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ABSTRACT

The 5-lipoxygenase product 5-0x0-6,8,1 1,14-eicosatetraenoic acid (5-0xo-ETE) is a
potent eosinophil chemoattractant in vitro. To determine whether it is active in vivo, S-oxo-
ETE was administered intratracheally to BN rats and pulmonary eosinophils were
immunostained with an antibody to major basic protein. 5-Oxo-ETE induced a dramatic
increase in eosinophils, which reached maximal levels (5 times control) between 15 and 24 h
following administration, and thereafter declined. LTB4 had a similar effect to S-oxo-ETE but
appeared to be somewhat less effective. In contrast, LTD,and LTE, were inactive. 5-Oxo-
ETE-induced eosinophilia was inhibited by 75% following pretreatment of the animals with
antibodies to integrins VLA-4 or LFA-1, but was not significantly inhibited by an antibody to
Mac-1, nor after pretreatment with receptor antagonists to LTB, (LY255283) or PAF (WEB
2170). These observations raise the possibility that 5-oxo-ETE may be an important
physiological mediator in inflammatory diseases characterized with eosinophil recruitment, such
as asthma.



RESUME

L’acide 5-0x0-6, 8, 11, 14-eicosatétraenoique (5-0xo-ETE) est un facteur
chimiotactique trés puissant pour les eosinophiles /n vitro. Pour déterminer s’il est actif in vivo,
5-0x0-ETE a été administré par insufflation de la trachée chez des rats. Les eosinophiles
pulmonaires ont €té immuno-marqués avec un anticorps contre la protéine basique majeure et
comptés. 5-oxo-ETE a induit une augmentation dramatique d’eosinophiles qui a atteint des
niveaux maximales (5x contréle) entre 15 et 24 hres suivant I’administration, pour ensuite
décliner. Le LTB; a eu un effet similaire au 5-oxo-ETE, mais le 5-oxo-ETE a induit une
réponse maximnale significativement plus élevée. Au contraire, le LTD; et le LTE, étaient
inactifs. L’ augmentation d’eosinophiles induite par le 5S-oxo-ETE a été inhibée d’environ 75%
a la suite d’un pré-traitement des animaux avec les anticorps contre les intégrines VLA-4 ou
LFA-1, mais n’a pas été inhibée de fagon significative par I’anticorps contre Mac-1 ni par les
antagonistes des récepteurs du LTB, (LY255283) ou de PAF (WEB 2170). Ces observations
soulévent la possibilité que le S-oxo-ETE puisse étre un médiateur physiologique important

dans la réponse inflammatoire de I’asthme.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW




1.1 Introduction - Aim of Study

The discovery and characterization of biologically active metabolites of
arachidonic acid (AA), which has now spanned almost seven decades of industrious
research, has produced many new insights into the role of lipid mediators in the body. In
the beginning of 1930's two seemingly unrelated discoveries were reported. Kurzrok and
Lieb performed studies on the action of semen on the uterus and found both contraction
and relaxation of tissue specimens. At the same time Harkavy (1) found that alcohol-
soluble extracts of sputum from allergic asthmatic patients contained an agent which
provoked spasm of cat and rabbit intestines /n vitro. These two discoveries might be
regarded as the very beginning of research on AA metabolism which ultimately lead to the
discovery of prostaglandins (PGs), thromboxanes (TXs), lipoxins (LXs) and leukotrienes
(LTs).

Oxidative metabolites of AA, which are generally termed eicosanoids, are among
the most ubiquitous mediators produced in the human body by various cells following
their activation. Consequently, there are virtually no organs which are not affected by
eicosanoids in one way or the other. For example the lung, which consists of a diversity of
cell types, can produce and is affected by almost all classes of eicosanoids, including PGs,
TXs, LXs, LTs, and monohydroxy-eicosateraenoic acids (HETEs) (2,3). The two major
eicosanoid pathways are the cyclooxygenase (COX) pathway, which is responsible for PG
and TX formation, and the 5-lipoxygenase (5-LO) pathway, which produces LTs and 5-
HETE. The focus of this thesis will be on the latter pathway.

The discovery of the 5-LO pathway was the result of the combination of two
separate lines of research, namely the metabolism of AA by polymorphonuclear leukocytes
(PMNL) and the characterization of an unknown mediator of anaphylaxis. Although the
latter compound, termed "slow-reacting substance of anaphylaxis" (SRS-A), was
implicated in immediate hypersensitivity reactions (4), little was known of its structure. It

was not until the late 1970s that AA was identifted as a precursor of SRS-A (5).



Meanwhile, Borgeat and Sammuelson reported that rabbit leukocytes can convert AA to
S-HETE (6) and to LTB, (7). They subsequently showed that LTB, is synthesized from an
unstable intermediate, LTA,, which displayed an absorption spectrum reminiscent to that
of SRS-A. It is now known that the biological effects first attributed to SRS-A were due
to the combined activities of the cysteinyl leukotrienes (cys-LTs), LTCs, LTD4 and LTE,,
whose precursor is also LTAy (8). Since then, further investigations on the major 5-LO
metabolites such as, S-HETE, LTB,, and the cys-LTs, have shown that they are all
biologically active, albeit S-HETE less so than the LTs. In general they are important
mediators in cells of the immune system, allergic reactions, and inflammation. They have
potent effects in the lung and appear to be important mediators in asthma.

Recently, Powell et al., identified a highly specific dehydrogenase in neutrophils
which converts the 5-LO product S-HETE to the novel eicosanoid 5-0x0-6,8,11,14-
eicosatetraenoic acid (5-0xo-ETE) (9). /n vitro studies demonstrate that 5-oxo-ETE is a
potent agonist for both neutrophils and eosinophils. Experiments testing the effects of
various lipid mediators and their chemotactic activity on human eostnophils, showed that
5-0xo-ETE is the most potent eosinophil chemoattractant among this class of substances
(10) . In view of its novelty and its potent in vitro effects on eosinophils it was important
to further characterize 5-oxo-ETE biologically. The aim of this study was to investigate
the in vivo effects of this recently discovered lipid eosinophil chemoattractant.

There is an abundance of data in the literature to support a role for 5S-LO products
in eosinophil infiltration in vivo, suggesting that members of this class may act along with
other mediators, such as cytokines and chemokines, in regulating eosinophi! migration.
The most important finding of the present study is that 5-oxo-ETE is the most effective 5-
LO metabolite in inducing eosinophil recruitment in vivo. This is the first report that S-
oxo-ETE has biological effects in vivo and raises the possibility that this compound may
be an important physiological mediator of eosinophil infiltration in diseases in which these

cells are a distinctive feature, such as asthma.



To fulfill the aim of this thesis, background information essential to the
understanding of issues involved in both the rationale and the interpretation of the current
study will first be presented in Chapter 1. In particular, this chapter will deal with 5-LO
products (their biosynthesis and biology) as well as mechanisms involved in eosinophil
recruitment into tissue and more specifically into the airways. Chapters 2 (Materials and
Methods) and 3 (Results) will deal with the present investigation: 5-oxo-ETE and its
effect on eosinophil recruitment in vivo. Finally Chapter 4 will present a critical discussion
on the present experimental findings in terms of other relevant investigations and conclude

with some directions for future studies.



1.2 Biosynthesis of PAF and 5-Lipoxygenase Products
The rate-determining step in the formation of eicosanoids is the release of AA
from membrane lipids by phospholipase A; (PLA;). Once AA has been released, it is

rapidly converted to oxygenated products in most cells by various intracellular enzymes.

The specific products which are synthesized depends on which enzymes are present in the

type of cell in question. The focus of this thesis will be on the synthesis of 5-LO products

and platelet activating factor (PAF) which are believed to play a role in in the

inflammatory process and leukocyte recruitment into tissue (Fig.1).
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Fig. 1. Simplified scheme of the biosynthesis of PAF and 5-LO

products. Enzymes are in boxes.




1.2.1 Formation of PAF

AA is stored in cell membranes esterified in the sn-2 position of various diacyl and
alkyl-acyl phospholipids. The most abundant AA and PAF precursor in leukocytes is 1-
palmityl-2-arachidonoyl-phosphatidylcholine. The release of AA and PAF is initiated by
stimuli which raise intracellular calcium levels and in turn stimulate cytosolic PLA,
(cPLA;) translocation to the membrane. The enzyme cPLA; catalyzes the hydrolysis of
the ester linkage in the sn-2 position of the glycerol to produce AA and lyso-PAF. The
free AA can then be metabolized by the 5-LO pathway. The lyso-PAF is in turn acetylated
by a rate limiting acetyltransferase enzyme to produce the active PAF (11). The half-life
of PAF is very short (less than 1 min) and it is metabolized by removal of the acetyl group
to produce its inactive precursor, lyso-PAF. This two step enzymatic process, known as
the 'remodeling’ pathway of PAF synthesis, predominates in inflammatory cells (12). PAF
is synthesized by a variety of inflammatory cells including neutrophils, platelets, alveolar
macrophages, eosinophils and vascular endothelial cells. In some animal species, but not

humans, PAF can be synthesized and released by mast cells (13).

1.2.2 Formation of Leukotrienes

5-LO, in conjuction with other enzymes, produces a series of biologically active
eicosanoids including the LTs, HETE and S-oxo-ETE. In the biosynthesis of LTs, free AA
is presented by an integral perinuclear membrane protein, 5-lipoxygenase-activating
protein (FLAP) (14), to 5-LO, which translocates to the nuclear membrane upon
activation. The 5-LO then catalyzes the first two steps of the pathway (5): oxygenation of
AA to 5-hydroperoxy-6,8,11, 14-eicosatetraenoic acid (5-HPETE) and the conversion of
the latter to the unstable epoxide intermediate LTA, (15). The fate of LTAy is determined
either by cytosolic metabolism via LTA, hydrolase, to LTBs (16), or conversion by the
integral membrane protein LTC, synthase (17) to LTC, by addition of glutathione. The
subsequent conversion of LTC, to LTDy, a cysteinyl glycinyl derivative, is via the action
of y-glutamyl transpeptidase. LTD, is further metabolized to the cysteinyl derivative,
LTE;,, by the action of a dipeptidase. LTs are rapidly metabolized and removed from the

circulation. Cys-LTs undergo oxidation, resulting in biliary and urinary elimination of



biologically less active and inactive metabolites. LTE,, which is usually less active
biologically than LTC, and LTD,, is an important urinary metabolite that can be used to
monitor the production of cys-LTs in man (18).

The location of LT synthesis is determined by the cellular distribution of the
enzymes controlling each step of the pathway. The 5-LO enzyme is present in neutrophils
(19), eosinophils (20), monocytes (21), macrophages (22), mast cells (23) and
keratinocytes (24). However, a number of cell types, such as lymphocytes (25),
erythrocytes (26), platelets (27) and endothelial cells (28) do not contain 5-LO, and are
thus incapable of generating LTs from endogenous or exogenous AA. Some of these cells
contain LTA; hydrolase and/or LTC, synthase activity and may thus convert LTA into
LTB; and LTC,, respectively. LT A hydrolase has been found in human erythrocytes,
inflammatory cells, and airway epithelial cells. Furthermore, LTC, synthase has been
identified in mast cells, eosinophils, and platelets. Thus, because these enzymes are
distributed among different cell types, various inflammatory cells, in concert with
noninflammatory cells, such as endothelial cells or epithelial cells, can participate in the
transcellular synthesis of LTs (29,30). Moreover, the preferential generation of LTB, and
LTC, is cell- and species-specific. This can be illustrated by preferential production of
LTB. in human alveolar macrophages (31), whereas rat alveolar macrophages generate
LTC; (32). The predominant 5-LO product of guinea pig eosinophils is LTB, , whereas
human eosinophils is LTC, (33), and cytokines such as interleukin-3 (IL-3), [L-5 and
granulocyte-macrophage colony-stimulating factor (GM-CSF), are capable of enhancing

its synthesis (34,35).



1.2.3 Formation of S-Ox0-ETE

As stated earlier, 5-LO first converts AA to S-HPETE. This hydroperoxy acid can
then be reduced by a peroxidase to 5-HETE which is not very active biologically. Several
years ago Powell et al., discovered a novel microsomal dehydrogenase in human
neutrophils which oxidizes S-HETE to 5-oxo-ETE resulting in a 100 fold increase ia
biological potency (9) (Fig 2). The human 5-hydroxyeicosanoid dehydrogenase is highly
specific for eicosanoids with S-hydroxyl groups, followed by a 6-trans double bond. Its
activity is localized in the microsomal fraction and it requires NADP"® as a cofactor. This
enzyme has been identified in human neutrophils (9), eosinophils (36), monocytes,
lymphocytes (37) and platelets (38). Since platelets lack 5-LO they can produce S-oxo-
ETE by transcellular metabolism from neutrophil derived LTAy. The preferred substrate
for this enzyme is S-HETE, which is likely to be its most important physiological
substrate, since it is synthesized in relatively large quantities by stimulated human
neutrophils and other inflammatory cells (6). Furtheremore, Powell et al., have found that
5-0x0-ETE is metabolized by at least four different pathways: w-oxidation to 5-0x0-20-
HETE (neutrophils), reduction to 6,7-dihydro product (neutrophils) and conversion to 12-
hydroxy (platelets) and 15-hydroxy (neutrophils) metabolites by 12- and 15-LO,
respectively. -Oxidation of 5-0xo-ETE is presumably catalyzed by LTB, 20-hydroxylase
which is highly active in neutrophils. Reduction of the 6,7-double bond of 5-0x0-ETE
appears to be catalyzed by a novel NADPH-dependent cytosolic A°® reducatse in

neutrophils (133).

Slimulusq

5-0OXO0-ETE

Fig. 2. Formation of 5-OXO-ETE from 5-HETE
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1.3 Biological Effects of PAF and 5-Lipoxygenase Products

1.3.1 PAF

PAF appears to have a wide variety of actions (13), both direct and indirect,
mediated by other substances, such as LTs. It recruits and activates inflammatory cells and
induces vascular permeability change (Fig. 3). In vitro studies have shown it to be
chemotactic for human neutrophils and eosinophils (39 ). It causes eosinophil
degranulation (40 ) and release of mediators such as oxygen free radicals (41 ) and 5-LO
products (42 ). These studies have also shown that PAF can upregulate expression of the
B2 integrins, lymphocyte function related antigen-1 (LFA-1; CD112/CD18) and
macrophage-1 (Mac-1; CD11b/CD18) on inflammatory cells thereby stimulating their
adherence to vascular endothelium (43 ). In addition PAF, in conjuction with certain
cytokines, is capable of both priming and enhancing the inflammatory response in cells
such as lymphocytes and monocytes (13). Furthermore, in animal models PAF can cause

smooth muscle hyperplasia and fibroblast proliferation (44 ).
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Fig. 3. Potential sites of action and effects of LTs and PAF with relevance to a
pathophysiologic role in the lung.
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It is of particular interest that PAF elicits a neutrophil-rich infiltrate following its
inhalation (45) or injection into the skin of normal volunteers (46), whereas local
administration of PAF to the skin of atopic volunteers results in a selective eosinophilic
infiltration very reminiscent to that induced by antigen in the same subjects (47) . In animal
models, nebulized PAF causes bronchoconstriction (except in the rat) (49),
hyperresponsiveness and an inflammatory cell infiltrate (44, 48), which in some animal
models consists mainly of eosinophils (49). In some preparations, the effects of PAF,
particularly the bronchoconstriction, seem to be mediated by cys-LTs and TXA; (50). In
man, the acute bronchoconstriction is associated with a release of cys-LTs as shown by a
rse in urinary LTE,. At least part of PAF-induced bronchoconstriction can be blocked
with specific cys-LT, antagonists (50, S1). Whether the remaining portion of PAF-induced
bronchoconstriction is due to the direct effects of PAF or some other mediator is not
clear.

