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Abstract 

 

Have you ever experienced oscillatory motions of the free end your hose 

while watering your garden? This ordinary phenomenon of a pipe conveying fluid 

has asserted itself as a paradigm since it is described by quite simple equations 

and its study has various applications in engineering systems such as heat 

exchangers, blood circulatory systems as well as mining operations.  

The scope of the present work is the study of the dynamics of two 

different kinds of cylindrical pipes: (i) a cantilevered thin-walled pipe, i.e. a 

cylindrical shell, aspirating air and (ii) a thick-walled pipe subjected to internal, 

external, or simultaneous internal and external axial flows. This was 

accomplished for the cantilevered shell by deriving a linear analytical model 

through a variational principle while taking into account modified boundary 

conditions, and then by comparing theoretical and experimental results. For the 

thick wall pipe, the study was mainly experimental. A great part of the work was 

to design and build an entirely new apparatus allowing the investigation of the 

dynamics of the pipe in a lot of different configurations. The critical flow velocity 

and the corresponding frequency of oscillation as well as the pipe behaviour at 

higher flow velocities are described. 
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Sommaire 

 

N'avez-vous jamais ressenti un mouvement d'oscillations de l'extrémité 

libre de votre tuyau pendant que vous arrosiez votre jardin?  Ce phénomène, 

banal pour un tuyau véhiculant un fluide, s'est imposé comme un problème 

fondamental puisqu'il est gouverné pas des équations relativement simples et 

que son étude a des applications dans des systèmes aussi variés que les 

échangeurs de chaleur, les systèmes de circulation sanguine et les opérations 

minières.  

L'objectif de ce travail de recherche est l'étude de la dynamique de deux 

différents types de tuyaux cylindriques: (i) un tuyau encastré-libre à paroi mince, 

i.e. une coque cylindrique, aspirant de l’air et (ii) un tuyau à paroi large soumis à 

un écoulement axial qui peut être interne, externe, ou les deux simultanément. 

Pour la coque encastrée-libre, ce fut accompli en dérivant un modèle analytique 

linéaire par l'intermédiaire d'un principe variationnel tout en prenant en compte 

des conditions aux limites modifiées, puis, en comparant les résultats théoriques 

et expérimentaux. Pour le tuyau à paroi large, l'étude fut principalement 

expérimentale. La majeure partie de ce travail fut la conception et le montage 

d'un appareil entièrement nouveau qui permet d'étudier le comportement du 

tuyau dans de multiples configurations. La vitesse d'écoulement critique, la 

fréquence d'oscillation correspondante ainsi que l'évolution du comportement 

du tuyau lorsque la vitesse d'écoulement augmente sont présentées. 
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Chapter 1:  Introduction 

1.1 Outline of the Thesis 

The work done in this thesis can be divided into two main themes. The 

first deals with the stability of a cantilevered thin-walled pipe, i.e. a cylindrical 

shell, aspirating air. In the second one, the dynamics of a thick-walled pipe 

subjected to internal, external or simultaneous internal and external flows is 

experimentally investigated and some of the results are compared with an 

existing linear theory. 

This thesis encompassed four chapters. Chapter 1 provides the general 

context of the research through a literature review that, first, introduces the 

field of Fluid-Structure Interactions and then briefly discusses earlier work 

carried out on different systems involving cylindrical cantilevered structures: (i) 

cantilevered cylindrical structures discharging fluid, (ii) cantilevered cylindrical 

structures in axial flow, (iii) cantilevered coaxial cylindrical structures and (iv) 

cantilevered cylindrical structures aspirating fluid. In Chapter 2, the dynamics of 

a flexible cantilevered shell aspirating fluid is studied both experimentally and 

theoretically. A new analytical model is first derived by taking into account a new 

boundary condition due to the fluid flowing from the free end to the clamped 

end. The linear equations of motion are then derived through a variational 

principle and solved using the extended form of the Galerkin method. Finally, the 

theoretical results are compared to experimental observations for two different 

pipes that are made of the same material but whose lengths and wall thicknesses 

differ. Chapter 3 treats the problem of the stability of the hanging tubular pipes 

used in salt caverns. The study was mainly experimental. A great part of the work 

was to design and build an entirely new apparatus allowing the investigation of 

the dynamics of the pipe in a lot of different configurations with water as flowing 

fluid. In each configuration, the critical flow velocity and the corresponding 
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frequency of oscillations as well as the pipe behaviour at higher flow velocity are 

described. Finally, Chapter 4 contains a summary and a discussion about this 

thesis as well as some insights for future work. 

1.2 Literature Review 

Flow-induced vibration is a common phenomenon that arises in nature. 

Considering for example a woodwind instrument, it is well known that it 

produces music thanks to the reed that vibrates because of the blowing air. But, 

usually, flow induced vibration is an undesirable feature in engineering systems 

where large amplitude vibrations could not only cause serious and costly 

damages but also put human life at risk. A really unfortunate example is the 

collapse of the Tacoma Narrows Bridge in 1940. That is why the study of flow 

induced vibrations of slender bodies has established itself as a challenging 

problem which the engineer has to face. Stability and reliability are always 

required in the development of new equipment. 

 One of the early industrial studies was thus carried out by Ashley and 

Haviland (1950) to elucidate the vibrations of the Trans-Arabian pipeline. Since 

then, the necessity of investigating the dynamics of slender structures subjected 

to and/or immersed in flow arises in a lot of different engineering systems, such 

as heat exchangers, nuclear reactors, jet pumps, heat shields in aircraft engines, 

Coriolis mass-flow meters, as well as pulmonary and blood circulatory systems. 

But, in general, much of the work in this area has been curiosity-driven 

because, just like the column subjected to compressive loading and the rotating 

shaft are model problems for the study of stability of structures, as pointed out 

by Païdoussis & Li (1993), the pipe conveying fluid is asserting itself as another 

paradigm. The dynamics of this system is indeed described by quite simple 

equations, and experiments can easily be performed, so that theoretical and 

experimental investigations can both be pursued and compared. However, most 

importantly, as it is a simple system, it can be used to investigate the effects of 
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different parameters, such as dissipation, fluid compressibility or viscosity but 

can also be the lead to study more complex systems. Finally it is worth 

highlighting that these studies sometimes find practical applications years after 

they have been carried out. 

The work that has been undertaken for this Thesis deals with a lot of 

different configurations involving cantilevered pipes, thick-walled or thin-walled 

(shells), subjected to internal and/or external axial flow. That is why the 

following literature review presenting various subjects is selective rather than 

exhaustive; it mainly focuses on the research dealing with aspirating cylindrical 

cantilevered structures. 

1.2.1 Cantilevered Cylindrical Structures Discharging Fluid 

The early work on the dynamics of a pipe conveying fluid was conducted 

by Brillouin in 1885, his work remaining unpublished. One of his students, 

Bourrières, undertook a very serious study on this subject right before the 

Second World War. In his work (1939), rediscovered by Païdoussis more than 

thirty years later, he derived the correct equation of motion using string theory 

and was able to study the oscillatory instability of a cantilevered system both 

theoretically and experimentally. He got very accurate results regarding stability 

but was unable to predict the critical flow velocity at the onset of oscillation due 

to lack of tools for numerical solutions.  

As recalled before, the interest for this subject was then driven by the 

problem of the Trans-Arabian pipeline that is considered as a series of simply-

supported pipes at both ends. But the equation of motion derived by Ashley and 

Haviland was incorrect. In the following years, using different modelling but all 

considering pinned-pinned system, the correct equations of motion were 

rederived by Feodos’ev (1951), Housner (1952) and Niordson (1953).  

Long (1955) was the first to consider a cantilevered pipe. Unfortunately, 

his method of solution could only determine the dynamics of the system for 
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small flow velocities and he was unable to predict the oscillatory instabilities 

found by Bourrières. 

Considering the dynamics of articulated cantilevered pipes conveying 

fluid, Benjamin (1961) was the first to report on the phenomenon of unstable 

oscillations (he was unaware of Bourrières' work). It was later confirmed both 

theoretically and experimentally by Gregory and Païdoussis (1966) that a 

continuous cantilevered pipe conveying fluid can flutter at sufficiently high flow 

velocity. Deriving the linear equation of motion using a Newtonian approach, 

they were able to predict the critical flow velocity at the onset of oscillatory 

instability. Païdoussis (1970) then extended the theory to vertical pipes where 

gravity is operative. Contrary to what Benjamin (1961) observed for articulated 

pipes, he concluded that buckling does not occur for continuously flexible pipes; 

this was later explained by Païdoussis and Deksnis (1970) in their study of 

articulated vertical pipes. They specifically emphasized the inadequacy of the 

modelling used by Benjamin in the transition from a discrete to a continuous 

system.  

Païdoussis and Issid (1974) re-examined later the stability of the 

cantilevered pipe by deriving a more general equation of motion that takes into 

account gravity, dissipation in the material of the pipe due to the surrounding 

fluid, tensioning and pressurization effects. In an attempt to improve the theory, 

Laithier and Païdoussis (1981) included shear deformation in deriving the 

equations; that means they considered the tube as a Timoshenko beam. They 

found that in the case of short tubes, this theory was more suitable but, 

surprisingly, not for longer tubes. It was later discovered by Chen (1971) and 

Sugiyama et al. (1985) that the addition of a motion-constraining spring could 

stabilize the system or not, depending on its position along the pipe. Other linear 

studies with additional springs and/or masses were then conducted by Hill and 
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Swanson (1970), Chen and Jendrzejczyk (1985), Jendrzejczyk and Chen (1985), 

and Sugiyama et al. (1988).  

In all previous studies mentioned so far, the unstable oscillations are 

supposed to be planar. It was not before the nonlinear equations of motion were 

derived in the 80’s that 3-D motion was considered. The early nonlinear studies 

were conducted by Rousselet and Herrmann (1981) and Bajaj and Sethna (1982). 

More recently, Semler et al. (1994) derived very accurate (to third order) and 

complete nonlinear equations of motion for pipes conveying fluid. They also 

considered the nonlinear equations with an added mass or springs but only for 

the case of planar motion. In the past few years, Wadham-Gagnon et al. (2007), 

Païdoussis et al. (2007) and Modarres-Sadeghi et al. (2007) conducted the same 

study but also considering 3-D motions in a three-part analysis. Very recently, 

Ghayesh and Païdoussis (2010) studied further the three-dimensional dynamics 

of a cantilevered pipe conveying fluid, additionally supported by an intermediate 

spring array. Rinaldi (2010) studied the effect of a stabilizing end-piece. 

In 1934, Donnell was one of the first to tackle the problem of the 

dynamics of very thin pipes conveying fluid by deriving the equations of motion 

under simplifying hypotheses. Because of the relative simplicity of the Donnell 

shallow shell theory, it has been widely used but gives accurate results only for 

large enough circumferential wavenumber n. In 1960, Flügge established a more 

refined theory presented in his own book (1973). In Yamaki’s book (1984), a so-

called modified Flügge theory taking into account the effect of bending 

deformation is presented. Renewed interest in the dynamics of thin-walled pipes 

(shells) conveying fluid was aroused by the fortuitous discovery in 1969 that both 

clamped-clamped and clamped-free shells conveying low-speed flow do flutter 

by losing stability in the so-called second circumferential ‘shell-type’ mode. That 

is why Païdoussis and Denise (1970, 1971, 1972) studied both experimentally and 

theoretically such a system and predicted instabilities in the shell modes 
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involving deformation of the cross-section. Reasonably good agreement was 

obtained between analytical results and experiments. Similar results were 

obtained independently by Weaver and Unny (1973) and extended by Weaver 

and Myklatun (1973).  

The problem was then revisited by Shayo and Ellen. They first derived 

expressions for the generalized aerodynamic forces acting on the tube using 

Fourier Transform Theory. Thanks to this method, first outlined by Dowell and 

Widnall (1966), it is possible to avoid considerable effort in the numerical 

solution required in previous methods. Using this theory, Shayo and Ellen (1974) 

were able to express the time-dependent fluid pressure due to flowing fluid and 

could obtain the critical flow velocity at divergence in terms of different 

parameters such as the radius-to-thickness ratio or the mode numbers. This 

method was then successfully used by Chan (1984) and Nguyen (1992) in their 

respective work concerning the dynamics of coaxial cylindrical shells conveying 

fluid that were clamped-clamped in Chan’s work and clamped-free in Nguyen’s. 

In the current study also, it is the method that is used to solve the equations of 

motion. As the flow is incompressible, it has the great advantage of giving 

explicit expressions in terms of frequency.  

Shayo and Ellen (1978) revealed the importance of the effect of flow 

perturbations beyond the downstream end of the shell. To take that into account, 

they introduce so-called downstream flow models. Païdoussis, Luu and Laithier 

(1986) developed this concept by suggesting three different downstream flow 

models characterized by different conditions of continuity of the pressure and its 

derivative at the inlet of the shell and where the perturbation pressure is close to 

zero at a finite distance l downstream of the inlet. Pursuing his work, Nguyen 

pointed out some inaccuracies and numerical difficulties encountered with those 

models as l was increased. Nguyen, Païdoussis and Misra (1993) developed a 

new outflow model that is problem free with l tending to infinity. 
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1.2.2 Cantilevered Cylindrical Structures in Axial Flow 

The study of vibration of cylindrical structures due to axial flow was 

undertaken quite recently. It was first related in the 60’s to the power generating 

industry. It has indeed some engineering applications: e.g., in nuclear reactors 

with fissile fuel rods subjected to axial flow, heat exchangers, the Dracone barge, 

towed acoustic arrays for oil exploration and high speed trains in tunnels.  

The Dracone is a long flexible towed container with tapered ends used for 

water transportation. The stability of this kind of flexible tubular container was 

first investigated by Hawthorne (1961). Through a simplified analysis, he showed 

the possible buckling of the system at sufficiently high towing velocity.  

A more general theoretical and experimental study of cylindrical 

structures in axial flow was conducted by Païdoussis (1966 a, b). The linear 

equations of motion were derived including the viscous forces and a shape 

parameter f related to the tapering of the free end of the cylinder; f is equal to 

unity if the end is perfectly streamlined, and zero if it is blunt. The theoretical 

investigation showed that, if the cylinder is sufficiently well streamlined, it first 

becomes unstable through a static divergence in its first mode. It then regains 

stability and loses it again by flutter in its second mode and then in its third 

mode. In the case of a sufficiently blunt end, the first-mode buckling and second-

mode flutter can be missed out; as f approaches zero all instabilities disappear. 

The experimental results are in good agreement with the theory. However, a 

component due to viscous effects was forgotten when deriving the equations. 

This mistake was corrected and the correct linear equations of motion taking 

into account internal dissipation, gravity, pressurization and confinement are 

given in Païdoussis (1973). However, it turns out that this correction did not 

change the general theoretical behaviour of the system. Some nonlinear studies 

were then undertaken, first by Lopes et al. (1999) who derived a first set of 

equations of motion. A more general analysis was then undertaken by Païdoussis 
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et al. (2002), Lopes et al. (2002) and Semler et al. (2002). The linear and 

nonlinear theories were investigated and compared to experiments, showing 

good agreement. The long ‘acoustic streamers’ used in oil exploration revived 

research interest in the subject. Unlike Dowling (1988) who showed that they 

were stable at all towed speed, de Langre et al. (2007) demonstrated that very 

long slender cylinders subjected to axial flow could indeed flutter if the free end 

is well streamlined. 

1.2.3 Cantilevered Coaxial Cylindrical Structures 

There exist many engineering applications involving cylindrical structures 

in a confined channel or two concentric pipes or shells. Annular-flow-induced 

instabilities occur in certain types of pistons and valves, in control rods in guide 

tubes in nuclear reactors and in heat exchangers. Different related 

configurations will be discussed in this section because the flow can be in the 

inner cylinder only, in the annulus, or in both regions at the same time. 

The early studies on the stability of flexible cylinders in axisymmetrically 

confined flow were undertaken by Païdoussis (1973), Païdoussis and Pettigrew 

(1979) and Païdoussis and Ostoja-Starzewski (1981). Although the mathematical 

models do not seem so reliable in the case of not very confined flow, they all 

point out the destabilizing effect of confinement. The case of a rigid cylindrical 

body hinged at one point and coaxially positioned in a duct while subjected to 

annular flow was considered by Hobson (1982). He formulated an analytical 

model that showed the possible loss of stability via a negative-damping 

mechanism at sufficiently high velocity. Considering the same type of problem 

but constraining the free motions of the centre-body with a rotational spring and 

a rotational dashpot at the hinge point, Mateescu and Païdoussis (1985) 

developed a more rigorous inviscid analytical model. They demonstrate the 

existence of a critical location of the hinge, the destabilization of the system as 

the gap becomes narrower and the dynamical effect of a convergent or 
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divergent passage. They later improved their model (Mateescu and Païdoussis, 

1987) to deal with unsteady viscous effects, discovering that they have a 

stabilizing effect on the system. They also conducted an experimental study of 

this problem (Mateescu, Païdoussis and Bélanger, 1988), with results in good 

agreement with the theoretical predictions. Some work was later undertaken to 

take into account turbulence in the flow and to use other integration methods. 

The foregoing works give a good overview of the general dynamics of a cylinder 

subjected to annular flow and we shall now focus on the studies that deal with 

coaxial systems in which both the inner cylinder and the annulus are filled with 

fluid. 

One of the first studies of a coaxial system containing quiescent fluid is 

due to Chen and Rosenberg (1975). The main interest was to study the effect of 

the added mass of the fluid due to the narrowness of the annulus, as well as the 

hydrodynamical coupling in the motions of the coaxial cylinders giving rise to 

sets of in-phase and out-of-phase modes. It was found that the lowest frequency 

of the coupled system is lower than those of the individual shells and is 

associated to an out-of-phase mode. Au-Yang (1976) calculated the added mass 

and the coupling coefficients of two coaxial cylinders of different lengths. The 

main result was the relation of proportionality between their coupled axial mode 

numbers and their length. Yeh and Chen (1977) studied the effect of viscosity 

and found that it was negligibly small in most practical systems. The effects of 

gap width, cylinder wall thickness and boundary conditions were examined by 

Brown and Lieb (1980).  

Those previous studies do not consider a flowing fluid. In the same period, 

some works dealing with the case of axysymmetric structures subjected to both 

inner and outer flow consider the external flow as unconfined. Cesari and Curioni 

(1971) studied a lot of different end-support configurations but only considered 

the buckling of horizontal pipes. A more general combined experimental and 
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theoretical study was done by Hannoyer and Païdoussis (1978). They derived the 

equations of motion for both the cases of cantilevered and simply supported 

beams, including the effects of gravity, internal dissipation and an external 

boundary layer. It was found that, for a pinned-pinned system, increasing the 

internal and/or external flow caused the system to lose stability first by buckling, 

followed by a succession of buckling and flutter instabilities. For the cantilevered 

beam, the stability characteristics are not straightforward and depend on the 

velocities of the internal and external flow in a more complex fashion as well as 

on the shape of the free end. If it is well streamlined, the system will lose 

stability by a complex sequence of buckling and flutter instabilities, depending on 

the parameters of the system. If the free end is blunt, the dynamics of the 

system is dominated by internal flow and flutter will occur. Hannoyer and 

Païdoussis (1979) later extended their model to deal with the case of conical 

cantilevers. They found that a conical beam inside and/or outside is usually less 

stable. In all cases, experiments were also conducted and the results were found 

to be in good agreement with theory. 

It appears that Krajcinovic (1974) was the first to consider flowing fluid in 

a confined annular region; but he was able to determine the lowest natural 

frequencies of the system only. Weppelink (1979) undertook a more general 

study of the dynamics of a flexible cylindrical shell in a coaxial rigid cylinder 

within the inner shell and/or in the annular region; but only limited calculations 

and results were given. In the 80’s, Païdoussis et al. (1984) conducted a really 

serious study of the stability of a system of two clamped-clamped coaxial shells 

subjected to incompressible or compressible inviscid fluid in the annulus and/or 

the inner shell. The shell motions are governed by Flügge’s thin-shell equations, 

potential flow theory is considered to describe the fluid motions, and the 

aerodynamic forces are evaluated through the Fourier transform method; 

Galerkin’s method is used to get solutions of the set of equations. It was found 

that, by increasing the flow velocity in the inner and/or the outer region, the 
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system first loses stability by divergence followed by coupled-mode flutter, but 

also that the coupled system is less stable than a single shell.  

The model was then extended, and the steady viscous terms were 

accounted for (Païdoussis et al., 1985). The pressurization in the inner flow was 

found to be stabilizing. If the outer shell is rigid, pressurization of the annular 

flow has a destabilizing effect; but, if the outer shell is flexible, the effect could 

be either stabilizing or destabilizing depending on the system parameters. El 

Chebair et al. (1990) attempted to improve the model by taking into account the 

unsteady viscous forces. In that study, some difficulties were encountered with 

the application of the no-slip boundary condition on the wall. The unsteady 

viscous forces appeared to have a really small effect on the dynamics of the 

system; their stabilizing influence was overwhelmed by the opposing effect of 

the steady viscous forces.  

Following the same kind of method, Païdoussis et al. (1991) studied the 

stability of cantilevered coaxial cylindrical shells conveying incompressible fluid. 

The steady viscous effects were taken into account and the fluid flow beyond the 

free end was determined by an ‘‘outflow model’’.  They found that, in the case of 

inner flow, the system first loses stability by flutter in both inviscid and viscous 

theory. For annular flow, flutter was predicted by inviscid theory, whereas 

viscous theory assumed that the system would first lose stability by divergence 

and then by flutter. The viscous terms were found to destabilize the system vis-

à-vis the annular flow but to stabilize it for internal flow. The presence of internal 

flow in addition to annular flow tends to stabilize the system at low flow 

velocities but to destabilize it at higher flow velocities. The same effects arise if 

the main flow is the internal one. Later, Païdoussis et al. (1992) studied the effect 

of the system parameters. It was found that increasing the length of the shells, 

decreasing the annular gap width or decreasing the shell thickness destabilizes 

the system.  
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El Chebair et al. (1989) conducted some experiments to observe the 

dynamics of annular-flow-induced instabilities of cylindrical clamped-clamped or 

clamped-free shells. For the clamped-clamped shells, the experimental 

observations show that the system first loses stability by buckling as predicted by 

the theory. But the coupled-mode flutter predicted by theory was never 

observed. The cantilevered system loses stability by a single degree of freedom 

flutter. In both cases, it was also pointed out that increasing the length-to-radius 

ratio or the gap-to-radius ratio destabilizes the system. Nguyen et al. (1993) 

conducted some experiments too, but in the case of a cantilevered shell 

concentrically located within a rigid cylinder only. It was observed that for 

annular flow, the system first loses stability, generally by flutter but sometimes 

by divergence, followed by flutter at higher flow velocity. For internal flow the 

first instability is flutter. The same observations were made regarding the effects 

of the parameters of the system. The experiments are in generally good 

agreement with the theory. 

Some works were also undertaken considering a coaxial system in which 

the internal and annular flows are not independent. The study of such systems 

was motivated by the problem of the patented drill-string described by Den 

Hartog (1969). In this system, the water is conveyed downwards in the 

cantilevered pipe and then flows upward around the cantilever as a confined 

annular flow. The work of Luu (1983) was revisited by Païdoussis et al. (2008). 

The main results of this work show that for a wide annulus, the dynamics of the 

system is dominated by the internal flow so that the system is damped at low 

flow velocities but loses stability by flutter at higher flow velocities. For narrower 

annuli, the dynamics of the system is overwhelmed by the annular flow. The 

main effect is to destabilize the system, and flutter occurs at really low flow 

velocities. Rinaldi (2009) undertook experimental work to compare with these 

theoretical results. Qualitatively, the system loses stability at very low flow 

velocity regardless of the amount of confinement. She also found that it behaves 
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as a free-clamped cylinder, i.e. a cantilevered cylinder subjected to axial flow 

directed from the free end to the clamped on, which Rinaldi also studied in her 

work. Increasing the flow velocity induces higher vibration frequencies and 

amplitudes. Increasing the velocity further, the system becomes chaotic and 

impacts the sides of the rigid annular channel surrounding the pipe. Even if the 

flutter was well predicted by theory, it appeared that the experimental results 

were not in good agreement with the theoretical ones, paving the way to some 

suggestions for future work. 

