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Abstract 

The results exhibited in this thesis are related to Schrodinger operators in three di

mensions and are subdivided in two parts based on two published papers, [15] and 

[14]. A variant of Turbiner's conjecture is proved in the first paper while a partial 

classification of quasi-exactly solvable Lie algebras of first order differential operators 

in dimension three is exhibited in the second paper. This classification is then used 

to construct new quasi-exactly solvable Schrodinger operators in three dimensions. 

Turbiner's conjecture posits that, for a Lie algebraic Schrodinger operator in di

mension two, the Schrodinger equation is separable if the underlying metric is locally 

flat. This conjecture is false in general. However, if the generating Lie algebra is 

imprimitive and if a certain compactness requirement holds, Rob Milson proved that 

in two dimensions, the Schrodinger equation separates in a Cartesian or polar coor

dinate system. In [15], the first paper included in this thesis, a similar theorem is 

proved in three variables. The imprimitivity and compactness hypotheses are still 

necessary and another condition, related to the underlying metric, must be imposed. 

In three dimensions, the separation is only partial and the separation will occur in 

either a spherical, cylindrical or Cartesian coordinate system. 

In the second paper [14], a partial classification of quasi-exactly solvable Lie al

gebras of first order differential operators is performed in three dimensions. Such a 
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classification was known in one and two dimensions but the three dimensional case 

was still open before the beginning of this research. These new quasi-exactly solvable 

Lie algebras are used to construct new quasi-exactly solvable Schrodinger operators 

with the property that part of their spectrum can be explicitly determined. This clas

sification is based on a classification of Lie algebras of vector fields in three variables 

due to Lie and Amaldi. 
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Resume 

Les travaux presentes dans cette these portent sur les operateurs de Schrodinger en 

dimension trois et se subdivisent en deux parties basees sur deux articles publies, [15] 

et [14]. En premier lieu, une variante de la conjecture de Turbiner en dimension trois 

est demontree. Dans le second article, une classification partielle des algebres de Lie 

quasi-exactement resolubles d'operateurs differentiels du premier ordre en dimension 

trois est presentee. Cette classification est par la suite utilisee pour construire de 

nouveaux operateurs de Schrodinger quasi-exactement resolubles a trois variables. 

La conjecture de Turbiner avance qu'en dimension deux, l'equation de Schrodinger 

est separable si l'operateur est Lie algebrique et si la metrique de la variete est lo-

calement plate. Cette conjecture s'avere fausse en general. Cependant, Rob Milson a 

prouve que, si Palgebre de Lie generatrice est imprimitive et si Ton impose un argu

ment de compacite, alors l'equation de Schrodinger en deux dimensions est separable 

en coordonnees polaires ou Cartesiennes. Dans le premier article composant cette 

these [15], un theoreme similaire est prouve dans le cas tridimensionnel. Encore une 

fois les hypotheses d'imprimitivite et de compacite sont necessaires et une autre con

dition, liee a la metrique de la variete, doit etre imposee. Notons que la separation 

est, dans le cas tridimensionnel, seulement partielle et que la separation se produira 

en coordonnees spheriques, cylindriques ou Cartesiennes. 
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Dans le second article [14], une classification partielle des algebres de Lie quasi-

exactement resolubles d'operateurs diflerentiels du premier ordre est effectuee en di

mension trois. Une telle classification existait en dimensions un et deux mais le cas 

tridimensionnel demeurait ouvert. Ces nouvelles algebres permettent de construire 

de nouveaux operateurs quasi-exactement resolubles, particulierement des operateurs 

de Schrodinger, dont une partie du spectre peut etre determined explicitement. Cette 

classification est basee sur une classification des algebres de Lie de champs de vecteurs 

effectuee par Lie et Amaldi. 
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Chapter 1 

Introduction and Review of the 

Literature 

This thesis is based on two published papers: Turbiner's Conjecture in Three Dimen

sions [15] and Quasi-exactly Solvable Schrodinger Operators in Three Dimensions 

[14]. In the first paper, a modified version of Turbiner's conjecture in three dimen

sions is proved and a counter-example to the original conjecture is given. The Lie 

algebraic Schrodinger equations corresponding to flat metrics of a certain restricted 

type are shown to separate partially in either Cartesian, cylindrical or spherical coor

dinates. The main contribution of the second paper is to give a partial classification 

of the quasi-exactly solvable Lie algebras of first order differential operators in three 

variables, and to show how this can be applied to the construction of new quasi-

exactly solvable Schrodinger operators in three variables. We begin by introducing 

and illustrating the major notions employed in these two papers. To avoid redun

dancy, some of this material have been deleted from the two papers. 

Recall that a Schrodinger operator on a n-dimensional Riemannian manifold 
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(M, g) is a second order linear differential operator of the form 

where A is the Laplace-Beltrami operator and U is a potential function for the phys

ical system under consideration. A question of fundamental interest in quantum 

mechanics is to solve the Schrodinger equation Hoip = Eip. In general, this equation 

can not be solved exactly. However, there exist few potentials for which the equation 

is exactly solvable, such as the harmonic oscillator and the hydrogen atom, whose 

point spectrum can be completely determined using algebraic methods. For these 

examples, the existence of a large: group of symmetries and the particular form of the 

potential are of a significant importance. Furthermore, some systems are known to be 

only partially solvable in the sense that at least part of the spectrum can be computed 

exactly by algebraic methods. For instance, the sextic anharmonic oscillator with the 

Hamiltonian 
d2 

ox1 

is partially solvable when the parameters a, (5 and 7 satisfy the condition 

a - ~ + V7(4M + 2p + 3) = 0 

with M an integer and p either 0 or 1. There are a number of quantum mechanical 

systems, for which the Schrodinger equation is exactly solvable or partially solvable 

and which don't have evident underlying symmetries, as in the example above. Nev

ertheless, the notion of Lie group or Lie algebra appears in these examples but in a 

more subtle way, as we shall see. 

One approach to these problems, which is based on the representation theory of 

Lie algebras, is to consider Schrodinger operators HQ which are Lie algebraic or quasi-

exactly solvable. We start by considering the case of a general linear second-order 
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differential operator H, given in local coordinates by 
n n 

n=J2 AiJdA + £ BiQi +•c-

The operator H is said to be Lie algebraic if it is an element of the universal enveloping 

algebra of g, a finite dimensional Lie algebra of first order differential operators. More 

explicitly, 

m m 

a,6=l a=l 

where 
Ta = -ya + 77a, l < o < m , (1.2) 

is a basis of g and Caj,, Ca and Co are constants. In (1.2), the operators v1, ...,vm are 

vector fields, and 771, ...,rjm are multiplication operators. 

A Lie algebra g of first order differential operators is said to be quasi-exactly solv

able if one can find explicitly a finite dimensional g-module J\f of smooth functions, 

that is, if there exists M = {h\ ...,hr} with Ta{M) C M for all 1 < a < m. A Lie 

algebraic operator 7i, is said to be quasi-exactly solvable if it lies in the universal 

enveloping algebra of a quasi-exactly solvable Lie algebra of first order differential 

operators. Obviously, H(.\f) C A/-, i.e. the module J\f will be fixed by the operator 

H. Moreover, if the functions contained in the module N are square integrable with 

respect to the Riemannian measure of the Riemannian manifold, the operator H is 

said to be a normalizable quasi-exactly solvable operator. 

We can see from the above definitions that the formal eigenvalue problem for TC0, 

a normalizable quasi-exactly solvable Schrodinger operator, can be solved partially by 

elementary linear algebraic methods. Indeed, the operator TCo is formally self-adjoint 

with respect to the inner product associated to the standard measure, so that the re

striction of Hn to the finite dimensional module J\f is a Hermitian finite dimensional 
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linear operator, see [1] for details. Thus, one can in principle, compute r = dim{J\f) 

eigenvalues of Ho, counting multiplicities, by diagonalizing the r x r matrix repre

senting Ho in a basis of J\f. 

Let g^rt be the contravariant metric of the manifold M in a local coordinate chart 

and g its determinant. In that setting, a Schrodinger operator reads locally as 

n° = ~\ E ^ d i j + W^dj - g-^-dj] + u. 

Note that a quasi-exactly solvable second order differential operator is not, in general, 

a Schrodinger operator. However, this operator might be equivalent to a Schrodinger 

operator in a way that preserves the formal spectral properties of the operators under 

consideration. The appropriate notion of equivalence, which will be used throughout 

our work, is the following. Two differential operators are locally equivalent if there 

is a gauge transformation H —> fiH/j-'1, with gauge factor n = ex, and a change of 

variables relating one to the other. In principle, it is possible to verify if a general 

second order differential operator H is equivalent to a Schrodinger operator with 

respect to this notion of equivalence. Indeed, every second order linear differential 

operator can be written locally as 

. n n 

If the contravariant tensor gW is non-degenerate, that is if g does not vanish, the 

operator can be expressed as 

H = -^A + V + Uo, (1.3) 

where V = tfdi is a vector field. For this operator to be locally equivalent to a 

Schrodinger operator, the vector held V has to be a gradient vector field with respect 

to the metric g^. Locally, this will be the case if and only if ui = g^Wdx1, the 
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one form associated to V, is closed. For this reason, this condition is named the 

closure condition. Note that if V = V(A), the gauge factor is given by e^. Given an 

operator of the form (1.1), the closure conditions can be easily verified provided the 

contravariant metric g^ is non-degenerate. Indeed, these conditions can be written 

as algebraic constraints on the coefficients Cab and Cc, and are the Frobenius com

patibility conditions for an overdetermined system that will be described later. 

An important point to keep in mind is that the classes of Lie algebraic and quasi-

exactly solvable operators are invariant under local equivalence. Indeed, suppose H 

is a quasi-exactly solvable operator which is gauge equivalent to another operator TCQ 

under the rescaling fi. If Ji lies in the universal enveloping algebra of g, whose g-

module is A/", then one can easily show that Ho is quasi-exactly solvable with respect 

to the finite dimensional Lie algebra 

5 = /x -0 .^ - 1 = { /x .T .^ - 1 |TGf l} 

which is isomorphic to g and posses the finite-dimensional g-module 

tf = fi.M={n-h\heSf}. 

Note however that the gauge factor is not necessarily unitary. Thus, a gauge trans

formation does not necessarily preserve the normalizability property of the functions 

in A/". Therefore, the class of normalizable quasi-exactly solvable operators is not 

invariant under our notion of local equivalence. 

The scheme that we have just outlined originates in the work of several teams 

of physicists. It appears that Goshen and Lipkin where the first to introduce the 

concept of a "spectrum generating algebra" in their 1959 paper [26]. Their paper did 

not elicit much reaction in the physics community at the time. In 1965, two groups 
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of physicists rediscovered independently the spectrum generating algebras. The first 

group was composed by Barut and Bohm [9] and the second of Dothan, Gell-Mann 

and Ne'eman [12]. Their work was an impetus for further research in this area as 

exposed by the conference proceedings [27] and the two volume set of reprints [11]. 

At the beginning of these two volumes, the review paper [10] of Bohm and Ne'eman, 

gives a survey of the history and the contribution papers related to the spectrum 

generating algebras. 

Iachello, Levine, Alhassid, Gursey, Wu and collaborators exhibited the first appli

cations of spectrum generating algebras late 1970s early 1980s. This new concept was 

used to study models in nuclear physics [7, 8] and was successfully applied to molec

ular dynamics and spectroscopy in [13, 33]; and to scattering theory in [2, 3, 4, 5]. In 

these applications, the relevant Hamiltonian is a Lie algebraic operator in the sense 

described previously. A survey of the theory and applications is given in the book [28]. 

The concept of quasi-exact solvability appeared in the mid 1980s. To be precise, 

quasi-exactly solvable classes of operators, as described in this thesis, were introduced 

by Shifman, Turbiner and Ushveridze in [42, 44, 46, 47]. A survey of the theory and 

applications of quasi-exactly solvable systems in physics is given in [48]. Indepen

dently, Levine [33] posed the problem of classifying the Lie algebraic operators under 

the equivalence relation defined by smooth changes of independent variables and 

rescalings of wave functions. This classification problem was then extended to the 

classification of normalizable quasi-exactly solvable Schrodinger operator. 

The general procedure to answer this classification problem is subdivided into four 

steps. One has first to classify all the classes of Lie algebras of first order differential 

operators, then one has to determine which of them admit a finite-dimensional mod-
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ule of smooth functions. Then, based on these quasi-exactly solvable Lie algebras, one 

has to construct second order differential operators and verifies if they are equivalent 

to Schrodinger operators. Finally one has to check if the eigenfunctions are square 

integrable in order to determine part of the spectrum of the operator. During the 

1990s, a great deal of effort has been put into the classification problem in one and 

two dimensions, with significant contribution by Gonzalez-Lopez, Kamran, Olver and 

Turbiner. 

The complete list of one-dimensional quasi-exactly solvable Schrodinger operators 

is described in a 1988 paper of Turbiner [44], while the solution to Levine's problem 

is given by Kamran and Olver in [31]. In 1993, Gonzalez-Lopez, Kamran and Olver 

gave a complete solution for the normalizability problem for these operators [22]. In 

spite of some progress, the higher-dimensional case is still open at the moment. A 

complete list of quasi-exa,ctly solvable Lie algebras of first order differential opera

tors in two complex variables was established in 1991 [20, 21], and the real case was 

completed in 1996 [25]. The starting point was Lie's complete classification of finite 

dimensional Lie algebras of vector fields in two complex variables [34]. The two last 

steps remain to be done in two dimensions. However several new families of normaliz-

able quasi-exactly solvable Schrodinger operators has been exhibited, see for instance 

[23], [24] and [25]. 

No attempt had been made to address the three dimensional version of Levine's 

problem until the work presented in the second paper [14]. Once again, the starting 

point was a classification of finite dimensional Lie algebras of vector fields in three 

variables. Part of this classification was performed in 1893 by Lie [34], where all the 

classes of primitives Lie algebras were determined together with all the classes of two 

of the three types of impri.mitive Lie algebras. The remaining class of imprimitive Lie 
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algebras was worked out by Amaldi in 1901, [6]. 

Related to the question of quasi-exact solvability, there is recent interest for oper

ators that preserve finite dimensional invariant subspaces and that are not necessarily 

Lie algebraic [17] or even linear [30]. For instance, if the invariant subspace is gener

ated by polynomials in one or several variables, Gomez-Ullate, Kamran and Milson 

proposed an explicit basis for the space of such differential operators using the con

cept of deficiency [18]. 

In the scope of the exact solvability, the first paper contained in this thesis is 

related to Turbiner's conjecture. This conjecture was first formulated in 1994 by Tur-

biner in [45] and states the following. If Ho is a Lie algebraic Schrodinger operator 

defined on a locally flat 2-dimensional manifold, then the spectral equation Tioip = Eip 

can be solved by a separation of variables. A few years later, in [36, 38], Rob Milson 

showed that the conjecture is false in general and proved a modified version provided 

that additional assumptions hold. The question to know if this conjecture holds in 

three dimensions was still open before the beginning of the research presented in the 

first paper [15] on which this thesis is based. 

We conclude this introduction with two simple examples that will illustrate these 

concepts. Each of them are related to the two papers on which this thesis is founded. 

Based on a quasi-exactly solvable Lie algebra of first order differential operators in 

three variables exhibited in the second paper, the first example displays the construc

tion of a normalizable quasi-exactly solvable Schrodinger operator in three variables. 

Example 1.1. We consider a representation of g = sl(z) x sl(i) x sl(z) as a quasi-

exactly solvable Lie algebra of first order differential operators. With the standard 
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notation p = J^, q — ^- and r — J^; this Lie algebra representation is given by the 

following first order differential operators 

Tl=p, T2 = xp, T3 = x2p-x, T4 = q, T5 = yq, T6 = y2q-y, 

T7 = r, T8 = zr, T9 = z2r - z. 

Then, the finite dimensional module of smooth functions 

M n := {x{yjzk\ 0 < i < 1, 0 < j < 1, 0 < k < 1} 

is a Q-module. With the following choice of coefficients, one constructs a quasi-exactly 

solvable operator 

-2H = (T1)2 + (r2)2 + 2[(r3)2 + (T4)2 + 2(T5)2 + 2(T6)2] + (T7)2 + (r8)2 

+2(T9)2 + {T\T3} + {T7,T9} - 2T4 - 2T5 - 4T6 - 8, 

where {Ta,Tb} = Ta(Tb) + Tb(Ta). The induced contravariant metric associated to 

this operator is computed to be the following positive definite matrix 

( (x2 + l)2 0 (x2 + l)(z2 + l)^ 

g{ij)= 0 y4 + 4y2 + l 0 , (1.4) 

v (x2 - \){z2 + 1) 0 2(*2 + l)2 j 

whose determinant is g = (x2 + l)2(y4 + 4y2 + l){z2 + l)2 . Then, with respect to this 

non-degenerate metric, the operator H can also be written as 

-2H = A + V + U0, 

where V = —2(x3 + x + z + zx2)p -2(2y + y3)q - 2(2z3 + 2z + x + xz2)r. It is not hard 

to verify, always with respect to the metric (1-4), that the first order term V is the 

gradient of the function A = - ln(x2 + 1) — 1/2 ln(y4 + 4y2 + 1) - ln(z2 + 1). Hence, 

by considering the gauge factor 

p = e t = (x2 + l)"1/2(y4 + 4y2 + iyll\z2 + l)"1/2 , 
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the operator TC is gauge equivalent to a Schrodinger operator 

-2H0~=A + U, 

were the potential is a rational function ofy. Furthermore, it is not hard to show that, 

after the gauge transformation, the functions in A/m = { n • xly^zk | 0 < i, j , k < 

1} are square integrable with respect to ^J g~ldxdydz. Recall here that g~l is the 

determinant of the covariant metric and we have the following equality \Jg~x = $. 

