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Abstract 
Among numerous multi–objective optimization algorithms, the Elitist Non–dominated 
Sorting Genetic Algorithm (NSGA–II) is one of the most popular methods due to its 
simplicity, effectiveness and minimum involvement of the user. In this paper, we develop 
a multi–objective variation of the Nelder–Mead simplex method which is then hybridized 
with NSGA–II to improve the convergence rate and ability of NSGA–II to capture a wide 
extent of the Pareto front. The proposed hybrid algorithm, called Non–dominated Sorting 
Hybrid Algorithm (NSHA), is compared to NSGA–II on several constrained and 
unconstrained mathematical test functions. The higher convergence rate and wider spread 
of solutions obtained with NSHA makes this algorithm a good candidate for engineering 
problems that require time–consuming simulation and analysis. To demonstrate this 
point, NSHA is applied to the design of a carbon fiber bicycle stem simultaneously 
optimized for strength, weight and processing time.  

 
Keywords: multi–objective optimization; genetic algorithm; non–dominated sorting; hybrid 
algorithm 

 

1 Introduction 
 

Optimizing multiple performance criteria is a goal governing the design of 

engineering products in today’s competitive and demanding market. A good example 

of a multi–criterion problem is designing with composite materials, where the 

structural and the manufacturing parameters are often strongly coupled (Le Riche et 

al., 2003; Park et al., 2005; Ghiasi et al., 2008) and must be optimized 

simultaneously. Here the challenge consists in solving an optimization problem with 

multiple conflicting objectives. The solution of such a multi–objective optimization 

problem is a set of optimum solutions, representing the trade–off among objectives. 

The set of solutions is called a Pareto optimal set or a Pareto front (Deb, 2001).  
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Because of using a population–based approach, evolutionary algorithms (EAs) 

have a good potential to be used for multi–objective optimization. Contrary to 

classical optimization methods that provide only one optimum for each run, EAs have 

the potential to achieve multiple optimum solutions just in one run. In their previous 

works, the authors (Ghiasi et al., 2008, 2009b) showed that using a globalized form of 

a classical simplex method and a multi–objective optimization approach can be more 

efficient than an evolutionary method, when one or a small number of Pareto 

solutions is required. When a large number of Pareto solutions for multi–objective 

optimization problems is required, EAs are better suited than classical optimization 

methods (Ghiasi et al., 2009b). Because of their simplicity, robustness and 

independency on gradient information, EAs have received significant attention from 

the researchers in this field. Several EAs have been developed to solve multi–

objective problems, examples of which are: Pareto–archived evolution strategy 

(PAES; Sayin and Karabati, 1999), strength Pareto–evolutionary algorithm (SPEA2; 

Zitzler et al., 2001) and multi–objective differential evolution (MODE; Babu and 

Anbarasu, 2005). An overview of the earlier works using EAs for multi–objective 

optimization can be found in Fonseca and Fleming (1995) and in Coello (1999, 2002), 

who provided a comprehensive survey and a critical review of the evolutionary–based 

multi–objective algorithms. 

   

Among numerous multi–objective optimization methods, some listed in 

preceding paragraph, genetic–based algorithms (GAs) have attracted the most 

attention (Coello, 1999) because of their ability in addressing discontinuous, 

nondifferentiable and nonconvex functions having multiple peaks and supporting 

parallel computation. The potential of GAs in multiobjective optimization was 
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initially hinted by Rosenberg in the 1960s, and later by Goldberg (1989). But, this 

research area remained unexplored until recently when many GA–based methods 

have been developed. Due to the large number and diversity of applications, this paper 

can not include a comprehensive review and comparison of GA–based methods, thus 

only the most popular multi–objective genetic algorithms are briefly explained in the 

following paragraphs.  

Hajela and Lin’s genetic algorithm (HLGA; Hajela and Lin, 1992) used the 

weighted–sum approach to assign fitness to each individual. The weighting 

coefficients were included in the chromosome, thus GA evolves solutions and weight 

combinations simultaneously. Difficulty in determining appropriate weights is the 

main drawback of this method (Bingul, 2006). Vector evaluated genetic algorithm 

(VEGA; Schaffer, 1984) avoids this problem by creating a number of sub–populations 

and performing the selection according to each objective function in turn. In this 

method no weighting coefficient is required; however, the population may tend to 

split into different species, each of them particularly strong in one of the objectives. 

As Opposed to the mentioned methods, recent works on multi–objective 

optimization are generally based on the definition of Pareto optimality. Multi–

objective genetic algorithm (MOGA; Fonseca and Fleming, 1993) uses a rank–based 

fitness assignment procedure, in which each individual is ranked by number of 

individuals dominating the selected solution. Fitness sharing in the objective value 

domain, rather than the decision variable domain, and only between pairwise non–

dominated individuals, was used to evolve a uniformly distributed representation of 

the global trade–off surface. This method was later improved to a real–coded 

algorithm called rMOGA (Purshouse and Fleming, 2001). Niched Pareto genetic 

algorithm (NPGA; Horn et al., 1994) also uses Pareto domination tournament. The 
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tournament selection included picking two (or more) candidate solutions at random 

and comparing them with a random comparison set. The candidate solution which is 

not dominated by the comparison set is selected for reproduction. If the candidate 

solutions are either both dominated or both non–dominated, fitness sharing was 

applied. Fonseca and Fleming’s multi–objective genetic algorithm (FFGA; Fonseca 

and Fleming, 1993) also uses niche formation methods but with a modified fitness 

assignment which allows intervention of an external decision maker. The details about 

how the decision maker can interact with the genetic algorithm can be found in 

(Fonseca and Fleming, 1993). Non–dominated sorting genetic algorithm (NSGA; 

Srinivas and Deb, 1994) and its improved form, elitist non–dominated sorting genetic 

algorithm (NSGA–II; Deb et al., 2002a) are the other examples of GA–based methods 

using Pareto optimality to rank individuals within the population. 

More information about VEGA, MOGA, NPGA, NSGA and their comparative 

strengths and weaknesses can be found in Coello (2002). Also, Zitzler et al. (2000) 

provided a comparison among a number of multi–objective evolutionary methods 

using six test functions. They ranked algorithms regarding the distance of the final 

solutions to the Pareto front. Several algorithms were applied to six test functions, and 

the algorithms were ranked as follow: NSGA, VEGA, HLGA, NPGA and FFGA. In 

this research we used an improved version of the first algorithm in this list, called 

NSGA–II. This algorithm is explained in detail in section two. 

In this paper, NSGA–II is hybridized with a multi–objective adaptation of the 

Nelder–Mead simplex method (NM). The proposed hybrid method, called non–

dominated sorting hybrid algorithm (NSHA), maintains all above–mentioned features 

of NSGA–II, while it improves the convergence rate and the scope of solutions. Using 
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the same number of function evaluations, the proposed hybrid algorithm is able to 

achieve a better quality of the results than the ones obtained by NSGA–II.  

The remainder of this paper is organized as follows: First, the NSGA–II is 

explained and the corresponding modifications proposed in the literature are 

reviewed. Most of these modifications can be equally applied to the proposed hybrid 

algorithm. The next section describes the proposed hybrid method called NSHA. 

Section 4 compares NSHA with NSGA–II on some mathematical unconstrained and 

constrained test problems. After demonstrating the superiority of NSHA to NSGA–II, 

the hybrid algorithm is applied to a composite design problem in Section 5. Section 6 

concludes the paper. 

2 Non–dominated Sorting GA 
 

The elitist non–dominated sorting GA (NSGA–II), proposed by Deb et al. (2002a), 

has been demonstrated to be one of the most efficient and popular algorithms for 

multi–objective optimization. Its performance has been proved through mathematical 

test functions to be superior to that of other evolutionary multi–objective methods 

(Deb et al., 2002a). After providing a few necessary definitions, this section briefly 

describes NSGA–II and reviews the modifications and improvements suggested in the 

literature.  

