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) 4 ’ Abstract

o

The present work is deyoted to two distinct aspects Q‘f Kadomtsev-Pétviashvili (KP)
like differentiai systems. In the first part of this work we analyze the symretry structure of
the classical KP equation. Starting from its mﬁmte-d:mcnsnonal Lie algebr of invariance,
Lyp, we derive several results. First we show that Lgp exhibits a hidden loop structure;
inded, its "analyt1c component can be embedded into a Kac-Moody Ibop algebra constructed
from sl(5,R). “This renfarkable propert.y which e discovered for the KP equauon was
tffterwards also observcd for other integrable 2-dimensional (in the ‘'space coordmates)
nonlinear evolution cquations Second, we procged to complete’iy classify its 1, 2, and 3
dimensional subalgebras into cqulvalencé classes under the adjoint action of the
correspondmg Lie group GKP Third, we use the one- dxmensmnal ohes in order to perform
symmetry reduction on the KP equation; we show that this equanon is rcduc1ble to one of
three sinipler equations in one space, dxmensmn, namely the Boussinesq cquatlon the KdV
equation, and a linear second order equation. Fromn these reduetl.ons we get spetial invariant

.solutions of the KP equation. Fourth, we consider the coupled ‘systcm formed of the KP
equation in its potential form together with the asseciated Béicklund transformation and we
‘apply the symmetry reduction method to this system. This novel way of applying this
technique yields an in\teresting group theoretical. interpretation for the sp;:ctral parameter

appearing in the Lax pair associated with the KP equation. The method also yields several

explicit nontrivial solutions of our ongmal equation, among them a special forklike solution
related to so-called soliton resonances. The second part of this thesis is devoted to the

presentation of a model for describing the propagation of solitary waves through nonuniform
channels or strmts More specifically, we attack the problem of the existence of integrable
equations for descnbmg this propagatlon Usmg a standard multlple scaling technique we
first derive a quite comphcated equation which we call the generalized KP (GKP) equation,

whose coefficients are functions depending on the geometry ¢f the propagation medium; this
equation, in its generic form, is not integrable. We then look for special transformations of
the dependent and independent variables which, under certain restrictions on the geometry of
the straj¢ and the vorticity, reduce the GKP equation to simpler equations that are known to
be integrable, for instance the pure KP, KdV, or cylindrical Kd{/_ equations. Having
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, ~"specified these transformations, we then proccé.d to construot some exact solutibns which
represent curved (with respect to the transverse direction) solitary waves moving over special

) gcqphysical cp,l}ﬁglirations. Finally we examine some of the conservation laws associated to,
. the GKP equation. - ;
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Lo i Résumé ‘ P

. La présénte thése est consacrée A I'étude de deux aspects de'systemes différentials du
type Kadomtsev-Petviashvili (KP). Dans la premigre partie nous analygons la structure de
syrgétrie de I'équation KP classique. A_ pariir de la donnée de son algebre infini-
dimensionnelle de symétrie Lyp; nous dérivons plusieurs résultats. Nous montrons d'abord
"que sa composante "analytique" peut étre plbngée dans une algebre de lacet construite sur
I'algebre sl(S R). Ceci constitug 'une propriété remarquable qui s'avéra ultérieurement étre

. également partagée par d'autres équation$ nonlinéaires de type évolution & deux dimensions
spatiales. -Nous ‘classifions ensuite les sous-algebres de Lgp a1, 2, et 3 dimensions en
classes de conjugaison sous l'action adjointe du groflpe de Lie Ggp correspondant. Nous

. uti}i's"ons ¢elles a une dimension et appliqudns la méthode de réduction par s‘ymétrie sur
I'équation KP; il est montré que cette équation peut étre réduite  l'une de trois équations plus
éimples a une dimension d'espace: les équations de Boussinesq et de Kortcwcg de Vries,
ainsi qu 'une équation linéaire du second ordre. Nous considérons enfin le systéme formé de
l’équatlon KP sous sa forme potentielle et de la transformation de Backlund qui lui y est

)
R,

associée, et nous appliquons de nouveau la méthode de réduction par symétrie. Cette
nouvelle fagon d'appliquer cette technique amene une interprétation intéressante, en termes de
groupe, du parametre spectral qui apparait.dans laipaiire de Lax associ€e a I'équation KP. La
méthode nous permet aussi de construire plusieurs solutions explicites exactes de notre
équation originale; en particulier, une solution apparentée aux solutions solitoniques de type
ré®nnant est trouvée: La secondc partie de cette thése est consacrée 8 un modele décrivant la
propagation d'ondes sohtalres daps:des canaux & géométrie non-uniforme. Nous considérons
a p0551b111té d'utiliser des équations intégrables pour décrire cette propagation. Utilisant une
méthode standard de changeménts d'échelles multiples, nous dérivons une équation
compliquée que nous appellons 1'équation généralisée de KP (GKP) dont les coefficients
dépendent de la géométrie du mlheu de propagation; sous sa forme générale, cette équation
n ‘est pas int€grable. Noas essayons donc de construire des transformations des coordonnécs
qul, sous certaines hypothéses sur la géométrie du canal et sur la vorticité, rédmscnt
‘I'équation GKP a des éqliatiéns que nous savons €tre intégrables, telles les kéquations KP,
KdV et KdV cylindrique. Enfin, nous construisons quelques exemples de solutions exactes

N
.
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: ) qui représentent des ondes solitaires courbées (par rapport 2 la direction transverse 2 1a ,
- direction principale de propagation), Nous terminons en jetant un bref regard sur-les lois de
conservation qui sont associées a. 1'équation GKP. ’
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Systems of ‘partial dlfferentlal equations (PDE'’s) have always been of prxme
importance in theoretical physics. Indeed they form the very adequate mathematical
'formulatlon needed in .order to describe the time évolution or space distribution of
continuously varying functions representing the physical reality. Accordingly they- appear in :
every branch of physics, from classical mechanics to quantum field theor'ies \and r'elativistic
mechamcs, electrodynamics, hydrodynamics, etc... In fact, the foundations of all these fields
essentlally lay upon some particular differential system (Hamilton equations, Schrodmger I
and Dirac equations, Naviér-Stokes equations, Maxwell equations, Yang- Mxlls equations, 2
etc...) and most of our physical knowledge has been gained following a systemauc study and ~
analysis of such systems. Further, it j§ now becoming very- obvious from the currenit
research that real-life physics, as opposed to academic physics, is, for Better or worse,
genuinely nonlinear. 1t i$ therefore an ﬁrgent task for mithematici,ans and physicists to
' understand better the structure of nonlinear systems of partial differential —equations and to
devise ways of solvmg such systems. Important progress has been achieved d’brmg the last
decade or so (e.g. in nonlinear opucs, nonlinear field theories, nonlinear h)‘/drodynamxcs

etc...), but clearly much rem{lns tobé done. .
- . . ’ . s\

From a historical point of view one had to wait until our-century to acknowledge the -
' birth of a formal theory of differential equations because the mathematical concepts
underlymg this theory were not all seen correctly, or set upon a proper basis, before this
tJme A typical example example reflecting this situation is our understanding of the structure
of the set R of real numbers for which the important step had been undertaken by Dedekind
when introdﬁcing the c))n'cept of cuts which was ind¢ed necessary in‘erder to consistently
understand limits, derivatives, and continuity for functions. In spite of this, it is interesting to
look back at the efforts made by mathiematicians back in the 19th century. MoreSpecrﬁcally,
it is worth noticing that differential equations were then considered in some way as
representations of geometrici loci, just as algebraic equations were seen as defining intrinsic
algebraic curves and surfaces. In this geometrical ps’rceptlon were hidden the concepts of
differentiable and algebraic manifolds wlﬁ'h are now considered to be fundamental as to our

s
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. ability to lay out the formal foundations for.the modern study 6( equations. Manifol-ds, in
their mbdet{n meaiing, were first introduced by Cartan (see CARI)'. ‘As an example, any
student undertzking an introductory course.on differential equations learns that the ordinary
‘differential equation x +yy' =0 has circles as its iniegral curves;.indged the.integral (or
solution) manifold associated to this cquation is a one real positive parameter fg‘gily of circles
%% +y2-a? =0 with a% = K; i.e. a §! x R _structure coordinatized by (t,a}, with x = acos(t) *

and y =asin(t). This correspondence_bctween (syEtems of) differential equations and

geometric sets is indeed universal and its itportance is to be emphasized when studying
nonlinear differential equations. The recent deyelbpment$ in thé thieory of such equations
- acknowledge thisepoint very clearly. ) *

The culminant paints of the old gc'ome;n'c theory of differential equations were reached
with the works of Sophus Lie, A.V.VBﬁckluan (circa 1875), and later on (1918) of Emmy
Noether; the key results actually bear Lie's signature. In fact Lie's first achievements, namely
the role played by the groups afterwards named after him, were so fundamental that he spent
his whole remainingym’athem’atical life pursuing their study and applications. Li¢ groups, or

_groups of continuous tfansform##ons, 4re Yow well known to physicists who use thern, for
instance in uying ;_o comprehend the nature of the fundamental forces, as starting points for
elaborating unified field thedries; e.g. cqnsider the so-called electro-weak me?ry based on the

gaugg group SU(2) x U(1). However physicists mostly use the abstract classical Lie

' groups taken from Cartan's classification which have, as-it is well known, all kinds of very

nice properties but often forget about the origins of these groups,(namely that they were first-
introduced in the context of differential equations as groups of geometrical transfofmations.
Although Lie mainly preoccupied himself with ordinary differential systems (i.e”depending
on a singlg independgnt va;iable) of first and second ord&, most of the groupt theoretic
features of partial di{ferential systems still take their origin in one or another 9f his pa ers.

The implicit initial goal of Lie was to obtain for differential systems the equivalent of

what is known as Galois theory for algebraic equations, but we had to walt for Vessio‘t'and
* Picerd to see a first consistenf/é;po‘si_tion of such a theory. His principal construction was «
that of groups-of surface transformatiqx? mely contact (or first order tangent)

« transformations, pregérving the form of a differential system of order 2 (see LIE1); in ~

< ‘
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modern language these were local groups of diffeomorphic mappings acting on the integral *
(or solution) manifolds (actually their prolongations to some.Jl-vbun;lles) of these given
differential systems. He naturallSI raised the questlon about. the possible existence of
higher-order invertible tangent transformation groups. This was answered by Biickiund who
proved that groups of finite higher-order tangent transformations are trivial, in the sense that
they are just differential prolongations of groups of first-order tanggnt transformations (see
BACI). However he also proved that there exist éroups for which tangency of infinite ordeY
is indeed an invariant condition; the transformations bélonging to such groups are now called
Lie-Bicklund tangent transformatjons. Lie and Bicklund later showed that the generalization
of first-order tangent transformation groups is attained by considering many-valued surfac;:
transformations (see LIE2 and BAC2). This yielded what is now called Bicklund (or
Schlesinger) transformations which have gained much popularity in the past ten years or so-
At the level of differential systems, these transformations, although they should rigorously .
be termed correspondences, map solutions of a given system to solutions of another system,
possibly the same one. In the latter case, these transformations provide a very powerful mean
for constructing infinite families of non-trivial solutions to a priori somewhat difficult
nonlinear systems, for instance (multi-)soliton solutions, thus explaining the gr::at resurgeficé
of interest towards these transformations. . . a\_ '

From an applied point of view the knowle&ge of the $ymmetry group of a given('
. differential system is very useful, and L'(c pcrcexvcd that also. In fact one can notice that he
laid down the basis for the general procedurc of ﬂndmg tHe invariants of a symmetry group,
as well as for the method of finding solutions by so/l,vi“ng au‘xmary reduced gquations (3ee
LIE3); this method is now better-known as the symmetry reduction technique and will be one
of the principal tools used in/t’he present work. As modern texbegks on Ijx:c gioups and
differential equations, let us menuon the works of Ovs1anmkov in the late fi fties which gave
the impetus to this method (see e.g. OVS1), the classic book%y Bluman and Cole (see
BLU1), and the paper by Olver which recasts the method in its dlfferennal-geomcmg setting

/

in terms of jet bundles (see OLV1). . .
r

*

The other important niilestone was reached with the works of Emmy Noether and two
. results are especially worth mentioning (see NOE1). The first is her extension of Lie's and
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Bicklund's search for groups connected with differential systems. She laid down the basic
structute of what ar¢' now known as generah;zed symmetries. Tl;lesuc symmetries are often
confused with Lie-Bicklund symmetries but are really technically different (see OLV2, pp.
365-366; for a comprehensive treatment of the so-called Biéicklund problem and its possible
generalizations see GOUL). The second result accounts for what Noether is most retognized,
namely for establishing the connection between symmetries and conservation laws for
differential systems derivalgle from some variational -principles. In fact she provided a
procedure for calculating th'é: conserved q.uantitie_s associated, to bath Lie point symmetries
and generalized symmetries. An example of a conserved quantity associated to a non-trivial
generalized symmetry that is knc;wn since a long time, but was at first not connected to such
a kind of symmetry (or to any symmetry at all), is the'so-called Laplace-Runge-Lenz vector
encountered in the problem of planetary motion as well as the Schrédinger problem for

hydrogenoid atoms.

The secorid half of the sixties saw the 6ncomin g of a new era concerning the study of
ngrﬂinear systems of partial differential equattiéns which, it goes without saying, are much
x}loxie difficult to z‘malyze for various reasons. An important p?er to mention is that of
Gardner et al. (see GARI1) where the Cauchy problem for the now famoug Korteweg-de
Vries (KdV) equation wassolved by considering a linear problem. The point was that a KdV
solutionlcan be related to a potential for the liné'ar Schrodinger equation and that the invirse
problem’ for th_is equation, namely the reconstruction of the potential from a given set of
scattering data by solving a Gel'fand-Levitan-Marchenko type integral equation, does yield
solutions to the KdV equation. In fact the remarkable obseryations made in this paper are the

following ones. Fkéi, the KdV equation can bé rewritteyin the form of a Lax equation L'="

[L;Al, whete L is a Schrddinger operator L=u(t,x)-4,,, and A=449,,, - 6ud, - 3u,, "u"

Yeing a solution of the KdV equation. Secon.d, the non-gonstant part of the scattering data,
namely the reflection coefficients for the Schrodinger spattering problem, obey simple linear
differential equations with constant coefficients. This procedure later proved to be applicable

.10 other equations, for instance the nonlinearcubic Schrodinger equation. Thereafter the now

famons Zakha:ov-Shabat—AkNS’ (Ablowitz, Kaup, Newell & Segur) method of the "Inverse
Scattering (or Spectral) Transform" (IST) was devised and proved itself to be very powerful
as a means of solving the Cauchy problem for a large class of nonlinear equatidas of

\ . !
. . .
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evolution type having imponaht appiications in theoretical physics (see ABL1; CALI1; ECK1; v
NOWV 1, chapter 1). Let us mention the Sine-Gordon equation, the Kadpmtsev-Petviashvili ) |
(KPyequation which we study in the present work, the modified KdV equation, etc... ~

* It was later realized that the IST method had a deep connection with the theory of
7 complex functions on the Riemann sphere. In fact, the very heart .of the méthod is the
classical Riemann-Hilbert-Privalov (RHP) prablem of decomposing a given function F,
defined on some contour ', as a product of two functions F, and F,, respectively
. holomorphic inside and outside of I'. V.E. Zakharov and A.V. Shabat noticed that a
) particular case of the matrix RHP problem called thc problem with zeroes, makes it possible
o recast_the IST method into a completelyhlgebraic procedire which is known as the
Dressing Method (see ZAKi; NOV1, chapter 3). According to this scheme, it is possible to
‘integrate nonlinear differential systems which are expressible as compatibility conditions for
a linear system ¥, =UY, ¥, =V'¥, where U and V are some matrix fields; the procedure
then consists in the construcnon of a Bicklund transformation having the form of a gauge
( . transformation W' =¥, U'=(qU + x )¢ Lv=(V+ xy)x , where it is ‘required that the
matrices U' and V' be characterized by the same meromorphic structure as that of U and V.
This method, in its original formulation but also in a more recent and powerful scheme,
along with the go—callcd reduction method (not to be identified with the symmctry reduction
mentioned in a prevxous para;;aph see MIK 1), makes it very easy to find all the soliton type
solutions of a ngen, equation and has been applied to ‘numerous differéntial systems'such as
’ classical relativistically invariant spinor field theones, the Thirring mpdel and the class of
o-models dcﬁch over Riemannian syr'nmem‘c spaces (see ZAK3,4; DAVI;‘HAR2,3).

° —

Many other tools for studying vqr:ous aspects of nonlmear differential systcms also
) appeared during the last decade. Let us mention the prolongauon structires which are useful

: for constructing Lax pdirs (these are essential for pursuing with the IST method; see WAH1,

: DAYV2), algebraico-geometric methods ‘which are needed to solve the Cauchy problem for
pcriddic or quasi-periodic initial data (see NOV1, chapter 2), and the bilinear formalism of
Hirota. The latter is at the origin of the now very popular t-functions whi::h are quite
important in the recent works by the Kyoto School on infinite hierarchies of nonlinéar partial
differential equations based on'infinita-dimensional Kac-Moody groups (we shall come back

| G . _ I
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on that gubject later on). For a good compendium of all the recent ﬁndmgs and connections
betwec the many toels see NEW1. ~ '

~

The main topic of the present piece of work is the Kadomtsev-Petviashvili equation, or
KP for short. As its name indicates, it origihates from a. 1970 publication by B.B.

" Kadomtsev and V.I. Petviashvili (see KAD1). In this paper the authors recall ‘that the -

Korteweg-de Vries equation (hereafter denoted KdV) gives a good description of stable
nonlinear waves in weakly dispersive media, e.g. waves.in shallow water, iono-acoustic and
magneto-acoustic plasma waves, etc... In the hydrodynamical case, one considers mainly
velocity and pressure wavcs' They ask whether stability can be preserved for a solitary wave
with a weak bending dlstomon in the ransverse directidyg and indeed show that the correction
to the KdV equation must then be small and be. of the form -

u +uu +u cpx:tcuy=0, c>0, ’ ‘ r
‘

xxs"q)y’

where the signs "+" and "-" stand for negative and ;;ositivc dispersion, respectively. This is
the KP systerh, which is obviously equivalent to the single equation .

o . ‘

(u, +uu +uxxx) :l:cu =0. ‘ B T

It is this last equation which is known as the KP equation, up to some. rcscalmg of the
constant coefficients. The name was coined later, apparently by Manakov et al. (see
MANA1). Throughout this work we shall use a subscript notation for derivatives of
functlons, thus u, = d,u=0u/dx. The remajning part of KADI is devoted to stability analysis
for the case charactcnzed by phase amph%{hat are much smaller than the solitary waves'
widths, and by very large wavelengths. The result stated is that solitons of the KP system
show instability under transverse perturbations, but are stable otherwise. Further gtability
analysis, this time for periodig: waves obeying the KP system, is done by Petviaghvili, using

) Fourier transform methods (see PETV1). In the case of négative dispersion, he ‘shows that

the results of the previous paper still hold when g periodic wave tends to a soliton. However,
for positive dlspersmn it is shown that stability does not generally occur; for example,
olltons may be unstable under local perturbations near them. More recently a “modified” KP
equation was analyzed for weak negative dispersion; this cquatxon is obtained by replacmg
the uu, :erm of the above equations by a u2ux term (its relationship to the KP equation is

o
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similar to that"relaling the "modified" KdV equation to the KdV equation itself). Some
conservation laws were found and it was shown that the Local energy asymptotically vanishes
with time (see LIN1). - - ’ s

-

The KP equation reappears about three years after this last paper in a publication by _
Oikawa et al. (see OIK1) where the argumentatlon made in KAD1 is extended to a more
general situation. They actually look at the KP system in the context of studying th& effect of
a slightly undulated bottom on shallow water surface waves. In fact KP is a very natural
equation for describing such waves, as we shall see later. Next comes a paper by Dryuma
who announces the existence of a Lax pair for this equation and actually gives its expression.
KP is obtained as the Lax equation L, = i[L,Al, where L and A are operators given by ]

~»

S

“ . . eX .
L = 68“ - Vg‘ay + u(t”xr?’) ’ ) A = ‘4iaxjxx - iuax - ;— ux - —Z%EJ. uy-ld){
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for the ncgatlve dispersioncase; a sinilar pair is found for the case of pasitive dxspersnon

(see DRY1). The author thus shows that the Cauchy problem can be solved, in prmcrplc, by
using the i inverse scattcrmg method. He concludes by giving a Lagrange function from which
KP can be obtained by a variational principle. The explicit solution of the Cauchy problem by
the IST method is in fact the object of a paper by Zakharov and Shabat (see ZAK1).
Naturally, the soliton solution is found and, m addition, the N-solitons are also given. This
paper is also important for two additional reasons. First, it presents for the first time the*

.inverse scattering formalism applied to an equation in 2+1 dimensions; prcvrously, only 1+1

dimensional equations had been solved this way. The second pomt of mterest is that this
paper already contains.the germs yxeldmg the dressmg method A review of the IST problem
for the KP equation is also the subject of an article by Manakov in 1981 (see MANA3). Soon

_after,a Bicklund transformatxon was found for the KP equation (see CHE1) in the form \ ‘

(w'- w)zl +‘2(w"+‘w)x - %J. (w'- w)y dx =0, .

4(w'- w), + (W' - w)3+3(w+w) (w'- w)+3(w W)

+EV3 (W + W), + (W' w)+j (w'-w), dx =0.

-
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_where e=11 (according to the“sign of the dispersivity) and q = w, is a solution of the KP

equation q,, +q,, +4,, +(39%) 5 +Qxxxx = 0. A superposition formula is also found: y

(wl - w2)x

Wo +Wo=Wy + W, +2 —e |
0= Wy + W,
3 (Wy-wp)

¢
*

When w, =0 and w,, w, are I-solitons; w, is then‘the 2-soliton solutfon of the KP equation.
The existence of such superposition formulas, in genehral, is related to whether or not the set
of Biicklund transformanons associated to an equation form an Abella{n group (see BOI3).
N~sohton solutlons were also found, later on, by Satsuma (see SATS1) through the bilinear
formahsm of Hirota (see HIR 1; more on this later). The bxlmear forn of the KP cquanon is

f, ff+ff o~ 4y + 3P 2 £ 12K -£D),

—~

where u= 2(Inf),, solvés KP. Although Hirota's method was considered to be somewhat

heuristic at the-time, it yielded N-soliton solutions that could be nicely expressed in closed

form. In this, paper, Satsuma gives the formulas 9 )
C G=kxtly-a, ko -4k £1212=0,  p=1/k;.
A L ) 1 2

It was later shown that this formula, as well as other N-soliton formulas in gepetal, can be

written as determinants of some matrices. Satsuma finishes by justifying the tefm "N-soliton"

. by showing that such a solution asymptotica'lly breaks down into N distinct 1-soliton

solutions. The more compact determinantal form for the N-soliton is proposed by Manakov et

" al.in 1977 (sce MANA1) as u=2(In det(A)]n, where A is some matrix expressed in terms

of N2 characteristic directions at +bx + cy. The principal result brought out in this paper is an
important property, namely that KP solitons {nteract trivially. Indeed, the authors consider
the 2-soliton solution, find its asymptotic expressions, an}i show that the changes of phase,
which are seen to be non-zero for soliton solutions of one-dimensional equations, are
identically- zero. This means that the KP solitons do not interact at all, i.e. they pass through
each others and re-emerge just as if each soliton would be alone. In fact this property was

“later seerrto be characteristic .of two-dimensional soliton cquanons Solvm g the KP equation

through the inverse scattering method was considered agam in (J OH3) where the authors

\
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 solve the inverse step, i.e. the Gel'fand-Levitan integral equation, by using the method of
separation of variables. They are thus able to reconstruct already known solutions such as
exponential, rational, N-terms exponential, .N-rational solutions, and also new ones of the
exponential-rational type. As for the pure rational solutions (of decreasing type), they were
found in generality by Krichever in 1978 (see KRIZ2, and also VES1). N-solitons for the KP
equation were more recently looked at againby Freeman and Nimmo. Inspired by their
determinantal form mentioned above, they recast them as Wronskian determinants and
ﬂshowcd that their derivatives then take rather simple forms. It is simple to verify that the
oy N-soliton obeys the KP equation and that a-pairimade of a N-soliton and a (N+1)-soliton does
- satisfy the associated Bicklund transformation. The authors also proceed to perform IST.on

' ' KP, ‘using this formalism together with the bilinear formalism (see FRE1).

"The Bécklund problem for the KP equation and other equations was constdered again
in"a paper by Hirota and Satsuma (see HIR2) whert it is demonstrated that the defining
rcl&ions Yor the Bicklund transformation S well &s the superposition formulas, have a
( ' common structure for all the equations that &ey consxder when Hirota's bifinear formalism

is used. For KP written in the bilinear fonn .

(DyD¢+Dy* +aDyHff =0,

\
where, for mstance;%x is the bxhXear operator acting as D f ‘g= [a f(x+e)g(x-e)] |e-0 Thcy

- . proceed to show that the Biicklund transformation is defined through the formulas

L
2. No.f =g o
(Dy”- bDy)gf=2gt, | - |
. f _ (Dy+3AD;+D, 3 +3bD, D )gf =0, : y
* where b is related to o, and that the superposition formula is given by ff; =const.Dyf,f,; for

example, f, could be the trivial solution, f; and fz' be 1-soliton solutions: f; is then the
2-soliton solution [recall that the KP solution is u = 2d,, In(f)]. The Béicklund problem isalso
investigated in I;E\}l where the general form of the Bicklund transformation for (2+41)-
dimensional nonlinear evolution equations solvable through the Zakharov-Shabat methqa is
found; as a particulat example, that of the KP equatior; is derived.

L]
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In a series of two papers, Satsuma and Ablowitz study the [ump solutions for
nonlinear evolution equations. The-first one is devotéd to the KdV equition and the nonlinear

‘cubic ’Schrt')dinger equation. In the second paper (see SATS2) they consider both KP and a

two-dimensional version of the nonlinear Schrodinger equz{tion (the Davey-Stewartson
system). They obtain these lumps (or rational solutions) and show that they decay to uniform
states along al space directions. These solutions are non-singular and constructed by taking a
long wave limit of the usual N-soliton solutions, and thus N-lumps that actually describe the
physical mutual interaction of a set of several single finite amplitude lumps ;re defined. As
for N-lumps, it is shown that thé asymptotic behaviour of a lump is the same for both limits,
therefore implying that there are no changes of phase, so that lumps also act trivially. The
asymptotic forms of KP solutions for the limits 1) -0 is also investigated in a paper by
Manakov and his collaborator% (sce MANA2) where they aré shown to beessentially
different, corresponding to distinct solutions of the linear (i.e. diffusion free) KP equation. It

- \] ’
is remarked that in contrast to one-dimensional equations,.the classical scattering matrix for a

two-dimensional differgntial system is not diaganal; thus it is not surprisin g that the diré

_scattering problem associated to KP is genuinely non-trivial. 'Ehc authors also investigate the

converse problem, i.e. to reconstruct ¢he $olutions from the knowledge of the asymptotic
forms, and give the procedure for doigg"rhat. Similarity-type decay-mode solutions (termed
"ripplons") a@ derived in the 1981 papers by Nakamura (see NAK1 and' NAK?2). As will ba
seen in the present work, these are just a single example of solutions that may be obtained by
the symmetry reducti?ocedure that we shall later define and use on the KP equation.

Nakamura considers tk# bilinear form of this equation for obtaining these solutions and

, makcs no use of group theoxetxcal argumems other than the defining scale invariance property

of such solutions. He shows that such solygons may be superposed non-trivially; indeed
these similarity soluuons originate from a Bicklund tsansformation and thus the
superposition formula given above may be used. The "1-ripplon” solation is expressed in

+ terms of a solution Ai(z) of the Airy equation w, = 2w:

- (x+a) N (y+b)2

f=1+ J X
12013 c120)4B3:

(12()7"3 J. Ax(z)dz

It is also known that the KdV limit of these solutions is not defined; in that sense they are
genuine KP solutiong. A further aspect of the KP equation was found in 1979 by Kaliappan

4
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and Lakshmanan (see KAL1), namely that d particular reduction, in the group theoretical
sense, exists to the Painlevé transcendental equation of the first kind: Z, = 6x2+6V6 Z.
Painlevé type equations, i.e. equations whose solutions have no moving singularities other
_than poles, appear to have an important connection with the IST formalism. In fact, we have
many reasons to believe that nonlmear differential systems solvable through the IST
formahsm with asymf)toﬂcally vamshmg solutions (actually at least of class L2), are of
Pamlevé type, in the sense that all their reduc#ons to ordinary differential equations yield
Pamlevé type equations; the converse of this statement is conjectured but has not yet been
proved. In a different paper, Redekopp proceeds to show that the KP equation also admits a
reduction to the Painlevé transcendental equation of the second kind: Z,, - xZ =+ 2Z3. He\
discusses some solutions of the reduced equations and, in particular, he obtains exact
dispersive solutions (see RED1). Similarity solutions were also studied later by Tajiri et al.
(sée TAJ1). The authors show that there exists a chain of reduction for KP, using similarity
variables. In fact they first reduce KP to either the KdV, or Boussinesq equations; a further
reduction (in Lie's sense) brings these e('luations to the firs£ or second Painlevé transcendent
equations. They also consider reductions to ordinary differential equationé and discuss
solitons moving in a non-steady and non-uniform bacl‘cgroundﬁ In a second publication (see
TAJ2), two of the above authors look at sitnilarity solutions for the modified KP (mKP)
egquation. It is shown that this equation admits a reduction chain more complicated than that
foundjfor KP itself: in a first step, mKP can be reduced to mKdV, a modified Boussinesq
equation, and many other equations. In a second step, only the mKdV equation yicldé an
interesting reduction, namely the Painlevé Il equation. : ‘

Similarity solutions, and many other special types of solutions, whenever they exist,

are related to some sul3groups of the symmeltry (or invariance) group of a given equation. In’
this perspective, the corrésponding related invariants have some importance. As we shall see,

Llaf KP equation has quite a rich set of symmetries and invariants. We shall restrict ourselves -

to Lie point symmctries: but (irifinitely many) other types of symmetries do exist, local as
well as non local. In INF1, some special conservation laws are derived-using an observation
relating pairs of conserved quantities. Thus if-M is a conscrved quantity and if N is integrable
and such that fN dxdy = fdedy, then f(tM N)dxdy is a conscrved quannty as well. The

authors of LIN2 find an infinite set of conserved quantities from the singular form of the

.
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"be very effective for solvmg the Cauchy problem for the KPII equation (see FOK3, ABL2)

12
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- dispersion relation associated to the KP equation. Similarity solutions and some related

special solutions, the so-called soliton resonances, are studied in OHK1 and NIS1. The first
of these papers uses a method called the trace methogi which the authors show to be related to
the IST formalism, and resonances are shown to occur when virtual solitons turn into exact
solitons; these solutions take the form of multi-branched solitary_objects. KP also possesses
~generalized symmetries (see CHE2 and FOK4); these .permit to define a hierarchy of
equatioris which can be built b); recursively acting on an equation with a so-called recursion
(or hereditary) operator. Such oPerators have been found for many one- dlmensmnal soliton
cquanon hierarchies, but it seemed, until very rcccntly, that there were no such objects for
(2+1) dimensional ones. Ref. FOK4 is in fact devoted to the explicit construction of this
operator for the KP equation! J
The KP eqdiition playcd arole, between 1980 and 1982, when the IST formalism, in
ts original formulation, was seen to be inadequate for certain equations. Consider the KP
cquatloh in the form (u, + 6uu xH ) = 30‘u ¥ and distinguish between the cases ¢ =-1
(KPI) and o=1(KPID. It was assumed, up to then that the IST formalism was mnmately
connected with a specific type of boundary value problem on the complex plane, nanllcly the

'\Ipcaf Riemann-Hilbert (RH) problem. All equations solved through this formglism indeed

involved such a’problem. For KPI and some other equations, it was then observed that the
RH problem was non-local: this fact explains why the KP solitons, viewed as generalizations
of the KdV solitons, do not decay at ’inﬁnity; algebraic lumps, however, do present such a
behaviqur. The inverse problem for KPI i&nalyzed in detail in FOK2. KPII is even more
dismaying in that there was no RH problem associated with it, so the usual IST formajjsm
was simply madcquate for studying thxs equation. It was then noticed by Beals and Coifman
that the RH problem wain fact a spec1a1 case of a more general problem encountered in the
theory of functions of complex variables, called thie DBAR (9) problem (see FOK1 for an
exposition of this problem and its distinétions from the classical’RH problem). The

_ modification of thc IST method for equations associated with this new type of boundary

value problem W&a developed by Ablowitz, Fokas, dnd Bar Yaacov, and has been proved to

!
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"A very interesting feature of the Kadomtsev-Petviashvili equation is its connection

“with infinite-dimensional Lie groups which resulted in the sequel of a series of papers written

mainly by M. Sato, M Jimbo, and T. Miwa, on holonomlc quantum fields. The now
famous t-functions are a by-product of their studies; in fact they were mtroduced as
expectation values of certain field operators belonging to the Clifford group of free fexmxons
It was further observedthat the linear Lax-Zakharov Shabat equations and the bilinear

'equanons of Hirota come out in a unified-manner when using the language of free fermions.

Fairly important results were obtamcd by Sato (see for instance’ SATO1). Considering

" infinite dimensional Lie algebras defined over some functional space, he noticed that the
Q4
* group orbit of the highest weight vector is an infinite dimensional Grassmann manifold, the
defining equations of which, when put into the form of differential equations, turn out to Be -

soliton equations. This picture was first established when studfling the KP equation, in fact
the KP infinite hierarchy of soliton equations, for which the infinite dimensional complex Lie.
algebra is gl(ec). In his paper, Sato shows that generic points belonging to the above
Grassmann manifold GM give generic solutions of the KP equation, whereas points defined
in some particular submanifolds of GM yield special solutions, such as rational,
quasi-periodic, multi-sollton, and similarity solutions; other submanifolds give rise to generic
solutions of other important nonlinear partial differential equations: Kd{’, mKdV,
Bouss)inesd,- nonlinear Schrodinger, Benjamin-Ono equations, as well as the Toda lattice
(semi-discrete) differential system; for instance the affine infinite dimensional subalgebra
A, D c gl(=) yields the KdV hierarchy; and B,V yields the so-called BKP hierarchy. He

_ also interprets the automorphisin group GL(e0) < GM as the group of hidden symmetries of
“the KP equation. Various specific aspects of the connection between some infinite

dimensional Lie groups and the KP hierarchy, or reductions thereof, are studied in DATI, 2,

"3,4,5 and KASI, and an excellent review is given by Jimbo and Miwa (see JIM1) who-

exhaustively construct the t-functions for the KP hierarchy; they alse study the various

reductions of GL.¢e») in order to define many other tyi)es of hierarg})ies based on interesting
-4 »

nonlinear evolution equations. An-interesting particular reduction is studied in SATS3.

Another excellent review paper is that of Segal and Wilson in which the cmpha§is is put on

the geometric picture of this formalism (see SEGAL), in' particular the authors try to give a.
geometrical meaning to the T-functions, the Bakcr—Akhle%zzr function, and to the Dwbrovin

construction, . l ° ,’ »
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Some recgnt results have been obtained on periodic and quasi-periodic solutions of the

-KP equation, by making use of tools of algebraic geometry. Such types of solutions for
: honlix}ear equations are not new. In fact periodic solutions*to the KdV equation were

discovered by Korteweg and de Vries themselves in the form u = o2k cn{G(x - xy +ct); K],

.where cn(z;k) is the usual Jacob'} elliptic cosine functién. These solutions were thus called
.cnoidal waves. It was shown by Krichever that the KP equation does admit quasi-periodic

function
i.esa symmetric n by n matrix with negative definite real part. Krichever showed that any
génlx's n Riemann surface naturally induces a particular Riemann matrjx‘ that then serves to
generate a KP solution. He actually gave the form for the genus 1 type. Solutions of higher
genera are more difficult to find, becdtise one must determine the class of Riemann matrices
that yield KP solutions. It must be noted—thrat not évery Riemann matrix does. The

solutions (yee KRI1,3) of the form u =2ax\§[ln 3Py, ... .3 Z)]. © is a Riemann theta
order "n", @, s a linear function of t, x, y, and Z is a so-called Riemann matrix,

, Characterization problem of Riemann matrices for genera 2 and 3 was solved by Dubrovin

(see DUB1). Genus 2 type solutions were worked out by Segﬁr and Finkel (see SEGU]1,
FIN1). Thesk are bi-periodic solutions that exhibit a dependepce on 8 different parameters
and they are shown to degenerate into solitons when some particular-limit is taken; they may
thus be considered as the genﬁine generalization, in two difnénsions, of the one-dimensional

\ cnoidal waves.

J , G |

_Surface and internal waves in channels provide us with remarkable e¢xamples of
solitafy waves; in fact, solitons were first observed as lumps of water propagating through
such physical settings, in 1834, as reported |by J.S. Russell who indeed followed one of
these lumps over a distance of several kilometers (see RUS1) A consistent mathematical
approach to these waves was however not to be achjeved immediately, and it even was tl;e
opinion of Airy, who himself built up a shallow-water theory, that the whole thing was a

hoax! The first serious attempts to derive the dynamics of solitary water waves from the

basic facts of hydrodynamics dre due to Lord Rayleigh. Boussinesq then introduced the
famous equation which was later called after him. This equation was however not cntircl)} .
satisfying and one had to wait untill 1895 whe‘r‘; Korteweg and de Vries introduced the now
celebrated KdV equation, (see KOR1): ’

9
u,+clu, + sdtuu, vdu,  1=0, . E

.
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where c= [g(d+a)] 12, & being the gravity constant. This very equauon was the correct ofie
for, dcscnbmg solitons of amplitude "a" movmg with characteristic speed "c" in a straight
.~ uniform rectangular channel of depth "d". More€ specifically, in the case when waves are long
waves propagating in shallow water and in the no-dispersion limit, the structure of the KdV
equation, as it is now well knowgn and understood, is such that the nonlinear term
counterbalances the effects of the dispersion term. Thus a localized solution of this equation
,.remains as such throggh its entire time evolution: it does not flatten out as a linear wave
would do. These soliton solutions are typically of the form

Ay N .
u=asech?[(x-ct)/1], \ *

-

.
. -

"I" being a characteristic measure of thie length of the wave. In'the paper KOR1, the authors
derived the soliton solution of bthé KdV equation as the limit case of a family of periodic
waves, the.so-called cnoidal (they roined the term) waves, when the period becomes infinite.
}” The multi-soliton solutions of the KdV equation, i.e. solutions describing the interaction
between many distinct solitons, were characterized oiily much later,.in 1965, in a paper by
Zabusky angxKruskal who introduced the word soliton, and obsgrved, through numerical
experiments, th’at two or more solitons, after colliding tdgether, as§mptotically recover theif
respective 1denuty, up to an apparent change in their phases; this is indeed a vefy remarKable
property (see ZAB1). The#tability of soliton sol\zons was cstablxshed only relatively
recently, in 1972, by Benjamin (see BEN2). The KdV equanon is appropriate*for describing
waves in a rectangula.r channel but fails to be applicable to-the description of wiawes
propagating through otherwise shaped channels. A more realistic situation reqmres that thc
equation be modified by allowing its coefficignts to become variable. If solutions 4re allowed
to have some genuine two-dimensional character, it may-be neggssary to replace the KdV
equation by a Kadomtsev-Petviashvili equation, possibly with variable coefficients also. We
. pomt out that the KP equation does have solutions that exhibit a non-frivial two- dimensional
behaviour and they may be obtained, as we shall sep later, through the use of the symmetry
‘group of the equation,; it is apparent that thls was not observed by hydrodynamicists studying
water waves. Boussmesq was the first to notice Qhrough consxderat}ons about energy
consérvation, that the amplitude of a solitary wave in 4 non-uniform channel would locally
vary inversely as the depth of the channel (see BOU1). The characterization of solitary waves
within gradually varying channels is therefore of. interest 3nd much’ literature has been

a i
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dcvotcd to this subject. For a detailed historical account the reader is directed Io review

papers such as MiL3 (see also LEBI and OSB1). Herc we shall browse through thxs
htcraturc, mentioning only typical papers about the principal steps wluch were undertaken in
the theoretical developments and works which are of dirett pertinence with rcspect to the

»

subject of this the51s

) i
The mcthod of multiple scaling or stretchking method, introduced in 1948 by Friedrichs

(seg FRI1), applied to the Navier-Stokes system, is a standard procedure for generating

- water wave equations; a variant of this method was indeed used by Peters in 1966 in order to

obtain“three-dimensi,onal (i.e. time and two space dimensions) solitary waves on the surface
of a horizontal channcl of infinite length with arbitrary cross- -section, but constant along the
main direction of propagatxon (see PETE1). The equations governing three-dimensional
solitary waves propagaung through a rectangular channel were first systematically derived by
Ursell (see URS1). After using the stretching method to set up an appropriate dimensionless
hydrodynamical differential system, he proceeds to show that there exist rotational solitary
waves obeying a time-dependent KdV-like equation, myn,"'(x) =myn,;n,', + m,n,', where
m,, m,, and m, are functions depending on the velocity components of the stream which are
détermined from some specific boundary conditions requirements. In fact he shows that the
above equanon has the solution 1, = -3(mQ/m1)scch2[zx‘/——/_r?13 . The case of irrotational
9solitary waves-is much sxmphﬂcd as comparcd with rotatxonal ones; these are also obtained
“through similar considerations. Pcregrme in a 1968 paper (sec PER1), ventures along a path
parallel to that of Peters. Although he considers only irrotational flows, he derives the
equations‘)of motion Q‘for_ long gravity waves and shows how these equaticns may be
transformed into those for two-dimensional :notion‘ in a rectangular channel (i.e. the KdV
theory); his results are thus applicable to more general-channels. It must be pointed out,
however, that he considers channels of arbitrary cross-section as long as they do not have
gently sloping Qanks and.are constrained not to be very wide compared with their
characteristic breadth; i.e. he conSiders deep thin channels. The above authors only studied

, surface wavcs.jShc,n, in 1968, actually extended the results obtained by Peters, by

considering unstcady}ong- waves propagating at the interface of a two-layer stratified fluid
(see SHE1). He finds that the dynamics is again ruled by a KdV-type equation with varying
coefficients. After characterizing the wave speed, he detives the solitary waves and, in
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addition, cnoidal waves, breaking waves and Airy waves. We mention that continuously
stratified fluids have also been considered in thqa,iterature; for instance see BEN1. We also
point out that the various KdV-like equations which have been introduced to model solitary
"~ wave propagat}oq through gradually varying channels admit very few conservation laws (see
MIL2); as we shall see in chapter three, this will also be true of our genéralized KP equation.