1.2.4 Cantilevered Cylindrical Structures Aspirating Fluids 

The early interest in the dynamics of aspirating cantilevered pipes, i.e. 

with the fluid entering the free end and then flowing upward towards the 

clamped one, was aroused by its use in “ocean mining”. The system consists in a 

large vacuum cleaner with a “miner” at the end of the pipe in contact with the 

sea floor. If, for any reason, this contact is broken, the system becomes an 

aspirating cantilever pipe. Some recent developments have given added impetus 

to the necessity of knowing if the system will become unstable at low flow 

velocity. Specifically, to gain time and money, companies would prefer to liquefy 

the natural gas directly where it is extracted. In this process, cold water is 

aspirated by long pipes really deep in the ocean. For the well-being of people 

and equipment, flutter in that kind of system has to be avoided. 

The first attempt to study such a system was conducted by Païdoussis in 

the mid-1960s. The dynamics was explored experimentally at the Chalk River 

Nuclear Laboratories in Ontario. Although flutter was expected, it never occurred 

at any experimental flow velocity. The work was abandoned because of the shell-

type collapse of the pipe near the support due to the induced large negative 

transmural pressure. The effect of reinforcing the pipe was just to postpone the 

collapse to a higher flow. 
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In the past twenty years, a lot of theories have been developed in an 

attempt to predict if flutter will occur and the critical velocity if necessary. The 

first general theoretical study has been undertaken by Païdoussis and Luu (1985). 

The equations of motion including the effect of gravity, buoyancy, added mass, 

an end-mass and viscous damping were derived considering the conventional 

boundary conditions (i.e. the bending moment and shear forces were assumed 

to be zero at the free end). The result was essentially obtained by replacing +U 

by -U in the equations of motion of a cantilevered pipe discharging fluid. 

Naturally, the mirror-image behaviour of this system was theoretically predicted: 

the system was shown to lose stability by flutter at infinitesimal flow velocities in 

the absence of dissipation and then to regain stability at a higher flow rate. Here 

the direction of the inlet flow was considered to remain tangential to the 

deflected pipe. A little later, an experimental investigation was conducted at 

McGill University. In the new apparatus, the pipe was hung vertically and was 

totally immersed in water in a steel tank. The water was supplied into the tank 

and forced into the pipe and out of the tank. Several experiments were 

conducted with different pipe thicknesses and different-shaped inlet forms. As 

flutter was never observed, the pressure was continuously increased to get a 

higher flow rate. But the experiment was finally abandonned when water was 

spread all over the laboratory because the hose leading the water to the tank 

burst free of its clamp. 

Subsequently, it was not before 1995 and a discussion between Prof. M.P. 

Païdoussis and Dr D.J. Maull of Cambridge University linking this problem with 

Feynman’s aspirating rotary-sprinkler quandary that the investigation resumed. 

Païdoussis (1998, 1999) revisited the problem both theoretically and 

experimentally and came to the conclusion that ‘’aspirating pipes do not flutter 

at infinitesimally small flow’’. They conducted an experiment in which two 

flexible elastomer pipes fitted with elbows at their free end, hanging vertically in 

water, were connected via a pump. Thus one was aspirating flow and the other 
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discharging it. Once again, no flutter was observed. The main theoretical device 

to explain the contradiction between theory and experiment was to find a 

correct description of the flow field in the vicinity of the inlet, as it was made 

clear that it is not a reverse jet but rather a sink flow. Here the main new idea 

was to consider a pressure drop at the intake of the pipe. This depressurization 

was shown to cancel out the centrifugal force. This effect would explain the 

stability of the system. But it was not long before Kuiper and Metrikine (2005) 

raised some doubts concerning the previous analysis. They pointed out that the 

depressurization influences the general dynamics of the system only slightly and 

that the system could lose stability, even in the absence of centrifugal force, by 

the action of Coriolis force alone. Furthermore, the depressurization might have 

been overestimated and should finally lie between –ρU
2
 and –½ρU

2
; the 

centrifugal force may in fact not cancel out. To explain the paradox, they 

suggested that the external hydrodynamic drag on the pipe is a major stabilizing 

factor and the viscosity of the surrounding fluid has to be taken into account. 

Thus having a correct description of both the flow field around the free end and 

the viscous damping due to the surrounding fluid seems of great importance.  

For these reasons, Païdoussis (2005) reevaluated the problem by 

developing a new set of boundary conditions, considering the pressure drop at 

the inlet as well as a tensioning effect induced by the flow near the free end. A 

new description of the boundary conditions was developed assuming that forces 

are exerted at the inlet of the pipe because of a change of momentum of the 

entering fluid. The basic theory assumes that the mean flow remains unchanged 

in the vertical direction and no tensioning effects are considered. The system, 

stable at low flow velocity, buckled at higher flow rate. Variants of the model 

(Païdoussis et al., 2005) were developed allowing the intake flow to remain 

tangential to the deflected pipe and also considering tensioning effects and 

dissipation. It was found that the occurrence of flutter of the system depended 

on some parameters related to the tensioning effect (�), the change of flow 
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velocity (� � � �⁄   with � being the velocity near the inlet), the flow direction 

(��=0 or 1 for vertical or tangential entry) at the free end, and the dissipation in 

the pipe and from the surrounding fluid. It was concluded that it would be of 

particular interest to have CFD simulations to better understand what happens 

near the intake. Some work started on this at McGill in 2005 and is discussed 

later. 

On their side, Kuiper et al. (2007) tried to improve the description of the 

hydrodynamic drag, but their results did not meet their expectations and they 

decided to undertake experiments with a long pipe (Kuiper and Metrikine, 2008). 

In this new set-up, a cantilevered plastic pipe, about 5 m long with a diameter of 

0.1 m, was partially submerged in water. For the first time, it was observed that 

for a sufficiently high flow velocity, an aspirating cantilevered pipe can lose 

stability. But, above this critical velocity, the behaviour of the pipe is a complex 

motion combining two phases: a nearly periodic orbital motion alternating with a 

noise-like vibration of small amplitude. The experimental results were compared 

to existing theory. Although the main frequency is well predicted, it was not 

possible to predict the unsteady unstable motion, the amplitude of the steady 

state orbital motion, and the critical flow velocity at the onset of flutter. These 

results elicit the necessity to further study the problem.  

Independently of the above, in the recent past, Giacobbi (2007), Giacobbi 

et al. (2008), Païdoussis (2008) and Rinaldi (2009) carried out a general 

experimental, theoretical and numerical investigation of this problem. Using a 

computational fluid dynamics and finite element analysis model in ANSYS, 

Giacobbi undertook a numerical simulation of the problem. Some problems 

concerning length of the computing periods and mesh deformation were 

encountered, but this method gave some significant results. First, the aim of the 

initial numerical experiment was to study the flow field in the vicinity of the 

intake to get a good estimation of the parameters �, � and ��. Then, the stability 
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of the system was investigated and it was shown that it is definitely subject to 

flutter at flow velocities in the range of those observed experimentally. This 

numerical investigation is still being pursued. A review of the analytical model 

was performed by Rinaldi (2009). She rederived the equations of motion 

including the effect of gravity and modified it. Considering that the force exerted 

at the intake does not materialize instantaneously, two distinct time-delays are 

included in the equations, one for each component of this force. New 

experiments in air were also conducted and it was shown that for an appropriate 

set of axial and lateral time delay values, the theoretical and experimental 

results are in good agreement. The system loses stability by flutter in its first 

mode. However, it is worth pointing out that Rinaldi also observed an 

unexplainable and intermittent shuddering motion characterized by a decrease 

of the amplitude of the system, and a shell-type collapse of the free end of the 

cantilevered pipe in the absence of a stiffening end-piece.   
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Chapter 2:  Dynamics of a 

Cantilevered Shell Aspirating Fluid 

2.1 Introduction 

As presented in Chapter 1, a lot of work has been carried out on the 

subject of cantilevered shell aspirating fluid over the past years. If it was first 

motivated by fundamental interest, it recently appears necessary to investigate 

this problem, as industrial installations now utlizise this kind of system; e.g. in 

boats liquefying the gas on board. Experiments were conducted a few years ago 

by Rinaldi (2009) at McGill University, Montreal, Canada. Her experiments 

involved a thick-walled cantilevered pipe that was aspirating air. It, unexpectedly, 

experienced a shell-type instability at rather low flow velocity. Although she by-

passed the problem by adding a stabilising end-piece, the question of the 

stability of cantilevered shell arose. 

In this Chapter, an analytical model of this problem will be developed. 

The equations of motion will first be derived; a method to find solution to these 

equations will then be presented. It will be followed by a discussion about the 

theoretical results and the experimental observations. 

2.2 Equations of Motion 

For the shell under consideration, the configuration is presented in Figure 

2.1.a. It consists of a flexible cantilevered cylindrical shell aspirating fluid. The 

shell is characterized by a length L, a radius a, a wall thickness h, a cross-sectional 

flow area A, a density ρs, a Young’s modulus E and a Poisson’s ratio ν. The fluid 

has density ρf and a velocity U inside the shell. The cylindrical coordinate system 

(r, θ, x) shown in Figure 2.1.b is used due to cylindrical nature of the system. Its 

origin is located on the tube axis at the clamped end of the shell. The 
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displacement components of the middle surface are u, v and w with w being 

positive outward.   

a)  b)  

Figure 2.1: a) A cantilevered shell aspirating fluid and b) the coordinate system and some key dimensions 

[Païdoussis et al. (2005)] 

2.2.1 Model Assumptions 

In order to develop a first mathematical model for this configuration, 

some assumptions need to be made. First of all, we shall consider only small 

deformations of the middle surface of the shell. The important consequence of 

this hypothesis is that it allows to describe this problem using a linear theory. For 

this purpose, we employ the modified Flügge theory based on the following 

assumptions: 

(1) the shell is sufficiently thin compared with the least radius of 

curvature of the reference surface, i.e. 	/� � 1; 

(2) the strains are small enough for Hooke’s law to hold; 

(3) the stress acting in the direction normal to the reference surface is 

negligible compared with the stresses acting in a direction parallel to 

the middle surface; 

(4) any straight line normal to the undeformed reference surface remains 

straight and normal to the deformed reference surface and their 

length is not affected; 

Clamped 

end 

Free end 

Shell 
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(5) in deriving the expressions for strain and stress resultants, second 

order terms are retained; this means that terms of orders up to �	 �⁄ �� are taken into account. 

The first four hypotheses constitute the classical theory of shells 

proposed by Love in 1888 and presented in his book (1927). All these 

assumptions are relative to the shell. Regarding the fluid flow, we consider it as a 

potential flow and the fluid to be incompressible. This means that the flow is 

irrotational, inviscid, non-heat-conducting, homogeneous and incompressible.  

However, we will take into account steady viscous effects and pressurization 

effects in this theory. And, when it comes to calculating friction-related stress 

resultants, we consider the flow to be a fully-developed turbulent flow. In this 

theory, the shell is subjected to two kinds of load: a static part and a time 

dependent one. The magnitude of the steady components, called basic loads, is 

much larger than the other ones, viewed as additional loads. Finally, the shell is 

pre-stressed by a constant axial force per unit surface area, ���, and an axially 

symmetric pressure, ��. These forces generate a basic axial stress, ���, and a 

basic hoop stress, ���. So that the stress resultants �� and �� and the loads ���  

and ���  represented in the Figure 2.2 are the combination of the former 

components and an additional time-varying part: 

� ��� � �� � ��,��� � ��� � ���,�� � ��� � ���,�� � ��� � ���.� (2.1) 

All the other components consist only of an additional part and will not be 

denoted by any subscript. 

As we are using air in the experiments, the incompressibility assumption 

may seem inappropriate but the velocity is sufficiently small for this assumption 

to hold.  
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Figure 2.2: Stress and moment resultants acting on a shell element 

2.2.2 Derivation of the Fundamental Equations 

The derivation is carried out in two major parts following the lead of 

Yamaki’s book (1984): 

(i) obtaining the expressions of the time-dependent stress resultants and 

stress couples; 

(ii) deriving the equations through a variational principle. 

Here, we will just describe the most important steps in the employed 

method; more elaborate explanations are presented in Appendices A and B. The 

definitions of the stress resultants and moments are defined in the first chapter 

of Flügge’s book (1973).  To obtain the relevant expressions in our particular case, 

we first need to express the displacement of an arbitrary point of the shell 

according to the displacement of the point located on the reference surface. 

Then, we can define the strain expression considering only εx, εθ and γxθ. Using 

assumptions 2 and 3, we determine the corresponding stresses. Introducing 

them in the definitions of the stress resultants and couples, we get their final 

expressions (Appendix A).  

Before applying the variational principle, we have to determine the 

expressions of the variation of the elastic strain energy and of the potential of 

the external force. The first one is given by 

�� � 12    �!��"� � !��"� � !������ #1 � $�% �&'&(&$)/�
*)/�
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�
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and the variation of this elastic strain energy is expressed as 

��� �    �!���"� � !���"� � !������� #1 � $�% �&'&(&$)/�
*)/�

�+,
�

-
� . (2.3) 

To express the variation of the potential of the external force, we have to 

consider the deformation of the shell. Indeed, to consider all the terms of first 

order in the equations of motion, we have to remember that one component of 

the loads is of zero order. As a result, the product of the latter with a 

displacement or its derivative is of order one and has to be taken into account. 

Finally, the expression of this variation is given by 

��2 � 3   4��� 561 � 7,�� 8,�� 9� : �7 � 8,� �8; � ��� �8�+,
�

-
� 3 ��� 59,� �7 � 9,�3 8� �8

3 61 � 7,�� 8,�� 9� : �9;< �&'&(
3  =>���7 � >?��8 3 >���9 � /���9,� @�A��A-�&(�+,

� , 
(2.4) 

where >��, >?�, >�� and /�� are respectively the three components of the external 

load and the bending moment applied to the edge of the shell. If the additional 

load acting on the pre-stressed shell has only a radial component, ��� , �?�  �C& ��� 

consist in the association of the basic loads presented in equation (2.1), the 

acceleration terms and the radial additional load for the last one: 

DEE
FE
EG ��� � ��� 3 H�	 I�7IJ� ,

��� � 3H�	 I�8IJ� ,
��� � �� � K 3 H�	 I�9IJ� ,

� (2.5) 

where q, as it is a radial load, is given by the difference between the fluid 

pressure inside the shell, pi, and the fluid pressure outside the shell, pe:  
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K � ��L 3 ��|1A, (2.6) 

The variational principle states that 

��� � ��2 � 0. (2.7) 

Developing this expression and keeping only the terms of zero order, we 

get 

DEF
EGI���I' � 3���,I���I( � 0,

�� � ���� .
� (2.8) 

At the zero order, the shell can be considered as an axially symmetric 

pipe; so, neither ��� or ��� will depend of the θ component. ��� represents the 

wall shear stress of a fully-developed pipe flow. Whether it is laminar or 

turbulent, it has been shown by Fox et al. (2009) that 

��� � 3 18 P2H2��, (2.9) 

where λf is the friction factor given in Fox et al. (2009). To get the pressure 

distribution along the shell, we simply have to consider the equilibrium of a small 

section of the fluid inside a pipe. It is only subjected to steady pressure and 

steady viscous effect. The length of this region being dx and the radius a, we 

obtain 

6�� � I��I' &': Q�� 3 ��Q�� � ���2Q�&' � 0, (2.10) 

so that 

I��I' � 2 ���� � 0. (2.11) 
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Integrating equation (2.11) along the shell, we get 

���'� � 2 ���� �R 3 '� � S�� , (2.12) 

and from equations (2.8), we obtain 

4 ��� � ����R 3 '� � S�,��� � 2����R 3 '� � S�,� (2.13) 

where C1 and C2 are constant, depending only on the boundary conditions. This 

will be discussed later. 

Hence, we finally obtain the equations of motion: 

R��7, 8, 9� � 7TT � 1 3 U2 7·· � 1 � U2 8W· � U9T
� X, 51 3 U2 7·· 3 9TTT � 1 3 U2 9W··; � Y�7TT
� Y�8 · � 9� � Y��7·· 3 9W� 3 � I�7IJ� � 0, 

(2.14) 

R��7, 8, 9� � 1 � U2 7W· � 8 ·· � 1 3 U2 8TT � 9 ·
� X, 53 1 3 U2 8TT 3 3 3 U2 9WW·; � Y�8TT � Y��8 ·· � 9 ·�
3 � I�8IJ� � 0, 

(2.15) 

R[�7, 8, 9� � U7T � 8 · � 9
� X, 51 3 U2 7W·· 3 7TTT 3 3 3 U2 8WW· � \]w � 2w··
� w; 3 Y�9TT 3 Y��7T 3 8 · � 9 ··� � � _I�9IJ� 3 KH�	`
� 0, 

(2.16) 

where  

� �· � II( , � �T � � II' , X, � 112 6	�:� , � � H����1 3 U��a  

\�� a� ∂�∂x� � ∂�∂θ� , fY�, Y, Y�g � 1 3 U�a	 f���, ����, ���g. 
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2.2.3 Boundary Conditions 

From the variational principle (see Appendix B) used in the Section 2.2.2, 

we can get the usual boundary conditions for a cantilevered shell: 

�J ' � 0:                       7 � 8 � 9 � I9I' � 0;         
�J ' � R:                   

DEE
F
EEG

���� � >��,���� � >?� ,��� � 0,��� 3 /��� � 0,/� � 0,�/� ,�� /�� ,�� /�� ,� � 0.
�
 

(2.17) 

But here we are considering a shell that is aspirating fluid, so that the 

intake of the shell is not stress-free. We have to consider that forces are exerted 

at this end due to the fluid entering the shell. The configuration of the vibrating 

end of a shell is presented in Figure 2.3.a. Because of the circular shape of the 

shell, the direction of the flow velocity depends of the position along the 

circumference of the intake. That is why we will determine the fluid forces acting 

on a small part of the free end inclined at an angle j k tan*��9,� �- n �9,� �-. 

Before entering the shell, the flow velocity is V, and upon entering the shell it 

becomes U. As we consider shell vibrations, V will remain vertical. So that the 

norm and the direction of the fluid velocity change at the intake inducing a 

change in momentum, o�∆�. To determine the expression of the mass m, we 

consider that the force exerted on the considered part of the intake is only due 

to the change of momentum of the fluid going through the region whose area is 

A1  represented in Figure 2.3.b and that the fluid flow is equally distributed 

among the cross section: 

o � /2Q &(, (2.18) 

where / � H2Q�� is the mass of fluid per unit length of the shell.  
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a)  b)  

Figure 2.3: a) A cylindrical shell showing the configuration of a shell element at the free end and b) the 

forces acting on it. 

Because of this phenomenon, a force that we separate in two 

components arises: 

qr � /&(2Q ��� 3 � cos j�, (2.19) 

qv � /&(2Q � w0 3 6� sin j � I9IJ :y, (2.20) 

where � � � �⁄ . As j is supposed to be small, cos j n 1 and sin j n �9,� |-, and 

thus 

qr � 3 /&(2Q ���1 3 ��, (2.21) 

qv � 3 /&(2Q ���9,z |- � ��9,� |-�. (2.22) 

These are the forces exerted by the shell on the fluid. But we are 

interested in the reaction: the forces exerted on the shell, 

qr� � /&(2Q ���1 3 ��, (2.23) 

qv� � /&(2Q ���9,z |- � ��9,� |-�. (2.24) 
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Therefore the fluid forces acting at the shell intake in the x- and z-

direction (see Figure 2.3.b) are: 

q�� � /&(2Q ���1 3 ��, (2.25) 

q�� � /&(2Q ���9,z |- � ���9,� |-�. (2.26) 

It is now supposed that the force q�� is due to the pressure drop at the 

shell intake. We also have to consider that a compression force, T, is acting on 

the lips of the shell. Then, 

3���� � q�� � /&(2Q ���1 3 ��, (2.27) 

| � 3������ 3 ��� � � �� 3 ����
/&(2Q ���1 3 ��

� �� /&(2Q ���1 3 ��, (2.28) 

where �� � ���R�, A0 is the outer sectional area of the region considered and �� � � ��*���� . Finally, the force acting at the shell intake in the x-direction is 

| 3 ���� � /&(2Q ���1 3 ���1 � ���. (2.29) 

It is of order zero and it allows us to determine the constant C1 of (2.13): 

�&(����R� � | 3 ���� � /&(2Q ���1 3 ���1 � ���, (2.30) 

yielding 

����R� � S� � H2�2 ���1 3 ���1 � ���. (2.31) 

Furthermore, we know that ����R� � ���, and from (2.27) we get 

����R� � S� � 3 H2�2 ���1 3 ��. (2.32) 
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Equation (2.26) is of the first order. That is why it has to be inserted in the 

expression of the boundary conditions. As the force is in the direction of the z-

axis, only the fourth expression of (2.17) changes and it becomes 

/2Q ���9,z |- � ���9,� |-� 3 ��/� ,�� /�� ,�� /�� ,� � � 0 �J ' � R. (2.33) 

Finally, we get the expressions of all the boundary conditions in terms of 

displacement 

���7, 8, 9� � 7T � U8 · � U9 3 X9TT � 0, (2.34) ���7, 8, 9� � 7· � 8T � 3X�8T 3 9W·� � 0, (2.35) �[�7, 8, 9� � 9TT � U9 ·· 3 U8 · 3 7W � 0, (2.36) 

�]�7, 8, 9� � 39TTT 3 �2 3 U�9T·· � 3 3 U2 8T· 3 1 3 U2 7··
�7TT � H2��2 ���9,z |- � ���9,� |-� � 0.  (2.37) 

2.2.4 Dynamics of the Fluid Flow 

In the equations of motion, we still need to develop the expression of the 

perturbation pressure inside and outside of the shell. Recalling that the fluid flow 

we consider is irrotational, inviscid, homogeneous and incompressible, we will 

use potential flow theory. It specifies that the velocity ��� can be expressed by a 

velocity potential Ψ�', (, ., J�: 

��� � \���Ψ. (2.38) 

From the former analysis, the potential Ψ can be separated into two 

components: a steady one giving the mean flow velocity U in the x-direction and 

a disturbed component defined by the scalar Ψ�', (, ., J�. The same is also true 

for the pressure: 

Ψ � �' � ψ, (2.39) > � �� � �. (2.40) 
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Hence, the general expressions of the flow and pressure fields are given 

by 

�� � � � IψI' , �� � 1. IψI( , �1 � IψI. . (2.41) 

The fluid flow being incompressible and irrotational, the velocity 

potential is governed by the Laplace equation: 

\�Ψ � ∂�ψ∂r� � 1r ∂ψ∂r � 1r� ∂�ψ∂θ� � ∂�ψ∂x� � 0. (2.42) 

It also has to respect the impermeability condition at the wall: 

�∂ψ∂r ��A�� � �∂w∂t � � ∂w∂x      for 0 � x � L    0      for x � 0 �C& ' � R �  (2.43) 

�∂ψ∂r ��A�� � � ∂w∂t      for 0 � x � L 0      for x � 0 �C& ' � R� (2.44) 

Here, we should say some words about the boundary conditions of the 

potential ψ at the intake and outlet of the shell. At the clamped end, it is natural 

to assume that ψ vanishes for all x<0. On the contrary, we cannot assume the 

same where the shell is free to move. We have to consider that the fluid is 

already perturbed when entering the shell. That is why we need to elaborate a 

model to specify the evolution of the velocity potential and of the fluid pressure 

for R � ' � RW, where L’ is the position where both quantities are equal to zero. 

The elaboration of this model will be discussed in Section 2.3.2, once we have 

determined the general form of the solution. 

