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Abstract—With increasing adoption of cloud services in the
e-market, collaboration between stakeholders is easier than ever.
Consumer stakeholders demand data from various sources to
analyze trends and improve customer services. Data-as-a-service
enables data integration to serve the demands of data consumers.
However, the data must be of good quality and trustful for accurate
analysis and effective decision making. In addition, a data custodian
or provider must conform to privacy policies to avoid potential
penalties for privacy breaches. To address these challenges, we
propose a twofold solution: 1) we present the first information
entropy-based trust computation algorithm, IEB_Trust, that allows
a semitrusted arbitrator to detect the covert behavior of a dishonest
data provider and chooses the qualified providers for a data mashup
and 2) we incorporate the Vickrey–Clarke–Groves (VCG) auction
mechanism for the valuation of data providers’ attributes into the
data mashup process. Experiments on real-life data demonstrate
the robustness of our approach in restricting dishonest providers
from participation in the data mashup and improving the efficiency
in comparison to provenance-based approaches. Furthermore, we
derive the monetary shares for the chosen providers from their
information utility and trust scores over the differentially pri-
vate release of the integrated dataset under their joint privacy
requirements.

Index Terms—Cloud computing, data mashup, data privacy,
data trustworthiness, monetary valuation.
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I. INTRODUCTION

DATA are the fuel of today’s digital economy. Yet, data
coming from a single source often fail to provide a com-

plete picture for big data analytics. To answer complex queries,
companies usually have to seek additional data from multiple
sources. The emerging cloud paradigm data-as-a-service pro-
vides an ideal platform for data integration in order to serve
data consumers’ demands. However, business data often contain
person-specific information. Mashing up personal data from
different sources raises concerns on security, privacy, and data
reliability. In the past decade, many trust models [6], [67] and
frameworks [15], [57] have been proposed to evaluate and
measure the security strength of cloud environments, but limited
research considers the aspect of data reliability. In this article, we
propose a cloud-based data integration solution that considers
privacy protection, data trustworthiness, and fairness of profit
distribution among data providers.

According to a recent survey [24], organizations in the U.S.
estimate that 33% of their customer data are inaccurate. This
skepticism about data elicits the increased risk of noncompliance
and regulatory penalties. The study by IBM estimated that $3.1
trillion of the U.S.’s GDP is lost due to poor quality data [64].
Organizations may mitigate these potential risks by taking ap-
propriate measures regarding the quality of their data, leading
to more reliable analysis and decision making. There is a line
of research [13], [42] that focuses on exchanging data between
multiple parties from the perspective of ensuring confidentiality
and integrity. These works aim to provide prevention from
unauthorized use and modification when data are in transit but
do not verify data if any party provides false data. Our research
perspective is to determine the trustfulness of private data held
by dishonest data providers who may arbitrarily attempt to
provide false data when trading person-specific information
in the e-market for monetary benefits. Our proposed method
can detect such behavior from dishonest data providers, who
resemble adversaries under the covert security model [7]. In lit-
erature [3], [17], and [26], two protocols are discussed, namely,
private set intersection (PSI) and PSI cardinality for privacy and
data quality assessment. Freudiger et al. [27] claimed that these
protocols are incurred from computational overhead and thus are
not applicable to real-world scenarios. They proposed some pro-
tocols that operate on reduced dimensionality descriptions and
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TABLE I
RAW DATA OWNED BY THREE DATA PROVIDERS

Fig. 1. Taxonomy trees.

so can be scalable to large datasets. It is a challenging problem
to evaluate the trustfulness of private data held by untrusted data
providers. In this article, we study the problem of untrusted data
providers holding overlapping attributes on a person-specific
dataset. We illustrate the problem in the following example.

Example 1: Suppose that there is a cloud-based data market,
where data consumers can place their data mining requests and
data providers compete with each other to contribute their data
with the goal of fulfilling the requests for monetary reward.
Consider the 12 raw data records in Table I, where each record
corresponds to the personal information of an individual. The
three data providers own different yet overlapping sets of at-
tributes over the 12 records.

Since the data providers collect data from different channels,
it is quite possible that their data conflict with each other, as

illustrated in Table I. According to the predefined generalization
hierarchy of the attributes in Fig. 1, the individuals in the table
can be generalized to two groups: Non-Technical and Technical.
Suppose that a data consumer wants to perform a data analy-
sis that depends on the Non-Technical and Technical groups.
Yet, the inconsistent, conflicting, or even inaccurate data may
mislead the analysis result. For example, DP1 and DP3 state
that the individuals in {Rec#3, 5} are Cleaner, while DP2

states that they are Technician. A similar conflict can be seen
in Rec#9, where DP1 and DP3 provide the Job as Painter,
and DP2 provides the Job as Welder. In this example, the
Job attribute on {Rec#3, 5, 9} has two different values that
are categorized as Non-Technical and Technical, respectively.
These inconsistencies significantly impact the quality of data
analysis. �
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Presumably, the data providers would have missing values
on some attributes, although the same set of records is iden-
tified by executing the secure set intersection protocol [3] on
the globally unique identifiers [53], [54]. Instead of avoiding
participating in the data mashup process, they would prefer to
impute missing values by using the machine learning methods
appropriate for their datasets. The properties of a dataset such
as low-dimensional or high-dimensional data, single-type or
mixed-type data, or linearly separable or nonlinearly separable
data are a crucial factor before choosing the imputation method.
The data providers’ decision whether to use a single imputation
method or multiple imputation methods is conditional on their
missing data. We evaluate the robustness of our approach when
an acquisitive data provider employs a machine learning method
for imputation of missing data.

In the context of quantifying monetary value through shar-
ing person-specific data, the data providers first must do the
valuation of personal data, but there is no determined market
price [56], [62] for person-specific data that can be taken as
a proxy for the valuation. It is also well acknowledged from
the existing literature [25], [58] that there is no commonly
agreed methodology for valuing personal data. However, in the
e-market, many companies actively collect personal information
by providing monetary rewards to their customers. In this arti-
cle, we incorporate the Vickrey–Clarke–Groves (VCG) auction
mechanism for the valuation of data providers’ attributes. We
reason that it is a dominant strategy, where no data provider
has an incentive to lie about his true valuations. In addition,
private data often encode privacy-sensitive information related
to individuals that need to be protected when integrating data
from the competing data providers. In this article, we adopt
differential privacy [22] because it provides strong privacy
guarantees to an individual independently of an adversary’s
background knowledge, in contrast to underlying assumptions
in syntactic privacy models [47], [51], [66] about an adversary’s
knowledge.

Contributions: We propose a novel solution to address the
critical issues of data trustworthiness, privacy protection, and
profit distribution for cloud-based data integration services. The
data trustworthiness problem has been studied in [49], [50],
and [69] applications of sensor networks. The provenance-based
approach has been used in [16] and [50] to evaluate the trust-
worthiness of network nodes and data items. This approach is
primarily used to collect evidence about where the data originate
and how the data generate. In this article, we are not concerned
about the high degree of the instrumentation of customers’
private data, which are collected by data providers. However,
our proposed approach makes novel use of information entropy
to verify the correctness of data from untrusted data providers
and also to preserve the privacy of customers’ data held by data
providers when evaluating the trustworthiness of the providers.

PSI-based approaches allow multiple parties to jointly com-
pute the intersection of their private data without revealing any
additional information to either side [75]. These approaches
are suitable for privacy-preserving distributed data mining, in
which multiple data custodians compute a function based on
their inputs without sharing their data with others. In this article,

we focus on privacy-preserving data publishing (PPDP) in a
distributed setting, where the data providers wish to integrate
their data for better information utility. However, the data inte-
gration necessitates that under the specified privacy constraints,
no data provider should learn any additional information other
than necessary information. We summarize our contributions as
follows.

1) Our proposed method, IEB_Trust, is the first entropy-
based trust computation method that enables secure trust-
worthiness assessment and incorporates fairness in the
verification process to restrict dishonest data providers
from participation in the next phase for integrating data.

2) We compare our proposed method with a closely related
method. Results suggest that our entropy-based trust com-
putation algorithm is capable of significantly improving
runtime efficiency.

3) We evaluate the robustness of our method when an acquis-
itive data provider adopts machine learning techniques to
substitute missing values on their own data and claim them
as original data collected from customers to compete with
the other participating data providers.

4) We define the procedure for setting the price on person-
specific attributes in trading personal information from
data providers based on the VCG mechanism.

5) We integrate data from chosen data providers using dif-
ferentially private anonymization based on generalization
(DistDiffGen) [53] and analyze the impacts of privacy
protections and trust scores on data providers’ monetary
value.

The rest of this article is organized as follows. In Section II,
we provide an overview of the trust mechanism and the prob-
lem statement. In Section III, we review the related work. In
Section IV, we discuss the trust aspects, imputation methods,
and privacy models. In Section V, we present our proposed
solution. In Section VI, we compare our proposed method and
provide empirical study to analyze the trustworthiness of each
data provider and further analyze its impact along with the
ε-differential privacy protection on a data provider’s monetary
value. Finally, Section VII concludes this article.

II. TRUST MECHANISM

In this section, we first provide an overview of our trust
mechanism and then formally define the research problem.

A. Overview of the Trust Mechanism

Fig. 2 provides an overview of our trust mechanism, in which
data providers, data consumers, and cloud service providers
(CSPs) are the main entities. Data providers collect person-
specific information from customers and intend to participate
in the data mashup for generating more profit by competing
with peer data providers, data consumers perform data analysis
on the received data, and the CSP is a semitrusted arbitrator
between data providers and data consumers. The CSP manages
three key services: authentication, mashup coordination, and
data verification. These services are run on a cloud server (CS) by
the CSP. First, each data provider has to pass the authentication
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Fig. 2. Trust mechanism.

phase to prove their identity. Second, data consumers submit
their data requests to the CSP. In this article, we assume that
a data consumer runs a classification analysis on its requested
attributes by a supervised machine learning method. A resource
queue is built by the mashup service to manage data requests
from a data consumer, which is accessible only to authenticated
data providers. Third, data providers register their available
data attributes on the registry hosted by the mashup service;
each data attribute is assigned a sequence number based on its
arrival. Fourth, the verification process is run to detect false or
incorrect data and to determine the trustworthiness of each data
provider. Fifth, this process results in determining the accepted
data providers. Sixth, the CSP connects the group of accepted
data providers with the data consumer to serve its demand. This
is done by the mashup service that determines the group of data
providers, whose data can collectively fulfill the demand of a
data consumer. Seventh, the data providers quantify their costs
and benefits using joint privacy requirements and integrate their
data over the cloud. Finally, the anonymous integrated data are
released to the data consumer.