"
©

It was observed in 1969 by Madsen and Mei that when a sqlitary wave, moving over a
region of unchanging depth enters a distinct region where the shape of the bottom abruptly
changes, several solitons form (sec MAD1). More recent observations and measurements
from space (e.g. radar measurements and photographs from space shuttles) ove‘r oceanic
regions at the border of continental shelves confirm this fact. A mathematical modelization of
this phenomenon is therefore of interest for oceanography. This situation was considered by
Johnson in 1973 (see JOH1,2). The relevant equatidn is again a KdV-type gquation, rfamely
Hy + %d"”“HHg + %Kdeggg =0, where d(eX) is the depth function; X and £ are some ap-
propriate coordinates. Johnson assumes the solution to be a perturbation of a pure solifary
“wave and studies the "Cauchy problcn} with the following interpretation (such an mmay
value problem will also be considered here in chapter three). The poipt is that the coordinate
X, although it is a pure space variable, plays the rQle of time in the above dynamlcal equation,

At X =0 (and physically for X <0), we.are glven the profile of a'solitary wave movingovera -
" region of depth d(0)=1. Assumjng that the depth function changes smoothly in the semi-
infinite interval X 2 0 and that the solution H vanishes fox asympch values of the coordinate

E, the author seeks asymptotic solutions for € — 0 of the form H = H0 +&H, +0(€), where H,) '
isa sohtary wave of the form b(ex) + a(ex)sechz{ a(eX)[E - c(eX)X]] The solution is shown -
to-be non—umform\b\om ahead of and behind the solitary wave; the behaviour ahead is
rectified by matching to an appropnate exponential form. He dxscusscs the nature of the
solution behind the sohtary wave which yields a solution with an oscillatory tail. It is founcf

* " that as .depth increases, the amplitude of the; soliton decreases and that for large enough
depth, the Solitonbecomes in fact indistinguishable from the ?scillatoty tail. The author aolsov
considers various limits, showing how his results agree with those obtained-in othet works.
This description, it is to Be, pointed ‘out, treats the case of chdnriels characterized by very

" slowly varying”deptlhs only. Miles extended the above results to the case of channels with

~

slowly varying breadth as well (see MIL1).
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- * A 1974 paper by‘péikawa et al. is of special interest as it is at last considering the use of

- the Kadomtsev-Petviashvili equation for studying water waves (s'ce OIK1). The KP -

equatlon in pure form or with variable coefficients, is of con51dcrablc importance for it
permits 1o study waves propagating over genuine two-dimensional bodies of water. In this
paper the authors study the effect of an undulated ‘bottom on shallow watcr waves, in the
case when the depth is a slowly varying function and that 'the characteristic length is much
larger than the wave length. In particular, they investigate the conditions for the existence of
trapped mode solutions through a lineaYization of the basic system of equations for gravity
waves; they thus obtam a KP-like,system and show that it has soliton solutions that are stable
under small two-dlmensxonal perturbations. A variable coefficient Kadomtsev-Petviashvili
equation was derived in 1978 by Djordjevic and Redekopp (see DJOI), motivated by
experimental evidence about internal waves generated near the edge of a skelf and
propagating shoreward. This equation is dependent on the local fluid depth. Thé authors
discuss how its solutions ¢an describe waves propagat'ing into shallower water (e.g. waves
crossmg a conur‘Ental shelf) for a two-layer (specifically a two-density stratification) fluid
body They also look at the disintegration, under specnal conditions, of a solitary wave into a

dispersive packet. ‘ .
® /
Waves in a two-layer fluid were slso studied by Grimshaw, but cxp}csscd within a
KdV framework. In Glill he develops the equations describing long internal waves in a
channel of arbntrary cross-section, Further assumpuons are miade; namely)he restricts to the
shallow water approximation and considers a cross-section which is allpAved to vary slowly
in the direction of propagation of the waves. It is also implicitly assumed that the honzomal
dimension of the channel is of the same order of magnitude as its vertical dimension, but, as
he points out, this is not as severe a restriction as it may appear. The crucial point is that the
wave amplitude is taken to haveia quite greater variation in the direction of wave propagation
than in the transverse direction; he thus cofisiders an essentially one-dimensional motion.
After revnewmg the theory for a uniform cross-section, he proceeds to look at a channel with
verying cross- sccuon and degives 4 variable coefficient KAV equation Wthh is the
counterpart, for internal waves, of those obtaihed in PER1. Grimshaw discusses special
Jxmanons such as nonlinear steepening processcs which are cxpcnmcmally known to follow
from an mu;mal surge, the formation of solitons when sucha surge approaches brca!ung

- PP IT IR L U T

e




.

T : 19 g
— " - ]

distances, and slowly varying sélitary waves. These latter are actually considered in GRI2

. where the author derives them as asymptotic solutions of a variable coefficient KdV equation

obtained through the usual muIUple scale perturbation precedure: q, + N()gq, +L(x)q,,, +
G(x)q=0. He shows that when the coefficients N, L, and G satisfy a certain constraint, the
above equation reduces to a pure constant coefficieht KAV equation and hence hc obtains

exact solutions for the original equation. -

©

‘A 1981 paper by Santini looks at the Kadomtscv-Petviashv.ilio equation as a possible
equation for the degcﬁptrion of the evolution of two-dimensional wave packets over an
uneven bottom (see SAN1). The author specializes to nearly one-dlmensxonal long waves of
small amplitude, these charactensncs being balancing in some convenient mannef.’
Consndermg a depth function which varies slowly along the longitudinal and transverse '
directions, he derives a variable coefficient KP equation Lwhich, under a certain limit, he
shows to yield the results of JOH2. A second special limit yields a nonlinear equation of the
form qr+ %d'yd'"“qqx =0, where "d" is the depth function. The Cauchy problem for this
equation, with initial datum q(X,Y,0) = gy(X,Y), is completely solved and therefore yi\cldsz
exact solutions for the above KP equation. The conditions for breaking waves are also

examined.

In a mdre geophysical perspective, let us mention the work of Artale et al. in which the

- problem of the gcncratlon of internal solitary waves in marine straits is examined. J]n ART1

the authors study the effect of an air-sea surface on the dynarmcs of internal solitary waves.

Extending Whitham's treatment of a homogeneous fluid (see WHI1) to a two-fluid system,
they show that the dynamics is described by means of two sets of coupled equations of
Boussinesq type which, in turn, yield an inhomogeneous KdV equation whose forcing term
depends on the air-sea elevation as well as on the bottom depth In ART?2, they again
consider a two-layer fiuid and a system of two uncouplsd KdV equations is "obtained; they
are however related by the fact that the amplxtudes of the surface wave and of the internal
Wave are proportional to each other. Their results are discussed in relation to various
experimental measurements taken in the Strait of Gibraltar where such waves occur as tide-

- génerated solitons.
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Eckhays, in 4 very recent paper, brings out a perspective which is worth mentioning
(see ECK2). He states that all nonilinear partial differential equations o_‘f evolution type that
are obtained through the formalism of multiple scaling can also be obtained in the following
manner. He points out that the cutnbersome machinery of forrhal series expansion appears to
be irrelevant, His procedure is to supply tranfformations of the variable which produce, from ,
a given perturbed equation, another perturbed equation; the model equations are thus formal
limits of the various perturbed equations. Using such considerations, the author proceeds to
derive several equations. In particular, he obtalns a KP equation describing slightly curved
waves, and he examines such waves propagating through channels of slewly varying depth;
the author connects his results with our own work' (i,e. chapter three of this thesis). :

Y \ ‘

' A large amount of literature has been written on experimeqtal measurements of marine
solitary waves, or direct observations of these. Measurements on solitary waves passing
through the Strait of Gibraltar were done as early as {964 (see FRA1). More recent
obscrvations‘of internal waves (see CAV1 and LACI1) show that when a tidaf flow occurs,
solitary wave traing are generated; these waves may have huge amplitudes: Lacombé and -
Richez measured amplitudes as lz}rgc as°100 meters at some locations (see LAC1). Needless
to say, such a magnijtude is a blatant proof that a lincar theory is just out of question to
modelize these localized waves. Internal waves of that size can also explain the transport of {
lumps of cold water from the Atlantic Ocean into the Mediterranean Sea (see L}\Vl.3). Radar
measurements are considered in LAV2 for the Strait of Gibraltar, and also in FU! and FU2
for other areas, for instance the Gulf of Califomia, by the SEASAT satellite. As a matter of
fact, interesting phenomena occur in almost any strait or channel-like marine region; let us

. mention the Georgia Strait in British Columbia (see HUGI), the Archipelago of la

Maddalena (see MANZ1), and Scylla & Charybdis (see ALPI).

The present thesis is divided into three chapters. The original contribution is prescnted
=@ chapters two and three, and is based on the content of our recent publications (see DAV3,
4,5,6); part—lll of chapter three is unpublished as of now. Chapter one is used to introduce
the mathematical backg;'ound pertinent to the subsequent clfaptcrs. We review some of the
basics about the theory of manifolds and the theory of Lie groups and algebras, actually the

definitions, concepts, theorems,“and constructions that are necessary for us to define and
[N . e,

s

*

-,



21

study wha£ 1s the symmetry structure of 2 given system of partial di{férential equations, The
important section for us is unquestionably' that about the symmetry, reduction technique
which will be the principal tool to be eventually used in chapter two to get special KP
solutions. Bicklun® transformations v«(ill also be needed at some point so we also review

what they are.

In chapter two we deal with means of constructing special solutions of the KP

equation. This chapter is subdivided into two parts. In the first one we get the Lie symmetry

algebra of the equation; it is an infinite-dimensional algebra. We derive some special )

subalgebras of it. In paﬁicular we mention one from which the usual special solutions of:the

KP equation, such as the similarity solutions, are obtained throwgh symmetry reduction. We

also observe that this algebra hides a Kac-Moody loop algebra structure. This novel feature,

which we fjrst ob#é:rved for thd¢*KP equation, seems to be a property shared by many, if not

all, (2+1)- dJmcnsmnal integtable soliton equations. We then proceed to classify the low

dimensional subalgebras of dimensions 1, 2, and 3; these are classified in classes undcr

group conjugation, and also under isomorphism of abstract algebras when the case occurs. |

This classification thén permits us to perform symmetry reduction on the Kl: equation. We 1

observe that this equation is actually reducible to special equations involving fewer dependent :

variablgs. The main result of this technique is that solutions of the reduced equations can be

mapped'back to solutions of the original KP equation; these solutions are generically

nontrivial ones. The second part of chapter two consists in applying the symmetry reduction

technique again, this time to the simultaneous system consisting of the KP equation, in its

potential form, and of its associated Bicklund transformation. It is, to ‘our knowledge, the

first time that such a procedure has been applied and the results are definitely of interest. The

symmetry structure of the "poténtial" KP (PKP) equation is similar to that for the KP
' equation. The important fact here is that the symmetry group of the PKP equation acts

nontrivially on the Bicklund transformation and actually induces some functional dependence

in this transformation. We then find the symmetry structure of the PKP equation together

with this generalized Biicklund transformation. We follow by applymg the symmetry

reduction technique. Again this yields a list of special KP solutions; among these we mention

a special class which resembles the so-called resonance solitons mentioned earlier.



.3

* .- . oy “ .3t g ) TV
N

LT :

Chapter three i; devoted to a médel,'basgd on a generalized KP (GKP) equation wi(h
variable coefficients, describing the dynamics of solitary waves in fluids with vafiable
depths, and channels with variable geometry, in fact channels whose boundaries are small
deformations of those for a rectangular channel. This is of interest with regards to actual
observed, or measured, soliton phenomena in various emplacements in open seas and marine
straits. In the first part of this chapter we begin by exposing the physical problem and specify
the appropriate geophysical setting. The pértinc;t equations are: the Euler system with
boundary conditions, and we introduce dimensionless variables which we use in order to
renormalize the system.-We then use a conventional scaled perturbatioﬁ expansion which we
solve at lowest order to define new wave frame koordinates which are more apprqp;’iatc for
pursuing the problen® These are substituted back in the eriginal system afid we make a new
perturbation expansion which results in a wave amplitude equation and some constraints
which take the boundaries mto account. This constitutes the GKP system wh\ch we then
discuss. Although we derived the wave amplitude equation in order to describe surface:
waves, we mention that & system of two coupled similar equations is also a good descnpuon
for describing internal waves as well. In the second part of the chapter, we proceed to reduce
the GKP system (not in the same meaning as in chapter two). Indeed the GKP system is not
integrable as such. However, for special geometries of the depth dnd of the walls, i.e. special
geophysical constraints, it is then pJssible to construct appropriate algc‘braic differential
transformations of the variables under which the GKP system can be transformed to a
completely integrable system. As we show, some possible reductions are ‘the pure KP
equation, the KdV ccfuation,. and the cylindrical KdV (cKdV) equation; these equations may
have variable coeficients. In the third part we use some of these reductions and thus obtain

solutions of the GKP system from solutions of the reduced equations. In fact, we see that

some specific geometries, sugh as a parabolic or hyperbolic iangcxlt shaped depth, do yiceld
exact solutions of the GKP(system. Their most interesting feature is that they represent
curved solitary waves, unlike the straight solitons which satisfy, say, the pure KP equation,
v, . . . . :
Trese waves agree, in a certain measure, with those which are indeed observed in the
oceans. Finally, in the fourth part, we derive and discuss some conservation laws and
cons. rvéd quantities associated with the GKP equation.

e
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CHAPTER ONE .
Group theoretic aspects of symmetries of differential systems

\

As mentioned in the Introduction, éroup theory provides a very useful tool for the
analysis of differential systems. The fact is thaf groups, in particular continuous local Li¢
groups, appear everywhere, explicitly or not, in the theory of éhfferenual equations. Solutlon
space$ have generjcally a‘differentiable manifold’structure havmg a Lie group substructure.
Differential systems, seen as differential operators acting on some functional space, commute
under specific groups of differential operators (vector fields): this is most important in
practige for constructin g natural invariant quantities, conservation laws, and is the basis at the
origin of the symmetry reduction technique which we shall use later on. Less known is the
fact that many of the integration techniques for special kinds of ordinary differential
equations have direct group theoretic interpretations. Needless to say, group theoretic tools
have a definitive importance for studying nonlinear differential systems, especially since
these are often difficult to study with conventional analytic tools, these being usually linear
ones and thus often inappropriate. In this chapter we review the basic concepts about Lie.
groups and Lie algebras, Biicklund transformétions, etc..., that we shall need in this work.
We also spend some time.to expfain in some detail the technique of symmetry reduction
which is the heart of chapter two, Most, if not all, of what is given inihe present chapter may
be found in several épecialized books and articles (see IBR1; OLVi ,2; OVS2; ANDI; PIR1)
and therefore all theorems will be stated without giving proofs. Concerning notations, we
shall use’a compact notation for derivations and derivatives; thus d, =9/0x, and u, = aulax
We do not use any special symbals, except perhaps boldface characters lo denote quantities
other than scalar.ones (e.g. vectors): it will usually be clear from the context what types of
objects are being considered. Also, implicit summation over repeated indices is everywhere
understood. Any other speeial notations or terminology will be introduced as we go along.

. ¢ : . i

Let M be a connected Hausdorff ¥opological space and p: UcM -5 VcR™a
homeomorphism, where U is open in M. The pair (U, ) is called a local coordinate chart on
M. The components ¢ of @, 1 <i <m, defined as ¢i=nio @, where n! is the canonical i-th
pro}ectio_n in R™, are called,the local coordinate maps, and Vp e U, the x! = ¢i(p) are called
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the coordinates of the point p. M is said to be an m-dimensional manifold if there exists a set
of local charts {(U,,9,)} such that the U_'s form a coverin g of M. The concept of charts is
fundamental since it permits to do calculus on manifolds by simply projecting down the
objects at the manifold level onto appropriate objects in some convenient Euclidean spaces.

Two charts U,,0p) and (U,,9,) are said to be:C"-compatible if either U, nU, = {}, orelseif '

@09, and @, 40, are both maps of class C" on Uy U, . A C'-atlas is a family of

compatible charts on M. Two atlases A, and A, are equivalent if A, U A, is also an atlas. We
define a C'-differentiable structure on M as a maximal equiValence class of C'-atlases on M
and say that M is an m—c/iimensional C'-manifold whenever it is an m-dimensjonal manifold
equiped with a C'-differentiable structure. We shall deal with smooth (C*) and analytic
manifolds which are defined similarly (replacing the above infinite differentiability condition

by the condition of analyticity).

———

Let M and N be smooth manifolds. A map F: M —N is called smooth if for any pair

(U,»9,) and (U,,9,) of local charts, its local representative (pzt Fop, :R™ 5R"ig smooth
wherever defined. F is said to be of maximal rank if the matrix with entries 9F/dx has
maximal rank itself; when such is the case there exist local coordinate maps such that F takes
the local form y = (x}, ..., x™,0,...,0) if n >m, or y = (x!, ..., x™) if m > n. A subset Nc M
together with a smooth 1-1 map ¢: P 53N of maximal rank is called a submanifold of M; P is
called the parameter space. Let 0 e I C R, I being an open interval. A smooth map y: 1 =M,
¥0) = x, is calleg a curve on M through x. This curve ¥ is locally agivcn by m smooth °
functions f(€) = [£,(e), ..., f,(€)] of the variable €. Two curves ¥y, and ¥y, are called tangent at
x € M if théirocal derivatives coincide at € = 0; ¥,'(0) =7,(0). Tangency at x ;M is actually
an equivalence relation; in fact the class v'(0) = [y, = (3 tangent to y at x} is called the vector
tangent to M dt x. This vector has the local form f'(€) =df/de=|f,'(¢),..., f,,,'(€)}| and wé

\shall adopt the notation f'(g)= f ,'(e)a/ax' + f2'(£)8/8x2+ -+ + f 4'(€)9/0x™, which has

definite advantages when calculating. The set TM, = ([y],] is the tangent space to M at x; it
can be identified with the set of all possible curves passing through x and has the structure of
a vextor space. The collection TM = (TM, Ix € M} is the tangent bundle of M.

~ -~

o

. A smooth manifold G with group operation -: G x G —G is a Lie group if the mapping
(a,b) —. a-b’! is smooth. A local group is a space G with a distinguished element “¢" called
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the identity element neighbourhoods U and Y of thc 1dent1ty, with vcl, and a local group
operation U x U - U such that

vvVcu, .
Vae U, easae=a, . .

Vach—:U (ab)c=a(bc), | ' . (1.1
VaeU,Jale U, aal=ala=e, - e

a-b is continuous on Ux V.
HcG is a local subgroup of G if e e H and if H, equippéd with the restriction - |y, is a
local group by itself. Hc G is called invariant (or normal) subgroup of G if there exists a
neighbourhood U c G of the identity such that Vae U,¥be UnH, a'lbae H; G/H

denotes the set of cosets (mod H) of elements living in some neighbotrhood of the idcntity.,:

Two groups G and G' are locally isomorphice is there exists a homeomorphism ¢: U — U',

~q;(V) < V', such that Va,b e V, ¢(a-b) =¢(a)-¢(b). A local r-djmensienal Lie group is a local
4 " group G, together with a local chart (U,), e e'TJ: and a local group operation:UxU — U
satisfying to (1.1) for'open subsets V < U and being smooth in V x V. G, is called solvable

if there exists a descending tower G, ©5G_, D - 5G,, where G, is a normal subgroup of
G- G, is call?d simple if it has no proper invariant subgroups other than {e}.

A Lie algebraisa vector space L, together with a bilinear map L x L —L: (§,n) —>[g,ﬁ]
called the Lie bracket (or its multiplicatio‘n), such that VEn,p e L, [En] +[n,E] =0, and
[E,[n.p1] + [n.I[p.E]] +[p.[EN]] —O' this last formula is called the Jacobi identity. Let (g} be
a basis for L. Then Vgl,g eLl, [gl,g] Cukgk The C k are called the structure constants of L
and determine it uniquely. A mapping f:L —Kisa LIC algebra homomorphism if V&,n eL,
faEnDd —[f(E,) F(R)]. We define Ker(f) = f1(0) = {¢ € L1 f(¢) =0}; f is an isomorphism if it
is onto and’ 1f Ker(¥)=0. Let K and N be subspaces of L. K+N = {§ +1 lee K,meN}is
called the sum of K and N. [K,N] is their product. If Kn N = {0} then K+N is called a
direct sum. K c L is.a subalgebra if [K,K] K, and an ideal if [K,L]c K. IfK, N are ideals
in L then so are K NN, [K,N], and K+N; moreover, if KN N = {0}, then [K,N] = {0} and
we write K+N=K®N. If K is an ideal and N a subalgebra with KN N = {0}, then K+N is
called a semi-direct sum. Let K cL be.an ideal. The set L/K = (& +i( |& e L} is called the

B
- ~
4 . - .

=




s
a3

\ ) 26 ‘ )

P b,

quotient algebra of L by K and it also possesses the structure of a Lie algebra by itself. The
mapping ¢y: L -L/K: & —§g + K is the canonical homomorphism, with Ker(¢) =K; we then
say that L is the extension of L/K by K. The sequence of ideals recursively defined by L(D =
[L,L], LG+D = [L® L0}, are called the derived subalgebras of L. L is said to be solvable if
there is an integer "n" such that L™ = (0}. The maximum solvable ideal R in L is the radical =
of L. L is called simple if it has no proper ideal (i.e. if L is not a commutative algebra), and,
semi-simple if R = (0} (i.e. if it has no abelian ideal other than {0}).

To each Lie group G, there corresponds a Lie algebra L, and every finite dimensional

‘Lie algebra L, is isomorphic to the Lie algebra corresponding to some Lie group of the same

dimension. If G corresponds to an algebra L, and Hc G is an invariant subgroup corres-
ponding to the algebra K, then K c L is an ideal. (Semi-) simplicity, (semi-) direct product,

_and solvability are carried through by this natural correspondence. An important result is that

a local Lie group may be reconstructed from its Lie algebra by means ogthe Lje equation and
the exponential map. Consider a curve Y(e) cG,ee I R,yassm g through the identity e.
“This curve is said to be a 1- -parameter subgrotip of G if v: I -G is a local homomorphism,
i.e. if Y(0) =e and Ve,{ e I, (€)-Y({) = y(e+;). Now VE € L, there exists 3 1-parameter sub-
group Y(e) such that [y], =v'(0) =&: this is Lie's equauon The collccuon of all the curves Y(€)
forall £ e L is a local Lie group 1somorph1c to G. From Lie's cquatlon it then follows that

E) = =¢t& ‘All that reflects the fact that L=TG,.

Let G be a Lie group with corresponding Lie dlgebra L. Each ae G inducé-s an
autdmorphism f,: x — a-x-a’! and the set Aut(G) = | fa lae Gi has the property to be a local
Lie group. Furthermore Aut(G) induces, in its turn, a local Lie group of automorphisms
acting on L; this group, G4, is called the adjoint group of G. Its corresponding Lie algebra,
LA, is called the adjoint algebra of L and is constructed as follows. Let & € L. We then define
the adjoint map to & as ad&: 1| —[&,n]. Then LA = (adt £ e L} and is equipped with the Lie
bracket [ad, adn]=ad[¢,n]. Two subgroups H and H' of G are called co:ljugate if there
exists fe Aut(G) such that H= f(H'). Similarly, two subalgebras K and K' of L are °
conjugate if there exists an automorphism ¢ = er5 e GA such that K = ¢(K'); the set 0, of all
conjugacy classes is.called the optimal system and plays an important role in the symmetry
reductioq technique. Indeed this method, for instance when classifying invariart solutions,

%
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and in general group analysis of differential systems, require us to descx;i(be all non-conjugate
subgroups of the in¥ariance group of the system. One usually obtains 6, by choosing

appropriate automorphisms in GA. When dealing wit;] solvable algebras, one may find 8.,
s> 1, from 0O first byte:(tending O, to an (s+1)-dimensional ‘subalgebra and then by

" discarding the conjugate subalgebras using the fact that any (s+1)-dimensional solvable

subalgebra contains an s-dimensional subalgebra. The case of non-solvable subalgebras of
dimension higher than two is a little harder to deal with and one uses the
Levi Theorem: Let L be a finite-dimensional Lie algebra. Then \L admits a -

decomposition as a semi-direct sum R+N. R is the radical and N is
. semi-simple. This decomposition is unique, up to a conjugation.

\
-

The construction of y,,, s> 1, then consists in listing all the non-conjugate subalgebras $fL
and the non-conjugate subalgebras of N (considered indepk:ndcntly of L). For instance 05 is
obtained by assembling a family of hon-conjugate subalgebras of L as well as an optimal (or
representative) system of 3-dimensional subalgebras of N. . h

g,ct BcR"be an 6pen ball co}ltaining the origin and ceordinatized by collections ae B
of "r" real numbers. Consider a smooth map f: R" x B — R" which induces another mapping
TR R x> T, (x) =f(x,a) called 4 transformation. The set G, of all such induced
mappin‘gs is called a continuous r-parameter local group of transformations (on R") if it also
has the structure of an r-dimensional local Lie group equipped with the groyp product
(T, TH(x) = (T‘(T:(x)) = J(f(x,a),b). For a given x € R", the set O, = {T (x) IT, e G}is a

~ local manifold called the G,-orbit through x. More generally, transformation groups are

defined on manifolds, but the above definition will e sufficient for our purposes.
Transformation groups prove to be of prime importance when studying differential systems,
Indeed the symmetry group of such a system has the property to be a local transformation
group on the integral (or solution) manifold of this system. Let G be a 1-parameter
transformation group chafacterized by T,(x) = f(x,a), ae I, I being some open interval in R

containfng 0. The orbit G(x) is just the curve a — f(x,a) passing through x. The tangent
vector of G at x is thus given by the map &: R" — R™: x —-)af(x,a)/ba | a<o OF. equivalently,

by the tangent vector field X = Ei(x)9/0x, i.e. the infinitesimal generator nearby the identity.

-
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The following theorem is of prime importance:

~

’

Lie's Theorem: G(x) is an integral curve of Lie's cquanon df/da=E(f), with initial
condmon f(x,a=0) = x. Conversely, V§ R"— R", Vx e R", Lie's
o equation has aunique solution. .
\

Let G, be an r-parameter transformation group. For each 1-parameter subgroup of G, we
construct the corresponding tangent vector fields. These generate an r-dimensional vector
space L which is a Lie algebra with respect to the Lie product Enl=mE-&n, or °
cquwal‘:mly, X,Y]=XY-YX= (X(n') Y(ﬁ')]alax In fact, the set (E,v af(x, a)? | a=0) i
a basis for L. Lie's equation reads:;

. N
Bi=v“v(a)§;m, Vh (@) = 22 @D : '
da¥ da” b=a'!

] i
where ¢: G, x G, — G, is the group multiplication. Thus to reconsttuct the 'group, we first
choose a basis {§, ), solve the system df/da” = §" with f(x,a"=0) =x; G, is then produced by

composing the transformations of the resulting 1-parameter subgroups. a=(al,..., %"
¥

provides coordinates in the local group G..
- s

a

F

A function I;(x) is called an’invariant of a 'transformation grotp G, in R"if F is
constant along orblts G (x): F(f(x,a)) =F(x). For a 1-paranieter transformation group G,
with infinitesimal gcnerator X, this condition writes simply as XF = Ei(x)dF(x)/0xi =0, by
virtue of Lie's equation. Invariants are at the heart of stveral group theoretic considerations
about differential equations in particular of the symmetry reduction technique. Any given
collection (I,(x),..., I, 1(x)] of functionally independent solutions of XF=0 forms a basis
of invariants, and every invariant F can be written in the form F(x) = ®[l,(x), .., I ,(x)].
More generally, for an r-parameter transformation group G,, a function F is an in;van’ant if it
c{s a solution of the following set of r equations: X F= §' (x)9F(x)/0x! =0, 1 < v <1, Consider
the matrix with elements &' and define the quantity r,(€) = rank[&! (x)]. Then the number of
solutions to the above system of equations is n-r,; when r, =n, the group G, is called
transitive. Now let M c R™ be a local manifold, with local coordinates (x!, ..., x™ 0, ..., 0),

parametrized by some monomorphic map h: U —-R", Uc R™ opén. Thetangent space to M
: 0
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at x is TM, = (dx e TR™ | dx =nh'(y)dy, dy e TR" }. M is said to be invariant under a
Jsransformation group G, if Vx e M, G (x) < M. The infinitesimal invariance criterion is that
M is invariant if, and only if, VEe L.Vxe M, E(x) e 'f‘Mx. Let F:R" — R"™™ be a differen-
tiable map, with rank[F'(x)] =n-m, and M be the solution set of F(x) =0. Then the condition
&(x) € TM, is eqfivalent to &} (x)9F(x)/0x! |M =0, 1 Sv<r, where (€] is a basis for L. The
equation F(x) =0 can be recast as <I>"[I (x)s o0 I g(¥)]1=0,1< k £n-m, o=r,, and {I)isa
, basis of invariants of G,. ThlS last condition provxdcs a representauon of the m-dimensional
. invariant manifold M through a manifold of dimension p=m-r, m the space of i mvanants p
’ is called the rank of M. Let Mc R™ be an arbitrary manifold. The orb1t G,(M)i is ¢he mlmmal
manifold which is invariant under G, and, in addition, containing M as a submanifold of i
codimension 6 = dim G (M) - dim M. d is called the defect of M relative to G, and can.also bc

written as 8 =rank[ &} (x)F¥(x)/0x! ] |m> and thenp =m-r, + 8 ' e
Givén a certain differential system, a symmetry group for it can basically be viewed as
. a transformation group whosc; elements map solutions into solutions. In this thesis we shall
: ( primarily deal with so-called Lie point groups. They are not the most general kind of
- symmetry groups that can be associated with a differential system; for instance they are
contained in what are called groups of generalized syn-gxetries, but they are well understood
- " and most of the group theoretic methods applicable to differential systems that we know of
are based on point groups. Furthermore these groups admit a very natural interpretation since
. their elements ate geometric transformations, hence their physical meaning is rather direct, in
contrast with the transformations corresponding to gdcnerali'icd symmetries which are defined
to act on some functional spaces whose physical significance. is usually far frgm being
obvious, although their importance is not to be neglected. Indeed, following Noether's
\ 7 &ork, it is known that there is a 1-1 correspondence between the generalized symmetries of a
. given set of differential equations and the underlying conservation laws. Since we shall work
( : with geomeltric transformations it would be natural to provide a geometric setting for
dlfferenual systems. In fact, it is the natural way to look at them: clearly we can think oftsuch

a systcm as some manifold embedded in some Euclidean space of usually high dimension..
4
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_ At this point it is useful to introduce the notion of jet spaces. In what follows, all

subsets are presumed to be open and all functions are supposed to be smoothi. Let Mand N

,
. . %o
.
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- be two manifolds of dimensions m and n, respectively. N has local coordinates (xi}, called - °

the mdependcnt coordinates, and thosc of M are the depend‘ent\:émlmatcs {u®}. Let
F(N M)ebe the setof all UCN—- M mappmgs Consider the set S = N x I'(N,M). On this set
S wezdefine an equivalence relation = by X(x,f)= (x',f) <> x=x"and f, f' have the same
Taylor expansion at x, up to order k inclusively. The quotient set S/= is called the k-jet
bundle and noted JX(N,M). By convention, we make the identification J%(N,M) = Nx M. An
equivalence class j¥ f is calledthe k-jet of f at x. JXN,M) is itself a manifold,with local
coordinate functions [x; u, u®, ..., u®], where u” is a collection of symbols {u%;) with "J"*
a multi-index; these symbols will later on represent the set of J-th order derivatives of the u®
with respect to the x', We define two special kinds of maps, the source maps Ayand the
target maps B,, as wcll as projection maps nk k> l) as

Jk(NM)——-———-)NJ N X, 0.
- BNM)—— M: jK f——éf(x)
nk : KON, M) ——— J(N,M): j* f —— j S
These maps are useful for performing calculus in the jet bundles LgtPbea manifold with

local coordinates {v®} and consider a mapping ¢: JX(N,M) > P. We then define the 1-th
prolangation of ¢ as the umquc mapping p'¢ such that the diagram

) s » ’
N » JKHI(N M)
T  J
P'o C .
JNM) '
v . .
commutes. Locally, p'¢ has the representation  °
x=x,. . v _ .
v=¢(x; u,ul), ..., u®), . ‘
v® ={D1o)(x; u, u, ..., u®), . . O

where D, =]1ID;, D; being the total differentiation operator with respect to x!. Let us stﬁ:

»




define the contact modulus on JEX(N,M): _
QKN M) = (we ATKN,M)] () w=0)
N

= Span {0% =du%- u"‘_,_idxi l0<J<k}. N

A.differc;ntial system Z of order k with domaisr N and range M is then {nterpreted as a
differential subset Z < J¥(N,M); i.e. the zero-set of a finite ideal of functions on TK(N,M).
The local meaning of this definition is that a mapping F = (Fl, ..., F™): JK(N,M) - R™ (or

C™) is given and that a solution of Z is any map- f € I(N,M) such that Fo j&f =0yIn what
follows, note that we use N=R" and M = R™. For instance, the heat equation can be viewed
as the submanifold Z = JARZ,R) with the map F(x; u,u), u®@)=u, - u,,. A solution to the
‘heat equation is then any pamcular function u = f(t,x), having a second prolon gatién j2f of
local representation [f£(t, x), af/at 0f/9x, 0%f/0t2, 0%f/dtax, aZf/ax2] whlch satisfies the

conditionFoj2f=f,- f .=

o

A crucial point when defining the symmetry group of a differential system is the
followmg one. The group transformatxons are basically characterized by how they act in the |
spacc JYR",R™), even though a differential system is essentially defined as living in some
non-trivial jet bundle JX(R",R™). The point is that thenatural projections nlj_l completely
specify how the transformations will act in the J¥\J? part of JKR®,R™). In fact if G is the
group acting in JAR™,R™), then its k-th prolongation G®) is uni::lucly defined. Let G be a
1-parameter transformation group acting in the space J%R",R™) coordinatized by (};+m)-
tuples (x,0) = (x!,...,x% ul, ..., u™), with transformations given by maps f and ¢ defined

through the formulas
!

4 x=f(x,u,2), f(x,u,a=0)=x,

: ~ S L (12)
u'=@(x, u, a), (p(x, u,a=0)=u. .
We introduce new variables ul= (u°‘ la=1,..,m;i=1,...,n} sub_]cct to the follewing
transformations: . .
D =yx,u,u®,a),  yx,uu®, a=0)=u®, C N

» We require that (1.3) and the x'ansfoxmgt—ions of the i)(&)"‘/axi under (1.2) be compatible with
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the equalities u®, =du®/d~, since we would identify the symbols u% with the derivatives of
the u®, as we stated before. This compatibility requirement actually defines the maps y*; of
(1.3) in a unique manner and therefore the first prolongation G of G as a geometric
transformation group acting on JJ(R",R™) with the point transformations (1.2).'as well as the
new transformzitionéklﬁ). Let X belong to the Lie algebra L corresponding to G; X has the
form ! ’ - ) o -

) : ’

X = Ei(ewddxi + NPxuUAC, | E=3Ra|,o, T =30/8 |y’ (1.4)

Then the first prolongation X =p!X e L1 of X must take the form
XM =X +%30u%, (% =0y%/0a| a0 , .

<«

By construction, L{!) is the Lie algebra corresponding to G, and the quantities L% are to be
“deteprﬁx'ﬁ?d by ourabove compatibility rcqulrcmcnt on the prolongation. Introduce now a
collection of 1-forms w®* = du®%- u“ldx‘ e QI(R"R™); then this requirement writes as ® =0
and defines a manifold M invariant under a group G* with action spcciﬁcd.by (1.2,3) and

dx' =(3f/ox)dx + (Of/u*)du®,  du'=(@¢/Axi)dxi + (@@/u®)du®, .
acting in the space coordinatized by (x, u, u!), dx, du). Introduce the vector field X* defined
as ‘ . f
o . i* ; » - ‘
X* =X 4 £*9/9(dxl) + > 9/9(du®), . .
£" =3(dx')da |, o = (BE/dxT)dx! + (BL/BuBdu®, -
1" sd(du’)/0a a6 = (@/AxHdxi + (3n/du®)du®,

The necessary and sufficient condition for M to be invariant under G* is that

L

X*0%) g B - W - (0| =0, ¢ ¢ L.

_ Substituting the aBovc c;cprcssions fort' and 1" yields the identification

i D(T\“) u“D(t‘.’).

where D, ga/ax- +u%0/0u® is the total differentiation operator with respect to the vanablc x‘
Thus ‘{“) is completely specified:
ey , “ -

o ~ . N
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XD = Ei(x,u)d/0x + N%(x,1)9/0u® + [D,M) DRy,

The prolpngation of G to G®, k> 1, is obtained in an analogous manner by defining the

action of G on the variables {u®}, where J > 1 is a multi-index, representing the derivatives
« of the u™s of all orders up to order k, and by also taking into account the compatibility\
. " conditions @®? =0, 0<j<k-1, with 0@ =w as defined above, and W% =du® - u®;dx),

u)(z?‘fij =du%;- u“ijkdxk, etc.; i.e. we require that QX(R™ R™) be trivial. This thus yields the

k-th prolongation G®) with the following infinitesimal operators: .
XW=X+{%0/u+ L% 0u +.y
Cai = Di(Tl“) - UajDi(éj), . T .

%= D% - v D&Y,
D, =3/0x! + u™,9/du® + u*3/ou*; + ... | Y

In terms of multi-indices we havethe rather simple fortfiulas
4

ka =.X(k) = X + ca]a,/aua] »

. . (1.5)
Ca) - DJ(T]“ - éluui) + E.aluaj,i ) B

The quaptiﬁes Q%*=n%- &iu“i are called the characteristics of the vector field X. Let us define
a new vector field X, = Q”0/du®. Then (1.5) writes simply as

A}

PX=pXg+&D;,  pXo=D,;Q"/0u%, (1.6)

< where the sum over the multi-index J is performed for 0 <J <k. From a practical point of
view, the form (1.6) for the k-th prolongation of X permits to perform the calculations in a

' more efficient manner. r-parameters groups and algebras are prolonged in a very similar way
- and it may be shown that they have exactly the same structures as the initia}A groups and
algebras from which they are constructed. The invariants of G&) are called the k-th order

differential invariants of G. _
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admits the grapp G ‘as a symmetry group. Let L be the algebra corresponding to G. Then the
.above criterion has the following infinitesimal version. Q admijts G as a symmetry group if,
and only if,’ ’

VX e L, (pkX)Q2 =0 (mod Q). . (1.7)

The "(mod €2)" means that the object "(p"X)Q" must be calculated taking into account the
differential system Q and all its différential consequences, i.e. its k-th prolongation p*Q; the
reason for this is that the above conditiop (1.7) is required to hold only on solutions of F=0.
This equation, which is termed the defining equation, is in fact equivalent to a system of*
linear homogeneous differential equations for tl components §(x,u) and n(x,u) of the vector
field X. It is a simple matter to check that the set™L of thogc vector fields that satisfy the
defining equation (1.7) is indeed a vector space and that VX pXe L, 1%, X,le L; hence L.
is indeed a Lie algebra. Its corresponding local Lie group is the maximal point transformation
group admitted by the system Q. It is important to note that the defining equation is of
polynomial type in the space JX(R",R™) and this means that the quantities x, u,u®, ..., u®
are to be considered as independent variables that satisf y F=0, while the defining equation,
by itself, must be identically satisfied with respect to the free variables x and u. It therefore
follows that (1.7) is actnally an overdetermined system. As a typical exampte of how to find
the symmetry group of a given partial differential equation, consider the heat equation, given

by €:u,-u,, =0. The infinitesimal generator X of G is assumed to take the form of a vector

field X = f¢t,x,u)d/0t + g(t,x,u)d/0x +1(t,x,u)d/du. Calculating the second prolongation X
of X, 4t is clear that (1.7) reads as

-
-

u'-u** =0 (mod Q), S .(1-83)\
u' =D (M - fu,-gu ) +fu, - gu, " .
=1,+n,u,-fu-ful-gu -guu, (1.8b)
u™ =D 2N - fu-gu ) +fu - gu, _ .
=My + 20,0, + 0,2 iy - £ -2 oy
-2fu, - faup ?-2fu o -fuu, -g u,

yomox

- 2gxuu12 B nguu i guuuu3 ° 3éuuxuxx‘
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Substituting (1.85) into (1.8a) and repla'cing all occurences of u,, by' u, (since these two
quantities are equal on the solution manifold of the heat equation; this is our taking into

account of "mod Q"), we obtain . N

m,- ‘nxx) - (ft i fxx - 2gx)ul i ((anu + 8- Be)Uy
+2(f , + g uu + (M, - 28, )u 2 -2(f Ju,,
- 2(fJuu, - (£ uu,2- (g, ul=0. ]
- . - ‘ 'J N -
This last equation is satisfied if, and only if, all the coefficients, i.e. the quantities enclosed
within parentheses, vanish identically. This provides a set of differential equations for the
functions f(t,x,u), g(t,x,u), and n(t,x,u) which is very easy to solve. One finds »
f=a,+2at+4a,t?,
g=a;+2a,t+ax +4ax,
N=(tx) + @-a,x-2at-a,x%)u, with @,=9_,.
We note that these funct:ion§ involve 6 real constants a, to a5 and one function @(t,x) which is
constrained to obey the heat equation, but is otherwise arbitrary. The generators of the Lie

algebra -corrcsponding to the 'symmetry group G Qf the heat equation are thus obtained (we
set ag = b, - 5a,"for feasons of convenience): ‘

X,=9,, ;

X, =20, + X0, - 3ud, , ¢

X, = 4%, + 41xd_ - 2t +xHud ‘
X;3=4d,, -
X,4=29, - xud,, ‘
Xs = ud,, ne 1
Xe(9)=0(t,x)0, .

