
1

Hybrid Cardiac Models Connecting Cardiac Monolayers with Two-

Dimensional Computational Simulations in Real-time

Younes Valibeigi

Department of Physiology

McGill University

Montreal, Quebec, Canada

August 2021

A THESIS SUBMITTED TO MCGILL UNIVERSITY IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS OF THE DEGREE OF MASTER OF SCIENCE

© Younes Valibeigi, 2021

2

Abstract
Cardiovascular disease is the number one cause of death worldwide. Tachycardias, which are

potentially deadly rapid rhythms, are often associated with reentry. Reentry, where a wave of

excitation rotates around an unexcitable obstacle, is difficult to study as the circuit length is not

under experimental control. Developing closed-feedback loop devices that generate user-defined

re-entrant pathways can allow us to study and generate strategies for abolishing re-entrant waves.

However, these tools must overcome the challenge of dynamically responding to the wave in real-

time in a realistic fashion. Until recently, the development of computational simulations that

predict cardiac electrophysiological wave propagation required the use of dedicated workstations

that typically took many minutes to simulate seconds of activity. With the aid of a newly developed

computational library (Abubu.js) that harnesses the power of the graphics card, it is now possible

to develop large-scale simulations that rapidly predict wave dynamics. Using these GPU-based

simulations, we built a closed feedback loop device that connects a cultured cardiac monolayer

with 2D simulations of cardiac tissue in real-time. Optogenetic methods, which use light-activated

ion channels to depolarize cardiac cells, are used to trigger propagating waves in cultured tissue.

Motion detection cameras, with the aid of appropriate algorithms, capture monolayer activation

waves and provide information to the simulation, which in turn stimulates the tissue using

microcontrollers and LEDs. This device provides us real-time control over tissue space. It opens

the possibility of investigating anatomical re-entrant waves with a new perspective and has the

potential to revolutionize approaches for treating arrhythmias.

3

Abrégé
Les maladies cardiovasculaires sont la première cause de décès dans le monde. Les tachycardies,

qui sont des rythmes rapides potentiellement mortels, sont souvent associées à la rentrée cardiaque.

La rentrée cardiaque, où une onde tourne autour d'un obstacle inexcitable, est difficile à étudier

car la longueur du circuit n'est pas sous contrôle expérimental. Le développement de dispositifs à

boucle de retroaction fermée qui génèrent des voies réentrantes définies par l'utilisateur peut nous

permettre d'étudier et de générer des stratégies pour abolir les ondes réentrantes. Cependant, ces

outils doivent surmonter le défi de répondre dynamiquement à la vague en temps réel de manière

réaliste. Jusqu'à récemment, le développement de simulations informatiques qui prédisent la

propagation des ondes électrophysiologiques cardiaques nécessitait l'utilisation de postes de travail

dédiés qui prenaient généralement plusieurs minutes pour simuler des secondes d'activité. À l'aide

d'une nouvelle bibliothèque de calcul (Abubu.js) qui exploite la puissance de la carte graphique, il

est désormais possible de développer des simulations à grande échelle qui prédisent rapidement la

dynamique des ondes. À l'aide de ces simulations basées sur les GPU, nous avons construit un

dispositive à boucle de retroaction fermée qui connecte une monocouche cardiaque cultivée avec

des simulations 2D de tissu cardiaque en temps réel. Ce dispositif peut contrôler le tissu cardiaque

grâce à l'utilisation de méthodes optogénétiques qui sensibilisent le tissu à la lumière. Les caméras

de détection de mouvement à l'aide d'algorithmes appropriés capturent les ondes d'activation des

monocouches et fournissent des informations à la simulation, qui à son tour stimule le tissu à l'aide

de microcontrôleurs et de LED. Cet appareil nous permet de controller en temps réel l'espace

tissulaire. Il ouvre la possibilité d'étudier les ondes réentrantes anatomiques avec une nouvelle

perspective et a le potentiel de révolutionner les approches de traitement des arythmies.

4

Acknowledgments
First and foremost, I would like to extend my gratitude to Dr. Gil Bub for taking me into his lab,

for all the support, trust, and encouragement. I was honored to work with him, as well as with all

the past and present members of the lab. To Dr. Leon Glass, thanks for the great conversations and

for providing me suggestions for my work. I am also honored to receive hands-on training by Dr.

Abouzar Kaboudian for his fascinating novel computational library, and thanks for the great advice

and supports he provided me. I would like to also thank Dr. Flavio Fenton for receiving me at his

lab and for all the training and support I received from his lab members. Importantly, I wish to

acknowledge the undergraduate students, Edward Tu and Jake Zhao, whom I received aid for

complicated computational problems. Thank you to Miguel Romero Sepulveda and Khady Diagne

for their patients and time in preparing numerous tissue cultures for my experiments. Last but not

least, I want to thank my wonderful family for supporting me throughout my education.

5

Contribution of Authors
Dr. Abouzar Kaboudian assisted in implementing his library, AbubuJS, for developing the cellular

automata simulation. His three-variable simulation model was used to implement the Fenton-

Karma simulation. Tissue cultures were prepared by Miguel Romero Sepulveda and Khady

Diagne. The GView software, developed by Dr. Gil Bub, was used for data analysis. The serialport

connection between the microcontroller and the NodeJS program was built by Edward Tu. This

thesis was revised by the supervisor, Dr. Gil Bub.

6

Table of Contents

Abstract ... 2

Abrégé ... 3

Acknowledgments... 4

Contribution of Authors .. 5

Chapter 1. Introduction ... 8

1.1. Cardiac rhythm: .. 8

1.2. Action potentials: ... 8

1.3. Cardiac waves: ... 9

1.4. Arrhythmias:... 9

1.5. Closed feedback loops and the hybrid systems: ... 10

1.6. Fixed delay limitations: .. 12

1.7. Real-time cardiac simulations: ... 13

1.8 Experimental requirements: the need for millisecond resolution in cardiac experiments .. 13

1.9. Our approach: ... 13

Chapter 2. Method .. 15

2.1. Overview: ... 15

2.2. NodeJS and Socket communications: .. 15

2.3. WebGL simulation: .. 16

2.4. Cardiac simulations: ... 18

2.5. Cardiac monolayer: .. 20

2.6. Basler Camera: ... 21

2.7. Microcontroller and Matrix LED: .. 23

2.8. Accuracy test 1-Photodiode recordings: .. 24

2.9. Camera-Arduino synchronization: ... 26

2.10. Synchronization mechanism: ... 26

2.11. The accuracy test for the hybrid system: .. 28

2.12. Microscopy and the optics: .. 29

2.13. Data analysis and statistics: .. 29

Chapter 3: Results ... 30

3.1. Accuracy test (The impact of synchronization): .. 30

3.2. Source of error: Signal noise .. 30

7

3.3. Closed-loop experiment with 2D cellular automata simulation: .. 32

3.4. Closed-loop experiment with 2D Fenton-Karma simulation: .. 33

Chapter 4: Discussion ... 35

4.1. Summary of hybrid cardiac model’s limitations: ... 35

4.2. Evaluating the hybrid system’s performance against the previous models: 36

4.3. Future direction: ... 37

Appendix A. Developing the NodeJS server .. 38

A.1. Initiating the NodeJS server .. 38

A.2. Developing the socket.io communication system ... 38

A.3. Developing serialport for NodeJS-Arduino communication system: 39

A.4. TCP communication between the camera and the NodeJS server: 40

Appendix B. AbubuJS simulation .. 42

B.1. The HTML file (index.html): ... 42

B.2. Developing main.js JavaScript file: ... 42

B.3. The GLSL shader code for the cellular automata algorithm ... 47

Appendix C. Pylon and the camera C++ code ... 53

C.1. Installing SDK package: .. 53

C.2. Calculating filtered images: ... 53

C.3. Calculating conduction velocity and ∆𝑡𝑐𝑎𝑚: .. 54

Appendix D. The Arduino .. 57

D.1. Arduino setting: ... 57

D.2. Arduino Code: ... 57

Appendix E. analyzing photodiode data and the region of interest .. 59

E.1. Picolog application creates CSV files:... 59

E.2. Python code for analyzing photodiode’s CSV files: .. 59

E.3. Python code for analyzing GView’s roi files: ... 60

Appendix F. Monolayer preparation ... 61

F.1. Tissue culture coating (for 24-well plates) and plating cell densities: 61

F.2. Ventricle dissociation, tissue culture, and adenoviral infection of cardiac monolayers: ... 61

References ... 63

8

Chapter 1. Introduction
Cardiovascular disease is the number one cause of death worldwide. Investigating the dynamics

of cardiac propagation can give scientists insight into cardiovascular diseases and aid in developing

pharmaceutical treatments.

1.1. Cardiac rhythm:

The heart is composed of four chambers: the left and right

atrium on the top of the heart and the left and right ventricles

on the bottom of the heart. Atrial muscles push the blood into

the ventricles, and the ventricles pump the blood throughout

the body, which supplies oxygen, immune cells, nutrients,

and regulatory molecules to the body’s organs. The heart’s

rhythm is controlled by a region in the right atria called the

sinoatrial (SA) node that acts as a spontaneous pacemaker

(F. H. Fenton et al., 2008). This region, depicted in figure 1

(Ryan, 2020), is modulated by hormonal and neural inputs

to maintain blood pressure according to the body’s needs.

The SA node periodically generates electrical waves that

travel throughout the tissue and cause the cardiac cells to

contract. Each wave propagates linearly throughout the atria

before being channeled through the atrioventricular (AV)

node (F. H. Fenton et al., 2008). The AV node provides the electrical bridge between the right atria

and the ventricles. These electrical waves initiate intracellular calcium processes that produce

contractions in the heart muscles to pump blood (F. H. Fenton et al., 2008). Synchronization of

excitation waves generates a coordinated cardiac contraction which is needed for optimal blood

circulation.

1.2. Action potentials:

Cardiac cell contraction is driven by changes in

voltage across the cell’s membrane. A transient

rapid depolarization followed by repolarization,

known as the action potential, leads to the

release of calcium ions into the cell’s cytoplasm,

which triggers contraction. The action potential

is generated by currents that travel through

specialized ion channels in the cell membrane (F.

H. Fenton et al., 2008). Sodium (Na+), potassium

(K+), calcium (Ca2
+) and chloride Cl- are the main

ions that determine the voltage state of the cell.

The open/close state of various ion channels, which change depending on membrane voltage, result

in different conductances for different ions. The balance between concentration and voltage

Figure 1. Heart chambers. The figure

shows atria and ventricles with SA and AV

nodes.

Figure 2. Action potential. The figure shows four

consecutive action potentials (AP) and demonstrates

examples of action potential duration (APD),

diastolic interval (DI) and the cycle length (CL)

within each AP.

9

gradients for each ion and the conductivity of each ion channel results in current flows that sum to

generate an action potential. Generally, voltage-gated channels open in the initial step of the action

potential and allow the influx of positive ions into the cell. This causes the membrane to depolarize.

Following this rapid depolarization, the activity of other voltage-gated channels along with non-

voltage-gated channels slowly repolarize the membrane, bringing back the voltage to its resting

value. Voltage-gated channels cannot re-open immediately, so the cell cannot generate a new

action potential until these channels reset: this time window is called the refractory period. This

property allows unidirectional propagation of action potential within each cell and across the

tissue. The action potential duration (APD) refers to the time period from the initial depolarization

to 90% repolarization1 (Frame & Simson, 1988)(figure 2). The APD can be associated with the

depolarized state of the action potential. The diastolic interval (DI), the time between the end of

the last action potential and the upstroke of the following action potential, is often associated with

the refractory period for very rapid rhythms (Frame & Simson, 1988).

1.3. Cardiac waves:

The spread of electrical waves across the heart can be explained with an electrocardiogram (ECG).

It measures the voltage differences between different points on the chest surface (F. H. Fenton et

al., 2008). There are three peaks on the ECG recording: P, QRS, and T (Figure 3). The P wave is

associated with the spread of electrical activation

across the atria. The QRS complex corresponds

to the travel of action potentials through Purkinje

fibers and across the ventricles. The T wave is

associated with the relaxation of the ventricles.

The PR interval corresponds to the duration of

the time for excitation to travel from the atria

through the AV node to the ventricles. The

duration of the ventricle excitation is associated

with QT interval. A ‘cardiac arrhythmia’ is

defined as a condition in which the cardiac tissue

demonstrates an abnormal rhythm due to a

disturbance in the electrical wave spread (F. H.

Fenton et al., 2008).

1.4. Arrhythmias:

Abnormal wave propagation, abnormal initiation of a cardiac wave, or a combination of both can

cause arrhythmias. Arrhythmias can be classified in several ways (Fenton, 2008). It can be

classified according to its beating rate. A heart rate that is significantly faster than a normal rhythm

(e.g., greater than 100 beats per minute in human heart) is called tachycardia. On the other hand,

1 Action potential duration can be defined as a time window between depolarization and partial repolarization, where

the degree of repolarization (50%, 70%, or 90%) is set by the researcher depending on the experimental context.

Figure 3. Electrocardiogram. P, QRS, and T waves are

caused by cardiac electrical excitations.

10

bradycardia refers to the condition where cardiac rhythm is slower than 60 beats per minute in

human patients.

Arrhythmias are classified according to the electrophysiological properties of its disruption as re-

entrant and non-re-entrant arrhythmias. In re-entry, electrical waves repetitively circulate around

an obstacle (termed ‘anatomical re-entry’) (figure 4-C) or circulate around a pivot point resulting

in the wave taking a spiral morphology (termed ‘functional re-entry’), as illustrated in figure 4-B.

Fibrillation is caused when numerous spiral waves (functional re-entrant waves) are generated in

the tissue (figure 4-D), and if sustained, it can terminate the patient’s life (Panfilov, 1998). In

contrast, a non-re-entrant tachyarrhythmia is associated with different mechanisms. For example,

an abnormal rhythm can be generated by having one or more extra pacemaking sites form in the

atria or ventricles. Investigating the mechanism of arrhythmias allows us to understand the cause

of abnormal cardiac rhythm and find the appropriate cure.

1.5. Closed feedback loops and the hybrid systems:

Hybrid systems are experimental systems composed of a computer simulation coupled

bidirectionally to living tissue (Kispersky et al., 2011). A well-known example of a hybrid system

is the dynamic patch clamp, where an electrode injects current into an excitable cell in response to

the voltage across the cell’s membrane and a computer model (Prinz & Cudmore, 2011) in order

to shape the membrane’s voltage. The dynamic clamp can be utilized to provide direct answers to

numerous research questions regarding neuronal (Sharp et al., 1993) and cardiac (Wilders, 2006)

dynamics. A key element of hybrid systems is the use of closed feedback loops.

Closed-feedback loop systems enable novel research and therapies by controlling living tissue

based on physiological parameters acquired during the experiment. In contrast to open-feedback

loop systems, that rely on the application of predetermined stimuli, closed-feedback loops

dynamically respond to living tissue in real-time, providing new strategies for studying in vivo

cardiac dynamics (Scardigli et al., 2018). A feedback loop formed by bidirectional communication

between cardiac tissue and the computer can mimic the properties of anatomical re-entrant waves

(figure 5-B), while giving researchers experimental access to key parameters. For example, the

length of the re-entrant circuit can be dynamically changed during an experiment leading to

A B

Figure 4. Unidirectional cardiac waves versus re-entrant waves. These figures show 2D cellular automata

models developed using the AbubuJS library illustrating cardiac waves. (A) presents unidirectional waves in

the healthy tissue. (B) shows a spiral wave in functional re-entry. (C) demonstrates anatomical re-entrant

wave circulating around an obstacle. (D) shows fibrillation in the tissue, including multiple spiral waves. (E)

demonstrates functional re-entrant waves in a 3D model.

