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Abstract

Longitudinal data analysis employ repeated measurements of individuals over a period

of time. It has been used by statisticians to study the change in outcome measurement

associated with the change in exposure conditions. In some scenario, we would want

to study which factors are associated in these changes. Variable selection, a machine

learning technique that has been used widely for selecting the subset of relevant features,

is widely used for this purpose. Furthermore, such technique has been previously ex-

tended to exhibit certain properties such as maintaining a predefined structure within the

features that are selected. In this work we present the usage of variable selection on longi-

tudinal data and provide the details regarding its application on both simulated and real

dataset.
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Abrégé

L’analyse des données longitudinales utilise des mesures répétées d’individus sur une

période donnée. Il a été utilisé par les statisticiens pour étudier le changement de mesure

des résultats associé au changement des conditions d’exposition. Dans certains scénarios,

nous voudrions étudier les facteurs associés à ces changements. La sélection de variables,

une technique d’apprentissage automatique qui a été largement utilisée pour sélectionner

le sous-ensemble de fonctionnalités pertinentes, est largement utilisée à cette fin. En

outre, une telle technique a été précédemment étendue pour présenter certaines pro-

priétés telles que le maintien d’une structure prédéfinie dans les caractéristiques qui sont

sélectionnées. Dans ce travail, nous présentons l’utilisation de la sélection de variables

sur des données longitudinales et fournissons les détails concernant son application sur

des ensembles de données simulés et réels.
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Chapter 1

Introduction

The world’s population is aging, with the total of 962 million population aged 60 years

or over in 2017 and this number is expected to double again by 2050. Dementia is one

of common diseases and major causes of disability and dependency among older people

worldwide. According to World Health Organization, around 50 million people are suf-

fering from dementia and nearly 10 million new cases every year in the worldwide. It

is estimated that over 130 million people will live with dementia by 2050. Studies have

proved that depression is a common comorbidity in dementia. Patients with dementia,

especially comorbid with depression, use more than 70% of health services and 50% of

care organization than their age matched controls [Gutterman et al., 1999]. With the ris-

ing tide of dementia, the economic and social impact of dementia is likely to increase. It is

critical to understand the health service use of dementia patients with psychiatric comor-

bidity may help to establish a framework for considering change in the current system of

care.

Despite that many epidemiological studies, largely cross-sectional or short-term lon-

gitudinal studies, have suggested that the comorbid psychiatric diagnosis and dementia

predict more health care utilizations including medical and psychiatric inpatient days of

care and outpatient visits [Kunik et al., 2003]. There has been no long-term longitudi-

nal study conducted to assess the degree to which psychiatric comorbidity in patients
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with dementia is associated with health care utilization. Furthermore, there is even less

research conducted to portrait the potential population characteristics associated with

increased utilizations of health care services. It is critical to understand the trend of long-

term health care utilizations for the most vulnerable populations suffering depression and

dementia.

Longitudinal data analysis has been widely used in medical and quantitative psy-

chology research. In the longitudinal data, observations are usually collected at multiple

follow-up times. For example, in clinical trial settings, the data often collected after treat-

ments or exposures are administered for an experimental design to study whether out-

come (response) changes according to exposure of some event. There are two groups of

subjects, one is given placebo while the other is given active drug, these two groups can

be compared over multiple time points to observe whether there is a noticeable difference

between the outcome of the control and the treated group. Most common techniques for

analyzing longitudinal data include random effect models, marginal models, and transi-

tion models.

Denote Yi,t as the random variable corresponding to response for individual i at time-

point t. Let xi,t = (xi,t,1, . . . , xi,t,p)
> be the corresponding p-dimensional vector of covari-

ates and β∗ = (β∗1 , . . . , β
∗
p)
> be the true coefficients. Marginal models [Liang and Zeger,

1986] assumes that the marginal expectation of response Yi,t is a function of xi,t

g(E(Yi,t|xi,t)) = x>i,tβ
∗,

where g is a link function. The marginal variance of Yi,t is assumed to be dependent on the

marginal mean through Var(Yi,t) = θv(µi,t), where v(µi,t) is known as a variance function

and θ is known as a scale parameter. Given the effects of covariates on the average prob-

ability of response, this model is often used for “population-averaged” interpretation.

Random effect models [Stiratelli et al., 1984] differ from marginal model in a sense

that there is an additional unobservable random effect term Ui associated with each indi-
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vidual. The margin models consider population-level effects whereas the random effect

models also considers “subject-specific” effects. For example, let Yi,t be the values of re-

sponse variable for individual i at time point t, random effect models make the following

assumptions

g(E(Yi,t|Ui)) = x>i,tβ
∗ + Ui.

In a situation where the past q measurements of the response Yi,t−1, · · · , Yi,t−q influ-

ence present observation Yi,t, a transition model [Zeng and Cook, 2007] can be used. In

transition models, the conditional distribution of each variable Yi,t is an explicit function

of past response Yi,t−1, · · · , Yi,t−q and covariates xi,t. For example, a transitional model

with a linear function of the covariates and autoregressive terms with Gaussian errrors

becomes a Markov model

Yi,t = x>i,tβ
∗ +

q∑
r=1

φ∗r(Yi,t−r − x>i,t−rβ
∗) + εi,t, (1.1)

where εi,t ∼ N (0, σ2).

Variable selection is a very important issue for the above longitudinal regression mod-

eling as it can select the most relevant covariates and provide a more parsimonious model.

This could enhances the prediction accuracy and grants more interpretability of the result-

ing models. In addition to the traditional variable selection techniques such as the for-

ward and backward stepwise selection, the sparse penalization such as Lasso (least abso-

lute shrinkage and selection operator) [Tibshirani, 1996] has been a popular approach for

simultaneous variable selection and estimation. Lasso was initially formulated for linear

regression but is extended to other statistical models such as generalized linear models

(GLM) [Cardot and Sarda, 2005,She, 2012], generalized estimating equations (GEE) [Wang

et al., 2012,Johnson et al., 2008], and longitudinal data analysis [Groll and Tutz, 2014]. As-

sume that we observe n observations of the p-dimentional covariates xi = (xi1, . . . , xip),

the design matrix can be written as X = (x>1 , . . . ,x
>
n )>. The observed response variable
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can be denoted by y = (y1, . . . , yn)>. Lasso estimates β = (β1, . . . , βp)
> by solving the

following problem

min
β

1

n
‖y −Xβ‖22 + λ‖β‖1.

where λ ≥ 0 controls the amount regularization and ‖ · ‖1 is a `1-norm. Unlike ridge re-

gression that uses `2-norm for penalization, solution of Lasso has sparsity. But a problem

of Lasso is that it tends to over-select the true variables and lacks of selection consis-

tency [Zhao and Yu, 2006]. To overcome such issue, [Zou, 2006] proposed the adaptive

Lasso, which retains estimation consistency and oracle property in variable selection. In

the adaptive Lasso, different penalty weights wj ≥ 0 are applied to the coefficients βj’s

min
β

1

n
‖y −Xβ‖22 + λ

p∑
j=1

wj|βj|,

where the weights wj = 1

|β̂j |γ
, for γ > 0, and β̂ is a

√
n-consistent estimator such as the

OLS, ridge or Lasso estimator.