Thus, for i,j, k either 0 or 1, one can use Fubini's theorem to decompose the integral 

III (fj.x'y3z ) fi dxdydz 
R3 

= J J L ¥2 + mv4 + V +1)(*2 + iydxdydz> 
into the product of three finite integrals in one variable. Consequently the operator 

Ho is a normalizable quasi-exactly solvable Schrodinger operator and it is possible to 

compute eight eigenfunctions by diagonalizing the matrix obtained by restricting Ti to 

J\f. For this operator, one gets two eigenvalues, —3 and 1, both of multiplicity four. 

The eight eigenfunctions associated to these two eigenvalues are respectively, 

^_3jl = - l + XZ, 1p-3,2 =-- V ~ XyZ, V-3,3 = Xy + yz, >̂_3,4 = Z + 2, 

^1,1 = y + xyz, Vi,2 = -x + z, ^1,3 = -xy + yz, ^i,4 =?l + xz. 

Finally, one gets eight eigenfunctions of the Schrodinger operator Tio by scaling each 

of these functions by the gauge factor [i. 

The second example illustrates the separation theorem proved in the first paper. 

It exhibits a flat Lie algebraic Schrodinger operator whose generating Lie algebra is 

2-imprimitive and which separates in three different coordinates systems. We mention 

here that 2-imprimitive Lie algebras admit an invariant foliation by surfaces. If the 
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level sets of the function A are the leaves of the foliation, the operator Ta is said to 

acts 2-imprimitively if Ta(X) and A are functionally dependent. A detailed definition 

will be given prior to the proof of the theorem. 

Example 1.2. Consider M = M3 and the Lie algebra Q = ai © ai © ai spanned by 

the first order differential operators 

Tl=8u, T2 = udu, T3 = dv, T4 = vdv, T5 = dw, T6 = wdw. 

We define a Lie algebraic operator H with the following choice of coefficients: 

0 

a ab 

( 1/2 0 0 0 0 0 \ 

0 0 1 0 1 0 

0 1 0 1 0 0 

0 0 1 0 2 0 

0 1 0 2 0 1 

0 0 0 0 1 0 

/ 

ca = 

\ 

V 

2a 

4/3-4 

4a 

4/? + 4 7 - 6 

Aa 

where a, (3 and'y are real numbers. In terms of the (u,v,w) coordinates, the operator 

reads as follows 

U = -duu + 2uduv + 2uduw + 2vdvv + 4vdvw + 2wdww 

+2audu + (4/3 - 3 + Aav)dv 4- (4/? + 47 - 5 + Aaw)dw. 

\ 

The metric associated to this operator is, 

n(v) - -

V 

1 2u 2u 

2u A.v Av 

2u 4v Aw 

(1.5) 

/ / we forget the degeneracy issue for a moment, we can rewrite the operator 7i in 

terms of the Laplace-Beltrami operator associated to the metric (1.5). We obtain 

U = ~A + 2audu + (4/? + Aav)dv + (A(3 + 4 7 + Aaw)8w. 
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A direct calculation shows that the undesirable first order term can be expressed as 

the gradient, with respect to (1.5), of the scalar function 

A = aw -h /31n \v — u2\ + 7I11 \w — v\. 

The closure condition is then satisfied and, scaling with the factor e^, the operator 

constructed is gauge equivalent to the following Schrodinger operator: 

2 v — uA w — v 

Observe that the tensor g^ fails to be of full rank when g = 16(w — v)(u2 — v) = 0. 

The covariant tensor g^ is singular on the sets {w = v} and {v = u2}, thus the 

inner product is not defined everywhere. We therefore have to allow degeneracy for 

the induced metric. To deal with this issue, we will have to introduce a particular 

structure for the manifold later. 

Let us now illustrate how the 2-imprimitivity of the action affects the operator 

constructed previously. If we consider only the domain where the metric is positive 

definite, we can easily check that the Riemannian curvature vanishes identically and 

the operator reads as follows 

H = - - A + V(mu + (3ln\v — u2\ +jln\w — v\). 

This operator, and its equivalent Schrodinger operator, illustrate clearly that separa

tion arises from invariant foliations by surfaces. Indeed the separation occurs in each 

of the three possible systems of coordinates. We shall not expect this in general. The 

three separations reflect the fact that the group action allows not only one but three 

distinct invariant foliations by surfaces: 

{u = const.}, {v — const.}, {w = const.}. 
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It is now guaranteed that H(X) = /(A) for A G {u, v, w}. 

In terms of Cartesian coordinates (x,y,z), the original coordinates are given by 

u = x, v = x2 + y2 w = x2 + y2 + z2. 

Thus the leaves of the foliations are planes, cylinders or spheres. For each of these 

foliations we will consider respectively the Cartesian, cylindrical (r,6,z), and spher

ical (r, 6,0) coordinates. Hence, in the Cartesian system, the coordinate x separates 

in the Schrodinger equation Hotp = Eip. For the two other coordinate systems, r, 

the radial coordinate can he separated. An extra property of this operator is the fact 

that, for each of these coordinate systems, the operator also separates in the two other 

coordinates, which shall not be expected in general. 

In these three coordinate systems, the operator is given by 

H = --A + V(a(x2 + y2 + z2)+f3ln\y\ + i\n\z\), 

H = - ^ A + V(a(r 2 + 2 2 ) + / ? ( l n | r | + l n | s i n 0 | ) + 7 ln | .z | ) , 

U = - - A + V ( a ( r 2 ) + / ? ( ln | r |+ ln | s in ( / ) |+ ln | s in6 ' | )+7 ( ln | r |+ ln | cos6 ' | ) ) . 

By applying the operatorH to ip(xi, x2, x3) = ^(xi)^^)^^)> where x\, x2 andx3 

are the respective coordinates, one easily verifies that each of these equations separate 

into three equations, each of them involving only one variable. After the required 

gauge transformation, the Schrodinger operator reads as 

HQ = _lA + a{2p + 21 + 3) + a2(x2 + y2 + z2) + ^ ^ - + ^ ^ - , 

Ho = 4 A + a(2/? + 2 7 + 3) + aV + ?) + I[M] + l(l^)i 

Ho = -lA + a(2(3 + 27 + 3) + a2(r2) + ^ ^ [ ^ ^ } + \ [ ^ ^ } . 
2 r2 sirr 9 s i r 6 r2 cos29 
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Once again, the three operators separate in their respective coordinate systems since 

the three potentials satisfy the known separation condition detailed, for instance, in 

140]. 
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Chapter 2 

Turbiner's Conjecture in Three 

Dimensions 

2.1 Introduction 

The aim of this chapter is to extend results related to separation of variables for flat Lie 

algebraic Schrodinger operators. Originally, in [45], Alexander Turbiner conjectured 

the following: 

Conjecture 1. (Turbiner) " In R2 there exist no quasi-exactly-solvable or exactly-

solvable problems containing the Laplace-Beltrami operator with flat-space metric 

tensor, which are characterized by non-separable variables." 

This conjecture was reformulated in more geometrical terms by Rob Milson [36]. 

The conjecture, which the: work in this paper is based on, now reads as follows. 

Conjecture 2. (Turbiner, second version) Let HQ be a Lie algebraic Schrodinger 

operator defined on a 2-dimensional manifold. If the symbol of Ho corresponds to 

a Euclidean geometry, i.e. if the corresponding Gaussian curvature is zero, then the 

spectral equation Tioib = Eip can be solved by a separation of variables. 
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This conjecture is false in general. A counterexample is given by Rob Milson in 

[36] and [38], together with a proof of a modified version of the conjecture. By adding 

two extra assumptions, namely an imprimitive action and a compactness requirement, 

one can prove that the spectral equation can be solved by separation of variables. Fur

thermore, the imprimitivity hypothesis implies even more than expected: separation 

will occur in either a Cartesian or a polar coordinate system. 

In this chapter, it is shown that, in three dimensions, the original conjecture is 

also false and a proof of a modified version of the 3D Turbiner's conjecture is given. 

Again the compactness requirement and a condition related to the imprimitivity of 

the action are necessary and and a third condition, related to the contravariant met

ric, will have to be imposed to prove the theorem. In three dimensions, the invariant 

foliation of an imprimitive action can be a family of curves or a family of surfaces. 

In the proof of our result, the leaves of the foliation need to be surfaces and such 

an imprimitive action will be called 2-imprimitive. Similarly to the two dimensional 

case, the 2-imprimitivity of the action will ensure that separation, here only partial, 

will occur in either a Cartesian, cylindrical or a spherical coordinate system. 

The proofs of the two modified versions of the conjecture are based on the follow

ing ideas. First, the imprimitive action, which is 2-imprimitive in three dimensions, 

induces an invariant foliation A, for which the leaves are surfaces and will be denoted 

by {A = constant}. The Schrodinger operator Ho is Lie algebraic, thus, it is an 

element of the enveloping algebra of a Lie algebra of first order differential opera

tors. When applied to A, the elements of the generating Lie algebra must give back 

functions of A. The operator Ho will enjoy the same property, that is 7io(A) = /(A). 

Combining the fact that the operator is Lie algebraic with the imprimitivity of the 

action, one can prove that the leaves of A1, the foliation which is perpendicular to 
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A, are necessarily geodesies. Then, a key result, the Tiling Theorem, gives a global 

map from a Euclidean space to our manifold. Thus by pulling back the manifold, the 

leaves of the perpendicular foliation became straight lines. 

In this setting, one can show that the invariant leaves can only be prescribed 

curves or surfaces. In two dimensions the curves need to be straight lines or con

centric circles, while in three dimensions the surfaces have to be planes, cylinders or 

spheres. In this context, A will be either a Cartesian or a radial coordinate. Finally, 

using the appropriate coordinate system, one checks that the equation TCQIJJ = Eip 

separates with respect to the coordinate A. 

Despite the fact that the path followed to prove the modified 3D Turbiner's con

jecture is similar to the one given in [38], there are several important issues to be dealt 

with, which were absent in the two dimensional case, and which appear in our study. 

We have first to select the appropriate curvature conditon, while in two dimensions 

one only has the Gaussian curvature to work with. In order to prove the 3D-Trapping 

Theorem, which is necessary to prove the 3D-Tiling Theorem, one has to impose that 

the diagonal terms of the Ricci curvature tensor be zero. For the 3D-Tiling Theorem, 

it is the Riemannian curvature tensor that needs to vanish. For the proof of the 

3D-Trapping and Tiling Theorems, we have to assume that either the metric can be 

diagonalised, or that M is a transverse, type changing manifold. For the first case, 

to conclude both theorems, an extra requirement of genericity of the contravariant 

metric needs to be added. This requirement is related to the non-invertible factors 

of its components and will be defined later. For the transverse type changing mani

fold, we will see that such metric can always be diagonalised and is necessarily generic. 

The determination of the possible foliations requires a different approach. While 
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in two dimensions one needed only to consider the possible foliations by straight lines 

to conclude the proof of the result, in three dimensions, one has to keep in mind the 

entire picture of the two perpendicular foliations in order to determine the three types 

of leaves. The arguments are not sophisticated but the proof is long enough for us 

to devote an entire section to it. Another distinction with the two dimensional case 

is the fact that separation of variables is only partial. Indeed, as in the work of Rob 

Milson, one can isolate one variable, A, but we are left, in three dimensions, with two 

variables for which nothing can be said. 

In section 2, we briefly describe the context of Turbiner's conjecture and we define 

the notions employed in this paper that were not established in the introduction of 

the thesis. Section 3 fills in the gaps needed to generalize the proof of both 3D-Tiling 

and 3D-Trapping Theorems. The proofs of these two theorems are omitted since, 

once this work done, both generalizations are straightforward. In Section 4, we show 

that, after pulling back the metric to R3, the only possible leaves of the foliation are 

planes, cylinders and spheres. This fourth section, involving a succession of simple 

had hoc arguments, is crucial for its consequences although the proof itself may be 

skipped at first reading. Using the results exhibited in the two preceding sections, 

section 5 is devoted to the proof of the tridimensional modified conjecture. Finally 

a counterexample to the three dimensional general form of Turbiner's conjecture is 

exhibited in section 6. 

We conclude by noting that there are deep connections between separation of vari

ables, exact solvability and superintegrability, see for instance [29] and [41]. However, 

these lie outside the scope of our thesis. 



2.2 General setting 19 

2.2 General setting 

In this section, we complete the introduction of the notions necessary to prove the 

three dimensional version of the modified Turbiner's conjecture. The two dimensional 

version, see [38] and [36] for a complete proof, is also discussed. 

Recall that, in the construction of Lie algebraic operators detailed in the introduc

tion, the tensor g^ can fail to be of full rank. We therefore have to allow degeneracy 

for the induced metric. However, despite this flexibility, we want the metric to behave 

reasonably well on the degeneracy locus. For this reason, we introduce a generaliza

tion of the pseudo-Riemannian structure. 

For M a real-analytic manifold and g^ a type (2,0) tensor field, we denote Dg 

the locus of degeneracy of the tensor. The analyticity requirement implies that Dg 

is either empty, or a codimension 1 subvariety or M. We set Mo == M\D S and we 

assume that g^ is not identically degenerate. Thus Mo is an open, dense subset 

of M and the connected components of M0 are pseudo-Riemannian manifolds with 

boundary in Dg. 

The pair (M, g^) is called an almost-Riemannian manifold if for all pairs u, v of 

analytic vector fields with non-degenerate plane section u A v on Mo, the sectional 

curvature function K(u A v) has removable singularities on D s . Remark that if the 

sectional curvature is constant on connected components, which is the case if the Rie

mannian curvature is zero, then M is an almost-Riemannian manifold. Throughout 

this paper, we will focus on components of Mo for which the metric is positive definite 

and for which the Riemannian curvature tensor is zero. 
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We will see that separation of variables is, in our context, closely related to fo

liations by geodesies. Thus we would prefer to work in Euclidean geometry, where 

the geodesies are straight lines, instead of working on M, a flat analytic manifold. 

The 3D-Tiling Theorem will help us to achieve this by showing that, under certain 

conditions, there exists a global real-analytic map from i 3 to R C M where the 

contravariant metric of R is the pushforward of the Euclidean metric. The following 

definitions and propositions will be necessary to establish this theorem. 

To better understand the overall behaviour of the manifold around the degenerate 

points, we need to quantify the degeneracy of the contravariant metric. The degener

ate points can be broken up into two categories. A point p G D5 is called unreachable 

if all smooth curves with end points p have infinite length in the metric g^j). Con

versely a degenerate point is called reachable if it can be attained by a finite length 

curve. If j(t) : (0,1) —• M0 is a geodesic segment, we denote by T the largest number, 

possibly oo, such that 7(f) can be extended by a geodesic with domain (0, T). For R 

an open connected component of Mo, we say that M is complete within R whenever 

for all geodesic segment lying within R, either T = 00, or \imt^Tl(t) is a reachable 

boundary point of R. This extends the notion of completeness to almost-Riemannian 

manifold. The following Proposition will be useful. 

Proposition 2.1. Suppose the signature of g^ is positive definite within R, and 

that R is contained in a compact subset o/M. Then M is complete within R. 

Finally we will say that M is a transverse, type changing analytic m-dimensional 

manifold if M is an analytic manifold with a contravariant metric g^ such that at 

any point x in the degenerate locus D s , we have: 

1. d(det(g^)) \x^ 0 for some (and hence any) coordinate system, 

2. Radx := {vx G T*M | g{ij)(v, •) = 0} is transverse to Tx*Dg, 
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The degenerate points are given by the zero set of the determinant of a 3 by 3 

matrix which is, in general, not easy to handle. To circumvent this issue, we will 

assume that either 

(a) gW can be diagonalised, 

(b) M is a transverse, type changing manifold. 

For the case (a), there exists locally a coordinate system for which gW is expressed 

as 

-,«) 

( p(~ 

\ 

c,v, 

0 

0 

*) 0 

Q(x,y, 

0 

*) 

0 

0 

R(x,y, 

^ 

z)) 

(2.1) 

Thus, the determinant is given by the simple equation g = PQR and we can assume 

without loss of generality that the metric is degenerate at the origin. We define the 

order of an analytic function to be the smallest total degree of all the monomials with 

a non-zero coefficient in its Taylor development. Thus, the order of g will be the sum 

of the orders of the diagonal components of (2.1). Note that the smaller the order of 

g is, the closer the metric is from being non-degenerate at the origin. 

The next requirement will be needed to prove the three dimensional version of 

the Trapping and Tiling Theorems when the metric is diagonal. This condition does 

not appear in the two dimensional case and we do not know yet if it is necessary. 

Recall that the ring of convergent power series with complex coefficients is a unique 

factorization domain. We say that a contravariant metric tensor gW given as (2.1) 

is generic if the components of the diagonal do not share non-invertible factors. For 
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instance, at the origin, the metric 

gW) = 

is generic while the metric 

'' (1 + xf 0 0 ^ 

0 (l + x)y . 0 

* 0 0 xz J 

( x2 0 0 \ 

0 xy 0 

0 0 xz 

is not. 

For the case (b), it can be deduced that the metric can be diagonalized and its 

diagonal form is generic. Indeed, for a transverse type changing analytic manifold, 

one can show, see [32] for details, that around any degenerate point, there exists local 

natural coordinates {x1,..., xm} such that 

glob) 0 

0 xm 
,(«) _ 

where g^ is non degenerate. In the three dimensional case, g^ is a two by two ma

trix and can be diagonalised into invertible functions. This leads us to a contravariant 

metric 
/ 

,(«) 

P{x,y,z) 0 ( ^ 

0 Q(x,y,z) 0 

0 0 z 

for which the genericity property is satisfied. 
V 7 

Once the 3D-Tiling Theorem have been established, there will be one last major 

property needed in our study: the imprimitivity of the action. Since we are dealing 
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with a Lie algebraic operator, we can assume that the domain of the operator is 

a homogeneous space M = G/H where go is the Lie algebra corresponding to the 

tangent space of G at the identity. Recall that the action of G on M is imprimitive 

if there exists a foliation of M that is invariant under the action of G. In three 

dimensional Euclidean space, the invariant leaves can be either curves or surfaces, 

see [34] for a more detailed description of the possible leaves. Throughout this paper 

we will only consider foliations by surfaces, this type of action will be called a 2-

imprimitive action. Note; however that it would be very interesting to study the 

case of a foliation by curves. In infinitesimal terms, if the leaves of the foliation are 

given by {A = constant}, then va(X) — /(A) where va is the left invariant vector field 

associated to a in the lie algebra go- This second criterion can be generalized to extend 

the notion of 2-imprimitivity to differential operators. If the level sets of the function 

A are the leaves of the foliation, the operator T° is said to acts 2-imprimitively if 

T°(A) and A are functionally dependent. One can easily show, see [38] for details, the 

following: 

Proposition 2.2. If the operators {Ta = va + rja : a € go} act 2-imprimitively , then 

there is a G-invariant foliation by surfaces on M . 