Finally, the unsteady pressure and potential are related to each other 

through the Bernouilli’s equation: 

IψIJ � ��2 � >H2 � >�H2 , (2.45) 

where Ps is the stagnation point pressure.  
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We finally have: 

_�� 3 >� � H2 ��2 ` � 5H2 ∂ψ∂t � H2� IψI' � �;
� 12 H2 _6IψI' :� � 61. IψI(:� � 6IψI. :�` � 0. (2.46) 

The first term of (2.46) is time-independent but the second one is not. The third 

is non-linear and will be neglected. As a consequence, each of these terms is 

equal to zero: 

�� � >� 3 ρ� U�2 , (2.47) 

� � 3ρ� 6∂ψ∂t � � IψI' :. (2.48) 

2.3  Method of Solution 

2.3.1 General Form of the Solution 

To find solutions of the problem presented in the previous section, we 

have to consider two different sets of equations referring to the dynamics of the 

fluid and to the motion of the shell. 

The expression of the pressure drop between the inner fluid and the 

outer fluid is governed by the equations (2.42) to (2.44) and (2.48). To solve this 

set of equations, we shall use the Fourier-Transform Generalized-Force method 

that was used by Chan (1984). Then, we substitute this solution into the 

equations of motion. We finally use the extended form of the Galerkin method 

to solve them. 

To satisfy these equations, the general form of the solution we consider is 

close to the one governing the motion of cantilevered pipe: 

�789� � � � ��� cos C( 6� II':�� sin C(S� cos C( � ���'��LΩz¡
�A�

¡
¢A� , (2.49) 
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where m and n are respectively the axial and circumferential mode, Am, Bm and 

Cm are constants, Ω the frequency of oscillations and �� are the eigenfunctions 

of clamped-free pipe. The expressions of these functions and of the eigenvalues, P�, are given in Paidoussis (1998). They do not satisfy the boundary conditions 

of a cantilevered shell. That is why we have to use the extended Galerkin method 

and look for a series-form solution. 

 Considering the general form of the displacement, the expression of the 

unsteady pressure and velocity potential is given by 

4£L�L < � � 4£¤L�', .���L�', .�< cos C(¡
¢A� �LΩz, (2.50) 

4£¥�¥ < � � 4£¤¥�', .���¥�', .�< cos C(¡
¢A� �LΩz, (2.51) 

where the subscript i denotes the inner fluid properties and o the outer fluid 

ones. 

2.3.2 Expression of the Unsteady Pressure 

As explained before, we use a Fourier-Transform method to obtain the 

expression required. The Fourier transform of a function f(x,r) is given by 

¦���, .� �  ¦�', .��L§�&'¨¡
*¡ , (2.52) 

and its inverse is 

¦�', .� � 12Q  ¦���, .��*L§�&�¨¡
*¡ , (2.53) 

where α should not be confused with that in Section 2.2.3. 

First, we introduce the expression of the velocity potential into (2.42). 

The result is the same for both internal and external problems and we suppress 

the subscript here: 
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� ©∂�ψª∂r� � 1r ∂ψª∂r 3 n�r� ψª � ∂�ψª∂x� «¡
¢A� cos C( � 0. (2.54) 

We then take the Fourier transform: 

� ©∂�ψª�∂r� � 1r ∂ψª�∂r 3 ©α� � n�r�« ψª�«¡
¢A� cos C( � 0. (2.55) 

As this infinite series in cos C( is identically equal to zero, each term has 

to vanish: 

­C, ∂�ψª�∂r� � 1r ∂ψª�∂r 3 ©α� � n�r�« ψª� � 0. (2.56) 

We recognize the modified Bessel differential equation, whose general solution 

takes the form 

ψª� � S�®¢��.� � S� ¢̄��.�, (2.57) 

where ®¢ and ¢̄ are the modified Bessel functions of the first and second kinds, 

and C1 and C2 are constants to be determined from the boundary conditions. 

Now we need to separate the study for the internal and external flow.  

For the internal flow, we substitute (2.57) into (2.43), obtaining 

�� ∂£¤L∂r �', .�¡
¢A� °�A� cos C(�LΩz

� � � S� 6±Ω���'� � � ∂��∂x : cos C( �LΩz¡
�A�

¡
¢A� ; (2.58) 

we then take the Fourier transform and we get 

�� ∂ψª ²�∂r ��, .�¡
¢A� °�A� cos C( � � � S�±�Ω 3 ������ ��� cos C(¡

�A�
¡

¢A� . (2.59) 

For the same reason as before, the coefficients of  cos C( have to be 

equal. Taking the derivative of (2.57), we obtain 
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�∂ψª ²�∂. ��, .�³�A� � S�L�®¢T ���� � S�L� ¢̄T ����
� ±�Ω 3 ��� � S���� ���¡

�A� . (2.60) 

Since the velocity cannot be infinite for r=0, S�L � 0 and, therefore, 

S�L � ± Ω 3 ���®¢T ���� � S���� ���¡
�A� . (2.61) 

Next, from (2.48), we obtain the expression of the Fourier transform of 

the perturbed internal pressure: 

�L� � 3H2±�Ω 3 ��� � ψª ²� cos C(¡
¢A� � � ��L� cos C(¡

¢A� . (2.62) 

Equating the terms in cos C( again, we obtain 

��L� � H2 �Ω 3 ����� ®¢����®¢T ���� � S���� ���¡
�A� . (2.63) 

Starting again from equation (2.57) but for the external flow and using 

(2.44), we get: 

�∂ψª �́∂. ��, .�³�A� � S�¥�®¢T ���� � S�¥� ¢̄T ���� � ±Ω � S���� ���¡
�A� . (2.64) 

As we are dealing with the outer velocity potential, it cannot become infinite as . µ �∞ and thus S�¥ � 0; hence, 

S�¥ � ± Ω� ¢̄T ���� � S���� ���¡
�A� . (2.65) 

The external perturbation pressure is, therefore, 

���� � H2 Ω�� ¢̄����
¢̄T ���� � S���� ���¡

�A� . (2.66) 



Chapter 2 

35 | P a g e  

 

Considering the general form of the unsteady pressure, the term q is 

given by: 

K � � K¤�', .� cos C(¡
¢A� �LΩz    with   K¤ � ���L 3 ��¥|1A, . (2.67) 

To get the expression of K¤, we have to take the inverse Fourier transform 

of (2.63) and (2.66). But, as it will be more convenient afterwards, we should first 

nondimensionalize these equations. We define the following reference velocity, 

frequency and pressure: 

�� � 5 aH��1 3 U��;�/� ,       Ω� � 5 aH����1 3 U��;�/� ,     0� � H�	RΩ��; (2.68) 

and the dimensionless parameters: 

�ª � ��� ,     Ωª � √�Ω � ΩΩ� ,     ε � �R ,     �¤ � �R,
º � 'R ,     ��¤¤¤¤ � ��R ,     ��¤¤¤¤ � ��R ,     S�¤¤¤¤ � S�R .  (2.69) 

We can therefore express the perturbation pressures as 

��L� � H2 R����¤ ©Ωªε 3 �¤�ª«� ®¢��¤"�®¢T ��¤"� � S�¤¤¤¤��� ��¤�¡
�A� , (2.70) 

��¥� � H2 R����¤ ©Ωªε «� ¢̄��¤"�
¢̄T ��¤"� � S�¤¤¤¤��� ��¤�¡

�A� , (2.71) 

where ��� ��¤� � » ���º��L§ª¼&º¨¡*¡ . 

Finally we obtain the expression of K¤ by taking the difference of the 

Fourier transform of the two equations above. It has the general form 

K¤ � 12Q  �*L§ª¼ &�¤R �H2 R����¤ ½©Ωªε 3 �¤�ª«� ®¢��¤"�®¢T ��¤"�
¡

*¡
3 ©Ωªε «� ¢̄��¤"�

¢̄T ��¤"�` � S�¤¤¤¤��� ��¤�¡
�A� ¾ � � S�¤¤¤¤0�¢�º�¡

�A� , (2.72) 
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where 

0�¢�º� � H2 ���2Q  �*L§ª¼αª &�¤ �½©Ωªε 3 �¤�ª«� ®¢��¤"�®¢T ��¤"�
¡

*¡
3 ©Ωªε «� ¢̄��¤"�

¢̄T ��¤"�` ��� ��¤�¾. (2.73) 

So far, we considered a simplified model: the unsteady pressure becomes 

suddenly non-zero when the fluid enters the shell. To get more realistic results, it 

might be better to consider more elaborate models describing the behaviour of 

the flow before entering the shell at its free end. Here, we present different 

models that ensure some continuity of the pressure at the intake of the shell and 

where the pressure is close to zero at a finite distance l ahead of the intake. The 

characteristics of the models are as follows: 

• Model 1: continuity of the pressure at ξ=1 and ξ=l; 

• Model 2: continuity of the pressure at ξ=1 and ξ=l and of its 

derivative at ξ=1; 

• Model 3: continuity of the pressure and its derivative at ξ=1 and 

ξ=l; 

• Model 4: continuity of the pressure and its derivative at ξ=1 and 

ξ= l, l µ �∞. 

To implement the above, in the previous equations, we replace �� by �� � ��. �� is non-zero only over [1,l]. A more detailed description of these 

models and their expressions are presented by Nguyen in his thesis (1992) and in 

Nguyen et al. (1993). Equation (2.73) now becomes 

0�¢�º� � ρ� U��2Q  �*L§ª¼αª &�¤ �½©Ωªε 3 αª�ª«� ®¢��¤"�®¢T ��¤"�
¡

*¡
3 ©Ωªε «� ¢̄��¤"�

¢̄T ��¤"�` �φÀ� � RÀ� ��αª�¾. (2.74) 
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Furthermore, we shall use the extended Galerkin method. The 

comparison functions will be the beam eigenfunctions and the domain of 

integration [0,1] with respect to the variable ξ. Thus, the nondimensionalized 

general force is given by 

0Â�¢¤¤¤¤¤¤¤ � 10�  0�¢�º��Â�º�&º�
�

� ρ��H�	 "2Q  1αª �½©Ωªε 3 αª�ª«� ®¢��¤"�®¢T ��¤"�
¡

*¡
3 ©Ωªε «� ¢̄��¤"�

¢̄T ��¤"�`¾ ÃÂ���¤�&�¤, 
(2.75) 

where  ÃÂ���¤� � #» �Â�º��*L§ª¼&º�� % #» ���º��L§ª¼&º�� � » ���º��L§ª¼&ºÄ� %. 

The following notations will be used: 

µÆ � ρ��H�	,     a¢��¤� � ®¢��¤"�®¢T ��¤"�,     q¢��¤� � ¢̄��¤"�
¢̄T ��¤"�. (2.76) 

Regrouping the terms depending of the square of the velocity, of the 

velocity and of the frequency and of the square of the frequency in (2.75), we 

can write 

0Â�¢¤¤¤¤¤¤¤ � KÂ�¢��� Ωª� � 2KÂ�¢��� �ªΩª � KÂ�¢�[� �ª�,     (2.77) 

where 

KÂ�¢��� � µÆ2Q"  a¢��¤� 3 q¢��¤�αª ÃÂ���¤�&�¤¡
*¡ , (2.78) 

KÂ�¢��� � 3 µÆ2Q  a¢��¤�ÃÂ���¤�&�¤¡
*¡ , (2.79) 

KÂ�¢�[� � µÆε2Q  �¤a¢��¤�ÃÂ���¤�&�¤¡
*¡ . (2.80) 
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2.3.3 Solution to the Equations of Motion 

The expression of the perturbation pressure has now been fully 

determined. We can now look for solutions for the problem of the cantilevered 

shell aspirating fluid governed by the equation (2.14) to (2.16) and subjected to 

the boundary conditions (2.34) to (2.37) by introducing (2.77) into those 

equations. As explained before, the extended form of the Galerkin method is 

used. In this part, we consider the following nondimensionalized form of the 

perturbation displacements and of the corresponding variations 

�789� � R � �
DEF
EG��¤¤¤¤ cos C( 6" IIº:��¤¤¤¤ sin C(S�¤¤¤¤ cos C( ÇEÈ

EÉ ���º��LΩz¡
�A�

¡
¢A� , (2.81) 

��7�8�9¾ � R � �
DEF
EG��Â¤¤¤¤ cos Ê( 6" IIº:��Â¤¤¤¤ sin Ê(�SÂ¤¤¤ cos Ê( ÇEÈ

EÉ �Â�º��LΩz¡
ÂA�

¡
ÄA� , (2.82) 

where m and n are respectively the axial and circumferential mode of the 

displacement and k and l are respectively the axial and circumferential mode of 

the corresponding variations. 

The extended form of the Galerkin method is then given by 

�a �  ËÌ"  =R��7 � R��8 3 R[�9@&º�
�

�+
�

3 Ì 5���7 � 1 3 U2 ���8
� X,��["�9T � �]�9�;¼A�Í &( � 0, 

(2.83) 

where the derivative is now defined by � �T � I� � Iº⁄ .  
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Substituting (2.81) and (2.82) into the expressions of the boundary 

conditions, we obtain 

����7|¼A� � R���LΩz � � cos C( cos Ê( ¦Î��C�¡
ÄA�

¡
¢A� , (2.84) 

����8|¼A� � R���LΩz � � sin C( sin Ê( ¦Î��C�¡
ÄA�

¡
¢A� , (2.85) 

��["�9W|¼A� � R���LΩz � � cos C( cos Ê( ¦Î[�C�¡
ÄA�

¡
¢A� , (2.86) 

��]�9|¼A� � R���LΩz � � cos C( cos Ê( ¦Î]�C�¡
ÄA�

¡
¢A� , (2.87) 

where 

¦Î��C� � � � ��Â¤¤¤¤Ï��¤¤¤¤ÐUC"���1��WÂ�1�Ñ¡
ÂA�

¡
�A� � S�¤¤¤¤ÐU"���1��WÂ�1�ÑÒ, (2.88) 

¦Î��C� � � � ��Â¤¤¤¤Ï��¤¤¤¤Ð3C"�W��1��Â�1�Ñ¡
ÂA�

¡
�A� � ��¤¤¤¤Ð"�1 � 3X��W��1��Â�1�Ñ� S�¤¤¤¤Ð3CX,"�W��1��Â�1�ÑÒ, 

(2.89) 

¦Î[�C� � � � �SÂ¤¤¤Ï��¤¤¤¤Ð3UC"���1��WÂ�1�Ñ¡
ÂA�

¡
�A� � S�¤¤¤¤Ð3UC�"���1��WÂ�1�ÑÒ, (2.90) 

¦Î]�C� � � � �SÂ¤¤¤ ½��¤¤¤¤ ©1 3 U2 C�"�W��1��Â�1�«¡
ÂA�

¡
�A�

� ��¤¤¤¤ ©3 3 U2 "C�W��1��Â�1�«
� S�¤¤¤¤ w�2 3 U�C�"�W��1��Â�1�
� Ó�"2X, �ª _± Ωªε ���1� � �ª��W��1�` �Â�1�yÔ. 

(2.91) 
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We obatin something similar for the equations of motion: 

R��7 � R���LΩz � � cos C( cos Ê( ¦-��C, º�¡
ÄA�

¡
¢A� , (2.92) 

R��8 � R���LΩz � � sin C( sin Ê( ¦-��C, º�¡
ÄA�

¡
¢A� , (2.93) 

R[�9 � R���LΩz � � cos C( cos Ê( ¦-[�C, º�¡
ÄA�

¡
¢A� , (2.94) 

with 

¦-��C, º� � � � ��Â¤¤¤¤ _��¤¤¤¤ 6"��W��º��WÂ�º� 5Ωª�¡
ÂA�

¡
�A�3 1 3 U2 C��1 � X,� 3 Y��º�C�;

� "]�WWW��º��WÂ�º�=1 � Y��º�@:
� ��¤¤¤¤ ©1 � U2 C"��W��º��WÂ�º�
� Y�º�C"���º��WÂ�º�«
� S�¤¤¤¤ ©"��W��º��WÂ�º� 5U 3 X, 1 3 U2 C� 3 Y��º�;
3 X,"]�WWW��º��WÂ�º� � Y�º�"���º��WÂ�º�«`, 

(2.95) 

¦-��C, º� � � � ��Â¤¤¤¤ _��¤¤¤¤ ©3 1 � U2 C"��WW��º��Â�º�«¡
ÂA�

¡
�A�� ��¤¤¤¤ 6���º��Â�º�ÏΩª� 3 n�Ð1 � τÖ�º�ÑÒ

� "��WW��º��Â�º� 51 3 U2 �1 � 3X,� � Y��º�;:
� S�¤¤¤¤ 6���º��Â�º�Ï3CÐ1 � τÖ�º�ÑÒ
� "��WW��º��Â�º�X, 3 3 U2 C:`, 

(2.96) 
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¦-[�C, º� � � � �SÂ¤¤¤ ½��¤¤¤¤ 6���º��Â�º�=3X,P�] "]@¡
ÂA�

¡
�A�

� "��WW��º��Â�º� 5U 3 X, 1 3 U2 C� 3 Y��º�;:
� ��¤¤¤¤ 6���º��Â�º�C=1 � Y��º�@
3 "��WW��º��Â�º� 3 3 U2 X,C:
� S�¤¤¤¤ w���º��Â�º�=1 � X,P�] "] � X,�C� 3 1��
� Y��º�C� 3 Ωª� @ 3 "��WW��º��Â�º�=2C�X, � Y��º�@
3 0�¢�º�0� �Â�º�yÔ. 

(2.97) 

In the above, we took into account that �WW��1� � �WWW��1� � 0 and �WWWW��º� � P�] ���º�. We can now re-write the expression of the variation of 

the energy: 

�a � R���LΩz  ËÌ"  ½� �Ðcos C( cos Ê( ¦-��C, º�¡
ÄA�

¡
¢A�

�
�

�+
� � sin C( sin Ê( ¦-��C, º�

3 cos C( cos Ê( ¦-[�C, º�ÑÔ &º
3 Ì � � ©cos C( cos Ê( =¦Î��C, º� � X,¦Î[�C, º�¡

ÄA�
¡

¢A�
� X,¦Î]�C, º�@ � 1 3 U2 sin C( sin Ê( ¦Î��C, º�«Í &(. 

(2.98) 

We can invert the order of the integral and we also know that 

 cos C( cos Ê( &(�+
� �  sin C( sin Ê( &(�+

� � 40 ±¦ C × ÊQ ±¦ C � Ê� (2.99) 
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Thus, only the terms corresponding to n=l are not equal to zero, and 

�a � R���LΩzÌQ � Ë1"  =¦-��C, º� � ¦-��C, º� 3 ¦-[�C, º�@&º�
�

¡
¢A�

3 5¦Î��C, º� � X,¦Î[�C, º� � X,¦Î]�C, º�
� 1 3 U2 ¦Î��C, º�;Í. 

(2.100) 

To simplify the writing, we define some new notations: 

�Â� � » �WÂ�º����º�&º�� ,ØÂ� � » �Â�º��WW��º�&º�� ,ÙÂ� � » º�Â�º����º�&º�� ,XÂ� � » º�Â�º��WW��º�&º,���Â� � �WÂ�1����1� � 4PÂ!Â�31�Â¨�,
 

ÛÂ� � » �WÂ�º��W��º�&º�� ,&Â� � » �WÂ�º��WWW��º�&º�� ,	Â� � » º�TÂ�º��T��º�&º�� ,ÊÂ� � » º�WÂ�º��WWW��º�&º�� ,¦Â� � ��Â,
 

(2.101) 

where !Â � Ü²ÝÞ ßà*Ü²Ý ßàá´ÜÞ ßà¨á´Ü ßà. The values of the eigenfunctions at both ends of the 

shell and of the previous expressions are given in Nguyen (1992). We also 

nondimensionalized the expression of the basic stresses and loads: 

Y� � �â�º � �ã�, Y � �ã�, Y� � �â[º � �ã[, (2.102) 

where 

�â� � 3Ó��ª� P28", �ã� � Ó��ª� P28 , �â[ � 3Ó��ª� P24", 
(2.103) �ã� � Ó��ª� wP28" � 12 �1 3 ���1 � ���y, �ã[ � Ó��ª� wP24" 3 �1 3 ��y. 
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Thus, we can write: 

 ¦-��C, º�&º�
� � � � ��Â¤¤¤¤ 5��¤¤¤¤ 6"�ÛÂ� 5Ωª� 3 1 3 U2 C��1 � X,�¡

ÂA�
¡

�A�
3 �ã[C�; 3 C�"��â[	Â� � "]Ï1 � �ã�Ò&Â�
� "]�â�ÊÂ�: � ��¤¤¤¤ 61 � U2 C"�ÛÂ� � �ã�C"�Â�:
� S�¤¤¤¤ 6"�ÛÂ� 5U 3 X, 1 3 U2 C� 3 �ã[; 3 "�	Â��â[
3 X,"]&Â� � �ã�"�Â�:;, 

(2.104) 

 ¦-��C, º�&º�
� � � � ��Â¤¤¤¤ 5��¤¤¤¤ 63 1 � U2 C"�ØÂ�:¡

ÂA�
¡

�A�� ��¤¤¤¤ 6�Â�ÏΩª� 3 n�Ð1 � �ã[ÑÒ 3 C��â[ÙÂ�
� "�ØÂ� 51 3 U2 �1 � 3X,� � �ã�; � "�XÂ��â�:
� S�¤¤¤¤ 6�Â�Ï3CÐ1 � �ã[ÑÒ 3 C�â[ÙÂ�
� "�ØÂ�X, 3 3 U2 C:;, 

(2.105) 

 ¦-[�C, º�&º�
� � � � �SÂ¤¤¤ 5��¤¤¤¤ 6�Â�=3X,P�] "]@¡

ÂA�
¡

�A�
� "�ØÂ� 5U 3 X, 1 3 U2 C� 3 �ã[; 3 "�XÂ��â[:
� ��¤¤¤¤ 6�Â�CÏ1 � �ã[Ò � C�â[ÙÂ� 3 "�ØÂ� 3 3 U2 X,C:
� S�¤¤¤¤ #�Â�Ï1 3 Ωª� � X,P�] "] � X,�C� 3 1��
� �ã[C�@ � C��â[ÙÂ� 3 "�ØÂ�Ï2C�X, � �ã�Ò
3 "�XÂ��â� 3 äKÂ�¢��� Ωª� � 2KÂ�¢��� �ªΩª � KÂ�¢�[� Uª�å%;. 