Definition 1 (Domination): Considering a general multi–objective optimization 

problem formulated as: 
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a feasible solution 1x
r

is called dominating a feasible solution 2xr , if solution 1x
r
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worse than 2xr  in all objectives and the solution 1x
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A set of solutions is said to be at the same non–domination front, if none of which 

dominates or is dominated by any other solution in the set.  

Definition 2 (Crowding distance; Deb et al., 2002a): Crowding distance is a 

measure of the density of the solutions in the neighbourhood of a selected solution. 

Crowding distance is calculated as the summation of the major dimensions of the 

cuboid formed by using the nearest neighbours of the selected solution as the vertices. 

For instance, the crowding distance for a problem with two objectives is the 

summation of the length and width of the rectangle with two vertices located at the 

two solutions on either side of the selected solution (shown in Figure 1). For a 

problem with three objectives, the crowding distance is the summation of length, 

width and height of the cube formed around the candidate solution. This parameter is 

used in order to maintain the diversity of the solutions; therefore, the genetic selection 

operator gives higher chance of selection to the individual with a higher crowding 

distance than the one with the lower crowding distance. 

2.1 NSGA–II 
Fast and elitist non–dominated sorting genetic algorithm or NSGA–II, proposed by 

Deb et al. (2002a), is a multi–objective evolutionary algorithm that uses non–

dominated sorting and crowded–comparison approach to find a set of evenly 

distributed solutions to a multi–objective optimization problem. NSGA–II was 

proposed to reduce the computational complexity, to improve the diversity of the 
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solutions and to add elitism to its ancestor called non–dominated sorting genetic 

algorithm (NSGA) (Srinivas and Deb, 1994). Simplicity, effectiveness, modularity 

and independency on user–defined parameters, are the main factors determining the 

popularity of NSGA–II among multi–objective optimization methods (Deb, 2008). 

As other GA–based methods, NSGA–II starts with a random population of 

solutions (or individuals). The initial population is then sorted by the non–domination 

front. In this ranking procedure, all non–dominated solutions are ranked “1” and are 

temporarily removed from the population. The next set of non–dominated solutions in 

the population is then defined and ranked “2”. The procedure is continued until all the 

solutions are ranked. To achieve a better computational performance, the actual 

ranking procedure is different than what is explained here, for which the details can be 

found in Deb et al. (2002a). A population of solutions, called parents, is generated by 

applying a binary tournament selection to the current population. The binary 

tournament selection randomly picks two solutions from the current population and 

selects the better solution with respect to the non–domination rank. Solutions at the 

same non–domination front are compared by the crowding distance. The genetic 

operators (i.e. recombination and mutation) are then applied to the population of 

parents to create a population of off–springs. The next population is formed by taking 

the best solutions from the combined population of parents and off–springs. The 

selection procedure is based on the non–domination rank and then the crowding 

distance. The procedure is terminated when a user–defined maximum number of 

generations is reached. 

Deb (2008) provided a functional decomposition of NSGA–II into three main 

operations: (i) elitism to achieve fast and reliable convergence towards better 

solutions, (ii) non–domination sorting to emphasize non–dominated solutions and 
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achieve a progress towards the entire Pareto front, and (iii) crowding distance to put 

emphasis on less crowded solutions for maintaining the diversity of the solutions. 

Over the years, various extensions of NSGA–II are proposed through the modification 

of each of these three aspects. These modifications are studied in this section, 

according to the part of the algorithm they are targeting. 

2.1.1 NSGA–II with modified genetic operators 
Genetic operators in NSGA–II are in charge of generating new solutions (e.g. 

mutation and recombination) and preserving the fittest individuals (i.e. selection and 

elitism operators). These operators play a key role in the performance of NSGA–II, 

thus their modification may change the performance significantly. Deb et al. (2002b) 

reported improvement in convergence of NSGA–II by proposing a Parent–centric 

based recombination (PCX) operator, which uses more than two parents to create one 

descendant. Iorio and Li (2004) replaced the real–coded crossover and mutation with 

a differential evolution scheme that uses the difference between solutions to perturb 

the population. Another modified operator is the jumping gene operator, in which a 

randomly selected part of the chromosome is replaced by a new randomly generated 

set of binary numbers (Agarwal and Gupta, 2008; Kasat and Gupta, 2003). To 

improve the diversity of the solutions, Yijie and Gongzhang (2008) forced the 

crossover operator to be more likely performed on genes located far from each other 

within the design space. Murugana et al. (2009) recommended a controlled elitist and 

a virtual mapping procedure for the same purpose. Methods with modified operators 

have been tested on a number of test problems, for which, in most cases, mixed 

improved convergence rate and spread of solutions were reported. Not a noticeable 

improvement in convergence and spread was reported for a general test problem.  
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Not only the genetic operators, but also the structure of the chromosome and 

the population has been altered to improve the performance of NSGA–II. 

Maneeratana et al. (2005) and Praveen Kumar et al. (2007) proposed a co–evolution 

of multiple species by splitting the population into a number of sub–populations or 

species that share a gene similarity. Hierarchical genotype encoding proposed by 

Kumar et al. (2009) is another modification. Tran (2005) suggested running multiple 

populations with different population sizes simultaneously, in order to automatically 

select the population size. In some cases, an improvement was reported in the quality 

of the solutions; however, additional computation due to working with multiple 

populations is the main drawback of these methods.  

2.1.2 NSGA–II with modified non–dominated sorting  
Altering the non–dominated sorting procedure affects the progress towards the 

Pareto–optimal front. Using a more severe definition for domination may speed up the 

search process (Deb, 2008). Examples of efforts in modifying the non–dominated 

sorting procedure in NSGA–II are ε–MOEA, a proper domination, fuzzy domination 

(Deb, 2008) and quick sort (Zheng et al., 2004). The aims of these improvements 

were to reduce the time to converge to the Pareto front and to reduce the 

computational complexity, but the subsequent penalty is that part of the real Pareto 

front may be excluded. 

2.1.3 NSGA–II with modified crowding distance  
The diversity preservation procedure may also be altered in order to achieve a better 

distribution of solutions or to emphasise specific part of the Pareto front. Clustered 

NSGA–II (Deb, 2008) claimed to find a better distribution of points by replacing the 

crowding distance operator with a K–mean clustering approach. Li et al. (2008) tried 

to achieve the same goal by replacing the crowding distance operator with an 
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algorithm based on minimum spanning tree (MST). In another attempt, the selection 

procedure was modified to accept a point to be in the new population only if its 

distance to all current points in the new population is greater than a user–defined 

value (Ghomsheh et al., 2007). Other similar attempts are reviewed by Deb (2008), 

including: projection–based diversity preservation, niching, Omni–optimizer, 

extreme–point preference, and other methods. Although these methods generally 

require a longer computational time, the modified algorithm can find a better 

distribution of Pareto optimal solutions than the original NSGA–II. The crowding 

distance may also be altered in order to find important points of the Pareto front, such 

as knee points (Deb, 2008), where a small gain in one objective requires a large 

penalty in at least one of the other objectives. 

2.2 NSGA–II in hybrid algorithms 
Even an improved version of NSGA–II usually requires a very large number of 

generations to approach the Pareto front. The population initially moves fast towards 

the real Pareto front but slows down further into the process and finally approaches 

the Pareto front only asymptotically (Lahanas et al., 2003). In addition to the low 

convergence rate, which may not meet the speed requirement for complicated 

industrial problems, NSGA–II may not efficiently generate a Pareto set that covers the 

entire true Pareto front within a reasonably low number of generations (Gao et al., 

2008). The deficiency is due to the fact that the crossover and mutation operators do 

not allow intensifying the search sufficiently. One promising approach to increase 

convergence rate and solution diversity is to hybridize this method with a local search. 

