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ABSTRACT

We use a phase-field model of a cell monolayer consisting of a cancer cell sur-

rounded by normal cells, where the cancer cell is softer than the normal cells. We

extended the model to incorporate a nucleus which is suitably confined within the cy-

toplasm and constrained to the cell centroid. We use sharp-interface models derived

from these phase-field models and simulate them to explore the consequences of an

elasticity mismatch, extending previous studies. More accurate numerics have been

performed and have somewhat clarified the “pinching” problem [arXiv:1807.07836

(2018)]. Inclusion of a nucleus in the model continued to achieve some resemblance

to the speed bursts observed in experiments [Biophys. J., 102:2731–2741 (2012)],

but faithful reproduction of the experimental phenomenology has yet to be accom-

plished. The softening of the cytoplasm from previous models is seen to facilitate

motion through the cell packing, beyond that seen in the experiments for the values

of the simulation parameters used here.
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ABRÉGÉ

Nous utilisons le modèle de champ de phase d’une monocouche constituée d’une

cellule cancéreuse entourée de cellules normales, où la cellule cancéreuse est plus

souple que les cellules normales. Nous avons étendu le modèle pour incorporer un

noyau conformément confiné dans le cytoplasme, et contraint au centröıde de la cel-

lule. Nous utilisons des modèles à interface raide provenus des modèles de champ

de phase, et les simulons pour explorer les conséquences du décalage d’élasticité,

développant ainsi les études précédentes. Des calculs plus précis ont été effectués et

ont pu plus ou moins éclaircir le problème de “pincement” [arXiv:1807.07836 (2018)].

L’inclusion d’un noyau dans le modèle a continué à résulter d’une certaine ressem-

blance aux pointes de vitesse observées dans les expériences [Biophys. J., 102:2731–

2741 (2012)], mais la phénoménologie expérimentale reste à être reproduite. Pour les

valeurs des paramètres de simulation utilisés ici, on a observé que l’assouplissement

du cytoplasme des modèles précédents facilitait le mouvement, à travers l’agrégat

compact de cellules, au-delà de ce que nous avons observé dans les expériences.
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CHAPTER 1
Biological Background

Collective cell migration plays an important role in phenomena such as biologi-

cal development, tissue repair, and cancer [1]. In general, it involves individual cell

active propulsion and interactions such as physical contact, adhesion, and chemical

signaling [2]. Interactions can be mediated by a flexible substrate [3]. Other types of

multicellular translocation that exist in biological tissues include intercalation (rear-

rangement) and expansive growth (arising from cell proliferation) [1], and collective

rotation [2].

Cancer is a disease where cells overstep normal limits on growth, proliferation,

and death. A cancer can become metastatic after cells become invasive, acquiring

the ability to degrade material and penetrate surrounding tissues. Cancers most

commonly arise from epithelial tissues, which consist of layers (possibly a single

layer) of tightly adhered cells sitting atop and adhered to the basement membrane,

which separates the epithelium from the stroma. The stroma consists mainly of

the extracellular matrix, a three-dimensional fibrous mesh secreted by the stromal

cells, as well as the stromal cells themselves (mainly fibroblasts) and blood or lymph

vessels. Invasiveness confers the ability to degrade the basement membrane and the

extracellular matrix. Cancer cells can travel through the stroma individually, in

small clusters, or in strands. Metastasis can occur when a cancer cell penetrates

cell–cell junctions of blood or lymph vessel walls, travels within the vasculature,
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and squeezes out of it into a foreign tissue, starting formation of a secondary tumor

[4, 5, 6, 1]. Accumulating evidence indicates that metastatic dissemination can occur

before formation of a primary tumor (i.e., a carcinoma in situ) [7].

The study of cancer from a physical sciences viewpoint has been an active area of

research [5, 6]. Physical interactions are relevant in every step of the metastatic cas-

cade. For example, during invasion a cancer cell must travel through the extracellular

matrix, interacting with it. Cancer cells must undergo large deformations in order to

squeeze between blood vessel endothelial cells. Cancer cells are softer than normal

cells, with mechanical compliance correlating positively with metastatic capability.

They also exhibit reduced cell–cell adhesion [5] and higher motility [8].

In vitro experiments studied the consequences of mismatched physical properties

in a confluent epithelial-like monolayer where a small density of invasive breast cancer

cells (MDA-MB-231) was interspersed among normal breast cells (MCF10A) [9].

This was to study the migration of cancer cells prior to invasion. The MDA-MB-

231 cells had dramatically higher motility than those either in isolation or in a

homogeneous sheet of like cancer cells. This is due to a pulsating mode of migration

in which their trajectories showed bursts of rapid, large displacements interlaced

with slow, more random movements. The fast motion is induced by crowding of

surrounding normal cells which deforms the cancer cell body and nucleus into an

elongated, nonconvex (“dog-bone”) shape. The cancer cell then quickly escapes

the crowding, recovers a more rounded shape, and slows down. The effect was

abrogated when reducing adhesion between normal cells or using noninvasive cancer

cells (MCF7) which exhibit adhesion. These implicate mismatched mechanical and
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adhesive properties of the cells in enhanced motility. The bursty migration of the

soft invasive cancer cell after impingement is also thought to be facilitated by actin

assembly and actomyosin contractility via activation of guanosine triphosphatases

[9]. We seek to better understand this phenomenon through modeling, specifically

the effect of mismatched elasticities. As is often the case with this type of experiment,

control of parameters is limited [10].

1.1 The cytoskeleton

Eukaryotic cells contain a cytoskeleton, which is a dynamic protein filament

network that spans the cytoplasm of the cell. It is responsible for cell shape, me-

chanical resistance, and spatial organization of the cell. It consists of three types of

filaments: actin filaments, microtubules, and intermediate filaments. All these are

formed from individual protein subunits that self-assemble into a helical geometry.

Actin filaments and microtubules are made of the proteins actin and tubulin, respec-

tively, whereas the proteins that make up intermediate filaments can vary widely.

Cytoskeletal filaments are linked to each other as well as to other components of

the cell such as organelles and the plasma membrane. They can span the entire

length of a cell, from tens to hundreds of micrometers. Accessory proteins regulate

filament assembly and geometry. Motor proteins walk along filaments, transporting

organelles or e.g. sliding them past each other as in muscle contraction [4].

The two ends of an actin filament grow at different rates. This is caused by con-

formational changes in a subunit upon addition to a filament. Additionally, a free

actin subunit contains a tightly bound molecule of adenosine triphosphate (ATP)
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which is hydrolyzed soon after addition to a filament. This reduces its binding affin-

ity for neighboring subunits, which enables a nonequilibrium phenomenon known as

treadmilling where, at steady state, subunits are accumulated at the plus end while

being lost at the minus end if the ambient monomer concentration is in the appro-

priate range. This enables cell protrusion, where actin filaments push against the cell

membrane. However, actin filaments are thin (diameter ∼ 8 nm) and flexible, and

their ability to apply sufficient force (rather than buckling) is due to stiffening from

aggregation. Various structures can be formed, regulated by actin-binding proteins.

Dendritic structures are formed by the Arp2/3 complex, which mediates nucleation

on the side of an existing filament at a 70◦ angle. Some other actin-binding proteins

can be classified as bundling proteins or gel-forming proteins. In the former case,

actin filaments are aggregated with parallel polarities (parallel bundle) or antiparallel

polarities (contractile bundle). With gel-forming proteins, the filaments form high-

angle intersections, resulting in a web-like structure. Yet other actin-binding proteins

promote or inhibit filament disassembly or continued assembly. These proteins can

be spatially organized to produce different structures in different parts of the cell.

For example, contractile bundles can function as stress fibers that attach to sites of

adhesion to the substratum, and dendritic structures are found in the cell cortex, the

peripheral layer lying just beneath the plasma membrane. Additionally, actin can

interact with the motor protein myosin to apply contractile forces, as in cytokinesis

[4]. In animal cells, myosin also interacts with an actin network lying immediately

beneath and attached to the plasma membrane to apply contractile forces (cortical
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tension) that give strength to the cell membrane and control cell shape [11]. Actin

filaments are most highly concentrated at the cell periphery [4].

Microtubules are stiff, hollow tubes formed by a ring of 13 tubulin molecules

with a diameter of 25 nm. Phosphate hydrolysis in this case leads to dynamic

instability, where a microtubule can alternate between periods of growth and rapid

shrinking, probing the three-dimensional volume of a cell. As with actin, nucleation

is the rate-limiting step for filament formation. Microtubule nucleation is mediated

by the γ-tubulin ring complex, which exists in the cytoplasm but is most enriched

in a microtubule-organizing center (MTOC). Most animal cells have a single MTOC

called the centrosome. Microtubules can position the centrosome at the cell center

[4]. However, in epithelia, formation of adherens junctions (cell–cell adhesive sites

associated with actin filaments) triggers rearrangement of microtubules into a non-

centrosomal array, instead being aligned along the apical–basal axis [12]. Motor

proteins walk along microtubules, transporting organelles and vesicles [4].

Intermediate filaments are strong, flexible, ropelike structures (diameter ∼ 10

nm) that enable a cell to withstand mechanical stress. This is achieved partly by

anchorage to sites of cell–cell (desmosomes) or cell–matrix (hemidesmosomes) con-

tact. Cross-linked keratin networks are responsible for the toughness of skin, hair,

and nails [4].

1.2 Single-cell migration

Almost all cell locomotion in animals occurs by crawling. The first step in loco-

motion is protrusion, where a protrusive structure forms at the plasma membrane,

often produced by actin polymerization. Next, during attachment, adhesion sites are
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formed that anchor the protrusion to the underlying substratum. Finally, during

traction, the rear of the cell de-adheres from the substratum and the cell body is

pulled forward, using adhesion sites for traction [4].

Various protrusive structures can be formed, depending on actin cross-linking

proteins [4]. Filopodia have a spike-like shape and are generated by parallel actin

bundles, thought to advance using a treadmilling mechanism [13]. They are found in

neurons and some types of fibroblasts. Lamellipodia are sheet-like structures parallel

to the substratum, formed by dendritic networks of actin filaments. They are found

in epithelial cells and fibroblasts, as well as some neurons. A third type of actin-based

protrusion, comprising invadopodia and podosomes, extends in three dimensions [4]

and enables a cell to degrade components of the extracellular matrix [14] and pene-

trate surrounding tissue, as in cancer invasion. An alternative mechanism of motility,

blebbing, is also observed, where the plasma membrane locally advances ahead of,

and detaches from, the actin cytoskeleton, enabled by hydrostatic pressure in the

cytoplasm [4]. Two-dimensional migration is relevant in an epithelial layer, whereas

three-dimensional migration applies when e.g. a cell moves through the extracellular

matrix.

As epithelial cells undergoing two-dimensional migration is most relevant here,

we will briefly describe lamellipodia-based motility. Cells can migrate at a speed two

orders of magnitude faster than a treadmilling actin filament in vitro at steady state

under physiological conditions. In a cell, a high concentration of actin monomers

is maintained by binding of monomers to thymosin, a protein that blocks addition

to a filament. Actin monomers also bind to profilin, which prevents self-nucleation
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as well as addition to the minus end of a filament. Thus, competition between

thymosin and profilin can regulate actin polymerization. The Arp2/3 complex is

activated at the front of the cell, inducing formation of a dendritic network. Capping

proteins keep filaments short and stiff, decreasing their tendency to buckle and saving

monomers for new filaments, in order to maintain generation of protrusive force.

Further back, cofilin promotes filament disassembly by debranching, severing, and

depolymerization, enabling actin turnover [15]. At the rear of a lamellipodium,

myosin filaments reorient actin filaments to be nearly parallel to the cell membrane,

gathering in the sides of the cell and preventing sideways protrusion as the cell moves

forward. The ability of the actin filaments to generate locomotion depends on their

attachment to and the formation of adhesive sites at the front of the cell, which

anchor the cell to the underlying substrate and provide traction that enables the cell

to advance forward. Actin filaments disassemble at the rear of a cell [4].

Cell migration in a particular direction requires the cell to be polarized : an

asymmetry generated by orientated organization of polar filaments (actin filaments

and microtubules), or by asymmetrical distributions of regulatory molecules [12].

Cell polarity can also refer to apical–basal asymmetry, but here, the distinction

between front and back is most relevant. It can arise from external stimuli (in e.g.

chemotaxis) or spontaneously [16]. Proteins of the Rho family have been implicated

in cell polarity. Cdc42 is active toward the front of the cell [13] and promotes

Rac activation, the combination of which promotes formation of lamellipodia via

activation of the Arp2/3 complex by proteins of the WASP/WAVE family. Rac

activity correlates inversely with RhoA activity, which organizes actomyosin bundles
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and prevents protrusion, defining the cell rear [16]. The formation of new adhesions

at the leading edge reinforce high Cdc42 and Rac activity, such that locomotion tends

to continue in the same direction and turning occurs gradually [13]. Microtubules

and their interactions with actin filaments have also been implicated in persistence of

cell polarity [12]. In fact, proper cell migration is dependent on all three cytoskeletal

filament systems, their interactions with each other, and their connections to the

nucleus [4].

Cell migration then has a persistent random walk character, with speed and

persistence varying with cell type, dependent on cell–substratum adhesion and gen-

eration of protrusive force [17]. A variety of velocity distributions have been observed:

Brownian-like, peaked at zero; persistent, peaked at non-zero speeds; and intermit-

tent, a mixture of the two where a cell alternates between slow and fast speeds [18].

Cell migration through three-dimensional (3D) extracellular matrices also plays

an important role in cancer [5]; however, in this case the trajectory does not follow

a random walk [19]. Additionally, the mechanisms important for 3D migration are

different from in 2D. For example, in 3D, wide lamellipodia are typically not seen,

and few actomyosin stress fibers are present. Thus, results for 2D migration cannot

be simply extrapolated to 3D [5].

1.3 Variations in volume and surface area of the cell and nucleus

Animal cells are separated from the extracellular fluid by a so-called plasma

membrane which is composed of a ∼5-nm-thick lipid bilayer punctuated by proteins

that serve functions such as water and ion transport. Generally, the outer and inner

layers have different compositions. The lipid molecules are free to move within the
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bilayer, so that it forms a two-dimensional fluid [4]. This means it has elastic moduli

for dilatation and bending, but a negligible shear modulus [20]. However, the me-

chanical properties of the plasma membrane are modified by a dynamic cytoskeletal

structure sometimes referred to as the cell cortex that underlies it and attaches to

it via its embedded proteins. This network actively generates contractile forces that

dominate the bending forces of the lipid bilayer itself [21]. It gives the plasma mem-

brane an effective “surface tension” and controls cell shape [11]. Such tension can be

measured using the technique of micropipette aspiration [20]. The lipid bilayer may

form many folds on top of the cell cortex [20]. This leads to a difference between

the actual plasma membrane area and the apparent cell surface area, which does not

take these folds into account [21]. Thus a cell can undergo large changes in apparent

surface area without commensurate expansion of the plasma membrane or addition

of lipid bilayer [20]. A lipid bilayer can only withstand ∼ 4% expansion before lysis

(rupture) [22]. An approximation of constant surface area is used in micropipette

aspiration experiments of red blood cells, which are unusual in that its membrane

is pulled into a biconcave shape and does not form folds [20]. Membrane tension is

spatially homogeneous on time scales relevant to cell migration [23].