PAF appears to be one of the most potent agents for inducing increased vascular
permeability in all species tested, including man (52). It is able to elicit edema in the
bronchi (53) which can be abolished by PAF receptor antagonists. PAF is thought to
increase vascular permeability via contraction of endothelial cells presumably as a result of
interaction with high affinity PAF receptors on these cells (54). The role of PAF in
inducing edema after allergen or other mediators is still not clear. PAF antagonists do not
inhibit plasma extravasation after acute allergen exposure in the guinea pig (55), but
partially inhibit the extravasation induced by bradykinin (56). The role of PAF in chronic
inflammation of the airways is not yet clear.

A number of groups have reported that high affinity binding sites exist for PAF and
these have been demonstrated on platelets, neutrophils, eosinophils, macrophages (57,58)

and lung tissue (59). The PAF receptor has now been cloned in both guinea-pig lung (60),
and human neutrophils (61) and shares significant amino acid homology between the two
species. It is a G-protein-linked surface receptor and in cells such as leukocytes it exists in
both high and low affinity states. The existence of receptor subtypes is suggested by
pharmacological studies with PAF antagonists that have shown a more than 10-fold

difference in potency in different cell types from the same species (62). Functional studies



suggest that there may be intracellular PAF receptors (63,64). In rat cerebral cortex at
least three distinct intracellular binding sites have been identified, including sites within
microsomal fractions suggesting that PAF may be involved in gene expression (64,65).
Futur investigations will provide a better understanding of the potential significance of

PAF in gene activation / transcription.

1.3.2 Leukotriene B4

LTB; is a potent chemoattractant that is primarily involved in inflammation,
immune responses and host defence against infection. The human neutrophil is a2 major site
of LTB, synthesis and metabolism, and is also the major target for LTB,action (66).

LTB, causes chemokinesis, chemotaxis and aggregation of PMNL of several
species, including man (67,68). It also mobilizes cytosolic calcium and stimulates
leukocyte degranulation (66). In addition, LTB, can mediate neutrophil adherence to
endothelial cell monolayers (69) and enhance surface expression of integrins (i.e. Mac-1;
CD11b/CD18) on human neutrophils and eosinophils (70). /n vivo effects of LTB; as a
leukocyte chemoattractant have been documented in several animal models of
inflammation (71,72). Instillation of LTB, into the bronchi of human subjects result in the
recovery of increased numbers of neutrophils in bronchoalveolar lavage (BAL) fluid (73).
[t appears that the increased adherence of leukocytes to LTB, is due to an increased
adhesiveness of endothelial cells for neutrophils which then may be followed by infiltration
into the tissue (74). Unlike PAF, the increased vascular permeability observed with LTB,
is a2 consequence of the activation of leukocyte adherence and emigration, and not due to a
direct action on the small venules (75). LTB, is also a potent chemoattractant for guinea
pig and Brown Norway (BN) rat eosinophils. Furthermore, antigen-induced eosinophilia is
inhibited, both in BN rats and in guinea pigs, by the LTB, antagonists U-753032 and
LY255283 (76). This potent LTB-mediated eosinophil recruitment is not seen with
human eosinophils, indicating species differences. The major AA metabolite formed by
guinea pig eosinophils is LTB4, whereas the major product formed by human eosinophils

is LTC; (77). Nevertheless, the proinflammatory effects elicited by LTB, vis-a-vis the
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neutrophil make this LT a possible candidate as one of the mediators of the inflammatory
process in diseases (Fig. 3).

Immunomodulation exerted by LTB, has also been suggested, through actions on
T and B cells. Generation of LTB, by nonlymphoid cells at the inner cortex of the thymus
may alter the balance of immature thymocytes (CD4" CD8") (78). LTB, enhances the
proliferation of suppressor-cytotoxic T-cells (CD8) and inhibits the proliferation of helper-
T-cells (CD4) (79). LTB;, can also evoke T cell migration across basement membrane-like
Matrigel as a result of concerted stimulation of T cell chemotaxis (maximal effective
concentrations of 10-100 nM) and secretion of locally expressed metalloproteinases (80).
Selective effects of LTBy on cytokines include inhibition of secretion of interferon-y (IFN-
v) by CD8 cells and the stimulation of [FN-y by CD4 cells (81). Exogenous LTB,
promotes the synthesis of [L-2, [L-4, and IL-5 by human T cells (82, 83, 84). It stimulates
synthesis of [IL-6 by monocytes (85), and [L-8 by human neutrophils (86). LTB; also acts
indirectly by stimulating monocytes to produce PGs and cytokines, which in tumn leads to
the production of IL-1 (87). Several B-lymphocytic functions including B-cell
differentiation, activation, immunoglobulin (Ig) G and IgM synthesis, and cellular
replication are also enhanced by LTB, (88), due to an augmentation of the effects of [L-4
and [L-2 on these cells. LTB, has also been reported to augment natural killer (NK) cell
activity (89,90) . However, this aspect of LTB;, activity has been questioned by reports
from other groups who failed to show a direct effect of LTB, on these cells (91).

LTB;, also possesses marked myotropic activity on the guinea-pig lung strip (92),
which was shown to be mediated by release of COX products, most likely TXA; (93,94).
Moreover LTB, has also been implicated in pain responses, such as nerve growth factor-
induced thermal hyperalgesia in the rat (95).

Receptors for LTB, have been demonstrated in leukocytes of different species
(96,97). Both high and low affinity binding sites for LTB, were observed in human
neutrophils (98). Occupancy of the high affinity receptors is believed to mediate Ca>
mobilization and chemotaxis, whereas occupancy of the low affinity receptor appears to
result in degranulation (99). In addition LTB, activates inflammatory cells by binding to its

cell surface receptor, but it can also bind and activate an intranuclear transcription factor,
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PPARa (100) resulting in the activation of genes that terminate the inflammatory
processes. Recently, an LTB, receptor that is highly expressed in human leukocytes was
cloned and expressed (101). It is 2 member of the seven-transmembrane receptor family

and is sensitive to pertussis toxin.

1.3.3 Cysteinyl Leukotrienes

As mentioned earlier, cys-LTs accounted for the activity of SRS-A initially
observed during antigenic challenge of sensitized lungs, hence suggesting a role of these
compounds in allergic diseases (102) (Fig. 3). The observed in vivo formation of cys-LTs
following allergen challenge of allergic patients provided strong evidence for this concept
(103).

The major sites of cys-LT action are the airways where they are thought to act as
mediators of allergic asthma (104). Both large and small airways of normal and asthmatic
patients are constricted by cys-LTs (105,106,107). Inhaled LTC, and LTD, are 1000 -
5000 times more potent than histamine. Although the bronchoconstrictor effects of LTE,
are less than those of LTC, and LTD,, they are reported to be longer lasting (108). LTC,
and LTD; constrict sensitized guinea pig lungs partially due to the generation of TXA;
(109), whereas they appear to act principally by a direct effect on human lung tissue (110).
It has also been suggested that cys-LTS participate in the neurally-evoked tachykinergic
contraction of guinea pig airways by amplifying action potential-dependent release of
tachykinins from airway afferent nerve fibers (111).

LTCs and LTD,, unlike LTB,, can induce increases in vascular permeability by an
apparently direct action on the endothelial lining of postcapillary venules (112). They are
potent stimulants of mucous glycoprotein secretion from human airways in vitro (113). In
vivo, they enhance secretion of mucus (114) and stimulate secretion of chloride across the
epithelium in dog trachea (115). Maximal airway narrowing induced by methacholine is
augmented by LTD, in normal subjects, an effect attributed to induction of airway edema
(116).

Moreover, the cys-LTs have also been implicated in eosinophil recruitment that is

characteristic of atopic diseases. Bronchial mucosal biopsies, studied 4 h after LTE,
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inhalation by asthmatic subjects, showed an increase in the number of eosinophils and to a
lesser extent of neutrophils (117). Recruitment of eosinophils is stimulated by LTC; or
LTD, aerosolization of guinea pigs and attenuated by the cys-LT, receptor antagonist
MK-571. Pretreatment of sensitized guinea pigs with the cys-LT, receptor antagonist MK-
571 significantly inhibited the ovalbumin (OVA)-induced migration of eosinophils (118).
Underwood and associates evaluated the ability of pranlukast, another cys-LT, receptor
antagonist, to antagonize LTD;-induced microvascular leakage, eosinophil influx, and
bronchoconstriction in guinea pig airways. Pranlukast significantly inhibited both the
eosinophilia and the bronchoconstriction. It also antagonized antigen-induced
bronchoconstriction and eosinophil influx in OV A-sensitized guinea pigs. However, the
mechanism of this effect is not clear, since LTD; is not a very potent chemoattractant for
guinea pig eosinophils in vitro and pretreatment with an anti-IL-S antibody antagonized
the LTD;-induced eosinophilia in this animal (119).

Human airway tissue contains two types of cys-LT receptors, those blocked by
known antagonists (cys-L.T, receptors) and those that are resistant to blockade (cys-LT:
receptors). A cys-LT; receptor has also been identified in human pulmonary vasculature.
In human airway smooth muscle, LTCs4, LTD; and LTE;, all activate a cys-LT, receptor
(120) which appears to be G-protein-coupled and leads to calcium mobilization upon
activation (121). Guinea pig trachea, which has been extensively studied, has been
reported to have three receptors, including one LTC, receptor (122,123) and two LTD.
receptors (124). A major goal in further classifying cys-LT receptors will be to identify
specific receptor subtypes that are responsible for the various pharmacologic effects of the

cys-LTs other than bronchoconstriction.
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1.3.4 S-OXO-ETE
5-Oxo-ETE has biological activities which are 100 times more potent than its

precursor S-HETE (9). It is a potent stimulus of neutrophils, eosinophils, monocytes and
intestinal epithelial cells. It induces Ca®” mobilization, chemotaxis, adhesion, Mac-1
(CD11b/CD18) expression and actin polymerization in neutrophils (125). Pretreatment of
these cells with tumor necrosis factor-a (TNF-a) (126) or GM-CSF (127) greatly
potentiates the effects of 5-0xo-ETE on their degranulation response and superoxide
production.

Although S-oxo-ETE is active in stimulating neutrophils its more potent effects are
on the eosinophil. 5-Ox0-ETE is over two-fold more effective than PAF and over 30 times
more effective than LTB,, -C4, -Dsand -E; as a chemotactic agent for human eosinophils
in vitro (10) . 5-Ox0-ETE is also more active than LTB, and PAF in inducing actin
polymerization and L-selectin shedding by eosinophils. It can also stimulate Mac-1
(CD11b/CD18) expression and Ca®” mobilization in these cells in vitro. 5-Oxo-ETE has
also been reported to induce both superoxide production and degranulation (128) in
human eosinophils, the latter response being potentiated by pretreatment with GM-CSF.

In addition to its effects on eosinophils and neutrophils, 5-oxo-ETE also induces
actin polymerization and migration of human monocytes and enhances their
responsiveness to the chemokines monocyte chemotactic peptide (MCP)-1 and MCP-3
(129). 5-Ox0-ETE is also an extremely potent stimulator of CI'/ K™ -dependent volume
reduction in guinea pig jejunal crypt epithelial cells (130).

More importantly, this potent lipid mediator appears to act via its own receptor.
Structure activity studies demonstrate that neutrophils possess a highly specific
recognition mechanism for 5-oxo-ETE. This compound can cross-desensitize neutrophils
to itself but not to other agonists (131,132). Furthermore, this S-oxo-ETE-specific
receptor appears to be G-protein-coupled and pertussis toxin-sensitive (133) and is
present on the eosinophil as well (134). The following figure summarizes the biological

actions mediated by S-oxo-ETE (Fig 4).
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1.4 Evidence of a Role for PAF and 5-LO Products in Asthma

Although eicosanoids are capable of eliciting biological effects on different cells
and tissues, it does not necessarily mean that they are important physiologically. Their
production should be identified in physiological fluids or tissues. For example, increased
urinary LTE, has been demonstrated following allergen challenge, during acute and
aspirin-induced asthma (135). Raised levels of LTs (e.g. LTB; and cys-LTs), particularly
LTE, have been found in BAL fluid of asthmatics (136), with further increases after
endobronchial allergen challenge (137).

To further substantiate a role for eicosanoids in a disease such as asthma another
criteria needs to be fullfiled. The alleviation of the asthmatic attack or symptoms, by
eicosanoid biosynthesis inhibitors or by blockage of the biological actions of these
substances by specific receptor antagonists, has to be established. Great efforts have been
made to develop such drugs directed against LT activity and they fall into four main
classes (Fig. 5). The synthesis of all S-LO products can be blocked by inhibitors either of
5-LO itself or of FLAP, while blockade of LT actions can be obtained with specific
antagonists acting at the cys-LT, receptor or at the LTB4 receptor. In addition, PAF-

mediated actions can also be inhibited by PAF receptor antagonists.

1.4.1 Synthesis Inhibitors

Among the LT synthesis inhibitors described in the literature, FLAP inhibitors
include MK-886 and MK-0591, while the leading 5-LO inhibitor is zileuton (A-64077).
The FLAP inhibitors, such as MK-886 and MK-0591, have no direct activity on 5-LO but
antagonize FLAP thus preventing the translocation of the enzyme to the membrane (138).
A clinical study with astmatics after 2 oral doses of MK-886 showed a reduction in the
early-phase asthmatic airway response (see section 1.5.1) after allergen challenge, with a
concomitant reduction in ex vivo LT generation (139). Moreover, there was a correlation
between the inhibition of urinary LTE, excretion and attenuation of the early-phase

response.
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A more recent FLAP inhibitor, MK-0591, which almost completely abolishes endogenous
LT production (assessed by urinary LTE; levels and ex vivo blood LTB, production),
blocks the early-phase response to allergen by 79 % and the late-phase asthmatic airway
response (associated with leukocyte influx (see section 1.5.1)) only by
39 % (140). This lack of significant clinical effect with the above inhibitors may be due to
an insufficient degree of inhibition of S-LO in the lung (141). The 5-LO inhibitor zileuton,
which acts partly through an iron-catalysed redox mechanism, blocks the increase in BAL
eosinophis and bronchial responsiveness induced by antigen challenge in sheep (142). A
recent study by Namovic et al., (143) reported that zileuton effectively inhibited influx of
eosinophils into the lungs of Sephadex treated BN rats. In addition, this 5-LO inhibitor
was shown to inhibit airway narrowing in asthmatics induced by cold, dry air (144).
Subjects (n = 12) with nocturnal asthma treated for one week with zileuton showed
reduced BAL fluid LTB, and urinary LTE, levels and this was accompanied by significant
reductions in BAL and peripheral blood eosinophil counts compared with placebo (145).