The local search operator replaces or follows the mutation operator and helps to 

intensify the search in various areas pointed by the genetic mechanisms. This type of 
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hybrid algorithm is called a Memetic Algorithm (MAs; Moscato, 1989) and they have 

been shown to be more efficient than a genetic algorithm (Hart and Belew, 1996).  

Many hybrid algorithms with different combinations of genetic algorithm and 

local search methods have been reported in literature. A review of some of these 

hybrid methods can be found in El–Mihoub et al. (2006) and the cited references in 

this paper. This section provides a summary of the hybrid multi–objective 

optimization tools that uses NSGA–II as the global optimizer. 

Sequential quadratic programming (SQP) is the most common gradient–based 

local search method hybridized with NSGA–II. Hu et al. (2003) used a SQP algorithm 

by means of the modified ε–constraint method. The hybrid form was judged to be 

successful regarding the convergence rate, and not deteriorating in terms of diversity 

of solutions. Another hybrid form was proposed by Kumar et al. (2007), who resort to 

SQP in order to locally improve one objective in the set of non–dominated solutions 

obtained. The mixed performance was reported considering the convergence and 

diversity of the solutions. Gao et al. (2008) also proposed a hybrid form, where 

NSGA–II and SQP run almost independently, but with some exchange of information. 

The SQP module sought a Pareto set using the weighted sum approach with equal 

weight for all objectives, while the NSGA–II module generated another set of Pareto 

points with an even distribution of solutions. Then, the SQP module updated its set of 

weights by using results from NSGA–II, and NSGA–II used the results from the SQP 

as elites. The proposed hybrid form was found more efficient than NSGA–II in terms 

of convergence, particularly in the earlier steps. 

SQP requires calculation of the function gradient and the optimum step length 

in each iteration, which can be costly for a practical engineering problem. To reduce 

the computational cost, Hernandez–Diaz et al. (2008) proposed using the gradient 
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information only at the beginning of the search process. The steepest descent method 

was adapted to generate a number of non–dominated points which formed the initial 

population for NSGA–II. Lahanas et al. (2003) used a similar approach but with a 

different local search called L–BFGS. The proposed methods by Hernandez–Diaz et 

al. (2008) and Lahanas et al. (2003) required considerably less computational time but 

presented a lower performance than the previously mentioned hybrid forms. 

One way to avoid time–consuming calculation of gradient information is to 

opt for a direct search method, which needs no gradient information. An example of 

hybrid methods with direct local search is PHC–NSGA–II by Bechikh et al. (2008) 

that uses Pareto Hill Climbing (PHC) as a local search. Using a mutation operator, 

PHC generates several solutions at the neighbourhood of the selected solution. A 

solution that is not dominated by any other solution in this neighbourhood replaces the 

original solution. A higher convergence rate was reported compared to the original 

NSGA–II; however, not a significant improvement in the diversity of the solutions 

was achieved. Another similar hybrid form is S–MOGLS by Ishibuchi and Narukawa 

(2004), who used the r–opt algorithm as a local search. The r–Opt is a heuristic 

optimization method that improves the current solution by sequentially replacing one, 

two or three adjacent genes in the chromosome. Xu et al. (2008) also used a similar 

hybrid form, but the r–Opt was used only during the initialization process. Although 

faster in convergence; these algorithms do not perform an efficient local search, 

because of using a heuristic local search method. A more efficient local search is 

suggested to better exploit the computational resources. 

The Nelder–Mead (NM) (Nelder and Mead, 1965) simplex method is the most 

common direct search method. Effective in producing a rapid initial improvement in 

the objective function values (Lagarias et al., 1998), NM has been extensively applied 
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to different single–objective problems. Numerous hybrid forms of this simplex 

method with genetic algorithm are proposed for solving single–objective optimization 

problems (e.g.: Yen et al., 1998, Chelouah and Siarry, 2003; Hongfeng et al., 2009); 

however, application of such a hybrid form for multi–objective optimization is less 

studied due to the fact that using NM requires aggregating multiple objectives into 

one single objective. Koduru et al. (2005) used the concept of fuzzy dominance to 

solve this problem and to assign a single measure of fitness to each individual 

considering multiple objectives. In their proposed hybrid algorithm, called FSGA, K–

means clustering was used to break up the population into closely spaced clusters. 

Some sufficiently populated clusters were picked, from which a simplex was 

randomly selected for the application of the NM method. The major difficulty 

associated with this method is the computational time required for the clustering 

procedure, which requires calculation of the distance matrix among the individuals in 

the current population. The second problem is the shape of the initial simplex, which 

may be poorly scaled, for the simplex is randomly selected and no control can be 

applied to its geometry. Finally, in this method NM is being called in every generation 

of NAGA–II. Since the difference between the two subsequent populations is usually 

very small, a local search may not lead to a considerable improvement when it is 

applied every generation. 

Martinez and Coello (2008) alleviated the last problem by performing the local 

search only after a certain number of generations by NSGA–II. In their proposed 

method, called NSS–GA, solutions with the best value for each objective were 

selected to be locally improved with respect to that objective. If the problem has only 

one objective, golden section search was used as the local search, but if more than one 

objective was involved NM, was used as the local search. To avoid the tendency 
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toward the anchor points, using an aggregating objective, which minimizes a weighted 

sum of all the objectives, was suggested. Although effective, the use of one 

aggregating objective is not sufficient to compensate the tendency toward the anchor 

points and provide an even distribution of solutions on the Pareto front. In addition, 

since the efficiency of the NM method is strongly dependent on the number of design 

variables (Han and Neumann, 2004), this method is not efficient for problems with a 

large number of design variables. 

The hybrid form presented in this paper also uses NM method as the local 

search due to its good convergence rate and simplicity of the algorithm. NM method 

typically requires only one or two function evaluations per iteration (except in shrink, 

which is rare in practice), while many other direct search methods that use a finite–

difference approximation of the function gradient, such as derivative free conjugate 

direction method, model–based methods, implicit filtering, etc. (Nocedal and Wright, 

2006) require O(n) or O(n2) function evaluations per iteration. This is very important 

in applications where the function evaluation is expensive or time–consuming. Pattern 

search methods, such as coordinate search (Nocedal and Wright, 2006), Hooke and 

Jeeves method (Hooke and Jeeves, 1961) or Method of Rosenbroke (Nocedal and 

Wright, 2006), also require more function evaluations than NM method, because of 

the line search that must be performed at each iteration. 

In the next section, we propose a hybrid algorithm that improves the 

performance of NSGA–II and does not suffer from the shortcomings of the previous 

hybrid algorithms. The main features and benefits of the proposed hybrid algorithm 

include: 1) the use of a multi–objective form of NM method as a local search, 2) not 

having a tendency toward a certain region(s) of the Pareto front, 3) using the full 

benefit of the local search by its proper initialization, 4) maintaining the efficiency of 
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the local search even for high–dimensional problems, 5) maintaining the simplicity of 

NSGA–II, 6) not requiring additional user–defined parameters that need prior insight 

into the problem, and, finally, 7) using the same building blocks as NSGA–II and 

preserving the similar modular aspect of this popular method. 

3 Non–dominated Sorting Hybrid Algorithm (NSHA) 
 

The hybrid algorithm proposed in this paper integrates the Nelder–Mead (NM) 

simplex method into NSGA–II in order to improve the quality of the solutions and to 

accelerate the advancement of the non–dominated front toward the true Pareto front. 

The non–domination rank, which is assigned by the same sorting algorithm as the one 

used in NSGA–II, is considered as the objective to be minimized. The local search, 

which is performed after a certain number of generations by NSGA–II, is applied only 

to a part of the best individuals of the current population. In addition, rather than the 

whole set of design variables, only a random subset of design variables is considered 

for the local search in order to maintain the high performance of the local search for 

high–dimensional problems. In order to avoid a poorly scaled initial simplex, the NM 

method is initialized around the selected solution by a regular hyper–polygon. Next 

subsection describes the main optimization loop of NSHA in more details. 