When there is strong correlation between the covariates, Lasso tends to select only

one covariate from a set of highly correlated covariates, [Zou and Hastie, 2005] proposed

elastic net to deal with such drawback of Lasso. In the elastic net, an additional `2-norm

penalty is added

min
β

1

n
‖y −Xβ‖22 + λ1‖β‖1 + λ2‖β‖22.

In many applications with categorical variables in the data, the categorical variables

are usually encoded as groups of dummy variables. In this case, it does not make sense to

select these dummy variables belonging to the same categorical variable separately, i.e. a

same group of dummy variables should selected/excluded simultaneously in the model

selection procedure. [Yuan and Lin, 2006] introduced the group lasso which penalizes and

selects predefined groups of covariates together. Occasionally, sparsity in both of groups

and within each group may be preferred. For example, when identifying particularly im-
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portant genes in pathway of gene expression pathway, we would want sparsity amongst

genes, and its corresponding pathways.

One of the limitations of the group lasso is its restriction on the non-overlapping group

structure, which limits its applicability in many scenarios. There have been many recent

works to generalize the group Lasso formulation to allow overlaps among groups. The

overlapping group Lasso has been particularly useful for selecting groups of features

that are expected to have a certain contiguous patterns [Rapaport et al., 2008]. [Simon

et al., 2013] introduced the sparse group lasso by adding an additional `1-norm penalty

to the model to allow within group sparsity in addition to group-wise sparsity. Another

important work for the overlapping group Lasso is by [Obozinski et al., 2011], which

introduced latent group Lasso norms for structured sparsity with supports that are unions

of predefined overlapping group of variables.

The overlapping group Lasso has also been extended to two-dimensional grid setting.

For example, such penalization was applied in topographic dictionary learning [Jenatton

et al., 2011], wavelet-based de-noising and for face recognition with corruption by occlu-

sions [Mairal et al., 2011, Mairal et al., 2010, Jenatton et al., 2011]. The overlapping group

lasso has also been used for variable selection according to a tree-like hierarchical struc-

ture, with applications in topic modeling, image restoration, probabilistic graphical mod-

els, mining of fMRI data [Jenatton et al., 2012], and natural language processing [Martins

et al., 2011]. For example, [Kim and Xing, 2010] proposed a tree-guided group Lasso to

estimate a sparse multi-response regression model. The model was applied in expression

quantitative trait locus (eQTL) mapping in which the goal is to discover genetic variations

that influence gene-expression levels. Since gene expression is multi-level process, the

tree structure in the tree-guided group Lasso aims to capture such effect of gene expres-

sion path starting from genome to phenotype. The resulting optimization of the hierarchi-

cal group Lasso, however, is much more challenging to solve due to the complex group

structures. [Jenatton et al., 2011] proposed an efficient solution for solving the proximal
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operator of the hierarchical group Lasso through an algorithm based on the primal-dual

formulation.

This overlapping group Lasso penalization has also been used in time series setting,

[Nicholson et al., 2017] have proposed a general approach for hierarchical variable se-

lection in multivariate autoregressive models. In their work, they introduce the concept

of lag order to describe the variables associated with time. Higher lag coefficient corre-

sponds coefficients that are associated with older response variable. Their methodology

can be described as following multivariate autoregresssion

yt = ν + Φ(1)yt−1 + · · ·+ Φ(p)yt−p + ut, for t = 1, · · · , T,

which conditions on initial values {y−(p−1), · · · ,y0}. Here ν is the intercept vector and

{Φ(`)}p`=1 are the lag coefficients with ut being a white noise vector. In their work, they

define three different Lag structures among which the componentwise lag structure is

closely resemble that of our approach.

In this article, we propose a double Lasso penalized transitional models to eliminate

the redundant parts in the regression coefficients β and the autoregressive coefficients φ,

which can in turn improve the prediction and estimation accuracy. In addition, for some

applications, in order to obtain a more parsimonious model, we hope to maintain a hi-

erarchical sparse structure of φ in the model selection procedure, i.e. when an ancestor

variable is zero, the model selection procedure can guarantee all of its descendents to be

zero also, thus maintaining the desired the strong heredity property. For such purpose, we

will introduce a hierarchical group Lasso penalization [Jenatton et al., 2010] into the tran-

sitional models. The resulting models can be efficiently solved by combining an iterative

updating scheme on β and φ with a computationally efficient proximal gradient algo-

rithm. The proximal operation can also be efficiently conducted using a one-time update

based on the primal-dual formulation.
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The rest of the article is organized as follows. In Section 2, we introduce the methodol-

ogy of our models, including the transition models using double Lasso penalization and

hierarchical penalization. In Section 3, we provide the algorithms for solving the afore-

mentioned models, and the implementation details of these algorithms are provided in

Section 4. We also conduct simulation studies in Section 5 and a real data analysis in

Section 6.
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Chapter 2

METHODOLOGY

In this section, we introduce two different model selection techniques for the transition

models using double Lasso penalization and hierarchical penalization, respectively.

2.1 Transition models using double Lasso penalization

We first give a brief description of the transition model. Given longitudinal dataset, as-

sume that we observe n individuals i = 1, · · · , n who are measured on the time points

t = 1, · · · , Ti. Denote yi,t as the response variable for subject i measured on the time

point t. Consider the REGression with AutoRegressive errors (REGAR) [Wang et al., 2007]

model

yi,t = x>i,tβ
∗ + ei,t t = 1, . . . , Ti,

where xi,t = (xi,t,1, . . . , xi,t,p)
> is the p-dimensional regression covariate and β∗ = (β∗1 , . . . , β

∗
p)
>

is the associated true regression coefficient. Assume further that variable ei,t follows the

autoregressive process with order q:

ei,t = φ∗1ei,t−1 + φ∗2ei,t−2 + . . .+ φ∗qei,t−q + εi,t,

8



where φ∗ = (φ∗1, . . . , φ
∗
q)
> are the true autoregressive coefficients and εi,t are independent

and identically distributed random variables from N (0, σ2). The transition model can be

expressed as a function of both the covariates xi,t and of the past responses yi,t−1, . . . , yi,t−q.

