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ABSTRACT

The 5-lipoxygenase produet 5-ox0-6,8, Il ,14-eicosatetraenoic acid (5-oxo-ETE) is a

potent eosinophil chemoattraetant in vitro. To determine whether it is active in vivo, 5-oxo­

ETE was administered intratracheally to BN rats and pulmonary eosinophils were

immunostained with an annbody to major basic proteine 5-Qxo-ETE induced a dramatic

increase in eosinophils, which reached maximal levels (5 tirnes control) between 15 and 24 h

following administration, and thereafter declined. LTB4 had a similar effect to 5-oxo-ETE but

appeared to he somewhat less effective. In contrast, LTD4 and LTE. were inactive. 5-Oxo­

ETE-induced eosinophilia was inlubited by 75% foUowing pretreatment ofthe animais with

antibodies to integrins VLA-4 or LFA-l, but was not significantIy inhibited by an antibody to

Mac-l, nor after pretreatment with receptor antagonists to LTB4 (LY255283) or PAF (WEB

2170). These observations raise the possability that 5-oxo-ETE may he an important

physiological mediator in infIammatory diseases characterized with eosinophil recruitrnent, such

as asthma.



•

•

•

RESUME

L'acide 5-oxo-6, 8, Il, 14-eicosatétraenoique (5-oxo-ETE) est un facteur

chimiotaetique très puissant pour les eosinophiles in vitro. Pour déterminer s'il est actifin vivo,

5-oxo-ETE a été administré par insuftlation de la trachée chez des rats. Les eosinophiles

pulmonaires ont été immuno-marqués avec un anticorps contre la protéine basique majeure et

comptés. 5-oxo-ETE a induit une augmentation dramatique d'eosinophiles qui a atteint des

niveaux maximales (5x contrôle) entre 15 et 24 hres suivant l'administration, pour ensuite

décliner. Le LTB.l a eu un effet similaire au 5-oxo-ETE. mais le 5-oxo-ETE a induit une

réponse maximale significativement plus élevée. Au contraire, le LID.. et le L TE. étaient

inactifs. L'augmentation d'eosinophiles induite par le 5.oxo-ETE a été inhibée d'environ 75%

à la suite d'un pré-traitement des animaux avec les anticorps contre les intégrines VLA-4 ou

LFA-l, mais n'a pas été inhibée de façon significative par l'anticorps contre Mac-I ni par les

antagonistes des récepteurs du LTB.. (LY255283) ou de PAF (WEB 2170). Ces observations

soulèvent la possibilité que le 5-oxo-ETE puisse être un médiateur physiologique important

dans la réponse inflammatoire de l'asthme.
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1.1 Introduction - Aim of Study

The discovery and characterization ofbiologically active Metabolites of

arachidonic acid (AA)~ which has now spanned aImost seven decades ofindustrious

research., has produeed many new insights into the role oflipid Mediators in the body. In

the beginning of 1930'5 two seemingly unrelated discoveries were reported. Kurzrok and

Lieb performed studies on the action of semen on the uterus and found both contraction

and relaxation of tissue specimens. At the same time Harkavy (1) found that alcohol­

soluble extracts ofsputum from allergie asthmatic patients contained an agent which

provoked spasm ofcat and rabbit intestines in vitro. These two discoveries might he

regarded as the very begÏnning of researeh on AA metabolism which uItimately lead to the

discovery of prostaglandins (pGs), thromboxanes (TXs), lipoxins (LXs) and leukotrienes

(LTs).

Oxidative Metabolites of~ whieh are generaIly termed eicosanoids, are among

the most ubiquitous Mediators produced in the human body by various ceUs following

their activation. Consequently, there are virtually no organs which are not affected by

eicosanoids in one way or the other. For example the lung, which consists ofa diversity of

cell types, can produee and is affeeted by aImost aIl classes of eicosanoids, including PGs,

TXs, LXs, LTs, and monohydroxy-eicosateraenoic acids (HETEs) (2~3). The two major

eicosanoid pathways are the cyclooxygenase (COX) pathway, which is responsible for PG

and TX formatio~ and the S~lipoxygenase (S-LO) pathway, which produces LTs and 5­

HETE. The focus ofthis thesis will be on the latter pathway.

The discovery of the S-LO pathway was the result of the combination of two

separate lines of research, namely the metabolism of AA by polymorphonuclear leukocytes

(PMNL) and the characterization of an unknown mediator ofanaphylaxis. Although the

latter compound, termed "slow-reacting substance of anaphylaxis" (SRS-A), was

implicated in immediate hypersensitivity reactions (4)~ liule was known of its structure. ft

was not until the late 1970s that AA was identified as a precursor of SRS-A (5).

1
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Meanwhile~ Borgeat and Sammuelson reported that rabbit leukocytes cao convert AA to

5-HETE (6) and to LTB~ (7). They subsequently showed lhat LTB4 is synthesized trom an

unstable intermediate. LTAa, which displayed an absorption spectrum reminiseent to that

of SRS-A. It is now known that the biological etfeets tirst attributed to SRS-A were due

to the combined aetivities of the cysteinylleukotrienes (cys-LTs), LTC~~ LTD~ and LTE~

whose precursor is also LTAa (8). Since then, further investigations on the major SeLO

metabolites sueh as, S-HETE. LTB.... and the cys-LTs, have shown that they are ail

biologically active, albeit S-HETE less 50 than the LTs. In general they are important

mediators in eells of the immune system.. allergie reactions, and inflammation. They have

potent effects in the lung and appear 10 be important Mediators in asthma.

Recently~ Powell et al., identified a highly specifie dehydrogenase in neutrophils

which converts the 5-LO produet S-HETE to the novel eicosanoid 5-0"0-6,8.11,14­

eicosatetraenoic acid (S-oxo-ETE) (9). ln vitro studies demonstrate that S-oxo-ETE is a

potent agonist for both neutrophils and eosinophils. Experiments testing the etfects of

various lipid Mediators and their chemotactic activity on human eosinophils. showed that

S-oxo-ETE is the most potent eosinophil chemoattractant among tbis c1ass of substances

( 10) . In view of its novelty and its potent '" vitro etfects on eosinophils it was important

to further characterize S-oxo-ETE biologica1ly. The aim of this study was to investigate

the in vivo etfects of tbis recently discovered lipid eosinophil chemoattractant.

There is an abundance ofdata in the literature to support a role for SeLO produets

in eosinophil infiltration in vivo, suggesting that members of this c1ass may act a10ng with

other mediators, sueh as cytokines and chemokines. in regulating eosinophil migration.

The most important finding of the present study is that S-oxo-ETE is the most effective S­

Lü metabolite in inducing eosinophil recruitment in vivo. This is the first report that S­

oxo-ETE has biological effects in vivo and raises the possibility that this compound may

be an important physiological Mediator of eosinophil infiltration in diseases in which these

cells are a distinctive feature. such as asthma.

2



•

•

•

T0 fulfill the aim of tbis thesis. background information essential to the

understanding of issues involved in both the rationale and the interpretation ofthe current

study will tirst be presented in Chapter 1. In panicular. tbis chapter will deal with S-LO

products (their biosynthesis and biology) as weil as mechanisms involved in eosinophil

recruitment into tissue and more specifically into the airways. Chapters 2 (Materials and

Methods) and 3 (Resu1ts) will deal with the present investigation: 5-oxo-ETE and its

effect on eosinophil recruitment i" vivo. Finally Chapter 4 will present a critical discussion

on the present experimental findings in terms ofother relevant investigations and conclude

with sorne directions for future studies.

3
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1.2 Biosynthesis of PAF and S-Lipoxygenase Products

The rate-detennining step in the formation ofeicosanoids is the release of AA

from membrane lipids by phospholipase A2 (PLA2). Once AA has been released, it is

rapid1y converted ta oxygenated products in most eeUs by various intraeellular enzymes.

The specific products which are synthesized depends on which enzymes are present in the

type ofcell in question. The focus of this thesis will he on the synthesis of S-LO produets

and platelet activating factor cPAF) which are believed to play a raIe in in the

inflammatory process and leukocyte recruitment into tissue (Fig.l).

Cell Membrane (Phospholipids)

+---1 PUzl

acetyl "

;;;;::se ";;'Y!SC-jPAF AraChi!.dO~:~:~~
a!vçolar lpaCfophages __
eosmophlls J 1
endothelialeells PAF S-HETE .....1--- S-HPETE ,:1 5-LO + FLAP

;/ ! " neuttophsls
, , eosinophils

1dehYdroge1UJS~j----~ .' =~~l:s.b=~~ages

~~:~~~~~ LTA4 ............... ~ LTC4 sylllhase 1
eosinophils 5-0XO-ETE~" eoslftopnus
lymphocytes " ,'" mast eells li: baso~ils
platelets ... ," monocytes. macrophages

_----,,_" platelers
LTA

4
LTB4 LTC4 smooth muscle eeUs

hydrolase ~~ ___ y-glutamyl
neu~n..s transpeptidase
f~~ LTD4
endodtelial ecUs 1 1+..... --- dipeptidases 1

LTE4

Fig. 1. Simplified scheme of the biosynthesis of PAF and S-LO
products. Enzymes are in boxes.
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1.2.1 Formation or PAF

AA is stored in cell membranes esterified in the 5n-2 position of variou5 diacyl and

aIkyl-acyl phospholipids. The most abundant AA and PAF precursor in leukocytes is 1­

palmityl-2-arachidonoyl-phosphatidylcholine. The release of AA and PAF is initiated by

stimuli which raise intracellular calcium levels and in tum stimulate cytosolic PLA2

(cPLAÛ translocation to the membrane. The enzyme cPLA2 catalyzes the hydrolysis of

the ester linkage in the sn-2 position ofthe gJycerol to produce AA and Iyso-PAF. The

free AA can then be metabolized by the S-LO pathway. The Iyso-PAF is in tum acetylated

by a rate limiting acetyltransferase enzyme to produce the active PAF (11). The half-life

of PAF is very short (less than 1 min) and it is metabolized by removal of the acetyl group

to produce its inactive precursor, lysa-PAF. This two step enzymatic process, known as

the 'remodeling' pathway of PAF synthesis, predominates in inflammatory cells (12). PAF

is synthesized by a variety of inflammatory cells including neutrophils, platelets, alveolar

macrophages, eosinophils and vascular endothelial cells. In sorne animal species, but not

humans, PAF can he synthesized and released by mast cells (13).

1.2.2 Formation of Leukotrienes

5-LO, in conjuction with other enzymes, produces a series ofbiologically active

eicosanoids incJuding the LTs, HETE and 5-oxo-ETE. In the biosynthesis ofLTs, free AA

is presented by an integral perinuc1ear membrane protei~ 5-lipoxygenase-activating

protein (FLAP) (14), to S-LO, which translocates to the nuc1ear membrane upon

activation. The S-LO then catalyzes the tirst two steps of the pathway (5): oxygenation of

AA to 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HPETE) and the conversion of

the latter to the unstable epoxide intermediate LTA.a (15). The fate of LTA.a is determined

either by eytosolic metabolism via LT~ hydrolase, to LTB" (16), or conversion by the

integral membrane protein LTC" synthase ( 17) to LTC4 by addition ofglutathione. The

subsequent conversion of LTC" to LTD"1 a cysteinyl glycinyl derivative, is via the action

of y-glutamyl transpeptidase. LTD4 is further metabolized to the cysteinyl derivative,

LTE". by the action ofa dipeptidase. LTs are rapidly metabolized and removed from the

circulation. Cys-LTs undergo oxidatio~ resulting in biliary and urinary elimination of

5
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biologicaJly less active and inactive metabolites. LTE.~ which is usually less active

biologica11y than LTC4 and LID., is an important urinary Metabolite that can he used to

monitor the production ofcys-LTs in man (18).

The location ofLT synthesis is determined by the cellular distribution of the

enzymes contTolling each step ofthe pathway. The S-LO enzyme is present in neutrophils

(19), eosinophils (20)~ monocytes (21), macrophages (22), mast cells (23) and

keratinocytes (24). However, a number ofcell types, such as lymphocytes (25),

erythrocytes (26), platelets (27) and endothelial ceUs (28) do not contain 5-LO, and are

thus incapable ofgenerating LTs from endogenous or exogenous AA. Sorne of these ceUs

contain LTA.. hydrolase and/or LTCol synthase activity and May thus convert LT~ into

LTB~ and LTC4~ respectively. LTA. hydrolase has been found in human erythrocytes,

inflammatory cells~ and airway epithelial ceUs. Furthermore, LTC4 synthase has been

identified in mast cells~ eosinophils, and platelets_ Thus, because these enzymes are

distributed among ditferent œil types~ various intlammatory cells, in concert with

noninflammatory cells, such as endotheliaJ ceUs or epithelial ceUs, cao participate in the

transcellular synthesis of LTs (29~30). Moreover~ the preferential generation ofLTB.. and

LTC.. is cell- and species-specific. This can be illustrated by preferential production of

LTB.! in human alveolar macrophages (3 1>, whereas rat aIveolar macrophages generate

LTC.. (32). The predominant 5-LO produet ofguinea pig eosinophils is LTB.. , whereas

human eosinophils is LTC4 (33), and cytokines such as interleukin-3 (IL-J), ll..-S and

granulocyte-macrophage colony-stimulating factor (GM-CSF)~ are capable ofenhancing

its synthesis (34,35).

6
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1.2.3 Formation of 5-0so-ETE

As stated earlier, S-LO tirst converts AA to 5-HPETE. This hydroperoxy acid can

then be reduced by a peroxidase to S-HETE which is not very active biologically. Severa!

years aga Powell et aL, discovered a novel microsomal dehydrogenase in human

neutrophiIs which oxidizes 5-HETE to 5·oxo-ETE resultin& in a 100 roId increase i.

biological potency (9) (Fig 2). The human 5.hydroxyeicosanoid dehydrogenase is highJy

specifie for eicosanoids with 5·hydroxyl groups, followed by a 6·trans double bond. Ils

activity is localized in the microsomal fraction and it requires NADP· as a cafactar. This

enzyme has been identified in human neutrophiIs (9), eosinophiIs (36), monocytes,

lymphocytes (37) and platelets (38). Since platelets lade 5-LO they can produce 5-oxo­

ETE by transcellular metabolism from neutrophil derived LTAt. The preferred substrate

for this enzyme is 5-HETE, which is likely to be its most important physiologicaI

substrate, since it is synthesized in relatively large quantities by stimulated human

neutrophils and other inflammatory cells (6). funheremore, Powell et al., have found that

5-oxo·ETE is metabolized by at least four different pathways: c:o-oxidation ta 5-oxo-20­

HETE (neutrophils), reduction ta 6,7-dihydro product (neutrophils) and conversion ta 12­

hydroxy (platelets) and 15-hydroxy (neutrophiIs) metabolites by 12- and 15-LO,

respectively. ro-Oxidation of 5-oxo-ETE is presumably catalyzed by LTB4 20-hydroxylase

which is highly active in neutrophils. Reduction of the 6,7-double bond of 5-oxo-ETE

appears to be catalyzed by a novel NADPH·dependent cytosolic â 6 reducatse in

neutrophils (133).

...~
S-OXO-ETE

Fig. 2. Fonnation of S-QXQ-ETE from S-HETE
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1.3 Biological Effects of PAF and S-Lipoxygenase Products

1.3.1 PAF

PAF appears to have a wide varicty of actions (13), both direct and indirec~

mediated by other substances, such as LTs. It recruits and activates inflammalory ceUs and

induces vascular permcability change .(Fig. 3). In vitro studies have shown it to he

chemotactic for human neutrophils and eosinophils (39 ). It causes eosinophil

degranulation (40) and release of Mediators such as oxygen free radicals (41 ) and S-LO

products (42 ). These studies have also shown that PAF can upregulate expression of the

~2 integrins, lymphocyte function related antigen-l (LFA-l; COI la/CO18) and

macrophage-l (Mac-l; COllblCD18) on inflammatory ceUs thereby stimulating their

adherence to vascular endothelium (43 ). In addition PAF, in conjuction with cenain

cytokines, is capable of both priming and enhancing the inflammatory response in ceUs

such as lymphocytes and monocytes (13). Funhennore, in animal models PAF can cause

smooth muscle hyperplasia and fibroblast proliferation (44 ).