D E C

11

situations where the excited head of the wave reaches its refractory tail and break the wave (figure

5-C). Hybrid closed feedback loop models are capable of demonstrating this phenomenon.

The first closed-loop system was developed to explore the dynamics of cardiac re-entry with

variable length (Frame & Simson, 1988). Their results suggest that unstable tachycardias

demonstrate alternans,

ending in termination

(Frame & Simson,

1988). More generally,

their paper also

demonstrated that

closed feedback loop

systems are useful

experimental models

for investigating

anatomical re-entry.

Some other closed-loop

applications in cardiac

dynamics include

variably timed stimuli

to control arrhythmias

in cardiac tissue using

simple models

(Christini & Collins, 1996) and dynamic clamps that control physiological properties of cardiac

tissue (Wilders, 2006) or neuronal cells (Sharp et al., 1993) in real-time.

Hybrid systems must interact with tissue very rapidly (at kilohertz rates or higher) in order to avoid

artifacts. Early systems used analog circuits (Sharp et al., 1992; Tan & Joyner, 1990) to connect

two excitable cells with experimentally variable resistance. Later, dedicated digital circuits running

simple models were developed that could interact with cells at kilohertz rates (Robinson & Kawai,

1993; Sharp et al., 1993), eventually leading to the use of computer programs and fast acquisition

boards for dynamic clamp (Christini et al., 1999; Ulrich & Huguenard, 1996). More recently, a

system based on a low-latency distribution of Linux, the Real-Time eXperiment Interface (RTXI),

was developed as a general platform for developing hybrid experiments (Patel et al., 2017).

However, these systems were not designed to respond to complex and spatially variable 2D

dynamics that characterize some arrhythmias. Researchers have used optical recordings to detect

waves in closed feedback systems (Iravanian & Christini, 2007), but use static electrodes for

stimulation, which eliminates the possibility of dynamically changing the wavefront’s shape.

Variability of the wavefront’s shape can affect cardiac dynamics. Specific wavefront shapes can

result in the generation of spiral waves. Static electrodes are not capable of implementing these

variabilities. This problem can be solved by the emerging field of cardiac optogenetics.

Figure 5. Anatomical re-entrant waves

can be studies by closed-loop systems.

(A) illustrates a model of anatomical re-

entry. Image (B) indicates that a closed

feedback loop that can timely stimulate

the tissue will simulate re-entrant loops.

(C) represents one of the mechanisms

that the re-entrant wave disappears. The

active head of the wave reaches the

refractory tail, and the wave resolves

itself.

A

B

C

Stimulator

12

Optogenetics uses tissues that have been genetically modified to express light-sensitive ion

channels which, enables researchers to perturb electrical activity with high spatiotemporal

resolution using light (Entcheva & Bub, 2016). Since the first optogenetic applications for mapping

the origin of cardiac pacemakers and accurately pacing tissue (Arrenberg et al., 2010; Bruegmann

et al., 2010), optogenetic tools have been used to study cardiac dynamics. A few studies tried to

validate optogenetics as a method for clinical therapeutic approaches (Ambrosi et al., 2014), either

by using multi-site illumination using fiber optics (Nussinovitch & Gepstein, 2015)., or by using

projected patterns (Bruegmann et al., 2016; Crocini et al., 2016; Nyns et al., 2017). Crocini et al.

2016 used patterned optogenetic stimulations shaped according to the previously acquired data

from optical mapping recordings to defibrillate the tissue. In this approach, optical manipulation

is not receiving feedback from the tissue, and the approach is limited the optical manipulation’s

applicability to stationary dynamics (Fixed pattern for optical manipulation).

There have been several recent advances that demonstrate that a more flexible optogenetic strategy

is possible. A fully optical approach has recently been developed with a high resolution that

achieved optical control of cardiac waves (Burton et al., 2015; Entcheva & Bub, 2016). Welsh and

colleagues demonstrated that, in principle, a complex cardiac simulation could connect to the tissue

via the use of NodeJS server and microcontrollers (Welsh et al., 2019). However, they did not

demonstrate the applicability of the system with living tissue or perform any cardiac experiment.

Another fully optical approach with a closed-loop system used high speed cameras as the sensor

combined with a digital projector as the actuator (Biasci et al., 2020; Scardigli et al., 2018). This

approach used a fixed delay protocol where the tissue is stimulated after a fixed period according

to its excitation cycles. These scientists showed various dynamics with different fixed delay

periods. There are potential limitations with this approach: fixed delay protocols with millisecond

response times require expensive specialized equipment (high temporal resolution cameras and

high-speed digitizing boards with their own processors) and also face inherent issues with the fixed

delay protocol, which are discussed below.

1.6. Fixed delay limitations:

In fixed delay, re-entrant wave break mostly happens at the site of stimulation, but the break can

happen at any point in the real re-entrant loop. Although the re-entrant wave can have different

wavelength with various velocities, fixed delay protocols also assumes that the wave travels with

constant velocity in a linear shape without encountering its refractory tail (figure 6-B). Previous

experiments only stimulated the tissue with static patterns (Scardigli et al., 2018), but the cardiac

wave can have various shapes and patterns (figure 6-C). We suggest that replacing fixed delay

with a 2D simulation could be a breakthrough in this field and eliminates some of these limitations

(figure 6-D). However, conventional 2D cardiac simulations require dedicated workstations to run,

and achieving real-time tissue simulation is difficult when using computational processing units

(CPUs) with a limited number of cores.

13

1.7. Real-time cardiac simulations:

Dr. Kaboudian and his colleagues at the Georgia Institute of Technology developed a new

simulation library using the Web Graphics Library (WebGL) programming language (Kaboudian

et al., 2019a). This library (Abubu.js) parallelizes the computations by running on graphic

processing units (GPU), allowing simulations which normally require dedicated workstations to

run on normal desktop computers equipped with a modern graphics card. This new approach can

develop high-performance simulations of cardiac tissue that can run fast enough to interact with

living tissue in real-time. This approach has not been used before in the field of experimental

cardiac electrophysiology. It was shown that Abubu.js is capable of developing iterative 2D models

that can represent differential equation-based models such as Fenton-Karma and OVVR models

that can generate 2D waves with variable wavelength and velocities (Kaboudian et al., 2019b).

1.8 Experimental requirements: the need for millisecond resolution in cardiac

experiments

Cardiac dynamics are vulnerable to precisely timed pulses (Starmer, 2007), meaning that a

millisecond shift in the timing between two tissue’s stimulation time (also known as the S1-S2

delay) can affect tissue’s excitability and change its dynamics. Cardiac stimulation protocols,

therefore, have millisecond accuracy, as indicated in S1-S2 protocols in published papers (Tran

et al., 2007). Previous studies indicate that small changes in fixed delay times of a few milliseconds

resulted in a change in cardiac dynamics (Hall et al., 1997). Experiments investigating oscillation

in conduction also demonstrate a large shift in cardiac dynamics when the value of fixed delay

changes for a few milliseconds (Sun et al., 1995). For all these reasons, millisecond resolution is

crucial for a closed-feedback loop system to investigate cardiac dynamics.

1.9. Our approach:

Here, we developed a hybrid system that connects real-time 2D computational simulations

developed by Abubu.js with cardiac monolayers using a fully optical system. We controlled cardiac

dynamics with the use of matrix LEDs connected to a microcontroller exciting virally infected

Figure 6. Closed feedback loop system with fixed delay protocol. (A) demonstrates a simple fixed delay

system. Based on detected cardiac activity, the system stimulates the tissue after a fixed delay. (B) shows several

limitations of fixed delays. The system assumes the waves travel unidirectionally with constant velocities and

wavelengths. (C) shows the spatial limitation of the previous experiments. The static stimulation is not

necessarily representative of real waves with various shapes. (D) represents our approach in replacing fixed delay

with a 2D cardiac simulation.

B C A D

14

ChR2-expressing cells from mice by projecting user defined patterns at precise times on the

monolayer based on detected cardiac activities and simulation feedbacks. Although we used

inexpensive cameras with a slow frame rate, we showed that the system allowed real-time

intervention within 2 ms of the detected activity, enabling tailored and tunable modification of

cardiac dynamics both with 2D cardiac simulations and fixed delays. We showed that our system

works both with fixed delay and 2D simulations. This new system opens the possibility of

investigating anatomical re-entrant waves with a new perspective. It can replace the simple fixed

delay protocol with dynamic 2D simulations, providing more realistic control over both time and

tissue space.

15

Chapter 2. Method

2.1. Overview:

The hybrid model builds a bidirectional communication system between the cardiac monolayer

and the 2D cardiac simulations (where the simulation can be replaced by a constant for a fixed

delay protocol), as shown in figure 7. The Basler camera uses a motion detection technique to

record excitations in the tissue. The real-time simulation runs parallel to the tissue’s activity and

sends its feedback to the microcontroller (Arduino Uno). The Arduino activates the LEDs to

project light patterns on the ChR/2 infected tissue, which provides control over the tissue’s space.

NodeJS server communicates data by acting as a buffer connecting different pieces of the device.

The camera and the microcontroller are synchronized to allow real-time intervention within 2ms

of detected activity.

2.2. NodeJS and Socket communications:

NodeJS works as a buffer and connects the simulations with the camera, microcontroller and

matrix LEDs. NodeJS is a back-end JavaScript runtime environment that executes JavaScript code

outside a web browser: it enables us to run JavaScript programs on the local terminal (command

prompt for Windows). It works as a server and communication with the client (HTML simulation)

through io sockets. It provides a real-time communication system between the server file

(JavaScript) and the main.js file in the public folder (Client). NodeJS file also communicates with

the microcontroller and the camera. A Serial Port (version 9.0.7) library provides the link between

NodeJS and the Arduino. The TCP (transmission control protocol) socket builds the

communication system between the camera and NodeJS. The initialization and development of the

NodeJS server and its corresponding socket communication is explained in detail in Appendix A.

Figure 7. Overview of the

closed-feedback loop system.

The hybrid model builds a

bidirectional communication

system between a 2D simulation

and the cardiac monolayer.

WebGL

simulation
NodeJS

Microcontroller

(Arduino UNO) Matrix LED

Cardiac tissue Basler

Camera

TCP

communication

Motion

detection

Socket

communication

Optogenetics
Synchronization

Serial Port

16

2.3. WebGL simulation:

The cardiac cells’ action potentials are modulated by excitation waves travelling in the tissue.

Mathematical modeling can represent these excitation waves in 2D monolayers or 3D hearts

(figure 8). However, computing 2D

simulations with large arrays can be

computationally very expensive and until

recently required dedicated workstations

(e.g., supercomputers) to reach real-time.

Parallel processing is the solution to achieve

the activation speed of the cardiac tissue with

inexpensive computers. WebGL is a

JavaScript application programming

interface (API) that harnesses the power of

the graphics card for parallel processing

enabling computations that are not possible

with previous approaches in computational modelling (Kaboudian et al., 2019c). WebGL

implements shaders using the GLSL language. The shaders’ code can be made for one

computational cell, and GPUs can run the code parallel to other simulation cells (Gonzalez Vivo

& Lowe, 2015). Unfortunately, WebGL is designed for graphical usage and implementing its

feature for building cardiac simulations is complicated. AbubuJS facilitates the use of WebGL for

developing computational models and allows to produce 2D and 3D cardiac simulations with a

simpler approach (Kaboudian et al., 2019b).

Every WebGL program employs two types of shaders (Vertex shader and Fragment shader) to

develop a graphical pipeline for image visualization (Kaboudian, 2019/2021). The Vertex shader

imports an object from the 3D physical world into a graphical cube called Clip Space (figure 9)

and defines the position of every pixel on the screen according to the location of the object in the

clip space. Fragment shaders fill the pixel (the plane with z=1) with a specific color according to

their pixel position (location of the pixel) demonstrated in figure 9. A 4D rbga vector can represent

every pixel to make the pixel color: vec4(red, green, blue, transparency). The pixel color would be

displayed on a canvas defined in the HTML program.

Figure 8. Modeling cardiac electrophysiology from

single cells to tissue. AbubuJS library can be used to

develop mathematical models demonstrating electrical

activity in 2D and 3D tissue.

17

The WebGL program is embedded in an HTML document. The HTML file should include a

JavaScript code and at least two GLSL codes: the vertex and fragment shaders. The JavaScript

code generates Textures (arrays that have 4D vectors representing pixels) and sends these textures

to shaders for parallel processing. The shaders apply their algorithm for every pixel in the texture

(Gonzalez Vivo & Lowe, 2015), and the GPU then runs them in parallel. The program is capable

of running 2D simulations and 3D models of the heart. AbubuJS facilitates this process and

removes most of the complexities involved in coding with graphic aspects of WebGL (Kaboudian,

2019/2021). AbubuJS projects organize the code in a specific folder structure displayed in figure

10 (the folder structure under the client section). The index.html file calls the JavaScript file

(main.js) and the shaders (stored in the shaders folder). The main.js file builds the textures and

sends them to shaders. Every 4D cell in the texture can store four variables such as cell voltage,

channel conductivity, or time (note that in AbubuJS, vec4 variables are not treated as colors but as

simulation variables). If more than four variables are required for each cell, extra textures can be

defined. The compShader.frag (fragment shader) file includes the algorithm associated with a

single computational cell in the simulation algorithm. WebGL runs the GLSL shader code in

parallel for every cell in the texture. After parallel processing by shaders, main.js can display one

of the texture variables, usually voltage, with a chosen color map on a canvas for visualization.

Require.js program (implemented in config.js) manages all dependencies for each file.

NodeJS server was developed and connected to the simulation (main.js JavaScript file) through

the socket.io communication system, shown in figure 10. NodeJS, running on the local terminal,

sends a public folder to the web browser, including the files and libraries related to the Abubu

project. The server should be run by the Node program from the terminal. The WebGL code can

be accessed from the browser using a localhost. The web browser runs the WebGL program and

displays it on the screen. A bidirectional communication system (socket.io) enables real-time

server-client communication. A detailed explanation for developing this structure is provided in

Appendix B.

x

z

y

(x, y, z=1)

vec4(r, g, b, a)

Fragment

Shader

Physical world

Vertex Shader

Clip Space Screen

Figure 9. Graphical pipeline. WebGL uses the graphical pipeline to show images. It uses GLSL programs called

shaders. The Vertex shader is a program that transfers an object from the physical world to the Clip Space. Fragment

shaders fill every pixel on the Clip Space’s right side with colors according to the object in the Clip Space.

