the other

points.

Crowding distance may not be used to rank the solutions located at the same

non–domination front, because this parameter cannot be defined for more than one of

the points within the simplex, which is only possible when all the points within the

simplex lie on the same non–domination front. Here, solutions in the same non–

domination front are ranked by preserving their original order in the simplex. This

method of ranking was found to be efficient in reaching a diverse set of solutions on

the Pareto front when it is performed several times from random initial points. The

problem of partially retrieving the Pareto front, reported in some other hybrid methods

(e.g. Martinez and Coello, 2008), is not encountered with NSNM.

The local optimization algorithm is terminated if one of the following stopping

criteria is met: all of the points within the simplex are located at the same non–

domination front, the simplex size becomes smaller than a pre–defined value, or a

user–defined maximum number of function evaluations is reached.

 19

3.3 Selective use of design variables
Han and Neumann (2004), who studied the effect of dimensionality on the

performance of the Nelder–Mead method, showed that the performance of NM

deteriorates when number of design variables increases. The NM method is not a

good choice for design problems with more than approximately ten design variables,

while NSGA–II can handle problems with more design variables. To achieve the best

performance from NSHA for high–dimensional problems, the number of design

variables involved in the local search is limited to five. If the optimization problem

has more than five design variables, only a random subset of three to five design

variables are used during the local search. All other variables are kept constant at their

current value. Numerical results presented in section 4 show the effectiveness of this

approach.

3.4 Constraint handling method
Both the NM method and GAs were originally proposed for solving unconstrained

optimization problems; however, for most practical problems, the design variables are

bounded in a specified range, expressed as box constraints. If a design variable

assumes a value out of the specified range, its value is forced to take that of the upper

or lower limit defined for the corresponding variable.

Other constraints, generally referred to as non–linear constraints, are

formulated as inequality constraints that must be greater than or equal to zero. If there

is any equality constraint involved, it may be taken into account by reformulating the

objective function (if a closed form expression is available), or by expressing the

equality constraint as two inequality constraints. In order to handle these inequality

constraints, the concept of constrained domination (Deb, 2008) is applied to the

sorting algorithm. In this method, all infeasible solutions assume a non–domination

rank higher than the last feasible solution within the population. A crowding distance

 20

is assigned to the feasible solutions, while a value equal to the sum of all violated

constraints is assigned to the infeasible solutions. Since the constraints are formulated

as inequality equations which must be positive or zero, the sum of the violated non–

linear constraints is a negative value that shows the extent of the constraint violation.

Solutions lying at a certain non–domination front are sorted in descending order either

by the crowding distance if the solutions are feasible, or by the extent of constraint

violation if the solutions are infeasible.

In contrast to the projection method that projects infeasible solutions to the

boundary of the feasible region (Ghiasi et al., 2008) and reshapes the simplex, this

constraint handling method avoids infeasible solutions without affecting the simplex

shape. Therefore, reaching a poorly scaled simplex, which significantly deteriorates

the performance of NM method, is less probable as opposed to what can often take

place with the projection method. The other advantage of this constraint handling

method is that no additional function evaluations are required. A more elaborate

algorithm that also resorts to non–domination ranking for infeasible solutions can be

used; however, Deb et al. (2002a) showed that the procedure explained in the

previous paragraph is generally more effective.

4 Mathematical Test Problems

NSHA is here applied to a set of constrained and unconstrained test problems from

the literature, and its performance is compared with the real coded NSGA–II,

considering two performance measures. This section describes these performance

metrics, the test problems and the numerical results.

 21

4.1 Performance measures
As defined by Zitzler et al. (2000), three factors should be examined to assess the

performance of a multi–objective optimization algorithm. 1) Convergence, the

solutions should be as close as possible to the true Pareto front. 2) Spread, the

distribution of the solutions should be uniform along the Pareto front. 3) Scope, the

whole extent of the Pareto front should be captured.

Usually performance parameters are classified in three categories (Deb et al.,

2001): metrics that measure the convergence, metrics that measure the spread, and

those evaluating both convergence and spread. In this research we select the two

performance metrics used by Deb et al. (2002a) to compare NSGA–II with other

evolutionary multi–objective methods. These metrics measure the extent of achieving

the first two goals. Finally, to compare the scope of the solutions, visual inspection of

the solutions is used.

The first metric, γ, measures the extent of convergence to a known set of

Pareto–optimal solutions, measured by the average of the minimum distance of the

solutions from the Pareto front. To determine the minimum distance from the Pareto

front, a grid of uniformly distributed points on the Pareto front is generated. The

minimum distance of a solution from one of the points in this grid is used as the

minimum distance from the Pareto front. The convergence metric γ is defined as:

*

1

1 min; ji
j

i
p

i
ip ffdd

rr
−== ∑

=
γ (3)

In this expression, shows the Euclidian distance between the two points in the

criterion space. p in this equation is equal to the number of points in the population.

Figure 4 (a) illustrates this metric for a bi–criterion problem.

The second metric, Δ , provides information about the extent of spread

achieved by the solutions. As mentioned, the set of solutions is desired to span the

 22

entire Pareto front and be uniformly distributed along it. The following equation is

used to calculate this metric for a bi–criterion problem:

lpll
llll

p

p
i ip

)1(
)(

0

1
10

−++

−++
=Δ ∑ −

= (4)

∑ −
=−= 1

11
1 p

i ip ll (5)

where p shows the number of points in the population. 0l and pl in the above equation

are respectively the Euclidian distances between the extreme solutions and the anchor

points, as shown in Figure 4(b), and il is the Euclidian distance between two solutions.

This metric is zero if the solutions are equally spaced and include both anchor points.

Therefore, this metric not only measures the spread of the solutions, but also provides

some information about their scope. In the next section, these performance metrics

and visual inspection of the results are used to compare NSHA with NSGA–II.

4.2 Test problems
Several test problems from the literature are selected to compare the performance of

NSHA to NSGA–II. Table 1 shows the list of unconstrained problems used for this

purpose. The first six test problems have two objectives with known, continuous

Pareto fronts. MOP4 has a discontinuous 2D Pareto front, whose closed–form solution

is not available to the authors. In addition, since the Pareto front of DTZL1 is three–

dimensional, the performance metrics may not be properly calculated. Therefore, for

MOP4 and DTZL1, a visual comparison of the results is discussed.

A set of constrained test problems are also used to assess the performance of

NSHA on this type of problem. Table 2 shows the list of selected constrained test

problems. The first test problem is chosen due to its continuous 2D Pareto front,

which enables using the performance metrics for a precise comparison of the two

optimization algorithms. The second test problem is more complex because six design

 23

variables and six constraints need to be considered. The theoretical Pareto optimal

front of this test problem consists of discontinuous broken–lines.

A constant population size of 100 individuals is used for each test case and the

optimization process is conducted for up to 25,000 function evaluations, except for

DTZL1, for which 100,000 function evaluations are performed. The maximum

number of points participating in the local improvement process is set to be 20% of

the population size. Size of the initial simplex for the local optimization algorithm is

set to be 10% of the smallest edge of the hyper–cube surrounding the design domain,

while the minimum simplex size at which the local search is terminated is chosen to

be 0.1% of this value. The maximum number of function evaluations for the local

search, max,lnf , and for NSGA–II, max,gnf , are respectively limited to 100 and 2000

function evaluations. These choices provide almost equal contribution of the local

search (i.e. 20×100=2000 function evaluations) and NSGA–II. This ratio is kept

constant in all test cases solved in this paper (including the composite design

problem); half of the total number of function evaluations is used by NSGA–II and

half by NSNM. Due to the stochastic nature of the algorithm, each test problem is

solved several times and the averaged performance metrics are compared. The

performance parameters are determined each time that the algorithm switches from

the local search to NSGA–II or vice versa.