(2.106) 

Finally, the expression of δE can simply be written as 

R���LΩz Ì" Q � �=æ�Â¢��Â¤¤¤¤ � æ�Â¢��Â¤¤¤¤ � æ[Â¢�SÂ¤¤¤@¡
ÂA�

¡
¢A� � 0, (2.107) 
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where 

æ�Â¢ � � _��¤¤¤¤ 6"�ÛÂ� 5Ωª� 3 1 3 U2 C��1 � X,� 3 �ã[C�;¡
�A� 3 C�"��â[	Â� � "]Ï1 � �ã�Ò&Â� � "]�â�ÊÂ�:

� ��¤¤¤¤ ©1 � U2 C"�ÛÂ� � �ã�C"�Â�
3 UC"����1��WÂ�1�«
� S�¤¤¤¤ ©"�ÛÂ� 5U 3 X, 1 3 U2 C� 3 �ã[; 3 "�	Â��â[
3 X,"]&Â� � �ã�"�Â� 3 U"����1��WÂ�1�«`, 

(2.108) 

æ�Â¢ � � _��¤¤¤¤ ©3 1 � U2 C"�ØÂ� � 1 3 U2 C"��W��1��Â�1�«¡
�A�

� ��¤¤¤¤ ©�Â�ÏΩª� 3 n�Ð1 � �ã[ÑÒ 3 C��â[ÙÂ�
� "�ØÂ� 51 3 U2 �1 � 3X,� � �ã�; � "�XÂ��â�
3 1 3 U2 "��1 � 3X,��W��1��Â�1�«
� S�¤¤¤¤ ©�Â�Ï3CÐ1 � �ã[ÑÒ 3 C�â[ÙÂ�
� "�ØÂ�X, 3 3 U2 C 3 1 3 U2 3CX,"��W��1��Â�1�«`, 

(2.109) 



Chapter 2 

45 | P a g e  

 

æ[Â¢ � � ç��¤¤¤¤ ©�Â�X,P�] "] 3 "�ØÂ� 5U 3 X, 1 3 U2 C� 3 �ã[;¡
�A�

� "�XÂ��â[ 3 1 3 U2 C�"��W��1��Â�1�«
� ��¤¤¤¤ ©3�Â�CÏ1 � �ã[Ò 3 C�â[ÙÂ�
� "�ØÂ� 3 3 U2 X,C � X,UC"����1��WÂ�1�
3 3 3 U2 "�X,C�W��1��Â�1�«
� S�¤¤¤¤ èΩª� #�Â� � KÂ�¢��� %
� Ωª�ª ©2KÂ�¢��� 3 ± Ó�"2 ���1��Â�1�«
3 �Â�Ï1 � X,P�] "] � X,�C� 3 1�� � �ã[C�Ò3 C��â[ÙÂ� � "�ØÂ�Ï2C�X, � �ã�Ò � "�XÂ��â�
� �ª� wKÂ�¢�[� 3 Ó�"�2 ��W��1��Â�1�y
� UC�"�X,���1��WÂ�1�
3 �2 3 U�C�"�X,�W��1��Â�1�éê. 

(2.110) 

The small displacements we chose are totally arbitrary. As the series is 

equal to zero, each coefficient of these small displacements has to vanish. This 

implies that 

­X:    
DEE
EF
EEE
G� æ�Â¢

¡
¢A� � 0
� æ�Â¢

¡
¢A� � 0
� æ[Â¢

¡
¢A� � 0

� (2.111) 
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Furthermore, in the previous three series, each term depends on n, so 

that each term is independent from the others. The series being null, this means 

that: 

­X, ­C:    �æ�Â¢ � 0 æ�Â¢ � 0 æ[Â¢ � 0.� (2.112) 

Each of these terms takes the following general form: 

æLÂ¢ � � ëÂ�¢L,� ��¤¤¤¤ � ëÂ�¢L,� ��¤¤¤¤ � ëÂ�¢L,[¡
�A� S�¤¤¤¤,     ± � 1, 2, 3. (2.113) 

The terms of equation (2.113) are given in Appendix C. To get solutions, 

we need to solve these sets of equations. Because the numerical method does 

not allow us to find solutions when these series are infinite, we need to choose a 

finite number of comparison functions to be used to solve the problem. We 

define M as this number. The summations on the axial wave number m will be 

limited to 1 � o � / , so that the summation on the admissible function 

number, 1 � X � /. That implies that the resolution of the problem (2.112) is 

equivalent to the resolution of a 3M equation system, the 3M unknowns being ��¤¤¤¤, ��¤¤¤¤ and S�¤¤¤¤ where 1 � o � /. In the terms of these equations, there is still 

one unknown: the frequency Ωª. The resolution of equation (2.112) is finally 

equivalent to the resolution of the following matrix equation: 

�=/@Ωª� � =C@Ωª � =K@�f}g � f0g, (2.114) 

where f}g � f��¤¤¤ î �ï¤¤¤¤ ��¤¤¤ î �ï¤¤¤¤ S�¤¤¤ î Sï¤¤¤¤gð. 

We chose this way of ordering the unknowns, so that the different 

matrices take a simple form, as follows: 

=/@ � ñ/Â��,� 0 00 /Â��,� 00 0 /Â�[,[ ò, (2.115) 
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=S@ � ç0 0 00 0 00 0 SÂ�[,[ê, (2.116) 

=¯@ � ñ Â̄��,� Â̄��,� Â̄��,[
Â̄��,� Â̄��,� Â̄��,[
Â̄�[,� Â̄�[,� Â̄�[,[ò. (2.117) 

Each element of those matrices is actually a MxM submatrix. They are given in 

Appendix C. 

So far, we have taken into account the curvature of the shell, the steady 

viscous effects, new boundary conditions but not the internal dissipation of 

energy. We shall employ a two-parameter damping model, suitable for the 

elastomer material of the shells used in the experiments; thus, in effect, we 

consider two kinds of damping (see Païdoussis and Des Trois Maisons, 1971). The 

first one is called "structural damping", characterized by the structural damping 

coefficient µ. The second one is the "viscoelastic damping" and is characterized 

by the viscoelastic damping coefficient χ. Thus, in the model, Young’s modulus E 

has to be replaced by a ä1 � #óΩ � j% ôôzå where Ω is the radian frequency of the 

motion. Thus, equation (2.114) takes the form 

�=/W@Ωª� � =CW@Ωª � =KW@�f}g � f0g, (2.118) 

where    Ë =/W@ � =/@,=SW@ � =S@ � ±jΩ�=¯@,=¯W@ � �1 � Ó±�=¯@. � 
To solve this system, we use the standard method, effectively reducing 

the second-order system to a first-order one, by introducing a new variable 

fõg � � fXgΩªfXg�. (2.119) 

Thus, the former equation takes the form 

�=P@ � Ωª=Q@�fõg � f0g, (2.120) 
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where   DF
G =P@ � 5=0@ =Iú@=K@ =C@ ; ,

=Q@ � 5=3Iú@ =0@=0@ =M@; .� 
Here [IM] is the MxM identity matrix. The problem has now been reduced to an 

ordinary eigenvalue problem. Its numerical solution will give us the 

eigenfrenquencies Ωª  and eigenvectors f}g � f��¤¤¤ î �ï¤¤¤¤ ��¤¤¤ î �ï¤¤¤¤ S�¤¤¤ î Sï¤¤¤¤gð  of 

the problem. Matlab® will provide us efficient tools for solving this problem 

numerically.  

2.4 Theoretical Results 

2.4.1 Preliminary Calculations 

Before applying the theory developed in the previous parts to the case of 

a cylindrical cantilevered shell aspirating shell, preliminary calculations were 

conducted considering the case of a discharging cantilevered shell for two main 

reasons: to validate the Matlab® program developed to get theoretical results 

and to determine a number of parameters involved in the program. Comparisons 

between existing results and the results obtained with this theory were carried 

out to validate the use of the extended Galerkin method to solve the equations 

of motion, of the Gaussian quadrature to calculate the unsteady fluid forces and 

of an out-flow model to describe the downstream flow behaviour. All these  

Table 2.1: The parameters of the computer program 

Number of Gaussian points 2 

Integration stepsize ∆� 2 

Domain of integration [-300; 300] 

Number of admissible functions M=10 

Chosen model Model 3 

Length l 2 � Ê � 3 
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calculations were conducted without considering steady viscous effects. The way 

to determine these parameters is presented more precisely in Appendix D. The 

results themselves are shown in Table 2.1. 

2.4.2 Predicted Dynamics for an Aspirating Shell 

All the parameters of the Matlab® program having been determined, it 

will now be used to study the theoretical dynamics of the cantilevered aspirating 

shell. In the experiments that will be presented in the next section, two different 

pipes were used. The first one is the pipe used in the Rinaldi (2009) experiments. 

The second one is a much thinner pipe. Both are made of the same elastomer 

material whose properties are: 

U � 0.5, Ó � 0.041, j � 0.00028s, 
a � 2.6 � 10þ N m�⁄ , H� � 1108 kg m[⁄  

(2.121) 

The geometric properties of the two pipes are presented in Table 2.2. The 

fluid used in the experiments is air. In this theory, we consider the flow to be 

incompressible. So, we consider the fluid density to be the air density in the 

atmospheric conditions: 

H2 � 1.17 kg m[⁄ . (2.122) 

The Argand diagrams as well as the graph of the imaginary part of the 

non-dimensional frequency versus the non-dimensional flow velocity and the 

real part of the non-dimensional frequency versus the non-dimensional flow 

velocity obtained with the present theory for Pipe A and Pipe B are presented in 

Figure 2.4 to Figure 2.11. 

For comparison with the experimental results, the following 

dimensionless parameters were used: 

�� � 5 aH��1 3 U��;�/� ,       Ω� � 5 aH����1 3 U��;�/�. (2.123) 
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Table 2.2: The geometrical and physical properties of the pipes 

Properties Pipe A Pipe B 

a in meters (in) 4.67*10
-3

 (0.184) 6.35*10
-3

  (0.250) 

h in  meters (in) 3.28*10
-3

 (0.129) 7.87*10
-4

  (0.031) 

L  in  meters (in) 0.445 (17.51) 0.182 (7.15) 

From the figures, it is seen that, in both cases, the theory predicts that 

the effect of flow for small values of the non-dimensional flow velocities is to 

damp the system in all modes as the imaginary part of the non-dimensional 

frequency is positive. As the dimensionless flow velocity increases, all the modes 

become less damped and the imaginary part of the non-dimensional frequency 

eventually becomes negative while its real part is still positive. This corresponds 

to an instability threshold by flutter. Moreover, the real part of the non-

dimensional frequency can be equal to zero at higher flow velocity while its 

imaginary part is still negative; this corresponds to a static instability. 

More precisely, for Pipe A, the theory predicts a loss by flutter in the 2
nd

 

circumferential mode and the 1
st

 axial mode at: 

4 7�1 � 0.092��1 � 5.1m/s.� (2.124) 

It is then followed by flutter in the 3
rd

 circumferential mode and the 1
st

 

axial mode at: 

4 7�1 � 0.165��1 � 9.15 m/s.� (2.125) 

Finally, the pipe buckles in the 2
nd

 circumferential mode and the 1
st

 axial 

mode at 

4 7�1 � 0.228��1 � 12.7 m/s.� (2.126) 

For Pipe B, the theory predicts a loss by flutter in the 1
st

 circumferential 

mode and the 1
st

 axial mode at: 

4 7�1 � 0.169��1 � 9.4 m/s.� (2.127) 
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It is then followed by flutter in the 2
nd

 circumferential mode and the 1
st

 

axial mode at: 

4 7�1 � 0.270��1 � 15 m/s.� (2.128) 

Finally, the pipe buckles in the same mode at: 

4 7�1 � 0.318��1 � 17.5 m/s.� (2.129) 

  Thus, for both cases, the theory predicts a loss of stability by flutter 

followed at higher flow velocity by buckling. Flutter occurs not in the same mode 

for both pipes; the buckling, however, arises in the same mode for Pipe A and 

Pipe B. For both instabilities, the predicted critical flow velocities are higher for 

Pipe B than for Pipe A. 

2.5 Experimental Observations 

As I mentioned it before, the initial motivation of this study was the 

observation of a shell-type instability in the experiments that were conducted by 

Rinaldi (2009) and that involved an aspirating cantilevered pipe. That is why the 

experimental apparatus that was utilized in this project is the same as the one 

she used.  

The experimental apparatus, presented in Figure 2.12, consists of a large 

steel tank, an internal plexiglas flow-guiding protective conduit, a flexible 

elastomer pipe, a compressed air reservoir and a flow meter device. The tank 

possesses a plexiglas window for viewing purposes. The pipe is Iocated inside the 

plexiglas flow-guiding protective conduit (Figure 2.13) whose function is to 

ensure that the air entering the tank does not disturb the pipe during the 

experiments. A screen, a honeycomb and an additional screen are located at the 

bottom of the conduit for flow-straightening purposes. 

As mentioned in the previous section, two different pipes were tested in 

the experiments. Their geometrical and physical properties are recalled in (2.121)  
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Figure 2.4: Argand diagram obtained with the present theory for Pipe A 

 

Figure 2.5: Argand diagram obtained with the present theory for Pipe B 
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a)  

b)  

Figure 2.6: a) Im(ω) and b) Re(ω) as a function of u for the 1
st

 circumferential mode of Pipe A 
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a)  

b)  

Figure 2.7: a) Im(ω) and b) Re(ω) as a function of u for the 2
nd

 circumferential mode of Pipe A 
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a)  

b)  

Figure 2.8: a) Im(ω) and b) Re(ω) as a function of u for the 3
rd

 circumferential mode of Pipe A 
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a)  

b)  

Figure 2.9: a) Im(ω) and b) Re(ω) as a function of u for the 1
st

 circumferential mode of Pipe B 
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a)  

b)  

Figure 2.10: a) Im(ω) and b) Re(ω) as a function of u for the 2
nd

 circumferential mode of Pipe B 
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a)  

b)  

Figure 2.11: a) Im(ω) and b) Re(ω) as a function of u for the 3
rd

 circumferential mode of Pipe B 
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Figure 2.12: The experimental apparatus 

 
Figure 2.13: (a) Discharging configuration; (b) aspirating configuration. 

(i) large steel tank; (ii) Plexiglas protective conduit; (iii) flexible elastomer pipe (after Rinaldi, 2009) 

and Table 2.2. Pipe A is an ordinary elastomer pipe that is used in the laboratory 

for beam experiments. But it was with this pipe that the shell-type instability was 

first observed. That is why it was also studied here. As it appeared necessary to 

experimentally study the dynamics of a thinner pipe, a true shell, a new mould 

was designed to cast Pipe B. The schematics of the various pieces are given in 

Appendix E. For more details on the procedure of the conventional pipe casting 

process, on the determination of the Young’s modulus and of the two damping 

parameters, and on the experimental procedure, the reader can refer to Rinaldi 

(2009).  

Compressed 

air reservoir 

Steel 

tank 
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For both pipes, the instability threshold is really sharp. The system is 

initially stable. When the velocity is increased, nothing happens up to a velocity 

at which the pipe suddenly loses stability. 

For Pipe A, the system loses stability at: 

47�1 n 0.036��1 n 2 m/s.� (2.130) 

As shown in Figure 2.14, the system loses stability by flutter in its second 

circumferential mode. But the phenomenon lasts only some seconds. Then, the 

pipe collapses rather quickly (Figure 2.15). If the air control valve is not closed, 

the pressure in the tank increases. 

    
Figure 2.14: The observed shell-type instability with Pipe A 

 

 
Figure 2.15: The collapse of Pipe A 
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With Pipe B, the critical flow velocity is even smaller: 

4 7�1 n 0.009��1 n 0.5 m/s.� (2.131) 

To get a higher critical flow velocity, a PVC tube was placed inside the 

shell as shown in Figure 2.16. Despite making the observation easier, it did not 

change the critical flow velocity or the behaviour of the pipe.  

 
Figure 2.16: The thin shell and the PVC tube placed in it 

 

    

    
Figure 2.17: The observed shell-type instability followed by a collapse with Pipe B 

PVC tube 

Shell 

Clamped 

end 

Free 

end 
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As shown in Figure 2.17, at the critical flow velocity, the pipe collapses all 

along the shell, then experiences a shell-type instability in the second 

circumferential mode and finally collapses definitely in the same mode at the 

free end of the PVC tube. 

2.6 Discussion 

Table 2.3 presents a comparison between the theoretical and 

experimental results. The main comment that can be made is that the theory 

predicts qualitatively the first type of instability. However, the predicted critical 

flow velocity is overestimated: for Pipe A, it is more than two times higher and, 

for Pipe B, the ratio is close to nineteen. Furthermore, if experimental and 

theoretical predicted modes of instability are in good agreement for Pipe A, It is 

not the case for Pipe B. Actually, the theory predicts a loss of stability in the first 

circumferential mode while the experimental observation shows that the pipe 

exhibits a shell-type instability in its second circumferential mode. Finally, if the 

theory indeed predicts that the flutter is followed by buckling, the divergence is 

expected at higher flow velocity whereas, in the experiments, the flutter is 

followed by buckling at the same flow velocity. 

Because of all these differences and especially the last one, a question 

arose: the phenomenon observed in the experiments, is it really flutter followed 

by buckling? Maybe, the first observed instability could be a divergence. In that 

case, what seems to be flutter in the experiments could be due to a frequent 

switch from one possible buckling state to another one, and the final buckling 

would be the final state of this phenomenon. But, these multiple collapses of the 

shell might not be exactly a flow-induced instability of the pipe. It could be due 

to the combination of the transmural pressure difference at the wall and of the 

really low stiffness of the material. 

So it could be very interesting to conduct new experiments with a stiffer 

material. As it might be more difficult to reach sufficiently high flow velocity with 
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air experiments, this work could be carried out with the new experimental 

apparatus, which is presented in Chapter 3, as the experiments could be 

conducted with water. Moreover, the analytical model certainly has to be 

improved. Firstly, the new boundary conditions developed for the case of an 

aspirating cantilevered shell should be reconsidered. Since the present 

theoretical model has been derived, a new insight has been has been developed 

by Giacobbi (2010) on this matter. It might be interesting to take that into 

account. Furthermore, as the flow at the free end is really not a jet, it should 

maybe not be considered that the flow is vertical before it enters the shell and 

the out-flow model should be modified to be closer to reality. To have a better 

understanding of the dynamics of the flow before it enters the pipe, it would be 

useful to develop a numerical approach. It might certainly help to develop this 

more realistic out-flow model. 

Table 2.3: Comparison between the theoretical and experimental results 

 

Pipe A Pipe B 

Theory Experiment Theory Experiment 

7�1 0.092 0.036 0.169 0.09 

��1  �m/s� 5.1 2 9.4 0.5 

Type of 

instability 

Flutter followed 

by buckling at 

higher flow 

velocity 

Flutter followed 

by buckling at 

the same flow 

velocity 

Flutter followed 

by buckling at 

higher flow 

velocity 

Flutter followed 

by buckling at 

the same flow 

velocity 

Mode of 

instability 
n=2 and m=1 n=2 n=1 and m=1 n=2 
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Chapter 3:  Experimental Study of 

the Stability of the Hanging Tubular 

Pipes Used in Salt Caverns 

3.1 Introduction 

Underground salt formations have been used over the past few decades 

as an alternative solution to store liquid hydrocarbons and natural gas. Salt dome 

caverns hollowed in these formations are very safe storage facilities. They are 

protected from fire, wilful damage and other hazards by the thousands of feet of 

rock above them. Furthermore, because of the extreme geological conditions at 

cavern depth, the salt walls are really hard and impermeable.  

Underground salt deposits have been created through a natural process 

over the past millennia in certain areas throughout the world. They are present 

below the Earth’s surface in two different configurations: salt domes and salt 

beds. Salt domes are really thick formations that can be as large as a mile in 

diameter and 30,000 feet in height. They can be found between 6,000 and 1,500 

feet below the surface. Salt beds, on the other hand, are shallower and thinner 

formations that hardly exceed 1,000 feet in height; as a result, they are more 

prone to deterioration once a cavern has been formed. That is why salt domes 

are considered to be more suitable for salt cavern construction. 

 

Figure 3.1: The different steps of the salt cavern formation and its use as storage facility (After AGL 

Resources website) 
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Salt caverns are hollowed in a process called “solution mining”. As shown 

in Figure 3.1, a well is first drilled down through the overlaying formations into 

the salt formation. Water is then injected into the well to dissolve the

resulting very salty water, called brine, is then cycled back up the well. Thus salt 

has been extracted from the formation, leaving an empty space. Through this 

process, the cavern is gradually formed. Two different methods of circulation can 

be used. Either the fresh water is injected into the well tubing and brine is 

withdrawn through the annular space around it by a direct circulation process, or 

the water is injected through the annulus and the brine extracted via the tubing 

in a process called reverse circulation 

Once the cavern is formed, it is ready to be used for storage. Even though 

it is sometimes used for disposal

natural gas or liquid hydrocarbons. Both of them are lighter than brine and will 

float on top of it. Thus, they are injected into the cavern through the annulus, 

while the brine is produced through the inner p

hydrocarbons, the reverse process is applied.

a) 

Figure 3.2: Flow direction in the so called a) direct circulation and b) reverse circulation

Salt caverns are hollowed in a process called “solution mining”. As shown 

first drilled down through the overlaying formations into 

the salt formation. Water is then injected into the well to dissolve the

resulting very salty water, called brine, is then cycled back up the well. Thus salt 

has been extracted from the formation, leaving an empty space. Through this 

process, the cavern is gradually formed. Two different methods of circulation can 

used. Either the fresh water is injected into the well tubing and brine is 

withdrawn through the annular space around it by a direct circulation process, or 

the water is injected through the annulus and the brine extracted via the tubing 

ed reverse circulation (see Figure 3.2).  

Once the cavern is formed, it is ready to be used for storage. Even though 

it is sometimes used for disposal of waste, the main purpose is to store either 

natural gas or liquid hydrocarbons. Both of them are lighter than brine and will 

float on top of it. Thus, they are injected into the cavern through the annulus, 

while the brine is produced through the inner pipe. To withdraw the gas or 

hydrocarbons, the reverse process is applied. 

 b) 

: Flow direction in the so called a) direct circulation and b) reverse circulation

Salt caverns are hollowed in a process called “solution mining”. As shown 

first drilled down through the overlaying formations into 

the salt formation. Water is then injected into the well to dissolve the salt. The 

resulting very salty water, called brine, is then cycled back up the well. Thus salt 

has been extracted from the formation, leaving an empty space. Through this 

process, the cavern is gradually formed. Two different methods of circulation can 

used. Either the fresh water is injected into the well tubing and brine is 

withdrawn through the annular space around it by a direct circulation process, or 

the water is injected through the annulus and the brine extracted via the tubing 

Once the cavern is formed, it is ready to be used for storage. Even though 

of waste, the main purpose is to store either 

natural gas or liquid hydrocarbons. Both of them are lighter than brine and will 

float on top of it. Thus, they are injected into the cavern through the annulus, 

ipe. To withdraw the gas or 

 

: Flow direction in the so called a) direct circulation and b) reverse circulation 
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Salt caverns are very useful because they can be filled up more quickly 

than any other storage facilities and the product can be withdrawn on very short 

notice, which is of great interest in emergency situations. 

 As shown in Figure 3.2, the tubular system used for the injection or the 

withdrawal of the different fluids involved in the process consists of a 

cantilevered cylindrical pipe located inside a borehole cemented casing and then 

in the cavern. Thus, it can be seen as a system of two coaxial cylindrical 

structures simultaneously subjected to annular and internal flow. From what is 

known, it is not unreasonable to think that the system can experience a flow-

induced instability, i.e. buckling or flutter, at high enough flow velocity. As a 

matter of fact, Ratigan (2008) reported that some industrial installations had 

experienced failures of the hanging tube (Figure 3.3). Here, by failure we 

understand a significant deformation of the tube, leading to a possible loss of 

isolation between the two flows inside and outside of the pipes. Ratigan listed 

four different possible reasons for failure: salt falls, pressure developed as a 

result of hydraulic transients, corrosion and wear, and fluid-elastic instability. 

The last one appeared to be the most often experienced; that is why Ratigan’s 

report mainly focuses on that matter. 