The central point here is that Lie algebraic operators generated by these 2-

imprimitive generators will behave the same way. Indeed the operator Ji applied 

to A will give back a function of A. By taking A as coordinate, the operator will 

separate in that variable and we will show that the equivalent Schrodinger operator 

"Ho will also separate partially. 

One of the key arguments for the final theorem is that the invariant foliation A 

is perpendicular to a geodesic foliation. This is due to the Lie algebraic construction 

of the metric g^\ and, according to the 3D-Tiling Theorem, this perpendicular foli

ation can be pulled back to the Euclidean space where the geodesies are well known: 
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straight lines. We will not go into the details, everything being already exhibited in 

[38] and [36], but we will state the mains results necessary to prove the theorem. 

We will denote A1 the distribution of tangent vectors that are perpendicular to 

A. For a Lie algebraic metric with invariant foliation A, one can prove the following: 

Theorem 2.1. If AL is tangent to a geodesic of M at one point, then the geodesic is 

an integral manifold of A1. 

In the context of the modified three dimensional Turbiner's conjecture, A is a 

rank two G-invariant distribution, thus, being a rank 1 distribution, A1 is necessarily 

integrable. We then get: 

Corollary 2.1. If rank ( Ax) — 1, then the integral curves of A1 are geodesic trajec

tories. 

After an investigation of the possible foliations of R3 which are in accordance to 

our problem, we will be able to show that the partial separation will occur either in 

Cartesian, cylindrical or spherical coordinates. Note that, as for the two dimensional 

case, some additional hypothesis, which will be stated below, are necessary. Based 

on a primitive action, an explicit flat Lie algebraic Schrodinger operator, for which 

there is no separation of variable, will be exhibited at the end of this paper. 

The aim of the next sections is to prove the three dimensional version of the fol

lowing modified Turbiner's conjecture proved by Rob Milson in [38]: 

Theorem 2.2. Let H be a second-order Lie algebraic operator generated by the Ta 

as per (1.1), g^ the induced contravariant metric and R a connected component of 

Mo for which g^ is positive definite. Suppose the following statements are true: 
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1. H is gauge equivalent to a Schrodinger operator; 

2. (R, g^rt) is isometric to a subset of the Euclidean plane; 

3. The operators {Ta} G 0 act imprimitively; 

4- R is either compact, or can be compactified in such a way that the G-action on 

R extends to a real-analytic action on the compactification. 

Then, both the eigenvalue equation TC^ = Eijj, and the corresponding Schrodinger 

equation separate in either a Cartesian, or a polar coordinate system. 

To this end, we will follow a path which is similar to the one followed by Rob 

Milson. However, as mentioned above, the extra requirement that the metric is 

diagonalisable and generic, will be required. 

2.3 Trapping and Tiling 

The main objective of this section is to show that, under some conditions, there is 

a global map from the Euclidean space to the positive definite region of a flat three 

dimensional almost-Riemannian compact manifold. As for the planar case, the 3D-

Tiling Theorem will follow principally from the 3D-Trapping Theorem. That later 

assures that the flow of a gradient vector field can never cross the locus of degeneracy. 

Note that through this section, the contravariant metric will be taken to be diagonal 

and the genericity property will be needed to prove both theorems. 
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2.3.1 3D-Trapping theorem 

The trapping property is a feature shared by every flat diagonal generic almost-

Riemannian metric whose coefficients are analytic functions. All the work involved 

in the proof is based on an appropriate expression of the diagonal components of the 

Ricci curvature tensor. We will use local coordinates (x, y, z), that we will sometimes 

denote (x1,^2,^3) to ease the notation. Thus, we define Hl = X ^ J ^ ^ T
 = 9%%'§^ 

and evaluate the diagonal components of the Ricci curvature tensor using the frame 

{H1, H2, H3}. After some work of simplifications and rearrangements, we obtain the 

following three expressions: 

2(Rn)92 = -3{H\g))2 + 2g{H\H\g)) 

+92 [PyQy + PzRz + 2QPyy + 2RPZZ •+ Pi - 2PPXX] 

+g[2P3QxRx + P2QPXRX + P2RPXQX - PQ2PyRy 

-PR2PZQZ - 3QR2P2 - 3Q2RP2}, 

2(R22)9
2 = -3(H2(g))2 + 2g(H2(H2(g)) 

+92[PXQX + QzRz + 2RQ2Z + 2PQXX + Q2
y- 2QQyy] 

+g[2Q3PyRy + PQ2QyRy + Q2RPyQy - P2QRXQX 

-QR2PZQZ - 3PR2Q2
Z - 3P2RQ2

X], 

2{RM)92 = -3(H3(g))2 + 2g(H3(H3(g)) 

+g [QyRy + PXRX + 2QRyy + 2PRXX + Rz — 2RRZZ\ 

+g[2R3PzQz + QR2PZRZ + PR2QZRZ - Q2RPyRy 

-P2RQXRX - 3PQ2R2 - 3P2QR2
X]. 
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Proposition 2.3. Let g^ be a diagonal, generic three dimensional contravariant met

ric tensor with analytic coefficients. If the diagonal elements of the Ricci curvature 

tensor are identically zero, then there exists locally defined, analytic functions p}, p2 

and p3 such that 

Hi{g) = pi-g fori = 1,2,3. 

Proof: Obviously, such functions exist around points where the determinant does 

not vanish. We can assume that g is zero at the origin and we focus on H1 first. The 

ring of convergent power series with complex coefficients is a unique factorization 

domain. Thus, up to multiplication by invertible functions in the ring, in the sense 

that the degree zero term is non-vanishing, g factors uniquely into a product of 

irreducible, complex valued, analytic functions that are zero at the origin. Let / be 

such factor, and let k be its multiplicity, i.e. g = fka, with / and a coprime. Since 

gi>i) is generic, fk is only a factor of one of the diagonal elements and if k is greater 

then one, /fc_1 divides the three partial derivatives of this component. Thus, one 

easily sees that f2k~l is a factor of the two last summands of 2(Rn)g
2-

g2[PyQy + ... - 2PPXX] + g[2P3QxRx + ... - 3Q2RP2]. 

Since Ru is identically zero, the remaining summand, 3(H1(g))2 — 2g(H1(H1(g)), 

must also be divisible by /2fc_1. But, the preceding term can be written as 

k(k + 2)a2(H\f))2f2k~2 + pf2k-' 

where p is some analytic function. Thus k{k + 2)a2(H1(f))2 must be divisible by / . 

Recall that a is relatively prime to / and k(k + 2) > 0, which forces Hx(f) to be 

divisible by / . The same must be true for all non-invertible irreducible factors of g, 

(and obviously true for the invertible factors), therefore Hx{g) is divisible by g. The 

same argument holds for H2 and H3. • 
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Note that, without the generieity requirement, the first term of the last summand 

of 2(i?n)<?2 is only guaranteed to be divisible by f2k~2 which does not allows us to 

establish the claim. However, maybe another rearrangement of the terms could lead 

to the same conclusion without this extra hypothesis. 

Prom this proposition, the 3D-Trapping Theorem follows immediately. Being 

identical to the one given in Corollary 6.4.2 of [36], the proof is omitted. 

Theorem 2.3. (The 3D-Trapping Theorem) Let gli he as in the preceding theorem, 

and let f be an analytic function. Then the flow of V(/) can never cross the locus of 

degeneracy. More precisely, the trajectories of the flow ofV(f) are either contained 

in the locus of degeneracy of glj, or never intersect it. 

2.3.2 3D-Tiling theorem 

In what follows, using the 3D-Trapping Theorem, we will prove a three dimensional 

version of Rob Milson's Tiling Theorem. As before, M is a compact, three dimen

sional, almost-Riemannian manifold endowed with g^ a generic and flat metric with 

diagonal analytic coefficients. R is a region where the metric is positive definite. 

The key argument for this proof is that either the degenerate points are unreach

able, or the metric g^ is the push-forward of a non-degenerate metric g^\ But 

before proving this proposition, the two following lemmas, deduced from the Proposi

tion 2.3 and the generieity property of the metric, will simplify the subsequent work. 

Under the same hypothesis, we have the following: 

Lemma 2.1. If f is a non-invertible, irreducible factor of g11, then, for i ^ j , f is a 

factor of g™j and a factor of fxj. 

Proof: Suppose that P = fko; where / is a non-invertible irreducible factor and 
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(/, a) — 1. By the genericity property of the metric, / is also coprime to Q and R, 

and from Proposition 2.3, 

H2{g) = Q(PyQR + PQyR + PQRy) = tf • PQR. 

The function P being a factor of all but one summands of the middle term, PyQ
2R 

has to be also divisible by fk, forcing fk to divide Py. Furthermore, 

f kf^fya + fVy iffc>l, 
Py ~ \ 

fy°~ + f°~y if fc = 1, 

thus / needs to be a factor of fy. D 

Lemma 2.2. Given g11, a diagonal component of the contravariant metric g^, its 

non-invertible factors are functions of the variable xl only. 

Proof: Consider / , a non-invertible factor of R. From the analycity requirement, / 

can be expressed locally by the following convergent power series, 
oo 

fz= ^2 /y*xV«fc. where /ooo = o. 
ij',fe=0 

According to Lemma 2.1, fx = f • h, for h an analytic function. The Taylor series of 

fx can therefore be given as a product of two series: 
oo oo oo 

U = E ifiJ^'1!^^ = E kk^lyjzk • J2 habcx
aybzc. (2.2) 

i,j,k=0 i,j,k=0 a,b,c=0 

If we suppose that there exists positive integers i, such that fak ^ 0, we can fix 

(a, (3,7), the smallest triple (with respect to the lexicographic order) such that fap1 ^ 

0. The coefficient of the monomial xa^1yl3z1 is a/Q/37, and according to (2.2), it can 

also be given by 

£ fijk • habc. 
i + a = a — 1 

3 +b = 0 
k + c = 7 
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But all the coefficients fak are zero since i = a — 1 — a < a. Consequently /Q/g7 = 0, 

a contradiction. So, we have fak = 0 for all i ^ 0, and the same argument is used to 

show that fijk = 0 for all j ^ 0. Therefore 

oo 

fc=0 

D 

We can now prove the following strong criteria for the unreachability of a degen

erate point. As for the rest of this paper, the degenerate point will be taken to be 

the origin. 

Proposition 2.4. // the order of one of the diagonal components gn is greater than 

one, then the origin is unreachable. 

Proof: Without loss of generality, R = zl(l + f(x,y,z)) where I > 1. We will 

compare the metric g^ to 

i(y) -

/ 

V 

i o o 

0 1 0 

0 0 z2 

\ 

J 

gdj) = 

\ 

which is a flat metric whose origin is known to be unreachable. We can write the 

contravariant metric as 

( P 0 0 ^ 

0 Q 0 

0 0 z2R 

where P, Q, R are non-singular at the origin. We can find a neighbourhood iV and a 

upper bound K > 0 such that sup^jP, Q, R} < K. If we consider the region R D'N, 

we must have 

(v,v)g>—{v,v)s, 

J 



2.3 Trapping and Tiling 31 

for all tangent vectors v. Indeed 

The length functional on curves in the metric g is bounded below by ^ time the 

length functional in the metric g. The origin, unreachable with respect to g, is there

fore unreachable with respect to g as well. • 

Corollary 2.2. If the origin is reachable, then the order of P, Q and R is at most 

one. 

This leads us, up to relabeling of the variables, to three possibilities: 

g = PQR = z{l + f(x,y,z)), (2.3) 

g = PQR = yz(l + f{x,y,z)), (2.4) 

g = PQR = xyz(l + f(x,y,z)), (2.5) 

that enable us to prove the following key lemma. 

Proposition 2.5. A degenerate point is either an unreachable point, or there exists 

a contravariant, non-degenerate metric tensor g^ with analytic coefficients defined 

on some neighborhood N C IR3 and an analytic map (f): N —» R such that (j>*(g) = g. 

Proof: If the origin is reachable, we are in one of three previous possibilities, say 

the case (2.5). Since each diagonal component has order 1, from Lemma 2.2, we can 

write P = AxP, Q — AyQ and R = AzR where P, Q, R are invertible. We consider 

the analytic map given by 

' x = e 
h-=< y = rf 

z — /j? 
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and we take N, the domain of this map, to be a neighborhood of the origin sufficiently 

small so that the image of the map is contained in R. One easily verify that, via this 

map, gW is the pushforward of 

/ P 

gW) = 

V 

P O O 

0 Q 0 

O O P 

which is non-degenerate at the origin. The cases (2.3) and (2.4) are resolved the same 

way, by considering respectively the maps 

0i := 4 

x ---- i 

y .= T) and fa := < 

Z == fJ,2 

x = S 

y = rf 

z = u? 

(2.6) 

D 

The maps fa will be called 2%th-fold maps. The name reflects the fact that the 

(£, rj, (j) space generically covers the (x, y, z) space in a 2l-to-one relationship. The 

exception being the folding planes, z = 0 for fa, y = z = 0 for fa and x = y = z = 0 

for fa. With this key lemma in hand, we can now assert that the positive-definite 

region of the almost-Riemannian manifold is isometric to the Euclidean space modulo 

a discrete group of isometries. The proof is identical to the one given in [36] for the 

two dimensional case and is based on the fact that reachable degenerate points are, 

in a way, removable. The three dimensional case is a little simpler since the only 

analytic maps we need to consider are the 2lth-fold maps. For these reasons, we will 

omit the proof. 

Theorem 2.4. (The 3D-Tiling Theorem) Let M be a compact three dimensional 

flat almost-Riemannian manifold with diagonal generic metric. Then, there exists a 

globally defined, real-analytic map ip : R3 —> M such that g^ is the push forward of 
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the Euclidean metric, and such that tp covers all of R plus the reachable portions of 

its boundary. Furthermore, R is isometric to the quotient R3/T, where T is the group 

of isometrics 7 such that '\jj — ipy. 

Note that since 4> is a 2'th-fold map, the group of isometries is indeed the group 

of reflections along the folding planes. 

2.4 Foliations 

In this section, we intend to determine what are the possible rank two foliations of R3 

that are perpendicular to straight lines. This intermediate result, used in conjunction 

with the 3D-Tiling Theorem, will be used to prove that the function A, whose level 

sets are the leaves of the invariant foliation, is a coordinate of either the Cartesian, 

the cylindrical or the spherical coordinates systems. 

The rank two leaves are complete on M but they may cross the reachable part of 

the degenerate locus D5 . Is is not clear a priori that the pull back of these leaves is 

also complete in R3. Indeed, the rank of these leaves may drop where the Jacobian 

of tp : R3 —> R C M is degenerate. To avoid confusion, we denote Sg the degeneracy 

locus of the foliation in R3 and we have the inclusion Sg C xj)~l(Dg). 

From the 3D-Tiling Theorem, R, the positive definite region of the manifold, is 

isometric to the quotient R3/T where T is a discrete group of reflections. Thus R3 

is tiled into isometric regions where the pull back of each leaf is repeated. If a rank 

two leaf of R crosses Dg, its pull back will be reflected on the other side of ip~1(T)g). 

Hence the rank two leaves; in R3 can be extended without restriction but they might 

fail to be smooth. 
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However, according to the 3D-Trapping Theorem, the trajectories of the flow of 

the gradient of A are either contained in the locus of degeneracy, or never intersect it. 

This forces the leaves to cross ^_ 1(Dg) perpendicularly, thus, we can conclude that 

the rank two leaves are also smooth in R3. 

Therefore throughout this section, A will denote a foliation of M3 which is of rank 

two almost everywhere. By degenerate points we refer to S5, the points where the 

rank drops. One easily sees that the rank two leaves never cross the locus of degener

acy. In accordance with Corollary 2.1, the leaves of Ax, the perpendicular foliation, 

are straight lines at every non-degenerate point. Our aim is to show that the leaves 

of A can only be planes, infinite cylinders or spheres. Before proving this result we 

need to establish some notations together with two lemmas. 

For any point x G E3, we denote M.x its leaf and, for any curve c contained in 

a rank two leaf M., we denote Sc the ruled surface generated by the normals of M. 

along c. Throughout this section the non-degenerate points will be dense and we will 

use the definitions found in [43] to describe solids. 

Lemma 2.3. Let c(t) be a continuous family of curves parametrized by t € (—6,5), 

contained in M., a rank 2 leaf. Suppose that for every t\ ^ £2 € (—5,5), the curves 

c(t\) and c(t2) are distinct almost everywhere. If all the surfaces Sc(t) intersect each 

other, then they all intersect at a set X which is of dimension at most one. 
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a<tL 

i , e<°> 

Proof: Two different curves, c(t\) and c(t2), can only intersect at points, hence the 

two ruled surfaces, 5c(tl) and Sc(t2),
 c a n intersect at most in a one dimensional set. 

For any r G (—5,5), we define XT the intersection of 5C(T) with all the other surfaces. 

J r : = | J 5c(t) n SC{T) + 0 . 
t £( -<$,<$) , 

The set XQ can not be a surface. Otherwise, by smoothness of the leaf, Xp would also 

be a surface for \p\ < e and e sufficiently small. Thus we would have 

a three dimensional degenerate set. Hence, every surface Sc^) will intersect 5C(0) at 

Jo which is of dimension is at most one. The same argument holds for each set Xt. 