Cell volume is primarily determined by osmotic balance [21]. However, the

plasma membrane is not a simple “semipermeable membrane” that allows flow of

water and prohibits flow of solute. It contains pores, ion transporters, and pumps

that mediate transport of water and small ions. Moreover, large charged macro-

molecules reside in the cytoplasm and give rise to an electrochemical gradient for

small ionic species [4]. This complicates the picture of osmotic balance and renders
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it a steady state rather than a true equilibrium [24]. Cell volume is thought to remain

approximately constant during migration [21, 25, 26]. Such an assumption is also

made in micropipette aspiration experiments of neutrophils (a type of white blood

cell) and red blood cells [20].

During interphase, the cell must grow to twice its size. Membrane growth also

occurs during this time [21]; it is determined by the balance between exocytosis and

endocytosis [27], which respond to changes in membrane tension [28]. Exocytosis is

the process in which the membrane of intracellular vesicles fuses with the plasma

membrane to deliver materials to the extracellular space or the plasma membrane;

endocytosis is the reverse process [4].

The nuclear envelope is composed of two lipid bilayer membranes and an un-

derlying nuclear lamina. The nuclear membranes join at nuclear pore complexes

[29], which allow free passage of water [30]. The nuclear lamina is a dense protein

meshwork connected to the inner nuclear membrane [29]. Micropipette aspiration

experiments show buckling and crumpling of the nuclear envelope, demonstrating

resistance to shear forces, which is characteristic of solid-like elastic behavior. In

contrast, the nuclear interior is largely aqueous and its volume reduction of the nu-

cleus could reach 60–70% in such experiments [31]; however, no significant reduction

in nuclear volume was seen during migration of whole cells through narrow constric-

tions [32]. Similarly to cell volume, osmotic pressure differences across the nuclear

envelope have been implicated in nuclear volume changes [33]. Unlike the plasma

membrane, the nuclear lamina is very expansible although not very compressible
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[30]. Nuclei in adherent cells show a somewhat flattened shape due to compressive

forces from the cytoskeleton [33].

In many cells, nuclei occupy around 10% of the total cell volume [4], although

volume fractions of 30–50% are also seen [34].

1.4 Cell and nuclear mechanics

Cells and their nuclei exhibit viscoelastic rheological responses that can be quan-

tified by frequency-dependent viscoelastic moduli, combined into a complex modulus

G∗(ω), where ω is angular frequency. Creep compliance is another measurement,

related to G∗(ω) via a Fourier transform. The viscoelastic properties of cells are

dominated by the actin cytoskeleton. The viscous response arises from dynamic

cross-linking (cytoskeletal remodeling) and controls the rate of cell migration [35].

The rheology of cells is not well described by any simple synthetic model, in part due

to active motions, constant cytoskeletal remodeling, and inhomogeneities of the cell

[36]. Additionally, cortical tension can give rise to an apparent elastic response [11],

and transmission of forces by stress fibers violate predictions of continuum models

[37]. Still, the cell rheological response has a contribution that can be interpreted as

the response of purified cytoskeletal components [36]. Many studies are consistent

with a sum of two power laws:

G∗(ω) = Aeπiβ/2ωβ +Be3πi/8ω3/4, (1.1)

where A and B are constants, and β is a small exponent, usually between 0.1 and

0.3 [38, 39, 40]. The ωβ term dominates at low frequencies or long times, while the

ω3/4 term dominates at shorter time scales than are relevant for cell migration [38].
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The elasticity of a cell can depend on many factors, such as the underlying substrate

[41, 42], contact with other cells [43], and migration state [44]. Additionally, in the

last case a migrating cell can exhibit nonuniform mechanical properties [44]. Cells

also have nonlinear elasticity, such that the stiffness can be significantly altered by

internal prestresses or external stress [36].

Micropipette suction (mentioned in the previous section) can be used to measure

elastic constants of solid-like cells or nuclei, as well as to distinguish between solid-like

and liquid-like behaviors [20, 30]. It can also measure viscoelastic response to some

extent [45]. Methods capable of rheological measurement (G∗(ω)) include [38] mag-

netic twisting cytometry, atomic force microscopy (AFM) [40], and particle-tracking

microrheology [35, 46]. Among these, the last is different in that it probes local

and length-scale-dependent viscoelastic properties of the cell interior. All “global”

measurements probe a combined response of cytoplasm and nucleus, e.g. whether an

AFM tip is placed vertically above the nucleus or away from it [35] (as in Ref. [9]).

This distinguishes internal and external techniques, which differ in the measured

value of the exponent β. They have been confirmed to probe distinct structures

within the cell. A problem common to both categories is that the measured overall

stiffness can be affected by unknowns in linkages between probes and the cell [38].

Typical values of measured elastic moduli of cells on a time scale of seconds

range from 0.1 to 10 kPa [36], and AFM measurements show that 1 μm indentations

of cells relax within seconds [40, 47].

When cells squeeze through constrictions, the deformation of the nucleus can

be the rate-limiting step as the nucleus can be an order of magnitude stiffer than
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the cytoplasm [48]. Both the nuclear envelope and nuclear interior contribute to

the mechanical properties of the nucleus. The nucleus is the stiffest organelle in the

cell, being 2 to 10 times stiffer than the cytoskeleton and having typical measured

elastic moduli ranging from 0.1 to 10 kPa, depending on cell type and experimental

method [29]. The nuclear interior exhibits solid-like behavior on length scales of

∼ 100 nm and time scales of seconds [46]. On time scales relevant to cell migration

(minutes), the nucleus is primarily elastic [49]. The nucleus cannot move freely inside

the cell. It is anchored to cytoskeletal filaments, and these connections contribute

to cell mechanical properties comparably to the cytoskeletal filaments themselves

[35, 50]. Accordingly, deformation of the cell elicits deformation of the nucleus [51].

Additionally, the nucleus is tightly linked with the centrosome, which is generally

located near the geometric cell center [52]. During migration, the nucleus is usually

positioned behind the centrosome, but in some cases, it can be in front [49].

1.5 Cell monolayers

Cell layers exhibit a number of properties of physical interest. Biological tissues

are resistant to stress, yet allow plastic deformations by remodeling. Different cell

types sort out as in a mixture of two immiscible fluids [53]. Cells in epithelial

monolayers are polygon-shaped, and their geometry and topology can be studied. In

addition, they intercalate (exchange neighbors) using processes that involve shrinking

of edges between two cells and subsequent appearance of new edges [54]. Layers of

motile cells can exhibit collective migration, where coherence of a group of cells is

preserved and their motions are correlated [1]. Upon increasing density of cells, a

transition from collective relaxation to a glass-like state where motions of cells are
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highly localized and constrained. Dynamic heterogeneities in speed [55] and large-

scale swirling patterns [56] have also been observed.

Various types of models have been put forth to describe behavior of collections

of motile cells. Physics-based models are essentially based on mechanical interac-

tions within a cell (e.g. elasticity), between cells (e.g. volume exclusion, adhesion),

and between cell and substrate (traction). Models can differ with respect to single-

cell locomotion, cell–cell interaction, and level of description of the cell. Single-cell

locomotion is described using a polarity vector which signifies the in-plane polariza-

tion of the cell, i.e., the “attempted” direction of motion of the cell. The cell–cell

interaction can affect the cell polarity. For example, the phenomenon of contact in-

hibition of locomotion directs a cell’s polarization away from a contact with another

cell [10]. (Protrusions still form in confluent monolayers, beneath neighboring cells,

known as “cryptic lamellipodia” [57].) Neighbor-aligning interactions are sometimes

used, although it has no experimental basis. The description of the cell can range

from point-like particles to polygons (used particularly for confluent monolayers) to

an arbitrarily-shaped region described by phase-field models, or several interacting

particles [10].

Self-propelled particle models formulate motion using interparticle interactions

that include repulsion and attraction (adhesion). However, mechanical properties of

individual cells are not modeled. Nevertheless, these have had some success when

compared with experiment. A flocking transition with increasing density was ob-

tained using a model in which cell polarization aligned to cell velocity, with a force

function incorporating both repulsion and attraction [58]. A different particle model
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with neighbor-aligning interactions succeeded in reproducing statistical quantities

such as spatial and temporal correlations of the velocity field [59].

Particle models can be considered to model the cell as an isotropic/circular

shape [10]. However, in a confluent monolayer, cells rather have a polygonal shape,

where edges are junctions between two cells, and vertices are where three or more

cells come into contact [54]. These are often modeled using a vertex model, where

the polygonal boundaries of cells are specified, or a Voronoi model, in which the cell

location is considered as a single point and the cells are modeled as the Dirichlet

tessellation [10]. These models can incorporate cell volume or area, adhesion, active

contractility, and membrane tension [60, 61]. They have had experimental support

in predicting jamming transitions induced by a balance between cortical tension and

cell–cell adhesion, both in nonmotile [60] and motile [61] cells.

Phase-field models are in a sense the most flexible, allowing an arbitrary shape

of interface and able to incorporate a curvature-dependent term in the energy and

additional structure such as relevant chemical concentrations [62, 63] or a nucleus [62].

By adjusting parameters, they have been able to reproduce experimental observations

in single cells [64, 65] as well as small collections of cells in confined regions [62,

63]. However, phase-field models are computationally much more expensive and are

suitable for relatively small (< 100) collections of cells [10].

Models for cells on a substrate are usually formulated in 2D. Cells are often

modeled as having a constant volume [60] or area [64]; however, in confluent mono-

layers, volume fluctuations can reach 20%, suggesting that cell volume regulation

in monolayers is different than in isolated cells, possibly involving intercellular fluid
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exchange through gap junctions [66]. Energetics of the cell boundary can include in-

terfacial tension [60, 64], active contractility of the cell cortex [60], or bending energy

[64].

In this thesis, we use the phase-field model to simulate cells of different elastici-

ties, interacting via volume exclusion. We also incorporate a nucleus phase-field with

an associated elasticity. We use a simple surface-tension model for the membrane

energy and do not consider active contractility or more sophisticated models for the

bending energy.
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CHAPTER 2
Introduction to Phase-Field Models

The phase-field method is now an established approach in materials science to

model microstructures relevant in material properties such as mechanical strength

or dynamic processes such as solidification of pure materials or binary alloys. It has

been made possible by modern parallel computing. The phase-field is a continuum

field that is homogeneous in each bulk phase (e.g. solid or liquid) and interpolates

rapidly (but continuously) between them in a diffuse boundary layer. Its dynamics is

based on thermodynamic free energy considerations, as explained below. However,

numerical simulation of phase-field models can be costly, requiring not only high

spatial resolution within the diffuse interface but also concomitantly small time-steps

for numerical stability (see discussions in subsequent chapters). Thus, sharp-interface

limits have been analyzed in order to simulate dynamics of the interfaces alone [67].

2.1 Landau–Ginzburg free energy

The conventional prescription of statistical mechanics is that the thermodynamic

state of a system (e.g. a container of fluid) is characterized by a set of thermody-

namic variables (e.g. number of particles, volume, and temperature for the canonical

ensemble), and from the Hamiltonian one can calculate the appropriate thermody-

namic potential and expectation values of physical quantities. Such calculations will

respect symmetries of the Hamiltonian. However, systems can sometimes be in states
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of broken symmetry, where macroscopic quantities violate symmetries of the Hamil-

tonian. Examples include crystals (broken translational and rotational invariance)

and ferromagnets with non-zero net magnetization in the absence of an external

magnetic field (broken rotational invariance of magnetization). In these cases, ad-

ditional variables are needed for a complete thermodynamic description. They are

the order parameters that describe the symmetry breaking: for example, net mag-

netization in a ferromagnet. Symmetry breaking can accompany a phase transition,

e.g. the paramagnetic-to-ferromagnetic transition upon cooling through the Curie

temperature. Landau theory aims to describe properties of a system in the vicinity

of such transitions. It is also applied when symmetry breaking is not involved, such

as liquid–gas transitions [68].

To introduce the phenomenological Landau free energy, we take as a specific

example the Ising model, consisting of N classical “spins” si placed on a lattice. The

spins can point either up or down, encoded by the values si = ±1. The Hamiltonian

is:

H = −J
∑
〈i,j〉

sisj, (2.1)

where 〈i, j〉 denote nearest-neighbor pairs, and J > 0 for a ferromagnetic interaction.

The order parameter is the average magnetization: φ := (
∑

i si) /N . We work in

the canonical ensemble, so we want to find the free energy F (T,N, φ) (where T =

temperature). The entropy of mixing is (kB is the Boltzmann constant):

S

kBN
= ln 2− 1

2
[(1 + φ) ln(1 + φ) + (1− φ) ln(1− φ)] . (2.2)
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In Bragg–Williams mean-field theory, the energy is approximated as:

E = 〈H〉 ≈ −J
∑
〈i,j〉

〈si〉〈sj〉 = −JNz
2

φ2, (2.3)

where z is the coordination number of the lattice. The free energy per spin can be

readily found as f(T, φ) = (E − TS)/N . The equilibrium value(s) of φ are found by

minimizing f , which requires ∂f/∂φ = 0 [68].

For high T , the function f(T, φ) is found to have a single minimum at φ = 0,

while for low T , it has two minima at φ = ±φeq. The crossover point is the critical

temperature Tc = zJ/kB. For T ≈ Tc, the order parameter is small and f can be

expanded in a power series:

f(T, φ) = −kBT ln 2 +
kB
2
(T − Tc)φ

2 +
kBT

12
φ4 +O(φ6), (2.4)

where including the φ4 term is necessary for stability, and it can be derived that

φeq ∼ (Tc − T )1/2. Asymmetry can be introduced by applying an external field,

adding a term −hφ to f(T, φ).

For more complicated systems, a formula for the free energy is not so easily

written down. More easily, near the critical point, a phenomenological Landau free

energy is written down as a power series in the order parameter, where each term

respects the symmetries of the system. It applies if the order parameter is small near

the critical point. For the Ising model, such a free energy would look like:

f(T, φ) =
a(T )

2
φ2 +

c(T )

4
φ4, (2.5)
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where there is no φ3 term because of symmetry φ → −φ, the coefficient c(T ) > 0,

and the coefficient a(T ) changes sign at Tc [68].

