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Abstract

Automobile manufacturers are actively delivering a new generation of connected vehicles.

These vehicles are driving a far-reaching revolution in the modern society. They will not

only save a huge amount of lives and property from traffic accidents, but also fundamentally

change the way we travel. As an essential building block of connected vehicles, Vehicle-to-

Vehicle (V2V) communication technologies have become a major research and development

priority of both governments and car manufacturers.

Driving safety and In-Vehicle Infotainment (IVI) services are two primary categories

of services enabled by V2V communications. They are not only complementary to, but

also mutually beneficial to, each other. On one hand, enhancing driving safety is the

most critical issue in current traffic systems. A study [1] led by the U.S. Department of

Transportation (U.S. DOT) estimated that V2V technologies can avoid 74 percent of car

accidents, potentially saving thousands of lives and billions of dollars each year. Infotain-

ment, on the other hand, not only provides extra encouragement to consumers in purchasing

V2V devices, but also brings large economic incentives to manufactures in increasing the

market penetration of V2V devices. As a result of this increased penetration, each vehicle

can gather more information from other surrounding vehicles, leading to a large improve-

ment in the safety of the whole traffic system. In return, enhanced safety allows everyone

to better enjoy infotainment services during reassuring journeys. In this sense, safety and

infotainment services are mutualistic in the vehicular ecosystem.

In this thesis, we focus on two promising V2V technologies, i.e., the Dedicated Short-

Range Communication (DSRC) technology for driving safety and the in-cabin Wi-Fi tech-

nology for vehicular infotainment. While DSRC has been recognized by U.S. DOT as the

enabling technology of the Intelligent Transportation System (ITS), the in-cabin Wi-Fi

technology is recently deployed by many car manufacturers, such as General Motors, Ford,

BMW, and Mercedes, to enhance travelling experience for both drivers and passengers. We

first characterize these new technologies and their unique features with analytical models,

and validate these models with extensive simulations. We then manage to improve the

performance of these technologies with several novel solutions. In this way, we not only

enhance the driving safety, but also provide better Quality of Service (QoS) for IVI. We

implement these technologies in evaluation platforms, and conduct both analytical and

simulation analyses to evaluate their communication reliability, efficiency and fairness. We
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further implement and test them on real test-beds to demonstrate their large improvements

over the state of the art.
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Résumé

Les constructeurs automobiles livrent activement une nouvelle génération de véhicules

connectés. Ces véhicules sont à l’origine d’une profonde révolution dans la société mo-

derne. Ils ne nous permettrons pas seulement de grandement diminuer le nombre de vie

et de bien perdus au accident de la route, mais changerons aussi fondamentalement la

façon dont nous voyageons. En tant que composante essentielle des véhicules connectés, les

technologies de communications de véhicule à véhicule (V2V) sont devenues une priorité

majeure en recherche et développement pour les gouvernements et les fabricants de voiture.

La sécurité au volant et les services d’infodivertissement embarqué sont deux principales

catégories de services rendus possible par les communications V2V. Elles sont non seule-

ment complémentaires, mais aussi mutuellement bénéfique. D’une part, l’amélioration de la

sécurité au volant est le problème le plus critique dans les systèmes de circulations actuelles.

Une étude [1] menée par le ministère des Transports des États-Unis a estimé que les tech-

nologies V2V pouvaient éviter 74 pour cent des accidents de voiture, ce qui pourrait sauver

des milliers de vies et des milliards de dollars chaque année. L’infodivertissement, d’autre

part, ne fournit pas seulement un encouragement supplémentaire pour les consommateurs

dans l’achat d’appareils V2V, mais apporte aussi de grandes motivations économiques aux

fabricants pour qu’ils augmentent la pénétration des appareils V2V sur le marché. À la

suite de cette augmentation de la pénétration, chaque véhicule peut recueillir plus d’infor-

mations des autres véhicules environnants, menant à une grande amélioration de la sécurité

de l’ensemble du système de circulation. En retour, la sécurité renforcée permet à chacun

de mieux profiter des services d’infodivertissement durant des voyages rassurants. En ce

sens, les services de sécurité et d’infodivertissement forment une association mutualiste

dans l’écosystème véhiculaire.

Dans cette thèse, nous nous concentrons sur deux technologies de V2V prometteuses, à

savoir, les technologies de communications dédiées à courte portée (DSRC) pour la sécurité

au volant et la technologie de Wi-FI dans l’habitacle pour l’infodivertissement automobile.

Alors que le DSRC a été reconnu par le ministère des Transports des États-Unis comme la

technologie habilitante du système de transport intelligent, la technologie de Wi-FI dans

l’habitacle a été récemment déployée par de nombreux constructeurs automobiles tels que

General Motors, Ford, BMW et Mercedes, afin d’améliorer l’expérience de voyage pour les

conducteurs et les passagers. Nous caractérisons d’abord ces nouvelles technologies et leurs
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éléments uniques avec des modèles analytiques, et validons ces modèles avec des simula-

tions poussées. Nous réussissons ensuite à améliorer les performances de ces technologies

à l’aide de plusieurs solutions novatrices. De cette façon, non n’améliorons pas seulement

la sécurité au volant, mais fournissons aussi une meilleure qualité de service (QoS) pour

IVI. Nous mettons en œuvre ces technologies dans des plateformes d’évaluation, et nous

effectuons à la fois des analyses analytique et en simulation pour évaluer leur fiabilité de

communication, leur efficacité et leur équité. De plus, nous les mettons en œuvre et les tes-

tons sur de véritables bancs d’essai pour démontrer leurs grandes améliorations par rapport

aux technologies de pointe.
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Chapter 1

Introduction

The automobile industry is undergoing a profound revolution, which is going to change the

way people travel and live. During the past few years, customer preferences and expecta-

tions in safety, technology, and, connectivity, have changed significantly, as pointed out by

General Motors President Dan Ammann. He believes that the automaker’s future relies

heavily on a plan to engage customers beyond vehicles to mobile devices and connectivity.

Connected vehicles are the pioneers in this revolution, significantly enhancing the traffic

safety and fundamentally redefining the personal mobility. On one hand, they have been

considered as a remedy for modern traffic issues, potentially saving hundreds of thousands

of lives and billions of dollars every year worldwide. On the other hand, they provide

an always-connected Internet experience for drivers and passengers, and make the driving

experience easier to everyone with services such as instant streaming of music and movies.

To realize this bright future, wireless connections are required to connect a vehicle

to other vehicles, as well as the roadside infrastructure. In order to enhance the driving

safety and improve the quality of vehicular services, it is of vital importance to establish and

maintain Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications in a

stable and high-speed manner. Two promising technologies, i.e., the Dedicated Short-Range

Communications (DSRC) technology and the in-cabin Wi-Fi technology, are envisioned as

the enablers of the next generation vehicular networks.

While the DSRC technology is mainly developed for enhancing driving safety, the in-

cabin Wi-Fi technology aims to provide better In-Vehicle Infotainment (IVI) services. These

two technologies are complementary and mutually beneficial to each other. On one hand,
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when the driving safety is greatly enhanced with the deployment of the DSRC technology,

drivers and passengers feel secure and relaxed during the smoother trips. With such an

emotionally secure state, they are willing to enjoy more IVI services. In short, the DSRC

technology creates more demands on the in-cabin Wi-Fi services, by making people feel

more secure. On the other hand, IVI services provided by the in-cabin Wi-Fi technology

already opens up a large multimedia market, which is expected to grow to the level of

hundreds of billions dollars. This tremendous economic incentive will certainly drive man-

ufacturers to deploy more and more vehicular communication devices. (Adding a DSRC

or Wi-Fi chip on an in-vehicle wireless radio will only raise the cost by several dozens of

dollars.) Therefore, with an increasing penetration of V2V and V2I devices, the DSRC

technology can be embedded on more vehicles, allowing it to have a more comprehensive

understanding of the current traffic situation. In this way, the driving safety is further

enhanced.

More importantly, the above mentioned procedures form a closed loop, which keeps

boosting the benefits to both ends with positive feedbacks. The enhanced safety improves

emotional security of passengers, and thus creates more infotainment service demands and

larger economic benefits to the car manufacturers and IVI services providers. This enlarged

economic incentive drives the related companies to deploy more vehicular communication

devices, allowing all traffic participants to better coordinate with each other for an enhanced

safety. Such a positive feedback loop is illustrated in Figure 1.1.

1.1 Dedicated Short-Range Communications for Driving Safety

As an essential building block of the connected vehicles, the DSRC technology has become

a major research priority of both governments and automobile manufactures. In the year

of 2014, the U.S. Department of Transportation (U.S. DOT) announced its commitment

to DSRC for driving safety [3]. In North America, 75 MHz of spectrum in the 5.9 GHz

frequency band has been allocated to DSRC exclusively. This spectrum is divided into sev-

eral channels, among which the DSRC Channel 172 is a specific channel that is designated

for safety. The DSRC technology enables a variety of safety-critical applications, such as

adaptive cruise control, lane change assist, and forward collision warning.

The performance of DSRC plays a fundamental role in supporting these safety-critical

applications. These applications require vehicles to exchange their dynamics including lo-
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Figure 1.1 The mutually beneficial DSRC and in-cabin Wi-Fi.

cations, directions, route plans, velocities, accelerations, steering, and other information.

Upon receiving DSRC messages encapsulating these dynamics, the safety-critical applica-

tions can make decisions and recommendations to avoid collisions, assist lane changing,

coordinate intersection crossing, etc. However, these safety-related functionalities cannot

be fulfilled, if DSRC messages are delayed or lost. For example, to avoid a collision between

two vehicles, DSRC messages have to be delivered successfully to both vehicles before the

collision. This implies at least three conditions. 1) The messages need to be delivered

successfully (i.e., reliability). 2) The delivery of messages must be done before the collision

(i.e., efficiency). Otherwise, the messages are useless for collision avoidance or other appli-

cations. 3) The delivery should be guaranteed for both vehicles (i.e., fairness). Otherwise,

the collision may still happen, since one of the vehicles is still unaware of the incoming

danger. Therefore, the performance of DSRC is of critical importance to the driving safety.

To ensure the performance of DSRC in the dynamic vehicular environment, communi-

cation variables must be adjusted appropriately in an online manner. We first attack this

problem from the level of an individual vehicle. Existing communication variable adapta-

tion approaches in this vehicle level only achieve a suboptimal performance, mainly due

to 1) the overlook of the strong coupling between variables and 2) the use of heuristic

algorithms. Previous approaches either focus on the adaptation of one single variable, or

adjust them one by one. These sequential approaches result in unavoidable performance

degradation, due to the error propagation in the multi-stage variable adjustment. In ad-
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dition, heuristic algorithms may fail to provide consistent performance in highly dynamic

environments. To address these issues, in this thesis, we propose an adaptive approach

to simultaneously adjust multiple variables based on systematic control theories, and thus

largely improve the performance of DSRC.

We then go from the vehicle level to the network level, and consider the communica-

tion coordination between vehicles. As more and more DSRC-enabled vehicles are to be

deployed in the near future, the DSRC safety channel will become more and more con-

gested. Individual adaptations of communication variables may not achieve the optimal

global performance. The lack of coordination between vehicles is going to cause severe

interference and collisions in wireless channels, greatly compromising the performance of

DSRC. Moreover, it is also very likely that some vehicles obtain much less traffic informa-

tion than others. These vehicles could make poor judgements that completely contradict

with the majority, leading to grave consequences. To avoid these disasters, vehicles have to

coordinate their transmissions to eliminate interference, collisions and misunderstandings.

Coordinating the adaptations between DSRC devices allow us to further approach the opti-

mal result. However, existing coordination solutions adopt either feedback, handshaking or

probing mechanisms, and thus introduce large coordination overhead that increases explo-

sively with traffic density. Allowing individual vehicles to coordinate their communications

in a completely decentralized manner without any information exchange is desirable yet

very challenging. To accomplish this difficult mission, in this thesis, we develop a series

of strictly distributed coordination schemes, which enhances the global performance with

purely local power adjustments.

1.2 In-Cabin Wi-Fi for In-Vehicle Infotainment

Car manufactures, such as General Motors [4], Ford [5], BMW [6], and Mercedes [7], are

actively deploying the in-cabin Wi-Fi technology to make the travelling easier for everyone

onboard. In this newly deployed in-cabin Wi-Fi system, a built-in Wi-Fi hotspot powers all

the Wi-Fi devices inside the vehicle, bridging the communication gap between these devices

and cellular networks. This system enables a wide range of in-vehicle communications and

infotainment services.

Wireless communication performance has been widely studied through analytical models

as well as simulation and experimental evaluations in existing literatures [8, 9]. However,
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the existing work mainly considers Wi-Fi hotspots located in static structures, but does not

take the features of in-cabin Wi-Fi communications into consideration. Due to the mobility

of vehicles, the density of Wi-Fi hotspots can vary frequently, and can become very large

during rush hours. A fundamental question remains to be explored: as every running

vehicle is equipped with an in-cabin Wi-Fi, how will be the communication performance

affected by the varied number of surrounding vehicles, the transmission power and the data

rate? In order to answer this question, in this thesis, we establish new analytical models

that embody the novel features of in-cabin Wi-Fi systems.

We then go further to explore how to improve the performance of the in-cabin Wi-

Fi system, as well as the Quality of Service (QoS) it provides. Among all infotainment

services enabled by this system, mobile video streaming is expected to be the dominating

one, accounting for over 69 percent of data traffic by 2018 [10]. Video streaming in the

in-cabin Wi-Fi system has two distinct features. First of all, the in-cabin Wi-Fi Access

Points (APs) belong to different individuals, who are unlikely to collaborate with each

other in streaming videos of their own interests . Second, the video streaming service

requires low delays and jitters in providing smooth viewing experience. The coexistence of

these two features pose new requirements in scheduling the transmissions of individual in-

cabin Wi-Fi APs. A proper scheduling algorithm should be both completely decentralized

and delay sensitive. To this end, in this thesis, we propose to schedule the in-cabin Wi-Fi

video streaming with our new framework, which exhibits both the fully distributed and

delay-aware features.

1.3 Research Objectives and Contributions

In this section, we present the research objectives of this thesis, along with the achievements.

1.3.1 Research objectives

Addressing the strong coupling between communication variables

Existing adaptation approaches overlook the strong coupling between communication vari-

ables, and adjust them one by one. Consequently, they introduce error propagations in

their sequential variable adjustments. Therefore, the research objective 1 is to develop

an adaptation approach that addresses the strong coupling between communication variables
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and adjusts all of them at the same time.

Coordinating vehicles in a fully distributed manner

Existing coordination approaches mainly depend on extra message exchanges to coordinate

distributed DSRC units. However, the overhead of these messages could be tremendous

in large-scale vehicular networks, and is expected to grow explosively during rush hours.

Furthermore, because of the high mobility of vehicles, coordination decisions will be quickly

outdated, making the message exchanges meaningless in high speed scenarios. Hence, it is

desired to achieve the research objective 2, i.e., developing a strictly distributed scheme

to coordinate transmission power of DSRC units with zero coordination overhead.

Modeling this newly deployed system

Although the communication distance of an in-cabin Wi-Fi system can be much smaller

than those of conventional Wi-Fi hotspots, it still remains an open problem how the in-

cabin Wi-Fi communication performance looks like in a dynamic vehicular environment.

Therefore, the research objective 3 is to develop analytical models that capture the unique

features of in-cabin Wi-Fi systems under different traffic conditions.

Distributed scheduling for in-cabin Wi-Fi video streaming

We then procedure one step forward and try to improve the QoS of in-cabin Wi-Fi services,

and focus on the most dominating service - the video streaming. The QoS of in-cabin Wi-

Fi video streaming would be significantly compromised by poorly scheduled transmissions.

To schedule the video streaming effectively, we need to jointly consider the completely

decentralized feature of in-cabin Wi-Fi APs and the delay-sensitive feature of video services.

Therefore, our research objective 4 is to develop a scheduling framework, which is both

fully distributed and delay-sensitive.

1.3.2 Contributions

In the processes of achieving the aforementioned research objectives, several important

contributions have been made.
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Contribution 1 We propose an online multi-variable synchronous control approach

based on systematic control theories. To better illustrate the design concept, we take the

transmission power and data rate as example variables, and present an Online Control

Approach of power and Rates (OnCAR). To produce a synchronous combination of com-

munication variables, OnCAR adopts a Multiple-Input Multiple-Output (MIMO) model

based controller. This MIMO model characterizes the variable-performance mapping, which

implicitly captures the coupling between variables as well as its impact on DSRC perfor-

mance. Leveraging this online updated model, OnCAR determines all communication

variables synchronously to optimize DSRC performance. It significantly improves the re-

liability, efficiency and fairness of DSRC by up to 23.7%, 30.1% and 40.1%, respectively.

With this contribution, we achieve research objective 1.

Contribution 2 We develop a series of strictly Distributed Coordination schemes,

namely DisCo. DisCo first enables the strictly distributed coordination with an efficient

distributed control technique, assuming that all units have the same performance targets.

By applying an online control loop, DisCo releases the assumption of identical targets by

adaptively estimating the optimal targets, and thus further enhances DSRC performance.

Extensive simulations demonstrate that DisCo increases DSRC reliability significantly over

the state-of-the-art (by up to 85.8%), and at the same time largely improves the fairness

across all DSRC units (by up to 83.7%). In this way, we achieve research objective 2.

Contribution 3 We develop novel cross-layer models that consider the unique features

of in-cabin Wi-Fi, including the unique space layout of in-cabin Wi-Fi APs and clients, the

unique power loss feature due to vehicle cabins, and the fast mobility of APs. We further

establish a new evaluation platform for in-cabin Wi-Fi communications to validate these

analytical models, and illustrate that the proposed models are much more accurate than

the existing ones. Therefore, we achieve research objective 3.

Contribution 4, we design the Delay-awaRe DIstributed Video schedulING (DRIV-

ING) framework for in-cabin Wi-Fi systems. It retrofits existing Carrier Sense Multiple

Access (CSMA) schemes by prioritizing packets with large queueing delays. In this way,

DRIVING schedules the transmissions in a fully distributed and delay-aware manner. In

addition, DRIVING is lightweight, and only requires a software upgrade to deploy on com-

modity Wi-Fi APs. With the help of DRIVING, we achieve research objective 4.

The publications related to these contributions are listed in Appendix B.
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1.4 Road Map

The road map of this thesis is presented in Figure 1.2. In Chapter 3, we study and apply

adaptive DSRC to enhance driving safety of connected vehicles. In this chapter, we start

from the vehicle-level adaptation, and investigate an important yet unsolved issue - the

coupling between multiple DSRC variables. To tackle this issue, we propose an online

control approach to embrace the coupling in the synchronous adjustment of variables. We

then procedure to the network-level coordination, and study the major issue of coordination

overhead, which increases exponentially with traffic density. To eliminate this overhead and

further enhance the coordination, we develop a series of strictly distributed coordination

schemes with zero message exchange.

In Chapter 4, we focus on another equivalently important subtopic, i.e., applying in-

cabin Wi-Fi for enriched IVI services. We first establish cross-layer models to characterize

the newly deployed in-cabin Wi-Fi systems, and demonstrate the modelling accuracy with

extensive simulations. Based on the models, we have a better understanding on the chal-

lenges of the in-cabin Wi-Fi systems, especially when these systems are used to deliver the

most popular and bandwidth consuming service - the video streaming service. To improve

the QoS of in-cabin Wi-Fi video streaming, we design a distributed scheduling framework

to ensure the delay awareness and fulfill distributed requirement of this service.
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Chapter 2

Related Work

In this chapter, we review the related work, and discuss how this thesis advances the state

of the art. The whole flow of this chapter is illustrated in Figure 2.1. We first present the

current deployment efforts made by the governments and the automobile industry, so as

to demonstrate that the research on connected vehicles is critical and necessary. We then

discuss the first stage of the related research - the understanding and modeling the con-

nected vehicles and their networks. With a comprehensive understanding, we then proceed

to the next stage and try to improve the performance of connected vehicle technologies.

Alongside the discussions of related papers and articles, we present the drawbacks of the

existing studies and demonstrate the necessity and novelty of the algorithms, approaches,

frameworks and theories proposed in this thesis.

2.1 The Deployment of Communication Devices on Wheels

In the year of 2014, the U.S. DOT announced its commitment to DSRC [3] for driving safety.

Regulations of DSRC are expected to be finalized around 2017-2018 in North America, and

initial mandated deployment will be around 2019-2020 [11]. Before that, the deployment

of DSRC devices is and will be mostly on test vehicles. In August of 2012, the U.S. DOT

launched the Connected Vehicle Safety Pilot Model Deployment in University of Michigan.

This program involves 3,000 private vehicles, which are equipped with DSRC devices to

allow wireless communications with each other and with devices in roadside infrastructure.

The industry obviously wants more than test vehicles. General Motors, for example, plans

to launch voluntary deployment in its Cadillac 2017 models. Chip manufactures, such
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as Qualcomm [12], have already started providing DSRC solutions for both vehicles and

smartphones.

The deployment of in-vehicle Wi-Fi hotspots is faster than that of DSRC devices. Start-

ing from the year of 2014, General Motors partners with AT&T to offer embedded 4G

broadband on most of its vehicles [13]. This built-in broadband connection not only pow-

ers passengers’ cellphones and laptops through high-speed Wi-Fi interface, but also provides

the potential to improve driving safety. General Motors is not the only manufacturer pro-

viding this technology. Ford [5], BMW [6], and Audi [14] are actively deploying similar

in-cabin Wi-Fi devices in their vehicles. Meanwhile, standalone mobile Wi-Fi hotspots are

designed by telecommunication companies like Huawei [15]. To offer an attractive in-cabin

Wi-Fi service to the customers, it is of critical importance to analyze the performance and

develop a comprehensive model of in-cabin Wi-Fi communications.
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2.2 Modeling and Measurement of Vehicular Communications

and Networks

In order to improve the safety and performance of vehicles that are connected via vehicular

communications, it is of significant importance to first characterize the communications

and networks. Modeling and measurement results provide critical guidelines to enhance

the efficient, reliability, robustness and fairness of vehicular communications.

2.2.1 Capacity of Mobile ad hoc Networks

Connected vehicles are a concrete example of mobile ad hoc networks (MANETs). Previous

work (e.g., Zhang et al. in [16], Wang et al. in [17], Han et al. in [18]) extensively studied the

capacity and delay of MANETs. For enhanced reliability and efficiency, connected vehicles

also communicate with infrastructure units. Together they form a hybrid ad hoc network,

of which the throughput and latency has been widely discussed (e.g., Li et al. in [19], Chen

et al. in [20], and the references therein). Lu et al. in [21] gave a comprehensive survey of

capacity and delay in MANETs. However, existing work in this thread has not considered

some important mechanisms in DSRC and Wi-Fi standards, such as the random backoff,

the Distributed Coordination Function (DCF), Ready-to-send/clear-to-send (RTS/CTS)

mechanism and the Enhanced Distributed Channel Access (EDCA). To better understand

DSRC and in-cabin Wi-Fi, we need approaches that are more specified for IEEE 802.11

based communications.

2.2.2 Measuring IEEE 802.11 based Communications

Measurement study is of critical importance for us to understand IEEE 802.11 based com-

munications. A comprehensive overview of existing measurement tools, as well as their

effectiveness in estimating wireless parameters, was presented by Dujovne et al. in [22].

Non-intrusive methods, such as Jigsaw (proposed by Cheng et al. in [23]), Wit (proposed

by Mahajan et al. in [24]) and Pie (proposed by Shrivastava et al. in [25]), were designed to

monitor enterprise Wireless Local Area Networks (WLANs) with little system downtime.

Measurement study of vehicular networks has also been conducted by, for example, Cheng

et al. in [2], Sukuvaara et al. in [26] and Martelli et al. in [27].

Nevertheless, measurement study has its inherent limitations. For instance, only to
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investigate the impact of the transmission power, it is necessary to conduct multiple tests

under the same traffic condition. Yet, it would be hard to maintain the same traffic

condition for multiple tests. Theoretical analysis and mathematical models are required to

provide guidelines for real system designs, while measurement study should be utilized as

an important complement to validate the theories, models and designs.

2.2.3 Modeling IEEE 802.11 based Communications

Analytical models of IEEE 802.11 based communications have been extensively studied.

Qiu et al. in [8] developed a general interference model for wireless communication, based on

a Markov chain and a log-normal assumption of interference. However, this method and its

extensions are not suitable for large scale in-cabin Wi-Fi networks, due to the fact that the

sizes of their Markov chains increase quadratically with the number of vehicles. Therefore,

we employ a scalable framework, which models the 802.11 DCF and the EDCA mechanism.

In the seminal work, Bianchi developed in [9] a two-dimension (2D) Markov chain to analyze

802.11 saturated unicast throughput with unlimited retransmissions. Subsequent papers

extended the study to understand the unsaturated throughput with limited retransmissions

(e.g., Malone et al. in [28], Daneshgaran et al. in [29] and Nguyen et al. in [30]). Meanwhile,

IEEE 802.11p based communications in Vehicular Ad hoc Networks (VANETs) have been

discussed in the literature (e.g., Ma et al. in [31], Misic et al. in [32], Campolo et

al. in [33], and Yao et al. in [34]). While the above approaches were based on per-slot

statistics, Tinnirello et al. in [35] utilized channel access cycles and design an enhanced

non-slot method, which further increases the modeling accuracy.

However, the existing literature is still in lack of an cross-layer study/modelling, which

combines the unique features of in-cabin Wi-Fi physical (PHY) layer with its Media Access

Control (MAC) layer. In addition, existing models still exhibit some errors in high-density

scenarios, mainly due to their imprecise estimations of time slot length. In this thesis, we

improve the modeling accuracy with a precise estimation of time slot length, and utilize it

in the development of cross-layer models to better characterize the in-cabin Wi-Fi systems.
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2.3 Adaptive Techniques to Improve the Performance of

Vehicular Communications

Considering the unpredictable dynamics in the driving environments, vehicular communica-

tions must be adaptive to guarantee a reliable and efficient performance. Various adaptive

communication techniques have been developed for this purpose. They can be divided into

two general types: the adaptations of communication variables and the adaptive protocols.