4.3 Impact of the selective use of design variables
In this section, it is shown that selecting a subset of design variables for the local

search improves the convergence rate of the hybrid algorithm. The second test

problem, ZDT1, with 30 design variables is chosen for this purpose. Three different

cases are examined. In the first case only NSGA–II is used. In the two other cases the

hybrid algorithm is used for optimization. In the second case (NSHA–all) the whole

 24

set of design variables is used in the local search, whereas, in the third case (NSHA),

only a random subset of three to five design variables are selected and used in the

local optimization process.

The convergence measure, γ , is plotted versus the number of function

evaluations performed by each method in Figure 5. NSHA is shown to achieve a

better convergence (lower γ) than the two other methods, all along the optimization

process. When all 30 design variables of the ZDT1 are used during the local search

(NSHA–All), the convergence rate of the local search is very slow, for the

performance of NM is dependent on the dimension of the problem. The local search is

unable to locally improve the solutions in the current population; therefore, the

function evaluations performed during the local search are ineffective.

4.4 Unconstrained test problems
This section reports the results of applying the NSHA on selected unconstrained

mathematical test problems shown in Table 1. The results are reported for each

function, individually.

The performance metrics averaged during ten trials of NSGA–II and NSHA on

FON test function is shown in Figure 6. Since this test problem has only three design

variables, both algorithms are expected to find solutions very close to the real optima

after performing 25,000 function evaluations. This is a fairly easy problem without

irregularity in function shape, therefore the performance of the two algorithms was

similar and the solutions found by both algorithms are close to the real Pareto front of

the problem.

Similarly, Figure 7 shows the performance parameters averaged over ten trials

of solving the ZDT1 test problem. This test problem is more complex than the

previous one due to the larger number of design variables. This figure shows that

 25

regardless of the number of function evaluations performed, NSHA achieved a better

convergence than NSGA–II after the local search is activated in NSHA. For instance,

the convergence metric achieved by NSGA–II after 12,000 function evaluations is

achieved by NSHA with only 7,000 function evaluations. As seen in this figure,

NSHA continues the progress toward the Pareto front even after 20,000 function

evaluations, while NSAG–II does not achieve a noticeable progress after around

12,000 function evaluations. Both algorithms performed similarly regarding the

spread of the solutions, because both methods use the same technique, crowding–

comparison, to preserve the spread of the solutions.

The visual comparison of the solutions in Figure 8 shows that the two

algorithms also performed similarly regarding the scope of the solutions, with slightly

better performance for NSHA. This figure shows the solutions found in one of the

trials whose performance is close to the average performance of the ten trials.

Figure 9 to Figure 12, respectively, show the performance parameters for

ZDT2, ZDT3, ZDT4, and ZDT6 test problems, averaged over ten runs of NSHA and

NSGA–II. In Figure 9 to Figure 11, except at the beginning of the optimization

process, the convergence metric, γ , achieved by NSHA after certain number of

function evaluations is smaller than the one achieved by NSGA–II with the same

number of function evaluations. This metric shows that NSHA could obtain solutions

closer to the Pareto front than the one obtained by NSGA–II. The improvement

observed confirms that the integrated local search is efficiently incorporated into the

optimization process and increases the rate of convergence toward the Pareto front.

For ZDT6 test function, for which the results are shown in Figure 12, none of the two

algorithms clearly outperformed the other; however, looking at the numerical values

of the convergence metric, γ , shows that both algorithms could obtain solutions very

 26

close to the Pareto front. The corresponding test function lacks the trigonometric term

and thus includes fewer local minima; therefore the simplex local optimizer can make

a significant improvement.

NSGA–II showed higher rate of convergence in the first few iterations on

ZDT3 in Figure 10. The reason is that this test problem has numerous local optima,

which make the local search inefficient at the early iterations where most of the GA’s

solutions are far from the Pareto front. For this test problem, the authors expect an

improvement in the performance of NSHA if the activation of the local search is

postponed. As the population moves closer to the Pareto front, the local search

becomes more effective and its contribution to the search becomes more evident. In

all test problems presented in these figures, NSHA yielded solutions closer to the

Pareto front than those provided by NSGA–II at the end of the process.

In all the six unconstrained test problems, the two algorithms found the same

overall spread of solutions, because the crowding–comparison operator, which is

responsible for achieving an even spread of solutions, is similar in both algorithms.

Since during the local search no crowding distance is calculated, the distribution of

the solutions may decline, but it is improved as soon as a few generations of NSGA–II

are performed. In order to avoid a poor spread of solutions in the final set of solutions,

the recommendation is to terminate the optimization process with a few generations of

NSGA–II.

In FON and all the ZDT test problems, the solutions found by both algorithms

include the entire Pareto front and, as it was shown for ZDT1 in Figure 8, the

difference between the two algorithms is very small. The reason is that the Pareto

fronts of these test problems are smooth continuous curves, with no discontinuity or

 27

irregularity. Effect of the local search in improving the scope of the solution is more

evident in cases with discontinuous Pareto front and constrained problems.

In order to demonstrate the performance of NSHA on problems with a

piecewise Pareto front, both algorithms are applied to the MOP4 test problem. As

explained previously, since the performance metrics are not suited for problems with

piecewise Pareto fronts, the results for MOP4 are visually compared in Figure 13. The

non–dominated solutions obtained by the two algorithms are illustrated for three

levels of total function evaluations, namely 2500, 5000 and 25000.

Both algorithms achieved almost the same set of final solutions after 25,000

function evaluations; however, NSHA reaches this solution faster than NSGA–II. The

faster convergence is confirmed when the solutions found after 2500 function

evaluations are compared; the solutions of NSHA are closer to the real Pareto front

and, compared to the solutions of NSGA–II, they cover a wider portion of the Pareto

front.

The last unconstrained test problem solved here is DTZL1, which is selected

to demonstrate and compare the performance of NSHA on problems with more than

two objectives. The set of solutions obtained by the two algorithms after 5000 and

100,000 function evaluations is illustrated in Figure 14, which shows that NSHA has a

higher convergence rate than NSGA–II, since the solutions obtained by NSHA are

closer to the origin and dominating the ones obtained by NSGA–II. At 5000 iterations,

the spread of the solutions achieved by NSGA–II is better than the one by NSHA;

however, the quality of the solutions by NSHA is better. Further into the process, the

spread of the solution is improved and becomes closer to the uniform distribution.

Generally, both algorithms perform poorly, as also previously reported by Deb

(2008), who suggested improving the solutions by using ε–domination in NSGA–II.

 28

Since NSHA uses the same non–domination sorting algorithm, this modification can

also be applied to NSHA to improve the distribution of the solutions for this test

problem.

4.5 Constrained test problems
Two constrained test problems are studied in this section to compare the performance

of NSHA and NSGA–II. The first test problem is CONSTR (Table 2), whose Pareto

front and the feasible criterion space are shown in Figure 15. The averaged

performance parameters over three trials of NSGA–II and NSHA are shown in Figure

16. The two algorithms performed similarly, although the performance metrics were

less stable for NSHA. The significant difference between the two algorithms is

observed in the scope of solutions. For a number of function evaluations less than

approximately 5,000, NSHA performed better than NSGA–II and provided a wider

scope of solutions. The solutions obtained by NSHA and NSGA–II after 2,000 and

15,000 function evaluations are compared in Figure 15.