Data from more than 200 brine strings were collected, and sorted out 

according to different characteristics: if failure was experienced or not, if liquid 

or gas was stored in a domal or bedded salt cavern. Ratigan then compared this 

data with the theoretical critical flow velocities obtained from the linear theory 

of a hanging cantilevered beam conveying fluid. Such a system is presented in 

Figure 3.4. It consists of a uniform pipe of length L, mass per unit length m and 

flexural rigidity EI, conveying a fluid of mass per unit length M with mean axial 

flow velocity U. Figure 3.5 presents the dimensionless critical flow velocity ucf for 

flutter of that system according to two dimensionless parameters. The first one, 
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� , is a mass parameter. The second one, γ, is a nondimensionnal gravity 

parameter. These three parameters are defined by 

7�2 � 	/a® R�, � � /o � / , � � �/ � o�R[
a® Ù. (3.1) 

It was found that the brine string should not have experienced any failure 

in almost any of the reported cases. The plotted data look quite the same 

whether the pipe failed or not. As it is highlighted in the report, some 

inconsistency between the theoretical model and reality could be the source of 

the incompatibilities in the results. As explained in the report, only the theory of 

a vertical cantilever has been considered. This means that only the dynamics of 

a)  b)  

c)  

Figure 3.3: Brine string damage in a liquid storage well (a) in a salt dome, (b) in a bedded slat and (c) in a gas 

storage well in a salt dome (After Ratigan, 2008) 
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the part of the pipe hanging in the cavern was studied. Logically, Ratigan cast 

doubt on the validity of the boundary condition at the clamped end. Indeed, it is 

not correct to consider that the hanging pipe is fixed at the casing shoe because 

it is clamped at the top of the well. Thus, it is not possible to consider only the 

portion of the hanging beam in the cavern. And, as put forward by Ratigan, the 

annular flow between the string and the cemented casing, and the complex 

flows near the casing shoe and near the free end of the hanging pipe might be of 

great importance in the study of the dynamics of the system. Moreover, in the 

theory presented in the report, the clamped-free pipe is supposed to be 

surrounded by a very light fluid like air. Here, it is hung in water, brine, natural 

gas or liquid hydrocarbons. Finally, in this theory, only the case of a discharging 

pipe has been undertaken. The work done by Rinaldi (2009) shows that the 

dynamics of an aspirating pipe is very different. The above are some reasons that 

might explain why the collected data does not match with the theoretical results.    

The present study was motivated by the failure problems presented by 

Ratigan, making obvious the necessity to understand better the dynamics of 

brine strings. The main work of this project has been to work out an 

experimental process to test the stability of the hanging pipe in various model 

configurations matching the industrial ones.  

 

Figure 3.4: a flexible cantilevered pipe conveying fluid (After Païdoussis, 1998) 
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Figure 3.5: Dimensionless flow velocity for flutter of a vertical cantilevered pipe conveying fluid as a function 

of β for varying γ (After Païdoussis, 1998) 

The main objectives of this set of experiments are to test whether or not 

a configuration can develop flow-induced instability and to measure the critical 

flow velocities. Thus, a quantitative comparison of those velocities can be 

undertaken. Moreover, as each model configuration corresponds to a specific 

cavern configuration, it might help to determine in which of those configurations 

the failures are more likely to occur. Furthermore, the amplitude and the 

frequency of oscillations should also be measured whenever it is possible.  

The scope of this chapter is three-fold. Firstly, the model experiments and 

their correlation with the cavern configurations are described. Secondly, the 

design of the experimental apparatus that had to be assembled to observe the 

possible flutter or buckling of each configuration and determine the velocity at 

the onset of instability is detailed. Finally, the experimental results are presented 

and used to compare the relative stability of the various configurations. 

3.2 The Experimental Configurations 

In the process of solution mining and then of natural gas and liquid 

hydrocarbon storage, the flow path in the hanging pipe and in the annular region 

depends on the situation: drilling of the cavern with brine production, 

pressurization of a cavern for a Mechanical Integrity Test (MIT), or storage and 
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withdrawal of the natural gas and liquid hydrocarbons. In the various possible 

configurations for storage and withdrawal, the cantilevered pipe can be hanging 

either in unconfined fluid (air or water) or confined by a larger rigid tube. In that 

case, the annulus is filled with quiescent or flowing fluid. That is why all these 

various configurations have to be defined and tested.  

However, in the first configuration that has been tested, the hanging pipe 

discharges water in unconfined air. Although this configuration does not exist in 

industry, it is a really important one to test the apparatus because it is a 

reference case that has been widely studied. Table 3.1 and Figure 3.6 provide a 

detailed description and illustration of all the different configurations. 

Table 3.1: The description of the different tested configurations 

Configuration Description 

1 
This is the reference configuration of a cantilevered pipe surrounded by 

unconfined air and discharging water. 

2 

This case is similar to the first one but in this case the pipe is 

surrounded by water in three ways: (i) in unconfined water, (ii) with the 

pipe confined by an outer rigid tube extending from 0 to ½L or (iii) from 

0 to L. 

3 

Here the hanging pipe is aspirating the surrounding water. So this is the 

same as Configuration 2 but with the water flowing from the free end 

to the clamped one. 

4 
This is the same as Configuration 2ii and Configuration 2iii but with a 

discharging annular flow and no flow in the pipe. 

5 This is the same as Configuration 4 but with an aspirating annular flow. 

6 
This is the same as Configuration 2ii and Configuration 2iii but also with 

an aspirating annular flow. 

7 
This is the same as Configuration 3ii and Configuration 3iii but also with 

a discharging annular flow. 
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Config. 1 Config. 2i Config. 2ii Config. 2iii Config. 3i 

     

Config. 3ii Config. 3iii Config. 4i Config. 4ii Config. 5i 

     

Config. 5ii Config. 6i Config. 6ii Config. 7i Config.7ii 

Figure 3.6: The experimental configurations 

The experiments are to be run with different gap size and external tube 

length to determine the influence of these parameters on the stability of the 

coaxial system. To stay close to reality, the annular gap is ½ Di or ¼ Di in 

configurations involving an annulus, where Di is the inner diameter of the inner 

pipe. The length of the outer rigid tube can be the same as the length of the 

inner pipe or half its length.  
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Furthermore, leakage-flow-induced instability was suggested as a 

possible explanation of brine string failure. Thus an additional ring constrictor 

can also be used in configurations involving an annular flow, to promote the 

onset of that kind of instability. 

Table 3.2 provides a correlation of each model configuration with a 

specific cavern configuration. 

Table 3.2: Correlation of models and cavern configuration 

Configuration Solution-mining or storage cavern configuration 

1 Reference case of the cantilevered pipe discharging water 

2i Pressurization of a liquid cavern for a Mechanical Integrity Test (MIT) 

2ii and 2iii 
Pressurization of a liquid cavern for a MIT with cemented production 

casing modelled 

3i Depressurizing a liquid cavern after a MIT 

3ii and 3iii 
Depressurizing a liquid cavern after a MIT with cemented production 

casing modelled 

4 Product injection in a liquid cavern without brine withdrawal 

5 Product withdrawal from a liquid cavern without brine injection 

6 
Brine production in direct circulation or product withdrawal with brine 

injection 

7 
Brine production in reverse circulation or product injection with brine 

withdrawal 

3.3 The Experimental Apparatus 

Even though the flowing fluid can be water, brine, hydrocarbons or 

natural gas in the industrial applications, the experiments are all conducted with 

water, as described in the previous section. Two different flexible pipes made of 

elastomer were used in the experiments. Their geometry and properties are 
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presented in the Table 3.3. The only difference between these two pipes is their 

internal diameter. The cemented casing is modelled by a rigid plexiglas tube. The 

transparency of the material allows the observation of the motion of the pipe 

located inside it. Because the flow velocities are not higher than 12 m/s (≈40 ft/s) 

and because the elastomer pipe is more flexible, the outer plexiglas tube can be 

considered as motionless. Various outer tubes can be used. Their characteristics 

are presented in Table 3.4. The free end of these tubes can be located either at 

the same height as the free end of the pipe or at half the length of the pipe.  

To conduct these experiments, the first idea was to use an already 

existing apparatus, the same as used in the experiments of Chapter 2.  It consists 

of a large steel tank connected to a reservoir of compressed air. It would have 

required significant modifications to conduct experiments with water flow – for 

example, the sealing has to be perfect – and with a possible outer tube. Because 

of these difficulties, it appeared more realistic to build an entirely new apparatus. 

It is presented in Figure 3.7. The experiments themselves are conducted in a 

large stainless steel tank connected on its top to a vessel which is of great 

importance. The whole is then connected to two pumps, a flow-meter and a 

water reservoir. The schematics of the various pieces are given in Appendix F.  

Table 3.3: The geometrical and physical properties of the pipes 

Properties Pipe 1 Pipe 2 

D0 in meters (in) 0.0159 (0.626) 0.0159 (0.626) 

Di  in  meters (in) 0.00934 (0.368) 0.00635 (0.250) 

L  in  meters (in) 0.445 (17.52) 0.445 (17.52) 

EI in N.m
2 

7.28*10
-3 

8.35*10
-3 

m in kg/m 0.144 0.189 

M in kg/m 0.0686 0.0317 

Ma in kg/m 2.48*10
-3 

2.48*10
-3
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Table 3.4: The properties of the different outer tube 

 Tube 1 Tube 2 Tube 3 Tube 4 Tube 5 Tube 6 

D0 in inches (m) 
1-1/4’’ 

(0.0318)   

1-1/4’’ 

(0.0318) 

1’’ 

(0.0254) 

1’’ 

(0.0254) 

1’’ 

(0.0254) 

1’’ 

(0.0254) 

Di  in inches (m) 
1’’ 

(0.0254) 

1’’ 

(0.0254) 

 7/8’’ 

(0.0222) 

7/8’’ 

(0.0222) 

3/4’’ 

(0.0191) 

3/4’’ 

(0.0191) 

L  in inches (m) 
7.445’’ 

(0.189) 

16.570’’ 

(0.421) 

7.445’’ 

(0.189) 

16.570’’ 

(0.421) 

7.445’’ 

(0.189) 

16.570’’ 

(0.421) 

Associated pipe Pipe 1 Pipe 1 Pipe 2 Pipe 2 Pipe 2 Pipe 2 

The tank (Figure 3.7) is made of stainless steel and was designed big 

enough so that the tested configuration could be considered as in an unconfined 

environment. The four plexiglas windows allow easy observation inside and the 

recording of the motion of the elastomer pipe. In the configurations that do not 

involve coaxial flows, the water has to enter at the bottom of the tank. To 

achieve a flow as straight as possible, two solutions were developed. Firstly, 

instead of letting the flow enter through one hole, a four-outlet manifold was 

added and connected to four holes located at the bottom of the tank (Figure 3.8). 

Secondly, in the configurations with a flow coming from the bottom, a 

perforated plastic plate was placed between the pipe and the bottom of the tank 

to decrease the intensity of the jet coming out of these four inlets. Nevertheless, 

the jets did not diffuse totally, so that a second perforated plate was added. In 

the other cases, a stainless steel mesh was added instead of the plastic one. It 

decreases the intensity of the jet coming from the pipe or the annular flow and, 

thus, it diminishes any a possible recirculation.  

The vessel sitting on the top of the tank was a very difficult part to design. 

Its very important function is to separate the two coaxial flows. It has the same 

function as a BNC connector at the end of a coaxial cable that physically 

separates the electric current from the two conductors: the centre core and the 
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metallic shield. In the configurations involving two counter-current coaxial flows, 

it is necessary that the flow reaches and leaves the tank through two different 

hoses and that there is absolutely no connection between the two flows. To 

achieve this, the vessel presented in Figure 3.8 and Figure 3.9 was designed. The 

most serious difficulty was to ensure the sealing of the apparatus and still be 

able to open the vessel in case a piece had to be changed. The flow going 

through the inner pipe runs inside a straight tube in the vessel. At the top of the 

vessel, the sealing between this tube and the top cover is provided by an O-ring 

located in an additional part attached to the cover by bolts (Figure 3.9). The 

water from the annular flow surrounds the straight pipe in the vessel and is 

collected by a six-outlet manifold connected to six holes located on the side of 

the vessel. It was decided to use more than one hole so that the incoming flow 

would be split equally in the vessel. The flow then goes from the vessel to the 

annular region through ten equally spaced holes; that guarantees the 

homogeneity of the flow in the annular region. 

 
 

Figure 3.7: The experimental apparatus 
Figure 3.8: The vessel, the bottom of the tank and 

the three input/output ports 

I/O-3 I/O-1 
I/O-2 
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Figure 3.9: Exploded view of the vessel 

A white plastic reservoir located on the right side of Figure 3.7 is also an 

important part of the apparatus. It has multiple functions. Firstly, as pointed out 

by its name, it is used as a water reservoir. It is from this reservoir that the water 

is aspirated and injected in the system. It then goes back to the reservoir. It is 

also useful when the tank has to be emptied. Thus the water is not wasted every 

time the pipe configuration has to be changed. It is also used to gather the water 

coming from the release valve described later if the pressure in the tank 

becomes too high. It has an overflow in case there is too much water in the 

system. Finally, as it is opened to air through a vent, the system is not 

hermetically closed and the water surface of the reservoir is at atmospheric 

pressure; it prevents the existence of too high a pressure in the apparatus.  

  

Figure 3.10: The two pumps Figure 3.11: The quick connect system 

Pump 2 Pump 1 
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 As shown at the bottom of Figure 3.7, two drives modulate the power of 

two pumps (Figure 3.10). These two pumps are not used in the same way. One 

injects water (Pump 1) while the other one aspirates it from the tank (Pump 2). 

Depending on the configuration, each pump is connected to one of the three 

input/output piping systems described above: one for the pipe flow (I/O-1), one 

for the annular flow (I/O-2) and one at the bottom of the tank (I/O-3). For 

example, in the usual case of a pipe discharging water and surrounded by air, 

Pump 1 connected to I/O-1 injects water in the pipe, while Pump 2 connected to 

I/O-3 is used to maintain a constant water level in the tank; I/O-2 is closed. As 

the connections need to be changed for each configuration, a quick connect 

system (Figure 3.11) is used, so that this can be done easily and quickly. For 

measurement and safety reasons, a pressure gauge and a release valve are 

located at the top of the tank (Figure 3.12). Thus, this pressure cannot be higher 

than 75 psi, otherwise the release valve opens and the overflow goes to the 

plastic reservoir. 

To measure the flow velocity, a magnetic flow-meter (Figure 3.13) is 

located after the first pump. It operates as a noncontacting instrumentation that 

consists of a sensor and a transmitter with a local operator interface. It uses the 

conducting properties of water that contains ions to get the fluid flow rate. The 

other useful information that was recorded whenever possible is the frequency 

and the amplitude of oscillation of the cantilevered pipe.  

 
 

Figure 3.12: The pressure gauge and the release 

valve located on the top cover of the tank 

Figure 3.13: The magnetic flow-meter and its local 

operator interface 
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To acquire the frequency of the oscillations, a laser (Figure 3.14) is used. 

It allows to measure the distance between the instrument and the pipe, and, 

thus, to get a time signal of the motion of a point on the pipe. At first, it 

appeared possible to calibrate it to know the conversion between the signal 

given by the laser and the effective displacement of the pipe. But it is not that 

simple, firstly because the motion of the pipe is not always planar and, secondly, 

when it is planar, the plane of motion is rarely the same as the measurement 

plane of the laser. So the laser measurements were used to get the frequency of 

the motion by analysing the acquired time signal using a Matlab® program. In the 

end, the amplitude was more roughly measured using a ruler attached to one of 

the windows of the tank. To be as accurate as possible, pictures were taken with 

a camera attached to a tripod. It was always placed at the same location, so that 

it is possible to get the effective displacement of the pipe by multiplying the 

measured displacement, with the ruler graduated in centimetres, by a factor 

dependent on the fluid inside the tank (Figure 3.15). 

 

 
Figure 3.14: The laser device Figure 3.15: The amplitude measurement device 
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3.4 Experimental Observations 

Because of the great diversity of studied configurations, the observations 

made for each of them are presented separately in this section. However, 

comparisons between different configurations are made on some occasions, e.g. 

to say that the pipe has the same dynamical behaviour. A whole set of 

experiments is presented using Pipe 1 and Tubes 1 and 2. The configuration of a 

cantilevered pipe discharging water in air was first studied and compared to the 

theory, as it is the reference case.  

For each experiment, the velocity is gradually increased from zero to the 

velocity after which the dynamics of the pipe does not change anymore. When 

there is flow inside the pipe, flow velocities cited are the flow velocities in the 

pipe. Otherwise, it is the flow velocity in the annular gap. The motion amplitude 

is denoted by A and the frequency by f. 

3.4.1 Configuration 1 

In this configuration, the very first vibrations of the pipe are observed at 

U=6.57 m/s but their amplitude is really small (A<1 cm) and there is no definite 

frequency. The Fast Fourier Transform (FFT) algorithm shows the existence of 

two or three peaks around 4.1 Hz. At ��2 � 6.94 m/s, the amplitude suddenly 

increases as shown in Figure 3.16.b. This is the instability threshold. At this point, 

we have ¦ � 4.15 Hz and � � 21 cm. In that case, the motion of the pipe is 

really simple and simple-harmonic. It oscillates in a plane that does not change 

with time. From this point, the pipe dynamics remains qualitatively the same. It 

is a planar oscillation in the third mode of the pipe. The frequency of oscillation 

gradually increases with flow velocity (Figure 3.16.a) as well as the amplitude, to 

reach ¦ � 4.61 Hz and � � 26 cm at � � 8.0 m/s. 

The standard theoretical model for a cantilevered pipe discharging water 

in air predicts a loss of stability by flutter in the third mode at  ��2 � 6.84 m/s 
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a)  

b)  
Figure 3.16: a) The comparison between theoretical and experimental frequencies and b) the observed 

amplitude with Pipe 1 in configuration 1 

with a frequency ¦ � 4.24Hz. Furthermore, Figure 3.16.a shows the comparison 

between predicted and experimental frequencies with increasing flow velocity. It 

shows that the experimental results differ from the theoretical ones by less than 

5%. They are therefore judged to be in really good agreement.  

3.4.2 Configuration 2i 

Unlike the case of a cantilevered pipe discharging water in air, the 

instability of the pipe immerged in water develops much more gradually. The 

critical flow velocity, � � 3.93 m/s, is much lower than in Configuration 1. This 

was expected (see Figure 3.5) as the coefficient � is smaller because of the 
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surrounding water. From the threshold of instability, as shown in Figure 3.17, the 

pipe dynamics is divided into two parts. For 3.93 � � � 4.69, the amplitude 

increases slowly from � � 0.4 cm to � � 8 cm, while the frequency displays the 

opposite behaviour, decreasing from ¦ � 1.40 Hz  to ¦ � 1.10 Hz . The axial 

mode of oscillations is the second one. For 3.93 � � � 4.45, the oscillations are 

planar but the plane of oscillation is regularly changing. At higher flow velocities, 

the frequency of motion is clearly distinguishable but the pipe motion is more 

complex and comprises two phases: (i) a periodic planar motion alternating with 

(ii) a phase during which the free end of the pipe performs figure-of-eight motion.  

a)  

b)  

Figure 3.17: a) The experimental frequency and b) amplitude versus velocity with Pipe 1 in configuration 2i 
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Figure 3.18: Successive instantaneous views of the rotating motion of the pipe at � � 
. �� �/� 

The pipe dynamics suddenly changes at � � 4.76 m/s. The amplitude 

increases suddenly to � � 32 cm and the frequency drops to ¦ � 0.92 Hz. At 

the beginning, the oscillations are planar and still in the second mode but, after a 

while, the free end of the pipe performs a rotating motion along the wall of the 

tank (see Figure 3.18). It appears that this 3-D motion might be due to the 

vicinity of the tank wall when the amplitude of oscillation is really high 

(� n 32 cm) as a result of the jet issuing from the pipe impacting this wall. But 

the dynamics of the pipe in configuration 2ii lets us think that this is the natural 

behaviour of this cantilevered pipe discharging water in essentially unconfined 

water. From this point on, the pipe does not stop its rotating motion, and the 

amplitude as well as the frequency increase slowly. 

3.4.3 Configuration 2ii 

In this configuration, the pipe motion is constrained by the presence of 

an outer plexiglas tube whose length is half that of the pipe. This, it has been 

found, does not change the critical flow velocity and frequency, but it has a great 

influence on the dynamics of the pipe. In this configuration, the behaviour of the 

pipe can be divided into three ranges, as shown in Figure 3.19. 

Firstly, for 4.21 � � � 5.77, the pipe oscillates in its second mode with 

small amplitude in a plane that sometimes changes. The amplitude slowly 

increases and, in contrast to configuration 2i, the frequency also increases from 

1.25 Hz to 2.25 Hz. The pipe impacting on the outer tube is certainly the reason 

for this difference in behaviour between configurations 2i and 2ii. 
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a)  

b)  
Figure 3.19: a) The experimental frequency and b) amplitude versus velocity with Pipe 1 in configuration 2ii 

Then, for 5.77 � � � 6.34, the oscillation mode smoothly changes from 

second to third axial mode. At � � 6.34 m/s, the pipe oscillates mainly in its 

third mode. At the same time, the motion of the pipe becomes more complex. 

Periods of chaotic motion without a definite frequency alternate with periods of 

periodic planar oscillations. This behaviour extends as far as � � 7.38 m/s. The 

frequency remains stable at ¦ � 2.50 Hz but the amplitude increases more 

rapidly than in the previous flow range. 

Finally, the amplitude abruptly increases from 9.6 cm to 14.8 cm at 
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frequency increases again and the slope of the amplitude curve is really steep. At 

� � 7.85 m/s, the pipe begins to rotate as in configuration 2i, but rotation 

periods alternate with third mode planar motion periods. Thus, in the presence 

of the outer tube, the pipe begins to rotate at higher flow velocity (� �
4.76 m/s in configuration 2i and � � 7.85 m/s in configuration 2ii) and the 

frequency of oscillation or rotation is around twice the one without the outer 

tube. Thus, the presence of the outer tube really changes the dynamical 

behaviour of the pipe. This, at first sight, seems surprising, as the only change to 

the system, due to the presence of the outer tube, is to increase the added mass 

on the upper part. 

3.4.4 Configuration 2iii 

Overall, the only instability that is observed with an outer tube all along 

the pipe is buckling. It appears around � � 1 m/s. The free end of the pipe 

moves away from its equilibrium position until it touches the plexiglas tube at 

� � 2.69 m/s (see Figure 3.20.a). From that point to � � 6.80 m/s, the pipe 

diverges in its first mode. While the velocity is increased, a greater part of the 

pipe is in contact with the outer tube as shown in Figure 3.20.b. The opposite 

behaviour is observable for 6.33 � � � 6.80. At this velocity, the upper part of 

the pipe moves away from the outer tube and the pipe suddenly diverges in its 

second mode (see Figure 3.20.c). At higher flow velocity up to � � 9.70 m/s, 

there is no change in the dynamics of the pipe. 

a)  b)  c)  
Figure 3.20: The buckling of the pipe 1 in Configuration 2iii at a) U=2.69, b) U=5.37 and c) U=8.06 m/s 
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Thus, the longer outer tube completely changes the dynamics of the 

system, as only buckling is experienced and only in the first and second modes; 

whereas in configurations 2i and 2ii, the pipe develops oscillations successively in 

its second and third mode. Whether this change in dynamical behaviour is due to 

the presence of the longer tube or to imperfection-initiated buckling against the 

plexiglas tube, which is then perpetuated nonlinearly, is not clear. 

3.4.5 Configuration 3i 

In this configuration, the pipe is hanging in unconfined water as in 

Configuration 2i, but, here, the pipe is aspirating water, i.e. the water is flowing 

from the free end to the clamped end. In this configuration and all the other 

configurations in which the pipe is aspirating the fluid, a shell-type collapse of 

the pipe was experienced at low flow velocity and persisted thereafter. To avoid 

this occurrence without constraining the motion of the pipe, a helical spring was 

added inside and all along the pipe. 

At zero flow velocity, there is a slight bending of the pipe, which is due to 

the inside spring not being perfectly straight. But, as shown in Figure 3.21.b and 

Figure 3.22, the flow has a stabilizing effect on the pipe at low flow velocities and 

the bending decreases and dies out at � � 3.13 m/s. 

The pipe then loses stability by flutter in its first mode at � � 3.39 m/s. 

At the beginning, the amplitude is really small, increasing smoothly. The 

frequency of oscillation is ¦ � 0.37 Hz and it remains the same during the 

experiments. Although the oscillation is planar, the behaviour of the pipe is not 

that simple. In fact, periods of periodic planar motion alternate with periods of 

chaotic motion. First, the periods of periodic motion are not observable for more 

than a few seconds, but they last longer as the flow velocity increases and can 

last as long as fifteen seconds. 