B. Problem Statement

We describe our problem as follows. There are three main
entities discussed in our trust mechanism: data providers, data
consumers, and a CSP. Data verification service runs on a CS,
which is managed by the CSP. The purpose of this service is
to verify the correctness of data. The CSP is a semitrusted
arbitrator who would not have access to customers’ private
data, which is held by the data providers. Data providers are
considered to be dishonest, meaning that they may arbitrarily
attempt to provide false data because they are acquisitive in
competing with others in the e-market. The behavior of such
data providers is similar to adversaries in the covert security
model.

Suppose that data providers DP1,..., DPn own private data
tables D1, . . . , Dn, respectively. Each record in the data table
belongs to a unique individual. All explicit identifiers of an
individual, such as name, social security number (SSN), and
account number, have been removed. Each Di is defined over
a set of attributes PAi = {A1, . . . , Ad}. We assume that the
data providers hold overlapping attributes for the same set
of records identified by executing the secure set intersection
protocol [3], [54] on the globally unique identifiers RecID. We
require ∀PAi ∃PAj such that PAi ∩ PAj �= ∅, where i �= j,
and PA = {PA1, . . . ,PAn}. In addition, each Di contains an
Acls attribute for classification analysis, which is shared among
all the data providers. EachAJ is either a categorical or a numer-
ical attribute, but Acls is required to be categorical. A data con-
sumer submits a data request ReqA = {ReqA1, . . . ,ReqAm}
for classification analysis. We assume that each data provider has
PAi ⊆ ReqA to serve the demand of a data consumer. The goal
of this trust computation is to restrict dishonest data providers
from participation in the data mashup process when their trust
scores drop below a certain threshold.

Problem 1 (Trust Computation): Given multiple person-
specific raw data tables D1, . . . , Dn from data providers
DP1, . . . ,DPn and a set of requested attributes ReqA =
{ReqA1, . . . ,ReqAm} for classification analysis from a data
consumer, the research problem is to verify the correctness of
data on the submissions of the overlapping set of attributes
PAi = {A1, . . . , Ad} on the same set of records from each data
provider DPi, where PAi ∩ PAj �= ∅ ∀PAi ∃PAj and i �= j
and to compute the trust score TSDPi

of each data provider.
In the context of data privacy, the data providers want to

integrate their data in a way such that no data provider should
learn any additional information about the others as a result of
data integration. After the completion of trust computation, the
data providers DP1, . . . ,DPn attain a mutually exclusive set of
attributesPAi = {A1, . . . , Ad} over the same set of records for
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data integration. That is, PAi ∩ PAj = ∅ for any 1 ≤ i, j ≤ n.
We assume that for each attributeAJ ∈ PAi, a taxonomy tree is
provided that defines the hierarchy of values in Ω(AJ ), where
Ω(AJ ) represents the domain of AJ . Data providers require
doing their attributes’ valuations for price setting and jointly
setting up the privacy requirements, such as privacy budget ε
and specialization level h for a ε-differential privacy model,
before data integration. They wish to derive their monetary
shares from the information utility of anonymous integrated data
D̂ for classification analysis and their trust scores.

Problem 2 (Monetary Share Under ε-Differential Privacy
Mechanism): Given multiple raw data tables D1, . . . , Dn

containing mutually exclusive sets of attributes PAi =
{A1, . . . , Ad}, i.e., PAi ∩ PAj = ∅ for any 1 ≤ i, j ≤ n
over the same set of records, and a data request ReqA =
{ReqA1, . . . ,ReqAm} from a data consumer for classification
analysis, the research problem is to derive the monetary share
of each DPi from their information utility and trust scores over
the differentially private release of integrated dataset D̂ under
the joint privacy requirements and attributes’ valuations.

Several companies, such as Acxiom, AnalyticsIQ, Dataline,
and Expedia, collect user data, including demographic, financial,
retail, social, and travel information from multiple sources with
the goal of serving different market needs [1]. Our research
problem can be generalized to other similar companies who face
trustworthy or quality data issues [24] and whose business mod-
els are primarily based on sharing person-specific information.

III. RELATED WORK

In this section, we summarize the literature of the following
related areas: data trustworthiness and auction-based pricing,
cryptographic primitives, and differentially private anonymiza-
tion techniques.

A. Data Trustworthiness and Auction-Based Pricing

Different trust models, frameworks, and techniques have been
proposed to address the problem of data trustworthiness. Bertino
and Lim [11] proposed a framework that consists of two key
components. The first component is based on the concept of data
provenance, in which information relies on the origin of data for
computation of trust scores. The second component undertakes
the notion of confidence policy, in which query results are filtered
based on the specified confidence range for use in certain tasks.
Dai et al. [16] proposed a provenance-based model, in which
they evaluated the trustworthiness of data items based on the
aspects of data similarity, path similarity, data conflict, and
data deduction. Benjelloun et al. [8] introduced databases with
uncertainty and lineage, in which they combined the concept of
lineage and uncertainty for querying in probabilistic databases.

There are studies related to data trustworthiness in mission-
critical applications [49], [69]. Tang et al. [69] proposed trust-
worthiness analysis for sensor networks in cyber-physical sys-
tems to eliminate false alarms that occur due to random noise or
defective sensors. They validated events by using a graph-based
filtering approach. However, their method does not deal with

coordinated attacks, where a fraction of sensing nodes are com-
promised by malicious attackers. Lim et al. [49] addressed this
challenge by adopting a game-theoretic approach based on the
Stackelberg competition for defending the network against false
data injection. They assessed trust scores for both data items and
network nodes using the cyclic framework proposed in [50]. This
framework is based on the interdependence property between
data items and their associated network nodes in which trust
scores are computed using two types of similarity functions.
First, value similarity is derived from the principle that the
more that similar values refer to the same event, the higher
the trust scores. Second, provenance similarity is based on the
principle that the more that different data sources are with similar
data values, the higher the trust scores. Mainly, the approaches
presented in the above works fall under the category of workflow
provenance. In contrast, we are not concerned about the higher
level of instrumentation at the data collection phase by data
providers because it is not practically efficient to determine
the data provenance in the e-market. Furthermore, the above
works mainly focus on similarity functions for trust computation
but do not consider privacy protection for data trustworthiness.
We propose an approach that makes novel use of information
entropy to verify the correctness of data in a multiple data
providers‘ scenario, where a semitrusted arbitrator cannot derive
any customers’ private data when evaluating the trustworthiness
of the participating data providers.

Karabati and Yalcin [41] studied the challenge of pricing with
short-term capacity allocation decisions for multiple products
in a single-supplier multiple-buyer scenario. They proposed
an iterative auction mechanism with monotonically increasing
prices to maximize the profit of a supplier. Li et al. [48] presented
dynamic pricing strategies for resources allocations in cloud
workflow systems. Their proposed reverse-auction-based mech-
anism allows resource providers to change the prices during the
auction, depending upon their trading situation, to improve the
efficiency of resource utilization as well as the competitiveness.
Wu et al. [72] employed a VCG auction to implement a dynamic
pricing scheme for multigranularity service composition. They
considered both coarse-grained and fine-grained services for
composition. In their approach, service providers bid for services
of different granularities in the composite service, whereas a
recipient of the bids decides a composition that minimizes the
overall cost while satisfying quality constraints. They solved the
problem of winner determination by an integer programming
model. In this article, we define the procedure for the valuations
of data providers attributes based on the VCG mechanism.

B. Cryptographic Primitives

PSI is a cryptographic primitive that was first formally defined
in [26]. The protocols for PSI allow two parties, holding sets A
and B, to compute the private intersection without revealing
to each other any additional information from their respective
sets. At the end of the protocol, either one or both parties may
learn the size of the intersection, depending on the application.
Since its inception, many variants have been proposed in an
attempt to speed up PSI computation, including garbled Bloom
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filters [20], [33], server-aided computations [19], [39], [40], and
computational optimizations [46], [59], [61].

Oblivious transfer (OT) is one of the fundamental primi-
tives in cryptography and has been extensively used for secure
multiparty computation. Particularly, the most efficient OTs
were introduced by Pinkas et al. [61] and further strengthened
in [46], [59], and [60]. Kolesnikov et al. [46] proposed a batched
related-key oblivious pseudorandom function (OPRF) protocol
to improve the performance of semihonest secure PSI. They
achieved a 1-out-of-n OT of random messages for an arbitrarily
large n at nearly the same cost as 1-out-of-2 in [35]. The new
OPRF construction of Pinkas et al. [59] is similar to Kolesnikov
et al. [46] except in handling error correcting code. Kolesnikov
et al. [46] demonstrated that their protocol outperforms
Pinkas et al. [60] in almost as many settings, particularly for
the long bit length of input and large values of the input size.

In practice, the OT-based protocols are much faster than
the random garbled Bloom filter-based protocols for larger set
sizes, yet these protocols do not have the lowest communication
cost [46]. One desirable property is to achieve the fairness that
ensures either all the parties of a group learn the output of the
computation or none do [39]. This is not the case with standard
approaches to PSI. Our solution to the problem is different
from several PSI-based approaches, in which the intention is
to achieve both privacy and security simultaneously. These ap-
proaches are suitable for different motivating applications in pri-
vate data mining, online recommendation services, and genomic
computations. In our approach, we maintain confidentiality and
integrity by exchanging only an encrypted information gain
message and its keyed hash between a data provider and the
CS, based on a random challenge (i.e., attribute request) of the
CS, instead of exchanging encrypted individual data items. This
apparently reduces the overhead of communication. In addition,
we do not rely on the server to perform the computation on
clients’ private data. In the context of privacy, PSI protocols
enable parties to privately know the result from their intersection,
but the total information is not published for data analysis [75].
However, we intend to securely integrate person-specific data
from multiple data providers and to release differentially private
data for classification analysis.

C. Differentially Private Anonymization Techniques

Differential privacy is increasingly being accepted as the
cornerstone of privacy protection by domain experts due to its
robustness and rigorous mathematical definition. In the litera-
ture, two settings, namely interactive and noninteractive, are
mainly discussed regarding utilization of the privacy budget ε.
The primary difference is that in the interactive setting [22],
[28], [73], [74], the data custodian holds the raw data, and a data
analyst poses a set of queries in real time, for which the data
custodian provides differentially private answers. Each query
would utilize a fraction of ε incrementally to produce a noisy
answer. When the entire privacy budget has been depleted, a
data analyst would not be able to get the answer by querying
the database. On the other hand, in the noninteractive setting,
the data custodian first anonymizes its raw data by utilizing

the entire privacy budget. Later, the anonymous (ε-differentially
private) data releases to the data analyst, who would perform an
analysis without any constraints on the data usage. This approach
is widely known as PPDP [30], which is more appropriate in
many real-life data sharing scenarios because of the flexibility
for a data analyst to perform an analysis without back and
forth querying of the database. In this article, we focus on the
noninteractive setting for a differentially private release of data
in a distributed setup.