Therefore, J0 = Xt for all i G (-5,8). D 

Lemma 2.4. Let c(t) be a continuous family of curves parametrized by t G (—5,6) 

and contained in M., a rank 2 leaf. If, for all t G (—8,8), each normal of M. along 

c(t) intersects a degenerate curve X, then X is parallel to c(t) for all t G (—8,8). 
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Proof: Let U C E3 be an open set contained in 

S '•= U 5cW-
t€(-5,5) 

We pick x 6 W , a A-rank 2 point, and, by completeness, M.x is crossed perpendicularly 

by each normal associated to the family c(t). This section of the leaf, given by 

Utef-W) Mx H <Sc(t), is therefore parallel to M.. We denote w(t) the intersection of 

Mx with 5c(t) and we note that c(t) is at constant distance from w(t). 

If J was not parallel to a curve c(t), one could easily choose a rank 2 point, say y, 

sufficiently closed to X, for which My would intersect the degenerate set X. This is 

impossible since the leaf M.y has A-rank 2 everywhere. • 

Observe that the intersection curve X, being parallel to the leaves, has to be non-

singular. Note also that the curves in the family are necessarily all parallel to each 

others. We can now prove the following three propositions, which, put together, will 

enable us to conclude about the three possible foliations. 

Proposition 2.6. Let M be a rank 2 leaf of the foliation A, if there exists an open 

U C M. for which the Gaussian curvature is positive, then M. is a sphere. 

Proof: Let y £ U and consider c(0) C U the segment of the curve starting at y 

and following the leaf M. in a given direction ±v. If we fix the end points a and b 

and slide c(0) in the two directions perpendicular to v, we get a family of curves c(t), 

t G (—5,5), contained in U. We denote V the subset generated by the curves c(t). 
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Since the two principal curvatures are non-zero in U, the normal surfaces Sc(t) 

intersect in a connected component and, by Lemma 2.3 the intersection is either a 

point q, either a connected curve J, parallel to c(t) by Lemma 2.4. Suppose first that 

the intersection is a curve. Being parallel to J , the surface V has to be contained in 

a twisted cylinder centered at J . For each point p on the curve J , we denote d{p), 

the intersection of V with the normal plane of X at p. 
c'M) 

Again, c'(p) is a continuous family of curves, here parametrized by p. Since T is 

parallel to the surface V, the surface Sci(p) is contained in the normal plane of p. By 

the curvature hypothesis, these plane sections intersect, say in X, and by lemma 2.3, 

I is either a point, either a straight line. The later is impossible since, by lemma 2.4 

the line segment J would be parallel to every d(p) whose curvatures are not zero. 

Therefore, 1 has to be a point q, and all the normals of V intersect in q. Necessarily, 

the curve 1 needs to restrict to the point q. In that case V is parallel to q, hence V 

is contained in a sphere. 
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The Gaussian curvature on V has to be constant, say -̂ 2, and all the points of V are 

at distance R from q. We are left to show that if we extend V to the entire leaf M., 

the distance between M and q will be preserved, i.e. M. is a sphere. 

Without loss of generality we consider V to be the maximal spherical cap with pole 

y. We denote C the cone with apex q generated by the normals of V, dV the boundary 

of V, and Vx the curve obtained by extending V through x € dV perpendicularly to 

dV along the leaf. We consider as the Z-axis the line containing q and y and we 

define Vw, the alignment plane, containing the Z-axis and the point w. 

Remark that if the Gaussian curvature of M. changes along the curve Vx, by 

smoothness of the leaves, for y G dV close to x, the curvature will also change along 

the curves Vy. The key point here is that if there are changes in the curvature, the 

surfaces Syx have to eventually leave their alignment planes. Indeed we need to avoid 

two dimensional intersections with C, otherwise, together with the intersections of 

the surfaces Svy with C, we would get a three dimensional degenerate set. We are 
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left with two possibilities. Either C n Syx is always q, which is impossible since the 

curvature changes, either Svx eventually leave the cone, which forces the normals of 

Svx to leave their alignment plane. Note also that, if a normal stay in the alignment 

plane, it as to intersect C at q. The main objective now is to show that if we extend 

the spherical cap, the normal lines stay in their alignment planes, intersecting the 

cone at q and preserving the curvature of the spherical cap. 

Let 7e be the closed curve in M. which is at distance e outside dV. By complete

ness, such a curve always exists for e sufficiently small, say e < e. We want to show 

first that along such a path, all the normal lines swing in the same direction with 

respect to their alignment; planes. Let x G 7e, and assume the curve is traversed in 

the clockwise direction. Note that, if the dot product between the normal line and 

the tangent vector of the curve 7£ is positive, then there is an increase of the Z-value 

of 7e around x. Suppose we can take two curves, Vx and Vy, for which the normal 

lines swing in different directions. Say, without loss of generality, that along each 

curve 7e, e G [0, ei], either the direction changes only once, either the normal is in the 

alignment plane at Vx and then rolls in at most one direction. By smoothness of the 

leaf, for each 7e, there would be at least a point ae for which its normal lies in the 

alignment plane Vai, hence intersects C at q. With an appropriate choice of ae, for 

every e in [0, ei], we could generate the curve a(e) parallel to q. Since a(0) G dV the 

curve would be at distance R of q. 

Necessarily, there should be another change of direction, say between Vy and Vz, 

along the curves % for e G [0,62]- We would then get another curve /9(e) at distance 

R of q. Hence for all e G [0, e], where e = min{ei, e^}, a€ and /3e would be at distance 

e from dV and at distance: R from q. Thus, for a fixed e, they would necessarily have 

the same Z-value. But along 7e, everywhere in between a(e) and /3(e), the normal 
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lines are on the same side of their alignment plane Vz, implying a strict increase (or 

decrease) of the Z-value between the two points. This is impossible, hence the normal 

can only swing in one direction. 

Therefore, the Z-value is monotonic as we follow the closed curve 7e in a given 

direction. This is impossible except if the Z-value is constant, that is, if the normals 

stay in their alignment planes. Thus, for e < e the normal lines of M. along % must 

intersect the cone at q. Note that the curves Vx stay parallel to q when they intersect 

7e. So we can increase V to 

V:=V(j7e 

a bigger spherical cap. This contradicts the maximality of V. Hence V has to be a 

sphere and is indeed the entire M.. D 

Proposition 2.7. Let M be a leaf of the foliation A, if there exists an open U C M. 

for which one of the principal curvatures is identically zero and the other is non-

vanishing, then M. is an infinite cylinder. 

Proof: Let C(x) and C'(x) be the principal curves passing through x E U re

lated respectively to the vanishing and the non-vanishing principal curvatures, say 

0 = Ai < A2. Note that C(x) is a line. Since A2 is never vanishing on U, the normal 

surfaces Sc(x) intersect, and from Lemmas 2.3 and 2.4, all the lines C(x) are parallel 

to X, which has to be a line also. By following the leaf along C'(x), the distance 

between X and the points in U, say R, has to be preserved. Therefore, U has to be 

contained in a radius R cylinder. 
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We can extend C'(x) outside U, and for e sufficiently small, we define the curve 7e 

to be the union of the points along these extensions that are at distance e from the 

boundary of U. The normal surfaces Sle have to intersect otherwise it would create 

a three dimensional degenerate set with the normal lines of U. By Lemma 2.3, these 

normal surfaces need to intersect in a curve and since the leaf is smooth, this curve 

has to be I. By Lemma 2.4, these curves are parallel to the line J so, by extending 

C'(x) along M, we get a cylinder C. 

If we extend the principal curve C(x) outside the cylinder C, the curve obtained, 

say C(x)*, needs to be a straight line. Otherwise, as for the previous case, it would 

create a three dimensional degenerate set while intersecting the normal lines of the 

cylinder. Consequently, M has to be an infinite cylinder. • 

Proposition 2.8. If M is a leaf of the foliation A, then there is no open U C M for 

which X\ • A2 < 0. 

Proof: Assume the opposite, and pick y € U. We consider c(0), the intersection 

of U with the principal curve through y associated to Ai < 0. We denote c(t), the 

curves of U parallel to c(0). By the curvature hypothesis, the normal surfaces 5c(t), 

intersect. Hence by Lemma 2.3 and Lemma 2.4, they intersect at J a line parallel to 

the curves c(t). 
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After crossing the intersection curve, the normal lines of U will cross leaves for 

which the two principal curvatures have the same sign, hence by Proposition 2.6, the 

leaves on the other side of J will be spheres. The presence of a hyperbolic surface 

and a spheres is impossible for the foliation A. • 

Corollary 2.3. The non-degenerate leaves of the foliation A are either planes, cylin

ders or spheres. 

There seems to be a deep connection between the leaves arising from a 2-imprimitive 

action and isoparametric manifolds. Recall that a hypersurface M" of a Riemannian 

manifold V n + 1 is an isoparametric manifold if M™ is locally a regular level set of a 

function A with the property that both ||V(A)|| and A(A) are constant on the level 

sets of A. One easily check that the three possible leaves obtained in this section 

are indeed isoparametric manifolds. The interesting point is that the only complete 

isoparametric hypersurfaces of M3 are planes, spheres and round cylinders and this 

classification holds for any hypersurfaces of Rn+1, see [32] for details. Hence, the the

ory of isoparametric manifolds should provide a good setting to approach Turbiner's 

conjecture in higher dimensions. 
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2.5 3D-Turbiner's conjecture 

We have now all the tools needed to prove the 3D modified Turbiner's conjecture. 

This main theorem is a partial affirmation of Turbiner's conjecture in three dimen

sions. First note that .the original conjecture involved complete separation while here 

we succeed to prove that the equations separate partially. By a partial separation, 

we mean that the equations separate into two equations, one involving only one vari

able, the other involving the remaining variables. Also, three assumptions need to 

be added to the original conjecture: the underlying action has to be 2-imprimitive, 

the manifold on which the operator is defined has to be compact or can be compact-

ified in such a way that the G-action on R extends to a real-analytic action on the 

compactification and the contravariant metric needs to be diagonal and generic. As 

for the two dimensional case, the recipe is to pull back the invariant foliation to the 

Euclidean setting where the leaves can only be prescribed surfaces. Then working out 

the formulas for the operators in the appropriate coordinates, one succeeds in isolat

ing one of the variables. The major differences with the two dimensional case are: 

the necessity of the genericity requirement and the partial separation obtained. As 

mentioned previously, at least one of the extra requirements of the modified version 

of the conjecture is necessary; a counterexample will be given in the next section. 

Theorem 2.5. [3D Modified Turbiner's conjecture] Let H be a second-order Lie 

algebraic operator generated by the operators Ta as per (1.1), g^ be the induced 

contravariant metric and R be a connected component of Mo for which g^ is positive 

definite. Suppose that: 

1. TC is gauge equivalent to a Schrodinger operator; 

2. (R,g{ij)) is flat; 

3. The operators {Ta} E Q act 2-imprimitively ; 
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4- R is either compact, or can be compactified in such a way that the G-action on 

R extends to a real-analytic action on the compactification; 

5. The metric g^ is diagonalizable and generic or M is a transverse, type chang

ing manifold. 

Then, both the eigenvalue equation Hip — Eip, and the corresponding Schrodinger 

equation separate partially in either a Cartesian, cylindrical or spherical coordinate 

system. 

Proof: We denote A, the T°-invariant foliation. The leaves are locally the level sets 

of a function, say A and, from Proposition (2.2), this foliation is also G-invariant. 

The almost-Riemannian manifold (R, g^) fulfill the hypothesis of the Tiling theo

rem, thus there exist a real analytic map <£ : R3 —>• R for which gW is the push 

forward of the Euclidean metric. It is then possible to pull back the rank 2 foliation 

A to get $*(A) which is of rank two almost everywhere. From Corollary 2.1, $*(A) is 

locally orthogonal to a foliation by geodesies that are, in this context, straight lines. 

The rank two leaves are complete, hence, we can apply Corollary 2.3, to conclude 

that there exists Cartesian coordinates (x, y, z) such that the leaves are given by the 

level sets of A, where A is either x, x2 + y2 or x2 + y2 + z2. 

We will now move the setting to M3. There is still the local action of the group G, 

but this action is non-degenerate only whenever the Jacobian of $ is not degenerate. 

Separation is a local phenomenon, so for the present purpose we can safely ignore the 

points of degeneracy. 

The operator TC is gauge equivalent to a Schrodinger operator Tio, hence it must 
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satisfy the closure condition. That means that there exists a function a such that 

H = A + V(a) + U0. 

From the 2-imprimitivity of the action, TC(X) = /(A) and one easily verify that the 

Laplacian of A is a function of A for the three possible coordinate systems. Thus A is 

also invariant with respect to V(cr) + UQ. But, remark that 

[V(a) + t/0](A
2) - A[V(<r) + UQ](X) = AV(a)(A), 

which forces both V(c) and UQ to be functions of A. Depending of the metric, one 

easily check that this forces the gauge factor to separate the following way: 

a(x,y,z) = p(x)+r](y,z), 

a(r,6,z) = p(r) + r)(6,z), 

o(r,6,<l>) = p(r)+r,(9,<P). 

Therefore the equation Hip = Eip separates partially and we are left to show that 

the Schrodinger equation also separates. 

Recall that U, the potential of the Schrodinger operator is given by: 

U = U0 + V(a)2 + A(a), where U0 = U0(X). 

After easy computations, the potentials are given respectively by 

U = F(x) + G(y,z), 

U = F(r) + ±G(9,z) + H(e,z), 

U = F(r) + ^G(9,<f>), 

where F depends on the two functions p and UQ, while G and H depend on rj. 
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This is sufficient to conclude that the Schrodinger equation 

(A + U)V = EV 

separates partially either in Cartesian, cylindrical and spherical coordinates. Indeed, 

we can perform respectively the following separations: 

[dxx + F(x)-E}^1(x) = atfi(x) 

[dm+ d„ + G(y,z)]V2(y,z) = -a*2(y,z), 

[drr + Ur + F^-E^.ir) = (±a + fiV^r) 

[d$e + dM + G(e}z) + H(e,z)]*2(d,z) = -(a + /3)*2(d,z), 

[drr + ^dr+ F(r)-E\^!1(r) = ^ a * i ( r ) 

~Yldee + &<$><$> + cot 0d0 + G(6, <p)] = -aV2(d,<f>), 

where a and /? are separation constants. • 

2.6 Counterexample 

To conclude, we exhibit an example to show that the extra hypotheses can not be 

omitted. Indeed, we construct a Lie algebraic Schrodinger operator using generat

ing operators that act in a primitive way and we check that the potential can not 

be separated, even partially. This counterexample is the natural generalization of 

the one given in [38] for the two dimensional case. It also motivates the notion of 

almost-Riemannian manifold by realizing the quotient of Euclidean space by an infi

nite reflection group. The general idea for this type of construction is to find a set of 
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basic invariants and use them as coordinates. 

This construction is a bit different from,the usual one. Instead of choosing first 

the coefficients that generates a Lie algebraic operator and then verifying afterwards 

the closure condition, we proceed in an different order. We first create an almost-

Riemannian manifold intimately related to the Lie algebra, then create an operator 

satisfying the closure condition and finally check if there is a choice of coefficients 

that generate that operator. We consider in this example the Lie algebra s^, I) its 

diagonal Cartan subalgebra equipped with the usual Killing inner product and W, 

the affine Weyl group associated to the root system. We denote L\, L2, L3 and L4 

the weights associated to the diagonal entries of a trace-free diagonal matrix, where 

Li — —L\ — L2 — L3. Taking L\, L2 and L3 as non-orthogonal coordinates, the 

contravariant form of the metric tensor is given, in an appropriate basis, by 

( 2 - 2 /3 - 2 /3 ^ 

- 2 /3 2 - 2 /3 • 

^ - 2 /3 -2 /3 2 j 

We define Zk = e2mLh, the generators of the corresponding torus of diagonal uni-

modular matrices. The algebra of VF-invariant elements of the complexified coor

dinate ring is generated by xi, X2 and x3, the characters of the three fundamental 

representations of 5I4C, see [16] for more details. These three invariants are given by 

Xl = Z1+Z2 + Z3 + Z4, 

X2 = Zl-22 + ZlZ3 + Z1Z4 + Z2Z3 + Z2Z4, + Z3Z4, 

X3 = -21^2^3 + Z1Z2Z4 + ZiZ3Z4 + ^2^3-24, 
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and one easily computes the contravariant metric associated to this algebra: 

( Xi~ 8/3x2 i(XiX2-6X3) I ( X l X 3 - l 6 ) ^ 

9{ii) = -8v2 | (xiX2-6X8) | ( x l - 2 x i X 3 - 4 ) | (xaX3-6xi) • 

^ |(XiX3-16) f(X2X3-6xi) Xl-8/3X2 y 

On the real torus, xi and X3 are complex conjugate, while X2 is real-valued. Thus, 

fundamental invariants, denoted (x, y, z), are given by the real and imaginary parts 

of xi and by X2- In the real coordinates, the corresponding contravariant metric g^j\ 

modulo a factor : zy-, reads as follow: 

' 2x2 - z2 - 4y - 8 2{xy - Qy) 

2(xy - 6y) 4(y2 - 2x2 - 2z2 - 4) 

3xz 

2(yz + 6z) 

\ 

3xz 2(yz + 6z) 2z2 
X' 

(2.7) 

+ 4y - 8 J 

For convenience, we will omit this —87r2/3 factor and one can verify that the 

Riemannian curvature tensor is identically zero where the metric is positive definite. 

The locus of degeneracy of the metric is given by 

a = -16(a;2 + 22)3 + (x2 + 22 + 58/39)(320y2 + 768) 

+(x2 - z2)(32y3 - 1152j/) + {xA + z4 - 352/39)(-4y2 + 240) 

-144(z4 - zA)y - 8x2y2z2 - 1248xV - 64y4 = 0. 