So far, we have been restricting to the case that the order parameter is spa-

tially uniform: 〈si〉 = φ for every site i. To build a theory for a spatially varying

order parameter φ(x), we add an energy cost for spatial variations. This leads to a

phenomenological Landau–Ginzburg free energy functional:

F [φ] =

∫
ddx f(φ(x)) +

1

2
C

∫
ddx |∇φ(x)|2, (2.6)

where C > 0, and f(φ) now represents a free energy density. The continuum field

φ(x) represents a coarse-grained description. The squaring of the gradient preserves

spatial isotropy, and neglecting higher-order gradient terms is justified for spatial

variations of φ that are gradual on a microscopic scale [68]. In the Ising model, this

form can be shown to have a microscopic origin, as:

−
∑
〈i,j〉

sisj =
1

2

∑
〈i,j〉

[
(si − sj)

2 − s2i − s2j
]

= −N +
1

2

∑
〈i,j〉

(si − sj)
2,

(2.7)

where the second term gives rise to the gradient energy [68, 67]. The thermodynamic

driving force is defined as δF/δφ, and it is zero in equilibrium [67].

The local order parameter in the Ising model is usually a nonconserved field

when a ferromagnet is modeled. An example of a conserved order parameter is con-

centration in a binary mixture, in which local modifications are necessarily coupled

to nearby fluxes. The phenomenological free energy in such a system is identical
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in form to the nonconserved case, but different conditions exist for thermodynamic

stability and metastability, as in (bulk) phase separation and the spinodal curve,

respectively. In this case, a chemical potential field can be derived as δF/δφ, and its

gradient is the thermodynamic driving force for fluxes.

For a symmetric Landau free energy density, a stationary planar interface be-

tween the two phases ±φeq := ±√a(T )/c(T ) for T < Tc can be solved for:

φ(x) = φeq tanh

(
x

2ξ

)
, (2.8)

where ξ =
√
C/(2a) (the dependence on temperature T has been dropped) [69].

The above form can be used to calculate interfacial tension σ between the two bulk

phases. For constant a/c, the proportionality is σ ∝ 1/ξ.

2.2 Nonequilibrium dynamics

We consider a Landau–Ginzburg free energy (Eq. 2.6), with

f(φ) = −hφ − a

2
φ2 +

c

4
φ4, (2.9)

where a > 0, c > 0. To model dynamics of a nonconserved order parameter, we use

the equation:

∂φ

∂t
= −M δF

δφ
=M

(
C∇2φ+ h+ aφ− cφ3

)
, (2.10)

where M is a mobility, emulating overdamped Langevin dynamics. A white noise

term can be added to simulate thermal fluctuations. For a conserved order parameter,

the flux density j = −M∇ (δF/δφ), and assuming M is constant:

∂φ

∂t
= −∇ · j =M∇2 δF

δφ
. (2.11)
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In this case, a white noise can be added to j to give a suitable noise for φ. The

nonconserved and conserved dynamics above are known as Model A and Model B,

respectively, in the Hohenberg–Halperin classification [67].

For Model A, a diffusion coefficient D := MC can be extracted. To obtain

sharp-interface dynamics in 2D, we consider the limits where ξ 
 1/|K| where K
is the local curvature of the interface, and where the asymmetry in f(φ) is small.

Concretely, the latter means that f(φ) has two minima φ±
eq close to ±√a/c, and

the bulk free energy density difference Δf := f(φ+
eq) − f(φ−

eq) is small compared to

the barrier height. We also assume that the interface velocity V is low enough for

diffusional relaxation, the Péclet number ξ |V | /D 
 1. The normal velocity of the

interface can then shown to be [67, 69]:

V = D

(
−K +

Δf

σ

)
, (2.12)

where the normal n̂ points φ−
eq → φ+

eq, and the sign of K is chosen compatibly, as

dt̂/ds = −Kn̂ where s is an arc-length variable at the time-point of evaluation, and

t̂ the unit tangent vector of the (sharp) interface.

We consider an interface enclosing a homogeneous region of a bulk phase. The

curvature K satisfies a Gauss–Bonnet formula:∮
dsK = 2π, (2.13)

where now the sign of K is chosen compatibly with an outward normal. It can be

seen from K = dθ/ds where t̂ = (cos θ, sin θ). This can be used to calculate the rate

of change of the enclosed area in the absence of asymmetry (Δf = 0). Traversing
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the interface counterclockwise gives:

d

dt

∮
ds x

∂y

∂s
=

∮
ds

(
∂x

∂t

∂y

∂s
+ x

∂2y

∂s∂t

)

=

∮
ds

(
∂x

∂t

∂y

∂s
− ∂x

∂s

∂y

∂t

)

= −D
∮
dsK (nxty − nytx)

= −2πD,

(2.14)

where we used n̂ = (ty,−tx). This shows that curvature-driven interface dynam-

ics tends to shrink confined phases, partly responsible for domain coarsening. The

quantitative value can be easily confirmed when initializing with a circular domain

[70].

The interface dynamics of Eq. 2.12 can also be derived from a free energy of a

closed interface defined as F̄ [R] := σP + AΔf , where P and A are the perimeter

of and area enclosed by the interface R(s). Then dR/dt = −(D/σ)δF̄ /δR. The

variation in perimeter is:

δ

∮
ds

∣∣∣∣∂R∂s
∣∣∣∣ = ∮ ds

∂R/∂s

|∂R/∂s| · δ
(
∂R

∂s

)
= −

∮
ds
∂t̂

∂s
· δR

=

∮
dsKn̂ · δR,

(2.15)

and the variation in area is derived similarly to dA/dt above.

Sharp-interface limits for Model B have also been derived [67, 69], but they are

more involved and we will not review them here.
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CHAPTER 3
Phase-Field Model for Cell Monolayers

Computer simulation studies were done by Palmieri et al. [71] where cells were

modeled using a phase-field description where normal and cancer cells were identical

except for their elasticities. The results qualitatively reproduce many features ex-

perimentally observed by Lee et al. [9], e.g. speed bursts preceded by deformation,

including the amplitude and frequency of the bursts. However, the cell was defined

by a single elastic constant with no distinction between cytoplasm and nucleus. In

reality, the cytoplasm is about an order of magnitude softer than the nucleus [5],

and so the nuclei play an important role in the phenomenon of cancer cell migration.

Therefore, we extend the model to include the cell nuclei.

3.1 Cytoplasm-only model

We model cells as droplets described by a phase-field model with a phenomeno-

logical cell–cell repulsion term as in Ref. [67]. We follow Ref. [71] in using Model A

dynamics with a Lagrange multiplier term to control the cell area. This was used

because Model B dynamics had proved to require too much computational resources.

We use and extend model the in Ref. [71], in which more details and discussion

can be found (particularly in the Supplemental Information). The free energy consists

of a Landau–Ginzburg term with a double-well potential for each cell, penalization
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of area deviation, and cell–cell repulsion:

Fn = γn

∫
d2r

(
|∇φn|2 + 30

λ2
φ2
n(1− φn)

2

)
+

μn

πR2

(∫
d2rφ2

n − πR2

)2

F =
∑
n

Fn +
30κ

λ2

∑
n,m�=n

∫
d2rφ2

nφ
2
m,

(3.1)

where m and n are cell indices, φn is the field of cell n, γn is its elasticity which

penalizes interface, λ is the interface width, R is the nominal radius of the cell (all

cells have identical nominal size), μn is a Lagrange multiplier that controls the cell

area, κ controls cell–cell repulsion, Fn is the free energy associated with cell n, and

F is the total free energy. The interface dynamics of an isolated cell is independent

of λ when λ
 1/|K| where K is the local curvature of the interface [69], if μ is taken

proportional to 1/λ (see Ref. [72] and also next chapter, “Sharp-Interface Model for

Cell Monolayers”). So, it is chosen that “λ 
 R”. We use the values in Ref. [71]

unless otherwise specified (Table 3–1). In particular, the elasticity ratio between

normal and soft cells is chosen based on the experimental measurements [9]. Also,

a thinner interface would require a finer mesh for numerical simulation (see section

“With nucleus”) and, to keep it computationally feasible, would possibly require an

adaptive mesh. This would involve a significantly more complicated algorithm. Also,

we wish to compare our results to the studies of Refs. [71, 72].

We choose κ and μ large enough so that when cells are contacted by other cells,

they will deform instead of (significantly) overlap or become (significantly) smaller

than πR2 in area measure (defined as
∫
d2rφ2). In the presence of a neighboring

cell, the “effective” Landau-free-energy-density (∇φ-independent) component for a
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Table 3–1: List of model parameters for cytoplasm-only simulations. Taken from
Ref. [71].

Normal Soft
γn 1 0.35
λ 7
R 49
μn 1
κ 10

cell field becomes an asymmetric double-well (favoring φ = 0) or eventually single-

welled. The squaring of φ in the repulsion potential prevents it from preferring to

be negative. The squaring of φ in the area term might be considered to have the

same effect; however, the surface tension drives down the area (see previous chapter).

Because the interfaces are discouraged from overlapping, they also become thinner,

particularly that of the soft cell. Thus a correct measure of interface perimeter

involves integrating |∇φ| rather than |∇φ|2.
For the equation of evolution, the cells are endowed with a velocity vn, so that:

∂φn

∂t
+ vn(t) · ∇φn = −1

2

δF
δφn

, (3.2)

where the field mobility (aside from elasticity γn) is assumed to be the same for all

cells and absorbed into the time-unit. The vn(t) has two contributions, an “active”

term vn,A(t) representing the attempted crawling of the cell, and an “inactive” term

vn,I(t) which effectively modifies the “active” term in response to contact with other

cells. The latter must be consistent with thermodynamics (i.e., non-increasing free-

energy with time in the absence of the active term) and is taken to have the form
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[71]:

vn,I(t) =
60κ

λ2ξn

∫
d2rφn∇φn

∑
m�=n

φ2
m, (3.3)

where ξ−1
n is a coefficient that is possibly 0. This is obtained by considering the

change φn(r) → φn(r − dr) and calculating the associated free energy change. In

Ref. [71], ξn = 1500 is chosen.

The active term vn,A(t) has a constant magnitude of vA = 10−2 and has a di-

rection which is piecewise constant in time, changing at discrete reorientation events

following a Poisson process with rate τ−1
r = 10−4, with the new direction chosen

uniformly. The choices of γn and vA satisfy separation of time scales for motil-

ity and shape relaxation [71]. The choice of vAτr ≈ 2R is made to agree with

video microscopy [9], although experimentally the direction of cell motion changes

continuously, with a persistence time characterizing the magnitude of the random

fluctuations.

The functional derivative of the free energy is given by [71]:

1

2

δF
δφn

= −γn∇2φn +
30

λ2

[
γnφn(1− φn)(1− 2φn) + 2κφn

∑
m�=n

φ2
m

]

+
2μn

πR2

(∫
d2rφ2

n − πR2

)
φn.

(3.4)

It suffices to work with values of μn and ξn that are the same for all cells, so we

hereafter omit the indices for these variables.

No random noise is used in the dynamics of the fields themselves, because ran-

dom driving is already provided by stochastic cell locomotion.
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We study a system of Ncells = 72 cells in a square simulation box with periodic

boundary conditions. The density of cells is defined as ρ := NcellsπR
2/L2 where L

is the length of the simulation box. One cell is “soft” while the rest have “normal”

stiffness. The density measure ρ does not take the interface width into account. We

use ρ = 0.9 as in Ref. [71] unless otherwise specified.

3.1.1 Numerical algorithm

We use a Euler time-stepping algorithm on a discrete uniform square mesh,

Δx = Δy =: Δ. We use central differences for spatial derivatives and a 9-point

stencil for the Laplacian [67]:

∂

∂x
f(x, y) =

f(x+Δ, y)− f(x−Δ, y)

2Δ
+O(Δ2), (3.5)

and analogously for ∂/∂y, and

∇2f(x, y) =
1

Δ2

(
f(x+Δ, y) + f(x−Δ, y) + f(x, y +Δ) + f(x, y −Δ)

2

+
f(x+Δ, y+Δ)+f(x+Δ, y−Δ)+f(x−Δ, y+Δ)+f(x−Δ, y−Δ)

4

− 3f(x, y)

)
+O(Δ2).

(3.6)

It can be seen that more weight is put on the closer points. The length of the

simulation box must be an integer multiple of the mesh spacing: L = NmeshΔ.

To facilitate computation of the Laplacian, we keep in memory each field as a

(Nmesh + 2)× (Nmesh + 2) array, extended from the Nmesh ×Nmesh simulation box by

one mesh unit in the −x, +x, −y, and +y directions, according to periodic boundary
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conditions, as described in Ref. [67]. The central Nmesh × Nmesh subarray (in fact,

only part of it; see below) is updated first according to the Euler scheme, and then

the remainder is updated according the periodic boundary conditions.

Because each cell takes up only a small fraction of the total area of the simulation

box, we only update each cell within a small rectangle “enclosing the cell” (clarified

below), which may wrap around the edges of the simulation box. This rectangle

is updated over time, on the order of once per time-unit. It is constructed by first

forming the smallest rectangle containing all the points at which the cell field exceeds

0.05. It is then extended in both directions in each dimension by a margin that we

take as equal to the interface width, λ = 7. The cell field is enforced to be 0 outside

this rectangle when it is updated. Before calculating repulsion from another cell, it is

checked that their rectangles overlap, and calculation done only in their intersection.

Integrals were calculated simply by summing all the integrand values inside the

bounding rectangle and dividing by Δ2, of accuracy O(Δ2) by equivalence with a

2D trapezoidal rule because the cell field supposedly vanishes outside the bounding

rectangle.

An equilibrium interface has the profile [72]:

φ∗(x) =
1 + tanh(αx)

2
, α =

√
15/2

λ
. (3.7)

From this it can be estimated that the method senses cells that are 3 interface widths

away, measuring between the centers of the profiles.

The reorientation events were determined using a time-step of Δtr = 0.06 with

reorientation probability 1 − e−Δtr/τr for each cell. The probability of selecting the
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next direction at time nΔtr follows a geometric distribution:

P (n) = e−(n−1)Δtr/τr
(
1− e−Δtr/τr

)
, n = 1, 2, 3, . . . . (3.8)

A single set of reorientation events was generated for the 72-cell system and used for

all the runs for reproducibility.

The algorithm was coded in C++ with OpenMP. Random number generation in

parallel cannot be done with rand(); instead, it requires thread-safe random number

generators such as that provided by the GNU Scientific Library [73]. (Paralleliza-

tion of random number generation is not necessary in this case, since we are not

additionally adding noise to the field dynamics.)

Due to the combination of a simple update rule and relatively high memory

requirements, this is a memory-bound algorithm [74], as confirmed by modifying

the update rule to a trivial one which is “artificial”. Two arrays are used which

alternate storing the field values, so that updates are not written to an array during

computation of its Laplacian, and cache misses are not incurred by unnecessary

copying.

To display the cells, we use a discrete RGB (red-green-blue) scheme where field

values φ are partitioned into categories of φ > 0.95, 0.05 < φ ≤ 0.95, and φ ≤ 0.05.