The group of works [4], [53] based on distributed approaches
are suitable for multiple parties, whose prime concern is to
integrate their data in a way that no party could learn any
additional information about the other party as a result of data
integration. Mohammed et al. [53] proposed an algorithm, called
DistDiffGen, in which data are vertically partitioned among
multiple parties in a distributed setup. It allows two parties to
securely integrate their person-specific data while maintaining
necessary information to support data utility. Each party in
this setup owns a mutually exclusive set of attributes over the
same set of records. A similar problem has also been studied
by Alhadidi et al. [4], where data are horizontally partitioned
among two parties. Each party in this setup owns a disjoint
set of records over the same set of attributes. In this article,
we employ DistDiffGen [53] for a distributed setup with an
extension for multiple data providers to achieve ε-differential
privacy. There are existing works that allow data integration
for horizontally partitioned databases [37], [55] and vertically
partitioned databases [29], [36], [54] under the privacy con-
straints in a distributed setup. These works are based on syntactic
privacy models, which are vulnerable to certain attacks such as
minimality attack [71], composition attack [32], and deFinetti
attack [44]. Therefore, we adopt differential privacy [22] be-
cause it provides strong privacy guarantees against such attacks.
Whereas existing work [43] proposed a privacy-preserving data
mashup model that allows the collaboration of multiple data
providers for integrating their data and derives the contribution
of each data provider by evaluating the incorporated cost factors,
in our article, we derive the monetary shares for the chosen data
providers from their contribution to information utility over the
differentially private integrated data for classification analysis
and their trust scores.

IV. PRELIMINARIES

In this section, we first present the principles that are crucial
for establishing trust. Next, we discuss methods for imputation
of missing data, and finally, we discuss privacy models.

A. Trust Aspects

Trust is a critical aspect of decision making in e-commerce.
Trust principles are a part of many service-oriented-architecture-
based models, where participants in the system want to do
interactions for service delivery and use [2]. We review the
principles that are crucial for trust establishment. First, entities
should be identified [38] as they have claimed. In the world of
the Internet, where entities are physically isolated, they may
have real identities or may use fake identities to show their
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existences in their interactions. Authentication is a way of vali-
dating entities by the use of usernames and passwords, tokens, or
digital certificates before granting them access to the resources
or applications [12]. Second, it is crucial for trust formation to
initialize new entities with trust rates. This process is called trust
bootstrapping. Third, when one entity trusts another entity’s
decision, there is a risk of an undesirable outcome due to some
degree of uncertainty and dependence [45]. The risk is consid-
ered to be a prerequisite before trusting the trustee’s behavior.
The entities who are involved in an interaction should comply
with the norms and rules of trust to avoid penalties for violation.
Fourth, trust rates are of two types: local and global [70].
Local trust rating refers to a personalized score, in which each
trustee would have different scores from the trustors. Global
trust rating provides a unique score about the entity (trustee)
independently of who are the entities (trustors) participating in
the evaluation. Global trust rating often requires the trusted third
party services to collect feedback from the trustors about trustees
and compute the trust rates. Last, security and privacy are the
main components for trust establishment. Trust is required when
there is uncertainty; it has widely been accepted that perfect
security does not exist, even though security measures are nec-
essary to gain trust in many circumstances [10]. Customers who
place their orders online and submit private information in the
form of their name, address, and credit details necessitate that
their private information should not be disclosed or shared by
any means with untrusted parties. Building a trust relationship
requires protection of customers’ privacy in online transactions.
We pay attention to some of the aforementioned principles for
establishing trust on the data providers in the context of our trust
mechanism.

B. Methods for Imputation of Missing Data

There are different types of missing data [34], such as missing
at random (MAR), missing completely at random (MCAR), and
missing not at random (MNAR). MAR refers to the probability
of missing data of an attribute on other present observations of
attributes in the dataset, but not on the attribute’s own value,
whereas MCAR occurs when there is no dependence on the
attribute value itself or any other attribute in the dataset. And
the special case MNAR occurs when the missing data meet
neither the condition defined in MAR nor MCAR. In this special
case, missing values in MNAR cannot be imputed by using other
present observations of attributes.

There is extensive research [5], [9], [76], [77] done on ma-
chine learning methods such as hot-deck imputation, mean
imputation, regression imputation, k-nearest neighbor (kNN)
imputation, and random forest imputation. Hot-deck imputation
is a technique for replacing missing values of a nonrespondent
on one or more attributes with the most similar characteristics
to a respondent [5]. This method has been used in practice,
but the theory is not as well developed. Mean imputation is
a technique used for replacing missing values of a numerical
attribute by the average value, and for a categorical attribute
by the mode, i.e., most frequent value. This method is quite
simple, but it is not suitable for multivariate analysis. Regression

imputation first builds a model from the observed data; then,
predictions for the incomplete cases are calculated under the
fitted model to replace the missing data [77]. The drawback of
the regression model is that all predicted values fall directly on
the regression line, which decreases variability. Random forest
is a type of ensemble learning method [76]. It is used widely
for classification and regression tasks. The learning process of a
random forest algorithm is based upon the bootstrap aggregation
technique, in which a specified number of trees are trained on a
given dataset. As the random forest is built upon multiple deci-
sion trees, intrinsically, it uses the same approach for attribute
selection measures such as information gain, gini index, and
gain ratio of decision trees. Random forest can deal with missing
values with different types of variables. kNN imputation is an
efficient approach for replacing missing values on some records
by computing another value from similar examples in the given
dataset [9]. kNN computes the similarity by using a distance
metric, such as Euclidean distance. k is a positive integer, when
k = 1, the object is simply assigned to the class of that single
nearest neighbor. When k > 1, the object is assigned to the class
that appears most frequently within the k-subset. kNN generally
produces good quality predictions, but the computation cost is
high because of computing distances.

C. Privacy Models

In the literature, there are two types of models appre-
hended: syntactic and semantic. Syntactic models, such
as K-anonymity [66], protect against identity disclosure, l-
diversity [51] protects from homogeneity attacks, and t-
closeness [47] is an extension of l-diversity, in which the dis-
tribution of sensitive attribute values for privacy protection is
further refined. Differential privacy [22] is a semantic model that
is more robust against the aforementioned attacks. It provides
strong privacy guarantees to an individual independently of an
adversary’s background knowledge. The intuition of differential
privacy is that individual information is not revealed from the
output of the analysis in the anonymized data. In other words, it
is insensitive whether an individual record is present in the input
dataset or not. It is mathematically defined as follows.

Definition IV.1 (ε-differential privacy [22]): A sanitization
mechanism M provides ε-differential privacy, if for any neigh-
boring datasets D and D′ differing by at most one record
(i.e., symmetric difference |D�D′| ≤ 1), and for any possible
sanitized dataset D̂, we have

Pr[M(D) = D̂] ≤ eε × Pr[M(D′) = D̂]

where the probability is taken over the randomness of the M .�
ε is the privacy budget that is specified by the data custodian.

A smaller value of ε results in stronger privacy protection but
produces lower data utility. Conversely, a larger value of ε results
in weaker privacy protection but yields higher data utility.

The Laplace mechanism and the exponential mechanismare
the canonical examples of a differentially private mechanism. A
standard mechanism to achieve differential privacy is to add
random noise to the outcome of the analysis for providing

Authorized licensed use limited to: McGill Libraries. Downloaded on February 14,2025 at 14:49:59 UTC from IEEE Xplore.  Restrictions apply. 



156 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 68, NO. 1, FEBRUARY 2021

privacy protection. The calibration of noise is done according
to the sensitivity of the function f .

Definition IV.2 (Sensitivity) For any function f : D →
Rd, the sensitivity of f is

Δf = max
D,D′
||f(D)− f(D′)||1 (1)

for all D,D′ differing at most by one record. �
The sensitivity of a function does not depend on the data but

instead produces an upper bound to how much noise we must
add to the true output to preserve privacy. Suppose that function
f answers count queries over a datasetD. Then,Δf is 1 because
f(D) can differ at most by 1, due to the addition or removal of
a single record.

Laplace mechanism: Dwork et al. [22] proposed the Laplace
mechanism. It is appropriate when the output of function f
is a real value, and f should perturb its output with a noisy
answer to preserve privacy. The noise is calibrated based on
the privacy parameter ε and the sensitivity of the utility func-
tion Δf . Formally, the Laplace mechanism takes as inputs a
datasetD, the privacy parameter ε, and a function f and outputs
ˆf(D) = f(D) + Lap(λ), where Lap(λ) is a noise drawn from

the Laplace distribution with the probability density function
Pr(x|λ) = 1

2λ
exp(−|x|/λ). The variance of this distribution is

2λ2, and the mean is 0.
Exponential mechanism: McSherry and Talwar [52] proposed

the exponential mechanism. It is appropriate for situations in
which it is desirable to choose the best response, because adding
noise directly to the count can eradicate its value. Given an
arbitrary range T , the exponential mechanism is defined with
respect to a utility function u : (D × T )→ R that assigns a
real-valued score to every output t ∈ T , where a higher score
means better utility. The exponential mechanism induces a
probability distribution over the range T and then samples an
output t. Suppose Δu = max∀t,D,D′ |u(D, t)− u(D,′ t)| to be
the sensitivity of the utility function. The probability associated
with each output t is proportional to exp( εu(D,t)

2Δu ).

V. PROPOSED SOLUTION

In this section, we provide a solution to address the concerns
of stakeholders on data trustworthiness, privacy protection, and
profit distribution in the online market for trading person-specific
data. Section V-A presents our proposed IEB_Trust, an infor-
mation entropy-based trust computation algorithm to restrict
dishonest data providers from participation in the data mashup
process and to assess the trustworthiness of each data provider.
Section V-B discusses security properties. Section V-C provides
an analysis of the IEB_Trust algorithm. Section V-D provides an
evaluation of learner models. Section V-E provides an auction
mechanism for price setting among data providers who own
multiple attributes. Section V-F presents an algorithm for privacy
protection by which data providers can determine the impact
of anonymization on data utility for classification analysis.
Section V-G discusses how the chosen data providers can quan-
tify their monetary value.