Let K= Span {Xy, X, X,}, H=Span {X;, X,, X5}, and N=Span {X(9)}, where ¢ is
defined as above. Calculating the commutation relations for the generators of L, it is easily
seen that K generates a sl(2,R) subalgebra which is-an ideal in L and that H generates an

i
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Heisenberg type algebra; N is an infinite dimensional Abelian subalgebra. Furthermore, L
admits the Levi decomposition K& (H+N). Each of the vector fields X; yields a particular

‘1-parameter transformation subgroup of the ‘symmetry group G. For example the

transformations correspondir}g to X, are determined by gl .2) and (1.4):
di/do=0, ‘a/da=2,  dulde=-xu, -
x'(t, x, u, a;O) =X, t'(t, x, u, a=0) =t, “(t, x,u,a=0)=u,

This yields
t'=t, ¥'=x+2at, u'=u(t, x)exp(-ox - a?t).

Finally, the concrete meaning of this 1-parameter invariance subgroup is that if u(t,x) solves
the heat equation, then so does u'(t', x') = u(t', x' - 2at’)cxp(—cix' +alt") in the new varables .
t and x'. Therefore u(t, x - 2at)exp(-ox + «?t) solves our original equation.

‘By construction, the elements of G induce inner mappiffgs on the solution manifold S
of , i.e. if F(u) =0 then F(eXu) =0. Introduce an equivalence relation = on S by u; =u, if.
there exists some g e G; with corresponding infinitesimal generator X, such that uy = cxu,.
The quotient set S/= is called the resolvent system of €. This system may be completed by g
an automorphic (relatively to the group G) system which yields all the solu\lions of Q. In
fact, starting fronr some représentative member u in the class [u] e S/s, this automorphic
system explicitates all the members of the class. .

The symmetry redx{ction technjque is a clever way ‘of oblainihg spectal solutions of
given differential systems, and proves itself to be particularly worth of using when one is
confronted with complicated differential equafions, i.c. equations for which no solutions are

obvious, except perhaps trivial ones (e.g. u=0). Let G be the symmetry (or invariance)

-group admitted by a differential system £2:F =0, and consider a subgroup HcG. Its

solution space {u=f(x)) is some n-dimensional manifold U< J%R"R™); in fact U is

specified as the set of all pairs (x,u) such that u - f(x) = 0. Assume that U is non-singular with
respect to H, i.e. that X | 4 F=0 (mod Q) is of maximal rank; the defect of U is then given by
8 =¢im H(U) - n. If § = 0, which amounts to the situation when U is invariant under H, then
we say that the $olutiogsu =f(x) is invariant relative to the subgroup H. From a geometrical
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point of view, this means that these invariant solutions are actually associated with solutions
of a differential system, called the reduced systcm,Awhich defines the manifold Qy; = Q/H. If
0 <8 <m, then uis termed partially invariarQSnd rank(U) is called the rank of the particular
solution f(x). The procedure of reduction by symmetry can be described as follows. Let H be
an s-parameter group; usually H is chosen to be an g-paramcter subgroup of the symmetry
group G of the differeritial system €2 of order r. Let {(gv,ﬁ\‘,)} be a given basis of the Lie
algebr;l Ly corresponding to H and assume that r,(¢,,n,) <n. We first choose a’basis of

' invariants {I,(x,w)} of H, 1 Sk <m+n-r,. We then look for non-singular invariant solutions

in the implicit form
\  9%0,..1)=0, “ ‘ ) 7 (w9
o =m+n-r,, | Sa<m. The manifold described by’(1.9) can be recast as U: u - f(x) = 0 only if |
the invariants I, are independent of u, i.e. only if rank(91,/0u®) = m. Suppose that this is .
indeed the case for the first m invariants I, to I and introduce a new set of variables v* =
J,(x,u), 1 <a<m, and yi L, (xu), 1<i<n-r,. We can rewrite (1.9) as v® =v%(y). Then

u, uD, .., u® can be written completely in terms of x, y, v, and the y-derivatives of v.
=Subst1tutmg into Q: F=0, we obtain a systcm forv:itis thxs system that we shall call the
reduced system and that defines Q. ’Ihe rank of an invariant solution, p =n-r,, is precisely
the number of independent varlz\bles in thls new system Obviously, the interesting feature is
that p <n: the reduced system involves a fewer amount of independent variables; in fact the
reduced system has r, fewer independent variables than the.initial system has. For partially
invariant solutions, we proceed as follows. We first give 8, which must be such that
max{r,-n, 0} £8<min{r,-1, m-1}. We then find the invariants I,(x,u) to I 5(x,u) of H,
with rank [0 /0u®] = m-8. We set v =I(x,u), 1 SjSm-3, and y'=1_5,,(x,u), 1 Si<p, where
p =n+0-r, is the rank of the solution. The equation of the minimal invariant manifold,
-containing the unknown partially invariant sglp_ti{h‘ as a manifold of codiniension &, then
writes as V) =vi(y), 1 <j <Sm-8. We reexpress ul, ... u™8 in terms of x, y, v, and w° = um-8+c
"1 S <8. This yields a system for-the m-3 functions vi depending on the p variables y!, ...,
yP, as well as a system of 5¥unctions w® depending on the n variables x!,..., x". The
resulting equations then describe all partially invariant solutions of defect & and rank p.

Fad

Iun practice, one does not seek all the (partially) invariant solutions for all the
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subgrm.lps of the symmetry group Gof Q. Instead, wclclassify these solutions. The point is
that if Hc G and H' G are conjugate subgroups, then the (partially) invariant solutions %
under H and H' can be taken one to another by a transformation by the same g e G’ which
relates H and H' through conjugation. It is therefore enough to investigate the question for an
optimal system. Note that sometimes the symmetry group ¢an be enlarged to contain‘some N
additional discrete symmetries that may possibly reduce an optimal systcx'ﬁ a bit further. One
should also rea}i'ze that thjs classification will generally imply that some interesting invanant
solutions will not be obtained directly:'they can however be recovered i)y applying some
transformation induced by an appropriate group conjugation. As an example consider the
heat equation ‘again, with the symmetry algebra generated by the vector fields X, to X4(¢). It
can be shown that an optimal system of generators consists of X\0 +aXs, X, +aXs, X, - Xm
Xo+ X4, Xo + X, +aXs, X(, Xs, ae R, as well as other classes involving vector fields.of the
type X, alone but we do not bother about these since they are known not to yield any
invariant solutions. Note further that space inversion, x —-X, is a discrete symmetry which
permits us to eliminate, say, X, - X, since this symmetry maps it into X, + X,. As a specific
example of symmetry reduction, consider first the generator

Xo+ X, +aXg =(4t2+1)9, +41xd, - 2t+ x2-2a)d, .
The invan'z&nts associated with this vector field are
wv = (42 + 1)y exp[ (4 + 1) 1tx2 + a tan ' (20)],

y =412+ 1y,

A

Setting v =v(y) and substituting for u in the heat equation yields the reduced equation
Vyy +(at yHv =0.

. . . Y . , I
The solution of this equation of Weber type is expressed as a linear combination of two
parabolic cylinder functions and we find, upon substituting back in the above equation
relating v with u, that this gives us the following invariant solutions

u(t,x) = (42 + 1714 (k, W(-a, V8242 + k,W(-a,-x/N8242 ) Jexpl-tx¥/(42 + 1) + atan' Q). -

As a serond example, consider the generator X, - X, =9, - 2td, +xud,, . The invariants are




v=uexp(xt-33), y=x+¢

Proceeding as above, we find that the reduced equation is an Airy equation

vyy = yv = OD 2 ) " - ( -~
and consequently that the invariant solutions are expressed in terms of linear combinations of

Airy functions: )
u(t,x) = [k, Ai(x + t2) + k,Bi(x + )]exp(xt + 363) .

We shall use this technique pf syﬁnnctxy reduction extensively in parts of the next chapter in
order to find spcciai solutions of the Kadomtsev-Petviashvili equation, some of them being

. nét obvious at all. ‘ ’ ‘ .

°

Ar’important application of the knowledge of the symmetry group of a differential
system is that of finding conservation laws when the system can be derived from some
variational principle. In fact, Noether has given the algorithm for constructing the
conservation laws for the Euler-Lagrange equations early in our century (see NOEI).}'
Consider the variational problem associated with the functional

Alul =g Lx, u, ..., u®)dx, | (1.10)

whose solution is prescribed by requiring that the variational derivative of A[u] vanishes
identically; this yiélds the Euler-Lagrange equation
Q:8A[u] =E(L) =0,

*

where E is the Euler operator with components given by E* = (-D;)d/du®; . For example, if L.
has the dependence L(x,u,u,), then the Euler-Lagran ge equation is

E(L) = 9L/du- D, [0L/du,] o
=0L/du - 9’L/0xdu, - u, 9?L/dudu, - u,,0?L/ou,?=0.
A local transformation group G is called a variational symmetry group admitted by Afu] if

this functjonal is invariant under G®. In infinitesimal form, this criterion is that G is
admitted by A[u] if, and only if, V(x,u, ..., u®) € JX®R"R™), and VX =Ei(x,u)d/oxi +

) [y
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. n“(x,u)alau‘; belonging to the Lie algebra of G, (p*X)L + LDivE = 0. Div is the total

divergence operator with components'Divi = D; thus Divg = D;t. An important theorem is
that if G is a variational symmetry group admitted by Afu] then 1t also is a symmetry group
admitted by Q: E(L)=0. It is to be emphasized that the converse is not true. Consider a
differential system Q: F(x, u, ..., u®) =(0. By a conservation law we mean a aivergcncc

expression .

» DivP=0 (modQ), -  « [~ . » . (11D

rd

where P(x,u,...,u®)= (P!, ...,,P". When consjdering dynamical systems, as many
differential systems of physics are, one of the independent variables, usually denoted t, is
distinguished from the other ones and ( 1'.1 1) takes the form D‘T\+ V-D =0, where V is the
space component of Div. T is called the conserved density and D is called the flux associated
to T. The physical significance of the locution conservation law is that the integral

fq, T(x, 4, ..., u®)dx,

where @ is bounded, is a constant ofpthe motion, provided that D (mod Q) ,M,=O. As

mentioned in the Introduction, Noether established the connection between groups of
generalized symmetries admitted by an appropriate differential system and the corresponding
conservation laws. Here we $all restrict to the special case when the symmetries are pure
geometric symmetries associated to a 1-parameter group. The important result from the

applied point of view is the following theorem

-

_Noether's Theorem: LetG be a local 1-parameter variational symmetry group admitted

, by a functional A[u] of the form (1.10). Let X = E'(x,u)d/ox' +

oo . N%(x,u)d/du® be an infinitesimal operator of G, with characteristics

Q*=n%*- &‘u"‘i . Then there exists a vector (P!, ..., P") such that
DivP =Q-E(L)=Q%E*(L) is a consetvation law for E(L) =(.

A corollary to this theorem is that if L has the special form L(x,u,u"’), then P is explicitly

given by , -

P'=QU3L/3u® +E'L = (™ - &u®)aL/u% +E'L . , " (1.12)
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We point out again that it may very well be the case that not all the 1-parameter subgroups of

the symmetry group admitted by a differential systein Q in the form of some Euler-Lagrange
equation L(E) =0 should be variational syrhmetry groups admitted by the corresponding
functional Af[u]. Therefore one mugt be care‘ful to check the admissibility of a given
symmetry before actually constructing the would be conserved densities. It is however
known that Noether's theorem is a li't({e bit too restrictive as far as construction of
conservation laws is concerned. In fact, a theorem by Ibragimov (see AND1) gives thes
necessary anq sufficient condition for the existence of cofservation laws; it states that if Afu]
admits G as a variational symmetry group, then the vector P givcri by (1.11) provides a
conservation law if, and only if, the extremal values of L are invarigint under G. A slight
generalization is permissible. Consider some functional Alu] = J Ldx. A vector field X acting
on J%R",R™) is defined to be an infinitesimal divergence symmetry of A[u] if there exists 2
vector TI(x,u, u), .) = (I1}, ..., TT™) such that V(x,u) e'}O(R",R'“), (p*X)L + DivE = DivI1.

If X is an infinitesimal divergence symmetry then it also generates a symmetry grgup
admitted by E(L) for the functional A[u] = f L(x, u, uMdx. The associated conservation law .
to such a symmetry is not specified by the condition (1.11) but rather by , E

Div(P-IT) =0 (mod £2),
where P is defined asin (1.12), and I isdsuch that it satisfies the eqilation
leli =EigL/ox! '
=0%0L/ou® + (P,n“- u“JDléj)aL/au“i'+ LDg. s

Consgrvation laws, as we now realize, élearly have a group theoretical nature. We should
meption that there are other means to construct, them, although these are indirect ways. For
instance, infinite families of local conserved densities can sometimes be found for special
nonlinear completely integrable equations derivable from some variational principle, e.g. the
celebrated Sine-Gordon equation equation, if their Bécklund transformations are known.

Bicklund transformations played for an important part in our understanding of many
nonlinear di ntial equations, especially in the case of ‘sgliton equations. In practice, thci
are a powerful means of constructing nontrivial solutions from given trivial ones: typically,
solitons are constructed from the zero solution. Backlund transformations are often viewed

l
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as rules wtlich relate solutions of a pair of differential systems. A classical example of such a
transformation is given by the Cauchy-Riemann relations which indeed give us such a rule,
as it relates pairs of solutions of the Laplace equation. In their historical context, these
transformations arised from the study of surfaces with constant negative curvature by Lie,
. Bianchi, Bicklund, and Darboux; such surfaces are characterized by the well known
Sine-Gordon equation -u,, =sin(u): Bicklund's result was that two surfaces of constant
negative curvature -1/42, associated to functions u ahd v, are related by the following pair of

equations:

v,-u, =2asin((v +u)/2],
B(a): (1.13)
v, +u, =2alsin[(v-u)22].

Due to the invariance of the Sine-Gordon equation under the group of dilatations, { and x can
be rescaled in order to absorb the constant "a" and (1.13) then reduces to Bianchi-Lie's
result. Biicklund transformations are also useful for obtaining infinite lattices of solutions by
means of a superposition formula. Thus for the Sine-Gordon equation, consider a given
solution uy as well as two solution.s u, and u, obtained through (1.13) with B(a)) and B(a,),
respectiv}:ly. Then there exists a fourth solution u which is related to the three above
solutions according to the foll(")wing Bianchi diagram: (. ‘

. .
. y ~~ B(a’z)‘\ .
' » S~ (1.14)

Uy X u

-

/
B~ B
2 R

One may easily show, using (1.13), that u possesses the following implicit expression in
terms of the three other solutions

(al - az)tan[(u - uo)/4] = (al + az)mn[(uJ - uz)/‘” .

This type of rule is known as a permutability theorem. It is to be pointed out that such a
property does not charaéterize all nonlinear equations: it is rather exceptional.
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We now formally define what are Bicklund transformations. Let N, M, P be smooth
manifolds. Practxcally, M and P will stand for the spaces of the old and new dependent )
variables u and v, respccnvcly Cons;dcr then a smooth mapping y: J*(N,M) xP — JI(N,P)
leaving unchanged the local coordinates on N and M; thus y is completely determined,
locally, tf it can be assigned a representation v{1) =y(D(x,u uD v), vy is called-a Bicklund

map\f its integrability conditions contain a differential system Z* on J2(N,M) x P. If there
cx’nst§\a M ferential system Z on J2(N,M) such that Zx P c Z', then  is called an ordinary

Biicklund map. In addition, if the imag® of p'y, such that the diagram

J2(N,M) x P l e JAN,P)
w2, x id ° 2
I(NM)x P —% JIN,P)
7 - b4 e

commutes, is the zero-set of a system Z' on J2(N.P), then the correspondence between Z and
Z' is called the Bicklund transformation determined by the ordinary Bicklund map .

Furthermore, if Z and Z' are describing a same manifold, one then speaks of a self (or auto)
W

" Bicklund transformation.

. There is no best al@nthm for finding a Biicklund transformation. The oldest known

method due Bicklund and Clairin, and is also very tedious. For mstance consider two

systems Z 'dcﬁncd on J(R2,R), Introduce the quantmes p=u,,q= uy, I=u,, S$=U,,

v’ and a sop'=ul,q'= uy, r=u,s'= xy, t'= yy u and u' stand*for solutions of

Z and Z', respectively. The Bécklund map can be locally written in the fo'rm

; 'p = f(x,y,u,u’,p".q), q = g(x,y,u,u’,p’q’).

Its‘imegrability condition is
B, -0, = 36/dy + gdi/du + q'df/Au’ + 5P’ + 131/dq’

- 9g/ox - fog/ou - p'dg/ou’ - r'dg/dp' - s'9g/oq’ = 0.
i ,
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The technique then consists in differentiating this expression up to the point where u'.no,
longcr explicitly appears. This will yncld functional éxprcssnons for somg hnghcr dcnvanvcs
of f and g. These may then be mtegrated back to: gwe the explicit dependence of f an-g. A
second procedure, which has been very popular a few years ago, is due to Wahlquxst and

- Estabrook (see WAHL) and is called the prolopgation method. It works on Pfaff systems of*
differential forms equivalent to the given differential system. It proved to be very useful for -
equations as various as the Sine-Gordon equation, the KdV and modified KdV equation, the-
nonlinear cubic Schrodinger equation, etc... Other techniques do exist (see ROGT), for *

instance adapted to Hirota's bilinear formalism. ' )

Lo
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CHAPTER VO ‘ g
Symmetry structure and invariant solutions
) = of the Kadomtsev-Petviashvili equation

®

As mentioned in the introductory chapter, many si)ccial solutions of the Kadomtsev-
Petviashvili, or KP for short, equaqon have been found. The most famous ones are the
soliton and multi-solitqn solutions, rational, quasi-periodic, and similarity solutions; ripplons
and soliton resonances fire other examples (see several references mentioned earlier). In the
present chapter we show that there exist exactly three non-equivalent classes of_ reductions to
differential equations in two independent 'variables, and therefore three eon'esponding
non-equivalent classes of invariantSolutions of the KP equation. There also exists a large
number of reductions to ordinary differential equagions, or to algebraic ones. We shall give
one representative of each class. As we explained in the precedmg chapter, any invariant
solution, e.g. the special solutions mentioned above, can be mapped'to the ones-we give
through some particular conjugation, and maybe also through an additional transformation

due to the discrete symmetries of the equation.

L9
e . - t

The present chapter consists of two paris: Part I deals with the symmetries and the
invariant solutions of the KP equation 1tself and is divided into three sections. In the first we
give and study the symmetry structure of the equation. We state what the Lne algebra of
symmetry is and then reconstruct the corresponding local Lie group of transformations
leaving the KP equation invariant; from now on we shall speak of the KP symmetry group
and algebra. We explicitly specify the form of the transformations induced by this 'group on
the.space R® x R coordinatized by the independent and dependent variables {t,x,y;u}; the
action of a generic element of the group is seen to be quite complicated. We then proceed to
study the structure of the KP symmetry a]gebra in more details. We gsta‘blish a-Levi
decomposition and give a physical ﬁnite-dimensional subalgebra which has been used in
other works to generate similarity solufions of the KP equation.-An important fact is that the
KP symmetry algebra is infinite- dimensional and we show, as the main result of this section,
that a certain subalgebra of it, also 1§mte -dimensional, can actually be embedded into an
affine loop algebra; this feature is a remarkable property which is shared by only a few

! N .
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equations that we know of. The secord section is devoted to a classification of
low-dimensional subalgebras of the KP symmetry algebra, namely those of dimensions one,
two, and three. As explained in the preceding chapter, we are interested in finding the
conjugacy classes of subalgebras under the adjoint action of the KP symmetry group, i.e. the
group of inner automorphisms of the KP symmetry algebra. ‘This is \Qﬁértakcn because
these classes will provide us with the optimal systems that we shall ne&d afterwards in order
to perform symmetry reduction. As a secondary goal, we do this as an.example to
demonstrate that the tools developed for élassifying subalgebras of finite-dimensional Lie
Plgebras can also be applied to infinite-dimensional ones. We limit ourselves to subhlgcbras

_of dimensions at most equal to three&since, in view of looking for invariant solutions,

subalgebras of higher dimensions are not needed.

Symmetry reduction is finally Pcrformcd in the third section.-We first use the one-
dimensional subalgebras and show, as we stated befgre, that three distinct reductions are

- ;/ossiblc. The reduced equations involve two independent variables and are the Boussinesq

equation, a once-differentiated Korteweg-de Vries (KdV for short) equation, and a linear
equation. Each solution of the Boussinesq equation will provide a family of KP solutions
that depend on three arbitrary functions ’of the time variable. Each solution of the KdV
equation yields a family of KP solutions depending on two arbitrary functions. As for the
linear equation, it can be solved explicitly. Its solution involves two arbitrary functions of
time and it provides another family of KP solutions, involving altogether three arbitrary
functions. We also briefly discuss the physical meaning of those solutions. We end by
discussing symmetry reduction using two and three-dimensional subalgebras; for example
we giv?: the particular reduction to the Painlevé equation of the first kind.

In part II we prescntg new way of applying the symmetry reduction technique, the
novelty consisting in considering both the KP equation and its Bcklund transformation. We
actually consider a potential form of the KP equation, referred to as the PKP equation, since
the Bécklund transformation is best defined for this equation. We begin by giving the
symmetry algebra of the PKP equation which, and not surprisingly, resembles that of the KP
equetion. In fact the PKR symmetry algebra has a very similar structure, -the essential
difference being a pair of additional vector ficlds that reflect that the KP equation is a

T
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[ differentiated form -of the PKP equation. It is again an infinite-dimensional algebra and we
point out that,again, there exists an embedding into a particular affine loop algebra. The
vorresponding symmetry group has a more complicated action than that of the KP symmetry
group and we do not reproduce the general transformations, since we shall not use them. In
fact we only use the group to gcncralizc the Biicklund transformation By introducing two
arbitrary functions of the time variable; thesc functions are the analogues of thc parameters
that appear in the Bicklund transformations for some soliton equations like thc sine-Gordon
equation. Our next step is to give the joinr symmetry algebra of the PKP equation with its
associated Bicklund transformation. This algebra is four-dimensional and has four distinct
classes of non-conjugate one-dimensional subalgebras. We then use representatives of these
classes and perform symmetry reduction. In each case the resulting reduced system consists
of a reduced PKP equatibn and an associated reduced Bicklund transformation. Solutions of
the KP equation can then be constructed according to the following scheme. We start from a
given solution of the reduced PKP equation and get a new one through the use of the Xeduced
Biécklund transformation. This new solution can then be mapped to a PKP solution which,

> finally, can be integrated once to éivc a KP solution. One of the four possible reductions is
of particula{r interest as it yields a new kind of solution to the KP equation. This solution,
which we have termed splition, is related, in some way, to soliton resonances. -

<
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- I. Symmetry structure of the Kadomtsev-Petviashvili equatien .

° IR

- 1. The infinite-difnensional symmetty structure
. 9 A

. ) . .y . , . . .
We consider the Kadomtsev-Petviashvili equations given in the standard form

Q°: [4u—+ 6uu, +u +30u, =0 2.1

XXX]X
. \ ¢

where o =11 distinguishes betwetn the so-called KPII and KPI cquatioﬁs, respectively (see
Introduction). The KP symmetry algebra Ly, has first been derived by Schwarz, using a
symbolic package w}inen in REDUCE (SCH1); we shall use his result, correcting a slight
misprint, which we have checked with our own MACSYMA written package (see CHAL). A
general element V of Ly p has the form '

V =X(f) + Y(g) + Z(h),

X(0 = 0, + [§xf' - §0y219, + D, - [ Fyoy™- §xf" + Quf'd, . 22

Y(g) = g9, - {oyg'9, -50y8"9, ,
Z(h) = hd, + §h‘au ,
where f =f(1), g=g(1), and h = h(t) are arbitrary real smooth functions in some open interval

UcR,; primes indicate derivatives with respect to t. The commutation relations for this Lie
algebra are easy to compute. We obtain: ' .\
[X(F), X)) = X( 8, -£,6,), LT
. ‘ // .
(XD, Y(@)=Y(fg'-§8), ———

Ln

[X(D), Z(h)} = Z(fh'- §f h), " 2.3
1Y) Y&y = 30Z(g,'8, - 8,8 » ‘

< Y.z =0, ' -
(Z¢h,), Zhp) =0.

e

We emphﬁsize that it is because of these relations that (2.2) form a Lie algebra only if (1),

’
e

AR,
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g(t), and h(t) are real smooth functions. From (2.33 it is also clear that-the algebra Ly p = '
{X(D),Y(g), Z(h)} admits a Levi decomposition’(see Chapter one)

Lyp=S#N, - (2.4)

:

where the symbol & denotes a semi-dir“ec\t sum. N’= {Y(g), Z(h)) is a solvable nilpotent ideal
in Lgp, namely the nilradical (or maximal nilpotent ideal). S = {X(f)} is a simple Lie algebra.
In order to see that, obsétve that S is isomorphic to J(R) = { f (;)a,; | f3 C™(R)}, the algebra
of derivations of the real line; this algebra is simple according to a theorem of Cartan (see

CAR2, Theorem XI, p.893).The isomorphism is given by the-mapping

Y. JR)—S .
F®)F — XIFW)].

4

Given Lgp we can reconstruct the KP symmetry group Gyp; integrating the
infihitesimal operators V =X(f) + Y(g) + Z(h) given by (2.2) yields a general 1-parameter
‘subgroup of the identity component of the group. We begin with tile simplest case , namely
when {(t) =g(t) =0, and h(t) arbitrary. Following#(1.4) we have to solve the first-order

system of ordinary differential equations

dt*/dA=0, dx*/dA=h(t*), dy*/dr=0, du*/dAr=$h'(t").

_Integrating and requiring that we get the identity transformation for A =0, we find

t*=t, x*=x+rh(), y*=y, - .
: : 2.5)

ut(th, X% y") =ulth, x* - AR(), y*] + SAR'(EY) . R
Thus if u(t,x,y) is a solution of the KP equation (2.1) then u*(t*, x*, y*) also solves (2.1) in
the variables t*, x*, y*. The second case is that for which f(t) =0, g(t) # 0, h(t) arbitrary. The(
system to solve is ’ ‘

i

dt*/dA=0, dx*/dx =h(t")- 30y*g'(t"),

dy*/dr=g(t*), du*/dr=3h'(t")-doy*g(t").
Integrating and imposing appropriate initial conditions for A =0, we obtain the following

transformation formulas: B ¢
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=t, x*=x+[h- foyg'®Ir- Jogg' (A2, y'=y+ig(n),
u*(th, x*, y*) =uft*, x* - Ah(t") + og'")y’, y* - Ag(th)] (2.6)
+ (8h'(t") - 308" (t)y" - Ag(t)H] I - Zog(t")g" (A2 |

. +Finally, consider the generic case when f(t) #0, with the functions g(t) and h(t) being

arbitrary. In order to obtain the group transformations we must integrate the equations
dt* 9dx* _3dy’
f(t")  3x*F(t") - 20y* 2" (1*) +9h(t*) - 6oy’ g'(t*)  2y*f'(t*) + 3g(t")

/ = L 27w, =dA.

4oy (t*) - 6x*£"(t") + 18u*f '(t*) -18h'(t") + 120y*g"(t")

Introducing the notations

D) = P s G(t*,t) = [f@) mr* £-33(s)d
=), T D=7 ] gOFFEds,
) - . ‘ (2.7a)
t-t
H(t" ) = [f(c)]‘B"L [$0f7PgXs) + h(s)fP(s)lds, ‘/ '
- we obtain the transformations R
) t'(t)=¢:_l[l+<b(t)]l,
Y =y + ) f;(f)‘” :
{0} . 20y2[£°(° (W) - £’
v = (S { rHE 0 - 2L (2.7b)
20y f(£°(1))
55 2o ware w350+ 3geon (G- ) |
26+ f(t°(1))
9(() °_[awmorem+oenvgemCEe m) ) 1},
¢ Y




| D

o . “
YR K ] f(t(t‘)) P - . % _# * _ & ZX*[f'(t(t‘))’le:)]/
u (t X,y )= v U[t(t )i (t LAY )’ (t » )] =
| ( ") ) Lerestyives OHUNP A

) 4oy*
. 8If(t(t*)*3 f(t*)*?

(2GEDBEAENE (™) - £'(1 (1))

B

- OF((tM)g'(t(t")) + 3g(t(t)EF'(t(t")) + 3g(tMF(t(t")) + (1) g'(t*) - 6g(tMH'(t*))

doy*?

- (3EANE(*) - 20'(¢)? + £E)FEY) + 2£°))? - 3Re*)f "(t(i*))}
81£(t(t")XPf(t*)*A

Q.7b)
+

' * ‘ 2 Y K
20CEN gyt + 20T

9F'(t(t") SIECY. - [BIEENEEE) - £t
t [

__40G(t),t)

276(t")? [3(E")g X)) - gt Q)]

2 h(t*) hat)] 20 €2 - () ) 1.
+= - + = : - .
3'[,f(t")”’f(ttt")2’3 f(t(t‘)] “[f(t':)mf(t(t*)z’3 (f(t(t*)) ]}

where @1 denotes the local inverse of the function @ and where

(") = A+ D)),

T

y \ 23 t
y(t*,y") = [y* + G@(t"),t)] (gf(—z_f:)l) |

it

- (2.7¢)

{ x* + H((t*),t*) -

20y [£'(1() - £(1*)]
9f (") '

(O

23
e ry- 3560 g (L)
9 (t*) \ . . N )

20
of (t*)

-\ ) 23
[G}Yt"),t")2 £'1(t") + 3G ("), tM)g' (") (r(ft((i )) )) ] } .
t

\\ ¢ f
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Formulas (2.5), (2.6), and (2.7) thus give us new solutions (u*) from known ones_(u). In
particular, if we start from the trivial solution u = 0, then (2.7) provides a family of solutions
depending on the arbitrary functions f(t), g(t), and h(t). We should also point out that
foﬁnula§ (2.7) represent the action of the most generdl I-parameter subgroup of Gyp; in
order to get the action of the whole group, we would need to label the functions f(t), g(t),
and h(t) with three parameters 1,, A,, A, instead of the single group parameter A.

Besides the Lie symmetries that we have just looked at, the KP equation is also
invariant under certain specific discrete transformations that cannot be obtained by integrating
the infinitesimal transformations (2.2). These discrete transformations are the reflections Ry
and R, defined as

R: t—-t, X—>X, y—-y, u—u,

Y | 2.8)

Ru: t—-t, X—-X, y—™Yy, u—>u. .

We shall discuss the systematic classification of low-dimensional subalgebras of Ly,

in the next section. For the moment we may point out that all the obvious physical

symmetries of the KP equation are actually obtained by restricting the arbitrary functions f(t),
g(t); and h(t) to be first-order polynomials in the variable t. Indeed, in obvious notations, we
then get a subalgebra generated by the following vector fields:

T=X1)=9,,

Y=Y()=3,,

X=2Z(1)=9_, ‘ ' ‘

\ < 2.9)

D=X(t) =10, + §xd, + §yd, - jud,,, ¥

R=Y() =13, - oy, ,

B=Z(t) =13, +30,.
Thus T, Y, X generate translations, D generates dilations, R has some properties of a
rotation,’and B yields a Galilei transformation in the x-direction. Integrating, for instance, the

vector field R, we obtain the transformation

t'=t, x'=x-§0(Ay+3%), y =y+i, u'=u.
LS
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This iransformatior'l has been extensively used, e.g., by Segur and Finkel (SEGU1) to
"rotate” solutions of the Korteweg-de Vries equation into solutions of the KP equation. The
dilatation symmetry D =X(t) has been used to generate similarity solutions of the KP
equation (for instance see RED1, NAK2). The infinitesimal operators (2.9) form a basis of a
six-dimensional Lie algebra Lp = {D, R, B, X,Y,T}. This algebra has a five-dimensional
nilpotent ideal N={R, B, X,Y,T} (the nilradical). The commutation, relations for Lp are
given in the following table.

D R B X Y T
D 0 3R iB -3X -3Y T
R AR 0 0 0 3 oX X
B -2B 0 0 0 0 Y
X ix 0 0 0 0 0
Y iy | -%ox 0 0 0 0
T T Y 0 0 0

0

Itis a relatively simple matter to classify and construct all the subalgebras of L, through the
use of known classification methods; we shall not present these results here since we think a
classification of all the low-dimensional subalgebras of the infinite-dimensional symmetry
algebra of the KP e&uation is both more interesting and more useful for performing
symmetry reduction{see the next two sections below).

Another finite-dimensional algebra, not contained in Lp, can be obtained by restricting
Lyp to be generated by the vector fields of the form X(a + bt + ct?), a,b,c € R. We thus obtain
the algebra si(2,R) with generators C = X(12) = t%0, + §(tx - §0y?)d, + -}tyay +3(x - 3tw)d,,, and
D, T defined as above. The commutation rules are

[D,T]=-T, [D,C]=C, [T,C]=2D.

»
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C generates a type of conformal transformation:

t*=t(1-at)t, -

y’l = Y(l - A't)-4/3!

) x‘=[x-§(—l~_—;—5-](l-kt)‘2f3, .

. [u+ x| 87Ly2[2(1—o)-(2—_o)7kt]] a -'M)“’?‘.
- 8l(1-a% . '

“

I

A most 'inicresting featare of the KP symmetry algebra (2.2) is that it contains a
subalgebra that can be embedded into an affine loop algebra. In fact, let us consider the
subalgebra L, < Lyp obtamcd by rcsmcung the functions f(t), g(t), and h(t) to be Laurent
polynomials in the variable t. ' A basis for this subal gebra is provided by

¢

xan).-.znal+[ t“‘-——n(n 1)y? x"2]a 3 1"‘8

3

[0 v 2y200 - B nwn2 + Rue ],

-

_ 26 1y 40 2
Y@ =t" By - —3~nyt" d, - 5 n(n- Dyt™g,,
Z@™ =1"0, + D n- la
where ne Z. The commutation rfglations of this subalgebra L, are¥sec (2.3))

[X(t7), X(t™)] = (m - n)X("*™})
[X("), Y(UA™)] = (m - gn)Y{e ™ 1),
[X("), Z¢™) = (m - gn)Z(@™ 1), (2.10)
LY@, YA™)] = fo(n - mZ@™™ty, L

[(V(", Z™)] = [Z(4™), Za™)} = 0.
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Let us now consider the following set of vector fields:
A=xd,+2yd -2ud,, Q=yd,, Y=d,, X=d,,
A =-0y20, +x9,, S=yé? P=y%d,, U=9,.

These form an eight-dimensional Lie algebra L, with the following nonvanishing

(2.11)

commutators: .
[AAl=3A, [AY]=2Y, [API=6P, [AQI=Q, [AS]=4S,
(AX]=-X. [AUI=2U, [AY]=20Q, [AQI=-S, [AX]=-U,
(YPl=25, [Y.Ql=X, [¥Sl=U.

A

"This Lie algebra is solvable, its nilradical is spanned by (Y, A, P, Q, X, S,U}, and it

contains a ﬂvg-dirﬁensional Abelian ideal spanned by {P, Q,X, S, U}. It should be noted
that'LO is not a subalgebra of the KP symmetry algebra. L, can be embedded intc‘> a simple
Lie algebra. The simple Lie algebra of lowest dimension that contains a five-dimensional
Abelian subalgébra is A, (in Cartan's classification), in particular sl(5,R) in our case.

Indeed, it is easy to verify that the traceless matrices

36 -a op s u |
0 O -a q x
n E=]0 0 -35 -2y 0
0 0 0 -3 -y
0 0 0 0 &

provide a representation of the Lie algebra L with the prescription that the matrix
representing A is obtained by setting 6 = 1 and alt other entries equal to zero in Z, similarly
for Y, etc. We observe that the Abelian subalgebra spanned by {P, Q, X, S, U} is contained
in a maximal Abelian subalgqbra of sl(5,R) with Kravchuk signature (2,0,3) (see SUP1,
WINI, PAT3). Let us now establish a natural grading on the algebra L by attributing the
degree "n" to a monomial t" and the degree It (0 Sp<4), equal to the distance from the

diggonal in E to elements of L. Thus A has degree ), A and Y degree 1, P and Q degree 2,

R &
.
) .
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S and X degree 3, and U has degree 4 (the usual grading in the weight space of slfS.R)). We
now construct a loop algebra out of (2.11) following the procedure usually applied to simple
Lie algebras (KAC1). Thus, setting -

X(") = "9, + {nt™ 1A + Zn(n - 1™2A - on(n - 1)(n - 2)"3P,
Y(") =Y - font™'Q- fon(n - i3S, @12
Z(") = "X + ™0, :

we see that the vector fields X(t"), Y(t"), and Z(t”‘) form a Lié algebra isomorphic to the
subalgebra L, of the KP symmetry— algebra whose commutation relations are given by
(2.10). Each element has a well-defined degree in the grading, namely n-1, n+1, and n+3 for
XM, Y(t"), and Z(t"), respectively. From the embedding constructed above fo; L, into
sl(5,R) and from the representation given by (2.12) for the Lie algebra L, , we see that lj,t is
a subalgebra of the affine loop algebra A, without its centre:

!

L, < (R[] ®sI(5,R)) ® RIt,'] th.

— -

.The Levi decomposition (2.4) also holds for L, . Indeed, from the commutation rulc§ (2.10)
we see that N={Y(t"), Z(t") } forms a nilpotent ideal. The elements X(1") form a Lie algebra
isomorphic to the Z-graded algebra & =R[t,t“]d/dt. A basis for & is given by the collection
of derivations defined by d, = t* d/dt with commutation relations

(4, d] = (k1) . -

As we restrict ourselves to Laurent polynomials, i.e. functions with only a finite number of
non-vanishing coefficients in their Laurent expantion, it follows directly from the above
commutation relations that & is simple, i.e. it admits no nontrivial ideal. Let us finally remark
that the relationship between & and the algebra of regular vector fields on S! has recently
been investigated by Goodman and Wallach (GOOL1), who also study the Virasoro alg::bra
whic‘Q is the universal central exiension of §. It is finally worth mentioning that, following
our s'udy of the KP equation, it has been found that other integrable nonlincar equations of
physical interest in 2+1 dimensions also have infinite-dimensional symmetry groups and,
moreover, have some specific loop structure, for instance the Davey-Stewartson equation
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and the so-called modified KP equation (see CHA2). However no equations in 3+1
dimensions have beén yet shown to present such a feature; for instance the equation
following the KP equation in the KP hierarchy of the Kyoto School (see, e.g., JIM1) does
have an infinite-dimensional Lie algebra as its symmetry algebra, but this algebra hides no
loop structure (see DOR1). In fact, it is conjectlircd that the KP equation is. the only equation

of the whole hierarchy presenting this feature.