At � � 4.19 m/s, a new instability arises. A first mode buckling overlaps 

the first mode flutter. Its amplitude increases very quickly to � � 1 cm at 
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a)  

b)  
Figure 3.21: a) The experimental frequency and b) amplitude versus velocity with Pipe 1 in configuration 3i � � 4.33 m/s and, then, to � � 2.7 cm at � � 5.84 m/s. From this velocity, the 

amplitude of the first mode flutter increases more rapidly, reaching � � 1.2 cm 

at � � 5.40 m/s. 

At � � 4.46 m/s, another instability is observable: a flutter of the pipe in 

its fifth mode superimposed on the first mode flutter. First, it is difficult to 

determine the mode of this instability because the amplitude is really small, but 

it becomes obvious at higher flow velocities. The frequency is close to ¦ �
21.5 Hz and it does not change much with flow. Thus, from this flow velocity on, 

the pipe exhibits at the same time a first mode flutter, a first mode buckling and 
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a fifth mode flutter (Figure 3.23). At first, the peak corresponding to the fifth 

mode frequency, in the power spectrum, is a minor peak in comparison to the 

peak corresponding to the first mode flutter. But, it becomes more important as 

the flow velocity is increased. In the mean time, the periods of shuddering 

motion of the first mode are more and more frequently observable. At 

� � 5.40 m/s, the amplitude of the fifth mode increases suddenly to � �
0.8 cm and its frequency becomes the main frequency of the oscillations. The 

observation of the first mode flutter becomes more difficult. At the highest 

reachable flow velocity, � � 5.84 m/s, the first mode instability is not present 

anymore and the pipe only exhibits a first mode buckling and a fifth mode 

oscillatory instability. 

a)  b)  
Figure 3.22: View of the pipe at a) � � � �/� and b) � � �. �� �/� showing the disappearing of the 

static bending (bowing) 

   
Figure 3.23: Superposition of the three observable instabilities at � � 
. �� �/� over half a period of the 

first mode oscillations 
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3.4.6 Configuration 3ii 

The difference from the previous configuration is that the pipe motion is 

contained in an outer rigid tube whose length is half that of the pipe. At low flow 

velocity, this does not affect the dynamics of the pipe. As shown in Figure 3.25, 

the pipe is slightly bent at zero flow velocity but the bend then smoothly 

disappeared at � � 2.83 m/s. Then, at � � 3.25 m/s, a first mode flutter arises 

with a small amplitude and a frequency ¦ � 0.39 Hz. As in Configuration 3i, 

periods of periodic motion alternate with periods of chaotic motion. As in 

Configuration 3i, the pipe also exhibits a first mode buckling instability but, here, 

this appears at � � 3.51 m/s. Its amplitude grows rather quickly.  

Up to this point, the dynamics is very similar to that of Configuration 3i. 

But, as the amplitude of the buckling increases, the pipe comes closer to the 

plexiglas tube and finally touches it at � � 4.06 m/s. At this velocity, the 

amplitude of first mode flutter suddenly increases to � � 0.7 cm  and the 

frequency of oscillations to ¦ � 0.67 Hz. Thus, contact with the outer tube has a 

great influence on the dynamics of the pipe. At higher flow velocities the 

amplitude of the buckling increases to reach � � 1.8 cm at � � 4.88 m/s. The 

frequency of oscillations also increases up to ¦ � 0.85 Hz at � � 5.03 m/s. 

Then, at � � 5.21 m/s, the dynamics of the pipe suddenly changes. 

Sometimes, it loses contact with the outer tube. As a result, the amplitude of the 

first mode flutter grows suddenly to � � 1 cm and it continues to increase 

     
Figure 3.24: The motion of Pipe 1 in Configuration 3ii at � � 6.01 m/s 
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a)

b)

Figure 3.25: a) The experimental frequency and b) amplitude versus velocity with Pipe 1 in configuration 3ii
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increases as the flow velocity increases and it reaches � � 0.4 cm at the highest 

flow velocity. 

3.4.7 Configuration 3iii 

This is the same as the previous configuration, except that the outer tube 

is as long as the pipe. As in the other configurations involving a spring, there is a 

bending of the pipe at zero flow velocity. But, in this configuration, the outer 

tube has a stabilizing effect too, as the bending disappears at � � 3.91 m/s. 

At � � 4.04 m/s, a first mode buckling appears. This is a transition 

velocity at which the pipe alternates between two positions: (i) the position of 

the pipe at lower flow velocity in which the pipe does not touch the outer tube 

and (ii) a first mode buckling instability in which the free end of the pipe is in 

contact with the free end of the plexiglas tube.  

The pipe then exhibits a complex motion at � � 4.20 m/s. Its free end 

performs a cyclic motion. As shown Figure 3.26, at the beginning of the cycle, the 

pipe exhibits a first mode buckling instability and there is contact with the outer 

tube free end. The free end of the pipe then remains in contact with the outer 

tube but the point of contact moves; it travels all over half the circumference of 

the free end of the outer tube. The contact is finally broken and the pipe comes 

back to its initial position through the centre of the plexiglas tube. 

    
Figure 3.26: The cyclic motion of Pipe 1 in Configuration 3iii at � � �. �� �/� 
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The transition period ends at � � 4.33 m/s. Then, the pipe exhibits only 

a first mode buckling instability. As shown in Figure 3.27, approximately half of 

the pipe length touches the outer tube at this velocity. At higher flow velocity, 

the pipe gradually pulls away from the outer tube, beginning by the upper part. 

At � � 5.95 m/s, the highest reachable flow velocity, only the lower part of the 

pipe is still in contact with the outer tube. 

a)  b)  c)  
Figure 3.27: The first mode buckling of Pipe 1 in Configuration 3iii at a) � � �. �� �/�, b) � � 
. 
� �/� 

and c) � � 
. �
 �/� 

3.4.8 Configuration 4i 

In that configuration, the flow velocity is that of the flow in the annular 

gap. At � � 1.14 m/s, a really weak instability arises. The amplitude is small 

(� n 0.25 cm) and there is absolutely no definite frequency in the signal. These 

small oscillations could be due to some imperfections inherent to the 

experiments. For example, there is a plate between the vessel and the tank. 

Some holes are drilled in it so that the water can go through and then flows in 

the annular gap; thus, the flow might not be homogeneous in the annular region. 

The small oscillations might also be due to some imperfections that can be 

present on the outside part of the pipe or to a Bernoulli phenomenon. If the tube 

comes only slightly closer to the outer tube, then the velocity is locally increased 

and this can produce a local pressure reduction. Each of these reasons might 

cause these small and non-periodic oscillations. At � � 2.88 m/s, an instability 

arises (Figure 3.28). It is not always observable. In fact, periods of periodic 
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oscillations alternate with periods of quasi-chaotic motion of smaller amplitude. 

The frequency of oscillation is ¦ � 4.8 Hz and the amplitude is increased to � � 1.3 cm. Both second and third modes are present in the pipe motion. From 

this velocity to � � 3.84 m/s , the highest reachable, the frequency of 

oscillations does not change a lot and it remains around ¦ � 5 Hz . The 

amplitude first increases to reach � � 3.5 cm  at � � 3.38 m/s  before 

decreasing. Furthermore, it should be noted that the intervals of small chaotic 

motion become longer than the intervals of periodic motion as the velocity is 

increased. Thus, for � � 3.84 m/s, the periodic motions are hardly observable. 

It seems that, in this configuration, the pipe loses stability at � � 3.07 m/s 

before regaining stability at a velocity higher than � � 3.84 m/s. 

a)  

b)  

Figure 3.28:  a) The experimental frequency and b) amplitude versus velocity with Pipe 1 in configuration 4i 
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3.4.9 Configuration 4ii 

In this configuration, there is no observable instability. From � �
1.38 m/s, there are some really small oscillations but they are not periodic. For 

example, Figure 3.29 shows the time signal and the power spectrum obtained by 

Welch’s method and the FFT method. There is no discernible main frequency. 

These small perturbations can be due to the same reasons as in configuration 4i. 

As the free end of the pipe is blunt, the non-occurrence of instability was 

expected from the theory of a solitary clamped-free cylinder in axial flow. 

a)  

b)  

Figure 3.29: Power spectra obtained for pipe 1 in configuration 4ii at � � �. ��� �/� by a) the FFT method 

and b) Welch’s method 
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In this configuration, a first mode buckling instability arises at the first 

flow velocity, U = 0.10 m/s. The amplitude is really small, 

, but increases quickly. It reaches a maximum, A = 0.8 cm

. At this velocity, the pipe is really close to the free end of the outer 

Despite appearing to be in contact in Figure 3.30.a, water is actually 

e pipe and the outer tube even if the gap is really small. 

in contact until U = 1.54 m/s. However, the rest of the pipe 

closer to the plexiglas tube (Figure 3.30.b). That is why

amplitude of the buckling that is measured at the free end of the pipe decreases 

and finally reaches a constant value, A = 0.5 cm. 

= 1.14 m/s, another instability is overimposed on the buckling. The 

amplitude is first rather small, A = 0.2 cm. The motion of the pipe is rather 

complex. The pipe seems to be virtually separated into two parts: the upper part 
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lower part is subjected to the first mode flutter that arises at this velocity. For 

now, the upper part is only subjected to buckling. 

= 1.22 m/s, a third mode flutter appears. Here, the whole pipe is 

new instability and the point of the pipe close to the free en

the outer tube is a node for this mode. The frequency is always close to 5 Hz. The 

amplitude of both the first and third mode flutter first increases (Figure 

 b)  
: The buckling of the pipe at a) U = 0.37 m/s and b) U = 1.14 m/s 
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reach a maximum at � = 1.38 m/s. It then decreases, certainly because a 

greater part of the pipe is close to the plexiglas: buckling works against flutter. 

At � = 1.54 m/s, There is a sudden change in the buckling instability. 

The pipe is suddenly touching the free end of the outer tube, whereas the rest of 

the pipe moves away from it. From this velocity on, the amplitude of the two 

flutter modes increases again rather quickly. One might think that this sudden 

change would affect the dynamics of the pipe, but the two frequencies remain 

a)  

b)  
Figure 3.31: a) The experimental frequency and b) amplitude versus velocity with Pipe 1 in configuration 5i 
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the same. However, from this flow velocity on, the peak corresponding to third 

mode flutter is less sharp, not so high and rather wide. Because of the contact, 

the frequency of the third mode flutter seems to be close to ¦ = 5 Hz but might 

not be perfectly constant and, so, not very well defined. Furthermore, the pipe 

located in the plexiglas tube is gradually coming in contact with it as the velocity 

increases. All these different causes might explain why the third mode flutter 

exhibits no main frequency for 1.85 � � � 2.08. 

At � � 2.08 m/s, the previous behaviour seems to begin again. The pipe 

loses contact again with the outer tube except at the free end of the plexiglas 

tube. Here, this point of contact regularly changes. The third mode appears again 

and its amplitude suddenly increases. The amplitude of both modes goes 

through a maximum around � = 2.4 m/s. At higher flow velocity, once again, 

the pipe gradually comes into contact with the outer tube and the amplitude of 

both modes decreases again. Furthermore, the frequency of the third mode 

becomes less well defined, as in the previous step, and the motion of the third 

mode flutter becomes totally erratic at � � 2.77 m/s. 

From � = 2.85 m/s on, the pipe seems in the mood to lose contact with 

the outer tube. It suddenly moves a lot; the amplitude increases and, then, 

becomes smaller again. At � = 3.00 m/s, the pipe sometimes loses contact with 

the outer tube and suddenly touches it again. The behaviour is highly erratic and 

there is no main frequency. However, the amplitude of the motion increases. 

     
Figure 3.32: The complex behaviour of the pipe at � = 3.53 m/s with the first mode buckling on the left 

and the flutter represented on the other pictures 
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The flow velocity � = 3.30 m/s is a particular one. The point of contact 

between the pipe and the outer tube travels continuously all over the 

circumference of the free end of the outer tube with no frequency. Then, the 

pipe suddenly exhibits periodic planar motion for a few seconds (¦ = 0.85 Hz) 

and, finally, diverges. At higher flow velocities, the pipes exhibits alternately two 

different behaviours: a first mode buckling alternates with periods of flutter 

(Figure 3.32). When the pipe undergoes flutter, the oscillations impact the outer 

tube at each extreme of the motion but they have no frequency. Maybe it is not 

really flutter and it is a change of the position of buckling. 

3.4.11 Configuration 5ii 

As in Configuration 5i, in this configuration, an instability arises at the first 

measurable flow velocity, � = 0.13 m/s . The amplitude of this first mode 

buckling is � = 0.3 cm (Figure 3.33). It increases until it reaches its maximum 

(� = 0.5 cm), determined by the presence of the outer tube, at � = 0.42 m/s. 

At this velocity only the free end of the pipe is touching the free end of the outer 

tube. At higher flow velocity, the rest of the pipe gradually comes in contact with 

the plexiglas tube. At � = 0.89 m/s and at � = 1.61 m/s, respectively, half and 

three-quarters of the pipe is touching the plexiglas. 

At � = 1.38 m/s, small vibrations of the pipe are observable but the 

amplitude is small and the frequency is ¦ = 1.70 Hz. Furthermore, because the 

pipe is coming more and more in contact with the outer tube at the same time, 

periods of periodic motion alternate with periods in which the pipe has no 

definite frequency: buckling set against flutter. As a longer part of the pipe is in 

contact with the plexiglas tube, the periods with no definite frequency become 

longer. From � = 2.00 m/s, the opposite behaviour is observable and a smaller 

part of the pipe is in contact with the outer tube. Until this point, the frequency 

and the amplitude of oscillation slightly increased. Both suddenly increase at 

� = 2.00 m/s. 
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a)  

b)  
Figure 3.33: a) The experimental frequency and b) amplitude versus velocity with Pipe 1 in configuration 5ii 
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free end of the pipe travels continuously all over the circumference of the free 

end of the outer tube. At � = 3.14 m/s, the amplitude of oscillations reaches its 

maximum possible magnitude and the end of the pipe suddenly loses contact 

with the outer tube. There is no more buckling and the whole pipe is now 

oscillating, but there is no main frequency at all. At higher flow velocities, the 

pipe exhibits an erratic behaviour whose amplitude is limited by the presence of 

the plexiglas tube. 

a)  b)  c)  

Figure 3.34: The a) first, b) third and c) second mode buckling successively observable at � = �. �� �/� 

3.4.12 Configuration 6i 

At the beginning, the pipe is very stable. The combination of the flow in 

the pipe from the top to the free end and a counter-current flow in the annular 

space has a stabilizing effect on the pipe (Figure 3.35.a). But, rather quickly, 

buckling in the first mode is experienced. At � = 1.93 m/s, the pipe touches the 

outer tube at its free end (Figure 3.35.b). It then remains the same until 

� = 5.35 m/s when really small non-periodic oscillations of the pipe appear. 

This continues only over a brief interval. At � = 5.59 m/s, the pipe is still in 

contact with the free end of the plexiglas tube but begins to flutter in its second 

mode. This corresponds to the first increase of the amplitude in Figure 3.37. The 

frequency is ¦ = 3.20 Hz at the critical flow velocity and it begins to decrease, 

reaching ¦ = 2.99 Hz at � = 5.82 m/s before increasing again to  ¦ = 4.08 Hz 

at � = 6.94 m/s. Meanwhile, the amplitude remains the same to � = 6.28 m/s 

(� = 3.2 cm) before decreasing to � = 1.2 cm. 
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a)  b)  
Figure 3.35: Pipe 1 in configuration 6i at a) � = �. �� �/�  and b) � = �. �� �/� 

 At � � 6.94 m/s, the dynamics of the pipe seems to change. The motion 

of the pipe gives the impression that the pipe behaves as if it was separated in 

two parts: one located in the outer tube and the other in unconfined flow. Even 

if the oscillations of both parts have the same frequency, it seems that the lower 

part is in the mood to flutter and the upper one to diverge. The pipe does not 

touch the plexiglas tube only in one point; it is rather a part of the pipe that is in 

contact with the outer tube. The contact line is around 3 cm long.  The dynamics 

of the pipe is the result of a combination of these two effects. This might explain 

the decrease of the oscillation amplitude.  

At � = 7.23 m/s, the dynamics of the pipe changes suddenly. The upper 

part seems to want to diverge in the second mode, so that the general motion of 

the pipe is flutter in the third mode. Figure 3.36 shows the shape of the pipe at 

different instants at � = 7.68 m/s. From � = 7.42 m/s, the motion of the pipe 

is more complex: sometimes in a plane, sometimes the free end performs a 

figure-of-eight oscillation, and sometimes it appears to be chaotic. The 

interaction between the possible buckling of the upper part and the flutter of the 

lower part might explain the complex behaviour. This kind of motion is 

observable until � = 7.91 m/s . Meanwhile, the amplitude of oscillation 

increased again to � = 6.40 cm and the frequency decreased to ¦ = 2.26 Hz. 



Chapter 3 

102 | P a g e  

 

  
Figure 3.36: Pipe 1 in configuration 6i at � = 7.68 m/s at different instants 

At � = 7.91 m/s , as the frequency goes through a minimum, the 

dynamics of the pipe changes again. The whole pipe begins to move again. There 

is no more perpetual contact between the flexible and outer tubes and there is 

no buckling anymore. The motion of the pipe alternates between planar 

oscillations in the third mode and circular motion. The amplitude is abruptly 

increased to � = 26 cm , but it then increases further more slowly. The 

frequency also increases to ¦ = 3.54 Hz at � = 9.31 m/s. A comparison with 

configuration 2ii shows that the pipe has the same behaviour in this 

configuration. For example, at � n 8.15 m/s, the pipe oscillates in its third mode, 

the amplitude of motion is � = 24 cm   and � = 28 cm , respectively, in 

configurations 2ii and 6i, and the frequency is ¦ = 3.05 Hz  and ¦ = 2.44 Hz, 

respectively, in configurations 2ii and 6i.   

To conclude, the presence of the outer counter-current flow has a lot of 

influence on the dynamics of the system in comparison with configuration 2ii. 

First at relatively low flow velocity, the pipe diverges in its first mode. It then 

keeps the buckling shape and flutters close to this equilibrium position but at a 

higher flow velocity than in configuration 2ii. Subsequently, it undergoes a 

complex motion due to the virtual separation of the pipe into two parts, with the 

upper part close to buckling and the lower to flutter. However, at higher flow 

velocity, the influence of the annular flow seems to die out and the dynamics of 

the pipe is the same as in configuration 2ii. 
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a)  

b)  
Figure 3.37: a) The experimental frequency and b) amplitude versus velocity with Pipe 1 in configuration 6i 
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pipe suddenly exhibits a periodic motion with a frequency ¦ = 1.20 Hz that 

immediately dies out as the flow velocity increases (Figure 3.38). The pipe then 

demonstrates a second mode buckling. Thus, this particular velocity marks the 

transition from first mode buckling to second mode buckling. 

Up to � = 4.56 m/s, the pipe displays a second mode buckling (Figure 

3.39.b) but also very small vibrations with no dominant frequency. They might be 

due to the same reasons as those presented in Configuration 4i. 

For 4.56 � � � 6.88, the dynamics of the pipe go through a period of 

transition from second mode buckling to third mode buckling. Over this range, 

the pipe exhibits a complex behaviour: periods of chaotic motion alternate with 

periods of oscillatory divergence. Both second mode buckling and third mode 

buckling are alternately observable, the pipe switching from one to the other. 

For some velocities as � = 5.26 m/s, the motion of the pipe is almost entirely 

erratic and there is no definite frequency. But, as the velocity increases, the third 

mode is more and more present and finally, at � = 6.17 m/s, only the instability 

in the third mode is observed. 

At � = 6.88 m/s, the oscillatory divergence is not observable anymore 

and the pipe exhibits a third mode buckling (Figure 3.39.c). It remains in this 

position until � = 9.44 m/s. At this velocity, the pipe suddenly exhibits a fourth 

mode buckling (Figure 3.39.d) without any interval of transition. 

 
Figure 3.38: The experimental frequency versus velocity with Pipe 1 in configuration 6ii 
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a)  b)  c)  d)  
Figure 3.39: the a) first, b) second, c) third and d) fourth mode observed successively with Pipe 1 in 

Configuration 6ii 

3.4.14 Configuration 7i 

In this configuration again, a spring is inserted in the pipe because the 

pipe is aspirating fluid. Thus, the pipe is slightly bent at zero flow velocity. As in 

configuration 3ii, the amplitude is 0.8 cm. It then smoothly decreases with 

increasing flow velocity and disappears at � = 1.34 m/s. So, because of the 

discharging annular flow, the bending dies out much more quickly than in 

configuration 3ii.  

In this configuration, the pipe loses stability by flutter in its first mode at 

really low flow velocity. Hence, the first oscillations arise at � = 0.37 m/s with a 

frequency ¦ = 0.45 Hz. In this configuration also, the pipe does not exhibit 

continuous periodic motions. The periodic motion alternates with chaotic motion. 

At first, periods of chaotic motion are hardly observable. Furthermore, the 

amplitude is really small, � = 0.2 cm, but increases quite rapidly to � = 2.5 cm 

at � = 1.85 m/s. At this velocity, the pipe impacts the free end of the plexiglas 

tube for the first time. This contact has a great influence on the dynamics of the 

pipe. From that point, the frequency will always increase. For 1.85 � � � 2.90, 

the amplitude remains constant. Furthermore, periods of shuddering motion are 

really long and periods of periodic motion do not last more than a few seconds. 

This is because the collision with the plexiglas disturbs the dynamics of the pipe  
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a)  

b)  
Figure 3.40: a) The experimental frequency and b) amplitude versus velocity with Pipe 1 in configuration 7i 

that exhibits periodic motion of small amplitude. The amplitude then increases 

until the pipe touches the plexiglas. A period of chaotic motion follows and the 

cycle begins again. 

From � = 2.90 m/s  and to the highest reachable flow velocity, the 

amplitude increases again rather quickly, from � = 4.5 cm to � = 8.5 cm, and 

the frequency increases continuously from ¦ = 0.64 Hz to ¦ = 0.88 Hz (Figure 

3.40). The pipe exhibits mainly intervals of periodic motion. However, the motion 

is still complex, as two kinds of periodic motion alternate: periods of first mode 
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planar motion and phases during which the end of the pipe performs figure-of-

eight motion.  

3.4.15 Configuration 7ii 

In this configuration also, there is a bend of the pipe at low flow velocities. 

Here, it is limited by the outer rigid tube whose length is equal to half that of the 

pipe. As in configuration 7i, the bend disappears rather quickly because of the 

discharging annular flow. 

In this last configuration, the first oscillatory instability arises at 

� = 2.02 m/s. The amplitude is so small that it is really difficult to observe, but 

the frequency which is that of the first mode flutter is ¦ = 1.1 Hz. It is not steady 

and periods of chaotic motions also occur. As the flow velocity increases, the 

frequency and the amplitude do the same (Figure 3.43) and periods of periodic 

motion last longer and longer.  

     
Figure 3.41: The complex behaviour of the pipe at � = 5.26 m/s  

 

a)  b)  
Figure 3.42: The final second mode buckling of the pipe at a) � = 5.26 m/s and b) � = 5.56 m/s. 
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a)

b)

Figure 3.43: a) The experimental frequency and b) amplitude versus velocity with Pipe 1 in configuration 7ii

From U = 4.03 m/s
seems that the frequency has reached a plateau around

velocity, a minor peak appears in the power spectra. It is quite difficult to detect 

it by the naked eye because the amplitude of these oscillations is less than a 

millimetre and, so, it is hard to determine the mode of instability. The frequency

of these higher mode oscillations is
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= 4.03 m/s, the amplitude increases more quickly, whereas it 

seems that the frequency has reached a plateau around f = 1.34 Hz

velocity, a minor peak appears in the power spectra. It is quite difficult to detect 

the naked eye because the amplitude of these oscillations is less than a 

millimetre and, so, it is hard to determine the mode of instability. The frequency

of these higher mode oscillations is U = 25.1 m/s. They first increase with the 

velocity before reaching a maximum at U = 4.54 m/s. From this velocity to 

, both the frequency of the first mode and the frequency of the 

. At U = 5.26 m/s, the amplitude of oscillations reaches a 
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experimental frequency and b) amplitude versus velocity with Pipe 1 in configuration 7ii 

whereas it 

= 1.34 Hz. At this 

velocity, a minor peak appears in the power spectra. It is quite difficult to detect 

the naked eye because the amplitude of these oscillations is less than a 

millimetre and, so, it is hard to determine the mode of instability. The frequency 

first increase with the 

. From this velocity to 

, both the frequency of the first mode and the frequency of the 

, the amplitude of oscillations reaches a 

). In fact, the pipe exhibits a complex motion: it is mainly 
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oscillating but it sometimes remains in contact for a short time with the outer 

tube as if it was diverging (Figure 3.41). As shown in Figure 3.42, the pipe 

suddenly exhibits a second mode buckling at the same velocity. At higher flow 

velocity, the dynamics of the pipe does not change. 