The other selected constrained test problem is COK (Table 2), which has a

piecewise broken–line Pareto front shown in Figure 17. The complexity of this

problem is higher because six design variables and six constraints need to be

considered. Since the closed–form representation of the Pareto front is not available,

we decided to run both algorithms for up to 100,000 function evaluations and use the

best solutions found to calculate the convergence metric γ. Figure 17 shows the

approximate Pareto front and the average convergence metric, γ, averaged over ten

trials for each algorithm.

Regarding the convergence metric, shown in Figure 17, except for the last few

generations, a slightly better convergence is achieved by NSGA–II; however, a

remarkable advantage of NSHA can be reported if the solutions are inspected as

 29

shown in Figure 18. Even though the solutions obtained by NSGA–II are very close to

the real Pareto front, they do not cover the entire Pareto front. Solutions found by

NSHA cover a wider portion of the front.

Figure 18 shows the progress of the solutions toward the real Pareto front in

one of the representative trials. Whereas NSGA–II could not retrieve a wide portion

of the Pareto front in a number of trials, NSHA was successful in finding the entire

Pareto front in all ten trials. This confirms that the local search algorithm has a strong

influence in intensifying the search capability of the algorithm. The local search is

particularly beneficial in problems with irregular Pareto fronts, because the local

search enables the algorithm to reach solutions close to the knee points and

discontinuities, which are often located at the corners of the feasible region. Such

solutions cannot be easily reached by pure evolutionary operators.

4.6 Sensitivity to the user–defined parameters
One important advantage of NSGA–II is the small number of parameters that must be

defined by the user at the onset of the optimization process. Introduced in this work,

NSHA uses the same modules used in NSGA–II (e.g. the non–domination sorting

algorithm, the crowding distance calculation procedure), thereby it also requires

definition of a limited number of user–defined parameters. The additional parameters

that must be defined by the user include the frequency of calling the local search and

the number of individuals participating in the local search. In this section the test

problem ZDT1 is used to show the effect of these two parameters on the performance

of NSHA.

To examine the sensitivity of the convergence rate to the frequency of calling

the local search, the convergence metric γ is plotted in Figure 19. Here, the local

search is called every 5, 10, or 20 generations. On the other hand, Figure 20 plots the

 30

convergence metric for different numbers of solutions participating in the local

search, namely 10, 20 and 40 percent of the current population. The results presented

in these figures confirm that the user–defined parameters have a minor effect on the

convergence of NSHA. For instance, calling the local search every 5 or 20 generations

does not significantly change the convergence rate (Figure 19). In addition, changing

the number of solutions participating in the local search from 10% to 40% of the

population also does not yield a major difference in convergence rate (Figure 20).

Therefore, although problem–dependent, assigning a reasonable value to these two

parameters is not a difficult task and does not require a significant insight into the

problem. For a general problem, we suggest calling the local search every 10

generations and assigning the percentage of 20 to the number of solutions

participating in the local search.

5 Design of a Composite Part

Design and manufacturing of a composite part is used in this section as an example to

demonstrate the ability of the proposed hybrid algorithm in solving a practical

engineering problem. Composite materials are well–known for having many design

variables, which gives the designer more opportunities to tailor the material for the

intended application; however it requires solving a more complex design problem.

Different optimization algorithms have been used to solve the corresponding design

optimization problem (Ghiasi et al., 2009). In this section, the application of NSHA in

solving a multi–objective design problem, which takes into account both

manufacturing and structural parameters, is demonstrated.

 31

5.1 Composite test problem
The part studied in this section is a carbon fiber bicycle stem, part of a bicycle that

connects the handlebar to the fork, as shown in Figure 21. Bladder assisted resin

transfer moulding (RTM) is used as the manufacturing method, because of the small

size of the part, its complicated geometry with hollow sections, high level of surface

finish and fast production cycle required. In this manufacturing method, first, a dry

preform consisted of four layers of continuous braided carbon fiber sleeves is placed

around an inflatable bladder and is positioned inside a solid airtight mould, as shown

in Figure 22. After inflating the bladder, an injection pump is used to push the resin

through the fibers which are compressed between the bladder and the mould surface.

The air exits through the strategically placed vents as the resin front advances. The

part is ready to be demoulded when the cure procedure is completed. This

manufacturing process results in a strong interconnection between the structural and

manufacturing parameters; therefore, a multi–objective optimization method is

required to solve the corresponding design problem.

5.2 Optimization problem
The corresponding optimization problem consists in finding the minimum weight and

mould filling time and the maximum strength or minimum inverse Tsai–Wu strength

ratio. The design variables consist of four braid diameters, injection pressure and

bladder pressure. The optimization problem is formulated as follows:

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≥−
<<

<<

=<<

=

⎪
⎪
⎩

⎪⎪
⎨

⎧

kPaPP
kPaPkPa

kPaPkPa
immdmm

ts

i

PPdS

PPdT

PPdW

injbladder

bladder

inj

i

bladderinji

bladderinji

bladderinji

PPd bladderinji

50
500150

450100
4,...,1;5.631.38

..

4,...,1;

),,((

),,(

),,(

min
,,

(6)

 32

where W, T and S in this equation represent weight, filling time and the inverse Tsai–

Wu strength ratio, respectively. id is the braid diameter, and injp and bladderP stand for

injection and bladder pressures. The flowchart in Figure 23 shows the interconnection

between the design variables and the objectives and the method to calculate each

parameter. Function evaluation process here consists of a structural analysis and a

flow simulation. A finite element analysis in ANSYS® is employed for structural

analysis, while the flow simulation is performed using a MATLAB® code developed

by the first author. The function evaluation process for this problem is time

consuming and takes about 100 seconds on a computer with Intel–Pentium4, 3.2GHZ,

2GB RAM. Therefore, the number of function evaluations must be kept as low as

possible. As a result, the higher convergence rate of the hybrid optimization algorithm

introduced in this paper is an important asset for situations similar to this test problem.

5.3 Results and discussion
NSHA is applied to the stem design problem using a population of 40 individuals. The

optimization process is terminated after 5,000 function evaluations. Figure 24 shows

the final solutions in the 3D criterion space and in the pair–wise 2D spaces. This

figure gives insight into the problem by presenting the achievable values for the

objectives. For instance, part (c) in this figure shows that there is no trade–off

between strength and filling time, thus one may find a solution that has the minimum

production time and the maximum strength at the same time; however, simultaneously

achieving the maximum strength and minimum weight (Figure 24–b) or minimum

weight and minimum filling time (Figure 24–d) is impossible. In addition to the

presence and significant effect of the coupling terms, this figure also provides the

numerical values for the achievable objectives; for instance, part (b) in this figure

 33

shows that for a part which weights 65 grams, the minimum achievable inverse Tsai–

Wu strength ratio is 0.78.

In addition, having an image of the Pareto front of the problem helps finding

the critical design points such as knee points or points of discontinuity in the Pareto

front. For the stem design problem, Figure 24(b) shows a knee point, marked by letter

(A). This point shows that decreasing the inverse Tsai–Wu strength ratio from 1.1 to

0.78 is associated with a smaller penalty in weight than improving the strength of the

part beyond this value.

The solid circle shown in Figure 24 part (b) to (c) is the experimental design

found in our laboratory after months of trial and error (Thuoin, 2004). This point is

very close to the Pareto front regarding the weight and filling time (part (d) in this

figure); however, it is not close to the Pareto front regarding the trade–off between

weight and strength. The results found in this research can be used to find a solution

better than the one found by experiments, while saving the large amount of time

usually spent on designing a part by experiment.