The objective now is to construct a Lie algebraic Schrodinger operator on a space 

for which the contravariant metric is given by (2.7). The entries of the matrix are 

degree two polynomials, hence the metric tensor can be generated by 03, the Lie 

algebra of infinitesimal affine transformations of R3. A set of generators of a3 is given 

by: 
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T1 = dx, T2 = dy, T3 = dz, T4 = xdx, T5 = xdy, T6 = xdz, 

T7 = ydx, T8 = ydy, T9 = ydz, T10 = zdx, Tn = zdy, T12 - zdz, 

and one easily sees that there is no function A for which A and Ta(X) are functionally 

dependant for all the generators Ta. Thus, these operators do not admit an invariant 

foliation and the realization of 013 is therefore primitive. In terms of these operators, 

the Laplacian, in the (x,y,.z) coordinates, is given by 

A = - 8 ( ^ ) 2 - 16(T2)2 - 8(T3)2 + 2(T4)2 - 8(T5)2 - (T6)
2 + 4(T8)2 - (T10)2 - 8(TU)2 

- 2 { T \ T7} + 2{T3, T9} - 12{T2, T4} + 12{T2, T12} + 3{T4, T12} 

+2{T4, T8} + 2{T8, T12} - 2T4 - 4T8 - 3T12. 

For a the determinant of the contravariant metric (2.7), one easily verifies that 

Vlog(7 = 12(T4 + r 1 2) + 16T8. (2.8) 

Therefore, the operator 

H = -A + V\oga 

is Lie algebraic and gauge equivalent to Ho, a Schrodinger operator, via the gauge 

transformation: 

Ho = e~log(<T)/2 o H o elog(ff)/2 = - A + U. 

The potential U can be computed, 

U = 80 - 64[x6 + 3 x V + 3 x V + z6 - 18x4y + 2x2ys - 2y3z2 + 18yz4 

+Q0x4 + 60x2y2 - 312x2z2 - 8t/4 + 60y2z2 + 6O24 + 

-360x2y + 360yz2 + 336x2 + 192y2 4- 336z2 - 6401a-1, 
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and can also be described in terms of the affine coordinates (Li, L2, L3) by 

[7 = 80+ Y . 2, .) 7-rr. (2.9) 

To conclude our counterexample, we need to show that the Schrodinger equation 

Ho cannot be solved, even partially, by separation of variables. The potential here is 

symmetrical in the 3 variables, hence the separation in respect to one variable would 

imply a separation in the other ones, thus a complete separation of variables. The 

Schrodinger equation can be solved by separation of variables in only eleven coor

dinate systems, nine of which (with the exception of paraboloidal coordinates) are 

particular cases of the ellipsoidal coordinates. According to [40], these coordinates 

are: rectangular (Cartesian), circular cylinder, elliptic cylinder, parabolic cylinder, 

spherical, conical, parabolic, prolate spheroidal, oblate spheroidal, paraboloidal, el

lipsoidal coordinates. 

An appropriate change of coordinates gives the orthonormal system (2/1,2/2,2/3) 

and one gets the following similar potential: 

[7 = 80+ V — = 1 — (2.10) 

Since the nine first coordinate systems are particular cases of the last one, we only 

have to show that there is no separation possible in the last two coordinate systems: 

ellipsoidal and paraboloidal. 

The ellipsoidal system of coordinates (£1,62, £3) is related to the Cartesian one by 

2/i = 
\e,-^m-a^i-o?) 

a2(a2 - b2) 

V2 
'(tf-6a)&2-62)«2-62) 

62(&2 - a2) 

2/3 = ^ , where £ 2 > a 2 > £ 2 > 6 2 > £ 2 > 0 , 



2.6 Counterexample 51 

while, for the paraboloidal, we have: 

2/i 

V2 = 

W-- a2m - a2)(e3 - a2) 
(a2 - b2) 

'(8 --vm-vm-v) 
(b2 - a2) 

2/3 = ]/\(ei+e2+e3-a
2-b2), where £2 > aa > £ >b2> $ > 0. 

For these two systems, a given potential U separates if and only if it is of the form 

rj = fe2 - ^) î(6) + (e2 - m t e ) + fo2 - m & ) 
& - e2m - tmi - e3) 

After the suitable substitution, the potential U, in terms of the new coordinates 

(6)^21^3)) fails to be of that required form. Therefore, no separation is possible. 

Thus, this example emphasis on the necessity of the extra hypotheses we needed 

to add to the original conjecture. Here, at least one of these hypotheses, the imprim-

itivity of the action, fails to be satisfied and the Schrodinger equation can not be 

solved by separation of variables, even partially. 

This article was published in the Journal of Geometry and Physics, Vol number 58, 

Melisande Fortin Boisvert, Turbiner's Conjecture in Three Dimensions, pp 218-237, 

Copyright Elsevier (2007). 
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Prom Turbiner 's Conjecture to 

Quasi-Exactly Solvable 

Schrodinger Operators 

We now continue our investigation of Schrodinger operators in three dimensions with 

a different approach. Instead of working out the question of separability we focus 

on the problem of determining part of the spectrum of the Schrodinger equation. To 

this effect, a partial classification of quasi-exactly solvable Lie algebras of first order 

differential operators is performed and these Lie algebras are used to construct new 

quasi-exactly solvable Schrodinger operators in three variables. 

Note that, while the differential operators were imposed to be only Lie algebraic 

for Turbiner's conjecture, the operators considered in this second paper must be 

quasi-exactly solvable. Furthermore, the Lie algebras considered for the classification 

performed in the following pages do not have, to be imprimitive. However when it 

come to chosing which imprimitive Lie algebras we would consider for the partial 

classification, the 2-imprimitive algebras are chosen due to the separation theorem 

proved in the above paper. Moreover, the possible application of this separation 

theorem is discussed for some new tridimensional quasi-exactly solvable Schrodinger 

operators. 
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Chapter 3 

Quasi-Exactly Solvable Schrodinger 

Operators in Three Dimensions 

3.1 Introduction 

It seems that the concept of a "spectrum generating algebra" was first introduced by 

Goshen and Lipkin in [26] in 1959. However, this paper did not seem to have been 

be noticed by the community at the time and, ten years later, spectrum generating 

algebras were independently rediscovered by two groups of physicists, see [9] and [12]. 

Their work was an impetus for further research in this area as one can see by browsing 

in the two volume set of reprints [11] and the conference proceedings [27]. A survey of 

the history and the contribution papers related to the spectrum generating algebras 

is given in the review paper of Bohm and Ne'eman, which appears at the beginning 

of [10]. In the early 1980's, Iachello, Levine, Alhassid, Giirsey and collaborators 

exhibited applications of spectrum generating algebras to molecular spectroscopy; a 

survey of the theory and applications is given in the book [28]. In these applications, 

both nuclear and spectroscopic, the relevant Hamiltonian is a Lie algebraic operator 

in the sense described previously. Finally, the analysis of a new class of Schrodinger 
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operators, the quasi-exactly solvable class, was initiated in late 1980's by Shifman, 

Turbiner and Ushveridze, see [42], [44], [47]. A survey of the theory and applications 

of quasi-exactly solvable systems in physics is given in [48]. 

There exists a complete classification of normalizable quasi-exactly solvable Schro

dinger operators in one dimension. In two dimensions, this classification is partially 

complete. Indeed, all the Lie algebraic linear differential operators for which the for

mal spectral problem is solvable are known, [23]. The main contribution of our paper 

is to extend these results to three dimensions by giving a partial classification of the 

quasi-exactly solvable Lie algebras of first order differential operator in three vari

ables, and showing how this can be applied to the. construction of new quasi-exactly 

solvable Schrodinger operators in three dimensions. Our work is based on the classi

fication of finite dimensional Lie algebras of vector fields in three dimensions begun 

by Lie in [34] and almost completed by Amaldi in [6]. 

In general, there is no a-priori method for testing whether a given differential 

operator is Lie algebraic or quasi-exactly solvable. However, one can try to perform 

a classification of these operators under local equivalence using a general method of 

classification described by Gonzalez-Lopez, Kamran and Olver in [23]. 

The first step toward the classification of normalizable quasi-exactly solvable 

Schrodinger operators is to classify the finite dimensional Lie algebras of first or

der differential operators up to local diffeomorphism and rescaling. Then, the task is 

to determine which of these equivalence classes admit a finite dimensional g-module 

M of smooth functions. Then, from the quasi-exactly solvable Lie algebras found 

in the second step, one can construct second order differential operator as described 

in (1.1) from any choice of coefficients Cab, Cc, and Co- The third step consists in 
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determining which of these operators are equivalent to a Schrodinger operator and 

this can be performed by verifying the closure condition. Finally, the last step in this 

classification problem is to check if the functions contained in the g-module J\f are 

square integrable. 

As mentioned previously, the entire classification has been established in one di

mension. In the scope of the first two steps, every quasi-exactly solvable Lie algebra 

is locally equivalent to a subalgebra of the Lie algebra 

, d d o d .,, 
0w = { ^ ' X ^ ' X ^ . - n X ' 1 } ' 

where n is a non negative integer, see [24] for a more detailed explanation. Then, once 

a second order differential operator is constructed, since all one forms are closed in 

one dimension, such an operator will always be equivalent to a Schrodinger operator, 

reducing the third step to a trivial step. Finally Gonzalez-Lopez, Kamran and Olver 

determined in [22] necessary and sufficient conditions for the normalizability of the 

eigenfunctions of the quasi-exacly solvable Schrodinger operators. 

In two dimensions, the first two steps of the classification problem were determined 

by the same authors in [20] and [25]. Based upon Lie's classification of Lie algebras 

of vector fields, see [34], a complete classification of the quasi-exactly solvable Lie 

algebras g of first order differential operators, together with their finite dimensional 

0-modules, was completed. The case of two complex variables is discussed in the first 

paper while the second paper completed the classification by considering operators 

on two real variables. However, the last two steps are not yet completed but a wide 

variety of normalizable quasi-exactly solvable Schrodinger operators has been exhib

ited, see for instance [23], [24] and [25]. 
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In the next section, a partial classification of quasi-exactly solvable Lie algebras 

of first order differential operators in three dimensions is given. While the two first 

steps were successfully completed in one and two dimensions, only part of this work 

is now done in three dimensions. However, these new quasi-exactly solvable Lie 

algebras can be used to seek new quasi-exactly solvable Schrodinger operators in three 

dimensional space. The last section of this paper is devoted to the description of new 

quasi-exactly solvable Schrodinger operators in three dimensions. Eigenvalues are also 

computed for two families of Schrodinger operators. These eigenvalues are part of the 

spectrum of the operators and their eigenfunctions, together with their nodal surfaces, 

are exhibited. In addition, a connection is made between the separability theorem 

proved in [15] and the quasi-exactly solvable Schrodinger operators are described. 

The quasi-exactly solvable models obtained in our paper are new as far as we can 

tell. In particular they are not part of the list of multi-dimensional quasi-exactly 

solvable models obtained in [48] by the method of inverse separation of variables. 

3.2 Classification of Quasi-Exactly Solvable Lie Al

gebras of First Order Differential Operators 

3.2.1 Lie Algebras of First Order Differential Operators 

Our goal in this section is to give a partial classification of quasi-exactly solvable Lie 

algebras of first order differential operators in three dimensions. A first step toward 

this goal is to obtain a classification of the finite dimensional Lie algebras g of first 

order differential operators. After this is done, the next step is to impose the exis

tence of an explicit finite dimensional g-module J\f of smooth functions. To this end, 

we will first summarize the basic theory underlying the classification of Lie algebras 

of first order differential operators. 
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For M an n-dimensional manifold, we denote by ^"(M) the space of smooth real-

valued functions and V(M) the Lie algebra of vector fields on M. The space .F(M) 

form a V(M)-module under the usual derivation rj —> v(r)), where v is a vector field in 

V(M) and r\ a function in F(M). The Lie algebra of first order differential operators 

V1(M) can be described as a semidirect product of these two spaces, V1(M) = 

V(M) K .F(M). Indeed, each element T in V1(M.) can be written into a sum T = v+r] 

and the Lie bracket is given by 

[T\T2} = [v\v2]+v1(ri2)-v2(r)1), where T = vl + rf e V\M). (3.1) 

Note that the space .F(M) is also a V1 (M)-module with T(() = v(() + 77 • (. 

Consequently, any finite dimensional Lie algebra of first order differential operators 

g can be written as 

T1 = vl + r]\...,Ts = vs + r)s,Ts+1 = (\ ...,Ts+r = C, (3.2) 

where ti1,...,?;5 are linearly independent vector fields spanning fj c V(M), a s-

dimensional Lie algebra and where the functions ^1,...,Cr act as multiplication op

erators and span M. C ^"(M) a finite dimensional h-module. Note that restrictions 

need to be imposed to the functions rf for g to be a Lie algebra. Indeed, without the 

cohomological conditions that will be described below, the Lie bracket given in (3.1) 

does not necessarily return an element in the Lie algebra g. 

For T = v + ?y, we define a 1-cochain F : h —> .F(M) by the linear map (F; v) = 77. 

Since any function ( G M can be added to T without changing the Lie algebra g, 

this map is not well defined. To deal with this issue, we should therefore interpret 

F as a Jr(M)/A4-valued 1-cochain. Thus, from the Lie bracket given in (3.1), it is 

straightforward to see that g is a Lie algebra if and only if the 1-cochain F satisfies 
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the bilinear identity 

vi(F;vi)-v>(F;vi)-{F;[vi,vi})€M, v\vjet)- (3.3) 

In terms of Lie algebra cohomology, this condition can be restated as follows, 

(SiF; vi,v^) G M for all v\ v> in f), i.e. F is a ^7(M)/A1-valued 1-cocycle on h. (See 

[16] for a detailed description of Lie algebra cohomology.) 

This classification of Lie algebras of first order differential operators would not 

be complete without considering the local equivalences between the Lie algebras. In

deed, if a gauge transformation with gauge factor \i = eA, is performed on an operator 

T = v + rj in g, the resulting differential operator T = ex • T • e~x = v + rj — v(X) 

will only differ from T by the addition of a multiplication operator v(X). Again, 

this can be expressed in cohomological terms. Indeed, under the O-coboundary map 

50 : t) —> J7(M)/M denned by (80X;v) = v(X), the multiplication factor v(X) can 

be interpreted as the image, or the O-coboundary, of the function A. Hence, combin

ing these two observations, it is possible to conclude that the map F is an element 

in #1(I),<F(M)/.M) = kev8i/Im50. Thus, if two differential operators g and g are 

equivalent with respect to a change of variables <p and a gauge transformation given 

by n = eA, these two operators will correspond to equivalent triples (h, M, [F]), and 

(i),M, [F]), where % = </>*(h) , M = (p,(M) , and F = tp, o F o y~l + 80X. This is 

summarized in the following theorem. 

Theorem 3.1. There is a one to one correspondence between equivalence classes 

of finite dimensional Lie algebras g of first order differential operators on M and 

equivalence classes of triples (\),M.,[F]), where 

1. f) is a finite dimensional Lie algebra of vector fields. 
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2. M. is a finite dimensional t)-module of functions. 

3. [F] is a cohomology class in Hl{\),T(M)/M). 

Hence the general classification of finite dimensional Lie algebras of first order dif

ferential operators Q can be reduced to the classification of triples (h, M., [F]) under 

local changes of variables. 

In three dimensions, a complete local classification of the finite dimensional Lie 

algebras of vector fields f) has been established by Lie in [34] and Amaldi in [6]. Lie's 

classification distinguishes between the imprimitive Lie algebras, for which their exists 

an invariant foliation of the manifold, and the primitive Lie algebras, for which no 

such foliation exists. Lie's work gives a description of the eight different classes of 

primitive Lie algebras and, based under the possible foliations of the manifold, the 

imprimitive Lie algebras are subdivided into the following three types : 

I The manifold admits locally an invariant foliation by surfaces that does not decom

pose into a foliation by curves. 

II The manifold admits locally an invariant foliation by curves not contained in a 

foliation by surfaces. 

III The manifold admits locally an invariant foliation by surfaces that does decom

pose into a foliation by curves. 

Observe that these three types are not necessarily exclusive. For instance, the Lie 

algebra f) = { p, q, xq, xp — yq, yp, r } belongs to the first two types. The 

underlying manifold R3 admits a first indecomposable foliation by planes A := 

{z = constant } and also admits an second invariant foliation by straight lines 

$ := {x = constant} n {y = constant} not contained in any invariant surfaces. 

Lie classified the algebras of type I and 77, giving respectively twelve and twenty-one 
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different classes of Lie algebras. Few years latter, the 103 classes of Lie algebras of 

the third type were exhibited by Amaldi. 

The number of finite dimensional Lie algebras of vector fields f) is large and it 

did not seem reasonable to consider all the 154 classes. For this first classification 

attempt, we have chosen to focus on the algebras which seem promising in our aim to 

construct new quasi-exactly solvable Schrodinger operators. The selection was made 

upon the following criteria. 

We first narrowed our choice based on the results given in [15]; provided the Lie 

algebra g is imprimitive and its invariant foliation consists of surfaces, one can show, 

adding some other hypothesis on the metric induced, that a Lie algebraic Schrodinger 

operator generated by g separates partially in either Cartesian, cylindrical or spher

ical coordinates. Since such algebras are good candidates for generating interesting 

quasi-exactly solvable Schrodinger operators, we restricted our search on the type / 

and type III imprimitive algebras. In this paper, the classification of the twelve type 

/ Lie algebras is entirely performed while, for the type III Lie algebras, we focused 

on some of the most general Lie algebras. Since the induced metric gW needs to 

be non-degenerate, the type III Lie algebras involving only one or two of the three 

partial derivatives were discarded. Finally we selected our algebras among those that 

contain other type III algebras as subalgebras. 
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3.2.2 Classification of Lie Algebras of First Order Differential 

Operators 

Using the equivalence between the Lie algebras of first order differential operators g 

and triples (h, M, [F]), it is possible to determine the Lie algebras 0 from the selected 

Lie algebras of vector fields f). But first, recall that the second step in the classification 

of quasi-exactly Schrodinger operators is to determine which of these Lie algebras of 

first order differential operators g are quasi-exactly solvable. It is not hard to see 

that if g is quasi-exactly solvable with non trivial fixed module A/", the Lie algebra g 

is finite dimensional if and only if M is the module of constant functions, see [20] for 

details. Therefore, instead of working on the general classification of Lie algebras of 

first order differential operators g, we will restrict our work to the equivalence classes 

of triples (h, {1}, [F]). Thus, for each of the selected Lie algebras h, we first seek for 

the possible cohomology classes, [F] in if1(h,^7(M)/{l}). Once this is done, it will 

be left to find if there exists an explicit finite dimensional g-module J\f, where g is the 

Lie algebra equivalent to the triple (fj, {1}, [F]). Note that, as in lower dimensions, 

the existence of a nontrivial module M will impose a "quantization" condition on [F]. 