Sensory C fibers

Cationic proleins
(epilhelial ceU

A damage)

relcase
~

~
~..al'!J\ ... Eosi~ophil

'ùlJiIJ recrulU1lent

I
~

•LTs 1PAF -------~

~~ 1 ~ Sm""'" muscl.« » ~~=
,,~

Airway
epilhelium

Inflammalory ecUs
(e.g. MC. Ma.. Eo)

G)
G)~

•

•

Edema Conlrac:tion and prolifer:ation

•
Fig. 3. Potential sites of action and effects ofLTs and PAF with relevance to a

pathophysiologic role in the lung.
(Eo : Eosinophil; Ma : Macrophage; MC : Mast Ccli)
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It is of particular interest that PAF elicits a neutrophil-rieh infiltrate following its

inhalation (45) or injection ioto the skin ofnormal volunteers (46), whereas local

administration ofPAF ta the skin ofatopie volunteers results in a selective eosinophilie

infiltration very reminiscent ta that induced by antigen in the same subjects (47) . In animal

models, nebulized PAF causes bronehoconstrietion (exeept in the rat) (49),

hyperresponsiveness and an inflammatory eeU infiltrate (44, 48), whieh in sorne animal

models consists mainJy ofeosinophils (49). In sorne preparations, the effeets ofPAF,

particularly the bronehoconstrietion, seem to be mediated by cys-LTs and TXAz (50). In

man, the acute bronehoeonstrietion is assoeiated with a release ofcys-LTs as shown bya

rise in urinary LTE... At least pan of PAF-induced bronchoeonstrietion cao be blocked

with specifie cys-LTl antagonists (50, 5 1). Whether the remaining portion of PAF-indueed

bronchoconstrietion is due to the direct effeets of PAf or sorne other Mediator is not

c1ear.

PAF appears to be one of the most potent agents for indueing increased vascular

permeability in ail species tested, including man (52). It is able to elieit edema in the

bronchi (53) which cao be abolished by PAF receptor antagonists. PAF is thought to

inerease vaseular permeability via contraction ofendothelial cells presumably as a result of

interaction with high affinity PAF receptors on these cells (54). The role of PAF in

inducing edema after allergen or other mediators is still not clear. PAF antagonists do not

inhibit plasma extravasation after aeute a1lergen exposure in the guinea pig (55), but

partially inhibit the extravasation induced by bradykinin (56). The role of PAF in chronie

inflammation of the airways is not yet clear.

A number ofgroups have reponed that high affinity binding sites exist for PAF and

these have been demonstrated on platelets, neutrophils, eosinophils. macrophages (57,58)

and lung tissue (59). The PAF receptor has now been cloned in both guinea-pig lung (60),

and human neutrophils (61) and shares significant amine aeid homology between the two

species. It is a G-protein-linked surface receptor and in ceUs such as leukocytes it exists in

both high and low affinity states. The existence of receptor subtypes is suggested by

pharmacological studies with PAF antagonists that have shawn a more than 10-fold

difference in potency in different cell types trom the same species (62). Funetional studies
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suggest that there May be intracellular PAF receptors (63,64). In rat cerebral conex at

least three distinct intracellular binding sites have been identified, induding sites within

microsomal fractions suggesting that PAF May he involved in gene expression (64,65).

Futur investigations will provide a better understanding of the potential significance of

PAF in gene activation / transcription.

1.3.2 Leukotriene 84

LTB.. is a potent chemoattractant that is primarily involved in inflammation,

immune responses and host defence against infection. The human neutrophii is a major site

of LTB.a synthesis and metabolism, and is also the major target for LTB. action (66).

LTB.. causes chemokinesis, chemotaxis and aggregation ofPMNL ofsevera!

species, including man (67,68). It also mobilizes cytosolic calcium and stimulates

leukocyte degranulation (66). In addition, LTB.. can Mediate neutrophil adherence to

endothelial cell monolayers (69) and enhance surface expression ofintegrins (i.e. Mac-l;

CO 1Ib/COI8) on human neutrophils and eosinophils (70). ln vivo etfects ofLTB.. as a

leukocyte chemoattraetant have been documented in severa! animal models of

inflammation (71,72). Instillation ofLTB. into the bronchi of human subjects result in the

recovery ofincreased numbers ofneutrophils in bronchoalveolar lavage (BAL) fluid (73).

It appears that the increased adherence ofleukoCytes to LTB.. is due to an increased

adhesiveness ofendothelial cells for neutrophils which then may be followed by infiltration

inta the tissue (74). Unlike PAF, the increased vascular permeability observed with LTB..

is a consequence of the activation of leukocyte adherence and emigratio~ and not due to a

direct action on the small venules (75). LTB.. is also a potent chemoattractant for guinea

pig and Brown Norway (BN) rat eosinophils. Funhermore, antigen-induced eosinophilia is

inhibited, both in BN rats and in guinea pigs, by the LTB" antagonists U-753032 and

LY255283 (76). This potent LTB4-mediated eosinophil recruitment is not seen with

human eosinophils, indicating species differences_ The major AA Metabolite farmed by

guinea pig eosinophils is LTB", whereas the major produet formed by human eosinophils

is LTC.. (77). Nevenheless. the proinflammatory etfects elicited by LTB" vis-a·vis the
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neutrophil make this LT a possible candidate as one of the Mediators of the inflammatory

process in diseases (Fig. 3).

Immunomodulation exerted by LTB" has also been suggested, through actions on

T and B cells. Generation of LTB" by nonlymphoid cells at the inner cortex ofthe thymus

may aJter the balance of immature thymocytes (CD4· CD8) (78). LTB" enhances the

proliferation of suppressor-cytotoxic T-cells (CD8) and inhibits the proliferation ofhelper­

T-cells (CD4) (79). LTB4 cao aise evoke T œil migration across basement membrane-like

Matrigel as a result ofconcerted stimulation ofT cell chemotaxis (maximal effective

concentrations of 10-100 nM) and secretion of locally expressed metalloproteinases (80).

Selective effects of LTB" on cytokines include inhibition ofsecretion of interferon-y (IFN­

y) by CD8 cells and the stimulation of IFN-y by C04 cells (81). Exogenous LTB4

promotes the synthesis ofIL-2, IL-4, and ll..-5 by human T cells (82, 83, 84). It stimulates

synthesis of lL-6 by monocytes (85), and lL-8 by human neutrophils (86). LTB.. aIso acts

indirectly by stimulating monocytes to produce PGs and cytokines, which in tum leads to

the production of IL-1 (87). Several B-Iymphocytic functions incIuding B-cell

differentiation, activation, immunoglobulin (18) G and IgM synthesis, and cellular

replication are aise enhanced by LTB" (88). due to an augmentation of the effects of IL-4

and lL-2 on these cells. LTB.. has also been reported to augment natural 1011er (NK) cell

activity (89,90) . However, tbis aspect ofLTB.. activity has been questioned by repons

from other groups who failed to show a direct etfect ofLTB.. on these cells (91).

LTB.. a1so possesses marked myotropic activity on the guinea-pig lung strip (92),

which was shown to be mediated by release ofCOX products, most likely TXA2 (93,94).

Moreover LTB" has aIso been implicated in pain responses, such as nerve growth factor­

induced thermal hyperalgesia in the rat (95).

Receptors for LTB.. have been demonstrated in leukocytes ofdifferent species

(96,97). Both high and low affinity binding sites for LTB.. were observed in human

neutrophils (98). Occupancy of the high affinity receptors is believed to mediate Caz
"

mobilization and chemotaxis, whereas occupancy of the low affinity receptor appears to

result in degranulation (99). In addition LTB.. aetivates inflammatory cells by binding to ilS

cell surface receptor. but it cao aise bind and activate an intranuclear transcription factor •
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ppARa (100) resulting in the activation ofgenes tbat terminate the inflammatory

processes. Recently, an LTB. reœptor tbat is highly expressed in human leukocytes was

cIoned and expressed (101). It is a member ofthe seven-transmembrane receptor family

and is sensitive to penussis toxin.

1.3.3 Cysteinyl Leukotrienes

As mentioned earlier, cys-LTs accounted for the activity of SRS-A initially

observed during antigenie challenge of sensitized lungs, hence suggesting a role of these

compounds in allergie diseases (102) (Fig. 3). The observed in vivo formation ofcys-LTs

foUowing allergen challenge ofallergie patients provided strong evidence for tbis concept

(l03).

The major sites ofcys-LT action are the airways where they are thought to aet as

Mediators of allergie asthma (104). Both large and small airways ofnormal and asthmatic

patients are constrieted by cys-LTs (105,106,107). Inhaled LTC.a and LTO.a are 1000 ­

5000 times more potent than histamine. AJthough the bronchoconstrictor etfects ofLTE..

are less than those of LTC.a and LID", they are reponed to be longer lasting (108). LTC.

and LTD" constrict sensitized guinea pig lungs partiaJly due to the generation ofTXAz

(109), whereas they appear to aet principally by a direct etrect on human lung tissue (110).

It has also been suggested that cys-LTS participate in the neurally-evoked tachykinergic

contraction of guinea pig airways by amplifying action potential-dependent release of

tachykinins fram airway afferent nerve fibers (Ill).

LTC" and LTD", unIike LTB", cao induce increases in vascular permeability by an

apparently direct action on the endotheliallining of postcapillary venules (112). They are

patent stimulants of mucous glycoprotein secretion trom human airways in vitro (113). ln

vivo, they enhance secretion of mucus (114) and stimulate secretion ofchloride across the

epithelium in dog trachea (115). Maximal airway narrowing induced by methacholine is

augmented by LTD.. in normal subjects, an etfect attributed to induction ofairway edema

( 116).

Moreover, the cys-LTs have also been implicated in eosinophil recruitment that is

characteristic ofatopic diseases. Bronchial mucosal biopsies, studied 4 h after LTE"
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inhalation by asthmatic subjects, showed an increase in the number of eosinophils and to a

lesser extent of neutrophils (117). Recruitment ofeosinophils is stimulated by LTC.. or

LTD.a aerosolization ofguinea pigs and attenuated by the cys-LTl receptor antagonist

rvfK-571. Pretreatment ofsensitized guinea pigs with the cys-LTl receptor antagonist MK­

571 significantly inhibited the ovalbumin (OVA)-induced migration ofeosinophils (l18).

Underwood and associates evaluated the ability ofpranIukast, another cys-LTl receptor

antagonist, to antagonize LTD.a-induced microvascular leakage, eosinophil infl~ and

bronchoconstriction in guinea pig airways. Pranlukast significantly inhibited both the

eosinophilia and the bronchoconstrietion. It also antagonized antigen-induced

bronchoconstriction and eosinophil influx in OVA-sensitized guinea pigs. However, the

mechanism of this etfect is not clear, since LTO" is not a very potent chemoattraetant for

guinea pig eosinophils in vitro and pretreatment with an anti-ll..-5 antibody antagonized

the LTD.&-indueed eosinophilia in tbis animal (1 19).

Human airway tissue contains two types of cys-LT receptors, those blocked by

known antagonists (cys-LT1 receptors) and those that are resistant to blockade (cys-LTz

reeeptors). A eys-LT2 receptor has a1so been identified in human pulmonary vasculature.

In human airway smooth muscle, LTC", LTO.. and LTE.. ail aetivate a cys-LTl receptor

( 120) which appears to be G-protein-eoupled and leads to calcium mobilization upon

activation ( 121). Guinea pig trachea, which has been extensively studied, has been

reported to have three receptors, including one LTC.. reeeptor ( 122, 123) and two LTD4

receptors (124). A major goal in funher c1assifying eys-LT receptors will he to identify

specifie receptor subtypes that are responsible for the various pharmacologie effects of the

cys-LTs other than bronchoconstriction.
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1.3.4 S-OXo-ETE

5-Oxo-ETE bas biological aetivities which are 100 times more potent than its

precursor S-HETE (9). It is a potent stimulus of neutTophils, eosinophils, monocytes and

intestinal epithelial cells. It induces Ca2
- mobilizatio~ chemotaxis, adhesion, Mac-l

(eDllb/CDIS) expression and actin polymerization in neutrophils (125). Pretreatment of

these celIs with tumor necrosis factor-a (TNF-a.) (126) or GM-CSf (127) greatly

potentiates the effects of S-oxo-ETE on their degranulation response and superoxide

production.

Although S-oxo-ETE is active in stimulating neutrophils its more potent effeets are

on the eosinophil. S-Qxo-ETE is over two-fold more effective than PAF and over 30 times

more effective than LTB,a, -C.., -04 and -E.. as a chemotactic agent for human eosinophils

in vitro (10) . S-Oxo-ETE is also more active than LTB4 and PAF in inducing actin

polymerization and L-selectin shedding by eosinophils. It can also stimulate Mac- 1

(CD Il b/CD 18) expression and Ca2
- mobilization in these cells in vitro. S-Oxo-ETE has

aIso been reported to induce both superoxide production and degranulation (128) in

human eosinophils. the latter response being potentiated by pretreatment with GM-CSf.

In addition to its etfects on eosinophils and neutrophils. 5-oxo-ETE also induces

actin polymerization and migration of human monocytes and enhances their

responsiveness to the chemokines monocyte chemotactic peptide (MCP)-1 and MCP-J

(129). S-Oxo-ETE is aise an extremely potent stimulator afcr / K- -dependent volume

reduetion in guinea pigjejunal crypt epithelial cells (130).

More importantly, tbis patent lipid mediator appears to act via its own receptor.

Structure aetivity studies demonstrate that neutrophils possess a highly specifie

recognition mechanism for S-oxo-ETE. This compound can cross-desensitize neutrophils

to itself but not ta other agonists (13 1. 1J 2). Furthermore, this S-oxa-ETE-specific

receptor appears to be G-protein-coupled and pertussis toxin-sensitive (133) and is

present on the eosinophil as weil (134). The following figure summarizes the biological

actions mediated by S-oxo-ETE (Fig 4).
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1.4 Evidence of a Role for PAF and S-LO Products in Asthma

Although eicosanoids are capable ofeliciting biological effects on different cens

and tissues, it does not necessarily Mean that they are important physiologically. Their

production should be identified in physiological fluids or tissues. For example, increased

urinary LTE.. has been demonstrated following a1lergen challenge, during acute and

aspirin-induced asthma (135). Raised levels ofLTs (e.g. LTB4 and cys-LTs), particularly

LTE4 have been found in BAL tluid of asthmatics (136), with further increases after

endobronchial a1lergen challenge (137).

T0 further substantiate a role for eicosanoids in a disease such as asthma another

criteria needs to be fullfiled. The a1leviation of the asthmaric attack or symptoms, by

eicosanoid biosynthesis inhibitors or by blockage of the biological actions of these

substances by specifie receptor antagonists, has to be established. Great efforts have been

made to develop such drugs direeted against LT aetivity and they fall ioto four main

classes (Fig. 5). The synthesis ofail 5-LO produets cao be blocked by inhibitors either of

5-LO itselfor ofFLAP, while blockade of LT actions can he obtained with specifie

antagonists acting at the cys-LTl receptor or at the LTB.. receptor. In addition, PAF­

mediated actions cao aise be inhibited by PAF receptor antagonists.