"

In order to perform symmetry reduction to obtain invariant solutions of the KP
equation we first need to know the low-dimensional subalgebras of the KP symmetry algebra
Ly p. More specifically we need subalgebras that correspond to Lie subgroups having orbits
of codimension 3, 2, 1 in the 4-dim;nsional manifold J%(R3 R) coordinatized by (t, x,y;v)
(see Chapter one). We obtain all the required subalgebras and also derive a better
understanding of Lgp by classifying all its pne-, two-, and three-dimensional subalgebras
into conjugacy classes under the adjoint action of the corresponding KP symrhetry group
Ggp. In other, words we shall construct optimal systems of subalgebras from which we shall

be able to calculate appropriate subgroup invariants.

2.1 - Classification of the 1-dimensional subalgebras of Ly punder the adjoint action of Gyp
. . .

Here we show that there exists exactly three conjugacy classes of one-dimensional
subalgebras of Ly, under the adjoint action of Ggp, with representatives respectively
spanned by X(1)=T, Y(1)=Y, and Z(1) =X. The approach we undertgke is in all respects
similar to the one followed in the classification of the subal%ebras of finite-dimensional Lie
algebras; for more details on this approach see PAT1 and references therein. The difference
between the finite- and infinite-dimensional cases arises in that in the latter case one obtains
equations for the arbitrary functions labeling the group elements (whose adjoint action is

-

LN

-
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- used to c;st\tl;e generators of the subalgebras into normal forms). These replace the pure
algébraic conditions on the parameters labeling the elements of the finite-dimensional group.
We shall use the exf;licit form of the finite transformations of the variables (t, x, y, u)
associated with each of the infinitesimal generators X(F), ?@), Z(H) (f.c. expAX(F),
expAY(G), expAZ(H), respectively). Fhey are respectively obtained by setting f=F, g=h=0
in (2.7fg =G, h=01in (2.6); and h=H in (2.5). We point out that the adjoint action under

. some given group element e® can be calculated through the well 'known Baker-Campbell -
Haussdorff (BCH) formula,

AV =eAveA=) oMK, 0O=v, @D =[AQ0],
k=0. . -

-

except when A contains X(F) as one of its terms. In fact, using the BCH formula in the
particular case when A contains a term Fd, will give us an infinite series of terms, and

therefore an infinite family of differential conditions on the function F, whereas the explicit '
calculation of the adjoint action through the transformations on the variables will yicld a
single manageable functional equation as a condition on F. As an alternative to the BCH
formula, we can‘also calculate the adjoint action as follows. Consider an arbitrary function
f(x*) of the transformed coordinates x*e¢ M under the action of the group element eAeG,
and l€t'V = w(x)-V belong to'its Lie algebra L, V being the usual gradient operator in the

| variables "x"; V is also a vector field on the manifold M. Then ’

" eAVEASIx") = AVF(x) = eAlw(x) V(K)o

. . 2.13)
= wix(x")J(x)V*F(x) = [eAuV](x*)

[

»
where J(x;x"*) is the Jacobian determinant associated to the transformation x—— x*. There

are three cases to be considered when. classifying the one-dimensional subalgebras, generated
by typical elements of the form V =X(f) + Y(g) + Z(h), into conjugacy classes.

Case [. =0, g=0, h#0. We claim that V =Z(h), with h(t) # 0, can always be transformed
into X=Z(1) by an element of Ggp. Actually, the nature of the commutation
relations (2.3) for elements of Lgp is indicative of how'we should proceed.
Clearly, acting with exp[AY(G)] or exp[AZ(H)] serves no purpose. How:'yer

N
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. {expDXPINZOW) =Z(1). e 2.140)
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<

exp[AX(F)] induces a new vector field of the type Z and that is what we want. In’

?fact, we can choose, F(t) so as to normalize h(t) to "1", i(‘ientically, in Z(h) by ac‘ting
on it with {exp[AX(F)]}« (the adjoint action). Indeed we get

<

13
{cxp[kX(P)](ﬂ*Z(h(t)) = h(t(t )){ t((tt )))] 8 )

(2.14a)

h((t")[F :
2 [F(t(t D] ¥ [ DUONE@ -FEON | o] i .
F(t*) 3F((t")) du

Now, it has been shown by Neuman [(see NJ;s 1) that there always exists a
function F satisfyirg the following functional equation: -

F(1(t")'P = h((t")F(*)'P. (2:

It is then easily verified that (2.14b) together with its differential consequences
when substituted into (2.14a), yields (dropping the stars)

The existence of a solution to (2.14b) may be argued a posteriori as follows.
Supposc that, for some function h(t) #* O,’ (2.14b) has no solution F . Then it should
follow that symmetry reduction by the corresponding Z(h) would yield a reduced
cduation that could not be equivalent, under the action of any element of Ggp, to
the equation obtained by reducing the KP equation by Z(1), namely U, = 0. Butwe
shall see below, when we shall canstruct all the solutions of the KP equation that
are invariant under the action of a one-dimensional subgroup of Ggp having orbits
of codimension 3 in the space cgordmanzed by (t,x, y} 1), that symmetry reduction
under the subgroup correspondmg to any mfimtesmal generator V =Z(h), h#0,
always gives rise to a reduced equation that is equivalent, under the action of an
element of GKP, to the linear equation u,, =0. Thus we arrive at a contradxcth

and therefore a solution to the funcnonal equaud’nﬁlcib) must exist.
IS - ' o _@

&,
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. £=0, g #0. We ¢laim that V = Y(g) + Z(h), where g(t)=0, can always be
-4

transformed into Y(1) by some element of the KP symmetry group. Indeed, the
form of the commutation rules (2.3) for Lyp tells us how to proceed. First, we act
on V through a conjugation by a group elemente* Y (O), aiming at getting rid of the
function h(t). Specifically, using the BCH formula (the series stops at order one:
Vk> 1, 0% =0), we obtain

{exp[AY(G)] }xV = Y(g) +Z(h) + $0)3Z(G'g-Gg)) . . (2.15a)

It is then straightforward ms{ter to show that if we make the choice

t
G(t) =cg(D) - §Gl‘lg(t)j0 h(s)g(s)ds , (2.15b)

where c is an arbitrary constant, as the function labeling the element Y(G) of the
KP symmetry algsbra, then we obtain that (2.15a) identically reduces to

(exp[AY(G)] )%V = Y(g) .

Now, as it is again suggesied by the commutation rules (2.3) for the algebra’Lyy,
we can aitempt to find out a function F(t) such as to allow us to normalize g(t) to
"1" i Y(g) by acting on it with M (F),. As a matter of fact, using formula

-

Q. 13), we actually obtain

-2f3 *\\1/3
MXF),y(g) = g(t* )) Fa)*~d 20y° E(t(t*))
)2/3 ay F(t‘)m

[geey +2gwey

F(t(t") F(t ou*
4’ . F((1))*? g. F(t") - F'(t(t »1'9 .
- (1(t") + % g(t(t* ) — - '
© 7 Eeyn o L F(E) ]au

function/F satisfying the functional equation .

8

By Ncu;an's result (NEU1) we know that, given g(t) #(), there will always exist a

Fa@)? =g)FEYP. / (2.15d)

% - r

w][a _2 F®)-Fa) o ] (2.15¢)
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As in preceding case,-it is easily verified that this equation and its differenttal
consequences, when substituted into (2.15c¢), yields (dropping the stars)

L]

XE) v () = Y(1). ‘ (2.15¢)

Thus we have found a pair of functions G(t) (2.15b) and F(t) (2.15d) such that the
generator V =Y(g) +Z(h) is shown td be equivalent to Y(1) through the composed -
adjoint actions of two one-parameter subgroups of the KP symmetry group as
follows: : . L
eX(E), [eYO), v] = Y().

Y

. £#0. We now claim that V =X(f) + Y(g) + Z(h), with f(t)#0, can al;»vays l\)c

transformed into X(1) by some element of the KP symmetry group. The main steps
are as follows. As suggested by the commutation rules (2.3) for Ly, we first act
on V with e*Y(G), in order to transform the function g away from V. Indeed, it

may easily be seen that the BCH formula yields .
AYO), v = X(f) + Y(g) + Z(h) - AY(FG'- ¥'G) + 300Z(G'g - Gg') 3
- o (2.16a)
- 30MZ[G'(fG'- 3f'G) - G(G' - $7'G)] .
. If we make the choice
et . N N
- GO =, fOF + 1 H(H)P J‘O\ g(s)f(s)>ds, (2.16b)

where ¢, is an arbitrary real constant, as the function labeling the element Y(G) of
the algebra Ly, then (2.16a) identically reduces to €Y (G)yv = X(f) + Z(h) .The
sécond step consists now in acting on X(f) + Z(h) with a group element of the type
c"Z(H); we calculate

M) (X (6) + Z(h)) = X(O) + Z(h) - AZ(FH - ' H). X2.16¢)

-

Here we choose the functiop H(t) as

. t
“H(Y) = c,f()1P + 1 1£(1) _[O h(s)f(s)#>ds, (2.16d)
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* where ¢, is an arbitrary real constant, as the functidh labeling Z(H). The result
(2.16¢) then identically reduces to emH)*[X(D +Z(h)] = X(f) . As our final step
‘we act on X(f) with ch(F)*, after a tedious but otherwise stralghtforward
calculation, we explicitly obtain:

F(t*) o
F(t(t*)) ot*

AXEx () = ("))

* * F(t*)"F(t(t")) 2 1 o*
+ | Q) + @) ——n 22 —+ix
[r ‘ Fa() 1LY ay ° ax’
- (2.16e)
LR i s * _F * ]
AN ey riean T [epea 2 g0 O]
F(t") F(t(t*) ., ox* Ju*
 FG()? F()-Fe) 1! ., 9
- f'(t(t )) +{(t(t")) —————]" Ooy* 4 — .
77 F(t*)? [ F(t(t*)) ] ou*
X
We choose the function F(t) such that it satisfies the functional equation
F(t(t")) = f(t(t*))F(t™) . : (2.16f)

As in the preceding cases, the existence of a solution to (2.16f) is guaranteed from
Neuman's result, and it is then easily verified that (2.16f) and its differential
consequences, when substituted into (2.16e), yields (dropping the stars)

AXE),X () =X(1). (2.16g)

Thus we have found a pair of functions G(t) (2.16b) and H(t) (2.16d), as well as a
third function X(F) satisfying equation (2.16f), such that the generator V = X(f) +
Y(g) +Z(h) is shown to be equivalent to X(1) through the composed adjoint actions
of three one-parameter subgroups of the KP symmetry group as follows:

eX(B), (ZH), [ Y(O), v1) = X(1).

Our proof of the existence of three conjugacy classes of one-dimensional subalgebras
of Lyp under the adjoint action of Gy p with representatives spanned by X(1) =T, Y(1) =Y,
and Z(1) =X is thus complete. To summarize, an arbitrary one-dimensional subalgebra of
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[N

Lgp is conjugate, under the KP symmetry group Ggp, to precisely one of the following

ones: \

Lyp=(X(D), Lpp={YD), Ljz=(Z®D). @.17)

2.2 - Classification of the two-dimensional subalgebras of Ly p

Itis a well known result (see, e.g., JAC1) that precisely two types of two-dimensional
Lie algebras {R,R,] exist, both over the fields R and C, namely Abelian algebras and
solvable non-Abelian algebras, satisfying, in an appropriate basis, the commutator equation
[R;,R,]=R, . We shall take R, in one of the three possible forms established above in the
preceding section 2.1, and let R, be a general element of the KP symmetry algebra. The
procedure to find the subalgebras will consist in first imposing the above commutator
equation and then to simplify R, by using the isotropy group of R, in the invariance group of
the KP equation.

A) Abelian algebras.

A.1) R;=X(1)=T: We take R, =X(f) + Y(g) + Z(h). Requiring that [R,,R,]=0 be
satisfied and using the commutation relations (2.3), we find f'(t) = g'(t) =h'(t) =0.
Hence R, =aX(1) +bY(1) + bZ(1). We then replace R, by R,'=R, - aR, this has the
effect[bf setting a=0in R, . Conjugating by e*Y(®) +HZ(MV)] if b0, we can arrange
for ¢ to vanish; if b=0, then we put R, =Z(1). We thus obtain two distinct algebras,
namely {X(1), Y(1)} and {X(1), Z(1)}.

A2) R, =Y(1)=Y. We again tak¢ R, = ¥(f) + Y(g) + Z(h). The condition [R|,R,] =0
implies £'(t) = g'(1) =0, hence R, = aX(1) + bY(1) + Z(h). We are forced to seta=0, or
we would reobtain the precedent case. We can arrange for b to vanish by redefining R,
through a linear combination with R, and we therefore obtain another algebra (actually
a family of them), namely {Y(1), Z(h)}. It should be noted that the remaining freedom
in the KP symmetry algebra, namely the invariance of {Y(1)} under dilations and time
translation still could be used with the consequence of giving arbitrarily chosen values
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. to any two of the Taylor coefficients of the function h(t). Hereafter we choose not to
lift such trivial redundancies for the equivalence classes of subalgebras labeled by

arbitrary functions.

A3) R,=Z(1)=Z. We take R, as before. Requiring that it commutes with R;, we find that
it must take the form R, = aX(1) + Y(g) + Z(h). If a # O we reobtain case (A.1);ifa=0
and g(t) # 0, we then recover case (A.2). The final possibility is a=0 and g(t) =0, for
which we obtain the algebras {Z(1), Z(h) Ih'(t) #0]).

B) Non-Ai)elian algebras.

B.1) R,=X(1)=T. We take R, =X(f) + Y(g) + Z(h). Requiring [R, , R;] =R, implies that
f'(t)=1 and g'=h"=0. Conjugating by eAY (1) + ”Z(l)],»\:vc can transform away the
functions g and h. We thus obtain a single algebra, namely {X(1), X(t)}.

B.2) R, =Y(1) =Y. Imposing the appropriate commutation relation we find that R, must be
of the form R, = % X(t) +aX(1) + b¥Y(1) + Z(h). We can eliminate b by redefining R,
through a linear combination with R, and transform a and h(t) into 0 through a conju-
gation by X(1) +Z(H)] The new algebra is hence {Y(1), X(%t)}.

" B.3) R, =Z(1) =X. The commutation relation [Z(1), R, ] = Z(1) yields R, = X(3t) + aX(1)

+Y(g) + Z(h). We then conjugate by e[*X(1) + Y(Q) + Z(H)]; this permits to make a,
g(t), and h(t) van@sh, and we therefore get the algebra {Z(1), X(3t)}.

Let us summarize the results. Every two-dimensional subalgebra of Ly p is conjugate
under Gy, to precisely one of the following algebras (with the reservation that any two
functions h(t) and e®h(t - B), where a and B are real constants, give equivalent algebras):

=—=h] Abelianalgebras: L, = (X(1),Y(D),
L,, = (X(1),Z(D)},
L,3" = (Y(1),Z(h)), 21y
Ly 4" = (Z(1), Z(b) 1h'() #0);
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)
2. Non-Abelian algebras (satisfying [R;,R,] =R, ): ,_1:2'5 = (X(1), X®)),
L,s=(Y(1),X3v}, (2.18)
L,;={Z2(1),X(3v)}.

2.3 - Classification of the three-dimensi 1 p

Tt is a well known that a real three-dimensional Lie algebra (JAC1) can be either simple
or solvable. We will consider these two cases separately.

t

A) Simple Lie Subalgebras. -

Let us first allow for complex coefficients in the vector fields and construct the algebra
s1(2,C). This algebra has a two-dimensional non-Abelian subalgebra (R;,R,}. The commu-
tation relations of sl(2,Cg can be written as [R;,R,] =R, [R,,R;] =R;, and [R|,R4] = -2R, .
We shall identify {ﬁl,Rz} with one of the non-Abelian algebras ir} (2.18), _i.c., chnsider it to

be in standard form. !

Al L2’5 'Ry =X(1),R, =X(1). Wetake R, =X(f) +Y(g) + Z(h). Imposing Jhc 51(2,C)

commutation relations, we find Ry = X (t2).

A.2) L2,6 ‘R =Y(), R21=X(§t). We take R, as above. It is easily seen that the commu-
tation relation [R,, R3] =-2R, cannot be satisfied.

A3) L2.7 ‘R =2Z(1),R, =X(31). Weagain take R4 as above and, once more, the commu-
tation relation [R, R5] =-2R, cannot be satisfied. h

-

We thus have obtained a single class of sl(2,C) algebras, represented by {X(1), X(t),
X(t%)) (see also the physical subalgebra L in Section _1). Restricting to real coefficients, we

recover the algebra sl(2,R), but not su(2).



¢
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B) Solvable Lie Subalgebras

A solvable three-dimensional Lie algebra alwaygs willhave a two-dimensional Abelian _
ideal (see Refs. MUB1 and PAT2 for a classification of Lie algebras of dimension <5 into
isomorphy classes). Unless the three-dimensional algebra is Abelian or nilpotent, this ideal is
unique, up to conjugacy under inner automorphisms. We assume that the ideal {R,R,} is
already in standard form, as given by the AbeRan algebras in (2.18), and look for a third
element Ry = X(f) + Y(g) + Z(h) that acts upon the ideal according to the following equation:

8

[R1, R3] a  b][Rr, a b
. = , M = 2.19)

[:Rz,R3:] : c d|{R, c d

The real matrix M in (2.19) can, by a change of the basis of the {R;,R,} space, be taken into

a standard form and further simplification can be achieved by rescaling R, . Finally, R, can
itself be simplified by transformations in G that leave the algebra {R,R;}, as a vector
space, invariant. Let us run through this procedure for each two-dimensional Abelian
subalgebra taken from the list (2.18).

B?.l) L, 1R =X(1),R,=Y(1). We first impose equation (2.19); using the Ly,
commutation relations (2.3), we then deduce d = %a, b=c =0, and thus ﬁ;xd R, =aX(t)
+oX(1) +BY (1) + yZ(1). Since X(1) and Y(1) are elements of the algebra we can
always set a=3=0. If a# 0 we apply eM{1) in order to transform Y away, we
therefore obtain a diagonal action in (2.19). If a=0 we can always choose y=1 and
obtain the abelian algebra {X(1),Y(1), Z(1)}.

B.2) Lz'2 'Ry =X(1),R, =Z(1). From the commutatior relations (2.3) and (2.19) we
first obtain Ry =aX(t) + bZ(t) + YY(1) [up to linear combinations with X(1) and Z(1)).
If a#0 we apply AY () + “Z(‘)‘and transform away b and Y, we obtain Ry =X(t) and
a diagonal action in (2.19). If a=0 we must have b#0 in order not to recover case A
above. If y=0 we obtain the nilpotent algebra {X(1), Z(1),Z(t)}. If y# 0 we apply
XM and the discrete symmetry Ry from (2.8) to obtain a second nilpotent algebra,




namely (X(1), Z(1), Z(t) + Y(1)).

B3) L, 3H ‘R, =Y(1), R, =Z(H). The commutation relations (2.19) imply ¢=0 and thus
. J >
Ry = aX(%;) +oX(1) + Y(g) + Z(h), with the following constraints on g(t) and H(t):

g(t) + 30bH(D =0, (Jat+ 20)H'() + (2d - a)H(t) = 0. (2.20)

In this case we consider each normal form of the matrix M in (2.19) sepa{ately.

(B.3.1)

(8.32)

(B.3.3)

“

[a=0,b=0,c=0, d=0]. M is the null matrix. The constraints (2.20) then yield
the Abelian algebra {Y(1), Z(H), Z(h)} (with the restriction.that the functions h(t)
and ﬁ(t) be linearly (functionally) independent) if a#0, and we recover the
subalgebra {X(1),Y(1),Z(1)} for a=0.

[a=0,c=0,d#0]) or[a# 0 ¢ =0, d=0]. In this case the action of R, on the ideal
{R;,R,} is. decoranposable, but not Abelian. Consider first the case a=0, d #0.
Then a# 0 and (2.29) implies

f=o, HO=cdVe  g1)=g +(3oabd)yedVe

Changing the basis in the ideal {R, - (b/d)R,, R,} we diaganalize M. Performing
then a conjugation by erY(G) +HZ(K) with appropriately chosen functions G(t),
K(t), and constants A, |1, we get the decomposable algebra {Y(1), Z(e't), X(1)).
Similarly, putting a #0, d = 0, we obtain, after some rather tedious calculations, a
further (inequivalent) decomposable algebra, namely { Y(1), Z(t'?), XGt) ).

[a=0, b=1,c=0, d=0]. M is a nilpotent matrix. If a # 0 we then obtain H(t) =1
and g(t) = g, - S0t . Performing a conjugation by a group élement of the form

e (K) with the function Z(K) appropriately chosen, we obtain the nilpotent
algebra {Y(1),Z(1),X(1)- gcY(t)}. If a=0, then we find H(t) = -%og'(t), g(t) and

g h(t) being arbitrary; we obtain a family of nilpotent algebras {Y(1), Z(-%og'),Y(g)

+Z(h) | gr(t) #0]). Itis to be noted that the dependence of g(t) and h(t) cannot be
transformed away and each Pair {g(v), h(t)}) therefore provides a different conju-

‘gacy class of algebras.
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(B.3.4) [a#0,d#a,d#0]. Mis diagonalizable. We i)cgin by puttinga=1 and tr;msform
away o by using & translation along the variable t. This yields f=3t and the
constraints 3tH'(t) = (1 - 2d)H(), g'(ty=-30bH(1). Conjugating in an appropriate
way by MY (Q) +HZ(K) e obtain a one-parameter class of algebras, namely -

(Y(), Z(-298), X (30)).

- (B.3.5) [a=1,b=1, ¢=0, d=1]. M has a Jordan form (since ¢ =0, this is the only ]
remaining possibility). This last case, after conjugating by an appropriate group
element of the form e*(K), gives the algebra {Y(1), Z(t25), X30) - 30Y(11P)).

B.4) L2'4H : R, =7Z(1), R,=Z(H). The commutation relations (2.19), in this case, yield the
following constraints on f(t) and H(t):

f'(t) -“ﬁ[a +bH()] =0, {'(OH®@) - 3f(t3H'(t)] = 3[c + dH(1)]. (2.2

Moreover, we can take linear.combinations of Z(1) and Z(H) that will take the matrix
M into some of itsstandard forms; these combinations are Z, (H) = oZ(1) +BZ(H) and
Z,(H) =yZ(1) + 6Z(H), with od - By+0. A further conjugation by some well chosen
group element eMX(E) will then take Z, into Z(1), and Z, into Z(H'). We thus assume
that M is already in standard form, and examine each of these forms separately,

A

'1CB.4.1) [a=0,b=0, c=0, d=0]. M is the null matrix. We obtain one new Abelian

J

algebra, namely {Z(1), Z(h), Z(H)} with the constraint that 1, h(t), and H(t) be

linearly independent functions.

(B.4.2) [a=1,b=0, ¢c=0,d=0]. M has a decomposable fdagm. This yields to one new
decomposable algebra, {Z(1), Z(t'7), Z(3t)}.

(B.4.3) [a=0,b=0, c=1,d=0]. No new algebras are obtained from this case.

(B.4.4) [a=1,b=0; c=0]. M again has a decomposable form. We find one new one-
parameter class of algebras, namely {Z(1), Z(t1-93), X(31)).
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(B.4.5) [b=1,c= -1, d =a). This case corresponds to a cémplax action on the ideal, i.ck

(B.4.6)

M could be diagonalized over C but not over R. From the constraints (2.21) we
see that we must have f(t) # 0. To solve these constraints we depart from our usual
procedure and first perform a transformation eX(F) +Y(G) +Z(K) i order to take
the elements R, Rz, and R, into some new elements S, =Z(h,), S, =Z(h,), and
S, =Z(1), respectively, where h,(t) and hy(t) are arbitrary fux}ctions. The commu-
tation relations [S, , S3) =aS, +§, and [S,, ;] =aS, -§; now imply

h'(t) +ah () +hy() =0, hy'(t) - hy(t) +ahy(t)=0.
Solving and performing an appropriate time translation, we obtain the algebras

{Z(e*cos(t)), Z(e® sin(1)), X(1)].

[a=1,b=0,c=1,d=1]. M has a Jordan form. We obtain a single class of Lie
algebras, represented by (Z(1), Z(- In(t)), X(31)}.

To conclude this section we present in a unified manner a list of representatives of all

conjugacy classes of three-dimensional subalgebras of Lyp, ordered by their isomorphy
class. The solvable algebras are all given in the order (R,, R,, R;}, where N= (R, R,} is
an Abelian ideal and the action of Ry on N is given in (2.19). In each case we specify the

composition of the matrix M. \

4 1. Abelian algebras : [a=0, b=0, c=0,d=0]

Ls, = (X(D,Y(D), Z(D)),
LM = (Y(1), Z(h), Z(H) | h(t) #AH(D) ), (2.22a)
LM = (Z(1), Z(h), Z(H) | 1, h(t), H(t) are independent};

el 2, Decomposable non-Abelian algebras: [a=1,b=0,c=0,d=0]

"

L3,4 = {Z(e*),Y(1), X(1)},
Ly 5= (Y(1), 217 ), X(30), (2.22b)
Lyg= (Z(l),Z(tm) X(@3o); )

A
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3. Nilpotent algebras : [a=0,b=1,c=0,d=0]
L, 7 = (Z(D, -Z(1), X(1)), ,
L_,,,8 = {Z({t) + Y(1),-Z(1), X(1)}, . (2.22¢)
Ly o8 = (Y(1), Z(-30g), Y(g) + Z(a() I g'(®) # 0);

4. Diagonal action on ideal : [a=1,b=0,c=0, d=0]
| L; 6= (X(1),Y(),-X(v)),d=§, § ‘
L,y = (X(1), Z(1), -X(®)), d =1, ‘ 2224)
Ly 1° = (Y(1), Za%29%), X3n),
Ly ;3¢ = (Z(1), Za1-98), X(30)), d# 1;

5. Complex action on jdeal : [a20, b=1,c=-1,d=a]
Ly4t= {Z[e*cos(t)], Z[e* sin()], X(1)); (2.22¢)
6. Jordan actionon ideal: [a=1,b=1,¢=0,d=1]
L 5= (Y(D), Z(r2%), X@) - Yo}, (2.22f)
- Ly 16 = (Z(1), Z[-§ In()], X(3v)};

7. The simple Lie algebra sI2.R)
Ly s = (X(1), X0, X)) (2.22g)

Thus all isomorphy classes of three-dimensional Lie algebras, except su(2), are represented
in the list of subalgebras of the KP symmetry algebra.

The figure on next page is a diagram showing all the one-, two-, and three dimensional
subalgebras of Lyp. The lines represent how each subalgebra of dimensions two and three
were obtained from subalgebras of dimensions one and two, respectively. We point out that
the line between the subalgebras L, 5 and L2'3H actually represents two lines. Indeed, when -
we constructed two-dimensional non-Abelian subalgebras from the one-dimensional
subaigebra {Z(1)}, we omitted the algebra K = (Z(1),Y(g(t))} because it is in fact conjugate
to L2.3H =({Y(1),Z(H)) through an appropriate conjugation by some group element of the
form e*X(F), Hence the line from L,;to L2'3H should first pass by K.

-
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It is easy to vérif& for each case that there are indeed no redundancies in the above list
except for the possibility of "renormalizing"” ene of the arbitriry functions in an algebra b);
the transformafion h(t) = e®h(t-p). The different Abelian algebras are mutually non-
conjugate since a general element of L, , can be conjugate to X(1), Y(1), or Z(1), one of
Lyt s con]ugate to Y(1) or Z(1), and an element of L, ;" is always conjugate to Z(1).
The functions h(t) and H(t) cannot be changcd in either case without destroying the standard
form of Y(1) or Z(1), respectively. In the decomposaBle case the ideal {R,,R,} and the
two-dimensional solvable subalgebra {R,,R,} are well defined and distinguish between the
three cases. In the nilpotent case the centre R5 is uniquely defined. It distinguishes L3_9g-H
from thé other two. An element of L3'-, can be conj gate to X(1) or Z(1), and ar; element of
Ls,s can be conjugate to X(1), Y(1), or Z(1). In.all pther solvable cases the Abelian ideal is
uniquely defified and therefore suffices to distinguish betwcen‘diffgzrent mutually isomorphic

cases. \
{

In the next section we shall \usc these low-dimensional subalgebras of the KP
symmetry algebra to perform symmetry reduction on the KP equation and find invariant
solutions of this equation under the several subgroups of Gyp corresponding to the Lg,
subalgebras that We just constructed above. ¢ .

In this section we will apply our knowledge of the KP symmetry group anﬁ its
subgroups to construct all the solutions of the KP equation that are invariant under the action
of a one-dimensional subgroup. We will also briefly look at solutions invariant under the
action of the two- and three-dimensional subgroups. In doing so, we also complete the proof
of the assertion in section 2.1, namely that there exist precisely three orbits of
one- d1mens1onal subalgebras of the KP algebra. The one-dimensional subgroups all have
codimension thrcc in the space coordinatized by (t,x,y,u). The method prov1des solutions
that depend on three! two, or one arbitrary functions of the variable t, in addition to the
arbitrary functions that may appear in the solutions of the reduced equations, which are

© %
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themselves partial differential equations in two (rather than three) variables. We will proceed

. as indicated in Chapter one, namely we first pick up a representative of an equivalence class
4 P Y p p arep! q

o

™

of conjugate subalgebras, spanned by vector fields {X;}, and find a basis of functional
invariants {I_} by solving the system X, I=0. For our one-dimensional subzilgebras of Lgp
we find three independent invariants, two symmetry variables &(t,x,y) and n(t,x,y), and in
all cases it is seen that the solution to the KP equation takes the form

u(t,x,y) = a(t,x,y)q(&,n) + Bt x,y), (2.23)

where £, |, as well as a and B, are known functions. The function q(§,n), itself a subgroup
invariant, is a priori not known and is subject to a partial differential equation in the variables
E and 1, obtained by substituting (2.23) back into the KP equation (2.1): this equation i8
known as the reduced equation (see Chapter one). The entire symmetry group can then be
applied to the solution (2.23) to obtain a la}rggr class of solutions. *

Two equivalent approaches can be adopted, at this point, for symmetry reduction by a
one-dimensional subgroup of Ggp. A first one is to make use of the classification of one-
’ ¢ established in section 2 of the present chapter.
using the representatives of each conjugacytlass of

dimensional subalgebras of Ly, which
We then go through the above procedu

* elements. Thus the subalgebra L, ; /generated by the vector field X =0, , implies that § =x,

n=y,a= 1; B=0, and we find that u(t,x,y):q.(x,y), where q satisfies the Boussinesq

equation. Similarly, for the subalgebra L 5, generated by X = d,, wefind §=x,n=t,0=1,
B=0,andd ), whefe q satisfies the KdV equation. Finally, for L, 5,
with X =9 =yla=1, p=0, and u(t,x,y) =q(t,y), satisfies the linear

equation q'yy =\).
solutions invariant under/the action of a ome~-dimensional subgroup of the KP symmetry
group. The solutions depend on up to three arbitrary functions. A second\completely
equivalent procedure is to perform the same reduction using a general clement\of Lgp, V=
X(£) + Y(g) + Z(h), and, as usual, considering separately the three cases (1) f(t) =g(t) =0 but
h(t) # 0, (2) f(t) =0 with g(t) = 0, and (3) f(t) # 0. No further group transformation is

necessary in this case. We shall apply the second procedure, mainly because it will confirm
the results establisked when classifying the ane-dimensional subalgebras of the KP
symmetry algebra; namely all the equations obtained when reducing by the generator of a

ce that u(t,x,y) =
we obtain £ =t,

x’

o

)




74

one-dimensional subalgebra under a transformation of the KP symmetry group are equivalent
either to the Boussimesq equation, a once differentiated KdV equation, or a linear cquauon of
. second order. Let us list the results in each cases.

Case 1: f(t) = g(t) =0, h(t) #0. Solving the equation Z(h)I 0, we fmd the following set of

three subgroup invariants:

L=t, L=y, IL=u-2xh(ty3h(t). : ,
° .

We thus have the two symimetry variables & =tand 1 =y, and the form of I, yields

-

N

utxy) = d(ty) + 2xh'(E)/3h(t) . - (2.242)

Substituting (2.24a) in the KP equaiion, we find that u is a solution of the KP
equation, for a sufficiently smooth function h(t), if, and only if, the function ¢(t,y)

o~

satisfies the second order linear equation

x

309,, + 8h"(1)/3h(t) = O. 7 (2.24b)

Redefining ¢ as q(ty) - 4oy2h"(t)/9h(t), (2.24a) and (2.24b) reduce to

u(t,x.y) = d(t,y) + 2xh'(V)/3h(t) - 4oy?h"(1)/9h() , (2.24c)

Uy = 0. (2.24d)

Integrating (2.24d) we obtain a family of solutions of the KP equation depending on
three arbitrary functions of the variable t:

u(t,x,y) = $xh(t)1h'(t) - $oy?h(t) h"(@®) + K (1) i L(t). (2.24e)

» Case 2: f(t) =0, g(t) # 0. Solving the equation [Y(g) +Z(h)]I =0, we find the following three
" invariants: ] -
' L =t, L=x-yh(/g®+ioy’g®/g®
- Ly=u-dyh /g0 + 50y’ /80 -

]

-~
We thus have the two symmetry variabl&wll =tand & =I,, and we write the

]

function u(t,x,y) as

PR N TR 3 N ST A O
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<

u(tx,y) = o) +3yh'(t)/g(t) - oyg"(O)/g(v) . (2.252)
)

~ Substituting (2.25a) in the KP equation, we find that u is a solution of the KP

equation, for sufficiently smooth functions g(t) and h(t), if, and only if, the function
¢(E,n) satisfies the following nonlinear equation: v '

[40gn +6(00g) + Peere] + 30(h/g)” O + 2(g7/8)0 - 40g"/3g=0. (2.25b)

This equation is a once- d1fferenuated KdV equatlon with additional extra terms. It is
possible, as in the precedent case, to get rid of these terms by slightly modxfymg the
basis of invariants. In fact, redefining £, 1, and ¢ as

t
E-g s, n=tos] g3,
(2.25c¢)

6[xg(t) - yh(1g'(®) + 20g'(1)? - 9<>h(t)2
18g(1)?

o =g 2(gEn) +

the expressmn for u(t,x,y) and the reduced equation (2. 25b) mmpley to a pure KdV

“equation:

2
x oh2 2gh'-gh)y  o(g?-2gg"
utxy) = gOqEm) + 28 O, Qe -ghly  o67-2e8)y ) 55,
3g 2g2 3g? 9g2 .

(g, *+ 3adg + ezl ¢ = 0 (2.25¢)

: f(t)#0. We proceed as before. As the calculations are very tedious for this case, we

just present the results. Solving the equation [X(f) + Y(g) + Z(h)]I=0, we find the
invariants, the symmetry variables, the reduction transformation for the solution
u(t,x,y), and substitute this information in the KP equation. The result is a
Boussinésq equation with, here again, parasitic terms. It is possible to redefine the

basis of invariants and we finally obtain

t
N = yf(t) 23 - J g(s)f(s)> ds,
0
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t
& = £()[x + Foyf() ' g(t) + §oy? £y (D] - J [30g()(s)>> + h(s)f(sy*)ds ,
0

(2.262)
u(t,x,y) = K 2Pq(En) + §of(t) 2g®2 + $E(h(t) + §f@R) ' (Ox

+ 545010226 (Dg(V) - 3V O]y +grof® 226 () - 3{OF"M]y?
with the function q(€,1) satisfying the pure Boussinesq equation:

Theclasses of solutions of the KP equation presented in (2.24), (2 25), and (2.26)
depend on one, two, or three arbitrary functions of t, in addition to the arbitrary functions
possibly appearing 1n the solutions of the reduced equations, as in (2.24e), for instance. In
general, they will diverge at infinity unless the functions f(t), g(t), an h(t) are appropriately

restricted. £
%

We shall now proceed to list some special cases of the above solutions that are of
physical interest and illustrate how f(t), g(t), and Htt) ought to be chosen so as to preserve
decay at infinity. Boit1 and Pempinelli (see BOI3) have shown that the similarity solutions of
the potential Boussinesq equation,

- 2 1 - .

O'W.nn + (W &)g + 3W€§§ =0, -
obtained by setting q = We in the Bogssinesq equation (2.26b), are of the form

w(&m) = (& - Vo/3] - fog,n? + hynVo/3'+ € +k, (227)

where g, , hy, and k are arbitrary constants. The equation-satisfied by w reduces to an

ordinary differential equation for the function ¢, which is equivalent to the first Painlevé

transcendent equation if g; # 0 and to the equation for the Weierstrass g -function if g; =0. It
follows from (2.27) that

q=w=§+9&-1o/3] ~ . (2.28)
satisfies the Boussinesq equation (2.26b) and therefore that the function u(t,x,y), as given by

(2.26a), is a solution of the KP equation. Furthermore, it is also clear from (2.26a) that if we
start-with a solution of the Boussinesq equation which is bounded at infinity, then the

T T P B e
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corresponding solution of the KP equation will possess the same property only if the
functions f(t) and g(t) reduce to constants, say f, # 0 and g;, while the function h(t) remains
arbitrary. We thus obtain two classes of solutions of the KP equation depending on one
arbitrary function h(t) by performing a Galilei-like transformation, involving an arbitrary
function h(t) on the solutions of the Boussinesq equation arising from similarity solutions of
the potential Boussinesq equation. They are cxplicitly given by

u(tx,y) =-2(-g,/2%f,P(E) + Zof, 2,2 + 3f,h(®) + £, 229
. <74

t
&= (g1/D)"[xty 17 + Joygefy? - g his)ds - Forgyfy ™" \

N

-N-0/3'(yfy 2P - 1g,f,P) - Joug 2,7R - N-0/3(yEy 2P - 1g, £, 5P + gyl |
where P|(€) is the first Painlevé transcendent function, and

utx,y) =-262P p(x, 85, 85) + 30£5 28 + 36, () + 1,

t .
% =Xy 1P + Joygfy® - 1,42  D(s)ds - Zotgy o™ - \/-q/3'(yfo'2/3 - tgyf P,

where (X, g,, g;) is the Weierstrass elliptic function. Notice that certain restrictions must be
imposed upon the constants g, g;, g,, and g, in order to ensure that we shall obtain real
solutions of the KP equation. In particular the above solutions only can be real for the KPII
eqfxation, i.e. when o =-1. In addition, lump-type solutions of the KPII equation are
obtained from (2.29b) when g, =g, =0, since we then have io(x, 0,0) =% 2. From (2.25d)
we see that if we start from a solution q(§,n) of the once-differentiated KdV equation that is
bounded, the corresponding solution of the KP equation will share the same property if, and

only if, the functions g(t) and h(t) are constants, say g, # 0 and h; . This solution is given by
u(txy) = gy 2qEm) - gy 2hg?,

° 00 s (2.30)

E= gonl/z(x -yhy/gg), M= go'3/2t . ‘

Solutions of the once-differentiated KdV equation (2.25¢) can be rotated into solutions of the
KP equation. This property has been extensively used by Segur (see FIN1, SEGU1) in his
construction of KP solutions of genus 1 (see Introduction), which he obtains by rotating

(2.29b) .

o«
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cnoidal wave solutions of the KdV equation according to"(2.30). Of course, soliton and
sitnilarity solutions of the KdV equation also niay be transformed into solutions of the KP
equation, having physical significance. For example, the similarity solution of the KdV
equation (BOI2)

qEM) =-GO2PVizp) + V,(z W], ’
where z =223E(317)1/3, and V(z,j1) is the second Painlevé transcendent function satisfying
V@) =2V3 @z W) + 2V (W) + -3,

gives rise to solution of the KP equation via (2.30). In view of the transformations (2.25)
and (2.26) it is quite possible to obtain bounded solutions of the KP equation from solutions
of the Boussinesq or KdV equations that diverge asymptotically. One way of obtaining such
solutions is to perform a different choice of symmetry variables than the ones described

. above and thus to reduce to a different partial differential equation in two variables. We have

proven that any choice is equivalent under the action of the KP symmetry group to one of the
three choices discussed above. It is however possible for the group to transform bounded
solutions of an equation into unbounded solutions of an equivalent one. For example, let us
choose the following symmetry variables: - \ ]

T =§In[(g, +1g,)/gy)
30 TR (2.31a)

3<rh03z yhg . <ry2g1
4g,(g8p +1tg) go+tg 3(gyttg) '
where g, g,, and h, are constants; this choice is different from, but equivalent to, (2.26). It

£= [gl/(go +lg1)]1/3 [x

is easy to show that
u(t,x,y) = -[g,/(g + g )]0, 1) ’ (2.31b)

will satisfy the KP equation if, and only if, 9(§,1) satisfies the following nonlinear evolution
equation:
O + Oggp - 600 - 451‘}{; -29=0. ’ (2.31c)

Bounded solutions of this equation have been obtained by Calogero and’ Degasperis (sec
CALY) using the inverse scattering method. They are given by

3 P
v, o .
. .
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9 =" E-2" (1), p (),
ﬂ*(p,q) = 2q[2Ai'(p)Ai(p) +q{ Ai(p)}*G(p.9)1G(p,q) »
G(p,q) = (1 +q[Ai'(p)]? - pqlAi(p)]?) 2,

v
» * * *
Z@=zye?, p@=p, e, :

" (2.31d)

where Ai(q) denetes an Airy function. The solutions of the KP equation defined by (2.31)

contain the solutions 9btaincd by Nakamura (see 'NAK3) as a special case.
|

{ i
We have shown that the use of one-dimensional subalgebras of L, makes it possible
to generate Jarge classes of solutions of the KP equation. For this particular equation the
higher dimensional subalgebras are of lesser use. Indeed, consider the two-dimensional
subalgebras, all of which are listed in (2.18). Performing symmetry reduction with any such
algebra N= (R, R,}, we obtain, when looking for functional’invariants, a system of two

linear first-order partial differential equations:

R, I(tx,y,u) =0, R,I(tx,y,u) =0. (2.32)

Typically this system yields a single symmetry variable £ and an expression for the solution
of the KP equation, similar to (2.23), having the form

u(tx,y) = a(tx,y)q(8) +B(t.x.y), o (2.33)

where a, B, and &(t,x,y) are explicitly known. Substituting!%(2.33) into the KP equafion we
actually obtain an ordinary differential equation for q(€). The solution (2.33) can then be
- transformed, by a general transformation of the KP symmetry group, into a more general
solution. However, one of the two operators in (2.32), say R, will always toincide with
one of those used above to reduce the KP equation to the Boussinesq equation, (2.26b) the
once-differentiated KdV equation (2.25e), or the linear equation (2.24d). The other operator
R, then provides a further reduction. In other words, we do not obtain new solutions but
particular cases of those discussed above. As for symmetry reduction by three-dimensional
subalgebras of Ly, it is clear that we only obtain trivialities, namely that u(t,x,y) adopts a
constant form or the like. Let us only give one example of a reduction by a two-dimensional
subalgebra, namely L, ;; this particular reduction neatly yields the solutions expressible in
terms of the first Painlevé transcendent and Weierstrass elliptic functions. Equations (2.32)

“ . @ . R
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then writes
d,I(tx,y,u) =0, By Itx,yu)=0. - (2.34a)
From these we deduce that u(t,x,y) = -2q(x), where the factor "-2" is introduced for

convenience. Upon substituting this into the KP equation, we obtain an ordinary differential
equation which can be integrated twice to this other one:

Q"= 6q2 +q+V . o , ' (2.34b)
Three independent types of pairs (L,v) are to be considered. The first one is (L =0, v=0);

equation (2.34b) then reduces to q" = 6q2 and has the solution g (x - k;,0,k,), where k; and
k, are arbitrary real constants. As a second case we comsider |1 =0 and v#0; equation

(2.34b) is then amenable to the form q"=6q> + 4 and has the solution ¢ (x - k1, k),

where k, and k, are again arbitrary real constants. Finally, the third case corresponds to
choosing p# 0; equation (2.34b) then reduces to the well-known equation q"= 692 +x
which has the solution Py(x), i.e. the first Painlevé transcendent function. -

In part 2 of this chapter, which follows, we shall reconsider the problem of symmetry
reduction for the simultaneous system r‘nade of the KP equation (in potential form) together
with its Backlund transformation.