We assume that the past q response variables affect the present response variable as in the

following model:

yi,t = x>i,tβ
∗ +

q∑
r=1

φ∗r(yi,t−r − x>i,t−rβ
∗) + εi,t. (2.1)

In above equation we can see that present observation yi,t is a linear function of xi,t and

of yi,t−r − x>i,t−rβ
∗, for r = 1, . . . , q. Suppose now that the number of previous time points

q to be considered in the model is fixed.

Given a dataset {(xi,t, yi,t) ∈ Rp+1: i = 1, · · · , n, t = 1, · · · , Ti}, where Ti’s are used for

indicating maximum number of time points observed for the subject i, one can estimate

(β∗,φ∗) in (2.1) by maximizing the following conditional likelihood function with respect

to β and φ:

(
1

2πσ2

)n×∑Ti

exp
[
− 1

2σ2

n∑
i=1

Ti∑
t=q+1

{
yi,t − x>i,tβ −

q∑
r=1

φr(yi,t−r − x>i,t−rβ)
}2]

.

which is equivalent to the minimization of the negative log-likelihood:

`(β,φ) ≡ 1

2n

n∑
i=1

Ti∑
t=q+1

[
yi,t − x>i,tβ −

q∑
r=1

φr(yi,t−r − x>i,t−rβ)

]2
.

In many applications, some elements of β∗ and φ∗ might be exactly zero. Those zero

elements of the coefficients correspond to the noise variables in β∗ and φ∗ that have no

effect to the outcomes of the model. In order to obtain a more parsimonious models

without those noise variables, a model selection procedure becomes necessary. [Wang

et al., 2007] introduced a Lasso penalized REGAR model to eliminate those redundant

parts in β∗ and φ∗ and estimate their values, which in turn can also help improve the

prediction and estimation accuracy. In their method, they estimate the model coefficients
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Figure 2.1: Chain Structure of φ

by minimizing the following objective function

(β̂, φ̂) = arg min
β,φ

`(β,φ) + λ1

q∑
r=1

wφr |φr|+ λ2

p∑
j=1

wβj |βj|, (2.2)

which applies a separate weighted `1 norm on each coefficient vector β and φ with

λ1, λ2 ≥ 0 as the tuning parameters controlling the amount of penalization. By adding

two separate Lasso penalty on β and φ, some estimated coefficients will be exactly zero,

thus the corresponding covariates of β̂ and φ̂ can be removed. From now on we will refer

to the model in (2.2) as the double Lasso penalized transition model.

2.2 Transition models with hierarchical penalization

One drawback of the Lasso penalization in (2.2) is that the elements of φ are selected

individually and thus the impact of the autoregressive effects in φ on their sparsity is

ignored. Specifically, the temporal structure of φ can be represented in a way as shown

in Figure 1, in which node φ1 comes before nodes φ2, . . . , φq thus can be represented as

the ancestor node and node φ2, . . . , φq can be regarded as the descendants of φ1. Similarly,

node φ2 can be viewed as the ancestor node of φ3, . . . , φq , and so on.

For some applications, in order to obtain a more parsimonious model, we hope to

maintain a hierarchical sparse structure of φ in the model selection procedure. Specifi-

cally, the model selection procedure should satisfy the so called strong heredity property:

φ̂j = 0 =⇒ descendents of φ̂j are all zero, i.e. (φ̂j+1, φ̂j+2, . . . , φ̂q) = 0.

10



Figure 2.2: Hierarchical structure

A model selection procedure with such a property can ensure that if an autoregressive

effect φj is removed from the model, then all the effects φi that come after φj (i.e. for i > j)

in the temporal sequence will also be zero. To impose such hierarchical structure in the

model, we introduce a hierarchical group Lasso penalty [Jenatton et al., 2010], which is

a generalization of the group Lasso penalty [Yuan and Lin, 2006]. To impose the strong

heredity, we group each variable with all of its descendent variables using a `2 norm.

Specifically, the penalty has the following form

P (φ) =
∑
j

‖φj,descendents of φj‖2.

Specifically, in our model, the descendent of φj are φj+1, φj+2, . . . , φq. We can see such

grouping structure in Figure 2.2 By the singularity of the `2 norm, when φ̂j is zero, this

penalty can enforce all of its descendents φ̂j+1, φ̂j+2, . . . , φ̂q to be zero also, thus main-

taining the required strong heredity. Denote φr:q = (φr, φr+1, · · · , φq)>, we propose a

hierarchical penalized transition model

(β̂, φ̂) = arg min
(β,φ)

f(β,φ) ≡ arg min
(β,φ)

`(β,φ) + Phier(β,φ),

where

Phier(β,φ) = λ1

q∑
r=1

wφr ‖φr:q‖2 + λ2

p∑
j=1

wβj |βj|, (2.3)

where wβj ≥ 0 and wφr ≥ 0 are the weights for penalty terms of β and φ respectively.

In (2.3), the first term of P (β,φ) penalizes the autoregressive term φ with hierarchical

11



property and the second term penalizes the regression coefficients β with the regular

Lasso.
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Chapter 3

Algorithm

In this section, we will discuss the numerical algorithms for solving the transition model

with the double Lasso penalization and the hierarchical penalization. The implementa-

tion details such as the hyper-parameter tuning are also discussed.

3.1 Computation of the double lasso penalized model

The optimization of the double Lasso penalized transition model in (2.2) involves mini-

mizing an objective function with non-smooth penalty function using `1-norn. The com-

putation of such non-smooth optimization problem can be efficiently carried out us-

ing coordinate descent [Friedman et al., 2010a], the accelerated proximal gradient de-

scent or the algorithms that explores the piecewise linearity of the solution path such as

LARS [Efron et al., 2004]. Since in our problem there are two coefficient vectors β and φ

to optimize, we will combine an iterative scheme on β and φ with the computationally

efficient coordinate descent algorithm. Similarly to [Wang et al., 2007], in the iterative

algorithm we fix one of the coefficient vector while optimizing the objective function

with respect to the other alternatively till convergence. Specifically, for a given dataset

{(xi,t, yi,t) ∈ Rp+1: i = 1, · · · , n, t = 1, · · · , Ti}, the double Lasso penalized transition

model solves the following objective function

13



fLasso(β,φ) =
1

2n

n∑
i=1

Ti∑
t=q+1

[
yi,t − x>i,tβ −

q∑
r=1

φr(yi,t−r − x>i,t−rβ)

]2
+λ1

q∑
r=1

wφr |φr|+λ2
p∑
j=1

wβj |βj|.