3.1 The main optimization loop 
As shown in Figure 2, NSHA starts with a randomly generated population with a 

user–defined size. Using this initial population, only a few generations are proceeded 

by NSGA–II. The number of generations proceeded by NSGA–II before calling the 

local search is defined by the number of non–dominated solutions in the current 

population. The local search will start only after all the individuals of the current 

population are located at the first non–domination front.  
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When the local search is called, a subset of lα percent of the current population 

is selected. The selected solutions are improved by the local search algorithm, called 

non–dominated sorting Nelder–Mead (NSNM), explained in the next section. Only a 

randomly selected subset of three to five design variables are used in the local 

optimization algorithm, all other variables are kept constant at their current value. The 

reduced number of design variables helps to increase the efficiency of the local search 

algorithm. For each selected solution, the local search generates an initial simplex, a 

regular hyper–polygon with a predefined size, a , where the selected solution is located 

at one of its vertices. The local optimization process is terminated when either a user–

defined maximum number of function evaluations, max,lnf , is reached or any other 

stopping criteria indicating convergence to a local optimum is satisfied. The selected 

solutions in the current population are then replaced by the improved solutions found 

by the local search, creating a locally improved population. 

The locally improved population is used as an initial population for the next 

few generations by NSGA–II. The number of generations performed by NSGA–II 

before calling the local search is defined by the maximum number of function 

evaluations allowed for NSGA–II. This parameter called max,gnf is defined by the user 

at the onset of the process. The values for max,lnf and max,gnf specify the share of 

NSGA–II and NSNM in the optimization process. It also specifies the frequency and 

duration for which each algorithm is performed. The value of max,gnf should be 

selected sufficiently large to give NSGA–II the chance to improve the population 

before the next local search is called. On the other hand, max,lnf  must be selected large 

enough to allow convergence of the local search. The main optimization loop is 



 18

repeated until either the total maximum number of function evaluations, tnf , or any 

other user–defined stopping criterion is reached. 

3.2 The local search algorithm (NSNM) 
The local optimization method used in NSHA is called non–dominated sorting 

Nelder–Mead (NSNM) method. NSNM (shown in Figure 3) differs from the original 

NM method in the number of objective functions it can handle. NSNM deals with 

multiple objectives by using the non–domination rank as a single objective to be 

optimized. To sort the points within the simplex, the non–domination sorting 

procedure of NSGA–II is adapted. As such, the most dominated point (i.e. the worst 

solution) within the simplex is reflected with respect to the centroid of the other 

points. 

Crowding distance may not be used to rank the solutions located at the same 

non–domination front, because this parameter cannot be defined for more than one of 

the points within the simplex, which is only possible when all the points within the 

simplex lie on the same non–domination front. Here, solutions in the same non–

domination front are ranked by preserving their original order in the simplex. This 

method of ranking was found to be efficient in reaching a diverse set of solutions on 

the Pareto front when it is performed several times from random initial points. The 

problem of partially retrieving the Pareto front, reported in some other hybrid methods 

(e.g. Martinez and Coello, 2008), is not encountered with NSNM. 

The local optimization algorithm is terminated if one of the following stopping 

criteria is met: all of the points within the simplex are located at the same non–

domination front, the simplex size becomes smaller than a pre–defined value, or a 

user–defined maximum number of function evaluations is reached. 
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3.3 Selective use of design variables 
Han and Neumann (2004), who studied the effect of dimensionality on the 

performance of the Nelder–Mead method, showed that the performance of NM 

deteriorates when number of design variables increases. The NM method is not a 

good choice for design problems with more than approximately ten design variables, 

while NSGA–II can handle problems with more design variables. To achieve the best 

performance from NSHA for high–dimensional problems, the number of design 

variables involved in the local search is limited to five. If the optimization problem 

has more than five design variables, only a random subset of three to five design 

variables are used during the local search. All other variables are kept constant at their 

current value. Numerical results presented in section 4 show the effectiveness of this 

approach. 

3.4 Constraint handling method 
Both the NM method and GAs were originally proposed for solving unconstrained 

optimization problems; however, for most practical problems, the design variables are 

bounded in a specified range, expressed as box constraints. If a design variable 

assumes a value out of the specified range, its value is forced to take that of the upper 

or lower limit defined for the corresponding variable. 

Other constraints, generally referred to as non–linear constraints, are 

formulated as inequality constraints that must be greater than or equal to zero. If there 

is any equality constraint involved, it may be taken into account by reformulating the 

objective function (if a closed form expression is available), or by expressing the 

equality constraint as two inequality constraints. In order to handle these inequality 

constraints, the concept of constrained domination (Deb, 2008) is applied to the 

sorting algorithm. In this method, all infeasible solutions assume a non–domination 

rank higher than the last feasible solution within the population. A crowding distance 
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is assigned to the feasible solutions, while a value equal to the sum of all violated 

constraints is assigned to the infeasible solutions. Since the constraints are formulated 

as inequality equations which must be positive or zero, the sum of the violated non–

linear constraints is a negative value that shows the extent of the constraint violation. 

Solutions lying at a certain non–domination front are sorted in descending order either 

by the crowding distance if the solutions are feasible, or by the extent of constraint 

violation if the solutions are infeasible. 

In contrast to the projection method that projects infeasible solutions to the 

boundary of the feasible region (Ghiasi et al., 2008) and reshapes the simplex, this 

constraint handling method avoids infeasible solutions without affecting the simplex 

shape. Therefore, reaching a poorly scaled simplex, which significantly deteriorates 

the performance of NM method, is less probable as opposed to what can often take 

place with the projection method. The other advantage of this constraint handling 

method is that no additional function evaluations are required. A more elaborate 

algorithm that also resorts to non–domination ranking for infeasible solutions can be 

used; however, Deb et al. (2002a) showed that the procedure explained in the 

previous paragraph is generally more effective. 

4 Mathematical Test Problems 
 

NSHA is here applied to a set of constrained and unconstrained test problems from 

the literature, and its performance is compared with the real coded NSGA–II, 

considering two performance measures. This section describes these performance 

metrics, the test problems and the numerical results. 
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4.1 Performance measures 
As defined by Zitzler et al. (2000), three factors should be examined to assess the 

performance of a multi–objective optimization algorithm. 1) Convergence, the 

solutions should be as close as possible to the true Pareto front. 2) Spread, the 

distribution of the solutions should be uniform along the Pareto front. 3) Scope, the 

whole extent of the Pareto front should be captured.  

Usually performance parameters are classified in three categories (Deb et al., 

2001): metrics that measure the convergence, metrics that measure the spread, and 

those evaluating both convergence and spread. In this research we select the two 

performance metrics used by Deb et al. (2002a) to compare NSGA–II with other 

evolutionary multi–objective methods. These metrics measure the extent of achieving 

the first two goals. Finally, to compare the scope of the solutions, visual inspection of 

the solutions is used.  

The first metric, γ, measures the extent of convergence to a known set of 

Pareto–optimal solutions, measured by the average of the minimum distance of the 

solutions from the Pareto front. To determine the minimum distance from the Pareto 

front, a grid of uniformly distributed points on the Pareto front is generated. The 

minimum distance of a solution from one of the points in this grid is used as the 

minimum distance from the Pareto front. The convergence metric γ  is defined as: 
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In this expression, shows the Euclidian distance between the two points in the 

criterion space. p  in this equation is equal to the number of points in the population. 

Figure 4 (a) illustrates this metric for a bi–criterion problem. 

The second metric, Δ , provides information about the extent of spread 

achieved by the solutions. As mentioned, the set of solutions is desired to span the 
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entire Pareto front and be uniformly distributed along it. The following equation is 

used to calculate this metric for a bi–criterion problem: 
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where p shows the number of points in the population. 0l and pl in the above equation 

are respectively the Euclidian distances between the extreme solutions and the anchor 

points, as shown in Figure 4(b), and il is the Euclidian distance between two solutions. 

