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Abstract 

Big data promises numerous benefits for Land Use/Cover Change (LUCC) research, in terms of 

increased volume, velocity, and variety of remotely sensed imagery datasets. However, it 

challenges traditional approaches to identifying LUCC. The increased volume (file size) and 

velocity (speed) of big data mean that existing data handling frameworks may not be able to 

effectively distribute spatial data and computation across a large number of computers. Previous 

LUCC workflows are not designed for big data and they cannot be easily deployed on big data 

computing tools such as cloud computing or the Hadoop framework. High levels of scale 

heterogeneity mean that images can cover different spatial and temporal granularities and 

extents. Theoretically, it becomes difficult to handle the data because these multiple and 

conflicting scales exist contemporaneously. Because we are working with big data, geographic 

entities may be recorded at different granularities and extents than should be detected as LUCC, 

but cannot be. Finally, no one has yet combined each of these distinct problems to fully examine 

all of the big data challenges facing LUCC.  

I present six advances to address each of the big data challenge in LUCC: (1) a theoretical 

concept called Scope, (2) a spatially sensitive decomposition/recomposition method, (3) a scale 

invariant change detection method, (4) a spatial-temporal model for LUCC big data, (5) a change 

boundary optimization algorithm, and (6) a LUCC-specific Geospatial CyberInfrastructure. In 

this manuscript, I first propose Scope as a concept to model spatial-temporal scales by explicitly 

merging granularity, extent, time, and property. Second, I develop a new 

decomposition/recomposition framework to manage data decomposition, distribution, and 

recombination in a distributed computing environment. Third, a scale invariant change detection 

method identifies LUCC by combining regional and point features from datasets at multiple 

spatial granularities and extents. Fourth, I theorize a spatial-temporal object model to improve 

the integration of space and time within LUCC research. The spatial-temporal object model and, 

the fifth advance, a change boundary optimization algorithm handle data noise and better 

organize the spatial-temporal object changes. Finally, a Geospatial CyberInfrastructure combines 

these separate approaches with cloud computing and distributed computing frameworks as a 

holistic approach for the big data challenge in LUCC research. These six advances are tested in a 

series of case studies using datasets collected from 2005-2012, at the Greater Montreal Area. 
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Abrégé 

Les mégadonnées promettent de nombreux avantages pour la recherche sur les Changements dès 

l'Utilisation/Couverture des Terres (CUCT), en termes d'augmentation du volume, de la rapidité 

et de la variété des images de télédétection. Cependant, il conteste les approches traditionnelles 

pour identifier des CUCT. Le volume accru (taille du fichier) et la rapidité (vitesse) des 

mégadonnées signifient que les cadres de gestion des données existants ne peuvent pas distribuer 

efficacement des données spatiales et des computations sur un grand nombre d'ordinateurs. Les 

flux de travail des CUCT précédents ne sont pas conçus pour des mégadonnées et ne peuvent pas 

être facilement déployés sur des outils mégadonnées tels que le cloud computing et le cadre 

Hadoop. Les niveaux élevés d'hétérogénéité des échelles signifient que les images peuvent 

couvrir granularités et étendues différentes, spatiales et temporelles. Théoriquement, il devient 

difficile de s'occuper les données à cause de significations d'échelle multiples et conflictuelles. 

Parce que nous travaillons avec les mégadonnées, les entités géographiques peuvent être 

enregistrés à granularités et extensions différentes qui devraient être détectées comme des CUCT 

mais ne peuvent pas être. Enfin, ces problèmes n'ont pas été explorés ensemble pour les défis des 

mégadonnées dans les CUCT. 

Je présente six avancées pour répondre aux défis des mégadonnées dans les CUCT: (1) un 

concept théorique s’appelé Scope, (2) une méthode de décomposition / recomposition 

spatialement sensible, (3) une méthode de détection de changement invariant à l'échelle, (4) un 

modèle spatio-temporel pour les mégadonnées dans les CUCT, (5) un algorithme d'optimisation 

des limites de changement, et (6) une geospatial cyberinfrastructure spécifique aux CUCT. Dans 

ce manuscrit, je propose d'abord le Scope comme un conception pour modéliser les échelles 

spatio-temporelles en fusionnant explicitement la granularité, l'étendue, le temps et la propriété. 

Deuxièmement, je développe un nouveau cadre de décomposition / recomposition pour gérer la 

décomposition, la distribution, et la recombinaison des données dans un environnement 

computation distribué. Troisièmement, une méthode de détection de changement invariable à 

l'échelle identifie CUCT en combinant les caractéristiques régionales et ponctuelles ensembles 

des données à plusieurs granularités et étendues spatiales. Quatrièmement, je théorise un modèle 

d'objet spatio-temporel pour améliorer l'intégration de l'espace et du temps dans la recherche des 

CUCT. Le modèle d'objet spatio-temporel, et la cinquième avancée, un algorithme d'optimisation 

des limites de changement gèrent le bruit des données et organisent mieux les changements de 
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l'objet spatial-temporel. Enfin, une geospatial cyberinfrastructure combine ces approches 

distinctes avec le cloud computing et les cadres computations distribués comme une approche 

holistique pour le défi des mégadonnées dans la recherche des CUCT. Ces six avancées sont 

testées dans une série d'études de cas en utilisant des données collectées depuis 2005 à 2012, 

dans la région plus grande de Montréal. 
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Chapter 1. Introduction 

The rapid development of Remote Sensing (RS) platforms and Geographic Information Systems 

(GIS) has produced data at an unprecedented speed. This increased availability of data has 

benefited Geographic Information Science (GIScience) research and brought details and more 

coverage to sub-discipline of Land Use/Cover Change (LUCC). Disadvantages exist as well, 

including the growing heterogeneous scales, miscellaneous spectral bands, diverse data formats, 

and complex analysis methods. In the past, LUCC researchers could assume that the underlying 

levels of computation were adequate. No longer. The big data challenge has exceeded traditional 

methods of analysis, and RS-based LUCC begins to rely on analytics distributed across varying 

computing platforms. Advances in computation have given researchers the opportunity to 

address spatial-temporal scale heterogeneity with varying levels of computation support (Wang, 

2010). In this dissertation, I investigate RS-based LUCC analysis with big data that 

accommodates heterogeneous spatial-temporal scale analysis. 

RS-based LUCC is the process of detecting differences in geographic entities or 

phenomena at the same location across different time periods using RS imagery datasets. For 

more than 50 years, the analysis of multi-temporal RS datasets to better understand LUCC has 

been an active research field in both GIS and RS (Singh, 1989). RS-based LUCC research aims 

to address three questions: (1) Is there any actual LUCC (i.e., not caused by the noisy 

information) when comparing two or more temporally distanced datasets?; (2) What are these 

changes quantitatively?; and (3) What are the change rates and trajectories of  the LUCC?. The 

advent of earth observation systems has also provided an opportunity to collect geographic 

information relevant to LUCC at different spatial, spectral and temporal scales (Longley, 2002). 

However, advances in sensing platforms have resulted in an unprecedented big data challenge 
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(Miller and Goodchild, 2015) because of the huge volume and increased velocity of various 

multi-temporal data sources. Much of this data also contains noisy information.  

Big data provides opportunities for RS-based LUCC research while also complicating 

many investigations. Big data is characterized as the “4Vs”: volume, variety, velocity, and 

veracity (Laney, 2001). Each characteristic creates domain-specific challenges in RS-based 

LUCC research. The large volumes of big data have provided finer spatial resolutions for 

detailed change identification over larger areas and longer time spans. This high level of variety 

means that change information can be extracted in different file formats (e.g., GIS shape files, 

hyperspectral RS datasets, aerial photos, and text records), and at different scales (i.e., spatial, 

spectral, and temporal granularities and extents). Increased velocity (i.e., the speed at which data 

is produced) can also provide shorter data collection intervals that will result in more data and, 

potentially, more varied temporal scales of LUCC. For example, a wild fire can burn down a 

forest in several hours but the revitalization of the forest will likely take decades (Huettl, 1988). 

RS-based LUCC studies require shorter intervals for the moment of a wild fire (at minutes or 

seconds intervals) and longer time spans to capture forest (instead of such fine temporal 

resolutions). Veracity is another important factor for RS-based LUCC detection because there 

must be ways to “ground-truth” the results generated by the sheer volume, variety, and velocity 

of data. However, the ability to ground-truth LUCC detection results often would be hampered 

by the volume and variety of data. Previous research developed numerous RS-based LUCC 

detection algorithms in an era of “scarce data.” Researchers believe these methods may now 

prove insufficient for big data (Miller and Goodchild, 2015). 

Big data also brings specific computational challenges to RS-based LUCC research. 

Because RS imagery now routinely exceeds the computational infrastructure of most desktop 
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computers, researchers must split up large RS datasets so they can be analyzed on a number of 

distributed computing nodes. This splitting requires consideration of parallel computing 

management, resource provisioning, and dataflow control over the distributed systems. Big data 

brings additional computational challenges because datasets are acquired at various scales; and 

detecting LUCC across heterogeneous datasets requires additional computation for spatial 

scaling operations (Yunfeng et al., 2013) or extracting scale invariant features for LUCC 

identification (Chiu et al., 2013). Finally, the workflow complicated by the addition of big data 

to RS-based LUCC will consume more computing resources for data Input/Output (I/O) and job 

scheduling. Consequently, the advent of big data has driven RS-based LUCC research to rely 

more on Geospatial CyberInfrastructure (GCI) for computation management (Wang et al., 2013).  

RS-based LUCC research in an era of big data also requires a re-examination of the 

concept of scale. The challenge results not only from a variety of complex meanings for scale but 

also RS-based LUCC requires a methodology for comparing imagery datasets with spatial-

temporal scale heterogeneity. One method is to transform the heterogeneous scale data into 

homogeneous scale via geospatial scaling operations. However, the spatial granularity and extent 

difference in scale heterogeneous datasets prevent researchers from directly applying pixel-based 

LUCC detection algorithms without introducing noise. Often such noise comes from the 

up/down-sampling and other scaling techniques that regularize granularity and extent. Another 

method is to look for image features that are spatial scale invariant. But the LUCC field still 

lacks an efficient approach to model this kind of scale invariance. In other words, a need exists to 

ensure that the spatial scale heterogeneity of LUCC data is not so big that it would invalidate the 

scale invariant image features. Finally, combining the spatial-temporal scale models in big data 

analysis with the computational scale (Frey et al., 2002) is also important to better handle 

computing resource provisioning and dataflow management.  
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In this dissertation, I address the scale challenges of big data in RS-based LUCC 

detection with a new scale model, a new dataflow management framework, a scale invariant 

LUCC detection algorithm, and a LUCC-GCI computing platform. To model scales within the 

complex context of big data analysis in LUCC, I propose the concept of Scope. I develop a 

decomposition/recomposition framework for data handling across the distributed systems. I also 

invent a scale invariant LUCC detection algorithm that compares spatial scale invariant image 

features to avoid the additional errors incurred by the geospatial scaling operations in RS-based 

LUCC detection. Finally, I employ GCI as the methodology to synthesize all these separate 

solutions with cloud computing platforms and parallel computing frameworks (e.g., Apache 

Hadoop and Storm) (Borthakur, 2007) for big data analysis in RS-based LUCC detection.  

The novel contributions of my dissertation are four-fold. First, I clarify various meanings 

of scale and propose the concept of Scope to model spatial-temporal scaling operations in 

LUCC. Second, I develop a dataflow management framework for big data handling that can be 

applied to GIS and RS big data analysis. Third, I create the scale invariant LUCC detection 

algorithm based on the Scale Invariant Feature Transformation (SIFT) (Lowe, 2004) and 

Maximally Stable Extremal Region (MSER) (Matas et al., 2004) to avoid the noisy information 

incurred by geospatial scaling operations in LUCC. Fourth, I integrate LUCC workflow and 

advanced computing techniques within a Geospatial CyberInfrastructure (GCI) as LUCC-GCI to 

address the big data challenge in LUCC. My dissertation combines the new scale modeling 

method, dataflow management framework, change detection algorithms, and advanced 

computation techniques to better handle scale in big RS-based LUCC research.   

The scientific findings of my dissertation are summarized as follows. First, I use sematic 

modelling to clarify and integrate complex theories in scale and scaling in GIScience and RS 
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research. The dataflow management does not only provide a general geospatial data handling 

approach, but also highlight the topological and geometric information which distinguish 

geospatial big data from an aggregation of small data. The success of the scale invariant LUCC 

detection algorithm proves that computer vision algorithms can be employed to address the scale 

heterogeneity challenge in RS image analysis, with a careful handling of spatial-temporal scales. 

Finally, LUCC-GCI illustrates the increasing integration of domain specific knowledge and high 

performance computing, shaping GCI as a subdomain of GIScience rather than a tool.  

The rest of this thesis is organized as follows. Chapter 2 reviews the recent research in 

RS-based LUCC with a focus on big data processing articles. In it, I highlight the spatial-

temporal scale challenge incurred by big data. Chapter 3 introduces the concept of Scope to 

combine spatial granularity, extent, time, and property for scale modelling in GIScience. Chapter 

4 focuses on dataflow handling of big data by proposing the decomposition/recomposition 

framework on top of a distributed computing system. Chapter 5 delineates a new scale invariant 

LUCC detection algorithm that relies on the comparison of scale invariant image features for RS-

based LUCC detection. Chapter 6 presents a LUCC-GCI to combine the spatial optimization 

algorithm, the decomposition/recomposition framework, and spatial-temporal geographic models 

with cloud computing and Apache Storm framework (Apache, 2017). The LUCC-GCI offers a 

holistic solution for big data analysis in LUCC. Finally, I conclude my dissertation with its 

implications and point out future research directions in Chapter 7.   
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Chapter 2. Literature Review and Scale Challenges in Land 

Use/Cover Change for Big Data Analysis 

Abstract 

In this chapter, I review the refereed literature on Remote Sensing (RS)-based Land Use/Cover 

Change (LUCC) research and summarize the new challenges brought by geospatial big data, 

especially those related to scale. This review first starts by defining RS-based LUCC before 

turning to an examination of the main data sources and detection methods used in the field. 

Second, I focus on spatial-temporal scale in big data for RS-based LUCC research and pay 

particular attention to the meaning of scale, the modelling of scale, and the role of heterogeneous 

scales in RS-based LUCC studies. I also examine the most recent big data processing articles that 

involve geospatial cyberinfrastructure because such tools have only recently been used in RS-

based LUCC research. Finally, I summarize my Ph.D. research questions in relation to the 

challenges created by using big data in LUCC research. These include the handling of spatial-

temporal scales, scale modelling challenges, big data workflow challenges, scale heterogeneous 

LUCC detection challenges, and big data computational challenges. Because big data exhibits 

various scale challenges as a whole, we cannot treat is as a simple aggregation of small data.  

2.1 LUCC Literature Review 

There has been a long history of using Remote Sensing (RS) imagery in Land Use/Cover Change 

(LUCC) research. Such work incorporated a broad range of Geographic Information Science 

(GIScience) and Remote Sensing (RS) topics. Previous to the use of such technologies, land 

cover change and land use change were considered separate research domains. Land cover 

change research investigated changes to the Earth’s surface including to forest (Lambin, Geist, 

and Lepers, 2003), water (Vörösmarty et al., 2000), soil (Lal, 2004), desert (Alpers and Brimhall, 

1988), and wetland (Erwin, 2009) systems. In contrast, research into land use change sought to 
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describe the transformations to landscapes caused by human activities such as agriculture (Yu 

and Lü, 2008), urbanization (Brenner, 1998), and the building of roads and public transportation 

(Waddell, 2002). Turner, Meyer, and Skole (1994) reported on a tight linkage between land 

cover change and land use change and, consequently, argued for their combination into the field 

of ‘LUCC’ or land use and cover changes. In this dissertation, I mainly focus on employing RS 

datasets for LUCC study. Therefore, I use LUCC to stand for RS-based LUCC.  

Researchers have studied LUCC across a wide variety of spatial-temporal scales. 

Examples of the spatial scales (or spatial extents) considered included studies on local LUCC in 

Zhujiang Delta area, China (Weng, 2002) and a review of all global LUCC research 

internationally (Xiubin, 1996). The temporal scales studied included Goldewijk (2001) who 

presented a geo-database covering 300 years of LUCC, and Yuan et al. (2005) who detected 

LUCC by comparing images taken at four different times (1986, 1991, 1998, and 2002) for the 

Twin Cities (Minneapolis and St Paul, MN) in the United States. The increasing variety of 

spatial-temporal scales has contributed to the diversity of LUCC research.  

There has been a broad range of interpretations on what drives LUCC. Lambin and 

Meyfroidt (2001) saw the important drivers of LUCC as agriculture, urbanization, and 

globalization. Research scientists also employed social (Foley et al., 2005) and economic 

(Veldkamp and Lambin, 2001) factors to interpret LUCC. Consideration of LUCC contextual 

factors involving scale served as the basis for accurate analyses, especially in an era of big data. I 

define big data as datasets that are so huge and complex that traditional analytical methods are 

inadequate to handle. In the following literature review, I first present exiting datasets and 

detection methods in LUCC study. I then delineate the scale challenges incurred by big data. To 
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finish, the computational support needed for LUCC processing is examined in relation to the 

demands of big data.    

2.1.1 Dataset and Analysis Approaches in Land Use/Cover Change Detection 

During the 1950s to 1970s, airborne sensors were the main source of image datasets for LUCC 

(Dueker and Horton, 1972). That changed in the 1970s when satellite imagery became more 

frequently used and increased the spatial, spectral, and temporal resolutions offered (Bianchin 

and Bravin, 2008). One of the most widely studied RS satellites was Landsat family (L1-L8). 

Their sensors included Thematic Mapper (TM), Enhanced Thematic Mapper (ETM), Enhanced 

Thematic Mapper plus (ETM+), Multi-Spectral Scanner (MSS), and panchromatic. This family 

of RS sensors provided moderate resolution images (~30m) and were actively used in LUCC 

research. Another moderate resolution satellite family was Terra satellite with Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor and MODerate-

resolution Imaging Spectroradiometer (MODIS) sensor (Stefanov and Netzband, 2005). 

Moreover, high- and very high-resolution satellite sensing systems included IKONOS, 

QuickBird, SkySat, WorldView and GeoEye, with spatial resolutions of those sensing systems 

equalled to or finer than 1m. Various airborne sensors supplemented spaceborne sensors for the 

study of LUCC. The most often utilized was the Airborne Visible/Infrared Imaging Spectrometer 

(AVIRIS) (Schowengerdt, 2006).  

To enhance the detection of LUCC, researchers sometimes incorporated three-

dimensional information with the Light Detection And Ranging (LIDAR) sensor. LIDAR 

utilized a laser pulse (usually at near infrared band) to measure the time distance from the sensor 

to a reflecting object. Using LIDAR imagery, three-dimensional position and reflectance 

characteristics of the studying object could be calculated. In 2004, Vu et al. argued that LIDAR 
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constituted an efficient tool for change detection even of complex urban infrastructures. 

Moreover, Synthetic Aperture Radar (SAR) images could provide complementary observation 

information in some conditions when it was difficult for optical sensors to acquire high quality 

imagery dataset (Henderson and Lewis, 1998). The growing number of sensing platforms 

provided rich sources of data for LUCC. As will be discussed, they also increased the variety of 

data and the difficulty of LUCC analysis (Hardie and Parks, 1997).  

Most LUCC utilized raster data that was structured via a field-based model. Geospatial 

vector data was not as frequently utilized in LUCC as raster data. Malczewski (2004) reviewed 

the Geographic Information System (GIS) approaches in LUCC and summarized the geospatial 

vector datasets. In LUCC, these GIS datasets included map sheets, plan maps, surveys, 

cartographic models, database records, and social media data (e.g., harvested comments from 

platforms like Twitter). Dai, Lee and Zhang (2001) integrated topography, surficial and bedrock 

geology, groundwater conditions, and historic geologic hazards GIS (vector or object-based) 

datasets to study LUCC in Lanzhou, China. Li and Yeh (2002) built a cellular automata land use 

model based on the urban centre, road, and administrative boundary vector layers. Researchers 

also combined GIS and RS approaches for LUCC detection. For example, Weng (2002) applied 

vector spatial-temporal modelling with raster imagery datasets for LUCC analysis in Zhujiang 

Delta area, China. Vector data tended not be used as much because it could record and model 

LUCC with higher flexibility than RS—and, as a result, required additional homogenization 

works for LUCC identification (Parker et al., 2003). Most of the time, vector data was only 

utilized to assess the accuracy of the raster data used in a LUCC study (Dai, and Khorram, 1998).  

So far, this literature review has covered the basic platforms that provide data for LUCC 

analysis. The workflow for analyzing data in a LUCC study could be summarized as three steps: 
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(1) pre-processing (although vector-based data might not require such pre-processing), which 

reduced the impact of differences in image data caused by factors other than LUCC (e.g., 

atmospheric conditions, sensing system difference, illumination and viewing angles’ impact, and 

soil moisture); (2) selection and application of change detection algorithm(s) to the pre-processed 

(if any) dataset; and, (3) accuracy assessment of the change detection results. These three steps 

are depicted in Figure 2-1. The boundaries between these three steps were not fixed with any two 

or even three of steps often integrated as an inseparable process (Mucher et al., 2000). For Step 

(1), the most widely applied techniques are: atmospheric correction, radiometric correction, 

geometric correction, and image registration (Lu et al., 2004). For Step (3), an error matrix is the 

most widely employed tool for the accuracy assessment in LUCC studies (Singh, 1989). In the 

error matrix, the columns represented the ground-truth data while the change detection results are 

shown in rows (Morisette and Khorram, 2000). An error could either be a changed area that is 

mislabelled as “no-change,” or an unchanged area that might be mistaken as “change.” An error 

matrix could also be employed using classification labels (Congalton, 1991) to better investigate 

the accuracy of specific classes or features (Chen et al., 2012).   

The rest of the LUCC detection review focused on Step (2), or the change detection 

algorithms that identified LUCC from the GIS and RS datasets. In Step (1), most RS data had 

already been processed with the atmospheric correction, radiometric correction, and geometric 

correction with the modern sensing platforms. Most of these algorithms have been well-studied 

(Kaufman et al., 1997; Teillet, 1986; Toutin, 2004). Since big data introduced numerous 

heterogeneous spatial resolutions and extents, geo-referencing was more frequently applied than 

the image registration techniques (Xiang and Tian, 2011). The former, which linked image 

entities with latitude and longitude, was preferred over the latter, which found similar image 

features as control points that are used to align different images. I did not cover the 
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implementation details of Step (1) because most RS datasets in this dissertation have already 

been processed with atmospheric correction, radiometric correction, geometric correction, and 

geo-referencing. However, I followed the predominant literature to use error matrices as a 

measure of accuracy for step (3), as will be demonstrated in Chapters 5 and 6.  

 

 

Figure 2-1. Three Steps of LUCC detection. Images are extracted from DMTI StreetView 

imagery datasets recorded at Montreal, 2006 (DMTI Spatial Inc., 2006). 

 

Almost all LUCC was identified via the application of change detection algorithm(s). 

Generally, the change detection algorithms are applied to at least two images that are taken at the 

same location but at different times. However, there are many change detection algorithms used 

for this purpose that could be categorized into two groups based on the data structure they wish 

to extract: pixel-based or feature-based. Pixel-based approaches extract LUCC from the 

difference among pixel values at the same location from at least two images. Feature-based 

algorithms extract various image features and identify LUCC by comparing these features. Singh 

(1989) published the first survey of change detection algorithms and listed the most widely 

applied pixel-based approaches. Lu et al. (2004) presented another review of pixel-based change 



13 

 

detection algorithms that together with thresholding techniques that could be used to determine 

the level at which a pixel was labelled as no-change or change. Lu et al.’s (ibid.) paper differed 

from Singh’s (1989) because it emphasized a LUCC workflow instead of change detection 

algorithms. There are more pixel-based change detection algorithms than could be named here 

but a few include image differencing (Stauffer and McKinney, 1987), image ratioing (Short, 

1982), spectral index differencing (Lunetta et al., 2006), change vector analysis (Chen et al., 

2003), principal component analysis (Byrne, Crapper, and Mayo, 1980), multivariate alternation 

detection (Liang et al., 2011), and Kauth-Thomas transformation (Kauth and Thomas, 1976). 

Pixel-based methods depend on pre-processing methods such as image registration. That is 

because most pixel-based methods require the accuracy of image registration to be less than the 

pixel size (Townshend et al., 1992). These methods also assume that all the images have the 

same spatial and spectral resolutions (Coppin and Bauer, 1996). However, advances in sensing 

platforms are producing imagery datasets with increasingly fine spatial, spectral, and temporal 

resolutions over increasingly large spatial-temporal extents. I argue that existing pixel-based 

methods and the associated research did not easily accommodate this variability. Consequently, 

limitations exist for the direct application of the pixel-based change detection algorithms to these 

new and scale heterogenous datasets.  

I contend that the high variety of big data in LUCC (which I write about below) demands 

a shift from a pixel-based to a feature-based change detection algorithm. In change detection 

algorithms, a feature is defined as a group of pixels that are different from their neighbours. 

Features in such algorithmic processes should not be confused with features as defined in an 

object-based (vector) data structure. Because I am examining LUCC detection algorithms in this 

review, however, I mainly concern myself with features from raster image data. An example of 

feature-based change detection methods is the entropy texture-based change detection used by 
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Rosin and Ioannidis (2003). In their work, the authors used entropy to identify the degree of local 

data heterogeneity (i.e., the sum of pixel value difference between one pixel and its neighbours) 

that can be quantified within the given analysis window. Other researchers, such as İlsever and 

Ünsalan (2012), had utilized a fixed (11*11 pixels) analysis window. Once the difference of 

entropy between two images are calculated, thresholding techniques can classify the images as 

change or no-change areas. One consequence of this process is that image features are less 

dependent on a single pixel value when used in LUCC detection. This makes change detection 

algorithms far more robust when compared to pixel-based methods (Toure et al., 2016).  

There are also different types of feature-based change detection algorithms. Furthermore, 

a large body of features could be employed in LUCC including: (1) image features such as color 

features, shape features, texture features, local features, and global features (Ping Tian, 2013); 

(2) RS features such as normalized difference vegetation index, enhance vegetation indices, 

principal components, and canonical varieties (Pohl and Van Genderen, 1998); and, (3) GIS 

features such as agent-based models, cellular automata snapshots, vector polygons, plan maps, 

urban growth models, expert systems, and crowd-sourcing (Goodchild, 2010). These features are 

usually combined for LUCC study. For example, Benz et al. (2004) merged RS image cluster 

and texture features with polygon GIS maps for LUCC detection in Austria. Their study 

indicated the important role of feature-based approached in bridging raster and vector datasets 

for use in LUCC detection.  