Zileuton has now been approved for use in human asthmatics.

1.4.2 Receptor Antagonists

The cys-LT, antagonists developed in the 1990's have much greater potency than
earlier compounds. These include montelukast (MK-476; Singulair), pranlukast (ONO-
1078), zafirlukast (ICI 204,219; Accolate) and MK-571 and are all now in Phase III
clinical trials whereas, montelukast and zafirlukast are already in clinical use. The LTD;
antagonist MK-571 attenuated the recruitment of eosinophils into sensitized guinea pig
lungs following LTC,, LTD, or OVA administration (118). Moreover, MK-571 strongly
inhibited the early-phase response caused by antigen challenge in sensitized BN rats and
completely suppressed the late-phase response (146). Pranlukast, a selective cys-LT,-
receptor antagonist, also has been shown to reduce markedly (83-89%) LTD,-induced
eosinophilic influx in guinea pig trachea, main bronchi and small airways (147). Recent
studies in man have shown that pranlukast inhibits allergen-induced immediate
bronchoconstriction in subjects who have asthma (148) and aspirin-induced asthma (149),

and significantly reduces airway hyperresponsiveness (150). Zafirlukast is an orally active
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LTD; antagonist and has been reported to attenuate allergen-induced migration of
inflammatory cells in guinea pigs (151). At 48 h after challenge basophil and lymphocyte
counts and histamine concentration were reduced by zafirlukast while eosinophil and
macrophage numbers were unaffected (152). Although zafirlukast is more potent in
antagonizing both allergen- and LT-induced bronchoconstriction than MK-571, it is not
more effective than MK-571 in blunting exercise-induced or isocapnic hyperventillation-
induced bronchoconstriction (153,154).

Apart from the cys-LT, antagonists there are also a number of LTB, and PAF
antagonists that have been developed and have been used to better determine their
physiological roles. Sensitized guinea pigs treated with the selective LTB, antagonist U-
75302 prior to antigen challenge showed a dramatic reduction of peribronchial eosinophil
infiltration (155,156). LY255283 (Fig 6), an effective LTB, receptor antagonist, is a
potent inhibitor of LTBs-induced aggregation of guinea pig neutrophils (157).

==z

Fig. 6. Structure of L.Y255283

In rabbits, LY255283 reduced the transient neutropenia following intravenous.
administration of LTB4 (158). In BN rats, it inhibited antigen- as well as LTB;-induced
pulmonary eosinophil influx (76) . This has also been observed by other groups using the
guinea pig as a model (159). In contrast the LTB, antagonist, PF-10042, did not block
antigen-induced pulmonary eosinophilia in guinea pigs, whereas the S-LO inhibitor PF-

5901 did (160). Although LTB, receptor antagonists have been shown to inhibit allergen-
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or LTB,-induced leukocyte infiltration in animal models of asthma, the potential
therapeutic role of such antagonists has yet to be evaluated in clinical studies.

In addition to LTs, there is also a considerable interest in elucidating the
physiological role of PAF. The results of investigations with several potent synthetic PAF
antagonists with different chemical structures have been reported (161,162,163). Even
though these drugs have been shown to block PAF-induced bronchoconstriction they
appear to have no effect on either the early or late response to allergen challenge in man.
It could be suggested that insufficient drug was present to antagonize the effects of PAF
but, as discussed previously, studies on the effects of PAF inhalation would suggest this is
not the case. In animal studies PAF antagonists have been reported to inhibit eosinophil
recruitment into tissues. Two structurally related PAF antagonists, WEB 2086 and WEB
2170 (Fig 7), are able to inhibit eosinophil accumulation caused by antigen in rat pleural

cavity (164).

Fig. 7. Structure of WEB 2170

In addition, OV A-sensitized guinea pigs showed an attenuation of eosinophil accumulation
following treatment with WEB 2170 (49). A recent study showed that treatment with
WEB 2170 significantly inhibited eosinophil migration induced by Mycobacterium bovis
bucillus Calmette-Guerin in the mouse pleural cavity (165). Eventhough PAF appears to
mediate eosinophil recruitment in various animal species, its actions are indirect in man. In

fact there are several reports showing that PAF effects can be blocked by cys-LT,
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antagonists or even LT synthesis inhibitors such as MK-886. This is a recurrent argument
against PAF antagonists that have performed poorly in clinical trials.

In conclusion, there is both indirect and direct evidence that 5-LO products may
play a role in the pathogenesis of asthma. The present LT antagonists and synthesis
inhibitors are likely to be effective in some patients with specific forms of asthma, such as
aspirin-sensitive asthma. In terms of allergic asthma, LT antgonists and synthesis inhibitors
block only ~50% of the late-phase asthmatic airway response to allergen. It is not clear
whether an even more potent LT antagonist or one with a longer duration of action would
have a greater effect, or whether mechanisms such as edema formation and cellular
infiltration involving other mediators are responsible for the residual airway narrowing.

Clearly, the development of more sprcific inhibitors will be able to answer these questions.

1.4.3 Mouse Knockouts

An alternative approach for studying the contribution of 5-LO products to the
inflammatory process is through the use of targeted gene disruption (166,167). Chen and
coworkers (168) exploited this technique to produce homozygous 5-LO deficient mice (5-
LO -/-) which, although appeared normal and healthy, demonstrated alterations in certain
inflammatory responses. Experiments with these 5-LO -/- mice suggested that involvement
of 5-LO products, in certain responses, appears to be stimulus selective. For example,
these knock-out mice showed defects in the peritoneal responses of PMNL to immune
complexes but not to glycogen. Furthermore, there was a deficient response in the ear
edema evoked by AA but not by PMA, and there was an inadequate reaction to PAF-
induced shock but not that to endotoxin. The defect seen in the PAF model of shock
supports previously held views on the interactions of LTs and PAF (169). More recently
these mice were used to study their capacity to reproduce some of the hallmark signs of

asthma (airway hyperresponsiveness and eosinophilia).
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Mice were sensitized to OV A followed by repeated aerosol challenge and studied 24 hr
after the last challenge (170). The S-LO -/- mice had a diminished airway eosinophilia and
IgE production as well as an airway reactivity which was similar to that of the unsensitized
controls. It is known that mice do not respond to intravenous infusion of cys-LTs (171)
hence, the reduced tissue and airway eosinophilia in the S-LO -/- mice could be due to
absent LTB, or 5-0xo-ETE synthesis (10) during OV A or IgE stimulation of mast cells or
other inflammatory cells. The development of genetically modified mouse models over-
expressing, mutant expressing or null for various enzymes or receptors in the etcosanoid

pathway holds promise for exciting new /in vivo studies.
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1.5 Asthma

Asthma is a clinical syndrome characterized by intermittent airway obstruction,
airway hyperresponsiveness and chronic airway inflammation. According to the U.S.
National Center of Health Statistics the prevalence of asthma has risen steadily, doubling
in the past 20 years (172), and it now affects about 10 % of the population. There has
been significant progress in the understanding of the immunobiology of asthma in the last
decade. One of the most important-advances is probably the finding that airway

inflammation is a key feature of asthma.

1.5.1 Classification and Pathogenesis of Asthma

Etiologic or pathologic classification of asthma is difficult. Nevertheless this
disease can be generally divided into three types: allergic (atopic; extrinsic), non-allergic
(nonatopic; intrinsic) and occupational asthma. Airway inflammation is characteristic of all
three types of asthma. It is seen in atopic asthma (IgE mediated) as well as in nonatopic
asthma (non-IgE-mediated) and occupational asthmatics who do not always demonstrate
an IgE response (173,174). These and other studies suggest that inflammation may play an
important role in the pathogenesis of the disease regardless of the nature of identifiable
provoking agent. IgE-mediated mechanisms are clearly important in allergen-induced
short-term exacerbations of asthma in atopic individuals but their role in the pathogenesis
of chronic disease is less certain. Nevertheless, many studies on the pathogenesis of
asthma have been gathered from patients with atopic asthma because their disease can be
conveniently provoked by allergen challenge.

Although advances in pathobiology and immunology have yet to delineate the
pathogenesis and genetic basis of allergic asthma, it is generally believed that asthma is the
result of an immune response to allergens including innocuous organisms such as pollens
or free-living mites (175,176) . Recently it has been appreciated that the immune response
and airway inflammation in asthma may be primarily orchestrated by antigen-activated

lymphocytes and Th2 type cytokines (i.e. [L-4, -5, -6, -10, -13) (177).

23



1.5.1. a. Orchestration of airway inflammation

In the genetically appropriate host (i.e. atopic asthmatics), exposure to an allergen
leads to the production of specific IgE as a result of complex and cognate interactions
between antigen presenting cells (i.e. dendritic cells and alveolar macrophages in the
epithelium and submucosa of the airways), T cells and B cells (178, 179, 180, 181, 182,
183). This initial response is referred to as ‘sensitization’. The specific IgE produced by
the B cell will bind to high affinity Fc receptors on effector cells such as mast cells, and
basophils, as well as the low affinity Fc receptors on macrophages, eosinophils and
platelets. Later, when a sensitized individual is re-exposed to a relevant antigen, the
antigen binds and crosslinks to IgE on the surface of the mast cell (184). This causes the
mast cell to degranulate and release mediators that may induce constriction of the airways.
This is known as the early phase response (EPR). This reaction will normally occur within
minutes of provocation, peaking between S and 20 min, and resolving within 60 min. The
mast cell-mediators and potent airway constrictors responsible for this response are
histamine, LTC,, LTD, and PAF. These mediators also augment mucus secretion and
vascular leakage, leading to further airway obstruction. Alveolar macrophages may also be
activated by an IgE-dependent mechanism and release mediators such as PAF, eicosanoids
and cytokines. Subsequently, the cytokines and chemotactic mediators released by
activated mast cells, T cells and macrophages induce an influx of inflammatory cells, most
notably eosinophils. This inflammatory reaction appears to be involved in a second phase
of longer-lasting decline in pulmonary function known as the late phase response (LPR)
(185, 186). The LPR begins around 3 h and peaks around 8 h after antigen exposure and
may last for days. Approximately 50% of the patients that develop an EPR also develop a
LPR and moreover there are patients that develop a LPR in absence of an EPR. The LPR
in the airways is charactenzed by an initial influx of neutrophils which is then followed by
a large influx of eosinophils and T-cells. Monocytes and macrophages are also recruited
during this phase but appear to play a secondary role in the inflammatory cascade of
events. Persistent cellular infiltration and the release of toxic products may eventually
result in epithelial damage, airway hyperresponsiveness and chronic asthma. Although

chronic asthma differs from the responses seen after allergen provocation, the LPR seen
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after challenge bears similarities to the clinical disease. One of the major similarities is the
increased recruitment of activated eosinophils into the lung. Pathological processes that
result in lung eosinophilia may involve antigen-induced T cell activation through
macrophages or other antigen presenting cells, T cell cytokine release, specific

sensitization of mast cells, and release of mediators by macrophages (187).

1.5.2 Pathophysiology of asthma

Pathophysiologically, asthma is characterized by airway narrowing; hypersecretion
of mucus; edema of airway mucosa, cellular, especially eosinophilic, infiltration of the
airway wall, and desquamation of the airways epithelium. Autopsy of airway samples from
patients dying from status asthmaticus, even those who died of nonasthma causes, as well
as biopsies from asthmatics, even some of mild disease, all show significant changes of the
airways with a marked inflammation of the bronchial tree (188,189). Typically, there is
plugging of the lumen with mucus, epithelial cells, activated lymphocytes and eosinophils;
shedding of the ciliated epithelium; deposition of collagen beneath the basement
membrane; smooth muscle hypertrophy; and an intense eosinophilic infiltrate in the
mucosa and submucosa accompanied by a low degree of infiltration of mononuclear cells
and neutrophils. An association between the degree of inflammation and nonspecific
bronchial hyperresponsiveness has also been described (190).

BAL fluid from asthmatic subjects, challenged with aeroallergen or even in the
absence of bronchial provocation, contains increased numbers of mast cells, neutrophils,
eosinophils and lymphocytes (191,192). In addition to these cellular changes increased
eosinophilic degranulation and elevated levels of histamine, PGD; and cys-LTs have been
reported (138, 193). Most of these chemical mediators are released locally and have been
implicated in bronchospasm, epithelial damage, mucus secretion and microvascular
hyperpermeability.

A number of studies speak to the importance of the eosinophil in the asthmatic
process. Among the most striking is the positive correlation between the levels of blood
and airway eosinophilia and the severity of asthma (194). Blood and infiltrating pulmonary

eosinophils are often primed or activated in asthmatics, and their increase in numbers
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correlate with the presence of activated T cells (195), elevated levels of eosinophilic
constituents in the BAL fluid (196), the degree of airways epithelial damage and the level
of airways hyperreactivity to inhaled spasmogens (197).

The role of the eosinophil in the asthmatic process is believed to be governed by
mediators released - LTs, PAF and PGs - which produce an intense inflammatory reaction
involving bronchoconstriction, vascular congestion, and edema formation. In addition to
their ability to evoke prolonged contraction of the airway smooth muscle and mucosal
edema, the LTs may also account for some of the other pathophysiologic features of
asthma such as increased mucus production and impaired mucociliary transport. This
intense local event can then be followed by a more chronic one. The chemotactic factors
elaborated (i.e. LTB;, PAF etc.) bring eosinophils and other leukocytes to the site of the
reaction. These infiltrating cells, as well as resident macrophages and the airway
epithelium iself, potentially are an additional source of mediators to enhance both the
immediate and cellular phase.

Furthermore, the eosinophilic granular proteins (see section 1.6.1) are capable of
destroying the airway epithelium, which is then sloughed into the bronchial lumen. Besides
resulting in a loss of barrier and secretory function, such damage elicits the production of
chemotactic cytokines, leading to further inflammation. In theory it also can expose
sensory nerve endings, thus initiating neurogenic inflammatory pathways. That, in turn,
could convert a primary local event into a generalized reaction via a reflex mechanism.

Hence, the view that airway inflammation, and more particularly eosinophil
accumulation into the airways, is a major component of the asthmatic process has led to an

intense investigation of the mechanisms involved in eosinophil recruitment into the lung.

26



1.6 Eosinophilia

Eosinophils normally account for only 1 to 3 % of peripheral blood leukocytes,
and their presence in tissues is primarnily limited to the gastrointestinal mucosa (198).
However, in certain disease states, eosinophils can selectively accumulate in the peripheral
blood or any tissue in the body. The most common cause of eosinophilia worldwide is
helminthic infections, and the most common cause in industrialized nations is atopic
disease (i.e. allergic disease of the eye, lung, nose, skin). Since tissue eosinophilia is a
hallmark of atopic disease and eosinophils are a major effector cell in these disorders,
allergic diseases serve as a prototype of understanding the pathogenesis and processes

involved in eosinophilia.