A. Trust Computation

In Section II-B, we state the problem where the challenge is
to verify the correctness of data from untrusted multiple data
providers, who own overlapping attributes for the same set of
records. We assume that the data providers are competitors, who
intend to maximize their profits. The data providers consider as
dishonest anyone who may arbitrarily attempt to provide false
data to get a larger monetary share from their participation. To
address this problem, we propose a novel algorithm that adopts
information entropy for secure trustworthiness assessment of
acquisitive data providers. Information entropy has been widely
used in machine learning tools and decision-making systems.
Compared to the existing work on data trustworthiness [49],
[50], [69], our proposed algorithm not only detects false or incor-
rect data from a dishonest data provider during the verification
process, but also preserves the privacy of customers’ data owned
by a data provider. Furthermore, our method provides better
runtime efficiency over provenance-based approaches [16], [50].

Algorithm 1 presents our approach in more detail. A CSP
runs this algorithm on a CS. Consider multiple data providers
DP1, . . . ,DPn, who own private data tablesD1, . . . , Dn having
overlapping attributes for the same set of records identified by the
common record identifier RecID [3], [54]. First, the CS and each
DPi mutually authenticate each other and derive ksi symmetric
keys for all i ∈ I by the mutual authentication protocol [18] for
the secure exchange of messages. Each DPi has its own ksi to
answer the CS’s queries. Second, a data consumer submits a data
request ReqA = {ReqA1, . . . ,ReqAm} to the CS. Third, each
data provider DPi submits an available set of attributes PAi =
{A1, . . . , Ad}, wherePAi ⊆ ReqA, to the CS. We assume that,
initially, all the participating data providers have “zero” in their
trust scores (Line 3). ε′ is the allocated privacy budget to consume
for each requested attribute. A resource queue is created by the
mashup service for m requested attributes, where each attribute
AJ ∈ PAi of a corresponding data provider is registered with
its arrival sequence (Line 9).

Fourth, the verification process is run to determine the trust-
worthiness of each data provider. In the first round, the CS
successively selects one attribute ReqAx

′ uniformly at random
without replacement over a domain of m requested attributes
and sends an encrypted challenge E(ksi,ReqAx

′) to the cor-
responding data providers DP1, . . . ,DPn, who own common
attribute AJ . Prior to responding to this challenge, each DPi

decrypts to retrieve ReqAx
′ computes information gain on

the challenge attribute in Line 16, denoted by G(1)AJ
(refer to

Section V-A1 for details), according to (4) [63], and then adds
noise to a true output. Then, DPi encrypts the message ψ(1) ←
E(ksi,G(1)

′

AJ
) and computes tags Υ(1) ← S(kh, ψ(1)) by using

keyed hash-based message authentication code (HMAC) in Line
17. The CS receives the concatenated message, tag, and identity
ψ(1)‖Υ(1)‖DPi on his challenge from each data provider. Then,
the CS computes the comparison to determine the majority can-
didates by invoking procedure findMajCand(ψ(1)‖Υ(1), size) in
Line 19, where size indicates the number of data providers who
own the requested attribute. This procedure returns majority can-
didate MajR(1)

Cand. In the second round, the CS generatesK random
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IDs for the requested challenge ReqAx
′, i.e., picked in the first

round, from |Di| records, and then generates P pairs of values
for ReqAx

′ and Acls attributes. The CS sends another challenge
to each DPi by concatenating the encrypted K random IDs and
P pairs of values as E(ksi,K,ReqAx

′)‖E(ksi, vx′ , vcls). DPi

decrypts to retrieve K record IDs and P pairs of values. DPi

concatenates K records and P pairs of values received from the
CS. DPi computes G(2)AJ

on the concatenated version and then

adds noise to a true output, encrypts it as ψ(2) ← E(ksi,G(2)
′

AJ
),

and computes the tag as Υ(2) ← S(kh, ψ(2)). The CS receives
ψ(2)‖Υ(2)‖DPi on the second round challenge from the corre-
sponding data providers in Line 28. The CS again invokes pro-
cedure findMajCand(ψ(2)‖Υ(2), size) to determine the majority
candidates in Line 29. This process repeats α times. In Line
33, an intersection of both the rounds is computed to determine
MajCand.

Candidates whose scores match on the majority are consid-
ered as Qualified, denoted by QualDPi

, who gain a positive
weight γ in their trust scores TSDPi

. Alternatively, candidates
whose scores do not match are considered as Nonqualified,
denoted by UnQualDPi

. Subsequently, UnQualDPi
is penalized

with a negative weight−γ in their trust scores TSDPi
. When only

a single data provider responds to the CS challenge of ReqAx
′,

it is accepted based on his existing trust score TSDPi
≥ 0.

However, in this case, the trust score does not increase for that
data provider. When a data consumer request for an attribute,
which is not fulfilled by the participating data providers, then
that attribute is excluded from the verification process, and the
data providers gain no monetary value from it. The comparison
is performed (Line 45) to select one candidate (or data provider)
on each attribute from the qualified data providers QualDPn

based
on their arrival sequences (using first-come first-served rule). If
the final aggregated trust score of any data provider becomes
< 0, that data provider drops from the final selection for the
data mashup, and the attributes initially belonging to him are
subsequently reassigned to other qualified data providers that
appear next in the arrival sequences. The algorithm terminates
when there is no more attribute for verification.

1) Computation of Information Gain: We use information
gain as a criterion for splitting attributes [63] based on the
concept introduced by Claude Shannon on information the-
ory [68]. We compute information gain on an individual attribute
AJ ∈ PAi of each data provider in the presence of a shared
class attributeAcls on raw data. LetDτ ⊆ Di denote a subset of
the data table Di. Suppose that the attribute Acls has C distinct
values. Let Acls

i,Dτ be the set of records of class Acls
i in Dτ . Let

|Dτ | and |Acls
i,Dτ | denote the number of records inDτ andAcls

i,Dτ ,
respectively. The entropy on the data table Dτ is computed as
follows:

E(Dτ ) = −
C∑

i=1

Pri × log2 Pri (2)

where Pri is the probability that an arbitrary record in Dτ

belongs to class Acls
i . It is estimated by

|Acls
i,Dτ |
|Dτ | .

We can further partition the records inDτ on the attributeAJ .
IfAJ is discrete valued, then one branch is grown for each known
value ofAJ . On the other side, ifAJ is continuous valued, then
two branches are grown, corresponding to AJ ≤ splitpoint and
AJ > splitpoint. It is calculated by the following equation:

EAJ (D
τ ) =

V∑
j=1

|Dτ
j |

|Dτ | × E(Dτ
j ). (3)

Finally, we can compute the information gain GAJ on the
chosen attribute AJ of each data provider DPi as follows:

GAJ = E(Dτ )− EAJ (D
τ ). (4)

2) Differentially Private GAJ : Given a privacy budget ε′,
the sensitivity of the utility function (Δf) is 1, and a true
computed GAJ . We add independently generated noise from the
Laplace distribution Lap(1/ε′) to a true computed GAJ to have
a differentially private version of (4):

G′AJ = GAJ + Lap(1/ε′). (5)

3) Discretization: We use equal-width method to discretize
a continuous-valued attributeAJ intoK intervals of equal size.
The minval and maxval parameters are used for defining the
boundaries of the range, whereas arity K is used to determine
the number of bins. Each bin is associated with a distinct discrete
value. The width of interval is computed by

Intwidth =
maxval −minval

K
. (6)

Example 2: We continue from Example 1. Consider the
example data of numerical type attribute in Table II. In this
table, Age is a numerical attribute, whereas Loan approval is
an Acls attribute. Data providers DP1 and DP3 own raw data
tables Table II(a) and (b), respectively. DP3 has somewhat
different values on the Age attribute in contrast to DP1 on records
{ID#1, 3, 4, 8, 9, 11, 12}. They discretize their data on the Age
attribute, as shown in Table II(c), according to the parameters of
equal width binning. A boundary is defined as minval = 10.0
and maxval = 70.0, whereas arity K = 5. Though they have
differences in their raw data, the produced discrete version is
the same for both, since the data values occurred in the specified
range. Therefore, the computed information gain 0.34573 is also
the same. �

Example 3: We continue from Example 1. Consider the raw
data tables of two data providers who own common attribute,
e.g., Sex (which has two values, M or F), as shown in the
compressed Table III. The class attribute Loan approval shared
between the data providers has two values, Y or N, indicating
whether or not the loan is approved. Both DP1 and DP2 have
the same number of records and the same count on their records,
i.e.,M = 8, andF = 4, but they have different information gain
DP1 = 0.011580 and DP2 = 0.251629 on the Sex attribute.
Since the data providers are not consistent in providing the same
information on the common RecIDs, this results in a change
in the count for class label values. For instance, DP1 indicates
that there is one female whose loan is approved, whereas DP2

indicates 0 females. �
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TABLE II
EXAMPLE DATA OF NUMERICAL TYPE ATTRIBUTE

TABLE III
COMPRESSED DATA TABLE FOR CATEGORICAL TYPE ATTRIBUTE

4) Computation of Trust Score: Intuitively, the trust score is
a metric for assessing the trustworthiness of each data provider.
We compute the trust score TSDPi

locally for each data provider
in an iterative manner on each attribute ReqAx from the CS. γ is
a user-defined weight. A data provider qualifying on the majority
gains a positive γ weight in the trust score. On the other hand, a
disqualified data provider is penalized with a negative−γ weight
in the trust score. We aggregate on both positive and negative
weights at each iteration to determine the final trust score for
each data provider

TSDPi
=

∑
ReqAx∈ReqA

γ

{
if(Cand ∈ MajCand) +γ
if(Cand /∈ MajCand) −γ

. (7)

B. Security Properties

In this section, we discuss the security properties of our
proposed algorithm.

1) Security Against Covert Adversaries: In the context of our
problem, a dishonest data provider is a kind of covert adversary
who may arbitrarily provide false data on his attribute AJ ∈
PAi. The probability of detecting this cheat by our proposed
trust computation algorithm is 1− ξ (refer to the Section V-C1
for details). Each DPi who has committed to, when registering,
the available attributes PAi = {A1, . . . , Ad} is responsible to
answer the CS’s challenge request, where ∃ReqAx

′ ∈ PAi.
When the CS detects a data provider cheating, the provider is
penalized with a negative −γ weight in the trust score.

2) Mutual Authentication: Before the verification process,
each DPi and the CS mutually authenticate each other by the
TLS 1.2 protocol or higher [18], [65]. It is indispensable for the
CS to negotiate on the latest stable version of the TLS protocol
and stronger cipher suite to prevent against different forms of
deception. After successful authentication of each DPi, they are
granted access to the resource queue, where they can register
their data attributes.