One feature-based algorithm that attracts considerable interest is the segmentation-based 

or object-based (Chen et al., 2012) change detection algorithm. This method merges various 

image features (e.g., geographic area, shape, and texture) to improve LUCC and reduces data 

“noise” (Blaschke, 2010) by combining the advantages of these features. The general steps of 
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segmentation-based change detection are illustrated in Figure 2-2. The image segmentation 

technique (Pal and Pal, 1993) first groups similar pixels into “segments.” LUCC is identified by 

searching for corresponding segments in other datasets and comparing the characteristics of the 

segment-level features such as boundaries, shapes, areas, and spectral statistics (Gong et al., 

2008). The accuracy of the algorithm largely depends on the accuracy of the segment edges and 

the search for the spatial-temporally “corresponding” segments (i.e., geographic objects at the 

same location but different times). A segmentation-based change detection method could further 

employ various raster and vector analysis methods such as edge detection (Maini and Aggarwal, 

2009), grey level co-occurrence matrix (Marceau et al., 1990), and spatial buffering analysis 

(Lunetta et al., 2006). Chen et al. (2012) argued the merging of different methods could 

significantly improve the accuracy of LUCC detection.  

 

Figure 2-2. Segmentation-Based Change Detection Algorithms, illustrated using DMTI 

StreetView image taken at Montreal in 2006 and 2009, respectively (DMTI Spatial Inc., 2006 

and 2009). 

Finally, LUCC researchers have explored the fusion of pixel- and feature-based change 

detection methods. Li and Davis (2008) extracted image features from scale heterogeneous 

images and employed fuzzy logic rules to classify the difference between the image features for 

LUCC detection in the Cities of Phoenix and Springfield in the United States, using Quickbird 

and Ikonos image datasets. Liu et al. (2011) presented a decision-level LUCC framework that 
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utilized multiple different images generated by the image differencing algorithms and a Chi-

square transformation algorithm to produce the combined change map. Such fusions of various 

change detection methods often improve the accuracy of LUCC studies (Hecheltjen et al., 2014). 

However, the fusion of pixel- and feature-based LUCC detection algorithms also increases the 

computational workload and complicates the LUCC process, leaving the fused algorithm more 

sensitive to the errors and noisy information in each change detection algorithm that it integrates.  

2.1.2 Scale in LUCC 

Scale has played a pivotal role in LUCC because LUCC areas are expressed at specific 

granularities and extents spatial-temporally. Data enteres the LUCC analysis at a certain spatial 

granularity or spatial resolution (e.g., 250m of MODIS data), and datasets for at least two points 

in time must be compared to detect LUCC. In such an analysis, it must be determined whether an 

object, for example a forest, had changed based on any spatial or temporal scales (i.e., seasonal 

forest changes are not considered as valid LUCC). Most change information also could only be 

extracted within a fixed spatial-temporal scale (Cash et al., 2006). A forest, for example, exists 

for a certain temporal duration and at a certain spatial extent and, if it is recorded as RS images, 

is acquired at given spatial resolution and extent. At too high a granularity we see the forests as 

individual trees; at too low a granularity the forest may get lost amid other features. Usually, we 

tend to analyze LUCC at fixed temporal scales, for example, every five years. If we receive data 

at different time periodicities, then we have to interpolate. Therefore, spatial and temporal scales 

constitute an innate part of LUCC that interact with all the processes in a LUCC analysis.  

In GIScience, scale has been defined in various ways and this presented a problem to 

LUCC. Goodchild (2011) defined scale as the combination of granularity and extent needed to 

describe the quality of geospatial datasets. Wu and Li (2009) summarized the meanings of scale 
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with respect to different research domains, including observation, modelling, operation, 

geography, policy and cartography. Zubin (1989) presented four cognitive geography scales, 

ranging from the small everyday objects to regions that exceed our existing experience and 

knowledge. In social theory, Marston, Jones, and Woodward (2005) employed an ontology-

based graph model to define and then problematize scale as hierarchical social entities. We still 

lacked agreement on a single definition of scale because the meanings of scale changed under 

different theories, operations, and algorithms (Goodchild, 2001). In LUCC, scale tends to refer to 

the spatial granularity of RS datasets (Celik, 2009) but it also frequently refers to spatial (Lambin 

and Meyfroidt, 2011) and temporal (Goldewijk, 2001) extents. 

Scale can appear throughout the data handling process from observation and collection to 

analysis and visualization (Atkinson, 2001). The mismatch of data scale (i.e., the spatial-

temporal resolution and extent at which the data was made available) and analysis scale (i.e., the 

spatial-temporal resolution and extent at which the analysis algorithm worked) has made scale 

modelling even more challenging. Scientists depict both data and analysis scales using fractal 

(Emerson, 1998), variogram (Legendre and Fortin, 1989), spatial entropy (Li and Yeh, 2004), 

and regression models (Lee, 2005). Data might be collected at one granularity but the analysis 

algorithm might operate on another. For example, we can not extract precise road information 

from a Landsat8 imagery dataset because most roads are narrower than the 30m resolution 

provided. A large number of spatial scaling operations (granularity, extent, and time) have been 

proposed to address this data/analysis scale mismatch. They include image scaling (Celik, 2009), 

pixel aggregation (Flowerdew, Geddes, and Green, 2001), spatial interpolation (Flowerdew and 

Green, 1993), granularity regularization (Atkinson, 2001), and zone design (Alvanides, 

Openshaw, and Macgill, 2001). All these techniques require different corresponding contextual 

information to determine the appropriate scales of both data and the corresponding analysis.  
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Big data analysis shifts defining scale even more complex by adding the concept of 

computational scale. Computational scale describes the computing resource allocation and data 

workflow required—especially within a distributed computing environment. Computational 

scale can be viewed as the configuration of computing nodes (granularity) and the number 

(extent) of computing nodes that covered a large number of parallel computing-based case 

studies (Stewart, 2015). If the computational scale is not coordinated with the LUCC workflow 

(Figure 2-1), researchers could face the risk of an input-output (I/O) bottleneck, data loss, job 

scheduling errors, and even system crashes (Lee, 2008). For example, inadequate computer 

memory could incur I/O bottlenecks when streaming large amounts of data. Any LUCC analysis 

applied to partial datasets in such contexts will lead to spurious results. Therefore, merging the 

concept of computational scale into the process of scale modelling is necessary for big data 

analysis.  

2.1.3 Computation Support for Big Data Analysis and Geospatial Cyberinfrastructures 

Kitchin (2013) noticed the sheer volume challenge attracted the most research interest among the 

“4Vs” of big data: volume, velocity, variety, and veracity. Since the data volume has far 

exceeded the capacity of a single computer, numerous computing approaches are employed in 

GIS and RS research to distribute the data among numerous machines for parallel analysis (Plaza 

et al., 2011). Among these approaches, cluster computing was widely adopted in the early stage 

of big data analysis (Ma et al., 2015). It connects a number of computers at the same physical 

location. Grid computing, by contrast, integrates computing nodes from different geographic 

locations and relies on middleware (i.e., a special piece of software that acted as the 

communication and management glue among other software or hardware) for job scheduling and 

resource consolidation (Sun et al., 2005). Cloud computing has been extensively used in 

GIScience research (Yang et al., 2011) for big data processing because many cloud computing 
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providers offer “pay-as-you-go” resource provisioning that offload the hardware management 

and maintenance to distant datacenters. Cloud computing also offers scalability because research 

scientists can subscribe thousands of Virtual Machines (VMs) without worrying about the 

hardware. By merging advanced computing techniques with GIS analysis methods, the goal is to 

develop efficient tools for big data handling.   

The word CyberInfrastructure (CI) was first proposed by Richard Clarke in a White 

House press briefing in 1998 (Stewart et al., 2010).  Later, the National Science Foundation 

established a blue-ribbon review team for CI research, in which the definition of CI was 

officially forged (Atkins, 2003). There are various definitions of CI and I cite the definition from 

NSF’S Cyberinfrastructure Vision for 21st Century Discovery (National Science Foundation, 

2005, page 4): 

“The comprehensive infrastructure needed to capitalize on dramatic advances in 

information technology has been termed cyberinfrastructure.”  

There is broad application of CI. Buetow (2005) summarized the wide application of CI 

in biology and medical research. Kim and Heller (2006) indicated the prominence of CI to host 

chemistry datasets for a large body of study including environment, public heath, food security, 

and transportations. Plale et al. (2006) developed a GCI for multiscale weather forecast. CI was 

also proposed for more than data handling. Hey and Trefethen (2005) highlighted the important 

role CI played in general scientific knowledge discovery. 

CI has also been employed in GIScience, as the Geospatial CI (GCI). Yang et al. (2010, 

pp.265) defined GCI as: 
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“Geospatial CI (GCI) refers to infrastructure that supports the collection, management, and 

utilization of geospatial data, information, and knowledge for multiple science domains.”   

GCI was reviewed by Yang et al. (ibid.), and the CI for RS research was covered by 

Gamon et al. (2010). GCI is a special type of CI that integrated geospatial data management, 

advanced computing techniques (both hardware and software), data analysis approaches, and 

GIScience as a new methodology for geospatial knowledge discovery and decision-making 

(Yang et al., 2010). Research in GCI includes numerous topics. For example, there is an ongoing 

research in job scheduling optimization for geospatial data analysis (Zhang and Tsou, 2009), 

semantic web with ontology knowledge systems (Sieber, Wellen, and Jin, 2011), climate and 

environment modelling (Droegemeier et al., 2004), applications to virtual organizations 

(Cummings et al., 2008), usage of volunteered geographic information analysis (Armstrong et 

al., 2011), and GCI-based education (Real, 2008). The diverse topics of GCI illustrate its broad 

potential in combining high performance computing with geospatial analysis. Therefore, GCI is 

gradually becoming a theoretic framework to combine domain knowledge and high performance 

computing than a computational tool, as big data challenge shifts RS-based LUCC more 

computation dependent. 

GCIs aggregates up (i.e., worked across multiple computing nodes or virtual machines) 

and disaggregates down (i.e., handled a large volume dataset via decomposition) geospatial 

computing for big data analysis (Wright and Wang, 2011). In such processes, huge volumes of 

data could be decomposed by splitting the data into a large number of small chunks and 

processing those chunks in separate computing nodes. This process utilized by GCIs can be 

implemented with various computing techniques. Liang et al. (2010) proposed a GCI based on 

social networks and hybrid Peer-to-Peer techniques to enable sharing and visualization of big 
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environmental sensing datasets over a vast number of computers. Li et al. (2016) employed 

MapReduce-based (see below) GCI to retrieve and visualize scale heterogeneous datasets from 

64 different sensors in real-time. However, GCI has not been employed to address the challenges 

big data introduced to the field of LUCC research.  

Two important computing techniques enable GCI for big data processing (Yang et al., 

2017). One is cloud computing that enabled on-demand computing resource provisioning via the 

Internet (Yang et al., 2011). The other one conneects the big data computation models needed to 

analyze such large, rapid, and heterogeneous data, including: the MapReduce-based distributed 

computing framework, parallel graph-based computation (e.g., Apache Spark) (Sun et al., 2015), 

bulk synchronous parallel computing model (e.g., Apache Hama) (Krause, Tichy, and Giese, 

2014), and point-to-point computing model (e.g., message passing interface) (Qin, Zhan, and 

Zhu, 2014). Cloud computing enables the rapid setup of distributed computing platforms without 

the need for hardware configuration and maintenance. Big data computation models can then 

offload the management of distributed computing tasks and dataflow to the computation models.  

The most common big data computation model is MapReduce (e.g., as implemented in 

the open source software Hadoop). It provides the software platform to distribute computing 

tasks and data over a large number of machines for parallel processing (Lee et al., 2012). 

Generally, there are two phases in MapReduce: the map phase and the reduce phase. The map 

phase decomposes a huge volume data into a large number of chunks as the key/value pairs (we 

usually use the file {chunk} id as the key and the file content as the value) and executes data 

analysis algorithms in parallel with the key/value pairs. The reduce phase receives the output 

from map nodes and combines them to generate the final results. MapReduce manages the 

execution of all map and reduce tasks and reschedules any failed tasks automatically onto other 
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computing nodes (Dean and Ghemawat, 2008). To manage the data distribution and combination 

operations in MapReduce, Shvachko et al. (2010) invented Hadoop Distributed File System. 

Examples of the use of MapReduce in GCIs include Schnase et al. (2016) using it for global 

climate change research, and Li et al. (2014) using it for contiguity weights matrix calculation in 

geospatial big data analysis. The combination of cloud computing and MapReduce framework 

has proven useful in big data analysis (Nurian et al., 2012), and GCI has also benefited from it 

(Li et al., 2016).  For example, Gao et al. (2014) utilized Hadoop on Amazon Elastic Cloud 

Computing (EC2) (Amazon, 2017) to harvest and analysis crowd-sourced gazetteer entries from 

social media. However, these advanced techniques have not been employed for LUCC research 

yet.  

2.2 Research Questions 

In this chapter, I review the refereed literature on LUCC workflow and LUCC detection 

algorithms, scales in LUCC, and GCIs for big data analysis. In LUCC, big data brings large 

volumes of data with increasing scale heterogeneity. I argue four challenges exist that are 

incurred by the usage of big data in LUCC studies: (1) the scale modelling challenge for 

heterogenous datasets; (2) the workflow challenge to address big data volume; (3) the LUCC 

detection algorithm challenge for scale heterogeneity handling; and (4) the computational 

challenge of big data analysis in LUCC.  

2.2.1 Scale Modelling Challenge 

LUCC research requires a new model to clarify the complex meanings of scale. Different 

disciplines like RS, GIS, and image analysis bring their own definitions of scale and the idea of 

computational scale makes “scale” even more confusing. For example, LUCC research can be 

conducted on the connectivity changes of a road network over several years (coarse granularity, 
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large extent, and long time span) but a navigation study may only pay attention to the routing and 

speed limits of the roads in the path for hours or days (fine granularity, small extent, and short 

time span) (Tsutsumi and Seya, 2008). Analysis of road connectivity changes requires 

aggregation across different granularities and extents to extract LUCC patterns. The navigation 

study relies more on solving the spatial optimization problem with various constraints. In the 

resultant visualization and evaluation, LUCC studies might present the change maps and 

evaluate them via ground-truthing. But the navigation study instead depicts the result as the road 

navigation map and needs to be compared with other routing services for evaluation. If we call 

all these elements (i.e., granularity, extent, and time) as ‘scale’, we cannot distinguish these two 

studies. Without a clear model of scales, it is very difficult to take advantage of big data in 

LUCC research. 

. Big data does not only bring finer granularity and larger extents for LUCC research; but 

also more complicated relationship among granularity, extent, time, and corresponding 

properties. The new model of scale should cover spatial granularity, spatial extent, time, and 

property. Goodchild (2011) defined scale as granularity, extent, and time. But these three 

elements vary in research domains with differing topics, questions, data availability, formats, 

models, processing workflow, analysis algorithms, computation, and even the scientific 

assumptions. The concept of scale is not static but an evolving notion that continuously 

integrates various theories and tools (Cuzzocrea et al., 2011). Unfortunately, contextual 

information about data properties has not been incorporated into the scale modelling (Goodchild, 

Yuan, and Cova, 2007). Without such contextual information, we may treat data with different 

spatial granularity in the same way as data with the same spatial granularity but different 

properties. Some data manipulation techniques (e.g., dark object subtraction {Chavez, 1988}) 
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may keep the granularity, extent, and time intact but changes the property. Any attempt to 

identify scale in LUCC without consideration of the property has been problematic.   

Geospatial scaling operations (i.e., spatial granularity and extent transformation 

operations) can be applied to LUCC detection to homogenize scales (Celik, 2009). However, 

most of the spatial granularity scaling operations incurs additional noise and errors (Prashanth et 

al., 2009). For example, Figure 2-3 (A) and (B) are both acquired for downtown Montreal, at 

2006 and 2007, respectively. Figure 2-3 (C) is the granularity scaled image of (B) using discrete 

wavelet transformation algorithm (Van de Wouwer, Scheunders, and Van Dyck, 1999). One can 

observe some noisy information at the boundaries of buildings and some change information gets 

lost due to the convolution of wavelet-based image scaling (e.g., the blue boxes in the red circle), 

from the change map (D) generated using the image differencing and percentile thresholding 

algorithms (Ward, 2003). Our new scale model seeks to find methods to track the impact of the 

geospatial scaling operations for LUCC research. 
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Figure 2-3. Drawbacks of Image Scaling-based LUCC. (A) is an RGB-sharpened image taken at 

the downtown Montreal in 2006, with 0.6m spatial resolution (DMTI Spatial Inc., 2006); (B) is a 

Montreal Metropolitan Community Orthophotos (MMCO) taken at the same location in 2007, 

with 0.3m spatial resolution (Communauté métropolitaine de Montréal, 2007); (C) the image 

generated using Haar discrete wavelet transformation, as 0.6m spatial resolution; and (D) the 

change map generated by employing the image differencing technique and the percentile 

thresholding.  

To summarize, the new scale model needs to integrate various representation of scale 

theories and scaling operations. Based on semantic modelling, the new scale model enhances 

traceability and maneuverability of multiscale geospatial analysis, in an era of big data.  

2.2.2 Workflow Challenge for LUCC 

Big data is much more than a simple aggregation of small data chunks, but the distributed 

computing treats it as. I name this mismatch as the workflow challenge. Most RS-based LUCC 
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routinely requires decomposition to split big data into smaller chunks and distribute them across 

a large number of computing nodes for parallel processing. Researchers must compare at least 

two decomposed data chunks to identify LUCC and this necessitates their recomposition in the 

distributed computing environment. These distributed LUCC results also then need to be re-

combined for generating the consolidated change map during the recomposition process. 

Because decomposition may distort the image features at the splitting borders, researchers also 

require a recomposition process that removes these specious features. Therefore, a new dataflow 

management framework that automates the decomposition and recomposition processes in a 

distributed computing environment becomes necessary to address the workflow challenge of RS-

based LUCC research. Any such dataflow management framework needs to be integrated with 

advanced computing techniques.  

The workflow challenge also reflects the importance of geogenic and topological 

information in big data, which are the main reasons that why geospatial big data cannot be 

treated as a simple aggradation of data chunks.  

2.2.3 Scale Heterogenous LUCC Detection Challenge  

Big data means comparing RS datasets with different scale for LUCC detection has become 

more frequent. Although the segmentation-based change detection method achieves high LUCC 

accuracy by merging spatial and spectral information, it still cannot handle scale heterogeneity 

and requires the employment of geospatial scaling operations to homogenize scale differences 

(Desclée, Bogaert, and Defourny, 2006). The spatial granularity of scaling operations may incur 

additional errors in LUCC, such as shown in Figure 2-3 (D). On the other hand, the spatial extent 

scaling may cut the image segments across data chunks and produce fake LUCC segments. 

Finally, temporal scaling operations always assume consistency with any original datasets and 
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therefore are open to criticism that they possess a high risk of missing LUCC detection 

(Pijanowski et al., 2002).  

We need a new LUCC detection method that is invariant to scale heterogeneity and that 

avoids these cumbersome geospatial scaling operations. Recent progress in LUCC highlights the 

increasing application of local image features for change identification (Mikolajczyk and 

Tuytelaars, 2015) at small scales such as local neighbourhoods that are less dependent on global 

scene information. There is a large number of these features, including Scale Invariant Feature 

Transformation (SIFT) (Lowe, 2004), discrete cosine transform (Song and Li, 2013) and Speed-

Up Robust Features (SURF) (Bay, Tuytelaars, and Van Gool, 2006). All these methods help 

LUCC detection by generating image features that are noisy (e.g., scale difference and view 

angle difference) resistant. Among local image feature-based image change detection study, the 

SIFT algorithm has received considerable interest in the field of computer vision (Mikolajczyk 

and Schmid, 2005). SIFT can detect, describe, and match maxima/minima points of difference of 

Gaussians (Burt and Adelson, 1983) across images that are invariant to scale, rotation, affine 

distortion, translation, and illumination differences (Liu, Yuen, and Torralba, 2011).  

Algorithms like SIFT may handle the heterogeneous spatial granularities of big data but 

also pose other problems for change detection in LUCC. A lack of geo-registration and spatial 

extent specification in this process, however, increases the occurrences of the similar geographic 

entities (e.g., similar buildings and roads) and the misidentification of those features. When used 

with larger spatial extents, the comparative images may introduce far more similar geographic 

entities and decreases the distinctiveness of SIFT. For example, two identical buildings at 

different locations might be encoded with the same image feature value in SIFT. Moreover, SIFT 

is point-based and may not be able to cover all the change areas (Matas et al., 2004). 
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Consequently, it often results in the missing of LUCC identification. Therefore, we need to 

further enhance the scaling and handling of SIFT for LUCC study.  

By integrating computer vision approaches in LUCC research, RS-based LUCC can 

relies on scale invariant image features for change detection, without resorting to resampling. 

However, the integration is not easy and considerable work is needed to customize computer 

vision features and feature extraction algorithms.  

2.2.4 Computational Challenges for Big Data Analysis in LUCC 

Big data challenge also requires the three challenges above to be handled together with the high 

performance computing, not separately. Because it is more complex than the simple aggregation 

of data chunks. Geospatial data differs from other data and therefore complicates the application 

of CI to LUCC. We argue that three missing methodologies prevent the employment of GCI in 

LUCC research. First, problems occur in data decomposition and recomposition for LUCC 

dataflow management within GCI. Geospatial data has inexplicit topology within the data 

structure, which means it is organized within a dataset. If a large dataset is split into smaller tiles 

then this likely slices up many objects (e.g., forests). The edges of split images can generate fake 

objects or object distortion. Standard recomposition is a problem because it is hard to maintain 

the spatial-temporal correspondence of geographic features across decomposed data and re-

combine distributed intermediate results to form the final ones. Second, the deployment of 

LUCC workflow has not been explored within GCI. LUCC workflow presents domain specific 

challenges and requires special configurations (e.g., computing framework, synchronization 

mechanism, and GCI architecture) of GCI. Third, there needs to be a parallel computing and 

resource provisioning strategy for LUCC workflow in GCI. A resource provisioning strategy 

(e.g., computing resource allocation methods) has been explored separately for cloud 
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applications (Chaisiri, Lee, and Niyato, 2012) and MapReduce (Verma, Cherkasova, and 

Campbell, 2011), but not for a GCI yet. Due to these reasons, GCI has not been applied in LUCC 

and the idea of computational scale remains unexplored in LUCC. By investigating LUCC 

specific GCI, I tend to not only solve the computational challenge in RS-based LUCC research, 

but also prove the pivotal role of GCI in combining domain specific knowledge and high 

performance computing as a theoretical framework.  

To summarize, all four challenges in LUCC involve scale. Scale modelling is about 

clarifying the meanings of scale and tracking the geospatial scaling operations. The workflow 

challenge alters the spatial extent of RS data via decomposition and recomposition operations. 

Consequently, a new scale invariant LUCC detection method is needed to handle scale 

heterogeneity across decomposed data chunks. Finally, the computational challenge with GCI 

relates to the scale of computation. I argue that scale becomes an essential problem in LUCC big 

data analysis and requires a careful investigation within each of these four challenges. 

In this dissertation, I focus on the spatial-temporal scale handling of big data in LUCC by 

covering scale modelling methods, dataflow management framework, scale invariant LUCC 

detection algorithms, and LUCC-based GCIs.  

I summarize the objectives of my Ph.D. research as the following: 

1. Inventing a new methodology to model scale with spatial granularity, extent, time, 

and property to integrate and clarify various theories of scale and scaling; 

2. Developing a decomposition/recomposition framework for LUCC dataflow 

management in the distributed computing environment and prove the essential 

role of geometric and topological information in geospatial big data analysis; 
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3. Investigating new scale invariant change detection algorithms that identify LUCC 

by comparing the scale invariant image features and do not rely on the resampling 

methods to homogenize the various spatial-temporal scales, which also serve as a 

new bridge between computer vision and RS-based LUCC research;  

4. Developing a LUCC specific GCI with scalable computing resource provisioning 

and distributed computing support to integrate LUCC workflow, spatial-temporal 

models, and the change boundary optimization algorithm as a comprehensive 

solution for big data analysis in LUCC, in which GCI is explored as a scientific 

framework to integrate domain specific knowledge and high performance 

computing.   

In the following chapters, I will present approaches for each challenge in the list. My 

methodologies are mainly evaluated by conducting urban-rural LUCC detection studies in the 

Greater Montreal Area from 2005-2012 using scale heterogeneous datasets acquired from 

various sensing platforms.  

My dissertation builds multiple bridges between GIScience and RS research. The new 

scale modelling work integrates different concepts of scale and scaling in both GIScience and 

RS. The decomposition/recomposition dataflow management framework is developed as a 

solution for RS image splitting, but it also serves as a general geospatial big data handling 

method. The scale invariant LUCC detection algorithm is designed with computer vision 

algorithms for RS image analysis, but it also integrates the concept of spatial variance and 

location referencing in GIScience. The LUCC-GCI is based on the GCI methodologies in 

GIScience, but it also includes considerable domain knowledge from RS, such as image 
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read/write, noise removal, and geo-referencing. In conclusion, the scale challenge in big data 

LUCC study requires a tight combination of GIScience and RS research.    
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Connecting Statement: Addressing the Scale Challenge in LUCC with 

the Concept of Scope 

In Chapter 2, I highlighted the essential role of scale in big data analysis for LUCC research. 

However, the definition of “scale” varies and the variation can affect how the concept is used in 

LUCC. For example, multi-scale data can refer to data with different spatial resolutions, as well 

as data with different spatial coverages. This confusion over meaning is made worse with big 

data, which adds many new resolutions, extents, spectra, and time periods. To clarify the 

meaning of scale in LUCC, I propose the concept of Scope. I define Scope as a function of 

spatial granularity, spatial extent, the time, and properties. 

Chapter 3 will be submitted to the International Journal of Geographical Information 

Science. The manuscript contained in this chapter was co-authored with my supervisor, Prof. 

Renée Sieber, and members of my doctoral supervisory committee including Prof. Shaowen 

Wang. I was the primary author and contributed the realization of Scope, through its theoretical 

framework and its implementation in the case study. Prof. Sieber refined the Scope concept. 