This is the primary way that results of simulations are saved. Full values of the

cell fields are saved sparingly (≤ 1 in 30 RGB images) because of the forbidding

memory requirements. In the active simulations (except the collision experiments),

an RGB image is stored every 180 time-units. Videos were typically watched at 5400

time-units per second.
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3.1.2 Numerical stability

We neglect the area conservation term because the fractional area deviation(∫
d2rφ2

)
/(πR2)−1 is small (see subsection “Active simulations”). We consider the

numerical stability of the Euler time-stepping procedure for the (now local) equations

of motion linearized around the bulk value φn = 0. We do not consider the velocity

term here. The requirement for the time-step Δt in the absence of cell–cell repulsion

has been calculated in Ref. [75] for a 5-stencil Laplacian. A similar calculation for

the 9-stencil Laplacian gives:

Δt <

(
2γn
Δ2

+
15γn
λ2

)−1

, (3.9)

which applies to linearization around both bulk values φn = 0 and φn = 1. The term

arising from the Laplacian dominates for Δ = 1.

The repulsion term is considered with the worst-case value of the neighbor φm =

1; it is then modified to:

Δt <

(
2γn
Δ2

+
15γn
λ2

+
30κ

λ2

)−1

. (3.10)

The term arising from cell–cell repulsion now dominates. For our model parameters,

this evaluates to Δt < 0.119 for normal cells.

3.1.3 Initialization and equilibration

We study a system with ρ = 0.9, L = 777. Cell centers were placed in sequence

at random points in the simulation box, where cell centers are forbidden to come

within 1.5R of each other and if that occurs, a new location is chosen at random.
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Each cell is initialized as a Heaviside step function Θ(R−rn), where rn is the distance

between the field point and the chosen center of cell n.

For equilibration, evolution is done without the active velocity term. The time-

step was taken to be Δt = 0.001 for 0 ≤ t < 1815 and then Δt = 0.01 increasing

to Δt = 0.06 in discrete jumps for 1815 ≤ t � 40000 (Fig. 3–1). The oval-shaped

empty spaces between adjacent cells at t = 15 could be due to a time-step that is

not small enough, but this was not investigated as it was considered unimportant.

Figure 3–1: Equilibration of cytoplasm-only cell monolayer. From left to right:
t = 15, t = 1815, t ≈ 40000.

3.1.4 Active simulations

Initially, it was thought to compare the trajectories with and without the nu-

cleus. Thus most of the cytoplasm-only simulations were initialized from equilibra-

tion of the models with the nucleus. Two such initial conditions were used, described

in the section “Model with nucleus”. They are qualitatively similar to the equili-

brated cytoplasm-only system.

Using initial condition I: Comparing Δt = 0.06 and Δt = 0.01, by t = 16200 the

soft cell already took a different trajectory and the cells around it had rearranged
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differently. It seems that at a certain time, the error reaches a “tipping point” at

which the cells choose a different rearrangement to undergo. Thus numerical error

does not accumulate in a steady fashion. This showed that Δt = 0.06 was too large

to be acceptable. Such a change was not observed decreasing to Δt = 0.003 running

to t = 35640. However, this is an insufficient length of simulation time to validate

numerical parameters. Accuracy may be easier to achieve during the first ≈50000

time-units because of the equilibrated initial conditions. Thinning of the interface of

the soft cell can be seen, as well as sharp corners on its boundary (Fig. 3–2).

Figure 3–2: Snapshots of active simulations of cytoplasm-only cell monolayer, with
inactive velocity. Top row: Δt = 0.06. Bottom row: Δt = 0.01. From left to right:
t = 16200, t = 18900, t = 21600.
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The inactive velocity reached at most a few percent of the active velocity in

these very short runs. However, in longer runs, it could reach up to 10% [76].

Using initial condition II, we initially set ξ = ∞ (no inactive velocity). Thus

far, the value of Δ had not been validated. Decreasing Δ gave changes in the

simulations, and suggested further decreases of Δt (Fig. 3–3). Obtaining accurate cell

rearrangement dynamics may require Δ ≤ 0.6 and Δt ≤ 0.0025. Possible reasons for

this difficulty (if true) may be the thinning of the interface as well as large curvatures

(see Fig. 3–4), and propagation of collision forces. Using ξ = 1500 and ξ = 500 gave

differences noticeably larger than those obtained by changing numerical parameters.

Length of videos ranged from approximately 43200 to 81000 time-units. For all the

simulations with the nucleus (next section), the inactive velocity was discarded as it

seemed unnecessary.

We explored increasing κ and μ by a factor of 4. As expected, this discourages

empty space (Fig. 3–5; compare Fig. 3–2). However, due to possible numerical

inaccuracy, the true effect might not quite be correctly captured.

In all the simulations of this model, the area measure
∫
d2rφ2 typically deviated

by no more than ∼ 1% from πR2, and did not seem to go over πR2. However,

deviations of the cell field from its equilibrium value (which is > 1; see Supplemental

Information of Ref. [71]), and corresponding deviations in the “geometrical area” of

the cell, were more substantial (see Fig. 3–4). Within the model we use, there is not

an additional parameter we can use to control this.
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Figure 3–3: Snapshots of active simulations of cytoplasm-only cell monolayer, with-
out inactive velocity. Top row: Δt = 0.005, Δ = 0.75; (L–R) t = 54000, t = 59400,
t = 64800. 2nd row: Δt = 0.002, Δ = 0.75; (L–R) t = 54000, t = 59400, t = 64800.
3rd row: Δt = 0.01, Δ = 0.75; (L–R) t = 32400, t = 37800, t = 43020; nearly iden-
tical to Δt = 0.002. Bottom row: Δt = 0.01, Δ = 0.6; (L–R) t = 32400, t = 37800,
t = 43020; nearly identical to Δt = 0.0025.
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Figure 3–4: Cell field profiles in active simulations of cytoplasm-only cell monolayer.
Used initial condition II, without inactive velocity, with Δt = 0.002 and Δ = 0.75
at t = 16200. A single pixel is 1 mesh point. (L) The soft cell; the field value in its
interior is ≈ 1.07. (R) A normal cell; the field value in its interior is ≈ 1.03.

Figure 3–5: Snapshots of active simulations of cytoplasm-only cell monolayer, with-
out inactive velocity, with κ = 40 and μ = 4. (L–R) t = 10800, t = 16200, t = 21600.
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3.1.5 Collision experiments

We collide 2 cells head-on with the same active velocity vA = 10−2, initially

circularly shaped with their centers spaced a distance of 130 apart so that they do

not overlap. The parameters ξ = ∞, Δ = 1, and Δt = 0.01 were used. For normal

cells (γn = 1), the cell RGB images showed almost no change after t = 9000 up to

t = 144000. For soft cells (γn = 0.35), they showed almost no change after t = 27000

up to t ≈ 108000, when the cells start to slide past each other due to numerical

error. Changing ξ to 1500, these were still true but attained a very slightly different

configuration (Fig. 3–6). The inactive velocity was 2.47×10−4, modifying the active

velocity by a few percent. For the ξ = ∞ simulation, the term for the inactive

velocity calculated using ξ = 1500 (although not used in the simulation) evaluated

to 2.56× 10−4.

Figure 3–6: Collision experiments in cytoplasm-only model. Left to right, top to
bottom: ξ = ∞ and γn = 1 at t = 9000, ξ = ∞ and γn = 0.35 at t = 9000, 18000,
27000, 117000, ξ = 1500 and γn = 0.35 at t = 27000. (Ignore the different colors of
the cells.)
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For the simulations with nucleus, we reduce the elasticity of the cytoplasm

(discussed later). We tried using cells with γn = 0.35× 0.3 = 0.105. Again we only

use ξ = ∞. Using the same numerical parameters, the cells never slowed down but

rather, one reached around the other and eventually broke into two (not shown).

This behavior persisted when using Δt = 0.003, except that the other cell instead

broke apart (not shown). Using Δ = 0.5 and Δt = 0.01, the problem was resolved.

At t = 72000 the cells looked as if they were equilibrating (Fig. 3–7), but then slid

past each other. These results suggest that in this case, the coarser resolution of the

interface had problems handling either the reduced interface thickness or the regions

of large curvature.

Figure 3–7: Collision experiments in cytoplasm-only model using γn = 0.105. Top
row: Δ = 1; (L–R) t = 18000, t = 27000, t = 36000 (initial positions slightly
perturbed along the axis of the active velocities). Bottom row: Δ = 0.5; (L–R)
t = 18000, t = 45000, t = 72000. (Ignore the different colors of the cells.)

From the first ≈1000 time-units, the speed of isolated cells can be measured,

traveling parallel to the mesh axes. The cells with γn = 0.35 and γn = 0.105

using Δ = 1 moved at a speed of 9.84 × 10−3, whereas the cells with γn = 0.105
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using Δ = 0.5 moved at a speed of 9.96 × 10−3 (also see next section, subsection

“Confinement inside cytoplasm”). At the point when the cells’ centers of mass were

separated by 2R + λ (at t ≈ 1250), their speeds were still 95% and 98% of vA,

respectively. Only after this point did the cells slow down more considerably. The

center of mass was calculated as:

(rCM)n =

∫
d2r rφ2∫
d2rφ2

. (3.11)

3.2 Model with nucleus

The nucleus is modeled in the same way as the cytoplasm, using a field ψn for

each cell having a free energy of the same form as the cytoplasm (Eq. 3.1):

Fν
n = γνn

∫
d2r

(
|∇ψn|2 + 30

λ2ν
ψ2
n(1− ψn)

2

)
+

μν

πR2
ν

(∫
d2rψ2

n − πR2
ν

)2

, (3.12)

where Rν < R, and parameters are analogous to Eq. 3.1.

To determine the appropriate value of γνn, we consider a nucleus with a given

mechanical stiffness. Imagining a compression–relaxation experiment, the spring

constant of the two-dimensional disk is independent of Rν . If we suppose that the

force per unit length is proportional to the interface velocity, then upon performing a

scaling transformation, the interface speed should be preserved. This means that the

time-scale should be concomitantly adjusted proportionally to Rν (faster for smaller

nuclei), assuming a given mobility (see Eq. 3.2). Performing both transformations,

the result is γνn ∝ 1/Rν . The other parameters also become modified, but their values

are relatively inconsequential as long as they are suitably chosen.

We choose Rν = R/2 for these simulations.
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3.2.1 Confinement inside cytoplasm

We prevent the nucleus from intersecting the region outside the cytoplasm by

including an interaction between cytoplasm and nucleus fields of each cell, given by

the free energy density:

f cν
n =

60κν
λ2ν

ψ2
n(c− φn)

2, (3.13)

where c > 1. The squaring of terms is similar to the cell–cell repulsion (Eq. 3.1),

preserving for any value of φn a local minimum of free energy density at ψn = 0, and

for ψn ≈ 1 a local minimum in the range 1 < φn < c. The requirement c > 1 is used

because φn > 1 in the cytoplasmic interior; a choice of c that is too low will result in

the nucleus being repelled by the cytoplasmic interior and preferring the cell edges

(see next subsection, “Constraining the center of mass”).

The total free energy functional F tot is now the sum of the cytoplasmic (Eq. 3.1),

nuclear, and interaction contributions. The nucleus is given the same mobility and

active velocity as the cytoplasm. No inactive velocity is used. The evolution is given

by:
∂φn

∂t
+ vn,A(t) · ∇φn = −1

2

δF tot

δφn

,

∂ψn

∂t
+ vn,A(t) · ∇ψn = −1

2

δF tot

δψn

.

(3.14)

Initially, parameters used were γνn = γn/2, λν = λ/2, μν = 2μ, c = 1.05 and

κν = 0.5. This system was (almost) equilibrated similarly to the cytoplasm-only

system, for ≈ 80000 time-units (Fig. 3–8). This provides the initial condition I

mentioned in the previous section. Active simulations were performed using this

initial condition and the same numerical parameters, Δ = 1 and Δt = 0.01. Motion
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Figure 3–8: Simulations with nucleus able to move freely within cytoplasm. Top
row: (L–R) Equilibrated configuration (initial condition I); active simulation using
Δt = 0.001 (indistinguishable from Δt = 0.003): t = 13140, 21420. Bottom row:
(L–R) Close-up of top right image; active simulation using κ = 50, μ = 5, κν = 2.5,
μν = 10, Δt = 0.003 at t = 13140.
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of the nuclei within the cytoplasm was far too slow, presumably caused by a lack

of spatial resolution.1 The problem was resolved by using λν = λ. A small κν was

chosen to try to avoid unnecessary numerical cost as the cytoplasm dynamics now

has repulsion from both neighboring cells and its nucleus. The cells “rammed” into

each other in such a way as to geometrically emphasize the portions of cytoplasm

boundary which were contacted by the nucleus (Fig. 3–8). This reflects the added

contributions of elasticity on such portions of interface. However, this model does

not take into account that a real nucleus does not move freely within the cytoplasm.

Additionally, the nucleus looked like it came very close to the exterior of the cell

(Fig. 3–8). So afterwards, we used κν = 2 instead.

This model was run on an IntelR© CoreTM i7-7500U processor using 2 threads

(OMP NUM THREADS=2), taking ≈ 1 minute per 4000 iterations. There was a small

amount of time spent (∼ 10%) outputting RGB values to a CSV (comma-separated

values) file. Visualization was done using Matplotlib [77].

When using the cytoplasm–nucleus interaction of Eq. 3.13, the cytoplasm field

was inhomogeneous in the interior, taking a value of approximately c in the nuclear

region and another outside. In later simulations, the cytoplasm field could reach

1 This might be understood by considering the Fourier transform of the spa-
tially discretized field, ψ(x, t) =

∑
k ak(t)e

ikx in 1D. Solving the equation ∂ψ/∂t −
v · ∂ψ/∂x = 0 using mesh spacing Δ and central differences gives ak(t) ∝
exp(−iv sin(kΔ)t/Δ). This means that the kth Fourier component travels at a speed
v sin(kΔ)/(kΔ). For kΔ ∼ π/2, this is significantly lower than v. (Actually, in the
absence of a diffusive term, the Euler method is numerically unstable; a different one
such as the Lax–Friedrichs method must be used.)
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values higher than c = 1.05, causing the nucleus to stick to the cytoplasm boundary

(see subsection “Higher density”). Or, we would need to use an even higher value

of c, � 1.1. This problem was fixed by changing the cytoplasm–nucleus interaction

free energy density to:

f cν
n = κνψ

2
n ·Θ(1− φn) · (1− φn)

2, (3.15)

which also has continuous derivatives with respect to φn and ψn.

A free energy used for eutectic systems [78] was also experimented with, where

the free energy density favors ψ = 0 or ψ = 1 inside the cytoplasm, and ψ = 1/2

outside:

F = F c +
∑
n

γνn

∫
d2r

{
|∇ψn|2 + 30

λ2ν

[(
1

2
−φn

)(
ψn−1

2

)2

+

(
ψn−1

2

)4
]}

+
∑
n

μν

πR2
ν

(∫
d2rφ2

nψ
2
n − πR2

ν

)2

,

(3.16)

where F c is the cytoplasmic free energy (Eq. 3.1). During equilibration, when the in-

terfaces of the nucleus and cytoplasm contacted, they became roughly perpendicular

to each other, which is not desired (Fig. 3–9). So this model was not used.