Indeed, for each of the Lie algebras worked out in this paper, the possible values for 

the functions in [F] can only be taken in a discrete set. For detailed results related 

to the quantization of cohomology, see [19] and [39]. 

Classification of the Cohomology Classes [F] inH\t),F(M)/{l}) 

To determine the possible cohomology classes, we first start with [F] as general as 

possible. For every v in the Lie algebra h, we denote the value of the 1-cocycle (F; v) 

by rjv, and r]v can be any function in ^7(M)/{1}. Our aim is to find the most general 1-

cocycle F, that is the most general functions rjv, satisfying the restrictions imposed by 



64 Quasi-Exactly Solvable Schrodinger Operators in Three Dimensions 

the 1-cocycle conditions (3.3). Then, using the O-coboundary map, we try to describe 

the class [F] with representatives rjv as simple as possible. Finally, if {v1, ...,vr} is a 

basis for h, the set {v1 + 77^1,..., vr 4- rjvr} will be a basis for the Lie algebra g. Note 

that in this process, one can alternate the use of the 1-cocycle restrictions with the 

use of the O-coboundary cancellations. For instance, if the element p belongs to the 

algebra h, the function (F;p) = r\v can be annihilated by the image of the function 

typ = / r)pdx under the O-coboundary map. Indeed (So^p;p) — p(J rjpdx) = r/p and 

F = F— 5o^p belong to [F]. Thus, we can assume the function rjp to be equivalent to 

the zero function. Then for another vector field v in f), using the 1-cocycle restriction 

for the pair (p,v), that is 

p(F;v)-v(F;p}- (F;\p,v]) = prjv - 0 - %,,„] G {1}, 

one obtains conditions on the two functions rjv and r)^]. Once again, one might try 

to absorb part of the function r]v with So^v, the image of another function tyv. Note 

that, in order to maintain T\V = 0, a restriction is imposed on tyv. Indeed, when the 

1-cocycle F + 6Q^V is applied to p, we have to avoid reintroducing a function for 

rip. Thus we need to consider only the functions tyv for which (5op; *£!v) = {^v)x is a 

constant function. Then, to complete the determination of [F], the same process is 

preformed to every vector field of h, with some care in the choices of the O-coboundary 

maps, so as not to undo the simplifications done in the previous steps. 

The results of this partial classification of cohomology classes [F], that gives a 

partial classification of Lie algebras of differential operators g, are summarized in Ta

bles 1 and 2 at the end of this section. The first table gives a 1-cocycle representative 

for the twelve type / Lie algebras and Table 2 exhibits the results for some general 

Lie algebras of vector fields among the type 7/7 Lie algebras. For these two tables, 

the classification numbers, given respectively by Lie and Amaldi, sit in the the first 

column. The second column gives a basis for the Lie algebra f) and the third column 
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exhibits the first order differential operators v+rjv for which (F; v) = rjv in not trivial. 

r]v is taken to be the simplest representative and when the function rjv is trivial, the 

differential operator is simply the vector field exhibited in the second column. 

It would be impractical to present the details of the computations in all cases. 

Furthermore, the arguments are quite similar for all Lie algebra rj of vector fields. So, 

for brevity's sake, we will only give the details for two of the selected Lie algebras. 

The chosen examples illustrate well the general process and will give to the reader a 

good idea of how the calculations proceed in general. 

T y p e / , Case 1 

This Lie algebra rj is spanned by the eight vector fields p, g, xp, yq, xq, yp, x2p + xyq 

and xyp + y2q. The vector field p belongs to the Lie algebra, hence, as mentioned 

previously, the function rjp can be assumed to be zero. The 1-cocycle condition for 

the pair (p, q) imposes the following restriction 

{5iF;p,q) = {r)q)x - {j]p)y - (F; \p,q\) = (r)q)x 6 {1}. 

Thus r)q = cqx + hg(y,z), where cq is a constant. Hopefully, the function hq(y,z) 

can be absorbed by the image, under the O-coboundary map, of the function tyq = 

J hg(y, z)dy. Since (^q)x is zero, the O-coboundary of tyg will not affect r\v. 

Similarly, by considering the pair (p, xp), one concludes that rjxp — cxpx+hxp(y, z), 

where c be canceled, without changing the previous functions, by the 0-

coboundary of the function ^xp = cxpx. Then, for the pair (q,xp), the restriction 

reads as 

(<JiF; q, xp) = (r]xp)y - x(rjq)x - (F; [q, xp}) = {hxp(y, z))y - x • cq E {1}. 

Necessarily, since hxp depends only on y and z, the constant cq has to be zero and 
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the function hxp(y,z) is forced to be of the form dxpy + K(z), where dxp is a constant. 

Thus, at this point, rjp = 0, r]q = 0 and rjxp — dxpy + K(z). 

Consider now the three vector fields yq, xq and yp. If we pair each of them with 

p and q, from the six 1-cocycle restrictions, one obtains directly the following 

"Hyq ~ CyqX + dyqy + Kyq{Z) , 

Vxq = CXqX -\- Clxqy ~r fcxq\Z)i 

Vyp — CypX ~r Qypy i ™yp\Z)< 

With the image of the function tyyq = dyqy, the function rjyg can be reduced to 

Vyq = cyqx+kyq(z) without undoing the previous work. From the restriction associated 

to the pair (xp, yp), one easily check that 

(JiF; xp, yp) = x(r]yP)x - y{r)xp)x + rjyp = x- cyp + cypx + dypy + kyp(z) G {1}, 

forcing cyp and dyp to be zero and kyp(z) to be a constant function. Similarly, by 

considering the pair (xp, yq), one obtains that the function x • cyq — y • dxp must 

be constant, hence cyq and dxp are zero. To completely determine the functions 

•qv for these three vector fields, two restrictions, associated to the pairs (xp,xq) 

and (yp,xq), must be verified. The first imposes that x(r]xq)x — x(rjxp)y — r)xq = 

x • cxq — cxqx — dxqy — kxq(z) must be constant. Thus it leaves no choice but to take dxq 

as the constant zero and kxq(z) as a constant function. Finally, the last restriction 

forces y(r)xq)x - x(r)yp)y - r)yq + rjxp = y • cxq - kyq(z) + K(z) to be a constant, hence 

cxq must be zero while kxq(z) must be equal, modulo the constant functions, to the 

function K(z). Putting together these restrictions, the image of the 1-cocycle F for 

the first six vector fields of f) can be described as rjp — r\q = rjxq = rjyp — 0 and 

Vxp — Vyq = K(z)- One easily checks that the remaining two restrictions are satisfied. 
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To determine completely the 1-cocycle F, it remains to find its images for the two 

vector fields T := x2p + xyq and Q = xyp + y2q. For rjr, three restrictions are needed 

to reach that TJT = 3xK(z). Indeed, from the pair (p,T), the cocycle condition forces 

the following equality (T)T)X ~ ^Vxp ~ Vyq — CT> where CT is a constant. It is not hard 

to see that r\T must be equal to 3xK(z) + cyx + hr(y,z). From the pair (q,T), we 

get similarly that rjr = 3xK(z) + cTx + dTy + kT(z). Finally, the restriction for the 

pair (xp, T) leads to 

X(VT)X - T(r]xp) -r)T = x- 3K(z) + x • cT - (3xK(z) + cTx + dTy + kT(z)) G {1}. 

Hence the constant dr dies out and kr(x) has to be a constant function. Note that, 

with these 3 restrictions, rjr = 3x(K(z) + CT/3), but, by taking rjxp = K(z) + CT/3, 

one gets the claimed result. By symmetry on x and y, the exact same arguments lead 

to T)Q — 3yK(z). It is then straightforward to verify that the 1-cocycle F, given by 

the eight functions 

Vp~Vg = Vxq = VyP = 0, VxP = Vyg = K{z)i VP = 3xK(z) and rjQ = 3yK(z), 

satisfies all the other 1-cocycle conditions. Finally, the Lie algebra Q associated to 

this triple (h, {1}, [F]) is the Lie algebra spanned by 

{p, q, xp + K(z), yp, xq, yq + K(z), x2p + xyq + 3xK{z), xyp + y2q + 3yK(z), 1}, 

where K{z) can be any function. 

Fortunately the calculations performed for a given Lie algebra f) can be repeated 

for any other Lie algebra sharing a subset of generators with h. Note also that some 

ad hoc lemma's were used trough this work to simplify these calculations. For in

stance. 
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Lemma 3.1. Let i : R2 —> R3, (x, y) \-> (re, y, z) denote the inclusion map and suppose 

that f)o C T{i*TM2), meaning that the generators o/f)0 depend on the variables x and 

y only. Let I) be a Lie algebra of vector fields on R3 given by f) = f)o © {r, zr, z2r}. If, 

for non constant functions f(x,y) and g(x,y), the vector fields f(x,y)p and g(x,y)q 

belong to f) and if their associated images ^f(x,y)p o>nd r/g(x,y)q depend on x and y only, 

then 

^ ( ^ ^ m / i i D ^ ^ ^ ^ R 2 ) / ! ! } ) © ^ 1 ^ ^ , ^ } , ^ ! ) / ! ! } ) . 

Proof: Denote A := f(x,y)p and B := g(x,y)q. Prom the cocycle restrictions 

associated to the pairs (̂ 4, z*r), where i = 0,1, 2, we obtain 

(<51F;̂ ,zV) = AfaJ-JMt-iF^zW]} 

= f(x,y)(nzir)x-0-(F,0) 

= f{x,y)(Vz'r)x^{l}-

Since f(x, y) is not constant, one can show with some extra work that (r]zir)x must 

vanish, hence the functions nzir depend on y and z. In a similar way, from the 

restrictions associated to the pairs (B, zlr) it is straightforward to conclude that 

rjzir — hl(z). Finally, for any element v in h0, the function TJV will depend on x and y 

only. Indeed, since nzr depends on z only, 

(SiF; v, zr) = v(rjzr) - z(r]v)z - (F; [v, zr}) 

- 0 - z(rjv)z - (F,0) 

= -z{Vv)ze{l}. 

Therefore (rjv)z must be zero, forcing the function r)v to depend on x and y only. • 

Note that H1({r,zr,z2r},Jr(R)/{l}) is already well known. The 1-cocycle F as

sociated the Lie algebra f) = {r, zr, z2r} is determined by three functions and the 
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simplest representative is given by r\T = 0, rjzr = 0 and rjz2r = dz, for any constant d. 

Thus, one can use this lemma to simplify some of the computations required in this 

classification problem. For instance, given h the type / Lie algebra of vector fields 

given by Case 10 in Table 1, the Lie algebra of differential operators g built from h is 

obtained from a direct application of this lemma. 

Type / , Case 10 

The Lie algebra h = {p, q, xp, yq, xq, yp, x2p + xyq, xyp + y2q, r, zr, z2r} can be decom

posed as ho © {r, zr, z2r} where ho is the Case 1 Lie algebra from the same table. It 

was shown in the previous calculations that the functions r}yp and rjxq are zero, hence 

functions on x and y only. Thus the Case 10 Lie algebra, along with its two vector 

fields yp and xq, satisfies the requirements of the Lemma (3.1). Therefore, for the 

vector fields in the algebra ho, the values of the 1-cocycle depend on x and y only, 

forcing K(z) to be c a constant function. It is then obvious that the 1-cocycle F is 

defined by eleven functions, were the three non-zero are given by r\T = ex, TJQ = cy 

and rjz2r = dx, for c and d any constants. The Lie algebra of first order differential 

operators g corresponding to this triple is then 

0 = {P, Q, xp, yq, xq, yp, x2p + xyq + ex, xyp + y2q + cy, r, zr, z2r + dz, 1}. 

It should be pointed here that ^ ( h ^ M V J l } ) and / ^ ( h ^ M ) ) can also be 

determined alternatively using isomorphisms given in [37] and [35]. For the case that 

interests us, that is Hl{\), F(M)/{\}), we fix a base point e and denote i the isotropy 

subalgebra. Provided the existence of a subalgebra oCf) which is complementary to 

i, one can show, see [37], that 

^(D.W/iiDa^/i). 
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This isomorphism leads to an explicit method for constructing 1-cocycle representa

tives F in Hx(\), .^(M)/-^}). We first choose a, a 2-cocycle representative of a class in 

#2(f)/i), and, for {v1, ...,vn} a basis of h, we denote <*„ = a(v\vj). If a = {v1, ...,vm}, 

i = {vm+1,..., vn}, and c^ are the structure constants of the Lie algebra h, a 1-cocycle 

in H1 (h, ,F(M)/{1}) will be obtained by solving first the following m(m — 1) equations 

vKfj)-vi(fi)-'52<$jfk = <Xi3, for l < i < j < m . 

Once a non unique solution fi,...,fm is obtained, the remaining functions fm+i, •••, fn 

are determined as the unique solution to the m(n — m) equations 

v%Uj) - vJ(fi) ~ ^2 Cijfk = "v"' fOT 1 ~ i - m ' m + 1 ~ 3 - n ' 

with initial conditions 

/i(e) = 0 for m + 1 < i < n. 

Note however that this method can not be applied to all the three dimensional Lie 

algebras since the existence of the complementary Lie subalgebra is not guaranteed. 

For instance, the type III Case 17^! can not be treated using the isomorphism. 

Indeed, for the Lie algebra 

f) = {p, q, xp + zr, yq, x2p + (2x + az)zr, y2q}, 

and the base point e = (0,0,0), the isotropy algebra i is generated by the last four 

elements and the algebra a = {p, q} fails to be complementary, due to the absence of 

the element r in the Lie algebra. One can easily verify that Z2(f)/i) = {ai A a3, a\ A 

a5,a2 A a4 ,a2 A ae} a n d 52(h/i) = {ai A 03, «2 A 0:4}. One can observe at that 

point that the theorem does not hold, since the dimension of H2(t)/i) is two while 

the dimension of i?1(f),^'(M)/{l}) was computed to be three previously. Moreover 

applying the technique to the 2-cocycle a — c • a\ A 0*5 + d • a2 A a^, one gets a 1-

cocycle that does not satisfies all the conditions that were considered in the technique 

detailed above. 
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3.2.3 Classification of Quasi-Exactly Solvable Lie Algebras 

of First Order Differential Operators and the Quanti

zation Condition 

The Lie algebras given in Table 1 and 2 are the candidates for being quasi-exactly 

solvable Lie algebras, i.e. we might expect them to admit Af a finite dimensional 

module of smooth functions J\f. In the investigation for these explicit finite dimen

sional modules, some new restrictions are imposed on the 1-cocycles F. Indeed, as for 

the quasi-exactly solvable Lie algebras in lower dimensions, it comes out that a finite 

dimensional module exists only if the values of the functions rjv are taken in a certain 

discrete set. For this reason, this restriction is named quantization condition. The 

quasi-exactly solvable Lie algebras and their fixed modules can be found in Tables 3 

and 4 for, respectively, the type / and the selected type III Lie algebras. The first 

column use the same classification numbers as in Tables 1 and 2 and a representative 

for the non-trivial quantized 1-cocycles is exhibited in the second column. Finally, 

A/", the finite dimensional g-modules of functions are described in the last column. 

Once again the detailed calculations are repetitive and the essence of the work can 

be grasped with one or two examples, together with the following general principles. 

1. A finite dimensional module for the trivial Lie algebra Q = {p} is defined as 

an x-translation module. For instance, any space spanned by a finite set of 

functions of the form 

n 

• i = 0 

along with all their x derivatives, is an x-translation module. This particu

lar case of x-translation module is referred as a semi-polynomial x-translation 

module. The most general x-translation module is obtained by a direct sum 
AeA 
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where J\f\ are semi-polynomial ^-translation modules and the exponents are 

taken in a finite set A, read [21] for more details. Obviously, the y, and the 

z-translation modules are defined the exact same way. 

2. If the Lie algebra g under consideration contains the two differential operators p 

and xp, the module J\f will be an x-translation module and the operator xp will 

impose extra constraints. Firstly, all the exponents A need be zero. Otherwise, 

for an non-zero exponent A, the degree in x of the generating functions in the 

module A/"A would be unbounded, contradicting the finite dimensionality of J\f. 

Moreover, if h = Y^i=o9%(v-iz)x% belongs to the module A/", the function xhx 

also needs to belong to that module. Note that both functions have the same 

degree in x and are linearly independent if h is not a monomial. Thus, by 

an appropriate linear combination of these two functions, one can reduce the 

number of summands in h. By iterating this process, each generating function 

can be reduced to a monomial in x. Thus, h = g(y, z)xl where g(y, z) belongs 

to Gl a finite set of functions in y and z. Since A/" is a x-translation module, 

hx = ig(y, z)xl~l is also a function in J\f, hence g(y, z) needs to be also contained 

in Gi_1. Therefore, the module M decomposes into the following direct sum 

M = @xigi
k(y,z) i = Q...n, k = 0...lh 

where all the functions g\.(y, z) belong to G1 a finite set and where Gl C Gl~l. 