1.6.1 Pathogenesis of Eosinophilia in tissue

Once eosinophils arrive at an inflammatory focus, they may undergo apoptosis
with rapid clearance by macrophages, but if they are stimulated by IL-3, IL-5, or GM-
CSF, they survive for prolonged periods and have increased responsiveness to other
activating agents. Eosinophils activated in this way express increased levels of receptors

for cytokines, Igs and complement.
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Fig. 8. The granules of eosinophils contain a crystalloid core composed of MBP, and matrix composed
of ECP, EDN and EPO. Eosinophils also produce a variety of cytokines, some of which are stored in
granulcs, and lipid mediators that are generated after cellular activation.
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Eosinophils produce unique toxic inflammatory mediators, which are stored in
granules and synthesized after cellular activation (Fig. 8). The granules contain a
crystalloid core composed of major basic protein (MBP) and a matrix composed of
eosinophil cationic protein (ECP), eosinophil-derived neurotoxin (EDN), and eosinophil
peroxidase (EPO). These cationic proteins share certain proinflammatory properties but
differ in other ways. For example, at concentrations similar to those in BAL fluids from
asthmatics with eosinophilia MBP, ECP and EPO have cytotoxic effects on respiratory
epithelium (199,200). In addition, ECP and EDN are ribonucleases (201,202). ECP can
cause voltage-insensitive, ion-nonselective toxic pores in the membranes of target cells,
and these pores may facilitate the entry of other toxic molecules (203). MBP directly
increases smooth muscle reactivity by causing the dysfunction of vagal muscarinic M2
receptors (204). Alternatively or in addition, MBP and EPO may directly stimulate the
respiratory epithelium on contact which, in turn, causes smooth muscle contraction and
increased sensitivity of the muscle to methacholine (205); recent studies suggest that this
may be the result of bradykinin generation (206). Moreover, MBP may also trigger the
degranulation of mast cells and basophils.

Further damage is caused by hydrogen peroxide and halide acids, which are
generated by eosinophil peroxidase, and by superoxide, which is generated by the
respiratory-burst-oxidase pathway in eosinophils. Eosinophils also generate large amounts
of cys-LTs. These lipid mediators increase vascular permeability and mucus secretion and
are potent stimulators of smooth muscle contraction (103) . They can also promote
migration of eosinophils in vitro (207) as well as into the lungs of asthmatics (117).

[n addition, activated eosinophils produce a wide range of inflammatory cytokines
(e.g. TNF-a, GM-CSF, IL-3, IL-4, IL-5) that have the potential to modulate multiple
aspects of the immune response, regulate eosinophil effector function and perpetuate
tissue eosinophilia (208, 209). Furthermore, eosinophils amplify the inflammatory cascade
by producing their own chemoattractants (e.g. RANTES [regulated upon activation
normal T-cell expressed and secreted], eotaxin and PAF), which accelerate the recruitment

of eosinophils into the inflammatory focus.
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This functional role for recruited eosinophils and their products in the pathogenesis
of atopic diseases has led to intense investigations into the mechanisms regulating
eosinophilia. Identification of key molecules and cells that selectively regulate eosinophil

recruitment has been a major focus for the last five years in the study of asthma.
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1.6.2 Mechanisms involved in Eosinophilia

Eosinophilia occurs as a result of four processes (Fig. 9): 1) differentiation of
progenitor cells and proliferation of eosinophils in bone marrow; 2) interaction between
eosinophils and endothelial cells that involve rolling, adhesion, and migration of
eosinophils; 3) chemoattraction directing eosinophils to a specific location; and 4)

activation and prolonged survival within tissue.
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Fig. 9. Processes involved in Eosinophilia
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It is interesting to note that the three cytokines, IL-3, [L-5 and GM-CSF, whose
overproduction occurs in humans with eosinophilia such as asthmatics (177, 210), are
implicated in most, if not all of the stages mentioned above. Only eosinophils and
basophils have receptors for IL-3, [L-S and GM-CSF on both the precursor cells in bone
marrow and the circulating cells. Of the three cytokines, IL-5 (also known as eosinophil-
differentiation factor) is the most specific for the eosinophil lineage. It is responsible for
selective differentiation of eosinophils (211), and it stimulates their release from bone
marrow into the peripheral circulation (212). The critical role of IL-5 in the production of
eosinophils is best demonstrated by genetic manipulation in mice. Overproduction of IL-5
in transgenic mice results in profound eosinophilia (211) , and deletion of the [L-5 gene
causes a marked reduction of eosinophils in the blood and lungs after an allergen challenge
(213).

IL-5, [L-3 and GM-CSF are the three main cytokines involved in the recruitment
and activation of eosinophils. IL-S is a selective eosinophil chemoattractant and increases
the expression of Mac-1(CD11b) on human eosinophiis (214) . The role of all three
cytokines in the regulation of eosinophil infiltration has been documented in vivo in the
skin of patients with atopy (215) and in mucosal eosinophilic diseases (e.g asthma)
involving the gastrointestinal (216,217) or respiratory tract (218,219). Furthermore, in
vitro and explant studies of allergic sinus tissue have shown that [L-3, [L-5 and GM-CSF
delay eosinophil apoptosis for at least 12 to 14 days (220). In contrast, eosinophils survive
for less than 48 h in the absence of these cytokines (221). Tissue eosinophils can also
regulate their own survival through an autocrine pathway (208).

The remaining part of this thesis will focus on the processes by which eosinophils

migrate from the blood into target tissues.
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1.7 Recruitment of eosinophils

1.7.1 Adhesion Molecules

Recruitment of eosinophils and other inflammatory cells from the blood into the
lung is regulated by inflammatory mediators produced in the airways and subsequently
released into the circulation, such as PAF, (222) [L-5 (223) and eotaxin (224). This traffic
is mediated by adhesion molecules which in turn are upreguiated by certain cytokines.

Adhesion molecules are glycoproteins expressed on cell surfaces which mediate
the contact between two cells or between the cell and extracellular matrix (225). They are
important in the migration of leukocytes from the blood into the tissues during
inflammation. They may also serve as signalling molecules (226), thereby influencing
several eosinophil functions such as degranulation (227), secretion of LTC, (228) and
generation of superoxide (229). Moreover, there is evidence that adhesion molecules, such
as VLA4, are involved in the interactions between human hematopoietic progenitor and
stromal cells in the bone marrow (230), and may also be involved in the proliferation of
progenitor CD34" cells (231). The focus herein will be on adhesion molecules and cellular
recruitment.

Adhesion molecules are subdivided into several families based on common
characteristics. In general the adhesion process leading to recruitment of inflammatory
cells is mediated by three major groups of receptors: the selectins, the integrin family
(232,233) and the Ig superfamily (234).

Selectins have a common molecular structure comprising of several domains one
of which is the N-terminal lectin domain, essential for cell adhesion. The selectin family
consists of three proteins; E-(endothelial), P-(platelet) and L-(leukocyte) selectin. E-
selectin and P-selectin are expressed on activated endothelium (232,235,236,237).
Maximal E-selectin expression on endothelium is found within hours (2 to 6 h) after
stimulation by the cytokines [L-1 and TNF-a (238) and then subsequently declines to
basal levels within 24 h. P-selectin, which is stored in Weibel-Palade bodies, is rapidly
mobilized (within minutes) to the surface of endothelial cells upon activation with
thrombin (239), histamine (240), LTC, or PAF released from activated mast cells. Unlike

E- and P-selectn, L-selectin is expressed constitutively on all leukocytes (241). Upon
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leukocyte activation, L-selectin is rapidly shed from the cell surface and this may be en
important event in the process of leukocyte emigration (242). The most studied ligands for
the selectins are sialyl Lewis X blood antigen (SLe") and other fucose-containing
carbohydrate determinants (235, 243). Moreover, there appears to be an interaction
between L-selectin and the E- and P-selectin mediated adhesion pathways (235).

The integrin family comprises of receptor molecules which are a and f3-
heterodimers and are divided into different subfamilies according to the B subunit
expression (232, 244). The B2 subfamily is found exclussively on leukocytes and is
composed of three distinct, but related, a-chain polypeptides: CD11a (ar), CD11b (auy)
and CD1 ¢ (ax), which are expressed on the cell surface in non-covalent association with
a common 32 subunit, CD18 (245). These three o/ heterodimers are often referred to by
their earlier names, LFA-1 (lymphocyte function related antigen-1), Mac-1 (macrophage -
1) and CR4 (complement receptor-4) respectively. The whole complex is referred to as
CD11/CD18. Peripheral blood eosinophils, neutrophils, monocytes and NK cells express
all three B2 integrins, whereas lymphocytes express primarily LFA-1. The members of the
B1 integrin subfamily, which are sometimes referred to as very late activation antigens
(VLA), are found on many different cell types and function primarily as receptors for
extracellular matrix proteins such as collagen, laminin, and fibronectin (226). In contrast,
VLA-4 (41 ; CD49d/CD29), in addition to functioning as an extracellular matrix
receptor for fibronectin (246), also mediates cell-cell interactions by interacting with
another adhesion molecule, vascular cell adhesion molecule-1 (VCAM-1) (247). VLA4 is
present on resting lymphocytes, monocytes and eosinophils, but not on neutrophils (233).
Eosinophils bind via LFA-1 and Mac-1 to intercellular adhesion molecule-1 (ICAM-1)
(43), and since they also express VLLA-4, they additionally bind to VCAM-1 (248) (see
below).

The Ig superfamily is a large family of adhesion molecules whose structure is
characterized by repeated domains similar to those found in Igs. For endothelial-leukocyte
interactions, the most important members of this family ICAM-1, ICAM-2 and VCAM-1
(232). ICAM-1 binds to both LFA-1 and Mac-1, whereas, ICAM-2, binds only LFA-1
(249). Expression of ICAM-1 and VCAM-1 on endothelial cells is increased after
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stimulation with tumor necrosis factor-a (TNF-a) or [L-1 (238). Additionally, expression
of ICAM-1 is also increased by interferon-y (IFN-y) (238), whereas two major cytokines
in asthma, [L-4 and [L-13, upregulate VCAM-1 expression (250,251). In contrast ICAM-
2 is constitutively expressed as an endothelial cell marker (249). /n vitro expression of
ICAM-1 and VCAM-1 on cultured endothelial cells is protein synthesis dependent.
ICAM-1 expression peaks after 12 h and is maintained for at least a further 36 h whereas
VCAM-1 expression peaks after 6 to 10 h of cytokine treatment. In asthmatic patients,
expression of both ICAM-1 and VCAM-1 is increased (252). Furthermore, in situ
expression of I[CAM-1 and VCAM-1 in bronchial tissues from asthmatics experiencing air
flow limitation have demonstrated an increased expression of these molecules in the apical
membrane of the endothelium as well as in intracellular organelles (253). This may suggest

an additional de novo synthesis of adhesion molecules prior to a spontaneous asthmatic

attack.
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1.7.1.a.. Adhesion and Migration

During inflammation mediators (i.e. thrombin, histamine, PAF, LTC, , cytokines
and chemokines) are released locally by mast cells, macrophages, T cells and airway
epithelium. These inflammatory mediators act as chemoattractants and/or cell adhesion
molecule-inducing agents thereby inducing infiltration of blood leukocytes into the
inflamed tissue. Extravasation of leukocytes to sites of inflammation is thought to consist
of at least three different processes. Firstly, circulating leukocytes undergo margination
whereby they begin to roll along the endothelium of postcapillary venules adjacent to the
extravascular site of lung inflammation. This process is mediated by the contact of L-
selectin on leukocytes with diverse carbohydrate-containing structures (243), as well as
P-selectin and E-selectin on activated endothelial cells (237). Tethering and rolling of
leukocytes through selectins prolongs leukocyte contact with the vascular endothelium
and in turn enhances their exposure to chemoattractants such as PAF, eotaxin or [L-8.
This exposure to chemoattractants allows the adherent leukocyte to undergo changes
including upregulation of intracellular Ca*", polarization in shape (i.e. reorganization of
actin cytoskeleton), priming for enhanced activation, shedding of L-selectin and the
induction of integrin adhesive functions (254). The rolling of circulating eosinophils on the
endothelium is mediated primartly by P-selectin, whereas neutrophil rolling is mediated
primarily by E-selectin (255,256). Interestingly, one particular antibody, LAM1-11, which
recognizes a specific epitope on L-selectin, inhibits adhesion of eosinophils but not
neutrophils, lymphocytes or monocytes under nonstatic conditions (257). Moreover, a
reduced expression of L-selectin has been seen with eosinophils recovered from BAL fluid
following allergen challenge, or activated in vitro (258,259). It is important to note here
that in the lung there are two microvascular beds to consider, the large pulmonary
circulation that is intimately associated with leukocytes to form the so-called marginating
pool, and the smaller bronchial circulation that supplies the airways. Hence, the
phenomenon of leukocyte rolling and tethering mediated by selectins is more predominant
in post-capillary venules of the bronchial circulation. It would appear that such a
mechanism of cell accumulation is not as important in the pulmonary circulation where the

cells have to migrate through capillaries whose mean diameter is 5.5 to 6 um compared to

35



12-17 pum for eosinophils and 7-8 um for neutrophils (260). Thus leukocytes go through a
stage of retention in the lung rather than tethering (Fig. 10) and would have to deform to

pass through a capillary, a process that is likely to slow its progress even in the absence of
selectin interactions. Hence, this possible sequestration of eosinophils in capillaries may be

analogous to the tethering of leukocytes by selectins in post-capillary venules.
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Fig. 10.Proposed mechanisms of leukocyte accumulation in (A) bronchial and (B)
pulmonary circulation. The VLA-4/VCAM-1 adhesion pathway should also be

considered. P-s : P-selectin; E-s : E-selectin; L-s : L-selectin.
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The second step is firm adhesion and is mediated by leukocyte 2 (i.e. Mac-1,
LFA-1) and $1 (i.e. VLA-4) integrins interacting with the endothelial adhesion molecules
ICAM-1 and VCAM-1 respectively (261). This step in the inflammatory adhesion
mechanism requires the activation of the leukocyte integrins by chemoattractants, such as
PAF, cytokines or chemokines (see section 1.7.2). During activation of eosinophils, the
integrins not only show an increased expression on the cell surface, but also experience a
conformational change in the integrin heterodimer, leading to enhanced avidity (262) for
their ligand. Recently, Weber et al, (263) demonstrated differential regulation of §1 and
B2 integrin avidity by chemoattractants (RANTES, MCP-3, C5a and PMA) in human
eosinophils in vitro. Activation of VLA-4 was transient and dependent on the actin
cytoskeleton, whereas more prolonged activation with conformational changes appeared
to be crucial for Mac-1. The adhesive properties of eosinophils are increased after
stimulation with PAF, [L-3, [L-5 and GM-CSF (264), due to increased membrane
expression of CD18 and CD11b (265). Recently, Sung et al (266), using a micropipette
single cell adhesion assay able to measure the strength of adhesion forces, demonstrated
that after incubating eosinophils with GM-CSF, the mean adhesion strength of eosinophils
to the fibronectin connecting segment-1 (CS-1), and VCAM-1 increased significantly,
compared to controls. This increased binding of eosinophils to VCAM-1 or CS-1 was not
due to alterations in VLLA-4 receptor number (assessed by FACS analysis) or alterations in
VL A-4 receptor distribution (assessed by confocal microscopy), suggesting that
endothelial-derived cytokines, such as GM-CSF, have the potential to alter the functional
state of eosinophil-expressed VLA-4 from a low affinity to a high affinity state. Moreover,
eosinophils from asthmatics show increased adhesion to VCAM-1 and ICAM-1 when
compared to normal controls (267) and elevated levels of soluble ICAM-1 and VCAM-1
can be found in the blood and BAL fluid of patients with acute asthma (268,269).