3.2.2 Constraining the center of mass

In reality, the nucleus stays close to the cell center. We first accomplished this

by adding a spring term to the free energy for each cell:

F spr
n =

ksprn

2
|(rCM)

c
n − (rCM)

ν
n|2, (3.17)
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Figure 3–9: Equilibration using a eutectic-like free energy for the nucleus.

where (rCM)
c
n is the center of mass of the cytoplasm, defined as in Eq. 3.11, and

(rCM)
ν
n is the center of mass of the nucleus, defined analogously. While the area

measures are constrained to be approximately constant, their explicit inclusion (via

Eq. 3.11) is necessary for translational invariance of the functional derivatives, which

are given by:

1

2

δF spr
n

δφn(r′)
= ksprn ((rCM)

c
n − (rCM)

ν
n) ·

φn(r
′)∫

d2rφ(r)2
(r′ − (rCM)

c
n) , (3.18)

and analogously for ψn.

This model was equilibrated starting from initial condition I using ksprn = 3,

providing initial condition II (Fig. 3–10) for the cytoplasm-only simulations. This

was also used for the remaining simulations in this subsection. Subsequently, we

used μν = 1.
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With the active velocity applied to both the cytoplasm and the nucleus, the

cell “ramming” was still present because the cytoplasm tries to keep up with the

nucleus (Fig. 3–10). However, removing the active velocity from the nucleus resulted

in reduced speed of an isolated cell by 40%. Also, reducing ksprn to 0.3 seemed to

require a smaller time-step, which was puzzling (Fig. 3–10). The distance between

the centers of mass of the nucleus and the cytoplasm was � 0.1 for ksprn = 3 and

� 1 for ksprn = 0.3. From this, it is estimated that the spring contribution to the

difference in φn or ψn between time-steps is ∼ 0.002·Δt, comparable to the differences

themselves, whereas the contribution from cell–cell repulsion could be larger by an

order of magnitude or more.

Active simulations were then performed for the 72-cell system using ksprn = 3 and

including F spr
n in the dynamics for ψn only (i.e., no δF spr

n /δφn term in the evolution

of φn) while removing the active velocity of the nucleus (“asymmetric spring”). This

more closely resembles the cytoplasm-only simulations. We ran another simulation,

multiplying our original values of γn and γνn by 0.3 and 3, respectively, to make

the nucleus 10 times stiffer than the cytoplasm. The cytoplasms’ elasticities were

decreased because in the experimental videos [9], they seemed to have little resistance

to mechanical deformation aside from volume regulation. A large amount of white

space can be seen when using the latter values, and the interface of the soft cell

became very thin (Fig. 3–10). These values were used in the rest of the simulations

in this section.
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Figure 3–10: Simulations with the nucleus tied to the cell center by a spring-like term.
Top row: (L–R) Equilibrated configuration using ksprn = 3; active simulations using
ksprn = 0.3 at t = 7740 using Δt = 0.01; Δt = 0.003. Bottom row: Active simulations
using ksprn = 3 at t = 9720. (L–R) Dynamics given by Eq. 3.14; “asymmetric spring”
simulations using original values of γn and γνn; “asymmetric spring” simulations using
modified values of γn and γνn reflecting stiffer nucleus.
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The spring term was subsequently discarded in favor of a simple relaxation to

the cytoplasm center:

vν
n =

(rCM)
c
n − (rCM)

ν
n

τν
, (3.19)

where τν is a time constant. This replaces vn,A in the evolution of ψn in Eq. 3.14.

3.2.3 Higher density

To model a more confluent layer, we increased the density to ρ = 0.97, using

L = 748. The initial condition II (described in the previous subsection) was simply

shrunk. Running active simulations, the cells also shrank in geometrical size, as the

cytoplasmic field values could exceed 1.05 for a normal cell and 1.1 for a soft cell.

The reduced area of the soft cell could be seen visually. This is not surprising because

reduced values of γn amount to a weaker constraint on φn. As before, the interface

of the soft cell became very thin (Fig. 3–11).

From short samples (≈ 5000 time-units), it is inferred that the distance between

the centers of mass of the nucleus and the cytoplasm was � 0.1 for τν = 100 and

� 0.03 for τν = 1. A lower density of ρ = 0.95 (L = 756) was also used, but cells

were still shrunk and more white space formed (Fig. 3–11).

Also shown in Fig. 3–11 is an undesired situation where the nuclear field obeys

dynamics using the cytoplasm–nucleus interaction given by Eq. 3.13, causing the

nucleus to prefer the cytoplasm boundary.

The very thin interfaces call for a smaller mesh spacing, Δ ∼ 1/3–1/2. This

comes with a substantial increase in numerical cost. Additionally, the geometrical

area of a cell cannot be well controlled except by modifying the double-well potential
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Figure 3–11: Phase-field simulations with nucleus using higher density. Top row:
ρ = 0.97, κ = 10, κν = 2. (L–R) t = 25020, t = 40500, t = 55980. 2nd row: ρ = 0.97,
κ = 30, κν = 6. (L–R) t = 21600, t = 54000, t = 86400. 3rd row: ρ = 0.95,
κ = 30, κν = 6. (L–R) t = 8100, t = 24300, t = 35100. Bottom row: ρ = 0.97,
κ = 30, κν = 6. (L–R) t = 51300, t = 52200, t = 53100 (see text in the subsection
“Confinement inside cytoplasm”).
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to more strongly discourage field values above 1. Due to these considerations, we

switched to a sharp-interface model.
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CHAPTER 4
Sharp-Interface Model for Cell Monolayers

Sharp-interface models of the cytoplasm-only cells have been simulated, allowing

more extensive studies of velocity distributions [72] and jamming transitions [79].

However, these numerical codes could crash when a soft cell was “pinched” in by

two normal cells [72], apparently being less stable than the phase-field simulations.

Our hope is that inclusion of a stiff nucleus, as well as more accurate numerics,

might help to alleviate this problem. Two important new variables that arise in

such an extension are the nuclear size and elasticity. The codes for this chapter were

adapted from Yony Bresler’s sharp-interface algorithm [72] written in C++ with

OpenMP, using a small amount of help from the Boost library. Data processing and

visualization codes were also adapted from Bresler’s, using Python and MATLAB R©

(The MathWorks, Inc., Natick, MA, USA).

4.1 The models

The sharp-interface models are derived from the corresponding phase-field mod-

els in the limit λ
 1/K; however, this condition is often not true in the simulations.

Additionally, no details of the interface profile are resolved during cell–cell contact.

Thus, the two are not directly comparable. We assume the form Eq. 3.7, extended

to allow for the curved closed interface Cn of a cell, regarded as the locus of points
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where the field value is 1/2:

φ∗
n(r) :=

1− tanh(αdn(r))

2
=

1

1 + e2αdn(r)
, (4.1)

where dn(r) is a signed distance to the boundary of cell n:

dn(r) :=

(
min
P∈Cn

|r−P|
)
·

⎧⎪⎪⎨⎪⎪⎩
+1 if r is outside Cn

−1 if r is inside Cn.

(4.2)

We calculate the interface velocity starting from the model Eq. 3.1 and Eq. 3.2.

The Landau–Ginzburg free energy density of each cell is already known to give a

contribution −γnKn̂, where n̂ is the local outward normal to Cn and the sign of K

is chosen compatibly. Locally, letting u be a signed distance to the interface with

u > 0 being outside the cell, the interface velocity is calculated as:

∂Rn

∂t
= − (∂φn/∂t)|u=0

(∂φn/∂u)|u=0

n̂+ vA(t). (4.3)

The numerator is calculated from the dynamics Eq. 3.2, while the denominator is

calculated from the form Eq. 3.7, evaluating to −α/2. For the numerator, the con-

tribution from cell–cell repulsion in Eq. 3.4 is:

−60κ

λ2
φ∗
n(r)

∑
m�=n

φ∗
m(r)

2 = −30κ

λ2

∑
m�=n

1

(1 + e2αdm(r))
2 . (4.4)

The area term remains (we do not use an inactive velocity term). For the integral∫
d2rφ2

n, there is a bulk area term, An =
∫
d2rΘ(−dn(r)) =

∮
Cn
dy x. However,

there is also a contribution from the perimeter Pn arising from integration of φ2
n as
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opposed to φn, approximated as:∮
Cn

ds

∫ ∞

−∞
du

[
1

(1 + e2αu)2
−Θ(−u)

]
= −Pn

2α
. (4.5)

Since this is of order λ1 rather than λ0, we consider it permissible to discard. For

the parameters used here, it is a fraction ≥ 1/(αR) = 5% of the cell area, which

could be considered very significant as we are working at densities ∼ 90%. However,

the cell interactions are not directly analogous to the phase-field models. Also, the

interface thinning in the phase-field model could reduce the magnitude of the above

contribution.

Unlike the phase-field models, there is no interface thinning upon cell–cell con-

tact. This makes repulsion stronger, and a large κ becomes unsuitable. For a head-on

collision experiment, the distance between the inner interfaces in equilibrium can be

estimated from Eq. 4.4, matching to the active velocity magnitude, vA. This ignores

contribution from the area deviation, which gives an outward push in the cytoplasm-

only model and renders the obtained distances an upper bound. Equilibrium in

general is given by n̂ · ∂Rn/∂t = 0. For λ = 7, this calculation gives a distance of

5.12 for κ = 10 and 4.67 for κ = 5. For the model with nucleus, there is additionally

the (outward) pushing from the nucleus. We mainly work with κ = 5 (see section

“Simulations”).

The model with nucleus is derived using Eq. 3.15 and Eq. 3.19. The cyto-

plasm–nucleus interaction gives the same form as Eq. 4.4, except for a sign change

for the cytoplasm and a coefficient change κ → κν , assuming λν = λ. The center of
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mass can be calculated as:

rCM =

(
1

A

∮
dy

x2

2
,− 1

A

∮
dx

y2

2

)
, (4.6)

where A is the area. The center-of-mass relaxation of the nucleus is again given by

Eq. 3.19.

4.2 Numerical algorithm

The evolution equation for the sharp-interface model has basic similarities with

the phase-field model, involving a first derivative in time and a second derivative

in space. Explicit time-stepping is also used here, since an implicit method would

require iterative solving. The essential new step is calculation of the repulsion term,

involving finding the closest point on a neighboring cell interface. The same kinds

of issues are present, such as numerical stability and spatial resolution. As before,

we work in a square simulation box of length L with Ncells = 72 and again work at

ρ = 0.9. The active velocities are determined identically to in the previous chapter,

except using Δtr = 0.1.

4.2.1 Spatial discretization

The sharp interface is described by a fixed number Npts (for the nucleus, Nν
pts)

of points Rn[i] = (Xn[i], Yn[i]) distributed along the curve, going counterclockwise.

The distances Δs between adjacent points is regulated as described later; it should

be kept as “Δs
 λ”. Imagining the curve to be parameterized by a variable ζ with

points at equally spaced parameter values ζi, a 5-point stencil is used for the finite
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difference method to estimate derivatives and curvature:

R′
n(ζi) =

−Rn[i+ 2] + 8Rn[i+ 1]− 8Rn[i− 1] +Rn[i− 2]

12Δζ
+O((Δs)4)

n̂n(ζi) =
(Y ′

n(ζi),−X ′
n(ζi))

|R′
n(ζi)|

R′′
n(ζi) =

−Rn[i+2] + 16Rn[i+1]− 30Rn[i] + 16Rn[i−1]−Rn[i−2]

12(Δζ)2
+O((Δs)4)

Kn(ζi) =
X ′

n(ζi)Y
′′
n (ζi)−X ′′

n(ζi)Y
′
n(ζi)

|R′
n(ζi)|3

,

(4.7)

where Δζ := ζi+1−ζi and periodic boundary conditions are used (i→ i±Npts). The

factor Δζ cancels out in all relevant quantities. The above expressions correspond

to those of a quartic Lagrange polynomial in ζ interpolated between the 5 points.

(Notice that the Rn[i± 2] contribute oppositely than the Rn[i± 1].) The estimates

might be made more accurate by using a Δζ dependent on the distances between

adjacent points, and using finite differences for a non-uniform grid (see Appendix).

We try to keep the spacing between the points relatively uniform at each instant of

time (discussed later). For the normal vector specifically, it may make more sense

to use a 3-point stencil (codes provided by Yony Bresler) as it better reflects the

local geometry. The periodic boundary conditions are implemented similarly to in

the previous chapter, except that an extra 2 points are replicated at each end of the

(now 1D) array.
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The area, perimeter, and center of mass can be most simply approximated as

those of the polygon joining the sampled points:

An =

∮
dy x =

∑
i

Xn[i+ 1] +Xn[i]

2
(Yn[i+ 1]− Yn[i]) +O((Δs)2)

∮
dy

x2

2
=
∑
i

(Xn[i])
2+Xn[i]Xn[i+1]+(Xn[i+1])2

6
(Yn[i+1]−Yn[i]) +O((Δs)2)

Pn =
∑
i

|Rn[i+ 1]−Rn[i]|+O((Δs)2).

(4.8)

Similarly to the phase-field models, the fractional area deviation was observed to be

� 1.5% in magnitude. The perimeter serves as a measure of cell deformation, and

it could range from 2πR to occasionally exceeding 1.5× 2πR. Formulas accurate to

O((Δs)4) can be obtained by using a piecewise cubic interpolation in conjunction

with Gaussian quadrature (or direct integration for the area and center of mass).

Such an approximation could be a Lagrange interpolating polynomial, or a cubic

Hermite spline where the derivatives R′
n[i] (i.e., tangents) are specified at each sam-

pled point [80]:

Rn(ζ) = (1− ζ̄)Rn[i] + ζ̄Rn[i+ 1] + (ζ − ζi) (1− ζ̄)2 (R′
n[i]−ΔRn[i])

− ζ̄2(ζi+1 − ζ) (R′
n[i+ 1]−ΔRn[i]) +O((Δs)4), ζ ∈ [ζi, ζi+1],

(4.9)
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where ζ̄ := (ζ − ζi)/Δζ and ΔRn[i] := Rn[i + 1] − Rn[i]. The O((Δs)4) error can

be bounded above by a term proportional to (ζ − ζi)
2(ζi+1 − ζ)2 [80].1 While this

might not be of much interest in calculating areas and perimeters, as the area is not

strictly conserved, it is of more interest in calculating repulsion forces (see following

subsections).

The interface dynamics does not preserve distances between points, so the points

have to be redistributed along the curve occasionally. We do not allow adjacent

points to be too far apart or too close. The former leads to inaccuracy while the

latter leads to numerical instability (see subsection “Time-stepping scheme”). Later

on, we also do not allow the distance between adjacent points to vary too quickly

along the interface. We follow Ref. [72] in utilizing a centripetal Catmull–Rom spline

whenever one of the stipulated conditions are violated after a time-step update.