(3.1)

The iterative optimization scheme is conducted in the following way: first we fix β at its

current value β̃ and update φ by minimizing

φ̃
(new)

← arg min
φ

fLasso(φ|β̃). (3.2)

Next we fix φ = φ̃ and update β by minimizing

β̃
(new)

← arg min
β

fLasso(β | φ̃). (3.3)

For mathematically convenience, those two sub-problems can be represented in matrix

format. Define

zi,t = yi,t −
q∑
r=1

φ̃ryi,t−r, z′i,t = yi,t − x>i,tβ̃,

wi,t = xi,t −
q∑
r=1

φ̃rxi,t−r, w′i,t = [yi,t−1 − x>i,t−1β̃, · · · , yi,t−q − x>i,t−qβ̃]>,

for zi,t, z′i,t ∈ R, wi,t ∈ Rp,w′i,t ∈ Rq. Note that we consider terms where i ∈ {1, · · · , n}

and t ∈ {q + 1, · · · , Ti}. Then (3.2) and (3.3) can be expressed as:

fLasso(φ|β̃) =
1

2n

n∑
i=1

Ti∑
t=q+1

[
z′i,t −w′>i,tφ

]2
+ λ1

q∑
r=1

wφr |φr|, (3.4)

and

fLasso(β|φ̃)
1

2n

n∑
i=1

Ti∑
t=q+1

[
zi,t −w>i,tβ

]2
+ λ2

p∑
j=1

wβj |βj|, (3.5)
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which can be further simplified as

φ̃
(new)

Lasso ← arg min
φ∈Rq

1

2n
‖z′ −W′φ‖22 + λ1

q∑
r=1

wφr |φr|, (3.6)

and

β̃
(new)

Lasso ← arg min
β∈Rp

1

2n
‖z−Wβ‖22 + λ2

p∑
j=1

wβj |βj|, (3.7)

where

z = (z1,q+1, z1,q+2, · · · , z1,T1 , z2,q+1, · · · , z2,T2 , · · · , zn,q+1, · · · , zn,Tn)>,

z′ = (z′1,q+1, z
′
1,q+2, · · · , z′1,T1 , z′2,q+1, · · · , z′2,T2 , · · · , z

′
n,q+1, · · · , z′n,Tn)>,

W = [w1,q+1,w1,q+2, · · · ,w1,T1 ,w2,q+1, · · · ,w2,T2 , · · · ,wn,q+1, · · · ,wn,Tn ]>,

W′ = [w′1,q+1,w
′
1,q+2, · · · ,w′1,T1 ,w

′
2,q+1, · · · ,w′2,T2 , · · · ,w

′
n,q+1, · · · ,w′n,Tn ]>.

From the formula (3.6) and (3.7), we have found that the optimization problems (3.2)

and (3.3) have been converted into two separate Lasso penalized least squares problems,

which then can be efficiently solved using the existing solver via the coordinate descent

such as glmnet proposed by [Friedman et al., 2010a]. The details of the algorithm is

provided in Algorithm (1).

3.2 Computation of the hierarchical penalized model

In this section, we discuss the computation of the hierarchical penalized transition mod-

els. We consider of solving the following objective function

fHier(β,φ) =
1

2n

n∑
i=1

Ti∑
t=q+1

[
yi,t − x>i,tβ −

q∑
r=1

φr(yi,t−r − x>i,t−rβ)

]2
+λ1

q∑
r=1

wφr ‖φr:q‖2+λ2
p∑
j=1

wβj |βj|.

(3.8)
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Algorithm 1: Double LASSO implementation of penalization of Transition model
Input : y = (y1,1, · · · , yn,Tn)>, X = (x1,1, · · · , xn,Tn)>; the tuning parameters λ1, λ2.
Output : (β̂, φ̂)

• Initialize (β̃, φ̃)← (0, 0).

• Repeat (a) and (b) until convergence of β and φ:

(a) Fix β = β̃ and update φ by minimizing

φ̃
(new)

Lasso ← arg min
φ

f(φ|β̃),

with respect to φ, where

fLasso(φ|β̃) =
1

2n

n∑
i=1

Ti∑
t=q+1

[
yi,t − x>i,tβ̃ −

q∑
r=1

φr(yi,t−r − x>i,t−rβ̃)

]2

+ λ1

q∑
r=1

wφr |φr|.

(b) Fix φ = φ̃ and update β by minimizing:

β̃
(new)

Lasso ← arg min
β

f(φ|β̃),

with respect to β, where

fLasso(β|φ̃) =
1

2n

n∑
i=1

Ti∑
t=q+1

[
yi,t −

q∑
r=1

φ̃ryi,t−r +

q∑
r=1

(φ̃rx
>
i,t−r − x>i,t)β

]2

+ λ2

p∑
j=1

wβj |βj|.

• Return (β̂, φ̂) = (β̃
(new)

Lasso , φ̃
(new)

Lasso ).
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Similar to the double Lasso penalization, we find β and φ with iterative algorithm. That

is, we first fix β = β̃ in f(β,φ) and minimize

φ̃
(new)

← arg min
φ

fHier(φ|β̃) (3.9)

for φ, then we fix φ = φ̃ in f(β,φ) and minimize

β̃
(new)

← arg min
β

fHier(β | φ̃) (3.10)

for β. These steps are alternatively repeated until convergence of both β and φ. Obvi-

ously the only difference in the algorithm is how we penalize in the sub-problem 3.9. The

detail of this algorithm is outlined in Algorithm 2.

Again, similarly to the double Lasso case, we can also rewrite (3.9) and (3.10) in matrix

forms as

φ̃
(new)
Hier ← arg min

φ∈Rq

1

2n
‖z′ −W′φ‖22 + λ1

q∑
r=1

wφr ‖φr:q‖2, (3.17)

and

β̃
(new)
Hier ← arg min

β∈Rp

1

2n
‖z−Wβ‖22 + λ2

p∑
j=1

wβj |βj|. (3.18)

In the next section, we will discuss the computation of the sub-problem (3.17), which is a

hierarchical penalized least squares.

3.3 Computation of the hierarchical penalized least squares

3.3.1 The proximal gradient

We use the proximal gradient algorithm [Beck and Teboulle, 2009] to solve the sub-problem

(3.17). The algorithm iteratively performs a gradient descent update within a proxi-

mal operator, which is computationally efficient. It has the convergence guarantee for
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Algorithm 2: Iterative scheme for the hierarchical penalized transition model.
Input : y = (y1,1, · · · , yn,Tn)>, X = (x1,1, · · · , xn,Tn)>; the tuning parameters λ1, λ2.
Output : (β̂, φ̂)

• Initialize (β̃, φ̃)← (0, 0).