(x=0, y=0,

z=0)

18

2.4. Cardiac simulations:

AbubuJS library was used to implement two cardiac simulations: the cellular automata and the

Fenton-Karma model. Cellular automata (CA) are discrete models that can simulate electrical

wave propagation in 2D and 3D space. Cellular automata approximate electrical wave propagation

in cardiac tissue by only simulating tissue-level properties, such as excitability and refractoriness

(Zhu et al., 2004). The state of each cell in a cardiac cellular automata model changes only

according to the activation state of each neighboring cell and its own refractory status. As a result

of these simplifications, cellular automata run simulations much faster compared to the differential

equation-based models. In the current CA model, every cell has a radius of excitability (Bub et al.,

2002). If the ratio of active cells over total cells passes the threshold value in this radius, the cell

will become active in the next iteration (figure 11-A). The threshold value is set, so that wave

propagation in the model approximates wave propagation in the cardiac tissue being modelled:

low threshold values result in high conduction velocities and waves that are insensitive to

heterogeneities, and high thresholds result in low conduction velocities and waves that are

modulated by heterogeneities (Bub et al., 2002). After each activation, the cardiac cell goes into a

refractory phase, which lasts for a few iterations. The refractory period is one of the reasons that

cardiac waves propagate in a well-defined direction. The above rules are mathematically modeled

as follows: Each cell voltage was scaled to be in the interval of 0 and 1 (figure 11-C). The cells

are initialized with zero voltage (V=0). Any cell with a voltage below 0.05 is still in the excitable

Public

Client

NodeJS

(Server)

Socket.io

Figure 10. An overview of server-client system. NodeJS runs on

the local terminal, asks the browser to open the Public folder and

initially run the index.html file. The HTML file requests the main.js

JavaScript file, which builds the Textures and sends them to the

shaders.

Textures

Parallel processing

Manage

dependencies

Program entry

19

state. Any cell that goes to a voltage above 0.05 is in the refractory state and cannot be activated

for the next iterations. An action potential is represented by an increased cell voltage to 0.98, and

this transition can only happen if the cell is in the excitable state. The cell voltage decreases by

0.051 in each iteration for recovery. Appendix B.3. provides the GLSL shader code for the cellular

automata algorithm.

The Fenton-Karma (FK) model is a continuous system governed by three differential equations

(F. Fenton & Karma, 1998). The diffusion term expresses the spread of excitation waves. The FK

model is capable of demonstrating more complex 2D dynamics such as excitation waves with

various wavelengths and conduction velocities (figure 12). The FK algorithm is demonstrated in

equation 1 (Tolkacheva et al., 2002):

A

Figure 11. Cellular automata

model. (A) illustrates that in every

iteration, each cell looks in a

neighborhood of radius R and

counts the number of active cells. If

the number of active/inactive

cells surpasses the threshold, the

cell becomes active in the next

iteration. (B) shows two iterations

where a region of active cells

excites its surrounding (red). (C)

illustrates the active and refractory

states according to the algorithm.

After the cell passes the threshold,

its voltage jumps to 0.98 and

gradually declines in each iteration.

R

0

0.05

1

Vm

Iteration

s

ac
ti

v
at

io
n

Refractory state

B

C

Excitable state

20

2.5. Cardiac monolayer:

Postnatal mice hearts were isolated and dissociated on days P0-P3. The combination of enzymatic

degradation and mechanical dissociation was used to prepare a cell suspension. The enzymatic

solution degrades the extracellular matrix in the cardiac tissue while maintaining cell structural

integrity. The protocol for tissue culture coating and media preparation is described in Appendices

F.1. and F.2. To avoid contamination of cardiac fibroblasts, ventricular cells were pre-plated in

plastic dishes for one hour. Monolayers of 1 cm2 diameter were used for the recordings. The

procedure for plating cell densities is detailed in Appendix F.1. The tissue cultures were kept at 37
oC and 5% CO2 humidity, and recordings were carried out in an environmental chamber with the

same CO2 and humidity levels. The guidelines for the animal handling were performed in

agreement with the Canadian Council on Animal Care, and the procedure for euthanizing neonates

was in agreement with McGill University SOP 301-01 under approval protocol 2018-8044.

Following the formation of the cardiac monolayer, 48 hours after plating for ventricular cells, the

tissue culture is infected with adenovirus vector type 5 (dE1/D3) to express channelrhodopsin-2

mutant H134R (CHr2(H134R)) (Appendix F.2.). The multiplicity of infection (MOI) that was used

is 100. After viral infection, the culture media was replaced every 48 hours.

𝑑𝑣

𝑑𝑡
= −൫𝐽𝑓𝑎𝑠𝑡 + 𝐽𝑠𝑙𝑜𝑤 + 𝐽𝑢𝑛𝑔 + 𝐽𝑠𝑡𝑖𝑚൯ + 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑡𝑒𝑟𝑚 𝑣 =

 𝑑𝑣

𝑑𝑡
× 𝑑𝑡

𝑑𝑓

𝑑𝑡
=

ሾ𝑓∞ሺ𝑣ሻ − 𝑓ሿ

𝜏𝑓ሺ𝑣ሻ
 ⇒ 𝐽𝑓𝑎𝑠𝑡 = −

𝑓𝑄ሺ𝑣ሻ

𝜏𝑓𝑎𝑠𝑡

 𝑓 =
 𝑑𝑓

𝑑𝑡
× 𝑑𝑡 ሺ1ሻ

𝑑𝑠

𝑑𝑡
=

ሾ𝑠∞ሺ𝑣ሻ − 𝑠ሿ

𝜏𝑠ሺ𝑣ሻ
 ⇒ 𝐽𝑠𝑙𝑜𝑤 = −

𝑠𝑆ሺ𝑣ሻ

𝜏𝑠𝑙𝑜𝑤

 𝑠 =
 𝑑𝑠

𝑑𝑡
× 𝑑𝑡

 𝐽𝑢𝑛𝑔 = 𝑃ሺ𝑣ሻ/𝜏𝑢𝑛𝑔

Figure 12. Comparing cellular automata model with Fenton-

Karma model. Cellular Automata’s (A) simplicity allows it to

run the simulation with a fast speed, but it fails to demonstrate

various properties of the tissue, such as ion conductivity and

variable refractory periods. It can only generate waves with

similar speeds and wavelengths. Although it is computationally

heavier, the Fenton-Karma model (B) can generate more

realistic waves with various velocities.

A B

21

2.6. Basler Camera:

A Basler Ace camera (model: acA1920-155um) was used for the recordings. To develop the

necessary software, Pylon 6.0.1 Camera Software Suite (Windows 10 version) was used. The

settings for the camera by Pylon Viewer 64-bit is shown below:

• Analog control ➔ Gain Auto: Continuous

• Acquisition Control ➔ Exposure Time [us]: 30000.0

• Acquisition Control ➔ Enable Acquisition Frame Rate: Check

• Acquisition Control ➔ Acquisition Frame Rate [Hz]: 30.0

• Digital I/O Control ➔ Line Selector: Line 3

• Digital I/O Control ➔ Line Mode: Output

• Digital I/O Control ➔ Line Source: Exposure Active

The camera was set for 30 FPS. Every frame took 33.33 ms. According to the developed software,

the camera stores 500 frames per experiment. In order to make the device as accessible as possible,

motion detection was used instead of voltage detection techniques. Motion detection has the

advantage of running an experiment for a longer duration with inexpensive tools. A specific

algorithm was developed to detect motion in the tissue. A C++ program that linked to the Pylon

software development kit (SDK, version 6.0.1) was written using Microsoft Visual Studio (version

community 2019). The unprocessed image frame from the camera would not give us any

information about the excitation wave (figure 14), so for every six consecutive frames, the current

frame was subtracted from its previous sixth frame, and its absolute value was taken for each pixel

value. The resulted image showed motions in the tissue (figure 14). Whenever there were

contractions in the tissue, it was shown as the white signal in the image. If the frames were

displayed consecutively, the spread of the excitation waves throughout the tissue could be seen

(figure 14).

Enzymatic

degradatio

n

Figure 13. Schematic illustration of neonatal mice ventricular monolayer preparation. After enzymatic

degradation and monolayer preparation, the cells are infected with adenovirus vector type 5 (dE1/D3), which

causes them to express channelrhodopsin-2 (blue solution) which modulates the cells’ membrane potential in the

presence of 470 nm light. On the top right, brightfield and fluorescence images of neonatal mouse cardiac cultures

tagged with YFP are shown.

ChR/2

22

To detect excitation, recording a single area in the tissue created large errors. It might detect waves

at different locations for one frame because the device only looks at the tissue every 33.33 ms

(figure 15). In order to reduce the error within 2 ms of detected activity with a low frame rate

(frame period = 33.33ms), the following algorithm was developed. The program looked at two

boxes in the tissue and took the pixel average of all pixels in those two boxes for every frame. If

an increase in the pixel average was detected, the average of every pixel row was taken, and the

program measures the row where the average passes a user defined threshold (figure 15). This

threshold determines where the wave peak occurs. The procedure for determining it is described

in detail in Appendix C.3. The detected row number is the pixel location (y1) where the wave was

detected. The same procedure was applied for the second box (y2). The number of frames between

detection in the first and the second box was stored for every wave (∆𝑓). Using the distance (in

pixels) between the two locations that the wave was detected and the difference in time (number

of frames), the wave velocity (𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦ሺ𝐶𝑉ሻ =
𝑦2−𝑦1

𝛥𝑓
) was calculated. Using this

conduction velocity, the number of milliseconds it takes for the wave to travel to the end of the

field of view was calculated as shown in figure 15 (∆𝑡𝑐𝑎𝑚 =
𝛥𝑦′

𝐶𝑉
× 33.33 𝑚𝑠). Thus, instead of

detecting the excitation waves at a specific location, it is estimated when the wave arrives at that

location. The pseudocode for this algorithm is detailed in Appendix C.

1 2 3 4 5 6

abs

33.33 ms Figure 14. The camera’s

algorithm for detecting cardiac

waves. The algorithm takes the

absolute value of the difference of

the intensity captured at each pixel

and the same pixel six frames in the

past and displays the result. The

resulting image represents motion in

the tissue (cells that are contracting).

Displaying the filtered images

continuously demonstrate excitation

waves traveling in the monolayer

(e.g., spiral waves).

23

2.7. Microcontroller and Matrix LED:

Microcontrollers include a single CPU, clock, input, and output that can be used to connect LEDs

with the computational models (Welsh et al., 2019). They are fast computers that are increasingly

integrated into physical systems, such as toys and automobiles. Microcontrollers are single circuits

that can digitally control external processes, and, due to their fast speed, can also be used for

scientific computations (Welsh et al., 2019). The Arduino UNO was used and programmed with a

language whose syntax is similar to C (Arduino IDE 1.8.49.0). The code was uploaded to the

microcontroller from a computer through a USB cord using an Integrated Development

Environment (IDE) to control the LEDs. The code had to be uploaded before the simulation runs.

The Arduino IDE program is provided in Appendix D.

Matrix LEDs can be used to project light with specific wavelengths accurately on the region of

interest. Blue LEDs can activate cardiac cells, which are genetically modified to express

channelrhodopsin-2 (ChR2). The 8X8 Adafruit DotStar matrix LED was used for this project. The

ground port (GND) on the microcontroller had to be soldered to the ground port on the matrix

LED. The matrix LED required 5V voltage, which was soldered to the 5V port on the

microcontroller. A program for the Serial Port was developed in the NodeJS code that converts the

socket.io data into a buffer and sends it to the Arduino through a USB cable. To build the

∆𝑦′ ሺ𝑝𝑖𝑥𝑒𝑙𝑠ሻ

A
re

a
av

er
ag

e

∆𝑦 ሺ𝑝𝑖𝑥𝑒𝑙𝑠ሻ

 ∆𝑓 ሺ𝑓𝑟𝑎𝑚𝑒𝑠ሻ
𝐶𝑉 =

∆𝑦

∆𝑓

Th
re

sh
o

ld
1

 <
 A

re
a

av
e

ra
ge

We want to detect when the wave arrives here. Due to the slow frame

rate, we only look at discrete points in time. If we only look at this

region, we might miss the wave or detect it with different locations.

∆𝑡 ሺ𝑚𝑠ሻ =
∆𝑦′

𝐶𝑉
× 33.33

Figure 15. The algorithm for detecting the excitation waves from the filtered images. The algorithm

compares the average of all pixel intensities in the two red boxes. If the area average is greater than the threshold

(existence of a wave), the program looks at the row averages to detect the peak intensities (the wave location).

Using the distance between the detected wave location in the boxes and the time difference, the program

calculates the wave conduction velocity. Finally, the algorithm uses this data to estimate when the wave arrives

at the top red box. This estimated time will be sent through the feedback loop system.

Row average

Row average > Threshold2

Excitation wave 𝑦1

𝑦2

24

communication between Arduino and matrix LEDs, the clock port (CLK) on the matrix LED had

to be connected to the digital port pin 13, and the data port (DIN) had to be connected to pin 11.

The complete circuity is shown in figure 16. Consistent with our experiment’s requirements, the

main.js JavaScript program can detect excitation at any location in the 2D simulation and activate

any user-defined pattern of LEDs (figure 16). This feature provides spatial and temporal control

of cardiac tissue.

In order to create a base for holding the matrix LEDs, a Prusa MK2s 3D printer was used. A 3D

object was developed using Google SketchUp to hold the LEDs. The 3D object was calibrated in

PrusaSlicer-2.1.1 and printed using the Prusa printer.

2.8. Accuracy test 1-Photodiode recordings:

To measure the system’s accruacy, a photodiode (Thorlabs SM05PD1A) connected with a

preamplifier (Thorlabs AMP 110) was used. A digital oscilloscope (Picoscope) run through the

PicoLog 6 application was employed to record the photodiode. The photodiode is capable of

recording light intensity with millisecond precision. It was used to record the flashes of the matrix

LEDs. The photodiode specifically detected the light intensity of the LEDs lights demonstrated in

figure 17. The figure reflects the light intensity detected by the photodiode. When the LEDs turn

on, there is a jump from 0 to -2500 in the photodiode recordings (figure 17). The cycle periods

(the time slot between two peaks) were calculated and graphed on a histogram (figure 17). For

example, the mentioned histogram shows that the cycle periods are equal to 1101 ms. A Python

code is provided in Appendix E.2. that can read the photodiode’s data and build the histogram.

DIN CLK

GND 5V

Figure 16. Demonstration of circuitry between Arduino and matrix LED. The LEDs are attached to a

3D printed object. The HTML application and Arduino can only communicate through the server with the

use of a USB cable.

Node.js server

USB

25

We developed three different designs to test the amount of error among different connections in

the system. In the first design, demonstrated in figure 18-A, an algorithm was developed for the

Arduino that periodically (with a cycle period of 1100 ms) turns on the LEDs. The results

(Histogram’s standard deviation = 0.48 ms) showed that the Arduino-LED connection has low

latency and is sufficiently accurate for our experiment. In the second design, figure 18-B, the

serialport communication system was added to the previous design. This time, a program was

written in JavaScript and run using NodeJS to send a message every 1100 ms to the Arduino

microcontroller to periodically activate the LEDs. The result suggested that there was a variable

delay in this connection. Finally, we programmed the HTML file to send a periodic signal to our

NodeJS program, which relays it to the Arduino microcontroller to activate the LEDs (figure 18-

C). Adding the HTML program, which would include the WebGL simulations, further increased

the error. This result suggested that there were unavoidable variable delays in socket.io and the

serialport communication system. Thus, the camera and the Arduino had to be synchronized to

bypass these delays in the system. The information for reproducing these three experiments is

provided in Appendices A, B, and D.