1.4.1 Synthesis Inbibiton

Among the LT synthesis inhibitors described in the literature, FLAP inhibitors

include ~-886 and Ml(-0591, while the leading 5-LO inhibitor is zileuton (A·64077).

The FLAP inhibitors, such as ~-886 and MK-0591, have no direct activity on 5-LO but

antagonize FLAP thus preventing the translocation of the enzyme to the membrane (138).

A clinical study with astmatics after 2 oral doses of MK·886 showed a reduction in the

early-phase asthmatic airway response (see section 1.5. 1) after allergen challenge, with a

concomitant reduetion in ex vivo LT generation (139). Moreover, there was a correlation

between the inhibition of urinary LTE.. excretion and attenuation of the early-phase

response.
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A more recent FLAP inhibitor, l\1K-059I, which almost completely abolishes endogenous

LT production (assessed by urirwy LTE. levels and ex vivo blood LTB. production),

blocks the early-phase response to allergen by 79 % and the late-phase asthmatic airway

response (associated with leukocyte influx (see section 1.5.1» ooly by

39 % (140). This lack ofsignificant clinical etTect with the above inhibitors may be due to

an insufficient degree of inhibition of5-LO in the lung (141). The 5-LO inhibitor zileuton..

which aets partly through an iron-catalysed redox mechanism. blocks the increase in BAL

eosinophis and bronchial responsiveness induced by antigen challenge in sheep (142). A

recent study by Namovic et al., (143) reported that zileuton effeetively inhibited influx: of

eosinophiIs into the lungs of Sephadex treated BN rats. In addition, this 5-LO inhibitor

was shown to inhibit airway narrowing in asthmatics induced by cold, dry air (144).

Subjects (n = 12) with noetumal asthma treated for one week with zileuton showed

reduced BAL fluid LTB. and urinary LTE. levels and trus was accompanied by significant

reductions in BAL and peripheraI blood eosinophil counts compared with placebo (145).

Zileuton has now been approved for use in human asthmatics.

1.4.2 Receptor Antagonists

The cys-LTI antagonists developed in the 199O's have much greater potency than

earlier compounds. These include montelukast (~-476; Singulair), pranlukast (ONO­

1078), zafirlukast (ICI 204,219; Accolate) and ~-571 and are ail now in Phase ru
c1inical triaIs whereas, montelukast and zafirlukast are aIready in clinical use. The LTO..

antagonist l\1K-571 attenuated the recruitment ofeosinophils into sensitized guinea pig

lungs following LTCoI, LTOol or avA administration (118). Moreover, 1\11(-571 strongly

inhibited the early-phase response caused by antigen challenge in sensitized BN rats and

completely suppressed the late-phase response (146). Pranlukast, a selective cys-LT1­

receptor antagonist, also has been shown to reduce markedly (83-8go~) LTD..-induced

eosinophilic influx in guinea pig trachea., main bronchi and small airways ( 147). Recent

studies in man have shown that pranlukast inhibits a11ergen-induced immediate

bronchoconstriction in subjects who have asthma (148) and aspirin-induced asthma (149),

and significantly reduces airway hyperresponsiveness (150). Zafirlukast is an orally active
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LTD4 antagonist and has been reported to attenuate allergen-induced migration of

inflammatory cells in guinea pigs (151). At 48 h after challenge basophil and lymphocyte

counts and histamine concentration were reduced by zafirlukast white eosinophil and

macrophage numbers were unaffected (152). Although zafirlukast is more potent in

antagonizing both allergen- and LT-induced bronchoconstriction than MK-571, it is not

more effective than MK-57 1 in blunting exercise-induced or isocapnic hyperventillation­

induced bronchoconstriction (153,154).

Apart from the cys-LTl antagonists there are also a number of LTB. and PAF

antagonists that have been developed and have been used to better determine their

physiological roles. Sensitized guinea pigs treated with the selective LTB4 antagonist U­

75302 prior to antigen challenge showed a dramatic reduction ofperibronchial eosinophil

infiltration (155, (56). LY255283 (Fig 6), an effective LTB. receptor antagonist. is a

potent inhibitor of LTB.-induced aggregation ofguinea pig neutrophils (157).

Fig. 6. Structure of LY2SS28J

In rabbits, LY255283 reduced the transient neutropenia following intravenous.

administration ofLTB.. (158). In BN rats, it inhibited antigen- as weil as LTB..-induced

pulmonary eosinophil influx (76) . This has also been observed by other groups using the

guinea pig as a model (159). ln contrast the LTB.. antagonist. PF-10042, did not block

antigen-induced pulmonary eosinophilia in guinea pigs, whereas the 5-LO inhibitor PF­

5901 did (160). AJthough LTB.. receptor antagonists have been shown ta inhibit allergen-
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or LTB..-induced leukocyte infiltration in animal models ofasthma, the potential

therapeutic role ofsuch antagonists has yet to be evaluated in c1inical studies.

ln addition to LTs. there is also a considerable interest in elucidating the

physiological role of PAF. The results of investigations with several patent synthetic PAF

antagonists with different chemical structures have been reported (16 1. 162, 163). Even

though these drugs have been shown to block PAF-induced bronchoconstriction they

appear to have no efTect on either the early or late response to allergen challenge in man.

It couId be suggesled that insufficient drug was present to antagonize the effects of PAF

but, as discussed pre",;ously, studies on the effects of PAF inhalation would suggest this is

not the case. In animal studies PAF antagonists have been reported to inhibit eosinophil

recruitment into tissues. Two structurally related PAF antagonists, WEB 2086 and WEB

2170 (Fig 7). are able ta inhibit eosinophil accumulation caused by antigen in rat pleural

cavity (164).

o

Fig. 7. Structure of WEB 2170

In addition, avA-sensitized guinea pigs showed an attenuation of eosinaphil accumulation

following treatment with WEB 2170 (49). A recent study showed that treatment with

WEB 2170 significantly inhibited eosinophil migration induced by Mycahacterillm havis

bacilllls Ca/melle-GlIerin in the mouse pleural cavity (165). Eventhough PAF appears to

mediale eosinophil recruitment in various animal species, its actions are indirect in man. In

fact there are severa) reports showing that PAF effects can be blocked by cys-LTl

20



•

•

•

antagonists or even LT synthesis inhibitors such as MK-886. This is a recurrent argument

against PAF antagonists that have performed poorly in clinical trials.

In conclusion, there is both indirect and direct evidence that S-LO produets may

play a role in the pathogenesis ofasthma. The present LT antagonists and synthesis

inhibitors are likely to he effective in sorne patients with specific fonns ofast~ such as

aspirin-sensitive asthma. ln terms ofallergic asthm~ LT antgonists and synthesis inhibitors

block only -SO% of the late-phase asthmatic airway response to a1lergen. It is not clear

whether an even more potent LT antagonist or one with a longer duration of action would

have a greater effeet, or whether mechanisms such as edema fonnation and cellular

infiltration involving other Mediators are responsible for the residual airway narrowing.

Clearly, the development of more sprcific inhibitors will be able to answer these questions.

1.4.3 Mouse Knockouta

An alternative approach for studying the contribution of S-LO produets to the

inflammatory process is through the use of targeted gene disruption (166. 167). Chen and

coworkers (168) exploited tbis technique to produce homozygous S-LO deficient mice (S­

Lü -1-) whic~ although appeared normal and healthy, demonstrated alterations in certain

inflammatory responses. Experiments with these S-LO -/- mice suggested that involvement

of 5-Lü produets, in certain responses, appears to be stimulus selective. For example,

these knock-out mice showed defects in the peritoneal responses ofPMNL to immune

complexes but not to glycogen. Furthermore, there was a deficient response in the ear

edema evoked by AA but not byp~ and there was an inadequate reaetion to PAF­

induced shock but not that to endotoxin. The defeet seen in the PAF model ofshock

supports previously held views on the interactions ofLTs and PAF (169). More recently

these mice were used to study their capacity to reproduce sorne of the hallmark signs of

asthma (airway hyperresponsiveness and eosinophilia).
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Mice were sensitized to DVA followed by repeated aerosol challenge and studied 24 br

after the last challenge (170). The S-LD -/- mice had a diminished airway eosinophilia and

IgE production as weil as an airway reaetivity which was similar to that of the unsensitized

controls. It is known that mice do not respond to intravenous infusion ofcys-LTs (171)

hence, the reduced tissue and airway eosinophilia in the S-LO -/- mice could be due to

absent LTB-a or 5-oxo-ETE synthesis (10) during DVA or IgE stimulation ofMast cells or

other inflammatory cells. The development ofgenetically modified mouse models over­

expressing, mutant expressing or null for various enzymes or receptors in the eicosanoid

pathway holds promise for exciting new in vivo studies.
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1.5 Astbma

Asthma is a clinical syndrome charaeterized by intermittent airway obstruction,

airway hyperresponsiveness and chronic airway inflammation. According to the V.S.

National Center of Health Statistics the prevalence ofasthma bas risen steadily, doubling

in the past 20 years (172), and it now affects about 10 % of the population. There has

been significant progress in the understanding of the immunobiology of asthma in the last

decade. One of the most important·advances is probably the finding that airway

inflammation is a key feature of asthrna.

1.5.1 Classification and Pathogenais of Asthma

Etiologic or pathologie classification of asthma is difficult. Nevertheless this

disease cao be generally divided into three types: a1lergic (atopic; extrinsic), non-allergie

(nonatopie; intrinsic) and occupational asthma. Airway inflammation is charaeteristie of all

three types ofasthma. It is seen in atopic asthma (IgE mediated) as well as in nonatopic

asthma (non-lgE-mediated) and oecupational asthmatics who do not always demonstrate

an IgE response (173,174). These and other studies suggest that inflammation May play an

important role in the pathogenesis of the disease regardless of the nature of identifiable

provoking agent. IgE-mediated mechanisms are clearly important in allergen-induced

short-term exacerbations of asthrna in atopic individuals but their role in the pathogenesis

of chrome disease is less certain. Nevertheless, Many studies on the pathogenesis of

asthma have been gathered from patients with atopic asthma because their disease can be

conveniently provoked by a1lergen challenge.

Although advances in pathobiology and immunology have yet to delineate the

pathogenesis and genetic basis ofallergic asthma, it is generally believed that asthma is the

result of an immune response to allergens including innocuous organisms such as pollens

or free-living mites (175,176) . Recently it has been appreciated that the immune response

and airway inflammation in asthma may be primarily orchestrated by antigen-aetivated

lymphocytes and Th2 type cytokines (i.e. 1L-4, -5, -6, -10, -13) (177).
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I.S.I. a. Orc"GlrtltiOIl ofllirway illflllmlfUllioll

In the genetically appropriate host (Le. atopie asthmatics), exposure to an allergen

leads to the production of specifie IgE as a result ofcomplex and cognate interactions

between antigen presenting cells (i.e. dendritie cells and alveolar macrophages in the

epithelium and submucosa of the airways), T eeUs and 8 ceUs (178, 179, 180, 181, 182,

183). This initial response is referred to as 'sensitization'. The specific IgE produced by

the B cell will bind to high affinity Fc receptors on effector cells such as mast cells, and

basophils, as weil as the low affinity Fe receptors on macrophages, eosinophils and

platelets. Later, when a sensitized individual is re-exposed to a relevant antigen, the

antigen binds and crosslinks to IgE on the surface of the mast cell ( 184). This causes the

mast cell to degranulate and release mediators that may induce constrietion of the airways.

This is known as the early phase response (EPR). This reaction will normally occur within

minutes of provocation, peaking between 5 and 20 min, and resolving within 60 min. The

mast cell-mediators and potent airway constrictors responsible for tbis response are

histamine, LTC", LTO" and PAF. These mediators also augment mucus secretion and

vascular leakage. leading to further airway obstruction. Alveolar macrophages may also be

activated by an IgE-dependent mechanism and release mediators such as PAF, eicosanoids

and cytokines. Subsequently, the cytokines and chemotactic Mediators released by

activated mast cells, T cells and macrophages induce an influx of inflammatory cells, most

notably eosinophils. This inflammatory reaction appears to be involved in a second phase

of longer-lasting decline in pulmonary function known as the late phase response (LPR)

(185, 186). The LPR begins around 3 h and peaks around 8 h after antigen exposure and

may last for days. Approximately 500./ct of the patients that develop an EPR also develop a

LPR and moreover there are patients that develop a LPR in absence ofan EPR. The LPR

in the airways is characterized by an initial influx ofneutrophils which is then followed by

a large influx ofeosinophils and T-cells. Monocytes and macrophages are also recruited

during this phase but appear to play a secondary role in the inflammatory cascade of

events. Persistent cellular infiltration and the release of toxie products may eventually

result in epithelial damage. airway hyperresponsiveness and chronic asthma. Although

chronic asthma ditTers from the responses seen after allergen provocation, the LPR seen
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after challenge bears similarities to the clinical disease. One of the major similarities is the

increased recruitment of aetivated eosinophils into the lung. Pathological processes that

result in lung eosinophilia may involve antigen-induced T ceU activation through

macrophages or other antigen presenting cells, T ceU cytokine release, specific

sensitization of mast cells, and release of mediators by macrophages (187).

1.5.2 Pathophysiology of asthma

Pathophysiologically, asthma is characterized by airway narrowing; hypersecretion

of mucus; edema ofairway mucosa; cellular, especially eosinophilic, infiltration of the

airway wall, and desquamation of the airways epithelium. Autopsy ofairway samples trom

patients dying trom status asthrnaticus, even those who died of nonasthrna causes. as well

as biopsies from asthmatics, even sorne of mild disease, all show significant changes of the

airways with a marked inflammation of the bronchial tree (188,189). Typically. there is

plugging of the lumen with mucus. epithelial cells, aetivated lymphocytes and eosinophils;

shedding of the ciliated epithelium; deposition ofcollagen beneath the basement

membrane; smooth muscle hypertrophy; and an intense eosinophilic infiltrate in the

mucosa and submucosa accompanied by a low degree of infiltration of mononuclear cells

and neutrophils. An association between the degree of inflammation and nonspecific

bronchial hyperresponsiveness has also been described (190).

BAL fluid from asthmatic subjects. challenged with aeroallergen or even in the

absence of bronchial provocation. contains increased numbers of mast cells. neutrophils.

eosinophils and lymphocytes ( 191, 192). In addition to these cellular changes increased

eosinophilic degranulation and elevated levels of histamine. PGD2 and cys-LTs have been

reported (138, 193). Most of these chemica1 mediators are released locally and have been

implicated in bronchospas~ epithelial damage, mucus secretion and microvascular

hyperpermeability.

A number of studies speak to the importance of the eosinophil in the asthmatic

process. Among the most striking is the positive correlation between the levels ofblood

and airway eosinophilia and the severity ofasthma (194). Blood and infiltrating pulmonary

eosinophils are often primed or activated in asthmatics, and their increase in numbers
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correlate with the presence ofaetivated T ceUs (19S)y elevated levels ofeosinophilic

constituents in the BAL tluid (196), the degree of airways epitheliaI damage and the level

of airways hyperreaetivity to inhaled spasmogens (197).

The role of the eosinophil in the asthmatic process is believed to be govemed by

mediators released - LTs, PAF and PGs - which produce an intense inflammatory reaction

involving bronchoconstrietio~ vascular congestio~ and edema formation. In addition to

their ability to evoke prolonged contraction of the airway smooth muscle and mucosal

edem~ the LTs may aIso account for sorne of the other pathophysiologic features of

asthma such as inereased mucus production and impaired mucoeiliary transport. This

intense local event cao then be followed by a more chronie one. The chemotactic factors

elaborated (i.e. LTB... PAF etc.) bring eosinophils and other leukocytes to the site of the

reaction. These infiltrating ceUs, as weil as resident macrophages and the airway

epithelium iself, potentially are an additional source of mediators to enhance both the

immediate and cellular phase.