Prof. Wang gave me guidance to develop the Scope Set and Scope quadruple projection concept, 

based on his spatial computational domain representation (Wang and Armstrong, 2009).  Both 

co-authors edited this chapter for readability. 
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Chapter 3. A New Scale Representation for Multiscale Geospatial 

Analysis 

Abstract 

Geospatial big data is noted for variety and the opportunities and challenges it creates for 

multiscale analysis. One of the main challenges in comparing big geospatial datasets often is 

their very different spatial granularities or temporal periodicities. We are advantaged by the 

ability to derive, for example through the geospatial scaling operations (i.e., spatial up/down-

sampling and extent decomposition/recomposition), many different datasets from the original big 

data. To handle complex meanings of scale, we propose the concept of Scope to model scale in 

geospatial big data as a quadruple that integrates spatial granularities, spatial extents, time, and 

properties (attributes). We develop the concept of Scope Set as the collection of related 

quadruples and Scope quadruple projection to model the scale transformations. Case studies 

illustrate how to use Scope to measure the effect of the geospatial scaling operations. Our 

findings indicate that Scope can represent the complex meanings and changes of the scale needed 

to compare big geospatial datasets and will become a fundamental part of multiscale analysis.  

3.1 Introduction  

Geospatial big data has caused a shift in Geographic Information Science (GIScience) research 

toward being more data-driven (Miller and Goodchild, 2015). This shift calls into question the 

ways in which GIScientists handle scale in their analysis. Scale heterogeneity in geospatial big 

data can be interpreted as an instance of “variety,” since there are so many new geospatial data 

sources, sensors, and platforms that each collect at different spatial and temporal scales (Clarke 

and Gaydos, 1998; Clarke, 2003). If it is raster, the data often might be available from new 

Remote Sensing (RS) platforms at different electromagnetic (spectral) wavelengths. If it is 
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vector, we will instead face heterogenous properties, data structures, encodings, geo-referencing 

and even file formats (Eastman, 2001).  

With the growing data volume, velocity, and variety, it is increasingly challenging to 

guarantee scale matches among geospatial big data and analysis algorithms. Many platforms 

provide high spatial resolution data that can present problems for comparison with legacy data at 

coarser resolutions. Usually, we employ spatial scaling operations (i.e., spatial up/down-

sampling and extent decomposition/recomposition) to homogenize scale across datasets. For 

example, we down-scale Landsat images to 1m resolution in order to compare it with IKONOS 

imagery datasets. Heterogeneity of scales is problematic for some geospatial analysis algorithms 

like flow fields (Heeger, 1987) that, if applied, would generate numerous fake flow vectors 

because the algorithm cannot establish the correspondence of the same feature across datasets. 

No efficient scale modelling method currently exists that can cover these two geospatial scale 

mismatch problems.  

Multiscale analysis has been further complicated by the numerous meanings of the term 

“scale”.  Woodcock and Strahler (1987) referred to “scale” as the different resolutions of raster 

datasets. In contrast, Inglada and Mercier (2007) defined “scale” as image clusters that covered 

various areas of land surface with the clusters generated based on spatial granularity scaling 

techniques (Atkins, Bouman, and Allebach, 2001). Ouyang et al. (2014) considered 

administrative district levels as scales, while Goodchild (2011) defined scale as both geospatial 

granularity (i.e., level of details) and extent (i.e., spatial-temporal coverage of the study area). 

Goodchild’s definition also happens to solves one problem faced by researchers who regularly 

misunderstand the difference between the two (Schuurman et al., 2006). Wu and Li (2009) 

summarized the meanings of scale with respect to different research domains and geospatial 
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analysis algorithms. They found that scale manifested at all stages in data handling including 

observation, modelling (representation), analysis, and visualization. Similarly, Marceau and Hay 

(1999) focused on the meanings of scale in Remote Sensing (RS) granularities (resolutions) and 

emphasized spatial granularity scaling operations (e.g., the change of detail levels in an image 

from 1m to 30m).  

Spatial-temporal scaling operations have further complicated the process of scale 

modelling. We apply diverse geospatial scaling operations to avoid the failure caused by scale 

mismatches (Spaccapietra, Parent, and Vangenot, 2000). Examples included Celik (2009) who 

conducted a Land Use/Cover Change (LUCC) study based on discrete wavelet-based up/down-

sampling technique. They also included Aspinall (2001) who presented multiscale Bayesian 

models for the distribution of red squirrels, with geospatial granularities ranging from 1km to 

20km in Scotland. Finally, this mismatch also affected a quadtree-based extent decomposition 

method that was proposed by Wang and Armstrong (2003) to tackle distributed geospatial 

interpolation problems on grid computing platforms. Multiscale research such as these studies 

often addressed either spatial granularity or the extent changes but not both. That was because 

they assumed one of the variables would remain constant. In the era of big data, however, 

simultaneous granularity and extent changes have been becoming more frequent (e.g., 

simultaneous localization and mapping {Floros et al., 2013}) and creating new challenges in 

scale modelling.  

To address the issue of multiscale analysis in big data, we propose the concept of Scope 

to integrate granularity and extent with time and property. Time is fundamental in describing 

geographic processes and always must be considered as an independent element in scale 

modelling (Stommel, 1963). For example, the optical reflectance of tree leaves continuously 
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change at different times each day but analysis must not treat such daily changes as valid forest 

changes. The re-pavement of roads can happen in several days, but the building of a new 

highway will take years. Properties (i.e., the structures, attributes, and quality of the dataset) are 

tightly correlated to our understanding of those phenomena as well as geospatial analysis 

algorithms (Câmara et al., 2000; Cova and Goodchild, 2002; Jordan et al., 1998). Most 

geospatial analysis algorithms are property-specific (De Smith, Goodchild, and Longley, 2009). 

Properties provide the context in which granularity, extent, and time need to be specified.  

By merging the generic field data model (Camara et al., 2014) and scale space theories 

(Witkin, 1984), we propose Scope to represent geospatial data with spatial granularity, spatial 

extent, time, and property, as a Scope quadruple. The generic field model is chosen because it 

explicitly considers granularities and extents (Goodchild, 2011). Based on scale space, Scope 

provide the formal means to organize numerous Scope quadruples as an algebraic set (Frank, 

1999), called Scope Set. We argue that Scope can more efficiently represent scale in geospatial 

dataset and analysis algorithms, for both RS and Geographic Information System (GIS) related 

research.  

The rest of this paper is organized as follows. We discuss current research on scale and 

our motivation for proposing Scope in Section 3.2. Then we introduce the concept of Scope in 

Section 3.3. Section 3.4 suggests how Scope could be employed for multi-granularity/multi-

extent road classification study, using data entropy as the property. Section 3.5 concludes this 

paper with future work that applies an Abelian Group for scale modelling.  

3.2 Challenges of Scale Modelling  

There is a large body of challenges we are facing in scale modelling. First, it is necessary to 

clarify the complex meanings of scale. Second, scale in GIS object and field view need to be 
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synthesized. Third, the scale mismatch necessitates the tracking of the scale transformations. At 

last, the temporal scale requires a special investigation. The following discussion delineates these 

challenges sequentially.  

Various meanings of scale are playing pivotal roles in multiscale analysis. Vlachos 

(2005) reviewed discrete and particle models for multiscale analysis mainly from examples in 

biochemistry and environment research. His work found that scale represents a large body of 

different concepts that include grain, area, length, grid, number and the distribution of computing 

resource. Wu et al. (2000) categorized multiscale analysis in GIS into direct and indirect 

approaches that considered the grain sizes and extents of a given dataset. Celik (2009) used 

multiscale analysis to detect Land User/Cover Change (LUCC) from RS images but his 

conception of scale only encompassed granularity. Atkinson and Tate (2000) reviewed the scale 

problem in multiscale analysis as a geo-statistics problem (i.e., variogram) as a special 

measurement of spatial variance. Unfortunately, these researchers do not agree in their 

definitions of scale. The inconclusiveness previous work requires the development of a new scale 

model to clarify the meanings of scale and represent the changes of scale in the multiscale 

analysis.  

The fact that scale is defined by various meanings across GIS/RS research can seriously 

hinder the ability to conduct multiscale analysis that takes full advantage of today’s big data. To 

do so, multiscale analysis in GIS/RS must be able to handle big data with different spatial 

granularities (Celik, 2009), differing spatial extents (Benz et al., 2004), and varying time spans 

(Coppin et al., 2004).  

The new scale model needs to incorporate different geographic data models. Data models 

in GIS/RS stand for a large body of mathematical approaches of representing geographic 
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properties (Cash et al., 2006). Data models can be the object or field model in GIScience 

(Couclelis, 1992), in which the properties within the dataset serve as the indicators for the 

structure and quality of the datasets with respect to different research questions (Câmara et al., 

1996). Thus, synthesizing the object and field models becomes another indispensable element in 

the new scale model.  

To approximate the geographic world, object data models offer different ways to define 

points, lines, polygons, and volumes. The buildings in Figure 3-1 (A) might be labelled either as 

points (e.g., centroids) or polygons, depending on whether we need to consider the shape of 

buildings. Buildings can be further aggregated as “blocks,” to be considered as super-objects of 

buildings. If the research question is to analyze district or community boundaries at the city 

extent, blocks may offer a more appropriate granularity than individual buildings. Although 

individual buildings might be renovated or discarded at different times, their changes over time 

have limited impact on the city due to the limited granularities. However, the object model 

represents granularity, extents, and time, in an inexplicit way by various objects (Goodchild, 

2011) and these elements may be heterogeneous even within the same piece of data. Scale model 

works at a higher abstraction level than the object data model and needs to explicitly indicate the 

granularity, extents, and time (Store and Jokimäki, 2003).  
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Figure 3-1. Examples of Spatial Granularity and Extent Variety in Scope. (A) 0.11m Montreal 

Metropolitan Community Orthophotos (MMCO) image acquired at downtown Montreal, 2005 

(Communauté métropolitaine de Montréal, 2005); (B) 0.6m DMTI image collected at Montreal, 

2006 (DMTI Spatial Inc., 2006); (C) ragged building boundaries obtained by up-sampling some 

buildings in (A) into 1.76 m.  

The granularities and extents in the field data model are largely defined by the sampling 

schema (Couclelis, 1992; Goodchild, 2011). Conceptually, a field model provides infinitely fine 

granularities. In practice, researchers are limited by practical matters such as how the distance 

between the sampling points and the sensing platforms determine the level of granularity. 

Sampling ranges or regions of interest regulates the extent. Often geospatial scaling operations 

are employed as the changes of sampling distance and ranges (Celik, 2009; Pohl and Van 

Genderen, 1998). Researchers have proposed the concept of scale space (Perona and Malik, 

1990), which is a collection of raster data up/down-sampled at various spatial granularities, to 

allow for multi-granularity analysis. However, geospatial scaling operations may incur artifacts 

and additional errors into the original field data, as illustrated by Prashanth et al. (2009). For 

example, the building boundaries in Figure 3-1 (A) that are acquired by the 0.11m granularity 

will become more ragged as shown in Figure 3-1 (C) at 1.76m with granularity scaling. 

The new scale model needs to cover both object and field data models by merging of 

these two models (Goodchild, Yuan, and Cova, 2007). Liu et al. (2008) bridged these two 

models by embedding objects into fields. Their approach originated from the ‘plenum’ model of 

physics, and the field model provided the ontological support for the object extraction (Harding, 
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2002). Multiscale analysis also favors the field model that represents the granularity and extent 

changes explicitly within the spatial scaling operations. This is also consistent with the data 

structure of big data that is overwhelmingly field-based. Therefore, our new scale model will be 

field-based, but covers the object model as well.  

We need a scale model that also efficiently tracks the scale transformations in multiscale 

analysis. Since scale is often interpreted as granularity or extent, the predominant solution in 

multiscale analysis is geospatial scaling operations that homogenize granularity (e.g., up/down-

sampling) or extent (e.g., clipping and image stitching). Research has been conducted to assess 

the impact of such operations. Woodcock and Strahler (1987) explored the correlation between 

spatial granularity changes (i.e., the authors re-sample images at different spatial granularities) 

and RS classification accuracy (e.g., forest, road, agriculture, and urban/suburban classification). 

They pointed out how the accuracy of classification varied with respect to the granularity 

scaling. They found that finer granularity did not always achieve higher accuracy in 

classification. Tarnavsky et al. (2008) built off their work to assess the relationship between 

geospatial granularity scaling and spatial variability (i.e., the variance of normalized difference 

vegetation index) and concluded that the spatial variability generally decreased when up-

sampling the spatial granularities. They also mentioned how changes in spatial extents could 

affect spatial variability. Wu et al. (2000) went a step further by employing hierarchical geo-

statistical models to evaluate the variance of seventeen landscape metrics using data with 

different spatial granularities. Their study indicated that some landscape metrics varied along 

with the scaling of granularities and extents but some did not. All these works related to the 

spatial granularity and extent scaling operations with the changes of properties (e.g., RS 

classification accuracy and spatial variability measurements), and we followed this approach by 
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modelling the scale changes as the transformation among the quadruples that are composed of 

granularity, extent, time, and property.  

Researchers have long noted that time possesses its own scale characteristics. 

Theoretically, time has been represented in linear and non-linear ways (e.g., branching and 

cyclical time {Huang, Luo, and Van Der Meyden, 2010}). Linear time models are the majority 

(Claramunt and Thériault, 1995), which enable the use of seconds, hours, and years as the 

temporal granularities (Goodchild, 2011). But the non-linear way might incorporate different 

spatial-temporal models (e.g., snapshots and episode cycles) as the granularities and extents 

(Peuquet, 1994). The temporal scale mismatch between datasets and geospatial analysis also has 

been documented (Eva and Lambin, 2000).  Cash et al. (2006) defined this temporal scale 

mismatch as the conflict between relatively short analysis cycles and the long-term planning 

needs required in environmental management. Temporal scaling (e.g., interpolation of data in the 

middle of two periods) might create new properties, with specific spatial granularities and 

extents (Antonić et al., 2001). So we have treated time as an independent element from spatial 

granularity and extent, due to the variety of non-linear temporal scaling methods, such as the 

cyclical scaling, branch scaling, and the isochronic scaling (Chen et al., 1999).   

Lastly, a new scale model is needed to accommodate the handling of big data. Because 

the volume and velocity of big data exceed the memory of a single commercial computer, the 

data needs to be split into small chunks and distributed across numerous computing nodes. Data 

decomposition/ recomposition operations have become routine (Kaisler et al., 2013), which not 

only change the file size of the data but also the spatial-temporal extents. Various extents play 

critical roles in knowledge representation (e.g., do the data cover the extent of the highway?), 

analysis workflow (e.g., need for pre-processing), parameter tuning (e.g., range of variables), and 
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computing resource allocation (e.g., number and distribution of computing nodes) (Herbst and 

Karagiannis, 1998). Scope is designed to capture these computational properties and coordinate 

it with other scale meanings in GIS/RS research (Wang and Armstrong, 2009).  

To support multiscale analysis, we should first clarify the complex meanings of scale in 

the new scale model. Second, the scale transformations of granularity, extent, and time need to 

be encoded as different property changes. Although the selection of appropriate property depend 

on existing expertise and knowledge, a new scale model to integrate granularity, extent, time, 

and property has become quite necessary.  

3.3 The Concept of Scope 

We propose the concept of Scope as a scale model that contains four elements: spatial 

granularity, spatial extent, time, and properties. One Scope can therefore be considered as a 

quadruple of these four elements and we may need a collection of these quadruples in practice. 

The spatial granularity and extent can take single values in each quadruple, and time can be 

represented by a given temporal model. Property can take attributional characteristics of the 

dataset (e.g., data structure and classification) and may contain a collection of different 

descriptors. Properties also can be represented as the statistical calculations (Diggle, Tawn, and 

Moyeed, 1998) or feature extraction methods (Câmara et al., 1996). In any given Scope 

quadruple, the granularity, extent, time, and property (not property values) will be consistent. 

A single dataset is not characterized by a single Scope quadruple. Any derivation of a 

dataset is accompanied by its own quadruple. For example, geospatial scaling operations will 

generate new Scope quadruples, which may result in different combinations of granularities, 

extents, time, and properties. Several properties might be combined into a new property (e.g., the 

normalized difference vegetation index is a combination of measurement from the red and near-
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infrared wavelengths); some properties can be removed via filtering. For example, a band 

selection technique could reduce the number of RS bands, which will decrease the corresponding 

number of properties within subsequent Scope quadruples (Chang et al., 1999). In practice, we 

rely on a collection of the Scope quadruples, not a single Scope quadruple, to model this kind of 

multiscale geospatial analysis.  

Our Scope concept focuses less on location and more on the abstraction of scale. In the 

Scope model, location is represented within properties, but an (x,y) location is hard to determine 

without the specific granularity, extent, and time. In other words, we must establish the concept 

of Scope before we can establish a field or object model with the specific locations.  

To avoid emphasizing the smallest and largest objects in GIScience, we integrate scale 

space with the generic field model to build our Scope. The dilemma is that we neither understand 

the most basic element of the universe (the smallest spatial-temporal granularity), nor can we 

explore the exact boundaries of the universe (the “full” spatial-temporal extent). The generic 

field model is chosen because it provides ontological support for the object model (Harding, 

2002). The transforming of the field model to the object model is relatively easy, but not vice 

versa (Liu et al., 2008). Another reason to choose the field model is the rapid growth of field-

based high performance computing implementations in GIScience (Clark et al., 2003). Wang and 

Armstrong (2009) also chose the field model to develop spatial computational domain 

representation. The value of field model also lies in its consistency of granularity, extent, time, 

and properties inside the given data.  

3.3.1 Scope Set 

Facing a large number of Scope quadruples, we propose the concept of Scope Set to organize 

these quadruples as a mathematical set (Frank, 1999). The mathematical set is a collection of 
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distinct objects, and we specify the objects as Scope quadruples. Scope Set is based on scale 

space, which was initially proposed for multi-granularity signal representation in computer 

vision (Witkin, 1984). Scale space contains a large number of images with various spatial 

granularities scaled from the original dataset and arranges them in ascending or descending 

orders. The Scope Set concept extends the scale space by adding spatial extent, time, and 

property. In one Scope Set, the quadruples are correlated in property and can be converted via 

the Scope quadruple projection.  

We illustrate the concept of Scope Set in Figure 3-2, with the Scope quadruple encoded 

as <granularity, extent, time, property>. In this figure, the property remains the same and the 

three quadruples stands for different combinations of spatial granularity, spatial extent, and time. 

Different granularities and extents are recorded explicitly in the quadruples a, b, and c. 

Quadruple b represents the multi-temporal datasets, which is modelled with the generic field as a 

collection of {tb1, tb2, …, tbn}, with the element in the collection (e.g., tb1) representing the 

temporal granularity, and the collection standing for the temporal extent. The quadruple 

projection between quadruples a and b is implemented using granularity up-sampling and 

temporal interpolation; the projection between b and c is applied via the extent decomposition 

and the temporal down-sampling.  

Multiscale object data can also be represented by the Scope Set. We transform the objects 

to fields, to avoid generating redundant quadruples for individual objects because each object 

may be described by different granularities, extents, and time. For example, a road can be 

modelled as a connection between two locations but can also be represented as a combination of 

several lanes. We employ the Scope quadruple projection not only for the scale transformation 

among the quadruples but also to project the object data as the generic field. In this process, a 
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Stommel diagram (Stommel, 1963) is essential to coordinate various spatial granularities, spatial 

extents, and time, within each Scope quadruples.  

 

Figure 3-2. Illustration of Scope Set. Scope Set S contains three quadruples a, b, and c with the 

same property. Dataset b is scaled from dataset a, by keeping the same spatial extent, but 

changes the spatial granularity via down-sampling and is extended as multi-temporal data cube 

via temporal interpolation. Dataset c is obtained by extent decomposition and temporal sampling, 

from dataset b.  
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Figure 3-3. Scope Quadruple Projection. (A) is implemented by the transformation of object 

data representation with sampling/interpolation algorithms, using the equal region 

decomposition, granularity resampling, and property interpolation algorithms; while (B) is the 

Scope quadruple projection for field data with geospatial scaling operations and Gaussian 

filtering algorithms, using spatial extent scaling, Gaussian filtering (σ=1.0 and kernel=5*5), and 

property scaling.  

3.3.2 Scope Quadruple Projection 

Another main motivation of Scope is to track various scale transformations such as geospatial 

scaling operations. Scope Set becomes the metadata for scale representation in geospatial big 

data. In this section, we demonstrate that Scope also includes an “action item” to model the scale 

transformation of data. We name the “action item” as the Scope quadruple projection, which is 

encoded as a tuple <SourceQuadruple, DestinationQuadruple, Algorithm>. In Figure 3-2, the 

quadruple projections are modeled as the tuples <a, b, Granularity Sampling + Time 

Interpolation> and <b, c, Extent Decomposition + Time Sampling>, respectively.  
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We believe that the easiest way currently to connect SourceQuadruple, 

DestinationQuadruple is via linked data. Linked data (Cook et al., 1996) is the method to link 

related data over the Internet. The linkage is described by various schema, and can be searched 

and manipulated via semantic queries (Alvares et al., 2007). The linked data-based quadruple 

projection can also facilitate the future research in modelling geospatial scaling algorithms.   

A typical algorithm for Scope quadruple projection is a combination of 

sampling/interpolation and Gaussian filtering. In the scale space theory, Gaussian filtering is a 

fundamental algorithm to generate the multi-granularity datasets (Babaud et al., 1986). On the 

other hand, Liu et al. (2008) concluded the general sampling/interpolation techniques play 

pivotal roles in specifying the spatial granularity and the extent of data that is structured by the 

field model. We note other algorithms can be applied as well.   

The Scope quadruple projection not only covers the scale transformation between the 

generic field dataset but also the transformation from a raw object dataset. It should be noted that 

the implementation of algorithms in the Scope quadruple projection will vary in the object and 

field data models. For example, in discrete object data, the sampling/interpolation method would 

be conducted as the spatiotemporal points, isolines of properties, or regular/irregular arrays (e.g., 

triangulated irregular network) to determine property values, the sizes (granularity), and the 

distribution (extent) of the grid cells/cubes. In Figure 3-3 (A), the granularity and extent are 

defined by the sampling/interpolation method with discrete objects, and the value of property is 

calculated from the original dataset. It is possible to generate multiple Scope quadruples from 

one object dataset. For example, a traffic accident needs finer spatial-temporal granularity data 

recording at the center areas of the accident, to capture the traffic changes in real-time. Roads far 

away from the accident favor coarser granularities, as they are less correlated with the accident. 
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The algorithms in the Scope quadruple projection needs to be adjusted with respect to the 

research question.  

For continuous field data, the combination of geospatial scaling operations (i.e., 

granularity and extent transformation) and Gaussian filtering is employed in our implementation. 

Field data always comes with explicit granularities and extents. Therefore, geospatial scaling 

operations can generate numerous Scope quadruples with different granularities, extents, and 

time. The Gaussian filtering algorithm works with pre-defined analysis windows over the field 

(Liu et al., 2008) to determine the appropriate values of properties. The Scope quadruple 

projection of field data is illustrated in Figure 3-3 (B).  

We note the above implementation of the Scope quadruple projection is subject to the 

limitations (e.g., additional errors and information lose) of sampling/interpolation and Gaussian 

filtering algorithms (Prashanth and Shashidhara, 2009); advanced transformation methods can be 

incorporated (e.g., wavelet transformation {Li, Manjunath, and Mitra, 1995}) in a future study. 

Although the shapes of the grid cells are selected as rectangles in Figure 3-3, other tessellation 

methods (e.g., triangulation and hexagonization) also can be utilized.   

The Scope Set theoretically provides infinite Scope quadruples to represent scale in 

multiscale analysis. These quadruples are linked via the Scope quadruple projections. We use the 

combination of sampling/interpolation, geospatial scaling operations, and Gaussian filtering as 

an example to implement the Scope quadruple projection. The case study illustrates the use of 

Scope as a methodology to model scale, providing a theoretical and practical base for multiscale 

analysis.  
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3.4 Case Study in Multi-granularity/Multi-extent Road Classification 

To demonstrate how Scope can help multiscale analysis, we utilize a multi-granularity/multi-

extent road classification as the case study. In this case study, we select data entropy as the 

property to implement the Scope, due to its wide application in data variance representation 

(Batty, 1974). The Scope quadruple projection is implemented as the combination of Gaussian 

filtering and region quadtree decomposition (Shusterman and Feder, 1994).  

Road classification plays a critical role in transportation, urban planning, health 

geography, and disaster management. Classification represents a standard step in interpretation 

of remotely sensed images. The accuracy of road classification depends on both spatial 

granularity and extents. If the images containing roads are classified at small extents, some 

buildings might be mistakenly assigned the label “road” due to their similar spectral signatures 

and geometric attributes (Shackelford and Davis, 2003). If the spatial extent is too large, the 

diversity of road properties (e.g., width, length, material, and markers) may reduce the accuracy 

of the classification.  

We use MMCO datasets taken in downtown Montreal in 2007 (0.125m, RGB) for road 

classification in this case study. If the road classification is implemented at the large extents in 

downtown Montreal (e.g., one piece of the data shown in Figure 3-4 (A)) then the result is too 

messy (e.g., Figure 3-4 (B) is the classification result of Figure 3-4 (A)). This messy result is 

caused by the difference of the road (e.g., width, length, marks, and pavement), shadows, cars, 

trees, buildings, and paved grounds. Running the road classification at smaller extents seems a 

better choice. As shown in Figure 3-4 (C) and (D), the road blocks are extracted at a smaller 

spatial extent (i.e., one sixty-fourth of Figure 3-4 (A)), which requires the post-processing to 

combine the blocks as the roads after the classification. Figure 3-4 (C) depicts road classification 
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at 0.125m granularity, in which the accuracy of the classification is deteriorated by the mixture 

of noisy information, such as cars, trees, and shadows. Figure 3-4 (D) presents the classification 

at coarser granularity (4m), which is less impacted by the noise but obfuscates some roads and 

buildings. This challenge leaves a great opportunity for Scope to clarify the correlation between 

spatial granularities and extents.  

In this case study, we implement the classification as a combination of the normalized 

graph-cut image segmentation (Shi and Malik, 2000) and the support vector machine 

classification (Song and Civco, 2004), due to their high popularity in RS image analysis. The 

shadow and vehicle removal algorithms (Pohl and Van Genderen, 1998) are employed to the 

MMCO data before the classification, to reduce the impact of noisy information.  
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Figure 3-4. Road Classification with Scope. (A) 0.125m MMCO images recorded at downtown 

Montreal, 2007 (Communauté métropolitaine de Montréal, 2007) covering 774400m2; (B) road 

classification using graph-cut segmentation-based classification; (C) road classification at 

smaller extent (12100 m2); and (D) road classification with (C) after Gaussian filtering to change 

the spatial granularity to 4m.  

In this case study, we apply an entropy algorithm as the property. The concept of entropy 

is first defined as a mathematical measurement for information variance (Lin, 1991),  

                                 𝐻 = − ∑ 𝑃(𝑠𝑖) ln 𝑃(𝑠𝑖)
𝑛
𝑖=1                                                         (3.1) 

where S is the system with n finite number of possible events Si, and 𝑃(𝑠𝑖) represents the 

possibility of the event Si. The entropy value of homogenous data is zero and a higher entropy 

value indicates more heterogeneity.  