1101 1101 1101

Photodiode Matrix LEDs

Figure 17. Photodiode records the light intensity of the matrix LEDs, which is used for determining cycle

periods. The downward spikes in the photodiode signal (bottom left graph) indicate that the LEDs are turned on at

that moment. The cycle periods of the LED flashes (1101 ms each) are shown in red. On the right, there is a histogram

of these cycle periods. This histogram shows that all cycle periods are equal.

26

2.9. Camera-Arduino synchronization:

To connect the camera with the Arduino, Basler Power-I/O 6p/open 10 m Cable was used. The

cable is composed of 6 wires: 1. Brown, 2. Pink, 3. Green, 4. Yellow, 5. Grey, 6. White. The brown

wire was connected to the Arduino’s Analog 3 (A3) pin, and the white wire was connected to the

ground (GND) pin.

2.10. Synchronization mechanism:

The Basler camera generates a TTL signal every time a frame is captured. The cable enabled the

camera to send this signal to the Arduino, allowing the Arduino to use this signal as a clock for

synchronization. The software controlling the Basler camera calculated the time (in milliseconds)

that it took for the wave to arrive in the determined location in the camera’s field of view (∆𝑡𝑐𝑎𝑚).

∆𝑡𝑐𝑎𝑚 is added to the number of frames (𝐹) multiplied by frame periods (33.33 ms) to give 𝑡,

which is the time it took for the wave to arrive at the determined location since the beginning of

the program (𝑡 = ∆𝑡𝑐𝑎𝑚 + 𝐹 × 33.33𝑚𝑠) in milliseconds. This value was sent to the WebGL

simulation. Once the simulation receives the signal, it simulates a wave travelling from one side

of the simulated domain to the other, keeping track of the number of iterations needed. The number

of iterations is multiplied by 𝑑𝑡, which is a scaling factor determined by experimental conditions

(∆𝑡𝑠𝑖𝑚 = 𝐹𝑠𝑖𝑚 × 𝑑𝑡, where 𝑑𝑡 is the conversion factor that scales an iteration in the simulation to

Mean cycle periods

(ms)
STD

(ms)
1101.61 0.4876

Arduino LEDs Arduino LEDs NodeJ

S

Mean cycle periods

(ms)
STD

(ms)
1105.66 5.6163

Mean cycle periods

(ms)
STD

(ms)
1110.65 7.2015

Arduino LEDs NodeJ

S

HTM

L

Figure 18. The result of the accuracy tests with photodiode recording. (A) most cycle periods stay within the range of 1

ms from the average (the standard deviation (STD) is less than 1 ms). This result shows that there is low or constant latency

in the Arduino-LED connection. (B) indicates that there are a range of significant delays in the serialport communication

between NodeJS and the Arduino (as there is a significant rise in STD). (C) indicates that adding socket.io communication

between the simulation and NodeJS further increases the error. These results show that we need to bypass internal connections.

A B C

http://socket.io/

27

real-time in milliseconds). 𝑑𝑡 is set to scale conduction velocity in the simulation with wave speed

in real tissue. It depends on the simulation length (SimLen), tissue’s approximate conduction

velocity (CV), and approximate number of iterations for the wave to travel the SimLen (# itr):

𝑑𝑡 = 𝑆𝑖𝑚𝐿𝑒𝑛 ሺ𝐶𝑉 × # 𝑖𝑡𝑟 ሻ⁄). Then, the calculated time for the simulation was added to the signal

(𝑡 = 𝑡 + ∆𝑡𝑠𝑖𝑚), and this value is sent to the Arduino through the serialport. The microcontroller

divides this value (t) by the frame period and determines how many camera frames this

corresponds to, plus the amount of remainder in ms (𝑡/33.33𝑚𝑠 = 𝐹𝑡𝑜𝑡𝑎𝑙 + 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟). The

Arduino then pauses until the right number of TTL pulses from the camera is detected (𝐹𝑡𝑜𝑡𝑎𝑙),

then pauses for an additional time equal to the remainder at which point it activated the LEDs.

During this process, every time the camera caught a frame, it updated Arduino’s frame number

(𝐹𝐴𝑟𝑑𝑢𝑖𝑛𝑜 = 𝐹𝐴𝑟𝑑𝑢𝑖𝑛𝑜 + 1).

For example, assume the camera detected an excitation wave at the (𝐹𝑐𝑎𝑚 = 2) and predicted that

it would arrive at the determined location in 3 frames (𝐹𝑐𝑎𝑚 = 2 + 3 = 5). Thus, the corresponding

time in milliseconds was 𝑡 = 5 × 33.33 = 167 𝑚𝑠. If the simulation wave took 420 frames to

travel (𝐹𝑠𝑖𝑚 = 420) and we assume that 𝑑𝑡 is 0.5 ms, then ∆𝑡𝑠𝑖𝑚 would be 210 ms. The

microcontroller would receive a message that 𝑡 = 167 + 210 = 377 𝑚𝑠. The microcontroller

software then calculates the number of frames plus a remainder: (
377

33.33
= 11 𝑓𝑟𝑎𝑚𝑒𝑠 +

10 𝑚𝑠

33.33
).

Cardiac

Monolayer
Basler Camera

1. 𝑡 = ∆𝑡𝑐𝑎𝑚 + 𝐹𝑐𝑎𝑚 × 33.33

2. ∆𝑡𝑠𝑖𝑚 = 𝐹𝑠𝑖𝑚 × 𝑑𝑡

𝐹𝑠𝑖𝑚

𝐹𝑐𝑎𝑚 = 0, 1, 2, 3, 4, 5, …

𝑡

WebGL

simulation
NodeJS

𝑡 𝐹𝑟𝑎𝑚𝑒 𝐶𝑎𝑝𝑡𝑢𝑟𝑒𝑑:

𝐹𝑐𝑎𝑚 = 𝐹𝑐𝑎𝑚 + 1

 𝐹𝐴𝑟𝑑𝑢𝑖𝑛𝑜 = 𝐹𝐴𝑟𝑑𝑢𝑖𝑛𝑜 + 1

3. 𝑡 = 𝑡 + ∆𝑡𝑠𝑖𝑚

Arduino Matrix LED

𝑡

4.
𝑡

33.33
= 𝐹𝑡𝑜𝑡𝑎𝑙 +

𝑟𝑒𝑚𝑖𝑛𝑎𝑑𝑒𝑟 ሺ𝑚𝑠ሻ

33.33

𝐹𝐴𝑟𝑑𝑢𝑖𝑛𝑜 = 0, 1, 2, 3, 4, 5, …

5. 𝑖𝑓 𝐹𝑡𝑜𝑡𝑎𝑙 = 𝐹𝐴𝑟𝑑𝑢𝑖𝑛𝑜 𝑡ℎ𝑒𝑛 𝑑𝑒𝑙𝑎𝑦ሺ𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟ሻ

6. 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒 𝐿𝐸𝐷𝑠

Figure 19. An overview of the

camera-Arduino synchronization

system. Instead of sending a signal to

the microcontroller that must react

immediately, the system sends

information that allows the

microcontroller to calculate when it

should respond. This technique

bypasses the variable delays in the

socket connections.

28

Therefore, the microcontroller would wait until the 11th frame, then it would delay another 10 more

milliseconds to stimulate the LEDs. While the microcontroller still must receive a time value from

NodeJS using socket.io, which introduces variable delays, any small delays in receiving the

message can be ignored as long as these delays are less than the calculated value of t. Using this

technique, instead of sending a signal to the microcontroller that has to react immediately, the

system sends information that allows the microcontroller to calculate when it should turn on the

LEDs. This technique bypasses the variable delays in the socket connections and increases the

accuracy.

2.11. The accuracy test for the hybrid system:

 To test the device’s accuracy, a DMD projector (Vialux XGA1303), controlled by a computer

installed with Jython (Java+Python) software, was used to make artificial wave mimicking real

tissue excitation waves. The projector applied patterns of waves to the microscope stage (figure

20-A), with periods of 1100 ms. The camera recorded these patterns (as shown in figure 20-B) and

sent them to the WebGL program that implemented a simple fixed delay protocol – returning a

fixed time instead of running simulations. After the delay, LEDs were activated using the scheme

described above (Section 2.10). Note the LEDs did not affect the artificial wave generated by the

projector. Since the projectors’ periods were constant and the system only added a constant delay,

theoretically, the cycle periods detected by the photodiode should be constant. This test gave a

measurement of the system’s response accuracy.

The cycle period is

theoretically constant and

equal to 1100 ms

NodeJS

Arduino

Fixed Delay

Syste

m

DMD projector

Basler camera

This is where the real tissue is

placed. Projector is coded to

creates artificial waves with light

that mimics real cardiac waves.

LEDs

Photodiode

Figure 20. This accuracy test was designed to measure system’s cycle periods. The DMD projector produces patterns of

light mimicking cardiac waves. (A) shows that the light is projected on the plate, where the camera records it and imports it

into the closed-loop system. (B) illustrates the system with more details. A frame is shown in the figure showing the artificial

waves are traveling from the left to the right side.

A B

29

2.12. Microscopy and the optics:

The set-up utilized Olympus MVX10 and Nikon Eclipse Ti-U (Burton et al., 2015) demonstrated

in figure 21. This figure shows how the different parts of the system are physically connected.

2.13. Data analysis and statistics:

For data analysis, GView64 software developed by Dr. Gil Bub was used for analyzing motion

detection in the cardiac monolayer (Burton et al., 2015).

Basler Camera

WebGL

Simulation

Tissue

Monolayer

LEDs Arduino

Uno

DMD projector

Photodiode

USB

USB 3

Figure 21. Microscopy set-

up. The system is made up of

Olympus MVX10 and Nikon

Eclipse Ti-U. The LED light

comes from the bottom and

excites the tissue. The

camera record from the top.

The projector creates

artificial waves and applies

these pattern on the stage for

accuracy tests. The closed

feedback loop (red

connection) allows us to

interfere with the tissue.

Nikon Eclipse Ti-U

O
ly

m
p

u
s

M
V

X
1
0

30

Chapter 3: Results
Here, we show for the first time a closed-feedback loop system that connects the cardiac monolayer

with 2D simulations, which replaces the use of a fixed delay. We illustrate some of the potential

applications of this hybrid cardiac model in a fully optical system that can control cardiac

monolayers.

3.1. Accuracy test (The impact of synchronization):

 Millisecond accuracy is crucial for developing a real-time hybrid system. Cardiac waves travel

with an approximate velocity of 10 micrometers per milliseconds in a monolayer (Dou et al., 2020).

A few milliseconds shift in the timing of the tissue’s stimulation can drastically change the tissue’s

dynamics (explained in section 1.8.). Therefore, millisecond accuracy is necessary to avoid

artifacts in our hybrid model. Our approach to detect waves at two different locations in the

camera’s field of view is designed to differentiate the location of excitation waves within

milliseconds. The result of the first accuracy test (Figure 18) showed that the error in the socket

loops is more than a millisecond. Figure 22 demonstrates the result of the accuracy test for both

the non-

synchronized

and

synchronized

systems. Both

histograms

show the range

of system’s

cycle periods

generated by the

projector (with

periods of 1100

ms).

Synchronization

reduced the

standard

deviation from

11 down to less

than two milliseconds. The result suggests that the synchronization approach was successful, and

the hybrid system reached the expected accuracy for the experiment with cardiac monolayers.

3.2. Source of error: Signal noise

There are two potential sources of error for the temporal accuracy: resolution error and signal

noise. The hybrid system used the camera’s resolution to get temporal accuracy. The optics for the

camera’s imaging system is 𝑋1, and we know that every pixel occupies 5.86 microns for the

camera used in these experiments. The error associated with detecting wave location (𝛿𝑦1, 𝛿𝑦2) is

Without Synchronization (30 FPS) With Synchronization (30 FPS)

Mean cycle periods

(ms)
STD (ms)

1099.84 11.3356

Mean cycle periods

(ms)
STD (ms)

1099.81 1.5327

Figure 22. The effect of synchronization on the hybrid system’s accuracy. By adding the

connection between the camera and the microcontroller, the hybrid system bypasses the delays

in the socket loops and changes data’s standard deviation from 11 ms down to 1.5 ms. This

result suggests that synchronization was a successful approach for increasing the system's

accuracy.

31

therefore 5.86 microns. Using the rules of the propagation of uncertainty (Rouaud, 2013) and the

formulas indicated in section 2.6., the error associated with the time sent through the system is

calculated. This error (0.57 ms) stays within the accuracy bounds determined for this experiment.

The assumptions and calculations are as follows:

Although the hybrid system performs with high accuracy, a few exceptions show that it could be

inaccurate. We hypothesized that the source of the error is the signal noise. As explained in section

2.6., to detect wave location, row averages were calculated. Figure 23 demonstrates three

consecutive arrays of row averages with different colors. Every wave has two peaks because there

are two types of motion in the tissue: the cell contraction following by cell relaxation. Placing the

threshold of peak detection (Fig 23: dotted line) at different values can result in different distance

measurements. Noise in the detected signal (Fig 23: red circle) can lead to large differences in the

measured wave location. Since the difference between the two signal peaks is supposed to be 33.33

ms, the little protuberance in the signal, shown in figure 23, can create a significant difference in

detecting the wave velocity and ultimately the time value sent to the microcontroller (it can be

several milliseconds). We suggest multiplying the row averages with a Gaussian filter in order to

avoid this error in future experimentations.

𝑦1~350 𝑝𝑖𝑥𝑒𝑙𝑠 × 5.86 = 2051 𝑚𝑖𝑐𝑟𝑜𝑛𝑠,

𝑦2~700 𝑝𝑖𝑥𝑒𝑙𝑠 × 5.86 = 4102 𝑚𝑖𝑐𝑟𝑜𝑛𝑠 => ∆𝑦~2051 𝑚𝑖𝑐𝑟𝑜𝑛𝑠, ∆𝑦′~2930 𝑚𝑖𝑐𝑟𝑜𝑛𝑠

∆𝑓~6 𝑓𝑟𝑎𝑚𝑒𝑠

𝑇ℎ𝑒 𝑒𝑟𝑟𝑜𝑟 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑠 𝑤𝑖𝑡ℎ ∆𝑦: 𝛿ሺ∆𝑦ሻ = √𝛿𝑦1
2 + 𝛿𝑦2

2 = √5.862 + 5.862 = 8.28 𝑚𝑖𝑐𝑟𝑜𝑛𝑠

𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑒𝑟𝑟𝑜𝑟: 𝐶𝑉 =
∆𝑦

∆𝑓
× 𝛿𝐶𝑉 => |𝐶𝑉| × √(

𝛿ሺ∆𝑦ሻ
|∆𝑦|⁄)

2

= 1.38
𝑚𝑖𝑐𝑟𝑜𝑛𝑠

𝑓𝑟𝑎𝑚𝑒𝑠

∆𝑡′𝑠 𝑒𝑟𝑟𝑜𝑟: ∆𝑡 =
∆𝑦′

𝐶𝑉
× 33.33 => 𝛿ሺ∆𝑡ሻ = |∆𝑡| × √(

𝛿𝐶𝑉

|𝐶𝑉|
)

2

+ (
𝛿ሺ∆𝑦′ሻ

|∆𝑦′|
)

2

= 0.57 𝑚𝑠

32

3.3. Closed-loop experiment with 2D cellular automata simulation:

Closed-loop systems mostly use fixed delay (Scardigli et al., 2018) or simple mathematical models

(Iravanian & Christini, 2007). We have developed a closed-feedback loop system using a 2D

simulation for the first time. We have connected a tissue monolayer with a cellular automata

simulation, and we have shown that we are able to modulate the tissue’s dynamics in response to

the activity of the model. Figure 24 shows the result of two experiments. Comparing the control

experiment (figure 24-A) with closed feedback loop (figure 24-B) demonstrates that the hybrid

system is affecting tissue’s dynamics. The figure (Fig 24-C) shows the evolution of cycle length

over the experiment. The result suggests cycle periods are alternating between two different values

in response to the model’s activity. Figure 24 D-F represents the same experiment with a fixed

delay protocol: the fixed delay protocol results in a larger variation in wave dynamics. This proof-

of-concept experiment demonstrates the capability of the hybrid system and confirms that it can

be used for studying cardiac dynamics both with fixed delay protocol and 2D simulations.