The Catmull–Rom splines are a family of cubic Hermite splines governed by the

specifications that each segment of the curve passes through its two endpoints, and

the tangents (i.e., derivatives) are given by:

R̃′
n(ζ̃i) =

Rn[i+ 1]−Rn[i− 1]

ζ̃i+1 − ζ̃i−1

, (4.10)

where R̃n(ζ̃) is the spline curve, interpolated at the parameter values ζ̃i. (The above

is different from the second-order finite difference formula for a non-uniform spacing;

1 The error being O((Δs)4) depends on the derivatives R′
n[i] being O((Δs)

4) ac-
curate. However, if some lower-order approximation to R′

n[i] (e.g. as used for Cat-
mull–Rom splines) is considered as being the true tangent, then the error can still
be considered O((Δs)4).
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however, the differences Δζ̃i := ζ̃i+1 − ζ̃i become more uniform for a high density of

sampled points, so the expression is O((Δs)2) accurate.) The different Catmull–Rom

splines are distinguished by the choice of ζ̃i; the centripetal Catmull–Rom spline is

given by ζ̃i+1− ζ̃i ∝ |Rn[i+ 1]−Rn[i]|1/2. It has some special properties among Cat-

mull–Rom splines, one of them being that it does not form cusps or self-intersections

[81] (though admittedly, this is of limited relevance when we are sampling the curve

well). It also discourages overshooting. After the spline is fit, new points are chosen

equally spaced in the parameter ζ̃. The Catmull–Rom splines have continuous first

derivatives but discontinuous second derivatives. To obtain a cubic interpolant with

continuous second derivatives requires solving a cyclic tridiagonal system of Npts lin-

ear equations for each space dimension [80]. A discontinuous second derivative is not

a concern because it is not used to calculate curvature, and accurate estimation of

curvature would benefit more from a higher density of sampled points. Also, it can

be mentioned that using a cubic Lagrange interpolating polynomial in each segment

produces a tangent of accuracy O((Δs)3), generally discontinuous at the sampled

points. The Catmull–Rom splines have continuous tangents of accuracy O((Δs)2).

Of course, these asymptotics are meaningful only for sufficiently small Δs, which

may be smaller than what we use.

To control the distance between adjacent sampled points, we originally used

the approach of Ref. [72] where a fixed minimum and maximum are imposed. Later,

because of the longer perimeters that could be occasionally obtained and also to try to

achieve a more even spacing, we subsequently required for Δsn[i] := |Rn[i+1]−Rn[i]|
that (1) 0.8×2πR/Npts ≤ Δsn[i] ≤ (0.8Pn+0.4×2πR)/Npts, which allows Pn up to
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4πR, and (2) (Δsn[i+ 1])2 − (Δsn[i])
2 ≤ 0.1× (2πR/Npts)

2, which imposes changes

in consecutive distances below ≈ 5%. As Npts increases, the condition (1) remains

unchanged, while condition (2) becomes less frequent. Using this scheme with Npts =

320 and using the Euler method with Δt = 0.1, around 15000 Catmull–Rom splines

were fit in a period of 54000 time-units.

4.2.2 Repulsion calculation

The repulsion calculations are the most time-consuming part (∼ 90% of run-

time currently) of the evolution update. The other parts (computation of unit normal

vector, curvature, area, and possibly perimeter) take ∼ Npts operations, while com-

puting the closest point on a neighboring cell interface to every point on a given

cell interface näıvely takes ∼ N2
pts operations. Computation can be sped up using

parallelization and vectorization [74], but the specific cell geometries in this system

can also be taken advantage of.

We used Npts ranging from 150 to over 1000. Three basic categories of precision

can be defined when calculating the minimum distance from a discretized curve to

a point: (1) taking the closest sampled point, (2) taking the closest point on the

polygon defined by the sampled points (the “interface polygon”), and (3) using a

higher-order approximation. While the first two theoretically both have accuracy

O((Δs)2), we consider the first method to be too crude, since the “ideal” condition

Δs
 λ does not really hold well.

Typically, most of the cell interface is relatively flat or has relatively low cur-

vature, similar to that of a relaxed cell. However, the regions of higher and more

rapidly varying curvature (can reach K � 5/R for soft cell in cytoplasm-only model,
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and ∼ 10/R in model with nucleus) occur in places where three or more cells join,

which are important sites of cell rearrangement and dynamics in a confluent mono-

layer. While it seems sensible to try to use a variable distance between points based

on the local curvature, we did not yet attempt such an approach.

The cell interfaces were never observed to overlap, except during equilibration,

which was carried out in the same way as in the previous chapter. The value Npts =

150 was used and a Catmull–Rom spline was fit if a larger Npts was used for the active

simulations. Detection of a negative signed minimum distance (Eq. 4.2) from a point

P to a cell m was done by looking at the sign of the dot product n̂m(ζ) ·(P−Rm(ζ)),

where the (outward) unit normal is evaluated at the deemed closest point Rm(ζ) of

cellm’s interface. Regarding the interface as a differentiable curve, the two arguments

of the dot product are then parallel or antiparallel. This method sufficed for our

purposes, not requiring a more elaborate general point-in-polygon algorithm.

Active cytoplasm-only simulations could reach a minimum distance between

cells of ∼ 3.3 for κ = 5 and ∼ 4 for κ = 10. The first step in the repulsion

calculation is to specify a maximum cutoff minimum-distance dcut, beyond which the

contribution is neglected. Initially, a value of 1.4λ was used, but comparing with

2.5λ and 3λ indicated that this might be too low. Also, the interface profiles still

overlap considerably (Fig. 4–1). The choice of 2.5λ appeared to be sufficient and

gave visually indistinguishable results as 3λ in one simulation for 54000 time-units

(although this is not long; see next section, “Simulations”). While this may seem

excessively far when compared to the repulsion strength at smaller distances, the

cells travel more slowly in such situations.
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With κ = 5, the repulsion force (contribution to ∂Rn/∂t) f
rep(d) from a single

cell is 10−6 at a distance d = 1.5λ and 2 × 10−11 at d = 2.5λ. Using a time-step

Δt = 0.1, the latter one approaches the maximum precision for a double-precision

floating-point number ≥ 512, which is≈ 10−13. The former one may appear negligible

at first sight, contributing an error of 10−2 in a reorientation time τr = 104; however,

this contributes back to an error in f rep(d) through an inaccuracy in d. The maximum

value M of |(f rep)′(d)| attained is M ≈ 0.1, corresponding to d ≈ 3.3. This leads to

an upper bound for inaccuracy in position of 5 space-units in a time τr, though this

is certainly an overestimate. In fact, this error propagation procedure can continue

indefinitely, in the limit approaching an upper bound of Δv ·(eMt−1)/M after a time

t for an inaccuracy Δv in the velocity; a similar bound exists for the global truncation

error of a numerically solved differential equation [80, 82] (see next subsection “Time-

stepping scheme”). However, it becomes a gross overestimate on relevant time-scales.
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Figure 4–1: Interface overlap and repulsion. The horizontal axis is distance in units
of λ. Left: Antiparallel opposing equilibrium interfaces (Eq. 3.7) at center-to-center
distances of 1.5λ, 2λ, and 2.5λ. Middle and right: Repulsion force f rep for κ = 5.

For each cell n, its center of mass (rCM)n is tracked and its farthest distance rmax
n

from the interface is maintained. At each time-step, the possible neighbors considered

are restricted to the cells m �= n such that |(rCM)n − (rCM)m| ≤ rmax
n +rmax

m +4λ (the
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choice 4λ is somewhat arbitrary, as long as it is > dcut), where periodic boundary

conditions of the simulation box are taken into account. Then, for each pointRn[i] on

the interface of cell n, the neighbors considered for interaction are further restricted

to |Rn[i]− (rCM)m| ≤ rmax
m + 4λ. Here, we consider finding the closest point on cell

m from each point Rn[i] separately; a more efficient algorithm might exploit spatial

proximity to use results of nearby points.

The simplest algorithm to calculate the minimum distance to a cell m from a

point R is obtained by regarding the interface Cm as a polygon, analytically calcu-

lating the minimum (squared) distance to each of its line segments, and taking the

smallest value. Alternatively, the closest sampled point could be calculated, and the

line segments on both sides of it examined. However, by taking advantage of the

constrained spacing between points and the “smooth” cell geometries, the search can

be made more efficient by first considering a “coarsened” version of the cell, evenly

subsampling Ncoarse points (where Ncoarse divides Npts) and locating the closest point

on the resulting polygon. Then, one examines the Npts/Ncoarse line segments cor-

responding to the coarsened line segment found2 , as well as the Npts/Ncoarse line

segments on each side of it. It is not sufficient to calculate the closest of the Ncoarse

points because of cases where opposite sides of a cell come close to each other. (This

was in fact done until incorrect results in “pinched” configurations were noticed.)

For a suitable choice of Ncoarse (we use Ncoarse ≥ 20 for cytoplasm-only simulations

2 If the closest point on the coarsened polygon happens to be a vertex, it may be
associated with the coarsened line segment on either side of it.
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and Ncoarse ≥ 40 for the cytoplasm when including nucleus), the algorithm is correct

for the cell shapes encountered because only relatively small distances are measured,

and also because any inwardly curved regions are gentle (|K| � 1/R) and contacted

by a neighbor throughout its length (Fig. 4–2). We tend to choose Npts, Ncoarse,

and Npts/Ncoarse values that are multiples of 4 to take advantage of IntelR© AVX2

vectorization.3

The described computation results in jump discontinuities of size O(Δs) in

∂dm(P)/∂P. A way to try to remove this is to use a cubic interpolation such as

Eq. 4.9 and compute the shortest distance to it, using the Newton–Raphson method

initialized with ζ̄ corresponding to the result for the line segment. Sometimes, the

resulting closest point will lie outside the original segment considered; if the same

(non-piecewise) cubic-polynomial curve is still used for coding ease or computational

efficiency, errors and jump discontinuities in dm(P) of size O((Δs)4) could be incurred

(although it might actually be higher-order because the polygonal approximation im-

proves as well).4 Using this scheme with Lagrange interpolation for simulations with

3 However, using the #pragma ivdep directive, the Intel compiler chooses 2-way
vectorization over 4-way, apparently because of a lower estimated cost than when
using the #pragma simd vectorlength(4) directive.

4 In the case of a cubic Hermite polynomial, this would amount to an extrapolation
in addition to an interpolation. This might argue for preferring a Lagrange interpo-
lation for smaller Npts. Additionally, the derivative R′

m(ζ) suffers an O((Δs)
3) error

in Hermite interpolation as with Lagrange interpolation. Ultimately, the Hermite
interpolation with tangents specified from a 5-point stencil computation may itself
be somewhat undesirable because with the large range of influence, it may not well
reflect the local geometry.
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P P

P

Figure 4–2: Schematics of distance calculations. The solid curved line represents
a cell interface. The point P is a query point on a neighboring cell interface, at a
distance less than 3λ away. The other filled dots are sampled points of the first cell
interface. The hollow dots are the subsampled points. The solid line with an arrow
shows the closest point. Left: Example showing the inadequacy of taking the closest
subsampled point. This also applies to cells in a “pinched” configuration. Middle:
An impossible situation possibly resulting in an incorrect result. The dashed lines
conencting the hollow dots are the coarsened line segments making up the coarsened
polygon, and the dashed line with an arrow shows the closest point found by the
algorithm. The spacing between the subsampled points is very non-uniform, but
distortions to the curve could be considered instead. Right: Example showing a
closest point lying outside the line segment associated with the closest point on the
interface polygon; here, the line segment is taken to be the one connecting the two
leftmost points shown.
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Npts = 150, the observed solutions for ζ̄ deviated by < 7% from the original segment

(which is ζ̄ ∈ [0, 1]) when using dcut = 1.4λ. Meanwhile, using dcut = 2.5λ and

Lagrange interpolation for Npts = 320 and Npts = 512, the deviations were below

and up to ≈ 50% and ≈ 30%, respectively. The largest deviations occur when calcu-

lating a large distance to a tightly curved section (Fig. 4–2). In a single time-step,

this scheme would incur an error of O((Δs)4Δt) in the estimated solution, which is

the same order as that due to the approximation of dm(P) itself.

The quadratically converging Newton–Raphson method [80] is applied to the

equation (Rm(ζ)−P)·R′
m(ζ) = 0. The distance behaves quadratically in the vicinity

of the closest point, so we do not need extreme precision in calculating the solution

for ζ . For a line segment of length Δs a distance d away, the squared distance is

d2 + (Δs)2(ζ̄ − ζ̄∗)2 where ζ̄∗ is the ζ̄-value at the closest point, so that the distance

has a quadratic coefficient of (Δs)2/(2d) in its vicinity. For a cubic interpolation,

we expect a result of the same order. Using Npts = 150 with Lagrange interpolation

with dcut = 1.4λ, in most cases, 4 iterations are sufficient for consecutive ζ̄ values

to differ by less than 10−8, and another two iterations are used. After 6 iterations,

in most cases, the consecutive differences in ζ̄ range from 10−15–10−14, showing that

we are indeed approaching the solution. This is approaching maximum precision

as the minimum resolution attainable for a double-precision floating-point number

≥ 0.5 is ≈ 10−16. Combined with the quadratic behavior of the distance with ζ̄,

this means that the computation is for all purposes exact and the last 2 iterations

are unnecessary. However, the above could be violated in extreme situations when a
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cell “tail” exhibits very high curvature as it narrowly escapes or avoids a “pinched”

configuration (see next section, “Simulations”).

UsingNpts = 160 and Lagrange interpolation with a larger dcut = 3λ for 6×54000

time-units, there were ≈ 600 instances in which 5 iterations were necessary to achieve

consecutive differences in ζ̄ of under 10−8. After 6 iterations, they did not exceed

10−13. In this case, the last 2 iterations are still unnecessary.

Using Npts = 512 with Lagrange interpolation and dcut = 2.5λ for 12 × 54000

time-units, the consecutive differences in ζ̄ did not exceed 3×10−12 after 4 iterations,

with a few exceptions above 10−10, some of which required 5 iterations for the con-

secutive differences to fall below 10−8. The latter cases involved an unusually high

curvature of the soft cell, recovering from a “pinched” configuration.

Using Npts = 480 with Lagrange interpolation and dcut = 3λ for 3× 54000 time-

units (very short; see next section, “Simulations”), starting from a different initial

configuration, the consecutive differences in ζ̄ again did not exceed 3 × 10−12 after

4 iterations, and the maximum difference between the calculated minimum distance

and the polygonal result was ≈ 0.02.

For Ncoarse = 40 and Npts = 160 for the cytoplasm-only simulations, the coars-

ening procedure reduced computation time by a factor of 2 in non-vectorized code

using the polygonal scheme. Running on an IntelR© CoreTM i7-7500U processor using

2 threads, about 200 time-steps of the Euler method per second could be calculated.

Keeping Ncoarse = 40 fixed and increasing Npts to 960, the computation time in-

creased roughly proportional to Npts, taking 7 times longer. For Npts = 160, the

cubic interpolation reduced the speed to ≈ 150 time-steps of the Euler method per
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second. There are significantly more floating-point operations but its effect seems

to be partially masked by costs associated with the memory hierarchy [74]. For

relatively small Npts, the increased computational cost could be considered merited

because it does not well hold that Δs 
 d (d being the distance between cells),

and the repulsion force at the small distances encountered varies strongly. While the

interfaces are rather flat at the smallest distances, they are not exactly far apart in

highly curved regions.