3. Likewise, if a Lie algebra g contains the elements p, q, xp, and yq, a general 

finite dimensional g-module for this Lie algebra will be at most 

N = @xiyjg\*(z), i = 0...n, j = 0...m, k = 0...l{iJ), 

where the functions glj{z) belong to G^\ a finite set of functions of z saXxsiy-

fcigG(ij')'CG<i-lj'>nG<ij'-1). 
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A simple method to describe these modules is to represent each generating 

function xl\fgl^{z) by a point (i,j), in the Cartesian plane. If a vertex (i, j) 

belongs to the diagram, since N is an zy-translation module, the vertices (i — 

l,j) and (i, j — 1) must also sit in the diagram. To complete the description, a 

finite set G^ is associated to each of these vertices, with the same restriction 

as above. For instance, such module J\f can be represented by 

j 

with all the sets G^ being equal to {z,ez}, with the exception of G^3'1) that 

contains only the function z. It is then straightforward to verify that this module 

is indeed 

M = {z,ez,xz,xez,yz,yez,x2z,x2ez,xyz,xyez,y2z, 

y2ez, x3z, x3ez, x2yz, x2yez, xy2z, xy2ez, y3z, y3ez, x3yz}, 

and that it is a g-module for the Lie algebra g = {p, xp, q, yq}. 

4. If the Lie algebra g contains the differential operators p, q, xp, yq and yp, 

from the three previous principles, the generators for a g-module are given by 

h = x%yig%j(z). After applying the operator yp on h, the resulting function 

reads as ix%~iy:>+1gh:'(z). Thus, iterating this operator, we conclude that all the 

functions xl~ry:j+rg%^{z) must belong to AT, for r < i. Since p and q also belong 

to the algebra, all the functions xaybgl':'(y, z) with a < i, b < j and a + b < c 

must belong to J\f. This condition can be expressed by the following inclusion 
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Q(ij) c G^-1^ n G^-V n G^~^+1\ and observe that the first set G^'1^ can 

be omitted without affecting the condition. To summarize, the g-module will 

be at most 

N = @xiVj $(*:), i = 0...n, j...m, k = 0.J{iJ), 

where the functions g]f{z) belong to G^\ a finite set of functions with G^ C 

Once again it is possible to represent such module by a diagram along with a set 

of functions G^ for each vertex of the diagram. The restrictions for these sets 

are G^ C G^~1,j+1>) fl G^l'j~^ and the conditions on the vertices are slightly 

different from the one in the previous example. Indeed, if a vertex {i, j), belongs 

to the diagram, the two vertices (i — 1, j + 1) and (i,j — 1) must also belong to 

the diagram. Note again that this implies that the vertex (i — l,j) also lies in 

the diagram. For instance the diagram, 

j 

together with twenty appropriate sets of functions G^ for each vertex, would 

generate a g-module for the algebra g = {p, q, xp, yq, yp}. 

5. Finally, if the elements p, q, xp, yq, yp and xq sit in the Lie algebra under 

consideration, the module will be at most 

Af = 0 z W ( 2 ) , i + j = 0...n, k = 0...lid, 
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where the functions g]f(z) belong to G^+J'\ a finite set of functions with G® Q 

G(l~l\ Indeed, consider h = x%y^gl^{z), a generator of bi-degree i+j — c. Since 

xq[h] and yp[h] must also lie in J\f, all the functions xaybgh:>(z) with a + b = c 

will belong to M. Hence g^'j) € G(o>6) and, reciprocally, g{a<b) <E G ( i j ). Thus for 

all pairs (a, 6) with a + b — c, the finite sets G^°'̂  are identical and it is there

fore well defined to pose G(0,6) = G(a+(0. Obviously, since A/" is a xy-translation 

module, the following inclusions hold G^ C G('_1). 

For these modules, the possible diagrams are more restricted and have neces

sarily the shape of a staircase. Also, instead of assigning one set of functions to 

each vertex, such a set is coupled to all the vertices having same total degree 

i + j . For instance, the module represented by the diagram 

J 

will be completely determined after fixing six sets of function in z. Note that 

this choice must respect the inclusion G^(z) C G^l~l\z), for i = 1, ...5. 

This set of principles is of great help in the determination of the possible g-modules 

Af for each Lie algebras of first order differential operators g described in Tables 1 

and 2. Depending on the elements contained in the Lie algebra studied, we started 

our search of g-module based on the general module given in this guideline. Once 

again, the computations are tedious and it would not be relevant to detail each of 

them. We will concentrate on the same Lie algebras as in the previous step of this 
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classification problem, that is the type / Lie algebras Case 1 and 10. 

Type / , Case .1 

Since the Lie algebra contains the differential operators p, q, xp, and yq, from the 

principle (3), the most general module J\f will be spanned by functions of the form 

h = x*yjghj(z), where ghj(z) belongs to G^'jK We now consider the operator T = 

x2p + xyq + 3xK{z) in the algebra g and its action on h = xnyagn'a(z) a generator of 

J\f with maximal exponent in x. Thus 

T[h] = nxn+1yagn'a(z) + axn+1yagn'a(z) + 3K(z)xn+lyagn>a{z) 

= (n + a + 3K(z))xn+1yagn'a(z). 

Since the exponent in x was taken to be.maximal, this imposes that K(z) is indeed a 

constant K equal to — ̂ f2. Symmetrically, by considering Q = xyp+y2q+3yK(z) and 

h = xbymgb'm(z), a function with maximal exponent in y, the following equality holds 

K = —bJyL- For this to be possible, we necessarily have n + a = b + m. Consequently, 

the differential operators xq and yp belong to the Lie algebra g and the module J\f 

is given by the principle (5). Also note that the operators xp and yq force both a 

and b to be zero. Otherwise xn+1ya~1gn'a(z) and xb~1ym+1gb'm(z) would be in A/", 

contradicting the maximality of n and m. Thus 3K(z) — —n and the module 

M = {x'yigViz) \i + j<n, gid(z) e Gii+j)}, where G{1) C G((-J) (3.4) 

is fixed by all the differential operators in Q. Therefore it is possible to conclude that 

the Lie algebra 

0 = {p, q, xp, yq, xq, yp, x2p + xyq - nx, xyp + y2q - ny, 1}, 

is quasi-exactly solvable with respect to the finite dimensional g-module J\f. 
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Type / , Case 10 

Since the Case 10 Lie algebra contains the Case 1 Lie algebra, its module J\f will be 

at best the module given in (3.4). Observe first that the constant c in the Case 10 

Lie algebra has to be the negative integer —n. Furthermore, the operator r imposes 

A/" to be a z-translation module and the operator zr forces G^ to be generated 

by monomials. Then, for zm a monomial of maximal degree in G®, the function 

h = xxyl~%zm belongs to M. Since z2r + dz belongs to the Lie algebra, 

z2r + dz[h] = mx^-tz™-*-1 +dxiyl-izm+1 

= [m + d]xiyl-izm+\ 

should belong to the g-module J\f. Thus, from the maximality of the degree in z, 

the constant d has to be the negative integer — m. Since the argument must hold for 

every set G^l\ they will all share the same monomial of maximal degree m. We can 

therefore conclude that the Lie algebra 

0 = {p, q, xp, yq, xq, yp, x2p + xyq - nx, xyp + y2q - ny, r, zr, z2r - mz, 1}, 

is quasi-exactly solvable with respect to the module 

M = {xlyjzk | i+ j <n,k < m}. 

To summarize, a partial classification of quasi-exactly solvable Lie algebras of first 

order differential operators was accomplished in this section and the description of 

these Lie algebras g, along with their g-modules, can be found in Tables 1-4. In princi

ple, it would be possible to achieve a complete classification using similar arguments. 

However this gigantic work would require a colossal amount of time. Nevertheless this 

partial classification is a good starting point for seeking new quasi-exactly solvable 

Schrodinger operators in three dimensions. In that scope, the next section is devoted 
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to the description of few new quasi-exactly solvable Schrodinger operators. 
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Table 1. Cohomology for the Type I Lie Algebras of Vector Fields, m = {1} 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Generators 

{p, ?. zp» yg> &?. yp» 

x2p + xyq, xyp + y2q} 

{xq,xp-yq,yp, 

Z\z)p,...,Z\z)p,Z\z)q,...,Z\z)q} 

{xq, xp - yq, yp, xp + yq, 

Z\z)p,...,Z\z)p,Z\z)q,...,Z\z)q} 

{p, q, xp, yq, xq, yp, 

x2p + xyq, xyp + y2q, r} 

{xq, xp — yq, yp, zkeXlZp, zkeXlzq, r} 

k <ni, I — 0...6 

{xq, xp - yq, yp, xp + yq, 

zkeXlZp,zkeXlZq,r) k <nt, I = 0...b 

{P, Q, xp, yq, xq, yp, 

x2p + xy, q, xyp + y2q, r, zr} 

{xq,xp - yq,yp,p,zp, ...zlp, 

q, zq,..., zlq, r, zr + a(xp + yq)} 

{xq, xp - yq, yp, xp + yq,p, zp,..., zlp, 

q, zq, ...,zlq, r, zr} k <nt, I = 0...b 

{p, q, xp, yq, xq, yp, 

x2p + xyq, xyp + y2q, r, zr, z2r } 

{xq, xp - yq, yp,p, zp, ...zlp, q, zq,..., zlq, 

r,zr + \{xp + yq), z2r + az(xp -f yq)} 

{xq, xp - yq, yp, xp + yq,p, zp,..., zlp, 

q, zq,..., zlq, r, zr, z2r + az(xp + yq)} 

Cocycles 

xp + K(z),x2p + xyq + xK(z), 

yq + K(z), xyp + y2q + yK(z) 

0 

xp + yq + K(z) 

x2p + xyq + ex, 

xyp + y2q + cy 

0 

xp + yq + cz 

x2p + xyq + ex, 

xyp -f y2q + cy 

0 

0 

x2p + xyq + ex, xyp + y2q + cy, 

z2r + dz 

z2r + az(xp + yq) + cz 

z2r + az(xp + yq) + cz 

Note here that b, I and n; are positive integers, a, c, d, k and A; are arbitrary constants 
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and Z1(z),..., Z\z) and K(z) functions of z. 
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Table 2. Cohomology for Some Type III Lie Algebras of Vector Fields, m = {1} 

4A 

4C 

4D 

5A* 

5C 

5D 

7C 

17Ai 

17A2 

17C 

17D 

Generators 

{p,yq,q,xq,...,xlq + r,..., 

x'q+ §xt~ir,...,xsq + (|)x"~V, 

xp — tzr, yq + zr} 

0<t<s 

{q,xq,...,xsq,p,yq,xp, 

xlyn~br, zr } 

0<b<n,l<lo + sb 

{q,xq,...,xsq,p,yq,xp, 

r, zr, z2r } 

{q + r,xq + xr, ...,xsq + xsr,p, 

xp, yq + zr, x2p + sxyq + sxzr} 

{q,xq,...,xsq,p,yq,xp, 

x2p + sxyq + (lo + sn)xzr, 

xlyn~hr, zr } 

0 < b < n, I < l0 + sb 

{q,xq,...,xsq,p,yq,xp 

x2 + sxyq, r, zr, z2r} 

{p, 2xp + yq, x2p 4- xyq, 

xly~nr, zr } 0 < I < n, 

{p, q, xp + zr, yq, 

x2p + (2x + az)zr, y2q } 

{p, q, xp + azr, yq + zr, 

x2p + 2axzr, y2q + 2yzr } 

{p, q, xp, yq, x2p + l0xzr, 

y2q + p0yzr,xlypr} 

I < 0̂) b < bo 

{p, xp, x2p, q, yp,y2q, 

r, zr, z2r} 

Cocycles 

0 

0 

z2r + cz 

x2p + sxyq + sr + ex 

x2p + sxyq + (l0 + sn)r + ex 

x2p + sxyq + ex 

z2r + dz 

x2p + xyq + cy2 

x2p + (2x + az)zr + bx + cz, 

y2q + dy 

x2p + 2axzr + ex, 

y2q + 2yzr + dy 

x2p + loxzr + ex, 

y2q + b0yzr + dy 

x2p + ax, y2q + cy 

z2r + dz 
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Note here that b, b0, I, l0, h, s and t are positive integers, a, c and d are arbitrary-

constants. Remark that Amaldi's Lie algebra 5A is not a Lie algebra. Indeed, for the 

space spanned by {q, xq, ...,xtq + r, ...,xt+lq + (*|l)a;V, ...,xsq + (*)xs-V,p, yp, xp — 

tzr, yq + zr, x2p + sxyq + (s — 2t)xzr, xlyn~br, zr} to be a Lie algebra, the parameter 

t needs to be zero. We then get the Lie Algebra 5A* given in the table. 
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Table 3. Type / Quasi-Exactly Solvable Lie Algebras of Differential Operators 

and their Fixed Modules , 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Quantization Condition 

x2p + xyq — nx, 

xyp + y2q - ny 

0 

0 

x2p + xyq — nx, 

xyp + y2q - ny 

0 

0 

x2p + xyq — nx, 

xyp + y2q - ny 

0 

0 

x2p + xyq — nx, 

xyp + y2q - ny, 

z2r — mz 

z2r + az(xp + yq) — mz 

z2r + az(xp + yq) — mz 

Fixed Module 

{xiy^g(z)\i + j<n,g(z)eG^+^}, 

for G<'> finite with G® C G^~l) 

{xiy^g(z)\i + j<n,g(z)eG^+^}, 

for GW finite with Z'G(,) C G('~x) 

{xiy^g(z)\i+j<n,g(z)eG^+^ } , 

for GO finite, and Z'G® C Z^1^ 

{xlyjzkex'z\ i + j<n,k<mi,l = 0, ...p } 

{xiyhkex,z\ i + j <n, zkeXlZ G G<<+J'>}, 

for G^ a finite z-translation module, 

and &G® C G*'"1) for Zi = zfceA'*p 

{xlyjzkex'z\ i + j < n, k < mu I = 0, ...p }, 

for G® a finite ^-translation module, 

and Z{G{1) C G^1) for Z< = zfeeA(2p 

{xzyjzk\ i + j<n,k<m} 

{xlyjzk\ i + j < n, l(i + j) + k < m } 

{xlyjzk\ i+ j < n, l(i + j) + k < m} 

{x%yizk\ i + j < n,k <m } 

{xlyjzk\ i + j < n, a(i + j) + k < m } 

{xxy^zk\ i + j < n, a(i + j) + k < m } 

Note here that m and n are non-negative integers. 
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Table 4. Some of the Type 777 Quasi-Exactly Solvable Lie Algebras of Differential 

Operators and their Fixed Modules 

4A 

4C 

4D 

5A* 

5C 

5D 

7C 

17Ai 

17A2 

17C. 

17D 

Quantization Condition 

0 

0 

z2r — mz 

x2p + sxyq + sr — nx 

x2p + sxyq + (lo + sn)xzr — nx 

x2p + sxyq — nx, 

z2 — mz 

0 

x2p + (2x + az)zr — mxx, 

y2q - myy 

x2p + laxzr — mxx, 

y2q + 2yzr - myy 

x2p + IQXZT — mxx, 

y2q + b0yzr - myy 

x2p - mxx, y2q - myy 

z2r — mzz 

Fixed Module 

{xiy:>zk\ % + sj + (s — t)k < n, 

j < my,k < mz } 

{xlyjzk\ i + sj + (l0 + sn)k < n, 

k <b,j < bk} with 6fc_i > bk + n 

{x'lyjzk\ i + sj < n, k < m} 

{xlyjzk\ i + s(j + k) <n, 

j < my, k < mz } 

{xtyjzk\ i + sj + (IQ + sn)k < n, 

k <b,j <bk} with bk-i >bk + h 

{xzyjzk\ i + sj<n,k<m} 

0 

{xV| i <™>x,j < my } 

{xzyjzk\ i + 2ak < mx, 

j + 2k < my, k < mz } 

{ z V z l i + lok <mx, 

j + bok < my, k <mz } 

{xiyjzk\ i < mx,j <my,k < mz} 

Note here that m, n, mx, my and mz are non-negative integers. 



3.3 New Quasi-Exactly Solvable Schrodinger Operators in Three 
Dimensions 85 

3.3 New Quasi-Exactly Solvable Schrodinger Op

erators in Three Dimensions 

Recall that in the general classification problem, once the quasi-exactly solvable Lie 

algebras of differential operators g are determined, the next step is to construct second 

order differential operators 7i that are locally equivalent to Schrodinger operators. 

Given g, one of the Lie algebras of first order differential operators obtained in the 

previous section, we obtain a second order differential operator H by letting 

m m 

n=J2 CabT
aTb + J2 CaT

a + Co, where Ta e g, (3.5) 
a,6=1 a = l 

as illustrated previously. Then, one has to choose the coefficients Cab, Ca, Co in such 

a way that the closure conditions duj = 0 are satisfied. Given Ta — £aidi + rja, the 

closure conditions are the Frobenius compatibility conditions for the overdetermined 

system 

= 0, 
a,b=l 

*y>£ *£>-*)-«• 
where a = X +1 ln(#) and n = ex is the gauge factor. Finally, we need to bear in mind 

that the last step in the classification is to verify that the operators are normalizable, 

i.e. the functions in J\f, the module obtained after the gauge transformation, need to 

be square integrable. These operators will therefore have the property that part of 

their spectrum can be explicitly computed. 

We have now in hand a large variety of generating quasi-exactly solvable Lie alge

bras g. The door is therefore wide open to the construction of numerous new quasi-

exactly solvable Schrodinger operators in three dimensions. However the Schrodinger 

operators described in this paper are built only from two of these new quasi-exactly 

solvable Lie algebras: the type 777 Cases 17D and Case 5A*. The reader can there-
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fore see that many more examples can be constructed using this method together 

with the results of the previous section. 