• Repeat the following step (a) and (b) until convergence of β and φ:

(a) Fix β = β̃ and update φ by minimizing

φ̃
(new)

Hier ← arg min
φ

f(φ|β̃), (3.11)

with respect to φ, where

fHier(φ|β̃) =
1

2n

n∑
i=1

Ti∑
t=q+1

[
yi,t − x>i,tβ̃ −

q∑
r=1

φr(yi,t−r − x>i,t−rβ̃)

]2
(3.12)

+ λ1

q∑
r=1

wφr ‖φr:q‖2. (3.13)

(b) Fix φ = φ̃ and update β by minimizing:

β̃
(new)

Hier ← arg min
β

f(φ|β̃), (3.14)

with respect to β, where

fHier(β|φ̃) =
1

2n

n∑
i=1

Ti∑
t=q+1

[
yi,t −

q∑
r=1

φ̃ryi,t−r + (

q∑
r=1

(x>i,t − φ̃rx>i,t−r))β

]2
(3.15)

+ λ2

p∑
j=1

wβj |βj|. (3.16)

• Return (β̂, φ̂) = (β̃
(new)

Hier , φ̃
(new)

Hier ).
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the non-smooth convex optimization problems and has linear convergence rate under

strong convexity case. Specifically, we denote the value of φ at k-th iteration as φ(k). Let

`(φ) = 1
2n
‖z′−W′φ‖22 and its gradient is denoted by∇φ`(φ) = − 1

n
W′>(z′−W′φ). Denote

by P (φ) = λ
∑q

r=1wr‖φr:q‖2 the hierarchical penalty. The proximal gradient algorithm

iteratively update φ(k) with

φ(k) ← arg min
φ∈Rq

1

2t
‖φ− (φ(k−1) − t∇φ`(φ

(k−1))‖22 + P (φ) (3.19)

= proxtP (φ(k−1) − t∇φ`(φ
(k−1)),

where t > 0 is the step size. The proximal operator used above is the minimizer of the

penalized problem

proxtP (u) = arg min
φ∈Rq

1

2
‖u− φ‖22 + λ1

q∑
r=1

wφr ‖φr:q‖2. (3.20)

Therefore in iteration k, we update φ(k) by computing the proximal operator (3.20) with

Algorithm 3: Proximal methods for solving for φ

Input : z′ ∈ R
∑
i Ti−nq, W′ ∈ R(

∑
Ti−nq)×q

Output : φ̃
(new)

Initialize φ(0), let k = 1
repeat

Use the backtracking line search to find step size t (call Algorithm 4)
u(k−1) ← φ(k−1) − t∇φ`(φ

(k−1))

φ(k) ← arg minφ∈Rq proxtP (u(k−1)) (call Algorithm 5)
k ← k + 1

until convergence of φ;

φ̃
(new)

← φ(k)

u = φ(k−1) − t∇φ`(φ
(k−1) = φ(k−1) + t

n
W′>(z′−W′φ(k−1)).

We use the backtracking line search to select step size t in each iteration. After the

initialization of t = tinit > 0, we shrink t by a factor β using t = βt until the following
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condition becomes satisfied:

`(φ̊) > `(φ(k−1))−∇φ`(φ
(k−1))>[φ(k−1) − φ̊] +

1

2t
‖φ(k−1) − φ̊‖22,

where φ̊ = proxtP (φ(k−1) − t∇φ`(φ)) and `(φ) = 1
2n
‖z′ −W′φ‖22. The details of the line

search is provided in Algorithm (4).

Algorithm 4: Backtracking Line Search Implementation for solving for φ

Input : φ(k−1) and∇φ`(φ
(k−1)))

Output : step size t
Initialize step size = tinit > 0, choose shrinking factor 0 < β < 1

φ̊ =proxtP ((φ(k−1) − t∇φ`(φ
(k−1))) (call Algorithm 5)

while `(φ̊) < `(φ(k−1))−∇φ`(φ
(k−1))>[φ(k−1) − φ̊] + 1

2t
‖φ(k−1) − φ̊‖22 do

t = βt
φ̊ =proxtP ((φ(k−1) − t∇φ`(φ

(k−1))) (call Algorithm 5)
end
return t

3.3.2 The proximal operator for the hierarchical penalization

For the computation of the proximal operator for the hierarchical penalization in (3.20),

we adopt the algorithm proposed by [Jenatton et al., 2010], which provides an efficient

way to solve the proximal operators for the overlapping group lasso with general tree

structures. The hierarchical penalization used in our model (3.17) has a chain structure as

shown in Figure 2.2, which can be viewed as a special case of the tree structures. Specifi-

cally, we optimize the dual form of (3.20), which can be written as

max
ξ∈Rq×q

− 1

2

[
‖u−

q∑
r=1

ξr:q‖22 − ‖u‖22
]

s.t. ∀r ∈ {1, · · · , q}, ‖ξr:q‖2 ≤ λ1wr

. (3.21)
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Here, ξr:q represents the concatenation of a zero matrix and the last r columns of dual

variable ξ ∈ Rq×q,

ξr:q = (0, · · · , ξr, ξr+1, · · · , ξq)>.

Denote by Π∗λ1wr the projection operator of the vector v to an `2-norm ball with radius

λ1wr

Π∗λ1wr(v) =


v if ‖v‖2 ≤ λ1wr,

v
‖v‖2λ1wr otherwise.

.

After initialization of v = u and ξ = 0, for r = q, q − 1, . . . , 2, 1, we iteratively update ξr:q

by

ξr:q ← Π∗λ1wr(vr:q)

where v = u−
∑

j 6=r ξj:q. In the end of the iteration, we report the solution of (3.20) as

proxtP (u) = v = u−
q∑
r=1

ξr:q

Algorithm 5: Proximal methods for solving for φ
Input : u ∈ Rq

Output : (v, ξ) (primal-dual solutions)
Initialize v = u, ξ = 0(q×q)
for r ∈ G = {q, q − 1, · · · , 1} do

v← u−
∑

j 6=r ξj:q
ξr:q ← Π∗λ1wg(vr:q)

end
v← u−

∑q
r=1 ξr:q
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Chapter 4

Implementation details

In this section we will describe some details of the implementation of the algorithms for

solving the double Lasso and the hierarchical penalized transition models.

4.1 The double Lasso penalization

For solving the double Lasso penalized problem in (3.6) and (3.7), we use the existing R

package glmnet [Friedman et al., 2010b], which adopts an efficient coordinate descent

algorithm for solving least squares loss

min
β

1

2n
‖y− Xβ‖22 + λ[(1− α)‖β‖22 + α‖β‖1].