This metric is zero if the solutions are equally spaced and include both anchor points. 

Therefore, this metric not only measures the spread of the solutions, but also provides 

some information about their scope. In the next section, these performance metrics 

and visual inspection of the results are used to compare NSHA with NSGA–II. 

4.2 Test problems 
Several test problems from the literature are selected to compare the performance of 

NSHA to NSGA–II. Table 1 shows the list of unconstrained problems used for this 

purpose. The first six test problems have two objectives with known, continuous 

Pareto fronts. MOP4 has a discontinuous 2D Pareto front, whose closed–form solution 

is not available to the authors. In addition, since the Pareto front of DTZL1 is three–

dimensional, the performance metrics may not be properly calculated. Therefore, for 

MOP4 and DTZL1, a visual comparison of the results is discussed. 

A set of constrained test problems are also used to assess the performance of 

NSHA on this type of problem. Table 2 shows the list of selected constrained test 

problems. The first test problem is chosen due to its continuous 2D Pareto front, 

which enables using the performance metrics for a precise comparison of the two 

optimization algorithms. The second test problem is more complex because six design 
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variables and six constraints need to be considered. The theoretical Pareto optimal 

front of this test problem consists of discontinuous broken–lines. 

A constant population size of 100 individuals is used for each test case and the 

optimization process is conducted for up to 25,000 function evaluations, except for 

DTZL1, for which 100,000 function evaluations are performed. The maximum 

number of points participating in the local improvement process is set to be 20% of 

the population size. Size of the initial simplex for the local optimization algorithm is 

set to be 10% of the smallest edge of the hyper–cube surrounding the design domain, 

while the minimum simplex size at which the local search is terminated is chosen to 

be 0.1% of this value. The maximum number of function evaluations for the local 

search, max,lnf , and for NSGA–II, max,gnf , are respectively limited to 100 and 2000 

function evaluations. These choices provide almost equal contribution of the local 

search (i.e. 20×100=2000 function evaluations) and NSGA–II. This ratio is kept 

constant in all test cases solved in this paper (including the composite design 

problem); half of the total number of function evaluations is used by NSGA–II and 

half by NSNM. Due to the stochastic nature of the algorithm, each test problem is 

solved several times and the averaged performance metrics are compared. The 

performance parameters are determined each time that the algorithm switches from 

the local search to NSGA–II or vice versa. 

4.3 Impact of the selective use of design variables 
In this section, it is shown that selecting a subset of design variables for the local 

search improves the convergence rate of the hybrid algorithm. The second test 

problem, ZDT1, with 30 design variables is chosen for this purpose. Three different 

cases are examined. In the first case only NSGA–II is used. In the two other cases the 

hybrid algorithm is used for optimization. In the second case (NSHA–all) the whole 
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set of design variables is used in the local search, whereas, in the third case (NSHA), 

only a random subset of three to five design variables are selected and used in the 

local optimization process.  

The convergence measure, γ , is plotted versus the number of function 

evaluations performed by each method in Figure 5. NSHA is shown to achieve a 

better convergence (lower γ ) than the two other methods, all along the optimization 

process. When all 30 design variables of the ZDT1 are used during the local search 

(NSHA–All), the convergence rate of the local search is very slow, for the 

performance of NM is dependent on the dimension of the problem. The local search is 

unable to locally improve the solutions in the current population; therefore, the 

function evaluations performed during the local search are ineffective.  

4.4 Unconstrained test problems 
This section reports the results of applying the NSHA on selected unconstrained 

mathematical test problems shown in Table 1. The results are reported for each 

function, individually.  

The performance metrics averaged during ten trials of NSGA–II and NSHA on 

FON test function is shown in Figure 6. Since this test problem has only three design 

variables, both algorithms are expected to find solutions very close to the real optima 

after performing 25,000 function evaluations. This is a fairly easy problem without 

irregularity in function shape, therefore the performance of the two algorithms was 

similar and the solutions found by both algorithms are close to the real Pareto front of 

the problem.  

Similarly, Figure 7 shows the performance parameters averaged over ten trials 

of solving the ZDT1 test problem. This test problem is more complex than the 

previous one due to the larger number of design variables. This figure shows that 
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regardless of the number of function evaluations performed, NSHA achieved a better 

convergence than NSGA–II after the local search is activated in NSHA. For instance, 

the convergence metric achieved by NSGA–II after 12,000 function evaluations is 

achieved by NSHA with only 7,000 function evaluations. As seen in this figure, 

NSHA continues the progress toward the Pareto front even after 20,000 function 

evaluations, while NSAG–II does not achieve a noticeable progress after around 

12,000 function evaluations. Both algorithms performed similarly regarding the 

spread of the solutions, because both methods use the same technique, crowding–

comparison, to preserve the spread of the solutions.  

The visual comparison of the solutions in Figure 8 shows that the two 

algorithms also performed similarly regarding the scope of the solutions, with slightly 

better performance for NSHA. This figure shows the solutions found in one of the 

trials whose performance is close to the average performance of the ten trials.  

Figure 9 to Figure 12, respectively, show the performance parameters for 

ZDT2, ZDT3, ZDT4, and ZDT6 test problems, averaged over ten runs of NSHA and 

NSGA–II. In Figure 9 to Figure 11, except at the beginning of the optimization 

process, the convergence metric, γ , achieved by NSHA after certain number of 

function evaluations is smaller than the one achieved by NSGA–II with the same 

number of function evaluations. This metric shows that NSHA could obtain solutions 

closer to the Pareto front than the one obtained by NSGA–II. The improvement 

observed confirms that the integrated local search is efficiently incorporated into the 

optimization process and increases the rate of convergence toward the Pareto front. 

For ZDT6 test function, for which the results are shown in Figure 12, none of the two 

algorithms clearly outperformed the other; however, looking at the numerical values 

of the convergence metric, γ , shows that both algorithms could obtain solutions very 
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close to the Pareto front. The corresponding test function lacks the trigonometric term 

and thus includes fewer local minima; therefore the simplex local optimizer can make 

a significant improvement.   

NSGA–II showed higher rate of convergence in the first few iterations on 

ZDT3 in Figure 10. The reason is that this test problem has numerous local optima, 

which make the local search inefficient at the early iterations where most of the GA’s 

solutions are far from the Pareto front. For this test problem, the authors expect an 

improvement in the performance of NSHA if the activation of the local search is 

postponed. As the population moves closer to the Pareto front, the local search 

becomes more effective and its contribution to the search becomes more evident. In 

all test problems presented in these figures, NSHA yielded solutions closer to the 

Pareto front than those provided by NSGA–II at the end of the process.  

In all the six unconstrained test problems, the two algorithms found the same 

overall spread of solutions, because the crowding–comparison operator, which is 

responsible for achieving an even spread of solutions, is similar in both algorithms. 

Since during the local search no crowding distance is calculated, the distribution of 

the solutions may decline, but it is improved as soon as a few generations of NSGA–II 

are performed. In order to avoid a poor spread of solutions in the final set of solutions, 

the recommendation is to terminate the optimization process with a few generations of 

NSGA–II. 

In FON and all the ZDT test problems, the solutions found by both algorithms 

include the entire Pareto front and, as it was shown for ZDT1 in Figure 8, the 

difference between the two algorithms is very small. The reason is that the Pareto 

fronts of these test problems are smooth continuous curves, with no discontinuity or 
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irregularity. Effect of the local search in improving the scope of the solution is more 

evident in cases with discontinuous Pareto front and constrained problems. 

In order to demonstrate the performance of NSHA on problems with a 

piecewise Pareto front, both algorithms are applied to the MOP4 test problem. As 

explained previously, since the performance metrics are not suited for problems with 

piecewise Pareto fronts, the results for MOP4 are visually compared in Figure 13. The 

non–dominated solutions obtained by the two algorithms are illustrated for three 

levels of total function evaluations, namely 2500, 5000 and 25000. 