Techniques of the first type conduct their adaptations within some established and fixed

protocols, while techniques of the second type adjust the settings of protocols to satisfy the

communication requirements.

2.3.1 The adaptations of communication variables

We next discuss the related work on the adaptations of communication variables. The

transmission power and the data rate are two major dominating factors of communication

performance. The adaptations of these two factors have been proven as effective and were

utilized widely in industrial practice. Therefore, we mainly focus our discussions on these

two factors. We also present several other variables being jointly used with the transmission

power or the data rate.

Transmission Power Adaptation

Transmission power is a dominating factor determining the reliability of wireless commu-

nications. Power adaptation approaches have been studied in different systems including

cellular networks, WLANs, and VANETs. Critical power in ad hoc networks has been

extensively studied after the seminal work conducted by Gupta et al. in [36]. However,

work in this line of research assumes that the total number of nodes in a network is known,

which is not the case in many realistic scenarios. In addition, the theoretical mobility

models (e.g., i.i.d. model and random walk models) may not be suitable for VANETs.

Another line of research focuses on adapting transmission power based on available

context information, which is measured by and exchanged between communication units.

There exist a large number of approaches based on centralized controller, such as those

proposed by Zhang et al. in [37], by Tan in [38], by Helmy et al. in [39] and etc. However,

they cannot be directly applied in MANETs and VANETs, due to the distributed nature
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of such networks.

To align with the decentralized characteristic, approaches have been proposed to adapt

transmission power in a (partially) distributed manner. Feedback mechanisms have been

adopted. For example, Guan et al. in [40] effectively controlled the target transmission

range by selecting a power setting no greater than necessary. The selection of transmission

power relies on feedback beacons. Xu et al. in [41] utilized feedback information from the

receiver and designed a joint frequency hopping and power adaptation approach for anti-

jamming communication. Chen et al. in [42] established a power allocation game cognitive

wireless mesh networks, and adopted feedback beacons to efficiently allocate transmission

power of users. Mayers et al. in [43] adopted feedback based power control to achieve high

energy efficiency and maintain quality of service simultaneously.

Handshaking mechanisms such as RTS/CTS have been also leveraged. For instance,

Li et al. in [44] designed a power controlled MAC protocol based on RTS/CTS message

exchanges to enable spatial reuse. Luo et al. in [45] developed a joint power and rate

control method also utilizing RTS/CTS and channel reciprocity. Unfortunately, RTS/CTS

packets are not applied by DSRC active safety applications.

There also exist approaches based on probing messages or extra message exchanges.

Ramachandran et al. in [46] developed a systematic two-phase power and rate control

approach. The proposed power control is based on a heuristic method, which transmits

a series of probing packets to find minimum power for transmission. Being developed

for general 802.11 WLANs, this heuristic method is not suitable for vehicular networks,

where the probing results can be easily outdated due to dynamic movements of vehicles.

In addition, the probing procedure introduces unavoidable overhead. Torrent-Moreno et

al. in [47] developed a efficient transmission power control scheme to enhance fairness in

V2V communications. The proposed scheme disseminates power settings to all neighboring

vehicles via extra messages. Lu et al. in [48] proposed to piggyback the power setting in

safety messages to reduce overhead. But the power adaptation would degenerate greatly if

the delivery of safe messages is already unreliable.

In general, the overhead introduced by all aforementioned methods could be very large.

To guarantee the timeliness of the shared information, feedback, handshaking or prob-

ing messages need to be exchanged frequently, consuming a great amount of the precious

channel resource. In addition, as the traffic density increases, this overhead may raise

exponentially.
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More recently, several heuristic approaches have been proposed to avoid message ex-

change overhead in VANETs. Huang et al. in [49] developed a distributed method based a

local metric named average channel occupancy. Based on this metric, each vehicle adapts

its transmission power according to an empirical linear relation. Rawat et al. in [50] lever-

aged traffic flow theory in designing a joint power and contention window size adaptation

method, which adjusts power based on traffic density. The traffic density is estimated

locally using the 12-bit sequence number of the IEEE 802.11 MAC header. However, all

these methods adopt an identical power level for vehicles in proximity, which is merely a

suboptimal coordination policy. Moreover, these methods rely on empirical relations be-

tween transmission power and certain context parameters. Such relations require a great

amount of work in measurement, yet may easily change in different scenarios, making huge

efforts in vain.

To avoid these drawbacks, in this thesis, we develop a fully distributed power coordi-

nation method named DisCo. It adaptively coordinates the transmission power of each

vehicle with purely local information, yet still achieves a significant improvement in the

global communication performance.

Data Rate Adaptation

Classic data rate adaptation methods have been widely developed for stationary wireless

networks. For example, Kamerman et al. in [51] developed a rate adaptation method ARF,

which adjusts the data rate according to the number of successive packet losses. Wong et

al. in [52] proposed to adapt data rates according to packet loss ratios, so as to guarantee

the robustness of static IEEE 802.11 based networks. Bicket in [53] designed SampleRate,

which takes the average of per-packet transmission delay as the rate adaptation criterion.

However, these methods neglect the mobility of nodes, and usually require a relatively

long measurement period to sample the information. Therefore, they cannot adapt to the

dynamic vehicular environment. In addition, they never consider the coupling between

transmission power and data rate. They may result in suboptimal performance of DSRC,

and even fail to converge.

On the contrary, in MANETs or VANETs, the impact of mobility has been explicitly

considered. Holland et al. in [54] developed RBAR, which adapts the data rate based

on a receiver-based SNR measurement approach. This approach allows RBAR to operate
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distributively. Chen et al. in [55] extended the design of the receiver-based approach,

and proposed a rate adaptation method named RAM to handle the channel asymmetry.

Vutukuru et al. in [56] designed a rate adaptation method SoftRate, which adjusts the data

rate according to the channel bit error rate. Shankar et al. in [57] proposed to leverage

context information such as velocity and distance in rate adaptation. They developed

CARS, which is a customized rate selection method for VANETs. Lee et al. in [58] gathered

empirical data from a vehicular testbed to objectively compare different rate adaptation

schemes in VANETs.

However, adapting either data rate or transmission power (or any other individual com-

munication variable) is not adequate to achieve the optimal communication performance.

To this end, we should simultaneously optimize and adjust several variables.

Joint Adaptation and Other Adaptive Variables

There exist a number of joint transmission power and data rate adaptation methods in

VANETs. We next discuss several cutting-edge ones. Li et al. in [44] proposed MRPC,

which controls the multi-rate power leveraging RTS-CTS messages. Nevertheless, methods

based on handshaking or feedback messages are not suitable for DSRC safety communica-

tions. This is because DSRC safety communications are based on broadcast and provide

no handshaking nor feedback messages. Ramachandran et al. in [46] developed Symphony,

which is a fully distributed synchronous two-phase power and rate adaptation strategy.

The first step of Symphony is to estimate the best performance and selects the corre-

sponding data rate. The second step is to tune transmission power to approach estimated

performance with the selected data rate. However, tuning the power setting in the second

step costs a lot of time, and thus significantly reduces Symphony’s efficiency in the highly

dynamic vehicular environment.

Besides transmission power and data rate, other variables have also been utilized in the

designs of joint adaptation approaches. For instance, Huang et al. in [49] proposed a joint

transmission probability and power adaptation method to enhance the safety of driving.

Rawat et al. in [50] proposed to jointly select transmission power and contention window

size control, so as to improve the performance of data dissemination. Zhang et al. in [37]

improved QoS of VANETs with a joint adaptation of power and sub-carrier allocation.

Tielert et al. in [59] designed a joint approach that adjusts transmission power and beacon
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generation frequency to reduce congestion and collisions in the wireless channels.

Nevertheless, most existing joint control methods are sequential connections of indi-

vidual adaptation methods. Hence, they only provide suboptimal adaptation results and

may not adapt quickly enough to the vehicular environment. Furthermore, the coupling

among communication variables (e.g., transmission power, data rate, contention window

size, and etc.) have not been fully explored. Neglecting this critical coupling would lead to

unexpected performance degradation when we are trying to adapt several variables simul-

taneously.

To address these drawbacks, in this thesis, we propose an online control approach named

OnCAR, which is able to capture the coupling between multiple communication variables

and synchronously adjust them to the changing environment.

2.3.2 Adaptive Protocols

Beside the adaptations of communication variables, we can also adjust the settings of

protocols to improve communication performance. We mainly discuss the existing adaptive

scheduling protocols and adaptive MAC protocols with CSMA. The reason why we focus on

these two types of adaptive protocols is that they have been extensively adopted in existing

Wi-Fi and cellular networks. We further present several other adaptive protocols including

adaptive Time Division Multiple Access (TDMA). For techniques in each sub-category, we

point out their drawbacks in the vehicular environments, and discuss how our proposed

schemes and frameworks address these drawbacks.

Adaptive Scheduling

A wealth of work exists on the scheduling of multimedia streaming over wireless networks.

For example, Pahalawatta et al. [60] proposed to adjust the scheduling decisions based

on channel quality. Dua et al. [61] jointly considered the impacts of channel, deadline

and distortion in the design. Li et al. [62] combine the scheduling with the OFDMA

subcarrier assignment to improve end-to-end video quality. However, the above algorithms

are designed for a centralized network. Hence, they are not suitable to schedule the fully

distributed in-cabin Wi-Fi APs.

A number of distributed video scheduling algorithms have been proposed. For instance,

Chuah et al. [63] designed an energy-efficient scheduling and resource allocation scheme
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for video streaming in wireless mesh networks (WMNs). However, the assumption that

no packet is lost due to delay is invalid in a vehicular scenario. Zhang et al. [64] develop

a packet-level transmission distortion model, where content priority, delay and channel

condition are jointly considered. This algorithm would consume a large amount of time to

estimate the dynamic parameters of a changing AP topology. In general, we are still in

need of a fully distributed scheduling algorithm that is robust in a varying environment.

To support delay sensitive applications, such as video streaming in VANETs, a delay/deadline-

aware scheduling algorithm is a must. A number of generalized delay/deadline-aware

scheduling algorithms have been proposed in the literature. Centralized algorithms, such

as those proposed by Hou et al. in [65] and by Wu et al. in [66], are not suitable for a fully

distributed vehicular network. Besides centralized approaches, distributed delay/deadline-

aware scheduling algorithms have been proposed. Caccamo et al. [67] proposed a distributed

approach named implicit Earliest Deadline First (EDF) scheduling, which establish the

scheduling pattern with a relative long initiation stage. Kanodia et al. in [68] designed a

distributed algorithm, which exchanges the EDF priorities among nodes. Bai et al. [69]

designed a joint rate adaption and scheduling scheme for wireless networked control sys-

tems. Given the knowledge of the network structure, this scheme is robust to environmental

disturbances. However, all these scheduling schemes require either an initiation stage, mes-

sage exchanges or prior knowledge of topology, and thus are impractical in highly dynamic

scenarios such as the in-cabin Wi-Fi scenarios.

Instead, in this thesis, we proposed DRIVING, which exhibits both the fully distributed

and delay-aware features required by the in-cabin Wi-Fi systems. DRIVING eliminates the

uses of message exchanges and initiation stage, and explicitly considers the delay of video

packets in the scheduling decisions. As a result, it achieves much better QoS than that of

existing scheduling algorithms in the context of video streaming.

MAC with Adaptive CSMA

In order to improve the communication performance in a dynamic scenario, a variety of

adaptive CSMA algorithms have been proposed. The basic idea of adaptive CSMA al-

gorithms is to adjust the channel access probabilities of wireless nodes according to local

and/or neighbouring information. A number of these algorithms are based on message

exchanges. For example, Gupta et al. in [70] designed Q-SCHED, which relies on queue
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length information exchanges during the control slots. Qian et al. in [71] encapsulated

the interference tolerance in the exchange messages to minimize interference. Zhou et al.

in [72] proposed a distributed scheduling and routing scheme, where congestion messages

are exchanged among neighbors. AkulaAneesh et al. in [73] analyzed the impact of delayed

information exchanges, and quantified the throughput loss due to the delay. In [74], Si et al.

proposed a selection mechanism for multimedia P2P networks. To maximize throughput

and energy efficiency, receivers are required to send multicast messages to potential senders

in each transmitting time slot. However, message exchanges introduce a large communica-

tion overhead in a dense VANET. Meanwhile, protocols based on message exchanges are

hardly supported by commodity Wi-Fi APs.

Another line of research develops adaptive CSMA without message exchanges. Jiang et

al. [75] proposed a transmission length control algorithm, which adjusts CSMA parameters

according to historical AP service rates locally. Rad et al. [76] considered discrete time

collisions and unsaturated transmissions in their adaptive CSMA design, and developed

a Network Utility Maximization (NUM) based algorithm. They also discuss the tradeoff

between long-term efficiency and short-term fairness. Ni et al. [77] proposed the Hybrid Q-

CSMA algorithm, which assigns small backoff counters to nodes with long queues. However,

the delay and deadline of video packets have not been considered. In addition, the above

algorithms assume a random packet arrival process, which is different from the periodic

video streaming traffics [78]. Scheduling multimedia streaming with these algorithms may

lead to frequently lagging and buffering behaviors in video playback.

In this thesis, we retrofit the design of the distributed CSMA/CA scheme to embrace

the delay-aware feature, and apply this upgraded scheme in the design of DRIVING. This

allows DRIVING to have both delay-aware and distributed features.

Other Adaptive Communication Protocols

Adaptive routing in VANETs has been extensively studied. According to Dua et al. in [79],

routing schemes in VANETs can be categorized into topology based routing (e.g., Toutouh

et al. in [80] and Liu et al. in [81]), clustering based routing (e.g., Pan et al. in [82] and

Wang et al. in [83]), geography based routing (e.g., Kim et al. in [84] and Lee et al. in [85]),

data fusion based routing (e.g., Wagh et al. in [86] and Zhang et al. in [87]) and hybrid

routing (e.g., Al-Rabayah et al. in [88] and Minh et al. in [89]).
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Adaptive Time Division Multiple Access (TDMA) approaches have also been developed

for VANETs. In [90], Rhee et al. proposed DRAND, which establishes a collision free

TDMA-based scheduling with an initiation stage. In [91], Bilstrup et al. divided time

into frames, each of which is a repeated sequence of a fixed number of slots. Each node

listens to the channel before transmission, and selects an empty slot for transmission in

the next frame. Omar et al. in [92] proposed VeMAC that reduces collisions by allocating

disjoint sets of time slots to vehicles moving in opposite directions. To better support

video streaming in 802.11p based VANETs, Han et al. in [93] integrated the EDCA scheme

in their algorithm. Each Access Category (AC) obtains a certain share of time slots,

and messages in one AC only access the Control Channel (CCH) during the corresponding

share. As a result, collisions in the wireless channel is further decreased. Yet, TDMA based

distributed scheduling algorithms usually waste a considerable portion of time resource

when the vehicle density is low. To tackle this, Soldo et al. in [94] proposed to combine

distributed TDMA and CSMA to reclaim part of the wasted time resource.

However, the above TDMA algorithms are still incompatible with most of today’s Wi-Fi

or DSRC devices.
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Chapter 3

Enhancing the Safety of Connected

Vehicles

3.1 Overview

A recent study by the U.S. DOT estimated that V2V communication systems can deal with

74 percent of crashes [1], potentially saving thousands of lives and billions of dollars every

year. To boost the development of V2V communication systems, U.S. DOT announced to

start working on regulations that require DSRC devices being installed on new light-duty

vehicles. The DSRC technology enables a variety of safety-related vehicular applications

including lane changing assistance, forward collision warning, blind spot warning, etc [11].

In North America, the most widely accepted DSRC standard employs IEEE 802.11p

Wireless Access for Vehicular Environments (WAVE) at PHY and MAC layers. The 802.11p

based DSRC is fundamentally different from other communication technologies such as Wi-

Fi, Bluetooth, and Zigbee.

• DSRC functions in highly dynamic vehicular environments, where unpredictable dis-

turbances may largely undermine communication performance.

• The licensed 5.9 GHz spectrum is exclusively allocated to DSRC. Thus, DSRC trans-

missions are free of interference from transmissions of other technologies. DSRC

designates one specific channel for safety related messages. Hence, transmissions of

safety messages are not affected by transmissions of non-safety messages.
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• To meet the stringent delay requirements and benefit all surrounding vehicles, DSRC

safety messages are transmitted in a broadcasting manner. Hence, it is highly possible

that the channel becomes saturated in a dense traffic condition.

In DSRC, there are two types of safety-related messages: routine safety messages and

emergency safety messages. Routine safety messages contain the kinematic information

(e.g., GPS position, velocity and acceleration) and sensory information (e.g., braking and

collision.) of vehicles. Each vehicle periodically broadcasts its routine safety messages

with a frequency of 10-20 messages per second. Emergency safety messages are sent out if

dangerous or abnormal events are detected. They have higher transmission priorities and

higher reliability requirements than routine safety messages. Neighboring vehicles utilize

both routine and emergency messages to infer the situation of the surrounding. Based

on this knowledge, each vehicle quickly reacts to the traffic conditions, avoids potential

collisions, and optimizes its future movements. In industrial practice, the size of safety

messages is 300-500 bytes.

To enhance the driving safety of connected vehicles, it is of significant importance to

improve the performance of DSRC. The reasons are as follows. The DSRC technology

is the foundation of many safety-related applications. They rely on DSRC messages to

exchange vehicle dynamics, which are utilized to make decisions for collision avoidance,

lane changing, traffic scheduling, etc. In order to make effective and timely decisions, the

DSRC messages must 1) be successfully transmitted; 2) be delivered as fast as possible;

and 3) arrive as many traffic participants as possible. Otherwise, some vehicles may either

fail to react to a danger, or react too late to avoid the emergency. The functionalities

of vehicular applications are significantly degraded, failing to improve the driving safety.

Therefore, to improve DSRC performance is essential in enhancing the driving safety of

connected vehicles.

In order to guarantee its performance, DSRC has to adapt to highly dynamic, fully

distributed and unpredictable vehicular environments. This mission is challenging, mainly

due to the following two issues.

1) At the vehicle level, adapting multiple communication variables is difficult, because these

variables are strongly coupled with each other. Such couplings, as well as their impacts

on DSRC performance, are implicit and hard to be captured in advance. Neglecting

these couplings results in poorly performed DSRC systems, especially in highly volatile
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vehicular environments. Error propagation in multi-stage variable adjustment processes

must be eliminated as well.

2) At the network level, due to the lack of coordination between vehicles, the global per-

formance of DSRC could be significantly degraded by egocentric variable adaptations.

The state-of-the-art approaches coordinate individual DSRC units with extra coordina-

tion messages. The corresponding overhead is expected to grow explosively during rush

hours. To make things worse, the coordination messages will be outdated quickly in the

dynamic vehicular environments.

To tackle these issues, we develop advanced control approaches in this chapter.

1) To address the strong coupling between communication variables in volatile environ-

ments, we develop a novel online synchronous control approach. We use transmission

power and data rates as an example, and design the Online Control Approach of power

and Rate (OnCAR) based on systematic control theories. OnCAR embraces the strong

couplings between communication variables with a MIMO control model, and adjusts

these variables in a joint and synchronous manner.

2) To coordinate DSRC units with zero coordination overhead, we propose a series of

strictly distributed coordination schemes, namely DisCo. DisCo estimates the perfor-

mance targets of neighbors, infers the potential interferences from and to the others, and

coordinates its own communication variables based on these purely local estimations. In

this way, it avoids the communication overhead while still coordinating the individuals

effectively.

3.2 Performance Metrics

Before going into the design details, we first present the metrics used to evaluate the

performance of DSRC. In this chapter, we consider three types of DSRC performance, the

reliability, the efficiency and the fairness. Concretely, the DSRC reliability is captured by

the effective Packet Delivery Ratio (ePDR), the DSRC efficiency is described by the effective

throughput (eTPUT), and the DSRC fairness is represented by the Coefficient of Variation

(CV) of ePDR. The term “effective” indicates that each vehicle is only interested in the

information within an effective range deff (e.g., with a radius of 300m or 1000m from the
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vehicle). The information from vehicles outside this range is irrelevant to the current safety.

Packets from vehicles outside the effective range may be successfully received by PHY and

MAC layers. But they will be discarded by upper layers, and will not be considered by the

control approach.

The ePDR of a vehicle i is defined as

ePDRi =

∑
j∈Ω

(i)
eff
Nr(i, j)∑

j∈Ω
(i)
eff
Nt(j)

, (3.1)

where i and j are vehicle IDs, Nt(j) denotes the number of packets transmitted by j,

Nr(i, j) represents the number of packets transmitted by j while successfully received by i,

and Ω
(i)
eff represents the set of neighbors within the effective range of i. Ω

(i)
eff is expressed

as

Ω
(i)
eff = {j|j 6= i and d(i, j) 6 deff}, (3.2)

where d(i, j) is the distance between i and j.

The CV of ePDR across all vehicles is then adopted as the metric of fairness.

The eTPUT of a vehicle i is defined as

eTPUTi =
∑
j∈Ω

(i)
eff

Nr(i, j)× Γ, (3.3)

where Γ is the packet length of safety messages.

Given the above definitions, we can now discuss how to improve the performance metrics

of DSRC with our proposed approaches.

3.3 Online Synchronous Control Approach of Multiple

Communication Variables

In this section, we aim to improve the DSRC performance by adapting communication vari-

ables at the vehicle level. We first illustrate the challenges of this mission, and then address

these challenges with the online synchronous control approach of multiple communication

variables. For the sake of clarity, we adopt the combination of two dominating variables,

i.e., transmission power and data rates, as an example. The corresponding approach is
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Figure 3.1 Traffic accident rate across different time of day.

called OnCAR - Online Control Approach of power and Rate.

3.3.1 Observations and Challenges

We next present several important observations to illustrate the challenges in improving

DSRC performance at the vehicle level. These challenges are the major motivations for us

to develop a new adaptation approach of communication variables.

The first observation is summarized as follows.

Observation 1. The number of traffic accidents arrives its peak during rush hours (i.e.,

16:00 to 20:00) .

Observation 1 is supported by government sources such as Texas Motor Vehicle Crash

Statistics [95], North Carolina Crash Data [96] and New York State Department of Motor

Vehicles [97]. To demonstrate and validate this observation, we use the crash data of year

2014 from Texas, and that of year 2013 from North Carolina and New York (the latest

available data). Figure 3.1 presents the traffic accident rate, i.e., the percentage of traffic

accidents, across different time of day. Figure 3.1 confirms Observation 1, as the peaks of

traffic accident rates appear during rush hours for all three states. In addition, the shapes

of accident rates are very similar in different states, indicating a strong correlation between

traffic accident rate and time. Therefore, in this thesis, we consider rush hours to be far

more critical than other time periods.

To improve DSRC performance during both rush and regular hours, the coupling

between transmission power and data rates must be carefully considered. This is motivated
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Figure 3.2 The simulated highway scenario.

by the second observation as follows.

Observation 2. The coupling between transmission power and data rates is implicit and

complicated, and may lead to largely degraded performance of DSRC.

For example, higher transmission power could support higher data rates for potentially

higher DSRC throughput. Yet, it also intensifies the interference, to which higher data

rates are vulnerable. Lower power could alleviate interference for potentially better DSRC

reliability. However, it supports only lower data rates, which deliver less information for

safety. In addition, packets with lower data rates may be more vulnerable to hidden

terminals due to the longer propagation delays. Such a complicated correlation can hardly

be captured by existing heuristics, resulting in degraded performance of DSRC.

We further demonstrate Observation 2 with trace-driven ns-2 simulations in a bi-

directional highway scenario as illustrated in Figure 3.2. This highway is of 2000 meters

long and 30 meters wide with four lanes in each direction. There are two entrances and

one exit along each direction.

We first implement a Transmission Power Adaptation (TPA) approach [37, 40] and a

Data Rate Adaptation (DRA) approach [55, 57] (Both of them are state-of-the-art ap-

proaches on individual power or rate adaptation). TPA fixes the data rate as 3Mbps (the

default data rate of DSRC) and adaptively adjusts transmission power. DRA fixes trans-

mission power as 20dBm (the default power setting) and adaptively changes data rates.

We then combine them sequentially to build a Joint Power and Rate Adaptation (JPRA)
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Figure 3.3 Illustration of performance degradations due to negligence of the
power-rate coupling.

approach, which is extended from the one proposed in [46]). JPRA first selects power based

on TPA, and then chooses a data rate based on DRA.

Figure 3.3 compares ePDR and eTPUT of the three approaches under different traffic

density conditions. We observe that the joint approach JPRA performs much worse than

the individual approach DRA in terms of both ePDR and eTPUT. This result suggests

that the data rates selected by JPRA are not well supported by the chosen transmission

power. Adjusting these two variables one by one (which is common practice in existing

solutions) can lead to a mismatched pair of power and rate settings.

This observation indicates that a good approach must calculate and conduct the ad-

justments of power and rates at the same time (i.e., synchronously), instead of changing

them sequentially. To design such a joint and synchronous control approach for DSRC, we

have to tackle several challenges.

Challenge 1. The coupling of variables, as well as their impacts on DSRC performance,

is implicit and hard to be captured in advance. A mismatched combination of variables may

be selected due to either the negligence of their coupling or an asynchronous adjustment

procedure.

Challenge 2. The vehicular environment is extremely volatile, introducing a variety of

unpredictable disturbances to the control and adaptations of variables.

Challenge 3. Due to the high density during rush hours and the lack of coordination

between vehicles, the overall fairness of DSRC could be significantly degraded by egocentric

power/rate adaptations. DSRC safety-related applications mainly adopt broadcast, which

involves no feedback information.
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3.3.2 Overview of OnCAR

To address the aforementioned challenges, we propose OnCAR - the online control approach

of power and rates. We first introduce the fundamental components of OnCAR, and discuss

conceptually how the challenges are tackled.