For the argument of glmnet, we exclude the intercept term using intercept=FALSE,

disable the standardization by standardization=FALSE and we set the parameter

alpha=1 to enforce a Lasso penalty. Suppose we have the observations xi ∈ Rp and

the response yi ∈ R for i = 1, . . . , n, when we optimize β, we set X = W and y = z; When

we optimize φ, we set X = W′ and y = z′ with the same settings on glmnet.
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4.2 The hierarchical penalization

The solution to the proximal operator in (3.20) for the hierarchical penalization is obtained

using SPAMS package [Mairal, 2014]. After finding the correct step size t with 4, we use

SPAMS.proximalGraph function in SPAMS to solve the optimization problem (3.20),

specifically it solves the following problem

min
v∈Rp

1

2
‖u− v‖2 + λ

∑
g∈G

ηg‖vg‖∗, (4.1)

where v = (v1, . . . , vp)
> is a p-dimensional vector and g is defined to be the index of

the group of the variables to be penalized together. The function proximalGraph has

a parameter graph that the user need to specify in order to define a given structured

regularization. There are three attributes associated with the parameter graph:

• graph.eta g,

• graph.groups

• graph.groups var

The first attribute graph.eta g is used to determine the weight of penalization as-

signed to each group g. In our case, we set graph.eta g=(1, . . . , 1)>. The second and the

third attributes graph.groups and graph.group var controls the structure of the

penalization. The attribute graph.groups sets the inclusion relationships between the

groups. Suppose that there are k groups G ={g1, · · · , gk} in the structured penalization.

The value of this attribute should be a k × k matrix and the (i, j) entry of this matrix is

one if and only if the group gi is included in group gj (for i 6= j). The diagonal entries

of this matrix are all zero. The third attribute graph.group var controls the inclusion

relationships between groups and variables. It takes a p× k matrix, where the (i, j) entry

of this matrix is one if and only if the variable vi in (4.1) is included in group gj but not in

any descendants group of gj. For example, if the group structure G = {g1, g2, g3, g4, g5} is
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defined in the following way

g1 = {1, 2, 3, 4}

g2 = {4, 5, 6, 7}

g3 = {7, 8, 9, 10}

g4 = {1, 2, 3, 4, 5, 6}

g5 = {7, 8, 9},

the entries for graph.groups and graph.group var will be

graph.groups =



0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0


, graph.groups var =



1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 1 0 0 0

0 1 0 1 0

0 1 0 1 0

0 1 0 0 1

0 0 0 0 1

0 0 0 0 1

0 0 1 0 0



.

For argument graph.groups, the entry at (1,4) of graph.groups is non-zero because g1

is different from g4 and g1 is included in g4. Similarly, the entry at (5,3) of graph.groups

is also non-zero because g3 is different from g5 and g5 is included in g3. All other entries

of graph.groups are zeroes because it does not satisfy the aforementioned condition.

Now looking at graph.groups var, the entry at (1,1) is non-zero because variable

1 is included in g1 and is not included in any children of g1 (since g1 does not have a

descendent group), whereas the entry (1,4) is zero because even that variable 1 is included
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in g4 but it also included in g1 (which is a descendant group of g4), thus doesn’t satisfy

the condition. Likewise, for the hierarchical penalization case, we can construct the two

graph structure parameters for our chain-like structure as,

graph.group =



0 1 · · · 1

...
. . .

. . .
...

...
. . .

. . . 1

0 · · · · · · 0


, graph.groups var =



1 0 · · · 0

...
. . .

. . .
...

...
. . .

. . . 0

0 · · · · · · 1


,

for regularization we select regul=’graph’ which will apply group lasso to the coeffi-

cients. We set λ1 as the given regularization parameter and exclude intercept term using

intercept=FALSE, and we allow negative numbers in the output of the proximal com-

putation by setting pos=FALSE (setting this argument to TRUE will truncation the nega-

tive entries of the results to zero). As mentioned previously, we use this at each iteration

k of backtracking-line search by setting u = φ(k−1) − t∇φ`(φ
(k−1) in (3.20). The output of

this function will give the solution to 3.20.

4.3 Model selection

To find the appropriate values of the tuning parameters λ1 and λ2 associated in the mod-

els for time-dependent data, we use the cross-validation procedure proposed by [Song

and Bickel, 2011] and [Bańbura et al., 2010]. We write (β̂
(λ1,λ2)

, φ̂
(λ1,λ2)

) as the estimated

coefficients for a given pair (λ1, λ2), the point estimates of the one-step-ahead forecasts are

denoted by

ŷ
(λ1,λ2)
i,t+1 = x>i,tβ̂

(λ1,λ2)
+

q∑
r=1

φ̂(λ1,λ2)
r (yi,t−r − x>i,t−rβ

(λ1,λ2)),

which is obtained using only the information up to time t. Denote by T 0 and T 1 the

beginning and the end of the evaluation period. For each evaluation time period t =

T 0, . . . , T 1−1, we compute the one-step-ahead forecasts ŷ(λ1,λ2)i,t+1 using only the information
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up to time t. The out-of-sample forecast error is measured using mean squared forecast

error (MSFE)

MSFE(λ1,λ2) ≡ 1

n× (T 1 − T 0 − 1)

n∑
i=1

T 1−1∑
t=T 0

(yi,t+1 − ŷ(λ1,λ2)i,t+1 )2. (4.2)

We select the optimal pair (λ̂1, λ̂2) according to

(λ̂1, λ̂2) = arg min
(λ1,λ2)

MSFE(λ1,λ2).
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Chapter 5

Simulation

The simulation results presented in this section will compare and evaluate the double

Lasso penalized models 2.2 and the hierarchical penalized models 3.8 in terms of their

prediction accuracy and variable selection accuracy, and how those performances vary

with different sample sizes and the numbers of longitudinal measurements. Throughout

this section, the tuning parameters are selected by the cross validation procedure describe

in Section 4.3 and we use grid search on the tuning parameters λ1 and λ2 from the grid

points {0, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6}. For convergence criterion, we choose ε = 10−3

and we stop the iterative process when ‖φ(k+1) − φ(k)‖2 < ε and ‖β(k+1) − β(k)‖2 < ε. We

select (λ̂1, λ̂2) which minimizes MSFE defined in (4.2). The simulation data is generated

from the REGAR model adopted from [Wang et al., 2007] under the following setting:

yi,t = 3.0xi,t,1 + 1.5xi,t,2 + 2.0xi,t,5 + xi, + ei,t

ei,t = 0.5ei,t−1 − 0.70ei,t−2 + σεt,

for εt ∼ N (0, 1), t = 1, · · · , Ti and i = 1, · · · , n. Our true regression and autocorrelation

coefficients are set at β∗ = (3.0, 1.5, 0, 0, 2, 0, 0, 1)> and φ∗ = (0.5,−0.7, 0, 0, 0)>. Also,

we generate xi,t = (xi,t,1, · · · , xi,t,p)> independently from multivariate normal distribution
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where the pairwise correlation between xi,t,j1 and xi,t,j2 is ρ|j1−j2|. Then we consider cases

where Ti = T for all i ∈ {1, · · · , n} with T ∈ {50, 100} and n ∈ {10, 100}. For the standard

deviation of the noise variable we have σ = 0.5 and for correlation coefficients we have