“..Mvgn e st
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I1. A generalized Bécklund transformation and its simultaneous
symmetry reduction with the Kadomtsev-Petviashvili equation

As previously mentioned, the purpose of this second part is to combine together two
of the'important features of the KP equation. The first of these is the existence of an infinite-
dimensional symmetry group Ggp of point transformations leaving the equation invariant;
this is essentially what we have studied in part I above. The second feature is the existence of
a Bicklund transformation for the KP equation (see CHE1 and LEV 1) that can be used for
the purpose of generating new solutions from known ones; in particular, the soliton solutions
of the KP-equation are obtained this way from the trivial solution. We shall begin by

' showing how the symmetry group of the equation can be used to actually generalize the

Bicklund transformation n a non-trivial manner, in particular by introducing two arbitrary

functions of the time variable "t" in its formulation, and ultimately we shall show how to
practically use this generalization for constructing a variety of solutions, specifically by
applying the symmetry reduction technique, as before, but with the essential difference that,
here, we’shall reduce both the equation and its associated Bicklund transformation. As seen
in the Int§9duction, a Bicklund transformation is always written as a set of relations which
involve the derivatives of the concerned functions. In our case these relations form an
over-determined system of partial d\ifferemial equations for a function u(t,x ) such that its
x-derivative w(t,x,y) =u,(t,x,y) does satisfy the KP equation. This system is rather tedious
to deal with and consequently, it will be to our advantage to rather deal with an equation
which is closely related to it, namely the so-called potential Kadomtsev-Petviashvili (PKP)

equation which we write as

1, + 3s2uyy =0, . (2.35)

2
[4u‘ + 3ux +U .

where ¢ =s2 =1 is defined as before. Thus we may get solutions of the KP equation (2.1)

by simply differentiating solutions of the PKP equation (2.35) with respect to the variable x.

The Bicklund transformation associated to this PKP equation can be written in the following
. form (see LEV1, BOI3): ’
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S(u-v)y - (@+v)e, - (@-v)u-v), =§0,

4u-v), +u-v),,  +3su+ v)xy +3(-v)(u+v),, (2.36)

XXX

+3(u-v), [(u-v)? ++v),] =0,

If one of the functions in (2.36), say u(t,X,y), is a solution of the PKP equation, then the

two equations in (2.36) are compatible only if the other function v(t,x,y) is also a solution. -

Thus equations (2.36) transform a solution u into a solution v; see Chapter one for the exact
I v
meaning of that. If we set u(t,x,y)=0, then v(t,x,y) will typically be a soliton-type solution.

The symmetry algebra Lpyp of the PKP equation exhibits some similarity, in its
» structure, with the symmetry algebra Ly p of the KP equation. We obtained it, using the same
! computer package as before (see CHAl); a general element \Le_%, has the form

V = X(0) + Y(g) + Z(h) + P(k) + Q(l), ,
. X(F) = 3, + §yf'd, +[xf' - 323, : o

-[ uf' - ' Zfn 4 3 S xy2f"'—3,_r4 y“f""]au,

Y(g) = g3, - §%yg'd, - [3s>xyg" - shy’g 19, , (2.37)
Z(h) = hd, +[$xh' - §s%y*h"19,,

P(K) = ykd, , ‘ . _ o
QW) =19,,

where f(t), g(t), h(t), k(t), and I(t) are arbxtrary smooth functions over some open
nexghbourhood of 0. The commutation rules in LPKP are easily calculated; one obtains

[X(£), X(E)] = X(E,f, - £,'F), IX(), Y(®] = Y(fg'- 3'g),
[X(D, Z(h)] = Z(fh' - }f'h), [X(D), P)] = P(Ek' +£'k), 238
©[X(0, Q)] = QU + 1) , [Y(g) Y(gp) = - 3°Z(g.18) - 81'8)

[Y(.g)l Z(h)] = - §S2P(2gh"+ gh'-g"h),
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<

[Y(g), P()] = Y(gk), J [Y(g). Q)] =0, >
(2(h,), Zhy)] = §Qeh;hy -hyhy).”  [Z(h), PGO] =0, 03
Zh), QW] =0, [P(k,), Py)] =0,

[P(0), Q)] = 0, [QU,), QUYI =0.

The subalgebra {X(f), Y(g), Z(h)}, with k(t)=1(t) =0, is to be compared with Lyp; the
additional vector fields P(k) and Q(l) are characteristic of the fact that we are considering the
potential form of the KP equation. The general action of the corresponding symmetry group
Gpkp is quite complicated and we do not need it for our purposes, so we shall not present it.
“However we list the action of each one-parameter subgroup associated to the subalgebras
spanned by {X(f)}, (Y(g)}, {Z(h)}, and the two-parameter subgroup associated to the sub-
algebra {P(k), Q(1)}; A and p stand for real group parameters, independent of t, x, y, and u.

A
1) (X(D):
t* = O 1A+ ()], . o= J' ,f@)'dz,
y* = OBy, * H=In[f@/fah)],
x* = e HOBx 4 252y2[H" (1)e4HORB, (2.39a)

u' (@, x*, y*) = eHOBue(e*), x(t", x*, y*), y(t*, y")] - §x*)2H(t")
+ s (y)3H"(1") - H()?
“ - s [OH() - OH'(EVH(E) + H'(t?],
where: (t*) = O UDEY - A,
| y(t*, y*) = e#HBy*,
d T x(t*, x*, y*) = eMB[x* - 2s%(y")>.
In particular, setting f(t) = 1 or f(t) =t, we obtain time translations or space-t{mé dilatations, °

respectively.




2){Y(®): g
¢ t"=t, . .
y =y +ig, ‘ "
e X* = x- fstyg - IA2s%gg, . ) (2.39b)

g*(t‘, x*,y*) = u[t*, x* + $AsZy*g' - %kzsz'gg', y* -Ag]
- §AsIXT(2y* “Ag)g"+ Sy g™ - ARy Hg'e" + 2™
' + Ghy" - AN g(g'e" +3eg™),

where g =g(t) =g(t*). In particular, we can obtain translations in the y-direction and

so-called quasirotations by putting g(t) = 1 and g(t) =t, respectively. .
3) (Zh)):
o tt=t, )
# y*—: y ’ . i \‘
. (2.39c)
’ x*=x+2ah,
) u#(tt, x#‘ y*) = u[tt, xt _ lh, y#] + %)\.x*h' - %Mz(y*)zh" ’J%_;\‘vz_llh_' . , \
) \

where h=h(t) =h(t*) In particular, h(t)=1 and h(t) =t correspond to translational
invariance and Galilei invariance in the x-direction, respectively.

[

4) (PK), QD) / .

(2.39d)

u*(t*, x*, y*) = ut’, x*, y*) + ay"k(t) + ul(t) .

This last case is characteristic of the potential form of the KP equation. From the
commuiation relations (2.38) we can analyse the structure of the PKP symmetry algebra. We

3
o o 7 - - . N
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are not deeply interested in that since, once again, from the KP equation point of view, we
gain nothing new with respect to the results already obtained in part I. Let us just mention a
few points. First, Lpgp admits a Levi decomposition, just as Lgp does, in the form Lpyp =
SOR, where S = { X(f(t))] is simple, and R = { Y(g(t)), Z(h(t)), P(k(t)), QU(t)) }is a nilpotent

ideal. The other point worth mentioning is that we find again a loop structure, obtained in the

" same manner as precedently. Indeed, developing the functions f(t), g(t), h(t), k(t), and 1(t)

into formal Laurent series,we get an infinite-dimensional subalgebra L,'. We consider the set
of vector fields formed by taking the coefficients of the diverse powers of the variable tin the
expressions for X(f), Y(g), Z(h), P(k), and Q(l); this set is a 13-dimensional Lie algebra,
with a 12-dimensional nilpotent subalgebra (the nilradical) and an 8-dimensional maximal .
abelian ideal, and can be embedded into the Lie algebra sI(9,R). This implies, in analogy

" witha similgr result for L_, that L' is then a subalgebra of the affine loop algebra Ay!

without its centre: L' < {R[t,t1®s1(9,R)}®R]t,t1]d/dt.

We now study how Gpkp acts on the Bicklund transformation (2.36), by composing
all the transformations from (2.39); by construction, all these transformations leave the PKP
e;;uation invariant. The subgroup corresponding to {Z(h), P(k), Q(1)} also leaves invariant
the Biicklund transformation. However the group action induced by Y(g) and X(f) does.not.
In fact the subgroup corresponding to these two infinitesimal generators change (2.36) into

the following expressions.
s(u-v+p)y -(u +V)y, - (U-v+p)u-v+p), =0,
“d(u-v+p), +(u-v+p),  +3s(u+ v)xy +3u-v+p)u+v),, ‘(2.40a)
+3(u-v+p), [(a-v+p? +u+v) 1=0, ‘

where p = R(t) + yS(t), and R(t), S(t) are two arbitrary functions of the time variable that can
be expressed completely in terms of the arbitrary functions f(t) and g(t) in the vector fields

X(f) and Y(g), respectively:

-
R =-3As’g (" ()5,
S(t) = is’Hel, : (2.40b)

H = In[f(t)/f(t*(1)].
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A point to nok is that this introduction of arbitrary fu'nctiOns into the expressions for the
Bécklund transformation by means of Lie transformations that leave the original equation
invariant, but actually modify the Bicklund transformation, is completely analogous to the
introduction of arbitrary parameters in the Biicklund transformations for some integrable
equations in 1+1 dimensions. Thus the Lorentz invariance of the Sine-Gordon equation gives
rise to areal parameter in the corresponding Béicklund transformation; similarly, the Galilei
and dilatation invariances of the nonlinear cubic Schrédinger equation are jointly at the origin
of a complex constant occuring in the Bécklund transformation associated with this equation
(see HAR1). A second point of importance is that a permutabilty theorem (see Chapter one)
does hold for the Bicklund transformation (2.40a) (see BOI3 and NAK1). Starting with a -

_solution uo(t,x,)}') we can perform two chains of consecutive transformations depending upon

~

>

twWo arlxitrary functions p,(t) and p,(t):

B(p,) B(p) - \

U= > U, —u,

B, TS

e, «
ﬁ " Ud ‘IUZ

The permutability theorem “tells us that u'=u, identically, Writing down all four -

—u.

transformations corresponding to the above diagrams and eliminating the y and t derivatives,

we obtain that u is uniquely expressed in"terms of g, u,, and u, as

, (ul - Uy )x
up + ’ o . .
Ug-Uy+py-pp : ]
) . — ©@41)
) pi=R+yS,(1), i=12

u(t,x,y) = u +u,-

et
&y - A

where y; is an arbitrary solution of the PKP equation, and u, and u, are generated from u;, by
Biicklund transformations with functional labels p, and p,, fespectively. Formula (2.41)
generalizes a result of ref. BOI3, having the same form, with p, and p, being real constants.

We now set v = 0 identically in the Bicklund transformation (2.40a),

Su+p)y - Uy, - W+p)u+p), =0, 242)
4(u + )y + (U + Py + 35U, + 3(u +p)u,, +3(u+p),[(u+p)? +u,1=0, '
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and look for solutions. Since we are not dble to solve diréétly‘thi's overdetermined system
(when brought to a system for the function ut, X,y) alone, thls is eveh more complxcatcd-than
thc PKP equation 1tse1f) we shall therefore proceed in an md1rect manner through the use of
the symmetry reduction technique. First we find the joint symmetry algebra L; of the PKP
equation with its associated Bicklund transformation (2.42) (in fact the first equation

. suffices, because of the built-in compatibility betwcen the twp componcnts" of the
transformation). This is easy to do, using again the MACSYMA package, and we obtain the
following set of generators, _ :

X, =0, - ) x2=ay-s§t)§u, N,

“ ) N w

X, 519, - 3579, - 1S - 519, ,

' €

with commutation relations -

i . (2.43)
Xy =3 -[R(+yS'®WI,,

. [xl,x21'=[x1,x31=[xl,x41=[x‘z,x31=0,
[X‘2,X 1= -%SZXI . X3 X,1=X,,
{Xp X2, X5}i is an abelian subalgebra. The funetxons R{1) and S(t) are défined as bcfore LJ

isa subalgebra of Lpkp: *indéed we have ' . CL e

4

X, =Z(1), L T X =Y(D)-QfS),
X; = X(1)- QR)-P(S"), X, =Y()-Q4S-§s

The action of the c()rrqspond%g symmetry group Gj is easily constructed. One: finds the

g .

followin g actions for the one-paramgter subgroups.
X,: =1 x*=x+), hy*=y, ut(t, x*-a 9" v . .
Xy: t'=t, x*'=x, ) YV=y+ A: ut(th, x% y*-4) -ASet*); ¢ -

o
]

Xg: t=t4d & =x y* =y, LN
W -2, x%y") - [RE) + 5] + [R(E - 1) +y*SE* -V -
‘-X4: t'=t, ‘x‘:_-x—g(kyt%lzt), y* =y+At, )
WL X 30y - A Y AT - AG - B8

s " N

o~




A
Arbltrary one- “and two-dimensional subalgebras of the Lie algebra (2. 43) are ggsxly shown to -

+ be conjugate under the adjomt action- of G to precisely one of the followmg algc ras,
~ N

respecwel_z(wuhaeR) Or\‘.'; ‘ T 4

-3 x ¢ .
r

.
L 2

1-dimensional ‘subalgebras : M, "= {X,+ aX3}/

- A r -« ) ".v
T M1’2‘={X§+ax/l/), Sl
¢ M= (X5 - .
. ° ’ -t v -
' . M, ={Xh |, -
' ' o :“‘ﬁ .

Cux e

2-dimensional subalgebras : Mz;" = {X, +aX3,X,},

.
N — e T v -

. M2‘25= [X3.+.51X1 ,le’ B i
ot . M,,=(X;.X;}, ‘ e e w“ o
. %Q.F »{ Xz-, Xi»}',:-{%s X | - . |
O S0 3 . w“" WO 'Y Mt - :~ ‘ g
At e T ' ﬂ |

We shall perform symmetry° reduction of the 'PKP equanon simultaneously with the
, Bicklund transformation, under the sSpbgroups coxrespondmg to the one- dlmensmnal
subalme above list (symmetry reduction under two-dimensional subgroups doss s
not provide us with ainything new), using a representative Y of each class. In each ‘case,

symmetry reducuon yields a solutxon in the form {

u(t er) ‘XF@,TI) + ﬂ ’ ! : ¢ . A (244)
. ~ , 7 o .
where'the symmetry variables & and 1, as well as the functions  and B are functions of the
variables t, x, and y, completely determined by invariance requirements. |

1y

oy X, . We find E=y,m =t and a =1, p = 0; thus (2.44) becomes u(t,x,y) =F(y.¢).
o The PKP equation is reduced to the linear eqﬁation Fyy =(), and the (first component
- of the) Bicklund transformation to Fy +S(t) =0, the function S(t) being defined as
above. These two reduced equations are easily solved and we finally obtaih - ( -

L3
-

u(tx,y) = Hp)-yS(o), SHE (2.45)

< N




where H(t) is an arbitrary function. , -~ - . . e
v - \ . . . . . ) LI

.
a . » -

> "2') . Y=X, +aX,, ae R. This representative is conjugate to X, . Heére, we first find that.
(2.44) takes the form u(t,x,y) = F(&,1) - yS(t), where & =x - ay. Substituting this into

'

) the Bécklund transformatlon, we see that the. function F(§,t) must sansfy ¢ Riccai”
. equation: - ) )
Fg +3F2 + RF+ lim=0. - - (2.462)

where H(t) is an arbitrary function. Solving this equation, resubstituting the resuit into «
- the PKP equation, and adjustmg so that the latter be satlsﬁed we fmally ﬁnd that -

u(txy) = Ktanh{glc[x ay (;,ﬁa,,s%c -P-;Kz)'t-i-b]} RQ) - yS(O), (2.46b)

H
» vﬂ.‘\ e " ¢

¢ e where a, b, and x are constants, solves the PKP equation; this solunons represents a
"kink". The corresponding solution of the KP equation is the usual soliton solution:

w(tx,y) = u, = 3k2 sech? { J[x - ay - (GaZ2x 2+ 1x2) t+l;] }. (2.46¢)

PN [}

- 3) Y=X, +aX, +bX,,a,beR. ThlS representauve is conjugate to X, . Here, we first
* find that (2.44) takes the form " . - -

+

uft,x,y) = [3('t+;}]-1f3 F(E,0) - yS(t) + 2s3y[3(t + a)], | o
C : - . (2.47a)
E =[x+ @s%y? - 3by)[3(t+ )] | (3¢t + a)] 12, .

r

The Bécklund trénsfonngtion and the PKP equatieg respectively reduce to
Fy = JF2 - [3(+2)) [R(t) + bs(t+ a1 F-2[E +h()], © (2.47b)
k F=-2/b?s 2[3(t +a)] 7’3F§ sz(t +ay ] [Fyy - 3F2 - 4&}2§ +2F] - (D(t) Q.47¢)

LI ~n e p ~a
r-r.- - ' ¥

where h(t) and D(t) are funcnons of t. Their form is determmed by.gequiring that

> equations (2. 47b) and (2.47c¢) t;e_gompauble Once this is done we can then solve
(2.47b,c) and hence the PKP equj':lu"on in terms of Airy functions (see ABR1). Notice,

in this context, that the Riccati equation (2.47b) can be converted into a Schrodinger

- equation with a linear (in the variable £) potential and that (2.47c), upon the
substitution F= Ve s 1educes to a membér of the class of nonlinear evolution equations,

.-

- »
- u




4

. ) . .
stidied by Calogero and Degasperis (see CAL1), containing the cylindrical

. Korteweg-de Vrie$ equation. The corresponding solution of the PKP equation is thus

given by (2.47a) with ° \ B
F= -2W§W-1~ + [3(t+ )] P[R(t) + bs(t +a)1], ) - -
W = jAi(z) + VBi(z), o '

- '(2.47d)
2= E+x r+a}1f3'  3%Bp2s2r 1 T
t+a 4Vt+a “t+a T+a

where Ai(2) and Bi(z) are two mdependent SOluthﬂS of the Airy'equation W, - zZW =0,
and y, v, a, b, x, and 7 are arbitrary constants. :

Y

Y =X, +aX,; +bX,, a,beR. Thls represeitative is gon_]ugate to X5+ aOX In this -
case, it proves convenient to write (2.44) in the form”

‘U(t,x,)') = 2W§(§»Tl)/w - }’S(t) - R(t)’

_ (2.48a)
Emx-at, mM=y-bt. .

4 .
where the Bécklund transformation and the PKP equation imply that W satisfies the -

heat equation and also a third-order linear equation:
Wee -sW, =0, o \ © (2.48b)
Weee - bWy, - aWe = [Ehy(n) + hyIW, (2.48¢)

-

where’ hl(T]) and hz(n) are arbitrary functions? In order to obtain analytwal solutjons of
(2.48) we consider the special case h; (1) =0, h,(1n)* constant. The system (2.48) then
has constant coefficients and can be solved to yield three dlstmct types of solutions,
depcndmg on‘whether the chazacteristic equation for (2. 48c) has 3, 2, or 1 distinct

, Toots. Thesc solutions are, rcspecnvely
"o 3 k l; 3 S -
(S +5°kn . oo
waz,ml Z Ae ;o o (2.49a)
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. kErgkM). - k€+skm) o,
WEN =A e + A+ A E+25%k,m)] e , (2.49b)
- K(E + %km)

°W(§,n)=!vAl+A2(§+253k11)+A3[(Z;-!6233k1])2+233n_]}e N , (2.49¢)

where A;, k;, and k are constants. The, corresponding solutions of the KP equation are

respectively given by ° .
v e - . \ -
: 3. . 2
wEm) =22 A A -k 2" (L A ) ©(2.500)°
i<j i e ¢

3 20 - kA, (24 + (g kD[A, + Ay )™ 02 - 24,22,
wEn) = — ' : — (2.50D)
(A e+ (A, + AP ) . :

N 2A,[A AR +A, (B2 +25°N)] - 2(A, +2A,8)?
wEn) = s >
(A +AB+A, (B2 +2s°n))

: " (2.500)

. LY
€ o°
~ tw

" Wllgre o, =k + s°%kn), B; =& + 2%, and &, are defined as in (2.48a). The

expression (2.50a) leads to interesting solutions (see Figure 1 below) that we term
splittons. Such a solution is constituted of three connected solitary branches whose
relative orientgéions are’ preserved through time; thus this is a "mondbloclg" object = *
propagating ity the ‘physical xy-plane. These splittons are related in some way to .
“so-called soliton resonances, obtained as special cases of two-soliton solutions, by
several authors for the Boussinesq equation, the KP equation and others (seé HIR3,
OHK 1, MUS1). We point out that we obtained these solutions by applying a
Biicklund transformation to a zero solution; they are hence on the same footing as

* " single usual solitons. A quite sintHar phenomenon has been observed for some 1+1

dimensional nonlinear evolution equationé (see AIY1 and AIY2). The expression
(2.50c) leads to singular solutions of the KP equation. .
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_Figure 1

The splitton solution, as
given by formula (2.50b)
with Ay =Ay =A;=1,
k;=-1,ky = by ky =3,
E=x-t,n=y-tThe
plot gives the splitton at
time t = 0.

»

Y =X, +aX; +bX, +cX|, a,b,cg R .-This representative is conjugate to X, +a;X5. In
r the subgroup corresponding to Y yields )

?

this last case, invarianc

YW -yS(t) - R(t)'+ als?,

o%e

& = x-ct/a+ {als?yt - 22523, , - . (251a) °

n =y-bt/ai%a'2t2, .

7 ° . -
where the function W again satisfies two linear equations: the heat equation (2.48b)

and the following third-order linear equation: ' .

Weee - ba"s3W§§ -alfc- %szn]Wg =[Eh, M)+ h,(MIW, (2.51b)

where h ;(;]) and hz(n') are arbitrary functions, We have not obtained any analytic

solutions of the system (2.48b), (2.51b). !

The above results may naturally be combined with those obtained in the first pan‘of the

~

chapter. In fact, we have constructed a net of solutions for the KP equation and one may
obtain infinitely’ many solutions by applying, in any order and in any combination (in
principle), Biacklund ”transf[ormations, symmetry redugtion on the KP equation alone or

» 13

>
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o4

together with its associated Bicklund transformation, group or §ubgroup actions on
solutions; in addition, one may also obviously use the results_obtained by applying symmetry

reduction to the reduc

equation and the Korfeweg-de Vries equation.

4
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equations &ssociated to the KP equation, e.g., the Boussinesq
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_ ~o " . /CHAPTER THREE
L Integrable nonlinear equations for water waves - " ’
- in channels of varying depth and width . A
» o L . \

: \

As we saw earlier in the introductory chapter, water waves provide us with excellent
cxamples. of solitary waves and experiments clearly show t_hat the shape of such waves (by
this we understand the form of the curve defined by the wavecrests),is much dependent on
the topography of the oceanic bottom:. Ovyer flat bottoms, ;vaves are usually encountered’in
groups of essentially straight fronts moving with a relativély constant speed; such is the case,
for instance, for the wave fronts occuring in the. Andaman Sea zmd described in O§B1.
Theories based on a pure constat coefficient KAV gcma'tion, or slight perturbation thereof,
provide good enough models for this kind of geophysical situation. These exhibit some
validity also for waves propagating through channel-like configurations, with possibly some
modulatten in depth as long as the variations progress along the "axis" (lfihf: channel, i.e.

. , along the direction of propagation of the waves. The KdV equation is all the more interesting

for the above purpose because, from the analytical perspective, it also is the prototypa.of a
quite large farmly of so-called nonlinear soliton equations which one can solve exactly

" through, say, the inv;{r;e scattering transform procedure. Straight Yolitary wave fronts are

however a very special phenomenon and it is cettainly not uncommon to observe many wave
*ronts which do exhibit some curvature. A typical example is that of the Strait of Gibraltar as
shown in Figure 2, below. This is a fough drawing based upon observations made from
photograph:; taken on october 111984, by the U.S. Space Shuttle crew of Mission STS
41-G. The most prominent surface features on the photographs were crests bowingeastward
into the Mediterranean Sea. These disturbances (i.e. the.lines in Figure 2), are the surface
mamfestauons of a packet of several internal waves moving wnh an approximate speed of
1.5 meters per second, also eastward,; their amplitudes are deduced (recall from ART2 that

the amplitude of an internal wave is related to that of its associated surface wave) to be more

3

than 200 meters. ; ' )
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_ Figure 2

* Surface manifestation of
internal solitary waves * .«

‘ emerging from the Strait

- of Gibraltar into the Me-

diterranean Sea with an

approximate speed of

1.5 m/s.’ »
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In order to model such waves, one cannot use the KdV equation,any.n})re because of
the one-dimensional character of. this equation. This problem can be circumvented by i
considerin gits two-dimensional generalization, namely the Kadomtsev-Petviashvili equation.
This other equanon however, also treats an idealized situation, Jpamely waves movmg ina

shallow two-dimensional fluid of constant depth. In fact the two-dimensional character

‘gained with ex1st1ng'models based on this equation is only a liberty on the direction of (

propagation of straight wave fronts, even though the KP equation do have solutions with '
nontrivial behaviour in, both space, directions that can be obtained by using the symmetry

* group Gy p."The alternative for inducing genuine two- dimensionality is to allow the KP
,8roup LUgp g ge y

equation to have non-constant-coefficients; this is also a problem since the obtained equationt -
then beconits non integrable for a general geophysical topography. The purpose of the
present chapter is to attack this problem andsseé 1f we cannot characterize the integrable cases

for realistic geophysical situations by examining the applicability -of certain nonlinear
integrable equations which will be ebtained from a more gencral KP-like equétion. Our
approach differs from previous works in the following aspects. First, we start from the basic
equations of hydrodynamics, but allow for zirbitmry vorticity and consider channels (or'
straits) of arbitrarily varying shape; in pr1n01ple this means that possible conﬁguranons
include meandermg rivers. Second, we shall consider the propagation of waves, in pamcular

of solitary waves, in straits or channels somewhat wider than their depth (for instance, note

.that the width-to-depth ratio for the Strait of Gibraltar is of about 20), characterized by
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* NaviertStokes system and things get mpre complicated), and arbitrary boundary conditions. -

varying depth and wi'dth, when this propagation is essentially non one-dimensional. It may
thus be important to take into account perturbations which propagate in the transverse
direction but are of much Ionger wavelength than the main wave longitudinal wavelength.
The model that we shall denve it must be pointed out, IS also valid when thc side boundaries
are removed (i.e., brought away to infinity) and is thus applicable for wave propagation in
plain ocean or other unhmited bodies of fluid of varying depth. Third, our basic
approximating hypothesm will be chosen in such a way that we,¢an take as wnitial condition
for our resulting nonlinear equation a solitary wave and’ thus be able to follow its evolution
. from the shallow water unidimensional situation in a strait into the deeper and wider open
oce\n We also wish to remark that althou gh we resmct the model to surface waves for a
smgle layer of constant density fluid, the same 1deqs could also be apphed to siratified fluids
so as to be able to describe internal waves; we shall come back to that point later.

_ In the first section, we begin' from the basi’c equations of hydrodynamics, the Euler
systém, allowing for arbitrary vorticity, but no viscosity (one then has to start out from the

We make use of the standard multiscale (or stretching) perturbation theory (see FRII) and
restrict ourselves 1o the type of situation that leads, in the limit of constant depth, no
Vorticity, and removed side boundaries, to the pure (by this we.mean that its coefficients are

. pure'real constants) KP equation, i.e. the equation for long waves of small amplitudes

. moving plcdommantéy along a single direction in shallow water. Under quite general

assumptions, namely quasi otie-dimensional long waves in shallow water, we shall then
p,rocced to derive a rather complicated nonlinear wave equaiion that we have termed the
generalized Kadomtsey-Petviashvili (or GKP for short) equation, together with som\c
b'ou'ndary conditions that must be satisfied on the side boundaries of the chanpel. Naturally,
these pondiﬁons arc absent if the mediuxil of propagation has infinite extension; these

"conditions also vanish if the side boundaries vaty very slowly inthe direction of propagation

.so that, there t00, we recover the case of an infinite body of water: in the following, we shall
typically refer to this situation as the no boundaries situation. The GKP equation differs
radically from the pure KP equation in that it features some additional terms, but also in
having variable coefficients that dependon the spate coordinates via the functions describing
the depth and the vorticity. The GKP éqﬁation is thus generically. non mntegrable. Note,

\
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moreover, that the boundary conditions would interfere with the integrability, even for the
KP equation itself. . ' B ’ .

Instead-of trying to solve the obtained equatior; and the associated boundary eonditions
through soime numerical scheme, although this would be of irfterc;st by itself, we look for
conditions under which it reduces to one of the following kriown to be integfai)le equations:
the pure KP equation: the KdV equation, or the cylindrical KdV (¢KdV for short) cquation,
this is the object of the second skction. We' do this by performing certam rather general

. transformations of both\the dependant apd independent variables, and making physical

assumptions whenever necessary. In general, it will be seen that integrability is recovered at
a price. When the side boundaries are abscnt thc requirement of infegrability will impose
certain constraints on the vorticity function as well. When the side boundaries are involved,
as in the case of straits, we shall be forced to impose constraints relating the functions
describing the depth and the width,"and the vorticity functions will then be determined in
terms of the boundaries Moreover, if we-wish to reduce the boundary conditions to a form ¥
that can be dealt with, satisfied andlytlcally, and that does not.interfere with the usual form 6f
mtegrdblhty, we must, at least in some cases, antroduce secular terms in the perturbanon
expansion. The congtraints that we must lmposc in order to obtain integrable equations can

be viewed as predlctmns Indeed, the integrable gcophysxcal topographies that they prescribe =~

are just the conditions under which we should expect’solitons to be observed n straits dr to

emerge from straits into oceans. In section 3, we shall consider a few of these integrable

" topographies and construct the explicit and exact solutions that correspond to them. Among

these, let us mention the cases when the depth function is quadratic, logarithmie, or
hyperbolic-tangent in the longitudinal coordinates. The first two situations could model
waves emerging fxom straits into the sea (the Strait of Gibraltar, for example) and the third -
one could be applied to waves crossing an area where a morc or less steep depression (or

elevation) occurs. ' . ~

Q w

® -

The fourth, and final, section deals with a more mathematical topic. It will be spent on
the construction and analysis of the conservation laws associated to the GKP equation. In
contrast with the ;;ur.e KP equation which is known to possess an infinite number of l6cal ™

*conservation laws, we shall see that the GKP equation only allows for a few. That is not

- 1
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- very su.rpnsmg since this equauon is, m "some sense, condmonally mtcgrable. Moreover, the . *
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) L Derivation of the generaliZed KP equation - :
= \ and the associated boundary cohdit19n§ b
AN - . . .

.0 X j ° X

‘We consider a channel ('or strait) of arbitrarily varying dépth and width, with b@ttom
and sides described by a glven funttion E(x,, X5, X3) =0 (see Figure 3). The charnel contains .
ahomogeneSus mcompressnblc inviscid ideal ﬂuxd subjéct to a gravity force only. This fluid

1s ‘characterized by a constant density p, a prcssure field p*, and an Eulerian velocity field (in
the followmg, vector fields will be denoted by boldface characters)w =(v,", V5", v3") with

“its curl glven by {*=V*x v"’ This’last quantity is the local vorticity; measuring a local ngld-

body rotdtion with angular velocity & 151, Under these assumptions the mass conservation

s Ve

equation is A , .
Vvt =0, , L J (318)
and the Euler equations of motion governing the dynamics of the flow are . '
pov* /ot + p(v*-V*)V* + V*p* + gé;O, : \ (3.1b)
~ \ . >

where g=(0,0,g), g being the gravity constant. The symbol V* stands fo~ the gradient
operator in the variables x,, x,, and x; (in that order). Equations (3.1a) and (3 ’lb) form a
nonlinear coupled system dcﬁnmg the velocity field and the pressure within the ﬂu1d In
addition to thcsc dynamical equalxons certain boundary condmons must be satisfied. First,

" the boundéry layer on the free surface does not experience any mechanicat stress; this 1mp11es

no pressure jump and vanishing tangential velocity on the free surface. Thus we have (the
variable n stands for the elevauon of the ﬂuxd level with respect to 1ts undisturbed height),

B

. “0 ‘ ﬂ
Plx3 ﬂ(xpxz,t) . : 5~ ' .
’ 2 (3.2.'\)‘

. W axl "9X, )|x3=n"(xl,x2,t"‘)=0: o Cot

.
Al

Second, thet impermeability cgndjlon on the side and bottom boundaries is taken into account

’

by requiring . ‘ . v

.
!
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= b ) ’ 3
\ - x .
\. "(xl‘x3) ]*(x]!xa)’L / = ¢ N
. a \/ E(X] ,XZ.{(a) = 0 - ,

- ’ » '

-
4 ]

///Ixz/m]'xa) y . . ) Py

. Fi gure 3 \
The three projections of the channel (or stnut) The qudnnues .h (X1, %xp) and .
1p(xy, X3) charactenze the depth and the width, respecnvely The cross-sec-
tion of the channel is givén by the functxonal relanon E(x x2 , xg)% 0.

-

—p—
& [ 4 -
» N ©

© (WVE)|goe =0 ‘ ; '(3.2b)

We aim at desanbmg a situation in which solitons are observed; the perturbative approach
should hence ylcld equatxons whlch have soliton-like solutions, such as the KdV egu 1on, .
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7 parameter we introduce dimensioriless variables and equations. Let Hy, be an average measure

’ of the depth of the channel; the average velocity of the gravity waves will then be ¢ = = gHO'.

Fugther, let N0 be a characterlsuc average wave amplitudé, L, an average wavelength (or

width of a’solitary wave), and Ly a length over which perturbations of the wave front

manifest themselves in a direction perpendicular to that of the wave propagation. Given thesg
quan'tities, we introduce nondimehsional variables by the fqllbwing rescalings:

t* = C(.)'qut ,

XS = HOZ 3 4

P’ =pgHyp, n* =Ny,

x; =L.x,

L3

X2=Lyy s ¥ ¥

* Ay -lyy 2 (3'13—)
v, =00Lx Ly Ho Vs

* -1 )
Yy "COLx H0 Vi,

“ol 22y
vy =coLl Hy" vy,
. proaq 2 -lpp 2

6" =coly Ly THy 2ty .

. & =coly Ly Hy Gy s
- 1 s
The approximation that leads to a KP equation is obtained by considering fong waves with

small amplitudes in shallow water, thh@wave crests that vary slowly in the perpendicular
direction. More specifically, this can be achleved by assuming

&y =coly2Hy Gy 5

) (Hy /L, ) = o, (Ho /L, )2~aBe , " Ne/Hy=, (3.4)
.t C g J
, ) where € is a small parameter and «, P, ¥ are constants of the order of the unity. The implied
‘condition L, >> 'H, imposes that for our approach to be valid, the width of the channel must
be larger than its depth. The fundamental equatxoni (3.1) and boundary conditions (3.2) can
. be rewritten in germs of the rescaled dimensionless variables defined through (3:3) as
" follows: - . . . ‘
V3  toevy + aBszvz‘ y= 0, . .
) P x toae(vy (+vavy z)‘+ o2e2 Vivi e+ o?p 83.V2V1.. y= 0, N
. P,y + c:a(vz . + VaVy DL ole? Vive x o’p e VaVay = 0, 3.5)
P ’ P, +ae(vs  +Vavy )+ o2e? V V3 4 +afBe vavay=:l,
’ oo .
aly - .
=0, T e 3.6a
P|,een (3.6a)
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X ) 3 .
. {v3+ae"vyhey +afe Vzhey}|z=

‘ - - 102 , .

[vy-wn,-aRPvin-oBvn, ) =8 - o (6

) T vitoel v, +aPelE -0, - 3.6¢

a3 [ .Zv3 hueu.XVI aﬂs 'yvzlls(x’)’vz)=0 \ v . ( )
(=VxvV, (3.6d)

where V = (8/83(, 0/dy, a/ag). Further restrictions must be impose&ﬁon the function E. In the
¢ linear approximation of thé perturbative expansion we require that the above system should

yield a wavelike solution, moving in the x-direction, ie. the longitudina! direction of the

channélor strait. In order to ensure such behavio&r we"must,‘solve the equation Z(x,y,z)=0

. —for z and then require that z be a slowly varying function of x.! and for future need, also of y.
More specifically, the depth should be given in the form, .
z = -h(ex, ey) . d *

_Fora get;]inc chz;nel with steep sides we must divide the cross-sectional area into three
parts, as illustrated in Figure 3. The above form for z will apply everywhere, except close to
the side boundaries. There, on the contrary, we shall assume that we have stéep walls and
that we can solve the equation £=0 for the variable y to obtain explicit expressions for the
func;tions y =14(x,z) that describe both walls. Since the wavelike solution should d::pend
explicitly on the form of the side boundaries, we must also require that the functions I
should be slowly varyiné functions in the region of the channel which is very close to the
‘sides. Specifically, we askthat -~ 7~ , .
. ly = l:t(sx, szz). . . . .

. Under these restrictions we can rewrite the boundary. condition (3.6¢) as .
¢ Lt s h =, -
[?![-B V2= Viliex] - ikt ¢2,) ly=Ly(ex, 22) = 0, ' ,

@

-h(ex, ey) =0. \

In view of the perturbative approach that we are undertaking in order to get a wave equation
we must pay care about the time domain (or range) of validity of the resulting equation. This,
question is crucial and demand that we choose an appropriate system of coordinates. With
13 . ! N .
- ?
- .
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our present choice, the ongm is fixed; an obscrver positioned at this point will therefore look
at a wave goinglaway from him: as time goes on an increasing lack of precision will thus

occur. In order to palliate to this problem we shall introduce a moving frame. To do sa, let us
first express v, p, and 1} as forrnal power series in the small parameter e:

v(x,y,z,t) = Z vix,y, z, Ot ) } )
s i = 0 \ . . .
* w - ’ -
" Py, Z,) = 2, Pix,y. 2z Vi, ( . (3:8) .
i=0

-

nx,y, t) ='Z nix, y, et .
'i =0 .