Figure 3.4 presents the architecture of OnCAR. It is a controller that runs on each

in-vehicle DSRC radio in a distributed manner. The objective of OnCAR is to optimize

the system outputs (i.e., ePDR and eTPUT) of the target system by adjusting the system

inputs (i.e., transmission power and data rates). Meanwhile, it has to take the fairness into

consideration. OnCAR is composed of a feed forward control loop and an adaptive feedback

control loop. The feed forward loop provides a baseline initiation to the feedback loop, so

as to increase the convergence speed of OnCAR. Moreover, the feedback loop improves the

baseline initiation and further increases the performance of OnCAR.

To address Challenge 1, the feed forward loop utilizes a MIMO model based pre-

dictor. This predictor takes measurements of environment parameters (i.e., a vector X

consists of the Signal-to-Interference-plus-Noise Ratio (SINR) value and the neighbor den-

sity) to select a pair of transmission power and data rate to optimize ePDR and eTPUT.

The selected pair is used as the predicted inputs (denoted as Up) to the target system. The

parameters of this MIMO model are updated periodically. They describe the input-output

mapping, and capture the coupling between two system inputs (i.e., transmission power

and data rates) as well.

However, the MIMO model used in the predictor can only serve as an approximation
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of the dynamic target system. The predicted ePDR and eTPUT (denoted as predicted

outputs Yp) may be off from the measured ePDR and eTPUT (denoted as system outputs

Y), resulting in “residual” control errors. Meanwhile, the unpredictable disturbances in

the vehicular environments enlarge these errors.

To correct residual errors and address Challenge 2, we further develop an adaptive

feedback control loop in OnCAR. This loop first compares the system outputs Y with the

predicted outputs Yp to calculate the residual errors (denoted as ∆Y). Then an online

adaptive controller estimates a regression model of residual errors using these measure-

ments. With this online trained regression model, the adaptive controller produces input

adjustments (denoted as ∆U) to minimize the residual errors. The adaptive nature of this

controller helps us cope with dynamic disturbances in the vehicular environment. The input

adjustments are called control inputs, while the corresponding residual errors are control

outputs. The adaptive nature of this controller helps us cope with dynamic disturbances

in the vehicular environment and errors due to model inaccuracies.

To address Challenge 3, OnCAR utilizes receiver-side measurements of system out-

puts and environment parameters to feed the aforementioned control loops. Adopting such

measurements makes each vehicle to consider the performance of its neighbors, and thus

improves the overall fairness. It also enables OnCAR to operate on each vehicle in a fully

distributed manner.
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3.3.3 Design of MIMO Model Based Predictor

The core module of the feed forward control loop in OnCAR is the MIMO model based

predictor, whose architecture is shown in Figure 3.5. For every pair of power and rate in

DSRC, the predictor first uses a MIMO model to predict its corresponding output of ePDR

and eTPUT. Based on these outputs, an optimizer selects the best pair to maximize ePDR

and eTPUT. This selected pair is then provided to the target system as the predicted inputs

Up, while the corresponding ePDR and eTPUT pair is provided to the feedback loop as the

predicted outputs Yp. Note that measurements of environment parameters (i.e., SINR and

neighbour density) are needed as the inputs of the MIMO model. We leave the detailed

measurement process till Section 3.3.5.

The MIMO Model

The mathematical expression of the MIMO model is a function F mapping the environment

parameter vector X and input vector U to output vector Y:

Y = F (X,U). (3.4)

Note that this MIMO model F is a general model that can generalize most existing

algorithms. There are a number of approaches in designing this MIMO model (i.e., the

function F ).

One candidate design of the MIMO model is to incorporate existing individual power

control and rate adaptation algorithms. For example, to control the transmission power,

the MIMO model could leverage the mapping from neighbour density to transmission power

employed by Guan et al. in [40]. At the same time, the MIMO model could adapt the

mapping from link quality to data rate used by Shankar et al. in CARS [57], so as to

select the best data rate according to the environment parameters. In this way, the MIMO

model based predictor can perform as well as the state-of-the-art schemes on individual

rate adaptation or power control.

In this thesis, we adopt an approach that is more consistent with industry practice.

Considering the potentially large measurement results of DSRC from current and future

industry simulations and tests, we propose to train the MIMO model with them. This

approach can be easily applied by automobile industry in deployments with their test data.
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In this thesis, the MIMO model is trained with fine grained ns-2 simulation traces. We

collected training data of 244 pairs of inputs (i.e., power and rate settings U) in 3660 traffic

conditions. We also recorded SINR values, and collected another group of training data for

environment parameters X. The total size of training data is over 1TB in binary format.

Applying the least squares model fitting technique [98] on the training data, we obtained

our MIMO model F .

The Optimizer

Based on the MIMO model F and measurements of the environment parameters X, the

optimizer produces the predicted inputs and outputs. Denote the predicted inputs as Up =

[up1, u
p
2], where up1 denotes the predicted selection of transmission power and up2 represents

the predicted selection of data rate. Denote the predicted outputs as Yp = [yp1, y
p
2], where

yp1 is the predicted ePDR and yp2 is the predicted eTPUT. The optimizer is designed to

maximize a weighted sum of yp1 and yp2 as follows.

Maximize
Up

yp1 + σyp2,

Subject to Yp = F (X,Up),

up1 ∈ U1, u
p
2 ∈ U2,

where σ is a parameter that scales ePDR to the level of eTPUT, U1 is a finite set of available

power levels, and U2 is a finite set of available data rates.

3.3.4 Design of Adaptive Controller

As mentioned in Section 3.3.2, the predicted outputs Yp of the MIMO model predictor may

be off from the measured system outputs Y. This leads to “residual” errors. In addition,

these errors can be enlarged by the unpredictable disturbances in vehicular environments.

To eliminate these errors and adapt to the dynamic environment, we further introduce an

adaptive feedback control loop.

The key component of this adaptive feedback control loop is an adaptive controller,

which is illustrated in Figure 3.6. This controller is composed of an online parameter

estimator and an online parameter estimator with a control law. The online estimator

provides estimates of time-varying parameters at each control instant. Based on these
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Figure 3.6 Architecture of the adaptive controller.

estimates, the control law calculates control inputs to achieve the control objective. Here

the control objective is to minimize the residual errors. The calculated control inputs are

then used to adjust the predicted inputs given by the MIMO model based predictor. We

adopt a direct adaptive control scheme [99] for this adaptive controller.

In the design of the online parameter estimator, we apply a linear regression model

to capture the relation between control inputs S(k) and control outputs R(k). Here S(k)

represents the input adjustments ∆U at time interval k, while R(k) corresponds to the

residual errors ∆Y at time interval k. Note that this regression model (which maps ∆U

to ∆Y) is different from the MIMO model F (which maps U and X to Y). The adaptive

feedback control scheme is described by a difference equation model as

A(q−1)R(k) = B(q−1)S(k) + e(k), (3.5)

where

A(q−1) = 1− a1q
−1 − · · · − anq−n, (3.6)

B(q−1) = b0q
−1 + · · ·+ bn−1q

−n, (3.7)

q−1 is the back shift operator (which operates on an element of a time series to produce

the previous element), n is the order of the regression model (which is to be chosen in

the evaluation part). Note that the digital implementation of the controller introduces a
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one-step delay between the current control inputs and the corresponding control outputs.

In this case, the control inputs at time interval k − 1 (i.e., S(k − 1)) will affect the control

outputs at time interval k (i.e., R(k)).

In order to cope with the disturbances in the vehicular environments, the model pa-

rameters are updated periodically. At each time interval, control outputs are measured

and fed into the online parameter estimator. The estimator combines these outputs with

the corresponding past control inputs to estimate the model parameters ai(i = 1, · · · , n)

and bj(j = 1, · · · , n). Based on these estimates, the controller calculates future control

inputs to correct the residual errors. To this end, we apply a Recursive Least Square (RLS)

scheme [100] for the online parameter estimator. Denote

φ(k) = [R(k − 1), · · · ,R(k − n),S(k − 1), · · · ,S(k − n)]T , (3.8)

and

θ(k) = [a1(k), · · · , an(k), b0(k), · · · , bn−1(k)]T . (3.9)

We convert Eq. (3.5) to an RLS-friendly format as follows

R(k) = φT (k)θ(k). (3.10)

In Eq. (3.10), θ(k) denotes the true parameters to be estimated at time interval k. Applying

the RLS algorithm, we can obtain the estimated parameters θ̂(k) at time interval k. In

detail, the RLS algorithm computes

ε(k) = R(k)− φT (k)θ̂(k − 1), (3.11)

P(k − 1) = P(k − 2)− [1 + φT (k)P(k − 2)φ(k)]−1

·P(k − 2)φ(k)φT (k)P(k − 2), (3.12)

θ̂(k) = θ̂(k − 1) + P(k − 1)φ(k)ε(k), (3.13)

where P(k) is an auxiliary matrix that is only used during the computation of the RLS

algorithm. The estimated parameters θ̂(k) contain the estimates of model parameters ai

and bj. The RLS algorithm updates Eq. (3.12) and (3.13) in each sampling interval, and
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thus the model parameters are estimated in an online manner. The initial condition of the

above RLS algorithm is P(−1) = p0I, where p0 > 0 and I is an identity matrix.

Based on the estimated parameters θ̂(k), the control law is calculated by solving the

following equation

φT (k)θ̂(k) = R∗(k), (3.14)

where R∗(k) is the control reference. As stated in the beginning of this subsection, the

adaptive controller aims to minimize the residual errors. Hence, we set R∗(k) = 0. As

defined in Eq. (3.8), φ(k) encapsulates past control outputs R(k − 1), · · · ,R(k − n), past

control inputs S(k − 2), · · · ,S(k − n), and current control inputs S(k − 1). By solving

Eq. (3.14), we achieve current control inputs S(k − 1). Note that S(k − 1) correspond

to input adjustments ∆U.Here, the control law determines how the controller adjusts the

control variables in each control interval.

However, directly applying the control law based on Eq. (3.14) may result in large

variations in two consecutive control inputs, jeopardizing the stability and convergence

of OnCAR. In addition, abrupt oscillations of transmission power and data rates would

introduce undesirable disturbances to neighbor vehicles. To address this issue, we integrate

a smooth control mechanism in the control law. The corresponding smooth control law

aims to minimize the following cost function

J =E{||W(R(k + 1)−R∗(k + 1))||2

+ ||Q(S(k)− S(k − 1)||2},
(3.15)

where ||.|| is the 2-norm operation, W and Q are weighting matrices. Their relative magni-

tude controls the tradeoff between performance and stability. In this thesis, W and Q are

diagonal matrices, which are consistent with common practice. (Interested readers can refer

to [99] for more details on settings of W and Q.) The goal of Eq. (3.15) can be interpreted

as approaching the desired system outputs while controlling the changes of inputs.

Theorem 1. The smooth control law is realized with the following control inputs

S(k) =
(
(Wb̂0)TWb̂0 + QTQ

)−1 ·
(
QTQS(k − 1)

+ (Wb̂0)TW(R∗(k + 1)− θ̂(k)φ̃(k))
)
.

(3.16)
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Proof. We first define

φ̃(k) = [R(k − 1), · · · ,R(k − n), 0,S(k − 2), · · · ,S(k − n)]T . (3.17)

Substituting θ̂(k) and Eq. (3.17) into Eq. (3.15), we have

J = E{||W(θ̂(k)φ̃(k) + b̂0S(k) + ε(k + 1))

−R∗(k + 1))||2}+ ||Q(S(k)− S(k − 1))||2

= ||W(θ̂(k)φ̃(k)−R∗(k + 1))||2 + ||Wb̂0S(k)||2

+2ST (k)b̂T0 WTW(θ̂(k)φ̃(k)−R∗(k + 1))

+||QS(k)||2 + ||QS(k − 1)||2

−2ST (k − 1)QTQS(k) + E||Wε(k + 1)||2. (3.18)

The cost function J is at its minimum where the following derivative is zero.

∂J
∂S(k)

= 2(Wb̂0)TW(θ̂(k)φ̃(k)−R∗(k + 1))

+ 2(Wb̂0)TWb̂0S(k)

+ 2QTQS(k)− 2QTQS(k − 1) = 0.

(3.19)

Solving Eq. (3.19), we obtain the smooth control law

S(k) =
(
(Wb̂0)TWb̂0 + QTQ

)−1 ·
(
QTQS(k − 1)

+ (Wb̂0)TW(R∗(k + 1)− θ̂(k)φ̃(k))
)
.

(3.20)

3.3.5 Measuring System Outputs and Environment Parameters

As we mentioned earlier, OnCAR needs the measurements of system outputs (i.e., ePDR

and eTPUT) and environment parameters (i.e., SINR and neighbor density) to feed the

MIMO model based predictor and the adaptive controller. In this thesis, we propose to

measure these values at the receiver side. The reason of using receiver-side measurements
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is two-fold. 1) Due to the channel reciprocity in DSRC1, receiver-side measurements serve

as a good estimation of a vehicle’s own transmission performance. To enhance its own

performance, a vehicle would improve receiver-side measurements. 2) Each vehicle would

like to obtain more safety messages from its neighbor, so as to enhance its own driving

safety with more information. Therefore, each vehicle is also self-motivated to improve the

performance of its neighbors.

The measurements of system outputs are achieved as follows. At each time interval,

each DSRC radio measures eTPUT by counting the number of received packets sent by

neighbors within the effective range. To measure ePDR, each DSRC radio leverages the

12-bit sequence number in the sequence control field of an IEEE 802.11 MAC header. The

expected number of transmitted packets is approximated by the difference between the

maximum and minimum sequence numbers. Then ePDR is estimated as the ratio of the

number of received packets to the expected number of transmitted packets.

To measure the density of neighbor, each DSRC radio extracts the sender’s MAC address

encapsulated in the MAC header, and counts the number of neighbors based on this distinct

MAC address. To measure the SINR value, each DSRC radio first measures the SINR

value of each packet sent by a neighbor within the effective range. Then an average value

of SINR is calculated. Both parameters are then provided to OnCAR as the environment

parameters.

3.4 Evaluating OnCAR with Simulations

In this section, we evaluate OnCAR with trace-driven ns-2 simulations. We demonstrate

that OnCAR perform consistently well all the time including rush hours. Concretely, we

first present the performance improvement of OnCAR during the most critical period (the

rush hours), with real-life traces. We then adopt simulations with synthetic traces to

demonstrate that OnCAR also bring large improvements in all time periods.

1We are aware of the debate on the existence of channel reciprocity in general. In the context of DSRC,
field tests [101] already confirmed the existence of channel reciprocity.
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Figure 3.7 Real-life traffic density traces.

3.4.1 Evaluation Setup

Traffic Traces

We establish real-life traffic scenarios with two real-life traffic data sets. One data set [102]

records the traffic density of Berkeley on Jan. 17, 2007. The other data set [103] traces the

traffic density of San Diego on Oct. 1st, 2014. The traffic densities of Berkeley and San

Diego data sets are presented in Figure 3.7. In both scenarios, traffic density achieves the

maximum value during rush hours (i.e., 16:00 to 20:00 in this thesis).

Real-life traffic traces are mostly available in metropolis areas. There may be cases that

are not covered by currently accessible traces. To cover as many those cases as possible, we

also conduct simulations in ten synthetic scenarios representing a diverse group of traffic

conditions.

Traffic data sets in the real-life and synthetic scenarios provide density information from

the view of a highway. To generate microscopic vehicle dynamics, we combine the density

information with a vehicle movement trace generator SUMO 2. In this way, we obtain a

set of traces on vehicle dynamics, which describe the time-varying speeds, positions and

destinations of all vehicles on a bi-directional highway.

This highway has a speed limit of 100 kilometers per hour. The layout of this highway

has been illustrated in Figure 3.2. This highway is of 2000 meters long and 30 meters wide

with four lanes in each direction. It has a median strip to separate two directions. Upon

2Simulation of Urban Mobility: http://sumo-sim.org/
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Table 3.1 Settings of the bi-directional highway.

Description Value

Total length 2000m

Total width 36m

Width of median strip 4m

Lanes in each direction 4

Speed limit 100km/h

Number of entrances 4

Number of exits 2

arriving at the end of one direction, vehicles re-enter the highway at the beginning of the

other direction. There are two entrances and one exit along each direction., one locating at

the beginning of that direction while the other locating at the 1-kilometer spot. In addition,

there is an exit at the end of each direction. Upon arriving at the end of one direction,

vehicles re-enter the highway at the beginning of the other direction. Meanwhile, vehicles

that leave through the exits will re-enter the highway through the entrances. The above

settings are summarized in Table 3.1.

DSRC Propagation Model

To capture the signal propagation in real DSRC scenarios, we adopt the field-test results

reported by Cheng et al. in [2]. Concretely, the path loss function L(d) of DSRC is modeled

as a two-slope function, i.e.,

L(d) =


− 10τ1 log10(

d

d0

), d0 ≤ d ≤ dc,

− 10τ1 log10(
dc
d0

)− 10τ2 log10(
d

dc
), d ≥ dc,

(3.21)

where d denotes the distance between transmitter and receiver; d0 is the reference distance;

dc is the equivalent transmission distance; τ1 and τ2 are both path loss factors. Empirical

values of the parameters are summarized in Table 3.2.
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Table 3.2 Empirical values of parameters in DSRC propagation model [2].

Description Value

Reference distance d0 1m

Equivalent transmission distance dc 220m

path loss parameter τ1 1.9

path loss parameter τ2 4.0

DSRC Radio Settings

Each DSRC radio follows the DSRC standards and broadcasts safety messages periodically

on DSRC Channel 172. The broadcasting period of messages is 0.05 seconds. The effective

range of communication is 300 meters. The data encapsulated in each packet is of 500

bytes, while the packet headers are added based on IEEE 802.11p protocols. The options

of data rates include 3Mbps, 6Mbps, 12Mbps, and 24Mbps. The available transmission

power ranges from 10dBm to 30dBm, with a 2dBm step. In addition, each vehicle is

equipped with one DSRC radio.

3.4.2 Approaches Studied

We implement and evaluate the following four power/rate adaptation approaches in the

simulations.

• OnCAR is our proposed approach. It combines a MIMO model based predictor with

an online adaptive controller. OnCAR runs on each vehicle distributively.

• Transmission Power Adaptation (TPA) is an individual transmission power adapta-

tion approach. It is developed based on state-of-the-art individual power adaptation

approaches proposed in [37,40]. TPA uses a fixed data rate of 3Mbps.

• Data Rate Adaptation (DRA) is an individual rate adaptation approach. It is imple-

mented based on state-of-the-art individual data rate adaptation approaches proposed

in [55, 57]. DRA fixes transmission power as 20dBm and adapts data rates based on

its measured environment parameters (i.e., channel SINR and neighbor density).

• Joint Power and Rate Adaptation (JPRA) is a joint and heuristic adaptation ap-

proach. We leverage state-of-the-art designs of joint approaches proposed in [46,50,59]
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(b) San Diego scenario.

Figure 3.8 CDFs of ePDRs in real-life scenarios at rush hours.

Table 3.3 Statistics of ePDRs at rush hours of Berkeley.

Approach mean Improvement by OnCAR max min

TPA 0.4431 53.9% 0.7691 0.2084

DRA 0.5624 21.2% 0.8038 0.4091

JPRA 0.5593 21.9% 0.7686 0.3126

OnCAR 0.6818 −− 0.8469 0.4768

to develop JPRA. It combines TPA and DRA sequentially: it first determines the

transmission power, and then selects a data rate.

In the simulations, sampling and control intervals of all approaches are 1 second.

3.4.3 DSRC Reliability in Real-life Scenarios

We first evaluate the reliability in terms of ePDR. We focus on the rush hours, i.e., 16 : 00

to 20 : 00. The Cumulative Distribution Functions (CDFs) of ePDRs at rush hours are

presented in Figure 3.8. It is shown that OnCAR achieves the best reliability with the

largest ePDR.

We further summarize several statistics of ePDRs at rush hours in Table 3.3 (for Berkeley

scenario) and Table 3.4 (for San Diego scenario). The statistics include mean, maximum

and minimum values of ePDRs, as well as the mean ePDR improvements of OnCAR over

other approaches. Compared with JPRA, OnCAR improves the average reliability of DSRC

by 21.9% and 23.7%, respectively. Moreover, OnCAR achieves the highest minimum and

maximum ePDR among all approaches. This suggests that the improvement in reliability
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Table 3.4 Statistics of ePDRs at rush hours of San Diego.

Approach mean Improvement by OnCAR max min

TPA 0.4631 51.2% 0.8973 0.3507

DRA 0.5636 24.2% 0.8650 0.4628

JPRA 0.5659 23.7% 0.9052 0.4387

OnCAR 0.7002 −− 0.9335 0.5728
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(b) San Diego scenario.

Figure 3.9 CDFs of eTPUT in real-life scenarios at rush hours.

benefits every vehicle. In addition, we observe that the joint approach JPRA achieves

a lower ePDR than that of the individual approach of DRA. This again confirms that

sequential adjustments of power and rates sometimes result in a mismatched pair of these

two variables, leading to a compromised DSRC performance. The synchronous control

adopted by OnCAR address this issue by embracing the strong coupling with a MIMO

control model. It enables OnCAR to select the optimal choices of power and rates. Hence,

OnCAR addresses Challenge 1, and greatly enhances DSRC reliability of all vehicles

3.4.4 DSRC Efficiency in Real-life Scenarios

We further evaluate the efficiency of OnCAR in terms of eTPUT. We present the CDFs

of eTPUT for all approaches during rush hours in Figure 3.9. It is shown that OnCAR

achieves the largest eTPUT and thus the best efficiency of DSRC. Therefore, we conclude

that among all the approaches, OnCAR provides the highest efficiency of DSRC.

We also summarize the mean, minimum and maximum of eTPUT, as well as the mean

eTPUT improvement by OnCAR over other approaches, in Table 3.5 and Table 3.6. Note
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Table 3.5 Statistics of eTPUT at rush hours of Berkeley.

Approach mean Improvement by OnCAR max min

TPA 1.4287 70.3% 1.8768 0.6808

DRA 1.9280 26.2% 0.7364 3.0836

JPRA 1.8869 28.9% 0.6840 2.9088

OnCAR 2.4324 −− 0.9816 3.4264

Table 3.6 Statistics of eTPUT at rush hours of San Diego.

Approach mean Improvement by OnCAR max min

TPA 1.3986 88.9% 1.6732 1.1120

DRA 2.0479 29.0% 2.6728 1.0512

JPRA 2.0307 30.1% 2.9300 1.1288

OnCAR 2.6416 −− 3.5072 1.1040

that the unit of eTPUT in Table 3.5 and Table 3.6 is Mbps. Compared with the state-of-

the-art joint approach JPRA, OnCAR enlarges the overall efficiency of DSRC by 28.9% and

30.1%, respectively. Furthermore, we find that OnCAR’s improvements in eTPUT is larger

than that in ePDR (in terms of percentage). In other words, OnCAR further enlarges the

eTPUT beyond the increment brought by an enhanced ePDR.

3.4.5 DSRC Fairness in Real-life Scenarios

The metric of fairness, i.e., the CV of ePDRs, is presented in Figure 3.10. It is shown

that, in both scenarios, OnCAR achieves the lowest CV and hence the best fairness among

all approaches. To quantify the improvement in fairness, we summarize the decreases in

CV of ePDRs brought by OnCAR in Table 3.7. Compared to JPRA, OnCAR significantly

improves the fairness across all vehicles by up to 44.0% and 40.1%, respectively. These

improvements are mainly brought by the receiver-side measurement mechanism of OnCAR.

This mechanism establishes an implicit feedback loop, which forces vehicles to consider

the performance of their neighbors. Therefore, OnCAR helps vehicles achieve enhanced

reliability and improved fairness simultaneously, and indeed addresses Challenge 3.
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Figure 3.10 CV of ePDR in real-life scenarios.

Table 3.7 OnCAR’s improvements in fairness over others.

Fairness Improvement Berkeley San Diego

Over TPA 65.8% 54.2%

Over DRA 29.4% 29.8%

Over JPRA 44.0% 40.1%
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Figure 3.11 Convergence in San Diego Scenario.
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Table 3.8 Traffic densities of ten synthetic scenarios.

Scenario T1 T2 T3 T4

#1 0.025 0.05 0.075 0.1

#2 0.1 0.075 0.05 0.025

#3 0.025 0.075 0.05 0.1

#4 0.025 0.1 0.025 0.1

#5 0.025 0.125 0.05 0.15

#6 0.025 0.2 0.025 0.2

#7 0.05 0.1 0.025 0.15

#8 0.05 0.025 0.15 0.1

#9 0.1 0.025 0.05 0.15

#10 0.1 0.15 0.025 0.05

3.4.6 Convergence Speed in Real-life Scenarios

We further evaluate the convergence speed of different approaches. We compare OnCAR

with JPRA, while omitting TPA and DRA as they only adjust one individual variable.

We extract the results at the very beginning of the simulations, when all vehicles just

start to adapt their power and rates. Figure 3.11 presents the selections of power and

rates across time. It is demonstrated that power and rates of OnCAR converge much

faster than those of JPRA. While OnCAR achieves a convergence of both variables in

only 3 control iterations, JPRA requires almost 30 control iterations. This is because the

sequential adaptation procedure in JPRA is sensitive and vulnerable to the dynamics in

the environment. Changes in one variable sometimes evoke cascading oscillations across

two variables for a relatively long period. OnCAR avoids this problem with a synchronous

control of both variables. In this way, OnCAR addresses Challenge 2 and significantly

increases the convergence speed.

3.4.7 Evaluation in Synthetic Scenarios

In this section, we demonstrate that OnCAR achieves large improvements during not only

rush hours but also other time periods. To this end, we establish ten synthetic scenarios,

each of which is generated with an unique synthetic traffic density trace. These synthetic

scenarios allow us to evaluate OnCAR in a more comprehensive manner. Each trace is

divided into four periods denoted by T1, T2, T3 and T4, respectively. Traffic density in each
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Table 3.9 OnCAR’s improvements over others in the synthetic scenarios.

Density Approach ∆ePDR ∆eTPUT ∆CV

0.075 TPA 39.7% 53.9% 65.8%

DRA 12.9% 17.4% 39.1%

JPRA 18.8% 21.0% 44.1%

0.1 TPA 63.7% 78.1% 62.8%

DRA 21.0% 25.6% 27.2%

JPRA 21.6% 31.0% 48.4%

0.15 TPA 87.0% 98.5% 45.3%

DRA 42.4% 30.8% 26.9%

JPRA 29.0% 35.7% 38.5%

period is different from the previous one. The traffic densities of ten synthetic scenarios

are summarized in Table 3.8. The unit of traffic density is vehicles per meter.