Increasing the threshold

(dotted line) can shift the

detection point for several

milliseconds.

33.33 ms

Figure 23. The source of

inaccuracy: signal noise. The

graph demonstrates three

consecutive frames with

different colors. The wave

(including two peaks) is

traveling in the vertical rows.

Since the wave takes 33.33 ms to

travel from one peak location to

the next, the protuberance

shown in the red circle can

create significant error (several

milliseconds) in detecting the

wave.

Numbers of the vertical row pixels

Th
e

am
o

u
n

t
o

f
ro

w
 a

ve
ra

ge

33

3.4. Closed-loop experiment with 2D Fenton-Karma simulation:

The Fenton-Karma model (a differential equation-based model) was replaced by cellular automata

to demonstrate the capability of the hybrid system with various models. Due to the slow speed of

the FK model, the hybrid system could not respond to every wave generated by the tissue because

the natural pacemaker in the tissue had fired at a high frequency (calculating wave propagation in

the model took approximately 3000 milliseconds, whereas the pacemaker fired about every 1400

100 ms

A D

B E

C F

Figure 24. The hybrid system with cellular automata model and fixed delay. (A) and (D) were the control samples

(the system is off). The pacemaker is represented with the red arrows. (B) shows that the hybrid system communicates

with the cellular automata model and interferes with the tissue. The LED lights can be seen in the image. The row averages

were calculated from the white rectangles. (C) illustrates the evolution of cycle length of the re-entrant loop. It suggests

the existence of alternans for cycle lengths. (E) presents the hybrid system with a fixed delay model (100 ms delay). The

cycle periods associated with this experiment are shown in panel (F).

34

milliseconds). However, at some point in the experiment, the hybrid model reset the pacemaker’s

phase (figure 25-B). In addition, the tissue’s activity modulated the model’s behavior. High-

frequency activity from the pacemaker resulted in wave-breaks, generating a spiral wave in the

simulation in the middle of the experiment. This behavior was not seen in any experiment before.

Experimental systems that use a fixed delay or a simple model without a spatial component could

not generate 2D dynamics such as spiral waves.

While the slow speed of the FK model prevents us from simulating a re-entrant circuit with a short

path length, there are re-entrant arrhythmias that have longer conduction paths. For example, Wolf

Parkinson’s White (WPW) syndrome is caused by a conductive bridge between the ventricles and

the atria. In WPW, the excitation wave in the ventricle circles back to the atria and interfere with

the sinus pacemaker (figure 25-D). WPW syndrome, therefore, can be represented in a simplified

system consisting of a large closed-loop circuit and a pacemaker, which is similar to the condition

we have generated in our experiment in Figure 25. This experiment suggests that the hybrid system

potentially can be used to investigate cardiac disease conditions as well.

FK

model

A C

B

Reset
48 fr 46 fr 48 fr

42 fr 44 fr 43 fr

D

Figure 25. The hybrid system with the Fenton-Karma model. (A) shows the hybrid system implementing the FK

model. Due to the slow computation speed of the FK model, LEDs could not fully overdrive the pacemaker, but they

could occasionally reset its phase. (B) illustrates the number of frame differences between the peaks in signal

intensity of the region of interest. (C) illustrates that this model includes a pacemaker with a long re-entrant loop.

(D) shows a cartoon of WPW syndrome and suggests that our system can be an experimental model for WPW

syndrome.

ROI

35

Chapter 4: Discussion
We have developed a hybrid cardiac system that can connect cardiac monolayers with 2D

simulations. We suggested that fixed delay can be replaced with 2D simulations for developing a

closer model to a real re-entrant loop. Using Abubu.js (Kaboudian et al., 2019b), we implemented

2D models capable of running faster than in real-time: the model could predict the location of

waves in tissue before the waves propagated to those locations. We have shown that our hybrid

system can modulate the activity of a cardiac monolayer and is capable of re-generating re-entrant

loops. The proof of principle experiment also suggests that the hybrid system can be used to model

cardiac disease conditions such as Wolf Parkinson’s White syndrome. One of the key advantages

of our hybrid cardiac system is to reach a millisecond accuracy with inexpensive components,

which contrasts with other systems that use specialized high-speed cameras and programmable

digital acquisition boards (Scardigli et al., 2018). Also, our system is the first one that uses spatially

extended models in place of a fixed delay (Biasci et al., 2020; Scardigli et al., 2018) or simple

difference equation (Christini & Collins, 1996; Iravanian & Christini, 2007). Future directions

might implement 3D models, developed using Abubu.js (Kaboudian et al., 2019b), to interact with

real hearts.

4.1. Summary of hybrid cardiac model’s limitations:

While our system introduces several advances to the field of real-time control of cardiac tissue,

there are some important limitations. The system relies on motion detection to measure wave

location. Although the motion detection method provides some advantages, such as running the

experiment for a longer duration, our device fails to implement other recording methods such as

voltage detection, which would result in higher accuracy for measuring wave location (Christoph

et al., 2018). For example, while the cardiac contraction is driven by voltage changes, contraction

in one location can cause motion in connected tissue that isn’t excited, resulting in error. In

addition, the dye-free system preferentially captures data from high contrast regions, which may

not be representative of the activity in the monolayer.

A low camera’s frame rate does not enable the system to precisely detect events between two

cameras' shuts, limiting the hybrid model’s capability to locate concordant waves. The device

assumes all the waves are concordant. Concordant waves travel with a constant velocity

throughout the tissue (Anderson et al., 1974). However, real tissue can generate discordant waves:

waves that travel with variable velocity in different monolayer regions (Anderson et al., 1974).

Since our system assumes that waves propagate at constant velocity when calculating the time to

trigger the LEDs, our system will fail in experiments where discordant alternans are present.

Noise can highly affect the accuracy of the camera’s detection system. Tissue samples generating

a large amount of noise do not allow the motion detection algorithm to accurately detect waves;

hence, reducing the accuracy of the hybrid model. Convoluting a gaussian filter with the camera's

image data might solve this issue in future experimentations.

36

Finally, while we believe that replacing fixed delays with simulations will ultimately result in a

better representation of a re-entrant circuit, we have not yet shown the 2D simulations necessary

are a better model for replacing the fixed delay protocol.

4.2. Evaluating the hybrid system’s performance against the previous models:

Compared to the previous systems, our approach has some significant advantages. Other teams

developed hybrid systems using expensive high-speed cameras (Biasci et al., 2020; Iravanian &

Christini, 2007; Scardigli et al., 2018), which limits its accessibility to labs with specialized

equipment. We developed an algorithm (section 2.6.) that can provide highly accurate results

despite low frame rate cameras, which greatly reduces the experiment's cost. Our hybrid model

uses inexpensive machine vision cameras that allow labs with modest funding to replicate our

system and tailor it for their research. Moreover, the fully optical setup enables our system to

respond to complex and spatially variable 2D dynamics that characterize some arrhythmic

properties as opposed to previous approaches (Christini & Collins, 1996; Frame & Simson, 1988;

Patel et al., 2017) who uses electrode stimulation techniques. Although our hybrid model can be

tailored for open-loop experiments, its main benefit is as an automated closed-loop system that

allows bidirectional communication with the tissue and a simulation. This is in contrast to most

cardiac optogenetic studies, which typically apply stimuli that do not vary in response to tissue

dynamics (e.g., Bub & Burton, 2015; Crocini et al., 2016). While other research groups developed

synchronized 2D GPU-based simulations with microcontrollers (Welsh et al., 2019), we are the

first group to evaluate the model by interfacing with living cardiac tissue. Our hybrid model can

perform with both fixed-delay protocol and 2D simulations. Compared to the previous approaches,

which only used fixed-delay systems (Biasci et al., 2020; Scardigli et al., 2018), our model solves

all the limitations of the fixed-delay system explained in section 1.6. Moreover, the use of motion

detection technique can extend the life expectancy of the tissue compared to voltage detection

systems (Christoph et al., 2018), hence opening the possibility of designing experiments that

requires a longer duration (up to days).

Despite the potentials mentioned above, our system has some disadvantages compared to other

experimental systems which use specialized high-speed cameras (e.g., Iravanian & Christini, 2007;

Scardigli et al. 2018). These high-speed systems enable the detection of cardiac waves with

millisecond accuracy in real-time in any part of the tissue. In contrast, our system relies on an

algorithm that detects the waves at two points to calculate their speed and predict their location on

the tissue. Although our system can predict wave location for a unidirectional smoothly

propagating wave with milliseconds accuracy, it fails to predict wave location in cases where

waves have variable velocity (e.g., discordant alternans) and direction across the tissue. This

limitation reduces the possible experiments that our system can perform. Finally, the camera

algorithm is only evaluated using cardiac monolayers, while previous investigations (Iravanian &

Christini, 2007; Scardigli et al., 2018) have been validated in ex-vivo intact hearts.

It should also be noted that other research groups have demonstrated systems that have some of

the advantages of the system described in this thesis. Both our hybrid model system and RTXI

37

systems (Patel et al., 2017) use easily sourced and inexpensive components, which have benefits

for accessibility and dissemination. The fixed delay protocol performs similarly in our system and

systems developed by some other research teams (Biasci et al., 2020; Scardigli et al., 2018). And,

similar to some previous approaches (Burton et al., 2015; Entcheva & Bub, 2016), our system is

fully optical.

4.3. Future direction:

Our real-time control system enables new experiments that can give insights into the dynamics of

re-entry. First, comparing the result of the fixed delay model with 2D simulations can give more

insight into which approach is more realistic for experiments that investigate the stability of re-

entrant loops. Second, implementing programs that can activate the tissue with similar wave shapes

to those generated in the simulation may increase the stability of re-entry and ultimately be more

representative of what is occurring in intact tissue (figure 26-A). Finally, the system can be

extended by developing computer vision software that implements AI models to detect re-entrant

waves in the tissue and respond to them in real-time, which can have potential therapeutic

applications in the near future (figure 26-B). Implementing these experiments will further

demonstrate our hybrid system’s versatility.

Figure 26. Future developments

of the hybrid cardiac model.

Cardiac waves have various shapes.

Fixed delay assumes they have

uniform shapes. (A) shows that the

hybrid system is capable of

transferring simulations’ shape to

the monolayer using the matrix

LEDs. Developing software AI

using computer vision can allow the

hybrid system to detect re-entry and

suppress it with specific patterns of

light (B).

A

B

38

Appendix A. Developing the NodeJS server

A.1. Initiating the NodeJS server

NodeJS (we used v12.18.3) and npm package manager (we used 6.14.6) must be installed prior to

developing a NodeJS project. Open the project folder and make a file called server.js. Open a

terminal (Linux/Mac) or command prompt (Windows) and go to the project folder’s location. The

following commands will initiate the NodeJs server.

Executing this command asks you a series of questions about package name, version, author, etc.

Choose the entry point as server.js and type yes at the end. The code initiates the server. The

following commands install the necessary packages for developing communication systems.

The express package allows building the client. The socket.io and serialport package provides the

tool for server-client and server-microcontroller communication systems consecutively.

A.2. Developing the socket.io communication system

The following code in server.js imports the necessary libraries to build the server-client

communication system:

The last two lines indicate that in order to access the server, http://localhost:8081 should be

searched in the web browser. The socket.io communication system is developed as follows:

The below code allows for receiving data from the client. The channel is named led.

npm init

npm install express

npm install socket.io

npm install serialport

const express = require('express');

const app = express();

const server = require('http').createServer(app);

const io = require("socket.io")(server);

const HOST = 'localhost';

const PORTIO = 8081;

// Server is listening to localhost:8081

server.listen(PORTIO, function(){});

/ Initiate Public folder

app.use(express.static('public'));

39

The above code receives the data from the client. The below code sends data to the client. It should

be placed in the TCP socket section (explained later) after receiving a signal from the camera.

A.3. Developing serialport for NodeJS-Arduino communication system:

To build the server-microcontroller communication channel, a port and the baudrate should be

defined in server.js as follows:

The port should be chosen according to the operating system in use (Windows, Mac, or Linux).

Only specific formats of data can be sent through the serialport. Thus, buffers with the appropriate

length (4 bytes) should be made. The data is broken into smaller pieces and stored in each buffer’s

byte. The following code is placed right after the data is received from the HTML client:

io.on("connection", function(sockIO){

 console.log('Client is disconnected')

 //Receive data from public

 sockIO.on('led', function(data) {

 // the data can be accesed by the following code

 var received_data = data.value;

 /** The code for sending received_data to the

 * Arduino should be placed in here*/

 });

 sockIO.on('disconnect', (reason) => {

 console.log('Client is disconnected')

 });

});

io.emit('led', {value: camera_signal});

const SerialPort = require("serialport");

const Readline = require('@serialport/parser-readline');

const serialPort = new SerialPort("COM5", { baudRate: 9600 });

const parser = serialPort.pipe(new Readline({ delimiter: '\n' }));

// Windows: COM1, COM2, COM3, COM4 or COM5

// Mac: /dev/cu.usbmodem14101

// Ubuntu: /dev/ttyACM0

// Building the NodeJS buffer

let buf = Buffer.allocUnsafe(4);

// Converting the variable into the buffer format

buf.writeInt32LE(received_data);

// Send

serialPort.write(buf);

40

The serialport also allows data to be received from the Arduino (it is not necessary to build the

hybrid system):

A.4. TCP communication between the camera and the NodeJS server:

The Transmission control protocol (TCP) socket allows connecting camera’s C++ code with the

server.js. The following code in server.js builds the NodeJS end:

Note that the TCP socket works like a complete closed loop, so for every piece of data received

by the server, a piece of data should be sent to the client (camera). The code for the C++ end (TCP

client: Grab.cpp) is as follows:

serialPort.on("open", () => {

 console.log('Arduino is connected');

 });

 parser.on('data', data =>{

 // data is the byte value received from Arduino

 });

net.createServer(function(sockNet){

 sockNet.on('data', async function(data) {

 // This works like a loop

 camera_signal = JSON.parse(data);

 /** The code for sending data to the HTML

 * client should be placed here */

 // Node should return a message to C++

 sockNet.write("Return String\n");

 });

 // Close TCP connection

 sockNet.on('close', function(data) {});

}).listen(PORTNET, HOST);

 // Close TCP connection

 sockNet.on('close', function(data) {});

}).listen(PORTNET, HOST);

41

Note that NodeJS server uses port 8081 for communicating with the HTML client and port 8080

for TCP client. Whenever a signal variable is needed to be sent to the server, the following code

should be placed in the C++ client:

string ipAddress = "127.0.0.1"; // IP Address of the server
int port = 8080; // Listening port # on the server

// Initialize WinSock
WSAData data;
WORD ver = MAKEWORD(2, 2);
int wsResult = WSAStartup(ver, &data);
if (wsResult != 0) {
 cerr << "Can't start Winsock, Err #" << wsResult << endl;
 return 0;
}

// Create socket
SOCKET sock = socket(AF_INET, SOCK_STREAM, 0);
if (sock == INVALID_SOCKET) {
 cerr << "Can't create socket, Err #" << WSAGetLastError() << endl;
 WSACleanup();
 return 0;
}

// Fill in a hint structure
sockaddr_in hint;
hint.sin_family = AF_INET;
hint.sin_port = htons(port);
inet_pton(AF_INET, ipAddress.c_str(), &hint.sin_addr);

// Connect to server
int connResult = connect(sock, (sockaddr*)&hint, sizeof(hint));
if (connResult == SOCKET_ERROR) {
 cerr << "Can't connect to server, Err #" << WSAGetLastError() << endl;
 closesocket(sock);
 WSACleanup();
 return 0;

}

char buf[4096];
// The signal should be converted to char format
std::string s = std::to_string(signal);
char const* pchar = s.c_str();

// Send the text
int sendResult = send(sock, pchar, (int)strlen(pchar), 0);

// for every signal sent, one should be received
if (sendResult != SOCKET_ERROR) {
 // Wait for response
 ZeroMemory(buf, 4096);
 int bytesReceived = recv(sock, buf, 4096, 0);
}

42

Appendix B. AbubuJS simulation
The detailed explanation of AbubuJS simulation is explained in (Kaboudian et al., 2019b). The

three-variable model designed by Dr. Kaboudian was used for the Fenton-Karma model. The

code’s structure, explained in section 2.3., can be accessed from the supplementary material of

(Kaboudian et al., 2019b). For an AbubuJS project, all the codes and files are the same except the

main.js, the shaders (.frag files), and a few lines in the index.html file. Any AbubuJS project from

(Kaboudian et al., 2019b) can be used to develop a new project by manipulating the mentioned

files.