Both algorithms achieved almost the same set of final solutions after 25,000 

function evaluations; however, NSHA reaches this solution faster than NSGA–II. The 

faster convergence is confirmed when the solutions found after 2500 function 

evaluations are compared; the solutions of NSHA are closer to the real Pareto front 

and, compared to the solutions of NSGA–II, they cover a wider portion of the Pareto 

front. 

The last unconstrained test problem solved here is DTZL1, which is selected 

to demonstrate and compare the performance of NSHA on problems with more than 

two objectives. The set of solutions obtained by the two algorithms after 5000 and 

100,000 function evaluations is illustrated in Figure 14, which shows that NSHA has a 

higher convergence rate than NSGA–II, since the solutions obtained by NSHA are 

closer to the origin and dominating the ones obtained by NSGA–II. At 5000 iterations, 

the spread of the solutions achieved by NSGA–II is better than the one by NSHA; 

however, the quality of the solutions by NSHA is better. Further into the process, the 

spread of the solution is improved and becomes closer to the uniform distribution. 

Generally, both algorithms perform poorly, as also previously reported by Deb 

(2008), who suggested improving the solutions by using ε–domination in NSGA–II. 
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Since NSHA uses the same non–domination sorting algorithm, this modification can 

also be applied to NSHA to improve the distribution of the solutions for this test 

problem. 

4.5 Constrained test problems 
Two constrained test problems are studied in this section to compare the performance 

of NSHA and NSGA–II. The first test problem is CONSTR (Table 2), whose Pareto 

front and the feasible criterion space are shown in Figure 15. The averaged 

performance parameters over three trials of NSGA–II and NSHA are shown in Figure 

16. The two algorithms performed similarly, although the performance metrics were 

less stable for NSHA. The significant difference between the two algorithms is 

observed in the scope of solutions. For a number of function evaluations less than 

approximately 5,000, NSHA performed better than NSGA–II and provided a wider 

scope of solutions. The solutions obtained by NSHA and NSGA–II after 2,000 and 

15,000 function evaluations are compared in Figure 15. 

The other selected constrained test problem is COK (Table 2), which has a 

piecewise broken–line Pareto front shown in Figure 17. The complexity of this 

problem is higher because six design variables and six constraints need to be 

considered. Since the closed–form representation of the Pareto front is not available, 

we decided to run both algorithms for up to 100,000 function evaluations and use the 

best solutions found to calculate the convergence metric γ. Figure 17 shows the 

approximate Pareto front and the average convergence metric, γ, averaged over ten 

trials for each algorithm. 

Regarding the convergence metric, shown in Figure 17, except for the last few 

generations, a slightly better convergence is achieved by NSGA–II; however, a 

remarkable advantage of NSHA can be reported if the solutions are inspected as 
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shown in Figure 18. Even though the solutions obtained by NSGA–II are very close to 

the real Pareto front, they do not cover the entire Pareto front. Solutions found by 

NSHA cover a wider portion of the front.  

Figure 18 shows the progress of the solutions toward the real Pareto front in 

one of the representative trials. Whereas NSGA–II could not retrieve a wide portion 

of the Pareto front in a number of trials, NSHA was successful in finding the entire 

Pareto front in all ten trials. This confirms that the local search algorithm has a strong 

influence in intensifying the search capability of the algorithm. The local search is 

particularly beneficial in problems with irregular Pareto fronts, because the local 

search enables the algorithm to reach solutions close to the knee points and 

discontinuities, which are often located at the corners of the feasible region. Such 

solutions cannot be easily reached by pure evolutionary operators. 

4.6 Sensitivity to the user–defined parameters 
One important advantage of NSGA–II is the small number of parameters that must be 

defined by the user at the onset of the optimization process. Introduced in this work, 

NSHA uses the same modules used in NSGA–II (e.g. the non–domination sorting 

algorithm, the crowding distance calculation procedure), thereby it also requires 

definition of a limited number of user–defined parameters. The additional parameters 

that must be defined by the user include the frequency of calling the local search and 

the number of individuals participating in the local search. In this section the test 

problem ZDT1 is used to show the effect of these two parameters on the performance 

of NSHA. 

To examine the sensitivity of the convergence rate to the frequency of calling 

the local search, the convergence metric γ is plotted in Figure 19. Here, the local 

search is called every 5, 10, or 20 generations. On the other hand, Figure 20 plots the 
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convergence metric for different numbers of solutions participating in the local 

search, namely 10, 20 and 40 percent of the current population. The results presented 

in these figures confirm that the user–defined parameters have a minor effect on the 

convergence of NSHA. For instance, calling the local search every 5 or 20 generations 

does not significantly change the convergence rate (Figure 19). In addition, changing 

the number of solutions participating in the local search from 10% to 40% of the 

population also does not yield a major difference in convergence rate (Figure 20). 

Therefore, although problem–dependent, assigning a reasonable value to these two 

parameters is not a difficult task and does not require a significant insight into the 

problem. For a general problem, we suggest calling the local search every 10 

generations and assigning the percentage of 20 to the number of solutions 

participating in the local search.  

5 Design of a Composite Part 
 

Design and manufacturing of a composite part is used in this section as an example to 

demonstrate the ability of the proposed hybrid algorithm in solving a practical 

engineering problem. Composite materials are well–known for having many design 

variables, which gives the designer more opportunities to tailor the material for the 

intended application; however it requires solving a more complex design problem. 

Different optimization algorithms have been used to solve the corresponding design 

optimization problem (Ghiasi et al., 2009). In this section, the application of NSHA in 

solving a multi–objective design problem, which takes into account both 

manufacturing and structural parameters, is demonstrated. 
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5.1 Composite test problem 
The part studied in this section is a carbon fiber bicycle stem, part of a bicycle that 

connects the handlebar to the fork, as shown in Figure 21. Bladder assisted resin 

transfer moulding (RTM) is used as the manufacturing method, because of the small 

size of the part, its complicated geometry with hollow sections, high level of surface 

finish and fast production cycle required. In this manufacturing method, first, a dry 

preform consisted of four layers of continuous braided carbon fiber sleeves is placed 

around an inflatable bladder and is positioned inside a solid airtight mould, as shown 

in Figure 22. After inflating the bladder, an injection pump is used to push the resin 

through the fibers which are compressed between the bladder and the mould surface. 

The air exits through the strategically placed vents as the resin front advances. The 

part is ready to be demoulded when the cure procedure is completed. This 

manufacturing process results in a strong interconnection between the structural and 

manufacturing parameters; therefore, a multi–objective optimization method is 

required to solve the corresponding design problem. 

5.2 Optimization problem 
The corresponding optimization problem consists in finding the minimum weight and 

mould filling time and the maximum strength or minimum inverse Tsai–Wu strength 

ratio. The design variables consist of four braid diameters, injection pressure and 

bladder pressure. The optimization problem is formulated as follows: 
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where W, T and S in this equation represent weight, filling time and the inverse Tsai–

Wu strength ratio, respectively. id  is the braid diameter, and injp and bladderP  stand for 

injection and bladder pressures. The flowchart in Figure 23 shows the interconnection 

between the design variables and the objectives and the method to calculate each 

parameter. Function evaluation process here consists of a structural analysis and a 

flow simulation. A finite element analysis in ANSYS® is employed for structural 

analysis, while the flow simulation is performed using a MATLAB® code developed 

by the first author. The function evaluation process for this problem is time 

consuming and takes about 100 seconds on a computer with Intel–Pentium4, 3.2GHZ, 

2GB RAM. Therefore, the number of function evaluations must be kept as low as 

possible. As a result, the higher convergence rate of the hybrid optimization algorithm 

introduced in this paper is an important asset for situations similar to this test problem. 