We then substitute (3.8) into (3.5), (3.6a), (3.6b), (3.7), and proceed to _gélve these
H 5

iteratively up to first order. We find that the wave amplityde n® must satis'fy the wave

equation. o

« Mo =hex, ey, IIr —, (3.92)
togetﬁer with the boundary condition . -
. 0.1 ‘ _ ' ’
, Bl -1 2" (3.9b)

©

A gengral solution of equation (3.9a) valid at least Egttrdcr g2is obtamed in the form

10, v, © = hex, )X + F OO, : - (3.100)

- Xt = R(x,y.6) £ C(ex, y, O, . ~ (3.10b) ,
) X  Cles,y,¢) )
Rix,y,e)=| d , 3.10

’(X\ Y, €) Ixo Sm— ( C).
Cix.y.e) =1+ Z Clex, e, s (3.10d)
. i=1 . " .

1
3

. I£9C(ex) # 0, then secular terms will appear in the solution of (3.9a) at order €, or at some

. i -

<
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higher order. Thus, in particular, if we have dC,/d(ex) #0, then the perturbation series (3.8)
is-viewed as meaningful for times t << 1/c2 only. Therefore, in the future, whenever

*» possible, we shall set the auxiliary function C(ex, y.e)=1. As we shall see, this a priori

arbitrary function is needed in order to reduce the equations describing wave propagation in
straits of nonconstant cross-section to integrable equations with boundary conditions that can

)

be explicitly solved.

The functions fi are thus far arbitrary functions which remain to be determined by tfic

initial conditions. We also observe that (%.9a) remains valid as long as the higher-order

corrections, including the nonlinear interaction terms in e in the expressions for v, do not
play any role. This is the case as long as t << ¢'l. For a long tigne scale t~¢"! we must take * -
« into account the intpraction of the waves with themselves. To do so we introduce the wave
' frame through the following transformation of the coordinates: : >

3

X =R(%,y,¢) -0Clex, y, e)t, -
: @3.11)

. Y=y, Z=z, T=ex, ¥ . \

where o =21 for right- and left-going waves, respectively. We shall chavse o = 1 but note
that the res\ults for 6 =-1 are recovered by changing the signs of the the velocity field
components in all formulas. This wave frame is a coordinate frame that follows the zeroeth
approximation of the wave (its linear component). It should be stressed here that the
transformation (3.11) is so chosen that the physical variables x and t go over to T and X,
respectively. The variable T, although propoitional to the physical variable x, will formally
play the role of time in the evolution-type equations that we shall be deriving. In particular
" this will allow us tb_obtain KP- or KdV-like edquations with variable coefficients (depending
“on T). The Cauchy problem for these equations can in meny cases be solved analyticaﬁy
[ABL1, CALI, ECK1]. The Cauchy data at‘TzTO will correspond to data measured over
some périod of physical time t* at one.point xl() This corresponds to the usual physical case
when the data corrsponding to surface or internal waves are measured using iristruments

© -

.installed at one fixed position 1n space.

[N

We now expand the auxiliary quantity C(ex, y, €), the depth function h(ex, gy), and the

. side functions Ly(ex, £2z), expressing everything in terms of the.new variables (3.11):

1
! g
t
& '

~f
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transformations:
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Y, T,o=1+ 2 G, D, ~ . (3.12a)
P | o
hEeY, D= 2 h(DYe, (3.12b)
i€0 '
v, 0o * - -~
L4 (2Z,T) = Zdliimzieﬁ. . (3.12¢)
i= . .

- -

" This provides us with an expansion for the function R(x, y, €) in (3.10c). Notice that these

quantities are such that R(x, y, €) is of order e"! whereas dR/0x and dR/dy are of order €% this
is the reason why we are setting h =h(eY,T). Thus we obtain the foltowing vector field

S

i

8; = hy 23y +efor + B(Y, T)ay] + €2 B, (X,Y,T)dy + OE®),

3, =y ;Ab(Y,T)a‘x +eA (XY Ty + ALY Ty + G ),
3,=0,, , '

3, =-[1+€C,(Y,T) + €2 C,(Y, )y +O(E).

. (3.13)

ME
£

¢

The quantities A(X,Y,T) and B,(X,Y,T) are all expressed in terms of the C(Y,T) and the o

h(T); below we shall need only the explicit expressions for Agand B, ! .
By(Y.T) = hy 12C,(Y,T) - $hy37h, Y, ‘ (
: : (3.14)
T
AgY,T)= | To_ho-lf (Cyy(Y,5)-3hgth, ) ds. .

-

It should be pointed out that B,’A,, etc., contain an explicit fiépendencc on the variable X,
due-to the seciilar terms discussed above. Performing the transformation, we obtain a new

. . . o
system of equations written down with respect to the wave frame codrdinates; to order ¢2 we

" have .

ks

o -12 2 ¢ ’ 3 _ v
V3o + aehy vy x e {VI.T + Bovl'x + DA0V2.X + BVZ.Y =0,.
[ 1

LA
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. l;o‘lﬂpx +€[Bypy +'pr - vy x +avav, ] : -
Ly g2 [Blf)x - oCyv, x +0? bo-lﬂvlv,’.x] =0, : . (3.153)
Py + Agpx +elApy -avy x + vV, o] ’ ’
+e2[A,py - aCyv, x + azho'mvlvz‘x]‘;: 0,
T opg 1+ oefvyvy, - va ae? [aho"”vzvlvix - C;v3’x] =0. . ‘ .o
V' The blou';r'dary conditions transform into ] T ot
- B =0 N
Z=em . : '
- [v3 + ¥y + E2HC, - ahg 2 v,y ] . 70 L
’ T (3,15b)
vy + ae?vlho'] l - =0, . '
-, Z=-h(T,eY) -
N '
ey [oBvy - ovy Ly g’ - v3ly ;- Zsz(ali,l"*' 2vy 1j-_,2§ l v =‘1+CT 522)= 0.

\ .

Note that here, and below, primes denote differentiation for a fu‘hctiqn of a single variable,

_.=, To derive a nonlinear evolution equation, we expand v, p, and 1 as in (3.8), substitute into
C T (3.15), gnq solve up to orderg@, inclusive. ¥he ordert? yields -

_ 0_
% 3 ! po =-Z ’ V3 =0 ’
s Bv-v0 1i,0']| =0. <
Y = li,O ' i 4
Fro[terms of order ¢ we obtain - P

. p1 = WO(X’Y’T) ,
Vlé = a'l’YhO'I/Z [nO(X,Y,:I') +“¢0(Y, Z’T)] ’

(3.16)
X \ "
v0=a YAV, IO+ [ n%(s,Y,T)ds + yg(Y, Z,T)], ‘ -
, X .
, 07 -
vyl = by (DIZ + hyIn’ . . .
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In the above expressions, the quantities g and y, have appeared as imégration "constants."
By defitiition they are indeperident of X. In view of the transformation of coordm/atcs (3.11)
these functions are therefore independent of the physical time variable t; also’in view of
(3:11), Xy corresponds to some arbitrarily ch_osen instant of the physical time. Below we
shall choose X, such that the wave amplitude vanishes there, i.e. nO(XO,Y,T) =(). With such
a choice the components \viO(XO,Y, Z,T),i=1,2, are seen to be proportional to ¢, and v,
respectively. Finally, from the €2 terms, we obtain p?, vy L vzl, and v32 m terms of n° and nl.
In order to calculate 1j! we would have to proceed to higher order in &. We.can however
eliminate 1! from the different expressions of order €2 and obtain the wave amplitude
equation and boundary condition for n%(X,Y,T). Dropping all details, we present the
resulting equations: ) . .
- ° X .

TIOT + %Yho-3/2('[‘)n0n0x + %ahom Tloxxx‘{)" %Bhol/ 2 ".X Tloyy(S,Y,T)as . ’

) « 0 i .

4 ) . .
+ B 2%y + M (Y, T + My(Y, i’ + My(Y, 1) =0, © cany
H

. > X
[B(we(Y, 2T+ A" + jx 1 (s,Y,T)ds) - by A0 +0,(Y, Z DY o] IY . =0.
. =40

0 —

_ The quantity A, (Y, T) was defined before. The other quantities appearing in (3.17a) are

M,(Y,T) = 3hyThy' + $Bhg2A (Y,T),

) 0 T
' My(Y,T) = 1Bhy2A 2 +4hy 52 ) 0o(Y, Z,T)IZ - CLTJT hg'A(s)ds, (3.17¢c)
Py ) ) 0

£

0

M,(Y,T) = 3h, [ho'q)O(Y, Z=-hy,T) +hy'2 | ) [ (@9 /"D + By Y]dZ] .
- - O .

~

Note that secm\d order also yields cxprcsSxons for vll, v2 , and v3 ; these quantities however
explicitly depend on the next correction 1! of the wave amplitude. We shall call equation

(3.17a) the integral form of the generalized Kadomtsev-Peviashvili (GKP) equation. It does .
_coincide with the pure KP equation whenever hy(T) =1, hj(T) =0, 0(Y, Z,T) =y(Y,Z,T) =
0, and C,(Y,T)=0 (see KAD1). To lowest order in ¢ we abtain from (3.6d), (3.11), and

v
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(3.16) thaf the physical components of the vorticity field in the x, y—, and z directions are
60 = yolyg 2 » 60 =0ty P9, &0 =-yathy 29, . (3.17d)

Let us now make some general comments on the situation described by equation (3.17a).

1. The depth funcnon h(eY T) was expanded into a formal series (3.12b). If the

° bottom happens to be symmetric in the x, direction gthe Y direction), i.e. if h(eY,T) =

w

h(-eY,T), then we have h,(T) = 0. Looking at equation (3.17a), at the expression for A, arld
at (3.17b)-(3.17d), we notice that the equation and boundary conditions are in this case
inser}sitive to any variations of the bottom jh the Xy direction. For nonsymmeitric bottoms, the
function h,(T) ﬁgureé explicitly in the e)ioression for Ay(Y,T) and hence in M(Y,T) and
M,(Y,T). Thus, if we arc interested, for instance, 1n waves propagating parallel to a shore
along a slopifig beach, then the contribution of the function h,(T) may be important.

2. The sides of the strait only figure in the boundary condition (3.17b). Moreover,
only the leading term L_*'O (T) in the expansion (3.12c) figures in the equation (3.17b). This is.- _
a consequence of the approximations (3.4), which include the assumption that the width of
the strait is much larger than its depth. The variation of the width as a function of the depth is

. thus 1mm3£g131 This contrasts with the usual situation in a channel, where the wxdth and

depth are comparable and the boundary conditions enter mainly through the f:ftectlvc
cross-sectional area of the channel (see GRI1). :

3. The vorticity functions ¢, and y, figuring in the components vlO z;nd VZO of the
velocity field [see (3.16)] only enter in equation (3.17a) integrated over the entire depth of
the fluid, or via their value at the bottom of the strait [see (3.17¢)]. On the other hand the
functions ¢, and v, figure directly in the side boundary condition (3.17b). Their Z
dependence leads to a decoupling of these boundary conditions into separate conditionsfor
the wave zzmplitude n° and for the vorticity functions.

4. The bottom and side boundaries play different roles in our treatment. The shape of
th.e bottom has entered via the depth functjons h(T) and h (T) into the coefficients of

equation (3.17a) and into the boundary condition (3.17b). The side boundaries; on the other

© &
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hand only figure in the boundar;' condition (3.17b). This makes it possible to consider two
dxfferem physical problems. The first corresponds to studymg the integrated GKP equation
without any boundary conditions; this describes long waves of small amplitude n an infinite
two-dimensional body of water with varymg bottom and nonvamshmg vorticity. The second
problem corresponds to considering the mtcgrdted GKP equation together wyith the boundary
condition (3.17b). This providcs a model for long waves 1n a shajlow strait with varying
side’s and bottom, the strait being allowed to possibly meander along some given direction
and change itscross-section, ?nher broadening or narrowing. ”
. \ .

5. The coefficients of the integrated GKP'equation debend on physical quantities such

as the depth functions hy(T) and h,(B), describing the bottom, and the vorticit§/ functions #

¢y(Y,Z,T)and (Y, Z,T). In addition,.they depend on ‘the auxiliary function C,(Y,T),
figuring in A, and M, . Thig§unction, as mentionned earlier, remains at our disposal and will
be chosen in each case to simplify the results, taking into-account however our previous

comments on secular terms which may occur for certain specific situations.

A

~
[

The integrated GKP equatlon remains meaningful also when all the Y dependence is

dxscarded i.e. when we set'r] =T 0x,my, ¢0 0o (Z,T), hy =y =0, C; =C,(T), so that A,
=0, in this case, when the bottom is flat (h,=1), we recover the results of Benjamin

[BEN1], namely that solitary waves are possible even in the case of a~fluid with™

nonvanishing vorticity. The physical situation that we are interested in is one in which we
have bounded solutions at x,; =x10, ie. T=T, foginstance a solitgn. The boundary
conditions for the Euler equations (3.1) and (3.2) are completely specified by giving, at xl0
and for all t* and x,, the surface.amplitude n* as well as the velocity field v*. In view of
(3:10) this means that we must spécify, up to order g2, the initial conditions (at T=T,) for
the'amplitude n° and thie vorticity functions dg » Wy - Grven these initial conditions 1t 1s clear
that the integrated GKP cquatmn being an equation for the amplitude 1% alone, is in principle
not sufficient to determine completcly the flow at an arbitrary point of spacc. On the other
hand. we can_rewrite the integrated GKP equation equivalently as a coupled system of
equatinns, obtained, on one hand, by differentiating (3.17a) with respect to X, and on the
other hand by evaluating (3.172) at X =X,y : ] ' '

L
hy
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\ [n° + 3vhg MM % + dohy P n iyl + 380 2nyy .
+[Bhy 1 2A% + MM® + Myn' ]y =

L + g PO (X) + ey (Xo)
N + Bhy12A 00 (X)) + MmO(X,) + M2n X(xo) + My(Y, T) 0.

-

The boundary condition (3.17b) can be treafed in the same manner to “obtain »

»

. [pAOnO,J,nb? 'ho'lﬂ'yxli""]l . =0, _ ©(319) |
' . = 0 - 4

o [prwg + AT - B2 ) + Gy ] | =0 (3.19)
= ’0 p

-0

(3.18a)

(3.18b)

a4

For an arbitrary fixed X, we have a coupled system of equations for 1y(X,Y,T) and the
vort1c1ty functions ¢y(Y,Z T), VoY, Z,T),to be solved for some given initial conditions.

»
\ .

(. » A judicioud choice of X, in (3.18b) and (3.19b) makes it possible to decouple the
’ system. Indeed, let us choose X, as a point where the amplitude 1;(X, ,Y,T) vanishes. This

J , is possible if the perturbation is al‘ways bounded, as required by physical considerations. If
we have )
JLim np(XYn=0 ' C (3.20)

=

then the choice X, =~ o is appropriate. Equations (3.18b) and (3.19b) then reduce to
. ' * 0 .
_M(YD) = 3y [lgo'%(Y, Z=-hy,T) +hy!" ) [00/mg2)r + B yJaz] =0 3.21)

e with boundary condition .

[y, - 120, li,o']l =0, o a = 7 (321b)
. ) Y= L_",O . .

a lmear system relatmg the vorticity functions. With this chmce b and Y, represent the

stream velocity of the fluid [see equation (3.16)]. \ . . L

(

a - )
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. ’ - / * >x
{- ‘ ®
> N N




B

s

e
R AT s
h o

- b - 111
Equation (3.18a) is then simply a nonlinear partial differential equatio}l for the wave
amplitudé Nn%X,Y,T) with initial conditions nO(X,Y,TO) and boundary condition (3.19e'1).
We shall use the term generalized Kadomtsev-Petviashvili equation for (3.18a) (this is the
differential form of the GKP equation). In general equation (3.18a) is not integrable, in the
sense th that no analytical procedure i Is. avallable for obtaining solutions of the correspondmg
Cauchy problem. Howevcr fora functlon of three variables q q(¢, 8, 1), the Kadomtsev-

Petvmshwh (KP) equdtion

v

(a4, ~64qg + Qeeele + OQge =0, -~ o=%1, , (3.22a)

’

and for a fun%t.ion of two variables q = q(t, T), the Korteweg-de Vries (KdV)-equation

. T M P
q, - 6qg '+ Gee = 0 . | - e - (3.22b)
' . ' ) . - ¥ .
and the cylindrical Korteweg-de Vries (cKdV) equation Y
q, - 649y + Qe - 48q - 20 =0 t ) (3.22¢)
' -

Py

belong to a quite large class of equations that a;e infinite ”dimensional integrable Hamiltonian
systems. Powerful ar?alytlcal techniques are available for solvi-ng the Caﬁchy problem for
these equations, such as the i inverse spectral tramform techmque in one of its various forms
(see, e.g., ABL1 and CALl) Infinite classes of exact solutions ex1st such as’solitons and

‘multi-solitons, prI'lOdIC and quasx—gerlodxc sdlutions, ‘rational solutions, etc., obtained

through the nieans of Bicklund transformation‘é algebraic geometry, and many other
techniques. More generally, pcrturbatxon -methods have been apphcd tw:mble -coefficient
KdV (VC-KdV) equations, namely : -

d, *+ F(Dqqe + ggee = 0, ‘ (3.23a)

and have provided physically significant results (see ECK1, GRI2, JOH2). Similar
perturbative metheds could also be applied to the. variable-coefficient KP (VC-KP) equation

(q,+ F(T)q(Ig + C{g{;g]g +G(T)qge = 0 ) . (3.23b)s
and the Variable-coefficient cKdV (VC-cKdV) equdtion ’ .
. | ] ’
" 6qq§ + Qg - 41;qé + HSr)q =0, . (3.23¢)
¢ -
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ations of the dependent and

in(_iepcndeni variables that have the effect to reduce the GKP equation (3.18a) to the VC-KP
equation (3.23b), the VC-KdV equation (3.23a), or.the VC-cKdV equation (3.23c). In
special cases, under certain restrictions on the shape of the channel, we reduce directly to one
ofthe integrable equations (3.22), i.e. the pure KP, KdV, or eKdV equations. ) \
> -~ - - N ’

vl If we are considcring the second problem, nimely waves in channels with boundaries,

we must also transform the boundary conditions (3. 19a) In order to be able to solve them,

we reduce them to a standard form . .
. . : ‘ \
g l l =0, e . - (3.24a)
0=0(lyp) - . \ _
"which is solved frivially by imposing \ ﬁ
' : . o)

jﬁrq(!’; 4 - .

for all values of 6. It is easy to verify that the most general tran§formation of ﬁanables that
will not introduce u;ﬁ'vanted terms in (3. 18a), ie. extra tcrms which dg not appear in

“. equatiqns (3.22) and (3. 23) and ca}({e nsed to transform the GKP equanon into a VC-KP,

VC-KdV, or VC-cKdV equation is s L, -
1% (X,Y T) R(T)q(l’; 0,7) + S(X,Y '}) , .o .o , RN
E=a(DX +K(Y,T), . s 7T ‘
0= U(T;Y +V(D), ) - ) (3.25)
. 1=ITP(s)ds.r C A -
. T, . ‘ ,.

]
’
. v L]

>~

’ 5 . 13 . -~
If we wish to use known results on solitons and other boundéd solutions of the KdV, cKdV,

-

and KP equations, we must also require

qE,8, )2 as [El—> oo L T ’ (3.26a)
_ For physical réasons we also wirh (3.20) to be true; these two bc;undar): conditions imply
SX,Y,F) =0. - 5 (3.26b)
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- In some cases the requirement (3.26b) will tuin out-to be too restrictive if imposed for all ~
/ N .0 ¥ - -
values of the variable T. We shall then impose a weaker condition, namely
- Lim SX,Y,T)=0 ) " (3.26¢)
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. IL Reduction of the GKP g'quat@ion
to integrable equatim{i

<.

-

t _ T
In this section we shall carry out the reduction of the GKP equation to one of the

equations (3.22),»(3.23). The section will be subdivigéd in two parts. Within the first two
subsections below (I1.1 and I1.2) we shall consider the problem of reducing the GKP
equation to a KP- or KdV-type equation without taking into aceount the side boundaries, i.e.
considering the fluid to have an infinite Extcr}sion}n the y-direction (as well as in the x one).
In the second part (subsections I1.3 and I1.4) we transform the boundary conditions into the
standard form (3.24a) and reduce the GKP equation to a KdV or cKdV-type equation.

-~

- Reduction of the GKP equation to the VC-KP and KP equations ~ -

» oo

Ifng boundary conditions are imposed, we can always choose
, .

S(XYT) o !} ] (3.27a)

=

e 1 . w ) N N - -
in the transformation of variables (3.25). In order to arrive at one of the equations (3.22),
«(3:23) for the new function q(§,6,t) we foust always impose a constraint on the \;orticity

- ‘ : .
-function ¢, r}amcly ‘ - . . L
0 ‘ \ . '
{  toyyy(Y.ZDiz=0, - - © @32
.‘h() w. i '
Y o ¢ “ ¢ > - ' . — '

i.e., we can write 5

“ i
N &
5

.
L_}; %dzfﬁ-fv-lhozmmomf UMY+QMYT, 3.270)

- M - n
v
-

where the moments Q,, Q,, and Q2 are completely determined by the Z- 1nteg‘ral of the
vortlcuy functlon ¢Q (Y,ZT).On the ot‘hpr/l{and taking into account (3. 18a) (3.27a), and
the fact that we are consxdcrmg bounded solutions of the GKP equauon we can assert that




6.3

/ ' n s
o ° 15 -

" " in all cases under consideration, equation (3.21a) reducesto ¢« -

-~ ® .
N
-
s

0 - . - 0 - »
| woy9Z =B (9/Mg'DrdZ - Blhg R hy0o(Y, Z=-hy . T), (3.27d)

hy hy . , . ’

. which defines, up t;) an arbitrary T-dependent function, the inicgral over all Z of the vorticity
function Yy, Moreover, it turns out that if no side boundaries are considered, then the
auxiliary function C,(Y,T) serves no useful physical pdrposc and we therefore can always
set C,(Y,T) =0, so that '

T B‘
AfY, T =AyD) =21 [ hy¥hds, - 7 (3.281)
To , '
and we can always set. : (\-’
aM) =1, P =foy!AT). - , (3.28b)
> Pu'ttmg . Y g\‘ _ -
R(T) = hy TR UA(T), R, =constant, . ‘ ~
’ _ 1 1 T ' ) ’
K(Y,T) =_1_{ UM ya, [YU_. {,;sj. ho’mhlds]Y (3.28¢)
B 2h01/2 . ' holfz TO " . -
° , T (V'/U) T
- 1 : 12 -
. .+ ds+| h,'"*Q,ds .
; 2'[To hy'?2 JTo ? (? } -

in (3.25), we-obtaih a VC-KP equation (3.23b) in the form
6 . 4 oA '
[q, + 9 R by HMUVZ(T)ag + gl + 3o BUNTIGeg=0. | (3.29a)-

. The function U(T) 'is determined, in tern¥s of the vari/able bottom h, (T) and of the second

moment Q,(T) of the vorticity function ¢, , by a Riacati equation:

“

(UUY' = (UTUY? + §(hy'U/hgU) + 2Q, .- _ . (3.29b)

P

‘v ) . 'n a . 13 *
The function V(T) is then obtained by solving a linear equation; in terms of the variable

' bottom‘h(}(T), h,(T) and of the first moment of the vorticity function ¢y, :

-

*
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(V/U)' = [(UTU) + $(hgmI(V/U) + 38 /bg) +Q - _ (6.29)

It is worthwhile to notice that if Q,(T)=0, then the Riccati equation (3.29b) is explicitly

solvable and implies

-~

U(’I‘)=UO[1+UJ:h0V2dS]:I,» . .

! 1

-

0

where Uo and U, are constants. If we require the cqcfficxents of the VC-KP gquation (3.29a)
to reduce to constants in order to obtain a pure KP equation (3 22a), we, must impose

hO(T) 1, Qy(T) =0, U, =0, o . ' (3.30a)
v . and hence the depth is given by
hCY.T) = 1+ e¥hy(T) + O

Smce a>0,B>0, the KP cquanon which we thus obtain corrésponds to ¢ =+1, which is
the KP equation admitiing stable soliton solunons (see ABL1, CAL1).In this case we have

\ R(T) = -20./3Y = cpnstant,
) o U(T) = (o /38 )2 = constant,

T S B}
V(D =}pU jT hy(s)ds + U _ Q). . (330m)
0 . o - . .

‘3

o T T : T.
KO =4y [ Q@ids-4pt [ (vu@ds-ptf Queds.
0 -0 0 .

o

Notice that even'if the bottom is completely flat, i.e. if hl(T)‘= 0, the KP equation (3.22a) is

“not obtained for a generic vorticity field. The requirement of reducing the GKP equation to a
'}

KP-equation implies that the vorticity field can have a very limited variation in the
' Y-direction, and in particular the intégral along Z of C3O is constant in Y [see (3.27¢)].

~

v
o

)
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‘_and thus we obtain

Let us first consider the reduction to a VC-KdV equation (3.23a). We put

um=1, V(T)=0 ‘ a ‘ (3.31a)

N < #

.

K(Y,T -~ [2 ]Y+[ +jh3f2hd]Y
( )= —VE’T R 4h KZ 2 0 §
* (3.31b)
T % -
, -3B8] holfl Kzz(s)ds B by P Quds,
. e Ty STy -
where the function R(T) satisfies a Riccati equation ) )
(RYR)" = 2R/R)? + (R '/R)(hg/hg) + Yo/ - hg/hg)' + Q, (3.3l0)-
. and K,(T) the linear equation - ‘ ]
K,' = 2K, [(R/R) + §(hy/hg)] - $hy2h, - B0y 12Q, . (3.31d)

The transformation (3.25), sati;fying (3.27a), (3.28a), (3.28b) and (3.31), reduces the GKP
equation (3.18a) to the following equation for (&, 8, 7):

g, + 9a‘lwo'2mk(r)qq§ + Qe + 30018 Qgg + 60 BK,(T)qge =0, (3.31¢)

In particular equation (3,31e) admits solutions that are independent of the variable 6; if as
initial condition we put & =q,(§,7), then (3.31¢) reduces to a VC-KdV cquauon for q =q(&,1).
" If we require that q(&,t) should satisfy a pure KdV equation (3. 22b). we have to impose, in
adldmon to the equationis (3.31a), that

<

R(T) = -(2a/37)hX(T) el *) ~%.32a)
so that equation (3.31b) reduces to
s y - \
"9h ! T L] d
’ K(YT)= 0 Y24+ [K2 + % I ho'mhlds]Y - (3.32b)
) 4p h,>? Ty . :
P N v
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-3 hPRs)ds- B[ hg12Qyds, . (3.32b)
w " "
and (3.31d) to ° _ : :
K2'=g(bo'/ho)K2'%ﬁ03nh1 - By 12Q, . t - _ (3.32¢)

Equation (3.31c) then becomes a constraint relating the shape of the bottom with the second
moment of the vorticity function ¢g:

(ho/hg)' = 5(hy/mp)? + 3Q, . (3.32d)

If the vorticity is assun;ed to vgnish, then the behaviour of thp depth function hO'(T) is
determined by (3.32d): o

ho ()= [ C;l--T'? ]1/5 ' . -

[ A 1

where ¢, is an arbitrary constant. The above equation shows that as T — eo, h(; — 0, so that

the depth is a de¢reasing function; also, for T =c, the bottom is infinitely-deep. A similar
result has been obtained by Grimshaw (see GRI2) when considering a twol—dimcnsional
irrotational fluid over a variable bottom. The presence of thie vorticity terms allow us to get 5
physically more reasonable behaviour of the bottom, i.e., by introducing an appropriate
vorticity field we can model, in principle, any behaviour of the bottt;m. We ﬁnall); note that
the presence of some vorticlty is absolutely. essential in order to get a KAV equation: indeed,
if Qy = Q; = Q, = 0, then we are no more able to go over to the KdV equation for the

{.

function-q.
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Let us now concentrate on the GKP equation (3.18a) together with the boundary
condition (3.18a). To obtain the boundary condition in the standard form (3 24a) wchrcquire

Ag(Y =1t 9, T) = Bhg 21y o (3.33)

rd

~together with (3.21b). Thc boundary condition for thé wave-amplitude n%(X,Y,T) 1s then
. . k

4

0 -
n Y(X)Y’T) l Y = - Ov.

Lo

-

When performung the transformation (3.25), we wish to g¢btain the boundary condition forq -
in the form (3.24a). In order%to do this we require Sy =0, Ky =0, U(T) =1, V(fl‘) =0 in
(3.25). We shall solve the boundhry condition (3.24a) in a trivial manner, namely by

requiring that the transformed wave function q(¢, 0, t) should be independent of the vnriuﬁlp 0

\

+

in the entire strait, not just on the boundary. We thus set

q =q(&1). (3.34)

¢ 3

Note that this does not imply that the physical amplitude 1 is indepéndcnt of y. The variable
X, and hence also § , depends on y via the function C(ex, y, E§ in (3.11) and (3.10c¢).

The assumption (3.34) is' compatible with the GKP equation (3 18a) only 1f M, and
M2 are independent of Y. Us*ng (3.17c¢), our expression (3.14) for A m terms o(Cl, and
the boundary condition (3.33), we then find that Ay (Y,T) and ¢ (Y, T) e completely
determined. Introducing the total width A(T) and a further characteristic 2(T) of thc‘struit by

putting -

'Ii, 0 (Tg = J[X(T) £ A(D)],

-

&

we find

Ag(Y.T) = plhy 2 ((AVA)Y + SEIE/E)- (878)])- (3.35)

Since we must have Ay(Y,Ty) =0 [see (3.14)], we obtain

o A'(Ty)=X(T,) =0, (3.36a)

-

{

¢
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hY
and by an appropriate choice of the origin of the coordinates (i.e, in the middle of the channel
at some point x, =x,%) we make the normalization

r

XT,)=0. . (3.36b)
Equatioﬁs (3.35) and (3.14) then dcﬁnc’CI(Y,T), up o an arbitrary function of T, as

C,(Y,T) = Co(T) + 31 { by 2[hy12A7A) Y2 + Bhy My, \ (3.372)
) s 37a
. | i ’ +ho! [ V2AZ/AYT ).

[ 4

This equation gives a well-defined resuit for C,(Y,T) at T = T only if
A'(Ty)=E(T)=0," | . (3.37b)

e

in addition.to the conditions (3.36) and hy(T;;) = 1, h; (T, ) =0. Now, we must also ensure’
that the function M,(Y,T) in (3.17¢) will be independent of the variable Y. This will be so
only if the vorticity function ¢y (Y, Z,T) satisfies (3.27¢). Moreover, the second and first

@ » + moments are seen to be completely defermined in terms of the geometry of the strait as
follows: S
N TAAYAN . -
. Q, (1) =-KAYA), . (3.382)
Q (1) =- J A'(S/AY. o0 (338%)

In particular this implies that |

QT =0,  QT)=0. | (3.38¢)
" Inorderto obtaina VC-KdV eqixation we specialize equation (3.25) to
%K, T) =R(D)q, 1) - §r'hg [(D(DIX, .\ °
A
; §=a(DX + K(T}, ‘e -
) . . < (3.39)
~ . 9 = Y . ,
T
t=fa [ aehy'As)ds, ]
T, *
where . -
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e _ R(T) = a(M)A 12 hy 14,
' W T ARy (O T 4 IA2(T/A)T2 ’ 3.39
KM = [ A R(Qq + pal/ay ) ds, -~ (3139D)
’ 0
. r . ®
. am=ao[1-a1j a2n T gs ]
Ty * " , -

and aj and a, are arbitrary constants. Under the assumptions.made above, transformations
(3.39a) reduce the GKP equation (3.18a) to the VC-KdV equation ’
/

-

+ q
o AVZh 94 (T) a(T)

%

Qe + Gege = 0. - y (3.40)
Y ‘ﬁ

. If we make the physically plausible assumption that

0(Y, T, Z=-hy) =0, , o~ . (3.41a) "(

~

3

¢

ize. that the mainstream motion in the x,-direction be vanishing on the bottom, then we can
solve (3.27¢) and the boundary condition (3.21b) for the remaining moments of the vorticity

functions. They can be expressed in terms of the geometry of the channel as follows:

Q=- %sz - 15Qy(3Z% + A?) + h0—9/2A-5/3 {Quo ;
(3.41b)

¥
+ $hg (TOA(T) jTho”zAm[ 15Q (352 + A?) + Q. - J1A/AY 2 ds)
\-{\ 0 ‘

0 . v
[ "W dZ=y1B2RY(T) + R, ()Y +Ry(T)Y2 + Ry(MYY],
‘ 'h() ) < ~

Ry = 3(hy*Qy)’,
R, = 3(h¥7Q,)",
R, = (hg¥2Q,)' + 3hy (T AT hy SHTAN(T) (2Q, + HAE/AY ),
Ry =3[ $hy (TPHA(TPhy, SATAT(T){(2Q, + JIAE/AY) °
- hgAT)({5QE(E2 +382) + JQ, (52 + A7) + QZ] )

")

»
o

¢
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where Qo is some (irrelevant) constant. The VC—KdV equauon (3 40) reduces to a pure

9

Kdav equation whenever we have

9y -6
eA2 h P4(T)a(T) y \ "

(3.42a)

a

r
<

This" corresponds to quite specific geophysical circumstances. The above equatic;n (3.42a)

can be solved in order torelate A(T) and hy(T) directly. We actually find i
ay =- 3 WA VAT, - a, =-JAYATHh,(T,), ' S (342v)
3
and
T ~ g
S AT = A(Thy¥4(T) [ 1+ 3h,'(T,) j hom(s)ds] . (3.42c)
‘ T,
0 §
or equivalently . , oo
' ) |
T 1/4 29 ’
hy(T) = [1+4b'(T) [ [aTaI® ] [amp/am] (3.42d)
To

«

_which, due to the conditions (3.37b), implies
hy"(Ty ) + 3[hy'(T, )E=0. . (3.42¢)

Notice also that for hy'(T,)) = J we have a, =0 and.(3.42a) reduces to’ -

AT = A(Tyhy 9’Z(T)

"

in particular this means tha@ as the strait widens, the water gets shallower. On the other hand,
for hyy'(Ty) # 0 there exists solutions of (3.42a) that correspond to the usual situation, i.e. that

the strait gets deeper as it widens, e.g., as it opens up into the ocean.

¢

The crucial role played by the vorticity moments for the derivation of the integrable

equations is worth stressing. For instance, if we impose
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Q,(M=0,

then we obtain from (3.38a) that the width of the strait’must be constant,
A(T) = A(T),

i.e. that the strait must be of constant width. In addition, to obtain a pure KdV equation, we

" require that the depth function should satisfy

ho(T) = [1 +4(T - Thy(T)I¥4.

Notice that in order to obtain a KdV equation ;vhilc assuming realistic conditions on the
géometxy of the strait, we-needed a; #(Lin equations (3.39b) and (3. 42b) Hence we have

o

" S=-%y'h 3/2(1/a)X¢0

in (3.39a). Thus, bounded solutions q(t,t) lead to unbounded amplitudes no(k,T) for X —

oo . The condition (3.26¢), namely o

-3y (@)X >0 as  Tores, o

/ * .

is satisfied if A"Z(T)h 14(T) increases with T."The appearance of a nonzero fl?ﬁe&ion S(X,T)
<an be avoided by reducmg to a cKdV equation, rather than to the KdV equation itself.

v
%

We solve the boundary condition exactly as in the previous subsection, so equations
(3.33) to (3.38) apply again. Instead of (3.39a) we perform the transformation

n%X,T) = R()q(&, 1),

E=aMX +K(D), . , .
! (3.43a)

6=Y, '

T T
t=4af alohy'(s)ds.
To
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L

In order to obtain a variablc—coefﬁcienf cKdV (VC-cKdV) equation we put

R(T) = - Jary 12X (Dhg (), ‘ -
K(T) =-p- a(T)_[ he 2 Q + 1}:2(--—--—) ] ‘ (3.43b)
T 153
a(T) = 3 athy(Ty)13 [ 1-3hy'(Ty) j h(,lf2 ds] ; S
Ty . ‘
With this choice we have
. T - vl
T=15 ln[l&- 3 hy'(T,) j h,'2 ds] S Lo (3.43¢)
T ' °

' 0

The transformation (3.43a), together with the assumption that q =q(¢,t), reduces the GKP

équation o . P

Ohy
- 640 + Qe - 440 - [ 3h 7 ( - )]q =0. (3.43d)

This YC-cKdV &quation reduces to a pure cKdV equation (3.22c) if ‘we unposé

%h, A'\ -
By (2hz'?i)=2‘

3 112
aa’ H,

In view of (3.43b), this is just a relation between the width and the depth of the strajt. It can -

easily be solved and yields the relations (3.42c) and (3.42d), expressing the function A(T) in
terms of the depth function hy(T), or vice versa. The pure“chV €quation (3.22c) can be
solved, e.g. by the inverse spectral transform method, and the bounded solutions q(&,t) of
this equationocan then be transformed by (3.43a) into boynded wave amplitudes n%X,T).
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III. Examples of exact solutions

.

N

In this part we aim at consftucting, in an explicit manner, a few exaet solutions of the
GKP equation by using some of the reductions, devised in part 11, taking this equation into
simpler integrable equations of KdV type. The GKP solutions that we shall thus obtain
below can be viewed as deformations of functions satisfying these mtcgmblc cquations. The
practical motivation of what we present here is to show, through these cxamplw that the
GKP equation, within its theoretical limitations, provides us with a 1calistuc description of
solitary surface waves propagating oyer geophysical regions chatacterized b); non-flat
topographies. In view of the many measurements and observations conducted throughout the
oceans by many ocean?graphers (see }nUOdﬁcti011 and references mentioned thci‘@m), the
GKP equation indeed proves to be of particular interest since, by construction, its solutions

‘represent waves that exhibit some nontrivial curvature, transversally to the direction of

propagatlon such a behaviour, as we previously explained, is not allowed by thcones based
on the KdV equation.
- ' s »

¢ We recall that reductions of the GKP equatioa were performed througﬁ the following

transformations of variables [equation (3.25)]: .- T,
i \
n%X,Y,T) = R(T)q,6,f) + SX,Y.I), : -
v 4 r 4
£ = a(T)X + K(Y,D),
(3.44).

8=U(DX + ¥(1),

T ) ‘ ﬁ
t=] P(s)ds. ‘ . L

To . N .

The quantities R(T), S(X,Y,T), a(T), K(Y,T), U(T), V(T), and P(T) are functions specific

for each reduction and well defined in terms of the oceanographic topography; we shall ,

specify them later. We also recall from (3.26) that we ask that the functions ¢ and S be
vanishing asylﬁptotically with respect to the variables & and T, respectively, These
requirements are necessary in order to guarantee that the solutions be asymptoucally
converging, as any physi¢al solution should be. In fact, we shall be interested in solutions q

3
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of the KdV equations that are of solitary wave type.
In what follows, we shall consider situations corresponding to three distinct types of C

geophysical topographies, coresponding to three different behaviours of the depth function
hy, namely when its shape is quadratic, tangent hyperbolic, and logarithmi¢ in the
longitudinal variable x. We always assume that h,(T) is zero,; if, for instance, we would want {
to describe waves propagating along a sloping beach, then we would set it differently. For
the first two cases, we shall assume that the side boundaries are absent. In view of the nature
of our perturbation scheme, it is to be noted that this does not exclude the actual presence of
these boundaries, i.e. if the channel is sufficiently wide as well as shallow and the depthis
slowly increasing near the sides, then the Side boundaries have no measurable influence on -~
thie behaviour of the wave within the validity range admitted by the pertugbation scheme,
namely at and sufficiently near to the’x-axis. For the logarithmic shaped bottom, we shall”
treat both cases where the boundaries may or may not be present. In the latter case, recall that
P ) there then exists a quite restrictive constraint between the depth function and the width . /4
( ‘ functions (actually the total width A(T) of the channel) which xr{ust be satisfied in order that

the reduction to the KdV equation be possible. & b

. We point out that even thou'gh the formulas describing the reductions Above considered
were well defined, there arises a practical problem when inverting the reductions. Indeed the
transformation formulas involve integrals which are typically difficult to perform because the ‘
& integrands are typically cbmplicatt;d functions expressed in terms of the depth function, and
therefore the class of depth functions for which we can get results analytically (i.e. without
using numerical recipes) proves to be quite limited; the above choices fall withimr that class.

s
. —~ . Let us begin®with the case of no side boundaries: Note that our results will be -,
~ ? expressed in terms of the variables X, Y, and T, the wave frame coordinates, related to the
» physical variables by equation (3.11); recall that T and X really play the roles of space and

time, respectively. Recall also that the function S(X,Y,T) can be chosen, with no restriction,
to be vanishing identically. Fgrther, the function C; may be set equal to zero as well; thus -
C(Y,T) becomes independent of Y (C=1) and non desirable secular,terms disappear from
the perturbation scheme. Referring to section'11.2, the remaining functions appeari‘ng' in

.
+
» - R %
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3. 44) are . ) . ‘
| ) UD=1 VD=0, am=1. PM=ferfim, s
ST @

RCT) = 20/3DhoXD),  K(Y.T) =-Ohg/Agh Y2

where it is ‘imblicitly assumed _that tfie functien K, and the vorticity moment Q, vanish, and

Q, is set to zeroas it does not play any important physical role; the moment Q, is determined

by the constraint (3.32d). We point :out that the reduction generated by ‘_(3.45) is

consequently not the most general one that-yields the KdV- equation, but iris sufficient for
E our purposes. The generic one-soliton solution of the KdV. equation is (see, e.g., CAL:1)

96D = 2V2 sech? [v(E - go)-4ﬁ]\} T /
_where v is some real constant. Performing the transfonmatxon (3 44) we get the following e

deformed sohton solution of the GKP equatjon:

M%X,Y,T) = (4av¥/3y)h, X(T) sech? [VH(X,Y,T) - V&, ], e .
. (3.46)
S . T : -
H(X, Y, T)= X - (Ohg/4phy®)Y2 - ov? [ hy!(s)ds.
- . , TO &

A

From now on; without loss of generality, we set the phase factor €, 1o be zero. If the depth
function hy(T) is smooth enough (actually slowly varying) then we observe that the wave
amplitude attains a local maximum wlien H= 0. Thus, ;olving this equation for fixed values
of X (i.e. "ume") we obtam an equation for the crest of the deformedWoliton solution of the

GKP cquatxon . ‘ e
. ° T = ° - ’ , - .
o Y2=3hPhg) (X - v mg\s)ds). . (3.47)
’ T. - B
- 0

.