3) Minimal Access for Outsourcing Verification: The data
providers who own customers’ private data outsource the veri-
fication on their data to the CS. Each DPi computes locally the
information gain functionG on an available attributeAJ ∈ PAi,
whereas the CS can have access to only an encrypted G′AJ
message, i.e., ψ, and its keyed hash, i.e., Υ for the verification.
It benefits the data providers to restrict the CS from accessing
the customers’ private data. Since encrypted individual data
records are not exchanged during the verification, the overhead
of computation on the CS is also reduced.

4) Authentication and Integrity: HMAC enforces integrity
and authenticity. It depends on what underlying hashing function
has been used. There are some collision-related vulnerabilities
of MD5; however, HMAC-MD5 is not as affected by those
vulnerabilities. Regardless, SHA-2 is cryptographically stronger
than MD5 and SHA-1. HMAC is constructed by using two
nested keys, say kin and kout. These nested keys are not inde-
pendent; instead, they are derived from a single kh. Let M
bytes be assumed to be the message blocks for the underlying
Merkle–Damgard hash. To derive the keys kin and kout, which
are byte strings of lengthM, we first construct kh exactlyM
bytes long. If the length of kh ≤M, we pad it out with zero
bytes; otherwise, we replace it with H(kh) padded with zero
bytes. Then, we compute

kin ← kh ⊕ ipad

kout ← kh ⊕ opad.

The ipad denotes the inner pad and the opad denotes the outer
pad. These pads are 512 bit constants that never change and are
embedded in the implementation of the HMAC. The HMAC is
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Algorithm 1: IEB_Trust.
KeySetup : CS and DPi derive n symmetric keys by the
mutual authentication protocol
Input : Data consumer attributes request
ReqA1, . . . ,ReqAm, privacy budget ε
Input : Data provider DPn’s attributes A1, . . . , Ad

Output : Accepted DPn

1: DP1, . . . ,DPn own private data tables D1, . . . , Dn

∀i ∈ I , where I = 1, . . . , n;
2: Each DPi holds set of attributes
PAi = {A1, . . . , Ad}, over a domain of attributes
request ReqA = {ReqA1, . . . ,ReqAm};

3: TSDPi
← 0; /* Initially, trust score is set to 0 for each

data provider */
4: st ← 0; /* Initially, arrival sequence is set to 0 for all

data providers’ attributes */
5: ε′ ← ε

|ReqA| ;
6: while ∃ReqAx ∈ ReqA do
7: for i ∈ I do
8: if ∃ReqAx ∈ PAi then
9: register arrival sequence st on each attribute;

10: end if
11: end for
12: end while

Round 1
13: while ∃ReqAx ∈ ReqA do
14: CS randomly picks ReqAx

′ over a range of
ReqA1, . . . ,ReqAm without replacement;

15: CS sends challenge E(ksi,ReqAx
′) to each DPi

where ∃ReqAx
′ ∈ PAi;

16: Each DPi computes G(1)AJ
according to (4) and then

adds Lap(1/ε′), to have G(1)
′

AJ
;

17: Each DPi encrypts the message
ψ(1) ← E(ksi,G(1)

′

AJ
) and then computes tag

Υ(1) ← S(kh, ψ(1));
18: CS receives ψ(1)‖Υ(1)‖DPi on his challenge from

the corresponding data providers;
19: CS computes comparison to determine MajR(1)

Cand ←
findMajCand(ψ(1)‖Υ(1), size);

20: end while
Round 2

21: while ∃ReqAx ∈ ReqA do
22: for � = 1 to α do
23: CS generates K random IDs for ReqAx

′ (pick in
Round 1) from |Di| records, where 5 ≤ K ≤ 10;

24: CS generates P pairs of values for ReqAx
′ and

Acls attributes, where 5 ≤ P ≤ 10;
25: CS sends challenge

E(ksi,K,ReqAx
′)‖E(ksi, vx′ , vcls) to each DPi

where ∃ReqAx
′ ∈ PAi;

26: Each DPi computes G(2)AJ
on the concatenated K

specified records and P pairs of values and then
adds Lap(1/ε′), to have G(2)

′

AJ
;

27: Each DPi encrypts the message
ψ(2) ← E(ksi,G(2)

′

AJ
) and then computes tag

Υ(2) ← S(kh, ψ(2));
28: CS receives ψ(2)‖Υ(2)‖DPi on his challenge

from the corresponding data providers;
29: CS computes comparison to determine MajR(2)

Cand�

← findMajCand(ψ(2)‖Υ(2), size);
30: end for
31: CS computes

⋂α
�=1 MajR(2)

Cand�
;

32: end while
33: CS computes MajR(1)

Cand

⋂
MajR(2)

Cand to determine
MajCand;

34: for all Cand ∈ MajCand do
35: set Cand as QualDPi

;
36: TSDPi

= TSDPi
+ γ;

37: end for
38: for all Cand /∈ MajCand do
39: set Cand as UnQualDPi

;
40: TSDPi

= TSDPi
− γ;

41: end for
42: if size == 1 ∧ TSDPi

≥ 0 then
43: set DPi as QualDPi

;
44: end if
45: Pick one Cand by comparison on the arrival

sequences of the QualDPn
on each attribute;

46: return Data providers whose final aggregated trust
score ≥ 0

assumed to be a secure PRF [14]. It provides better protection
against length extension attacks. It is built as follows:

S(kh, ψ) = H (kh ⊕ opad,H (kh ⊕ ipad‖ψ)) .
One of the properties of a cryptographic hash function is

that if there is a minor change in an input message, it changes
the message digest so extensively that the new message digest
appears uncorrelated with the old computed message digest. In
our case, we do not apply cryptographic hash functions directly
on the input data for data integrity because we allow parties to
have minor inaccuracies on numerical attributes for a specified
threshold.

C. Analysis

In this section, we analyze the correctness and security of
Algorithm 1.

Proposition V.1 (Correctness): Assuming multiple data
providers are dishonest, Algorithm 1 correctly computes the
trust scores among them, as stated in Problem 1 in Section II-B,
to evaluate the trustworthiness of each data provider.

Proof: Algorithm 1 selects an attribute uniformly at random
without replacement from a list ReqA = {ReqA1, . . . ,ReqAm}
of m requested attributes. Each DPi computes GAJ according
to (4) for its matching attribute in the presence of a shared class
attribute Acls. For a continuous-valued attribute, each provider
follows equal-width method for discretization into intervals
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of equal size. Consider AJ is discrete-valued, owned by two
providers, where Ω(AJ ) = {v1, v2} is in its domain of data val-
ues. Assume that there is a single record between two providers,
where they have different values. Algorithm 1 computes G(1)

′

AJ
in

the first round for both the data providers and returns different
scores. This suggests that they are not the same.

Now, we consider an extended case, where two data providers
(say DP1 and DP2) would have different sets of records, but
the computation of G(1)

′

AJ
in the first round on the full dataset

for both data providers returns the same score, so we have
MajR(1)

Cand = {DP1,DP2}. Algorithm 1 verifies further by running
the process α times in the second round. During each iteration,
data providers have to select records overK random IDs forAJ ,
and they also have to addP pairs of values vx′ and vcls forAJ and
a class attributeAcls, respectively, from the CS before computa-
tion ofG(2)

′

AJ
. Algorithm 1 computes MajR(1)

Cand ∩ (
⋂α

�=1 MajR(2)
Cand�

)
to determine MajCand. This determines whether or not the data
providers are holding the same data values over the common
attribute AJ . Data providers are required to match in both
the rounds to prove that they have the same score. Since data
providers are holding a different set of records, it is not possible
for them to match because of the randomness introduced in the
second round. �

Proposition V.2 (Security): Algorithm 1 is secure against
covert adversaries, as described in Section V-B1, by the proba-
bilistic bound of 1− ξ.

Proof: The security of Algorithm 1 depends on the key
derivation in the mutual authentication protocol and the com-
munication of the CS and data providers DPn in the verification
process.

1) A random challengeE(ksi,ReqAx
′) is secure because of

symmetric keys derivation in [18] and [65].
2) On a given challenge request, if ∃ReqAx

′ ∈ PAi, each
data provider first computes the information gain function
on its matching attribute GAJ ∈ PAi and then perturbs
the output by adding noise. This returns a noisy score
G′AJ , for which data providers should agree on the scale
for digits after the decimal point. It is secured for privacy
protection because each DPi only exchanges an encrypted
G′AJ message, i.e., ψ, and its keyed hash, i.e., Υ, with the
CS in both rounds of the protocol, instead of exchanging
encrypted individual data records on their attributes AJ .

3) Keyed HMACS(kh, ψ) is a secure PRF according to [14].
It is computationally infeasible for an adversary to find
distinct inputs ψ1, ψ2 such that S(kh, ψ1) = S(kh, ψ2).

4) Dishonest data providers cannot modify the outputs, i.e.,
ψ‖Υ, of the honest providers in any round of the protocol.
They may compute G∗AJ on their false data and can send
their ψ∗‖Υ∗ to the CS. The CS computes a comparison
and detects cheating from a dishonest data provider with
the probability of 1− ξ. �

1) Adversary’s Inferences: In the following, we estimate the
probability of an adversary, i.e., a dishonest data provider, to
correctly guess G∗AJ on a random challenge attribute ReqA′x.
An adversary knows |Dτ |, the number of records in Dτ , and
|Acls

i,Dτ |, the number of records of classAcls
i inDτ , and computes

the entropy ofDτ by (2). Next, the adversary may try to compute
entropy on AJ by the following equation because he knows
|Ω(AJ )|, the domain size ofAJ , and |Dτ |, the number of records
in Dτ

E∗AJ (D
τ ) =

V′∑
j′=1

|Dτ
j′ |

|Dτ | × −
C∑

i=1

|Acls
i,Dτ

j′
|

|Dτ
j′ |
× log2

|Acls
i,Dτ

j′
|

|Dτ
j′ |

.

(8)
There are |Ω(AJ )||D

τ | possible arrangements, in which an
adversary may try to compute E∗AJ (D

τ ). Finally, he computes
G∗AJ having all distinct values by the following equation:

G∗AJ = E(Dτ )− E∗AJ (D
τ ). (9)

This results in ϑ distinct values of G∗AJ , with the lower bound
of ϑ ≈ |Dτ |. The probability of correctly guessing G∗AJ for an
adversary in our verification process is

ξ =
1

ϑ
×
(
1

ϑ

)α

. (10)

2) Detecting Cheat Against Varying Dishonest Providers:
Letn denote the number of participating data providers, and let b
denote an upper bound on the number of dishonest data providers
who may arbitrarily provide incorrect data in responding to the
CS’s challenge.

1) When b < n/2, the verification process guarantees fair-
ness, and no honest data providers are negatively affected
by their trust levels.