Furthermore, the eosinophilic granular proteins (see section 1.6.1) are capable of

destroying the airway epitheliu~ which is then sloughed into the bronchial lumen. Besides

resulting in a loss ofbarrier and secretory function. such damage elicits the production of

chemotactic cytokines, leading to funher inflammation. ln theory it also can expose

sensory nerve endings, thus initiating neurogenic inflammatory pathways. That. in tu~

could convert a primary local eveot ioto a generalized reaetion via a reflex mechanism.

Hence. the view that airway inflammation, and more particularly eosinophil

accumulation into the airways, is a major component of the asthmatic process has led ta an

intense investigation of the mechanisms involved in eosinophil recruitment into the lung.
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• 1.6 Eosinophilia

Eosinophils norrnally account for only 1 to 3 % of peripheraJ blood leukocytes..

and their presence in tissues is primarily Iimited to the gastrointestinal mucosa (198).

However, in certain disease states, eosinophils can selectively accumulate in the peripheral

blood or any tissue in the body_ The most common cause of eosinophilia worldwide is

helminthic infections, and the most comman cause in industrialized nations is atopie

disease (i.e. allergie disease of the eye, lung, nose, skin). Since tissue eosinophilia is a

hallmark of atopie disease and eosinophils are a major effector cell in these disorders,

allergie diseases serve as a prototype of understanding the pathogenesis and proeesses

involved in eosinophilia.

•
1.6.1 Pathogenesis or Eosinophilia in tissue

Once eosinophils arrive at an inflammatory focus, they may undergo apoptosis

with rapid c1earànee by macrophages, but ifthey are stimulated by IL-3, IL-S, or GM­

CSF, they survive for prolonged periods and have inereased responsiveness to other

activating agents. Eosinophils activated in this way express increased levels of reeeptors

for cytokines, Igs and complement.

Fig. 8. nIe granules of eosinophils contain a crystalloid core composed of MBP. and malrix composed
of ECP, EDN and EPO. Eosinophils also produce a variety of cytokines. sorne or which are stored in
granules, and lipid medialon that are lenerated after cellular activation.
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Eosinophils produce unique toxic intlammatory mediators, which are stored in

granules and synthesized after cellular activation (Fig. 8). The granules contain a

crystalloid core composed of major basic protein (MBP) and a matrix composed of

eosinophil cationic protein (ECP), eosinophil-derived neurotoxin (EDN), and eosinophil

peroxidase (EPO). These cationic proteins share certain prointlamrnatory properties but

ditrer in other ways. For example, at concentrations similar to those in BAL fluids t'Tom

asthmatics with eosinophilia l\t1BP, ECP and EPO have eytotoxic effects on respiratory

epithelium (199,200). ln additio~ ECP and EDN are ribonucleases (201,202). ECP can

cause voltage-insensitive, ion-nonselective toxic pores in the membranes of target cells,

and these pores May facilitate the entry of other toxic molecules (203). MBP directly

increases smooth muscle reactivity by causing the dysfunction of vaga! muscarinic M2

receptors (204). Alternatively or in addition, MBP and EPO may direetly stimulate the

respiratory epithelium on contact which, in tu~ causes smooth muscle contraction and

increased sensitivity of the muscle to methacholine (205)~ recent studies suggest that this

may be the result of bradykinin generation (206). Moreover, MBP may also trigger the

degranulation of mast ceUs and basophils.

Further damage is caused by hydrogen peroxide and halide acids, which are

generated by eosinophil peroxidase, and by superoxide, which is generated by the

respiratory-burst-oxidase pathway in eosinophils. Eosinophils also generate large amounts

of cys-LTs. These lipid Mediators increase vascular permeability and mucus secretion and

are potent stimulators ofsmooth muscle contraction (1 OJ) . They cao also promote

migration of eosinophils in vitro (207) as weil as into the lungs ofasthmatics (117).

ln additio~ activated eosinophils produce a wide range of inflammatory cytokines

(e.g. TNF-a., GM-CSf, IL-J, IL-4, IL-5) that have the potential to modulate multiple

aspects of the immune response, regulate eosinophil effector function and perpetuate

tissue eosinophilia (208, 209). Furthennore, eosinophils amplify the inflammatory cascade

by producing their own chemoattraetants (e.g. RANTES [regulated upon activation

normal T-cell expressed and secreted], eotaxin and PAF), which accelerate the recruitment

of eosinophils into the inflammatory focus.
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This funetional role for recruited eosinophils and their produets in the pathogenesis

ofatopic diseases bas led to intense investigations into the mechanisms regulating

eosinophilia. Identification ofkey molecules and cells that seleetively regulate eosinophil

recruitment has been a major focus for the last tive years in the study of asthma.
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1.6.2 Mecbanisms involved in Eosinophilia

Eosinophilia oceurs as a result of four processes (Fig. 9): 1) differentiation of

progenitor ceUs and proliferation of eosinophils in bone marrow; 2) interaction between

eosinophils and endothelial eells that involve rolling. adhesion. and migration of

eosinophils; 3) cbemoattraetion~g eosinophils to a specifie location; and 4)

activation and prolonged survival within tissue.
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Fig. 9. Proccsses involved in Eosinopbilia
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ft is interesting to note that the three cytokines, IL-3, IL-S and GM-CSF, whose

overproduetion oœurs in humans with eosinophilia such as asthmatics (177, 210), are

implicated in most, if not ail of the stages mentioned above. Only eosinophils and

basophils have receptors for D...-3, IL-S and GM-CSF on both the precursor cells in bone

marrow and the circulating cells. Of the three cytokines, IL-S (a1so known as eosinophil­

ditferentiation factor) is the mast specific for the eosinophillineage. It is responsible for

selective differentiation ofeosinophils (211), and it stimulates their release from bone

marrow into the peripheral circulation (212). The critical role of IL-S in the production of

eosinophils is best demonstrated by genetic manipulation in mice. Overproduction of IL-S

in transgenic mice results in profound eosinophilia (211) , and deletion of the IL-S gene

causes a marked reduction of eosinophils in the blood and lungs after an allergen challenge

(213).

IL-S, IL-3 and GM-CSf are the three main cytokines involved in the recruitment

and activation ofeosinophils. IL-S is a selective eosinophil chemoattractant and increases

the expression ofMac-l(CD11b) on human eosinophils (214) . The role ofall three

cytokines in the regulation ofeosinophil infiltration has been documented in vivo in the

skin of patients with atopy (215) and in mucosal eosinophilic diseases (e.g asthma)

involving the gastrointestinal (216,217) or respiratory tract (218,219). Furthermore, in

vitro and expiant studies ofallergic sinus tissue have shown that IL-3, ll..-S and GM-CSF

delay eosinophil apoptosis for at least 12 to 14 days (220). In contrast, eosinophils survive

for less than 48 h in the absence of these cytokines (221). Tissue eosinophils cao also

regulate their own survival through an autocrine pathway (208).

The remaining part of this thesis will focus on the processes by which eosinophils

migrate from the blood ioto target tissues.
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1.7 Recruitment of eosinophils

1.7.1 Adhaion Molecula

Recruitment ofeosinophils and other intlammatory cells from the blood into the

lung is regulated by intlammatory Mediators produced in the airways and subsequently

released into the circulation, such as PAF~ (222) IL-S (223) and eotaxin (224). This traffic

is mediated by adhesion molecules which in tum are upregulated by certain cytokines.

Adhesion molecules are glycoproteins expressed on cell surfaces which mediate

the contact between two cells or between the cell and extracellular matrix (225). They are

important in the migration of leukocytes from the blood into the tissues during

inflammation. They may also serve as signalling molecules (226)~ thereby influencing

severa! eosinophil functions such as degranulation (227), secretion of LTC.. (228) and

generation of superoxide (229). Moreover, there is evidence that adhesion molecules, such

as VLA4, are involved in the interactions between human hematopoietic progenitor and

stroma! cells in the bone marrow (230), and May also be involved in the proliferation of

progenitor CD34 p cells (231). The focus herein will be on adhesion molecules and cellular

recruitment.

Adhesion molecules are subdivided into severa! families based on common

characteristics. In general the adhesion process leading to recruitment of inflammatory

cells is mediated by three major groups ofreceptors: the selectins, the integrin family

(232,233) and the Ig superfamily (234).

Seleetins have a common molecular structure comprising of several domains one

of which is the N-terminalleetin domain~ essential for cell adhesion. The selectin family

consists ofthree proteins; E..(endothelial), P-(platelet) and L-(Ieukocyte) selectin. E­

selectin and P-seleetin are expressed on activated endothelium (232~235,236,237).

Maximal E-seleetin expression on endothelium is found within hours (2 to 6 h) after

stimulation by the cytokines IL-) and TNF-a (238) and then subsequendy declines to

basallevels within 24 h. P·selecti~ which is stored in Weibel-Palade bodies~ is rapidly

mobilized (within minutes) to the surface ofendothelial cells upon activation with

thrombin (239), histamine (240), LTC" or PAF released trom aetivated mast cells. UnJike

E· and P-selectn~ L-selectin is expressed constitutively on alileukocytes (241). Upon
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leukocyte activatio~ L-selectin is rapidly shed from the cell surface and this May be en

important event in the process ofleukocyte emigration (242). The MOSt studied ligands for

the selectins are sialyl Lewis X blood antigen (SLeX
) and other fucose-containing

carbohydrate determinants (235, 243). Moreover, there appears to be an interaction

between L-seleetin and the E- and P-selectin mediated adhesion pathways (235).

The integrin family comprises of receptor molecules which are a. and p­

heterodimers and are divided into different subfamilies according to the 13 suburut

expression (232, 244). The a2 subfamily is found exclussively on leukocytes and is

composed of three distinct, but related, <x-chain polypeptides: CO lIa (ad, CD lIb (aM)

and CD II c (<Xx), which are expressed on the celI surface in non-covalent association with

a common J32 subunit, CDl8 (245). These three alp heterodimers are often referred to by

their earlier names, LFA-I (lymphocyte function related antigen-l), Mac-l (macrophage ­

1) and CR4 (complement receptor-4) respectively. The whole complex is referred ta as

CD Il/CD 18. Peripheral blood eosinophils, neutrophils, monocytes and NI< ceUs express

aIl three f32 integrins, whereas lymphocytes express primarily LFA-I. The members of the

J31 integrin subfamily, which are sometimes referred to as very late activation antigens

(VLA), are found on Many ditferent cell types and function primarily as receptors for

extracellular matrix proteins such as collage~ larninin, and 6bronectin (226). In contrast,

VLA-4 (a4J3 1 ; CD49d1CD29), in addition to functioning as an extracellular matrix

receptor for fibronectin (246), also mediates cell-cell interactions by interacting with

another adhesion molecule, vascular cell adhesion molecule-I (VCAM-I) (247). VLA-4 is

present on resting lymphocytes, monocytes and eosinophils. but not on neutrophils (233).

Eosinophiis bind via LFA-I and Mac-l to intercellular adhesion molecule-l (ICAM-I)

(43), and since they also express VLA-4. they additionally bind to VCA..1\f-1 (248) (see

below).

The Ig superfamily is a large family ofadhesion molecules whose structure is

characterized by repeated domains similar to those found in Igs. For endothelial-Ieukocyte

interactions. the most important members ofthis family ICAM-I, ICAM-2 and VCAM-l

(232). ICAM-I binds to both LFA-I and Mac-l, whereas, ICAM-2, binds only LFA-I

(249). Expression of ICAM-l and VCAM-I on endothelial cells is increased after
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stimulation with tumor necrosis faetor-a (TNF-a) or IL-l (238). Additionally, expression

of ICAM-l is also increased by interferon-y (IFN-y) (238), whereas two major cytokines

in asthma., IL-4 and lL-13, upregulate VCAM-l expression (250,251). In contrast ICAM­

2 is constitutively expressed as an endothelial cell marker (249)./n vitro expression of

ICAM-l and VCAM-l on cultured endothelial cells is protein synthesis dependent.

ICAM-I expression peaks after 12 h and is maintained for at least a funher 36 h whereas

VCA1"f-l expression peaks after 6 to 10 h ofcytokine treatment. In asthmatic patients,

expression of both ICAM-I and VCAM-I is increased (252). Furthermore, in situ

expression of ICAM-I and VCAM-l in branchial tissues trom asthmatics experiencing air

flow limitation have demonstrated an increased expression of these molecules in the apical

membrane of the endothelium as weil as in intracellular organelles (253). This may suggest

an additionai de novo synthesis ofadhesion molecules prior to a spontaneous asthmatic

attack.
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1.7.1.... AdJaa;oll IllUI Migration

During inflammation Mediators (i.e. thrombi~ histamine, PAF, LTC4 , cytokines

and chemokines) are released locally by mast cells, macrophages, T cells and airway

epithelium. These inflammatory Mediators aet as chemoattractants and/or œil adhesion

molecule-inducing agents thereby inducing infiltration of blood leukocytes into the

inflamed tissue. Extravasation of leukocytes to sites of inflammation is thought to consist

ofat least three different processes. Firstly, circulating leukocytes undergo margination

whereby they begin to roll along the endothelium of postcapillary venules adjacent to the

extravascular site of lung inflammation. This process is mediated by the contact ofL­

selectin on leukocytes with diverse carbohydrate-containing structures (243), as weil as

P-selectin and E-selectin on aetivated endothelial cells (237). Tethering and rolling of

leukocytes through selectins prolongs leukocyte contact with the vascular endothelium

and in tum enhances their exposure to chemoattractants such as PAF, eotaxin or IL-S.

This exposure to chemoattractants allows the adherent leukocyte to undergo changes

including upregulation ofintracellular Caz., polarization in shape (i.e. reorganization of

actin cytoskeleton), priming for enhanced activation, shedding ofL-selectin and the

induction of integrin adhesive functions (254). The rolling ofcirculating eosinophils on the

endotheliurn is mediated primarily by P-seleetin, whereas neutrophil roUing is mediated

primarily by E-selectin (255,256). Interestingly, one particular antibody, LAMI-II, which

recognizes a specifie epitope on L-selectin, inhibits adhesion of eosinophils but not

neutrophils, lymphocytes or monocytes under nonstatic conditions (257). Moreover, a

reduced expression of L-selectin has been seen with eosinophils recovered from BAL fluid

foHowing allergen challenge, or activated in vitro (25S,259). It is imponant to note here

that in the lung there are two microvascular beds to consider, the large pulmonary

circulation that is intimately associated with leukocytes to form the so-called marginating

pool, and the smaller bronchial circulation that supplies the airways. Hence, the

phenomenon of leukocyte roUing and tethering mediated by selectins is more predominant

in post-capillary venules of the branchial circulation. It would appear that such a

mechanism ofcell accumulation is not as imponant in the pulmonary circulation where the

cells have to migrate through capillaries whose mean diameter is 5.5 to 6 f.lm compared to
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12-17 f,lm for eosinophils and 7-8 J.lrn for neutrophils (260). Thus leukocytes go through a

stage of retention in the lung rather than tethering (Fig. 10) and would have to deform to

pass through a capillary t a process that is likely to slow its progress even in the absence of

selectin interactions. Hence. this possible sequestration ofeosinophils in capillaries may be

analogous to the tethering ofleukocytes by selectins in post-capillary venules.
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Fig. IO.Proposed mechanisms of leukocyte accumulation in (A) branchial and (8)
pulmonary circulation. The VLA-4IVCAM-l adhesion pathway should also he
considered. P-s : P-selectin; E-s : E-selectin; L-s : L-selectin.
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The second step is firm adhesion and is mediated by leukocyte p2 (i.e. Mac-l,

LfA-I) and 131 (i.e. VLA-4) integrins interaeting with the endothelial adhesion Molecules

ICAM-I and VCAM-l respectively (261). This step in the inflammatory adhesion

mechanism requires the activation of the leukocyte integrins by chemoanractants, such as

PAF. cytokines or chemokines (see section 1.7.2). During activation ofeosinophils, the

integrins not only show an increased expression on the cell surface. but also experience a

conformati<?nal change in the integrin heterodimer, leading to enhanced avidity (262) for

their ligand. Recently, Weber et al, (263) demonstrated differential regulation ofP1 and

r32 integrin avidity by chemoanraetants (RANTES, MCP-3, C5a and PMA) in human

eosinophiIs in vitro. Activation ofVLA-4 was transient and dependent on the actin

cytoskeleto~ whereas more prolonged activation with conformational changes appeared

to he crucial for Mac-I. The adhesive properties ofeosinophils are increased after

stimulation with PAF, IL-J, IL-S and GM-CSF (264), due to increased membrane

expression ofCO 18 and CO lib (26S). Recently, Sung et al (266), using a micropipene

single cell adhesion assay able to measure the strength ofadhesion forces, demonstrated

that after incubating eosinophils with GM-CSF, the Mean adhesion strength ofeosinophils

to the fibronectin conneeting segment-I (CS-I), and VCAM-l increased significantly,

compared to controls. This increased binding ofeosinophils to VCAJ.\1-1 or CS-l was not

due to alterations in VLA-4 receptor number (assessed by FACS analysis) or alterations in

VLA-4 receptor distribution (assessed by confocal microscopy), suggesting that

endothelial-derived cytokines, such as GM-CSf, have the potential to alter the functional

state of eosinophil-expressed VLA-4 from a Iow affinity to a high affinity state. Moreover,

eosinophiis trom asthmatics show increased adhesion to VCAM-l and ICAJ.\1-1 when

compared to normal controis (267) and elevated leveis of soluble ICAM-l and VCAM-l

cao be found in the blood and BAL fluid of patients with acute asthma (268,269).