Figure 24 shows a fairly even distribution of the solutions within the criterion

space; however, such good spread may not be observed within the design space. The

spread of the solutions within the design space is not related to the performance of the

optimization algorithm, but to the non–linearity of the objectives and constraints that

map the design space to the criterion space. Since the position of a solution within the

design space shows the values for the design variables, it provides a physical

understanding of the problem from the engineering point of view. Therefore, the

spread of the solutions within the design space is also studied for this test case.

In order to illustrate the six–dimensional design space of the stem problem, the

design variables of the same nature are collectively considered as shown in Figure 25

 34

and Figure 26. The best design with respect to each objective (i.e. an anchor point) is

shown with solid symbols, while the other solutions are shown with non–solid circles.

A tendency toward the solution with the best strength is observed among the results,

while such a tendency does not exist toward the best design with respect to the filling

time. The distribution of the solutions shows that the coupled designs are dominated

by the structural parameters, and a coupled design is closer to the best structural

design than the best design for manufacturing. Note that the proximity to the

structural design is with respect to the design variables; therefore, it is not in conflict

with the reported strong coupling in performances. The domination by structural

design was also previously reported by Henderson et al. (1999) for a blade–stiffened

composite panel.

To summarize the results of the practical design problem, the following three

points are noted: 1) the trade–off between structural performance and manufacturing

concerns can be captured and qualified using this multi–objective optimization

method. 2) The solutions obtained by this method can help distinguishing the feasible

combination of performances and finding the critical designs. 3) A coupled design

with a reasonable combination of structural and manufacturing performances can be

achieved by making only small changes in the best structural design.

6 Conclusions

An efficient multi–objective optimization algorithm is required to solve multi–

objective design problems. Evolutionary algorithms are a popular tool for this

purpose, because of their ability in achieving more than one solution in a single run.

Among these methods, NSGA–II has received a significant attention and popularity;

however, like other evolutionary algorithms, it is slow in convergence and usually

 35

needs several function evaluations before a reasonably good set of solutions is

reached.

In this paper, NSGA–II was hybridized with a local search algorithm based on

the Nelder–Mead (NM) simplex method to improve its convergence rate and quality

of the solutions. In order to make NM capable of handling multi–objective problems,

we used the non–dominated sorting algorithm used in NSGA–II. The constrained–

domination was used to handle the inequality constraints in constrained optimization

problems.

The proposed algorithm called non–dominated sorting hybrid algorithm

(NSHA) was compared with NSGA–II on eight unconstrained and two constrained

test problems from the literature. The performance of the two algorithms was

compared using two performance metrics measuring the convergence to the real

Pareto front and spread of the solutions. The mathematical test problems presented in

this paper showed that the hybrid algorithm significantly increases the convergence

rate and the extent of solutions. It was observed that to obtain the same quality of the

results, NSHA requires a smaller number of function evaluations than NSGA–II. The

local search integrated into the algorithm significantly intensifies the ability of the

algorithm in searching the design space and reaching the critical solutions such as

knee points or discontinuities in the Pareto front. Therefore, the hybrid algorithm was

shown to be able to obtain a wider portion of the Pareto front, when irregularities exist

in the Pareto front of the problem. Since the diversity preservation mechanism is only

applied within NSGA–II, the similar spread of solutions was observed for both NSHA

and NSGA–II.

To demonstrate the capability in handling practical engineering problems,

NSHA was applied to the optimum design of a composite bicycle stem. Finite element

 36

analysis and resin flow simulation were required to evaluate the three objectives of

this problem, which made the function evaluation process time consuming. The

optimum solutions found by NSHA reveals the trade–off among conflicting

objectives, the extreme values for each objective, and the critical design points. The

results were found close to the solutions found by experiment and trial and error.

By intensifying the search and reducing the computational time, NSHA

provides an effective tool that benefits from the robustness of the genetic algorithms

and the high convergence rate of the Nelder–Mead method. This optimization tool is

suitable for solving complex time consuming multi–objective optimization problems.

One of the major advantages of NSHA is that it maintains the simplicity and modular

aspect of NSGA–II, while it achieves a wider scope and a higher quality of the

solutions. Most modifications proposed in the literature to adapt NSGA–II to special

applications, can be applied to NSHA to further improve its performance for a

particular application.

7 References
Agarwal, A. and Gupta, S.K., 2008. Jumping gene adaptations of NSGA–II and their

use in the multi–objective optimal design of shell and tube heat exchangers.
Chemical Engineering Research and Design, 86, 123–139.

ANSYS theory reference, 2007. Release 11.0: documentation for ANSYS. SAS IP,
Inc.

Babu, B.V. and Anbarasu, B., 2005. Multi–objective differential evolution (MODE):
An evolutionary algorithm for multi–objective optimization problems.
Proceedings of The Third International Conference on Computational
Intelligence, Robotics, and Autonomous Systems (CIRAS–2005), Singapore,
December 13–16.

Bechikh, S., Belgasmi, N., Said, L.B. and Ghédira, K., 2008. PHC–NSGA–II: A novel
multi–objective memetic algorithm for continuous optimization. 20th IEEE
International Conference on Tools with Artificial Intelligence (ICTAI 2008),
November 3–5, Dayton, Ohio, USA, 180–189.

Bingul Z, 2006. Adaptive genetic algorithms applied to dynamic multiobjective
problems. Applied Soft Computing, 7, 791–799.

Chelouah R. and Siarry P., 2003. Genetic and Nelder-Mead algorithm hybridized for a
more accurate global optimization of continuous multiminima functions.
European Journal of Operation Research, 148, 335-348.

 37

Coello, C.A., 1999. A comprehensive survey of evolutionary–based multi–objective
optimization techniques. Int J Knowledge and Information Systems, 1(3), 269–
308.

Coello, C.A., 2002. Evolutionary multi-objective optimization: a critical review. In:
M. Ehrgott and X. Gandibleux, Editors, Multiple Criteria Optimization, State
of the Art, Annotated Bibliographic Surveys, Kluwer Academic Publishers.

Deb, K., 2001. Multiobjective optimization using evolutionary algorithms, Chichester,
UK: John Wiley and Sons Ltd.

Deb, K., 2008. A robust evolutionary framework for multi–objective Optimization.
Proceedings of the 10th annual conference on Genetic and evolutionary
computation (GECCO’08), July 12–16, Atlanta, Georgia, USA, 633–640.

Deb, K., Anand, A. and Joshi, D., 2002b, A computationally efficient evolutionary
algorithm for real–parameter optimization. Evolutionary Computation
Journal, 10(4), 371–395.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan T., 2002a. Fast and elitist multi–
objective genetic algorithm: NSGA–II. IEEE Transactions on Evolutionary
Computation, 6(2).

El-Mihoub, T.A., Hopgood A.A., Nolle L. and Battersby A., 2006. Hybrid genetic
algorithms: a review. Engineering Letters, 13(2), 124–137.

Fonseca, C.M. and Fleming, P.J., 1993. Genetic algorithms for multi–objective
optimisation: formulation, discussion and generalisation. Proceedings of the
5th International Conference on Genetic Algorithms (Ed. Forrest S), Urbana,
Illinois, 416–423.

Fonseca, C.M. and Fleming, P.J., 1995. An overview of evolutionary algorithms in
multi–objective optimization. Journal of Evolutionary Computation, 3, 1–16.