In this case study, the spatial granularity scaling method is the Gaussian filtering and the 

extent scaling is the region quadtree decomposition. To lower the entropy value, the two spatial 

scaling operations are conducted together at the beginning. When the value drops below a pre-



63 

 

defined threshold (100 for this case study), only the spatial granularity scaling (Gaussian 

filtering) is employed. This is because the spatial extent scaling changes entropy values more at 

the coarser spatial granularity than at the finer granularity (Wang et al., 2003). The implication of 

this on our results is the larger entropy difference between S1 and S2 (18.51) than the value 

between S2 and S3 (18.14), as shown in Table 3-1. Then the accuracy of the road classification is 

obtained via 500 ground-truthing control points and listed in Table 3-1.   

The Scope Set is implemented as a collection of Scope quadruples. Since only one time is 

involved in this case study, we encode them as tuples: <Granularity, Extent, Property>, in which 

the property is calculated as the average entropy over all the tiles. As shown in Table 3-1, the 

average entropy is calculated as Entropy ∗  log(Extent/Granularity) , in which the Entropy is 

obtained from equation (3.1) and normalized by the factor log(Extent/Granularity). The 

normalization is implemented to distinguish data with smaller extent and higher entropy value 

because one covers larger extent but presents lower entropy.  
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Table 3-1. Road Classification with Scope 

Scope 

Quadruple 

Granularity 

(m) 

Tile 

Extent 

(m2) 

Mean (Entropy* 

log(Extent/Granularity)) 

for Tiles 

Scope 

Quadruple 

Projection  

 Overall 

Accuracy 

(%)1 

S1 0.13 774400 118.85 <S1,S2,Quadtree 

Decomposition 

+ Gaussian 

Filtering> 

 66.1 

S2 0.25 193600 100.34 <S2,S3,Quadtree 

Decomposition 

+ Gaussian 

Filtering> 

 72.1 

S3 0.50 48400  82.20 <S3,S4, 

Gaussian 

Filtering> 

 77.9 

S4 1.00 48400  73.92 <S4,S5, 

Gaussian 

Filtering> 

 81.0 

S5 2.00 48400  67.45 <S5,S6, 

Gaussian 

Filtering> 

 86.7 

S6 4.00 48400  59.16 N/A  81.3 
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From Table 3-1, the accuracy of road classification increases along with the spatial 

granularity up-scaling until the spatial1 granularity reaches 4m. The quad-tree decomposition is 

only employed at Scope quadruples S1 and S2. If the spatial decomposition is employed for the 

rest of the Scope Set, the problems in Figure 3-4 (D) will happen. The highest accuracy appears 

at S5, when most of the noisy information (cars and trees) become nearly negligible at 2m 

granularity. The 2m granularity and 48400m2 extent combination may not be the optimal 

solution for road classification, as Scope Set provides infinite granularity and extent 

combinations. But this case study has illustrated the effectiveness of Scope in multi-

granularity/multi-extent analysis.  

3.5 Summary 

In this paper, we create the concept of Scope to clarify the complex meanings of scale in 

geospatial analysis, and track different kinds of scale transformations. Scope is a scale model that 

integrates granularity, extent, time, and property. Time is treated as an independent element. 

Because time in geography is much more than the linear model, and its scaling presents 

considerable more diversity than the combination of temporal granularities and extents. Thus, 

time is always by apriority spatial-temporal models (Yuan, 1996). Property stands for the 

metadata as the data quality and structural descriptors, and the possible actions we can take with 

the dataset. Property can capture the scaling effect of the other three elements, such as the spatial 

granularity up/down-sampling and spatial extent decomposition/recomposition.  

                                                 

1 We note there are granularity mismatches between the ground truth data and the classification results, so we apply 

the spatial granularity scaling to the ground truth data as well. 
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The concept of Scope is built on the generic field model and scale space theory, and 

Scope is composed of three parts—the Scope quadruple, Scope Set, and the Scope quadruple 

projection. The Scope Set consists of numerous Scope quadruples, as <granularity, extent, time, 

property>, to represent data with different scales. The Scope quadruple projection represents the 

transformation among Scope quadruples via the sampling/interpolation and Gaussian filtering 

approaches in this paper. We note that other methods can be employed as well for the quadruple 

projection. The case study verifies the effectiveness of Scope in tracking the scale changes for 

the multi-granularity/multi-extent analyses and improves the accuracy of road classification.  

The main contribution of the Scope model is to provide the clarification and traceability 

for scale meanings and scaling operations.  Moreover, Scope quadruple and Scope quadruple 

projection build the theoretical base for semantic modelling of various scaling operations, which 

can further boost the research of scale and multiscale analysis in GIScience.  

In our future study, we plan to investigate the Scope set as an Abelian Group for scale 

modelling (Frank, 1999), which will further tighten the combination of Scale Set and the 

transformations of the quadruples in the Scope Set. The Abelian Group defines the commutative 

operations on group elements, and acts as the theoretical foundation for modelling the 

relationship among the spatial-temporal scale transformations and Scope quadruples. A Resource 

Description Framework implementation (Cook et al., 1996) will be developed for modelling the 

relationship among the Scope quadruple projections, to facilitate the query, select, and 

applications of various scaling operations. Different data structures can also be integrated to 

enhance the storage and retrieval of Scope quadruple and Scope quadruple projections, such as 

the Hybrid Spatio-Temporal Data Model and Structure (Sengupta and Yan, 2004).  Although the 

Abelian Group enables the merge of Scope Set and Scope quadruple projection, how to choose 
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the appropriate scaling operations remains an open research question because not all spatial-

temporal scale transformations are commutative among the Scope quadruples.  
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Connecting Statement: Handling Big Data Volume via the 

Decomposition/Recomposition Framework 

The concept of Scope has been delineated in Chapter 3. In Section 3.4, my case study indicated 

that Scope can efficiently track geospatial scaling operations in road classification. Since big data 

is routinely decomposed into smaller chunks for distributed computing, Scope becomes a useful 

method for handling scale in big data decomposition.  

Decomposition alone is not enough for the scale challenges in big data because the 

distributed LUCC results need to be re-combined to generate final results. Therefore, I propose 

the decomposition/recomposition framework for big data analysis in the distributed computing 

environment in Chapter 4. Chapter 4 presents the decomposition/recomposition framework for 

big dataflow management on MapReduce and also highlights the artificial border challenge that 

is caused by the decomposition. Fortunately, this challenge is handled by the Recomposition 

process I cover in Chapter 4. The case study with big image segmentation proves the success of 

the decomposition/recomposition framework in big data volume handling.  

Chapter 4 was published on Annals of Geographical Information Science, 2014. The 

manuscript contained in this chapter was co-authored with my supervisors, Prof. Renée Sieber, 

and Prof. Margaret Kalacska. I am the primary author and contributed the 

decomposition/recomposition framework and the Geospatial CyberInfrastructure-based 

implementation. Prof. Sieber noticed the artificial border challenge and helped me in writing this 

article. Prof. Kalacska gave me advice in image segmentation and also helped in writing this 

article.   
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Chapter 4. The Challenges of Image Segmentation in Big Remotely 

Sensed Imagery Data 

Abstract 

With the increase in spatial, spectral and temporal resolutions of Earth observing systems, 

geospatial and remote sensing (RS) image research is shifting towards a big data paradigm. One 

of the most important challenges in RS big data is image segmentation, which is defined as a 

process to group pixels together by a predefined criteria. Image segmentation allows for the 

extraction of features such as roads or habitats or buildings. Image segmentation is rendered 

more difficult with big data because the computing power on single platforms cannot keep pace 

with the size and velocity of new data. Big data sets must be decomposed for the analysis in 

distributed and parallel computing platforms. Decomposition through techniques like slicing by 

spatial extent obscures the geometric and topological information in geospatial data, for example 

generating fake artefacts. To address these challenges, we propose a geospatial 

cyberinfrastructure (GCI) that coordinates cloud computing, MapReduce framework, image 

segmentation algorithms, a spatial extent splitting method and a recomposing technique using 

moving window. This GCI is evaluated on cloud computing to identify features in a 312.07 GB 

high-resolution colour aerial photo with Hadoop. K-means-based image segmentation is selected 

as the case study. We deploy the architecture in private cloud and public cloud implementation, 

respectively. The results demonstrate the benefits of the decomposing and recomposing methods 

in segmenting images, removing fake artefacts and reducing information distortion. More 

general problems in big data are revealed, among them I/O problems, particularly in the amount 

of preprocessing and post-processing that will be required in any analysis of big imagery data. 

We conclude with implications for scalability and suggestions to speed up decomposition and 

recomposition. 
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Keywords: big data; image segmentation; geospatial cyberinfrastructure; spatial feature 

extraction; cloud computing; MapReduce; decomposition; recomposition.  

4.1 Introduction 

As an important type of raster data often used with GIS (Geographic Information Systems), 

remote sensing (RS) imagery provides the standard approach to Earth observation and geospatial 

knowledge (Richards, 2013). However, RS technologies are rapidly changing, with increases in 

the spatial, spectral and temporal resolutions of the imagery. For example, the IKONOS 

(DigitalGlobe Inc., Longmont, CO, USA) sensor provides 1-m spatial resolution panchromatic 

images with 3 days revisiting interval (Richards 2013). These enhanced resolutions reveal 

detailed spatio-temporal information about landscape usage and changes. At the same time, they 

also result in large volumes of data. This leads to a ‘big data’ challenge in RS and GIScience 

research. 

The phenomenon of big data does not only pose substantial challenges in data 

management, but also with the corresponding data analysis and the provisioning of computing 

resources. Because the expanding volume of imagery data exceeds the memory size of most 

computers, new computing technologies are being investigated as part of GCI (Geospatial 

CyberInfrastructure) research (Yang et al., 2010). These new GCIs can provide parallel 

computing services for geospatial data analysis with a large body of computing resources, 

including grid computing (Wang and Liu 2009), Compute Unified Device Architecture (Xia, 

Kuang, and Li, 2011) and cloud computing (Yang et al., 2011). 

We are particularly interested in cloud computing, which has become the standard 

platform for analyzing big data (Yang et al., 2013). Cloud computing is defined as a coordinated 

remote servers accessible via the Internet. Cloud computing has attracted considerable research 
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interest in GIScience because it provides a very large computing resource with on-demand 

provisioning; this type of provisioning offers efficiencies in resource allocation (i.e., users 

purchase hardware time as a service and only as needed); much of the big data already “lives” in 

the cloud; and numerous server-side tools have been migrated to the cloud. Our GCI coordinates 

cloud computing with a MapReduce framework to address the challenge of big data in RS 

research. MapReduce is an approach to manage the distribution of large scale computing tasks 

(Dean and Ghemawat, 2008), which has been studied for geospatial data analysis in RS and GIS 

(Almeer, 2012).  

This paper is organized as following. Section 4.2 introduces the background of big data 

and related works about image segmentation in RS, and we also present the specific challenges 

brought by large RS imagery datasets in this section. We propose a four-layered image 

segmentation GCI in Section 4.3.  We then test this GCI in Section 4.4 with a high resolution 

color aerial photo (50cm spatial resolution and 312.07 GB) using a k-means image segmentation 

algorithm. We choose k-means because it is one of the most popular clustering algorithms and 

has seen broad application across numerous geospatial domains (Jain, 2010). Conclusions and 

future works are described in Section 4.5. The contribution of this paper is three-fold: (1) we 

delineate issues in RS image segmentation specific to big data; (2) we propose GCI that 

integrates image segmentation algorithms and advanced computing techniques; and (3) we 

present guidelines for deciding between private/public cloud computing platforms for big RS 

data analysis. 
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4.2 Literature Review 

4.2.1 Spatial Information, Features and Image Segmentation 

Spatial information, represented as different spatial features, plays a pivotal role in RS 

knowledge discovery (Liu and Buhe, 2000). Various spatial features in RS images include edge, 

texture, interest points and shapes. Feature extraction algorithms have been used to extract 

different spatial objects of interest (Ren and Ma, 2010). Among these, image segmentations are 

among the most widely applied in classification (Mather and Tso, 2010), object based image 

analysis (Blaschke, 2010), and change detection studies (Radke et al. 2005). Image segmentation 

is the process of clustering the image into multiple groups of pixels (also called segments) based 

on similarity criteria (e.g., texture and digital number). We use one of the image segmentation 

algorithms in this case study (k-means) to illustrate the workflow of our GCI.  

Image segmentation algorithms have been studied in RS for decades and have been 

extended with different computing techniques. For example, Gruia et al. (2007) customize Fuzzy 

c-means clustering algorithm for grid computing to segment MODIS (Moderate Resolution 

Imaging Spectroradiometer) satellite images. They report speedup and efficiency improvements 

using grid computing and they point out the importance of joining separate clustering results 

from each computing node. Due to the small size of their testing data (65MB), their works 

focuses on the computational intensity of image segmentation. 

A number of researchers focus on distributed k-means algorithm for image segmentation. 

Backer et al. (2013) implement parallel k-means image segmentation on a GPU (Graphics 

Processing Unit). They find the massive parallel processing capacity of GPUs significantly 

exceeds that of CPUs. They did need to customize the k-means so that it could be parallelized 

and their approach assumes all the data is already loaded into GPU memory. Liu and Cheng 
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(2012) present parallel k-means algorithm with cloud computing. They point out that the relation 

between computational time growth and data volume increasing is not obvious, which further 

confirms the potential of cloud computing for big RS data. Lv et al. (2010) apply the algorithms 

proposed by Zhao, Ma, and He (2009) to segment large remote sensing imagery datasets. These 

works also emphasizes the computational intensity, in this case of k-means image segmentation. 

Our research begins to shift the focus from, for example, computational intensity to distributing, 

managing and analyzing big data. 

4.2.2 The Challenge of Big Data in RS Image Segmentation  

Handling big data has become increasingly important with the rapid changes in data acquisition 

approaches, ranging from business transaction records to real-time traffic surveillance datasets 

(Manyika et al., 2011). The quality of data has also been enhanced by new technologies, such as 

the high resolution satellite sensing systems like Ikonos, QuickBird, WorldView and GeoEye 

(Richards, 2013). It is widely accepted to describe big data by the combination of the “4Vs”: 

volume (large volume size), variety (multiple data types), velocity (data is produced at fast 

speed) and veracity (accuracy of data becomes more important) (Gupta et al., 2012). Researchers 

already have begun to study big RS data, as evinced by papers on in fields like forestry, land use 

change, ecology (Hampton et al., 2013; Harrison, 2013; Michael and Miller, 2013). 

Big RS imagery datasets offer an excellent example of the 4Vs. The large volume of big 

RS imagery datasets is caused by two factors: (1) the improvement of spatial and spectral 

resolutions of sensing instruments, and (2) the emergence of new sensing systems (Richards, 

2013). The first factor produces images with fine resolution conveying more detailed geospatial 

information; whereas, the second factor generates different resolutions and data formats. 

Therefore, an accurate overview of the big RS imagery is generally unavailable on many existing 



79 

 

computing platforms. For us, the variety of big RS imagery not only refers to various image 

types, but also to the large body of image analysis methods. We are receiving data with far 

greater frequency, consequently, high velocity can be interpreted as the high temporal resolution 

in new sensing systems, which enables the study of multi-temporal land use and land cover 

change detection (Lu et al., 2004). The veracity is characterized by the error and noisy 

information in big RS imagery, including sensing system errors, atmospheric impact, and noisy 

information introduced by data pre-processing (Lee et al., 1990).  

Big RS images differ from the other types of big data. As a typical raster data, 

information is not only contained in the digital values recorded in each band, but also its 

geospatial position and its position within the file. By contrast, the big data contributed by 

Twitter (Bughin et al., 2010) can be stored in separate files and, with the exception of time, the 

order of Twitter records has a limited impact on the results of data mining (Ediger et al., 2010).  

Big RS imagery differs from big Twitter data. Figure 4-1 shows (a) the spectral signature 

of one sampling point in the parking ground and (c) the spectral signature of one sampling point 

from the highway. They display quite similar results because both parking ground and highway 

are cement products. In the spatial context, it is the topological and geometric information of 

these pixels help us classify “road” and “parking”, not individual pixel values. With big RS 

imagery, the topological and geometric information becomes more complicated and should be 

handled carefully, for feature level image analysis.  
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Figure 4-1. (a) Spectral signature of one sampling point on the parking ground; (b) Airborne 

Visible / Infrared Imaging Spectrometer image; (c) Spectral signature of one sampling point on 

the highway; (d) A fake “road” generated by image splitting. 

 

Because the volume of big data exceeds the memory of most computers, splitting the big 

data into small chunks or use of sampling methods offers an effective way to handle the data 

(Cohen et al., 2009). While fine for some types of big data (e.g., Twitter), for big RS imagery 

they may change the original geometric and topological information. Sampling may be highly 

biased because it breaks the raster cell structure and relationship between pixels is altered.  

A significant challenge lies in segmenting images across split image chunks. It is akin to 

“can’t see the forest for the trees.” Figure 4-2 shows the separate image segmentation process 

with image chunks; in which features are extracted locally with significant global information 

lose.  Topological and geometric information in the original big RS image is inevitably altered in 
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the splitting processing as data is distributed over numerous computing nodes. These challenges 

will become more important as data grows in size, speed, and variety. 

One of the outcomes of splitting the image is the creation of artificial borders. These are 

borders that do not exist in real life. For example, artificial borders might “cut” a narrow strip 

from the parking ground in Figure 4-1 (b), and label it as “road”. As we show in Figure 4-1 (d), a 

fake “road” is created by the splitting process. Compared with other types of big data, big RS 

imagery needs to be processed with the goal of preserving as much original geometric and 

topological information as possible.  

 

Figure 4-2. Splitting Figure 4-1 (b) into 2×2 chunks and segmenting each chunk, the image 

segmentation is generated by eCognition®, with scale=50 and color=0.5. 

 

In Figure 4-2, most of the highways are segmented into several independent features due 

to the artificial borders introduced by image splitting. The artificial borders change the geometric 
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information of highways and bring additional errors into the following image analysis process 

(e.g., classification). In Figure 4-2, the artificial borders lead to nine additional road segments, 

because local processing with each image chunk cannot distinguish between the real and 

artificial borders. We name this type of challenge as artificial border challenge in big RS 

imagery. In this paper, we remove these false segments caused by the artificial border challenge 

using a decomposition/recomposition based workflow management framework. The details of 

artificial border challenge are summarized in Table 4-1. These are a collection of five challenges 

in which image splitting causes fake features in image segmentation (Figure 4-2). All these 

challenges grow with big data and will likely see greater attention in GIS and RS research. The 

artificial border challenge covers the concept of both vector object border in GIS and the image 

object border in RS. Thus this challenge requires a closer integration of GIS and RS research for 

big data handling.  
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Table 4-1. Artificial Border Challenge 

Challenge Name Explanation Example 

Edge Ambiguity Some edges or 

features are treated 

as the image 

border by mistake 

A line of fence at the 

image chunk border 

disappears in image 

segmentation process 

because it is treated as 

image border 

Feature Bisection Dividing one 

feature into two or 

more features 

Cutting a road into two 

road segments 

Fake Feature 

Creation 

Create two or more 

features from 

original feature  

Parallel cutting of one 

road into two distinct road 

segments 

Feature 

Transformation 

Change the type of 

the original feature 

Segmenting parts of the 

parking lot into road 

segment and smaller 

parking lot (Figure 2-2) 

Feature Distortion Change the 

properties of the 

original feature 

Generating a parking lot 

smaller than its actual size 

in original RS image 

  

4.2.3 Addressing Big Data through GCIs 

Although there is very little work about using GCI for RS image analysis, GCI has 

already been proven as an effective solution in big data processing (Wright and Wang, 2011). 

Research in GCIs spans numerous topics. These include the transformation of GCI from a 
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technology-centered to a human-centered paradigm (Díaz et al., 2011), workflow optimization in 

geospatial data analysis (Zhang and Tsou 2009), semantic web with semantic knowledge system 

(Sieber et al., 2011), interfaces for public sciences (Ramamurthy, 2006), and interactions among 

GCIs (Yang and Raskin, 2009). Several researchers are adapting GCIs for specific research 

problems (Yang et al. 2011). For example, Liang et al. (2010) build a GCI based on social 

networks and hybrid P2P (Peer-to-Peer) techniques to enable sharing and visualization of big 

environmental sensing datasets. Díaz et al. (2011) present a GCI architecture for large user 

generated information management and semi-automatic web service built-up using these big 

data. The emergent computing technologies in current GCI research have been summarized by 

Yang et al. (2010), among which cloud computing and MapReduce are highlighted for managing 

the exponentially growing geospatial datasets. 

Rajasekar et al. (2010) highlights the need to utilize GCI in RS research to manage the 

increasing data volume, and Xue and Diao (2010) confirm the pivotal role GCI plays in 

analyzing big RS datasets. However, GCIs have not been studied systematically for big RS 

image segmentation. Big RS imagery datasets requires scalable data management, as the 

response to the volume and velocity. Like vector-based GCIs, a raster based GCI needs to 

geometry and topology. Concerning issues in variety, a single image segmentation algorithm 

may be insufficient to cover different types of data. Therefore, a broad range of image 

segmentation algorithms should be implementable. Wherever possible, new flexible computing 

techniques should be utilized.  

One flexible technique is utilization of the cloud for GCIs, which already have improved 

performance in handling big geospatial data. For example, the Google App Engine (Zahariev, 

2009) is utilized to index and retrieve large spatial image data online (Wang et al., 2009). Li et 
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al. (2010) build a new GCI based on the Microsoft Azure platform to retrieve and re-project 

MODIS satellite data. Their cloud computing implementation is able to generate a 90 times 

speedup over a single desktop implementation. Moreover, cloud computing can free research 

scientist from the onerous testbed building and system administration, enabling them to focus on 

the scientific problem-solving (Yang et al. 2011). The cloud computing special issue of the 

International Journal of Digital Earth (2013) further reveals the strength of cloud computing in 

processing big geospatial data and summarizes the wide application of cloud computing based 

GCI in geospatial research (Yang et al. 2013).  

MapReduce also has been shown to be valuable for image analysis. Generally, there are 

two phases in MapReduce: the map phase and the reduce phase. The map phase splits the 

original datasets into a number of key/value pairs and executes data analysis algorithms with the 

generated key/value pairs. The reduce phase takes the output from the map phase and combines 

them to form the final results. MapReduce monitors the execution of all tasks; failed tasks are 

automatically rescheduled on other computing nodes (Dean and Ghemawat 2008). Golpayegani 

and Halem (2009) test MapReduce with AIRS (Atmospheric Infrared Sounder) images for 

gridding problem solving, which showed MapReduce is efficient in processing large spaceborne 

RS images. Zhao et al. (2009) develop parallel k-means algorithm with MapReduce. Previous k-

means could run only on one computer; they extend it so the analysis could be distributed 

alongside the data. Lv et al. (2010) apply the algorithms proposed by Zhao et al. (2009) to 

segment large RS imagery datasets. This further emphasizes the important role MapReduce plays 

in RS research. However, these authors have not explored all the implications of MapReduce 

(e.g., the creation of artificial borders when data is distributed) and they did not explicate 

computing resource provisioning needs for big data (e.g., the leasing cost of the virtual machines, 

input/output issues in moving large data sets). We distinguish between image segmentation to 
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find features and image splitting to divide the image into manageable chunks, although there are 

interesting similarities between the two. 

4.3 Using GCI as A Solution for Image Segmentation in Big RS Imagery Data 

4.3.1 Architecture of the Image Segmentation GCI 

We propose a GCI that combines cloud computing, MapReduce parallel computing 

framework and RS image segmentation algorithms as a holistic solution for the challenges posed 

by big RS imagery data.  

 

Figure 4-3. GCI Architecture 

 

The architecture of our GCI is shown in Figure 4-3, which is composed of four layers 

(from bottom to top): cloud computing resource layer, resource management layer, workflow 

management layer and the image segmentation process layer. The computing resource interface 

is designed to utilize both computing resources from private and public cloud computing 

providers, which also can be used to build a hybrid public/private cloud. The resource 

management layer is developed with Hadoop, which is an open source implementation of 
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MapReduce (Borthakur, 2007). This layer also includes HDFS (Hadoop Distributed File 

System), which is a scalable distributed storage system compatible with Hadoop computing 

framework. The workflow management layer is built on top of Eucalyptus open-source cloud 

computing manager, containing the decomposition and recomposition manager. Since image 

splitting plays such a large role in our image segmentation, the functionalities of the workflow 

management layer will be discussed in greater detail in Section 4.3.2. Finally, different RS image 

segmentation algorithms, corresponding pre-processing methods, and the accuracy assessment 

functions compose the image segmentation process layer. This layer will be discussed further in 

Section 4.3.3.  

4.3.2 The Workflow Management Layer 

The general workflow of segmenting big RS imagery is depicted in Figure 4-4, which 

consists of decomposition and recomposition steps. The decomposition manages the following 

functions: 

1) Split the big RS imagery into image chunks with spatial extent decomposition 

method; 

2) Schedule image segmentation algorithm in multiple parallel map tasks in Hadoop 

with each image chunk. The generated image segments overlays are cached in the 

local storage of each computing node, which will be fetched by the reduce task.  

The recomposition manager provides functionalities to: 

3) Collect the image segments from all map tasks; 

4) Execute our window based fake segment removing algorithm; 

5) Merge all the chunks to generate the holistic results. 
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Figure 4-4. Overview of the Decomposition/Recomposition Workflow Management Framework 

 

A detailed description of these steps are given is Figure 4-5. For each big RS imagery, 

only one reduce task is scheduled in Hadoop, which is granted the global view because the fake 

segments removal needs to access the global information. 
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Figure 4-5. Steps of Decomposition/Recomposition with MapReduce 

 

4.3.2.1 Spatial Extent Image Splitting Method 

The splitting of big RS imagery plays a pivotal role in decomposition process. On one 

hand, the splitting process should generate chunks of small spatial extent because small size can 

be better handled by map tasks (Dean and Ghemawat, 2008). However, a, smaller chunk size 

means a larger number of chunks, which impacts analysis. Liu et al. (2012) propose a pyramid 

partitioning algorithm to split the big RS imagery into small chunks with different levels of 
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resolutions for MapReduce processing. However, big RS imagery, which cannot be loaded into 

the memory of computers, prevents the generation of the pyramid hierarchy. And this method 

does not account for the memory sharing problem. Several map tasks might be scheduled on one 

computing node so frequent swapping operation caused by large image chunks will significantly 

deteriorate the computing performance.  