To better compare the approaches, we group simulation results into five density sets.

For example, we group the ePDRs during T3 of scenario #1, T2 of scenario #2 and T2 of

scenario #3 as the set of density 0.075. For better clarity, we focus on the results of a low

density set (i.e., density 0.075), one medium density set (i.e., density 0.1), and one high

density set (i.e., density 0.15). We summarize OnCAR’s improvements in mean ePDRs,

mean eTPUT and CV of ePDRs over other approaches in Table 3.9. It is confirmed that

OnCAR delivers the most reliable, efficient and fair performance across different traffic

densities.

3.5 Evaluating OnCAR on a Testbed

In this section, we implement OnCAR on a testbed, and compare OnCAR with several

cutting-edge approaches in the existence of hidden terminals. These experiments serve as

a compliment to the trace-driven simulations.

3.5.1 Testbed Setup

Testbed Overview

Our testbed consists of three Universal Software Radio Peripheral (USRP) B210 boards,

one USRP X310 motherboard, one USRP CBX 120 daughterboard, three iRobot-Create
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Figure 3.12 A testbed to evaluate OnCAR.

robots, three laptops and one desktop as shown in Figure 3.12(a). With this testbed, we

conduct experiments in emulated scenarios as shown in Figure 3.12(b). There are three

DSRC-enabled vehicles driving together as a car fleet. The car fleet follows a pre-defined

trajectory. None-Line-of-Sight (NLOS) scenarios are emulated by introducing several metal

obstacles between antennas. This setting simulates common real-life traffic scenarios, where

LOS paths between two vehicles are often blocked by other vehicles or road-side buildings.

The vehicles are constantly communicating with each other on DSRC Channel 172 (i.e.,

the 10 MHz DSRC channel centered at 5.86 GHz). Furthermore, since hidden terminals are

one of the major reasons of performance degradation in DSRC, we also emulate a number

of hidden terminals on Channel 172.

DSRC Radios Setup

DSRC radios are implemented on USRP B210 boards, where DSRC protocols are realized

in GNU radio3. To enable DSRC capabilities, we have revised and extended the GNU radio

code of IEEE 802.11p developed by Bloessl et al. in [104]. Each DSRC radio broadcasts

safety messages on DSRC Channel 172 with a period of 0.1 seconds. The data encapsulated

in each packet is of 500 bytes. The packet headers are then added based on IEEE 802.11p

protocols. Moreover, we implement OnCAR and other power/rate adaptation approaches

in GNU radio. The options of data rates include 3Mbps, 6Mbps, 12Mbps, and 24Mbps.

Note that the implemented approaches adjust the virtual power gain in GNU radio instead

of real transmission power of B210 boards. The manufacturers of B210 boards do not

3GNU radio: http://gnuradio.org

http://gnuradio.org
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Figure 3.13 The components of a DSRC-enabled vehicle and their connec-
tions.

provide any official calibrated mapping. As a result, we resort to an unofficial calibration

of USRP B2104 to map the virtual power gain in GNU radio to real transmission power as

follows

Preal =


0, 0 ≤ Pvir < 50,

(Pvir − 80) dBm, 50 ≤ Pvir < 90,

10 dBm, 90 ≤ Pvir ≤ 100,

(3.22)

where Preal represents the real transmission power and Pvir denotes the virtual power gain

in GNU radio. This unofficial mapping certainly introduces some calibration errors (In

fact, even an official mapping yields some errors due to the device diversity). These errors

are treated as disturbances by OnCAR, and can be cancelled by the adaptive controller

effectively as discussed in Section 3.3.4.

DSRC-Enabled Vehicles Setup

Each DSRC-enabled vehicle consists of a DSRC radio, a laptop and an iRobot-Create

robot as illustrated by Figure 3.13. Packets successfully received by the DSRC radio are

transmitted to the laptop via a USB 3.0 cable. Based on the information capsulated in

these packets (e.g., sender IDs, sequential numbers in the MAC header and etc.), the laptop

applies OnCAR (as well as other approaches) to adjust transmission power and data rates.

These adjustments are then fed to the USRP B210 board through the USB 3.0 cable. In

4Transmission power calibration of USRP Bus series: http://forums.ni.com/ni/attachments/ni/

500/1420/1/b200_rev4_TX_FE1.pdf

http://forums.ni.com/ni/attachments/ni/500/1420/1/b200_rev4_TX_FE1.pdf
http://forums.ni.com/ni/attachments/ni/500/1420/1/b200_rev4_TX_FE1.pdf
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addition to power and rate adjustments, the laptop also controls the movement of the

iRobot-Create robot. The movement commands are sent to the robot via a USB-serial

conversion cable. The laptop and the radio board are mounted on top of the robot for the

ease of movement.

Interference from Hidden Terminals

In our testbed, we emulate the communication behaviors of hidden terminals. Each hidden

terminal works as a DSRC radio, except that it neither adjusts its power/rate nor follows

the CSMA/CA mechanism (because they are hidden from the three DSRC radios). The

interference from hidden terminals is implemented with one USRP X310 motherboard

and one USRP CBX 120 daughterboard. To emulate multiple hidden terminals with a

limited number of devices, we design the message generation procedure of the USRP X310

motherboard as follows. For each hidden terminal, the testbed generates an i.i.d. random

numbers between 0ms to 99ms as the starting time of packet transmission in every 100ms

time slot. If the transmissions of multiple hidden terminals overlap, the overlapped packets

will be merged into one packet with extended size, so that the transmission time of this large

packet equals the total transmission time of all these overlapped packets. The transmission

power of this large packet will then be multiplied by the number of overlapped packets.

Note that, in this way (i.e., aggregating the power of overlapped transmissions from hidden

terminals), we emulate the worst-case situation of the hidden terminal problem. This allows

us to conduct worst-case analysis of experiment results and derive reasonable insights.

3.5.2 Experiment Results

For each approach, we repeat experiments five times with the same setting. To evaluate the

impact of hidden terminals, we vary the number of hidden terminals and collect a group of

experiment results.

DSRC Reliability

We first evaluate DSRC reliability in terms of ePDR. Figure 3.14 compares the ePDRs

of approaches with different number of hidden terminals. In addition to the mean value

of ePDRs, the error bars in Figure 3.14 demonstrate the deviations of ePDRs across five

experiment instances. As expected, ePDRs decrease with the increase of the number of
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Figure 3.14 Average ePDRs of DSRC-enabled vehicles in the existence of
hidden terminals.

hidden terminals. Compared with the second best approach, OnCAR improves the average

ePDR by up to 40.1%.

Furthermore, we observe that the joint approach JPRA performs worse than DRA. This

phenomenon again suggests that the coupling between transmission power and data rate

must be properly addressed. JPRA selects transmission power before data rate, thus it fails

to capture this important coupling. Its selection of transmission power sometimes does not

match its selection of data rate. As a result, JPRA provides an suboptimal reliability that

is even worse than an individual approach. On the contrary, OnCAR utilities a MIMO

model to characterize the relation between system inputs (i.e., transmission power and

data rate) and system outputs (i.e., ePDR and eTPUT). The coupling of power and rate

is implicitly captured by this model. Therefore, OnCAR produces a synchronous pair of

power and rate, achieving a better reliability than existing individual and joint approaches.

DSRC Efficiency

We next evaluate another equivalently important goal of OnCAR - the efficiency of DSRC.

Figure 3.15 compares CDFs of eTPUTs provided by different approaches. It is shown that

OnCAR always achieve a higher eTPUT than all other approaches under different numbers

of hidden terminals. In addition, when there exist hidden terminals (e.g., the cases shown

by Figure 3.15(b)-(d)), the maximum eTPUTs provided by OnCAR are always higher than

that of other approaches. Therefore, we conclude that OnCAR handles the hidden terminal

problem much better than existing approaches.
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(b) 10 hidden terminals.
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(c) 20 hidden terminals.

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

eTPUT (Kbps)

C
D

F

 

 

TPA
DRA
JPRA
OnCAR

(d) 40 hidden terminals.

Figure 3.15 CDFs of eTPUTs of DSRC-enabled vehicles.



52 Enhancing the Safety of Connected Vehicles

0 20 40
40

60

80

100

Control Iterations

U
SR

P 
T

X
 G

ai
n

 

 

TPA
JPRA
OnCAR

(a) Transmission power.

0 20 40
3

6

12

24

Control Iterations

D
at

a 
R

at
e 

(M
bp

s)

 

 

DRA
JPRA
OnCAR

(b) Data rates.

Figure 3.16 Convergence of power and rate adaptations when there are 10
hidden terminals.

Convergence

The convergence is an important consideration for approaches in dynamic environments.

Therefore, we further evaluate the convergence of OnCAR and other approaches. We take

the case of 10 hidden terminals as an example. Figure 3.16 demonstrates the convergence

of power and rate adaptations. As DRA does not adjust transmission power, we do not

include its curve of transmission power in Figure 3.16(a). For a similar reason, we do not

include TPA in Figure 3.16(b). It is shown in Figure 3.16 that the adaptations of DRA,

TPA and JPRA oscillate and fail to converge. This is because that they are essentially

heuristic solutions and cannot guarantee the convergence of system in noisy environments.

Furthermore, JPRA is the most unstable one among all heuristic solutions. The reason is

that JPRA adjusts transmission power before data rate. When the selection of transmission

power oscillates, the selection of data rate is affected and thus magnifies the oscillations. On

the contrary, OnCAR converges quickly to the optimal pair of power and rate, and provides

the most stable performance. This is because OnCAR is developed based on systematic

control theories. The smooth control law Eq. (3.16) of OnCAR not only adjusts power and

rate adaptively, but also guarantees the convergence of the controller.
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3.6 Strictly Distributed Coordination

In order to further improve DSRC performance, we need to go beyond the boundary of a

single vehicle, and accomplish the mission from a network perspective. Besides optimizing

the selections of communication variables locally, vehicles must further coordinate these

variables to achieve a global optima. Therefore, in this section, we study how to improve

DSRC performance at the network level.

In large-scale vehicular networks, the overhead of coordination messages could be tremen-

dous. This overhead grows even larger during rush hours. Hence, a strictly distributed

coordination scheme with no coordination message is desirable. 1) It completely eliminates

the overhead of coordination. 2) It aligns with the distributed nature of vehicular networks,

where centralized control units such as Road-Side Units (RSUs) are sparse, especially in

the early stage of DSRC deployment. 3) It is fully compatible with current DSRC proto-

cols, requiring no modification. However, this mission, i.e., developing a strictly distributed

scheme to coordinate transmission power of DSRC units with zero coordination overhead,

seems unachievable, and was never fulfilled previously.

To accomplish this apparently impossible mission, in this section, we develop a series of

strictly distributed coordination schemes, namely DisCo. To better illustrate the design of

DisCo, we adopt transmission power as an example of the communication variable being

coordinated, and use the reliability and fairness of DSRC as the target metrics being

optimized.

The baseline DisCo scheme is called DisCo with Fixed Targets (DisCo-FT). A fairness

assumption of DisCo-FT is that all DSRC units are aiming at the same ePDR target

(although they may not end up with the same ePDR). It enables the strictly distributed

coordination with an efficient distributed control technique, assuming that all units targets

an ePDR of 100%. However, this assumption is greedy, and sometimes makes the DisCo-FT

overly aggressive in the coordination. This is because, by assuming all neighbors are greedy,

a DSRC unit may become reluctant to coordinate with others. On the contrary, if every

unit reduces its targeted ePDR slightly, the DSRC channels can become less congested,

leading to more reliable DSRC for all. In order to achieve better coordination between

individual DSRC units, we release the assumption and develop an advanced scheme named

DisCo with Adaptive Targets (DisCo-AT). By applying an online control loop, DisCo-AT

adaptively estimates the optimal ePDR target, and its transmission power accordingly to
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further enhance DSRC reliability and fairness.

3.6.1 Problem Statement and Challenges

Consider a vehicular network where N DSRC units are within the carrier sense range of

each other. Unit i, i = 1, 2, · · · , N , aims to adjust its ePDR xi(t) to achieve its ePDR target

xmi(t). Meanwhile, it would like to improve the fairness of DSRC to avoid being endangered

by some uninformed vehicles. To this end, unit i would coordinate its transmission power

ui with its N − 1 neighbors. As an example, we focus on the strictly distributed power

coordination problem, where each unit i has no knowledge of the transmission power (i.e.,

uj(t), j 6= i), the ePDRs (i.e., xj(t), j 6= i) and the ePDR targets (i.e., xmj, j 6= i) of others.

There exist two major challenges in designing strictly distributed power coordination

schemes in DSRC.

Challenge 4. With absolutely no message exchange (i.e., neither feedback, handshaking

nor probing), it seems impossible to coordinate the power of individual DSRC units.

Challenge 5. A strictly distributed coordination may sometimes yield overly aggressive or

conservative coordination decisions.

3.6.2 DisCo with Fixed Coordination Targets

To address Challenge 4, we first develop a strictly distributed power controller and adopt

it in the design of DisCo. In this section, all DSRC units targets the maximum possible

ePDR, i.e., a ePDR of 100%. Under this rule, each DSRC units aims to maximize its

own ePDR. The corresponding DisCo scheme is called DisCo-FT, of which the architecture

is illustrated in Figure 3.17. The distributed power controller is the core of DisCo-FT.

It considers the ePDR xi(t) as the control output vector to be adaptively controlled by

the control input of transmission power vector ui(t). The detailed design is presented as

follows.

We first describe the subsystem of unit i, i = 1, 2, · · · , N as

ẋi(t) = Aixi(t) + ζi

[
N∑

j=1,j 6=i

lTij(t)xj(t) + ui(t)

]
, (3.23)
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Figure 3.17 The architecture of DisCo-FT.

where lij(t) are parameter vectors that capture the interconnection between units i and j,

lij(t)xj(t) correspond to the impacts of units j, (j 6= i) on unit i, Ai are unknown parameter

matrices to be determined, ζi are scaling constant vectors. (This model can be extended

to capture non-linear systems [105] as well).

Suppose the reference model of unit i, i = 1, 2, · · · , N , is given by

ẋmi(t) = Amixmi(t) + ζiri(t), (3.24)

where Ami is a stable matrix, and ri(t) is a (known) bounded reference input vector. This

reference model describes the desired output of each DSRC unit. This referencee model

represents the desired behavior that we would like each unit to follow. It acts as a guideline

for the actual output (i.e., ePDR in our case).

Given Ami, Ai, and ζ, we can find a constant vector k∗ that satisfies the following linear

equation

Ami = Ai + ζik
∗
i
T , i = 1, 2, · · · , N. (3.25)

The objective of the distributed power controller is to assure that the actual ePDR of unit
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i follows that of the reference model with zero error. The tracking error is defined as

ei(t) = xi(t)− xmi(t). (3.26)

Then the objective of each distributed power controller is expressed as

lim
t→∞
||xi(t)− xmi(t)|| = 0. (3.27)

Lemma 1. A straightforward solution to achieve this objective would be

ui(t) = ri(t) + kTi xi(t)−
N∑

j=1,j 6=i

l̂Tij(t)xj(t), (3.28)

where ki is an estimate of k∗, and l̂ij(t) is an estimate of lij(t), both of which can be

adaptively updated by the controller.

Proof. Substitute Eq. (3.25) into Eq. (3.24), we have

ẋmi(t) = Aixmi(t) + ζik
∗
i
Txmi(t) + ζiri(t). (3.29)

Combining Eq. (3.29 and Eq. (3.23), we have

ẋmi(t)−ẋi(t) = (Ai+ζik
∗
i
T )[xmi(t)−xi(t)]+ζi

[
ri(t) + k∗i

Txi(t)−
N∑

j=1,j 6=i

l̂Tij(t)xj(t)− ui(t)

]
.

(3.30)

We reorganize the above equation and obtain

ėi(t) + Z1ei(t) = Z2, (3.31)

where

Z1 = −(Ai + ζik
∗
i
T ), (3.32)

and

Z2 = ζi

[
ri(t) + k∗i

Txi(t)−
N∑

j=1,j 6=i

l̂Tij(t)xj(t)− ui(t)

]
. (3.33)

Assume that the control system starts from stationary state with a zero tracking error,
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then we have ei(0) = 0 as the initial condition. Take the Laplace transform of Eq. (3.31),

we have

sEi(s) + Z1Ei(s) = Z2, (3.34)

where Ei(s) is the L-transform of ei(t), and s is a non-zero complex number. Hence,

Ei(s) =
Z2

s+ Z1

. (3.35)

In this case, minimizing ||ei(t)|| in the time domain is equivalent to minimizing ||Ei(s)|| in
the s-domain. And ||Ei(s)|| is minimized when Z2 = 0. Therefore, by setting Eq. (3.33)

to zero, we obtain Eq. (3.28).

However, the solution given by Lemma 1 and Eq. (3.28) cannot deal with Challenge 4,

where the state information xj(t), j 6= i, is not available at unit i.

To achieve the objective without any knowledge of xj(t), j 6= i, a revised solution is

given as [106]

ui(t) = ri(t) + kTi xi(t)− γieTi (t)Piζi

−
N∑

j=1,j 6=i

l̂Tij(t)xmj(t), (3.36)

where γi is a gain factor to be determined, and Pi is a symmetric positive-definite matrix

and is the solution to the Lyapunov equation

ATmiPi + PiAmi = −I, (3.37)

where I is an identity matrix. However, the solution given by Eq. (3.36) requires all units

to exchange their targets xmi, i = 1, 2, · · · , N , in advance, which is impractical in a dynamic

vehicular environment.

Therefore, to tackle Challenge 4, we propose to adopt the control input as

ui(t) = ri(t) + kTi xi(t)− γieTi (t)Piζi −
N∑

j=1,j 6=i

l̂Tij(t)x̂mj(t), (3.38)

where x̂mj(t) is an estimate of xmj(t). DisCo-FT avoids the exchange of either xj(t) or
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xmj(t), by applying an aggressive estimate as x̂mj(t) = 1, j 6= i. In addition, every DisCo-

FT controller sets its own ePDR target as xmi(t) = 1. Hence, there is no estimation error

in x̂mj(t). The adaptation of xmi(t) and the corresponding adaptive estimation of x̂mj(t) is

to be presented in Section 3.6.4. The subsystem of unit i is then described as

ẋi(t) = Aixi(t) + ζik
T
i xi(t) + ζiri(t)− γiζieTi (t)Piζi

+ζi

N∑
j=1,j 6=i

lTij(t)xj(t)− ζi
N∑

j=1,j 6=i

l̂Tij(t)x̂mj(t). (3.39)

The tracking error ei(t) is described as

ėi(t) = Amiei(t) + ζik̃
T
i xi(t)− γiζieTi (t)Piζi

+ζi

N∑
j=1,j 6=i

l̃Tij(t)x̂mj(t) + ζi

N∑
j=1,j 6=i

l̂Tij(t)ej(t), (3.40)

where

k̃i(t) = ki − k∗i , (3.41)

l̃ij(t) = lij(t)− l̂ij(t), j 6= i. (3.42)

By applying control input as Eq. (3.38), DisCo-FT minimizes the tracking error. Note

that in Eq. (3.38), ri(t), Pi, and ζi are known parameters given by the reference model.

Parameters ki(t), l̂ij(t), and γi(t) need to be adaptively updated. For i = 1, 2, · · · , N , the

adaptive laws of these three parameters are given by

k̇i(t) = −eTi (t)Piζixi(t), (3.43)
˙̂
lij(t) = eTi (t)Piζix̂mj(t), (3.44)

γ̇i(t) = eTi (t)ei(t). (3.45)

Theorem 2. DisCo-FT described by Eqs. (3.38), (3.43), (3.44) and (3.45) guarantees the

global stability of the overall system.



3.6 Strictly Distributed Coordination 59

Proof. We first choose a Lyapunov candidate function as

V (e, k̃, l̃) =
N∑
i=1

[
eTi Piei + k̃Ti k̃i

]
+

N∑
i=1

N∑
j=1,j 6=i

l̃Tij l̃ij. (3.46)

Then we have

V̇ =
N∑
i=1

[
−eTi Qiei − 2γi

(
eTi Piζi

)2
]

+
N∑
i=1

N∑
j=1,j 6=i

2eTi PiζilTijej, (3.47)

where

Qi = 2PiAmi, (3.48)

and ψmin(Qi) is the smallest eigenvalue of Qi. Take the norm of V̇ , we have

||V̇ || ≤
N∑
i=1

[
−ψmin(Qi)||ei||2 − 2γi||eTi Piζi||2

]
+

N∑
i=1

N∑
j=1,j 6=i

||2eTi PiζilTijej||. (3.49)

By inequality (3.49), a sufficient condition for V̇ to be negative-semidefinite is

γi >
1

2
(N − 1) max

j

[
||lij||2

ψmin(Qj)

]
. (3.50)

Therefore, there exist a γ̄i such that whenever γi(t) ≥ γ̄i, V̇ is negative-semidefinite. Thus,

V is a Lyapunov function for the overall system.

3.6.3 Discretization of the Controller

To implement DisCo-FT on a digital device where time is slotted into control periods of

length T , we need to discretize the continuous control laws described in Eqs. (3.38), (3.43),

(3.44) and (3.45). By applying implicit the Euler method, the discretized control input is

ui[n] = ri[n] + kTi [n]xi[n]− γi[n]eTi [n]Piζi

−
N∑

j=1,j 6=i

l̂Tij[n]x̂mj[n], (3.51)



60 Enhancing the Safety of Connected Vehicles

where n denotes the nth control period. And the corresponding adaptive laws of parameters

are discretized as, for n = 0, 1, 2, · · · ,

ki[n+ 1] = ki[n]− TeTi [n+ 1]Piζixi[n+ 1], (3.52)

l̂ij[n+ 1] = l̂ij[n]− TeTi [n+ 1]Piζix̂mj[n+ 1], (3.53)

γi[n+ 1] = γi[n]− TeTi [n+ 1]ei[n+ 1]. (3.54)

The adaptations of these parameters, as well as the adjustments of the control inputs ui[n],

are conducted at the end of each control period. Meanwhile, the control outputs xi[n] are

measured at the beginning of each control period. Note that, for digital controllers, there is

a one-step delay between the current control inputs and the corresponding control outputs.

This means: ui[n] is responsible for xi[n + 1]. As a result, when ui[n] is being calculated,

xi[n] and ei[n] are already measured. In order to initiate the control input and the adaptive

laws of each node i, we provide the initiation conditions as ui[0] = u0, ki[0] = k0, l̂ij[0] = l̂0,

and γi[0] = γ0, where u0, k0, l̂0 and γ0 are all small constant vectors.

To prove that the discretized DisCo-FT is stable, we adopt the following lemma [100].

Lemma 2. When the implicit Euler method is applied, a stable continuous-time system

will always be transferred into a stable discrete-time system.

Then combining Theorem 2 and Lemma 2, we have the following corollary.

Corollary 1. The discretized DisCo-FT described by Eqs. (3.51), (3.52), (3.53) and (3.54)

guarantees the global stability of the overall system.

3.6.4 DisCo with Adaptive Coordination Targets

The design of DisCo-FT follows a rule that all DSRC units targets a ePDR of 100%. This

could be overly aggressive and encounter Challenge 5. In this case, an individual unit

may be reluctant to coordinate with others that are also greedy. To allow more freedom

for coordinate, each DSRC unit could reduce its target ePDR slightly. This reduction

could be beneficial by alleviating the congestions in the dedicated channel, and thus may

improve the overall reliability and fairness. However, an overly conservative reduction may

decrease the ePDR targets too much, leading to compromised reliability. Therefore, the

ePDR targets should be estimated appropriately. In addition, considering the dynamics in

vehicular environments, these targets should be controlled in an online manner.
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Figure 3.18 The architecture of DisCo-AT.

Therefore, to further address Challenge 5, we develop DisCo with adaptive coordina-

tion targets (DisCo-AT), whose architecture is presented in Figure 3.18. DisCo-AT also

aims to maximize its own reliability (i.e., ePDR xi). To achieve this objective in the pres-

ence of other interrelated DSRC units, DisCo-AT targets a ePDR xmi that is less than

100%, which is different from DisCo-FT. In addition, DisCo-AT would like to assure that

such an overall improvement is never based on sacrifices of some of the units. To sum up,

DisCo-AT would like all DSRC units to have an optimal ePDR x∗ fairly, i.e., to achieve

the following objective together

xi = xmi = x∗, i = 1, 2, · · · , N. (3.55)

An adaptive target controller is designed to online adjust its own ePDR target xmi,

as well as the estimated targets x̂mj, j 6= i. The architecture of the adaptive target (AT)

controller in DisCo-AT is demonstrated in Figure 3.19. The detailed design of this AT

controller is presented as follows.

The AT controller takes the own target xmi and the estimations of others’ targets
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Figure 3.19 The architecture of the adaptive target controller.

x̂mj, j 6= i, as control inputs, while considering the ePDR xi as the control output. In other

words, the AT controller optimizes the actual ePDR xi by adjusting ePDR targets xmi and

x̂mj, j 6= i. According to the objective of DisCo-AT in Eq. (3.55), the AT controller follows

a rule as x̂mj = xmi, j 6= i in its control operation. In this way, the control of xi is solely

based on one parameter, i.e., xmi. In this section, we present a discrete-time design that is

ready for implementation in digital systems. Time is divided into control periods with an

identical duration. Due to the one-step delay of digital implementations, the control input

at control period n − 1 (i.e., xmi[n − 1]) will affect the control output at control period n

(i.e., xi[n]).

As illustrated in Figure 3.19, the AT controller first estimates an auxiliary model, which

captures the relation between the control input xmi[n] and the control output xi[n]. Based

on the estimated model parameters θ[n], the AT controller further maximize xi[n]. Note

that this auxiliary model is different from the reference model presented in Section 3.6.2.