5.3 Results and discussion 
NSHA is applied to the stem design problem using a population of 40 individuals. The 

optimization process is terminated after 5,000 function evaluations. Figure 24 shows 

the final solutions in the 3D criterion space and in the pair–wise 2D spaces. This 

figure gives insight into the problem by presenting the achievable values for the 

objectives. For instance, part (c) in this figure shows that there is no trade–off 

between strength and filling time, thus one may find a solution that has the minimum 

production time and the maximum strength at the same time; however, simultaneously 

achieving the maximum strength and minimum weight (Figure 24–b) or minimum 

weight and minimum filling time (Figure 24–d) is impossible. In addition to the 

presence and significant effect of the coupling terms, this figure also provides the 

numerical values for the achievable objectives; for instance, part (b) in this figure 
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shows that for a part which weights 65 grams, the minimum achievable inverse Tsai–

Wu strength ratio is 0.78.  

In addition, having an image of the Pareto front of the problem helps finding 

the critical design points such as knee points or points of discontinuity in the Pareto 

front. For the stem design problem, Figure 24(b) shows a knee point, marked by letter 

(A). This point shows that decreasing the inverse Tsai–Wu strength ratio from 1.1 to 

0.78 is associated with a smaller penalty in weight than improving the strength of the 

part beyond this value. 

The solid circle shown in Figure 24 part (b) to (c) is the experimental design 

found in our laboratory after months of trial and error (Thuoin, 2004). This point is 

very close to the Pareto front regarding the weight and filling time (part (d) in this 

figure); however, it is not close to the Pareto front regarding the trade–off between 

weight and strength. The results found in this research can be used to find a solution 

better than the one found by experiments, while saving the large amount of time 

usually spent on designing a part by experiment.  

Figure 24 shows a fairly even distribution of the solutions within the criterion 

space; however, such good spread may not be observed within the design space. The 

spread of the solutions within the design space is not related to the performance of the 

optimization algorithm, but to the non–linearity of the objectives and constraints that 

map the design space to the criterion space. Since the position of a solution within the 

design space shows the values for the design variables, it provides a physical 

understanding of the problem from the engineering point of view. Therefore, the 

spread of the solutions within the design space is also studied for this test case. 

In order to illustrate the six–dimensional design space of the stem problem, the 

design variables of the same nature are collectively considered as shown in Figure 25 



 34

and Figure 26. The best design with respect to each objective (i.e. an anchor point) is 

shown with solid symbols, while the other solutions are shown with non–solid circles. 

A tendency toward the solution with the best strength is observed among the results, 

while such a tendency does not exist toward the best design with respect to the filling 

time. The distribution of the solutions shows that the coupled designs are dominated 

by the structural parameters, and a coupled design is closer to the best structural 

design than the best design for manufacturing. Note that the proximity to the 

structural design is with respect to the design variables; therefore, it is not in conflict 

with the reported strong coupling in performances. The domination by structural 

design was also previously reported by Henderson et al. (1999) for a blade–stiffened 

composite panel. 

To summarize the results of the practical design problem, the following three 

points are noted: 1) the trade–off between structural performance and manufacturing 

concerns can be captured and qualified using this multi–objective optimization 

method. 2) The solutions obtained by this method can help distinguishing the feasible 

combination of performances and finding the critical designs. 3) A coupled design 

with a reasonable combination of structural and manufacturing performances can be 

achieved by making only small changes in the best structural design.  

6 Conclusions 
 

An efficient multi–objective optimization algorithm is required to solve multi–

objective design problems. Evolutionary algorithms are a popular tool for this 

purpose, because of their ability in achieving more than one solution in a single run. 

Among these methods, NSGA–II has received a significant attention and popularity; 

however, like other evolutionary algorithms, it is slow in convergence and usually 
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needs several function evaluations before a reasonably good set of solutions is 

reached.  

In this paper, NSGA–II was hybridized with a local search algorithm based on 

the Nelder–Mead (NM) simplex method to improve its convergence rate and quality 

of the solutions. In order to make NM capable of handling multi–objective problems, 

we used the non–dominated sorting algorithm used in NSGA–II. The constrained–

domination was used to handle the inequality constraints in constrained optimization 

problems. 

The proposed algorithm called non–dominated sorting hybrid algorithm 

(NSHA) was compared with NSGA–II on eight unconstrained and two constrained 

test problems from the literature. The performance of the two algorithms was 

compared using two performance metrics measuring the convergence to the real 

Pareto front and spread of the solutions. The mathematical test problems presented in 

this paper showed that the hybrid algorithm significantly increases the convergence 

rate and the extent of solutions. It was observed that to obtain the same quality of the 

results, NSHA requires a smaller number of function evaluations than NSGA–II. The 

local search integrated into the algorithm significantly intensifies the ability of the 

algorithm in searching the design space and reaching the critical solutions such as 

knee points or discontinuities in the Pareto front. Therefore, the hybrid algorithm was 

shown to be able to obtain a wider portion of the Pareto front, when irregularities exist 

in the Pareto front of the problem. Since the diversity preservation mechanism is only 

applied within NSGA–II, the similar spread of solutions was observed for both NSHA 

and NSGA–II. 

To demonstrate the capability in handling practical engineering problems, 

NSHA was applied to the optimum design of a composite bicycle stem. Finite element 
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analysis and resin flow simulation were required to evaluate the three objectives of 

this problem, which made the function evaluation process time consuming. The 

optimum solutions found by NSHA reveals the trade–off among conflicting 

objectives, the extreme values for each objective, and the critical design points. The 

results were found close to the solutions found by experiment and trial and error. 

By intensifying the search and reducing the computational time, NSHA 

provides an effective tool that benefits from the robustness of the genetic algorithms 

and the high convergence rate of the Nelder–Mead method. This optimization tool is 

suitable for solving complex time consuming multi–objective optimization problems. 

One of the major advantages of NSHA is that it maintains the simplicity and modular 

aspect of NSGA–II, while it achieves a wider scope and a higher quality of the 

solutions. Most modifications proposed in the literature to adapt NSGA–II to special 

applications, can be applied to NSHA to further improve its performance for a 

particular application. 
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Table 1 Unconstrained test problems used to compare the performance of NSHA and 
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Table 2 Constrained test problems used to compare the performance of NSHA and 
NSGA–II 
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Figure 1 Crowding distance calculation for the solutions located at the same non–

domination front 

Figure 2 Pseudo code of the main loop in NSHA 

Figure 3 Pseudo code of the local simplex optimizer NSNM 

Figure 4 (a) Convergence metric γ , (b) diversity metric, Δ  (Deb et al., 2002a) 

Figure 5 Convergence measure, γ , versus number of function evaluations performed 

when NSGA–II, NSHA, and NSHA–All are applied to the ZDT1 test problem. The 

results are averaged over ten trials with random initial populations. 

Figure 6 Performance parameters, γ and Δ for FON, Averaged over ten trials 

Figure 7 Performance parameters, γ and Δ  for ZDT1, averaged over ten trials 

Figure 8 Solutions close to the two anchor points, found by NSHA and NSGA–II 

after 25,000 function evaluations for ZDT1 

Figure 9 Average performance parameters, γ and Δ  for ZDT2 test function after ten 

trials 

Figure 10 Average performance parameters, γ  and Δ  for ZDT3 after ten trials 

Figure 11 Average performance parameters, γ and Δ  for ZDT4 test function after ten 

trials 

Figure 12 Average performance parameters, γ and Δ  for ZDT6 test function after ten 

trials 

Figure 13 Non–dominated solutions obtained by NSGA–II and NSHA for MOP4 test 

problem, the solid line shows the real Pareto front 

Figure 14 Non–dominated solutions obtained by NSGA–II (left) and NSHA (right) 

for DTZL1 test function after performing 5000 (top) and 100,000 (bottom) function 

evaluations 

Figure 15 Solutions found by NSGA–II and NSHA for CONSTR after 2,000 and 

15,000 function evaluations, the solid lines show the boundary of the feasible region 

Figure 16 Average performance metrics measured on five trials of solving CONSTR 

test problem with NSGA–II and NSHA. 