We propose a two-tiered spatial extent image splitting method layered onto a areal-based 

splitting method that generates image chunks with equal size. The areal-based splitting divides a 

big RS imagery into equal-area sub-rectangles (or squares) according to the abscissa and ordinate 

values (Maulik and Sarkar, 2012). The spatial extent image splitting method calculates the size 

of each image chunk as the lower bound of the GCD (greatest common divisor) of the average 

memory allocated to each map task and the data size allocated to each map task, as:  

                                                                            (4.1) 

N represents the total number of pixels in the big RS imagery; m is the number of map 

tasks; S is the memory size of each computing node; and k represents the number of computing 

nodes. We assume all the slave nodes have the same computing resource and image chunks are 

split equally (chunk size may vary at the border of big RS imagery). 
𝑁

𝑚
 is the largest chunk size 

that balances the load, whereas 
𝑆×𝑘

𝑚
 is the largest chunk size can be processed by each map task at 

the same time. This spatial extent splitting method ensures the load balancing and computing 

performance of each map task.  
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4.3.2.2 Moving Window-based Fake Segment Removal 

We utilize the moving window (Papps, 1992) based clustering method to remove the fake 

segments generated by the artificial splitting border. Some segments will be joined to reduce the 

overall number of segments; other segments will be removed because they reflect edges of image 

chunks (see red lines in Figure 4-6).  When the resulting segments are collected from the map 

tasks, segments that were extracted at the domain borders of each image chunk are marked. The 

size of the moving window is set to the same value as the image chunk. The image segmentation 

algorithm (called image clustering in Pham {2001}) is employed with the 8 neighbour chunks, as 

shown in Figure 4-6. This clustering process does not create any new segments, but tests whether 

the segments at the border of the image chunk can be merged with the neighbouring segments. 

Our test is comprised of using K-means algorithm a second time to identify new edge segments. 

The original segments are overlaid and subtracted. If pieces of segments remain then we know to 

combine the segments from adjoining chunks. This process continues until all the image chunks 

have been checked. In this way, the artificial border challenge is resolved. The pseudo code of 

the moving window-based fake segments removal algorithm is depicted in Appendix I.  

4.3.3 Image Segmentation Layer 

In our GCI, the image segmentation layer provides various algorithms for data handling 

and image segmentation, including the pre-processing methods (Meinel and Neubert 2004), 

accuracy assessment approaches (Möller, Lymburner, and Volk, 2007), as well as different 

image segmentation algorithms (e.g., fuzzy c-means, k-means, and region-growing method). The 

appropriate algorithms can be automatically deployed to the separate computing nodes, as 

“moving code to the data” mechanism of Hadoop.  
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After the image is split and distributed, standard RS pre-processing algorithms conducts 

atmospheric and radiometric correction. Then the image segmentation algorithms are executed. 

All pre-processing and image segmentation is done on the individual map computing nodes. 

When the image segmentation process is complete on the individual nodes, the workflow layer 

resumes control with the reduce phase. Control is returned to the image segmentation layer if an 

accuracy assessment (e.g., calibration) is required. 

 

Figure 4-6. Moving Window based Segment Merging Process 

 

4.4 Evaluation of the GCI for Image Segmentation of Big RS Imagery 

4.4.1 Image Segmentation in Two Deployments  

We utilize the GCI as an approach to handle big RS imagery and to conduct image 

segmentation. To evaluate the architecture, we used a 312.07GB RGB aerial photo mosaic (60 

cm, taken at Costa Rica 2004). The image segmentation algorithm we choose is k-means based 

image segmentation (Ray and Turi, 1999), due to its popularity and robust computational 

complexity. The splitting method is our spatial extent splitting methods in Section 4.3.2.1, and 

artificial borders and corresponding fake segments are removed with our moving window based 

approach in Section 4.3.2.2. Although we choose k-means image segmentation algorithm, other 

types of image segmentation can be deployed as well.  
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We evaluated our GCI with two different deployments, using private and public cloud. 

We chose two deployments as it reflects the realities of modern implementations, such as 

resource restraints of researchers (e.g., cost of hardware and software). To eliminate the 

difference between public and private cloud, we setup the VMs with the same configuration, 

using Eucalyptus and Amazon EC2. We choose Eucalyptus to build the private cloud because it 

provides the same interface as Amazon EC2. In this way, we can create virtual machine (VM) 

instances with negligible difference between the private and public cloud within our GCI. 

Hadoop 1.0.0 version is selected as the implementation of MapReduce, which is installed on 

VMs with CentOS 6.4 as the operating system. The detailed information about our testbed is 

listed in Table 4-2. The physical computing resource refers to the hardware configuration, while 

the virtual resource is the configuration of VMs (the information of physical machines from 

Amazon EC2 at running time cannot be obtained). 

In these two different deployments, 10 map VMs and 1 reduce VM are utilized 

respectively. After the testing image is uploaded to HDPS, approximate 500MB image chunks 

are created by our spatial extent splitting method. Then k-means image segmentation is 

conducted in map VMs and moving window based segment merging algorithm is schedule in the 

single reduce VM. The computation time and cost of the two deployments are delineated in 

Table 4-3 and 4-4, respectively. 
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Table 4-2. Details of the Two Testbeds  

 Private Cloud Public Cloud 

Physical CPU Four Intel® six-core XEON 

E5-2620 2.0 GH   

N/A 

Virtual CPU One for map VM and four 

for reduce VM (One 

VCPU= 2.0 GHz 2007 

Xeon processor) 

One for map VM and four 

for reduce VM (One 

VCPU= 2.0 GHz 2007 

Xeon processor) 

Physical Memory 64 GB N/A 

Virtual Memory 3.75 GB for map VM and 

15 GB for reduce VM 

3.75 GB for map VM and 

15 GB for reduce VM 

Physical Network 1 Gbpbs N/A 

Virtual Network 1 Gbpbs for all VMs Medium for map VM and 

high for reduce VM 

Physical Storage 4 TB N/A 

Virtual Storage 410 GB for map VM and 

80GB for reduce VM 

410 GB for map VM and 

80GB for reduce VM 

OS CentOS 6.4 CentOS 6.4 

VMs 10 map and 1 reduce VMs 10 map and 1 reduce VMs 
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Table 4-3. Cost of Image Segmentation Test in Amazon EC2 

 Time (Hours) Cost (Dollars) 

   

Data Uploading ~82.5  ~$28.5 

Decomposition Computing ~68.4 ~$8.21*10 

Recomposition Computing ~98.7 ~$44.42 

Result Downloading ~33.3 ~$3 

Total  ~282.9 ~$158.02 

 

Table 4-4. Cost of Image Segmentation Test in Eucalyptus Cloud 

 Time (Hours) Cost (Dollars) 

   

Data Uploading N/A  N/A 

Decomposition Computing ~61.27 N/A 

Recomposition Computing ~90.4 N/A 

Result Downloading N/A N/A 

Total  ~151.67 N/A 

 

By comparing the segment results before and after the recomposition process in Amazon 

EC2, we find 487 fewer segments. We also note that data transfer has taken approximately 41 

percent of the computation time and 20 percent of the total costs with public cloud computing. 
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In the Eucalyptus private cloud, there is no data upload and download, but only 

decomposition and recomposition processes. The decomposition requires 40 percent of the total 

computation time, while the recomposition requires the rest. There are operating costs with the 

testing with Amazon EC2; the hardware costs are front in the private cloud. We also compare the 

segmentation results before and after the recomposition process and find 379 segments have 

been removed.  

4.4.2 Discussion 

Big RS image segmentation is evaluated with two different deployments, using private 

and public cloud computing respectively. The results from map VMs are combined in reduce 

VM, with fake segments removed. As RS data increasing, artificial border challenges will 

become more important and attract more research interests. However, the bottleneck in the 

recomposition process cannot be neglected, which needs to be parallelized in future research.  

Our GCI combines advanced computing techniques with image segmentation algorithms 

successfully. It is proven to integrate different types of computing resource (e.g., public and 

private cloud) to provision image segmentation process, with corresponding resource 

management functionalities. Also MapReduce framework is embedded, to provide efficient big 

data processing. Moreover, the automatic deployment of various image segmentation algorithms, 

pre-processing and accuracy assessment methods can significantly ease big RS image 

segmentation. To extend our GCI, other parallel computing frameworks will be combined in 

future research, such as MPI (Message Passing Interface) and Apache Storm.  

By comparing Tables 4-3 and 4-4, it seems using Eucalyptus private cloud is a better 

choice for image segmentation in big RS imagery datasets due to less computation time and 

costs. But the cost of purchasing the hardware, setting up the private cloud, and maintaining the 
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cloud environment cannot be neglected. Moreover, the hardware resource in our private cloud is 

quite small compared with the public cloud, which limits the scalability. We cannot use more 

map tasks in our experiment because the hardware computing resource of the private cloud is not 

enough. Considering all the hidden costs, using public cloud for big RS imagery processing is 

more economical for short-term projects.  

On the other hand, big data challenges in RS research also resulted in the high I/O costs 

of both public and private. Research scientists may choose private cloud to avoid part of these 

costs, but moving big data across map and reduce VMs are still quite expensive. In the future 

research of cloud computing, big data I/O cost should be given special attention (Khajeh-

Hosseini et al., 2012; Kondo et al., 2009). The high cost of transferring data across clouds 

becomes an important factor restricts the utilization of cloud. To summarize, high I/O cost is a 

new bottleneck in the development of cloud computing and big data research.  

Using public cloud computing also involves security and privacy issues (Yu et al., 2010). 

Because different applications and services share the same computing resource pool in public 

cloud computing, we cannot guarantee there is no attack or information leaking. Considering the 

current development of cloud computing, private cloud is preferred for big RS image 

segmentation.  

4.5 Conclusion 

In this paper, we have discussed the specific characteristics of big RS imagery dataset, 

and pointed out challenges of image segmentation processing with the big data. A new GCI 

which coordinates cloud computing, MapReduce, and image segmentation algorithms is 

proposed, with decomposition/recomposition workflow management framework. The 

decomposition process splits the big RS imagery into small image chunks and processes them 
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with image segmentation algorithms in parallel as the map phase in MapReduce. The 

recomposition process collects extracted segments from each map task, and utilizes a moving 

window based segment merging method to remove the fake features generated by artificial 

borders, as the reduce phase. We evaluate the performance of our proposed GCI with both public 

cloud computing and private cloud computing implementation, which shows promising results.  

The bottleneck of our GCI mainly lies in two aspects: the first one is that reduce cannot 

be scheduled before the finish of all the map tasks; the second lies in the nonparallel execution of 

recomposition process. In the future, we will investigate how to extend recomposition as 

hierarchical recomposition process for parallelization. The workflow of MapReduce may further 

be optimized for big RS imagery datasets processing. Intensive I/O operation in our GCI should 

also be taken into account. We plan to explore parallel I/O framework and the compression 

method (Lee et al., 2012) to improve the performance of our GCI for image segmentation in big 

RS imagery datasets.In conclusion, using GCI to integrate cloud computing and MapReduce 

presents great opportunity for big RS imagery analysis. 
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Appendix I: Moving Window-based Fake Segments Removal 

Algorithm: Moving Window-based Fake Segments Removal (Xing et al., 2014) 

Input: image chunk array C, and corresponding segments overlay S 

Output: new image segments overlay S’ 

       for each image chunk ci in C: 

             load(corresponding si);  

             mark all the segment on the border of si and store them as B; 

             N=load(neighbors of ci); 

             A=merge(ci,N); 

             B’=cluster(A); 

             for each border segment bi in B: 

                   load(corresponding bi’ from B’);  

                   difference=compare(bi’,bi); 

                   if (difference > threshold) then 

                         si=si - bi; 

                         bi=merge(bi ,bi’); 

                         si=si + bi; 

            end for  

            i=i+1; 

            load(ci);  

        end for 

        S’=merge(s1’…sn’); 

End 
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Connecting Statement: Using Scale Invariant Image Features for LUCC 

Detection 

Chapter 4 handles the dataflow for big data analysis in the distributed environment. But we still 

need a new change detection algorithm that can help extract LUCC from imagery datasets with 

heterogeneous spatial granularities and extents. In Chapter 5, I invent the scale invariant LUCC 

detection algorithm. This algorithm identifies the change areas by comparing the scale invariant 

image features (i.e., Maximally Stable Extremal Region {MSER} and Scale Invariant Feature 

Transformation {SIFT}), to avoid the additional errors incurred by the image scaling operations. 

The decomposition is implemented with spatial entropy to roughly guarantee the similar number 

of image features in the tiles of image pairs. The recomposition removes the fake features 

generated due to the splitting borders. To some extent, the scale invariant LUCC detection 

method is developed based on decomposition/recomposition framework introduced in Chapter 4.  

This chapter has been submitted for publication in ISPRS Journal of Photogrammetry 

and Remote Sensing. The manuscript contained in this chapter was co-authored with my 

supervisor, Prof. Renée Sieber, and members of my doctoral supervisory committee including 

Prof. Terrence Caelli. I was the primary author and contributed the initial idea of combining 

SIFT and MSER for LUCC study, the implementation of the scale invariant LUCC detection 

method, and the case study at the Greater Montreal Area. Prof. Renée Sieber enhanced the 

workflow of the scale invariant LUCC detection method and the logic of this article. Prof. 

Terrence Caelli improved the change map smoothing algorithm and polished this paper.   
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Chapter 5. A Scale Invariant Change Detection Method for Land 

Use/Cover Change Research  

Abstract 

Land Use/Cover Change (LUCC) detection relies increasingly on comparing remote sensing 

images with different spatial and spectral scales. Based on scale invariant image analysis 

algorithms in computer vision, we propose a scale invariant LUCC detection method to identify 

changes from scale heterogeneous images. We test its scale invariance with a LUCC case study 

in Montreal, Canada, 2005-2012. 

Keywords: Land Use/Cover Change Detection; Scale Variance; Scale Invariant Feature 

Transformation; Maximally Stable Extremal Region; Hadoop; Cloud Computing. 

5.1. Introduction  

Big data provides us with numerous new approaches for LUCC research but it causes problems 

related big data’s large volume, complex variety, increasing velocity, and growing difficulties in 

veracity (Miller and Goodchild, 2015). Among the four “Vs” of big data, the predominant focus 

in LUCC research is on volume (e.g., Hampton et al., 2013). Our paper emphasizes the variety 

and specifically the various scales that are offered (i.e., different spatial, spectral, and temporal 

granularities and extents) (Goodchild, 2011). Because LUCC uses two or more datasets to 

identify changes, this introduces potential issues in scale variance (Woodcock and Strahler, 

1987).  

Ordinarily, to identify LUCC one interpolates or re-samples one or more datasets to 

homogenize spatial granularities (i.e., resolutions) and extents (we define the spatial scale as the 

combination of spatial granularity and extent). These spatial scaling operations can cause various 

problems like the generation of erroneous artifacts (Kwok and Sun, 1993), loss of information 
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(Sheikh and Bovik, 2006), and distortion of geographic entities (Prashanth et al., 2009). As a 

result of these spatial scaling operations, LUCC accuracy can be significantly degraded by scale 

variance (Olofsson et al., 2014) particularly if we wish to take advantage of the high resolution 

characteristic of big data. 

To avoid the drawbacks of using spatial interpolation or re-sampling techniques, research 

scientists have investigated novel solutions to handle the challenge of scale variance. For 

example, Chen et al. (2012) clustered pixels into image objects prior to comparison and then 

compared the geo-registered objects from datasets at two different scales. Singh (1989) bypassed 

the comparison of image pixels and explored a post-classification method to extract LUCC by 

comparing the class label maps. Both approaches assume that the scale variance in any LUCC 

would be minor and that geo-registration would be sufficient to compare image objects. Big data 

does not make these assumptions by creating new multi-scale challenges for the study of LUCC.  

Computer vision algorithms have also been explored to tackle the scale variance 

challenge (Radke et al., 2005). These algorithms are interesting because they focus on the 

differentiation of objects within datasets and do not rely on geo-registration as the objects may 

be moving image to image. An example of the utility of computer vision for LUCC can be found 

in Dellinger et al. (2014) who proposed using the Scale Invariant Feature Transformation (SIFT) 

(Lowe, 2004) approach to LUCC detection by extracting and comparing stable scale-points 

between two remotely sensed images and clustering changed points (i.e., points that failed to find 

their corresponding points on the other image) as LUCC regions. However, they did not test the 

scale invariance of SIFT on heterogeneous scale (i.e., granularity and extent) data.  

We propose a scale invariant LUCC detection method that draws from computer vision. 

This method integrates spatial decomposition, image feature (characteristics) comparison, 
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change map smoothing, and image LUCC labelling. We will show that: (1) LUCC can be 

extracted by comparing scale invariant image features directly without spatial interpolation or re-

sampling methods; (2) discrimination of scale invariant image features can be enhanced by the 

integration of extent, shape, and spectral information for LUCC; and (3) high performance 

computing can provide significant support in the scale invariant LUCC detection workflow.  

The rest of this paper is organized as follows. Section 5.2 enumerates the benefits and 

challenges of scale invariant algorithms derived from computer vision. Our scale invariant 

LUCC detection method is introduced in Section 5.3, which is based on the integration of SIFT 

and the Maximally Stable Extremal Region (MSER). Section 5.4 is a case study in the Greater 

Montreal Area from 2006-2012, which evaluates our scale invariant LUCC detection algorithm. 

This paper concludes in Section 5.5. 

5.2. Handling Scale Variance with Computer Vision Algorithms 

A large body of computer vision algorithms have been proposed to study scale variance. Scale 

space filtering is the most widely applied approach in computer vision for scale variance 

(Witkin, 1984). Scale space consists of multiple images that have been “filtered” from a single 

original image to generate specified granularities. Scale space filtering enables multi-granularity 

analysis to identify scale invariant image features (Huo et al., 2008). The filtering can be 

implemented by various algorithms, such as wavelet transformation (Celik, 2009), discrete 

cosine transformation (Merhav and Bhaskaran, 1996) and Gaussian convolution (Lowe, 2004). 

Image fusion is another important scale variance handling method in computer vision, which 

merges relevant information from at least two images at different spectral and spatial 

granularities to achieve higher granularities (Li et al., 1995). For example, image fusion with 
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multispectral IKONOS (4m, red, green, blue, and infra-red) and panchromatic (1m, grayscale) 

IKONOS images will generate a new image with 1m resolution and 4 bands of information.  

Perona and Malik (1990) and others offered good examples of how computer vision 

studies differ from LUCC. Although they (ibid.) explored changes in image object boundaries at 

different spatial granularities, their study was conducted with everyday object extents (e.g., 1 

mm at 1m2). LUCC works with larger extents and a broader range of granularities. Their study 

also was conducted with a single image but LUCC involves comparing images taken at different 

times. Their study considered changes in image object characteristics; however, LUCC functions 

at the image level and detects changes throughout the image extents. Ohn-Bar and Trivedi (2014) 

proposed a temporal interpolation algorithm to model the movement of human hand gestures. 

They studied a time span of deciseconds (100msec units or 0.1 of a second). The time span in 

LUCC datasets may be several years or decades. Non-linear temporal models (e.g., branch, 

cyclical, and isochronical models) may further complicate temporal scale variance (Jönsson and 

Eklundh 2004). Therefore, the scale variance in LUCC requires additional investigation before 

we can apply the computer vision algorithms. 

SIFT has attracted considerable research interest among computer vision researchers 

(Lowe, 2004). SIFT is an algorithm designed to detect, describe, and match key points across 

images. SIFT points are considered to be invariant to spatial granularity, rotation, affine 

distortion, translation, and illumination differences. SIFT points are extracted from the derived 

scale variant images in the scale space, as the minima/maxima of Difference-of-Gaussians 

(Bundy, and Wallen, 1984). Image matching, clustering, and pattern recognition are then 

performed by matching SIFT points using a variety of techniques. For example, Majumdar and 

Ward (2009) applied SIFT for facial recognition by comparing SIFT points with ones calculated 
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from existing databases. They challenged the discrimination power of SIFT to match SIFT points 

image-to-image. Yi, Zhiguo, and Yang (2008) improved accuracy in multi-spectral Remote 

Sensing (RS) image registration by fusing SIFT with spectral information. Their study 

highlighted the discriminative deficiency of an “off-the-shelf” SIFT, and the necessity of 

encoding spectral information into SIFT. A SIFT-based building and urban area detection 

method was proposed by Sirmacek and Unsalan (2009). They employed spatial information (i.e., 

the shapes of buildings) to improve matching of SIFT points across various IKONOS images. 

Additions of characteristics (also called features) like discrimination, spectral information, and 

shape have not yet been explored for SIFT in LUCC.  

5.2.1 Similarity of Land Use/Cover Entities 

Previous work has highlighted the deficiency of SIFT in distinguishing similar land use/cover 

entities, which mainly occur in the dense urban areas (Tuermer et al., 2013; Sirmacek and 

Unsalan, 2009). As an example, in dense urban areas, entities such as those composed of cement 

(e.g., buildings and roads) can be very similar to each other (Yang et al., 2003). In its default 

state, SIFT is challenged to adequately discriminate between them. As shown in Figure 5-1, two 

images are carefully geo-registered but SIFT matching fails to work well due to a lack of 

uniqueness in SIFT characteristics (e.g., for the corners of roads and buildings).  



112 

 

 

Figure 5-1. SIFT comparison using 10 key points extracted from left (0.11m Montreal Montreal 

Metropolitan Community Orthophotos / Orthophotographies {MMCO} images recorded at 

downtown Montreal, 2005 {Communauté métropolitaine de Montréal, 2005}) and right (0.13m 

MMCO recorded at downtown Montreal, 2007 {Communauté métropolitaine de Montréal, 

2007}) respectively. The two images are carefully geo-registered, but seven SIFT mismatches 

occur because urban structures are very similar to each other. Because SIFT uses 128-bit 

encoding, multiple pairs can have exactly the same values (illustrated with the same colour). 17 

point pairs here are counted 10 SIFT key point pairs (illustrated by different colours).  

5.2.2 Use of Shape Information  

Region shapes have been found to be sensitive to spatial granularity changes (Luo and Min, 

2010). Region shapes are defined by geometric and topological connections among positions and 

features. SIFT points can be used to compare images directly and mark the clusters of unmatched 

points as changed regions (Dellinger et al., 2014). Although change information can be 

represented by individual pixels, our approach encodes regional image features over multiple 

scales, which is more robust and more useful for LUCC. Regional image features not only 

provide more information about LUCC (e.g., change boundaries and areas) but also should prove 

more resistant to noisy information. As shown in Figure 5-2, numerous changed SIFT key points 

(red points) are caused by the noise or artifacts, such as shadows, vehicles, trees, and building 
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decorations. Few of these changed points represent actual LUCC. To overcome these issues, we 

can combine SIFT with regional image features, such as MSER (Matas et al., 2004).  

 

 

Figure 5-2. SIFT matching-based change detection. (A) upper left corner tile (one ninth) of left 

image in Figure 5-1; Figure (B) is the corresponding upper left corner tile (one ninth) of right 

image in Figure 5-1; in (C) and (D), green points stand for the unchanged SIFT key points, and 

the red ones represent the changed SIFT key points. Matching is implemented with BoofCV 

using the same parameters as Figure 5-1. 

5.2.3 Integration of Spectral Information 

SIFT is designed for grey scale images and does not consider spectral information. Since LUCC 

imagery datasets are acquired by increasing numbers of RS platforms, their spectral channels 

(bandwidth) can be diverse. Moreover, the spectral information provides recorded values at 

different wavelengths, which are widely utilized for land use/cover classification and entities 

recognition (Xu and Gong, 2007). LUCC also benefits from the multispectral and hyperspectral 

imagery datasets and can be used to further enhance the labeling of LUCC types (Singh, 1989). 

Default SIFT only considers the image contrast intensity, which may match different image 

points with similar image intensity.  
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As shown in Figure 5-1, several point changes among roads and buildings occur since 

they have very similar intensity values in terms of grey scale. Abdel-Hakim and Farag (2006) 

pointed out that the original SIFT algorithm provides reasonable geometric distinction for object 

recognition but its ability to account for spectra is inadequate – by definition. To address this 

limitation, they modified SIFT to use spectral information, which they argued can enhance SIFT 

comparison performance for image object recognition. In Figure 5-3 the modified SIFT, or 

Colour-SIFT (CSIFT), generates a fifteen percent improvement in matching. According to the 

authors (ibid.), SIFT with spectral information tends to extract more key points than the standard 

SIFT, which identifies more SIFT key points for LUCC detection and potentially lowers the risk 

of mismatching.  

 

Figure 5-3. Colour SIFT matching. (A) and (B) are the spectral SIFT matching of Figure 5-2 (A) 

and (B), respectively. I follow Abdel-Hakim and Farag (2006) using the Gaussian colour model 

for SIFT computation in BoofCV. 

5.3. A Scale Invariant LUCC Detection Method 

To address the three main challenges of using scale invariant image features in LUCC, we 

propose a scale invariant LUCC detection method, which compares images of differing spatial 

scales (i.e., granularity and extent) without altering the original images via interpolation/re-

sampling. The proposed method has five steps, each of which is described below. Due to the data 

size (again, ‘big data”), the first step is to decompose the image into small tiles using a spatial 
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entropy formulation. Second, MSER extracts scale invariant regions after which we perform a 

many-to-many matching operation to determine potential changed regions. Third, SIFT points 

are computed, many-to-many matched, and then combined with change-specific MSERs to 

detect LUCC regions where changes are not due to scale variance. The above steps can generate 

noisy LUCC information (e.g., vehicles, trees, and shadows). Consequently, fourth, a change 

map consistency method was used to smooth and so reduce irrelevant information (e.g., 

shadows, trees, and vehicles). Finally, a classification algorithm labels the changes in the change 

map tiles. The workflow of the scale invariant LUCC detection method is illustrated in Figure 5-

4.  
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Figure 5-4. Workflow of the scale invariant LUCC detection method. 

 

5.3.1 Data Decomposition 

To decompose the large images into smaller tiles, we use an entropy-based splitting method (Tan 

et al., 2007). The goal of this method is to evenly distribute the data variance across the 

decomposed image tiles (Uijlings, Smeulders, and Scha, 2009). If we simply decompose big RS 

imagery data into equal spatial extents then we may extract thousands of small MSERs at a fine 

granularity and only a few large MSERs from the coarse image. When we compare two images, 

this will generate thousands of changed regions that do not come from LUCC but from scale 
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variance. SIFT extraction depends on the pixel value variance―the spatial entropy. Key to this 

entropy-based image decomposition is to improve matching MSER and SIFT by normalizing 

numbers of SIFT points and MSERs across decomposed tiles.  