While the reference model defines the desired behaviors of the overall system, this auxiliary

model is used to capture the relation between the ePDR target and the actual ePDR.

In our design, we develop this auxiliary model as a linear regression model, which is

described by a time-difference equation as

G(q−1)xi[n] = H(q−1)xmi[n] + z[n], (3.56)
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where

G(q−1) = 1− g1q
−1 − · · · − gwq−w, (3.57)

H(q−1) = h0q
−1 − · · · − hw−1q

−w, (3.58)

q−1 is the back shift operator, w is the order of the regression model, and z(n) is the

i.i.d. zero-mean noise. To estimate this model in an online manner, we again apply an

RLS scheme [100] described as follows. We first convert the model of Eq. (3.56) into a

RLS-friendly form as

xi[n] = φT [n]θ[n], (3.59)

where

φT [n] = {xi[n− 1], · · · , xi[n− w], xmi[n− 1], · · · , xmi[n− w]}T , (3.60)

θ[n] = {g1[n], · · · , gw[n], h0[n], · · · , hw−1[n]}T . (3.61)

Therefore, the parameters of the auxiliary model is captured by θ[n], and are estimated by

RLS scheme as

θ[n] = θ[n− 1] + S[n− 1]φ[n]ε[n], (3.62)

where

S[n− 1] = S[n− 2]−
(
φT [n]S[n− 2]φ[n] + 1

)
·S[n− 2]φ[n]φT [n]S[n− 2], (3.63)

ε[n] = xi[n− 1]− φT [n− 1]θ[n− 1]. (3.64)

To initialize the RLS scheme, we adopt S[−1] = s0I, where s0 > 0 is a constant and I is

an identity matrix.

Based on the auxiliary model parameter θ[n], the target optimizer calculate the control

input xmi[n−1] to maximize the expected ePDR x̂i[n] by solving the following optimization

problem

max
xmi[n−1]

x̂i[n] = φT [n]θ[n], (3.65)

s.t. xmi[n− 1] ∈ [xmin, 1], (3.66)

where xmin > 0 is the minimum ePDR target. Note that the current control input xmi[n−1]
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is encapsulate in φ[n] as defined by Eq. (3.60). There exist a number of approaches to solve

the optimization problem Eq. (3.65) in polynomial time. We thus skip the description of

the solution.

Then x̂mj, j 6= i, are estimated according to Eq. (3.55). These updated targets (both

xmi amd x̂mj, j 6= i) are passed to the distributed power controller for power coordination.

The design of the distributed power controller in DisCo-AT is identical to that in DisCo-FT

as described in Section 3.6.2.

3.6.5 Estimation of Neighbor Number

To implement DisCo schemes, the number of neighbor vehicles Nb = N − 1 is required. To

estimate Nb, every DSRC unit counts the unique transmitter MAC addresses in the MAC

header of its received packets. This estimation is refreshed in every control period.

3.6.6 Estimation of ePDR

Due to the lack of feedback messages, we propose to approximate the transmitting ePDR

with the receiving ePDR by leveraging the channel reciprocity in DSRC. Concretely, every

MAC header of DSRC packets contains a sequence number with a size of 12 bits. By

subtracting the minimum sequence number from the maximum, every DSRC unit estimates

the expected number of packets sent by a specific transmitter. Then, the ePDR is calculate

by dividing the number of received packets with the number of expected packets.

3.7 Evaluation of DisCo

Next, we demonstrate the large improvements provided by the proposed DisCo schemes

over the state of the art, and discuss the reasons behind the improvements.

3.7.1 Evaluation Setup

We conduct extensive ns-2 simulations to evaluate the proposed DisCo schemes. The

simulation setup is described in this subsection.
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DisCo Implementation

To implement DisCo, we first design the reference model that determines the desired output

behavior of each DSRC unit. For the sake of system stability and low complexity, we adopt

a time-invariant and lightweight reference model5. Concretely, the reference input stays

stable as a constant value of 20dBm, i.e., ∀t, ri(t) = ri = 20dBm. We also would like

the ePDR target to stay stable during each control period, which yields ẋmi(t) = 0 and

xmi(t) = xmi,∀t. As we have only one control output, the matrices Ami and Pi degenerate

to constants. In our lightweight design, we adopt Ami = −1, and thus Pi = 1/2. We

substitute the above conditions into Eq. (3.24), and have

ζi =
−Amixmi

ri
. (3.67)

For DisCo-FT, we have xmi = 1 as described in its design. For DisCo-AT, xmi also stays

the same during each control period, and is updated by the adaptive target controller at

the beginning of every control period.

Traffic and Vehicle Settings

Our traffic scenario is built on a two-way four-lane highway, of which the length is 2000

meters. The number of vehicles varies from 40 to 400 in different simulation runs. The

vehicle dynamics, such as direction, speed and acceleration, are generated by the tool of

SUMO6. The speed limit is 100km/h (corresponding to roughly 62mph). A vehicle reaching

the end of one lane will rejoin the traffic in another lane. Each vehicle is equipped with

a DSRC OBU. In addition, we consider a completely decentralized scenario where there is

no DSRC RSU.

Communication Settings

Each DSRC OBU broadcasts its routine safety packets in DSRC Channel 172 (5.855 GHz

to 5.865 GHz) with a period of 0.05 seconds. The size of data section in each packet is 500

bytes. Headers are added according to the IEEE 802.11p protocols. The header section

5The design presented in Section 3.6.2 also generalizes more sophisticated reference models. The refer-
ence model used here satisfies the requirements of safety-critical applications with good stability and low
complexity.

6SUMO – Simulation of Urban Mobility: http://www.dlr.de/ts/sumo

http://www.dlr.de/ts/sumo
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uses the modulation of BPSK (i.e., a bit rate of 3 Mbps), while the data section employs

the modulation of 64QAM (i.e., a bit rate of 24 Mbps). The minimum and maximum

transmission power settings are 10 dBm and 30 dBm, respectively. The adjustment step of

transmission power is 2 dBm.

3.7.2 Schemes Studied

We focus on comparing DSRC reliability provided by fully distributed schemes. The fol-

lowing schemes are considered.

• DisCo-FT and DisCo-AT: are proposed in this thesis. The transmission power is

initialized as 10 dBm for both schemes.

• ACO-based: is a scheme based on fully local measurement of Average Channel

Occupancy (ACO) [49]. It is a representative of the state of the art in strictly distributed

power adaptation (but not coordination).

• Min-Power: always adopts the minimum transmission power of 10 dBm.

• Max-Power: always adopts the maximum transmission power of 30 dBm.

3.7.3 DSRC Reliability

We first evaluate the DSRC reliability in terms of ePDR. Figure 3.20 compares the average

ePDRs of different schemes under different traffic densities. It is shown that the DisCo

schemes (both DisCo-FT and DisCo-AT) always outperform other schemes in all traffic

density conditions. This confirms that the proposed DisCo schemes significantly enhance

overall reliability by appropriately coordinating the transmission power of individual DSRC

units. In addition, DisCo-AT always achieves high ePDRs than that of DisCo-FT. This

suggests that an adaptive ePDR target control is beneficial, and helps DisCo-AT further

boost DSRC reliability greatly.

To demonstrate the improvements brought by DisCo, we take the Max-Power scheme

as the baseline, and calculate the improvements in ePDR brought by other schemes. The

ePDR improvements are presented in Figure 3.21. Compared with the baseline, DisCo-AT

doubles the ePDR at traffic density 0.1 vehicles per meter, and achieves an ePDR that is

almost 2.5 times higher at traffic density 0.2 vehicles per meter. Moreover, compared to the

state-of-the-art approach ACO-based, DisCo-FT and DisCo-AT improve DSRC reliability

by 13.1% and 30.3% at density 0.1 vehicles per meter, respectively. The corresponding im-
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Figure 3.20 The average ePDRs of different schemes.
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Figure 3.21 The ePDR improvements of all schemes over the Max-Power
scheme.
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(a) Density: 0.04.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

PDR

C
D

F

 

 

Max−Power
Min−Power
ACO−based
DisCo−FT
DisCo−AT

(b) Density: 0.08.
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(c) Density: 0.12.
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(d) Density: 0.16.

Figure 3.22 CDF of ePDRs under different traffic densities.

provements over the state of the art are 30.3% and 85.8% at density 0.2 vehicles per meter,

respectively. Furthermore, from Figure 3.21, we observe that the improvements brought by

the DisCo schemes increases with traffic density. While other schemes degrade significantly

when the traffic is becoming congested, the DisCo schemes resolve the communication

collision and interference with exactly zero coordination overhead.

3.7.4 DSRC Fairness

In order to evaluate the ePDR fairness achieved by different schemes, we first investigate

the CDF of ePDRs. Figure 3.22 presents the CDF of ePDRs under four different traffic

densities. It is demonstrated that the ePDRs achieved by both DisCo schemes concentrate

around their mean values, while the ePDRs brought by the ACO-based scheme are more

scattered. Although the ACO-based scheme provides high ePDRs to some DSRC units,

it largely scarifies the ePDRs of others, leading to a jeopardized fairness and a degraded
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Figure 3.23 CoV of ePDRs under different traffic densities.

overall performance as shown previously in Figure 3.20.

To quantify the fairness, we adopt the CV of ePDR as the fairness metric. A smaller

CV denotes a better fairness among all DSRC units. The CV of ePDRs under four different

traffic densities is depicted in Figure 3.23. Generally, the CV values decrease with the traffic

density, as it is increasingly hard to achieve fairness when there are more participants in the

system. The DisCo schemes achieve lower CV (i.e., better fairness) than all other schemes,

while the DisCo-AT always provides the best fairness across all DSRC units. Compared

with the state-of-the-art ACO-based scheme, the DisCo-AT scheme improves the fairness

by 69.4% to 83.7%.

Another interesting finding is that, although the Min-Power and Max-Power schemes

adopt identical transmission power (i.e., 30dBm and 10dBm respectively), their fairness

performance is unsatisfactory. This is because the traffic density varies along the highway

even when the total number of vehicles stays the same. As a result, the optimal coordination

power in different road sections is different. Applying identical transmission power leads to

largely different ePDRs for vehicles in different sections, resulting in a poor overall fairness.

Selections of Transmission Power

To understand how the DisCo schemes outperform the state-of-the-art scheme ACO-based,

we investigate the selections of transmission power. We focus on the traffic density of 0.2

vehicles per meter, where the DisCo schemes achieve their largest improvements in this case.

We skip Max-Power and Min-Power in this section, as their transmission power is fixed.
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For the other three schemes, their occurrence rates of transmission power are illustrated in

Figure 3.24. In all the cases, the ACO-based concentrate its transmission power on only

low-power settings (i.e., 14dBm and 18dBm). This is because the ACO-based scheme tends

to apply identical transmission power for vehicles in proximity. However, this solution is

suboptimal in a practical scenario where traffic and channel condition varies drastically in

different road sections. Even vehicles in proximity can experience different channel quality

due to issues such as hidden terminals, fading and shadowing.

Different from the ACO-based scheme, the DisCo-FT adopts low power in 66% of the

time, and applies high power in rest of the time. This allows DisCo-FT to cope with the

ever-changing traffic and channel conditions. However, DisCo-FT assumes that all DSRC

units are greedy and target a ePDR of 100%. Therefore, it sometimes becomes overly

aggressive and adopts the highest transmission power to grab more channel resource. In

some other cases, it becomes overly conservative, and reduces its transmission power to

the lowest level to avoid interference with others. On the contrary, DisCo-AT addresses

this issue by adaptively estimating the ePDR targets. As a result, DisCo-AT obtains more

freedom in power coordination across all DSRC units, and is able to approach the optimal

transmission power under time-varying communication conditions. It is illustrated that the

power settings of DisCo-AT mainly fall into three levels, i.e., low-power (10 to 14 dBm),

medium-power (18 to 22 dBm) and high-power (26 to 30 dBm) levels. This also suggests

that DisCo-AT is able to automatically classify the channel conditions into roughly three

levels, and make coordination decisions correspondingly.
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Figure 3.24 Occurrence rates of transmission power when density is 0.2
vehicles per meter.
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(a) Density: 0.04.
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(b) Density: 0.08.
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(c) Density: 0.12.
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(d) Density: 0.16.

Figure 3.25 Convergence of CV.

3.7.5 Convergence

A fast convergence is required in the presence of various dynamics in vehicular networks.

We first evaluate the convergence of fairness in Figure 3.25, which presents the CV

of ePDRs across time. In Figure 3.25, while DisCo schemes converge to low CV values

eventually, the other three schemes fail to achieve a convergence of CV. Their CV values

keep oscillating as time goes by. This demonstrates the superiority of systematic control

techniques developed for DisCo over the heuristics adopted by existing schemes. In addi-

tion, compared with DisCo-AT, DisCo-FT requires a longer fluctuation period to converge,

mainly due to the aggressive estimation of ePDR targets. DisCo-AT avoids this issue and

increases the convergence speed by encouraging deeper coordination with appropriately

adjusted the ePDR targets.

To further evaluate the convergence of reliability, Figure 3.26 presents the average eP-

DRs of all vehicles across time. Although all approaches manage to converge, the DisCo

schemes converge to higher ePDRs than that of others. Moreover, the ePDR convergence
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(a) Density: 0.04.
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(b) Density: 0.08.
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(c) Density: 0.12.
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(d) Density: 0.16.

Figure 3.26 Convergence of ePDRs.
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speed of DisCo-AT is at least 2 times faster than that of ACO-based scheme. Concretely,

DisCo-AT achieves a fast convergence of ePDR using only 3 control iterations, while The

state-of-the-art ACO-based scheme needs at least 9 control periods to converge. There-

fore, from Figure 3.25 and Figure 3.26, we conclude that the convergence performance of

DisCo-AT is much faster and more consistent than others.

3.8 Concluding Remarks

In this chapter, we study the DSRC technologies, which are designed, developed and imple-

mented to enhance the driving safety. To guarantee this safety, it is of critical importance

to improve the reliability, efficiency and fairness of DSRC, by adapting and coordinating

the communication variables to the ever-changing environments. In order to achieve this

goal, we address two major issues, i.e., the strong coupling between communication vari-

ables, and the huge overhead introduced by coordination messages. We develop two new

approaches, OnCAR and DisCo, to tackle these two issues, respectively. We utilize experi-

ments and simulations to evaluate OnCAR and DisCo, demonstrate the large improvement

in DSRC performance brought by them over the state of the art. The evaluation study

also illustrates the fast convergence of both OnCAR and DisCo, even in the cases where

the state-of-the-art approaches fail to converge.
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Chapter 4

Providing Infotainment Services to

Connected Vehicles

4.1 Overview

With an increased driving safety, travellers feel more secure in their trips, and thus are more

likely to enjoy IVI services. Driven by the huge IVI market, automotive manufacturers are

trying to upgrade their vehicles to reinvent the driving experience. To this end, the so-

called in-cabin Wi-Fi system is recently developed. It is a mobile Wi-Fi system provides

a wireless network that allows a driver and passengers to connect to the Internet using

a smartphone, a laptop, or a car-embedded infotainment system. This system adopts a

built-in Wi-Fi AP, which provides a car the ability to become an Internet hotspot and

powers Wi-Fi devices throughout the vehicle. In this way, cars become portable offices and

homes, providing a shared mobile experience for all passengers in a vehicle.

In this chapter, we first discuss the newly deployed in-cabin Wi-Fi system and services,

and investigate their unique features. We then try to fully understand the in-cabin Wi-

Fi system, and develop cross-layer models to describe the features of this system in a

mathematical way. After that, we proceed forward to improve the QoS provided by this

system. We focus on the most popular and most bandwidth-consuming service, i.e., video

streaming, and design a new scheduling framework to boost the streaming QoS.
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Figure 4.1 An example of the in-cabin Wi-Fi system.

4.1.1 In-cabin Wi-Fi Services

As shown in Figure 4.1, the in-cabin Wi-Fi service is provided through two wireless links.

The long-range cellular link carries the data from base stations to the built-in cellular

interface, while the short-range Wi-Fi link delivers the data to the in-vehicle clients directly.

There is an Ethernet connection relaying the data from the cellular interface to the in-cabin

Wi-Fi AP. When a client wants to access the Internet, it first sends a request to the in-cabin

Wi-Fi AP. This request is then relayed to the cellular interface via the Ethernet connection.

Based on the request, the cellular interface communicates with the base station, and receives

the corresponding data from the Internet. The data is then delivered back to the in-cabin

Wi-Fi AP and finally the client. By doing the above, the in-cabin Wi-Fi AP is able to

provide passengers services including streaming video for entertainment, as well as services

like real-time traffic updates and navigation driving directions. The in-cabin Wi-Fi system

framework not only allows consumers to bring in and connect to personal mobile devices,

but also lets the vehicle act as its own mobile device, enabling embedded vehicle capabilities.

Comparing with LTE connected smart devices, the in-cabin Wi-Fi service offers distinct

advantages including a more powerful antenna array to improve signal quality, a constant

energy source to power this service, and an integrated design that is optimized for in-

vehicle use. Meanwhile, compared to other vehicular communication technologies (e.g.,
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DSRC [11]), the in-cabin Wi-Fi technology provides a much higher service. The long-range

cellular link utilizes 4G LTE technology, and provides a peak download rate of up to 299.6

Mbps. The short-range Wi-Fi link adopts IEEE 802.11n or the newly deployed IEEE

802.11ac, and offers a maximum downlink speed of 433 Mbps for single antenna devices.

In this thesis, we mainly focus on the in-cabin Wi-Fi links. Compared to the long-range

cellular links, the Wi-Fi links are more likely to become the bottleneck of the whole system.

While the long-range cellular links are controlled and scheduled by the base stations, the

Wi-Fi links contend for the channel based on the CSMA schemes. Further, we do not

consider the interference of cellular signals on in-cabin Wi-Fi links, since LTE and Wi-Fi

use different carrier frequencies.

4.1.2 Differences from Other Communication Techniques

The in-cabin Wi-Fi system is specially designed to meet the requirements of high-speed

vehicular communications. As a new communication technique, in-cabin Wi-FI communi-

cation technique has a number of differences from existing communication techniques.

Differences Between In-Cabin Wi-Fi Communications and Traditional Cellular

Communications

Although the in-cabin Wi-Fi system employs LTE communications, the in-cabin Wi-Fi

communications are essentially different from traditional cellular communications. 1) Un-

like traditional cellular communications, the in-cabin Wi-Fi communications do not require

any cellular interface in the client side. Such a cellular interface is missing in most of poten-

tial in-cabin Wi-Fi client devices (e.g., laptops and tablets). Without the in-cabin Wi-Fi

communications, these client devices can hardly access the high-speed cellular networks in

a mobile scenario. 2) Compared to client devices directly connected to a cellular network,

client devices served by an in-cabin Wi-Fi system consume less battery energy. The rea-

son is that, instead of connecting to a distant cellular tower, in-cabin Wi-Fi client devices

connects to a nearby onboard Wi-Fi hotspot, which largely reduces the energy consump-

tion [107].
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Differences Between In-Cabin Wi-Fi Communications and Traditional VANET

Communications

1) The primary objective of traditional VANET communications is to enhance the safety,

while the in-cabin Wi-Fi system aims to equip vehicles with the capability to provide in-

fotainment services to passengers. To achieve this goal, compared to traditional VANET

systems (e.g., IEEE 802.11p based systems), the in-cabin Wi-Fi system has a larger band-

width in both the Wi-Fi and LTE links. 2) At the same time, the in-cabin Wi-Fi network

has a unique layout. An in-cabin Wi-Fi AP serves only the passengers inside the vehi-

cle. Therefore, the communication distance between an in-cabin Wi-Fi AP and its clients

(typically 0.5m - 2m) is much smaller than the communication distance. 3) Moreover,

the vehicle cabin introduces a path loss to the interference signals from hotspots on other

vehicles.

4.1.3 Unique Features and Their Impacts

In this section, we discuss some unique features and their impacts of in-cabin Wi-Fi com-

munications, comparing with conventional Wi-Fi communications.

Feature 1. (space layout) Each in-cabin Wi-Fi AP is very close to its users.

The ultimate goal of in-cabin Wi-Fi communications is to provide high-quality Internet

access for drivers and passengers in the vehicles. The distance between the in-cabin Wi-Fi

AP and passengers ranges from 0.5m to 2m, typically.

Impact of Feature 1: Due to Feature 1, the desired coverage of an in-cabin Wi-Fi AP

is much smaller than those in conventional scenarios. To cover a very small area such as a

vehicle, each Wi-Fi device only requires a small transmission power to provide a high-quality

wireless service. Any signal beyond the vehicle cabin becomes interference to passengers

on other vehicles.

Moreover, due to the unique space layout, the number of hidden terminals and exposed

terminals are very limited in an in-cabin Wi-Fi system. Take Figure 4.2 as an example.

One client C1 is 1m away from its in-cabin Wi-Fi AP A1. The sensing range is set to 400m,

which is a typical value for Wi-Fi communications. The transmission range is smaller than

the sensing range, which follows the practice in the industry. If a node is outside the sensing

range of C1, then the signal from that node to C1 is very weak and is deemed as noise.



78 Providing Infotainment Services to Connected Vehicles

Sensing range of A1

Hidden terminal can only 
be in this shadowed area

Sensing range of C1

Figure 4.2 An example for in-cabin Wi-Fi hidden terminals

If a node is inside the sensing ranges of both A1 and C1, then that node will not collide

with A1. Therefore, any other node can be a hidden terminal to A1, only if that node is

inside the sensing range of C1 and at the same time outside the sensing range of A1 [108].

Equivalently, one node can be a hidden terminal to C1, only if it is in the shadowed area in

Figure 4.2. The corresponding probability is less than 0.0025. A more practical example

would be a bi-directional highway, which has four lanes on each direction. The width of

such a highway is typically less than 40m. In this case, the probability that a node would

become the hidden terminal of C1 is again less than 0.0025. In a congested scenario where

there are 10 vehicles per 100m in each lane, the expected number of hidden terminals

of C1 is less than 1.6. Compared to the interference and collisions of other nodes, the

interference of the hidden terminals is very limited. Similar conclusions can be made to

exposed terminals in the in-cabin Wi-Fi system. Therefore, we do not discuss hidden and

exposed terminals in this thesis.

Feature 2. (power loss) The vehicle cabin introduces a 5dB to 10dB power loss to the

in-cabin Wi-Fi transmission signals [109, 110].

Impact of Feature 2: Due to this feature, the interference range of in-cabin Wi-Fi

AP shrinks significantly. Therefore, when small transmission power is used, interference

signals are restricted in a very local area. For the same deployment density, an in-cabin

Wi-Fi AP usually causes less communication interferences (hence less collisions) compared

with a conventional Wi-Fi. However, along with the bursty traffic on different roads, the

deployment density of in-cabin Wi-Fi APs can vary a lot, ranging from a very small number
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to a very large number. Hence, it is not intuitive to understand the performance of in-cabin

Wi-Fi communications.

Feature 3. (mobility) All in-cabin Wi-Fi APs are moving on wheels.

Impact of Feature 3: Due to this feature, in-cabin Wi-Fi communications are highly

dynamic. The mobility feature not only indicates that the speed of each vehicle is varying,

but also suggests that the traffic density around a vehicle is ever-changing. Each in-cabin

Wi-Fi AP needs to adapt itself to the surrounding environments. It is worth noting that

the density of in-cabin Wi-Fi APs can be very high on a congested road. During busy

hours, there can be hundreds of vehicles at a single crossing. With the popularity of the

in-cabin Wi-Fi technology, every vehicle may become a hotspot. Even considering about

Feature 1 and Feature 2, the loss of communication quality can be severe due to fading

and interference. Although the speed of vehicles is low on a congested road, the variation

of density can be highly dynamic. Thus, we need to extensively analyze in-cabin Wi-Fi

communication performance under different traffic conditions.

4.2 Metrics

The in-cabin Wi-Fi systems are primarily deployed for in-vehicle infotainment services.

Therefore, in this chapter, we focus on the QoS provided by these systems. Accordingly,

we defined the following metrics of QoS.

4.2.1 The average queueing delay and delay jitter

The queueing delay D(p) of a packet p is defined as

D(p) =

{
tend − tarr, p is received or dropped,

tcur − tarr, p is waiting for transmission,
(4.1)

where tarr is the time that packet p arrives at an in-cabin Wi-Fi AP, tend is the time that

packet p is received by a client or is dropped by the AP, and tcur is the current time. Then

the average queueing delay D is defined as

D =
1

Np

Np∑
p=1

D(p), (4.2)
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where Np is the number of packets being considered in the calculation. Np is can be adjusted

to meet different application requirements and functionalities.

There are different definitions of delay jitter (we call it jitter for short) in the literature.

In this thesis, we use the definition of jitter in the IP network [111], and define the jitter J

as the average deviation of delays from the average delay, i.e.,

J =
1

N

N∑
i=1

 1

Nr(i)

Nr(i)∑
p=1

|D(p) −D|

 , (4.3)

where N is the total number of clients, Nr(i) is the number of video packets received by

client i.

4.2.2 The deadline missing ratio

Suppose the video buffer of a client device is going to drain at time tpre, and the next

packet p is going to arrive at tarr. If tarr > tpre, then we consider that packet p misses its

deadline. The deadline missing ratio ξi is then defined as the portion of packets that miss

their deadlines, i.e.,

ξi = Nd(i)/Nr(i), (4.4)

where Nd(i) is the number of packets that arrive at client i and miss their deadlines.

4.2.3 The average and regional throughput

Regional throughput Sreg is defined from the view of a reference region dref . It sums up

the throughput of every node inside dref :

Sreg =
∑
i∈dref

Nr(i)ηi/T, (4.5)

where T is the time period we are interested in, and ηi the average size of packets received

by client i.

The average throughput Savg is then defined as follows,

Savg = Sreg/Nc, (4.6)
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where Nc is the total number of clients inside dref .

4.2.4 The average and regional goodput

While the throughput captures the rate of transmitting packets, the goodput features the

speed of receiving packets. The transmitted packets may either be corrupted in the wireless

channels or miss their deadlines. These packets do not contribute to the in-cabin Wi-Fi

services, and thus should be excluded in the goodput.