3.5 Conclusion 

This project is divided into two quite distinct parts. As presented in 

Sections 3.2 and 3.3, a new apparatus had to be designed and built to 

experimentally study the dynamics of the hanging pipes used in salt caverns. 

Some problems and difficulties had to be overcome to finally get a useful 

apparatus allowing the study of a large set of configurations. There is a great 

variety of requirements. The apparatus has to recreate the environment of a salt 

cavern. It means that the pipe can be completely surrounded by water, which is 

the experimental fluid, but the sealing of the apparatus still has to be ensured. 

Furthermore, the two coaxial flows have to be separated, with no connection 

between them. A special part was designed to ensure this: the vessel sitting on 

top of the tank. It was really important to switch from one configuration to 

another quite quickly and easily. Moreover, different instrumentation had to be 

added to record the flow velocity and the amplitude as well as the frequency of 

pipe motion. 

The second step of this project was to conduct a whole set of 

experiments with Pipe 1. The results are presented in Section 3.4. The major 

difficulty that was encountered was a shell-type collapse of the pipe in the 

configuration involving an aspirating pipe. It was decided to add a spring inside 

the pipe so that the collapse would be avoided, yet the motion of the pipe would 

not be constrained in any way. The insertion of the spring generated a small 

bend in the pipe; it was reduced by annealing the spring, but not entirely 

removed. However, with flow, this bow gradually disappeared, and in any case 

the real full-scale system is probably not 100% straight either. 
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Table 3.5: Comparison of the different critical flow velocities and flow rates 

Configuration 

Critical flow 

velocity for 

Flutter (m/s) 

Corresponding 

flow rate (l/s) 

Critical flow 

velocity for 

Buckling (m/s) 

Corresponding 

flow rate (l/s) 

1 6.94 0.476 - - 

2i 3.93 0.270 - - 

2ii 4.21 0.289 - - 

2iii - - 1 0.0686 

3i 3.39 0.233 4.19 0.287 

3ii 3.25 0.223 3.51 0.241 

3iii - - 4.04 0.277 

4i 3.07 0.946 - - 

4ii - - - - 

5i 1.14 0.357 

0.10 (first 

observable 

velocity) 

0.031 

5ii 1.21 0.372 

0.123 (first 

observable 

velocity) 

0.040 

6i 5.59 0.383 1.93 0.132 

6ii 4.56 0.313 1 0.0686 

7i 0.37 0.0254 - - 

7ii 2.02 0.139 5.30 0.364 

Table 3.5 presents a comparison of the critical flow velocities of the 

system in each configuration. If they exist, the onsets of buckling and flutter are 

presented separately. Furthermore, depending on the configuration, the 
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measured velocity was either the flow velocity in the pipe or in the annular flow. 

For reasons of comparison, the corresponding flow rates are also given in this 

table. On one hand, it appears from this table that the less stable configurations 

are Configuration 5i and Configuration 5ii as a buckling instability is observable 

from the very first reachable velocity. In these configurations, the flow is only in 

the annular gap and goes from the free end to the clamped end. On the other 

hand, the most stable one is Configuration 4ii as the pipe exhibited no instability 

in the experiment.  Thus, it appears that, whereas the annular flow has a 

stabilizing effect when it is discharging water, it has the opposite effect when itis 

going the reverse way. And, it seems that this system should never be used with 

only an annular flow going from the free end to the clamped end. 

The first general observation that can be made is that the surrounding 

water clearly has a destabilizing effect on the system. The critical flow velocity in 

Configuration 2i or Configuration 2ii is smaller than in Configuration 1. Then, for 

systems involving a discharging pipe, the amplitude of motion can easily be 

larger than twenty centimetres if the outer tube does not have the same length 

as the pipe. If the pipe is aspirating the fluid, the amplitude is rarely higher than 

three centimetres, except for Configuration 7i in which the amplitude reaches 

� = 8.5 cm. But it is still much smaller than for the cases of a pipe discharging 

water. Nevertheless, it is important to point out that the maximum experimental 

velocities are higher when the pipe is discharging water. In that case, the 

maximum velocity is higher than 8 m/s, whereas ��,� � 6 m/s when the pipe 

is aspirating fluid. 

Moreover, by comparing the critical flow velocities for Configuration 2ii 

and Configuration 6i, it is difficult to say if the addition of the counter-current 

annular flow has a beneficial effect. Although the system certainly loses stability 

by buckling at a lower flow velocity in terms of flutter the system is more stable. 

In contrast, the comparison of the critical flow velocities of Configuration 3ii, 
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Configuration 4i and Configuration 7i shows that the combination of both flows 

clearly has a destabilizing effect on the system. This study also shows that for salt 

mining, storage or withdrawal of the liquid hydrocarbons and natural gas 

purposes, Configuration 6i should be used as often as possible because the 

system is much more stable than in configuration 7i. 

Furthermore, even if the type of instability, the critical flow velocity and 

the behaviour of the pipe at higher flow velocities depend on the configuration, 

some similarities exist. A good example is the comparison of the dynamics of the 

pipe in Configuration 2ii and Configuration 6i. At low flow velocities, the pipe has 

the same dynamics in both configurations. The behaviour then differ from one 

configuration to the other. However, at high flow velocities, the pipe exhibits 

again the same behaviour in both configurations; at these velocities, the 

dynamics of the system is dominated by the inner flow in Configuration 6i. 

Finally, as explained in Section 3.3, the apparatus was also designed to 

conduct experiments with another pipe, other outer tubes and also additional 

rings. In the future, it might be really useful to redo the whole set of experiments 

presented in Section 3.4 together with these new equipments in which the outer 

tube size is varied, the effect of a ring is assessed, etc. Indeed, the present results 

could be compared with other sets of results. Thus, the influence of an additional 

ring, of the width of the annular gap and of the pipe thickness could be 

investigated and, the observations and conclusions presented in the present 

work could be fine-tuned. 
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Chapter 4:  Conclusion 

As discussed in Chapter 1, a lot of researchers have been intrigued by the 

dynamics of a pipe conveying fluid over the past few decades. The dynamics of 

quite different systems involving thin and thick flexible pipes subjected to 

internal, external, annular, or both internal and external axial flow has been 

investigated over the years. If the work in this area has often been curiosity-

driven, it is now certain that it is of both fundamental and practical interest, as 

industrial applications have emerged years after the study has been carried out. 

As a matter of fact, whereas the work presented in Chapter 2 is of 

fundamental interest, the experimental study undertaken in Chapter 3 is directly 

inspired by industrial problems and the results are expected with great interest 

by companies who store hydrocarbons and natural gas in salt caverns. 

Nevertheless, the study presented in Chapter 2 is also motivated by possible 

applications in existing industrial installations involving cantilevered shells 

aspirating fluid for ship-board liquefaction of natural gas, as well as by 

experimental observations made by Rinaldi (2009) at McGill University, Montreal, 

Canada. 

So, the scope of the present work can be divided into two main issues: (i) 

the investigation of the dynamics of a thin-walled pipe, i.e. a cylindrical shell, 

aspirating air, and (ii) the experimental study of the stability of a thick-walled 

pipe subjected to internal, annular, or simultaneous internal and annular axial 

flows. 

In Chapter 2, the dynamical investigation of an aspirating cantilevered 

shell is conducted both theoretically and experimentally. First, a linear analytical 

model is developed. Once the model assumptions have been defined, the 

equations of motion are derived through a variational principle and by taking 

into account new boundary conditions associated with the fluid flowing from the 
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free towards clamped end. Indeed, as the flow is not a reverse jet in the case of 

an aspirating cantilevered shell, there is a change of momentum of the flow at 

the inlet, and the corresponding force acting at the free end of the shell has to 

be considered in the equations. The pressure difference at the wall is 

determined with a Fourier-Transform Generalized-Force method, also taking into 

account an out-flow model. A solution of the problem is finally found by using 

the extended form of the Galerkin method. The second step of the investigation 

is to conduct experiments with two different flexible shells that are made of the 

same material but whose length and wall thickness differs. They have been 

conducted in an existing apparatus involving air as flowing fluid. Finally, the 

theoretical and experimental results are compared. Whereas the theory is able 

to predict qualitatively the first type of instability, which is a first mode flutter, 

the critical flow velocities are overestimated by the theory. Furthermore, 

whereas the analytical model predicts buckling at higher flow velocities, in the 

experiments buckling arises at the same flow velocity as flutter. So, at the end of 

this work, it is not sure yet if the phenomenon observed in the experiments is 

flutter followed by buckling, or if it is an "oscillatory buckling", involving the 

frequent switch from one possible buckling state to another. In the latter case, 

the final buckling would be the final state of this phenomenon. However, the 

collapse of the shell could also be due to the combination of the intramural 

pressure difference at the wall and of the really low stiffness of the material.  

The experimental study of the stability of the hanging tubular pipes used 

in salt caverns has been undertaken as a first step to better understand the 

failures that were observed in industrial installations. The experiments were first 

meant to be conducted with a pre-existing apparatus used for the experiments in 

Chapter 2. However, it quickly became apparent that it would be more expedient 

to build a new apparatus. Thus, the first really important step of this project 

presented in Chapter 3 was the design of this new apparatus. Some problems 

and difficulties had to be overcome to finally get a useful apparatus which would 
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allow the study of a large set of configurations. A great number of experiments 

had to be tested and it was really important to be able to switch from one 

configuration to another quite quickly and easily. Furthermore, different 

instrumentation had to be added to record the flow velocity and the amplitude 

as well as the frequency motion. Then, the second step of the project could be 

carried out, namely a whole set of experiments on each of a number of flow 

configurations.  

The stability of the system is investigated in each configuration: 

determining the critical flow velocity and frequency as well as the post-critical 

dynamics, i.e. the behaviour of the pipe at higher flow velocities. Thus, the 

stability of the system in one configuration can be compared to that in others. 

The main observations are that (i) the surrounding water has a destabilizing 

effect on the system, (ii) the motion amplitudes are much bigger when the pipe 

is discharging water than in the reverse case, and (iii) even though the type of 

instability, the critical flow velocity and the behaviour of the pipe at higher flow 

velocities depend on the configuration, some similarities exist. Finally, this study 

also shows that, for salt mining, storage or withdrawal of the liquid hydrocarbons 

and natural gas, the configuration involving a discharging pipe and an aspirating 

annular flow should be used as often as possible, because the system is much 

more stable than in the reverse configuration. It is realized of course that this 

conclusion is based on just the experiments described; it must be reconfirmed by 

other experiments to establish how robust this conclusion is. 

In the future, to fine-tune the investigation on the dynamics of an 

aspirating cantilevered shell, it could be very useful to conduct experiments with 

a stiffer material. This experiment could even be conducted with water in the 

new apparatus presented in Chapter 3. Moreover, the analytical model needs 

some improvements, certainly by reconsidering the out-flow model and a new 

boundary condition. For the study undertaken in Chapter 3, the apparatus was 
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designed to investigate the dynamics of systems with different characteristics. 

Thus, other sets of experiments should be conducted to study the influence of 

different parameters, such as the wall thickness of the pipe, the width of the 

annular gap or the presence of an additional ring at the free end of the outer 

tube to induce a leakage-flow instability. These further experiments would be of 

great interest for confirming and adjusting the conclusions reached in the 

present work regarding the stability as well as the post-critical dynamics. 
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Appendix A: Stress Resultants and 

Moments Expressions 

In this appendix, the method to get the expressions of the stress 

resultants and moments is presented. Their definitions are presented in the first 

chapter of Flügge’s book (1973).  To get their expressions for our particular case, 

we first need to express the displacement of an arbitrary point of the shell 

according to the displacement of the point located on the reference surface.  

Considering the assumptions made in Chapter 2, we get: 

� �� = 7 3 $9,� ,
�� � � 3 $� 8 3 $9,� ,

æ� � 9,
� (A.1) 

where ��, ��  and æ�  are the displacements of an arbitrary point located at a 

distance z from the middle surface. Because of assumption 3, we consider only 

the strains εx, εθ and γxθ. The expressions for the strains are given by 

DE
EEE
F
EEE
EG"� � 7,�3 $9,��� 12 �7,��� 8,��� 9,�� �,                  

"� � 1� 8,�3 $� 9,��� � $ � 9$ � �                                    
      � 12 _7,���� � �8,�� 9��

�� � �8 3 9,� ��
�� ` ,

��� � � � $� 8,�� 7,�$ � � 3 2� � $� � $ $� 9,��              
            � 12 57,� 7,�� � 8,� 8,�� 9� 3 9,� 839,�� ; .

� (A.2) 

Using assumptions 2 and 3 and Hooke’s law, we determine the 

corresponding stresses: 

DE
F
EG!�� � a1 3 U� �"� � U"��,

!�� � a1 3 U� �U"� � "��,
!�� � a2�1 � U� ��� .

� (A.3) 
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We then introduce these expressions in the definitions of the stress 

resultants and couples. The terms of order higher than �	 �⁄ �� are neglected 

when performing the integration. Therefore, the final linear expressions are 

given by 

�� � Ì� =�7T � U8 · � U9� 3 X,9WW@,
�� � Ì� =�8 · � 9 � U7T� 3 X,�9 � 9 ··�@,

��� � Ì� 1 3 U2 =�7· � 8T� � X,�7· � 9T·�@,
��� � Ì� 1 3 U2 =�7· � 8T� � X,�8T 3 9T·�@,/� � ÌX,�9TT � U9 ·· 3 7T 3 U8 ·�,/� � ÌX,�9 � 9 ·· � U9WW�,

/�� � ÌX,�1 3 U� 69W· � 7· 3 8W2 : ,
/� � ÌX,�1 3 U��9W· 3 8T�,

 

(A.4) 

where Ì � a	 �1 3 U��⁄  
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Appendix B: Application of the 

Variational Principle 

To derive the equations using this principle, we need to develop the 

expressions of the variation of the elastic strain energy (2.3). To accomplish this 

step, we introduce the expressions of the strains given by (A.2): 

��� �    �!��� ©7,�3 $9,��� 12 �7,��� 8,��� 9,�� �«
)/�

*)/�
�+,
�

-
�

� !��� ©1� 8,�3 $� 9,��� � $ � 9$ � �
� 12 _7,���� � �8,�� 9��

�� � �8 3 9,� ��
�� `«

� !��� 6� � $� 8,�� 7,�$ � � 3 2� � $� � $ $� 9,��
� 12 57,� 7,�� � 8,� 8,�� 9� 3 9,� 839,�� ;:� #1
� $�% �&'&(&$. 

(B.1) 

We then develop this expression term by term: 

��� �    4!�� #1 � $�% ��7,�3 $�9,��� 7,� �7,�� 8,� �8,�
)/�

*)/�
�+,
�

-
� � 9,� �9,� �

� !�� 6�8,�� �9� � $ �8,�3 �9,����
� 1�� #1 � $�% =7,� �7,�� �8,�� 9��8,�
� �8,�� 9��9 � �8 3 9,� ��8 3 �8 3 9,� ��9,� @:
� !�� 6�7,�� 3 $� �9,��� #1 � $�% �8,�
� $� #1 � $�% ��8,�3 �9,�� �
� 1� #1 � $�% =7,� �7,�� 7,� �7,�� �8,�� 9��8,�� 8,� ��8,�� �9� � �9,�3 8��9,�� 9,� ��9,�3 �8�@:< �&'&(&$. 

(B.2) 
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Considering the definitions of the stress and moment resultants, we get 

��� �   4��=�7,�� 7,� �7,�� 8,� �8,�� 9,� �9,� @�+,
�

-
� � /��9,��

� ���� =��8,�� �9� � 7,� �7,�� �8,�� 9��8,�
� �8,�� 9��9 � �8 3 9,� ��8
3 �8 3 9,� ��9,� @
� /��[ =���9,��3 �8,� � � 7,� �7,�
� �8,�� 9��8,�� �8,�� 9��9
� �8 3 9,� ��8 3 �8 3 9,� ��9,� @
� ��� �7,�� � /�� �9,���
� ���� =��8,�� 7,� �7,�� 7,� �7,�
� �8,�� 9��8,�� 8,� ��8,�� �9�
� �9,�3 8��9,�� 9,� ��9,�3 �8�@
� /�� �9,��3 �8,�� < �&'&(. 

(B.3) 

In what follows, we will only show how to get the equations in the x 

direction. For the two other equations, the same method has to be used. To 

obtain this equation, we only have to consider the terms involving δu, and their 

sum will be equal to zero because we want (2.7) to be valid for any set of 

perturbations (δu, δv, δw), . In equation (B.3), some derivatives of the 

displacement δu are present; we shall rearrange these components of the 

equation by using the divergence theorem. For example, the first term becomes 

  ���7,� �&'&(�+,
�

-
�

�  =���7�&(@�A��A-�+,
�

3   �� ,� �7�&'&(�+,
�

-
�

. (B.4) 
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What we finally obtain from (B.3) is 

  � 4�� ,�� ���7,� �,�� 6��7,��� : ,�� 6/�7,��[ : ,�� 6���� : ,�
�+,
�

-
� � 6���7,�� : ,�� 6���7,�� : ,� < �7&'&(

3  � ä���1 � 7,� � � ��� 7,�� å�A�
�A-�+,

�
�7&(

3  � ä�� 7,��� å�A�
�A�+-

�
�7&'

�   � 4��� 61 � 7,�� 8,�� 9� : 3 ���9,� < �7&'&(�+,
�

-
�

�  =>��@�A��A-��7&(�+,
�

� 0. 

(B.5) 

As the shell is a closed cylinder, we have » � ä�� �,�,� å�A�
�A�+-� �7&' � 0. 

Furthermore, (B.5) is true for any variational displacement. Keeping in mind that 

the shell is clamped-free, we obtain the boundary conditions: 

7 � 0 �J ' = 0,
���1 � 7,� � � ��� 7,�� � >�� �J ' = R. (B.6) 

Considering the linear version of the above, we finally obtain 

7 = 0 �J ' = 0,
���� � >�� �J ' = R,

��� � 0 �J ' = R,
 (B.7) 

where >�� is defined in Chapter 2. The equation in the x-direction is given by 

�� ,�� ���7,� �,�� 6��7,��� : ,�� 6/�7,��[ : ,�� 6���� : ,�� 6���7,�� : ,�
� 6���7,�� : ,�� ��� 61 � 7,�� 8,�� 9� : 3 ���9,� � 0. (B.8) 
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The zero-order equation is then easily obtained. Here we give also these 

equations along θ and z because they are useful in obtaining the final form of the 

first-order equation: 

����,� � 3���,���,� � 0,
�� � ���� . � (B.9) 

Using (B.8) and taking into account only the linear terms of the first order, 

we finally have: 

����,�� ����7,��� ����,� 7,�� ���� 7,��� ��� ,�
� ���� 67,�� 8,�� 9� : 3 ���9,�3 H��	 I�7IJ� � 0. (B.10) 

Considering (B.9), this leads to 

����,�� ��� ,�� ����7,��� ����8,�� 9� � ���� �7,��3 �9,� �
� H��	 I�7IJ� . (B.11) 

From the expressions of the stress and moment resultants (A.4), we have: 

R��7, 8, 9� � 7TT � 1 3 U2 7·· � 1 � U2 8W· � U9T

� X 51 3 U2 7·· 3 9TTT � 1 3 U2 9W··; � Y�7TT

� Y�8 · � 9� � Y��7·· 3 9W� 3 � I�7IJ� � 0. 
(B.12) 

Following the same procedure, we get the other boundary conditions for 

a clamped-free shell: 

8 � 9 � I9I' � 0 �J ' = 0,
��� 3 /��� � 0 �J ' = R,

/� � 0 �J ' = R,
�/� ,�� /�� ,�� /�� ,� � 0 �J ' = R,

 (B.13) 



Appendix B 

VII | P a g e  

 

 

and the two other first order equations: 

�� ,�� ���� ,�3 1� /� ,�3 /�� ,�� ���8,��� ����� �8,��� 9,� �
� H��	 I�8IJ� , (B.14) 

�/� ,��� /�� ,��� /�� ,��� 1� /� ,��� ��� 3 ����9,��
� ���� �3�7,�� 8,�3 9,�� � 3 �K � 3H��	 I�9IJ� . (B.15) 
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Appendix C: Matrix Elements 

Before giving the matrix elements, here are the expressions of the 

coefficients of the terms Wikn: 

ëÂ�¢�,� � "�ÛÂ� 5Ωª� 3 1 3 U2 C��1 � X,� 3 �ã[C�; 3 C�"��â[	Â�
� "]Ï1 � �ã�Ò&Â� � "]�â�ÊÂ�, (C.1) 

ëÂ�¢�,� � 1 � U2 C"�ÛÂ� � �ã�C"�Â� 3 UC"����1��WÂ�1�, (C.2) 

ëÂ�¢�,[ � "�ÛÂ� 5U 3 X, 1 3 U2 C� 3 �ã[; 3 "�	Â��â[ 3 X,"]&Â�
� �ã�"�Â� 3 U"����1��WÂ�1�, (C.3) 

ëÂ�¢�,� � 3 1 � U2 C"�ØÂ� � 1 3 U2 C"��W��1��Â�1�, (C.4) 

ëÂ�¢�,� � �Â�ÏΩª� 3 n�Ð1 � �ã[ÑÒ 3 C��â[ÙÂ�
� "�ØÂ� 51 3 U2 �1 � 3X,� � �ã�; � "�XÂ��â�
3 1 3 U2 "��1 � 3X,��W��1��Â�1�, 

(C.5) 

ëÂ�¢�,[ � 3�Â�CÐ1 � �ã[Ñ 3 C�â[ÙÂ� � "�ØÂ�X, 3 3 U2 C
3 1 3 U2 3CX,"��W��1��Â�1�, (C.6) 

ëÂ�¢[,� � �Â�X,P�] "] 3 "�ØÂ� 5U 3 X, 1 3 U2 C� 3 �ã[; � "�XÂ��â[
3 1 3 U2 C�"��W��1��Â�1�, (C.7) 

ëÂ�¢[,� � 3�Â�CÏ1 � �ã[Ò 3 C�â[ÙÂ� � "�ØÂ� 3 3 U2 X,C
� X,UC"����1��WÂ�1� 3 3 3 U2 "�X,C�W��1��Â�1�, (C.8) 
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ëÂ�¢[,[ = Ωª� #�Â� � KÂ�¢��� % � Ωª�ª ©2KÂ�¢��� 3 ± Ó�"2 ���1��Â�1�«
3 �Â�Ï1 � X,P�] "] � X,�C� 3 1�� � �ã[C�Ò
3 C��â[ÙÂ� � "�ØÂ�Ï2C�X, � �ã�Ò � "�XÂ��â�
� �ª� wKÂ�¢�[� 3 Ó�"�

2 ��W��1��Â�1�y
� UC�"�X,���1��WÂ�1�
3 �2 3 U�C�"�X,�W��1��Â�1�. 