The more complicated schemes (i.e., than polygonal) would be relevant only

when Npts is relatively low, e.g. � 320 for the cytoplasm. Ultimately, we use larger

values forNpts (see next section, “Simulations”) and the cubic-polynomial fits become

somewhat irrelevant.

When incorporating a nucleus into the sharp-interface model, errors from strict

correctness could arise when using the coarsening procedure in situations illustrated

schematically in Fig. 4–2, but these can arise only for relatively far closest-distances

and the deviation from the correct value is expected to be small.

We might expect the sharp-interface model to require less spatial resolution than

the phase-field model since the interface profile is not modeled.

When running on Compute Canada machines, the runtime did not speed up

anywhere near proportionally to the specified number of threads, for a reason that

we did not identify yet. The results of the repulsion calculation are stored in a

separate array and are completed before executing the time-step update, so this

should not be a source of cache thrashing between cores.
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4.2.3 Time-stepping scheme

For a given Npts, the equations for ∂Rn/∂t can be considered as a system

of ordinary differential equations (ODEs) in 2NptsNcells real variables. By the Pi-

card–Lindelöf theorem, an ODE dx/dt = g(x, t) with an initial value condition has

a unique solution when g(x, t) is continuous in t and uniformly Lipschitz continuous

in x in some suitably defined regions of “space” and time, i.e.:

|g(x1, t)− g(x2, t)| ≤ c|x1 − x2|, x1,x2 ∈ Ω, t ∈ [T1, T2], (4.11)

where c is a constant [80]. (The active velocity is discontinuous in time but we are

not concerned with this.) The above condition holds whenever g(x, t) is continuously

differentiable in Ω × [T1, T2]. The initial value problem can be numerically solved

using the Euler method with a time-step Δt, obtaining a local truncation error of

O((Δt)2) with each time-step if x(t) is twice continuously differentiable [82]. Each

jump discontinuity in dx/dt incurs an error O(Δt), proportional to the size of the

discontinuity. If x is twice differentiable with its second derivative bounded above

in magnitude by M2, then the local truncation error is at most M2(Δt)
2/2 [82]. If

d2x/dt2 has only jump discontinuities, the same holds considering it as a limit of twice

continuously differentiable functions. These would arise from jump discontinuities in

the first derivatives of g(x, t). If x(t) is three times continuously differentiable except

with possible jump discontinuities, the midpoint method can be used to obtain an

O((Δt)3) local truncation error [82]:

x(t +Δt) ≈ x(t) + Δt · g
(
x(t) +

Δt

2
g(x, t), t+

Δt

2

)
. (4.12)
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The global truncation error after a time T is one order less accurate in Δt than the

local truncation error, because T/Δt time-steps need to be taken. It can be bounded

above by an exponential function in T [80, 82]. The accumulated error results not

only from the local truncation error but also the error in calculating g(x, t) for the

next time-step.

Catmull–Rom splines are fit only after the entire time-step update is completed.

The need to fit such splines renders the system more appropriate for one-step methods

(e.g. of the Runge–Kutta family) than multistep methods (e.g. Adams–Bashforth).

Local truncation errors can be estimated by halving (or equivalently, doubling)

the time-step, strictly applicable when the solution is sufficiently differentiable. Ap-

plying this to the Euler method for this system anyway, we estimate after 2 time-steps

an error of at most 10−7 for Δt = 0.005 with Npts = 320, and at most 2.5× 10−7 for

Δt = 0.01 with Npts = 640, using the polygonal method and running from t = 0 to

6× 54000.

For numerical stability with respect to the curvature term, we consider an ap-

proximately flat interface with sampled points equally spaced by Δx. Such an inter-

face can be described by the equation

y(x) = A sin(qx), (4.13)
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where A
 Δx. To leading order in A, the numerical curvature calculated using the

5-point stencil is:

K [5](x) =
−y(x− 2Δx) + 16y(x−Δx)− 30y(x) + 16y(x+Δx)− y(x+ 2Δx)

12(Δx)2

=
A

(Δx)2

[
−1

6
cos(2qΔx) +

8

3
cos(qΔx)− 5

2

]
sin(qx)

=: Γ[5](q) · y(x).
(4.14)

Using the Euler method, after each time-step, the amplitude A is multiplied by the

factor 1+γnΔt·Γ[5](q); the condition for numerical stability is then γnΔt < 3(Δx)2/8.

Using the midpoint method, the amplitude is modified over time as:

A(t+Δt) = A(t)

{
1 + γnΔt · Γ[5](q)

[
1 + γn

Δt

2
· Γ[5](q)

]}
, (4.15)

which leads to the same stability condition. Using a 3-point stencil, K [3](x) =

Γ[3](q) · y(x) with Γ[3](q) = [2 cos(qΔx)− 2]/(Δx)2, which leads to γnΔt < (Δx)2/2.

Numerical stability analysis can also be applied to the repulsion and area terms.

A cell with an active velocity vA colliding into a fixed, flat perpendicular interface

will equilibrate at a distance d from it, given by:

f rep(d) :=
30κ

αλ2
(
1 + e2αd

)−2
= vA. (4.16)

The equation of motion in the vicinity of d can be linearized to d(δx)/dt = (f rep)′(d)δx,

where δx(t) := x(t)− d with x(t) the (time-dependent) interface position of the ac-

tive cell measured from the fixed interface. Using either the Euler method or the
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midpoint rule, this gives a stability condition Δt < 2/|(f rep)′(d)|. For κ ranging from

1 to 10, the calculated |(f rep)′(d)| ∼ 0.15.

A similar calculation can be done with the area term, competing with curvature.

Considering dilational perturbations of a perfect circle, the equilibrium radius Req

satisfies:

− γn
Req

− 2μ

α

(
R2

eq

R2
− 1

)
= 0 (4.17)

(neglecting the perimeter term). The derivative of the left-hand side with respect to

Req, evaluated at the equilibrium point, is:

γn
R2

eq

− 4μ

α

Req

R2
=

γn
R2

eq

− 2

Req

(
2μ

α
− γn
Req

)
. (4.18)

The only significant term is 4μ/(αReq) ≈ 4μ/(αR) = 0.21 for a choice of μ = 1.

So neither repulsion for area conservation are of concern with respect to numerical

stability.

We use double precision throughout to minimize concern about intrinsic preci-

sion limits of the computer, and techniques such as compensated summation [82] are

not used. Single precision may be insufficient for accurate simulations of both the

phase-field and sharp-interface models.

4.3 Simulations

For the simulation videos, normally the configurations were saved every 180

time-units5 , and typically watched at 60–120 frames per second. The active velocities

5 Every 360 time-units works fine as well.
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were also drawn for each cell, at their respective centers of mass. The velocity

magnitudes (blue) and perimeters (red) of the cells were tracked, as well as the

number of “neighbors” which we define as being within a distance of λ or 2λ (both

definitions are used). These properties for the soft cell are plotted together with the

simulation animation, with the perimeter transformed such that values of 2πR and

4πR are plotted as 0 and 0.02, respectively.

The number of neighbors defined as being within a distance of 2λ appeared to

better capture neighbor exchanges, whereas the definition of being within a distance

of λ could have spurious fluctuations not reflective of actual neighbor exchanges.

Because of the non-confluence of the monolayer (at ρ = 0.9), the restriction that the

cells must have six nearest neighbors on average (see e.g. Ref. [60]) does not hold. It

is interesting that the nominal density ρ = 0.9 is very close to that of a hexagonal

packing of perfect circles. As the cells can become highly deformed and elongated,

counting using a Voronoi construction is not always suitable.

4.3.1 Model and numerical parameters and “pinching” problem

Equilibration was done for ≈ 2 × 105 time-units, obtaining the configuration

shown in Fig. 4–3. “Pinched” configurations are also shown in Fig. 4–3. The close

approach of the opposite sides of the interface is enabled by stretching in the per-

pendicular direction. It is not entirely certain what causes this to sometimes wreck

the simulation (values diverging), but it may start from the crossing of the opposing

sides of the interface of a single cell. This firstly causes the described coarsening al-

gorithm to fail (underestimating the repulsion force), but also the “repulsion” from

the neighbor on the “wrong” side (i.e., the “right” side of a cell interface, now at
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the left, could be “repulsed” by a neighboring cell to the left of it) could reinforce

the crossing. Even if such “backward” interactions are forbidden, the crossings are a

problem in and of themselves because as the cell relaxes from the configuration, its

tail may form a knot (observed in some tests).

Interface crossings could be prevented by adding a self-repulsion term, e.g. of

the same form as f rep. The easiest way this could be done would be to draw a

line through the point in question, locally perpendicular to the interface, and find

the closest opposing point. This would be amenable to the coarsening procedure

described. However, a way more similar to the repulsion between cells would be to

find an opposing point of local minimum distance (if it exists), which might be more

involved. We did not try either of these additions to the model.

Also, we do not exclude repulsion force on a point at the “front” of a cell interface

exerted by a cell positioned “behind” it. This is gives continuity in space and time

in situations such as when a cell’s “tail” retracts.

For the cytoplasm-only model, using dcut = 1.4λ and Npts = 160, differences

seemed to remain when decreasing from Δt = 0.1 to Δt = 0.0075 using the Euler

method and the polygonal scheme. Then using dcut = 3λ, experiments were done

using Δt values from 0.005 to 0.02, as well as 0.05 and 0.1, using the Euler method,

while Npts was varied among 160, 320, 640, and 960. A simulation time of 54000×6 ≈
3 × 105 seemed sufficient to observe differences. Convergence did not seem to be

reached yet. For Npts = 320, using even the smallest time-steps (Δt = 0.005) still

resulted in highly “pinched” configurations of the soft cell within 3× 105 time-units.
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Figure 4–3: Samples of cytoplasm-only sharp-interface model. Time axes are offset.
Top left: Equilibrated configuration. Top middle: Pinched configuration using Δt =
0.1 with Euler method and Npts = 150 with polygonal method and dcut = 1.4λ;
simulation does not survive. Top right: Pinched configuration using Δt = 0.09
with midpoint method and Npts = 512 with Lagrange interpolation and dcut = 2.5λ;
simulation survives with soft cell forming a “tail” that retracts rapidly. Bottom row:
Simulation using Δt = 0.04 with midpoint method and Npts = 400 with Lagrange
interpolation and dcut = 2.5λ at t = 553500, t = 591300, and t = 629100.
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The effect of a “low” Npts could be confounded with insufficiently accurate time-

stepping.

Higher-order Runge–Kutta methods were tried [82] (still in the polygonal ap-

proximation), although they suppose higher-order differentiability. Using the fourth-

order Runge–Kutta 3/8-rule (“RK4-3/8”) with Npts = 160, using Δt = 0.05 crashed

within ≈ 2 × 105 time-units due to pinching, becoming extremely elongated, while

using Δt = 0.1 did not have a problem up to 5.4 × 105 time-units. Using the Euler

method with Npts = 150 and Δt = 0.1 also got a crash due to pinching at around

6.5×105 time-units. This shows how disordered the system is, and motivates a more

careful examination of numerical parameters/schemes.

Using a Δt too large gives an inaccurate effect of the forces on the interface

points, while a too small Npts sacrifices representation of the cell interface and curva-

ture estimation. These become apparent when different values are compared (Fig. 4–

4). Very large perimeters (� 3.5πR) can be a sign of numerical inaccuracy. Obtaining

numerics accurate to within subtle but (reasonably) humanly detectable differences

in the dynamical patterns can add a factor of � 10–15 to the computational cost.

This has not been previously done for this model; also, we are not modeling large

amounts of simulation time as in Refs. [72, 79].

Some time may be needed for the simulations to advance to a point where more

“difficult” configurations are reached. Using the midpoint method and Lagrange

interpolation, the choices of Δt = 0.03 with Npts = 320 vs. Δt = 0.09 with Npts =

512 (in the latter case, restricting the distance between adjacent points to be ≥
0.9 × 2πR/Npts for numerical stability) gave similar results for the first 2.5 × 105
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Figure 4–4: Close-ups of cytoplasm-only sharp-interface model. Time axes are offset.
Here, dcut = 3λ was used. Top row: Npts = 160 with Δt = 0.1 using Euler method
around t = 2.4 × 105. Bottom row: Npts = 320 with Δt = 0.1 using Euler method
around t = 2.1× 105.

75



time-units. Comparing the latter choice with the combination of Δt = 0.06 and

Npts = 640, the results were similar for the first 1.5 × 105 time-units. The latter of

those showed improved rearrangements while cell representation seemed to remain

equally as good. From a run done with Δt = 0.04 and Npts = 400, the effect of a

smaller time-step and finer cell representation can be seen. Pinching problems are

possibly reduced; however, the small system size (L = 777) may be a limiting factor.

The simulation may suffer from finite-size effects that might somewhat disrupt the

continuous smooth flow expected in a liquid-like state. Each cell experiences a force

from its neighbors that has a contribution propagated from itself, possibly hindering

its motion. An amount of anisotropy could be noticed as well.

For Npts = 480 and Ncoarse = 40 with polygonal method, using 8 cores and 16

cores (IntelR© XeonR© E5-2683 v4) could achieve ≈ 80 and ≈ 180 iterations per second

of the midpoint method, respectively.

Pinching tests were performed using 3 cells, one soft cell in the middle with

normal cells on both sides of it compressing it, with velocities of magnitude vA along

the x-axis. The x-coordinates of their centers were initially placed 100 units apart,

while the y-coordinates of the normal cells were the same and that of the soft cell

differed by 0.1 units. The soft cell narrowly escapes the crowding after ≈ 2.5 × 104

time-units and survives, reaching a very high curvature in the process. Simulations

using the phase-field model gave very similar results (Fig. 4–5). While there are no

issues in this particular test, the effect of more cells pushing on the soft cell, whether

directly in contact or indirectly, can be greater. This renders pinching problems a

probabilistic phenomenon, though possibly rare as far as one might be concerned.
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Although it may be unlikely for two normal cells to impinge on a soft cell directly

for such a duration while neighboring cells are positioned to allow extension of the

soft cell in the perpendicular direction, the issue might ultimately be unavoidable in

the model.

Methods to alleviate this problem could be to use higher elasticities or a “natural

curvature” as in Ref. [72]. Other ways of more strongly penalizing curvature would be

to use driving forces such as −γnK [1 + β(λK)2] n̂ (β a dimensionless coefficient) or

−γnK exp((λK)2)n̂. A theory of 2D fluid elastic membranes leads to a K3 curvature

force when area is conserved [83]. Such reduction of curvature was also thought

to possibly facilitate numerics. However, using the exponential form of the driving

force gave a very different result for the pinching test (Fig. 4–5), as well as similar

differences for the 72-cell system. In this work, we sought to imitate the phase-

field model and opted for the originally derived sharp-interface model. Besides,

the interface thickness of real cells is much smaller than what would correspond to

our value of λ, so the latter is not a suitable length scale to invoke. However, the

curvature-driven forces in real cells may differ from the −γnKn̂ form.