3.3.1 Type / / / , Case 17L>, (sl{i) x sl(i) x sl(z)). 

The first two families of normalizable quasi-exactly solvable Schrodinger operators 

displayed in this section are similar to the operator given in the example (1.1). How

ever, these two examples are more general. Indeed, for these two operators, the 

type 777 Case 171? quasi-exactly solvable Lie algebra g is spanned by the first order 

differential operators 

p, q, r, xp, yq, zr, x2p - mxx, y2q - myy, z2r - mzz, 

where mx, my and mz are non negative integers and the module Nmxmymz is generated 

by the (mx + l)(ray + l)(mz + 1) monomials 

xlyjzk where 0 < i < mx, 0 < j < my and 0 < k < mz. 

First Example 

The first family of operators is constructed with the following choice of coefficients 

0 
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Ca = [0,0,0, -2Amx, -2Bmy, -2Cmz, 0,0,0] and C0 = -Amx - Bmy - Cmz. 

From the order two terms of these second order differential operators, the induced 

contravariant metric g^ is obtained and reads as 

( A(x2 + l)2 0 (x2 + l)(z2 + 1) ^ 

0 By4.+ 2{B + l)y2 + B 0 • (3.6) 

^ (x2 + l)(z2 + 1) 0 C(z2 + 1) j 

The determinant of the matrix is g = (l-AC)(x2 + l)2(By4 + 2(B + l)y2 + B){z2 + l)2 

and one easily verifies, for A, B and C positive and AB > 1, that the matrix is positive 

definite on R3. The operator can therefore be written as 

-m = A + v + Uo, 

where A is the Laplace-Beltrami operator related to the metric (3.6) and where 

V = -2{x2 + l)(Amxx + mzz)p - 2my(By3 + By + y)q - 2{z2 + l)(Cmzz + mxx)r. 

From a direct computation, the closure conditions are verified and the gauge factor 

required to gauge transform H into a Schrodinger operator HQ is given by 

fl = (x2 + l ) ^ ( £ y 4 + 2{B + l)y2 + B)^ {z2 + 1 ) ^ . 

Once the transformation is performed, the equivalent operator reads as 

-2HQ = A + U, 

where the potential of the Schrodinger operator is given by the rational function : 

U = 2{m3BCy4 - 2m2Cy2 - m2BCy4 - 2m2BCy2 - m3C
2 

-2m2By2 - m2BC - m3C
2y4 - 2m3C

2y2 + 2m3BCy2 

+2m2C
2y2 + 2m3By2 + m3BC + m2C

2y4 - 2m2y
2 - m\y2 

-2m2Cy2 + m2C
2 - 2m3Cy2) \ (Cy4 + 2y2 + 2Cy2 + C). 
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The expressions of the potentials for the given examples can all be computed explic

itly. However, we only present this potential since the expressions of the two other 

potentials are very long. 

Note that the same three factors arise in both /z and g. This will simplify our 

computations while testing the square integrability of the functions in J\f. Indeed, a 

function in Af is given by h — fxxzy:izk where the exponents i, j and k are smaller or 

equal to mx, my and mz respectively. Our aim is to show that the triple integral 

J J JR 
(/j,xiyjzk)2 yjg-^dxdydz 

m3 

is finite. Obviously, it is sufficient to show the convergence of this integral for the 

monomials of maximal exponent. We can therefore focus on 

J J JR 

™2mx qpmy J2mz 

dxdvdz 
R3 (x2 + l)m*+1(By* + 2(5 + l)y2 + B^+^z2 + l)m*+1 

Using Fubini's theorem, this triple integral can be factored into the product of three 

integrals 

•oo (*2 + 1 ) - + 1 ̂  l o o {Bt + 2(B + l)y2 + B)^1^ ^ /-co (z2 + l)™^dZ> 

each of which is easily shown to be convergent. We therefore have in hand a nor-

malizable quasi-exactly solvable Schrodinger operator and it is feasible to determine 

explicitly part of its spectrum. 

For instance, if we fix mx — 0, my = 2 and mz = 1, few manipulations lead to 

the six eigenfunctions of the operator H restricted to M. Indeed, with this choice of 

parameters, the g-module is 

N = {i,y,y2,z,yz,y2z}, 



3.3 New Quasi-Exactly Solvable Schrodinger Operators in Three 
Dimensions 89 

and the transformation matrix to be diagonalized reads as 

( - 2 0 2 

- 4 - 2 5 0 

0 - 2 

0 0 

0 0 

0 0 V 

0 

IB 

0 

0 

0 

B 

0 

0 

-2 

0 

IB 

0 

0 

0 

0 

- 4 -

0 

2B 

0 

0 

0 

2B 

0 

- 2 

\ 

; 

Once the diagonalization is performed, three different eigenvalues Aj = — 4 — 2B, 

A2 = —2 — 2B, and A3 = —2 + 2B are obtained, each of them having multiplicity two. 

The six eigenfunctions are respectively 

^1,1 =V, "01,2 = yz, 

ip2,i = l + y2, '02,2 = - l + y2, 

^3,1 = -z + y2z, ^3,2 = z + y2z. 

Consequently, we obtain three multiplicity two eigenvalues of the Schrodinger operator 

Ho'- Ai = 1 — B, X2 — 1 + B and A3 = 2 + B, and the six scaled eigenfunctions are 

^1,1 = w> -ipi,2 = wz, 

S i = At(i + y
2), ^2 = M - i + y2)> 

^3,1 = v(-z + y2z), ip3t2 = v(z + y2z). 

As mentioned previously, the metric (3.6) is positive definite on R3, hence Rie-

mannian, and one can verify that the Riemann curvature tensor is zero everywhere. 

The change of variables that leads to a Cartesian coordinate system is given by 

1 
X = arctan x,Y = j -,Z = arctan z, 

y/By* + 2(B + l)y* + B 

where we have some flexibility on B to adjust the roots of the elliptic integral. 
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Second Example 

With the same representation of Lie algebra by first order differential operators but 

a different choice of coefficients, one constructs another family of second order differ

ential operators H. Indeed, with 

/ 

Cab — 

\ 
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0 

D 

0 

0 

0 

0 

0 

P 
0 

1 

0 

B 

0 

0 

0 

1 

0 

0 

0 

0 

0 

2A 

0 

0 

0 

0 

0 

0 

0 

0 

0 

pD + C 
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0 

X2B 

\ 

) 

Ca = [0,0,0, -2Amx, -PD{\ + 2my) + C, -2XBmz, 0,0,0] 

and Co = —Amx — Bmy — Cmz, 

a family of operators H. is obtained and one easily verifies that all these operators 

are equivalent to Schrodinger operators 7Yo- Note that this family of operators is 

slightly more general than the family obtained in the first example. However, some of 

the details are lengthy and are omitted for brevity sake. The induced contravariant 

metric g^ is given by: 

( A(x2 + 1)2 0 (z2 + \){\z2 + 1) N 

0 pCyi+y2{2P + PD + C) + D 0 , (3.7) 

^ (x2 + l)(Az2 + l) 0 B(\z2 + z)) j 

and it is positive definite on M3 provided A, B, C, D and P are positive and AB > 1. 

Its determinant is g = (AB-l)(x2 + l)2(pCy4+2py2+pDy2+y2C+D)(Xz2 + l)2, and 
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the gauge factor required is the product of three functions in x, y and z respectively. 

After the gauge transformation the new potential is again a rational function involving 

only the y variable and the Riemann curvature tensor is null again. The following 

change of variables leads to Cartesian coordinates 

/ 

1 , ,_ arctan \f\~z 
, ay, Z = 7= 

V/3CV + 2(3y2 + 2(3Dy2 + y2c + D V\ 

X = arctan £, Y = / dy, Z = 

where we have some flexibility on /?, C and D to adjust the roots of the elliptic inte

gral Y. 

However, we do not know if the formal eigenfunctions obtained for these operators 

are all normalizable. But, if we fix C = (3D, the gauge transformation simplifies and 

becomes, once again, very similar to the determinant of the metric (3.7). Indeed 

fjL = (z2 + l r ^ C / W + 2/fy2(l + D) + D)-^(\z2 + l)-^ 

and one verifies, the exact same way as in the previous example, that the functions 

in N are square integrable. Therefore, for any choice of integers mx, my, and mz, 

one would obtain (mx + l)(my + l)(mz + 1) eigenfunctions in the spectrum of the 

Schrodinger operator HQ. 

For instance, if we fix A = 1, (3 = 5 and the three parameters mx, my and mz 

to be 1, one gets two eigenvalues, —3 and —7 of multiplicity four, and the following 

eight eigenfunctions 

l/>-7il=(J,(-l+Xz), V-7,2 = KV ~ XVz)i ^-7,3 = Kxy + yz), ^_7,4 = fi(x + z), 

^-3,1 =n(y + xyz), ip^a = fj,{-x + z),:tl)-3t3 = fi(-xy + yz), V-3,4 = M 1 + xz). 

Note that the nodal surfaces can described easily in this coordinate system. Indeed, 

since a is always positive, the nodal surfaces are simply the zero loci of polynomials. 

file:///f/~z
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For these eight eigenfunctions, the surfaces are given by the zeros of degree two 

factorizable polynomials and one easily gets the following pictures. 

[W$ffi&%$a 
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3.3.2 Type III, Case 5A*, si(z) x Cs+1 

For the last example, we consider the type 77/ Case 5A* quasi-exactly solvable Lie 

algebra and we fix the parameter s to be one. This Lie algebra g is therefore spanned 

by the following six first order differential operators 

p, q + r, xp, xq + xr, yq + zr, and x2p + xyq + xzr — mx, 

and from the Table 4, the g-module of function is given by 

Af = {xlyjzk\ i + j + k<m,j< rny, k < m2}, 

where n, my and mz are non-negative integers. A family of Schrodinger operators on 

R3\{x = y} is obtained from the following choice of coefficients, 

^ o o o o o \ 

0 5 0 0 0 0 

0 0 C 0 0 0 

0 0 0 0 0 0 

0 0 0 0 D 0 

0 0 0 0 0 0 / 

Ca = [0,0, C, 0, -2(1 + m)D, 0], and C0 = (1 + m)2D, 

Cab = 

\ J 
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gW) = 

where the parameters A, B, C, and D are positive. The induced contravariant metric 

is given by 

( Cx2 + A 0 0 N 

0. Dy2 + B Dyz + B , (3.8) 

y 0 Dyz + B Dz2 + B j 

its determinant is g = BD(Cx2 + A)(y — z)2 and the metric is positive definite on 

R3\{x = y}. Before performing the gauge transformation the operator reads as 

-2H = A + (2Cx-Cmx)p+(-Dy-2Dmy)q + (-Dz-2Dmz)r 

-l/2Cm + l/ACm2 + (1 + m)2D, 

and one easily verifies that the operator satisfies the closure condition. The gauge 

factor required to obtain a Schrodinger operator is 

/x = (Cx2 + A) ̂  (y - z) " ^ , 

and once again, contains the same factors as the determinant of the covariant metric. 

Finally, after the gauge transformation, the Schrodinger operator reads as, 

-2HQ = A + U, 

where U depends on the three variables. Although , it is not known if the functions 

in J\f are square integrable on the domain R3\{:r = y}. 

Note that for this example, the scalar curvature is constant and depends on the 

parameter D while the Riemann curvature tensor is equal to 

-=- --dydzdydz. 

B{y - zf 

However, the potential does not seem to be separable. 
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Conclusion 

The motivation for this thesis was to explore some significant aspect of the exact or 

quasi-exact solubility of Schrodinger operators in three variables. On one hand we 

successfully proved a modified version of Turbiner's conjecture in three dimensions 

and on the other hand we made a significant step towards the classification of the 

quasi-exactly solvable Schrodinger operators for which part of the spectrum can be 

found algebraically. 

Recall that it was proved in the first paper that if a Lie algebraic Schrodinger 

operator on a locally flat manifold is generated by a 2-imprimitive Lie algebra, then 

the Schrodinger equation can be solved by partial separation of variables provided 

that some compactness hypothesis and two constraints on the induced contravariant 

metric hold: it can be diagonalized and it is generic in a suitable technical sense. 

Even if many operators involve diagonal metrics, these extra assumptions are quite 

considerable and it is not known at the moment if they are necessary. The two hy

potheses are used in the proof of the 3D-Trapping Theorem. This theorem is based 

on a simplified expression of the diagonal components of the Ricci curvature tensor. 

It might be possible to rearrange this expression in a way that the genericity require

ment does not need to hold to conclude the theorem. Moreover, the components of 

the Ricci tensor are very complicated for a non-diagonal metric and a decent simpli

fication was not achieved. However a simplification may exist and it would worth to 
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spend more efforts on it to try to obtain a more general version on the result. Note 

that, consequently to these two hypothesis, 3D-Tiling Theorem was also simplified. 

Indeed, the possible real-analytic maps ip : R3 —* M restrict to 2*th-fold maps and 

one would probably have to deal with a larger variety of maps in a more general 

setting. 

Another improvement to this work would be to simplify the arguments determin

ing the possible foliations. The had hoc arguments for this simple result seems too 

long and could possibly be simplified. One avenue would be the theory of isopara

metric surfaces. Recall that the three possible foliations obtained are exactly the 

isoparametric hypersurfaces of M.3. It might be interesting to deeply understand the 

possible link between these two notions in order to simplify the proof of the the

orem. Furthermore such a link could be used to generalize the arguments of the 

proof in higher dimensions. Indeed, the ideas used to prove the separation theorem 

seem to be extendible, with a lot of work, in dimension n. Provided we succeed to 

prove the equivalence between the two notions, the geodesic argument might hold for 

n — 1-imprimitive Lie algebras since the isoparametric hypersurfaces of M.n are n—\ 

dimensional hyperplanes, spheres and cylinders. Then one would have to work out 

the n-dimensional versions of the Trapping and Tiling Theorems. In that scope, it 

might be prudent to use strong restrictions on the metric for a first attempt. 

Related to the second part of this work, number of new quasi-exactly solvable Lie 

algebras of first order differential operators were described. However, the classification 

is not complete and it does not seem impossible to perform the entire classification. 

Note that, in order to complete this classification adequately, one would have first to 

verify and correct the classification of imprimitive Lie algebras of vector fields made 

by Amaldi in [6]. Furthermore, we have focused only on the quasi-exactly solvable Lie 
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algebras and a general classification of Lie algebras of first order differential operators 

in three variables remains an open problem. Another interesting way to continue 

this work would be to construct new normalizable quasi-exactly solvable Schrodinger 

operators based on the numerous quasi-exactly solvable Lie algebras obtained in the 

second paper. The operators presented here being generated by only two among all 

the new quasi-exactly solvable Lie algebras, this area is certainly a fertile ground. 
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Appendix A 

Overview of the Tiling Theorem 

As mentioned in the paper [15], the proof for the three dimensional version of the 

Tiling theorem is similar to the one given in [36]. The generalization in three di

mensions is a straightforward extension of the two-dimensional case except for one 

argument which uses Proposition (2.5). In order to prove this proposition we need 

to impose two extra hypotheses: the contravariant metric has to be diagonalizable 

and generic. It is worth to mention here that for any non-degenerate point on R, the 

positive definite region of the manifold, such a local diagonalization is always possible 

(Cotton-Darboux Theorem). However, for the proof of the Tiling theorem, the metric 

needs to be diagonalizable at the reachable part of the degeneracy locus, which is not 

always guaranteed. 

Theorem 2.4. (The 3D-Tiling Theorem) Let M be a compact three dimensional 

fiat almost-Riemannian manifold with diagonal generic metric. Then, there exists a 

globally defined, real-analytic map ip : R3 —> M such that gW* is the push forward of 

the Euclidean metric, and such that ip covers all of R plus the reachable portions of 

its boundary. Furthermore, the preimage of the locus of degeneracy g = 0, under this 

map, if it is non empty, consists of surfaces that tile R3 into isometric cells. These 
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cells are related by the group of isometric symmetries of tp; indeed R is isometric to 

the quotient of R3 by this group. 

Proof: Since the Riemannian curvature tensor vanishes identically, there exists a 

local isometry from an open neighborhood of R3 to an open neighborhood of M. The 

objective is to extend the domain of this isometry to R3. To do this, we consider the 

maximal atlas, A, of compatible analytic isometries 

i>a-Oa->M. 

Remark here that the range of the maps can include points on M where the metric 

is degenerate. Thus, in this case, the term "isometry" is used in the sense that the 

push-forward of the Euclidean metric via ipa is equal to the metric g^K Assume now 

that A does not cover all R3. Then, there exists a curve 

7 : [0,1] - R3, 

such that the image of 7 lies entirely in some Oa, with the exception of 7(1). The 

manifold M is compact, therefore ipail) must have a limit point x G M. If x lies in 

R, the domain of the atlas A can be extended easily. However, if a; is a degenerate 

point, one need Proposition (2.5) to extend the domain of the atlas. 

First, one can compare the length functional on paths in R with the length func

tional induced by the metric dx2 + dy2 + dz2 and then shows that x is a reachable 

degenerate point. Therefore, it is possible to apply Proposition (2.5) and obtain an 

analytic map (j) from N, an open neighborhood of R3, to R such that (f>*(g^) = g^ 

for gW a non-degenerate metric tensor with analytic coefficients. Since the metric 

.gttfi is non-degenerate on N, one can extend the domain of the atlas A, a contradic

tion with its maximality. Therefore the domain of the charts of the atlas is R3. Since 
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its topology is trivial, one obtains a global map, tp : R3 —» M such that g^ is the 

push-forward of the Euclidean metric. 

Hence, the degenerate points of metric g^ are the points for which the Jacobian 

of ip is degenerate, so that M3 is tiled into connected cells Ci that are the preimages 

of R, and the set of boundary points of these cells is the locus | J(tp)\ = 0. If there is 

more that one cell they must be isometric to each others since they are all isometric 

to R. If a is an isometry that relates two of these cells, say a(C\) — C2, then a and 

ip o <r agree on C\. Since the germ of ip completely determines ip, one gets 

•0 o a = tp. 

Prom Proposition (2.5), the map ip is a 2lth-fold map at degenerate points, the group 

of isometries is therefore the group of reflections along the folding planes. • 
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