The final step of cell recruitment is the transmigration of the leukocyte between
two endothelial cells into the tissue. This process involves reversible adhesion, i.e. cyclic
modulation of integrin receptor avidity. The molecular basis of transmigration is not clear,
although LFA-1:ICAM-1 interaction appears to be critical (270). In addition this process

is controlled by platelet endothelial cell adhesion molecule-1 (PECAM-1) (271) as well as
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by endothelial cell-derived chemoatractants (272). Many in vitro studies have shown that
transendothelial migration of eosinophils is predominantly mediated by the B2 integrins
(273,274, 275,276). However, depending on the cytokine/chemotactic stimulus,
transendothelial migration can also be mediated by the B1 integrin , VLA-4 (277) (275). In
vivo studies using two different animal models suggest that the migration of eosinophils
into the respiratory mucosa predominantly involves the VLA-4/VCAM-1 interaction
(278,279).

Expression of cell adhesion molecules is regulated at multiple levels. First of all,
the different cytokines have a selectivity for the induction of certain adhesion proteins,
such as [L-4 (277) and [L-13 (251) for VCAM-1 . This selectivity is even dependent on
the cell type, since [FN-y is much more potent in inducing ICAM-1 on epithelial cells than
on endothelial cells (280). Moreover, combinations of the different cytokines produce
additive, synergistic or antagonistic effects (281). In addition, cytokines activate the
airway epithelium to secrete chemokines, such as RANTES and eotaxin, which further aid
in the recruitment of leukocytes, namely eosinophils, into the airways (see section 1.7.2).
These multiple levels of regulation of cell adhesion molecule expression and function
together with leukocyte-specific stimuli can create a unique sequence of events related to

a certain inflammatory situation (261,282,283,284).

1.7.1.b. Animal Models

Although human studies provide evidence for important associations between
eosinophil recruitment into tissue and increased expression of cell adhesion molecules and
chemotactic agents, such studies are limited in scope due to practical difficulties and
ethical issues associated. For this reason, models of eosinophil recruitment in rats, guinea
pigs, mice, sheep and monkeys have been used.

The functional relevance of ICAM-1 in eosinophil recruitment was first shown in a
primate model of allergic asthma induced by multiple inhalations of antigen (285).
Treatment with a monoclonal antibody (mAb) against ICAM-1 attenuated airway
eosinophilia and hyperresponsiveness while anti-Mac-1 mAb treatment reduced the levels

of ECP in the BAL fluid but didn't inhibit the airway eosinophilia. In sensitized mice,

38



however, mAbs against ICAM-1 and LFA-1 did not inhibit eosinophil infiltration into the
trachea after OV A challenge, whereas anti-VL A-4 and anti-VCAM-1 treatmant did (279).
Local administration of PAF, C5a or LTB,in the skin of guinea-pigs induced eosinophil
infiltration, which was potently inhibited by mAbs to VLLA-4 (286).This decrease of
eosinophil recruitment was also seen in the BAL fluid and lungs of allergic guinea pigs
treated with anti-VLA-4 mAb prior to challenge (287). Aerosolized anti-VLA-4 mAb
inhibited allergen-induced BAL eosinophilia and hyperresponsiveness in rabbits sensitized
to house dust mite (288), as did intravenous treatment with an anti-CD18 antibody (289).
A mAb to VLA-4 did not inhibit eosinophil infiltration in allergic sheep after allergen
exposure (290), whereas it did in OV A-sensitized guinea pigs (278).

Another animal model that has been used in studying the adhesion pathways of
eosinophil recruitment into the lungs is the rat. Rat models are becoming more useful as
many immunological reagents including mAbs to cell adhesion molecules and cytokines
have become available. The BN rat is one of the most widely used animal models of
asthma because it develops an asthma-like response with a lot of similarities to that in
humans (291,292,293,294). Recently, Richards and others have demonstrated that in vivo
treatment of sensitized BN rats with mAbs against [CAM-1 (1A29) (295) or VLA-4 (TA-
2) (296,297) prior to OV A challenge significantly inhibited the eosinophil recruitment into
the airway lumen and alveolar spaces. There are also other reports that demonstrate that
although treatment with anti-VLA-4 mAb can abbrogate the hypperresponsiveness after
allergen challenge, it has no effect on eosinophil recruitment into airways of allergic BN
rats (298). This lack of a consistent effect of antibody treatments on leukocyte numbers in
the lung suggests that these antibodies may be affecting biological processes other than
cell adhesion. There is evidence that adhesion molecules, particularly integrin receptors,
have transmembrane signalling properties that mediate cell activation. Integrins LFA-! and
VLA-4 may act as costimulatory molecules in T-cell proliferation and activation (226).
Anti-VLA-4 mAD treatment can attenuate PAF-induced EPO release from eosinophils
(290). In addition, Mac-1, can mediate degranulation of eosinophils caused by GM-CSF
or PAF in vitro (227). Furthermore, it is important to note here that mAbs against VLA-4

are antibodies against the a4 subunit of this integrin. The a4-integrin subunit, apart from
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its association with the B1 chain, can also associate with B7 and is found on NK cells,
eosinophils (weakly expressed), most newborn and some aduit blood T and B cells, and
most lymph node T and B cells (299,300). Like a4f1, a4B7 binds to VCAM-1 and
fibronectin (301,302), but it can also bind to mucosal addressin cell adhesion molecule-1
(MAdCAM-1), a homing receptor found most abundantly in gut lymphoid tissue (303).
These recently discovered overlapping functions and structural components of a4
integrins and their counter-receptors have complicated the molecular interpretation of in
vivo studies utilizing blocking mAbs to the a4-integrin subunit. Clearly, in vivo mAb-
treatment against adhesion molecules has its limitations, however, the increased
availability of mAbs to all components of adhesion pathways will allow clarification of
these issues in the future.

Gene disruption, is another technique by which the functional relevance of a
molecule to eosinophil recruitment can be studied. Gonzalo et al, studied the role of
adhesion receptors ICAM-1, VCAM-1, P-selectin, and L-selectin in OVA-induced
pulmonary eosinophilia by using mice lacking these adhesion molecules (304). They
demonstrated that eosinophil migration into the lung tissue and BAL fluid is abolished in
the absence of ICAM-1 or VCAM-1. Since the lack of adhesion receptors may result in
impaired eosinophil differentiation, these deficient mice were injected intravenously with
[L-5. No subsequent differences in the numbers of circulating eosinophils were detected
among these IL-5-injected mutant and wild type mice.

Taken jointly, these data suggest that, although animal studies of eosinophil
recruitment do not completely represent the complexity of tissue eosinophilia, they may
delineate particular pathways or basic mechanisms contributing to this phenomenon.
However, great care must be taken in extrapolating the information obtained from the
analysis of animal models to humans. Firstly, there appears to be important species
differences in the biochemistry and immunology of eosinophils and secondly, the notion
that a disrupted gene or a mAb for an adhesion molecule will only inhibit effects of the

adhesion pathway is too simplistic.
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1.7.2 Chemoattraction

The migration of eosinophils into the lung is initiated by local chemoattractant
molecules, which are likely to be responsible for both physiologic homing, and the
recruitment of eosinophils into inflamed tissues. Numerous chemotactic substances act on
eosinophils, including the previously discussed lipid mediators such as, PAF, LTB, (39),
cys-LTs (117) and 5-ox0-ETE (10), as well as complement components (C5a) (39),
cytokines (e.g. [L-5) (223), and chemokines (chemotactic cytokines) (305). Although all
of these substances mediate the recruitment of eosinophils, most are not selective for
eosinophils. Within the chemokine family eotaxin and eotaxin-2 are relatively specific for
eosinophils (306,307). Unlike many other chemokines, the eotaxins mediate their effects
through only one receptor, the CCR-3 receptor (308) which is found on eosinophils.

Chemokines are a superfamily of small peptides chemoattractants (8-14 kDa).
They are subdivided into families on the basis of the relative position of their cysteine
residues (309). There are at least four families of chemokines, but only two have been
extensively characterized. The a-chemokines, or CXC chemokines (one amino acid (X)
separates the first two cysteine residues), in general induce neutrophil or lymphocyte but
not monocyte locomotion. The B-chemokines, or C-C chemokines (first two cysteine
residues are adjacent to each other), in general do not act on neutrophils but attract
monocytes, eosinophils, basophils and lymphocytes with variable selectivity. Two
chemokines that do not fit into this classification, lymphotactin (3 10), with only two
cysteines, and fractalkine (311), a membrane bound glycoprotein in which the first two
cysteine residues are separated by three amino acids (CXXXC), may represent additional
families.

C-C chemokines such as RANTES, MCP-3, MCP-4, macrophage inflammatory
peptide-la (MIP-1a) and the eotaxins, in association with cytokines IL-3, IL-4, [L-S,
GM-CSF (312,313,314,315,316) and 5-LO products (317.318) may play key roles in
regulating eosinophil recruitment into sites of allergic inflammation.

RANTES and MCP-3 are more potent than MIP-1a for eosinophil chemotaxis
(314, 319), however, they do not selectively regulate eosinophil trafficking. The role of

MIP-1a was identified in a murine model of allergic eosinophilic inflammation (320).
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When antigen-sensitized and airway-challenged mice were passively immunized with anti-
MIP-1a antibodies, the eosinophil infiltration into the airways was decreased by about 50
%. Expression of MCP-3 and RANTES mRNAs has been correlated with the level of
eosinophil infiltration induced by allergen challenge in the skin of patients with atopy
(321). In a more recent investigation, when RANTES was injected intradermally in both
allergic and nonallergic subjects it induced an eosinophilic recruitment which was maximal
6 h and 24 h later respectively (322). The recently described chemokine, MCP-4, is a
chemoattractant of high efficacy for eosinophils, matching in vitro the effectiveness of
RANTES, MCP-3 and eotaxin (323). Moreover all three chemokines, RANTES, MCP-3
and MCP-4, mediate their effects on the eosinophil through the CCR-3 receptor (308).
Eotaxin, first discovered in guinea pigs and subsequently cloned in mice and
humans, has the particularity of being a potent and specific eosinophil chemoattractant in
vitro and in vivo (224, 324) . Increased expression of this chemokine has been seen in the
BAL fluid and airways of asthmatics and has been suggested to contribute to the airway
eosinophilia seen in asthma (325). Significant lung eosinophilia occurs 20 h after delivery
of aerosolised eotaxin (326). Eotaxin expression can be induced locally in tissues after
transplantation of [L-4-secreting tumour cells (315), suggesting that eotaxin may be
involved in immune responses regulated by [L-4. Investigations tn guinea pigs and mice
suggest that eotaxin may act cooperatively with [L-5 to promote the recruitment of
eosinophils into tissues (212, 327). The relationship between [L-5 and eotaxin in the
regulation of eosinophil homing as well as its recruitment into blood and tissue was
investigated in [L-5 -/- mice (328). This study suggests that there is an essential
requirement for [L-S in eotaxin-induced recruitment of eosinophils to mucosal tissues.
There is evidence that 5-LO products may be involved in the response of
eosinophils to chemokines. Recently Harris et al., (317) demonstrated that specific S-LO
inhibitors zileuton and ABT-761 attenuated the eotaxin-induced eosinophil recruitment
into the mouse peritoneal lavage fluid by approximately 70%. This data suggests that
eotaxin may either be activating eosinophils to release 5-LO metabolites, such as 5-oxo-
ETE, or making them more responsive to these metabolites. Interestingly, a similar degree

of inhibition in eosinophil recruitment was seen when mice were treated with the 5-LO
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inhibitors prior to IL-5 and eotaxin injections. The fact that the 5-LO inhibitors could
attenuate the combined effects of [L-5 and eotaxin suggests that their effect may involve
5-LO products. In a recent abstract, Stafford and Alam (318) also presented Jdata
implicating 5-LO products in the chemokine-mediated effect. In this report inhibition of $-
LO attenuated RANTES-induced eosinophil chemotaxis in vitro.

In summary, the clinical and experimental investigations suggest that migration of
eosinophils into tissues involves the cooperation of different classes of mediators. These
would include 5-LO products, eotaxin and cytokines. The combined effects of various
mediators in the influx of cells is probably more reflective of human disease than is
normally proposed from cellular or animal experimentation where single mediators are

assumed to be working.
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1.8 Hypotheses

It is clear that the cellular and molecular events regulating eosinophil recruitment
to sites of allergic inflammation are complex processes that involve a co-ordinate network
of inflammatory cells, vascular adhesion molecules, cytokines, chemokines and lipid
mediators.

An important area of research is now concerned with the identification of specific
chemoattractant molecules that issue the chemotactic and chemokinetic stimuli which
localise eosinophils to the foci of tissue inflammation, where they elicit their effector
function. Studies using receptor antagonists and synthesis inhibitors have revealed that 5-
LO products may be such candidates. Recent in vitro studies have demonstrated that the
5-LO product, 5-oxo-ETE, is a potent eosinophil chemoattractant and also stimulates
calcium mobilization, degranulation, superoxide formation, actin polymerization, Mac-1
expression and L-selectin shedding in these cells. In view of these potent in vitro effects
on eosinophils, the objective of this study was to determine whether 5-oxo-ETE is also
active in vivo.

To fulfill this objective the BN rat was used to test the following hypotheses:

1) 5-Ox0-ETE induces eosinophil recruitment in in vivo. The effects of
intratracheally administered 5-oxo-ETE on eosinophil infiltration in the lungs of BN rats
was investigated and compared to those of other 5-LO products, such as LTB,, LTC, and
LTD,.

2) §-Ox0-ETE-induced cosinophil recruitment is independent of actions of other
lipid mediators such as PAF and LTB,. To test this hypothesis animals were treated
with receptor antagonists to PAF and LTB; before and after S-oxo-ETE intratracheal
insufflation.