Gao, X., Chen, B., He, X., Qiu, T., Li, J., Wang, C. and Zhang, L., 2008. Multi–
objective optimization for the periodic operation of the naphtha pyrolysis
process using a new parallel hybrid algorithm combining NSGA–II with SQP.
Computers and Chemical Engineering, 32, 2801–2811.

Ghiasi, H., Pasini, D. and Lessard, L., 2008. Constrained globalized Nelder–Mead
method for simultaneous structural and manufacturing optimization of a
composite bracket, Composite Materials, 42(7), 717–736.

Ghiasi, H., Pasini, D. and Lessard, L., 2009a. Optimum stacking sequence design of
composite materials part I: constant stiffness design. Composite Structures,
90(1), 1–11.

Ghiasi, H., Pasini, D. and Lessard, L., 2009b. Pareto frontier for simultaneous
structural and manufacturing optimization of a composite part. Accepted by
Structural and Multidisciplinary Optimization, doi: 10.1007/s00158-009-
0366-4, Available online Feb 2009.

Ghomsheh, V., Khanehsar, M.A. and Teshnehlab, M., 2007. Improving the non–
dominate sorting genetic algorithm for multi–objective optimization.
International Conference on Computational Intelligence and Security
Workshops (CISW 2007), Heilongjiang, China, 89–92.

Hajela, P. and Lin, C.Y., 1992. Genetic search strategies in multicriterion optimal
design. Structural Optimization, 4, 99–107.

Han, L. and Neumann, M., 2006. Effect of dimensionality on the Nelder–Mead
simplex method. Optimization Methods and Software, 21(1), 1–16.

Hart, W. and Belew, R., 1996. Optimization with genetic algorithm hybrids that use
local search. Adaptive individuals in evolving populations: Models and

 38

algorithms, Santa Fe Institute Studies in the Science of Complexity Vol. 26,
Addison–Wesley.

Henderson, J.L., Gürdal, Z. and Loos, A.C., 1999. Combined structural and
manufacturing optimization of stiffened composite panels. J. of Aircraft,
36(1), 246–254.

Hernandez–Diaz, A.G., Coello, C.A., Perez, F., Caballero, R., Molina, J. and
Santana–Quintero, L.V., 2008. Seeding the initial population of a multi–
objective evolutionary algorithm using gradient–based information, 2008
IEEE Congress on Evolutionary Computation, CEC 2008, 1617–1624.

Hongfeng X., Guanzheng T. and Jingui H., Large scale function optimization or high-
dimension function optimization in large using simplex-based genetic
algorithm, GEC’09, June 12–14, 2009, Shanghai, China.

Hooke, R. and Jeeves, T.A., 1961. Direct search solution of numerical and statistical
problems. Journal of the Association for Computing Machinery, 8, 212–229

Horn, J., Nafpliotis, N. and Goldberg, D.E., 1994. A niched Pareto genetic algorithm
for multi–objective optimization. Proceeding of the 1st IEEE Conference on
Evolutionary Computation, 82–87.

Hu, X., Huang, Z. and Wang, Z., 2003. Hybridization of the multi–objective
evolutionary algorithms and the gradient–based algorithms. Proceedings of the
IEEE Congress on Evolutionary Computation, 870–877.

Iorio, A.W. and Li, X., 2004. Solving rotated multi–objective optimization problems
using differential evolution, Proceeding of AI 2004: Advances in Artificial
Intelligence, Springer–Verlag, LNAI, 3339, 861–872.

Ishibuchi, H. and Narukawa, K., 2004. Performance evaluation of simple multi–
objective genetic local search algorithms on multi–objective 0/1 Knapsack
problems. Congress on Evolutionary Computation, CEC2004, 19–23 June, 1,
441– 448.

Kasat, R.B. and Gupta, S.K., 2003. Multi–objective optimization of an industrial
fluidized–bed catalytic cracking unit (FCCU) using genetic algorithm with the
jumping gene operator. Comput Chem Eng, 27(12), 1785–1800.

Koduru, P., Das, S., Welch, S., LRoe, J., and Lopez–Dee, Z.P., 2005. A Co–
evolutionary hybrid algorithm for multi–objective optimization of gene
regulatory network models. 2005 Genetic and Evolutionary Computation
Conference (GECCO’05), June 25–29, Washington, DC, USA, 393–399.

Kumar, A., Sharma, D. and Deb, K., 2007. A hybrid multi–objective optimization
procedure using PCX based NSGA–II and sequential quadratic programming.
Special Session & Competition on Performance Assessment of Multi–
Objective Optimization Algorithms, CEC–07, Singapore, September 25–28,
2007.

Kumar, R., Izui, K., Yoshimura, M. and Nishiwaki, S., 2009. Multi–objective
hierarchical genetic algorithms for multi level redundancy allocation
optimization. Reliability Engineering and System Safety, 94, 891–904.

Lagarias, J.C., Reeds, J.A., Wright, M.H. and Wright, P.E., 1998. Convergence
properties of the Nelder–Mead simplex method in low dimensions. SIAM J of
Optimtimization, 9(1), 112–147.

Lahanas, M., Baltas, D. and Zamboglou, N., 2003. A hybrid evolutionary algorithm
for multi–objective anatomy–based dose optimization in high–dose–rate
brachytherapy. Physics in Medicine and Biology, 48, 399–415.

 39

Le Riche, R., Saouab, A. and Breard, J., 2003. Coupled compression RTM and
composite layup optimization. Composite Science and Technology, 63(15),
2277–2287.

Li, M., Zheng, J. and Wu, J., 2008. Improving NSGA–II algorithm based on
minimum spanning tree. Lecture Notes in Computer Science, Springer–Verlag
Berlin Heidelberg, LNCS 5361, 170–179.

Maneeratana, K., Boonlong, K. and Chaiyaratana, N., 2005. Co–operative co–
evolutionary genetic algorithms for multi–objective topology design.
Computer–Aided Design & Applications, 2(1–4), 487–496.

Martinez, S.Z. and Coello, C.A., 2008. A proposal to hybridize multi–objective
evolutionary algorithms with non–gradient mathematical programming
techniques. Lecture Notes in Computer Science (Eds. G. Rudolph et al.),
Springer–Verlag, Berlin Heidelberg, PPSN X, LNCS 5199, 837–846.

Moscato, P., 1989. On evolution, search, optimization, genetic algorithms and martial
arts: Towards memetic algorithms. Caltech Concurrent Computation
Program, C3P Report 826, 1989.

Murugan, P., Kannan, S. and Baskar, S., 2009. NSGA–II algorithm for multi–
objective generation expansion planning problem. Electric Power Systems
Research, 79, 622–628.

Nelder, J.A. and Mead, R., 1965. Simplex method for function minimization.
Computer Journal, 7(4), 308–313.

Nocedal, J. and Wright, S.J., 2006. Numerical Optimization, Springer series in
operations research, Second edition, United State of America: Springer
Science+Business Media, LLC.

Park, C.H., Lee, W.I., Han, W.S. and Vautrin, A., 2005. Multiconstraint optimization
of composite structures manufactured by resin transfer moulding process.
Composite Material, 39(4), 347–374.

Praveen Kumar, K., Sharath, S., D'Souza, G.R. and Chandra, S.K., 2007. Memetic
NSGA – a multi–objective genetic algorithm for classification of microarray
data. Proceeding of 15th International Conference on Advanced Computing
and Communications (ADCOM 2007), 18–21 Dec, Guwahati, India, 75–80.