ρ ∈ {0.25, 0.75}. The two values of correlation coefficients are used to show high and

low linear correlation between the covariates. For each simulation setting, we repeat the

experiment for 100 time, and the averaged value of precision and recall of the variable

selection results for both β̂ and φ̂ are reported. Here precision is defined as the fraction of

selected variables that are true variables, and recall (also known as sensitivity) is defined

as the fraction of the true variables that are selected by variable selection. Then we report

the precision and recall of variable selection as well as the estimation error for β̂ and φ̂.

We can see from the reported Table 5.1 and 5.2 that when ρ is smaller, both models tend

to perform better in terms of variable selection error and estimation error. Also, when we

have higher n and T , the estimation and variables selection results are better.
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Estimator β̂ φ̂
Pre. (%) Rec. (%) ‖β̂ − β∗‖2 Pre. (%) Rec. (%) ‖φ̂− φ∗‖2

n = 10, T = 50
Double Lasso 56.9 100.0 0.544 42.0 100.0 0.118

(0.6) (0.0) (0.001) (0.5) (0.0) (0.005)
Hierarchical 57.9 100.0 0.083 30.8 80.0 0.882

(0.7) (0.0) (0.002) (1.6) (4.0) (0.005)
n = 100, T = 50
Double Lasso 84.5 100.0 0.021 66.7 100.0 0.476

(1.3) (0.0) (0.001) (0.0) (0.0) (0.002)
Hierarchical 78.7 100.0 0.025 40.0 100.0 0.866

(1.2) (0.0) (0.001) (0.0) (0.0) (0.002)
n = 10, T = 100
Double Lasso 100.0 100.0 0.113 57.1 100.0 0.135

(0.0) (0.0) (0.001) (0.0) (0.0) (0.005)
Hierarchical 100.0 100.0 0.109 40.0 100.0 0.119

(0.0) (0.0) (0.001) (0.0) (0.0) (0.005)
n = 100, T = 100

Double Lasso 50.0 100.0 0.015 66.6 100.0 0.460
(0.0) (0.0) (0.035) (0.0) (0.0) (0.001)

Hierarchical 53.1 100.0 0.012 40.0 100.0 0.029
(0.6) (0.0) (0.031) (0.0) (0.0) (0.001)

Table 5.1: Simulation Result for ρ = 0.25
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Estimator β̂ φ̂
Pre. (%) Rec. (%) ‖β̂ − β∗‖2 Pre. (%) Rec. (%) ‖φ̂− φ∗‖2

n = 10, T = 50
Double Lasso 88.7 100.0 0.109 40.1 100.0 0.137

(0.0) (0.0) (0.003) (0.0) (0.0) (0.051)
Hierarchical 89.0 100.0 0.111 40.0 100.0 0.137

(0.0) (0.0) (0.003) (0.0) (0.0) (0.005)
n = 100, T = 50
Double Lasso 50.0 100.0 0.034 40.0 100.0 0.049

(0.0) (0.0) (0.001) (0.0) (0.0) (0.002)
Hierarchical 50.0 100.0 0.034 40.0 100.0 0.050

(0.0) (0.0) (0.001) (0.0) (0.0) (0.002)
n = 10, T = 100
Double Lasso 52.3 100.0 0.075 69.3 100.0 0.469

(0.0) (0.0) (0.002) (0.0) (0.0) (0.006)
Hierarchical 50.0 100.0 0.109 37.9 94.5 0.871

(0.0) (0.0) (0.003) (0.0) (0.0) (0.004)
n = 100, T = 100

Double Lasso 50.0 100.0 0.022 48.6 100.0 0.029
(0.0) (0.0) (0.001) (0.0) (0.0) (0.001)

Hierarchical 50.0 100.0 0.023 40.0 100.0 0.254
(0.0) (0.0) (0.001) (0.0) (0.0) (0.002)

Table 5.2: Simulation Result for ρ = 0.75
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Chapter 6

Real Data Analysis

To identify which variable selection techniques are appropriate for analyzing longitudinal

regression modeling, we use a provincial dataset from Saskatchewan to examine which

of the variable selection approach outperforms than others in terms of having a better

prediction accuracy and a more interpretability of the resulting models. We aim to pre-

dict the frequency of hospital visits among those with incident dementia and depression

and identify factors that are associated with the frequency of hospital visits. Data ana-

lyzed here is from the Saskatchewan health care utilization datafiles. The data files cover

health services (for instance, hospital discharge and physician services) delivered to all

Saskatchewan residents, which represent almost 99% of the provincial population. Be-

cause the comorbidity of dementia and depression is highly prevalent and an in-depth

understanding the health service use of patients suffering from the comorbidity could

not only help to better allocate the limited health services resources to meet the need

of population with the comorbidity but also highlights the clinical treatment and man-

agement efforts towards to the subpopulation with more disadvantaged characteristics.

The current study included all of the Saskatchewan residents who, in 2000, were eligible

for health coverage, and were newly diagnosed with dementia and depression during

the year of 2000 and 2006. A total of 328 patients who were diagnosed with incident of

dementia and depression. The incidence density of dementia in the provincial popula-
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tion of Saskatchewan in year 2000 was 0.01 per 1000 person for individuals between age

18-64 years and 3.13 per 10000 person for age 75 to 84. To demonstrate the variable se-

lection approaches, we used 17 variables in the analysis. The description of the variables

of the dataset corresponding to the variable name is included in 6.1. All the features of

this dataset except age2000 and incidentage are categorical, as such we one-hot encode the

dataset to create dummy variables before applying our models to them. Specifically, for

covariate SEX, we use binary variables SEX 1 for male patients and SEX 2 for female

patients; for covariate MARSTATI, the MARSTATI 1 is used for entries corresponding to

whether or not an individual is single , for covariate MARSTATI 2, the MARSTATI 2 is

used for entries corresponding to whether or not an individual is married or in common-

law, and the MARSTATI 3 is used for entries corresponding to whether or not individual

is Separated, divorced or widowed; for covariate RESINDX, the RESINDX 1 is used for

entries corresponding to whether or not the individual is living in urban area, and the