The spatial entropy method (Journel and Deutsch, 1993) is shown in equation (5.1). It 

extends the traditional entropy model, 𝐻 = − ∑ 𝑃𝑖 log2 𝑃𝑖
𝑛
𝑖=1 , by normalizing the extent relative 

to resolution (Batty, 1974). This ensures that smaller areas with higher variance will be 

decomposed similarly to larger areas with lower variance. Pi is the probability that the difference 

between two adjacent pixels is equal to i. Since the spatial granularity (resolution) is set, the 

extent will be adjusted to guarantee the same spatial entropy E among the tiles.   

𝐸 = (− ∑ 𝑃𝑖 log2 𝑃𝑖) ∗ (log2
𝐸𝑥𝑡𝑒𝑛𝑡

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
)𝑛

𝑖=1                                         (5.1) 

In practice, it is difficult to achieve a perfect match of E image to image, so we create a tolerance 

parameter called 𝜏, which is the maximum variance between the two entropy scores. Big data 

brings the fine spatial granularities that are much smaller than the size of the land use/cover 

entities, but any big data LUCC will invariably split some objects across multiple tiles.   

5.3.2 MSER Extraction and Matching 

Second, MSER generates regions and then attempts to match them. We have implemented a 

colour MSER extraction method (Forssén, 2007) which also integrates spectral information into 

the feature extraction process. The MSERs are generated from n iterations of a “growing-and-

merging” approach to segment an image tile into clusters of pixels (Zhu and Yuille, 1996). We 

systematically evaluated different thresholds in each iteration to test if the region boundaries 

remained stable (i.e., the boundary changes are smaller than the maximum variation value-

MaxVariation) (Matas et al., 2004). In each iteration, the difference between the thresholds needs 
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to be larger then a predefined value mmin. Regions are considered to be stable MSERs if they 

contain pixels larger than the minimum (MinArea). We further refine the matching potential with 

the RANdom SAmple Consensus (RANSAC) (Fischler and Bolles, 1981) algorithm, which is 

commonly used in combination with MSER (Cheng, et al., 2012). The parameters are usually 

tuned with training datasets or determined heuristically (Forssén, 2007).  
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Figure 5-5. MSER matching across image tiles. (A) The unchanged MSERs extracted from 

Image X1, 0.11m MMCO image tile acquired in 2005 at downtown Montreal. Figure (B), (C), 

(D), and (E) are the four of nine coarser granularity tiles with the highest MSER matching 

scores, using 0.13m MMCO acquired in 2007 (from Image X2). Unchanged MSER “mask” is 

depicted with green boundaries. 

 

MSER matching occurs in two steps. First, the thousands of MSERs in the finer 

granularity set of decomposed images tiles are successively compared to the thousands of 

MSERs in the coarser granularity set (Figure 5-5). The MSERs in each tile X1 at T1 is compared 

with each set of MSERs in a tile of X2 at T2. A likelihood of matching is stored for each MSER 

comparison. The four highest likely candidates from X2 are identified. Any unmatched MSERs 

are preliminarily identified as potential changed regions.  

5.3.3 SIFT Change Detection Algorithm 

We create a scale invariant method that combines MSER matching with SIFT matching to 

identify LUCC regions. MSER matching generates candidates but they may contain considerable 

“noisy” regions that do not represent actual LUCC regions. Relative to one MSER in an image 

with coarse granularity, a finer granularity image may generate several MSERs at the same geo-

referenced location. These MSERs are marked as changed regions because we need to cluster the 
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fine-granularity MSERs for the matching. SIFT is used inside the changed MSERs to refine 

LUCC detection. This process is composed of three steps: SIFT extraction, SIFT matching, and 

spatial regression voting.  

The SIFT extraction and feature matching are implemented using the CSIFT (Abdel-

Hakim and Farag, 2006) and RANSAC algorithm, respectively. First, the colour invariant 

gradient orientation histograms are calculated using the Gaussian color model, to generates the 

CSIFT descriptors (Fritz, Seifert, and Paletta, 2006). Then the RANSAC algorithm refines the 

Euclidean CSIFT matching. 

The spatial regression voting algorithm determines whether changed MSERs represent 

actual LUCC. This algorithm is inspired by a SIFT voting method proposed by Zamir and Shah 

(2010). For the n changed MSERs {𝑀1, 𝑀2, … 𝑀𝑛}, the center of gravity for each MSERs, 

{𝑔1, g, … 𝑔𝑛}, is calculated. We then separately compute the Euclidean distances from the center 

of gravity gi to p unchanged SIFT key points and q changed points inside the changed MSER Mi. 

The value of each SIFT key points S(i) is defined by: 

                𝑆(𝑖) = {
          1,             𝑖𝑓  𝑆(𝑖)  ∈ {𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑 𝑆𝐼𝐹𝑇}

−1,            𝑖𝑓 𝑆(𝑖)  ∈ {𝑐ℎ𝑎𝑛𝑔𝑒𝑑 𝑆𝐼𝐹𝑇}
                            (5.2) 

Voting in MSER Mj is expressed as: 

                                      𝑉(𝑗) = ∑ [
𝐷′(𝑗)

𝐷(𝑖,𝑗)

𝑝+𝑞
𝑖=1 ∗ 𝑆(𝑖)]                                                   (5.3) 

where D’(j) stands for the largest distance from the centre of gravity to the edge of MSER j. For 

each Mi, the value of D’(j) is constant. D(i,j) represents the individual Euclidean distance from 
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each SIFT point, i , to the center of gravity, gj. The value of V(j) determines if a changed MSER 

represents an actual LUCC region (V(j)<0) or a false changed region (V(j)>0).  

The more changed SIFT points there are at the center of a MSER, the more likely a 

MSER is considered to represent actual LUCC. The center area of MSER tends to be more stable 

over different levels of thresholding than the edge areas (Forssé and Lowe, 2007). Accordingly, 

MSER and SIFT are combined for matching to generate change maps. These change maps may 

contain jagged boundaries, discontinuous edges, isolated changed pixels, and “holes” in the 

middle of changed areas, which will need to be addressed.  

5.3.4 Change Map Smoothing 

We employ change map smoothing to remove noisy change information, based on the 

assumption that LUCC is more likely to occur in connected regions rather than at disjoint points 

(Ramankutty and Foley, 1999). Change map smoothing also serves to merge the many MSERs 

we over-generated. For example, we may have numerous tiny grass regions inside one large 

forest region. Change map smoothing will merge these grass regions into a forest, because the 

forest occupies the majority of that area.  

Change map smoothing is performed here using a Markov Random Field (MRF) 

grouping-smoothing process (Radke et al., 2005) as follows. According to the Hammersley-

Clifford theorem (Frank and Strauss, 1986), the joint probability distribution of any MRF can be 

written as a Gibbs distribution:  

                                     𝑃(𝑥) =
1

𝑍
∏ ∅𝑐(𝑥𝑐)𝑐∈𝐶                                                        (5.4) 

where x refers to the particular configuration of the values (intensities) of pixels in the image Xi 

{i=1,2,…,n} (we have n=2 for each image pair comparison) and Z stands for the normalizing 
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constant. C represents all the cliques in the given image. One clique c is a group of pixels whose 

members are mutual neighbours, and ∅𝑐(𝑥𝑐) is called the clique potential function, which helps 

define the energy function to be optimized.  

The acquired RS image Yi(x) can be viewed as a combination of a “true” ground image 

Xi(x) and noise Wi(x): 

                                    𝑌𝑖(𝑥) = 𝑋𝑖(𝑥) + 𝑊𝑖(𝑥)                                                            (5.5) 

Then the noise removal problem can be formulated as the minimization of Wi(x), or 

‖𝑌𝑖(𝑥) −𝑋𝑖(𝑥)‖2
2 using the Euclidean distance norm. It is widely accepted that Wi(x) follows the 

Gaussian distribution, so the clique potential function is 

                                  ∅𝑐(𝑥) = 𝑉(𝑥𝑖) = exp [− ∑
‖𝑦𝑖−𝑥𝑖‖2

2

2𝛿2
𝑚
𝑖=1 ]                                       (5.6) 

𝛿 stands for the deviation of Wi(x), and m is the number of pixels. The clique function V is 

presented as   

                               𝑉(𝑥𝑖, 𝑥𝑗) = 𝛾min (‖𝑥𝑖 −𝑥𝑗‖
2

2
, 𝛽)                                                (5.7) 

to model the clique neighbourhood, which penalizes the difference between adjacent nodes with 

threshold 𝛽 and the weight 𝛾. The total number of possible change map for Xi is K=2m. We 

define Hk(x)=1 to represent change at location x in the kth change map (𝑘 ∈ 𝐾), while Hk(x)=0 

means no-change at the same location. Given Hk, the change map Xi is encoded as 𝑋𝑖
1and 𝑋𝑖

0, 

which represent the change and no-change areas in Xi respectively. The conditional MRF model 

becomes 
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                   𝑃(𝑥𝑖 , 𝑥𝑗|𝐻𝑘) =
1

𝑍
{

exp [− ∑ 𝑉(𝑥𝑖)𝑐∈𝐶 −∑ 𝑉(𝑥𝑗)𝑐∈𝐶 ]

∑ exp [− ∑ 𝑉(𝑥𝑖
0,𝑥𝑗

0)𝑐∈𝐶 ]𝑋1
}                                 (5.8) 

The associated optimization problem as shown in (5.9) results in an optimized change map, with 

the energy function in (5.10) obtained by merging (5.6) and (5.7) into (5.8). 

              𝐻𝑘 = arg {𝑚𝑎𝑥𝐻𝑙
[∑ 𝑃(𝑦𝑖|𝑥𝑖)𝑃(𝑦𝑗|𝑥𝑗)𝑃(𝑥𝑖 , 𝑥𝑗|𝐻𝑙)𝑃(𝐻𝑙)𝑥𝑖,𝑥𝑗∈𝑋

]}                   (5.9) 

                              (5.10) 

Since simulated annealing optimization follows naturally from this MRF model 

(Kasetkasem and Varshney, 2002), it was used to generate the optimized change map. We begin 

with the original change map. We estimate its initial parameters and set the initial temperature 

for the simulated annealing. We then obtain a new change map from the previous change map, 

based on a Gibbs sampling procedure (Gerhard, 1995). Finally, we reduce the temperature with a 

predetermined schedule and repeat the prior step until there is a convergence or the maximal 

number of iterations is reached. 

Here the temperature is the control parameter of the randomness generator for change 

area boundaries. More details about this algorithm can be found in the pseudo code in Appendix 

III. In Figure 5-6, it is easy to notice the MRF-based change map smoothing method removes 

small vehicles, trees, and shadows. Some large vehicles and shadows still exist after the 

smoothing. Large shadow areas are difficult to verify without further reference datasets since 

shadows are very similar to the pavement within RGB colour space. It is possible to add other 

smoothing algorithms to remove large vehicles and shadows but that runs the risk of eliminating 
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actual LUCC. Removing shadows and vehicles with minimum impact on LUCC in dense urban 

area remains an ongoing challenge (Yin et al., 2015).  

 

 

Figure 5-6. Change map smoothing. (A) The change map generated by MSER and SIFT 

matching, by comparing 2005 0.11m MMCO and 2007 0.13m MMCO collected at downtown 

Montreal, and overlaid with the MMCO image tile in 2007; (B) The change map after the MRF-

based map smoothing process. We note some large vehicles and shadows still exist after 

smoothing. 

 

5.3.5 LUCC Labelling  

Labelling of LUCC is always challenging as it requires coordination between spatial and 

temporal scales. These methods require significant training data and continuous landscape 

monitoring. In the following empirical study, RS data within the Greater Montreal Area from 

2005-2012 were collected and the images were acquired in early July to avoid seasonal 

differences. Consistent with practice, standard land use or land cover labels are used (Ridd and 

Liu, 1998). For image classification, a Support Vector Machine (SVM) classifier is selected due 

to its high accuracy and low sensitivity to noisy data in RS research (Melgani and Bruzzone, 

2004). There are seven labels for the SVM classification: forest, grass, farmland, bare ground, 

water, roads and buildings. A subset of raw images is used for classifier training and then applied 
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to the rest of the imagery datasets. Finally, ground truth data is employed to evaluate the 

accuracy of the scale invariant LUCC detection method.  

5.4. Case Study in Montreal LUCC 

The scale invariant LUCC detection method was evaluated with the urban-rural LUCC detection 

in the Greater Montreal Area, Quebec, Canada, covering up to 4,163 km2 from 2005-2012. 

Details about the scale heterogeneous data were listed in Table 5-1. The 2005 MMCO data 

covered most urban areas in the City of Montreal. To obtain a seamless image for 2007, we used 

MMCO for the most areas of Montreal city and surroundings at 0.13m spatial granularity; some 

suburban and rural areas of the Greater Montreal Area were acquired at 0.3m spatial granularity. 

The computing resource provisioning was supplied by a hybrid cloud composed of one local 

controller (Intel® Core™ i7-6700 Processor, 32GB memory, and 2TB storage) and Virtual 

Machines (VMs) from the Microsoft Azure cloud computing platform. Four Azure Hadoop 

clusters were utilized for four cross-scale LUCC processes, with each cluster consisting of six 

VMs. Most of the code was developed in Java, based on Hadoop, BoofCV, and OpenIMAJ 

libraries. The detailed implementation of the workflow was illustrated in Figure 5-7.  

The scale invariant LUCC detection method was designed for image pair comparisons so 

there were four separate LUCC comparisons 2005-2006, 2006-2007, 2007-2009, and 2009-2012. 

Azure D3_V2 VM was chosen for the LUCC 2005-2006 process (4 cores and 14GB memory). 

Both 2006-2007 and 2007-2009 processes utilized six D5_V2 VMs (16 cores and 56GB 

memory). The 2009-2012 comparison was deployed on six D4_V2 nodes (8 cores and 28GB 

memory). The VM configurations were determined by the trade-off between the computing 

workload and costs (Zhu and Agrawal, 2010). Five hundred GB Azure online file storage 

(100GB for each year; 0.13m data was selected for most areas, and 0.3m data for the other areas, 
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for comparison of the two 2007 datasets with different granularities) was utilized for the datasets 

in Table 12. All the raw datasets were geo-referenced; consistent with computer vision, the tiles 

were not.  

For each LUCC comparison, the scale invariant LUCC detection workflow was deployed 

as five MapReduce steps. The first map step extracted the MSERs; whereas the MSER matching 

was conducted as a reduce step (Section 5.3.2). The second map step extracted SIFT; whereas 

the reduce computation removed “artificial” SIFT features (e.g., artificial SIFT features can be 

caused by tile borders, as the artificial border challenge in {Xing et al., 2014}). The third map 

step deployed the SIFT matching and the spatial regression voting algorithm (see Appendix II for 

the pseudo code for the spatial regression voting). The fourth map step handled change map 

smoothing (Section 5.3.4). There was no reduce steps for the third and fourth MapReduce 

process. The final map step scheduled the SVM classification (Section 5.3.5) and recombined the 

distributed results and output the final results to the local controller in its reduce step.  

 

Figure 5-7. Implementation of the scale invariant LUCC workflow for our Montreal urban-rural 

LUCC case study. 

 

                                                 

2 Although the scale invariant LUCC method is designed to solve the big data challenges in LUCC, the 

data in our case study is not so big (~500GB), due to the limited availability of high-resolution RS 

imagery data at the Schulich Library of McGill University.  
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Table 5-1. Details about datasets used in the Montreal urban-rural LUCC 

 Year  Platform Spatial 

Resolution (m) 

Spectral 

Resolution 

Spatial 

Extent 

(km2) 

Number of 

Image Files 

 2005  Montreal 

Metropolitan 

Community 

Orthophotos 

0.11 RGB 

(sharpened & 

fused) 

75.02 62 

 2006  DMTI 0.60 RGB 

(sharpened & 

fused) 

3528.00 50 

 2007  Montreal 

Metropolitan 

Community 

Orthophotos 

0.13 / 0.30 RGB 

(sharpened & 

fused) 

3718.75 / 

139.73 

2380/18 

 2009  DMTI 0.60 RGB 

(sharpened & 

fused) 

2257.92 32 

 2012  DMTI 0.60 RGB 

(sharpened & 

fused) 

4163.04 59 

 

The entropy-based spatial decomposition can be illustrated using MMCO 2005 and 

DMTI 2006 datasets. Each MMCO image file covered approximately 1.21 km2 area; whereas the 

DMTI image covered nearly 70.56 km2. The average of the first part of E, (H =

− ∑ 𝑃𝑖 log2 𝑃𝑖)𝑛
𝑖=1  of the entropy in (5.1) was 7.51 and 6.74 for MMCO 2005 and DMTI 2006, 
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respectively. Then |𝐸1 − 𝐸2| < 𝜏 became |7.51 ∗ 𝑙𝑜𝑔2𝑒𝑥𝑡𝑒𝑛𝑡1 − 6.74 ∗ 𝑙𝑜𝑔2𝑒𝑥𝑡𝑒𝑛𝑡2 +

18.64| < 10. We chose 𝜏 = 10. If H was the same for any image pair then the pixel difference 

between image tiles would be no more than 1024 (32*32), which appeared to provide a 

satisfactory tolerance for creating tile pairs that generated similar number of SIFT points and 

MSERs. We obtained 0.24 km2 and 1.88km2, as the extent of the decomposed image tiles, 

respectively. The spatial decomposition is depicted in Figure 8. Since the number of tiles must be 

an integer, 2*2 and 6*6 decomposition were selected in Figure 8 as the closest solution.  

 

Figure 5-8. The spatial entropy-based spatial decomposition. (A) 2*2 splitting of MMCO 

imagery data; and (B) 6*6 decomposition of DMTI dataset. 

 

To generate a larger number of smaller MSERs, the MinArea was set to 10 and 

MaxVariation equaled 0.2 for the MSER extraction in Section 5.3.2. Following Forssén (2007), 

the mmin parameter was set to 0.003 and the step parameter n was heuristically set to 200 

(because we prefer more iterations with smaller threshold difference for more but smaller 

MSERs). We favor generating a large number of small MSERs as opposed to a smaller number 

but bigger MSERs. This reduces the risk of missing LUCC, but may result in more noise. After 

MSERs were extracted from the decomposed tiles, we implemented MSER matching for the 

potential changed MSER identification. The MSER extraction and matching are implemented 
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with OpenIMAJ library (Hare, Samangooei, and Dupplaw, 2011). The pseudo code for MSER 

matching is listed in Appendix I. 

Tile comparison was a many-to-many process, which would create a problem in serial 

processing but MapReduce implementation turned it into a parallel one-to-many matching, based 

on the <key, value> data structure. Separate change maps were favored over fused change maps 

that can depict LUCC at a finer granularity but conceal the scale variance. Consequently there 

were two versions of change maps for the year 2006, 2007, and 2009, generated from the 

different LUCC comparisons.  

For both MSER and SIFT matching, the Euclidean distance ratio method was adopted for 

initial matching, with 1.5 as the threshold. RANSAC was then implemented by fitting a 

geometric model— an affine transform model was chosen —to the initial results (Pereira and 

Pun, 2000) since the matches of image features could be invariant to translations, rotations and 

scale changes. This process iteratively selected a random set of matches, estimated the geometric 

model from the selected random set and then tested the remaining matches against the learned 

model – always eliminating outliers. The method looped until the size of matches reached below 

50 percent of the initial match. The RANSAC matching was based on the OpenIMAJ library. 

The change map smoothing algorithm in Section 5.3.4 removed noisy change information (see 

Appendix III for the pseudo code). The parameters in the above steps were determined using the 

sampling strategy from the four LUCC processes. In each comparison, five image pairs (without 

decomposition) were sampled to calculate the parameters. The classification was developed on 

libSVM (Chang and Lin, 2011) with seven pre-defined labels in Section 5.3.5. The SVM training 

process was conducted according to Melgani and Bruzzone (2004) with image features of 
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MSERs, using brightness, shape, and texture. The SVM classifier training processes employed 

the same five image pairs.  

The results of the LUCC comparisons were verified with 1000 ground truth points. We 

collected 650 points with purposive sampling in high density areas (i.e., downtown and rapidly 

developing areas like the City of Laval) because we wanted to verify our method in problem 

areas (e.g., tall buildings with long shadows and road repaving). The other 350 points were 

collected via random sampling by gridding the Great Montreal Area. All 1000 points were 

physically inspected. We note the oversampling of problems likely negatively impacted the 

accuracy compared with a completely random sampling. The accuracy of the LUCC is shown in 

Table 5-2.  
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Table 5-2. LUCC Accuracy Evaluation with Ground-Truthing 

  Ground-Truthing Total 

Accuracy 

(%) 

  Change (%) NoChange 

(%) 

Total (%) 

2005-2006 LUCC Change (%) 6.6 36.1 42.8 

62.4 NoChange (%) 2.1 55.8 57.1 

Total (%) 8.7 91.3 100.0 

2007-2006 LUCC Change (%) 4.3 24.6 28.9 

67.9 
NoChange (%) 6.6 64.6 71.1 

Total (%) 10.9 89.2 100.0 

2007-2009 LUCC Change (%) 12.1 21.3 33.5 

72.9 
NoChange (%) 5.8 60.7 66.6 

Total (%) 17.9 82.0 100.0 

2009-2012 LUCC Change (%) 3.0 5.7 8.7 

85.1 
NoChange (%) 9.2 82.1 91.2 

Total (%) 12.3 87.7 100.0 
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Our lowest overall accuracy occurs in the 2005-2006 LUCC comparison, at 62.4 percent. 

Most error derives from false change areas (36.1%). Numerous regions in the MMCO 2005 are 

designated as changed since they fail to match regions in DMTI 2006. Our method can handle 

scale variance, with some constraints. Subtle view angle differences caused some building 

windows to be visible only in images at higher resolutions, which generated several false 

changes. High resolution also renders noisy information (e.g., vehicles, trees, and water on the 

roads) much harder to remove, which otherwise can be removed with change map smoothing in 

lower resolution images. Most false changes were found in dense urban areas. Our method 

improves its accuracy in rural and suburban areas, with a greater than five times granularity 

difference between the MMCO 2005 and DMTI 2006 datasets. To further improve the accuracy, 

possible solutions could entail resampling the results to the same granularities, or utilizing image 

fusion techniques (Li, Manjunath, and Mitra, 1995) to homogenize the scale of the results.  

The highest accuracy is achieved from the 2009-2012 comparison because the two 

datasets are recorded with the same spatial resolution and sensing platform. For the 2007-2006 

and 2007-2009 LUCC comparisons, the average accuracy is 68.9 percent and 72.8 percent, 

respectively. The small difference between the accuracies can be explained by the larger spatial 

extents covered by the DMTI 2006 dataset. The reason for accuracy differences, we believe, not 

only lies in the scale variance (i.e., spatial granularities and extents) of data, but also in smaller 

differences in view angle, shadow, vehicle, trees, and water areas of MMCO and DMTI data. 

The coarser spatial resolution of DMTI data reduces shadow and vehicle noise to some extent. It 

is important to remember that high resolution imagery datasets do not guarantee high accuracy in 

LUCC as high resolution inevitably generates more diverse and noisier information.  
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We compare our total accuracy to other LUCC studies. An MSER and SURF-based 

LUCC detection achieved approximately 75 percent total accuracy (Ye et al. 2014). They 

utilized resampling to hide the scale heterogeneity of 200 aerial photos. Their accuracy 

resembles our 2007-2009 comparison but our method did not require preprocessing the data with 

resampling. Raja et al. (2013) achieved 82.5 percent accuracy in their scale-variant LUCC study 

(IRS-1B at 72.5m compared to IRS-P6 at 5.8m) but they also employed resampling. Pham, 

Mercier, and Michel (2016) reported 85 percent total accuracy, using a SIFT matching and 

graph-based LUCC detection method. They conducted their test using a pair of 800 × 400-pixel 

radar images, each at the same (10m) resolution. Their result was similar to our 2009-2012 

comparison. This suggests that our scale-invariant LUCC detection method can handle the scale 

heterogeneity directly and still achieve good results.  

Although portions of our empirical study do not generate very high accuracy, we argue 

that the scale-invariant LUCC detection method can more effectively extract LUCC from scale 

heterogeneous datasets without image scaling techniques (e.g., spatial interpolation, down-

sampling, and image resizing). Image scaling techniques invariably assign pixel values that are 

consistent with their neighbours, which increases the risk of missing LUCC (Dai and Khorram, 

1998). Again, large scale differences (both granularity and extent) will lower the LUCC 

detection accuracy. The scale-invariant LUCC detection method can reduce the influence of 

scale variance in LUCC detection but not eliminate it. 

5.5. Conclusion  

This paper presents the promises and challenges of handling scale variance in LUCC and 

proposes a scale invariant LUCC detection method. Our method integrates extent, shape, and 

spectral information into scale invariant image features, as a workflow composed of entropy 
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decomposition, MSER, SIFT, spatial regression voting, change map smoothing and LUCC 

labelling. The method is deployed in a cloud computing and Hadoop framework to address the 

scale variance challenges in big data.  We note the drawbacks of our method. First, not all LUCC 

regions can be extracted as MSERs (e.g., construction sites and the road repair works) when 

these regions cover small spatial extents (for us, less than minArea) and are unstable across 

different levels of intensity thresholds. Second, some features (e.g., road re-pavement with 

darker colors in the image) are difficult to distinguish from shadows, due to similarities in shape 

and spectral attributes. Third, noisy objects with well-defined borders and sharp contrasts from 

their neighbouring objects (e.g., large vehicles) produce unmatched MSERs with unmatched 

SIFT points. As these are not LUCC, the overall accuracy is decreased. These drawbacks worsen 

as the image granularity difference increases (Haverkamp and Poulsen, 2003).  

Big data has significantly changed LUCC research, not only in terms of data management 

and processing, but also on spatial-temporal scales. Short time period changes can be captured by 

advances in sensing platforms (e.g., the temporary construction sites). We assume that modelling 

of both spatial and temporal variance in LUCC will focus increasingly on temporal analysis. Our 

own research will investigate methods that integrate spatial and temporal variance to build 

consistent spatial-temporal models. 
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Appendix I: MSER Matching in Recomposition 

Algorithm: MSER Matching 

Input: the image lists A and B, the MSER lists MA and MB, and threshold for MSER 

matching 

Output: the list L containing the correspondence between A and B 

        for each MSER ma in MA: 

              S=zeroes(size(B)) 

              for each MSER mb in MB: 

                    si=match(ma.score,mb.score) 

                   S.add(si) 

              end for  

              S’=descend_sort(S) 

              S’=sub_list(S’,1,4) 

              for i=1:4 

                   if(si’<=threshold) 

                   S’.remove(i)    

                   end if 

              end for 

              L.add(S’) 

        end for 

        return L 

End 
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Appendix II: SIFT Change Detection within Voting 

Algorithm: SIFT Change Detection with Voting 

Input: image tile I, unmatched MSER list UM for I, and SIFT list S for I 

Output: the MSER change region list C 

        for each unmatched MSER u in UM: 

        u.gravity_center=(
max(𝑢.𝑥)+min (𝑢.𝑥)

2
, 

max(𝑢.𝑦)+min (𝑢.𝑦)

2
) 

        u.score=Equation (5.3) in Section 5.3.3 using S and u.gravity_center 

           if (u.score<=0) 

               C.add(u); 

           end if  

        end for  

        return C 

End 

 

 

 

 

 

  



142 

 

Appendix III: Change Map Smoothing 

Algorithm: Change Map Smoothing 

Input: initial image change map C, and the original imagery dataset D. 