When h,, is a constant, \(3 47) is no longcr'valid but H= 0 then just dcscribes'a straight line; -
asHis mdepcndcnt of 'Y, and we thus recover the description of thc usual standard Kdv
soliton. Note that our transformation Q3. 44), (3.45) can be used w1tlT any KdV’ solution
_ q(&,1); here we have chosen q to be the onc-sohton solutxon but we could have corgs:dercd
quasi—penodlc solutions jcnoxdal funcnons) as well. -

Ad ¥ ' ‘




" =0. Note that for X =0, the cre

" front for neg/‘ative values of “T. Fi

1 ~

Our first example of oceanographic topography is that of a depth ho(T) given as a

quadratic £uncnon of the variable T, . N

hy(T) = 1+a2 T2, . (3.482)

PR .
where "a" is a constant characterizing the rate of steepness of the bottom; it isg physically
reasonable to choose it to be relatively small, especially if we want to use formula 3.47).
Without any loss of generality we can set T, =0. We have chosen the fort of hy(T) such that /
ho(0) = 1 and, more important, such that hy'(0) = O; thus we are able-to connect this Solution,
at T=0, to a siraight solitary wave %atisfying the pure KdV eqﬁation in the domain T<0.

According to equation (3.47), the wavecrests are then described by

=

2 2132 2 ) N
y2- 2‘3(“’*‘2T ) X+%[aT(1+a2T2)m+ln(aT+(l+ a2T2)12y],  (3.48b)
9a¢ T ‘ .

o

" The curves defined by (3.48b) are illustrated on the l;ppe‘r hand graphs of Figures 4 and 5,

where we have plotted Y as a function ©f the variable T, for fixed values of X. In these
figures, and the others thai will follow, the lower hand graphs reprcsent the geophysical
configuration of the bottom; note however that the scales of Y and hO(T) are not equal. We

have chosen the following constant values: a=0.05 and a =B =v = 1»0. These curves

represent the time evolution of a wavecrest for positive values of T, beginning at the instant T
i§ given.by T=0 and is therefore a straight line identified ‘
with the Y-axis; this is consistent“wilh the fact that the GKP solution is a pure KdV solitonic
re 4 shows that as "'time" X increases, the waveerest

begins to acquire some curvature and quickly takes the form of a bell. Evcmually, as seen on
Figure 5 which is drawn for values of. X taker at a much larger scale, the wavecrest gets
pinched and evolves into a horseshoe curve. This pinching effect, which occurs for large
enough values of X, is not physical; it simply reflects the limitation of the validity range of

 the solution along the Y direction. As time increases, this lateral validity range decreases and
it is thus a sign that the solution (3.47) is-a good description only for a limited period of time; N

equivalently, we can say that this solution lacks precision as the depth gets larger and larger.
We also point odt that the fact that the non flat features of this solution are essentially

o .

~e
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. “x@ of the wavecrest from X =0 to X = 0.1. The last cusve meets the T-axis at about

-t 129 *
locahzed around Y=0is a natural consequence of-the perturbanon scheme yielding the GKP
cquatxon the expansion is done in a sufficiently small dornain around Y =0. It is howcvcr
worth mentioning that these horseshoe-like solitons are very reminiscent of the type of
sohtary waves seen to emerge from the Strait of Gibraltar into the Mediterranedn Sea (sec
Figure 2 and LAV1). e ‘

-h(T)

Figure 4 ,

Solumn.oﬂhc GKP cquauen associated with a bottom of thc form 1+ (aT)? with
a=0.05 and o= = v= 1, The curves represent the "time" evolution of the shape

T =0.15 and Y ranges from -14.5 to 14.5. .

kY
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Figure §

Solation of the GKP equation associated with a bottom of théL form 1+ (aT)2 with
a=0.05 and o= B=v= 1. The curves represent the "time" evolution of the shape
of the wavecrest from X = 0 to X = 120. The last curve meets the T-axis at about
T = 86 and Y ranges from -54.5 to-54.5. .
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As our second exanfplé, let us consider a depth function shaped’as a hyperbohe
tangcnt of the form-

\

hy(T) = A + Btanh[u(T- x)] . . . (3.493)

For the sake of l;hysical plausibility, we shall specify this formula a little bit more. We
actually require that the foHowing conditions be satisfied:

]
hy(0) = 1, Lim hy(T) =8, Lim hy(T).=0. - | @

T =00 Tl e -

The last condition is an identity which is already satxsﬁc;l\he two others determine the

values of the copstants A and B. We thus get . ‘
. .
1+8:anh(wc) + (5 Itanh|(T - K)] " :
' hy(T) = ~{rtanh o % ¥ (3.49b)
L ’ }

Finally, making a further change of variablesr= cQP(T""). withry = ¢ % and introducin g the
quantity o = 1+ (1-8)e"2HX, the depth function then writes as

hy (;) = (0 +3)/(r+1). (3.49¢)

In this form hg dcscnbcs a bottom which varies from depth ©, when T— ~ oo (i.e. r — ())
down to & when T-—);oo (i.e r —5o0), the variation being essentially localized around T =
with a relative stccpnass characterized by the constant (1. In view of the calculation of the
integral defining the variable 1, it is nec essary 1o require that @ > Q, this 1s consistent with

physical reality, namely that the bottom remaiis always suhmuLul under water, Observes

that we shall not connect the solution corresponding to this type of geophysical situation with
an ininal KdV solitonic front, due to the form of the depth function, ity clear that the GKP
sclution will asymptotically tend to such soliton mlutmn_x (with two distinct amplitudes),
being esscniially different from them only for values of T near of v, Furthermore 41 casy
to show that hy'(T = 0) <2u/[8(5-1)]; thus 1f the rate of steepiiess 1s sufhiciently small with
respect to the final depth, then the GKP solution is-near to the KAV solution cven lnt T=01t
is constquently reasonable to choose, here also, T, = 0. Note that other (negauve) values for

-

.
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Ty are also permitted; Ty, < eo is however forbidden because the integral defining the variable
y"then becomes singular. Performing the transformation of variables (3.44), we then obtain
that the wavecrests are defined by the following expression:

*

2 2B+ D20+ 8r)P? zav( . - .
Yé= - wyr @ [X- (812 In{[8(r + 1)]*2 + (w+ br) ]ro

@

(3.49c¢)

- oIn{[o(1+ /D12 + (5 + w/r)‘”}r]r )] : -
s . J 0

8 .

The curves defined by this cquatlon are illustrated in Flgures 6and7. As in the previous
case, we have plotted Y as a function of T, for several fixed values of the variable X. We
have fixed =2 and a =p=p =v=x = 1. As predicted above, for values of T near zero,
Figure 6 clearly shows (see the curve furthest to the left) that the wavecrest 15 almost a
vertical straight line and therefore very near to a pure soliton; the same 1s true for large
enough values of T. As a matter of fact, when a solitonic front departs fiom T=0
rightwards, its curvature increases and attains a maximum when the wave 1§ cro’ssing the line
of steepest descent of the bottom, at T = k. We observe that the magnitude of this ¢urvature is
quite small, except when Y becomes sufficiently large: then it gets dramatically large and
induces a catastrophe smular to that which occured for the parabolic bottom, namely a pmch
of the wavecrest occurs (F igure 7). For values of T larger thdn K, we see that the wave now
loses its curvature and asymptotically recovers 1t flatness; qualxtatlvely speaking, 1t gets flat
again relatively rapidly. The pinching seen 1n Figure 7, where curves are drawn for a larger
domain of the variable Y (the X—ran“ge is of the same order), expresses the fact that our
solution remains valid in a limited range of valucs for thestransverse variable Y. Wathin this
range, however, it behaves rcasonably for all positive values of T; in other words, 1t gives a
good description for an unlimited range of the physical time. This also was to be expected a
priori from the form of the depth function and is related to the fact that the solution evolves
smoothly between two dxp{mct KdV solutlons I*rom an oceanographical point of view, this
solution presents some interest. Indeed, it models typical solitary waves with similar
behaviour when crossing elevations, e.g. the border of a plam{q(see for instance FU1).

o

.

/




-
A
’ [
i :E - ' 133
f v
] Voo L] .
~ v
. t ‘
3 'L ‘
\
i . )
- T
v x A
R
-]
g ~hy(T)
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- 4
- ' Figure 6 ’
Solution of the GKP equation associated with a hyperbolic tangent shaped bottom
given by (3.49b) with §=2 anda=f =p =v = k= 1. The curves show the "time"
evolution of the shape of the wavecrest from X =-1.26 to X = 5.34. The last curve
meets the T-axis at about T = 6 and Y rangces from -1.09 to 1.09.
~. = : ‘ :
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Figure 7

Solution of the GKP equation associated with a hyperbolic tangent shaped bottom °
given by (3.49b) with =2 and a =8 =y =v = k= 1. The curves show the "time"
evolution of the shape of the wavecrest from X = -0.47 to X = 2.52. The last curve
meets the T-axis at about T = 3 and Y ranges from -2.04 to 2.04.
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Our third example is that of a bottom exhibiting a logarithmic behiaviour; we represent

it by the following depth function,

ho(T) =1 + 3 In(1+¢T), ’ L (3.500)

where the constant "c" is assumed to be relatively small. The factor § was chosen for future

J conyenience, but can be replaced by another constidnt. I lere also, since h,y'('T) never vanishes
except for T — oo, the GKP solution associated with this prescription for the bottom cannot

be matched to a KdV solution; initial data would rather consist of some shghtly curved

s disturbance that could be generated, for instance, by diopping a mass ot‘:zm\nnpu;uc shape at

/ Ty=0. For this case, 1t 15 not possifgle to integrate in closed form for T, the solution can

however be expressed in terms of an exact formal power seues. Performing the
transformation (3.44) ‘zmd calculating (3.47) accordingly yields the fallowing formula for the

wavecrests: .

- Y2 = 3(/e)(1+ D1+ § In(1+ TP (X - daviL/c), ' (3.50b)

- 32 +3/2
a - L=31/ze_32[3+lll(l+(,:'])] -3 - .

- 3.50¢
Pt @] (3350

The time evolution of a crest 1s illustrated m Figure 8. Notice that we have approximated the
functicn L bgy truncating the infintte sum: we kept the first six terms; this is reasonable
because an elementary numernical analysis of the first partial sums shows that thewr
magnitudes decrease rapidly., Also note that the curvature of a crest does not exhibit a great

variation as the wave propagates and that no pinching phenomenon occurs.

Let us now consider, for the same depth fu&cli(m, the case when side boundaries are
present; this situation genuinely deals with waves moving within a channel. The reduction of
the GKP equation is then more intricate. First we recall that we st have (3.42¢) satisfied,
namely the depth function must be such that h"('T,) + 3“1(,'('1‘())]2 =(}, the choice (3.50a)
made above trivially verifies this condition for any T, and also sausfies the constraint (3.26¢)
requirin g that the function S(X,Y,T) in (3.44) be asymptotically vanishing for large values of

Vo)




S 136 =

T. Once the depth function is fixed, the total width A(T) of the channel is completely
. determined; using (3.42c) we find

~h(T)

3 ¥
\ . o
Figure 8
Solution of the GKP equation associated with a logarithmic shaped bottom given
by equation (3.50a) with ¢ =0.1 and @ = B = v= 1. The curves show the "time"

evolution of the shape of the wavecrest from X =0to X = 8. The last curve meets
the T-axis at about T = 6 and Y ranges from -5to0 5.
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A(T) = 8hy ®2[1+ L(T)], ' (3.50d)

\ where L(T) is defined by (3.50c), and 6 = A(Tj). We then proceed to calculate the functions '
defining the transformation of variables (3.44), following the prescriptions of section 11.3.

We get
- 3P+ Ly2 -1 .
Um=1, M= o 3DTE-U
N 2841+ L)12 [+ 4col&? ; ;
% VD=0, SO R- o’ :
K - YD =0, (T)‘Zy(m,)’ . T 2ad(1+L) ' . R
% - \ (3.50¢)
T Q(s)ds *
KX.T) = SJB -[ 1/;) 11/4 ° ’
0 A hO Al
Qp = 74A2 + hy92ASB{ Qyy + gcf ho2A23A%s .
- . 3 — Tq ‘
>
«  Let us introduce the constants ’ o
By=3y%208, B,=cad/3yV?, B,=3y2ad7?, (3.50f)
and the following additional quantities:
oo i+172 _j+1/2 .
M= 32163 3 B In(+cm] -3 (3:508)

5% G+t ’ ,.
Recall that the Y dependence of the’solution is hidden in the variable X onl)‘l; in ofder to'make

. it explicit we must revert to the physical variables x, y, and t through the transformation
(3.11). Thus T =ex; calculating the function C(Y,T) up to order ¢, we then find that X writes
as , -

Mo
4 ZBholnA

T
+[ hy'PCds. (3.50h)
y

. Using (3.39a), we finally obtain the solution of the GKP equation in the form

2
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- M t
2
%= By hy2(1+ L) '(sech? [B,(1+ L) 2H] + B,X) ,

24" (3.50i)
n=X_s Y2 6m Lo ]
' € ZﬁholnA , -
where , o A S : s
\ :
T i »
G(D) =Byl (vEy + K)(1+ L)' +4- [ hy12C(s)ds. .
0 Al
- \’{‘ - °

-
o

As thcafunction Cy(T) is arbitrary, it proves convenient to choose it so as to make the
function G(T) to vanish. The curves representing the wavecrests cannot be expressed in
closed form; indeed the equations defining the local maximum of (3.50i) are transcendental in
the variable X. These equations can however be reasonably well solved thrzagh a numerical
scheme’In view of the explicit use of a non-constant form for the auxiliary function C(Y,T)
which implies that secular terms do occur in the pe,;;turbation expansion yielding the GKP
equation, it must be pointed out that the solution (3.30i) gives a good description only in a
sufficiently small time nterval [t<e?; see discussion following (3.10)]. We present the
behaviour of the solution in the pictures of Figure 9 and 10. Figure 9 was done for a
relatively small interval along the positive longitudinal direction. As in our precedent
Gexample, this figure does consist in a succession of snapshots that follow a wavecrest along
the posttive region of the physical x-axis. The time evolution starts at t = 0 when the crest, by
construction, consists of a straight line identified with the y-axis. As time iricreases, the crest
begins to exhibit some curvature, the rate of which is increasing. In fact, the magnitude of
this curvature is connected to the rate at which the straits gets wider, i.e., to A'(ex). It grows
and diminishes with this quantity; thus it is maximal when A' is itself maximal. This is better
illustrated by Figure 10 which shows the evolution of the crest for a longer time.
Asymptotically, the crest regains its straigpmcss. This example is to be compared with tl}c
waves seen in existing straits, for instance the Straits of Gibraltar and Messinz;, which do

indeed behave as the example presented heré.

.
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Figure 9

Solution of the GKP equation associated with a logarithmic shaped bottom given

. by equation (3.50i) with ¢ =32 and a=p= v=1. The curves show the time

evolution of the shape of a wavecrest enclosed in a strait fromx g 0tox =5,
The halfwidth of the strait ranges from 0.5 to about 0.658.
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“..- . Figure 10 .

3

Solution of the GKP equation associated with a logarithmic shaped bottom given,
by equation (3.50i) with- ¢ =32 and o = = v= 1. The curves show the time
evolution of the shape of a wavecrest enclosed in a strait from x = 0 to x = 40.
The halfwidth of the strait ranges from 0.5 to.about 1.353. .
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. IV. Conservation laws assoeiated with the GKP equation
. . ' ‘ , ¥ —
The GKP equation (3.16a) which we detived in part II admits several time dependent’
conserved quantities of physical interest. These can be obtainéd directly from the cquationo
" and their form depends on whether we are taking the sxde boqndangs into account or not, we
shall consider these two cases separately. Alsa, in contrast with thc purc KP equation for
which it i§ well known that infinitely many conserved quantitites do exist, the GKP equation
possesses only a finite number of them. ‘ . * \

In this first case we are considering a wave with amplitude specified by n%X,Y,T), =

propagatmg on the surface of an infinite extension body of water. ‘We restrict'ourselves to the
class of solutxons of the GKP -equation that decay sufﬁcxently rapxdly in all directions: s

XY, T) =0  asiXI—soeo or Y| oo, ’

"

-

% as well. We then have M,(Y,T) =0 in (3.16a) [sec (3.20a)]. Choosing-C,(Y,T) =0, as
we always can when no boundaries are involved, we obtain

) T .
Ag=A,(My=-}[ hh,ds, :
e N 0 - N .
M, = M,(T) = hy/ah,. -

We now mmoducc thc followmg quantities:  ° ‘

M= j K.Y, T) dXdY, - ‘ -,

=00 « 00

Bt =] 7| CmKYDRAeY, )

Ix(T) = M (D) j an°(X,Y.T) dxdy,

Y e L

‘We assume that this behaviour holds for the amplitude n%(X,Y,T) and for %, %, and -
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: IY(T) MA(Tyf j Yn(X,Y,T) dXdY, ° L

el gy .

.

¥

w"‘0 To

These ciuamities are obtained by first integrating, over the whole XY-plane, the GKP

\,, equation multiplied by 1, 1% X, and Y, respectively: ‘this stép gives differential cquatibns

“which may then be integrated to yicld the a results, For instance, intgagtatinﬁ the GKP

" equation over X and Y yields the dj al equatiéxi BM(T )/oT + -};*(ho'/h;))M(T )=0, which

obviously has the solution (3.51a). We note that thé expressmn (3.51c¢) for IX(T ) holds oqu
if MZ, in (3.16a) and (3.16¢), is mdcpendent of Y, i.e. if we have

IT 00(Y, ZT) 4Z = G171 B IQ(T),
’ 0 '

ie, if Q,(T), QZ(T)far;H all higher moments vanish. The conse;yed quantiﬁes are M(T,),
E(Ty ), Ix(Ty),.and Iy(T,). The mass M(T) and the.energy E(T) are only conserved in the

/ “ ecial case when the depth is constant along the physxt:a] y-axis, or, in other words when
hy(T)=1in Ce B
h(Y,T) = hy(T) + Y, (T) + O(e?) . éd ) K .

corresponding, respectively, to the mass, the energy, and the X and Y coordinates of the |,

' centre of inértia of the propagating wave. From the GKP equation we can determine the time
- evolution of these quantities; we find:
M(T) = M(Thy /(1) K (351a)
E(T) = E(Tphy YD), . ' (3.51b)
. T
Y (D =Ig(Ty) + M (TE(T,) g7
. ¢ . (3.51c)
“ S 2 ’
+ J‘ [z‘; B h,l” ( J' hy#2h, dr) + plhy 12 QO] ds, E
. To To ~ - "
1,(T) = I,(T) - pj ds hyl"2 j hg¥h dr. . (3.SHd)
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- The centre of inertia of the wave moves along the X-axis with constant velocity only when

hy(T) = 1, hy(T) =0, and Q(T) =0, implying constant depth and vanishing vorticity. We then

have
Ix(T) = IX(TO) + %’YM-I(FO)E(TQ)(T - To) ' ¢
Iy(D) = Iy(Ty. LV

Y

If the depth function hy(T) increases with T =ex, e.g. if a wave moves outwards into sea, we,
see from (3.51a) and (3.51b)that its mass M(T) and energy E(T) will decrease accordingly:
the wave dissipates. From (3.51c¢) and (§ 51d) we see that if h(T)# 0, i.e. if the shape of
the bottom i is Y-dependent, then the centre of i me‘kla of the wave moves away from the
X-axis, in gcneral with nonconstant velocity.

LY

2 - Conserved quantites for the GKP equation with bound i -

KR F T . : : :

In this second case, we consider the GKP equation (3.16a) with the boundary
condition (3.16b). Similarly as in subsections 3 and 4 of part 1I, we assume that we can
reduce this boundary condition to the standard form  °’ ' )

0 =
Myy&Y.D) Lo 0 | i
and then solve it by assuming .
% =1"X.T) ' (3:52)

throughput the entire channel, so that the physical y-direction enters only in an implicit way
via the variable X in (3.11). As we havealready established, the above asqmp(ion (3.52) 1%
consistent only if C,(Y,T) is chosen as in equation (3. 3,7:1), so that Ay(Y,T) has the form
(3.35). The physxcal assumptions made are that the vorticity satisfies (3.26¢) with Q,(T) and
Q,(T) given by (3. 38a) and (3.38b), respectively, The GKP equation is thus reduced to the
equation

10 + Shg PATINN + 20 AN 0y + My (MN® + My =0 (3.53)

,

WA s
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with M, and M, given by .
| -
M, ="(hy/h, +2AY74),

IR e}

Soluuons of the GKP equation (3.53) satisfying (3 52) and vamshmg sufficiently rapxdly,

namely . : *
NXT)—0 as Xl oo,
X, T) >0 as  [XI—>eo, ' - (3.54)

MK T) >0 as XI5,

will again be subject to conservation laws, following directly from (3.53). This time let us

define | ) \h'/ .

mM=[ XX,

- ° I

M= [n“(x DI?dX,

bl . -3 ‘ ‘ \
iM=] Xn'XT)dX, . .

¢

L

f\sgain representing the mass, energy, and position of the centre of inertia of the wave. From
(3.53) and (3.54) we have ‘ \

r

m(T) = m(Tphy M(DAMT), | (3.55a)
e(T) = e(TA(Tyhy AT)AL(T), . (3.55b)
I(T) =i(Ty) + 3mrl(Te(THAVT,) j: hy A 12 ds SN
’ w0 - (3.55¢)
' +gap»1f hy 2 [ 22 }f A) +80Q, ] -
! w

(
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Thesewquantitics are obtained in a similar .way as that which ga'vc us (3.51), namely by *
integrating the GKP equation (3.53), multiplied by an appropriate factor, and then by
integrating the rt;sulting diffcren‘tial equation. Again, we find that m(T,), e(Ty), and i(T})) arc
conserved quantities, The mass m(T) and energy c('f) are only conserved if the geometry of

the channel is such thay 3

L4

o hoVAT)A(T) = ¢, = constant . * -

T'he centre of inertia.undergoes uniform rectilinear motion only if both integrands in (3.55¢)
are constants, . .

The integrable equation of part I, i.e. the pure KP, KdV, and cKdV equations, admijt
infinitely many conservatiiisn laws, expressed in terms of the function q(&,0,7) or q(&,t) (see
NOVI1, ‘CAL1). These, in general, do not necessarily go over conservation laws for the
amplitude N°. The transfSrmation of variable may introduce new t-dependence and may also
cause the integrals for 1% to become divergent. For a discussion of conservation laws for the
VC-KdV equation see also references JOI1 and MIL2.

¢

&
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' CONCLUSIONS, i .

&

The present thesis presents the results obtained from the investigations abt;ut two main
problems, connected by the fact that both are related to the Kadomtsev-Petviashvili equation.
In this final chapter we summarize the results obtained in this work, emphasizing the most
important ones, and point out additional precisions in some cases. We also state several
problems which arise from our work: some being already under 1nvest1gauon and thus
excluded from this thesis because of incompleteness, the others being open at this date.

Chapter two orbits around the method of invariant solutions, or symmetry reduction
techmque We analysed the symmetry structure of the pure KP equation, found several
classes of special solutions (part I), and presented a new way' of applying the symmetry
reduction technique by means of an example on the system made of the KP equation coupled
with its associated Backlund transformation (part II). The starting point for this chapter, as it
is when studying the group-theoretical aspects of any given differential equation, is provided
by giving the Lie algebra L, of symmetries of the KP equation. This algebra was already
known since some time (see SCH1) but remained completely unexploited except for
deducing some very special invariant solutions of the equation, namely the so-called

similarity solutions.

Our first ptactical goal, in part ], is inspired by three facts. The first is that many of the
impontant nonlinear partial differential, equations of modern physics turn out to have

infinite-dimensional symmetry groups; such is the case with the KP equation, as well as

others such as the Jimbo-Miwa equation and the Davey-Stewartson [or (2+1)-dimensional

Schrodinger system]. The second one is that methods have been developed for classifying
subgroups of finite-dimensional Lie groups that constitute the basic ingredients for
performing the symmetry reduction technique; it turns nut, as we have shown in this chapter
and as was shown in subsequent works (e.g. CHA2), that these methods can also be applied
to infinite-dimensional Lie groups. The third fact concerns the recent developmients in the
theory of infinite-dimensional Lie algebras, in particular Kac-Moddy algebras, and the
realization of the important role that these play in the :;tudy of integrable dynamical Systems.

1
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Our very first result was to observe that Ly, possesses a Levi decomposition [sce (2.4)],

even though it is infinite-dimensional; this property is useful in vicw of classifying 1ts
low-dimensional subalgebras. Our second result consisted in the integration of Ly, 1¢.in
constructing the explicit group action of the most general 1-paramieter subgroup of the
corresponding Lie group Gy, on the solution manifold coordmatized by (t,x,y.u), where
u(t,x,y) solves the KP equation. We provided three diffcrczu group actions [see (2.5), (2.6)
and (2.7)], for the three cases {(t) =g(t) = 0 #h(y), (1) =0# (1), and £(10) # 0, whete {(1), g(t)'
and h(t) are arbitrary smooth functions which parametrize the clements of the symmeury
algcbra (or infinitesimal generators). By construction, this group action gives s a means of
constructing new solutions of the KP equation from given ones. For istance, Iet us consider
the infinitesipfal group generator ¢ ', + saoye 'O - doye ', conesponding to the particular
choice f(1)=h(t) =0 and g(t) =¢ *; then formulas (2 6) tell us that if u =018 a <olution of the

KP equation then the same is truc of JAge ™t [Ae ' - 2y]. We point out, howevet, that the group

action is linear with respect to the dependent variable u, and therefore it does not permutus to
recover all solutions, for instance the rmulti-soliton solutions, these are 1ather obtamed
through the usc of Bicklund transformations. Such transformations, in general, do not
generate a group, they do, however, when the associated nonlinear ditferential equation can
be written as the compatibility conditon of a first order matix system of Zakharoy Shabat
type: one can easily show that the space of Biicklund transformatons ii-then isomorphic to a

matrix group whose elements are known as the "dressing matrices” (see Intoduction)

After cxphuldnnb the paruculdr six dnnensiongl subalgebra Ly of Ly, obtained by
restricting the three (ubltmry functions f(t), g(t), and h(t) to be lincar in their argument [sce
(2.9)] and noting that this is the subalgebra which has been extensively used by several
authors in order to get specific invanant .sulutim;s of the KP cquation, we proceeded o
exam}xlc another special subalgebra L of Ly, obtdined by restricting 1(1), p(t), and h(t) to
admit’Laurent expanston. It was shown that this algebra possess a Kac-Moody loop

structure: ¢ }

L, = (Rl ® Ly ) ORIt 'jd/dt,

where L sI(5,R) is an eight-dimensional Lie algebra [see (2.11)]. The grading in this loop
structure is provided. This property of the symmetry algebra of the KP equation is quite

&,
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remarkable. Indeed it was realized a posteriori that this pr/o,pe;ty“ 1s also shared by other
(2+1)-dimensional integraple nonlipear equations of evolutjon type, for instance the Davey-

. Stewartson system; however no (3+1)-dimensional equations, to our knowledge, have this
property. This is therefore something very special and is certainly worth of further
investigation; 1n particular, one would be interested in knowing what are the necessary '

structural conditions on the equation that will ensure the existence of this property.

o

*

In section 2, we attacked the problem of classifying the low-dimensional suwbalgebras
of Ly p. As mentioned above, this is the first step that must be taken before actually
performing the symmetry reduction of the KP cquation‘.] As explained in chapter one, the
classification of these subalgebras (into optimal systems) is done by grouping together in the
same equivalence class all those subalgebras that are conjugate under the adjoint action of the
group G;(p We also identify the isomorphy class of each subalgebra. It was interesting o
observe, as we mentioned eatlier, that the tools and the techniques for constructing this
classification, although developed for finite-dimensional algebias, also work for Lyp, even
though this algebra is infinite-dimensional. The classification was done for subalgebras of
dimension lower than or equal to 3, but it would prove interesting, from the group-theoretical
point of view, to provide the classification for higher dimensional subaigebras. This would
allow us to approach, in a very systematic manner, the question of symmetry breaking for
the KP equation, i.e., the construction of related equ:ations, invariant under subgroups of the
KP symmetry group, rather than under the entire group; fhis remains an open problem as yet.
The classes of :-1-dimensional subalgebras were first de}'ived and we found that there are three
of them: {X(1)}, {Y(1)], and {Z(1)} |see (2.17)]. These are the most useful ones in view of
symmetry reduction. The classes of 2-dimensional subalgebras were then found. There are
two infinite families of Abelian ones, plus five others, two of these being also Abelian [see
'(2.18)]. We finally constructed the 3-dimensional ones and found more diversity: 3 doubly
infinite families, 3 simply infinite families, and 11 other specific classes. These are listed in
(2.22) according to seven types: Abelian, decomposable, nilpotent, diagonal action, complex

“action, Jordan action, and simple; there was only a single class of the lattet kind, namely the -
class with sl(2,R) as a reprcselztafivc, given by {X(I),QX(t), X(tH) [see (2.22g)].

" In the third secfion of chaptér one we applied the symmetry reduction technique, using
!

\
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representatives of each conjugacy class of 1-dimensional subalgebras of Ly . Using
subalgebras of dimension 1, the method provides us with reductions to 2-dimensional
equations for a function q(&,n). Note, as explained in chapter one, that this 1s generic; the
decrease in dimension is related to the rank of the optimal systems which are used: in our

case, our representatives of the equivalence classes are obviously of maximal rank L

Because we found three distinct conjugacy classes of nonconjugpate 1-dimensional
subalgebras, we therefore expected three distinet reductions. As a matter of fact, 1t turngd out
«that the KP solution u(t,x,y) is always related to the solution (&,1) of the reduced equation
in the same way, namely u 1s lincar with tespect to q [sce (2.23)]. Among the reductions that
we derived, one is alinost trivial: we obtaned u =q and the reduced equation is J°u/dy? - 0.
the corresponding invariant solutions are patametrized by two arbitrary functions fsee
(2.24)]. The other reductions are mote mteresting. One yields 2 once-differentrated Kdy
equation [see (2.25)} and the other gave the Boussinesq equation [see (2 26)]. After having
estabhshed thcsc( reductions and the corresponding formulas for the fnvarant solutions, we
proceeded to give some examples. For the reduction to the Boussiesq equation, we started
from a class of solutions of this equation obtitned by Bouti and Pempinells (see BO12) and
constructed two invariant solutions of the KP equation which are expressed m terms of the
first Painlevé transcendent and the Weicerstrass ellipuc function, respectively [see (2 29a) and
(2.1’29b)l; the latter was scen to reduce, in a certamn dimut, to the so-called lump solution We
wish to point out that we interested ourselves 1 finding solutions that remarm asymprotically
bounded, since these arc thie type of solutions which are of genuine physical intcrest As for
the reduction to the KdV ¢quation, in view of the preceding remark, we considered two
distinct situations corresponding to the fact that the KdV solution from which one
reconstructs a KP solution may be cither bounded or unbounded. b the first case we
deduced that the KP solution is bounded provided that a certamn constraint 1s satisficd As an
example, we gave KP solutions which can be raofated from a similanty solution of the KdV
equation expressed in terms of the second Painlevé transcendent {see (2.30) and the
following paragraph]. For the sccond case, 1t proved convenient to modify the class
representative which yiclds the reduction to the KdV equation. This new choice was such
that the reduced équalion was the cylindrical KdV equation (2.31¢) with solution (2.31d)
given ir. terms of Airy functions; the corresponding KP solutions are then given by (2.31b).
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We closed the section by briefly discussing symmetry reduction using 2- and
3-dimensional subalgebras. In the first case, we remarked that it always amounted to first
performing one of the above reductions by using a 1-dimensional subalgebra, followed by a
second rednction on the reduced equation; thus KP solutions may be reconstructed via two
consecutive reductive transformations. Moreover, as the reductions of both the KdV and the
Boussines equation have been studied to some extent by others, we 1estricted ourselves to a
single simple example of a direct reduction, that which yields the first Painlevé equation. In
the second case, we mentioned that all reductions performed by using a 3-dimetisional
subalgébra were trivial and thus present no real interest. Let us mention that the
reconstruction of KP solution from solutions of a reduced equation can, of course, be
coupled with the group action induced by Gp on the solution manifold of the KP solution.

Thus, by combining the results of sections 1 and 3, we airive at a very large sct of KP

-

solutions.

The other problem treated in chapter two deals with the method of symmetry reduction
again. The motivation was that it should make sense to use thi§ method on a given soliton
equation together with its associated Biicklund trzmsformé,tion, rather than on the equation
alone; then one should be inclined to think that the solitonic character would appear naturally.
From a practical point of view, one would like to combine together reductive and Backlund
transformations; this is what we undertook to do with tHe KP equation. We first remarked
that it proves useful to use the KP equation in its potential form, the PKP equation (2.35),
because the associated Biicklund transformation (2.36) is indeed known for the latter. We
gave the symmetry algebra LPK,[’ of this equation and stated that it is quite similar, from the
structural point of view, to Lyp[see (2.37) and (2.38)]: we observed, in particular, that a
loop structure also exists for the "Laurent restriction” of this algebra. We constructed the
group action for the scveral 1-patameter Lie groups corresponding to each single generator of
the symmetry algebra, and then examined how the group acts on the Biicklund
transformation; three generators leave it invariant but the remaining two others generalize its
form by introducing time dependent functions in it [see (2.40)]. Naturally, this implied that
the form of the permutability theorem was to be accordingly modified. Qur next step was to
find the symmelry algebra of the system constituted by the PKP equation and the generalized
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Bicklund transformation; the result was a four-dimensional algebra [see (2.43)] for which
we constructed the corresponding 1-parameter subgroup actions. ,

We then proceeded to examine the question of symmetry reduction. First, we found
out that there are four classes of 1-dimensional subalgebras O\f the above 4-dimensional
algebra, two of them being actually patametrized families of classes. It 1s imporfant to point
out that the reduction will naturally give us two objects: a reduced equation and a reduced
Biicklund transformation expressed as a differential equation. One may then solve this
system and 1econstruat a solution of the PKP cquation; the corresponding KP mlutu‘)‘x'\ can
then be obtained by performung a further differentjation on the PKP solution. We realized
that five distinct representatives are sufficient to exhaust all possible reductions Among
these, let us first mention that one yields a kink solution for the PKP equation, thus a soliton
solution for the KP equation. Another yiclds an oscillatory solution that can be wittten 1
terms of Airy functions. The most interesting icduction, 1 one limit case, gave us a quite
special KP solutiop which we termed splitton This object was graphically seen to be a sort
of fork-shaped solitonic front which rigidly translates in the xy-plane; it is related to a certain
type of solutions, called soliton resonances, whuch were previously found and s\tudicd by

several authors for the Boussinesq cquation. We emiphasized that this type of solution must

be considered on the same footing as the usual soliton solutions in the sense that they also |

originate from applying a Biicklund transformation to a zero solution. We recail that tor one
of the reductions we could not construct any PKP solutions because we were not able to find
analytic solutions to the reduced system [see (2.48b) and (2.51b)), this system ments decper
investigation. More generally, we point out that the work presented ticte could be repeated
for other equations; in particular, the idea of joint symmetry reduction scems most

nromising.

The principal practical outcome of chapter two is that we gave means of generating
infinitely many solutions of the KP equations. We may start from a given KP solution and
find another one by acting with the KP symmetry group. We can also reconstruct some from
solutions of one of the equations that are obtaincd by symmetry reduction. Let us point out
that these reduced equations, for instance the KdV equation, are well studied and have their
own symunetry groups which one may use to generate new solutions. Further, they admit
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reductions to ordinary differential equations whose solutions also yield new invariant
solutions, and sometimes even Bicklund transformations that may be used to the same
purpose through nontrivial nonlinear correspondences. Noting the connection between the
KP and the PKP equation, we may take a KP solufion, map it into a PKP solution, apply the
Bicklund transformation, and map back the resulting PKP solition into a new KP solution.
New soluttons may also be constructed directly from a PKP solution which may result from
another PKP solution via the PKP symmetry group, or by applying the symmetry recriuction
technique on the PKP equatior; alone or on the system consisting of the PKP equation and its

«? ~

associated Bicklund transformation.

In chapter three we investigated the possibility of using certain known integrable
equations of water wave theory in order to describe nontrivial solitonic wave behaviour. By
this we mean solitonic wavefronts which exhibit some transverse curvature. This has a
ph.ysical interest to the extent that experimental observations confirm that such objects indeed
exist in oceans, for instance tidal waves going through and out of marine straits. The basic -

.objects of our model are the gencralized Kadomtsev-Pewviashvili equation (3.16a), together

with the boundary condition (3.16b), which describe the propagation of gravity waves on the
surface of a fluid .in a channel, or a strait, characterized by varying depth and width. This

equation was derived under the following assumptions: .

1) the fluid has zero viscosity coefficient and constant density,

2) the only force present is gravity,

3) the quantities (H, /Lx)i, H, /Ly » Ng/H, are all small and of the same degree [see (3.4)],
4) the waves propagate predominantly in one direction chogen to be the x-axis,

5) we restricted to waves moving in a sufficiently wide, slowly varying channel.

The GKP equation has variable coefficients that depend on the variables Z=z, Y=y,and T =

t

ex via the physical functions
hO(T)v h 1 (T)s 1'_*:0(T)? ' q)O(Y’ ZyT)’ WO(Yy ZyT)v

describing the geometry of the strait and the vorticity in the fluid; ¢, and , enter either in
integrals over all values of Z, or for Z=-hy(T). The coefficients also depend on an auxiliary

:
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function C,(Y,T) which we chose to be zero if no side boundary conditions are imposed.
The choice of C,(YT) given by equation (3.27a), in terms of the geometrical functions
h(T), hy(T), A=1,¢9-1¢, and =14+ 1, leads to a standard form of the boundary
conditions. It also leads, generically, to secular terms in the perturbative expansion.

The GKP equation (3.16a), together wittlits boundary condition (3.16b), was seen to

form a coupled system for the unknown wave amplitudé'no(X,Y,T) and the vorticity .

functions ¢y(Y, Z,T), yo(Y, Z,T). If we choose X, =— oo in these equations and make the

additional physically reasonable assumptions (3.41a) (on the vorticity at the bottom) and

(3.19) (on the behaviour of the perturbation, e.g. satisfied by solitary waves), we can
partially decouple the equations. For the vorticity functions we obtained the linear relations
(3.20), and for n° the GKP equation (3.17a) with boundary condition (3.18a). Notice that
the function M,(Y,T) in (3.17a) depends on the vorticity function ¢,(Y,Z,T). Additional
information is needed to determine this function completely. For instance, let us assume a
polynomial dependence on the variable Y:

0 N .
[ 0giz= 2 QDY*. R )
hO k=0 ] .'

We then find that equations (3.17a) and (3.20) imply.

0 N e
[ wodZ= Ry -B1X (Qu/hy YY"k 1), c2)
hy k=0 :
where
N
Ry(T) = B-‘kZO [Q g™ (10 )*I/(k+1) ' q
and
N | : . ,
ZO [Qho™V2 (g ) - (1o K (k1) = 0. ©3)
k=

Thus, the moments bk('l’) are subject to one constraint, namely (c.3), and then they

> - <
. o

)

k)
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determine the integrals (c.1) and (c.2) completely. These moments, in‘the approximation
considered, must be taken as part of the input into the problem, together with the functions

determining the bottom and the sides of the channel.

The GKP equation admits physically interesting conservations laws, discussed in part
1V. The mass, energy, and centre of inertia of the considered wave behave in a physically
reasonable manner. In particular, in straits for which the quantity

x(T) = hy2(T)A(T) - (c4)

& s

increases (e.g. a strait opening up into the ocean and getting deeper), vgé saw that the mass
and energy, as defined in section IV.2, gradually dissipate. If x(T) decreases with T, as
happens when a wave from the ocean enters the Strait, the mass and energy increase and
eventually our approximation breaks down ‘(i.e. higher order terms in € must then be taken

into account).