The final step ofcell recruitment is the transmigration of the leukocyte between

two endothelial cells into the tissue. This process involves reversible adhesion, i.e. cyclic

modulation ofintegrin receptor avidity. The moiecular basis of transmigration is not clear.

although LFA-I :ICAM-l interaction appears to be critical (270). [n addition this process

is controlled by platelet endothelial cell adhesion molecule-i (PECAM-l) (271) as weil as
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by endothelial cell-derived chemoatraetants (272). Many in vitro studies have shown that

transendothelial migration ofeosinophils is predorninantly mediated by the J32 integrins

(273,274~ 275,276). However~ depending on the cytokine/chemotaetic stimulus~

transendothelial migration can also he mediated by the l31 integrin , VLA-4 (277) (275). ln

vivo studies using two ditferent animal models suggest that the migration ofeosinophils

into the respiratory mucosa predominantly involves the VLA-4NCAM-l interaction

(278,279).

Expression of cell adhesion molecules is regulated at multiple levels. First of ail,

the ditferent cytokines have a selectivity for the induction of certain adhesion proteins~

such as IL-4 (277) and IL-I3 (251) for VC..l\M-l . This selectivity is even dependent on

the cell type, since IFN-y is much more potent in inducing ICAM-} on epithelial ceUs than

on endothelial ceUs (280). Moreover, combinations of the ditferent cytokines produce

additive, synergistic or antagonistic effects (281). In addition, cytokines activate the

airway epithelium to secrete chemokines, such as~lES and eotaxin, which further aid

in the recruitment ofleukocytes, namelyeosinophils, into the airways (see section l.7.2).

These multiple levels of regulation ofcell adhesion molecule expression and function

together with leukocyte-specific stimuli can create a unique sequence of events related to

a certain inflammatory situation (261,282,283,284).

l.7.l.b. AnillUÛ Models

Although human studies provide evidence for important associations between

eosinophil recruitment into tissue and increased expression ofceU adhesion Molecules and

chemotactic agents, such studies are limited in scope due to praetical difficulties and

ethical issues associated. For this reason, models of eosinophil recruitment in rats~ guinea

pigs, mice, sheep and monkeys have been used.

The functional relevance of (CAM-} in eosinophil recruitment was first shawn in a

primate model of allergie asthma induced by multiple inhalations of antigen (285).

Treatment with a monoclonal antibody (mAb) against ICAM·} attenuated airway

eosinophilia and hyperresponsiveness white anti-Mac-l mAb treatment reduced the levels

of ECP in the BAL fluid but didn't inhibit the airway eosinophilia. In sensitized mice,
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however, mAbs against ICAM-I and LFA-I did not inhibit eosinophil infiltration into the

trachea after 0 VA challenge, whereas anti-VLA-4 and anti-VCAM-I treatmant did (279).

Local administration ofPAF, CSa or LTB. in the skin ofguinea-pigs indueed eosinophil

infiltration~ whieh was potently inhibited by mAbs to VLA-4 (286).This decrease of

eosinophil reeruitment was also seen in the BAL fluid and lungs ofallergie guinea pigs

treated with anti-VLA-4 mAb prior to challenge (287). Aerosolized anti-VLA-4 mAb

inhibited allergen-induced BAL eosinophilia and hyperresponsiveness in rabbits sensitized

to house dust mite (288), as did intravenous treatment with an anti-CO 18 antibody (289).

A mAb to VLA-4 did not inhibit eosinophil infiltration in allergie sheep after allergen

exposure (290), whereas it did in OVA-sensitized guinea pigs (278).

Another animal model that has been used in studying the adhesion pathways of

eosinophil reeruitment into the lungs is the rat. Rat models are becoming more useful as

many immunologieal reagents including mAbs to cell adhesion molecules and cytokines

have become available. The BN rat is one of the most widely used animal models of

asthma because it develops an asthma-like response with a lot of similarities to that in

humans (291,292,293,294). Recently, Richards and others have demonstrated that in vivo

treatment of sensitized BN rats with mAbs against ICAM-I (1 A29) (295) or VLA-4 (TA­

2) (296,297) prior to OVA challenge significantly inhibited the eosinophil recruitment into

the airway lumen and alveolar spaees. There are also other reports that demonstrate that

although treatment with anti-VLA-4 mAb can abbrogate the hypperresponsiveness after

allergen challenge, it has no effeet on eosinophil recruitment into airways of allergie BN

rats (298). This lack ofa consistent effect ofantibody treatments on leukocyte numbers in

the [ung suggests tbat these antibodies may be affecting biological processes other than

cell adhesion. There is evidence that adhesion molecules, panieularly integrin receptors,

have transmembrane signalling properties that Mediate œil activation. Integrins LFA-I and

VLA-4 may aet as costimulatory Molecules in T-eell proliferation and activation (226).

Anti-VLA-4 mAb treatment cao attenuate PAF-induced EPO release from eosinophils

(290). In addition, Mac-l, cao Mediate degranulation ofeosinophils caused by GM-CSF

or PAF in vitro (227). Furthermoret it is important to note here that mAbs against VLA-4

are antibodies against the a4 subunit of this integrin. The a4-integrin subunit, apan from
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ilS association with the P1 chai~ can also associate with Il7 and is found on NK cells•

eosinophils (weakly expressed), MOst newbom and some adult blood T and B cells, and

most Iymph node T and B cells (299,300). Like a4p l, a4J37 binds to VCAM-l and

fibroneetin (301,302), but it can also bind to mucosal addressin cell adhesion molecule-l

(MAdCAM-l), a homing receptor found most abundantly in gut lymphoid tissue (303).

These recently discovered overlapping funetions and structural components ofa4

integrins and their counter-receptors have complicated the molecular interpretation of in

vivo studies utilizing blocking mAhs to the a4-integrin subunit. Clearly, in vivo mAb­

treatment against adhesion molecules has its limitations, however, the increased

availability of mAbs to ail components ofadhesion pathways will allow clarification of

these issues in the future.

Gene disruptio~ is another technique by which the functional relevance of a

molecule to eosinophil recruitment cao be studied. Gonzalo et aI, studied the role of

adhesion receptors ICAM-l, VCAM-l, P-selectin, and L-selectin in DVA-induced

pulmonary eosinophilia by using mice lacking these adhesion Molecules (304). They

demonstrated that eosinophil migration into the lung tissue and BAL fluid is abolished in

the absence of ICAM-l or VCAM-l. Since the lack ofadhesion receptors May result in

impaired eosinophil differentiation, these deficient mice were injected intravenously with

fL-S. No subsequent differences in the numbers ofcirculating eosinophils were detected

among these IL-S-injected mutant and wild type mice.

Taken jointly, these data suggest that, although animal studies of eosinophil

recruitment do not completely represent the complexity of tissue eosinophilia, they May

delineate particular pathways or basic mechanisms contributing to this phenomenon.

However. great care must he taken in extrapolating the information obtained from the

analysis of animal models to humans. Firstly, there appears to be imponant species

differences in the biochemistry and immunology ofeosinophils and secondly, the notion

that a disrupted gene or a mAb for an adhesion Molecule will ooly inhibit etfects of the

adhesion pathway is too simplistic.

40



•

•

•

l.7.2 Chemoattraction

The migration ofeosinophils into the lung is initiated by local ehemoattractant

molecules, whieh are likely to be responsible for both physiologie homin& and the

recruitment of eosinophils into intlamed tissues. Numerous ehemotactic substances aet on

eosinophils, ineluding the previously discussed lipid Mediators sueh as, PAF, LTB" (39) ,

cys-LTs (117) and S-oxo-ETE (10), as weIl as complement components (CSa) (39),

cytokines (e.g. IL-5) (223), and chemokines (chemotaetie cytokines) (305). AJthough ail

of these substances Mediate the recruitment ofeosinophils, most are not selective for

eosinophils. Within the chemokine family eotaxin and eotaxin-2 are relatively specific for

eosinophils (306,307). Unlike many other chemokines, the eotaxins Mediate their etTects

through only one receptor, the CCR-3 receptor (308) which is found on eosinophils.

Chemokines are a superfamily of small peptides chemoattraetants (8-14 kOa).

They are subdivided into families on the basis of the relative position of their cysteine

residues (309). There are at least fOUf families ofchemokines, but ooly two have been

extensively charaeterized. The a-chemokines, or CXC chemokines (one amino acid (X)

separates the first two cysteine residues), in general induce neutrophil or lymphocyte but

not monocyte locomotion. The (3-chemokines, or C-C chemokines (first two cysteine

residues are adjacent ta each other), in general do not aet on neutrophils but attraet

monocytes, eosinophils, basophils and lymphocytes with variable selectivity. Two

chemokines that do not fit ioto this classification, Iymphotactin (3 10), with only two

cysteines, and fractalkine (3 II >, a membrane bouod g1ycoprotein in which the first two

cysteine residues are separated by three amino acids (CXXXC), may represent additional

famifies.

C-C chemokines such as RANTES, MCP-3, MCP-4, macrophage inflarnmatory

peptide-la. (MIP-la) and the eotaxins, in association with cytokines IL-J, IL-4, IL-S,

GM-CSf (312,313,314,315,316) and 5-LO products (317.318) May play key raies in

regulating eosinophil recruitment ioto sites of a1lergic inflammation.

RANTES and MCP-3 are more patent than MIP-la for eosinophil chemotaxis

(314, 319), however, they do not selectively regulate eosinophil trafficking. The role of

MIP-la was identified in a murine rnodel ofallergie eosinophilic inflammation (320).
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When antigen-sensitized and airway-challenged mice were passively immunized with anti­

MlF-la antibodies, the eosinophil infiltration into the airways was decreased by about 50

%. Expression of MCP-3 and RANTES mRNAs has been correlated with the level of

eosinophil infiltration induced by allergen challenge in the skin of patients with atopy

(321). In a more recent investigation. when RANTES was injected intradermally in both

allergie and nonallergie subjects it induced an eosinophilie recruitment which was maximal

6 h and 24 h later respectively (322). The recently described chemokine, MCP-4, is a

ehemoattractant of high effieacy for eosinophils, matching in vitro the etl'ectiveness of

RANTES, MC?-3 and eotaxin (323). Moreover ail three ehemokines, RANTES, MCP-3

and MCP-4, mediate their etfects on the eosinophil through the CCR-3 receptor (308).

Eotaxin, tirst discovered in guinea pigs and subsequently c10ned in miee and

humans, has the partieularity of being a potent and specifie eosinophil ehemoattraetant in

vitro and in vivo (224, 324) . Inereased expression ofthis chemokine has been seen in the

BAL tluid and airways of asthmaties and has been suggested to eontribute to the airway

eosinophilia seen in asthma (325). Significant lung eosinophilia oeeurs 20 h after delivery

of aerosolised eotaxin (326). Eotaxin expression ean be indueed locally in tissues after

transplantation of IL-4-secreting tumour cells (3 (5), suggesting that eotaxin May be

involved in immune responses regulated by IL-4. Investigations in guinea pigs and mice

suggest that eotaxin may aet cooperatively with IL-5 to promote the reeruitment of

eosinophils into tissues (212, 327). The relationship between 1L-5 and eotaxin in the

regulation ofeosinophil homing as weil as its recruitment into blood and tissue was

investigated in lL-5 -/- miee (328). This study suggests that there is an essential

requirement for lL-5 in eotaxin-induced recruitment ofeosinophils to mueosal tissues.

There is evidence that 5-LO produets May be involved in the response of

eosinophils to ehemokines. Recently Harris et al., (3 17) demonstrated that specifie 5-LO

inhibitors zileuton and ABT-761 attenuated the eotaxin-induced eosinophil recruitment

into the mouse peritoneal lavage fluid by approximately 70%. This data suggests that

eotaxin may either be aetivating eosinophils to release S-LO metabolites, sueh as 5-oxo­

ETE, or making them more responsive to these metabolites. Interestingly, a similar degree

of inhibition in eosinophil recruitment was seen when mice were treated with the 5-LO
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inhibitors prior to IL-S and eotaxin injections. The faet that the SeLO inhibitors could

attenuate the combined etfects oflL-S and eotaxin suggests that their etrect may invo1ve

SeLO products. In a recent abstraet, Stafford and Alam (318) also presented <lata

implicating SeLO produets in the chemokine-mediated etfect. In this report inhibition of'5­

LÜ attenuated RANTES-induced eosinophil chemotaxis in vitro.

In summary, the clinical and experimental investigations suggest tltat migration of

eosinophils into tissues involves the cooperation ofdifferent classes ofmediators. These

would include SeLO produets, eotaxin and cytokines. The combined etTeets ofvarious

mediators in the influx of cells is probably more ref1ective of human disease than is

normally proposed from cellular or animal experimentation where single Mediators are

assumed to be working.
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1.8 Hypotbeses

It is clear that the cellular and molecular events regulating eosinophil recruitment

to sites of a1lergic inflammation are complex processes that involve a co-ordinate network

of inflammatory cells, vascular adhesion molecules, cytokines, chemokines and lipid

mediators.

An im~ortantarea of research is now concemed with the identification ofspecifie

chemoattractant molecules that issue th~ ehemotaetic and chemokinetie stimuli whieh

localise eosinophils to the foci of tissue inflammation, where they elicit their effector

function. Studies using receptor antagonists and synthesis inhibitors have reveaIed that 5­

LO produets May he such candidates. Recent in vitro studies have demonstrated that the

5-LO produet, 5-oxo-ETE, is a patent eosinophil chemoattraetant and aIso stimulates

calcium mobilizatio~ degranulation, superoxide formation, aetin polymerization, Mac-l

expression and L-selectin shedding in these cells. In view of these potent in vitro effects

on eosinophils, the objective of this study was to determine whether 5-oxo-ETE is aIso

active in vivo.