B.1. The HTML file (index.html):

The HTML file should call the necessary libraries:

It also needs to define a canvas for displaying the result of the simulation:

B.2. Developing main.js JavaScript file:

The following format in the main.js file allows for the correct implementation of shaders and

Abubu.js library:

<script src="socket.io/socket.io.js"></script>

<script src='config.js'></script>

<script src='libs/stats.js'></script>

<script data-main="app/main" src="libs/require.js"></script>

<canvas width=512 height=512 id='canvas'></canvas>

define(['jquery',

 'Abubu/Abubu.js',

 'shader!initShader.frag',

 'shader!compShader.frag',

 'shader!clickShader.frag'

],

 function($,

 Abubu,

 initShader,

 compShader,

 clickShader,

) {

 // The rest of the code is placed here

 // such as building Textures and displaying them

 // The socket.io code should be placed here

});

43

A detailed explanation for building fragment shaders, textures, and displaying them on the canvas

can be accessed by (Kaboudian et al., 2019b). Dr. Kaboudian also demonstrated implementing

these features in his tutorials (https://github.com/kaboudian/WebGLTutorials).

Note that we used this library to develop the cellular automata (CA) model from the ground up.

The Fenton-Karma (FK) model is Dr. Kaboudian’s three-variable model. The socket.io

communications (explained later) only need to be added to the FK model. The detailed explanation

of the CA algorithm is as follows:

 Assuming a 256 × 256 2D numerical grid, the following AbubuJS functions defines a canvas and

the necessary functions for time-stepping and iterative CA solution.

Building an initial texture, which holds the cell location and the position of cell blocks (cells that

never excite), allows initializing the simulations. An array (table) of 256 × 256 × 4 holds these

variables. Every one of 256 × 256 cells have four channels (red, green, blue, transparency). The

red and the green channel holds the x and y perturbations for the CA computational cell’s location.

This slight perturbation for each cell provides heterogeneity for the tissue and avoids unrealistic

wave shapes. Abubu.random() function is used to provide this random perturbation. The green

channel holds the information for the block locations. It tells the simulation which cells mimic the

scar’s location.

/*-------------------- define Canvas------------------------*/

env.canvas_1 = document.getElementById('canvas');

env.canvas_1.width = env.width;

env.canvas_1.height= env.height;

/*------------ define computational textures----------------*/

env.txtCA1 = new Abubu.Float32RTexture(256,256) ;

env.txtCA2 = new Abubu.Float32RTexture(256,256) ;

/*------------------- initial texture-----------------------*/

var table = new Float32Array(256*256*4);

var idx = 0 ;

for(var j=0; j<256; j++){ // Along y-axis

 for(var i=0 ; i <256; i++){ // Along x-axis

 table[idx++] = env.psize*(Abubu.random()-0.5); //red Perturbation

 table[idx++] = env.psize*(Abubu.random()-0.5); //green Perturbation

 table[idx++] = 1. ; // blue - block

 table[idx++] = 0. ; // a

 }

}

env.txtInit1 = new Abubu.Float32Texture(env.width,env.height,{data:table}) ;

https://github.com/kaboudian/WebGLTutorials

44

AbubuJS solvers send the textures to the shaders for parallel processing. Shader’s codes apply its

algorithms to every computational cell, which includes four channels. The initial solver initializes

the simulations. Note that all solver has to be rendered with render() function. This solver

initializes both env.txtCA1 and env.txtCA2 textures.

The code for the initShader (initializer fragment shader) associated with the initSolver is provided

in the next section (B.3.).

The main solver sends the textures iteratively to the compShader. The compShader is a fragment

shader that implements the CA algorithm explained in section 2.4. Note that the solver has three

sections: a. it chooses the shader, b. it imports the inputs (textures / parameters) into the shader, c.

receives the outputs (textures) from the chosen shader.

env.initSolver = new Abubu.Solver({

 //Choosing the shader

 fragmentShader : initShader,

 //Shader’s outputs

 renderTargets :{

 o_col_0 : { location : 0, target : env.txtCA1 } ,

 o_col_1 : { location : 1, target : env.txtCA2 } ,

 }

});

//All solvers must be rendered

env.initSolver.render();

45

The above two solvers can be rendered by the env.march() function.

env.sovlerCA1 = new Abubu.Solver({

 // a. Choosing the Shader

 fragmentShader : compShader,

 // b. Shader inputs

 uniforms : {

 input_txt = { type : 's', value : env.txtCA1 } ;

 inital_txt = { type : 's', value : env.txtInit1 } ;

 radius = { type : 'f', value : env.radius } ;

 threshold = { type : 'f', value : env.threshold } ;

 Lx = { type : 'f', value : env.Lx } ;

 // more inputs can be added here

 },

 // c. Shader output

 renderTargets : {

 out_txt : {location: 0, target : env.txtCA2},

 }

});

env.sovlerCA2 = new Abubu.Solver({

 // a. Choosing the Shader

 fragmentShader : compShader,

 // b. Shader inputs

 uniforms : {

 input_txt = { type : 's', value : env.txtCA2 } ;

 inital_txt = { type : 's', value : env.txtInit1 } ;

 radius = { type : 'f', value : env.radius } ;

 threshold = { type : 'f', value : env.threshold } ;

 Lx = { type : 'f', value : env.Lx } ;

 // more inputs can be added here

 },

 // c. Shader output

 renderTargets : {

 out_txt : {location: 0, target : env.txtCA1},

 }

});

env.march = function(){

 env.sovlerCA1.render();

 env.sovlerCA2.render();

};

46

Whenever this function is called, env.sovlerCA1 is called, which sends env.txtCA1 texture to

the compShader.frag for parallel processing. It puts the result into env.txtCA2. The second solver,

env.sovlerCA1, performs vice versa: compute with env.txtCA2 and output the result into

env.txtCA1. Therefore, by calling env.march(), the content of env.txtCA1 texture is updated by

two iterations. The GLSL shader code for the compShader.frag, which includes the CA algorithm,

is provided in the next section (B.3.).

After every computation, the resulted texture is displayed on the canvas using the below code:

The detailed explanation of Abubu.Plot2D‘s parameters can be accessed by (Kaboudian et al.,

2019c). For every CA iteration, the two below lines must be called:

All of this algorithm can be placed in a function and recursively called:

requestAnimationFrame(run) allow run() function to recursively call itself. Every time env.march()

is called, the simulation is proceeded by two iteration and displayed by env.displayCA.render().

This function, run(), can be used to calculate the number of frames it takes for the excitation wave

to travel from one side of the canvas to another side (𝐹𝑠𝑖𝑚), explained in section 2.10. This value

can be multiplied by 𝑑𝑡 (specified according to the experiment) to calculate ∆𝑡𝑠𝑖𝑚 (∆𝑡𝑠𝑖𝑚 =

𝐹𝑠𝑖𝑚 × 𝑑𝑡). Finally, this value is added to the signal coming from the camera (∆𝑡𝑡𝑜𝑡𝑎𝑙 = 𝑡 +

∆𝑡𝑠𝑖𝑚).

env.displayCA = new Abubu.Plot2D({

 target : env.txtCA1,

 channel : 'r',

 minValue : 0.,

 enableMinColor : true,

 minColor : [1,1,1],

 maxValue : 1.,

 colormap : env.colormap,

 canvas : env.canvas_1,

});

//Initializing the display function

env.displayCA.init();

env.march();

env.displayCA.render();

function run(){

env.march();

env.displayCA.render();

 requestAnimationFrame(run);

}

47

Note that the code for exciting the simulation or recording the cell voltage at a specific location is

presented later in this section.

To communicate with the server, main.js can use the below code to receive data from the server:

The camera signal t is added to the simulation time (∆𝑡𝑡𝑜𝑡𝑎𝑙 = 𝑡 + ∆𝑡𝑠𝑖𝑚) and is sent to the NodeJS

server. The following line of code sends data to the server:

To detect cell voltage at a specific position in the simulation, the below code provides the utility

to access textures’ values. Note that this code might not be available in the old versions of AbubuJS

library.

env.txtCA1Data would be a 1D array of 256 × 256 × 4, that includes all texture values and their

four channels. Since the voltage is stored in the texture’s red channel, every four values in

env.txtCA1Data refers to the cell voltage.

Note that various functions in the AbubuJS library provide more capabilities for controlling the

simulation, such as clicking on the canvas to create excitation waves. For more information, please

refer to Dr. Kaboudian’s GitHub tutorials: https://github.com/kaboudian/WebGLTutorials.

B.3. The GLSL shader code for the cellular automata algorithm

Note that AbubuJS defines a default Vertex shader. By using the below code in any fragment

shader, a 2D vector representing the cell location derived by the default vertex shader can be

accessed:

The following GLSL code is the fragment shader (initShader) associated with the initial solver. It

initializes all cell voltages to be zero.

const socket = io.connect('http://localhost:8081');

socket.on('led', function(data){

 t = data.value;

});

socket.emit("led", {value: delta_t_total});

env.txtCA1Reader = new Abubu.TextureReader(env.txtCA1);

env.txtCA1Data = env.txtCA1Reader.read();

in vec2 cc ;

https://github.com/kaboudian/WebGLTutorials

48

Below is the code for the compShader that includes the CA algorithm. Note that the below code is

associated with one single cell in the CA simulation. The code is broken down into multiple steps

for simplicity.

First, the input values are imported from the main.js:

Then, the distance values are initialized for accessing surrounding cells:

// defines the variable's precision

precision highp float ;

precision highp int ;

// the pixel location (imported from vertex shader)

in vec2 cc ;

// Shader outputs

layout (location =0) out float o_col_0 ; // output texture 1

layout (location =1) out float o_col_1 ; // output texture 2

void main(){

 float red = 0. ; // represents cell voltage

 o_col_0 = red ;

 o_col_1 = red ;

 return ;

}

// Defining the variable precision

precision highp float ;

precision highp int ;

// inputs of the shader

uniform sampler2D input_txt; // includes cell voltages

uniform sampler2D inital_txt ; // include cell locations and the blocks

layout (location =0) out float out_txt; // output color of the shader

// Cell locations

in vec2 cc ;

// input constant CA variables

uniform float radius, threshold, Lx;

49

If the current cell is a block, the CA algorithm should not be applied. Otherwise, the cell is a

computing cell and is part of the CA algorithm:

According to section 2.4., if the cell has a voltage lower than 0.05, the cell is in an excitable state

and can generate action potential:

The cell starts to count the number of active (voltage > 0.7) and inactive surrounding cells. Note

that the red channel (C.r) includes the voltage value.

void main() {

 vec2 size = vec2(textureSize(input_txt,0)) ; //size of texture

 vec2 ii = vec2(1.,0.)/size ; // Unit vector in x //size of pixel

 vec2 jj = vec2(0.,1.)/size ; // y

 float dx = Lx/size.x ;

 float dy = dx ;

 vec4 C = texture(input_txt, cc) ;

 vec2 pert = texture(inital_txt , cc).xy ;

 float ifBlock = texture(inital_txt , cc).z; //gives me the block condition

 vec2 cellCoord = cc*Lx + pert ;

 if(ifBlock == 0.){ //* If the pixel is part of the block

 C.r = -1.;

 }else{

// If the cell is not in refractory.

if(C.r < 0.05){

50

Note that bordering areas (near blocks) have a specific algorithm different from the general CA

algorithm. If the current cell is faced with a block, the algorithm looks at the mirroring

computational cell (the cells on the other side of the current cell).

// Initializing the variables for counting alive and inactive cells.

float aliveNeighbors = 0.;

float deadNeighbors = 0.;

int m = int(round(radius/dx)) ;

int n = int(round(radius/dy)) ;

// Circulating around the current cell in the radius of R

// m and n define the distance for CA radius

for (int i=-m; i<(m+1) ;i++){

 for (int j=-n; j<(n+1); j++){

 // find the position of each surrounding cell

 vec2 currPos = cc+float(i)*ii+float(j)*jj ;

 // if the cell is not surrounded by a barrier

 float reachBlock = texture(in_itxt, currPos).z;

 if (reachBlock == 1.){ //* No block

 // count the number of alive and dead cells

 float voltage = texture(in_txt,currPos).r ; //texture

 pert = texture(in_itxt,currPos).xy ;

 vec2 compCellCoord= currPos*vec2(Lx,Lx) + pert ;

 // If the surrounding cell is within the radius

 // If the cell has surpassed voltage, count it as active

 // If the cell has low voltage, count it as dead cell

 float distance = length(cellCoord-compCellCoord) ;

 if(distance<radius){

 if ((voltage >0.7) && (voltage<0.99)){

 aliveNeighbors+=1.;

 }else{

 deadNeighbors+=1.;

 }

 }

51

The shader compares the alive/dead ratio to the threshold to decide whether the cell should

generate action potential or remain in an excitable state:

If the cell is in the refractory state (voltage > 0.05), the CA algorithm only gradually reduce the

voltage:

And finally, the resulted voltage is sent back to the main.js file:

// If the surrounding cell is a block, look at the mirroring cell

 } else if (reachBlock == 0.) {

 currPos = cc+float(i)*ii*(-1.)+float(j)*jj*(-1.) ; //* mirroring

 float voltage = texture(in_txt,currPos).r ; //texture

 pert = texture(in_itxt,currPos).xy ;

 vec2 compCellCoord= currPos*vec2(Lx,Lx) + pert ;//physical

 float distance = length(cellCoord-compCellCoord) ;

 if(distance<radius){

 if ((voltage >0.7) && (voltage<0.99)){

 aliveNeighbors+=1.;

 }else{

 deadNeighbors+=1.;

 }

// ------------→ Closing all the functions and for loops

 }

 }

 }

 }

 //if the alive/dead ratio is greater than threshold raise the voltage

 if ((aliveNeighbors/deadNeighbors)>(threshold)){

 C.r = 0.98;

 }else {

 C.r = 0.;

 }

//if the cell is in refractory

}else{

 C.r = C.r - 0.051;

}

 }

 out_txt = C.r ;

 return ;

}

52

The above GLSL code computes one iteration of the cellular automata algorithm, and it is called

twice every time the env.march() function is called.