The regional goodput Rreg sums up the goodput of all nodes inside a reference region

dref :

Rreg =
∑
i∈dref

[Nr(i)−Nd(i)]ηi/T, (4.7)

The average goodput Ravg is then defined as follows,

Ravg = Rreg/Nc. (4.8)

4.3 Modelling the In-Cabin Wi-Fi Communications

In order to fully understand the new system of in-cabin Wi-Fi, in this section, we present

our theoretical modelling. We establish a cross-layer framework to capture the in-cabin Wi-

Fi communications. In the MAC layer, the proposed framework employs a two-dimension

(2D) Markov chain model, which is similar to but more accurate than previous models.

In the PHY layer, the proposed framework is the first to take the unique features of in-

cabin Wi-Fi communications into consideration. Based on this framework and its analytical

models, we are able to accurately calculate the in-cabin Wi-Fi performance under different

conditions.

4.3.1 MAC Layer Modelling

We discuss the MAC layer model from the view of a single in-cabin Wi-Fi device. We

establish a 2D Markov chain, which is similar to but more accurate than previous 2D

Markov chain models. The improvements made in our MAC layer model are summarized as

follows. (1) Unlike previous MAC layer models of IEEE 802.11, our MAC layer model works

interactively with our PHY layer model, to capture the unique features of in-cabin Wi-Fi
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Figure 4.3 2D Markov chain for in-cabin backoff process

communications. (2) Unlike previous models of saturated communications (e.g., the model

proposed by Bianchi in [9]), our MAC layer model generalizes both saturated and non-

saturated communications. (3) Unlike previous models of non-saturated communications

(e.g., models proposed by in Malone et al. in [28], and by Daneshgaran et al. in [29]),

our MAC layer model captures the limited retransmissions defined in the IEEE 802.11n

standard [112]. (4) Unlike the models proposed by Yao et al. in [34] and by Nguyen et

al. in [30], our MAC layer model refines the definition of a virtual time slot, hence further

improves the model accuracy.

The 2D Markov chain for the backoff process is presented in Figure 4.3. Concretely,

in our 2D Markov chain, time is divided into virtual time slots. We call each virtual time

slot a time slot for short, if not further specified. We define the length of each time slot as

the expected duration Es that the backoff process spends in each state of the 2D Markov

chain. Es is to be defined in Eq. (4.24). We denote each state in the chain as {s(t), b(t)}.
Here, s(t) stands for the backoff stage, which is determined by the number of transmission

attempts of the current packet. b(t) denotes the backoff time counter, which goes down

by one if the current time slot is sensed idle. To model the unsaturated throughput, we

further append an idle state {idle} in the Markov chain to characterize the packet arrival

process for real-time Wi-Fi scenarios.

Let ρ be the probability that the queue of the in-cabin Wi-Fi device is not empty.

Use Wj to denote the maximum length of contention window for backoff stage j. Let m
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be the maximum number of retransmission attempts. Let Pa be the probability that the

transmitter leaves the idle state. Let Pb be the probability that the channel is busy at the

current time slot. Let Pv denote the probability that a transmission is failed. The cause of

a transmission failure is due to both collisions in the MAC layer and signal deteriorations

in the PHY layer. Thus, the calculation of Pv is a joint work of both the MAC layer model

and the PHY layer model. As a result, these two models are coupled.

Suppose an in-cabin Wi-Fi AP A1 starts functioning with no packet in its queue, i.e.,

it begins from the {idle} state. In the next time slot, a packet arrives at A1’s queue with

probability Pa. This means that A1 begins to backoff with probability Pa. In this case,

it reaches the backoff stage 0, and uniformly randomly chooses a backoff counter k from

0, 1, ...,W0 − 1. From state {0, k}, A1 goes to state {0, k − 1} if the channel is not busy

(with probability 1 − Pb), or stays in state {0, k} if the channel is busy (with probability

Pb). Once A1 reaches state {0, 0}, it transmits the packet at the head of its queue. If the

transmission fails (with probability Pv), A1 enters the next backoff stage {1, ∗}, and repeats

the random backoff procedure again. Upon a successfully transmission (with probability

1 − Pv), A1 goes back to the {idle} state if there is no more packet in its queue (with

probability 1− ρ), or enters the backoff procedure at backoff stage {0, ∗} if its queue is not

empty (with probability ρ). If the transmission of a packet has failed m times, A1 drops

this packet, and goes back to the {idle} state or one of the states in backoff stage {0,*},
depending on the condition of the queue.

Let πj,k be the stationary probability of state {s(t) = j, b(t) = k}, and πidle be the

stationary probability of state idle. Then, we can have the following equations:

πidle =
1− ρ
Pa
· π0,0, (4.9)

πj,0 = (Pv)
j · π0,0, for j > 0, (4.10)

π0,k =
W0 − k

(1− Pb)W0

· π0,0, for k > 0, (4.11)

πj,k =
(W0 − k) · (Pv)j+1

(1− Pb)Wj

· π0,0, for j, k > 0, (4.12)

1 = πidle +
m∑
j=0

Wj−1∑
k=0

πj,k. (4.13)
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Thus, we can combine Eq. (4.9)-(4.13) to obtain the following equation:

π0,0 =

{
W0Pv[1− (2Pm+1

v )]

(1− Pb)(1− 2Pv)
+

[1− (Pv)
m+1]

(1− Pv)
+

W0

(1− Pb)
+

(1− ρ)

Pa

}−1

. (4.14)

4.3.2 PHY Layer Modelling

Our PHY layer modelling consists of two analytical models, the propagation model and the

packet receiving model. To capture the unique features of in-cabin Wi-Fi communications,

we extend existing empirical models accordingly.

The Propagation Model

We improve the dual-scope path loss model in [2] to capture the in-cabin Wi-Fi path loss.

Concretely, we adopt a cabin path loss C to represent the unique path loss by vehicle

cabins. The in-cabin Wi-Fi path loss L(d) is expressed as follows:

L(d) =


− 10τ1 log10(

d

d0

)− C, d0 ≤ d ≤ dc,

− 10τ1 log10(
dc
d0

)− 10τ2 log10(
d

dc
)− C, d ≥ dc,

(4.15)

where d denotes the transmission distance, d0 is the reference distance, dc is the equivalent

transmission distance, τ1 and τ2 are path loss factors, and C is the cabin loss constant.

For propagations within the reference distance d0, we assume that they follow a free space

propagation. Propagations outside the reference distance d0 follow the dual-scope model

described by Eq. 4.15. According to this model, propagations outside the equivalent trans-

mission distance dc experience a more server path loss than those with dc.

The Packet Receiving Model

We adopt empirical waterfall curves (summarized from our extensive simulations) to model

the in-cabin Wi-Fi packet receiving process. In this model, the PLR is a non-increasing

function of SINR. The empirical SINR-PLR curves in our packet receiving model is depicted

in Figure 4.4.
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Figure 4.4 Empirical SINR-PLR curves

4.3.3 Calculation of Throughput and PLR

Estimating Pv

The value of Pv (i.e. the probability that a transmission is failed) is determined by data

rate and SINR value. Thus, we do not need to solve the MAC layer 2D Markov chain

to get Pv. Instead, We take the SINR and data rate as the inputs, and estimate Pv with

the SINR-PLR curves (the empirical SINR-PLR curves are illustrated in Figure 4.4). The

SINR value can be estimated accurately with many existing techniques (e.g., those proposed

in [113–115]).

Estimating Throughput

Define λ as the packet arrival rate, and µ as the average service rate. Then the probability

ρ that the queue is not empty can be expressed as follows:

ρ = min

(
1,
λ

µ

)
. (4.16)

Define ς as the probability that the transmitter transmits at current time slot, then the

relationship between ς and Pb is:

ς =
m∑
j=0

πj,0 = [1− (Pb)
m+1] · π0,0, (4.17)

Pb = 1− (1− ς)N−1, (4.18)
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where N is the total number of vehicles.

We can further express the probability Ptr that as least one node is transmitting at

current time slot as follows:

Ptr = 1− (1− ς)N . (4.19)

And the probability Ps that a transmission is successful can be expressed as follows:

Ps = Nς(1− ς)N−1. (4.20)

The relative throughput S is defined as the fraction of time that the channel is used for

transmission [9]:

S =
E[Payload information transmitted in a time slot]

Es

=
PsTp

(1− Ptr)σ + PsTs + (Ptr − Ps)Tc
, (4.21)

where Es is expected length of a virtual time slot in our MAC layer model, σ is the basic

slot length defined in the 802.11n standard [112], Ts is the round-trip time for a successful

transmission, Tc is the time for a failed transmission, and Tp is the transmission time for

the data section in a data packet. Ts and Tc are defined as follows [9]:

Ts = H + Tp + SIFS + σ + TACK +DIFS, (4.22)

Tc = H + Tp +DIFS, (4.23)

where H is the time for packet headers transmission, and TACK is the time for ACK packet

transmission, SIFS is the time interval of the Short Interframe Space, and DIFS is the

time interval of the DCF Interframe Space. Then the expected length of a time slot Es is

calculated as follows:

Es = (1− Ptr)σ + PsTs + (Ptr − Ps)Tc. (4.24)

We assume that the packet arrival follows a Poisson process. Then we can express the

probability of exiting idle state Pa as follows:

Pa = 1− e−λ·Es . (4.25)
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And the average service rate of each node is calculated as follows:

µ =

(1− Pv)Ts
m∑
j=0

πj,0 + Es

m∑
j=0

Wj−1∑
k=1

πj,k + PvTcπm,0


−1

. (4.26)

By solving the system of nonlinear equations from Eq. (4.14) to Eq. (4.26), we get the

value of relative throughput S.

Then we can estimate the average throughput as follows:

Savg =
S · r
N

, (4.27)

where r is the data rate.

We further calculate the PLR as follows:

PLR = Pv · πm,0 = (Pv)
m+1 · π0,0. (4.28)

4.3.4 Model Validation

Real testbed experiments will be ideal to evaluate this research. However, in practice, it is

hard to duplicate identical experiment setups such as traffic conditions. Hence, we resort to

simulation studies. In this section, we first describe the setup for the evaluation. We then

validate our analytical models by comparing the theoretical results with ns-2 simulations,

with vehicle mobility module developed in house at General Motors. We consider a typical

simulation scenario as described in Table 4.1 - 4.3.

Evaluation Setup

In this subsection, we describe the highway scenario, the device and cabin settings, the

PHY layer model, and the propagation model.

Urban highway scenario: We conduct our analysis in a typical bidirectional urban

highway scenario, of which the length is 3000m. The highway contains four lanes, each of

which has a width of 4m. Taking the isolation zone into consideration, the total width of

the highway is 20m. Vehicles on each lane are deployed according to a Poisson process. The

average length of vehicles is set to 4m. Each vehicle is equipped with one in-cabin Wi-Fi
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device. As the main purpose is to investigate in-cabin Wi-Fi communication performance

under different traffic conditions, we consider a simple case that each in-cabin Wi-Fi device

serves one passenger. The reference range dref for the regional goodput calculation is set to

1000m, which is a typical coverage range of a LTE BS in an urban scenario [116]. Table 4.1

summarizes all the settings for the highway model.

Table 4.1 Settings for the highway scenario
Description Value

Highway length 3000m
Highway width 20m

# of lanes 4
Lane width 4m

Isolation zone width 4m
Positions of vehicles Poisson

# of vehicles N ∈ [30, 1200]
Vehicle length 4m

# of Wi-Fi devices on each vehicle 1
# of users served by each AP 1

Distances between AP and target users [0.1m, 0.5m]

Table 4.2 Settings for in-cabin Wi-Fi device
Description Value

Center frequency 2.4GHz
Bandwidth 20MHz

Transmission scheme CBR (unicast)
Network protocol UDP

Transmission power 0, 10, 20 and 28 dBm
Buffer size 5MB
Packet size 500 bytes

MAC protocol CSMA/CA
Workload distribution Poisson

Data Arrival Rate 340Kbps, 2Mbps and 6Mbps

In-cabin Wi-Fi device settings: According to 802.11n protocol [112], we utilize the

2.4GHz frequency, and allocate 20MHz bandwidth for transmissions. Workload arrivals of

each user follow the Poisson process, which is commonly used to characterize the Internet

bursty traffic [117]. The duration of each workload is an exponential random variable.
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Table 4.3 Data rates in this thesis
Data Rate Modulation Coding Rate

48Mbps 64QAM 2/3
24Mbps 16QAM 1/2
12Mbps QPSK 1/2
6Mbps BPSK 1/2

Table 4.4 Parameters for the propagation model
Description Value

Reference distance d0 1m
Equivalent transmission distance dc 220m

In-cabin constant C 10dB
path loss parameter τ1 1.9
path loss parameter τ2 4.0

The interval time between two adjacent workloads is also an exponential random vari-

able. During each transmission interval, the workloads come with a Constant Bit Rate

(CBR) manner. The transmission scheme is unicast. Network protocol is UDP. Table 4.2

summarizes the settings for Wi-Fi devices.

Data rates: The perceivable data rates are determined by modulation and coding

rates used in transmissions. We consider about four defined transmissions options in IEEE

802.11n illustrated in Table 4.3.

Propagation model: The empirical values of parameters in the propagation model

are summarized in Table 4.4. We modify the model parameters in [2], so as to include the

path loss caused by vehicle cabin.

Model Validation

In order to illustrate the effectiveness of our proposed analytical model, we compare the

theoretical results with simulation results, in terms of both average and regional goodputs.

We further compare our proposed model with the model proposed by Yao et al. in [34],

so as to illustrate the improvement brought by our model. Yao’s model is one of the most

accurate and related models that capture the unsaturated throughput of 802.11 based

communications. In this subsection, we set transmission power as 20dBm and data arrival

rate as 340Kbps. The value of m is set to 6, which means a packet is dropped if the
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(a) Average goodput (b) Regional goodput

Figure 4.5 Model evaluation via average and regional goodputs. The sim-
ulated goodputs are denoted as ”Sim” and marked by dots. The modeled
goodputs of our model are denoted as ”Anal” and marked by solid lines. The
modeled goodputs of Yao’s model are denoted as ”Yao” and marked by dash
lines.

transmission attempt has failed for 7 times. As shown in Figure 4.5, we compare the

modeled goodputs of our model (denoted as ”Anal”) with the simulated goodputs (denoted

as ”Sim”), as well as the modeled goodputs of Yao’s model (denoted as ”Yao”).

In Figure 4.5(a), we can observe that the average goodputs of our analytical model for

all four data rates can fit the simulated average goodputs very well. Similarly, in Figure

4.5(b), the regional goodputs with analytical models for all data rates can fit the simulated

regional goodputs very well. In contrast, Yao’s model sometimes yields a large error in

modelling the goodputs in the high density region (i.e., when the vehicle density is larger

than 20 vehicles per 100m). This confirms that our model improves the modelling accuracy.

4.3.5 System Analysis based on Extensive Simulations

In this section, we present more simulation study of the in-cabin Wi-Fi communications.

We summarize several important observations to show how in-cabin Wi-Fi performance is

impacted by traffic density, transmission power and data rate. In-depth analysis of these

observations is provided. In order to obtain a certain goodput guarantee under different

traffic conditions, we provide important recommendations of default settings of in-cabin

Wi-Fi devices to automotive engineers. We further illustrate the impacts of transmission

power and data rate on queueing delay, in order to provide useful guidelines for delay-
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sensitive applications.

Impacts of Traffic Density on Goodputs

Due to the mobility of vehicles, in-cabin Wi-Fi communication environments change a lot

with traffic conditions. To illustrate the impacts of traffic density, we consider an example

with transmission power of all vehicle as 20dBm, and data rate of all vehicles as 48Mbps

data. The data arrival rate of each vehicle is 340Kbps (λ = 340Kbps). Figure 4.6 illustrates

how the average goodput is affected by the traffic density.

Based on Figure 4.6, we summarize our observation as follows:

Observation 3. The average goodput decreases with the traffic density. Meanwhile, the

average goodput is degrading faster in the high density region than in the low density region.

We can explain Observation 3 as follows.

1. As the density increases, the number of interference nodes increases. When more

interference nodes appear, the interference power increases, leading to a decrease in

the SINR value. According to Eq. (4.18), the probability Pb that the channel is sensed

busy increases with N . Both PHY-layer and MAC-layer performances degrade with

the increasing traffic density. As a result, the average goodput of all the users drops

with the traffic density.

2. When the traffic density is low, the impact of interference is low. The wireless channel

capacity is larger than the data arrival rate. All the arrived packets can be transmitted

immediately. Thus the average goodput shown in Figure 4.6 is approximating the

data arrival rate. This explains why the average goodput is degrading very slowly in

the low density region.

3. As the traffic density increases, N and Pb increase. Due to the increasing interference,

the SINR drops sharply. As a result, the capacity of the wireless channel begins to

decrease, and can no longer serve all arrived packets. The average goodput begins to

decrease severely with the decreasing channel capacity. This explains why the average

goodput is degrading much faster in the high density region than in the low density

region.
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Figure 4.6 Average goodput when transmission power is 20dBm and data
rate is 48Mbps
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Figure 4.7 Regional goodput when transmission power is 20dBm and data
rate is 48Mbps

We also analyze the impact of traffic density on regional goodput. Figure 4.7 illustrates

how the regional goodput is affected by the traffic density.

The following observation can be summarized from Figure 4.7.

Observation 4. The regional goodput increases with the traffic density. Meanwhile, the

regional goodput is increasing faster in the low density region than in the high density region.

We can explain Observation 4 as follows.

1. As the traffic density increases, the number of vehicles in the reference range dref

increases. This explains why the regional goodput increases with the traffic density.

2. The regional goodput is also determined by average goodput of vehicles within dref .

When the average goodput decreases quickly in the high traffic density region, the
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(a) Transmission data rate: 48Mbps
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(b) Transmission data rate: 24Mbps
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(c) Transmission data rate: 12Mbps
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(d) Transmission data rate: 6Mbps

Figure 4.8 Average goodputs of different transmission powers.

regional goodput becomes increasing very slowly even with a larger number of vehicles

in the reference range. The wireless channel is saturated.

Impacts of Transmission Power on Goodputs

The transmission power of in-cabin Wi-Fi device not only determines the signal power for

passengers in the vehicle, but also affects the interference level of in-cabin Wi-Fi commu-

nications outside the vehicle. Usually, a higher transmission power provides a better signal

power but introduces more interferences; a lower transmission power provides a worse signal

power but introduces less interferences. To see the impact of the transmission power, we

use a data arrival rate of 340Kbps as an example. Figure 4.8 shows how the transmission

power affects the average goodput.
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(a) Transmission data rate: 48Mbps
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(b) Transmission data rate: 24Mbps
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(c) Transmission data rate: 12Mbps
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(d) Transmission data rate: 6Mbps

Figure 4.9 Regional goodputs of different transmission powers.

From Figure 4.8, we can summarize the following observation.

Observation 5. In a lower traffic density region, the transmission power has a very limited

impact on the average goodput. The small transmission powers (0 dBm and 10 dBm) usually

achieve better average goodputs than that of the large transmission powers (20 dBm and

28 dBm) in a higher traffic density region. In general, the transmission power of 10 dBm

provides the best and the most robust performance in average goodput.

We further compare the regional goodput of different transmission powers in Figure 4.9.

And we can summarize the following observation.

Observation 6. In a lower traffic density region, the transmission power has a very limited

impact on the regional goodput. The small transmission powers (0 dBm and 10 dBm)
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provide better regional goodputs than that of the large transmission powers (20 dBm and

28 dBm) in a higher traffic density region. In general, the transmission power of 10 dBm

provides the best and the most robust performance in regional goodput.

We can explain Observation 5 and 6 with a tradeoff between PHY-layer performance

and MAC-layer performance in terms of transmission power.

1. Usually, the PHY-layer performance increases with transmission power. Meanwhile,

the PHY-layer performance is increasing slower in the high power region (20-28 dBm)

than in the low power region (0-10 dBm). As the transmission power increases from

0dBm to 10dBm, an increased transmission power provides an increased signal power,

leading to a large increase in SINR and a significant improvement of the PHY-layer

performance. However, as we further increase the transmission power to over 20

dBm, the channel distortion, as well as the interference power, become the bottleneck.

And this change cannot be reflected by the SINR value. In this case, we can only

achieve marginal improvement in the PHY-layer performance with a large increase in

transmission power.

2. Usually, the MAC-layer performance decreases with transmission power. As the trans-

mission power increases, interference power increases. Thus, the interference range

of each in-cabin Wi-Fi increases, leading to an increase in the number of interference

vehicles N − 1. According to Eq. (4.18), as N increases, collisions are more likely to

happen. Thus, the MAC-layer performance degrades with the increasing transmission

power.

3. With the largest transmission power (28 dBm), in-cabin Wi-Fi hotspots impose a large

interference power to each other, making the MAC-layer performance degenerates

largely. With the smallest transmission power (0 dBm), in-cabin Wi-Fi hotspots

may fail to deal with channel fading and path loss efficiently, resulting in a huge

loss in the PHY-layer performance, especially when the data rate of 48Mbps is used.

Therefore, both the largest and the smallest transmission power can not achieve the

best performance.

4. The transmission power of 10 dBm provides the best and the most robust performance

in terms of average goodput and regional goodput. It achieves a good tradeoff be-

tween the PHY-layer performance and the MAC-layer performance: it provides a well
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(a) Transmission power: 28dBm.
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(b) Transmission power: 20dBm.
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(c) Transmission power: 10dBm.
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(d) Transmission power: 0dBm.

Figure 4.10 Average goodputs of different transmission data rates.

enough signal power such that Pv approximates to 0; the transmission interference is

limited in a local area, and the number of interference nodes N is small.

Impacts of Data Rate on Goodputs

The Adaptive Modulation and Coding (AMC) technique [118] has been widely studied and

applied in wireless communications. It is still necessary to analyze the impacts of data rate,

as we have a completely different application with many distinct features. To focus on the

data rate, we fix the data arrival rate as 340 Kbps. Figure 4.10 illustrates the average

goodputs with different data rates.

From Figure 4.10, we summarize the following observation.
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Observation 7. In general, the data rate of 24 Mbps provides the largest and the most

robust average goodput for in-cabin Wi-Fi communications. Both the highest and the lowest

data rates provide poor average goodputs.

We explain Observation 7 with a tradeoff between the PHY-layer performance and

MAC-layer performance in terms of the data rate.

1. The PHY-layer performance decreases with the data rate. A higher data rate corre-

sponds to a higher order modulation, thus is more vulnerable to noise and interference.

To achieve the same PLR performance, a higher data rate requires a higher SINR

value (i.e. a better channel condition). In other word, when the PHY-layer condition

is fixed, PLR increases with the data rate. This suggests that each packet experiences

a larger number of retransmissions when a higher data rate is used.

2. The MAC-layer performance increases with the data rate. A higher data rate can

transmit more packets when the channel is clear. Meanwhile, the transmission dura-

tion of each packet reduces with data rate. For example, for a 500-byte packet, the

transmission duration with 6Mbps and 48Mbps is 6.7 msec and 0.8 msec, respectively.

With a higher data rate, each packet goes through the wireless channel faster, and

experiences less collision in transmission.

3. According to the above explanations, there is a tradeoff between the PHY layer

performance and MAC layer performance in terms of the data rate. For the data

rate range of 6 Mbps to 24 Mbps, the decrease of the average goodput due to the

channel fading and interference is complemented by the increase of the transmission

rate. Hence, the average goodput increases with the data rate in this range. For the

data rate range of 24 Mbps to 48 Mbps, the impact of channel fading and interference

overshadows the increase of the data rate. As a result, the average goodput decreases

with the data rate in this range.

Figure 4.11 illustrates regional goodputs of different data rates. We can summarize the

following observation from Figure 4.11.

Observation 8. In general, the data rate of 24 Mbps provides the largest and the most

robust regional goodput for in-cabin Wi-Fi communications.
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(a) Transmission power: 28dBm.

0 10 20 30 40
0

50

100

150

Density (number of vehicles per 100m)

R
eg

io
na

l G
oo

dp
ut

 (
M

bp
s)

 

 

6Mbps
12Mbps
24Mbps
48Mbps

(b) Transmission power: 20dBm.
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(c) Transmission power: 10dBm.
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Figure 4.11 Regional goodputs of different transmission data rates.

As the explanation for Observation 8 is similar to that of Observation 7, we skip the

explanation. We also notice that the tendency of the goodput of 48 Mbps is different

from those of 6 Mbps, and 12 Mbps. The goodput of 48 Mbps decreases rapidly in the

high density region. The reason is explained as follows. For the data rates of 6 Mbps

and 12 Mbps, the goodput decreases mainly due to the increasing collisions. The impact

of collisions on goodput grows gradually with the traffic density. For the data rate of

48 Mbps, the goodput reduces mainly due to the decreasing channel SINR. According

to the empirical packet receiving model (i.e., the SINR-PLR curves in 4.4), the packet

loss increase dramatically with the decreasing channel SINR, resulting in a fast-reducing

goodput. Consequently, the goodput of 48 Mbps decreases much faster than that of other

data rates.
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Figure 4.10 and Figure 4.11 also confirm Observation 5 and Observation 6. For example,

by comparing Figure 4.10(a) with Figure Figure 4.10(b), (c) and (d), we can see that the

transmission power of 10dBm can support all the data rates well, while other transmission

powers result in performance degeneration of one or several data rates. Similarly, we can

use Figure 4.8 and Figure 4.9 to confirm that the transmission power of 10 dBm is superior

to other power options.

4.4 In-cabin Wi-Fi Video Streaming and its Challenges

With a good understanding of the in-cabin Wi-Fi systems, we can now move forward and

try to improve the QoS of these systems. In fact, the adaptation and control approaches of

communication variables developed for DSRC in Chapter 3 can also be applied to in-cabin

Wi-Fi systems in achieving better QoS. However, in this chapter, we will not try to reinvent

the wheels. Instead of adaptive communication variables, we utilize and develop adaptive

protocols to achieve our goal. To understand the motivations of our design of adaptive

protocols, we next discuss the major traffic consuming service of in-cabin Wi-Fi systems -

the video streaming service, as well as the challenges in supporting this service.