3) 5-Oxo-ETE-induced eosinophil recruitment is dependent on integrins. This
hypothesis was tested by injecting the animals intravenously with mAbs against $1 and 2

integrins prior to 5-0xo-ETE treatment.
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CHAPTER 2

MATERIALS AND METHODS




2.1 Materials

2.1.1. Chemicals

5-Oxo-ETE was prepared by Drs. J. Rokach and S. Khanapure; Florida Institute of
Technology (329). LTB,4 was synthesized by Syvie Gravel in Dr. Powell’s laboratory by
incubation of AA (Nuchek Prep. Inc., Elysian, MN) with porcine neutrophils in the
presence of 5, 8, 11, 14-eicosatetraynoic acid and the calcium ionophore A23187
(Calbiochem, LaJolla, CA). LTD, and LTE, were obtained from the Cayman Chemical
Co., (Ann Arbor, MI) and PAF (1-palmityl-2-acetyl-sn-glycero-3-phosphocholine) was
purchased from Sigma. The anesthetics used were the muscle relaxant xylazine and the
sedative sodium pentobarbital which were purchased from Chemagro Limited, Etobicoke,

Ontario, Canada and MTC Pharmaceuticals, Cambridge, Ontario, Canada, respectively.

2.1.2. Antagonists

The LTB, antagonist, LY255283, (5-ethyl-2-hydroxy-4-(6-methyl-6-( 1 H-tetrazol-
S-yl)heptyloxy) acetophenone), was a kind gift from Eli Lilly Co., Indianapolis, Indiana.
The potent long-acting PAF antagonist, WEB 2170, (6-(2-chlorophenyl)-8-9-dihydro-1-
methyl-8-(4-morpholinyl-carbonyl)-4H, 7H-cyclopental (4,5) thieno (3,2.f) (1,2,4)-
triazolo-(4,3-a) (1,4)daizepine) (330) was provided by Boehringer-Ingelheim, USA. These
receptor antagonists have been previously used in studies with BN rats and other animals

(76, 331) .

2.1.3. Monoclonal Antibodies

Mouse anti-rat monoclonal antibodies (mAbs) to VLA4 (TA-2; IgG1) 332, LFA-
1 (TA-3; IgG1l) (333), and Mac-1 (0X-42; IgG2a) (333) were obtained from Dr. T
[ssekutz; Dalhousie University. These antibodies were prepared by immunizing BALB/c
mice with rat leukocytes and characterized as previously described. The anti-rat VLA-4
mAb (TA-2) reacts with all rat leukocytes and blocks their adhesion to rat microvascular
endothelial cells stimulated with [FN-y, [L-1, TNF-a and lipopolysaccharide (332) in
vitro. Experiments with fluorescence microscopy demonstrated that this mAb reacts with

VLA-4 on eosinophils of BN rats. The mAbs to LFA-1 (TA-3) and Mac-1 (0X-42) also
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blocked the adhesive function of rat leukocytes by interacting with their respective
integrins (333). An isotype-matched mAb (3h11-B9; IgG1) (334) directed to an irrelevant
cell surface protein, pertussis toxin, was used as a control. Various studies in the past have
examined the effects of these mAbs on leukocyte recruitment in the BN rat lung (298,
335).

The airway-infiltrating eosinophils were quantitated by immunocytochemistry
using a mAb to MBP that has previously been shown to detect rat eosinophils (336). This
mADb was a kind gift from Dr. R. Mogbel, University of Alberta, Edmonton, Canada.

2.1.4. Animals

Experiments were performed on 180 (n > 5) male highly inbred ( > 58 generations)
BN rats (Rij substrain; 6 - 8 weeks old; 180 - 220 grams) obtained from Harlan Sprague
Dawley (Indianapolis, IN). They were housed in groups of four-to-five with food and
water available ad libitum. Animal housing was carried out in accordance with McGil
University's Policy on the Handling and Treatment of Laboratory animals and the
Canadian Council on Animals Care guidelines. A period of five-to-six days of

acclimatization was allowed prior to experimentation.
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2.2 Methods

2.2.1. Agonist Administration

Rats were anesthetized by intraperitoneal injection of xylazine (7 mg/kg) and
pentobarbital (50 mg/ kg). Endotracheal intubation was performed with a 6 cm length of
polyethylene tubing (PE-240). Agonists (5 ug unless otherwise indicated) in 100 ul of
saline containing 0.5% ethanol were administered by insufflation using a 1 ml syringe
containing the agonist and 1 ml of air to force the agonist into the lungs. This method of
agonist administration should enable a better distribution into the airways. Alternatively,
agonists in 100 pl of saline containing 0.5% ethanol were instilled directly into the trachea
without the use of air. Control animals recieved vehicle (saline containing 0.5% ethanol)
alone. After administration of the agonist, the animals awakened spontaneously and were
extubated. At various time intervals (6, 15, 24 and 36 h) the animals were anesthetized

and the lungs removed for immunocytochemistry as described below.

2.2.2. Receptor Antagonist Treatment

To explore further the role of 5-0x0-ETE in the induction of airway eosinophilia in
the BN rat, antagonists to LTB, (LY255283) and PAF (WEB 2170) were tested for the
inability to prevent eosinophilic influx following insufflation of S-oxo-ETE. Preliminary
tests with our BN rat model revealed that treatment with 20 mg/kg (and not 10 mg/kg) of
LY255283 attenuated LTB,-induced airway eosinophilia. The PAF antagonist, WEB
2170, has not been characterized in BN rats. However, our preliminary experiments
demonstrated that 30 mg/kg of WEB 2170 was sufficient to significantly reduce airway
eosinophilia in BN rats following insufflation with PAF. Hence, the subsequent groups of
animals were treated with 20 mg/kg of LY255283 and 30 mg/kg of WEB 2170.

Seven groups (n > 5), were orally gavaged (intragastric administration) with either
LY255283, WEB 2170 or vehicle (carboxymethyicellulose 0.2% w/v H;O) (143). The
animals were then anesthetized, intubated and subsequently insufflated with S ug of either
LTB,, PAF (reconstituted in PBS with 0.125% BSA) or 5-oxo-ETE 1 h after drug
treatment. At some later time the animals awakened spontaneously and 7 h after agonist

insufflation they were gavaged once more with either LY255283, WEB 2170 or vehicle.
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The lungs were excised 15 h after agonist insufflation and prepared for

immunocytochemistry

2.2.3. Monoclonal Antibody Treatment

Monoclonal antibodies to the integrins VLA-4 (81 integrin family), LFA-1
and Mac-1 (B2 family) were used to study the adhesion mechanisms involved in S-oxo-
ETE-induced eosinophil recruitment. Seven groups of S rats each were injected
intravenously (i.v.) with either anti-integrin or control mAbs. Stock mAb was diluted with
saline, then filter sterilized through a 0.22 pm filter (Millipore Co., Bedford MA). A
concentration of 1.4 mg of mAb in 0.5 ml sterile saline was injected 30 min prior to
agonist insufflation. These amounts of antibodies have been previously shown to
maximally block leukocyte migration in vivo and provide plasma levels that are several
times higher than required to saturate integrins on blood leukocytes (332, 333, 334).

The animals were first anesthetized and then intubated in preparation for agonist
insufflation 30 min after mAb treatment. The first three groups of animals served as
controls. Group 1 was the negative control where animals were injected and insufflated
with vehicle (saline (0.5 ml)) and saline with 0.5% ethanol (100 ul) respectively). Rats in
the positive control group 2, were injected with vehicle and insufflated with S-oxo-ETE (5
ug). The third group served as the control for the mAb treatment. In this group, animals
were treated with the isotype matched mAb (3H11-B9) and then insufflated with 5-oxo-
ETE. The remaining four groups of animals were the test groups. Groups 4, S and 6 were
treated with mAbs to the integrins VLA-4, Mac-1 and LFA-1 respectively. Group 7 was
treated with a combination of mAbs to both B2 integrins, Mac-1 and LFA-1. All these test
groups were insufflated with 5-0x0-ETE (5 ug). The lungs were excised 15 h following

agonist insufflation and prepared for immunocytochemistry.
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2.2.4. Histology
Following induction of anesthesia, rats were exsanguinated via the abdominal

aorta. The lobes of the lungs were dissected around the hilum (0.5 x 1 cm), immediately
placed in phosphate-buffered saline and frozen within 30 min. The fresh tissue was placed
in OCT embedding medium and snap frozen in isopentane precooled in liquid nitrogen and
stored at -80 °C. Sections of 6 um were cut in a cryostat and three consecutive sections
were placed on microscope slides. They were air dried for 1 h and fixed in
acetone/methanol (1:1) for 5 min and further air dried for 1 h. Slides were then wrapped
back to back in pairs in aluminum foil and stored at -20 °C prior to immunostaining.

It is important to note here that many investigators in the past have quantitated
eosinophils in lung tissue following enzymatic dispersion by tissue mincing and digestion
with collagenase. However enzymatic dispersion and cell counting may be subject to non-
specific cell loss or vanation due to heterogeneous involvement of lung tissue. These
limitations were overcome in the present study by using whole tissue and quantitating

eosinophils following immunostaining for MBP.

2.2.5. Immunocytochemistry
Eosinophils in lung sections were quantitated by Drs. Q. Hamid and R. Taha.

Slides were allowed to defrost and then stained with a mAb to MBP using the alkaline
phosphatase-anti-alkaline phosphatase (APAAP) method as previously described (337).
To prevent nonspecific binding of the second and third antibodies the sections were
treated with 20% normal rat serum. Slides were coded and read in a blind fashton at 200x
magnification. The numbers of positively-stained cells were counted in the walls of the
airways identified in a zone 115 um deep (as defined by a squared eyepiece graticule)
along the length of the epithelial basement membrane. A calibrated computerized graphics
tablet (IBM) was employed to determine the length of the basement membrane. Cell
counts are expressed as the mean numbers of immunoreactive cells per unit length (1 mm)

of basement membrane of the airway.
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2.2.6. Data Analysis
One way ANOVA using Dunnett’s test as a multiple comparison method was used

to determine whether there were statistically significant differences among groups of
animals. For comparison of two groups Student’s t-test was used using the Bonferroni
correction. All data are presented as means + SE (n = §, unless indicated otherwise).

Differences were considered to be statistically significant for p values of less than 0.05.
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CHAPTER 3

EXPERIMENTAL RESULTS




3.1. 5-Oxo-ETE is a strong inducer of pulmonary eosinophilia.

Powell et al., (10) have demonstrated that 5-oxo-ETE is a very potent chemotactic
agent for human eosinophils in vitro. To test this effect in vivo, BN rats (n = 5) were
treated via tracheal insufflation with either vehicle or S-oxo-ETE (5 ug). The lungs were
removed after 15 h and sections were immunostained for the eosinophil marker, MBP.
Preliminary experiments indicated that 15 h were sufficient to detect eosinophil
recruitment into tissue. Representative slides of the rat lung sections are shown in Figure
1. Consistent with its in vitro effect, 5-0xo-ETE induced a dramatic increase in the
numbers of eosinophils detected in the BN rat lung as illustrated by Figures 1A and IB.
The MBP-positive cells were found principally around the airways among other
inflammatory cells. There were also occasionai eosinophils around blood vessels and in the
parenchyma (Figure 1B). Lung sections from control rats treated with vehicle contained
significantly fewer numbers of eosinophils (Figure 1C). Figure 1D represents a control for
background and non-specific staining in which lung sections from S-oxo-ETE-treated rats

were processed identically with the exception of the mAb to MBP.
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Figure 1. Immunochemical staining of lung sections (cryostat) using the alkaline
phosphatase-anti-alkaline phosphatase method. The location of airways (aw) and blood
vessels (bv) are indicated. A: exampie of an MBP immunostained section from an animal
that received S-oxo-ETE (5 ug) 15 h prior to removal of the lungs (x 400). B: a lower
power (x 200) view of an MBP immunostained lung section from an animal that received
5 ug of 5-oxo0-ETE 15 h before removal of the lungs. C: an example of a section
immunostained for MBP from the lungs of an animal that received saline 15 h prior to
removal of the lungs (x 400). D: negative control in which a lung section from a rat
treated with 5-oxo-ETE for 15 h was processed in a manner identical to the sections
shown in A, B, and C, except that PBS was substituted for the mAb to MBP (x 400).



3.2. S5-Oxo-ETE induces eosinophil infiltration in a time-dependent

manner.

The BN rat is known to develop a neutrophilic infiltration in the airway 8 h after a
single allergen challenge, followed by an accumulation of eosinophils 24 to 32 h after the
challenge (338,339). Even though our study did not involve an allergic model, the time
range mentioned above served as a guideline none-the-less. To investigate the time-
course for 5-oxo-ETE-mediated eosinophil recruitment, rats (n = S) were insufflated with
either vehicle or S-0xo-ETE (5 ug), the lungs were removed following various times (6,
15, 24 and 36 h) and sections were immunostained for MBP. At 6 h following 5-oxo-ETE
treatment there was an increase in the number of pulmonary eosinophils which was about
3 times higher than that following treatment with control (vehicle) (p < 0.05) (Figure 2).
This effect was maximal between 15 h (p <0.005) and 24 h (p < 0.01), with the numbers
of eosinophils increasing to about 5 times control values. By 36 h the numbers of
infiltrating eosinophils had decreased to about 3 times control values (p < 0.05), similar to
what was observed at the initial time point of 6 h. Subsequent experiments were therefore

performed on rats 15 or 24 h after treatment with 5-oxo-ETE.
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Figure 2. Time course for 5-0xo-ETE-induced eosinophil recruitment. BN rats were
insufflated with 5-0x0-ETE (S pg; n = S) or vehicle (100 pl of 0.5% ethanol in saline; n =
8). The lungs were removed 6, 15, 24 or 36 h later and stained for eosinophils using an
antibody to MBP. The results are expressed as the numbers of positive cells per mm of
basement membrane of the airway and are means + SE (n = 5). Differences between
treated and control rats at different time points were evaluated using Student’s t-test
followed by a Bonferroni correction. *, p < 0.05; **, p < 0.01; *** p <0.005.



3.3. Comparison of effects of 5-0x0-ETE to those of other S-LO
products.

The effects of S-oxo-ETE were compared to those of various LTs, including
LTB,, LTD,, and LTE,. This experiment was performed by Dr. W. Yu in Dr. Powell’s
laboratory. Five groups of rats (n = S) were treated by intratracheal instillation of either
vehicle or one of the four agonists (5 ug). The lungs were removed and sections were
stained for MBP 24 h later. Of the 5-LO products tested, only 5-0x0-ETE (p < 0.01) and
LTB; (p < 0.05) induced pulmonary eosinophil infiltration, with the numbers of
eosinophils in lung sections being about 3.5 and 3 times, respectively, higher than in lung
sections from control animals (Figure 3). In contrast, eosinophil numbers in lungs from

rats treated with LTD, and LTE, were the same as in control lungs.
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Figure 3. Comparison of the effects of S-0x0-ETE to those of leukotrienes on
pulmonary eosinophil recruitment. Various eicosanoids (5 pug) or vehicle (100 ul of
0.5% ethanol in saline) were administered to BN rats by tracheal instillation and the lungs
were removed 24 h later and sections stained for eosinophils using an antibody to MBP.
The results are expressed as the numbers of positive cells per mm of airway basement
membrane and are means + SE (n = 5). Differences among groups were evaluated by one-
way ANOVA with Dunnett’s test as a multiple comparison method. *, p < 0.05; **,p <
0.0L.