Output: smoothed image change map C 

    for i = 1 to Max_Iteration 

        T = T0/log(1 + i) 

             for k =1 to Max_k 

                for m = 1 to Max_m 

                    if(C(k,m) = =0) 

                    E0= Equation (5.10) in Section 5.3.4 

                    else  

                    E1= Equation (5.10) in Section 5.3.4 

                    end if 

                    P0 = exp(-E0/T) 

                    P1 = exp(-E1/T) 

                    P0 = P0*(P0 + P1) 

                    R= rand(0,1) 

                    if (R < P0) 

                          C(k,m) = 0 

                    else 

                          C(k,m) = 1 

                    end if 

                end for 

            end for 

    end for 

    return C 

End 
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Connecting Statement: Integrating the LUCC workflow with Geospatial 

CyberInfrastructure  

Chapter 5 has presented the scale invariant change detection algorithm for LUCC. This method 

identifies LUCC by comparing scale invariant image features that are extracted separately from 

scale heterogeneous images. However, the average accuracy of this method is abut seventy-two 

percent, lower than most LUCC analysis using scale homogeneous data. To improve the 

accuracy, different spatial optimization techniques are proposed. On the other hand, the temporal 

models are not integrated to delineate the change trajectories, and most of the LUCC trajectory 

generation rely on the temporal optimization. Therefore, optimization becomes a necessary 

component in LUCC especially with GCI.  

Chapter 6 formulates LUCC as a spatial-temporal optimization problem. First, the 

change/no-change areas are modelled as the spatial-temporal atoms using the spatial-temporal 

object model, and these atoms either change completely or remain the same thorough the study 

time spans. Second, boundaries of the spatial-temporal atoms are optimized via the branch-and-

mincut algorithm.  Third, the MapReduce distributed computing model is replaced by Apache 

Storm, a graph-based parallel computing framework, to avoid unnecessary waiting time in GCI. 

Finally, all these optimization methods are integrated within GCI. The LUCC evaluation study in 

the Greater Montreal Area proves the GCI-based optimization method can achieve high accuracy 

around 90%.  

Chapter 6 has been published on the International Journal of Geographic Information 

Science, 2016. The manuscript contained in this chapter was co-authored with my supervisor, 

Prof. Renée Sieber. I am the primary author and contributed the GCI-based optimization 

framework and corresponding implementation in the cloud computing for LUCC research. Prof. 
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Sieber introduced the spatial-temporal object model into the optimization framework and 

improved the readability of this article.  
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Chapter 6. A Land Use/Land Cover Change Geospatial 

CyberInfrastructure to Integrate Big Data and Temporal Topology 

Abstract 

Big data has shifted spatial optimization from a purely computational-intensive problem to a 

data-intensive challenge. This is especially the case for spatio-temporal Land Use /Land Cover 

Change (LUCC) research. In addition to greater variety, for example from sensing platforms, big 

data offers datasets at higher spatial and temporal resolutions; these new offerings require new 

methods to optimize data handling and analysis.   

We propose a LUCC-based Geospatial CyberInfrastructure (GCI) that optimizes big data 

handling and analysis, in this case with raster data. The GCI provides three levels of 

optimization. First, we employ spatial optimization with graph-based image segmentation. 

Second, we propose ST Atom Model to temporally optimize the image segments for LUCC.  

Finally, the first two domain spatio-temporal optimization is supported by the computational 

optimization for big data analysis. The evaluation is conducted using DMTI (DMTI Spatial Inc.) 

Satellite Streetview imagery datasets acquired for the Greater Montreal area, Canada in 2006, 

2009, and 2012 (534 GB, 60cm spatial resolution, RGB image). Our LUCC-based GCI builds an 

optimization bridge among LUCC, spatio-temporal modelling, and big data. 

Keywords: LUCC; Geospatial CyberInfrastructure; Optimization; Spatio-Temporal Object 

Model. 

6.1 Introduction 

Geographic Information Science (GIScience) and Remote Sensing (RS) research into big data 

has been triggered by increasing spatial, spectral, and temporal resolutions of sensing systems 

and Web 2.0 platforms (McAfee et al., 2012). That is, we simply have magnitudes’ larger 
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volumes of data, which are arriving at increasing velocity, and with greater variety in data 

structures. Big data has forced a rethinking of numerous aspects of GIScience, from spatial data 

collection and storage to sampling, analysis, and visualization (Hampton et al., 2013; Liang et al. 

2010; Zaslavsky et al. 2013). Big data also requires a new architecture for managing those 

methods.   

Big data has the potential to shift research on detection of Land Use/ Land Cover 

Changes (LUCC). The field of LUCC has been explored for over 50 years (Singh, 1989). LUCC 

detection addresses three questions: (1) Is there any change of interest when comparing two or 

more temporally distanced datasets?; (2) What are these changes quantitatively?; and (3) What 

are the change trajectories and corresponding rates? Because big data affects spatial and 

temporal domains simultaneously, it impacts all three questions. Higher volumes and velocity 

may allow us to detect finer grained changes that may have been missed with datasets at coarser 

spatial resolution and temporal periodicity. Techniques in quantitative detection of LUCC should 

enable multi-temporal analysis (comparison of more than two raster datasets) and handle 

heterogeneity in spatial, spectral and temporal resolutions. Big data dramatically increases the 

number of potential changed objects (since more objects can be extracted from higher spatial and 

spectral resolutions and more object changes can be detected with improved temporal 

resolutions). Big data promises greater LUCC but renders the trajectories of those changes—

time—more difficult to delineate.  

Additionally, big data poses significant computational challenges, such as the need for 

scalable data storage, flexible computing resource provisioning, and dynamic workflow 

management. Solutions to these challenges should be integrated with the domain demands of 

LUCC to increase accuracy of results and shorten computation time.  
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In this paper, we propose a LUCC-based Geospatial CyberInfrastructure (GCI) that seeks 

to optimize the Spatio-Temporal (ST) handling and analysis of big data. This optimization is 

three-fold. A domain-based layer handles spatial optimization through energy cost minimizations 

of pixel clustering into feature objects. Because LUCC in big data likely requires handling 

multiple time slices, our GCI temporally optimizes via what we call a ST Atom Model. Third, 

our GCI optimizes computing resource provisioning, data decomposition, and workflow. Figure 

6-1 shows how these optimizations function in our GCI. 

 

Figure 6-1. GCI-based Multi-dimensional Optimization for LUCC Research 

The paper is organized as follows. In Section 6-2, we discuss research to date on LUCC 

and spatio-temporal modelling. We describe our LUCC-based GCI, which attempts to optimize 

along space, time, and data handling in Section 6-3. We deploy and evaluate the optimization 

methods in Section 6-4. We conclude with opportunities for future research.  

6.2 LUCC and ST Optimization 

In this section, we review the related works about employing spatial optimization in 

LUCC. Then we delineate the needs of using temporal information to optimize an object-based 

LUCC. We also discuss literature on computational optimization within GCI for LUCC support. 
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6.2.1 Optimization Challenges in LUCC 

Spatial optimization has been studied in LUCC for a long time (Tong and Murray, 2012). 

Jenerette and Wu (2001) utilize spatial optimization to simulate the LUCC in the central 

Arizona–Phoenix region of U.S., while Ligmann-Zielinska et al. (2008) optimize generative 

models for land-use allocation. Most of these works focus on spatial optimization at a given 

time, but temporal information has rarely been integrated into the optimization process.  

A traditional approach in LUCC for identifying change has been pixel-based. The pixel-

based approach relies on pixel-level calculation to generate a “difference image” (e.g., the 

subtraction of two images) to identify the relative amounts of change. This approach is 

frequently utilized for bi-temporal analysis, and generally requires imagery datasets to match in 

spatial and spectral resolutions (Singh, 1989). Reviews of LUCC (Singh, 1989; Lu et al., 2004; 

Jianya et al., 2008) have revealed a gradual shift in research from pixel-based to object-based 

approaches, which work with groups of pixels as objects. In part, this is because increasing 

spatial resolutions afforded by big data allow for pixels that are significantly smaller than objects 

of interest. Object-based approaches have the additional advantage of moving us beyond 

traditional raster-vector divides that separate RS from GIScience.  

Blaschke (2010) terms the shift to objects as Object Based Image Analysis (OBIA). 

OBIA groups similar image pixels as objects, calculates object features, and then applies 

classification algorithms (Congalton, 1991) to label various types of changes. Walter (2004) 

argues that OBIA is less sensitive than pixel-based analyses to different spatial and spectral 

resolutions of datasets because comparing object properties (e.g., texture and shape) can identify 

change. According to Tong and Murray (2012), OBIA is a type of district optimization, which 

spatially optimize the change areas for multi-temporal LUCC. Also, because pixels are grouped 
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into and then conceptually handled as objects via spatial optimization (Baatz and Schäpe, 2000), 

OBIA attempts to represent some degree of spatial topology in each original image with these 

objects.  

OBIA has its drawbacks. First, if parts of the object change from time t1 to t2 then OBIA 

may mark the entire resultant object as “changed”. Figure 6-2 illustrates this issue. Second, the 

temporal topology is not retained in the OBIA process. The lack of temporal topology change 

information impedes integration of OBIA into multi-temporal LUCC, which tracks the impact of 

one object’s change on its neighbours over several periods (Pijanowski et al., 2002). If we 

choose OBIA then we should find techniques that optimize the integration of change information 

in both spatial and temporal dimensions, including the between-time topology. 

 

Figure 6-2. Example of drawbacks of OBIA Change Detection. Fine grained changes occurring 

at t2 will fail to be recorded when compared to change area at t1. Samples are extracted from 

Montreal Streetview satellite images 2006 and 2009 (DMTI Inc., 2006 and 2009). 

Figure 6-2 illustrates the problems in OBIA with two images of Montreal, Canada, at 

2009 (t1) and 2012 (t2). We show sample objects generated from clustering: at t1, a forest object, 

and at t2, a forest-“donut hole” object and a building object. The building object compared to the 

spatial extent of the forest object t1 results in the whole object being labelled as “changed”. From 

Figure 6-2, we can see only using spatial optimization for image segmentation cannot solve the 
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partial object challenge, so we need to use the temporal information to further optimize the 

OBIA.  

Before we arrive at objects, we need to group pixels according to their similarities. This 

is called image segmentation and follows three general types: spatial segmentation, feature-based 

clustering, and graph-based methods. Spatial segmentation extracts regional entities from 

imagery datasets based on the spatial structure information, while feature-based clustering 

algorithms rely on similarities of image features to group pixels. Graph-based image 

segmentation method combines elements of spatial- and feature- based image segmentation 

methods (Shi and Malik, 2000). The core idea of the graph based method lies in constructing a 

weighted graph, where each vertex represents pixels (regions) in the image and the weight of 

each edge connecting two pixels represents the likelihood of segmentation. The weight, which is 

usually calculated by combining feature and spatial information, forms a cost energy function. 

Minimization of the energy cost is considered a traditional spatial optimization, where the image 

is cut into several segments (Tong and Murray, 2012). Graph-based segmentation algorithms 

have been studied extensively for object extraction (Sumengen and Manjunath, 2006; Jermyn 

and Ishikawa, 2001; Wu and Leahy, 1993).  

The spatial optimization found in energy cost minimization suffers from difficulties in 

determining initial values and is easy to trap with the local optimal solutions (Celik and Yetgin, 

2011). Various parametric learning and optimization approaches have been applied with graph-

based segmentation methods to address these problems. For example, parametric maxflow (Gallo 

et al., 1989) integrates non-local features into the optimization process; Kolmogorov et al. 

(2007) present case studies using maxflow approach. Lempitsky et al. (2012) propose a global 

optimization method called “branch-and-mincut” for graph-based image segmentation with 
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segmentation mask and non-local parameters. To handle multi-label image segmentation, 

Boykov and Funka-Lea (2006) supply α-expansion and α-swap-move-based algorithms.  

Building the graph and the minimization of the energy cost function are highly 

computation-intensive, and may take a long processing time. Since most research projects have 

time constraints, it is very tempting to consider High Performance Computing (HPC). With big 

data, this process becomes both data-intensive and computationally-intensive, so it becomes 

more difficult to consider this optimization process separately from the computation. We 

conclude that optimization in big data LUCC requires a combination of spatial, temporal, and 

computational optimization methods.  

6.2.2 ST Modelling and Temporal Optimization in LUCC 

Different ST models have been integrated with LUCC (Radke et al., 2005). These include 

statistical distribution modelling of the change and non-change areas (Bazi et al., 2005), 

predictive models (Veldkamp and Lambin, 2001), and cellular automata simulations (Li and 

Yeh, 2002). These applications advance temporal and spatial components, but not the two 

components equally (Deng et al., 2009; Pan et al., 1999).  

Over the years, GIScience researchers have proposed various methods to effectively and 

elegantly integrate temporal and spatial dynamics. Yuan (1996) provided the first survey of ST 

models, which illustrated their pros and cons in representing LUCC. Abraham and Roddick 

(1999) surveyed the most widely utilized ST database systems. More recently, Nandal (2013) 

reviewed ST models, and categorized them into ten types: snapshot model (Armstrong 1988), 

space-time composite data model (Langran and Chrisman, 1988), data models based on simple 

time-stamping (Allen, 1991), event-oriented model (Peuquet and Duan, 1995), three domain 

model (Yuan, 1999), history graph model (Van Der Wal and Pye, 2003), Spatio-Temporal 
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Entity-Relationship (STER) model (Parent et al., 1999), Object-Relationship (O-R) model 

(Coppin et al., 2004), ST object model (Huang and Chandramouli, 2009), and moving object 

data model (Erwig et al., 1999). Multiple ST models may be combined, such as the Hybrid ST 

Data Model which merges the event oriented model and space-time composite data model 

(Sengupta and Yan, 2004). 

A predominant reason why so many models have been created is that it is difficult to 

determine how best to model and store the changes. For example, missing state information 

creates difficulty in applying event or process-based temporal modelling (i.e., event-oriented 

model, O-R model, STER Model, and moving object data model). A challenge in applying, for 

example, the space-time composites model occurs when attempting to compare imagery datasets 

with heterogeneous resolutions, which prevents the direct overlay of temporal snapshots of land 

surface (Nadi and Delavar, 2003). Likewise, the difficulty of extracting semantics from imagery 

datasets impedes the employment of the three domain model. Most ST models are vector based, 

at least in their deployment; whereas, RS imagery datasets are generally raster data. ST models 

need to provide interfaces to ease the vectorization process. The simple time stamping and the 

history graph model method present difficulties in vectorizing RS datasets. ST models, we argue, 

pose a significant optimization problem that will only get worse with big data. 

6.2.3 GCI Related to LUCC 

GCIs have been designed to handle challenges found in big data research and in 

computation-intensive jobs found in GIScience and RS (Wang, 2010). For example, Liang et al. 

(2010) used GCI to enable sharing and visualization of big environmental sensing datasets. Yue 

et al. (2010) proposed a semantic web based GCI to provide on-demand RS big data products. A 
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GCI was also developed to perform data mining from volunteered geographic information 

harvested over the Internet (Gao et al., 2014).  

GCI can provide the integration of domain specific optimization and computing 

techniques for GIScience. Consequently GCI research is intertwined with specific hardware and 

software platforms for distributed data handling. An example of this intertwining is Xia et al.’s 

(2010) hardware solution—a Compute Unified Device Architecture (CUDA) based GCI to 

accelerate inverse distance weighting and viewshed analysis. CUDA exacts a cost in host-device 

data transfer, which cannot be neglected in large volume transfers (Yang et al., 2008).  

Compared to hardware (e.g., CUDA, grid computing), Yang et al. (2011) conclude that 

cloud computing affords the best platform for geospatial big data. Specific cloud solutions 

include Google’s development of MapReduce, which is a software platform to distribute 

computing tasks over multiple machines. Hadoop, an open source implementation of 

MapReduce, is highlighted by Yang et al. (2010) for its capacity to process big spatial data.  

Hadoop is the preferred choice for GCIs due to its scalability and flexibility (Nurian et 

al., 2012). Nonetheless, it has problems. Lee et al. (2012) highlight the weakness of dataflow 

management in MapReduce. They also note the low input-output efficiency of MapReduce. 

Some researchers have begun to explore data streaming, which is defined as a continuous 

sequence of datasets. Researchers have implemented data streaming to analyze radar datasets 

(Plale et al., 2006). Another study utilized data streaming for environmental observation analysis 

in cluster computing (Tilak et al., 2007). Neither study calls their work GCI; however, they 

resemble GCIs in that geospatial analysis is conducted with distributed computing environment 

and the emphasis is on the underlying architecture. 
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GCIs have not been widely applied for big data analysis in LUCC. First, domain specific 

optimization challenges in LUCC require scalable and flexible computing resource provisioning. 

Second, the massive data exchanges among different computation process which shape LUCC 

much more complicated than a collection of batch processing. Third, a LUCC workflow also 

needs to be optimized for better data transfer and less computation time. Therefore, the 

optimization of computing resource provisioning and workflow management need to be twisted 

together with LUCC studies. In this paper, we propose LUCC-based GCI, to provide the 

integrated GCI-based optimization.   

6.3 LUCC-based GCI 

 

Figure 6-3. LUCC-based GCI and the Multi-dimensional Optimization 

 

Figure 6-3 illustrates the architecture of our LUCC-based GCI. This GCI provides the 

integration of domain specific optimization methods with computation optimization techniques. 

Specifically, our spatial and temporal optimization methods extract what we call ST atoms from 

multi-temporal images to detect any changes, where the ST atoms stand for image pixel groups 

that either remain or completely change across the time span. This ST atom model is similar to 
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Worboys’ (2005) ST atom concept, which stands for the homogeneous areas have constant 

properties over space and time. Our ST atom is designed to study change/no-change and has 

higher tolerance on property difference. The whole process is supported by data streaming, 

Voronoi image decomposition, workflow optimization and scalable cloud computing resources. 

In the era of big data, we argue that we should consider optimization as a combination of domain 

knowledge and computation (Wang, 2010). Otherwise, excessively long processing times and 

errors incurred, for example by “oversplitting” of big data due to insufficient understanding of a 

domain like LUCC, can hinder the knowledge discovery in big data.  

6.3.1 Optimization in the Domain Layer 

 

Figure 6-4. Workflow of our LUCC Framework, with input/output illustration of each step.  
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Figure 6-4 shows the workflow of our domain layer, focusing on our optimization methods. 

First, we implement a graph-based image segmentation process to extract objects with spatial 

and spectral similarities from multi-temporal RS imagery datasets. Second, we use temporal 

topology rules to find the ST atoms with the image segments. Finally, we generate the change 

trajectories based on the ST Atom Models by applying classification and ST object modelling. 

6.3.1.1 Graph Based Image Segmentation with Spatial Optimization 

We use Xt1={x1,1, x1,2, …, xI,J}to denote an image that is recorded in time t1 with I×J 

pixels and b bands. X t1 is modelled as an undirected graph G: (V, E), where the pixel in spatial 

position (i,j) is linked with a vertex vi,j V, and e i,j;t,u E is the edge that connects vi,j to its 

neighboring pixel vt,u. In this paper, we consider the neighbouring system 𝑁 as a 4 connected 

grid, which consists of ordered pixel pairs (xi,j, xt,u). We introduce L ={1, 2, … , K} and K labels. 

K labels are defined for the given image, for multi-object segmentation. Let 𝑓 = {𝑓𝑣𝑖,𝑗
|𝑣𝑖,𝑗𝜖𝑿𝒕𝟏}  

(𝑓𝑣𝑖,𝑗
𝜖𝑳) be the collection of all the pixel-label assignment. The spatial optimization is found via 

an energy cost function. The energy function of our graph based image segmentation is 

formulated, according to Boykov et al. (2001), as: 

        𝐸(𝑓) = 𝜆 ∑ 𝐷(𝑓𝑣𝑖,𝑗
)𝑣𝑖,𝑗𝜖𝑽 + ∑ 𝑉(𝑓𝑣𝑖,𝑗

, 𝑓𝑡,𝑢)𝑣𝑖,𝑗,𝑣𝑡,𝑢𝜖𝑁                                         (6.1) 

The term 𝐷(𝑓𝑣𝑖,𝑗
) is called the data term and 𝑉(𝑓𝑣𝑖,𝑗

, 𝑓𝑣𝑡,𝑢
) is named the smoothness term. 

𝐷(𝑓𝑣𝑖,𝑗
) represents the cost of assigning label 𝑓𝑣𝑖,𝑗

 to pixel 𝑣𝑖,𝑗; whereas 𝑉(𝑓𝑣𝑖,𝑗
, 𝑓𝑣𝑡,𝑢

) penalizes 

spatial inconsistency and tends to assign the same label to neighbouring pixels. Minimizing 𝐸(𝑓) 

will optimize segmentation in the image graph. A solution to the multi-labelling problem is 

achieved by the α-expansion algorithm (Boykov et al., 2001). Given a labelling f and a label α, a 
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move from f to fα is called an α-expansion if 𝑓𝑣𝑖,𝑗
≠ 𝑓𝑣𝑖,𝑗

α → 𝑓𝑣𝑖,𝑗

α = 𝛼. The α-expansion algorithm 

iterates over all labels α to find the best α-expansion until convergence. The drawback is that α-

expansion might trap the local optima. The trapping problem means that a local optima (either 

maximum or minimum) within a neighbouring set of candidate solutions is mistakenly 

considered as the global optima of all the candidates. To overcome this problem, we utilize the 

global optimization branch-and-mincut algorithm (Lempitsky et al., 2012).  

To achieve the minimal value in the energy cost function, we use the branch-and-mincut 

spatial optimization method. This method tends to find the global optimal solution by a top-down 

search in the feature space, which is organized as a binary tree. This technique is built on top of 

graph cut and branch-and-bound algorithm (Quesada and Grossmann, 1992). Lempitsky et al. 

(2012) has proved its effectiveness in different image segmentation studies.  

We turn to the data term and smoothness term in equation (6-1). It is quite difficult to 

calculate the data term 𝐷 (𝑓𝑣𝑖,𝑗
) = − log Pr(𝑓𝑣𝑖,𝑗

|𝐹𝑣𝑖,𝑗
) directly, where 𝐹𝑣𝑖,𝑗

is the observed 

geometric feature vector for pixel 𝑣𝑖,𝑗. Liu et al. (2008) propose a super-pixel and SVM 

(Supporter Vector Machine) classification-based method to approximate the distribution of 

Pr(𝑓𝑣𝑖,𝑗
|𝐹𝑣𝑖,𝑗

). We adopt Liu et al.’s (ibid.) approach in this paper.  

𝑉(𝑓𝑥, 𝑓𝑦) reflects the weight among pixels in the graph. The weight exists to penalize 

assigning different labels to adjacent pixels. The RBF (Radial Basis Function) kernel (Camps-

Valls et al., 2008) is used for its (relative) simplicity: 

                                   𝜔𝑖,𝑗;𝑡,𝑢 = 𝑒

−‖𝐼𝑖,𝑗−𝐼𝑡,𝑢‖
2

2

2𝜎2𝑑𝑖𝑠𝑡(𝐼𝑖,𝑗,𝐼𝑡,𝑢)                                                            (6.2) 
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where Ii,j is the intensity of  xi,j , dist (𝐼𝑖,𝑗, 𝐼𝑡,𝑢) stands for the spatial distance, and   is the 

Gaussian width. We illustrate image segmentation using RS image Xt1. The equations will be 

similar when comparing multiple images. Using the graph-based optimization method, we can 

obtain a collection of image segmentations for multi-temporal RS imagery datasets.  

6.3.1.2 Spatio-Temporal Atom Extraction and Labelling 

We now need to extract ST atoms using temporal optimization, which guarantees the ST 

atoms either remain the same or completely change through the study time span. The ST Atom 

Model is proposed to handle the partial object changes in Figure 6-2, and amend the lack of 

temporal topology in LUCC. To implement the ST atoms in LUCC we use the largest 

homogeneous units that hold their spatial and temporal features. We find that the object concept 

in ST model and OBIA can most easily be applied to the ST atoms. ST atoms can be viewed as 

hybrid vector-objects, which become the lingua franca between OBIA and the ST object model 

in LUCC. 

For pre-processing, we need to first “snap” the image segments into objects. The image 

segmentation boundary pixels obtained in Section 6.3.1.1 might be discrete and out of order. For 

example, the boundary of image segments may not form neat lines and may contain numerous 

small variations. To facilitate the employment of ST atom extraction, we utilize a chain-code (Li 

et al., 1995) to connect the boundary pixels and then we implement the Douglas-Peucker 

algorithm to turn the region boundary into polygons (Saalfeld, 1999). These processing steps 

turn the image segments into objects. Then object matching is conducted using coordinates of 

image registration to find the corresponding objects in the other time periods.  
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Table 6-1. Temporal Topology Rules Chosen for ST Atoms Extraction 

Temporal 

Topology 

Relationship 

Study Time t1 Change Reference 

Time t2 

Explanation ST Object Atom 

Equal  
        

The object A 

has changed 

completely to 

another object 

in t2. 

 

Split 

  

Object A has 

changed to 

two or more 

objects in t2. 
 

Partial Change 

  

One or more 

parts of object 

A has 

changed to 

another 

objects in t2. 

 

Contain 
 

 

One or more 

changes 

happen within 

object A in t2.  

Expand 
 

 

Although 

object A 

become larger 

in t2, the ST 

object atom is 

till its original 

size. 

 

Shrink 
 

 

Object A 

become 

smaller in t2.  

Overlap 

 
 

Objects B 

changes its 

position and 

overlaps with 

A in t2. 
 

Merge 

  

The adjacent 

object or parts 

have changed 

to A in t2. 
 

Covered-By 

  

Object A is 

totally 

covered by its 

neighbor 

object B in t2. 

 

 

B C A1 A2

A B A1 A2

B

A
A2

A1

A2
A1

A2

A1
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The most important part of our temporal optimization is retaining the temporal topology. 

The temporal optimization process can be defined as finding the largest ST atoms with the 

constraints of temporal topology rules. Egenhofer and Al-Taha (1992), and Müller and Zeshen 

(1992) provide a set of spatial rules that explain spatial relations among objects (Table 6-1). 