2) When b ≤ n− 2, the verification process guarantees
fairness under the arbitrary behavior of dishonest data
providers, where the chance of detecting them is 1− ξ. It
is a type of covert adversarial behavior when the dishonest
data providers arbitrarily provide false data on their data
inputs, i.e., they neither would be able to appear in the
majority nor would be able to undermine the reputations
of the honest data providers.

3) When b > n/2, the verification process does not guarantee
fairness on the flip side, i.e., when the behavior of dis-
honest data providers is not arbitrary. This would be the
case when the dishonest data providers not only appear
in the majority, but also organize in a way to undermine
the reputation of the honest data providers. We assume
that if a secure set intersection is carried out by using
a trusted mediator (e.g., by computing the function on
the data providers input) between data providers, then the
dishonest providers would not be able to determine the
total number of participating data providers in advance.
This would restrict them from developing the organized
group; still, there is no remedy if they would try by
guessing at random.

D. Evaluation of Learner Models

We provide an example of a sample data to evaluate the quality
of linear regression, kNN, and random forest learner models.

Example 4: We retrieve the top 1000 records from a real-life
Adult1 dataset on attributes age, education-num, race, sex, and

1Available at: http://archive.ics.uci.edu/ml/datasets/Adult
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income. The attributes age and education-num are of continuous
types, whereas race, sex, and income are of categorical types.
We develop learner models in RapidMiner2 to compare the
predictive accuracy of linear regression, kNN, and random forest
methods.

For the linear regression model, we set education-num as a
label, which is considered as a dependent attribute (or variable),
and the remaining are considered as independent attributes.
We convert nonnumeric type attributes to the numeric type.
After running tenfold cross validation, the root-mean-square
error is found to be 2.438± 0.165, which indicates the stan-
dard deviation of the residuals. Furthermore, R2 is found to
be 0.127± 0.055, which indicates the goodness of fit of this
regression model. Its value is close to 0, indicating a weak linear
correlation.

For the kNN model, we set all attributes as nominal and
education-num as a label. After running tenfold cross validation
when k = 20, the accuracy is found to be 33.90%± 5.59%,
which indicates the percentage of correct predictions.

For the random forest model, we set the education-num at-
tribute as nominal and specify the role as a label. The key param-
eter “number of trees” is specified as 10, and the “gain ratio” is
chosen as a criterion for splitting attributes. After running tenfold
cross validation, the accuracy is found to be 32.90%± 0.30%,
which indicates the percentage of correct predictions. �

There are no significant performance differences found on
running these learner models on the sample dataset. Data
providers would use any one or multiple learning methods for
missing data imputation.

E. Price Setting Using Auction Mechanism

An auction mechanism can be defined in many different ways
depending upon the design requirements. The two variants of
second price sealed-bid auctions [23] have been widely used,
namely, VCG and generalized second price (GSP) mechanisms
for multiple items.

The reason for employing the VCG mechanism for deter-
mining the pricing on data providers’ attributes is that truthful
bidding is a dominant strategy, and there is no incentive to lie
or deviate from reporting true valuations for a data provider. It
maximizes the total valuation obtained by data providers. One
nice property of the VCG mechanism is that it provides a unique
outcome, which is socially optimal, whereas, in the GSP, there
would be multiple outcomes in terms of Nash equilibrium. One
Nash equilibrium would maximize social welfare but not all of
them.

We intend to design an auction mechanism for multiple items.
It is assumed that the data providers intend to set up a matching
market using a second price sealed-bid auction for valuation of
their attributes. We formally define the procedure for setting the
price as follows.

1) Data Providers: Let DP1, . . . ,DPn (where i = 1, . . . , n)
be the set of data providers, who set up a matching market for
valuations of their attributes.

2Available at: https://rapidminer.com/products/studio/

2) Positions: LetP1, . . . , Pn (where j = 1, . . . , n) be the set
of positions for which data providers compete. The higher the
position Pj , the more will be its demand rate. The positions
should be equal to the number of data providers. If there are more
data providers than positions, we simply add fictitious positions
of demand rate 0. Similarly, if there are more positions than
data providers, we add fictitious data providers of revenue per
demand 0.

3) Revenue Per Demand: Revenue per demand is the ex-
pected amount of money that a data provider DPi receives,
denoted by Revi, for every demand on its attribute. The monetary
values of Revi are sorted in descending order.

4) Demand Rate: The demand rate is defined as the number
of demands requested by a consumer over a period of time,
denoted by Qj . The demand rate varies as per the position Pj .
Qj enumerates in descending order.

5) Data Providers’ Valuations: Data providers’ valuations
are defined as the data provider DPi’s valuation of the position
Pj . It is the product of the revenue per demand Revi and the
demand rate Qj , denoted by Vali,j . It is computed as follows:

Vali,j = Revi ×Qj . (11)

6) VCG Price: VCG price is defined as the harm or external-
ity caused by data provider DPi to other data providers in terms
of reduction of their valuations due to his presence. It is called
VCG price, denoted by ExPrci,j , which is paid by data provider
DPi for position Pj . Formally, it is defined by

ExPrci,j =
Pn∨

DPn−DPi

−
Pn−Pj∨

DPn−DPi

(12)

where
1) DPn − DPi is the set of data providers excluding data

provider DPi;
2) Pn − Pj is the set of positions excluding position Pj ;
3)

∨Pn

DPn−DPi
is the sum of data provider values of an optimal

matching between sets DPn − DPi and Pn; and
4)

∨Pn−Pj

DPn−DPi
is the sum of data provider values of an optimal

matching between sets DPn − DPi and Pn − Pj .
7) Data Providers’ Valuations After Payoff: Data providers’

valuations after payoff is defined as the data provider DPi’s
valuation on position Pj after paying off harm to other data
providers. It is calculated using the following equation:

ValDPi
= maxVali,j − ExPrci,j . (13)

8) Valuation of an Attribute: Valuation of an attribute can be
assessed once a data provider DPi acquires a certain positionPj .
The value of each data provider’s attribute per single demand is
calculated using the following equation:

ValAttrDPi
=

ValDPi

Qj
. (14)

9) Attribute Count: The attribute count CntAttrDPi
of a data

provider DPi represents the number of attributes in a single
record. Each DPi owns a mutually exclusive set of attributes.

10) Price Per Record: The price per record PrcRecDPi
of a

data provider DPi represents the unit price of a record. Naturally,
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it is the product of the value per attribute ValAttrDPi
and the

attribute count CntAttrDPi
in a single record. That is,

PrcRecDPi
= ValAttrDPi

× CntAttrDPi
. (15)

11) Size of the Dataset: The dataset of each data provider
DPi consists of a collection of records, denoted by |Di|. The
size of a dataset grows as the number of records in the dataset
increases.

12) Price of the Raw Dataset: The price of a raw dataset
PrcRawDSDPi

represents the data provider DPi’s selling price
of a raw dataset in the e-market. The overall pricing of a raw
dataset increases as the number of records or the unit price per
record increases. It is computed as follows:

PrcRawDSDPi
= |Di| × PrcRecDPi

. (16)

13) Total Price of the Raw Dataset: The total price of the raw
dataset TPrcRawDS is the sum of the pricing of all the contributing
data providers’ raw datasets. It is computed as follows:

TPrcRawDS =

n∑
i=1

PrcRawDSDPi
. (17)

14) Total Monetary Value of the Raw Dataset: First, data
providers compute baseline accuracy (BA) for classification
analysis using the secure multiple party classifier [21] by main-
taining the confidentiality of their raw data. Then, they use
the information utility of classifying raw data to derive the
monetary value of the raw dataset, denoted by TMValueRawDS.
It is calculated using the following equation:

TMValueRawDS = TPrcRawDS × BA. (18)

F. Anonymization Method

In this section, we provide an extension of the two-party
Differentially private anonymization in Algorithm 2, which is
based on Generalization [53] to differentially integrate multi-
ple private data tables. This algorithm guarantees ε-differential
privacy and security definition under the semihonest adversary
model (readers may refer to the detailed analysis in [53, sec.
6.3]). The two major extensions over the TDS algorithm [31]
include: 1) DistDiffGen selects the Best specialization based
on the exponential mechanism, and 2) DistDiffGen perturbs the
generalized contingency table by adding the Laplacian noise to
the count of each equivalence group.

Generally, there is no incentive for any data provider who ex-
ecutes the algorithm, as the purpose is merely to synchronize the
anonymization process. We assume that a trusted data provider,
who attains the highest trust score after running Algorithm 1,
starts the anonymization process. The accepted data providers,
as a result of trust computation by Algorithm 1, attain a mu-
tually exclusive set of attributes, i.e., PAi ∩ PAj = ∅ for any
1 ≤ i, j ≤ n over the same set of records for integrating data.

Initially, all values in the set of attributes PAi =
{A1, . . . , Ad} of each data provider are generalized to the top-
most value in their taxonomy trees (Line 1), as illustrated in
Fig. 1, and Markκ contains the topmost value for each attribute
AJ ∈ PAi (Line 2). Each data provider keeps a copy of the

∪Markκ and a generalized data table Dg . The attribute AJ
can be either categorical or numerical, but the class attribute
is required to be categorical. The split value of a categorical
attribute vc is a generalized value drawn from a predefined
taxonomy tree of the attribute, whereas the split value of a
numerical attribute vnum is determined by using the exponen-
tial mechanism (Line 4). It partitions the domain range of a
numerical attribute into successive intervals I1, . . . , Ik. Line
4 preserves ε′|Anum|-differential privacy since the cost of each
exponential mechanism is ε′. In Line 5, a score IGScore is
computed for all candidates v ∈ ∪Markκ. At each iteration, the
algorithm uses the secure distributed exponential mechanism
(DistExp) as presented in [53] (readers may refer to the details
of the DistExp algorithm) to select a winner candidate w ∈
∪Markκ for specialization (Line 7). Different utility functions
(e.g., information gain) can be used to calculate the score. If the
winner candidate w is local to DPi, DPi specializes w onDg by
splitting its records into child partitions, updates its local copy of
∪Markκ, and instructs all the other participating data providers
to specialize and update their local copy of∪Markκ (Line 8–11).
The information gain, denoted by G̃DPi

, accumulates IGScore(x)
on the winner’s attribute specializations (Line 12). DPi further
calculates the scores of the new candidates as a result of the
specialization (Line 14). If the winner w is not one of DPi’s
candidates, DPi waits for instructions from the other winner
data provider DPj , where i �= j, to specializew and to update its
local copy of ∪Markκ (Lines 16 and 17). This process iterates
until the specified number of the specializations h is reached.
The algorithm perturbs the output by adding the noisy count at
each leaf node (Line 21) using the Laplace mechanism. The
contribution of each data provider is computed according to
(22). Finally, the monetary share of each data provider is derived
according to the (23).