In order to excite the simulation, a camera_signal variable can be imported to the shader besides

other simulation variables such as radius and threshold. This signal can tell the simulation to

generate excitation waves at specific locations. The below code generates a wave at the left side

of the canvas whenever the shader receives a signal:

This code can be placed in before exporting the cell values to the main.js file.

if (camera_signal_available){

 if(cc.x < 0.01){

 C.r = 0.98;

 }

}

53

Appendix C. Pylon and the camera C++ code

C.1. Installing SDK package:

A C++ program linked to the Pylon software development kit (SDK, version 6.0.1) was written

using Microsoft Visual Studio (version community 2019). The following path in the SDK kit

reaches a C++ code that can be manipulated according to the algorithm explained in section 2.6.

Note that in order to access the Development folder, the development version of SDK must be

installed.

C.2. Calculating filtered images:

The algorithm is explained in section 2.6. should be placed after the program successfully grabbed

a frame. Please look for this line in the original Grab.cpp file:

The following pseudocode explains the algorithm for creating the filtered images:

abs(current frame – previous sixth frame)

SDK-kit\Development\Samples\C++\Grab\Grab.cpp

// Image grabbed successfully?
if (ptrGrabResult->GrabSucceeded())

{

 const uint8_t* pImageBuffer = (uint8_t*)ptrGrabResult->GetBuffer();
 // The algorithms explained in section 2.6. ---------------

}

xdim = 1920 // Frame’s weight
ydim = 1200 // Frame’s height
current_frame[xdim * ydim]
six_previous_frame[xdim * ydim * 6]
z = 0 // Frame number
// Iterate throughout the frame’s pixels
for (Iterate among the pixel values of each frame) {
 i = current pixel location

current_frame[i] = pixel_value
 // Store the current pixel in an array that keeps the value for every six frames
 index = the pixel index in the current frame

six_previous_frames[index] = pixel_value

 // After the sixth frame, start to calculate the filtered image
 if (z >= 6) {

 // Access sixth previous frame for six_previous_frames
 // Because all the frames
 filtered_image[i] = abs(current_frame[i]- six_previous_frames[index-6*xdim*ydim])

 }
}

54

The filtered_image is an array that represents motion in the tissue, as explained in section 2.6.

C.3. Calculating conduction velocity and ∆𝑡𝑐𝑎𝑚:

We need to look at two boxes in the filtered image explained in figure 15 and figure 27.

The below pseudocode expresses this algorithm:

Afterward, we define the threshold for the whole box’s area and the threshold for the row averages.

The microscopy lighting and tissue’s transparency are different among each cell culture; thus,

these threshold values are specified before each experiment. We can manually determine these

thresholds by printing area averages and row averages using (cout << endl) function. If the system

∆𝑦′ ሺ𝑝𝑖𝑥𝑒𝑙𝑠ሻ

A
re

a
av

er
ag

e

∆𝑦 ሺ𝑝𝑖𝑥𝑒𝑙𝑠ሻ

 ∆𝑓 ሺ𝑓𝑟𝑎𝑚𝑒𝑠ሻ
𝐶𝑉 =

∆𝑦

∆𝑓

Th
re

sh
o

ld
1

<
A

re
a

av
er

ag
e

We want to detect when the wave arrives here.

∆𝑡 ሺ𝑚𝑠ሻ =
∆𝑦′

𝐶𝑉
× 33.33

Figure 27. The algorithm for detecting the excitation waves from the filtered images.

Row average

Row average > Threshold2

Excitation wave 𝑦1

𝑦2

Box 2

Box 1

for (iterate among the pixels in the first box) {

 row_averages_box1 = calculate the average of each row pixels

 area_average_box1 = calculate the average of all pixels in the box

}

for (iterate among the pixels in the second box) {

 row_averages_box2 = calculate the average of each row pixels

 area_average_box2 = calculate the average of all pixels in the box

}

float area_threshold = 10.6;
float row_threshold = 15.0;

55

cannot detect the waves, the threshold values should be lowered. A periodic raise should be seen

in the printed values of the row averages or area averages. The thresholds are supposed to be

determined according to those peaks.

The following pseudocode allows calculating the wave’s conduction velocity. First, we look at

the first box:

Only after z1 and y1 are determined (the threshold condition is satisfied), we look at the second

box:

Every time a wave is in a box, we should ignore the excitation wave in that box for aspecific

number of frames afterward. This value, which is called refractoryAmount, prevents detecting a

wave twice or detecting the relaxation signal, explained in section 3.2. The max_refractory should

be determined according to the wave speed and the frame rate. Experimentally, max_refractory =

20 worked the best for 30 FPS.

At the end of the experiment, we store the last 500 frames of the filtered images in a large array of

500 × 𝑥𝑑𝑖𝑚 × 𝑦𝑑𝑖𝑚. This large array is stored as a binary file and later is analyzed by the GView

application. Since developing this code was complicated and the GView application only accepts

a specific format, we provide the exact C++ code below:

Refractory_value = 0
if (averages_box1 > area_threshold and refractory_value = 0) {
 z1 = z;
 refractory_value = max_refractory
 for (iterate through row_averages_box1) {

 if row_averages_box1[i] > row_threshold
 y1 = current vertical location of the wave
 break the loop
}

} refractoryAmount

if (averages_box2 > area_threshold and z1/y1 determined) {
 z2 = z;
 for (iterate through row_averages_box2) {

 if row_averages_box2[i] > row_threshold
 y2 = current vertical location of the wave
 break the loop
}

conduction_velocity = (y2-y1)/(z2-z1)
detla_y = distance between y2 and the point where the wave arrives
delta_t_camera = (delta_y)/conduction_velocity * (30 FPS/1000 ms)
delta_t_camera is sent to the NodeJS
refresh y1, y2, z1, z2

}

56

int numFrames = 500;
int storeFrameSize = 500*xdim*ydim;

uint8_t* unsigShiftedFrames = new uint8_t[storeFrameSize];

for (int i = 0; i < storeFrameSize; i++) {
unsigShiftedFrames[i] = (unsigned short int)stored500Frames[i];

}

uint32_t bubmode = _byteswap_ulong(2);
uint32_t bubzdim = _byteswap_ulong(numFrames);
uint32_t bubxdim = _byteswap_ulong(xdim);
uint32_t bubydim = _byteswap_ulong(ydim);

fstream storeFile;
storeFile = fstream("C:\\file location\\binary_file", ios::out | ios::binary);
storeFile.write(reinterpret_cast<char*>(&bubmode), sizeof(uint32_t));
storeFile.write(reinterpret_cast<char*>(&bubzdim), sizeof(uint32_t));
storeFile.write(reinterpret_cast<char*>(&bubydim), sizeof(uint32_t));
storeFile.write(reinterpret_cast<char*>(&bubxdim), sizeof(uint32_t));

storeFile.write((char*)unsigShiftedFrames, storeFrameSize * sizeof(uint8_t));

57

Appendix D. The Arduino

D.1. Arduino setting:

In Arduino IDE (we used version 1.8.49), in the tools section, the Board value is supposed to be

“Arduino Uno”, and the port should be chosen according to your device (explained in section A.3.,

for our device, it is COM5 since our operative system is windows 10). Adafuit DotStarMatrix (we

used version 1.0.5) should be installed using (Tools→Manage libraries). Arduino IDE uses C

syntax.

D.2. Arduino Code:

The following libraries and definitions should be set in the beginning:

We used analog pin 3 to connect the Arduino with the camera:

The following settings are used in the setup() function:

The loop() function runs continuously. The algorithm for receiving data from the NodeJS server

as well as the camera is placed here. The following pseudocode demonstrates an overview:

a. This code updates the Arduino about the camera’s frame number:

#include <Adafruit_DotStar.h>

#include <SPI.h>

#define NUMPIXELS 64

Adafruit_DotStar matrix(NUMPIXELS, DOTSTAR_BRG);

// set a blue color for LEDs

uint32_t color = 0x0000FF;

int analogPin = A3;

void setup() {

 Serial.begin(9600);

 matrix.begin(); // Initialize pins for output

 matrix.setBrightness(255);

 matrix.show(); // Turn all LEDs off ASAP

}

void loop() {

 //a. Receive signal from the camera (Fcamera ++)

 //b. If Fcamera = FArduino ➔ wait(remainder) ➔ activate LEDs

 //c. Receive t from the NodeJS

 //d. Breakes t into FArduino and remainder

}

58

b. If the right frame is reached, we activate the LEDs:

Note that LEDs should stay on for at about 100 ms to be able to activate the tissue. They can be

left on for around 3 frames (for example, receiving 3 signals from the camera: 3 × 33.33 𝑚𝑠).

c. Receive data from the server

Every signal received is a byte from t. Four received signals (bytes) should be combined to produce

t. The below code allows this combination and stores it in inputInt:

d. The below code breaks down inputInt to the number of frames and the remainder:

Creating a middle variable (temp) is a technique to avoid the inaccuracy of the float variables.

val = analogRead(analogPin);

if (val > 600 && prevVal<=600){

 f_camera++;

}

if (f_camera == f_arduino){

 //wait the remainder

 delayMicroseconds(remainder*1000);

 //activate corresponding LED

 matrix.setPixelColor(LED_number, color);

 matrix.show();

 // The above code allows activating any pattern of LEDs

 // The LEDs should stay on for about 100 ms to activate the tissue

}

if (Serial.available()){

 byte input;

 input = Serial.read();

if (fist_signal){inputInt = inputInt + input*1;}

if (second_signal){inputInt = inputInt + (long)input*256;}

if (third_signal){inputInt = inputInt + (long)input*65536;}

if (fourth_signal){inputInt = inputInt + (long)input*16777216;}

float frP = 1000.0/30.0 // camera's frame period

int f_arduino = abs((long)((float)(inputInt)/frP));

int temp = (int)(inputInt%100);

int remainder = abs((int)round(temp-((int)((float)temp/frP))*frP));

59

Appendix E. analyzing photodiode data and the region of interest

E.1. Picolog application creates CSV files:

The PicoLog 6 creates CSV files. Every line in the file presents LEDs’ signal intensity in a

millisecond.

E.2. Python code for analyzing photodiode’s CSV files:

We developed a python code that reads the CSV file and calculates cycle periods. The below code

reads the file and stores all data in an array:

Then the signal intensities are stored in a new array:

And the timing for the signal peaks is calculated:

The cycle periods are calculated by subtracting the timing of the peak values:

Finally, the histogram, mean, and standard deviation of the cycle periods can be determined.

import csv

import numpy as np

import matplotlib.pyplot as plt

fullData = [];

with open('file_name.csv', 'r') as file:

 reader = csv.reader(file)

 for row in reader:

 fullData.append(row)

nums = []

for row in range(1,len(fullData[:])-10):

 nums.append(float(fullData[row][1]))

c = 0

peaks = []

while(c<len(nums)):

 if(nums[c]<-2000):

 peaks.append(c)

 c+=50

 c+=1

cycle_periods = []

for i in range(1, len(peaks)):

 cycle_periods.append(peaks[i]-peaks[i-1])

60

E.3. Python code for analyzing GView’s roi files:

The GView application, developed by Dr. Gil Bub (Burton et al., 2015), can record the signal

intensity of a region of interest (roi) from the camera’s data (stored 500 frames) and save it as a

roi file. The below python code reads this file and stores its content in a list:

The roi_signal_intensity vector can be displayed by a plot as demonstrated in section 3.4.

plt.hist(cycle_periods, bins=1)

plt.xlabel("time interval (ms)")

plt.ylabel("counts")

plt.title("Cycle Periods")

plt.show()

mean = np.mean(cycle_periods)

std = np.std(cycle_periods)

roi_data = []

f = open("file_name.roi", "r")

for row in f:

 x1=0

 x2=0

 cc=0

 x1found = 0

 for x in row:

 if (x==' ' and x1found==0):

 x1=cc

 x1found=1

 if(x=='\n'):

 x2=cc

 cc = cc+1

 roi_data.append(row[x1+1:x2-1])

roi_signal_intensity = np.zeros(len(roi_data)-1)

for x in range(len(roi_data)-1):

 roi_signal_intensity[x] = (int(roi_data[x]))

61

Appendix F. Monolayer preparation

The following protocol follows a step-by-step procedure from Miltenyi Biotec (Protocol No. 130-

098-373, Miltenyi Biotec Inc, California, US), with additional steps from (Ambrosi et al., 2014;

Burton et al., 2015). The entire protocol was first described in a submitted MSc thesis from a

student in the same laboratory (Sepúlveda, 2020).

Cells were isolated using a Miltenyi gentleMACS Dissociator, which automates the cell

dissociation process. Procedures for animal handling were performed in agreement with guidelines

of the Canadian Council on Animal Care. Neonates were euthanized by decapitation in agreement

with McGill University SOP 301-01 under approved protocol 2018-8044. Sterile techniques are

followed during all procedures.

F.1. Tissue culture coating (for 24-well plates) and plating cell densities:

1. 5 μL of fibronectin (VWR, Ontario, CA) is diluted into 500 μL of PBS for a final

concentration of 50 μg/μL.

2. 125 μL of thoroughly mixed dilution must be added to each well.

3. The plate should be incubated at 37 ºC and 5% CO2 for at least 1 h before use.

The densities described in the below table were used for neonatal mice cardiomyocytes.

Cell density and seeding volume (Table F1)

Vessel size Surface area in cm2 Seeding volume in ml
Cell number (~156 x

103 cells/cm2)

Glass ring 1 0.232 156 x 103

24-well 1.9 0.6 296 x 103

12-well 3.8 1.2 593 x 103

F.2. Ventricle dissociation, tissue culture, and adenoviral infection of cardiac monolayers:

i. Prepare necessary solutions from stocks Penicillin/Streptomycin Mixture (Pen/Strep,

Quality Biological, Cat#: 120-095-721), Dulbecco's Modified Eagle Medium (DMEM,

Wisent, REF: 319-062-CL), Phosphate Buffered Saline (PBS, Wisent, REF: 311-010-CL),

and Fetal Bovine Serum (FBS, Gibco, Cat#12483020). DMEM (10%) maintenance media

is prepared by adding 50 mL of FBS and 5 mL on Pen/Strep to 450 mL of DMEM, and

DMEM (2%) is prepared by adding 200 μL of FBS and 100 μL of Pen/Strep to 10mL of

DMEM.

ii. Harvest the heart and dissect the ventricles:

a. Obtain a litter (6 or more animals) of postnatal 0 – 3 (P0 - P3) day old mice pups.