Purshouse, R.C. and Fleming, P.J., 2001. The multi–objective genetic algorithm
applied to benchmark problems–an analysis. Research Report No. 796,
Department of Automatic Control and Systems Engineering University of
Sheffield, Sheffield, S1 3JD, UK, 2001.

Sayin, S. and Karabati, S., 1999. A bicriteria approach to the two–machine flow shop
scheduling problem. European Journal of Operational Research, 113(2), 435–
449.

Schaffer, J.D., 1984. Some experiments in machine learning using vector evaluated
genetic algorithms. Ph.D. Thesis, Vanderbilt University, Nashville, TN, USA.

Srinivas, N. and Deb, K., 1994. Multi–objective function optimization using non–
dominated sorting genetic algorithms. Evolutionary Computation, 2(3), 221–
248.

Thouin M., 2004. Design of a carbon fiber bicycle stem using an internal bladder and
resin transfer molding. M.Eng. Thesis, McGill University, QC, Canada.

Tran, K.D., 2005. Elitist Non–Dominated Sorting GA–II (NSGA–II) as a parameter–
less multiobjective GA. Presented at IEEE SoutheastCon 2005, Fort
Lauderdale, Florida, USA.

Xu, H., Fan, W., Wei, T. and Yu, L., 2008. An or–opt NSGA–II algorithm for
multiobjective vehicle routing problem with time windows. 4th IEEE

 40

Conference on Automation Science and Engineering, Key Bridge Marriott,
Washington DC, USA, August 23–26, 309–314.

Yen J., Liao, J.C., Lee, B., Randolph, D., 1998. A hybrid approach to modeling
metabolic systems using a genetic algorithm and simplex method. IEEE
Transactions on Systems, Man, and Cybernetics–Part B: Cybernetics, 28(2):
173–191.

Yijie, S. and Gongzhang, S., 2008. Improved NSGA–II multi–objective genetic
algorithm based on hybridization–encouraged mechanism. Chinese Journal of
Aeronautics, 21, 540–549.

Zheng, J., Ling, C., Shi, Z., Xue, J. and Li, X., 2004. A multi–objective genetic
algorithm based on quick sort. Canadian AI 2004 (Ed. Tawfik AY and
Goodwin SD), Springer–Verlag Berlin Heidelberg, LNAI 3060, 175–186.

Zitzler, E., Deb, K. and Thiele, L., 2000. Comparison of multi–objective evolutionary
algorithms: Empirical results. Evolutionary Computation, 8(2), 173–195.

Zitzler, E., Deb, K., Thiele, L., Coello, A.C. and Corne, D., 2001. Proceedings of the
First International Conference on Evolutionary Multi–Criterion Optimization
(EMO 2001), Lecture Notes in Computer Science (LNCS, Vol. 1993).
Heidelberg: Springer.

 41

Table 1 Unconstrained test problems used to compare the performance of NSHA and
NSGA–II

Problem n ∈ix Objective functions Optimal solution Reference
FON 3]4,4[−

∑

∑

=

=

+−−=

−−−=

3
1

2
3

1
2

3
1

2
3

1
1

))(exp(1

))(exp(1

i i

i i

xf

xf],[
3

1
3

1
321 −∈== xxx Deb et al.,

2002a

ZDT1 30]1,0[

∑ =−
+=

−=

=

n
i ix

n
xg

xgxxgf

xf

2

12

11

1
91)(

])(1)[(

ni
x
x

i

,...,2
,0

]1,0[1

=
=
∈ Deb et al.,

2002a

ZDT2 30]1,0[

∑ =−
+=

−=

=

n
i ix

n
xg

xgxxgf

xf

2

2
12

11

1
91)(

]))((1)[(

ni
x
x

i

,...,2
,0

]1,0[1

=
=
∈ Deb et al.,

2002a

ZDT3 30]1,0[

∑ =−
+=

−−=

=

n
i i

xg
x

x
n

xg

xxgxxgf

xf

2

1)(12

11

1
91)(

)]10sin()(1)[(1 π

ni
x
x

i

,...,2
,0

]1,0[1

=
=
∈ Deb et al.,

2002a

ZDT4 10

ni
x
x

i

,...,2
]5,5[

],1,0[1

=

−∈
∈

∑ = −+−+=

−=

=

n
i ii xxnxg

xgxxgf

xf

2
2

12

11

)4cos(10()1(101)(

])(1)[(

π

ni
x
x

i

,...,2
,0

]1,0[1

=
=
∈ Deb et al.,

2002a

ZDT6 10]1,0[

25.0
2

2
12

11

])1([91)(

]))()((1)[(

−+=

−=

=

∑ = nxxg

xgxfxgf

xf

n
i i

ni
x
x

i

,...,2
,0

]1,0[1

=
=
∈ Deb et al.,

2002a

MOP4 3]5,5[−

()∑

∑

=

−
= +

+=

⎟
⎠
⎞⎜

⎝
⎛ +−−=

n
i ii

n
i ii

xxf

xxf

1
38.0

2

1
1

2
1

2
1

)sin(5

)2.0exp(10 a piecewise curve Yijie and
Gongzhang,

2008
DTZL1 7]1,0[

∑ = −−−++=

−=

−=

=

7
3

2

12
1

3

212
1

2

212
1

1

))]5.0(20cos()5.0[(5[1001)(

)()1(

)()1(

)(

i ii xxxg

xgxf

xgxxf

xgxxf

π

 A linear optimal front Deb et al., 2001

 42

Table 2 Constrained test problems used to compare the performance of NSHA and
NSGA–II

Problem n ∈ix Objective functions Constraints Reference
CONSTR 2

]5,0[
]1,1.0[

2

1

∈
∈

x
x

122

11

)1(xxf
xf
+=

=
019)(
069)(

212

211

≥−−=
≥−+=

xxxg
xxxg

Deb et al., 2002a

COK 6

]6,0[
]5,1[,

]5,0[,,

4

53

621

∈
∈

∈

x
xx

xxx

2
6

2
5

2
4

2
3

2
2

2
12

2
5

2
4

2
3

2
2

2
11

)(

)1()4(

)1()2()2(25)(

xxxxxxxf

xx

xxxxf

+++++=

−−−−

−−−−−−=

04)3()(

0)3(4)(

032)(
02)(
06)(
02)(

6
2

56

4
2

35

214

213

212

211

≥−+−=

≥−−−=

≥+−=

≥−+=
≥−−=
≥−+=

xxxg

xxxg

xxxg
xxxg
xxxg

xxxg

Yijie and Gongzhang,

2008

 43

Figure 1 Crowding distance calculation for the solutions located at the same non–

domination front

Figure 2 Pseudo code of the main loop in NSHA

Figure 3 Pseudo code of the local simplex optimizer NSNM

Figure 4 (a) Convergence metric γ , (b) diversity metric, Δ (Deb et al., 2002a)

Figure 5 Convergence measure, γ , versus number of function evaluations performed

when NSGA–II, NSHA, and NSHA–All are applied to the ZDT1 test problem. The

results are averaged over ten trials with random initial populations.