To fulfill tbis objective the BN rat was used to test the following hypotheses:

1) S-Oxo-ETE induces eosinopbil recruitment in;1I vivo. The etfeets of

intratracheally administered 5-oxo-ETE on eosinophil infiltration in the lungs of BN rats

was investigated and compared to those ofother 5-LO produets. such as LTB.., LTC" and

LTD...

2) S-Oxo-ETE-induced eosinopbil recruitment is independent ofactions of other

lipid mediaton such as PAF and LTB... To test tbis hypothesis animaIs were treated

with receptor antagonists to PAF and LTB.. before and after 5-oxo-ETE intratraeheal

insufflation.

3) S-Oxo-ETE-induced eosinophil recruitment is dependent on integrins. This

hypothesis was tested by injecting the animais intravenously with mAbs against p1 and PZ
integrins prior to 5-oxo-ETE treatment.
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2.1 Materials

2.1.1. Chemicals

5-0xo-ETE was prepared by Ors. J. Rokach and S. Khanapure; Florida Institute of

Technology (329). LTB.. was synthesized by Syvie Gravel in Dr. Powell's laboratory by

incubation of AA (Nuchek Prep. Inc., Elysian, MN) with porcine neutrophils in the

presence of 5, 8, Il, 14-eicosatetraynoic acid and the calcium ionophore A23187

(Calbiochem, Lalolla, CA). LID.. and LTE.. were obtained from the Cayman Chemical

Co., (Ann Arbor, MI) and PAF (l-palmityl-2-acetyl-sn-glycero-3-phosphocholine) was

purchased from Sigma. The anesthetics used were the muscle relaxant xylazine and the

sedative sodium pentobarbital which were purchased trom Chemagro Limited, Etobicoke,

Ontario, Canada and MTC Pharmaceuticals, Cambridge, Ontario, Canada, respectively.

2.1.2. Antagonists

The LTB.. antagonist, LY255283, (5-ethyl-2-hydroxy-4-(6-methyl-6-( IH-tetrazol­

S-yl)heptyloX)i) acetophenone), was a kind gift trom Eli Lilly Co., Indianapolis, Indiana.

The potent long-acting PAF antagonist, WEB 2170, (6-(2-chlorophenyl)-8-9-dihydro-l­

methyl-8-(4-morpholinyl-carbonyl)-4H,7H-cyclopental (4.5) thieno (3,2,t) (1,2,4)­

triazolo-(4,3-a) (1,4)daizepine) (330) was provided by Boehringer-Ingelhei~ USA. These

receptor antagonists have been previously used in studies with BN rats and other animais

(76,331) .

2.1.3. Monoclonal Antibodies

Mouse anti-rat monoclonal antibodies (mAbs) to VLA-4 (TA-2; IgGl) 332, LFA­

1 (TA-3; IgGl) (333), and Mac-l (OX-42; IgG2a) (333) were obtained trom Dr. T

Issekutz; Dalhousie University. These antibodies were prepared by immunizing BALB/c

mice with rat leukocytes and charaeterized as previously described. The anti-rat VLA-4

mAb (TA-2) reacts with ail rat leukocytes and blocks their adhesion to rat microvascular

endothelial cells stimulated with IFN-y, IL-l, TNF-a and lipopolysaccharide (332) in

vitro. Experiments with fluorescence microscopy demonstrated that this mAb reacts with

VLA-4 on eosinophils ofBN rats. The mAbs to LFA-l (TA-3) and Mac-l (OX-42) also
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blocked the adhesive funetion of rat leukocytes by interaeting with their respective

integrins (333). An isotype-matched mAb (3hll-B9; IgOI) (334) direeted ta an irrelevant

cell surface protei~ penussis toxi~ was used as a control. Various studies in the past have

examined the etfects ofthese mAbs on leukocyte recruitment in the BN rat lung (298.

335).

The airway-infiltrating eosinophils were quantitated by immunocytochemistry

using a mAb to MBP that has previously been shown to detect rat eosinophils (336). This

mAb was a kind gift from Dr. R. Moqbel. University of Alberta, Edmonto~ Canada.

2.1.4. Animais

Experiments were performed on 180 (n ~ 5) male highly inbred (> 58 generations)

BN rats (Rij substr~ 6 - 8 weeks old; 180 - 220 grams) obtained from Harlan Sprague

Dawley (Indianapolis. IN). They were housed in groups offour-to-five with food and

water available ad libitum. Animal housing was carried out in accordance with MeGiH

University's Poliey on the Handling and Treatment of Laboratory animais and the

Canadian Council on Animais Care guidelines. A period of five-to-six days of

aeclimatization was allowed prior to experimentation.
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2.2 Metbods

1.2.1. Agonist Administration

Rats were anesthetized by intraperitoneaJ injection of xylazine (7 mg!kg) and

pentobarbital (50 mg! kg). Endotracheal intubation was performed with a 6 cm length of

polyethylene tubing (PE-240). Agonists (5 Jlg unless otherwise indicated) in 100 J..Ù of

saline containing 0.5% ethanol were administered by insufflation using a 1 ml syringe

containing the agonist and 1 ml of air to force the agonist into the lungs. This method of

agonist administration should enable a better distribution into the airways. AJtematively.

agonists in 100 J..l1 of saline containing 0.5% ethanol were instilled directIy into the trachea

without the use ofair. Control animaIs recieved vehicle (saline containing 0.5% ethanol)

a1one. After administration of the agonist~ the animals awakened spontaneously and were

extubated. At various time intervals (6~ 15, 24 and 36 h) the animais were anesthetized

and the lungs removed for immunocytochemistry as described below.

2.2.2.· Receptor Antagonist Treatment

To explore further the role of S-oxo-ETE in the induction of airway eosinophilia in

the BN rat, antagonists to LTB4 (LY255283) and PAF (WEB 2170) were tested for the

inability to prevent eosinophilic influx following insufflation of 5-oxo-ETE. Preliminary

tests with our BN rat model reveal~ that treatment with 20 mglkg (and not 10 mg/kg) of
•

LY255283 attenuated LTB4-induced airway eosinophilia. The PAF antagonist, WEB

2170, has not been characterized in BN rats. However, our preliminary experiments

demonstrated that 30 m&'kg ofWEB 2170 was sufficient to significantly reduce airway

eosinophilia in BN rats following insufflation with PAF. Henee, the subsequent groups of

animais were treated with 20 mglkg ofLY255283 and 30 mglkg ofWEB 2170.

Seven groups (n ~ 5), were orally gavaged (intragastric administration) with either

LY255283, WEB 2170 or vehicle (carboxymethylcellulose 0.2% w/v H20) (143). The

animais were then anesthetized. intubated and subsequently insuffiated with 5 J,lg ofeither

LTB.., PAF (reconstituted in PBS with 0.125% BSA) or 5-o"o-ETE 1 h after drug

treatment. At sorne later time the animais awakened spontaneously and 7 h after agonist

insufflation they were gavaged once more with either LY255283, WEB 2170 or vehic1e.
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The lungs were excised 15 h after agonist insuftlation and prepared for

immunocytochemistry

%.2.3. Monoclonal Antibody TreatDlent

Monoclonal antibodies to the integrins VLA-4 (Pl integrin family), LFA-l

and Mac-1 (132 family) were used to study the adhesion mechanisms involved in 5-oxo­

ETE-induced eosinophil recruitment. Seven groups of 5 rats each were injected

intravenously (i.v.) with either anti-integrin or control mAbs. Stock mAb was diluted with

saline, then filter stenlized through a 0.22 J,.Lm tiller (Millipore Co., Bedford MA). A

concentration of 1.4 mg ofmAb in 0.5 ml sterile saline was injected 30 min prior to

agonist insufflation. These amounts ofantibodies have been previously shown to

maximally block leuk0CYte migration in vivo and provide plasma levels that are several

times higher than required to saturate integrins on blood leukocytes (332, 333, 334).

The animais were first anesthetized and then intubated in preparation for agonist

insuffiation 30 min after mAb treatment. The tirst three groups of animais served as

contrais. Group 1 was the negative control where animais were injected and insufflated

with vehicle (saline (0.5 ml» and saline with 0.5% ethanol (100 ~) respectively). Rats in

the positive control group 2, were injected with vehicle and insuftlated with 5-oxo-ETE (5

J,.lg). The third group served as the control for the mAb treatment. In tbis group, animais

were treated with the isotype matched mAb (3H 11-B9) and then insuftlated with 5-0)(0­

ETE. The remaining four groups ofanimais were the test groups. Groups 4, 5 and 6 were

treated with mAbs to the integrins VLA-4, Mac-l and LFA-I respectively. Group 7 was

treated with a combination of mAbs to both 132 integrins, Mac-l and LFA-I. AU these test

groups were insuftlated with 5-oxo-ETE (5 J,.Lg). The lungs were excised 15 h following

agonist insufflation and prepared for immunocytochemistry.
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2.2.4. HistolOlY

Following induction ofanesthesi~ rats were exsanguinated via the abdominal

aona. The lobes of the lungs were dissected around the hilum (0.5 x 1 cm), immediately

placed in phosphate~butrered saline and frozen within 30 min. The fresh tissue was placed

in OCT embedding medium and snap frozen in isopentane precooled in liquid nitrogen and

stored at -80 oC. Sections of 6 J.Lm were eut in a cryo$lat and three consecutive sections

were placed on microscope slides. They were air dried for 1 h and fixed in

acetone/methanol (1 :1) for 5 min and further air dried for 1 h. Slides were then wrapped

back to back in pairs in aluminum foil and stored at -20 oC prior to immunostaining.

It is imponant to note here that ManY inve$ligators in the past have quantitated

eosinophils in lung tissue following enzymatic dispersion by tissue mincing and digestion

with collagenase. However enzymatic diSPersion and eell counting May be subject to noo­

specifie eell loss or variation due to heterogeneous involvement of lung tissue. These

limitations were overcome in the present study by using whole tissue and quantitating

eosinophils following immunostaining for MBP.

2.2.5. Immunocytochemistry

Eosinophils in lung sections were quantitated by Ors. Q. Harnid and R. Taha.

Siides were allowed to defrost and then $lained with a mAb to MBP using the a1kaline

phosphatase-anti-alkaline phosphatase (APAAP) method as previously described (337).

T0 prevent nonspecifie binding of the second and third antibodies the sections were

treated with 20% normal rat serum. Slides were coded and read in a blind fashion at 200x

magnification. The numbers of positively-stained cells were eounted in the walls of the

airways identified in a zone 115 J.1m deep (as defined by a squared eyepiece graticule)

along the length of the epithelial basement membrane. A calibrated computerized graphies

tablet (IBM) was employed to determine the length of the basement membrane. Cell

counts are expressed as the Mean numbers of immunoreaetive cells per unit length (1 mm)

ofbasement membrane of the airway.
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2.2.6. Data Analysis

One way ANOVA using Dunnett's test as a multiple comparison method was used

to determioe whether there were statistically significant differences among groups of

animais. For comparison oftwo groups Student'st-test was used using the Bonferroni

correction. Ali data are presented as means ± SE (0 = S, unless indicated otherwise).

Differences were considered to be statistically significant for p values ofless than o.OS.
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3.1. S-Oxo-ETE is a strong inducer of puimoDary eosinophilia.

Powell et al., (10) have demonstrated that 5-oxo-ETE is a very potent chemotaetic

agent for human eosinophils in vitro. To test this etrect in vivo, BN rats (n = 5) were

treated via tracheal insufflation with either vehicle or 5-oxo-ETE (5 J,Lg). The lungs were

removed after 15 h and sections were immunostained for the eosinophil Marker, ~P­

Preliminary experiments indicated that 15 h were sufficient to detect eosinophil

recruitment into tissue. Representative siides of the rat lung sections are shown in Figure

1_ Consistent with its in vitro etreet, 5-oxo-ETE induced a dramatic increase in the

numbers of eosinophils deteeted in the BN rat lung as illustrated by Figures lA and lB.

The MBP-positive cells were found principally around the airways among other

inflarnmatory cells. There were also occasional eosinophils around blood vessels and in the

parenchyma (Figure lB). Lung sections from control rats treated with vehicle contained

significantly fewer numbers of eosinophils (Figure 1C). Figure ID represents a control for

background and non-specifie staining in which lung sections tram 5-oxo-ETE-treated rats

were processed identically with the exception orthe mAb to MBP.
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Figure 1. Immllnochemical stainillg ofIIIIIg sectiollS (cryostat) Ils;ng the alkalille
phosphatase-anti-alkaline phosphatase method. The location ofairways (aw) and blood
vessels (bv) are indicated. A: example ofan MBP immunostained section from an animal
that received 5-oxo-ETE (5 Jlg) 15 h prior ta removal ofthe lungs (x 400). B: a lower
power (x 200) view ofan MBP immunostained lung section from an animal that received
5 J,Lg of S-oxo-ETE 15 h before removal orthe lungs. C: an example ofa section
immunostained for MBP from the lungs ofan animal that received saline 15 h prior to
removal of the lungs (x 400). D: negative control in which a lung section from a rat
treated with 5-oxo-ETE for 15 h was processed in a manner identical ta the sections
shown in ~ B, and C, except that PBS was substituted for the mAb to MBP (x 400).
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3.2. S-Oxo-ETE induces eosinopbil inrlltration in a time-dependent

• manDer.
The BN rat is known to develop a neutrophilic infiltration in the airway 8 h after a

single allergen challenge, followed byan accumulation ofeosinophils 24 to 32 h after the

challenge (338,339). Even though our study did not involve an allergic model the time

range mentioned above served as a guideline none-the-Iess. To investigate the time­

course for 5-oxo-ETE-mediated eosinophil recruitment, rats (n = 5) were insuftlated with

either vehicle or S-oxo-ETE (5 J,Lg), the lungs were removed following various times (6,

15,24 and 36 h) and sections were immunostained for MBP. At 6 h following S-oxo-ETE

treatment there was an increase in the number of pulmonary eosinophils which was about

3 limes higher than that following treatment with control (vehicle) (p < O.OS) (Figure 2).

This effect was maximal between IS h (p < 0.005) and 24 h (p < 0.01), with the numbers

ofeosinophils increasing to about 5 limes control values. By 36 h the numbers of

infiltrating eosinophils had decreased to about 3 times control values (p < 0.05), similar to

what was observed at the initial time point of6 h. Subsequent experiments were therefore

performed on rats 15 or 24 h after treatment with S-oxo-ETE.

•
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Figure 2. Time course/or 5·oxo-ETE·induced eosinophil recruitment. BN rats were
insufflated with S-oxo-ETE (5 J.lg; n = 5) or vehicle (100 J.lI of 0.5% ethanol in saline; n =
8). The lungs were removed 6, 15,24 or 36 h later and stained for eosinophils using an
anùbody to MBP. The results are expressed as the numbers of positive ecUs per mm of
basement membrane of the airway and are means ± SE (n =5). Differences between
treated and control rats at different time points were evaluated using Student' st-test
followed by a Bonferroni correction. *, p < 0.05; ••, p < 0.01; •••• p < 0.005.
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3.3. ComparisoD of effects of 5-oxo-ETE to tbose of other 5-LO

products.