G. Quantifying the Monetary Value

The rationality of quantifying the monetary value is that data
providers are the business stakeholders, who collaborate in the
data integration process to maximize their profits. The profit
generated by their collaboration is distributed based on each
provider’s contribution to information utility and its trustwor-
thiness.

1) Cost of Anonymization in Integrated Data: First, the
data providers compute classification accuracy (CA) on the
anonymized integrated data. Then, they quantify the cost of
anonymization in integrated data, denoted by CostIntDS, on the
difference between the BA and the CA. It is computed as follows:

CostIntDS = TPrcRawDS × (BA− CA). (19)

2) Expected Value in Integrated Data: An expected mone-
tary value in integrated data is what the data providers earn from
the information utility of classification analysis when trading an
anonymized version of integrated data. The information utility
varies with the valuations of data providers’ attributes and joint
privacy requirements, such as privacy budget ε and specialization
level h, for a ε-differential privacy model in a distributed setup,
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Algorithm 2: Monetary Shares for Data Providers Using
DistDiffGen.
Input : Data providers’ attributes valuations ValAttrDPn

Input : Private data tables D1, . . . , Dn, privacy budget ε,
and number of specializations h
Output : Monetary shares MShareDPn

1: Initialize Dg with one record containing topmost
generalized values in each data provider’s taxonomy
tree;

2: Initialize Markκ to include the topmost value;
3: ε′ ← ε

2(|Anum|+2 h) ;
4: Determine the split value for each vnum ∈ ∪Markκ

with probability ∝exp( ε′

2Δu
u(D, vnum));

5: Compute the IGScore for ∀v ∈ ∪Markκ;
6: for iter = 1 to h do
7: Determine the winner candidate w by using the

DistExp Algorithm [53];
8: if w is local then
9: Specialize w on Dg;

10: Replace w with child(w) in the local copy of
∪Markκ;

11: Instruct all the other participating data providers to
specialize and update ∪Markκ;

12: G̃DPi
= G̃DPi

+ IGScore(x);
13: Determine the split value for each new

vnum ∈ ∪Markκ with probability ∝
exp( ε′

2Δu
u(D, vnum));

14: Compute the IGScore for each new v ∈ ∪Markκ;
15: else
16: Wait for the instruction from the winner data

provider;
17: Specialize w and update ∪Markκ using the

instruction;
18: G̃DPj

= G̃DPj
+ IGScore(x);

19: end if
20: end for
21: Compute count (CT + Lap(2/ε)) for each leaf node;
22: Compute the contribution of each data provider

according to (22);
23: Compute monetary share of each data provider

according to (23);
24: return MShareDPn

between the data providers. It is calculated on the difference be-
tween the total monetary value of the raw dataset TMValueRawDS

and the cost of anonymization in integrated data CostIntDS. It is
computed as follows:

EValueIntDS = TMValueRawDS − CostIntDS. (20)

3) Expected Value of an Individual Data Provider: The ex-
pected monetary value of an individual data provider, denoted
by EValueIndvDPi

, is determined by the ratio of the number of
attributes CntAttrDPi

a data provider owns with the total count

of attributes. It is computed as follows:

EValueIndvDPi
= EValueIntDS ×

CntAttrDPi∑n
i=1 CntAttrDPi

. (21)

4) Derivation of Monetary Share: The derivation of a mon-
etary share depends upon the contribution of each data provider
and its trustworthiness. Intuitively, a data provider, whose pro-
vided data on his attributes result in more information gain, and
whose trust level is higher than the other competitors, can get a
significantly larger share of the monetary value. The contribu-
tion of each data provider DPi is derived from the expected
monetary value EValueIndvDPi

by fairly computing first the
accumulative information gain G̃DPi

of each data provider DPi

on the anonymized integrated dataset. The information gain
IGScore(x)of the winner candidatew data provider accumulates
under the relevant winnerw data provider at each iteration (refer
to the Section V-F for details) for the specified specialization
level h. The contribution of each data provider ContribDPi

is
calculated using the following equation:

ContribDPi
=

G̃DPi∑n
i=1 G̃DPi

× EValueIndvDPi
. (22)

Finally, the monetary share of each data provider MShareDPi

is derived according to (7), i.e., the aggregated trust score of
each data provider, and (22), i.e., the contribution of each data
provider. Therefore, MShareDPi

becomes

MShareDPi
= ContribDPi

(
1 +

TSDPi∑n
i=1 TSDPi

)
. (23)

VI. COMPARATIVE ANALYSIS AND EMPIRICAL STUDY

In this section, we first provide a comparison of our approach,
followed by an empirical study.

A. Comparative Analysis

We compare our proposed IEB_Trust, an entropy-based trust
computation algorithm with the closely related provenance-
based trust method [16]. The provenance-based method com-
putes the trust scores for data and data providers using similarity
functions, but do not consider privacy protection when evalu-
ating trustworthiness. The fundamental idea of our approach is
different. Our method enables secure trustworthiness assessment
and preserves the privacy of the customers’ data when evaluating
the trustworthiness of the participating data providers. For this
reason, we are limiting to the runtime comparison in Fig. 3(a).
We evaluate the performance of our proposed method on a
real-life Adult3 dataset. It contains 45 222 records with eight
categorical attributes, six numerical attributes, and a binary
class attribute Income with two levels, ≤ 50K or > 50K. The
distribution of attributes other than class attribute among ten
data providers is shown in Fig. 3(b). We generate 10% of data
conflicts over randomly chosen attributes. We vary the size of
the datasets |Di| from 10 to 50K to study the runtime cost.

3Available at: http://archive.ics.uci.edu/ml/datasets/Adult
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Fig. 3. Our method improves the runtime efficiency compared to the provenance-based trust method. (a) Runtime comparison. (b) Distribution of attributes.

All experiments are conducted on an Intel Core i7 3.4 GHz PC
with 8-GB memory.

The running time includes time elapsed in both the initializa-
tion phase and the iteration phase. We observe that the initial-
ization phase of the provenance-based method takes more time
to compute data similarity and data conflict. It has worst-case
complexity of O(n2), while the complexity of our proposed
method at the initialization phase is O(CntAttrDPi · |Di| log
|Di|). Since each data provider computes GAJ in a distributed
setup, the complexity remains the same in our method. The
iteration phase to compute trust is much faster in both the
methods. It takes less than 1 s to complete the trust computation.
Fig. 3(a) shows that our method is more efficient in running time
over the provenance-based method. Our method is scalable when
we need to grow either the number of attributes, the number of
data providers, or both on a dataset.

B. Empirical Study

We first analyze the trustworthiness of each data provider
and assess the truthfulness of the provided data by a trust
score metric. Second, we analyze the impact of ε-differential
privacy requirements along with the aggregated trust score on
each data provider’s monetary value. We evaluate our proposed
method, IEB_Trust, with the assumption of having four data
providers who intend to verify the correctness of their data before
participation in the data mashup. This assumption is reasonable
because we have a limited number of attributes in the dataset to
be shared among data providers.

1) Trust Measurement: Our proposed method evaluates the
trust of participating data providers based on the following
conditions.

1) A data provider is found as honest and gains a positive
score.

2) A data provider is found as dishonest and is penalized with
a negative score.

3) A single data provider of an attribute that no others own
is accepted based on the existing trust score TSDPi

≥ 0
without an increase in the trust score.

4) A data provider who does not register for an attribute has
no effects on the trust score.

To demonstrate the effectiveness of our approach, we conduct
two cases of experiments that are independent of each other. This
means that for each case, data providers hold different sets of
overlapping attributes with their arrival sequences. In each case,
we assume γ = 0.5, but it does not need to be fixed to a specific
weight.

Consider the first case with the participating data providers’
attributes and their arrival sequences. DP1 �→ A1:st1 , A7:st1 ,
A8:st1 , A9:st1 , A10:st2 , A11:st1 ; DP2 �→ A2:st2 , A3:st1 ,
A4:st1 , A5:st2 , A7:st2 , A8:st3 , A13:st1 ; DP3 �→ A1:st2 ,
A4:st2 , A5:st1 , A6:st1 , A8:st2 , A11:st2 , A13:st2 ; and DP4

�→ A1:st3 , A2:st1 , A5:st3 , A9:st2 , A10:st1 , A11:st3 , A12:st1 .
Fig. 4(a) depicts the trust scores analysis for Case 1 based on
the demand of a data consumer on attributes A1, . . . , A13.

It is observed that the DP2 trust score never drops during
the verification process in contrast to the other competing data
providers. The flat lines fromA2 toA6 at trust score level 0.5, and
A9 toA12 at trust score level 2.5, indicate that those attributes are
not submitted by DP1 and DP2, respectively. This is not always
the case; for instance, there are flat lines from A2 to A3 at trust
score level 0.5, A5 to A6 at trust score level 0.5, and A11 to
A12 at trust score level 2.0, indicating that DP2, DP3, and DP4

are the single data providers on those attributes. DP2, DP3, and
DP4 are accepted because they are maintaining an aggregated
trust score ≥ 0 at that point of the verification. However, their
trust scores do not increase because they own an attribute that no
others own. It is assumed that DP1 has 5% of missing data onA8

andA11, DP3 has 5% of missing data onA5, and DP4 has 1% of
missing data onA1. They impute missing data by using the kNN
imputation method in order to claim it as original data. Our trust
verification approach restricts this dishonest behavior of data
providers; for instance, DP1 atA8 andA11, DP3 atA5, and DP4
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Fig. 4. Trust scores analysis. (a) Case 1. (b) Case 2.

Fig. 5. Aggregated trust scores. (a) Case 1. (b) Case 2.

at A1, by penalizing them with negative weight in their trust
scores. Fig. 5(a) depicts the aggregated trust scores for Case 1.
DP2 attains the maximum trust score 3.0 in competing with the
other data providers, whereas DP1 ends up with the minimum
trust score 1.0. There is a tie on aggregated trust scores between
DP3 and DP4.

Consider the second case with the participating data
providers’ attributes and their arrival sequences. DP1 �→A1:st1 ,
A6:st3 , A7:st1 , A8:st2 , A9:st3 , A10:st2 , A12:st2 ; DP2 �→
A2:st2 , A5:st2 , A6:st4 , A7:st2 , A8:st1 , A9:st2 , A11:st1 ;
DP3 �→ A3:st1 , A5:st1 , A6:st1 , A8:st3 , A9:st1 , A12:st1 ,
A13:st2 ; and DP4 �→ A2:st1 , A4:st1 , A6:st2 , A9:st4 , A10:st1 ,
A11:st2 , A13:st1 . Fig. 4(b) depicts the trust scores analysis for
Case 2 based on the demand of a data consumer on attributes
A1, . . . , A13.