Figure 6 Performance parameters, γ and Δ for FON, Averaged over ten trials

Figure 7 Performance parameters, γ and Δ for ZDT1, averaged over ten trials

Figure 8 Solutions close to the two anchor points, found by NSHA and NSGA–II

after 25,000 function evaluations for ZDT1

Figure 9 Average performance parameters, γ and Δ for ZDT2 test function after ten

trials

Figure 10 Average performance parameters, γ and Δ for ZDT3 after ten trials

Figure 11 Average performance parameters, γ and Δ for ZDT4 test function after ten

trials

Figure 12 Average performance parameters, γ and Δ for ZDT6 test function after ten

trials

Figure 13 Non–dominated solutions obtained by NSGA–II and NSHA for MOP4 test

problem, the solid line shows the real Pareto front

Figure 14 Non–dominated solutions obtained by NSGA–II (left) and NSHA (right)

for DTZL1 test function after performing 5000 (top) and 100,000 (bottom) function

evaluations

Figure 15 Solutions found by NSGA–II and NSHA for CONSTR after 2,000 and

15,000 function evaluations, the solid lines show the boundary of the feasible region

Figure 16 Average performance metrics measured on five trials of solving CONSTR

test problem with NSGA–II and NSHA.

Figure 17 Non–dominated solutions found for COK after 100,000 function

evaluations with NSGA–II and NSHA (left).Convergence metric, γ , averaged over ten

trials of solving COK with NSHA and NSGA–II (right)

 44

Figure 18 Progress of the solutions found by NSGA–II and NSHA toward the Pareto

front of COK

Figure 19 Convergence metric,γ, for ZDT1,averaged over five trials, while the local

search inside NSHA is called every 5, 10, or 20 generations

Figure 20 Convergence metric,γ, for ZDT1 (averaged over five trials),while 10, 20, or

40 percent of the current population participated in the local search

Figure 21 Stem is part of a bicycle that connects the handlebar to the fork

Figure 22 The mould designed and used for the production of the stem body

Figure 23 Interconnection among design variables, intermediate parameters and the

objectives of the stem design problem

Figure 24 Solutions found by NSHA for the Stem design problem after 5,000

function evaluations, (a) solutions in 3D criterion space (b–d) pair wise 2D plots of

the solutions

Figure 25 Illustration of the solutions of the stem design problem within the design

space of average braid diameters and average of the injection and bladder pressures

Figure 26 Illustration of the solutions of the stem design problem within the design

space of average braid diameters and difference between the injection and bladder

pressures

 45

Figure 1 Crowding distance calculation for the solutions located at the same non–domination

front

1f

2f

Feasible Region

Cuboid

1+k

k
1−k

 46

Figure 2 Pseudo code of the main loop in NSHA

Figure 2 Pseudo code of the main loop in NSHA

n = number of design variables,
tgl nfnfnf ,, max,max, = maximum number of function evaluations for local search, genetic algorithm, and total

a = size of the initial hyper–polygon for the local search,
popn = population size for genetic algorithm,

ln = maximum number of points within the population that can be improved by the local search,
randomly initialize the first population, 0P

0=k
while there is more than one level of non-domination in kP
)(1 kk PIINSGAP −=+ improve current population with NSGA–II
 1+= kk
end

=nf number of function evaluations performed by NSGA-II
while tnfnf <
 1=j
 },min{ max,max, nfnfnfnf tll −=
 while)(&)1_)((&)(tkl nfnfrankjPnj <=<
 if 5>n , randomly select a subset of three to five variables to be optimized by the local search
 create a hyper–polygon simplex S with the size a based on)(jPk
 0=lnf
 while)(&)(max, metisNSNMforcriteriastoppingothernonfnf ll <
 Improve S using NSNM
 1+= ll nfnf
 end
 lnfnfnf +=
 replace)(jPk with the best point in S
 set 1+= jj
 end
 set },min{ max,max, nfnfnfnf tgg −=
 0=gnf

 while max,gg nfnf <

)(1 kk PIINSGAP −=+ improve current population with NSGA–II
 1+= kk
 += gg nfnf number of function evaluations performed by NSGA-II

 end
 gnfnfnf +=

end

 47

Figure 3 Pseudo code of the local simplex optimizer NSNM

0S = a given initial simplex

max,lnf = maximum number of function evaluations for local search

mina = minimum simplex size

0SS =
0=k

while (there is at least one solution in S dominating another solution in S) and (max,lnfk <) and
(simplex size < mina)
 Improve S using NM optimization (Nelder and Mead, 1965) using the sorting procedure as below:
 sort selected solutions using the non-dominate sorting (Deb et al., 2002a)
 maintain the order of the points if more than one point in each domination level
 end
 += kk number of function evaluations used during NM optimization
end

 48

Figure 4 (a) Convergence metric γ , (b) diversity metric, Δ (Deb et al., 2002a)

Feasible Region

 Anchor points

1f

2f

(b)

**
2f
r

**
1f
r

il

1f
r

if
r

pf
r

pl

0l

Feasible Region

1f

2f

(a)

*
jf
r

*
1f
r

*
2f
r

1f
r

2f
r

if
r

id

Points on
Pareto frontier

 49

0

0.01

0.02

0.03

0.04

0.05

0 5000 10000 15000 20000 25000
Number of function evaluations

ga
m

m
a

NSGA-II
NSHA
NSHA-All

Figure 5 Convergence measure, γ , versus number of function evaluations performed when

NSGA–II, NSHA, and NSHA–All are applied to the ZDT1 test problem. The results are
averaged over ten trials with random initial populations.

 50

0.002

0.003

0.004

0.005

0.006

0 5000 10000 15000 20000 25000
Number of function evaluations

ga
m

m
a

NSGA-II
NSHA

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5000 10000 15000 20000 25000
Number of function evaluations

de
lta

NSGA-II
NSHA

Figure 6 Performance parameters γ and Δ for FON, averaged over ten trials

 51

0

0.02

0.04

0.06

0.08

0.1

0 5000 10000 15000 20000 25000
Number of function evaluations

ga
m

m
a

NSGA-II

NSHA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5000 10000 15000 20000 25000
Number of function evaluations

de
lta

NSGA-II
NSHA

Figure 7 Performance parameters γ and Δ for ZDT1, averaged over ten trials

 52

0.8

0.85

0.9

0.95

1

1.05

0 0.01 0.02 0.03 0.04
f1

f2

NSHA

NSGA-II

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.9 0.95 1 1.05
f1

f2

NSHA

NSGA-II

(a) (b)

Figure 8 Solutions close to the two anchor points (i.e. a: best 1f , b: best 2f) found by NSHA
and NSGA–II after 25,000 function evaluations for ZDT1

 53

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5000 10000 15000 20000 25000
Number of function evaluations

ga
m

m
a

NSGA-II
NSHA

0

0.1

0.2

0.3

0.4

0.5
0.6

0.7

0.8

0.9

1

0 5000 10000 15000 20000 25000
Number of function evaluations

de
lta

NSGA-II
NSHA

Figure 9 Average performance parameters γ and Δ for ZDT2 test function after ten trials

 54

0

0.005

0.01

0.015

0.02

0 5000 10000 15000 20000 25000
Number of function evaluations

ga
m

m
a

NSGA-II
NSHA

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 5000 10000 15000 20000 25000
Number of function evaluations

de
lta

NSGA-II
NSHA

Figure 10 Average performance parameters γ and Δ for ZDT3 after ten trials

 55

0

1

2

3

4

5

0 5000 10000 15000 20000 25000
Number of function evaluations

ga
m

m
a

NSGA-II
NSHA

0.5

0.6

0.7

0.8

0.9

1

1.1

0 5000 10000 15000 20000 25000
Number of function evaluations

de
lta

NSGA-II
NSHA

Figure 11 Average performance parameters γ and Δ for ZDT4 test function after ten trials