The etfects of5-oxo·ETE were compared to those ofvarious LTs, including

LTB4~ LID", and LTE... This experiment was performed by Dr. W. Yu in Dr. Powell's

Jaboratory. Five groups ofrats (n = 5) were treated by intratracheal instillation ofeither

vehicle or one of the four agonists (5 J,lg). The lungs were removed and sections were

stained for MBP 24 h later. Of the 5·LO produets tested, only 5·oxo·ETE (p < 0.01) and

LTB" (p < O.OS) induced pulmonary eosinophil infiltratio~ with the numbers of

eosinophils in Jung sections being about 3.S and 3 times, respeetively, higher than in lung

sections from control animais (Figure 3). In contrast, eosinophil numbers in lungs from

rats treated with LTD" and LTE.. were the same as in control lungs.
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Figure 3. Comparison ofthe effecu ofS-oxo-ETE to tl.ose ofleukotrielles on
pulmonary eosinophil recruitment. Various eicosanoids (5 Ilg) or vehicle (100 III of
0.50/0 ethanol in saline) were administered to BN rats by tracheal instillation and the lungs
were removed 24 h later and sections stained for eosinophils using an antibody to l\1BP.
The results are expressed as the numbers of positive ceUs per mm of aicway basement
membrane and are means ± SE (n =5). Differences among groups were evaluated by one­
way ANGVA with Dunneu's test as a multiple comparison method.•• p < 0.05; ••. p <
0.01.
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3.4. Comparison of the dose-response for 5-oxo-ETE to tbat for LTB...

To funher investigate the effects of 5-oxo-ETE and LTB.. on eosinophil

recruitment into the rat lung their dose-response relationships were investigated and

compared. BN rats were insuftlated intratracheally with either vehicle (n = 8) or various

amounts of 5-oxo-ETE or LTB., (2, 5, and 10 J.1g; n = 5). After 15 h, the lungs were

removed and the numbers ofeosinophils counted in lung sections after immunostaining for

MBP. 80th agonists induced a dose-dependent increase in pulmonary eosinophils, which

was maximal at a dose of 5 J.1g in each case (Figure 4). The dose response curves for the

two eicosanoids were similar to one another, except that the maximal response to 5-oxo­

ETE~ observed at 5 and 10 J.1~ was nearly twice that to LTB" (p < 0.05). Rats treated

with the smallest amounts (2 J.1g) of 5-oxo-ETE (p < 0.01) and LTB" (p < 0.05) showed

increased numbers of pulmonary eosinophils which were about 2.6 and 2.3 times greater

than control respeetively. At the maximal doses of 5 or 10 J.1~ these increases in

eosinophil numbers were about 5.5 times (5-oxo-ETE) and 3.5 times (LTB..) the control

levels (p < 0.005).
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Figure 4. Dose-response for the effects ofS-oxo-ETE and LTB4 on eosinopllil
infiltration. 5-0xo-ETE. LTB4 (2. 5 or 10 J.lg) or vehicle (100 JlI of 0.5% ethanol in
saline) were adfiÙnistered to BN rats by tracheal insufflation. The lungs were removed 15
h later and sections were stained for eosinophils using an antibody to major basic protein.
The results are expressed as the numbers of positive ceUs per mm of airway basement
membrane and are means ± SE (0 =5). Differences between groups were evaluated using
Student's t-test. *. p < 0.05; **. p < 0.01; •••• p < 0.005 when comparing a given dose of
the test group to the vehicle-treated control. t. p < 0.05 when comparing the groups
treated with identical doses of S-oxo-ETE and LTB4.
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3.5. Effects of LTB.. and PAF antagonists on 5-oxo-ETE-induced

eosinopbil infiltration.

To determine whether the effects of S-oxo-ETE on eosinophil recruitment could

be mediated by LTB" or PAF. BN rats (n = 5) were pretreated via oral gavage with

receptor antagonists to LTB" (LY255283) or PAF (WEB 2170) 1 h before and 7 h

following insufflation with agonist (5 J,.Lg). The lungs were excisecl 15 h after agonist

insufflation and sections were stained for MBP. Treatment ofanimais with vehicle

followed by insufflation with 5-oxo-ETE resulted in a nearly 6-fold increase in the

numbers of lung eosinophils compared to the negative control treated with vehicles for the

receptor antagonist and 5-oxo-ETE (Figure5). Similarly. animais treated with vehicle

followed by either LTB" or PAF also demonstrated increased numbers of pulmonary

eosinophils which were nearly 4 and 6-fold. respectively. higher than the vehicle-treated

controls. Treatment with LY255283 (20 mg/kg) inhibited the LTB4-mediated effect on

lung eosinophilia by 72 % (p < 0.005), whereas WEB 2170 (30 mg/kg) treatment

supressed PAF-mediated eosinophil recruitment by 78 % (p < 0.0001). However, neither

of these receptor antagonists had any effect on 5-oxo-ETE-induced eosinophil infiltration.

Representative slides ofanimaIs treated with LY255283 and insutllated with either LTB"

or 5-oxo-ETE are depicted in Figure 6.
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Figure 5. Effects ofreceptor alltagonists LY255283 and lVEB 2170 on 5-oxo-ETE­
illduced eosinopllil recruitment. LY255283 (20 mglkg) or WEB 2170 (30 mglkg) in a
volume of 0.5 ml were administered by oral gavage 1 h before and 7 h aCter agonist
treatment. The control group was treated with 0.5 ml of the antagonist vehicle (0.2 0/0
carboxymethylcellulose) and insufflated intratraeheally with 100 ml of the agonist vehicle
(0.5% ethanol in saline). The agonists 5-oxo-ETE (5 J.lg), LTB4 (5 fJ.g) and PAF (5 J.lg)
were administered by intratracheal insufflation. The lungs were removed 15 h after agonist
treatrncnt (8 h following the second oral gavage with antagonist) and sections were
stained for tvrnP. The results are expressed as the numbers of positive eeUs per mm of
airway basement membrane and are means ± SE (n = 5). Differences among groups were
evaluated by one-way ANOVA with Dunneu's test as a multiple comparison method. *, p
< 0.01; **, P < 0.005 .
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Figure 6. ImltUlnocytochemical assessmellt ofthe effects ofLY25528J on LTB4 - and
S-oxo-ETE-inducedpu/monary eos;noplti/ia. The location ofairways (aw) are indicated.
Lung tissue was fixed, seetioned, and stained for MBP 15 h following agonist insuftlation.
A: example ofan MBP-stained section trom an animal treated with vehicle (0.5 ml of
0.2% carboxymethylcellulose) 1 h before and 7 h following LTB4 (5 Jlg) insuftlation. A
significant number ofesinophil recruitment into the airways (x 200). B: example of an
MBP immunostained section from an animal treated with 20 mglkg LY255283 Ih before
and 7 h after LTB4 (5 Jlg) insufflation. Few eosinophils are present around the airways (x
200). C: example ofan MBP immunostained section tram an animal treated with 20
mglkg LY255283 1h before and 7 h after 5-oxo-ETE (5 Jl8) insufflation. Large numbers
ofeosinophils have infiltrated the airways (x 400).
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3.6. Effects of anti-integrin antibodies on 5-oxo-ETE-induced

eosinophil infiltration.

To determine whether the S-oxo-ETE-induced eosinophilia was dependent on

eosinophil integrins. rats (n = 5) were pretreated with mAbs to VLA-4, LFA-l, and Mae­

l, 30 min prior to intratracheal insufflation with 5-oxo-ETE (5 J,lg). The amounts of

antibodies employed have previously been shown to be sufficient to saturate integrins on

blood leukocytes (332, 333, 334). The lungs were removed 15 h later and sections stained

for l\1BP. The positive control group, where animais were pretreated with vehide and

insufflated with 5-oxo-ETE, had similar numbers of pulmonary eosinophils as the positive

controls in the other experiments described above, displayjng a nearly 8-fold increase in

the numbers oflung eosinophils when compared to the negative control group (p < 0.005)

(fig. 7). Pretreatment of rats with the isotype-matched control mAb 3H11-89 had little

etfect on S-oxo-ETE-induced eosinophil infiltration. When the rats were pretreated with a

mAb to VLA-4 the response to S-oxo-ETE was reduced by 70% (p < 0.01) compared to

that ofanimais pretreated with the isotype matched mAb. Anti-LFA-I had a similar effect,

inhibiting the response to S-oxo-ETE by 77%. (p < 0.005) whereas anti-Mac-I had a

smaller effect, reducing pulmonary eosinophils by ooly 30010 (not significant). The

combined effect ofanti-LFA-I and anti-Mac-l (80010 inhibition; p < 0.005) was similar to

that of anti-LFA-l a1one.
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Figure 7. Effects ofmonoclonal antibodies 10 inlegrillS 011 5-oxo-ETE·irrduced
eosinophil recruitment. BN rats were injected intravenously with either vehicle (0.5 ml of
saline) or saturating amounts ofantibodies to VLA-4, Mac-l. LFA-l. or acombination of
LFA-l and Mac-l. A control group of animais was pretreated with an irrelevant IgO 1
antibody. Aftee 30 min, either 5-oxo-ETE (5 JJ,g) or vehicle (100 J.11 of 0.5% ethanol in
saline) were administered by intratracheal insufflation. The lungs were removed 24 h later
and sections were stained for eosinophils using an antibody to MBP. The results are
expressed as the numbers of positive ceUs per mm of airway basement membrane and are
means ± SE (n =5). Differences among groups were evaluated by one-way ANOVA with
Dunnett's test as a multiple comparison method.•, p < 0.01; *., P < 0.005.
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4.1. Discussion

Evidence for the contribution of the eosinophil and eosinophil-derived Mediators to

the pathophysiology ofvarious disorders, such as asthma., is increasing. While eosinophils

may be present to varying extents with other cell types, including neutrophils,

lymphocytes, and monocytes, the mechanisms whereby eosinophils, whieh eonstitute a

small minority ofcireulating blood leukocytes, are recruited in large numbers into tissue

sites is not completely understood. Eosinophil recruitment into sites of inflammation

involves adhesion and transmigration through the endothelial barrier, a process that cao be

regulated by differentiaI expression of adhesion Molecules. This process, in tu~ is

coupled to local production ofchemotaetic factors that promote tissue migration of

eosinophils.

The original recognition that diffiJsates ofsensitized guinea pig and human lungs,

following challenge with specific antigen, contained an aetivity (eosinophilic chemotactic

activity ofanaphylaxis (ECF-A]) that elicited chemotaxis ofeosinophils (340), but not

neutrophils, stimulated the search for chemoattractants that would aecount for the

selective reeruitment of eosinophils to sites ofallergie reaetions. Sinee the~ experimental

data has demonstrated that a variety of Mediators display chemoattractant properties for

eosinophils and May be involved in the infiltration of these cells into tissue. A number of

eosinophil attraetants have been described in the past including CSa (341) and PAF (39)

which, although not specifie, have been shown to be potent and efficacious eosinophil

chemotaxins in vitro. Recently, a number ofC-C chemokines, notably eotaxi~ have been

shawn to be patent eosinophil chemoattractants and cenainly are critical Mediators in the

accumulation of these cells in tissues. However, it would seem unlikely that a single

mediator is responsible for this phenomenon. For example, disruption of the eotaxin gene

in mice (342), or administration of antibodies to eotaxin (304) only partially inhibited the

recruitment ofeosinophils into the ailWays after antigen challenge of sensitized mice.

Panial inhibition of antigen-induced pulmonary eosinophilia was also observed following

treatment ofmice with antibodies against either MIP-la or RANTES (343). The absence

ofa single agent that funetions solely as the predominant eosinophilic chemoattractant is in

accord with the growing evidence that severa! chemoattractants May be responsible for
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this preferential accumulation ofeosinophils in tissues. These chemoattraetant molecules

May act in concert to stimulate eosinophil migration either in series or in parallel.

Apart trom the polypeptide-like chemotaxins mentioned above, lipid Mediators

aIso appear to be important physiological Mediators ofeosinophil migration in various

species both in vitro and in vivo. For example, a study by Sehmi et al, (349) identified

LTB4 and 8(5), lS(S)-diHETE (IS-HETE dioxygenated produet) as the ECF-A ofguinea

pigs. but neither of these was specifie for eosinophils in comparison with neutrophils.

Schwenk et al, (344) reponed that incubation ofsoybean lipoxygenase with AA led to the

formation of the oxygenated derivative of5, 15-diHETE (IS-LO product), S-oxo-15­

HETE. They reponed that tbis eicosanoid is a more patent chemotaetic lipid for human

eosinophils than either LTB.. or 8(S), 15(S)-diHETE. More recently, a comparison of

eosinophil chemotaetic activity of several strueturally related eicosanoids led to the

conclusion that maximal potency and efficacy ofeosinophil-chemotactic activity is present

in S-oxo-ETE (10).

Funher evidence for a role of eicosanoids in eosinophil recruitment cornes from

studies using synthesis inhibitors and receptor antagonists. 5-LO inhibitors have been

shown to inhibit the infiltration ofthese cells into the airways in humans (145, 345) as weil

as other species (142, 346) , and tbis may contribute to the beneficial effects (347) of these

agents in asthmatics. Moreover, antigen-induced eosinophilia was dramatically reduced in

mice lacking the normal 5-l0 gene eompared to control antigen-challenged mice (170) .

Antigen-induced pulmonary eosinophilia was blocked by the 5-LO inhibitor PF 5901, but

not by the LTB.. antagonist PF 10042 in guinea pigs (160) . Sephadex·induced pulmonary

eosinophilia was strongly inhibited in the BN rat by Zileuton, another 5-LO inhibitor

(143). Neither the LTB.. antagonist CGS-2501ge nor the cys-LT receptor antagonist MK­

476 (Montelukast), except at high doses when it also inhibited the formation ofLTs. were

capable of reproducing the effect ofZileuton on eosinophil infiltration (143). These results

raise the possibility that a S-lO product other than LTB4 or the cys-LTs is involved in

eosinophil recruitment in these animais. It is possible that 5-oxo-ETE could fulfill such a

role. Powell (10) and others (128, 348 have shawn that S-oxo-ETE is a potent

chemoattractant for human eosinophils in vitro. However, it was not previously known
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whether this AA Metabolite is also active in vivo. or indeed whether it is active on

eosinophils iTom species other than humans. Ta answer this question we chose the BN rat

as the experimental animal because it is has been used as a model ofhuman asthma (291)

and displays marked accumulation of eosinophils in the lungs in response ta antigen

challenge (76).

Our results c1early show that intratracheally administered 5-oxo-ETE induces the

accumulation ofeosinophils in the lungs of BN rats in a time-and dose- dependent manner.

Between 15 and 24 h following treatment of rats with 5-oxo-ETE, the levels of

eosinophils in the lungs were approximately 5 to 6 times that in control, vehicle-treated

animais. This is the tirst report that 5-oxo-ETE has biological etfects in vivo. The etfect of

S-oxo-ETE on eosinophil infiltration was highly reproducible, although there was sorne

variability in the fold increase over control among the different experiments. This was due

in large part to the variability in the mean numbers ofeosinophils in control lungs in the

different groups, which varied between 1.S and 3. 1 cells/mm basement membrane,

presumably due to biological variability among the ditferent rats. In comparison the Mean

numbers ofeosinophils in the lungs of 5-oxo-ETE-treated animaIs varied between 10.1

and 13.2 among experiments.

Other 5-LO products have also been reported to be active as eosinophil

chemoattractants in humans and other species. LTB4 is oot very effective in stimulating

human eosioophil chemotaxis (10) but is a potent chemoattractant for guinea pig

eosinophils, both in vitro (349,350) and in vivo (76), and aIso stimulates the accumulation

of these cells following administration to BN rats by aerosol (76). Moreover, the LTB..

antagonist LY255283 was found to partiaIly block antigen-induced pulmonary

eosinophilia in both BN rats and guinea pigs (76)./n vitro binding and chemotaxis studies

(76) characterizing the antagonist LY255283 have shown that it produces a potent and

dose-related inhibition ofchemotaxis (1050 2.4 J,LM) ofguinea pig eosinophils in the

presence of LTB.. with an 80% inhibition at 10 J.,LM. However, aIthough this antagonist is a

good inhibitor of the actions of LTB4, it has been demonstrated that at higher

concentrations it can also partiaUy inhibit 5-oxo-ETE-induced responses ( 13 1). There is

aIso evidence that cys-LTs have chemotactic etfects on human eosinophils in vitro (207),
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although Powell et al., have found them to be far less active than 5-oxo-ETE in this

respect (10). LTE" bas been reponed to cause eosinophil infiltration ioto the airways of

human asthmatics (117), whereas in vivo administration of LID.. was shown to induce the

accumulation ofthese cells in guinea pig conjunetiva (351). funhermore, the cys-LTl

antagonist ~-571 partiaily inhibited antigen-induced eosinophil infiltration in guinea pig

conjunctiva (351). It is not clear whether the effects ofcys-LTs on eosinophiI

accumulation in the above studies were due to a direct action on eosinophils, or whether

these agents stimulated the release ofother mediators such as PAF or 5-oxo-ETE. Cys-

LTs are known to stimulate the release ofeicosanoids (352) and PAF (353) from various

tissues and cells, and it is thus quite possible that their in vivo chemotaetic effects could be

mediated by an indirect mechanism.