(C.9) 

C.1 Matrix [M] 

In this matrix the only non-zero terms are located on the diagonal: /Â��,� � "�ÛÂ�, (C.10) 

/Â��,� � �Â�, (C.11) 

/Â�[,[ � �Â� � KÂ�¢��� . (C.12) 

C.2 Matrix [C] 

This matrix has only one non-zero term: 

SÂ�[,[ � �ª ©2KÂ�¢��� 3 ± Ó�"2 ���1��Â�1�«. (C.13) 

C.3 Matrix [K] 

This matrix is much more complicated. All of its terms are non-zero.  To 

better understand the influence of each term, we separate it in four different 

matrixes: [K1], [K1bis], [K2] and [K3]. Matrix [K1] 

C.1.1 Matrix [K1] 

Matrix [K1] regroups the terms coming from the standard Flügge’s shell 

theory, except for the perturbation pressure term, namely 

�̄Â��,� � 3 1 3 U2 C��1 � X,�"�ÛÂ� � "]&Â�, (C.14) 

�̄Â��,� � 1 � U2 C"�ÛÂ�, (C.15) 
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�̄Â��,[ � "�ÛÂ� 5U 3 X, 1 3 U2 C�; 3 X,"]&Â�, (C.16) 

�̄Â��,� � 3 1 � U2 C"�ØÂ�, (C.17) 

�̄Â��,� � 3n��Â� � "�ØÂ� 51 3 U2 �1 � 3X,�;, (C.18) 

�̄Â��,[ � 3�Â�C � "�ØÂ�X, 3 3 U2 C, (C.19) 

�̄Â�[,� � �Â�X,P�] "] � "�ØÂ� 5X, 1 3 U2 C� 3 U;, (C.20) 

�̄Â�[,� � 3�Â�C � "�ØÂ� 3 3 U2 X,C, (C.21) 

�̄Â�[,[ � 3�Â�=1 � X,P�] "] � X,�C� 3 1��@ � "�ØÂ�2C�X,. (C.22) 

C.1.2 Matrix [K1bis] 

Matrix [K1bis] accounts for the unsteady pressure term and the new 

boundary condition term due to the aspiration of a fluid, both of them 

depending on the square of the velocity, namely 

�̄�L�Â�[,[ � �ª� wKÂ�¢�[� 3 Ó�"�
2 ��W��1��Â�1�y. (C.23) 

C.1.3 Matrix [K2] 

In matrix [K2], the boundary conditions of a clamped-free shell are 

considered: 

�̄Â��,� � 0, (C.24) 

�̄Â��,� � 3UC"����1��WÂ�1�, (C.25) 

�̄Â��,[ � 3U"����1��WÂ�1�, (C.26) 

�̄Â��,� � 1 3 U2 C"��W��1��Â�1�, (C.27) 

�̄Â��,� � 3 1 3 U2 "��1 � 3X,��W��1��Â�1�, (C.28) 

�̄Â��,[ � 3 1 3 U2 3CX,"��W��1��Â�1�, (C.29) 
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�̄Â�[,� � 3 1 3 U2 C�"��W��1��Â�1�, (C.30) 

�̄Â�[,� � X,UC"����1��WÂ�1� 3 3 3 U2 "�X,C�W��1��Â�1�, (C.31) 

�̄Â�[,[ � UC�"�X,���1��WÂ�1� 3 �2 3 U�C�"�X,�W��1��Â�1�. (C.32) 

C.1.4 Matrix [K3] 

Finally, matrix [K3] is composed of the terms related to steady viscous 

effects 

[̄Â��,� � "]Ð�ã�&Â� � �â�ÊÂ�Ñ 3 C�"�Ð�ã[ÛÂ� � �â[	Â�Ñ, (C.33) 

[̄Â��,� � �ã�C"�Â�, (C.34) 

[̄Â��,[ � 3"�Ð�â[	Â� � �ã[ÛÂ�Ñ � �ã�"�Â�, (C.35) 

[̄Â��,� � 0, (C.36) 

[̄Â��,� � 3C�Ð�â[ÙÂ� � �ã[�Â�Ñ � "�Ð�â�XÂ� � �ã�ØÂ�Ñ, (C.37) 

[̄Â��,[ � 3CÐ�â[ÙÂ� � �ã[�Â�Ñ, (C.38) 

[̄Â�[,� � "�Ð�â[XÂ� � �ã[ØÂ�Ñ, (C.39) 

[̄Â�[,� � 3CÐ�â[ÙÂ� � �ã[�Â�Ñ, (C.40) 

[̄Â�[,[ � 3C�Ð�â[ÙÂ� � �ã[�Â�Ñ � "�Ð�â�XÂ� � �ã�ØÂ�Ñ. (C.41) 
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Appendix D: Validation of the 

Computer Program 

Before using the computer program for the case of a cantilevered 

aspirating fluid, it was necessary to get some preliminary results to validate the 

method of resolution but also to determine some parameters involved in the 

program.  

Two important aspects of the theory had to be examined: the validity of 

the extended Galerkin method for solving the equations of motion and the 

usefulness of the concept of an out-flow model for describing the fluid behaviour 

downstream of the free end. As several models were defined, it was important 

to determine the most suitable one, as well as the most suitable distance beyond 

the free end of the shells for flow perturbations to die out. 

Furthermore, a numerical integration is required to calculate the 

unsteady fluid forces because they are obtained through a Fourier transform 

method. To perform it, it was decided to use the Gaussian quadrature method. 

Firstly, the forces are calculated in some cases by direct integration to validate 

the use of the Gaussian quadrature and the number of necessary points. Then, 

comparing the found critical flow velocities with existing results, the integration 

stepsize, the domain of integration and the number of admissible functions are 

determined. 

As all of the examined parameters are parts of inviscid theory only, and 

because the previous work did not involve any viscous effects, the present 

calculations were conducting without considering steady viscous effects also. 
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D.1 Natural Frequencies of a Cylinder 

Gill (1972) experimentally measured the natural frequencies of a 

cantilevered shell with the following parameters: 

a = 2.1 � 10�� N m�⁄ , U � 0.28, H� = 7.8 � 10[ kg m[⁄ ,   
R � 0.502 m, � = 0.0635 m, 	 � 0.0016 m, Ó � j � 0. (D.1) 

In 1974, Sharma theoretically calculated the natural frequencies for the 

same system. These results are compared with those obtained with the present 

theory in Table D.1. It can be seen that the results obtained with Model 3 and 

ten admissible functions are in good agreement with the one measured by Gill in 

the experiments or found by Sharma’s theory. The agreement with experiment is 

even better with the present theory. The number of admissible functions is such 

that increasing it changes only slightly the natural frequencies of each mode, and 

the extended Galerkin method appears to be a suitable way to solve the 

equations of motion. 

Table D.1: Comparison between the natural frequencies of a cantilevered shell from Sharma’s theory, Gill’s 

experiments and the present theory 

n 
Experiments or 

theory considered 

 

m=1 m=2 m=3 m=4 

2 

Gill (1972) 

Sharma (1974) 

Present theory 

293.0 

318.0 

310.9 

827.0 

1006.4 

938.8 

1894.8 

2356.5 

2203.6 

--- 

3882.3 

3677.8 

3 

Gill (1972) 

Sharma (1974) 

Present theory 

760.0 

769.7 

754.0 

886.0 

927.7 

902.2 

1371.0 

1504.2 

1446.5 

2155.0 

2403.6 

2307.0 

4 

Gill (1972) 

Sharma (1974) 

Present theory 

1451.0 

1465.3 

1436.2 

1503.0 

1523.3 

1491.6 

1673.0 

1726.0 

1686.7 

2045.0 

2148.5 

2092.7 

D.2 Gaussian Quadrature 

To reduce the computing time required, a Gaussian quadrature has been 

used to calculate the unsteady fluid forces. To determine the validity of this 

method and the values of the involved parameters (integration stepsize, number 

of points and domain of integration), a set of calculations with different values of 

these parameters has been conducted. The chosen values are usually a 
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compromise between the accuracy of the result and of the computing time 

required. To have a reference for the obtained results, the properties of the pipe 

used in these calculations are the same as in Païdoussis and Denise (1972): 

a = 8.957 � 10 N m�⁄ , U � 0.5, H� � 850 kg m[⁄ ,   
R � 0.1013 m, � � 7.85 � 10*[ m, 	 � 1.78 � 10*] m,   

H,L1 � 1.1564 kg m[⁄ , Ó � j � 0 

(D.2) 

Firstly, it was necessary to validate the use of the Gaussian quadrature. 

For that purpose, the unsteady fluid forces defined by (2.78) to (2.80) were 

calculated using a direct numerical integration over the interval [-300,300] using 

a million points. The results are presented in Table D.2, where m represents the 

axial mode of the perturbation and k the axial mode of the corresponding 

variations as defined in (2.81) and (2.82). For clarity, only the results with k and n 

equal to 1 are shown. It appears very clearly that the only differences between 

the two calculations lie in really small numbers that can be considered as equal 

to zero in comparison with the modulus of the considered term. That is why 

Table D.2: Comparison of the unsteady viscous forces using a Gaussian quadrature and a direct numerical 

integration for n=1 and k=1 

Gaussian quadrature Direct integration 

DE
F
EG K������ � 0.122 � 5.20 � 10* ±K������ � 30.0138 � 4.41 � 10*[±K�[���� � 0.0205 3 0.0112±K������ � 30.0234 � 0.0143±

� 
DE
F
EG K������ � 0.122 � 5.20 � 10* ±K������ � 30.0138 � 4.41 � 10*[±K�[���� � 0.0205 3 0.0112±K������ � 30.0234 � 0.0143±

� 

DE
F
EGK������ � 35.78 � 10*�� 3 0.00922±K������ � 36.39 � 10*�! � 0.0218±K�[���� � 31.00 � 10*�! 3 0.0172±K������ � 32.95 � 10*�! � 0.0186±

� 
DE
F
EGK������ � 35.18 � 10*�" 3 0.00922±K������ � 31.23 � 10*�þ � 0.0218±K�[���� � 1.79 � 10*�þ 3 0.0172±K������ � 32.51 � 10*�þ � 0.0186±

� 

DE
F
EGK����[� � 32.12 � 10*] � 2.30 � 10*��±K����[� � 3.95 � 10*[ 3 6.34 � 10*��±K�[��[� � 39.35 � 10*[ 3 1.54 � 10*�!±K����[� � 1.25 � 10*� 3 2.79 � 10*��±

� 
DE
F
EGK����[� � 32.12 � 10*] � 7.66 � 10*��±K����[� � 3.95 � 10*[ � 6.82 � 10*�!±K�[��[� � 39.35 � 10*[ � 7.13 � 10*�!±K����[� � 1.25 � 10*� 3 1.44 � 10*�#±

� 
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using a Gaussian quadrature is the proper way to calculate the unsteady viscous 

forces. 

Secondly, the integration stepsize had to be determined. At the same 

time, the influence of the number of points inside each interval was also studied 

and it was observed that, as long as it is greater than two, the predictions for the 

critical flow velocities are identical up to the sixth significant digit for all the 

results. So it was decided to take only two points in each interval. To study the 

influence of the integration stepsize, ∆, the domain of integration and the 

number of admissible functions remained unchanged with 

=– $, $@ = =3300, 300@,   Ê � 3 and / � 10. 
 The results in Table D.3 show that the calculated critical flow velocities 

are identical up to the fourth significant digit as long as the integration stepsize is 

smaller than two. For time computing reasons, the best is to chose this value and, 

from now on, the integration stepsize will always be taken equal to two: ∆� 2. 

Table D.3: Comparison of the critical flow velocities of a cantilevered shell obtained by the present theory 

using different integration stepsizes with those calculated by Païdoussis and Denise (1972). The axial mode 

number m is associated with instability.  

n Model 
Present Theory Païdoussis and 

Denise (1972) ∆= 4.0 m ∆� 2.0 m ∆= 1.0 m 

1 

1 0.609 1 0.609 1 0.609 1 

0.959 2 1.091 2 0.963 2 0.963 2 

3 1.056 2 0.957 2 0.957 2 

2 

1 0.374 2 0.364 2 0.364 2 

0.452 2 0.484 2 0.417 2 0.417 2 

3 0.46 2 0.415 2 0.415 2 

3 

1 0.400 3 0.405 3 0.405 3 

0.524 2 0.363 3 0.466 2 0.466 2 

3 0.424 2 0.465 2 0.465 2 

Thirdly, the domain of integration is [-∞, +∞] but it is not possible to 

carry out a numerical integration over this domain, it has to be restricted to a 

narrower one. In that case, / � 10 and ∆� 2. Three sets of calculation were 

done with the following domain of integration:  =– $, $@ = =3300, 300@, =– $, $@ = =31000, 1000@,=– $, $@ = =35000, 5000@. (D.3) 
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From the results in Table D.4, it can be seen that for each circumferential 

mode n, the predicted critical flow velocities remained unchanged up to the 

fourth significant digit; so, the narrowest of the domains of integration can be 

used in the calculations. 

Table D.4: Comparison of the critical flow velocities of a cantilevered shell obtained by the present theory 

using different domains of integration with those calculated by Païdoussis and Denise (1972). The axial 

mode number m is associated with instability. 

n Model 

Present theory Païdoussis 

and Denise 

(1972) 

=– $, $@ = =3300, 300@ 
 or =31000, 1000@  or =35000,5000@ 

m 

1 

1 0.609 1 

0.959 2 0.963 2 

3 0.957 2 

2 

1 0.364 2 

0.452 2 0.417 2 

3 0.415 2 

3 

1 0.405 2 

0.524 2 0.466 2 

3 0.465 2 

D.3 Number of Admissible Functions 

The number of admissible functions used in the calculations corresponds 

to the number of axial modes that is considered to describe the motion of the 

shell. That is why, the more functions are taken into account the more accurate 

should the results be. Thus, a compromise has to be found between the accuracy 

of the result and the required computing time. As shown in Table D.5, the first 

instability usually arises in the lower axial modes. So, not considering the higher 

axial modes does not affect the predicted mode of instability. The results in that 

table numerically describe the effect of the number of considered admissible 

functions. For each axial mode, the predicted critical flow velocity seems to 

approach a limit value, and the difference between the critical velocities 

calculated for two consecutive M decreases as M is increased. For example, the 

relative differences of these velocities for the first circumferential mode are 

(4.1%, 2.1%, 0.41%, 0.21%, 0.10%). It also appears in the third mode (n=3) that 

the predicted axial mode of instability changes as M is increased, from m=1 to 
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m=3 and finally to m=2 for Model 2 and Model 3. Thus it seems important to 

take a sufficiently large number of admissible functions to have an accurate 

prediction. In the end, / = 10 appears to be high enough to get a good accuracy, 

but it is also a good choice regarding the required computing time.  

Table D.5: Comparison of the critical flow velocities of a cantilevered shell obtained by the present theory 

using an increasing number of admissible functions with those calculated by Païdoussis and Denise (1972). 

The axial mode number m is associated with instability.  

n Model 
Present Theory Païdoussis and 

Denise (1972) / � 2 m / = 4 m / � 6 m 

1 

1 0.636 1 0.618 1 0.612 1 

0.959 2 1.023 2 0.978 2 0.969 2 

3 1.013 2 0.971 2 0.963 2 

2 

1 0.373 2 0.367 2 0.365 2 

0.452 2 0.423 2 0.420 2 0.418 2 

3 0.420 2 0.418 2 0.416 2 

3 

1 1.052 1 0.407 3 0.406 3 

0.524 2 1.484 1 0.468 3 0.464 3 

3 1.476 1 0.467 3 0.463 3 

n Model 
Present Theory Païdoussis and 

Denise (1972) / � 8 m / � 10 m / � 12 m 

1 

1 0.610 1 0.609 1 0.609 1 

0.959 2 0.965 2 0.963 2 0.961 2 

3 0.959 2 0.957 2 0.956 2 

2 

1 0.365 2 0.364 2 0.364 2 

0.452 2 0.418 2 0.417 2 0.417 2 

3 0.415 2 0.415 2 0.415 2 

3 

1 0.405 3 0.405 3 0.405 3 

0.524 2 0.465 2 0.466 2 0.468 2 

3 0.463 2 0.465 2 0.466 2 

D.4 Out-flow Model 

It was quickly discovered that the predicated behaviour of the 

cantilevered shell was abnormal if no out-flow model was applied. Indeed, it was 

predicted to lose stability by divergence and then by coupled mode flutter. This 

is the exact behaviour of a shell with both ends supported. Thus, the addition of 

an out-flow model appeared to be crucial. As specified in Chapter 2, four 

different models were applied. Their physical characteristics are presented by 

Nguyen in his thesis (1992) and in Nguyen et al. (1993).  
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From Table D.3, Table D.4 and Table D.5, it can be observed that Model 1 

gives results really different from those found by Païdoussis and Denise (1972) 

but also by Model 2 and Model 3. Firstly, for n=1, it always predicts a first axial 

mode instability, whereas the two other models predict a second axial mode 

instability. Secondly, the same kind of difference appears for n=3. It predicts a 

third axial mode instability, whereas the two other models predict a second axial 

mode instability. Finally whereas the results of Model 2 and Model 3 are always 

really close (they differ by less than 0.5%), the results of Model 1 are really 

different. Even for n=2 where the same axial mode of instability is predicted, the 

difference between Model 1 and Model 3 is greater than 10%. These three 

models are empirical and Model 1 seems less realistic than the two other ones, 

as, in that model the decay of the perturbation is not really smooth since only 

the continuity of the pressure is imposed. That is why Model 1 was not 

considered to be relevant. 

Table D.6: Comparison of the critical flow velocities of a cantilevered shell obtained by the present theory 

with Model 4 using different integration stepsizes with the one calculated with Model 3. The axial mode 

number m is associated with instability.  

∆ 
Model 4 

n=1 m n=2 m n=3 m 

4 0.807 2 0.357 2 <0.01 2 

2 0.978 2 0.425 2 0.472 3 

1 0.961 2 0.417 2 0.467 3 

0.75 0.959 2 0.416 2 0.465 2 

0.5 0.958 2 0.416 2 0.465 2 

0.25 0.958 2 0.416 2 0.465 2 

0.1 0.958 2 0.416 2 0.465 2 

 Model 3 

2 0.957 2 0.415 2 0.465 2 

Model 4 was developed to overcome some numerical difficulties due to 

the fact that the solution of the problem was not converging with any of the 

three first models when l was increased to infinity. This non-convergence arises 

because of the non-existence of limÄµ¡ ÃÂ���¤� due to the presence of a term in 

Ê�LÄ. Even if it is finite for any l, it does not have a limit when Ê µ ∞. The main 

idea was to consider that the perturbations of the flow would decay really slowly 
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and die out infinitely far from the free end. It appeared (Nguyen et al., 1993) that 

the results with this new model would be slightly different than with Model 3. 

But, more recent results presented in Table D.6 prove that if the integration 

stepsize of the Gaussian quadrature are modified, the critical flow velocities 

predicted by Model 4 tend toward the same limit as Model 3. Thus, to get the 

same result, a much smaller integration stepsize has to be used and that leads to 

a much longer computing time. Furthermore, for the case of an aspirating shell 

that is motivating this study, it does not seem relevant to consider that 

perturbations can occur really far from the free end. They might grow at a 

distance of the order of magnitude of a few pipe lengths. For those reasons, it 

was decided to drop Model 4. 

Table D.7: The critical flow velocities of a cantilevered shell obtained by the present theory using different 

length l. A dash signifies that the shell is immediately unstable.  

n Model 
Length l 

1.25 1.5 2 2.5 3 3.5 4 5 10 50 

1 
2 0.884 0.936 0.955 0.960 0.963 0.887 - - - - 

3 0.836 0.905 0.942 0.952 0.957 0.940 0.960 1.023 - - 

2 
2 0.388 0.408 0.415 0.417 0.417 - - - - - 

3 0.364 0.395 0.409 0.414 0.415 0.408 0.412 0.444 - - 

3 
2 0.447 0.460 0.465 0.466 0.466 - - - - - 

3 0.426 0.451 0.461 0.464 0.465 0.471 0.476 0.480 - - 

The main difficulty with Models 2 and 3 lies in the determination of the 

length l, because of the convergence problem mentioned before and 

emphasized in Table D.7. The first conclusion is that if l is greater than 10, the 

solution is inadequate because some modes, even small ones like m=2, are 

unstable from the very beginning. It should also be noted that for 3.5 � Ê � 5, 

some of the axial modes higher than M=5 are always unstable for Model 2. That 

is why they were considered to be immediately unstable. For Model 3, some of 

the axial modes higher than five are unstable at the beginning but regain stability 

shortly. If material damping would have been considered, they would have been 

stable at the beginning. That is why it is considered that the instability occurring 

for a lower axial mode was the relevant one. For 2 � Ê � 3, the predicted critical 

velocities are close to each other. For example, for the first circumferential mode 
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and Model 3, they differ by 1.5%. For the greater values of this length, the 

predicted critical velocities increase, sometimes by more than 6.5% for the 

previous example. For lower values, the predicted velocities decrease by more 

than 5% for the same example. For Ê � 1, the system becomes unstable at 

infinitesimal flow velocity. So it seems that the length l should be between 2 and 

3. It is still not understood why other values give really unexpected results, e.g. 

predicting that the system is always unstable. 

Finally, as the decay of the perturbation is smoother in Model 3 because 

of the continuity of the derivative of the pressure at the free end and at ξ=l, and 

because a solution could be found for higher value of the length l, it was chosen 

to adopt Model 3. 

D.5 Conclusion 

In this appendix, some preliminary calculations were conducted to 

validate the computer program. It was thus verified that the extended Galerkin 

method was a good one to solve the equations of motion. Comparing the results 

obtained by varying some parameters allowed to get the optimum values of 

these parameters and to validate the Gaussian quadrature method to calculate 

the unsteady viscous forces. Finally, the importance of an out-flow model was 

proved, and then the most suitable mode was chosen. The results are shown in 

Table D.8. 

Table D.8: The parameters of the computer program 

Number of Gaussian points 2 

Integration stepsize ∆� 2 

Domain of integration [-300; 300] 

Number of admissible functions M=10 

Chosen model Model 3 

Length l 2 � Ê � 3 
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Appendix E: Technical Drawings for 

Chapter 2 

 
Figure E.1: Assembly technical drawing 

 
Figure E.2: Component technical drawings 
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Figure E.2: cont’d 
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Figure E.2: cont’d 
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Appendix F: Technical Drawings for 

Chapter 3 

 
Figure F.1: Assembly technical drawing for the tank and vessel 

 
Figure F.2: Assembly technical drawing for the vessel 



Appendix F 

XXVIII | P a g e  

 

 
Figure F.3: Assembly technical drawing for the tank 

 
Figure F.4: Sub-assembly drawing for the vessel: Top part 
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Figure F.5: Sub-assembly drawing for the vessel: Bottom part 

 
Figure F.6: Sub-assembly drawing for the vessel: Clamped pipe 
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Figure F.7: Sub-assembly drawing for the vessel: Annular tube part 

 
Figure F.8: Sub-assembly drawing for the vessel: Flange part 
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Figure F.9: Sub-assembly drawing for the vessel: Vessel part 

 
Figure F.10: Sub-assembly drawing for the vessel: Tube support part 
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Figure F.11: Sub-assembly drawing for the tank: Bottom of the tank 

 
Figure F.12: Sub-assembly drawing for the tank: Top of the tank 
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Figure F.13: Sub-assembly drawing for the tank: Tank and screen 
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Drawings of the Experimental Configurations 

Tested in Chapter 3 

While reviewing this Thesis, it appeared very useful to have a spare of the drawings of 

the different configurations tested in Chapter 3. Indeed, because of the great number of 

configurations, it is not that simple to remember which configuration is related to which flow 

path. So that the reader can have a look at these drawings while reading the Thesis, these 

drawings are presented here again.   

 

  



 

 

 

     

Config. 1 Config. 2i Config. 2ii Config. 2iii Config. 3i 
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