3.4. Comparison of the dose-response for 5-0xo-ETE to that for LTB,
To further investigate the effects of 5-oxo0-ETE and LTB, on eosinophil
recruitment into the rat lung their dose-response relationships were investigated and
compared. BN rats were insufflated intratracheally with either vehicle (n = 8) or various
amounts of 5-0x0-ETE or LTB+ (2, 5, and 10 ug; n = 5). After 15 h, the lungs were
removed and the numbers of eosinophils counted in lung sections after inmunostaining for
MBP. Both agonists induced a dose-dependent increase in pulmonary eosinophils, which
was maximal at a dose of 5 ug in each case (Figure 4). The dose response curves for the
two eicosanoids were similar to one another, except that the maximal response to 5-oxo-
ETE, observed at S and 10 ug, was nearly twice that to LTB; (p < 0.05). Rats treated
with the smallest amounts (2 ug) of S-oxo-ETE (p < 0.01) and LTB; (p < 0.05) showed
increased numbers of pulmonary eosinophils which were about 2.6 and 2.3 times greater
than control respectively. At the maximal doses of S or 10 ug, these increases in
eosinophil numbers were about 5.5 times (5-oxo-ETE) and 3.5 times (LTB,) the control

levels (p < 0.005).
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Figure 4. Dose-response for the effects of 5-oxo0-ETE and LTB4 on eosinophil
infiltration. 5-Oxo-ETE, LTB, (2, 5 or 10 ug) or vehicle (100 il of 0.5% ethanol in
saline) were administered to BN rats by tracheal insufflation. The lungs were removed 15
h later and sections were stained for eosinophils using an antibody to major basic protein.
The results are expressed as the numbers of positive cells per mm of airway basement
membrane and are means + SE (n = 5). Differences between groups were evaluated using
Student’s t-test. *, p < 0.05; **, p <0.01; ***, p < 0.005 when comparing a given dose of
the test group to the vehicle-treated control. 1, p <0.05 when comparing the groups
treated with identical doses of S-oxo-ETE and LTB4.



3.5. Effects of LTB; and PAF antagonists on 5-0xo-ETE-induced

eosinophil infiltration.

To determine whether the effects of 5-0x0-ETE on eosinophil recruitment could
be mediated by LTB, or PAF, BN rats (n = 5) were pretreated via oral gavage with
receptor antagonists to LTBs (LY255283) or PAF (WEB 2170) 1 hbeforeand 7 h
following insufflation with agonist (5 ug). The lungs were excised 15 h after agonist
insufflation and sections were stained for MBP. Treatment of animals with vehicle
followed by insufflation with 5-0x0-ETE resulted in a nearly 6-fold increase in the
numbers of lung eosinophils compared to the negative control treated with vehicles for the
receptor antagonist and S-oxo-ETE (FigureS). Similarly, animals treated with vehicle
followed by either LTB or PAF also demonstrated increased numbers of pulmonary
eosinophils which were nearly 4 and 6-fold, respectively, higher than the vehicle-treated
controls. Treatment with LY255283 (20 mg/kg) inhibited the LTB ;-mediated effect on
lung eosinophilia by 72 % (p < 0.005), whereas WEB 2170 (30 mg/kg) treatment
supressed PAF-mediated eosinophil recruitment by 78 % (p < 0.0001). However, neither
of these receptor antagonists had any effect on 5-oxo-ETE-induced eosinophil infiltration.
Representative slides of animals treated with LY255283 and insufflated with either LTB,
or 5-0x0-ETE are depicted in Figure 6.
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Figure 5. Effects of receptor antagonists L.Y255283 and WEB 2170 on 5-oxo-ETE-
induced eosinophil recruitment. LY255283 (20 mg/kg) or WEB 2170 (30 mg/kg) in a
volume of 0.5 ml were administered by oral gavage 1 h before and 7 h after agonist
treatment. The control group was treated with 0.5 ml of the antagonist vehicle (0.2 %
carboxymethylcellulose) and insufflated intratracheally with 100 ml of the agonist vehicle
(0.5% ethanol in saline). The agonists 5-oxo-ETE (5 ug), LTB4 (5 ng) and PAF (5 ug)
were administered by intratracheal insufflation. The lungs were removed 15 h after agonist
treatment (8 h following the second oral gavage with antagonist) and sections were
stained for MBP. The results are expressed as the numbers of positive cells per mm of
airway basement membrane and are means + SE (n = 5). Differences among groups were
evaluated by one-way ANOVA with Dunnett’s test as a multiple comparison method. *, p
<0.01; **, p<0.005.



Figure 6. Immunocytochemical assessment of the effects of LY255283 on LTB, - and
5-oxo-ETE-induced pulmonary eosinophilia. The location of airways (aw) are indicated.
Lung tissue was fixed, sectioned, and stained for MBP 15 h following agonist insufflation.
A: example of an MBP-stained section from an animal treated with vehicle (0.5 ml of
0.2% carboxymethylcellulose) 1 h before and 7 h following LTB, (5 ug) insufflation. A
significant number of esinophil recruitment into the airways (x 200). B: example of an
MBP immunostained section from an animal treated with 20 mg/kg LY255283 1h before
and 7 h after LTB, (5 ug) insufflation. Few eosinophils are present around the airways (x
200). C: example of an MBP immunostained section from an animal treated with 20
mg/kg LY255283 1h before and 7 h after S-oxo-ETE (5 ug) insufflation. Large numbers
of eosinophils have infiltrated the airways (x 400).



3.6. Effects of anti-integrin antibodies on 5-0x0-ETE-induced

eosinophil infiltration.

To determine whether the S-oxo-ETE-induced eosinophilia was dependent on
eosinophil integrins, rats (n = 5) were pretreated with mAbs to VLA-4, LFA-1, and Mac-
1, 30 min prior to intratracheal insufflation with 5-0xo-ETE (5 ug). The amounts of
antibodies employed have previously been shown to be sufficient to saturate integrins on
blood leukocytes (332, 333, 334). The lungs were removed 15 h later and sections stained
for MBP. The positive control group, where anima:ls were pretreated with vehicle and
insufflated with 5-oxo-ETE, had similar numbers of pulmonary eosinophils as the positive
controls in the other experiments described above, displaying a nearly 8-fold increase in
the numbers of lung eosinophils when compared to the negative control group (p < 0.005)
(Fig. 7). Pretreatment of rats with the isotype-matched control mAb 3H11-B9 had little
effect on 5-oxo-ETE-induced eosinophil infiltration. When the rats were pretreated with a
mAb to VLA-4 the response to 5-oxo-ETE was reduced by 70% (p < 0.01) compared to
that of animals pretreated with the isotype matched mAb. Anti-LFA-1 had a similar effect,
inhibiting the response to 5-0xo0-ETE by 77% , (p < 0.005) whereas anti-Mac-1 had a
smaller effect, reducing pulmonary eosinophils by only 30% (not significant). The
combined effect of anti-LFA-1 and anti-Mac-1 (80% inhibition; p < 0.005) was similar to

that of anti-LFA-1 alone.
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Figure 7. Effects of monoclonal antibodies to integrins on 5-oxo-ETE-induced
eosinophil recruitment. BN rats were injected intravenously with either vehicle (0.5 ml of
saline) or saturating amounts of antibodies to VLA-4, Mac-1, LFA-1, or a combination of
LFA-1 and Mac-1. A control group of animals was pretreated with an irrelevant IgGl
antibody. After 30 min, either 5-oxo-ETE (5 pg) or vehicle (100 pul of 0.5% ethanol in
saline) were administered by intratracheal insufflation. The lungs were removed 24 h later
and sections were stained for eosinophils using an antibody to MBP. The results are
expressed as the numbers of positive cells per mm of airway basement membrane and are
means + SE (n = 5). Differences among groups were evaluated by one-way ANOVA with
Dunnett’s test as a multiple comparison method. *, p < 0.01; **, p < 0.005.




CHAPTER4

DISCUSSION AND CONCLUSION




4.1. Discussion

Evidence for the contribution of the eosinophil and eosinophil-derived mediators to
the pathophysiology of various disorders, such as asthma, is increasing. While eosinophils
may be present to varying extents with other cell types, including neutrophils,
lymphocytes, and monocytes, the mechanisms whereby eosinophils, which constitute a
small minority of circulating blood leukocytes, are recruited in large numbers into tissue
sites is not completely understood. Eosinophil recruitment into sites of inflammation
involves adhesion and transmigration through the endothelial barrier, a process that can be
regulated by differential expression of adhesion molecules. This process, in turn, is
coupled to local production of chemotactic factors that promote tissue migration of
eosinophils.

The original recognition that diffusates of sensitized guinea pig and human lungs,
following challenge with specific antigen, contained an activity (eosinophilic chemotactic
activity of anaphylaxis [ECF-A]) that elicited chemotaxis of eosinophils (340), but not
neutrophils, stimulated the search for chemoattractants that would account for the
selective recruitment of eosinophils to sites of allergic reactions. Since then, experimental
data has demonstrated that a variety of mediators display chemoattractant properties for
eosinophils and may be involved in the infiltration of these cells into tissue. A number of
eosinophil attractants have been described in the past including C5a (341) and PAF (39)
which, although not specific, have been shown to be potent and efficacious eosinophil
chemotaxins in vitro. Recently, a nufnber of C-C chemokines, notably eotaxin, have been
shown to be potent eosinophil chemoattractants and certainly are critical mediators in the
accumulation of these cells in tissues. However, it would seem unlikely that a single
mediator is responsible for this phenomenon. For example, disruption of the eotaxin gene
in mice (342), or administration of antibodies to eotaxin (304) only partially inhibited the
recruitment of eosinophils into the airways after antigen challenge of sensitized mice.
Partial inhibition of antigen-induced pulmonary eosinophilia was also observed following
treatment of mice with antibodies against either MIP-1a or RANTES (343). The absence
of a single agent that functions solely as the predominant eosinophilic chemoattractant is in

accord with the growing evidence that several chemoattractants may be responsible for
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this preferential accumulation of eosinophils in tissues. These chemoattractant molecules
may act in concert to stimulate eosinophil migration either in series or in parallel.

Apart from the polypeptide-like chemotaxins mentioned above, lipid mediators
also appear to be important physiological mediators of eosinophil migration in various
species both in vitro and in vivo. For example, a study by Sehmi et al, (349) identified
LTB4 and 8(S),15(S)-diHETE (15-HETE dioxygenated product) as the ECF-A of guinea
pigs, but neither of these was specific for eosinophils in comparison with neutrophils.
Schwenk et al, (344) reported that incubation of soybean lipoxygenase with AA led to the
formation of the oxygenated derivative of S,15-diHETE (15-LO product), 5-oxo-15-
HETE. They reported that this eicosanoid is a more potent chemotactic lipid for human
eosinophils than either LTB, or 8(S), 15(S)-diHETE. More recently, a comparison of
eosinophil chemotactic activity of several structurally related eicosanoids led to the
conclusion that maximal potency and efficacy of eosinophil-chemotactic activity is present
in 5-oxo0-ETE (10).

Further evidence for a role of eicosanoids in eosinophil recruitment comes from
studies using synthesis inhibitors and receptor antagonists. 5-LO inhibitors have been
shown to inhibit the infiltration of these cells into the airways in humans (145, 345) as well
as other species (142, 346) , and this may contribute to the beneficial effects (347) of these
agents in asthmatics. Moreover, antigen-induced eosinophilia was dramatically reduced in
mice lacking the normal S-LO gene compared to control antigen-challenged mice (170) .
Antigen-induced pulmonary eosinophilia was blocked by the 5-LO inhibitor PF 5901, but
not by the LTBy antagonist PF 10042 in guinea pigs (160) . Sephadex-induced pulmonary
eosinophilia was strongly inhibited in the BN rat by Zileuton, another 5-LO inhibitor
(143). Neither the LTB, antagonist CGS-25019c nor the cys-LT receptor antagonist MK-
476 (Montelukast), except at high doses when it also inhibited the formation of LTs, were
capable of reproducing the effect of Zileuton on eosinophil infiltration (143). These results
raise the possibility that a 5-LO product other than LTB; or the cys-LTs is involved in
eosinophil recruitment in these animals. It is possible that S-0x0-ETE could fulfill such a
role. Powell (10) and others (128, 348 have shown that 5-oxo-ETE is a potent

chemoattractant for human eosinophils in vitro. However, it was not previously known
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whether this AA metabolite is also active in vivo, or indeed whether it is active on
eosinophils from species other than humans. To answer this question we chose the BN rat
as the experimental animal because it is has been used as a model of human asthma (291)
and displays marked accumulation of eosinophils in the lungs in response to antigen
challenge (76).

Our results clearly show that intratracheally administered S-oxo-ETE induces the
accumulation of eosinophils in the lungs of BN rats in a time-and dose- dependent manner.
Between 15 and 24 h following treatment of rats with S-oxo0-ETE, the levels of
eosinophils in the lungs were approximately 5 to 6 times that in control, vehicle-treated
animals. This is the first report that 5-oxo-ETE has biological effects in vivo. The effect of
5-ox0-ETE on eosinophil infiltration was highly reproducible, although there was some
variability in the fold increase over control among the different experiments. This was due
in large part to the variability in the mean numbers of eosinophils in control lungs in the
different groups, which varied between 1.5 and 3.1 cells/mm basement membrane,
presumably due to biological vaniability among the different rats. In comparison the mean
numbers of eosinophils in the lungs of 5-oxo-ETE-treated animals varied between 10.1
and 13.2 among expenments.

Other 5-LO products have also been reported to be active as eosinophil
chemoattractants in humans and other species. LTB, is not very effective in stimulating
human eosinophil chemotaxis (10) but is a potent chemoattractant for guinea pig
eosinophils, both in vitro (349,350) and in vivo (76), and also stimulates the accumulation
of these cells following administration to BN rats by aerosol (76). Moreover, the LTB,
antagonist L Y255283 was found to partially block antigen-induced pulmonary
eosinophilia in both BN rats and guinea pigs (76). /n vitro binding and chemotaxis studies
(76) characterizing the antagonist LY255283 have shown that it produces a potent and
dose-related inhibition of chemotaxis (IDso 2.4 uM) of guinea pig eosinophils in the
presence of LTB, with an 80% inhibition at 10 uM. However, although this antagonist is a
good inhibitor of the actions of LTB, it has been demonstrated that at higher
concentrations it can also partially inhibit 5-oxo-ETE-induced responses (131). There is

also evidence that cys-LTs have chemotactic effects on human eosinophils in vitro (207),
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although Powell et al., have found them to be far less active than S-o0x0-ETE in this
respect (10). LTE, has been reported to cause eosinophil infiltration into the airways of
human asthmatics (117), whereas in vivo administration of LTD, was shown to induce the
accumulation of these cells in guinea pig conjunctiva (351). Furthermore, the cys-LT1
antagonist MK-571 partiaily inhibited antigen-induced eosinophil infiltration in guinea pig
conjunctiva (351). It is not clear whether the effects of cys-LTs on eosinophil
accumulation in the above studies were due to a direct action on eosinophils, or whether
these agents stimulated the release of other mediators such as PAF or 5-oxo-ETE. Cys-
LTs are known to stimulate the release of eicosanoids (352) and PAF (353) from various
tissues and cells, and it is thus quite possible that their in vivo chemotactic effects could be
mediated by an indirect mechanism.