 56

0.002

0.004

0.006

0.008

0.01

0 5000 10000 15000 20000 25000
Number of function evaluations

ga
m

m
a

NSGA-II
NSHA

0

0.2

0.4

0.6

0.8

1

0 5000 10000 15000 20000 25000
Number of function evaluations

de
lta

NSGA-II
NSHA

Figure 12 Average performance parameters γ and Δ for ZDT6 test function after ten trials

 57

 NSGA–II NSHA
25

00
 fu

nc
tio

n
ev

al
ua

tio
ns

-12

-8

-4

0

-20 -18 -16 -14 -12
f1

f2

-12

-8

-4

0

-20 -18 -16 -14 -12
f1

f2

50
00

 fu
nc

tio
n

ev
al

ua
tio

ns

-12

-8

-4

0

-20 -18 -16 -14 -12
f1

f2

-12

-8

-4

0

-20 -18 -16 -14 -12
f1

f2

25
,0

00
 fu

nc
tio

n
ev

al
ua

tio
ns

-12

-8

-4

0

-20 -18 -16 -14 -12
f1

f2

-12

-8

-4

0

-20 -18 -16 -14 -12
f1

f2

Figure 13 Non–dominated solutions obtained by NSGA–II and NSHA for MOP4 test problem,

the solid line shows the real Pareto front

 58

NSGA–II (5,000 function evaluations) NSHA (5,000 function evaluations)

0

1

2

3

0

1

2

3

0

1

2

3

F
1

F
2

F
3

0

1

2

3

0

1

2

3

0

1

2

3

F
1F

2

F
3

NSGA–II (100,000 function evaluations) NSHA (100,000 function evaluations)

0

1

2

3

0

1

2

3

0

1

2

3

F
1

F
2

F
3

0

1

2

3

0

1

2

3

0

1

2

3

F
1F

2

F
3

Figure 14 Non–dominated solutions obtained by NSGA–II (left) and NSHA (right) for DTZL1

test function after performing 5000 (top) and 100,000 (bottom) function evaluations

 59

 NSGA–II NSHA

20
00

 fu
nc

tio
n

ev
al

ua
tio

ns

0

2

4

6

8

10

0.1 0.3 0.5 0.7 0.9f1

f2

0

2

4

6

8

10

0.1 0.3 0.5 0.7 0.9f1

f2

15
00

0
fu

nc
tio

n
ev

al
ua

tio
ns

0

2

4

6

8

10

0.1 0.3 0.5 0.7 0.9f1

f2

0

2

4

6

8

10

0.1 0.3 0.5 0.7 0.9f1

f2

Figure 15 Solutions found by NSGA–II and NSHA for CONSTR after 2,000 and 15,000

function evaluations, the solid lines show the boundary of the feasible region

 60

0

0.004

0.008

0.012

0.016

0.02

0 5000 10000 15000
Number of function evaluations

ga
m

m
a

NSGA-II
NSHA

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5000 10000 15000
Number of function evaluations

de
lta

NSGA-II
NSHA

Figure 16 Average performance metrics measured on five trials of solving CONSTR test

problem with NSGA–II and NSHA.

 61

0

10

20

30

40

50

60

-300 -200 -100 0
f1

f2

0

1

2

3

4

5

0 5000 10000 15000
Number of function evaluations

ga
m

m
a

NSGA-II
NSHA

Figure 17 Non–dominated solutions found for COK after 100,000 function evaluations with
NSGA–II and NSHA (left).Convergence metric, γ , averaged over ten trials of solving COK

with NSHA and NSGA–II (right)

 62

 NSGA–II NSHA

5,
00

0
Fu

n.
 E

va
l.

0

10

20

30

40

50

60

-300 -200 -100 0
f1

f2

0

10

20

30

40

50

60

-300 -200 -100 0
f1

f2

25
,0

00
 F

un
. E

va
l.

0

10

20

30

40

50

60

-300 -200 -100 0f1

f2

0

10

20

30

40

50

60

-300 -200 -100 0f1

f2

20
0,

00
0

Fu
n.

 E
va

l.

0

10

20

30

40

50

60

-300 -200 -100 0f1

f2

0

10

20

30

40

50

60

-300 -200 -100 0f1

f2

Figure 18 Progress of the solutions found by NSGA–II and NSHA toward the Pareto front of
COK

10
0,

00
0

Fu
n.

 E
va

l.

0

10

20

30

40

50

60

-300 -200 -100 0f1

f2

0

10

20

30

40

50

60

-300 -200 -100 0f1

f2

 63

0

0.01

0.02

0.03

0 5000 10000 15000 20000 25000
Number of function evaluations

ga
m

m
a

NSGA-II

NSHA-05g

NSHA-10g
NSHA-20g

Figure 19 Convergence metric,γ, for ZDT1,averaged over five trials, while the local search

inside NSHA is called every 5, 10, or 20 generations

 64

0

0.01

0.02

0.03

0.04

0 5000 10000 15000 20000 25000
Number of function evaluations

ga
m

m
a

NSGA-II

NSHA-10p

NSHA-20p
NSHA-40p

Figure 20 Convergence metric,γ, for ZDT1 (averaged over five trials),while 10, 20, or 40

percent of the current population participated in the local search

 65

Figure 21 Stem is part of a bicycle that connects the handlebar to the fork

 66

Figure 22 The mould designed and used for the production of the stem body

 Injection gate

 Vent

 67

Figure 23 Interconnection among design variables, intermediate parameters and the

objectives of the stem design problem

Braid diameters

Bladder pressure

Layer thickness

Material propertiesFiber volume fraction

Permeability
Fiber orientation

Injection pressure

Strength

Filling time

Weight

Theoretical relations
Experimental data

Flow simulation/Finite element analysis
Information provided by braid manufacturer

 68

0.7
0.8

0.9
1

1.1

0

1000

2000

3000

4000

5000

60

65

70

75

80

85

Inverse Tsai−Wu strength ratio
Filling time (s)

W
ei

g
h

t

(a) (b)

0

1000

2000

3000

4000

5000

0.6 0.7 0.8 0.9 1 1.1

Inverse Tsai-Wu strength ratio

Fi
lli

ng
 ti

m
e

(s
)

0

1000

2000

3000

4000

5000

60 65 70 75 80 85

Weight (gr)

Fi
lli

ng
 ti

m
e

(s
)

(c) (d)

Figure 24 Solutions found by NSHA for the Stem design problem after 5,000 function
evaluations, (a) solutions in 3D criterion space (b–d) pair wise 2D plots of the solutions

55

60

65

70

75

80

85

90

0.6 0.7 0.8 0.9 1 1.1

Inverse Tsai-Wu strength ratio

W
ei

gh
t (

gr
)

A
B

C

 69

250

270

290

310

330

350

370

390

410

430

46 48 50 52 54 56
Average braid diameters (mm)

A
ve

ra
ge

 b
la

dd
er

 a
nd

 in
je

ct
io

n
pr

es
su

re
s

(k
Pa

)

NSHA solutions
best strength
best filling time
best weight

Figure 25 Illustration of the solutions of the stem design problem within the design space of

average braid diameters and average of the injection and bladder pressures

 70

0

50

100

150

200

250

300

350

400

450

46 48 50 52 54 56
Average braid diameters (mm)

D
iff

er
en

ce
 b

et
w

ee
n

bl
ad

de
r a

nd

in
je

ct
io

n
pr

es
su

re
 (k

Pa
)

NSHA solutions
best strength
best filling time
best weight

Figure 26 Illustration of the solutions of the stem design problem within the design space of

average braid diameters and difference between the injection and bladder pressures