62

b. Pups are decapitated, and the heart is isolated by first opening the rib cage with

sharp scissors and remove the heart with tweezers. The hearts are placed in a

shallow plate containing 3 ml of PBS solution on ice.

c. Scissors are used to remove the ventricles (around the lower 70% portion of the

heart) and remaining connective tissue.

d. The tissue is cleaned by swirling the plate regularly to remove blood cells from the

ventricles.

e. The ventricles are each cut into 4 – 6 small pieces around 1–2 mm³.

iii. The ventricles are dissociated into single cells using the Neonatal Heart Dissociation Kit

and gentleMACS Dissociator, following protocol 130-098-373. The program used on the

dissociator was “m_neoheart_01_01”. The protocol takes approximately 45 minutes.

a. The resulting suspension is centrifuged at 600xg for 5 mins.

b. The pellet is resuspended in 10 mL of DMEM 10% using gentle manual agitation

with a wide-mouthed pipette.

iv. Remove cardiac fibroblasts and count cells:

a. The 10 mL suspension is transferred to a shallow10 cm culture dish and incubated

(at 37 degrees, 5% CO2) for 45 minutes. Fibroblasts settle and adhere to the bottom

of the dish. The supernatant contains an enriched population of myocytes.

b. The supernatant (10ml) and an additional 5ml PBS for washing the plate are

transferred to a 50ml Falcon tube.

c. Centrifuge the 15ml supernatant at 600xg for 5 min and resuspend the pellet in 1

mL of warmed DMEM 10%.

d. Cell concentration is determined using a standard hemocytometer, with Trypan

Blue added to count dead cells.

v. Culture cardiomyocyte cells in 24-well plates:

a. Once counted, the desired concentration per well is determined per table F1 above

(approximately 300,000 cells per well in a 24 well plate).

b. An additional 1 mL of DMEM 10% per well is added, and the tissue incubated for

24 hours.

c. Provide post-plating maintenance by replacing the solution with 2 mL of DMEM

10% every 24-48 hours.

vi. Infect the ventricular myocytes by Ad-CMV-hChR2(H134R)-eYFP (Ambrosi et al., 2014)

2 to 3 days post plating:

a. Replace DMEM 10% with a small amount of DMEM 2% (250 μL per plate).

b. For our desired multiplicity of infection (MOI) of 100 and a virus titer of

2.2x106, we use 13.6 μL of virus solution per well (assuming 300,000 cells/well).

c. Incubate monolayers for 48 h prior to running experiments

63

References
Ambrosi, C. M., Klimas, A., Yu, J., & Entcheva, E. (2014). Cardiac applications of optogenetics.

Progress in Biophysics and Molecular Biology, 115(2–3), 294–304.

https://doi.org/10.1016/j.pbiomolbio.2014.07.001

Anderson, R. H., Shinebourne, E. A., & Gerlis, L. M. (1974). Criss-Cross Atrioventricular

Relationships Producing Paradoxical Atrioventricular Concordance or Discordance.

Circulation, 50(1), 176–180. https://doi.org/10.1161/01.CIR.50.1.176

Arrenberg, A. B., Stainier, D. Y. R., Baier, H., & Huisken, J. (2010). Optogenetic control of cardiac

function. Science (New York, N.Y.), 330(6006), 971–974.

https://doi.org/10.1126/science.1195929

Biasci, V., Sacconi, L., Cytrynbaum, E. N., Pijnappels, D. A., De Coster, T., Shrier, A., Glass, L.,

& Bub, G. (2020). Universal mechanisms for self-termination of rapid cardiac rhythm.

Chaos: An Interdisciplinary Journal of Nonlinear Science, 30(12), 121107.

https://doi.org/10.1063/5.0033813

Bruegmann, T., Boyle, P. M., Vogt, C. C., Karathanos, T. V., Arevalo, H. J., Fleischmann, B. K.,

Trayanova, N. A., & Sasse, P. (2016). Optogenetic defibrillation terminates ventricular

arrhythmia in mouse hearts and human simulations. The Journal of Clinical Investigation,

126(10), 3894–3904. https://doi.org/10.1172/JCI88950

Bruegmann, T., Malan, D., Hesse, M., Beiert, T., Fuegemann, C. J., Fleischmann, B. K., & Sasse,

P. (2010). Optogenetic control of heart muscle in vitro and in vivo. Nature Methods, 7(11),

897–900. https://doi.org/10.1038/nmeth.1512

Bub, G., & Burton, R.-A. B. (2015). Macro-micro imaging of cardiac–neural circuits in co-cultures

from normal and diseased hearts. The Journal of Physiology, 593(14), 3047–3053.

https://doi.org/10.1113/jphysiol.2014.285460

Bub, G., Shrier, A., & Glass, L. (2002). Spiral Wave Generation in Heterogeneous Excitable

Media. Physical Review Letters, 88(5), 058101.

https://doi.org/10.1103/PhysRevLett.88.058101

Burton, R. A. B., Klimas, A., Ambrosi, C. M., Tomek, J., Corbett, A., Entcheva, E., & Bub, G.

(2015). Optical control of excitation waves in cardiac tissue. Nature Photonics, 9(12), 813–

816. https://doi.org/10.1038/nphoton.2015.196

Christini, D. J., & Collins, J. J. (1996). Using chaos control and tracking to suppress a pathological

nonchaotic rhythm in a cardiac model. Physical Review E, 53(1), R49–R52.

https://doi.org/10.1103/PhysRevE.53.R49

Christini, D. J., Stein, K. M., Markowitz, S. M., & Lerman, B. B. (1999). Practical real-time

computing system for biomedical experiment interface. Annals of Biomedical Engineering,

27(2), 180–186. https://doi.org/10.1114/1.185

Christoph, J., Chebbok, M., Richter, C., Schröder-Schetelig, J., Bittihn, P., Stein, S., Uzelac, I.,

Fenton, F. H., Hasenfuß, G., Gilmour Jr., R. F., & Luther, S. (2018). Electromechanical

vortex filaments during cardiac fibrillation. Nature, 555(7698), 667–672.

https://doi.org/10.1038/nature26001

64

Crocini, C., Ferrantini, C., Coppini, R., Scardigli, M., Yan, P., Loew, L. M., Smith, G., Cerbai, E.,

Poggesi, C., Pavone, F. S., & Sacconi, L. (2016). Optogenetics design of mechanistically-

based stimulation patterns for cardiac defibrillation. Scientific Reports, 6, 35628.

https://doi.org/10.1038/srep35628

Dou, W., Zhao, Q., Malhi, M., Liu, X., Zhang, Z., Wang, L., Masse, S., Nanthakumar, K.,

Hamilton, R., Maynes, J. T., & Sun, Y. (2020). Label-free conduction velocity mapping

and gap junction assessment of functional iPSC-Cardiomyocyte monolayers. Biosensors

and Bioelectronics, 167, 112468. https://doi.org/10.1016/j.bios.2020.112468

Entcheva, E., & Bub, G. (2016). All-optical control of cardiac excitation: Combined high-

resolution optogenetic actuation and optical mapping. The Journal of Physiology, 594(9),

2503–2510. https://doi.org/10.1113/JP271559

Fenton, F. H., Cherry, E. M., & Glass, L. (2008). Cardiac arrhythmia. Scholarpedia, 3(7), 1665.

https://doi.org/10.4249/scholarpedia.1665

Fenton, F., & Karma, A. (1998). Vortex dynamics in three-dimensional continuous myocardium

with fiber rotation: Filament instability and fibrillation. Chaos: An Interdisciplinary

Journal of Nonlinear Science, 8(1), 20–47. https://doi.org/10.1063/1.166311

Frame, L. H., & Simson, M. B. (1988). Oscillations of conduction, action potential duration, and

refractoriness. A mechanism for spontaneous termination of reentrant tachycardias.

Circulation, 78(5 Pt 1), 1277–1287. https://doi.org/10.1161/01.cir.78.5.1277

Gonzalez Vivo, P., & Lowe, J. (2015). The Book of Shaders. The Book of Shaders.

https://thebookofshaders.com/

Hall, K., Christini, D. J., Tremblay, M., Collins, J. J., Glass, L., & Billette, J. (1997). Dynamic

Control of Cardiac Alternans. Physical Review Letters, 78(23), 4518–4521.

https://doi.org/10.1103/PhysRevLett.78.4518

Iravanian, S., & Christini, D. J. (2007). Optical mapping system with real-time control capability.

American Journal of Physiology-Heart and Circulatory Physiology, 293(4), H2605–

H2611. https://doi.org/10.1152/ajpheart.00588.2007

Kaboudian, A. (2021). Kaboudian/abubujs [JavaScript]. https://github.com/kaboudian/abubujs

(Original work published 2019)

Kaboudian, A., Cherry, E. M., & Fenton, F. H. (2019a). Real-time interactive simulations of large-

scale systems on personal computers and cell phones: Toward patient-specific heart

modeling and other applications. Science Advances, 5(3), eaav6019.

https://doi.org/10.1126/sciadv.aav6019

Kaboudian, A., Cherry, E. M., & Fenton, F. H. (2019b). Real-time interactive simulations of large-

scale systems on personal computers and cell phones: Toward patient-specific heart

modeling and other applications. Science Advances, 5(3).

https://doi.org/10.1126/sciadv.aav6019

Kaboudian, A., Cherry, E. M., & Fenton, F. H. (2019c). Large-scale interactive numerical

experiments of chaos, solitons and fractals in real time via GPU in a web browser. Chaos,

Solitons & Fractals, 121, 6–29. https://doi.org/10.1016/j.chaos.2019.01.005

65

Kispersky, T. J., Economo, M. N., Randeria, P., & White, J. A. (2011). GenNet: A Platform for

Hybrid Network Experiments. Frontiers in Neuroinformatics, 0.

https://doi.org/10.3389/fninf.2011.00011

Nussinovitch, U., & Gepstein, L. (2015). Optogenetics for in vivo cardiac pacing and

resynchronization therapies. Nature Biotechnology, 33(7), 750–754.

https://doi.org/10.1038/nbt.3268

Nyns, E. C. A., Kip, A., Bart, C. I., Plomp, J. J., Zeppenfeld, K., Schalij, M. J., de Vries, A. A. F.,

& Pijnappels, D. A. (2017). Optogenetic termination of ventricular arrhythmias in the

whole heart: Towards biological cardiac rhythm management. European Heart Journal,

38(27), 2132–2136. https://doi.org/10.1093/eurheartj/ehw574

Panfilov, A. V. (1998). Spiral breakup as a model of ventricular fibrillation. Chaos: An

Interdisciplinary Journal of Nonlinear Science, 8(1), 57–64.

https://doi.org/10.1063/1.166287

Patel, Y. A., George, A., Dorval, A. D., White, J. A., Christini, D. J., & Butera, R. J. (2017). Hard

real-time closed-loop electrophysiology with the Real-Time eXperiment Interface (RTXI).

PLOS Computational Biology, 13(5), e1005430.

https://doi.org/10.1371/journal.pcbi.1005430

Prinz, A. A., & Cudmore, R. H. (2011). Dynamic clamp. Scholarpedia, 6(5), 1470.

https://doi.org/10.4249/scholarpedia.1470

Robinson, H. P. C., & Kawai, N. (1993). Injection of digitally synthesized synaptic conductance

transients to measure the integrative properties of neurons. Journal of Neuroscience

Methods, 49(3), 157–165. https://doi.org/10.1016/0165-0270(93)90119-C

Rouaud, M. (2013). Probability, statistics and estimation. Propagation of uncertainties.

Ryan, S. S. (2020). Ablation of the AV Node and Implanting of a Pacemaker. Atrial Fibrillation:

Resources for Patients. https://a-fib.com/treatments-for-atrial-fibrillation/av-node-with-

pacemaker/

Scardigli, M., Müllenbroich, C., Margoni, E., Cannazzaro, S., Crocini, C., Ferrantini, C., Coppini,

R., Yan, P., Loew, L. M., Campione, M., Bocchi, L., Giulietti, D., Cerbai, E., Poggesi, C.,

Bub, G., Pavone, F. S., & Sacconi, L. (2018). Real-time optical manipulation of cardiac

conduction in intact hearts. The Journal of Physiology, 3841–3858.

https://doi.org/10.1113/JP276283@10.1111/(ISSN)1469-7793.EC2018

Sepúlveda, J. R. (2020). Optically induced heterogeneities in cardiac tissue [McGill University].

https://escholarship.mcgill.ca/concern/theses/6t053m985

Sharp, A. A., Abbott, L. F., & Marder, E. (1992). Artificial electrical synapses in oscillatory

networks. Journal of Neurophysiology, 67(6), 1691–1694.

https://doi.org/10.1152/jn.1992.67.6.1691

Sharp, A. A., O’Neil, M. B., Abbott, L. F., & Marder, E. (1993). Dynamic clamp: Computer-

generated conductances in real neurons. Journal of Neurophysiology, 69(3), 992–995.

https://doi.org/10.1152/jn.1993.69.3.992

66

Starmer, C. F. (2007). Vulnerability of cardiac dynamics. Scholarpedia, 2(11), 1847.

https://doi.org/10.4249/scholarpedia.1847

Sun, J., Amellal, F., Glass, L., & Billette, J. (1995). Alternans and period-doubling bifurcations in

atrioventricular nodal conduc. Journal of Theoretical Biology, 173(1), 79–91.

https://doi.org/10.1006/jtbi.1995.0045

Tan, R. C., & Joyner, R. W. (1990). Electrotonic influences on action potentials from isolated

ventricular cells. Circulation Research, 67(5), 1071–1081.

https://doi.org/10.1161/01.RES.67.5.1071

Tolkacheva, E. G., Schaeffer, D. G., Gauthier, D. J., & Mitchell, C. C. (2002). Analysis of the

Fenton–Karma model through an approximation by a one-dimensional map. Chaos: An

Interdisciplinary Journal of Nonlinear Science, 12(4), 1034–1042.

https://doi.org/10.1063/1.1515170

Tran, D. X., Yang, M.-J., Weiss, J. N., Garfinkel, A., & Qu, Z. (2007). Vulnerability to re-entry in

simulated two-dimensional cardiac tissue: Effects of electrical restitution and stimulation

sequence. Chaos: An Interdisciplinary Journal of Nonlinear Science, 17(4), 043115.

https://doi.org/10.1063/1.2784387

Ulrich, D., & Huguenard, J. R. (1996). γ-Aminobutyric acid type B receptor-dependent burst-firing

in thalamic neurons: A dynamic clamp study. Proceedings of the National Academy of

Sciences of the United States of America, 93(23), 13245–13249.

Welsh, A. J., Delgado, C., Lee-Trimble, C., Kaboudian, A., & Fenton, F. H. (2019). Simulating

waves, chaos and synchronization with a microcontroller. Chaos: An Interdisciplinary

Journal of Nonlinear Science, 29(12), 123104. https://doi.org/10.1063/1.5094351

Wilders, R. (2006). Dynamic clamp: A powerful tool in cardiac electrophysiology. The Journal of

Physiology, 576(2), 349–359. https://doi.org/10.1113/jphysiol.2006.115840

Zhu, H., Sun, Y., Rajagopal, G., Mondry, A., & Dhar, P. (2004). Facilitating arrhythmia

simulation: The method of quantitative cellular automata modeling and parallel running.

BioMedical Engineering OnLine, 3, 29. https://doi.org/10.1186/1475-925X-3-29