A comparison of 5-0x0-ETE to other lipid mediators as an eosinophil
chemoattractant suggests that in humans it may be the most significant eosinophil
chemoattractant among this class of substances. Powell (10) and others (128, 348) have
demonstrated that 5-ox0-ETE is considerably more active than 5-oxo-15-HETE, PAF or
any of the LTs in stimulating chemotaxis of human eosinophils in vitro. The present study
suggests that in rats in vivo it is also much more effective than the cys-LTs and may be
somewhat more effective than LTB;, in inducing pulmonary eosinophilia. 5-Oxo-ETE and
PAF, unlike with human eosinophils, are equipotent in stimulating pulmonary eosinophil
infiltration in the BN rat.

As discussed above, there is ample evidence in the literature suggesting that there
are interactions between LTs and PAF (169) and imply that some of their effects may be
indirect. LTs are known to stimulate the release of eicosanoids (352) and PAF (353) from
various tissues and cells. PAF, in tum, can mediate some of its effects through the
subsequent release of 5-LO products. At least part of PAF-induced bronchoconstriction
can be blocked by specific cys-LT antagonists (51). Moreover, Chen et al., in studying the
mechanism of PAF-induced shock, have shown that 5-LO knockout mice are much more
resistant to the lethal effects of PAF than control mice (168) . The data presented herein
clearly demonstrates that the chemoattractant effects of 5-oxo-ETE are not mediated by

subsequent release of LTB, or PAF. Concentrations of the antagonists LY255283 and
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WEB 2170, that were able to significantly attenuate the LTB,- and PAF-mediated effects
respectively, had absolutely no effect on eosinophil recruitment induced by S-oxo-ETE.
Moreover, it would seem unlikely that S-oxo-ETE acts via cys-LT; receptors, since LTD,
and LTE; did not appear to induce eosinophil infiltration in the present study. This lends
further support to previous in vitro experiments which suggest that 5-0xo-ETE acts
through a putative specific receptor distinct from the LTBs or PAF receptors. The
development of antagonists and inhibitors for 5-oxo-ETE would help to answer this
question.

Blocking certain adhesion receptors with mAbs effectively supresses the effects of
lipid mediators on leukocyte adhesion and recruitment. For example, in an animal model,
mADbs against B2 integrins, [CAM-1 and E-selectin, but not against P-selectin, have all
been shown to significantly attenuate LTBs- and PAF-induced leukocyte endothelial
adherence and transendothelial migration (354). Thus there is an interaction between lipid
mediators and the specific cell adhesion molecules involved in the process of tissue cell
recruitment. Our findings that mAbs to LFA-1 and VLA-4 strongly inhibit 5-oxo-ETE-
induced pulmonary eosinophilia indicate that these integrins may be required for this
response. Furthermore, due to the mode of administration (intravenous injection) of the
mAbs, these results suggest that the response to 5-0xo-ETE is due to the entry of
circulating eosinophils into the lung. However, it is not clear whether these mAbs to the
integrins are inhibiting S-oxo-ETE-induced effects on the endothelium or in the bone
marrow, since these adhesion molecules have also been implicated in the interactions
between progenitor cells and stromal cells (230,231). This could be answered in future
experiments where progenitor cells and mature eosinophils are quantitated in the bone
marrow and peripheral blood following 5-0x0-ETE treatment. Nevertheless, the
importance of LFA-1 and VLA-4 is in agreement with previous findings showing that
these integrins are required for allergen-induced infiltration of eosinophils into the lungs of
sensitized BN rats (296, 298) . In contrast, Mac-1 appears to play a relatively minor role
in 5-oxo-ETE-induced eosinophil infiltration, in spite of the fact that our laboratory has
recently found that this compound stimulates the surface expression of Mac-1 on both

human neutrophils (133) and eosinophils in vitro. The modest effect of anti-Mac-1 on 5-
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oxo-ETE-induced eosinophil recruitment in rats is in accord with recent findings with
neutrophils showing that migration of these cells into the peritoneal cavity is not impaired
in Mac-1-deficient mice (355) Thus, although Mac-1 may be important for certain aspects
of neutrophil (355) and eostnophil activation and adherence, it may not be a critical
requirement for the infiltration of these cells into tissues. Integrins involvement in cellular
activation has been confirmed by several studies (226, 227, 228, 229). The integrin Mac-1
mediates human eosinophil degranulation and respiratory burst caused by GM-CSF and
PAF in vitro (227).

There are several studies (290, 298) that can demonstrate that mAbs to the a4-
subunit integrin can block lung pathology without blocking leukocyte recruitment. This
raises important issues about the mechanism of action of these mAbs which have been
selected on the basis of blockade of adhesive function in vitro. There is evidence that
adhesion molecules, particularly integrin receptors, have transmembrane signaling
properties that mediate cell activation. Several reports suggest that LFA-1 and VL A-4
integrins may act as costimulatory molecules in eosinophil and T cell activation (226,
229). Another study has shown a reduction of PAF-induced EPO release following
treatment with anti-VLA-4 mAb (290). A recent study by Munoz et al (228) demonstrates
that inhibition of eosinophil binding to fibronectin-coated plates via pretreatment with
mAb against VLA-4 inhibits the secretion of LTC, and luminal narrowing of explanted
human bronchi in vitro that is normally seen following PAF stimulation. Clearly,
pretreatment with mAbs against adhesion molecules has the potential to interfere with
cellular mechanisms that are not directly related to cell recruitment.

Another problem is the use of mAbs against integrin subunits. An example of this
is the TA-2 mADb against the a4 subunit. This subunit can associate with 31 or 7 chain to
form integrin a4B1 or a4p7 respectively. Both integrins are found on eosinophils and both
can bind VCAM-1 and fibronectin. The integrin a4B7 can additionally bind MadCAM-1
found in the gut lymphoid tissue (303). These overlapping functions and structural
components of a4 integrins and their counter-receptors further complicate the

interpretation of in vivo studies utilizing blocking mAbs to the ad4-integrin subunit.
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I[ncreased availability of mAbs to all components of adhesion molecules and/or pathways
will clanify these issues in the future.

As reviewed in the previous sections, it is clear that S-oxo-ETE is a potent
activator of eosinophils in vitro. Moreover, this compound induces rapid changes in the
expression of adhesion molecules on human eosinophils, including upregulation of Mac-1
and shedding of L-selectin. This would suggest that the in vivo effects of this substance
reported in the present study are due to direct effects of S-oxo-ETE on eosinophils.
However, although increased numbers of eosinophils were apparent at the earliest time
point investigated (6 h), the time required to reach the maximal response to 5-oxo-ETE
was rather long (15 h). Therefore, other mechanisms such as interactions with cytokines
or chemokines cannot be ruled out. In fact, GM-CSF has been shown to potentiate 5-oxo-
ETE-induced degranulation in eosinophils (128). Similarly, [L-5 has been shown to
enhance the chemotactic responses of eosinophils to LTBs and PAF (223) . Further,
pretreatment with a mAb against [L.-5 was demonstrated to antagonize LTD4-induced
eosinophilia in guinea pig lungs (119). Cooperation between cytokines, such as IL-5 and
GM-CSF, and 5-0x0-ETE, in inducing eosinophil recruitment into the airways, may be of
physiological relevance in asthma.

It is known that cell activation by cytokines may potentiate release of eicosanoids
and vice versa. Cytokines such as [L-3, IL-S and GM-CSF prime eosinophils for increased
LTC, production in vitro (356,357). Moreover, 5-LO products have also been implicated
in cytokine synthesis. For example, LTB, promotes the synthesis of [L-2, [L-4, and IL-5
by human T cells (82, 83, 84) of [L-6 by monocytes (85) and of [L-8 by human
neutrophils (86). [n human blood mononuclear cells, a 5S-LO inhibitor blocks, not only the
synthesis of LTB, , but also the expression of [L-2 and IL-6 (358). Although the
involvement of cytokines in 5-oxo-ETE-induced eosinophilia in the BN rat was not
investigated in this study, the in vitro data by other investigators suggests that there may
be synergy between cytokines and 5S-oxo-ETE and this should be investigated in the
future.

As suggested earlier, there may also be some interactions between 5-LO products

and chemokines, such as eotaxin, RANTES, MCP-3 and MIP-l1a in regulating eosinophil
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migration in vivo. There is evidence that the metabolism of AA is implicated in monocyte
chemotaxis. For example, a synergistc interaction exists between PAF and C-C
chemokines for both of cPLA,; activation and chemotaxis (359,360). Eotaxin and other
chemokines have been shown to stimulate the release of eicosanoids from basophils (307
). Moreover, 5-oxo-ETE was reported to enhance migration of monocytes in response to
the chemokines MCP-1 and MCP-3. (129). The synergistic interaction between 5-oxo-
ETEs and C-C chemokines may be relevant in the regulation of eosinophil accumulation at
sites of allergic and inflammatory reactions. The recent study (317) demonstrating that
mice treated with zileuton prior to eotaxin administration showed a significant attenuation
of eosinophil accumulation in the peritoneal cavity suggests that eotaxin may be acting in
series with 5-LO products in the recruitment of eosinophils. Inhibition of 5-LO also
attenuated /n vitro chemotaxis of eosinophils induced by RANTES (318). Chemokines,
such as eotaxin, may be activating eosinophils to release these products or make
eosinophils more reactive to them.

In summary, the data suggests that eosinophil recruitment into tissue involves the
cooperation of different classes of mediators, such as 5-LO products, chemokines and
cytokines. This in fact, would be more reflective of human diseases characterized with
eosinophil recruitment, where many cells and mediators with overlapping effects have
been implicated.

In conclusion, 5-oxo-ETE is a potent activator of human eostnophils in vitro and
induces their accumulation in the lungs of BN rats in vivo. These results raise the
possibility that this compound may be an important physiological mediator of eosinophil
infiltration in asthma and other diseases in which these cells are a distinctive feature. This

hypothesis could be addressed by the development of specific S-oxo-ETE antagonists.
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4.2. Claims to Original Research

1. This thesis presents the first published data concerning the in vivo effects of 5-oxo-
ETE in any species.
2. The most important contribution of this work is the discovery that 5-oxo-ETE,

induces pulmonary eosinophil infiltration in the BN rat, raising the possibility it may be an

important physiological mediator of inflammation.

3. The in vivo effects of 5-0x0-ETE appear to be specific and are not mediated by
LTB, or PAF receptors, suggesting that it may interact with its own receptor on

inflammatory cells.

4. 5-Oxo-ETE-induced eosinophil trafficking in the rat lung is dependent on the
integrins VLA-4 and LFA-1. Although these integrins have been previously implicated in

airway eosinophil recruitment, this is the first demonstration that they are required for the

response to S-oxo-ETE.
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4.3 Conclusion and Future Considerations

As discussed earlier, experimental evidence suggests that lipid mediators may play
a key role in eosinophil migration into inflammatory sites. The results presented herein
suggest that 5-oxo-ETE could be a significant eosinophil chemoattractant within this class
of compounds. Indeed 5-oxo-ETE is not only a potent chemotactic agent of human
eosinophils in vitro, but also induces their accumulation in the lungs of BN rats in vivo.
Intratracheal administration of S-oxo-ETE into the lungs of BN rats induces accumulation
of pulmonary eosinophils in a time- and dose-dependent manner. Furthermore, 5-0xo0-ETE
appears to be a lot more effective than LTD, and E, and somewhat more effective than
LTB. in inducing eosinophil recruitment in the BN rat lung. Moreover, this 5-oxo-ETE-
induced effect is dependent on VILA-4 and LFA-1 integrins and independent of LTB; or
PAF receptor-mediated mechanisms. All these results support the hypothesis that 5-oxo-
ETE may be a very important physiological mediator of inflammation, although more
experimental evidence is needed to confirm this.

A very important issue that needs to be addressed is whether 5-oxo-ETE is
involved in any physiological inflammatory processes such as asthma. Three main lines of
evidence would support a role for 5-0xo0-ETE in asthma. First, it should be identified in
the lungs or BAL fluid of allergic animal models, as well as asthmatics. Second, it should
mimic some of the characteristic features of asthma in humans. Third, blocking the
formation of this compound or antagonizing its effect should have a beneficial role in
asthmatic patients. A tool that can be used to detect S-oxo-ETE in BAL fluid of astmatics
is electrospray mass spectrometry. In fact, Hall et al., (361) have recently demonstrated
that this analytical tool can be used for detection of S-HETE, S-HPETE and 5-oxo-ETE,
formed by activation of AA. This method could potentially be used to quantitate S-oxo-
ETE in BAL fluid of asthmatics. Next, the effects of aerosolized 5-oxo-ETE into
asthmatic lungs could be investigated, as has been done for LTE, (117), to see whether it
can reproduce the effects seen in the BN rat lung. In order to investigate the outcome of
inhibiting the formation or antagonizing the effects of this compound both the enzyme
responsible for its synthesis as well as its putative receptor need to be further

charactenzed. It may be possible to develop inhibitors to the dehydrogenase responsible
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for the formation of S-oxo-ETE. By characterizing the 5-oxo-ETE receptor it may be
possible to synthesize an antagonist and test its effects of eosinophil recruitment in
asthmatic airways.

Before going on to confirm the effect of 5-oxo-ETE in man, it will be necessary to
accumulate as much information as possible on the effects of this putative mediator on
cells, tissues and in vivo animal models. The in vivo findings presented here, as well as
prior in vitro findings, suggest that 5-0xo-ETE could promote the adherence of
eosinophils to endothelial cells and/or transendothelial migration. The effect of 5-oxo-ETE
on eosinophil adhesion and migration could be tested using endothelial cells grown on
culture plates or on Transwell inserts and compared to those of other agonists. The
requirement for different eosinophil integrins in these processes could then be determined
by using mAbs to block them. As discussed earlier, various cytokines and chemokines also
activate eosinophils and it is important to investigate how they may interact with 5-oxo-
ETE in terms of eosinophil chemotaxis, adherence, and transendothelial migration.

In conclusion, although the findings presented here suggest that 5-oxo-ETE may
be a potent eosinophil-chemoattractant, further evidence is clearly required to demonstrate
that it has a physiological role in recruitment of this cell type in asthma. This information
may be of major importance in understanding the complex relationship between eosinophil
recruitment and the pathogenesis of asthma and in turn help develop therapeutic strategies

to prevent the pathological eosinophil influx into the asthmatic lung.
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