Mobile video streaming is one of the most popular but also most bandwidth hungry

mobile services. Along with the deployment of in-cabin Wi-Fi systems, the penetration of

mobile video streaming in vehicular communications will soar. To provide a satisfactory

video viewing experience, video packets should be delivered with low delays and small delay

jitters. This mission is non-trivial, as we are dealing with a wireless system that is very

different from existing ones.

Figure 4.12 illustrates the differences between our in-cabin Wi-Fi scenario and a tra-

ditional one. (1) The in-cabin Wi-Fi APs are deployed on personal vehicles, and thus

are fully distributed and non-cooperative. There is no message exchange among the APs.

Meanwhile, in-cabin Wi-Fi APs are rapidly moving, resulting in a frequently varying AP

topology. (2)Video streaming requires low delivery delay and small jitters. (3) The clients

only use on-the-shelf mobile devices. (4) The BS never makes scheduling decisions for

video content distributions at in-cabin Wi-Fi APs. Considering the above differences, a

new scheduling scheme is needed for the novel service of in-cabin Wi-Fi video streaming.
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Figure 4.12 Differences between a traditional scenario and the in-cabin Wi-
Fi scenario.

4.4.1 Challenges

The design of a scheduling scheme for in-cabin Wi-Fi video streaming faces the following

challenges.

Challenge 6. The scheduling scheme should be fully distributed. Due to the large commu-

nication delay, a cellular BS is not suitable to control the dynamic in-cabin Wi-Fi transmis-

sions. Meanwhile, it is inefficient to select a centralized controller from all the constantly

moving in-cabin Wi-Fi APs.

Challenge 7. At the same time, this distributed scheduling scheme should be delay-aware

to serve video streaming. Existing delay-aware scheduling algorithms are mainly designed

for centralized networks, and thus are not suitable for in-cabin Wi-Fi systems.

Challenge 8. The scheduling scheme should be robust to the fast-changing topology of APs

in vehicular environments.

Challenge 9. The scheduling scheme should be compatible with the commodity client and

AP devices. For the ease of deployment, the scheduling scheme should introduce little

modification to the on-the-shelf AP and client devices.



4.5 Design of the DRIVING Framework 101

4.5 Design of the DRIVING Framework

To address the aforementioned challenges, we propose the Delay-awaRe DIstributed Video

schedulING (DRIVING) framework.

4.5.1 Overall Design

The core idea of DRIVING is to assign high transmission priorities to packets with large

queueing delays. DRIVING supports K levels of priorities. Level 0 represents the highest

priority while level K − 1 denotes the lowest priority. To realize the priorities, a small

Contention Window (CW) size is assigned to a high-priority packet. DRIVING consists of

three modules, and is summarized as follows.

The DRIVING framework

1. The delay measurement module measures the queueing delay of the head-of-line

packet, and saves this delay as Dhead. If the queue is empty, Dhead is set to 0.

2. The priority evaluation module evaluates the priority level of the head-of-line

packet according to Dhead, and set the corresponding priority as k, where k =

0, 1, · · · , K − 1.

3. The scheduling decision module sets the CW size of the upcoming backoff pro-

cedure as Wi,k, according to the priority level k and a number i. This i denotes the

number of transmission attempts that have been made for the head-of-line packet.

The scheduling decision module then instructs the backoff handler of the CW size

Wi,k.

The procedure of DRIVING is summarized as in Figure 4.13

4.5.2 Solving the Challenges with DRIVING

The delay measurement module measures the local queueing delay Dhead of the head-of-

line packet. This information is measured locally by APs (while acquiring the deadline

information requires extra message exchanges between APs and clients). This delay serves

as a fully distributed criterion of scheduling. In this way, DRIVING solves Challenge 6.
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Head-of-line packet

Figure 4.13 The block diagram of DRIVING.

The priority evaluation module evaluates the transmission priority level of each head-

of-line packet, according to the queueing delay Dhead. A large queueing delay indicates

an approaching deadline. Thus, a high transmission priority is assigned to the packet.

In this way, transmissions are scheduled by delay-aware priorities. Hence, DRIVING is

delay-aware and solves Challenge 7.

The detailed implementation of the priority evaluation module is summarized as follows.

Each priority level k corresponds to a continuous set βk of the queueing delay. The queueing

delay of a packet with a higher priority is always larger than the queueing delay of a packet

with a lower priority. Let Dk denotes the queueing delay of a packet in priority level k.

For two priority levels i and j, we have

max(Dj|Dj ∈ βj) < min(Di|Di ∈ βi), 0 ≤ i < j ≤ K − 1. (4.29)

Further, the union of all the delay sets covers all the non-negative real numbers, i.e.,

K⋃
k=0

βk = R+ ∪ {0}. (4.30)

Note that the DRIVING framework generalize different designs of the delay sets.

The scheduling decision module realizes the scheduling decision based on the priority

passed down from the priority evaluation module. To achieve this, this module sets the

minimum CW size of the upcoming backoff procedure as W0,k according to the priority k.
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A packet with a high priority has a small minimum CW size, i.e.,

W0,0 ≤ W0,1 ≤ · · · ≤ W0,K−1. (4.31)

For a packet that has been transmitted i times, this module further sets the CW size

as Wi,k. According to the IEEE 802.11 backoff process, we have

Wi,k = W0,k · 2i. (4.32)

This CW size is then passed to the backoff handler. In this way, DRIVING utilizes the

backoff process to realize its scheduling decisions. As the backoff process runs independently

of the network topology, the scheduling decision remains valid even when the network

topology changes frequently. Hence, DRIVING solves Challenge 8. In addition, it only

requires a software upgrade to integrate the scheduling decision module into commodity

APs. Thus, DRIVING solves Challenge 9.

4.6 Analytical Modeling of DRIVING

In order to theoretically analyze and optimize the DRIVING framework, we establish new

analytical models.

4.6.1 Analytical Models in Two Levels

We establish one packet level model for the backoff process and two queue level models for

the queueing process. These two levels of models are correlated through their inputs and

outputs, as presented in Figure 4.14.

4.6.2 The Packet Level Model

The packet level model is identical to the model developed in Section 4.3. Thus, we skip

the details for brevity. With this model, given the video packet arriving rate λk, we can

derive the average service rate µk.
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Figure 4.14 The two-level models.

Interactions among Markov Chains in the Packet Level Model

Denote the number of nodes with priority k as Nk. In real deployment, an indicator can

be appended to the packet header to indicate the priority k of the packet. Then, Nk can

be estimated by monitoring this indicator and the distinct MAC addresses encapsulated

in headers of received packets [119]. The total number of nodes is then N =
∑K−1

k=0 Nk.

We assume that all these N nodes are within the carrier sensing range of each other1. For

a node at the priority level k, it not only contends with other Nk − 1 nodes in the same

priority level, but also experiences collisions from N − Nk nodes in other priority levels.

Let ςk denote the probability that a node in priority level k attempts to transmit in the

current virtual slot. Then, the probability Pck that the channel is busy is

Pck = 1− (1− ςk)Nk−1
∏
i 6=k

(1− ςi)Ni , k = 0, · · · , K − 1. (4.33)

The probability Psk that a node in priority level k successfully transmits a packet in the

current virtual slot is [9]

Psk = ςk(1− Pck), k = 0, 1, · · · , K − 1. (4.34)

1To capture the presence of hidden terminals, existing models (e.g. models in [108] and [120]) can be
integrated into our model.
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Figure 4.15 The DTMC for the queueing process of each node in priority
level k when λk < µk

Further, the probability Ptr that at least one of the nodes is transmitting at current virtual

slot is defined as [9]

Ptr = 1−
K∏
k=0

(1− ςk)Nk . (4.35)

4.6.3 The Queue Level Models

The queue level model consists of another set of DTMCs. For each priority level, we

establish one DTMC to model the queueing process of each node in this priority level. We

notice that queues with λk < µk evolve differently from queues with λk ≥ µk. In the case of

λk < µk, the queueing process can be characterized with the stationary distribution of its

corresponding DTMC. In the case of λk ≥ µk, the stationary distribution does not exist,

and features of the queueing process are time-dependent. Thus, we separate the discussions

of these two cases, and establish two different kinds of DTMCs. Note that the input µk is

an output of the packet level model. Meanwhile, λk is determined by the resolution of the

requested videos, hence λk is known to each node in priority level k.

The Queue Level Model of λk < µk

The DTMC for this case is presented in Figure 4.15.

There are three one-step transition probabilities for each state except state 0.

(a) Let P1k denote the probability that the channel is busy and the head-of-line packet

does not reach its re-transmission limit (thus is not dropped). In this case, no matter the

current node transmits or not, it has to freeze its backoff counter and wait for T1 time slots.

Thus, the queueing delay increases by T1 time slots.

(b) Let P2k denote the probability that the channel is idle. In this case, no one transmits

in the current time slot, and the queueing delay increases by 1 time slot.
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(c) Let P3k denote the probability that the head packet is successfully transmitted or is

dropped after m+ 1 transmission attempts. In this case, the head packet leaves the queue

and the succeeding packet becomes the head packet. And arrival time of the new head

packet is Tak/σ time slots less than that of the former head packet. Meanwhile, the new

head packet needs to wait TS/σ time slots when the previous packet is being transmitted.

Thus, the queueing delay of the head packet decreases by min[D,T2] time slots, where D

is the current queueing delay.

For the special case of state 0, we have the following rules. From state 0, the DTMC

stays in state 0 if no packet arrives in the current time slot or the newly arrival is successfully

transmitted. Then the transition probability from state 0 to state 0 is (1−Pak)+PakP3k.

From state 0, the DTMC transits to state 1 with probability PakP2k, if there is a newly

arrived packet and the channel is idle. From state 0, the DTMC transits to state T1 with

probability PakP1k, if there is a newly arrived packet and the channel is busy.

Taking the outputs from the packet level model, we determine P1k, P2k, and P3k as

follows

P1k = Pck(1− Pcmk π0,0,k), (4.36)

P2k = (1− ςk)(1− Pck), (4.37)

P3k = ςk(1− Pck) + Pck · Pcmk π0,0,k, (4.38)

where π0,0,k is the stationary probability of the state (0,0) in the DTMC of priority k from

the packet level.

The Queue Level Model of λk ≥ µk

To model the queueing process of this case, we use a M/M/1 queue with an arrival rate of

λk and a service rate of µk, as shown in Figure 4.16. Each state in the DTMC in Figure

4.16 represents a queue length. M/M/1 queues have been extensively studied. However,

we still need a ready-to-use queueing delay analytical model for the case of λk ≥ µk.

4.6.4 Average Queueing Delay

Given the queue level model, λk and µk, we next derive the average queueing delay D.

Note that µk is derived by the packet level model.
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Figure 4.16 The DTMC for the queueing process of each node in priority
level k when λk ≥ µk.

The Average Queueing Delay of λk < µk

We focus on the DTMC shown in Figure 4.15. Let ēk(t) denote the stationary distribution of

this DTMC, where t is the index of state. Then we have the following recurrence equations

ēk(t) =



P1kēk(t− T1) + P2kēk(t− 1) + P3kēk(t+ T2), t ≥ T1 + 1,

PaP1kēk(t− T1) + P2kēk(t− 1) + P3kēk(t+ T2), t = T1,

P2kēk(t− 1) + P3kēk(t+ T2), 2 ≤ t ≤ T1 − 1,

PaP2kēk(t− 1) + P3kēk(t+ T2), t = 1,

P3k
Pak(1− P3k)

T2∑
i=1

ēk(i), t = 0.

(4.39)

The next lemma characterizes ēk(t) when t ≥ T1 + 1.

Lemma 3. The stationary distribution of the DTMC shown in Figure 4.15 satisfies

ēk(t) = A1r
t, t ≥ T1 + 1, (4.40)

where A1 is a constant, 0 < r < 1, and r is a root of the following characteristic function

P1ku+ P2ku
T1 + P3ku

T1+T2+1 − uT1+1 = 0. (4.41)

Proof. We first proof this lemma when t ≥ 2T1 +1. When t ≥ 2T1 +1, we have ēk(t−T1) =

P1kēk(t− 2T1) +P2kēk(t− T1− 1) +P3kēk(t− T1 + T2). Thus, all stationary probabilities

involve in the recurrence equations of ēk(t), t ≥ 2T1 + 1, are in the same form. Therefore,
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for ēk(t), t ≥ 2T1 + 1, we have

ēk(t) = A1r
t, t ≥ 2T1 + 1, (4.42)

where A1 is a constant and 0 < r < 1 is a root of the characteristic function (4.41).

When the queue is stable (λk < µk), this root r exists. Next, we proof the lemma when

T1 + 1 ≤ t ≤ 2T1. With Eq. (4.42), we have

A1r
2T1+1 =P1kēk(T1 + 1) + P2kA1r

2T1 + P3kA1r
2T1+T2+1,

A1r
2T1+2 =P1kēk(T1 + 2) + P2kA1r

2T1+1 + P3kA1r
2T1+T2+2,

...

A1r
3T1 =P1kēk(2T1) + P2kA1r

3T1−1 + P3kA1r
3T1+T2 .

(4.43)

Summing up all the equations in Eq. (4.43), we have

2T1∑
t=T1+1

ēk(t) = A1r
T1(r + r2 + · · ·+ rT1). (4.44)

Therefore, we can conclude that

ēk(t) = A1r
t, t ≥ T1 + 1.

With Lemma 1 and Eq. 4.39, we can further derive equations (4.45), (4.46) and (4.47).

ēk(0) =
P3k

Pa(1− P3k)

{
1

(1− P2k)

[
A1P3k − krT2+1

(
1− rT1

1− r

)
+Pa(P1k + P2k)ēk(0)− ēk(T1)] +A1r

T1+1

(
1− rT2−T1

1− r

)}
, (4.45)

ēk(T1) =
A1

P2k
rT1+1 − P1kPaēk(0)− P1kP3k

P2k
A1r

T2+1 − P3k
P2k

A1r
T1+T2+1, (4.46)

1 =

[
1 +

Pa(1− P3k)

P3k

]
ēk(0) +

ArT2+1

1− r
. (4.47)

By solving Eq. (4.45), (4.46) and (4.47), we obtain the values of ēk(0), ēk(T1), and the
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constant A1. All the ēk(t), t = 0, 1, · · · , can be explicitly expressed by ēk(0), ēk(T1), and

A1. Thus, the stationary distribution of the DTMC in Figure 4.15 is achieved.

Denote the average queueing delay of packets transmitted by any node in priority level

k as Dk. Given the stationary distribution, Dk is estimated as

Dk = σ ·
∞∑
t=0

t · ēk(t). (4.48)

The Average Queueing Delay of λk ≥ µk

We focus on the DTMC shown in Figure 4.16. We number the arrival packets by 1, 2, · · · ,
in the order of their arrival time. Denote the arrival time of the nth packet as an, and the

departure time of the nth packet as cn. We focus on the case where the queue begins to

evolve with no packet. (An initially non-empty queue can be easily modeled by changing

the initial conditions of our model.) Then we have the following lemma on the expectations

of an and cn.

Lemma 4. Let E(an) and E(cn) be the expectations of arrival and departure time of the

nth packet, respectively. When λk ≥ µk, we have the following equations for the queueing

process presented in Figure 4.16

lim
n→∞

E(an)/n = (λk + µk)/λk, (4.49)

lim
n→∞

E(cn)/n = (λk + µk)/µk. (4.50)

Proof. Suppose the nth client arrives at time slot x, i.e., an = x. Then n follows a Binomial

distribution with parameters x and λk/(µk+λk). Let random variable Y ∼ Bin(x, λk/(µk+

λk)). Hence, we have

P{an = x} = P{Y = n}. (4.51)

Next, we will prove that there exists a constant A2, such that

lim
n→∞

P{an ≥ (1 + ε)A2n} = 0, (4.52)

lim
n→∞

P{an ≤ (1− ε)A2n} = 0, (4.53)

where ε > 0 is an arbitrarily small number.
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We first prove Eq. (4.52). Since an is a discrete variable, proving Eq. (4.52) is equivalent

to proving the following equation

lim
n→∞

P{an ≥ d(1 + ε)A2ne} = 0, (4.54)

where d·e is the ceiling operator. From Eq. (4.51) and Eq. (4.54), we have

P{an ≥ d(1 + ε)A2ne} = P

{
Bin

(
d(1 + ε)A2ne,

λk
λk + µk

)
≤ n

}
. (4.55)

Let X ∼ Bin
(
d(1 + ε)A2ne, λk

λk+µk

)
. By Hoeffding’s inequality, we have the following

bound

P{X ≤ n} ≤ exp

−2
[
d(1 + ε)A2ne λk

λk+µk
− n

]2

d(1 + ε)A2ne

 . (4.56)

Taking A2 = λk+µk
λk

and n→∞, Eq. (4.56) can further express as follows

lim
n→∞

P{X ≤ n} ≤ lim
n→∞

exp

(
−2εn2 − 2λk

λk+µk

(1 + ε)A2n− 1

)
= 0 (4.57)

Therefore, taking A2 = λk+µk
λk

, we prove Eq. (4.52) and Eq. (4.54), and further have

lim
n→∞

P{an ≥ (1 + ε)
λk + µk
λk

n} = 0. (4.58)

The proof of Eq. (4.53) is similar to the above proof of Eq. (4.52). We skip it for brevity

and directly give the following result

lim
n→∞

P{an ≤ (1− ε)λk + µk
λk

n} = 0. (4.59)

Combining Eq. (4.58) and Eq. (4.59), we have

lim
n→∞

E(an)/n =
λk + µk
λk

.
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Similarly, for cn, we have

lim
n→∞

E(cn)/n =
λk + µk
µk

.

When λk ≥ µk, the average queueing delay keeps increasing as time goes by. Therefore,

we focus on the average queueing delay of packets that are transmitted before a constant

time slot T (T <∞). To capture the delay up to T , we first need to calculate the number

of clients transmitted before T . We have the following lemma for the average number of

transmitted packets before time slot T .

Lemma 5. Let NT be the number of packets that are transmitted before T . When λk ≥ µk,

we have the following equation for the queueing process presented in Figure 4.16

lim
T→∞

NT/T = µk/(λk + µk). (4.60)

Proof. By definition of NT , we have NT = max{n|cn ≤ T}. Therefore, we have

cNT
≤ T. (4.61)

Then, there exists a value δ ≥ 0 such that cNT
= T − δ. As the (NT + 1)th client is served

after T , it is true that

cNT +1 − cNT
> T − cNT

= δ. (4.62)

Hence, we have

E[cNT +1] = T − E[δ]

> T − E[cNT +1 − cNT
] = T − λk + µk

µk
. (4.63)

Combining inequalities (4.61), (4.63) and Lemma 2, we have

lim
T→∞

E[cNT
]/T = lim

T→∞

λk+µk
µk

NT

T
= 1. (4.64)
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Rearranging the terms in Eq. (4.64), we conclude our proof with

lim
T→∞

NT/T =
µk

λk + µk
.

Given Lemma 2 and Lemma 3, we can characterize the average queueing delay for the

case of λk ≥ µk with the following theorem.

Theorem 3. Let Dk(T ) denote the average queueing delay (in seconds) of packets trans-

mitted by a priority k node before time slot T . When λk ≥ µk, we have the following

equation for the queueing process presented in Figure 4.16

Dk(T )
a.s.−−→ σT

2
· λk − µk

λk
, (4.65)

where
a.s.−−→ means “converges almost surely”.

Proof. By Lemma 2, we have the following equation for the queueing delay cn − an of the

nth packet

E[cn − an] = E[cn]− E[an]
a.s.−−→ λk + µk

µk
n− λk + µk

λk
n =

λ2
k − µ2

k

λkµk
n. (4.66)

And by Lemma 3, we have the following equation for the number of packets transmitted

before T

E[NT ]
a.s.−−→ µk

λk + µk
T. (4.67)

Take the length of each time slot as σ. Then combining Eq. (4.66) and Eq. (4.67), we have

Dk(T ) = σE

∑NT

i=1 i ·
λ2k−µ

2
k

λkµk

NT


a.s.−−→ σ · E[NT ] + 1

2
· λ

2
k − µ2

k

λkµk
a.s.−−→ σT

2
· λk − µk

λk
.
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With Theorem 3, we can estimate the average queueing delay of all packets in any given

period. A brief example to apply Theorem 3 is as follows. Suppose the system initiates at

0 second with empty queues. Then after running for 50 seconds, we would like to estimate

the average queueing delay of nodes at priority level 2. Applying Theorem 3, we will set

k = 2 and T = 50 in Eq. (4.65). We also collect λ2 and µ2 from the packet level model,

and supply them to Eq. (4.65) as well. Also, recall that σ is the basic slot length defined

in the 802.11n standard. Then we can estimate the average queueing delay as [25σ · λ2−µ2
λ2

].

4.6.5 Model Validation

We next use ns-2 simulations to validate the proposed models of DRIVING. In our model

validation, there are 3 priority levels, i.e., k = 0, 1, 2. The minimum CW sizes are W0,0 = 3,

W0,1 = 7, and W0,2 = 15, respectively. To present the validation results clearly, we fix the

numbers of nodes in priority levels 0 and 1, and change the number of nodes in priority

level 2. Concretely, we fix N0 = 2 and N1 = 2, and change N2 from 1 to 20. The packet

size is set to 500B. For all the nodes, the packet arrival rate is 1Mbps, which matches the

standard bit rate of YouTube 360p videos2. Each run of simulations lasts for a duration

of 50 seconds, i.e., T = 50. All the queues are empty at the beginning of this 50-second

duration. We use a transmission date rate of 24Mbps as an example.

We validate our packet level model with the goodput and the MAC access delay in

Figure 4.17(a) and (b), respectively. We also validate our queue level models with queueing

delay in Figure 4.17(c). Generally, it is shown that both packet level and queue level metrics

are well captured by our two-level models. Therefore, we conclude that the performance of

DRIVING is accurately captured by our cross-layer modelling.

One interesting observation is that, the average MAC access delay of all nodes experi-

ences a sudden jump at the point of N2 = 5. The reason is explained as follows. When

N2 ≤ 4, the probability ρk that a node has at least one packet to transmit is less than 1.

This means the channel is sometimes idle. Video packets are transmitted quickly without

queueing in the nodes. Yet, this situation suddenly disappears when N2 = 5, where ρk

increases to its upper limit 1. In this case, there is always at least one packet in the queue

of each node in priority level 2. All the nodes in priority level 2 are constantly contending

for the channel. As a result, the channel becomes very busy, and the MAC access delay (as

2YouTube Advanced Encoding Settings. [Online]. Available: https://support.google.com/youtube/
answer/1722171?hl=en

https://support.google.com/youtube/answer/1722171?hl=en
https://support.google.com/youtube/answer/1722171?hl=en
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(b) Average MAC access delay.
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(c) Average queueing delay.

Figure 4.17 The model validation results.

well as the queueing delay) of every node soars high. This again complies with our packet

level model.
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Table 4.5 Candidate delay sets for DRIVING.

Setting β2 β1 β0

1 [0, 1) [1, 2) [2,+∞)

2 [0, 1) [1, 4) [4,+∞)

3 [0, 2) [2, 4) [4,+∞)

4 [0, 2) [2, 10) [10,+∞)

5 [0, 4) [4, 10) [10,+∞)

4.7 Tuning DRIVING with the Models

One important application of our analytical models is to tune the DRIVING for better

performance before real deployment. There are three kinds of parameters to be tuned,

i.e., the number of priority levels, their corresponding delay sets, and their corresponding

minimum CW sizes. Due to the limited space, we only present the tuning of the delay

sets while fixing the number of priority levels and the corresponding minimum CW sizes.

Concretely, we use 3 priority levels, and set their minimum CW sizes as 3, 7, and 15,

respectively. We compare five candidate delay sets as presented in Table 4.5, and select the

best one from them.

Based on our two-level models, we calculate the evolution of queueing delays under

these five settings. As an example, we set set packet size as 500B, and the packet arrival

rate as 1Mbps. Fig. 4.18 illustrate how the queueing delays increase with time. It is shown

that Setting 3, which is neither the most aggressive nor the most conservative, achieves

the lowest queueing delay at all time. The reason is two-fold. On one hand, an aggressive

setting tends to push all nodes to the highest priority level quickly. As a result, the CW sizes

of all nodes become too small to avoid packet collisions. On the other hand, a conservative

setting tends to retain all nodes in at the lowest priority level. Consequently, the CW sizes

of all nodes remain too large, and thus the channel utilization remains low.

4.8 Evaluation of DRIVING

In this section, we conduct comprehensive simulation studies to illustrate the improvements

brought by DRIVING. We first present the setup of our ns-2 evaluation platform. We then

evaluate the performance of DRIVING in terms of delay, jitter, deadline missing ratio and
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Figure 4.18 The queueing delays under different settings of DRIVING.

Table 4.6 Settings for the highway scenario.

Description Value

Highway length 3000m

Highway width 20m

# of lanes 4

Lane width 4m

Isolation zone width 4m

Positions of vehicles Poisson

# of vehicles(n) n ∈ [8, 80]

Distances between AP and target users [0.1m, 0.5m]

goodput.

4.8.1 Evaluation Setup

The Highway Scenario

We conduct our simulations in an urban bidirectional highway section. This highway

section is of 3000m long. It has 2 lanes in each direction and an isolation zone in the

middle. We assume that the distance between two neighbour vehicles on the same lane

follows an exponential distribution [34, 120]. We further assume that the whole highway

section is covered by a cellular network. Table 4.6 summarizes the settings for the highway

scenario. We change the density of vehicles in this highway section to study how the video

streaming performance is impacted by traffic condition.
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Table 4.7 Settings for in-cabin Wi-Fi device.

Description Value

Center frequency 2.4GHz

Bandwidth 20MHz

Transmission power 10dBm

# of in-cabin Wi-Fi APs on each vehicle 1

# of clients served by each AP 1

Buffer size of each AP 16MB

Packet size 500 bytes

In-cabin Wi-Fi Settings

Each vehicle on the highway is equipped with an in-cabin Wi-Fi AP, which runs on the

2.4GHz band. We assume that all APs are working in the same 20MHz Wi-Fi channel.