It is observed that DP1, DP2, and DP4 maintain their trust
scores quite well except for a fall of 0.5 in their trust scores
at A9, A5, and A13, respectively. The flat lines from A1 to A5

at trust score level 0.0, and A3 to A5 at trust score level 0.5,
indicate that those attributes are not submitted by DP1 and DP4,
except at A1 and A4, respectively. Since DP1 and DP4 are the
single data providers on A1 and A4, their trust scores do not

increase. However, they are accepted because they maintain an
aggregated trust score ≥ 0. We observe that DP3 is inconsistent
in maintaining its trust level throughout the verification process.
It is worthwhile to note that our trust verification process restricts
the arbitrary behavior of dishonest DP1 and DP3 to undermine
the trust levels of DP2 and DP4. Fig. 5(b) depicts the aggregated
trust scores for Case 2. DP2 attains the maximum trust score
2.5 in competing with the other data providers, whereas DP3

ends up with a negative trust score of −1.0. This results in the
rejection of DP3 from the final selection in the data mashup.

2) Impact of Privacy Protection and Trust Score on DP’s
Monetary Value: In this section, we analyze the impact of
ε-differential privacy requirements along with the aggregated
trust score on each data provider’s monetary value. Recall from
Section V-E that both revenue per demand Revi and demand
rate Qj are enumerated in descending order. Suppose Revi =
{$0.6, $0.5, $0.4, $0.3} andQj = {9, 8, 7, 6} for data providers
DP1, DP2, DP3, and DP4, respectively. The inputs for Revi and
Qj do not need to be fixed to a particular value, it is just assumed
here for simplicity.

Case 1: Table IV(a) shows the selection of attributes from each
accepted data provider. BA on the integrated data of accepted
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Fig. 6. Impact of ε-differential privacy requirements and trust scores on DP1, DP2, DP3, and DP4 monetary value (Case 1). (a) ε= 0.2. (b) ε= 0.4. (c) ε= 0.6.
(d) ε = 0.8.

TABLE IV
SELECTION OF ATTRIBUTES FROM DATA PROVIDERS

data providers is 85.3% using the secure multiple-party classi-
fier [21] without disclosing their raw data. We vertically partition
the Adult dataset into four partitions VP1, VP2, VP3, and VP4

for data providers DP1, DP2, DP3, and DP4, respectively. Fur-
thermore, we split the dataset into 30 162, and 15 060 records for
the training and testing sets, respectively. The valuation of each
data provider’s attribute is $0.47, $0.41, $0.36, and $0.30, rep-
resenting ValAttrDP1

, ValAttrDP2
, ValAttrDP3

, and ValAttrDP4
by

(14). The attribute count of each data provider is CntAttrDP1
= 3,

CntAttrDP2
= 4, CntAttrDP3

= 3, and CntAttrDP4
= 3. The size

of the dataset for each data provider |Di| = 45, 222.
Fig. 6 depicts the impact of privacy protection and trust scores

on DP1, DP2, DP3, and DP4’s monetary value. ε-differential
privacy is enforced with privacy parameters ε = 0.2, 0.4, 0.6,
and 0.8 and specialization levels 3 ≤ h ≤ 19.

Fig. 6(a) depicts the impact on DP1, DP2, DP3, and DP4’s
monetary value when the threshold is ε = 0.2. We observe that
DP4 attains the highest monetary share due to more information
utility and its aggregated trust score. When specialization level
h increases from 3 to 7 and 11 to 15, DP1, DP2, and DP3

get increases in their monetary shares, while DP4’s monetary
share falls by approximately $11K, though still achieving a
higher share than other data providers. Initially, DP2 has no
monetary share when h = 3, but it increases with the increase
in the specialization level h except when h = 19. DP1, DP2,
and DP3’s monetary shares become closer to each other when
h = 11.

Fig. 6(b) depicts the impact on DP1, DP2, DP3, and DP4’s
monetary value when the threshold is ε = 0.4. We observe
that DP4 attains the highest monetary share because of greater
information utility and its aggregated trust score. Though DP1

does not get the highest share, its monetary share becomes
closer to DP4 at h = 11, 15, and 19 with the difference of

approximately$3K to$5K. Interestingly, DP4’s monetary share
exhibits nonincreasing monotonicity with the increase in spe-
cialization level h, while DP1’s monetary share increases with
the increase in specialization level h except when h = 19. We
notice that DP3 has no monetary share when h = 7 because
of a lack of information utility for classification analysis. The
trust score does not add any monetary value if a data provider
fails to contribute to information utility. The trend on DP2

and DP3’s monetary share is not obvious with the increase
in h.

Fig. 6(c) depicts the impact on DP1, DP2, DP3, and DP4’s
monetary value when the threshold is ε = 0.6. We observe that
DP4 gains the maximum value of monetary share when h = 3
andh = 7, and DP1 gains the maximum value of monetary share
when h = 11 and h = 15, whereas DP2 gains the maximum
value of monetary share when h = 19. This is because it has
greater information utility in competing with the other data
providers at the indicated levels of specialization. We observe
that DP2’s monetary share increases monotonically as the in-
crease in specialization level h, whereas DP4’s monetary share
falls with the increase in specialization level h, except when
h = 19.

Fig. 6(d) depicts the impact on DP1, DP2, DP3, and DP4’s
monetary value when the threshold is ε = 0.8. We observe that
DP4 achieves the highest monetary share because of greater
information utility and its aggregated trust score. We observe that
DP1’s monetary share generally increases as the specialization
level h increases, whereas DP4’s monetary share falls with the
increase in specialization level h, except when h = 11. We
notice that when h = 15, all data providers’ monetary shares
become closer, with a difference of approximately $4 K.

Case 2: Table IV(b) shows the selection of attributes from
each accepted data provider. BA on the integrated data of ac-
cepted data providers is 85.4%, using the secure multiple party
classifier [21] without disclosing their raw data. We vertically
partition the Adult dataset into three partitions VP1, VP2, and
VP3 for data providers DP1, DP2, and DP4, respectively. Fur-
thermore, we split the dataset into 30 162 and 15 060 records
for the training and testing sets, respectively. Since DP3 has
dropped from the list of accepted data providers, DP4 acquires
the position of DP3. Now, the valuation of each data provider’s
attribute is $0.47, $0.41, and $0.36, representing ValAttrDP1

,
ValAttrDP2

, and ValAttrDP4
by (14), respectively. The attribute

count of each data provider is CntAttrDP1
= 3, CntAttrDP2

= 3,
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Fig. 7. Impact of ε-differential privacy requirements and trust scores on DP1, DP2, and DP4 monetary value (Case 2). (a) ε = 0.2. (b) ε = 0.4. (c) ε = 0.6.
(d) ε = 0.8.

and CntAttrDP4
= 4. The size of dataset for each data provider

|Di| = 45 222.
Fig. 7 depicts the impact of privacy protection and trust scores

on DP1, DP2, and DP4’s monetary value. ε-differential privacy
is enforced with privacy parameters ε = 0.2, 0.4, 0.6, and 0.8,
and specialization levels 3 ≤ h ≤ 19.

Fig. 7(a) depicts the impact on DP1, DP2, and DP4’s monetary
value when the threshold is ε = 0.2. We observe that DP4 attains
the highest monetary share because of higher information utility
and its trust level, except when h = 19. We observe that DP1’s
monetary share increases as the specialization level h increases,
except when h = 7, whereas DP4’s monetary share generally
falls with the increase in specialization level h except when
h = 15. DP1 gains the maximum value of approximately $32K
of his monetary share when h = 19.

Fig. 7(b) depicts the impact on DP1, DP2, and DP4’s monetary
value when the threshold is ε = 0.4. We observe that DP4 attains
the highest monetary share because of higher information utility
and its trust level, except when h = 19. The trend on DP1,
DP2, and DP4’s monetary share is not obvious with the increase
in specialization level h. DP2 gains the maximum value of
approximately $33K of his monetary share when h = 19.

Fig. 7(c) depicts the impact on DP1, DP2, and DP4’s mon-
etary value when the threshold is ε = 0.6. We observe that
DP4 achieves the highest monetary share because of higher
information utility and its trust level, except whenh = 15. DP4’s
monetary share drops sharply when h increases from 3 to 7 and
11 to 15, while DP1 and DP2 have a significant increase in their
monetary shares with this increase inh. DP2 gains the maximum
value of approximately $29K of monetary share when h = 15.

Fig. 7(d) depicts the impact on DP1, DP2, and DP4’s monetary
value when the threshold is ε = 0.8. We observe that DP4

gains the maximum value of monetary share when h = 3, 7,
and 11, whereas DP1 gains the maximum value of monetary
share when h = 15 and 19. This is because they have more
information utility in competing with the other data providers at
the indicated levels of specializations. DP2’s monetary share
generally increases as the increase in specialization level h,
except when h = 15. DP1 and DP4 do not exhibit monotonicity
with the increase in h.

VII. CONCLUSION

In this article, we proposed a novel entropy-based trust
computation algorithm to verify the correctness of data
from untrusted multiple data providers who own overlapping

attributes over the same set of records. We achieved three main
benefits in delegating the verification role to the semitrusted
CSP. First, our method ensured that the CSP cannot derive
customers’ private data from the information collected during
the verification process. Second, the overhead of computation on
the CS was also reduced because only an encrypted information
gain message and its keyed hash were exchanged between a data
provider and the CS, instead of exchanging encrypted individual
data records during the verification process. Third, it also
reduced the burden on data consumers to determine, which data
providers can serve their demands on requested attributes and
what are their attained trust scores. Furthermore, we evaluated
the robustness of our approach when a data provider employed
the machine learning method for imputation of missing values
on its data. There was no significant difference in the perspective
to the performance of the imputation method. It is conditional to
what proportion of data is missing and whether the data contains
repeated patterns. If the prediction of a missing data happens
to be as precise data, then it will be considered as true data.
We incorporated the VCG auction mechanism to determine
the pricing on data providers’ attributes. It maximized the
total valuation obtained by data providers, since there was
no incentive to lie or deviate from truthful reporting for a
data provider. From the perspective of privacy protection, the
accepted data providers as a result of trust computation set up
their joint privacy requirements for the data mashup. During
the data mashup process, every data provider competed with
the other participating data providers to produce more data
utility. It was evident from the experiments that an accepted
data provider whose data attributes result in more information
gain, and whose trust level is higher than the other competitors,
can get a significantly larger share of the monetary value.
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