Lowering the value of κ from 10 (used in the phase-field model) to 5 would also

seem to reduce the chance of attaining a “pinched” configuration by allowing cells to

come closer together and thereby allowing more “room”; the cells appear to be avoid-

ing each other a little too much when using κ = 10 for the 72-cell simulation, which

may encourage opposite sides of a single cell interface to come closer. Additionally, it

would be expected to more easily obtain a numerically accurate simulation for lower

κ. So we also use κν = 5 in the simulations with nucleus.
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Figure 4–5: “Pinching” tests for cytoplasm-only model. Top row: Sharp-interface
model with Δt = 0.01, Npts = 150, and distances between adjacent points restricted
to between 0.8× 2πR/Npts and 1.75× 2πR/Npts. The result is essentially the same
with restrictions on the adjacent differences of distances. Horizontal and vertical axes
are not quite equal, and the plotted interface thickness is less than λ = 7. Middle
row: Snapshots from phase-field model. (Left) Δt = 0.006 and Δ = 1, showing
“pinching-off”; (Middle) Δt = 0.006 and Δ = 0.75, with essentially identical results
for Δt = 0.002; (Right) Δt = 0.0008 and Δ = 0.6. Bottom row: Sharp-interface
model with same numerical and plotting schemes as top row, but with exponential
form of curvature penalization.
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For the center-of-mass of the nucleus, we choose a value τν � Δt while retaining

proximity of the nucleus and cytoplasm centers of mass. If the cell moves at a speed

2vA, we can expect the centers of mass to be placed a distance � 2vAτν apart. We

choose τν = 5.

For the model with nucleus, we initially used Rν = R/2. Pinching tests were also

run with cytoplasm and nucleus γ values (coefficient of K in the curvature-driven

force) multiplied from the cytoplasm-only values by 1/2 and 2, respectively, and also

by 1/3 and 3, respectively. As discussed in the previous chapter (“Phase-Field Model

for Cell Monolayers”), the former case would correspond to a factor of 8 between the

cytoplasm and nucleus elasticities. The former survived while the latter did not

(Fig. 4–6).

Figure 4–6: “Pinching” tests for model with nucleus. Used Rν = R/2, Δt = 0.05
with Euler method, and Npts = 320 and Nν

pts = 160. Interface thickness is not
plotted. Left two: γ0 = 0.35 × 2 and γν0 = 0.35/2 for soft cell, and γn = 2 and
γνn = 1/2 for normal cells. Right two: γ0 = 0.35 × 3 and γν0 = 0.35/3 for soft cell,
and γn = 3 and γνn = 1/3 for normal cells. Same result when using Δt = 0.03 with
midpoint method and Npts = 480 and Nν

pts = 240.

We chose similar values for the time-step and spacing between adjacent points as

in the cytoplasm-only simulations. Using 16 cores (IntelR© XeonR© E5-2683 v4) with
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Npts = 400 and Nν
pts = 200 could achieve ≈ 150 iterations of the midpoint method

per second, while using 24 cores (Intel R© XeonR© Platinum 8160F) with Npts = 480

and Nν
pts = 240 could achieve ≈ 100 iterations of the midpoint method per second.

We also used a larger nucleus with Rν = 5R/8 and Nν
pts/Npts = 7/10. The

nucleus cannot be made too large as the interface thickness is applied to both the

cytoplasm and nucleus.

4.3.2 Observations

In the 72-cell simulations with nucleus using γn = 0.5 for the cytoplasm of nor-

mal cells (stiffer than the original soft cell), the cytoplasm boundary was seen to still

give significant mechanical support to the cell, in contrast with the experimental

videos where they seem quite floppy. However, reducing the elasticities further does

not seem to be viable while maintaining the elasticity ratio between “soft” and “nor-

mal” cells (see above), without including self-repulsion. Indeed, in the experiments,

opposing sides of a cell membrane do appear to come very close or even touch.

The diffusion coefficient in 2D is D = 〈[Δr(t)]2〉/(4t), where Δr(t) is the dis-

placement of the relevant particle (here we take the centers of mass) over a time

period t, for sufficiently long times t, and 〈· · ·〉 denotes an ensemble average. This

quantity is non-self-averaging, i.e., in the limit t → ∞, a single sample does not

suffice. For example, in a random walk, Δr(t) is expected to be Gaussian with

zero mean, and for such a random variable X , a single measurement of X2 has

Var(X2) = 2(E[X2])2 (E being expectation). Thus the signal-to-noise ratio remains

finite.
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An equivalent way of measuring the self-diffusion coefficient is by integrating

the velocity autocorrelation function (VACF): D = (1/2)
∫∞
0
dt′ 〈v(0) · v(t′)〉, where

〈v(0) · v(t′)〉 is the velocity autocorrelation function with time delay t′. If a suitable

cutoff is used for the integral, this expression now gives a decent estimate for D when

a single run is used. For a discrete-time system, the derivation is as follows (taking

the time discretization to be 1 unit):

[Δr(t+ 1)]2 − [Δr(t)]2 = [Δr(t) + v(t)]2 − [Δr(t)]2

= v(t)2 + 2v(t) ·
t−1∑
t′=0

v(t′),

(4.19)

so in this case the correct expression for D is actually:

D =
〈v(0)2〉

4
+

1

2

∞∑
t′=1

〈v(0) · v(t′)〉. (4.20)

We use a discrete-time treatment here, taking the velocity to be the displacement

between saved frames divided by the elapsed time (� Δt).

In this system, we can try to take advantage of the form of the motor driving by

separating the VACF 〈v(0) · v(t′)〉 into an expectation conditional on vA(0) = vA(t
′)

(with probability e−t′/τr assuming t′ > 0) or vA(0) �= vA(t
′), i.e., whether the cell’s

driving has changed direction within the time interval concerned (Fig. 4–7). While

the latter case would be less correlated, the cell has stochastic forces from neighbors

acting on it which are correlated in time because of their driving or possibly large-

scale flows. This results in some correlation of the cell’s motion across changes in

propulsion direction and some de-correlation within a constant-propulsion interval.
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The combination of the two results in the appearance of an exponential decay faster

than e−t′/τr for t′ � 2τr when the VACF is plotted logarithmically (Fig. 4–7).

The system has no inertia, so collisions do not result in rebounding. Thus we

might expect both contributions to the VACF to be positive, which is plausible from

the data to within statistical error. We might also expect the “unequal” contribution

to exponentially decay in time; however, it is known from computer simulation studies

of fluids that algebraic decays of the VACF can occur due to hydrodynamic flows

whereas an exponential decay would be expected from microscopic interactions [84].

(On the other hand, those systems are not inertia-less.) In any case, our data is

very imprecise (Table 4–1) and after a time delay of 3τr, the VACF is quite small.

Additionally, some finite-size effects may be present.

Table 4–1: Contributions to diffusion coefficients for cytoplasm-only simulations.
Simulation was divided into 5 disjoint parts, each 6× 54000 time-units long (rows).
“Equal” and “unequal” contributions are labeled “same” and “chgd” respectively,
and normal cells are labeled “nrml”. Calculated from VACFs integrated for time
delays only up to ≈ 3τr.

Dsame
soft Dchgd

soft Dsame
nrml Dchgd

nrml

1 4.3× 10−2 −1.9× 10−2 5.8× 10−2 1.4× 10−2

2 4.6× 10−2 0.7× 10−2 5.0× 10−2 0.4× 10−2

3 5.4× 10−2 −1.1× 10−2 5.5× 10−2 1.1× 10−2

4 4.5× 10−2 2.0× 10−2 5.3× 10−2 0.8× 10−2

5 3.2× 10−2 3.1× 10−2 4.9× 10−2 0.3× 10−2

While there is some resemblance of the motion of the soft cell in the cytoplasm-

only simulation to that in the experimental videos [9], occasionally “bursting” from

an elongated “pinched” configuration into a neighboring location, a large amount of

its motion occurs similarly to the normal cells. The significantly greater deformations

82



0 1 2 3 4 5 6 7 8 9 10
104

-2

-1

0

1

2

3

4

5 10-5

0 1 2 3 4 5 6 7 8 9 10
104

-0.5

0

0.5

1

1.5

2

2.5 10-5

0 1 2 3 4 5
104

-16

-15

-14

-13

-12

-11

-10

Figure 4–7: Velocity autocorrelation functions for cytoplasm-only model. Time delay
is on the horizontal axis. “Equal” (i.e., conditional upon vA(0) = vA(t

′) and not
weighted by e−t′/τr ; solid lines) and “unequal” (dotted lines) VACFs for soft cell
(top) and normal cells (bottom) in a period of 30×54000 time-units. Fully averaged
values are shown (black), as well as for the simulation broken up into 5 chunks of
equal length (red, blue, green, magenta, cyan). The lack of a time delay of a given
length is designated by being below the plotting region. Inset (bottom): Natural
logarithm of normal-cell VACF.
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are evident, but with the simulation parameter values used, it is not clear that the

soft cell acquires a significantly enhanced ability to move within the cell layer. Steric

repulsion appears to restrict the motion of both cell types comparably.

The “bursting” phenomena in the experiments and the cytoplasm-only simula-

tions are not exactly analogous. In the experiments, the nucleus is characteristically

impinged upon and then moves to occupy a separate space. In the simulations lacking

a nucleus, the impingement often occurs more toward the rear, sometimes amounting

to the mere retraction of a “tail” which can drive the instantaneous velocity above

vA but with little resultant net displacement. An enhanced instantaneous velocity

can also be caused by the combination of shape relaxation and being pushed by a

neighboring cell.

More motion occurs in the simulations with nucleus, which is to be expected

because the elasticities of the cytoplasms were reduced. Also, while the cell area

deviated by at most ≈ 1%, larger voids could arise because of the reduced stiffnesses.

The nuclear area deviated by at most ≈ 2%. Using both nuclear sizes, 1 burst was

seen in a time-period of 12 × 54000 time-units (Fig. 4–8), corresponding to ≈ 65

hours in real time [71]. This would be fewer than in the experiments [9]. While a

comparison could be made despite somewhat limited data (only a few cancer cells

are shown for a limited time in the experimental videos), it may depend sensitively

on model parameters such as density [71]. The cells also appeared more motile than

in the experimental videos. This might be because the density value used allows

them to easily slip through the packing, which could be related to the low bursting.

Also, the presence of adhesion between normal cells in the experiments appears to
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Figure 4–8: Snapshots of simulations of models with nucleus. Midpoint method
and polygonal method are used. Time axes are offset. Top row: Rν = R/2 with
Δt = 0.03, Npts = 480, and Nν

pts = 240. (L) Still frame showing a large void; (R)
the soft cell is about to “burst”. Bottom row: Rν = 5R/8. (L) A soft cell is being
pushed by a normal cell behind it (Δt = 0.03, Npts = 320, Nν

pts = 224); (R) the soft
cell is beginning to “burst”, its nucleus having been impinged toward the rear by the
normal cells to its bottom left and bottom right (Δt = 0.04, Npts = 400, Nν

pts = 280).
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stabilize their positions, which might help promote bursting. It should be mentioned

that the “bursting” behavior seen in the experiments is biologically enhanced and

not of purely mechanical origin [9]. As in the cytoplasm-only simulations, with the

simulation parameter values used, there are no visibly obvious differences in the

motility of the soft and normal cells nor in their primary modes of migration.

86



CHAPTER 5
Conclusion

We have extended the simulation studies of Refs. [71] and [72] to incorporate a

nucleus, as well as obtained more accurate numerics that shed light on the “pinch-

ing” problem. In attempting to understand the experimental results of Ref. [9], we

have not yet succeeded in finding the right combination of parameter values, such

as adhesion, density, and cell mechanical properties. These results clarify the role

of a soft cytoplasm and stiff nucleus in our model of cell motility. The effect of cell

aggregation has so far hardly achieved closer resemblance to the experimental phe-

nomenology. Further work remains to be done to understand the capabilities and

limitations of the model.

Future directions for this project could be the following:

• Studies could be done of the dynamics of the number of neighbors and correla-

tions with cell speed, and differences thereof between the normal and soft cells.

A previous study investigated dynamics of topological defects in a magnetic

system [85]. Such analysis of the model could also be compared with experi-

ments, and could additionally serve to help validate numerical parameters.

• A larger system size could be experimented with to elucidate possible finite-

size effects and anisotropy arising from the periodic boundary conditions. For

example, hexagonal boundary conditions could be used.

• Adhesion could be included between normal cells.

87



• Self-repulsion could be added, enabling lower elasticities.

• The elasticity ratio between “soft” and “normal” cells could be varied. While

we have not performed a direct analog to the cancer-cell sheet experiments of

Ref. [9], our results for the model with nucleus demonstrate easier movement

when using lower elasticities. The two types could be made more unlike to see

if a larger separation in motility mechanisms occurs.

• The role of the density parameter could be examined further. While the ex-

periments involve confluent layers, the studies of Ref. [79] revealed a jamming

behavior in the high-density regime. Inclusion of adhesion may confound the

effect.

• The algorithm for calculating the cell interactions has been improved but still

seems very wasteful, starting from scratch for each point on the interface.

Intuitively, the continuity of the interface should allow for results of nearby

points to be taken advantage of. However, for the model with nucleus, the

closest point on the cytoplasm interface from the nucleus can be discontinuous.

Also, the parallel structure of modern processors needs to be taken into account

to devise a fast algorithm [74].

• Other models for the cell mechanical response could be investigated.
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Appendix

The equations for R′
n and R′′

n for a non-uniform 3-point stencil with Δζi :=

Δsn[i] are:

R′
n(ζi) =

Δsn[i]
Rn[i]−Rn[i−1]

Δsn[i− 1]
+ Δsn[i−1]

Rn[i+1]−Rn[i]

Δsn[i]

Δsn[i− 1] + Δsn[i]
+O((Δs)2)

R′′
n(ζi) =

Rn[i+ 1]−Rn[i]

Δsn[i]
−

Rn[i]−Rn[i− 1]

Δsn[i− 1]

(Δsn[i− 1] + Δsn[i]) /2
+O((Δs)2),

(A.1)

where, as before, Δsn[i] := |Rn[i + 1] −Rn[i]| and Δs ∼ Δsn[i]. In the cytoplasm-

only simulations, for Npts � 480 or so (at least), this appears to work better than the

uniform 5-point stencil which may suffer from a too large range of influence. Using

these for the unit normal and curvature and the RK4-3/8 method with Δt = 0.008

and Npts = 480 seemed to work fairly well. Higher accuracy can be obtained by using

Δt = 0.006 and Npts = 600. These parameter values are sensible given the issues

with Δt = 0.05 using the RK4-3/8 method and with Npts = 320. When comparing

different numerical parameters, a run may be affected by its initial condition for

some time if it was initialized from an active simulation of inferior accuracy.

Higher-order methods (e.g. the fifth-order Dormand–Prince method) were not

investigated. For such high orders, the scheme used should be applicable to vector

equations in addition to scalar equations [82].
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