The transmission power of the APs is set to 10dBm, as Observation 7 and Observation 8

(in Section 4.3.5) already demonstrated that 10dBm provides the best and the most robust

performance in general. Each in-cabin Wi-Fi AP has a 16MB buffer for video streaming.

We focus on the case where each Wi-Fi AP serves one client. Table 4.7 summarizes these

settings.

Propagation Model

Details of this model has already been described in Section 4.3.2. The parameters used in

evaluation is given in Table 4.4.

Video Streaming Settings

The video bit-rate in our simulations is 3.3Mbps (High-Definition video streaming). Each

video packet carries 500 bytes of video data. Multiple packets are grouped into one large

video chunk [121], which represents around 10 seconds of video. Video chunks arrive at

in-cabin Wi-Fi APs periodically [78].
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Table 4.8 Settings for the propagation model.

Description Value

Packet size 500B

Chunk size 4MB

Video bit-rate 3.3Mbps

Chunk arrival process Periodic ON/OFF [78]

Video length in a chunk 10s

Scheduling Algorithms

We focus on distributed algorithms, as centralized algorithms are impractical in the in-cabin

Wi-Fi scenarios. We compare the following three distributed algorithms.

1. The DRIVING algorithm supports 3 levels of priorities (in consistence with the

industrial practice, e.g., 802.11 EDCA.). The minimum CW sizes of transmissions

in priorities 0, 1 and 2 are W0,0 = 3, W0,1 = 7 and W0,2 = 15, respectively. The

DRIVING algorithm assigns the highest priority (i.e., priority 0) to the head-of-line

packets whose queueing delays are larger than 4 seconds (i.e., 40% of the playtime

of a video chunk). The DRIVING algorithm assigns priority 1 to the head-of-line

packets whose queueing delays are between 2 seconds and 4 seconds (i.e., 20 − 40%

of the playtime of a video chunk). For the rest of the head-of-line packets, DRIVING

algorithm assigns the lowest priority (i.e., priority 2).

2. The Q-based algorithm is an extension from the queue-length based CSMA algo-

rithms in [75–77]. To compare with the DRIVING algorithms, we update existing

queue-length based CSMA algorithms into the Q-based algorithm as follows. The

Q-based algorithm also supports 3 levels of priorities. The minimum CW sizes of

transmissions in priorities 0, 1 and 2 are W0,0 = 3, W0,1 = 7 and W0,2 = 15, respec-

tively. If the length of a queue is larger than 6.4MB (i.e., 40% of the AP’s buffer size),

the Q-based algorithm assigns the highest priority (i.e., priority 0) to the head-of-line

packet in this queue. If the length of a queue is between 3.2MB and 6.4MB (i.e.,

20 − 40% of the AP’s buffer size), the Q-based algorithm assigns priority 1 to the

head-of-line packet in this queue. Otherwise, the head-of-line packet is with priority

2.
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(d) Data rate: 48Mbps

Figure 4.19 The average queueing delays.

3. The default algorithm follows the default settings of Wi-Fi Multimedia (WMM).

WMM prioritizes traffic according to four Access Categories (AC): voice, video, best

effort, and background. However, it does not further specify priorities for different

video packets. We consider this algorithm as the baseline.

4.8.2 The Queueing Delay and Jitter Performance

We next evaluate the performance of in-cabin Wi-Fi video streaming in terms of the average

queueing delay and jitter.

Figure 4.19 compares the average queueing delays of the three algorithms. Compared to

the default algorithm, the DRIVING algorithm reduces the average queueing delay by up

to 18.6%, 19.8%, 49.3% and 20.8% (for transmission data rates of 6Mbps, 12Mbps, 24Mbps
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and 48Mbps), respectively. Furthermore, even with the highest traffic density, DRIVING

still results in the lowest queueing delay. This demonstrates that DRIVING is robust to

the changes of traffic and AP topology.

Another observation from Figure 4.19(c) is worth noticing. The Q-based algorithm

yields the largest average queueing delay when the number of vehicles is larger than 40.

This indicates that the Q-based algorithm is not suitable for delay sensitive services such

as video streaming. The reason is as follows. When the scheduling decision is made based

on the queue length, the packets in a large queue always has a higher priority than those

in a small queue. Let’s consider the following example. Upon the arrival of a new video

chunk to an AP Z1, the queue length of this AP suddenly rises up. Meanwhile, there is

another AP Z2, who has only one largely delayed packet p. By the Q-based algorithm,

packet p in AP Z2 has a lower priority than that of the newly arrived packets in AP Z1.

Therefore, the largely delayed packet p has to wait for almost all the newly arrived packets

in AP Z1, leading to a significant increased delay for packet p. This problem would happen

frequently, if the Q-based algorithm is used to schedule periodic ON/OFF Internet traffics,

such as those of video streaming. On the contrary, the DRIVING algorithm avoids this

problem by assigning higher priorities to packets with larger delays, and thus outperforms

the other two algorithms.

Figure 4.20 compares the three algorithms in terms of the delay jitter. A smaller jitter

of the queueing delay indicates a smoother video streaming, thus a better video viewing

experience. Compared to the second best algorithm, the DRIVING algorithm reduces the

jitter by up to 15.6%, 24.1%, 38.4% and 22.4% (for the transmission data rates of 6Mbps,

12Mbps, 24Mbps and 48Mbps), respectively. Therefore, the DRIVING algorithm provides

the most robust video streaming service.

It is also interesting to notice that, in terms of percentage, the increment of jitter with

the 24Mbps data rate is much larger than that with the 6Mbps data rate. The reason

is as follows. The data rate of 24Mbps employs the 16QAM modulation, which is much

more vulnerable to the channel degeneration than the BPSK modulation utilized by 6Mbps

data rate. Therefore, the jitter with the 24Mbps data rate is sensitive to the channel de-

generation brought by the congested traffic. Compared to the other two algorithms, the

DRIVING algorithm has the smallest degradation in jitter. This suggests that the DRIV-

ING algorithm scales with the traffic density much better than the other two algorithms.
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Figure 4.20 The delay jitters.
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4.8.3 The Deadline Missing Ratio Performance

In this section, we evaluate the performance of in-cabin Wi-Fi video streaming in terms of

the deadline missing ratio.

Figure 4.21 compares the average deadline missing ratios of the three algorithms. It is

illustrated that the deadline missing ratios increase with traffic density. With the support

of the DRIVING algorithm, the deadline missing ratio of in-cabin Wi-Fi video streaming

is largely reduced. Compared to the default algorithm, the DRIVING algorithm reduces

the deadline missing ratio by up to 33.5%, 32.9%, 40.8 and 38.9% (for transmission data

rates of 6Mbps, 12Mbps, 24Mbps and 48Mbps), respectively. By using the queueing delay

as the criterion of scheduling, the DRIVING algorithm is able to assign smaller CW sizes

to packets that are approaching their deadlines. On average, these deadline-approaching

packets are transmitted faster than others. In this way, the DRIVING algorithm reduces the

deadline missing ratio. The Q-based algorithm cannot guarantee to schedule the deadline-

approaching packets before other packets, and thus result in a higher deadline missing ratio.

Figure 4.21 also illustrates that DRIVING always achieves the lowest deadline missing

ratios in all traffic conditions. This again confirms that DRIVING is capable of working

consistently with a varying density of vehicles and a changing topology of APs.

4.8.4 The Goodput Performance

In this section, we evaluate the performance of in-cabin Wi-Fi video streaming in terms of

the goodput.

Figure 4.22 compares the average goodputs of the three algorithms. It is shown that

the DRIVING algorithm achieves the highest average goodput. Compared to the default

algorithm, the DRIVING algorithm enlarges the average goodput by up to 41.3%, 32.8%,

24.3% and 8.8% (for the transmission data rates of 6Mbps, 12Mbps, 24Mbps and 48Mbps),

respectively. More importantly, the gap between DRIVING’s average goodput and those

of the other two algorithms increases with traffic density. Take the data rate of 24Mbps

for example: DRIVING increases the goodput by 7.1% when there are 8 vehicles. The

improvement increases to 24.3% when there are 80 vehicles. This suggests that, compared

to the other two algorithms, the DRIVING algorithm is more sustainable in a high-density

traffic condition. The goodput performance improvement brought by the DRIVING algo-

rithm is explained as follows. Compared to the default algorithm, the DRIVING algorithm
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Figure 4.21 The average deadline missing ratios.
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Figure 4.22 The average goodputs of four different data rates.
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employs 3 levels of priorities. This increases the efficiency in resolving collisions. Compared

to the Q-based algorithm, the DRIVING algorithm assigns priorities according to queueing

delays. This policy allows the DRIVING algorithm to utilize the periodic pattern of video

traffic to reduce collisions.

Another interesting observation from Figure 4.22 is that the goodput improvement

brought by the DRIVING algorithm decreases with the increasing transmission data rates.

For example, the maximum goodput improvement (compared to the default algorithm)

decreases from 41.3% for 6Mbps to 8.8% for 48Mbps. The reason is that, when the trans-

mission data rate is higher, the queueing delays of packets become smaller. In this case,

the highest priority in the DRIVING algorithm (as well as that in the Q-based algorithm)

are used less frequently. Therefore, advantage of the DRIVING algorithm in resolving col-

lisions (as well as that of the Q-based algorithm) begins to shrink. However, the DRIVING

algorithm still outperforms the other two algorithms. Moreover, due to the severe channel

condition in a vehicular scenario, high transmission data rates such as 48Mbps can hardly

be used. As a result, the goodput improvement brought by the DRIVING algorithm is still

considerable in most of the time. In addition to the average goodput, in Figure 4.23, we

also present the CDF of goodput when the number of vehicles is 80 (due to the space limi-

tation, we skip the results of other scenarios). It is confirmed in Figure 4.23 that DRIVING

enlarges the goodput of in-cabin Wi-Fi video streaming.

4.9 Concluding Remarks

In this chapter, we study the in-cabin Wi-Fi system, which are designed, developed and

implemented to deliver enriched IVI services. We first develop cross-layer analytical mod-

els to describe this newly deployed system. Unlike existing models, our models are able to

capture the unique features of the in-cabin Wi-Fi enabled vehicles and the vehicular envi-

ronments. Simulations illustrate that our models achieve much higher modelling accuracy

than the existing ones. We then further analyze the most dominating service, i.e., the video

streaming service, in the in-cabin Wi-Fi system. We investigate two major challenges of in-

cabin Wi-Fi video streaming - the delay/deadline awareness and the decentralized topology.

In order to address these two challenges and provide better QoS to video streaming users

in vehicles, we develop the DRIVING framework. DRIVING is able to schedule in-cabin

Wi-Fi video packets in a delay-aware and fully distributed manner. With extensive simu-
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Figure 4.23 The CDFs of goodputs with 80 vehicles.
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lations, we demonstrate that DRIVING significantly improves the performance of in-cabin

Wi-Fi video streaming, in terms of streaming goodput, delay, jitter, deadline missing ratio

and fairness.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

The connected vehicles are envisioned as the pioneers of a far-reaching revolution in our

society, fundamentally changing the way people travel and live. Safety, being the biggest

concern of modern transportation systems, will be significantly enhanced by reliable com-

munications between vehicles, as well as stable communications between vehicles and traf-

fic infrastructure. Traffic information will be shared among all vehicles and infrastructure

units, and will enable safety critical applications such as collision avoidance and blind spot

assist. The DSRC technology is the key technology of these safety critical applications,

connecting all parities of traffic in a reliable, efficient and fair manner.

In-vehicle infotainment, which makes the travel easier for everyone, becomes another

important consideration of automotive manufacturers. An always-connected Internet ex-

perience will change the vehicles into portable offices and homes. To fulfill this, the newly

deployed in-cabin Wi-Fi system adopts a built-in Wi-Fi hotspot to bridge the communi-

cation between the Internet and devices onboard, powering all Wi-Fi devices in a vehicle

cabin.

The DSRC and the in-cabin Wi-Fi technologies are not only complementary to but

also beneficial to each other. As the driving safety is enhanced by DSRC, passengers are

more reassure to enjoy the onboard infotainment services. In return, as the vehicular info-

tainment becomes popular, more and more vehicles will become connected for infotainment

services. With more connected vehicles sharing their safety-related information, the driving

safety will be improved.
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However, to fill the gap between the future and the present, we still need to enhance

the performance of DSRC and improve the QoS of in-cabin Wi-Fi. This is non-trivial,

especially in the highly violative and distributed vehicular environments. In this thesis, we

identify and address several major challenges in this mission.

To enhance the performance of DSRC in a dynamic network, communication variable

adaptation is required. We first tackle the strong coupling between communication vari-

ables, which has been overlooked by the state of the art. We propose to embrace the strong

coupling with synchronous variable control, so as to avoid the potentially large errors in

sequential variable adjustment process. The proposed OnCAR approach jointly adjust mul-

tiple variables of a connected vehicle at the same time. We then go further from the vehicle

level to the network level, and study the communication coordination between vehicles.

To avoid the huge overhead introduced by coordination messages, we develop a series of

strictly distributed coordination schemes - DisCo. Based on advanced control techniques,

DisCo is able to coordinate communication variables between vehicles with zero exchange

of coordination information.

To improve the QoS of the in-cabin Wi-Fi systems, we first extensive investigate its

features and differences from existing wireless communication systems. To capture these

features and differences, we develop analytical models to show how an in-cabin Wi-Fi system

performs under different traffic and communication conditions. We then try to improve the

QoS of in-cabin Wi-Fi by looking at the dominating mobile service, i.e., the video streaming.

Two major requirements of in-cabin Wi-Fi video streaming, i.e., the fully distributed nature

and the delay sensitivity, are identified. Targeting at these two requirements, we propose

the DRIVING framework that greatly boosts the QoS of in-cabin Wi-Fi video streaming.

5.2 Future Work

5.2.1 Interaction between Cellular and Wi-Fi Links

In the discussion of the in-cabin Wi-Fi systems, we mainly focus on bottleneck, i.e., the

low-cost but low-speed Wi-Fi links, and leave the high-cost but high-speed cellular links

untouched. Considering the relatively high cost of cellular data, it is desired to analyze the

impact of the bottleneck to the whole system, in terms of overall bandwidth efficiency and

cost effectiveness. A joint scheduling framework embracing both kinds of links is expected
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to provide much better overall QoS.

5.2.2 Enabling 3D GPS with FM signals

Localization is another critical service for connected vehicles. Location information is the

most basic and vital information for vehicle safety applications and beyond. Existing

localization technologies, such as GPS, is unable to provide 3D information of vehicles.

Yet, the 3D information is of critical importance for applications such as navigation at

overpasses and collision avoidance around underground parking lots and inside tunnels.

One candidate solution is to adopt FM signal fingerprints at places where 3D information

is needed or where the GPS signals are unavailable. As each vehicle has a FM radio, this

solution can be easily adopted. However, a major challenge lies in the varying Doppler

shifts caused by the changing speed and directions of vehicles.
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Appendix A

Acronyms, Abbreviations and

Samples

For the convenience of the readers, we summarize the acronyms, abbreviations and math-

ematical samples used in this thesis.

A.1 Acronyms and Abbreviations

Table A.1: Acronyms and Abbreviations.

Acronym/Abbv. Term

3G the Third Generation

4G the Fourth Generation

AC Access Category

ACK Acknowledgement

ACO Average Channel Occupancy

AMC Adaptive Modulation and Coding

AP Access Point

BS Base Station

bps bits per second

BPSK Binary Phase-Shift Keying

CBR Constant Bit Rate
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CCH Control Channel

CDF Cumulative Distribution Function

CSMA Carrier Sense Multiple Access

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

CV Coefficient of Variation

CW Contention Window

DCF Distributed Coordination Function

DIFS DCF Interframe Space

DisCO Distributed Coordination

DisCO-AT Distributed Coordination with Adaptive Target

DisCO-FT Distributed Coordination with Fixed Target

DRA Data Rate Adaptation

DRIVING Delay-aware Distributed Video scheduling

DSRC Dedicated Short-Range Communications

DTMC Discrete-Time Markov Chain

EDCA Enhanced Distributed Channel Access

EDF Earliest Deadline First

ePDR effective Packet Delivery Ratio

eTPUT effective Throughput

Gbps Gigabits Per Second

GHz Gigahertz

GPS Global Positioning System

HD High-Definition

Hz Hertz

IEEE Institute of Electrical and Electronics Engineers

i.i.d. independent and identically distributed

IP Internet Protocol

ITS Intelligent Transportation Systems

IVI In-Vehicle Infotainment

JPRA Joint Power and Rate Adaptation

LOS Light-of-Sight
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LTE Long-Term Evolution

MAC Media Access Control

MANET Mobile Ad hoc Network

Mbps Megabits per second

MHz Megahertz

MIMO Multiple-Input Multiple-Output

WLAN Wireless Local Area Network

NLOS Non-Light-of-Sight

ns-2 network simulator 2

NUM Network Utility Maximization

OBU On-Board Unit

OFDM Orthogonal Frequency-Division Multiplexing

OFDMA Orthogonal Frequency-Division Multiple Access

OnCAR Online Control Approach of Power and Rate

PDR Packet Delivery Ratio

PLR Packet Loss Ratio

PHY Physical

QAM Quadrature Amplitude Modulation

QoS Quality of Service

QPSK Quadrature Phase-Shift Keying

RLS Recursive Least Squares

RSU Road Side Unit

RTS/CTS Request to Send / Clear to Send

SCH Service Channel

SIFS Short Interframe Space

SINR signal-to-Interference-plus-Noise Ratio

SNR Signal-to-Noise Ratio

TCP Transmission Control Protocol

TDMA Time Division Multiple Access

TPA Transmission Power Adaptation

UDP User Datagram Protocol
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U.S. DOT United States Department of Transportation

USRP Universal Software Radio Peripheral

V2V Vehicle-to-Vehicle

V2I Vehicle-to-Infrastructure

V2X Vehicle-to-Everything

VANET Vehicular Ad hoc Network

WAVE Wireless Access in Vehicular Environments

WMM Wi-Fi Multimedia

WSN Wireless Sensor Network

A.2 Mathematical Samples

Table A.2: Mathematical Samples.

Sample Description

A = {ai} The parameters of a difference equation model

Ami The stable matrix in a reference control model

B = {bi} The parameters of a difference equation model

b(t) A backoff timer

C The cabin path loss constant

D̄ The expectation of queueing delays

d(i, j) The distance between nodes i and j

d0 The reference distance of a path loss function

dc The equivalent distance of a path loss function

deff The effective range

Dhead The queueing delay of the head-of-the-line packet

D(p) The queueing delay of packet p

dref The reference range

e A sequence of i.i.d. random vectors with zero means

ē(t) The stationary distribution of a state t in a Markov chain

Es The expected length of a time slot

F The function describing the MIMO model in OnCAR
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G = {gi} The parameters of an RLS model

H = {hi} The parameters of an RLS model

J The delay jitter

J A cost function

k∗i A constant in a reference control model

ki The estimation of k∗i

k̃i The estimation error of k∗i

L(d) A path loss function with respect to distance d

l(i, j) The interconnection parameter between nodes i and j

l̂(i, j) The estimation of l(i, j)

l̃(i, j) The estimation error of l(i, j)

m The maximum number of retransmission attempts

n The order of a regression model

N The total number of vehicles

Nc The total number of in-cabin Wi-Fi clients

Nd The number of packets that miss their deadlines

Nk The number of nodes with priority k

Nt(i) The number of packets transmitted by node i

NT The number of packets that are transmitted from time 0 to time T

Nr(i) The number of packets received by node i

Nr(i, j) The number of packets transmitted by node j and successfully received

by node i

P(k) An auxiliary vector

P1 The probability that the channel is busy and the head-of-line packet does

not reach its re-transmission limit

P2 The probability that the channel is idle

P3 the probability that the head-of-line packet is successfully transmitted or

dropped

Pa The probability to leave the idle state

Pb The probability that the channel is busy

Pi A symmetric positive-definite matrix
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Preal The real transmission power

Ps The probability of a successful transmission

Ptr The probability that at least one node is transmitting

Pv The probability that a transmission attempt fails

Pvir The virtual transmission power

Q A weighting matrix

R The control outputs

R∗ The control reference

Ravg The average goodput

Rreg The regional goodput

S The control inputs

Savg The average throughput

Sreg The regional throughput

s(t) A backoff stage

tarr The time that a packet arrives at an in-cabin Wi-Fi AP

tcur The current time

tend The time that a packet is received by an in-cabin Wi-Fi client or is

dropped by an AP

TACK The time spent by an ACK packet transmission

Tc The time spent by a failed transmission

Tp The propagation time of the data section in a data packet

Ts The round-trip time of a successful transmission

U The system inputs

Up The predicted system inputs

up1 The predicted selection of transmission power in OnCAR

U1 Available power levels

up2 The predicted selection of data rate in OnCAR

U2 Available data rates

{ui} The transmission power of node i in DisCo

V A Lyapunov function

W A weighting matrix
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Wi,k The contention window size at backoff stage i for a node with priority k

X The environment parameters of DSRC systems

{xi} The ePDR of node i in DisCo

ẋi The derivative of xi

xmi The target ePDR of node i

x̂mi The estimation of the target ePDR

Y The system outputs

Yp The predicted system outputs

βi The delay set for nodes with priority i

γi A gain factor

Γ The packet length of DSRC safety messages

∆U The system input adjustments

∆Y The residual errors in system outputs

ε An arbitrarily small positive number

ε The error vector of an RLS model

ζ A scaling factor

θ The parameters of an RLS model

θ̂ The estimated parameters of an RLS model

µ1, µ2 The parameters of a path loss function

ξi The deadline missing ratio of node i

πj,k The stationary distribution of a state {j, k} in a Markov chain

ρ The probability that the queue of a node is not empty

φ A combined vector of control inputs and outputs as an RLS friendly

presentation

Ω
(i)
eff The neighbors within the effective range of vehicle i

]
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Appendix B

Publications

Published or Accepted

1. Xi Chen, Chen Ma, Michel Allegue and Xue Liu, ”Taming the Inconsistency of Wi-

Fi Fingerprints for Device-Free Passive Indoor Localization”, the 36th Annual IEEE

International Conference on Computer Communications (INFOCOM 2017)(accepted

for publication, to appear).

2. Xi Chen, Lei Rao, Qiao Xiang, Xue Liu, and Fan Bai, ”DRIVING: Delay-Aware

Distributed Video Scheduling Framework for In-Cabin Wi-Fi Systems”, in Proceed-

ings of the 2016 ACM on Multimedia Conference (ACM MM 2016), pp. 858-867,

Amsterdam, Netherlands, 2016.

3. Xi Chen, Linghe Kong, Xue Liu, Lei Rao, Fan Bai and Qiao Xiang, ”How Cars

Talk Louder, Clearer and Fairer: Optimizing the Communication Performance of

Connected Vehicles via Online Synchronous Control”, in Proceedings of the 35th

Annual IEEE International Conference on Computer Communications (INFOCOM

2016), pp. 1-9, San Francisco, CA, U.S.A., 2016.

4. Xue Liu, Xi Chen and Fanxin Kong, ”Utilization Control and Optimization of Real-

Time Embedded Systems”, Foundations and Trends R© in Electronic Design Automa-

tion: Vol. 9: No. 3, pp 211-307, 2015.

5. Xi Chen, Lei Rao, Yuan Yao, Xue Liu and Fan Bai, ”The Answer is Rolling on

Wheels: Modeling and Performance Evaluation of In-cabin Wi-Fi Communications”,
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in Elsevier Journal of Vehicular Communications, vol. 2, no. 1, pp. 13-26, 2015.

6. Landu Jiang, Xi Chen, and Wenbo He, ”SafeCam: Analyzing Intersection-Related

Driver Behaviors using Multi-Sensor Smartphones”, in Proc. of the 14th IEEE Inter-

national Conference on Pervasive Computing and Communications (PerCom 2016),

Sydney, Australia, 2016.

7. Qiao Xiang, Xi Chen, Linghe Kong, Lei Rao and Xue Liu, “Data Preference Matters:

A New Perspective of Safety Data Dissemination in Vehicular Ad Hoc Networks”, in

Proc. of the 34th Annual IEEE International Conference on Computer Communica-

tions (INFOCOM 2015) , pp. 1149 - 1157, Hong Kong, China, 2015.

8. Linghe Kong, Xi Chen, Xue Liu and Lei Rao, “FINE: Frequency-divided Instan-

taneous Neighbors Estimation System in Vehicular Networks”, in Proc. of the 13rd

IEEE International Conference on Pervasive Computing and Communications (Per-

Com 2015) , pp. 172 - 177, St. Louis, Missouri, USA, 2015.

9. Kai Xiong, Xi Chen, Lei Rao, Xue Liu and Yuan Yao, “Solving the Performance

Puzzle of DSRC Multi-Channel Operations”, in Proc. of IEEE International Confer-

ence on Communications 2015 (ICC 2015), London, UK, 2015.

10. Xi Chen, Lei Rao, Xue Liu, Hongxing Li and Xinbing Wang, “Right Time in Right

Place: Taming Workload Balancing Oscillations in Internet Data Center Cost Man-

agement”, in Proc. of the 5th IEEE International Green Computing Conference

(IGCC 2014), Dallas, TX, 2014.

11. Zhonghao Sun, Fanxin Kong, Xue Liu, Xingshe Zhou and Xi Chen, ”Intelligent Joint

Spatio-temporal Management of Electric Vehicle Charging and Data Center Power

Consumption”, in Proc. of the 5th IEEE International Green Computing Conference

(IGCC 2014), Dallas, TX, 2014.

Under Submission

1. Xi Chen, Linghe Kong and Xue Liu, ”DisCo: Enabling Strictly Distributed Co-

ordination of Transmission Power among Connected Vehicles”, under submission to
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the 18th International Symposium on Mobile Ad Hoc Networking and Computing

(Mobihoc 2017).

2. Xi Chen, Qiao Xiang, Linghe Kong and Xue Liu, ”RadioLoc: Enabling All-Terrain

Vehicle Localization with FM Radio Signals”, under submission to the 15th ACM

International Conference on Mobile Systems, Applications, and Services (Mobisys

2017).
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