Figure 17 Non–dominated solutions found for COK after 100,000 function 

evaluations with NSGA–II and NSHA (left).Convergence metric, γ , averaged over ten 

trials of solving COK with NSHA and NSGA–II (right) 
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Figure 18 Progress of the solutions found by NSGA–II and NSHA toward the Pareto 

front of COK 

Figure 19 Convergence metric,γ, for ZDT1,averaged over five trials, while the local 

search inside NSHA is called every 5, 10, or 20 generations 

Figure 20 Convergence metric,γ, for ZDT1 (averaged over five trials),while 10, 20, or 

40 percent of the current population participated in the local search 

Figure 21 Stem is part of a bicycle that connects the handlebar to the fork 

Figure 22 The mould designed and used for the production of the stem body 

Figure 23 Interconnection among design variables, intermediate parameters and the 

objectives of the stem design problem 

Figure 24 Solutions found by NSHA for the Stem design problem after 5,000 

function evaluations, (a) solutions in 3D criterion space (b–d) pair wise 2D plots of 

the solutions 

Figure 25 Illustration of the solutions of the stem design problem within the design 

space of average braid diameters and average of the injection and bladder pressures 

Figure 26 Illustration of the solutions of the stem design problem within the design 

space of average braid diameters and difference between the injection and bladder 

pressures 
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Figure 2 Pseudo code of the main loop in NSHA 

 

 

Figure 2 Pseudo code of the main loop in NSHA 

n = number of design variables,  
tgl nfnfnf ,, max,max, = maximum number of function evaluations for local search, genetic algorithm, and total 

a = size of the initial hyper–polygon for the local search,  
popn = population size for genetic algorithm, 

ln = maximum number of points within the population that can be improved by the local search, 
randomly initialize the first population, 0P  

0=k  
while there is more than one level of non-domination in kP  
        )(1 kk PIINSGAP −=+  improve current population with NSGA–II  
         1+= kk  
end 

=nf number of function evaluations performed by NSGA-II 
while tnfnf <  
         1=j  
         },min{ max,max, nfnfnfnf tll −=  
         while )(&)1_)((&)( tkl nfnfrankjPnj <=<    
                  if 5>n , randomly select a subset of three to five variables to be optimized by the local search 
                  create a hyper–polygon simplex S with the size a based on )( jPk  
                  0=lnf  
                  while )(&)( max, metisNSNMforcriteriastoppingothernonfnf ll <  
                         Improve S using NSNM  
                        1+= ll nfnf  
                  end 
                  lnfnfnf +=  
                  replace )( jPk with the best point in S  
                  set 1+= jj  
         end 
         set },min{ max,max, nfnfnfnf tgg −=  
         0=gnf  

         while max,gg nfnf <  

                  )(1 kk PIINSGAP −=+  improve current population with NSGA–II 
                  1+= kk  
                   += gg nfnf number of function evaluations performed by NSGA-II 

         end 
         gnfnfnf +=  

end 
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Figure 3 Pseudo code of the local simplex optimizer NSNM 

0S = a given initial simplex  

max,lnf = maximum number of function evaluations for local search 

mina = minimum simplex size 

0SS =  
0=k  

while (there is at least one solution in S  dominating another solution in S ) and ( max,lnfk < ) and 
(simplex size < mina ) 
        Improve S using NM optimization (Nelder and Mead, 1965) using the sorting procedure as below: 
                sort selected solutions using the non-dominate sorting (Deb et al., 2002a ) 
                maintain the order of the points if more than one point in each domination level 
        end 
        += kk number of function evaluations used during NM optimization 
end 
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Figure 4 (a) Convergence metric γ , (b) diversity metric, Δ  (Deb et al., 2002a) 
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Figure 5 Convergence measure, γ , versus number of function evaluations performed when 

NSGA–II, NSHA, and NSHA–All are applied to the ZDT1 test problem. The results are 
averaged over ten trials with random initial populations. 
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Figure 6 Performance parameters γ and Δ for FON, averaged over ten trials 
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Figure 7 Performance parameters γ and Δ  for ZDT1, averaged over ten trials 
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Figure 8 Solutions close to the two anchor points (i.e. a: best 1f , b: best 2f ) found by NSHA 
and NSGA–II after 25,000 function evaluations for ZDT1  
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Figure 9 Average performance parameters γ and Δ  for ZDT2 test function after ten trials 
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Figure 10 Average performance parameters γ  and Δ  for ZDT3 after ten trials 
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Figure 11 Average performance parameters γ and Δ  for ZDT4 test function after ten trials 



 56

 

 

0.002

0.004

0.006

0.008

0.01

0 5000 10000 15000 20000 25000
Number of function evaluations

ga
m

m
a

NSGA-II
NSHA

0

0.2

0.4

0.6

0.8

1

0 5000 10000 15000 20000 25000
Number of function evaluations

de
lta

NSGA-II
NSHA

  
Figure 12 Average performance parameters γ and Δ  for ZDT6 test function after ten trials 
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Figure 13 Non–dominated solutions obtained by NSGA–II and NSHA for MOP4 test problem, 

the solid line shows the real Pareto front 
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NSGA–II (100,000 function evaluations)   NSHA (100,000 function evaluations) 
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Figure 14 Non–dominated solutions obtained by NSGA–II (left) and NSHA (right) for DTZL1 

test function after performing 5000 (top) and 100,000 (bottom) function evaluations 
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Figure 15 Solutions found by NSGA–II and NSHA for CONSTR after 2,000 and 15,000 

function evaluations, the solid lines show the boundary of the feasible region 
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Figure 16 Average performance metrics measured on five trials of solving CONSTR test 

problem with NSGA–II and NSHA. 
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Figure 17 Non–dominated solutions found for COK after 100,000 function evaluations with 
NSGA–II and NSHA (left).Convergence metric, γ , averaged over ten trials of solving COK 

with NSHA and NSGA–II (right) 
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Figure 18 Progress of the solutions found by NSGA–II and NSHA toward the Pareto front of 
COK  
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Figure 19 Convergence metric,γ, for ZDT1,averaged over five trials, while the local search 

inside NSHA is called every 5, 10, or 20 generations 
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Figure 20 Convergence metric,γ, for ZDT1 (averaged over five trials),while 10, 20, or 40 

percent of the current population participated in the local search 
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Figure 21 Stem is part of a bicycle that connects the handlebar to the fork 
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Figure 22 The mould designed and used for the production of the stem body 
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 Vent 
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Figure 23 Interconnection among design variables, intermediate parameters and the 

objectives of the stem design problem 

Braid diameters 

Bladder pressure 

Layer thickness

Material propertiesFiber volume fraction

Permeability
Fiber orientation

Injection pressure 

Strength 

Filling time 

Weight 

Theoretical relations 
Experimental data  

Flow simulation/Finite element analysis 
Information provided by braid manufacturer 



 68

 

 

0.7
0.8

0.9
1

1.1

0

1000

2000

3000

4000

5000

60

65

70

75

80

85

Inverse Tsai−Wu strength ratio
Filling time (s)

W
ei

g
h

t

 
(a)      (b) 

0

1000

2000

3000

4000

5000

0.6 0.7 0.8 0.9 1 1.1

Inverse Tsai-Wu strength ratio

Fi
lli

ng
 ti

m
e 

(s
)

0

1000

2000

3000

4000

5000

60 65 70 75 80 85

Weight (gr)

Fi
lli

ng
 ti

m
e 

(s
)

 
(c)     (d) 

Figure 24 Solutions found by NSHA for the Stem design problem after 5,000 function 
evaluations, (a) solutions in 3D criterion space (b–d) pair wise 2D plots of the solutions 
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Figure 25 Illustration of the solutions of the stem design problem within the design space of 

average braid diameters and average of the injection and bladder pressures 
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Figure 26 Illustration of the solutions of the stem design problem within the design space of 

average braid diameters and difference between the injection and bladder pressures 
 

 