-

An open natural problem wauld be that of extending our model in order to describe
internal waves propagating on the interface between two layers of fluid. It is already known,
for a KAV based theory, that these waves are proportional to the surface ‘waves uthrough a
coupling between the equations that describe them. We should expect something similar if
we would use the same kind of assumptions as in our present treatment of surface waves. In
fact, we have done some calculations that we did not present here since they are incomplete.
Let us only mention that some complications occur because, for instance, one has to consider
as distinct cases situations when the upper layer have greater, equal, or smaller thickness
than that of the lower layer. This problem is presently under investigation.

Part II of chapter three was spent on the effective reduction of the GKP equation to
completely integrable equations with soliton solutions, under additional hypotheses on the
channel and the vorticity; reductions were achieved by performing appropriate
transformations of the variables of the form (3.24). First, a pure KP eqq[ation was obtained

only if the side boundaries are absent, if the bottom is flat at least in the middle of the channel

[hy(T) = 1], and if the second vorticity moment vanishes [Q(T) = 0]. The mass and energy
are then conserved, as we observed in part IV, and in addition the KP equation admits
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infinitely-many further conserved quantities. Also for the case of no side boundaries, a pure
KdV equation was obtained under different assumptions, namely that the initial wave

" amplitude is independent of the-variable 6, that the vorticity satisfies (3.26), and that the

depth function hy(T) and vorticity moment Q,(T) are related by (3.32d), a Rjccati equation
for the function hy'/h,. For l?oth of the above rg_x_i_ucti'ons, the function S(X,Y,T) in (3.24)
was chosen to be £8ro; hence bounded solutions of the KP and KdV equations (in particular
solitons, multisolitons, or periodic solutions of the KdV equation) provide bounded
solutions of the GKP equation and therefore bounded physical wave amplitudes, as long as
the function R(T) in (3.24) remains finite, ~

When the side boundaries are taken into account, we could ‘again obtain a KdV
,equation (section II.3), and managed to satisfy the boundary conditions in a trivialmanner,
by simply getting rid of the 8-dependence in the function q. We point out that further study of
these conditions in order to solve them in a less trivial manner, leading to more geﬁcral
results, is certainly worth pursuing. The necessary conditions for rcducin;,; to the KdV
equation are that the vorticity satisfies (3.26b), (3.38), (3.41a), and moreover thaf the depth

- and the width are related by (3.42c,d). In this case the function S(X,Y,T) cannot be set equal

to zero; instead we have

&

“ : LT -1
S=-§y"a1A‘1’2h0‘”“[i -a,[r A~‘ﬂh0-'/4ds] X. -
0 - -

g

Thus bounded solutions: of the KdV equation, i.e. for ¢ boundd in (3.24), lead to

amplitudes 11"’ that-increase linearly in X. As long as the quantity ¥(T) [see (c.4)] is an
increasing function of T, then condition (3.25c) is verified, i.e. the term linear in the variable
X gradually dies out as T increases. From the point of view of mass and energy conservation
(see sectio:IV.Z) this corresponds to the case’'m(T) — 0, e(T) = 0 as T — oo, It is worth
pointing out that always, in this case, at the initial position x; = xlo, the functions describing
the sides of the sirait, together with their first derivatives, are continuous functions of x, . An
alternative ap;;roach to the GKP equation with boundary conditions was taken in section-
11.4, where we reduced to the cylindrical KdV equation. The assumptions on the shape of the
strait and on the vorticity were exactly the same as for the reduction to the pure KdV
equation; howcvcr the transformation of variables was different [see (3.47a,b,c)}, and in

o

-
- ©
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- particular we had S(X,Y,T) =0 in (3.24). This proves interestipg: as it implies that bounded
solutions of the cKdV equation provide bounded wave amplitudes n°(¢,1). The cKdV
equation is known fo have bounded solutions, expressed in terms of Airy functions (note that
these can be transformed into unbounded solutions of the KdV equation). These solutions
are clearly of physical interest; they have the form of trains of solitary waves with total zero
area and could be used to fit oceaqo,graphic data on internal waves, observed at several places
in the oceans. s
\ ' n
" “Let us consider dgain the question of the dependence of the wave amplitude on the
) rér{ormalized physical variables X, ¥, and t for the case when no is assumed to be
o independent of Y. We start at some given point x;, of the channel (i.e. at T, =ex; ) and give
N the form of the initial perturbation which, by §ssumption, is indepenab{\t of y, for instance a
soliton (or other localized disturbance) in a straigﬁt section of the channel, At T= T, we have
C,(Y,Ty) =0[see (3.37a)}, and the transformation (3.11) is hence simply

X=-t, Y=y, Z=z, Ty=ex,. ) .
r

" The initial physical amplitude n*(x,%,t*) provides the initial amplitude for the GKP equétion, o,

namely
b SNUXTy) =t AN

[see (3.3)]. Thé characteristics of the channel (hg, h,, X, and A) are givgn, and we can, at
least in principle, solve the Cauchy problem for the GKP equation, or one of the equations
o s, derived from it in part II. We then know %X, T), C,(Y,T), and can return to the physil‘c;ﬂ
o ) arriplitude n*(x, x5, t).
> v o X A problem which definitely merits _'some fur}per investigation is that of solving the
" -boundary conditions. More precisely, one would bédnterested in trying to solve them in a
less tn'vi;l’way; recall that we sfmply got rid of them by requiring that the function q(&,9,7) be
g independent of the variable 6; that obviously forced us to eliminate interesting situations such
as solutions characterized by a standing wave: behaviour along the dirﬁ'on transverse to that

P of propagation (the Y direction).

N
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Part 1IT of chapter thrée was spent on the explicit construction of a few exact solutions
of the GKP equation. We actually restricted ourselves to examples illustrating the reduction "
of the GKP equation to the KdV equation; the GKP solutions thus obtained were therefore -
taking the shape of solitonic wave fronts characterized by some curvature induced by the
reduction transformation [see cqliation (3.44)]. The first three examples were treated in the
case when the side boundaries are absent; a fourth example was present&i for the other case;
these examples were characterized by specifying the shape of the bottom.

We first considered a bottom described a depth function hy(T), flat for T <0 and
parabolic for T 20; this kind of situation could :Xscr'ibe waves going out of a strait (not near
the coast however). We deduced that the GKP solution associated to this geophysical
configuration is a wave whose crest is initially a straight line (because the solution is then a
pure KdV soliton) which gradually becomes bell-shaped as time goes on and eventually
deforms into a horseshoed curve. When this happens, it is indicative that the solution is
propagating into a physical region, or time domain, where our perturbation ¢xpansion
yielding the GKP equation is no longer valid. In particular, we noted that the solution has a
finite domain of validity in the transverse direction; this is in fact characteristic of all of our
examples. We then treated the case of a bottom specified by a depth function described by a
scaled translated hyperbolic tangent; this could describe the dynamics of solitary waves when
going over a region where the bottom gets deeper (or shallower) to a certain degree. In fact,
we found that the GKP solution which we obtained for this kind of bottom has the following
behaviour. In the shallower region, the crest of the wave is essentially rectilinear. When
getting nearer to the localized region where depth changes, it gets curved and then eventually
regains its flatness as the wave gets far in the deeper region. Our third example was that of a
logaritflmic shaped bottom. The main observation was that the waveciest has a relatively
constant curvature. Our last example treated the same kind of bottom as our third; however
we included side boungiaries, i.e. the wave is moving in a channel. In fact, this channel has
a very definite form, described by its total width function A(T) which is completely
determined in terms of the depth function, up to a multiplicative factor; we have assumed it to
be symmetric with respect to the Y-direction [2(T) =0]. Due to the necessity of allowing
secular terms in the perturbation expansio;l in order to have nontrivial behaviour in the

transverse direction, the corresponding GKP solution was seen to be valid only in a

“

A ]




relatively small time interval. We also ot_;éervcd that the wave crest has some definite varying
curvature and is indeed representative of the kind of solitary waves that are seen to emerge
through existing marine straits. )

Further examples must be looked at, particularly when side boundaries are present.
For this case it proves quite hard to find depth functions that satisfy the constraint (3.42¢) as
well as the further condition that the quantity hol/“(’f‘)A”z(T) be monotonic increasing
* function (recall that A is determined by hy); this is why we choose our depth function as we 5
did above by requiring that (3.42¢) be identically satisfied for any T. Let us also remark that
it would be interesting to solve the Cauchy problem for the GKP equation by using
numerical tools; despite the fact that the GKP equation is rather complicated, good algorithms
have been developed in the recent years for solving such complex problems, based, for

a

instance, upon time changing triangular grids.
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Introduction

. _The subject of this afternoon’s talk is the Kadomtsev-Petviashvili (thereafter called the
. KP) cquation: an old favourite among the small world of integrable-fionlinear partial"
differential equations. More specifically, I would like to present two main collections of
= results about two different aspects of this equdtion. The first results pertain to the possibility
of using this equation, or rather a generalized form of it, as a model for the description of
solitary waves, and their propagation, in oceans or through marine straits, or channels if you
_ will (the terms "strait” and "channel” will be used interchangeably to denote a body of water
appropriately bounded from below and from the sides). I shall show that this KP-like
equation, although not integrable in its actual form, can be reduced to other equations from
which one can build solutions which are indeed interesting from the geophysical point of
view as they represent real curved wavefronts that are actually observed in the oceans. The
second part of the talk will be devoted to group theoretical aspects of the KP equation. We -
(’ shall look at its symmetries and use them, in concomitance Wwith the so-called "method of
sym;netry reduction”, to generate many special solutions that could be quite difficult to obtain
by using standard tools, and even impossible to guess. Details have been reduced to a

minimum and ¢an be found in the thesis or our publications.

a




¢ ¥

3

M den ” Yoo v ool e & FarMEAI .G L A ol 3 i s SRt

173 | . -

1. Solitary waves in oceans and marine straits

[

» One cenainly interesting and indeed quite common geophysical phenomenon in oceans
is the occurence of solitary waves. Figure A1l is a reproduction of a quite famous picture

- representing such waves in the An@slman Sea. Notice the regularity of the waves. Figures A2

and A3 provide another example; Figure A2 shows solitary waves emerging out of the Strait
of Gibraltar and Figure A3 sketches similar waves over a topographic map. Marine solitons
do not only occur in exotic places: Canada has its own ones, for instance in the Georgia
Strait, B.C., as depicted by Figure A4. Figure AS, reproduced from a military weather
satellite's data taken over the Sulu Sea, is interesting as it shows how a few wave packets
(dashed lines) evolved through a time périod of about 4 hours (continuous lines). The picture
is about 600 kms \:vide and we can extrapolate the displacements for a period of 12 hours.
Roughly, one gets a%displacemcnt of about 100 kins; this is quite consistent with the fact that
the waves propagate at a speed of about 2.4 m/s. Typical internal waves have amplitudes of
the order of 50 m. Surface waves have 'much smaller amp.litudes but they. are more easily

observed, for instance on photographs taken from satellites. As for internal waves, these are

_rather deduced from measurements taken by chains of thermistors placed at different depths

in the water. These are known to be generated, directly or indirectly, through tidal processes.
As an example, consider the Strait of Gibraltar. One of the tidal processes that is tought to
cause the waves is an indirect one, namely that there occurs a semi-diurnal reversal of one
internal strata current;(?tt the entry of the Strait, it interacts with the incoming flow from the
Atlantic Ocean by pushing upwards the top layer. In fact, there is experimental evidence that
oceanic solitons always occur in pairs of internal and surface waves and it should be
mentioned, to dissipate one's expected belief, that an internal wave have a negative amplitude
with respect to that of a surface wave, i..e. the disturbance is a depression rather than a
Iump. The model to be présented here describes surface waves only, for a constant density
fluid, it must however be pointed out that it is also valid as a model for internal solitary
waves moving in multilayered fluid to the extent that both kind of waves are governed by a
pair of two equations, each of them being the same as the one which will be used here, up to
numerical factors in the coefficients that can be scaled away.

1%,
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Figure Al '
Packet of solitary waves in the Andaman Sea
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Figure A2
Solitons emerging out from the Strait of Gibraltar into the Mediterranean Sea
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Figure A3
Topography of the entry of Mediterranean Sea
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. Surface manifestation of internal waves in the Georgia Strait, B.C.
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A quite noticeable feature of oceanic solitary wavetrains is that each single wavefront,
as it comes out of a strait, has its crest defined by some "non-straight" line whose curvature
continually changes as it propagates, to eventually straighten later on. Solitons photographed
over the Strait of Gibraltar (see Figures A2 and A3) as well as over the Strait of Messina are
nice examples of this behaviour. As examplified by Figure A3, this is due to the fact that the
bottom of the ocean, and the side boundaries in the case of a channel, ate non-flat surfaces.

The work presented here is an attempt to describe Such curved waves.

From an historical point of view, attempts of description of solitary water waves were
1nmated back in last century and the first mathematically correct formulation using a nonlinear
partial differential equation, namely the famous KdV equation, is due to Korteweg and de
Vries. The KAV equation describes solitons moving over a perfectly rectangular channel: this
is nice but unrepresentative of what occurs in Nature in the sense that real straits are not
recté{ngular channels and that Nature is dissipative. Subsequent studies and models
essentially made use of slight variations of this equation by allowing for variable, i.e., time
dependent, coefficients. As for the KP equation, it was introduced in 1970; it was derived
not as an hydrodynamical equation but through stability analysis of nonlinear disturbances in
plasmas. However, its analytic form indicated that 1t could be useful as a water wave
equation; incidentally, its original name was the "2-dimensional KdV equation™ (for obvious
reasons). Besides its similarity with the KdV equation (and because of it...) the KP equation
is also famous because it was the very first example of a 2+1 dimensional nonlinear equation
solvable through the celebrated "inverse spectral transform" method, a nonlinear analogue of
the Fourier method for solving the Cauchy problem for linear equations. Hence, the KP

equation also has soliton type solutions with all their nice properties, an associated Bédcklund

transformation, an infinite set of local conserved quantities, and so forth. However, as a

water wave theory it does not yet bring us to Heaven, for it describes solitary waves which
are trivial extensions, as far as their shape is concerned, of the KdV theory; this was to be
expected because of the way in which the transverse variable appears into the equation, i.e.,
linearly (its nonlinear terms are purely longitudinal ones). Fortumately, the Purgatory is not
too terrible. Curved solitary waves can be obtained as deformations of pure KdV-KP
, solitons by accordmgly considering deformanons of the KP equation, by allowing some of
its numerical coefficients to be replaced by functional quantities.




J

Our initial motivation was based on following fact. Let us derive a KP-like equation
from the basic hydrodynamical equations; i.e., the usual Euler system and mass conservation
equation in a way analogous to that which yields variable coefficient KdV equations, but
incorporating two-dimensional ingredients. Obviously, this will yield a variable coefficient’
KP equation and the chances are that it will be non-integrable as such. The question was
then: is that generalized KP equation amenable, through some well chosen mappings
parametrized by the pertinent geophysical data [for instance the depth function and the
vorticity (which is time independent in our treatment as no viscosity is present)], to
2-dimensional, also nonlinear, equations whose solutions could be mapped back to solutions
of the generalized KP equation of the sort we want, i.e., which exhibit nontrivial transverse
behaviour? We indeed succeded in answering this question positively, with the KdV,
cylindrical KdV, and KP equations as "reduced equations”. I shall now proceed to deséribc

the model, with a minimum of details, and give examples. of what kind of solutions can be

obtained.

We consider a channel of a priori arbitrarily varying depth and width, containing a
homogeneous incompressible inviscid ideal fluid subject to a gravity force g (with constant
density p, pressure field p, and Eulerian velocity field v), whose boundary is determined by
the vanishing of an appropriately chosen function E(x). This actually means that we want
this function to represent a slight deformation of a rectangular channel; in other words, the
bottomn of the channel is a slowly varying function hy(x, y) and its sides are given by a pair of
also slowly varying functions 1,(x, 2): Moreover,we shall require that the depth of the strait
be much smaller than its width. As I just mentioned out, our starting point are the Euler
equations and the mass conservation, together with appropriate boundary conditions (the
variable 7 stands for the elevation of the fluid surface with respect to its undisturbed height).
These are thenTrescaled and adimensionalized, so as to be written in the form

y
vy, T aevy, +afe Voy = 0
' 2.2 2p.3 -
Py + “ﬁ("l,t + V3V1.z) +oEV vy, o Be VViy = 0
2.2 2p.3 -
py + ae(Vy  +Vavy ) toe ViVy T o Pe VVay = 0

2 20,3 -
p,+ m:(v3't + v3v3’z) + o ezvlle + o“Be VoVay = -1
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p(z=ren) =0
‘ " ' ’
o Dvy-ven, - e - oVl | oy =0
{h[sz - Vllzt,ex] - V3I:t.€211 ly-_-li(ex. £%) =0 .

{V3 + (lezvlhex +)QBE3V2h£y} ' 2= -h(ex, &) =0

{=Vxv C oA

-~

where { is the vorticity field and o, B, y are constants of order 1. We then go to the
approximation of almost one-dimensional "long"” waves with "small" amplitudes in
“"shallow" water with wavecrests that are assumed to be slowly varying along the
perpendicular direction by letting € be a small parameter. Thus our approach is perturbative
and care must be paid about the time domain of validity of whatever equation will result; this
is in fact crucial and demand that we choose an appropriate system of coordinates. To do so,
we do as follows. We assume that v, p, and h are expressible as formal power series in the
parameter €. Then we solve the above equations to get the zeroeth approximation equation for
the wave amplitude 1 in the form non = hnoxx. Solving this equation to order 2 in the
parameter € yields the following "wavéframe" coordinates (for rightgoing waves):

X > .
: X = [ h12C(ex, y, e)ds - Clex, y, o)t, Clex, y, &) = 1 + 2, Cex, y)e'
Xo i=1

Y=y, Z=z, T=ex

N

These coordinates follow the wave and will ensure that the perturbative approach will be
valid for reasonable time intervals. The function C is a priori arbitrary and will be needed
) when reducing our resulting variable coefficient equation to more simple equations when
boundaries are present. In absence of boundaries we shall set it equal to 1, identically. The
appearance of this function however has a cost: secularity occurs at second order whenever it
is not constant and has the effect that the results will be meaningful for times t <e2. It will be
of interest later to note that the role of time and space are inverted through some extent; this
will permit us to obtain an equation whose coefficients vary only in terms of Y and "T"; in

i
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effect, we waﬁt terms like F(T)nny but not like F(x)N1, (see equation below) since we
could do nothing with them. This causes no difficulty but one must think of the Cauchy
problem in an unusual meaning (which actually is pleasing for experimentalists because of
the way measures are taken). The next step is to perform this change of coordinates on the
differential system and the boundary conditions. To derive a nonlinear evolution equation
froin the resulting system, we again expand the dependent variables (pressure, velocity,
velocity components)‘and geometrical variables (the depth function h and the side functions
1,) as formal power series in g, substitute inf the system, and proceed to solve. We have to go
up to order 2, included, as the };quation for the zeroeth approximation 1° of.the wave
amplitude will appear as a compatibility condition for the 1 order approximation n!. The
rgsulting equation and boundary conditions are:

- X

MOr + 512N + & ahg Oy + %Bhom',[( Myy(s, Y, T)ds
0

—— -

+ Bhy 2A (Y, TPy + M, (Y, T + My(Y, T)n% + M,(Y,T) =0
- x - ‘
[B{wo(Y.Z,T) +AM°+ j nO(s,Y,T)ds} - hy 20 + d(Y,Z Dy, | vop. =0
Xo =10

where M,, M,, M, and A are some complicated functions of Y and T involving the function
C,(Y,T); ¢ysand y, are vorticity potential functions. The above system is what we call the |
"generalized Kadomtsev-Petviashvili” (or GKP for short) system. It does coincide with the

"pure KP equation whenever hy(T) = 1, hy(T) =0, ¢; =y, =0, and C,(Y,T) =0, i.e,, in the

situation of a flat bottom with absence of vorticity.

At this point, let me make a few remarks. If the bottom is symmetric in the
transverse (Y) direction then h,(T) = 0, and the equation, as well as the boundary conditions,
are then insensitive to any Y-variation of the bottom. However, if for instance we would be
interested in waves propagating parallel to a shore:long a sloping beach, then we would
need the function h,(T). Second, it is to be noticed that the side functions only enter at order
zero: this follows from the assumption that the strait is much larger than its depth. The
bottom and side boundaries plays different role in our treatment, as the depth function
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appears in both the equation and the boundary condition, whereas the sides do only occur in

- 'the boundary conditions. This makes it possible for us to consider two different physical

problems. A first one consists in analyzing the GKP system without considering any
boundary conditions: this provides a description of long waves of small amplitudes in an
essentially infinite body of water, ... and also in a channel! The second problem is to study
the GKP system together with the boundary conditions. This yields a model for long waves
propaga‘ting in a shallow strajt of variable geometry, in principle allowing for exotic
behaviours such as a meandering channel. Finally, it is worth pointing out that the GKP
equation is of use even if we brutally discard all Y dependence from it. In this case we
recover the flat bottom situation with ¢, = ¢,(T,Z) and can confirm a previous result of
Benjamin, i.e., that solitary waves are possible even in the case of a fluid with nonvanishing

I -
V

vorticity.

The situation which is of interest to us is that for which we have bounded solutions’
(for instance solitons) at T =T, (i.e., atx = xo)..In fact, the Cauchy data (remerhber that we
are considering a space evolution problem) for our problem is the specification of the wave
amplitude N° and vorticity components O Yo at T = T, Given these data, it still remains that
the equation in the GKP system, being an equation for the amplitude alone, is not sufficient
to completely determine the flow. On the other hand, the above GKP system can be shown

to be equivalent to the following equivalent system:
[M°r + 370210 % + & ahg el + 3 Bho! 21y y

"+ [Bhy A% + MM+ M,n% ], =0 (GKH)

- A

NO(Xg) + 3 Thy¥2n0X % (Xp) + & ahy 05 (Xo)
+Bhy 12A M0 (X)) + MmO(Xy) + Mn% (X )+ My(Y,T) =0 (*)

[BAOnO + nOY - hO-UZnO—Xli(;'] lY -1, =0

-

(8w, + AGn°Kp)} - By 2°(Xg) + dollo] IY =l 0 . 0

<

This is a coupled system for N, and the vorticity functions ¢ and . A judicious choice of

I




¢ 3

da

' ‘ }84 . . '

X, makes it possible to decouple the above system, namely the point where the wave )
YAl -
.amplitude vanishes: this is possible if the perturbauon is always bounded, as required by(,q;/ aRy

i
f-p. B o - B, e
o "LLH{/(

phys1ca%h51de’rﬁtiﬁrm* E'ffcta\f,el.y,,ayg chogse &yz -0, which then 1mp11es that the (*) b
equations reduce toM(Y,T) = 0 and ~ M astate FREN- ANV -

[Bwo - h0'1/2¢01i0'] Iy=l =0, . | ' : o
+0 PN >

a"}{near system relau'né the vorticity function‘$ As mcntioned*earﬁer the (GKP) equation is ’

not mtegrable }n the sense that no direct analytical procedure is available for obtammg
solutions of the’ correspondmg Cﬁuchy ‘problem. Therefore we sOlved it in an indirect
manner, namely by reducmg it to simpler equatlons such as ther.‘KP KdV, and chV ‘

€ )

equatlons .

~

S g 6qq; + q§§§+oj qeed&, O, O=tL : (KP
e 609 * dege =0, - F(KdV)
-6qq§+q§§§-4gq§-2q=0.‘ o - 0 TeKdV)y

These are equatior’s, which belong to a large class of equations that are mtcgrablc by C
powerful techniques such as the inverse spectral transform mgthod and are shown to possess
infinite ‘classes of exact mtcrcstmg solutiops such as (m ti-) sdhtons, (quasi-) periodic
solutions, rational soluuons, etc. ’ . A

-
- . ’
. ' .
~

The technifue u?'? we used was quite simple. It consisted in fmdmg invertible

. transformations of the mdependcnt (as well as the dependent) variables that havc the effect of

redqug (GKPﬁ) the above mentioned.simpler equations. I shall regmct to the case of
reduction to the KdV equation for the case of a symmetric strait( in. Wthh case h= ho) Our
strategy was-as follows. First, we determined that the most general transformatxon of the
variables that did nof idtroduce "unwanted" terms, i.e., érms that 1mp11es non-integrability of
other undesxrable naughty effects, is ‘the following one: L

4 »

10X, Y, T) = R(T)q(tre, 6) + SCX,Y,T) .o -

. T
E2dDX+KYLT), - 0=UMY+WD), = | Ps)as. - .
\ - ‘ .

.
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Also, when consxdenng the case with boundary condmons, we had to solve the l}oundary
cond;no\s AWe did it by first reducing themtd a "standard form" )

\\‘ o - " A

"l e(lﬂ,) R ' P : Cr o

which we solved trivially by imporsing‘q = q(E;‘, 7). For the purposé gf constructing solutions )
to the GKP equation, this function q was chosen to be the uspal KdV 1-soliton: B .

q(&, 7) =-2v2sech[v(E - &) - 4v31]. . N .
) v )

a

It is to be pointecf out that other. solutions, '.s%ich~a$q,noidal, quasi—periodic_, or rational
(algebraic lumps) solutions could also bersed. For physical reasons, we also want the above

.

function § to be (at least asymptotically) vanishing to preserve boundedness of the solutions. .
[ ) g
. | : Y
r. Iction in n f n N ition - S .’vﬁAk;‘dg‘\[,‘ .
Yert Y 2 ) {T f"“"’ﬂf&: ,,.Vu\a_&..__. K | .

- -
= . »

w , varc - AR R A

In" this cdse, the function S can be set to zero, 1d¢nt1cally, we also ask that the
function C; be vanishing as well since it serves no purpose at all. Tt also proves necessary for
the vorticity function ¢, to satisfy the following Gonstraint: .

s .

0 - i ' . R

[  GodZ =Byt (T)Qy(T) + QDY + Q,(NY?], : « |

0 . ' , .
“ ’

. . ¢ ’
where we can choosé Q= Q=0 (but not Q, as tgc threg vc}x;ticity moments caniot  *
simultaneously vanish in order to be able to do, th¢ reduction), and Q, has to verify . \

(hg'/hg)' = 5(hy/hg? +3Q;.

- ]

I am preenting here two examples depicted in Figure A6. The top illustrations corresi)oﬁd to
the choice of a quadratic depth function and the Jower ones deal with the case when the
bottom behaves as a hyperbolic tangent. Both solutions, I emphasize, are exact and are
representative of common geometries occuring in- Nattire (dc«ep oceanic depressions,

continental ‘shelf borders). R T T -

.
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Figure A6
Examples gf simple exact sblutiohs of the GKP equation (no boundaries)
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- These illustratins repres:em maxima of the solutions at several consecutive "times" X
(remember that time and space inversion through the wave frame transformation); we may
think of them as cumulated "snapshots” of a wavecTest as it evolves through time. In both

" cases, the initial condition is a pure KP soliton v;rhose crest is therefore a straight line
identified with the Y-axis. The left illustrations a:ge small scale ones, i.e., the drawings are
made for "sufficiently’ small intervals near the.origin.'It is to be noticed that the wavecrest,
having departed from the initial condition, acquires some curvature, due to the fact that the
depth is non-constant. The pittures on the right ones are made for much larger scales and .

" fhow what goes on eventually near the T-axis, i.e., thé physical x-axis, as well as the
limitations of the model. Note the horseshoe form of the crest for long times. This is an
indication that the solutions are valid only within a Sufficiently small interval along the Y
direction. They' are also limited in the longitudinal direction, although this isnot evident from f
the pictures. The reason is that the function R (from the above transformation for reducing—
the GKP equation) is a muluphcatlve factor for the wave amplitude. Thus, for the quadratic
bottom, the solution asymptotlcally blow up. In the case of the hyperbohc tangent bottom,

‘the problem is not apparent bgcause R is taking values in a finite interval; note also, in.this
particular exa?ﬁple, that the correlation between the depth and the crest's curvature is very
clear, especially in the small scale illustration: the more the depth is varying, the more the

curvature is pronounced. .

-~ » .
’ - . o v . ) \, & :
In this case, the function S cannot be set equal to zero anymoge. I also remind that
@ -

3 secularity is then the price to pay when reducing the boundary condition to the standard form
. by.an appropnaxe ch01ce of the functlon C(Y,T). The: reductlon is somewhat more complex
than in the previous case and 1 thu¥’ sk1p over the details (see our papers) 4t is however
important to mention that the width of the channel is constrained by the depth function (or
vice-versa). Some componen]s of the vorticity are also determined once the geometry of the
strait is given. We have treated the case of a logarithmically shaped bottom. The time

;,,U:, behaviour of a crest, initially straight, is shown on Figure A7 Note that its curvature .
increases and decreases respectlvély with the width of the strait.
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2. Symmetries and special solutions of the KP equatian

@
>
»

. : R " * | -
.+ The classical KP equation, \\ :

~
-

[4u, + 6uu, -+ u,m]x + 3Uuyy =0, ' - )

- “

is)?uite interesting frem the group theoretical point of view. Thé fundamental fact is that it
hds an infinite-dimgnsional invariance (or symmetry) group. Other (systems ob equations
also have such groups, for instance the Euler system from hydrodynamics, but the KP

-equation is special. Our initial motivation was simply to perform symmetry reduction on this

equation (see later) but we soon realized that its symmetry algebra had a peculiar property.
Let us then proceed without any further ado. This symmetry algebra, denoted Ly, is the
vector space generated by vector fields of the form . ,

- N

XI£()] + Y[g®] + ZIh@)], o .-
X(0) = £0, + [gxf' - Joy’f"I0, + §yf'9, - [0y " - §x{"+ quf'ld,,

€

Y(g) = g9, -[foyg9, - 30y8"9,,

>
where f, g, and h are arbitrary smiooth functions, i.e., oficlass C™, defined in some ope\

. . . o .
subset of R."The structyral commutation relations of this algebra are

[XELXE)) =XE S -6,  [XO.YE@] =Yg - ¥,
[X(D,ZM0)] = Z(fh'- i),  [Y(g), Y(g] = $0Z(g,8, - £,'2,), ‘
[Y(g).ZM)] =0, [Z(h,), Z(h,)] =0. .

Associated to Lyp, is\)he symmetry group of the KP equation, denoted Ggp, whose elements-
are quite complicated mappings which I will not present; sqmcc*it to say that t}_icy take the

!

o: R3xR 5 R3xR, x* = y(x), /
(x,u) > (x*,u") ~ < ut=yx,u), ,
= ’ - .

(Ggp acts projectably), and take KP solutions into other KP solutions. We shall wc;rk mainly
. - / s

& /
/
J
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< with Lgp, hence our results are local ones (n.b.: local does not mean "incredibly near”df
zero, but in a "sufficiently!’ small open set around the identity element of Ggp, so that global'
results are a p/ton/gz-excludcd)

- ¢ -

- Let us coqmder the subalgebra L, obtamed by restricting the functlons f, g, andhto -
be Laurent polynom;als in the variable t, spanhed by au vector fields X(t’i Y(t“), and Z(t“),

~+ ne Z.L,is characterized by the commutation relatmns . ]
. [X(t“) X™I = - (m- n)X(t"““ D, [X(t“), Y(t"‘)] (m En)Y(t Y, £
’ [X(t“),Z(t'“)J (m- In)Z@m1), [Y(t“), Y(t™)] <»30(n m) ““"1)
: (Y™, Z(t™] =0, [Za™), Ze™)] =0. '

. .The interesting fact is that L, < (R[t,t] ®sl(5, R)) ® R[tt'1]d,, i.e., it can bé embedded
into the affine loop algebra A, without its centre. This remarkable property was to be later
* observed for other 2+1 dimensional integrable nonlinear equations, for instaﬁce the
Davey-Stewartson and the modified KP equations. Interestingly, no equations, to our
\knowledge, in 1+1 nor 3+1 have this prqperty. At the present time, we have no idea of why
- < 2+1 dimensional equations are so special, but we are investigating the ques‘tion.nE
We then proceeded tq classify the Jow-dimensional (< 3) subalgebras of Lyp. Thisis *
. rather standard,; the methods for doing that are defined for finite-dimensional algebras, yet
they prove to be applicable even if Ly p is mf1mte dimensional (the difference bemg that we
have equanons for the*functions.abeling the group elements ratheﬁthan algebraic conditions
- for parameters) This classmcatlon is done'by 1dem1fymg together all subalgebras that are
conjugate under the adjoint action of Gy p. Recall that two vector fields V, and V, of Ly are
said to be conjuate if there exists an element.g of Lyp such that V, =8V 8 We have
‘ establish‘ec-i that there are exactly three classes of non-conjugate 1-diniensional subalgebras;

P

-

they are: ' -
Lip=XM)) ° Lip={Y(D))-  Lyjz={(ZM) i
The 2-dimensional subalgebras are also easy to classify; they are: . ) {
> . : - -
! ’ -~
-~ i i S A
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o
.

CLyy = XYY, Ldy= (XALZD), Ly = (YO, Z0), |

1 « .
o ]

Lo L, 4 = (Z(1), Z(h) Ih'(t) # 0}; \ o N

(

L 5={X<13;X'(t3}, L, = (Y(D,XGD), L,, = (Z(1), X3).

-

* The irst four of them are Abelian. Finally, we found eighteen non-conjugate 3-dimensional
subalgebras which I do not listhere; let me just mentiop that all isomorphy classes of three-

dimensional’ Lie algebras ar¢ represented, except su(2). o

, Symmetry reduction is a very powerful, yet simpfe, method by which one can gbtain
solutions of difficult differential equations. In essence, it consists in using invariants of the
symmetry group of the equation in order to define a new reduced ecﬁlatlon which has fewer
variables. One may then use the solutions of the reduced equation to construct solutions of
the original equanon Note that this will not yield all the solutions, but only those which are .- .
invariant under a specific symmetry, or set of symmetries. The method is particularly simple, g }
from thécomputational point of view, the the considered symmetry group acts projectably on
the solution manifold, i.e., the group transformations map the old indeBe—nHEnt variables to .
new ones which do not depend on the old dependent variables; such is the case for the KP
equation. To fmd invariant solutions for the KP. gquation is not recent business. In fact,
many authors have written an appreciable quantity of literature on tlus subject, constructing .
so-called similarity solutions. The point is that this y(terature is highly self-intersecting in the

¥ sense that many of these solutions are redundant; by this, I mean solutions that fall within a
same class,’or,‘ in other words, solutions that can be mapped one to eachother through some
invertible transformations” Our’ contribution was to make a clean up. Indeed, one can

-

perform symmetry reduction in an exhaustive way by considering ohly ;he rion-conjugate
classes of subalgebras of Lyp. Practically speaking, this means that it is suffxuent to build *
one invariant solution for one representative of each conjugacy class all other invariant -

solutions may then be obtained by letting the group act on them. - . -

v
%
v

The fundamental reductions to be considered here are those using the 1-dimensional
subalgebras of Lyp. These will yield teduced equations depending on two variables-rather
than three. Naturally, reductions using two-dimensional are permissible. However, I do not

consider them since they amount to further reduce the reduced equations obtained from the

L3
P
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;dimensional, subalgebras these furthqr rcduc.uons are well studied. It was casy” to show
that the KP equation exactly reduces to three different equations. The subalgebra L, , yields

. the Boussinesq equation: 30qu + 3(q? )J;E, + Qg =0. The subalgebra L, , implies a once

I

differentiated KdV equation: [4qn + 6qq§ + Q§§§]E = (). Finally, the subalgebra La reduces

the KP equation to the linear equanon u,, = 0. Numerous types of specxal KP solutions ¢an

yy

. be obtained from these reductions. I shall present one of them which is new. The reduction

class which contains the Boussinesq equation also contains the following equation:,

U, + 135_,{;& - 6131% - 4§1‘)§ -29=0.

This is the cylindricai KdV equation. It has been exien’;;ive.ly studied by Caldgero and
Degasperis and has boundcd solutions which yxelds to the following bounded KP solutions:

~

&= -vy/(v +vIOIP{x + : J, m=Inlvg +y, 9], -
. Vot+vit ° R

4in(p)Ai'(p) L
{1+qlAl" <p>12 Jpq[Amp)ﬁ}2

3v,0y* 'sz foviiv,

o us= [vl/(vo +V t)]2’3 { 2q°AI) 4,

p=§-Vv; e“‘, q=ve®,

where Vs s V4 a1 ‘constants and Ai denotes an Airy functlon This soluuon contams, asa
particular case, a solutlon obtamed by Nakamura

.* .Aninteresting property shared by most of integrable nonlinear partial differentjal
equationsss that they possess a Bdcklund transformation (BT). Such a transformation is in
fact a correspondence rule between firstd énvauves of solutions of a same equation. A well
"known example is.given by the Cauchy-Riemann conditions: if u solves, the Laplace
equation on the complex plane, then so is v Rrovxded that v, =-u_ and Vg =l The KP

y
equation does have its own. In fact it is best expressed for the potential KP (PKP) equation:

H 2 2 —
[4ul +3u,“+u 1, +3s U, —~O,’

XXXX

where & =s2. If u solves the PKP equation, then w = u_ solyes the KP equation. The BT for
the PKP equation is defined through‘the following relations: .
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r

5(0-V), - (V) - @VI-Y), =0,

4(u-v), + (u-v), . + 35(u+v)xy + 3(u-“vj(u+v)xx + 3(u-v),;i(u'-\():é + (uhv),] =0.

Our goal was to 1mplementa new way of applying symmetry reducuon namely by applying
this technique on a system formed by a given partial differential equatlon together with its
associated BT. As an example, we chose to do that w1th the (P)KP equation. The, PKP
equation also ha$ an'infinite- dxmensmnal Lie group of point symmetnes Wthh has properties
very smular to that of the KP equation; "I shall not elaporate on that. For our purpases, we are
interested in how it acts on the BT. Not surprisinély, it turns out that not all the group leaves -
it invariant. In fact the BT is trargfcxmed to '

[ -

s(u v+p) - (utv),, - (u-v+p)(u-v+p)x =0,

4(u -v+p); + (u- v+p)“x + 3.s(u+v)xy +.3(u—v+p)(u4‘~v)xx + 3(u-v-l_—p)x[(u-v+p)2 + (u+v),] =0,

vyhere p=R()+ yS(t), and R, § are expressible in terms of arbitrary functions labeling the

. group elements. Note that the introduction of such an arbitrary function in the BT is

A . . L . , . " .
andlogous to the introduction of arbitrary constants into BT's associated to 1+1 dimensional
integrable equations (for instance the Lorents invariance of the Sine-Gordon equation gives

" rise to a-real-valued parameter). The simplest way to use a BT is when the input solution is

" ¢ trivial; choosing v =6, the BT reduces to

»~

e

S(UHp),- Uy (U+P)(U+P) =0,

: *
4(u+p), + (UHP), -+ 3su, + 3(ut+p)u,, + 3(u+p), [(u+p)2 +u )=

We now look for the joint symmetry group of the PKP equatlon and (*) It has dn algebra
generated by the following vector fields:

3

X, =0, ~ x2=a -S(1)2, , e
X, =9, - [R(O+yS®1,, - =10, 235%50, - [1S() - 3510, - |

There are 4 classes of ﬁon—conjugate 1-dimensional subalgebras: (X, ]}, {X,}, (X, +aX;},
and {X; +aX }“ where a is a constant. These can be used to perform symmefry reduction. I
shall give oniy one example. Consider the represematlve X3 +aX, +bX,, belonging to the
same class as X3 +aX,. Performing the reduction, it is found that thie KP solution has the

/ .

e N - .




solution w = 28;[<D'1¢;;] where ©(E, 1) obeys the follov@g equations eﬁ =X-at,|=y-bt):

(Dég S(D —O,b

.9y
.

-

.

/

«

1 4

The first equation comes frém the BT, and the second one from/the PKP equation. In order

»  to obtain analyti §olutio.ns, we consider the special case K, =0, h, = constant. One then finds -

that the above system has three different types of solyutions, depending whether the
characteristic equation for the second has 1, 2, or 3 distinct roots. The, only case yleldmg

boundcd\lutxons is \vhen there are 3 roots. The corresponding KP solution is

_ 25 AR (K; - kYexp(o; +a)

[X Aexp(e)]?

.

.

where the X'is taken for i <j, k; is a constant, and &; =k + s%kn). We have termed this
solution splitton and it is shown on Figure A8. As one can see, this solution is an object
‘made of three semi-infinite soliton-like fronts merging at some point. The relative angles
between each branches are.constant and the whole object translates in the xy-plane\"!"his
. solution is to be considered on the same foo‘ting

BT acting on the

A

ivial solution.
\

i

& [

ﬁthe soliton as it also is obtained from the

LY

To resume the situation with this symmetr;/ business applied on the KP equation, lgt
"me say that we have now tools for constructing a quite large amount of special solutions to
this equation. One may start from a KP solution and get another one.by letting the KP
symmetr)" group act on it. Solutions can also be obtained through the action of the BT on
PKP solutions that can be mapped back to KP solutions. One can also use the solutions of
equations obtained by rcduqing the KP equation. Note that one can also perform 3y'mmciry

reduction-on the reduced equations to get further reduced equations; these will be ordinary

dxfferennal equations whose solutions can be mapped back to solutions of the equations
' obtamed by the first level of reduction, and thése to KP solutions. All this is schcmatlzed on

JFigure
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The Splitton solution of the KP.eguation -
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