A comparison of 5-oxo-ETE to other lipid Mediators as an eosinophil

chemoattractant suggests that in humans it May be the Most significant eosinophil

chemoattractant among tbis class of substances. Powell (10) and others (128, 348) have

demonstratedthat 5-oxo-ETE is considerably more active than 5-oxo-15-HETE, PAF or

any of the LTs in stimulating chemotaxis ofhuman eosinophils in vitro. The present study

suggests that in rats in vivo it is also much more effective than the cys-LTs and May be

somewhat more effective than LTB.. in inducing pulmonary eosinophilia. 5-Oxo-ETE and

PAF, unlike with human eosinopbils. are equipotent in stimulating pulmonary eosinophil

infiltration in the BN rat.

As discussed above, there is ample evidence in the literature suggesting that there

are interactions between LTs and PAF (169) and imply that sorne oftheir effects May be

indirect. LTs are known to stimulate the release ofeicosanoids (352) and PAF (353) from

various tissues and cells. PAF. in tu~ cao Mediate sorne of its etfects through the

subsequent release of 5-LO products. At least part of PAF-induced bronchoconstriction

can be blocked by specific cys-LT antagonists (51). Moreover, Chen et al., in studying the

mechanism of PAF-induced shock, have shown that 5-LO knockout mice are much more

resistant to the lethal effects of PAF than control mice (168) . The data presented herein

c1early demonstrates that the chemoattractant etfects of 5-oxo-ETE are not mediated by

subsequent release ofLTB4 or PAF. Concentrations of the antagonists LY255283 and
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WEB 2170. that were able to significantly attenuate the LTB..- and PAF-mediated effeets

respeetively, had absolutely no etfect on eosinophil recruitment induced by 5-oxo-ETE.

Moreover, il would seem unlikely that 5-oxo-ETE acts via cys-LTI receptors, since LID..

and LTE.. did not appear to induce eosinophil infiltration in the present study. This lends

further support to previous in vitro experiments which suggest that 5-oxo-ETE aets

through a putative specific receptor distinct from the LTB.. or PAF receptors. The

development ofantagonists and inhibitors for 5-oxo-ETE would help to answer tbis

question.

Blocking certain adhesion receptors with mAbs effectively supresses the effects of

lipid Mediators on leukocyte adhesion and recruitment. For example. in an animal model.

mAbs against (32 integrins, ICAM-l and E-seleetin. but not against P-selectin, have ail

been shown to significantly attenuate LTB..- and PAF-induced leukocyte endothelial

adherence and transeodothelial migration (354). Thus there is an interaction between lipid

Mediators and the specific cell adhesion molecules involved in the process of tissue cell

recruitment. Our findings that mAbs to LFA-l and VLA-4 strongly inhibit 5-oxo-ETE­

induced pulmonary eosinophilia indicate that these integrins May be required for this

response. Furthermore, due to the mode ofadministration (intravenous injection) of the

mAbs, these results suggest that the response to 5-oxo-ETE is due to the entry of

circulating eosinophils ioto the lung. However. it is not clear whether these mAbs to the

integrins are inhibiting 5-oxo-ETE-induced effects on the endothelium or in the bone

marrow, since these adhesion molecules have also been implicated in the interactions

between progenitor cells and stroma! ceUs (230,23 1). This could be answered in future

experiments where progenitor cells and mature eosinophils are quantitated in the bone

marrow and peripheral blood following 5-oxo-ETE treatment. Nevertheless. the

importance of LFA-l and VLA-4 is in agreement with previous findings showing that

these integrins are required for allergen-induced infiltration ofeosinophils into the lungs of

sensitized BN rats (296, 298) . In contrast., Mac-l appears to play a relatively minor raie

in 5-oxo-ETE-induced eosinophil infiltration, in spite of the faet that our laboratory has

recently found that this compound stimulates the sunace expression of Mac-) on both

human neutrophils (133) and eosinophils in vitro. The modest etfect ofanti-Mac-I on 5-
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oxo-ETE-induced eosinophil recruitrnent in rats is in accord with recent findings with

neutrophils showing that migration of these ceUs into the peritoneal cavity is not impaired

in Mac-l-deficient mice (355) Thus, although Mac-l may be important for certain aspects

of neutrophil (355) and eosinophil activation and adherence, it May not be a critical

requirement for the infiltration of these ceUs ioto tissues. Integrins involvement in cellular

activation has been confirmed by several studies (226, 227, 228, 229). The integrin Mac-l

mediates human eosinopbil degranulation and respiratory burst caused by GM-CSF and

PAF in vitro (227).

There are several studies (290, 298) that cao demonstrate that mAbs to the a4­

subunit integrin can black lung pathology without blocking leukocyte recruitment. This

raises important issues about the mechanism ofaction of these mAbs which have been

selected on the basis ofblockade of adhesive function ill vitro. There is evidence that

adhesion molecules, panicularly integrin receptors, have transmembrane signaling

properties that Mediate ceU activation. Several reports suggest that LFA-l and VLA-4

integrins May act as costimulatory molecules in eosinophil and T cell activation (226,

229). Another study has shown a reduetion ofPAF-induced EPO release following

treatment with anti-VLA-4 mAb (290). A recent study by Munoz et al (228) demonstrates

that inhibition ofeosinophil binding to fibroneetin-coated plates via pretreatment with

mAb against VLA-4 inhibits the secretion ofLTC.. and luminal narrowing ofexplanted

human bronchi in vi/ro that is normally seen following PAF stimulation. Clearly,

pretreatment with mAbs against adhesion molecules has the potential to interfere with

cellular mechanisms that are not directly related to cell recruitment_

Another problem is the use ofmAbs against integrin subunits. An example of tbis

is the TA-2 mAb against the a4 subunit. This subunit cao associate with J31 or p7 chain to

forro integrin a4J31 or a.4J37 respectively_ Both integrins are found on eosinophils and both

can bind VCAM-I and fibronectin. The integrin a.4J37 can additionally bind MadCAM-I

found in the gut lymphoid tissue (303). These overlapping functions and structural

components ofa.4 integrins and their counter-receptors further complicat~ the

interpretation of in vivo studies utilizing blocking mAbs to the a4-integrin subunit.
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Increased availability ofmAbs to ail components ofadhesion molecules and/or pathways

will c1arify these issues in the future.

As reviewed in the previous sections, it is clear that 5-oxo-ETE is a potent

aetivator ofeosinophils in vitro. Moreover, tbis compound induces rapid changes in the

expression ofadhesion molecules on human eosinophils, including upregulation ofMac-l

and shedding of L-selectin. This would suggest that the in vivo etIeets of this substance

reponed in the present study are due to direct effects of 5-oxo-ETE on eosinophils.

However, although increased numbers of eosinophils were apparent at the earliest time

point investigated (6 h), the time required to reach the maximal response to S-oxo-ETE

was rather long (15 h). Therefore, other mechanisms such as interactions with cytokines

or chemokines cannat be ruled out. In facl.. GM-CSF has been shawn to potentiate S-oxo­

ETE-induced degranulation in eosinophils (128). Similarly. 0..-5 has been shown to

enhance the chemotactic responses ofeosinophils 10 LTB.. and PAF (223) . Further,

pretreatment with a mAb against IL-5 was demonstrated to antagonize LTD4-induced

eosinophilia in guinea pig lungs (119). Cooperation between cytokines, such as IL-5 and

GM-CSF, and 5-oxo-ETE, in inducing eosinophil recruitment into the airways, may be of

physiological relevance in asthma.

It is known that cell activation by cytokines May potentiate release of eicosanoids

and vice versa. Cytokines such as IL-3, IL-S and GM-CSF prime eosinophils for increased

LTC.a production in vitro (356,357). Moreover, 5-LO products have also been implicated

in cytokine synthesis. For example, LTB" promotes the syothesis ofIL-2, IL-4, and IL-S

by human T cells (82, 83, 84) ofIL-6 by monocytes (85) and ofIL-8 by human

neutrophils (86). [n human blood mononuclear cells, a 5-LO inhibitor blocks, not ooly the

synthesis ofLTB.a, but also the expression ofIL-2 and IL-6 (358). AIthough the

involvement ofcytokines in 5-oxo-ETE-induced eosinophilia in the BN rat was not

investigated in tbis study, the in vitro data by other investigators suggests that there may

be synergy between cytokines and 5-oxo-ETE and this should be investigated in the

future.

As suggested earlier. there may also be sorne interactions between 5-LO products

and chemokines, such as eotaxin, RANTES, MCP-3 and MIP-la in regulating eosinophil
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migration in vivo. There is evidence that the metabolism of AA is implicated in monocyte

chemotaxis. For example, a synergistc interaction exists between PAF and C-C

chemokines for bath ofcPLA2 activation and chemotaxis (359,360). Eotaxin and other

chemokines have been shown to stimulate the release ofeicosanoids from basophils (307

). Moreover, 5-oxo-ETE was reponed to enhance migration of monocytes in response to

the chemokines MCP-l and MCP-3. (129). The synergistic interaction between 5-oxo­

ETEs and C-C chemokines may be relevant in the regulation ofeosinophil accumulation at

sites ofallergie and inflammatory reaetions. The recent study (3 17) demonstrating that

mice treated with zileuton prior to eotaxin administration showed a significant attenuation

ofeosinophil accumulation in the peritoneal cavity suggests that eotaxin may be acting in

series with 5-LO products in the recruitment ofeosinophils. Inhibition of 5-LO aIso

attenuated ill vitro chemotaxis ofeosinophils induced by RANTES (318). Chemokines,

such as eotaxin, May be aetivating eosinophils to release these products or make

eosinophils more reactive to them.

In summary, the data suggests that eosinophil recruitment into tissue involves the

cooperation of different classes of Mediators, such as 5-LO products, chemokines and

cytokines. This in fact, would he more retlective of human diseases characterized with

eosinophil recruitment, where many ceUs and Mediators with overlapping effects have

been implicated.

In conclusion, S-oxo-ETE is a potent activator of human eosinophils in vitro and

induces their accumulation in the lungs ofBN rats in vivo. These results raise the

possibility that this compound May be an important physiological Mediator of eosinophil

infiltration in asthma and other diseases in which these eeUs are a distinctive feature. This

hypothesis could he addressed by the development of specifie 5-oxo-ETE antagonists.
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4.2. Claims to Original Researcb

1. This thesis presents the tirst published data concerning the in vivo effeets of 5-oxo-

ETE in any species.

2. The most imponant contribution ofthis work is the discovery that 5-oxo-ETE,

induces pulmonary eosinophil infiltration in the BN rat, raising the possibility it may be an

important physiological Mediator of inflammation.

3. The in vivo etfects of 5-oxo-ETE appear to be specifie and are not mediated by

LTB4 or PAF reeeptors, suggesting that it May interact with its own receptor on

inflammatory cells.

4. 5-0xo-ETE-induced eosinophil trafficking in the rat Jung is dependent on the

integrins VLA-4 and LFA-l. Although these integrins have been previously implicated in

airway eosinophil recruitment, this is the first demonstration that they are required for the

response to 5-oxo-ETE.
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4.3 Conclusion and Future Considerations

As discussed earlier, experimental evidence suggests that lipid Mediators May play

a key role in eosinophil migration into intlammatory sites. The results presented herein

suggest that 5-oxo-ETE could be a significant eosinophil chemoattraetant within tbis c1ass

of compounds. lndeed 5-oxo-ETE is not ooly a potent chemotaetie agent ofhuman

eosinophiIs in vitro, but also induces their accumulation in the lungs ofBN rats in vivo.

Intratracheal administration of 5-oxo-ETE into the lungs ofBN rats induces accumulation

of pulmonary eosinophils in a time- and dose-dependent manner. Furthermore, 5-oxo-ETE

appears to be a lot more effective than LID.. and E.c and somewhat more effective than

LTB4 in inducing eosinophil recruitment in the BN rat Jung. Moreover, this 5-oxo-ETE­

induced effect is dependent on VLA-4 and LFA-I integrins and independent of LTB.. or

PAF receptor-mediated mechanisms. AlI these results support the hypothesis that 5-oxo­

ETE may be a very important physiological Mediator of inflammation, although more

experimental evidenee is needed to confinn tbis.

A very important issue that needs to be addressed is whether 5-oxo-ETE is

involved in any physiologica1 intlammatory processes such as asthma. Three main lines of

evidence would support a role for 5-oxo-ETE in asthma. First, it should be identified in

the lungs or BAL fluid of allergie animal models, as weil as asthmatics. Second, it should

mimic sorne of the charaeteristic features ofasthma in humans. Third, bloeking the

formation of tbis compound or antagonizing its effect should have a beneficial role in

asthmatic patients. A tool that cao be used to detect 5-oxo-ETE in BAL fluid ofastmatics

is electrospray mass spectrometry. In fact, Hall et al., (361) have recently demonstrated

that tbis analytical tool can he used for deteetion of 5-HETE, 5-HPETE and 5-oxo-ETE.

formed by activation of AA. This method could potentially be used to quantitate 5-oxo­

ETE in BAL fluid ofasthmatics. Next. the effects ofaerosolized 5-oxo-ETE into

asthmatie lungs could be investigated, as has been done for LTE.. (1 17), to see whether it

can reproduce the effects seen in the BN rat lung. In order to investigate the outcome of

inhibiting the formation or antagonizing the effects of tbis compound both the enzyme

responsible for its syothesis as weil as its putative receptor need to be further

characterized. It may be possible to develop inhibitors to the dehydrogenase responsible
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for the formation of 5·oxo-ETE. By charaeterizing the 5-oxo-ETE receptor it May be

possible to synthesize an antagonist and test its effects of eosinophil recruitment in

asthmatic airways.

Before going on to confirm the effeet of 5-oxo-ETE in m~ it will be necessary to

accumulate as much information as possible on the etfects of tbis putative Mediator on

cells. tissues and in vivo animal models. The in vivo findings presented here, as well as

prior in vitro findings, suggest that 5-oxo-ETE could promote the adherence of

eosinophils to endothelial ceUs and/or transendothelial migration. The etfect of 5-oxo-ETE

on eosinophil adhesion and migration could be tested using endothelial cells grown on

culture plates or on Transwell inserts and compared to those ofother agonists. The

requirement for different eosinophil integrins in these processes could then be determined

by using mAbs to black them. As discussed earlier, various cytokines and chemokines also

aetivate eosinophils and it is important to investigate how they May interaet with 5-oxo­

ETE in terms of eosinophil chemota.xis. adherence. and transendothelial migration.

ln conclusion, although the findings presented here suggest that S-oxo-ETE May

be a potent eosinophil-chemoattraetant. funher evidence is c1early required to demonstrate

that it has a physiological role in recruitment of this cell type in asthma. This information

may be of major imponance in understanding the complex relationship between eosinophil

recruitment and the pathogenesis ofasthma and in tum help develop therapeutic strategies

to prevent the pathological eosinophil influx into the asthmatic lung.
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