Concepts of “equal”, “contain”, “split”, “overlap”, “merge”, and “covered-by” rules are useful to 

model the interactions between two ST atoms with similar spatial extents. (Other topology 

change rules, like, “disjoint” in Egenhofer and Al-Taha (1992) are not included as they have 

little impact on the ST atom extraction.) In addition to considering the spatial distance between 

objects (Egenhofer and Al-Taha, 1992), we highlight the temporal topological changes from t1 to 

t2. We introduce the state of “partial change” to describe situations in which Object A cannot be 

considered having completely changed into one or more objects. An example of this would be 

parts of a roof on a hypothetical Building A that are re-painted. The “expand” and “shrink” 

topology change rules describe changes that involve all neighboring objects (Müller and Zeshen, 

1992). The key idea is to keep ST atoms as the largest temporally homogeneous object. An 

object is split into ST atoms, which will be entirely changed or unchanged across the LUCC 

study time span. There is no partially changed ST atom after the employment of these rules. We 

borrow the concept of vector objects in vector analysis and apply it to RS image analysis for 

LUCC detection. Therefore, ST atom could be viewed as a combination of vector and raster 

object.  

Nine rules for bi-temporal topology change are listed. More complicated topologies can 

be represented by combining two or more of these nine basic rules. For example, we can obtain 

three objects from Figure 6-2 t1 by simply applying the “contain” rule twice with a bi-temporal 

image pair. The ST atom extraction also can be parallelized to fit the distributed computing 
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environment in our LUCC-based GCI. The ST atom extraction process thus becomes the 

temporal optimization process for OBIA.  

We first implement change masks. Change masks serve as templates for any 

interpolation, for results of temporal rule application, and for difference images that will then be 

overlaid onto the original objects to extract the atoms. Image interpolation is applied if the two 

candidate objects do not have the same spatial resolution (Lam, 1983). We perform interpolation 

at this stage, instead of at the pre-processing stage, because the graph based image segmentation 

and classification parameters are very sensitive to the noise generated by overall image 

interpolation (Lempitsky et al., 2012). Then we utilize the univariate image differencing 

technique (Singh, 1989) to generate the “difference image”. By employing k-means clustering 

algorithms (Rui and Turi, 1999) and a thresholding technique (Lu et al., 2004), the difference 

image is clustered as several change areas. Temporal topology rules are applied to each change 

mask, which are overlaid onto the original objects to generate ST atoms. Atom extraction 

processes are applied in an iterative bi-temporal way. Each time we apply one entry in Table 1 to 

extract ST atoms with the bi-temporal image pairs. An iterative application of temporal topology 

rules transforms the objects into ST atoms (more details in Section 6.4). 

The final process employs a classification algorithm, where the ST atoms are given labels 

to represent the actual LUCC types (e.g., forest, buildings, roads, and grassland). Because we use 

OBIA, the label is not ascribed to individual pixels but to ST atoms. A broad range of 

classification algorithms can be used to generate the labels (Walter, 2004). We use the SVM 

classification algorithm due to its high classification accuracy and low sensitivity to noisy data in 

RS analysis (Melgani and Bruzzone, 2004). 
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We create a ST LUCC optimization that can be widely applied with RS imagery datasets 

that possess a high level of variety. The increased variety of big data suggests that LUCC must 

be adjusted according to imagery datasets with heterogeneous spectral and spatial resolution. To 

some extent, our OBIA with optimization technique eliminates spatial and spectral heterogeneity 

(Chen et al., 2010); whereas temporal topology rules addresses the temporal heterogeneity. We 

also note if the spatial and spectral resolutions are very different (e.g., one with 0.6m spatial 

resolution and the other one with 600m), our LUCC optimization may fail.  

6.3.2 HPC and Workflow Management Optimization 

Workflow management is a large portion of any GCI. The LUCC-based GCI dataflow 

management layer partitions the big datasets as shown in Figure 6-4. We use the Voronoi 

diagram and Fortune’s Sweepline algorithm as described by Xing and Sieber (2014) to better 

decompose large datasets. This method provides rough load balancing and minimizes the 

influence of the splitting borders in LUCC. It serves as a way to optimize splitting tiles so that 

features are retained as much as possible. 

Our Voronoi-based partitioning method uses data streams afforded by Apache Storm, 

which also serves the HPC. Storm is a free and open source software project of the Apache 

Software Foundation. Storm relies on data streaming as part of real-time job scheduling to 

improve parallel computing support for big data analysis. Data streams can be fed into any 

number of processing nodes with minimum couplings in parallel. Storm characterizes streams as 

an unbounded sequence of data tuples. Data tuples may contain image tiles, object or ST atoms. 

Tuples are continuously pushed into processing nodes in parallel. Storm manages the network of 

these data streaming communications, which is called topology management. The Storm 
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framework is the development tool to build the data stream topology and provide fault-tolerance 

functionalities in our LUCC-based GCI.  

The optimization of LUCC detection computation can be formulated as the minimization 

of computation time with respect to limited computing resource. Graph image segmentation and 

ST atom extraction illustrate how Storm, the software, and data streaming, the concept, achieve 

computational optimization. Given equal computing resources (i.e., virtual machines {VMs} 

with identical configuration), it is unlikely that all nodes running the image segmentation tasks 

will finish at the same time. There will be a moment when some nodes finish their tasks while 

others are still running. Our LUCC-based GCI streams image segments to ST atoms extraction 

VM, while other image segmentation jobs are still running.  

 

Figure 6-5. Comparison Between Hadoop GCI and Apache Storm in Change Detection GCI 

 

We choose Storm as opposed to Hadoop. Compared with a Hadoop-based GCI (Li et al., 

2011), we argue that Storm in our GCI offers better flexibility and efficiency in job scheduling 

and dataflow management. Figure 6-5 shows a comparison between Storm and Hadoop. A 

Hadoop based GCI must wait until all VMs finish their image segmentation tasks. ST atom 

extraction can be scheduled in parallel with image segmentation on Storm. Another advantage of 
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a Storm based GCI is the use of data streams instead of intermediate data storage (e.g., HDFS 

{Hadoop Distributed File System} in Hadoop) for image segmentation results. This reduces 

input-output costs. At last, the cloud computing is employed to provide the scalable and flexible 

computing resource provisioning, as another part of the computation optimization.  

6.4 Results 

We designed two case studies to test our LUCC-based GCI. The first case tested the performance 

of our LUCC-based GCI to optimize the LUCC detection. The second case compared two 

different spatial optimization algorithms in multi-temporal LUCC detection.  

Figure 6-6 and Table 6-2 show details of the implementation. The test bed was deployed 

on the Amazon Elastic Cloud Computing platform (Amazon EC2, 2017). Seventy-one VMs were 

utilized, with one local GCI controller and 70 nodes in the EC2 cloud. Sixty data streams were 

configured, with 30 streams connecting graph image segmentation VMs to ST atom extraction 

VMs. Twenty were utilized for the iterative ST atom extraction communication. The ST atom 

extraction VMs were connected to 10 classification and ST modelling VMs via 10 streams.  

We used the Storm framework to map connections between VMs. During the 

implementation on Amazon, we utilized Amazon Kinesis to perform the actual data streaming. 

Kinesis is a data streaming service to manage real-time communication among Amazon cloud 

computing components (e.g., VMs) (Amazon Kinesis, 2014). Kinesis replaces the default stream 

of Storm and has been found to exert no impact on Storm’s functionality (Bhartia, 2014). Then 

we utilized the topology interface of Storm to specify the topology of computing nodes and data 

streams.  
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Figure 6-6. Implementation Details of LUCC-based GCI for Montreal 2006-2012 case study. 

The test bed includes 70 VMs in Amazon EC2 and 60 Amazon Kinesis data streams. 

 

The evaluation imagery datasets were collected in 2006, 2009, and 2012 for the Greater 

Montreal area, Canada (DMTI, 2006, 2009, 2012), with total size of approximately 534GB. The 

DMTI StreetView RGB satellite images are recorded at 0.6m spatial resolution; we assume that 

no object is smaller than one pixel. We employ radiometric correction, geometric rectification, 

image registration to each of the testing datasets, and Voronoi image decomposition on the local 

controller node. Figure 6-6 shows the three steps of our ST Atom Modelling are hosted on 

Amazon EC2 cloud computing.  
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Table 6-2. Testbed Configurations 

 Number 

of VMs 

Instance 

Type 

VCPU VMemory Local 

Storage 

      

Pre-Processing and 

Image Decomposition 

1 Private 

Cloud 

8 32.0 1TB 

Image Segmentation 30 m3.large 2 7.5 32 GB SSD 

ST Atom Extraction 30 m3.large 2 7.5 32 GB SSD 

Classification and ST 

Atom Modelling 

10 m3.large 2 7.5 32 GB SSD 

 

6.4.1 ST Optimization 

We first tested our ST Atom Modelling in the LUCC-based GCI. After pre-processing, image 

tiles (i.e., Voronoi polygons) were uploaded onto Amazon cloud. A week was required to upload 

image tiles onto Amazon S3 cloud storage (Amazon S3, 2017), which highlights the input-output 

challenges in big data. The second column of Table 6-3 lists the computation time of each step in 

our LUCC-based GCI.  

We first needed to parameterize the graph cut. We used a subset of the tiles (i.e., 5 image 

tiles sampled from different areas of Montreal) to extract parameters for the cost energy function. 

Parameters were applied to the whole dataset for image segmentation. To avoid over-fitting, a 

cross validation technique was applied (Hall and Koch, 1992). One hundred ground truth points 

were selected from other image tiles to fine-tune the parameters. Then graph cut image 
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segmentation was executed with the branch-and-mincut optimization. Finally, we followed 

Blaschke et al. (2000) and filtered objects unrelated to LUCC (e.g., vehicles).  

The graph based image segmentation method generated 42,628 objects in 2006, 49,894 

objects in 2009, and 47,742 objects in 2012. This represents relatively small differences (+17% 

and -4%) and reflects a depressed retail and residential market relative to other North American 

cities (e.g., CMHC, 2012). The Greater Montreal area has regions of dense urbanism but also is 

composed of agriculture and forest. We found a large number of objects located in urban 

portions of our study area, due to a high mixture of land uses. 

ST atom extraction began with pre-processing, which included spatial interpolation, 

chain-code, and Douglas-Peucker algorithm. We did not employ spatial interpolation since all 

datasets matched in spatial and spectral resolutions. We found some instances of non-contiguous 

potential atoms so we utilized chain code together with a regression technique (Esbensen et al., 

1992) and Douglas-Peucker to “snap” potential atoms in objects.  

Temporal topology rules were applied to the change masks, which were then applied to 

extract the ST atoms from objects. The most applied temporal topology rules were “overlap” and 

“split”, which resulted in the large number of ST atoms. For example, the forest area in Figure 6-

7 for 2006 was split as finer ST atoms, which either changed into buildings or remained forest 

across the whole study time span. Because there is some overlapping of the temporal topology 

rules (i.e., an object change can be classified as both "contain" and "partial change") and 

occasionally multiple rules can apply to one ST atom extraction. Building 4 in Figure 6-7 could 

utilize both “split” and “contain” rules. We chose the “split” rule because we utilized the 2006 

objects as the “Object A” in Table 6-1. When multiple temporal topology rules are applicable, it 

is the implementation of the rules that determines the order of the rules’ application. So care 
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must be taken in coding. The bi-temporal ST atom extraction output 228,683 ST atoms. The tri-

temporal process, which compared 2006-2009 and 2009-2012, generated 750,402 ST atoms. 

Finally, we used the SVM classification algorithm to label seven different types of atoms 

(i.e., forest, grass, farmland, bare ground, water, roads and buildings). The SVM training process 

was conducted according to Melgani and Bruzzone (2004) with ST atom features, like 

brightness, shape, and texture. SVM classification and ST modelling labelled 750,402 ST atoms 

with the pre-defined seven classes, time-stamp the classified atoms, and linked them in time 

sequential order as ST Atom Models. “Forest” occupied the largest areas in Greater Montreal; 

whereas “building” class dominated in number.  

One thousand ground truth sampling points were randomly chosen to evaluate the 

performance of our ST optimization. These 1000 points were visually inspected and assigned 

labels. The highest accuracy was achieved in forest areas, approximately 97 percent. The lowest 

accuracy is found in complex urban areas, approximately 85 percent. The reason for this reduced 

accuracy is that ST atom extraction generates excessive numbers of atoms when there are 

complex object mixtures and numerous iterations of temporal topology rules. This results in 

poorer classification performance. For example, temporal topology rules may split one road into 

small blocks due to road repair in one study time period. Small roadblocks may possess very 

similar geometric and texture attributes and may be misclassified as buildings.  

Figure 6-7 shows an example of new buildings that were constructed in a forest in 2009. 

Our ST optimization was able to detect these changes and presented them as ST atom models. 

Our ST Atom Model assures no partial ST atom changes across the study period (the “forest” ST 

atoms either remain as “forest” {ST Atom1 and 2} or completely into “buildings” {ST Atom 3 

and 4}), because we optimize change information in both spatial and temporal domains. This 
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evaluation proves the LUCC-based GCI can address partial object changes using ST Atom 

Modelling for big data analysis.   

 

Figure 6-7. Examples of forest changing to buildings in suburban area with results of image 

segmentation, ST atom extraction, and ST atom classification and modelling. Streetview image 

collected in 2006, 2009, and 2012 from Greater Montreal Area (Source: DMTI Inc.) 

 

Table 6-3. Computing Time for Steps in LUCC-based GCI. Then compared to a second 

implementation in which Hadoop replaces Storm. 

Steps LUCC-based GCI 

(Hours) 

Hadoop-based GCI  

(Hours) 

Pre-Processing and Image Decomposition 91.4  91.4  

Image Segmentation with Optimization 19.7 26.5 

ST Atom Extraction 4.6 19.3 

Classification and Modeling 14.4 31.5 

Total 130.1 168.7 
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6.4.2 Spatial Optimization Comparison 

Image segmentation optimization plays a pivotal role in our LUCC-based GCI. We assessed its 

effect by comparing the min-cut/max-flow and branch-and-mincut algorithm. Another 1000 

ground truth points were selected to evaluate two instances of LUCC from 2006 to 2009, and 

2009 to 2012 in Greater Montreal area, Canada. We used a simple atom change/no-change error 

matrix (Macleod and Congalton, 1998) with reference data to test the performance of the two 

optimization algorithms. We used average accuracy from the change of seven predefined classes, 

and merged them as “change” and “no-change” super-classes. Overall accuracy can be calculated 

by adding the true change (change/change) and true no-change (no-change/no-change) 

percentage in Table 6-4. For 2006-2009 LUCC detection, min-cut/max-flow achieved 97.2 

percent in overall accuracy; whereas branch-and-mincut was 98.0 percent. Min-cut/max-flow 

optimization produced 96.6 percent in 2009-2012 LUCC detection, but branch-and-mincut 

slightly outperformed with 97.3 percent. Both algorithms generated satisfying results, but the 

performance of branch-and-mincut was slightly better than min-cut/max-flow. The reason could 

be the best-first branch-and-bound search mechanism of branch-and-mincut, which determines 

the global optima with searching tree techniques (Lempitsky et al., 2012). Nonetheless, this 

result does not guarantee branch-and-mincut will always outperform the min-cut/max-flow 

algorithm in graph based image segmentation. Further study is needed to find a suitable global 

optimization technique for LUCC detection. 
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Table 6-4. Comparison between min-cut/max-flow and branch-and-mincut optimization 

algorithms 

  2006-2009 Reference 2009-2012 Reference 

  Change 

(%) 

No-

Change 

(%) 

Total 

(%) 

Change 

(%) 

No-

Change 

(%) 

Total 

(%) 

min-cut/max-

flow 

Change 

(%) 

6.7 1.4 8.1 5.2 0.8 6.0 

No-Change 

(%) 

1.4 90.5 91.9 2.6 91.4 94.0 

Total (%) 8.7 91.3 100.0 7.8 92.2 100.0 

branch-and-

mincut 

Change 

(%) 

6.9 1.2 8.1 5.3 0.7 6.0 

No-Change 

(%) 

0.8 91.1 91.9 2.0 92.0 94.0 

Total (%) 7.7 92.3 100.0 7.5 92.7 100.0 

 

To evaluate our temporal optimization, we use the same 1000 ground truth points to 

compare the performance between the ST Atom Model and a standard OBIA change detection 

method (Chen et al. 2010). The overall accuracy of OBIA was 77.4 percent, which was 19.9 

percent less than our ST Atom Model. We visually inspected the points and found OBIA 

mismarked 146 unchanged points as “change”, which were caused by the partial object changes 

(see Figure 6-2). Additionally, the standard OBIA output temporally isolated objects, which 

prevented the generation of change trajectories.  
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Finally, we tested the computing optimization induced by Storm with a Hadoop version. 

Results are shown in Table 6-3. Hadoop required 168.7 hours, 29.6 percent more than the 

streaming implementation. Extra time was induced by HDFS based data exchange and 

unnecessary waiting time (Figure 6-5). Delays from the previous step accumulated in later steps, 

which explained the increasing delay in ST atom extraction, and classification and modelling 

steps in the Hadoop implementation.   

6.5 Conclusion 

In this paper, we presented and evaluated a GCI-based ST optimization for LUCC. Optimization 

techniques play important roles in the GCI, including the spatial, temporal and computational 

optimization techniques. With GIScience becoming data-driven (Miller and Goodchild, 2015), 

GCI shifts as an important knowledge discovery approach. Thus the combination of domain 

optimization and computation optimization will become much stronger in the future GCI 

research.  

With the ever-increasing amounts and speed of data, GCIs should integrate new methods 

for improving input-output and computing task scheduling. Despite new algorithms, more 

prosaic optimization of data handling is likely to constrain usage of GCIs. Advanced 

optimization algorithms also should be explored to improve the accuracy of image segmentation 

and LUCC detection. For example, algebraic geometry optimization (Wang, 2014) can improve 

image segmentation, and swarm optimization can optimize change/no-change thresholds (Liu et 

al., 2014). This paper provides a preliminary step in re-shaping optimization as a combination of 

domain knowledge and computation. More work can be done to optimize ST models for LUCC. 

The ST model cannot express change rates explicitly and has limitations in describing changes 

semantically. This challenge might be solved by using Yuan's (1999) three domain model to 
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include additional semantic information in the form of description tags for changes. On the other 

hand, the relationship between domain specific optimization and different computation 

optimization techniques also calls for further exploration. Hopefully, new methodologies of ST 

optimization within GCI will remain a focus in future research. 
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Chapter 7. Conclusion 

7.1 General Summary 

Big data has brought different challenges into Remote Sensing (RS)-based Land Use/Cover 

Change (LUCC) research, and my dissertation focuses mainly on addressing high volume and 

variety of geographical information. In Chapter 2, I review most recent key publications in RS-

based LUCC, together with big data processing techniques. I also highlight the scale challenges 

in RS-based LUCC which originate from the ever increasing spatial, spectral, and temporal 

resolutions and extents of the sensing platforms.  In Chapter 3, I propose the concept of Scope, 

which models scale with the spatial granularity, extent, time, and property. I present the 

decomposition/recomposition framework in Chapter 4, which manages the workflow of big data 

in the distributed computing environment. I illustrate the scale invariant LUCC detection 

algorithm in Chapter 5, by merging Scale Invariant Feature Transformation (SIFT) and 

Maximally Stable Extremal Region (MSER) for LUCC identification. In Chapter 6, I utilize 

Geospatial CyberInfrastructure (GCI) to spatial-temporally optimize the segmentation-based 

LUCC method with cloud computing and Apache Strom, and name the methodology as LUCC-

GCI.  

My dissertation provides a holistic solution for big data analysis in RS-based LUCC. The 

main contributions of my dissertation include the Scope methodology for scale modelling, the 

decomposition/recomposition dataflow management framework, the new scale invariant LUCC 

detection algorithm, and the methodology to integrate LUCC workflow with advanced high 

performance computing techniques as LUCC-GCI.  

Meanwhile, I also acknowledge the limitation of my RS-based LUCC detection 

methodologies. First, several LUCC regions might be missed if the RS platforms fail to record 
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them. Second, it is difficult to generate long time-span urban change patterns due to the limited 

RS data availability without integrating urban growth models (Moghadam and Helbich, 2013). 

Third, I highlight errors in the sensing technologies, such as the errors in sensor calibration, the 

maneuverability, and the signal processing. The recent advancement in satellite constellation can 

be a potential solution to minimize the compound errors in RS data collection (Sierawski et al., 

2017) by fusing images from constellation members. Finally, each LUCC steps may inevitably 

bring additional errors, as the prorogation of errors. For example, the change map smoothing 

method in my scale invariant LUCC detection method may remove small changed regions by 

mistake. How to detect these errors and evaluate the uncertainty in the workflow of LUCC 

remains an open research question (Olofsson et al., 2013).  

7.2 Discussion  

Scope covers a very important topic in Geographic Information Science (GIScience)— the 

Modifiable Area Unit Problem (MAUP). MAUP describes the problems when the smaller areal 

units are grouped into larger but fewer area units, features and attributes of the original data 

change accordingly (Openshaw and Taylor, 1979). The areal unit can take any size or shape, 

which brings greater scale complexity. MAUP provides a great opportunity to employ Scope, in 

which we can model these areal units as Scope with different granularities and extents, and rely 

on various properties to represent the features and object attributes. On the other hand, 

Alvanides, Openshaw, and Macgill (2001) introduced zone design as a solution for MAUP, 

which captured the variation of both properties and scales with units aggregation. The Scope 

quadruple projection turns out to be an abstraction of the zone design method, by tracing the 

projection of the original data into a series of Scope quadruples with different granularities and 

extents, where aggregation algorithms could be encoded as the Algorithm in Scope quadruple 

projections. Therefore, Scope can serve as an efficient solution for MAUP.  
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The decomposition/recomposition framework plays a pivotal role in big data handling. 

But there is no guarantee that recomposition can remove all the problems aroused by the 

artificial border challenge. Another solution is to take advanced data decomposition techniques 

to avoid cutting geographic objects. For example, Xing and Sieber (2014) have proposed a 

Voronoi diagram-based approach to minimize the artificial border challenge in data 

decomposition. However, the additional computation costs incurred by advanced data 

decomposition methods need to be taken into account, especially working with public cloud 

computing.  

The scale invariant LUCC detection algorithm presents high accuracy in rural and 

suburban areas, but lower accuracy in dense urban regions. The main reason is the high 

complexity of geographic entities in urban areas. Big data provides more LUCC details with 

increasing granularities and extents, but the noise and errors also get augmented. Therefore, finer 

granularity and larger extents do not guarantee higher LUCC accuracy. Another challenge is the 

similarity of urban entities, which cannot be fully distinguished from the SIFT descriptors. 

Therefore, future research in LUCC detection needs to investigate new image feature descriptors 

to address the representation of geographic entities  

The classification of RS-based LUCC becomes a semantic problem in the era of big data. 

Classification does not only attach labels to the image regions, but also help the cognition of the 

LUCC trajectories. For example, rainfall in a given area is not labelled as LUCC, but the 

flooding caused by the rainfall is a type of widely accepted LUCC (Sanyal and Lu, 2004).  It is 

the ontology and temporal models that help us distinguish “rainfall” from “flooding” in remotely 

sensed images. Although the Stommel diagram-based method (Stommel, 1963) can be utilized to 

select the appropriate spatial-temporal labels for LUCC, temporal models are still necessary in 
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LUCC identification, especially for the change trajectory generation and investigation of the 

LUCC speed. To summarize, LUCC study needs to investigate both temporal and semantic 

models to improve the classification of RS-based LUCC.  

Finally, LUCC-GCI proves the success of merging domain knowledge and high 

performance computing as a big data solution. On the one hand, new high performance 

computing techniques, such as Apache Storm (Apache, 2017), Apache Hama (Apache, 2017), 

and Apache Nifi (Apache, 2017), will continue improve the computational efficiency of GCI. On 

the other hand, new methodology are being invented to integrate various domain knowledge into 

GCI (Zhuge, 2015). GCI has already become a systematic methodology for knowledge discovery 

and decision-making as a new branch of GIScience, and GCI will be employed more frequently 

for big data analysis.  

To summarize, my dissertation provides a holistic big data solution for GIScience and RS 

research, with a focus on scale. First, Scope model clarifies and integrates the complex meanings 

of scale in GIScience and RS, which also provides the traceability of scaling operations. It could 

be very useful for research involving different types of scaling operations. Second, the 

decomposition/recomposition dataflow management framework solves the artificial border 

challenge and proposes a general solution to handle large data volume with distributed 

computing environment. Third, the scale invariant LUCC detection method identifies LUCC 

from scale invariant image features, without resorting to resampling for scale heterogeneity 

handling. It illustrates a general geospatial data analysis framework to incorporate compute 

vision algorithms to address scale heterogeneity. Fourth, LUCC-GCI demonsttrates that the 

spatial optimization does not only depend on algorithms, but also on computation, especially 

within GCI. Finally, I emphasize that big data does not mean better knowledge discovery in 
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LUCC study, since the topological and geometric information shape it much more complicated 

than a simple aggregation of small data.  

7.3 Future Directions  

There are three main directions for my future research. The first one is the advanced scale 

invariant LUCC detection algorithm with new deep learning techniques (LeCun, Bengio, and 

Hinton, 2015). Since Yi et al. (2016) have obtained enhanced SIFT matching through deep 

learning, I plan to use deep learning to improve my scale invariant LUCC detection algorithm in 

Section 5. I also want to implement the SIFT flow field into LUCC (Liu, Yuen, and Torralba, 

2011), to enhance the performance of the SIFT-based LUCC detection.  

The second direction is the investigation of advanced computing techniques in LUCC-

GCI. I plan to build the LUCC workflow with Hama (Apache, 2017) in my future research, and 

compare its performance with the Hadoop-based LUCC-GCI. Apache Hama utilizes the Bulk 

Synchronous Parallel computation model on Hadoop to achieve higher speedups (Golghate and 

Shende, 2014). Moreover, I also plan to integrate Apache Nifi for the job deployment and 

management in the new LUCC-GCI.  

The last direction for future work is the Stommel diagram-based LUCC classification 

(Stommel, 1963). This approach will explore the correlations among multiple spatial-temporal 

granularities and extents in the RS-based LUCC to determine the appropriate class labels. This 

study will require huge amounts of RS data collected in longer time spans for the training in the 

Stommel diagram modelling. Fortunately, big data can continue provide increasing remotely 

sensed datasets for the training process, because of the rapid development of sensing platforms. 

Therefore, big data does not only bring unprecedented challenges, but also considerable new 
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opportunities.  In additional to these three directions, I also plan to investigate the social and 

economic influence on LUCC, to get better understanding of the human-landscape interaction.  
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