RESINDX 2 is used for entries corresponding to whether or not the individual is living

in a rural area; for covariate INCSECI, the INCSECI 0 is used for entries corresponding to

not receiving any social welfare at the beginning of the study period, INCSECI 1 is used

for entries corresponding to receiving the Saskatchewan Assistance plan at the beginning

of the study period, INCSECI 2 is used for entries corresponding to receiving the Family-

based income security benefits at the beginning of the study period, INCSECI 3 is used for

entries corresponding to receiving the Senior-based income security beginning of study

period; for covariate INCSECE, the INCSECE 0 is used for entries corresponding to not

receiving any social welfare at the end of the study period, INCSECE 1 is used for entries

corresponding to receiving the Saskatchewan Assistance plan at the end of the study pe-

riod, INCSECE 3 is used for entries corresponding to receiving the Senior-based income

security benefits at the end of the study period. After such reparameterization, the total

number of covariates in the model is 17.
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Variable Description

age2000 Age at 2000
incidentyear Year of incident of dementia
incidentage Age at incident of dementia
SEX Subject sex (1: “Male”, 2: “Female”)
MARSTATI Marital status (1: “single”, 2: “married/common-law”,

3: “Separated, divorced, or widowed”)
RESINDX Residence Status (1: “urban”, 2: “rural”)
INCSECI Income security benefits status at index (0: “None” , 1: ”Saskatchewan Assistance plan”,

2: “Family-based income security benefits”, 3 “Senior- based income security benefits”).
INCSECE Income security benefits status at exit (0: “None” , 1: ”Saskatchewan Assistance plan”,

2: “Family-based income security benefits”, 3 “Senior- based income security benefits”).

Table 6.1: A description of the covariates in the psychological dataset

For this dataset, the yearly measurements were gathered from year of 1999 to year of

2006. Hence the total number of time points is 8. While training the models to this dataset

first 7 time points were used for training and the last 2 time points were used for cross

validation and reporting. We also note that the value of input does not change year to

year, as all the variables in 6.1 for each individual are same across the time period. For

example, age2000 corresponding to subject’s age at 2000, and contribution to the outcome

remains constant between 1999 to 2006. Since the value of the input does not change,

the values Xi,t that it corresponds to in the model remains unchanged while the response

variable Yi,t varies.

We model the response Yi,t, which is the frequency of individual i’s visit to the hos-

pital for psychiatric treatment measured at time point t, as an explicit function of past

response Yi,t−1, · · · , Yi,t−q and covariates xi,t. Here t = 1 corresponds to year 1999 and

t = 9 corresponds to year 2006. The description of the response variable is provided in

Table 6.2.

We apply three different kinds models to this dataset: (i) an unpenalized transition

model (ii) a double Lasso penalized transition model and (iii) a hierarchical penalized

transition model. In order to tune the parameters for model (ii) and (iii), we used the

cross validation method discussed in Section 4.3. Specifically, we train model (ii) and (iii)
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Variable Description

NumSPs1999 Number of service for psychiatric diagnoses in 1999
NumSPs2000 Number of service for psychiatric diagnoses in 2000
NumSPs2001 Number of service for psychiatric diagnoses in 2001
NumSPs2002 Number of service for psychiatric diagnoses in 2002
NumSPs2003 Number of service for psychiatric diagnoses in 2003
NumSPs2004 Number of service for psychiatric diagnoses in 2004
NumSPs2005 Number of service for psychiatric diagnoses in 2005
NumSPs2006 Number of service for psychiatric diagnoses in 2006

Table 6.2: Repeated measurements of the response variable in the psychological dataset

Value

MSFE(λ̂hier
1 ,λ̂hier

2 ) 12513
MSFE(λ̂dlasso

1 ,λ̂dlasso
2 ) 12497

MSFE(10−6,10−6) 4817155

Table 6.3: MSFE values for model (i), (ii) and (iii) on Psychological dataset

using the first seven time points and validate the fitted model using the last two time

points, i.e. we set T0 = 7 and T1 = 9 in (4.2) to obtain the MSFEs in the model selection

procedure. The optimal values (λ̂dlasso
1 , λ̂dlasso

2 ) corresponding to the smallest MSFEs are

chosen for double Lasso penalized models and (λ̂hier
1 , λ̂hier

2 ) are chosen for the hierarchical

penalized models, respectively.

In order to compare the performance of model (i), (ii), and (iii), we compare their MSFE

values, which are presented in Table 6.3. Both double lasso and hierarchical penalization

model have similar MSFE. They have noticeably lower values than model (iii). Although

we cannot conclude which one of these two penalization model are better than the other,

they perform better than the unpenalized model.

Additionally, we study the importance of each variable in β̂ and φ̂ by using the so-

lution paths. The solution path can show which of the variables become non-zero as the

amount of sparse penalization decreases. The plot demonstrates the order in which the

variables are added to the model are shown in Figure 6.1, and the corresponding results

are reported in Table. We plot the solution path with varying λ1 and λ2 for both the hi-
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erarchical penalized model and the double Lasso penalized model. For example, for plot

a), we show the solution path of β̂ for the double lasso case. We fix λ2 at λ̂dlasso
2 selected by

cross validation and fit the double lasso for a sequence of 30 different λ1 values spanning

across {10−6, 10−5.8, · · · , 10−1}. Then we plot the fitted values β̂ at each λ1. Each line in the

the Figure 4(a) corresponds to the value of β̂i, the i-th element of β̂. On the y-axis we have

the values of β̂i at each λ1, and on the x-axis, we have the values of corresponding λ1 on

the logarithmic scale. For Figure 4(b), we plot the solution path of φ̂ for the double lasso.

Here, we fix λ1 on λ̂dlasso
1 and then fit the double lasso while varying λ2. Then we plot the

values of φ̂ at each λ2. Again, each line corresponds to the value of φ̂i, i-th coefficient in

φ̂. For Figure 4(c) and (d), we carry out this exact same procedure except that we use the

hierarchical penalization instead of the double Lasso.

The results shown in Figure 4 demonstrate which variables in the models are deemed

more important. The variables that become non-zero at a smaller penalization value are

less relevant to the prediction of the response variable. In the double Lasso model, we

see that φ̂1 becomes non-zero at highest value of λ1, followed by φ̂2 at second highest and

so on. In hierarchical Lasso model, all the φ̂′js becomes non-zero at the same λ value.

These results are displayed in Table 6.4 where we see the order variables in which they

enter the model is also shown. Variables including age2000, incidentyear, and incidentage

enter the model with higher λ values than the other variables indicating that they are the

most important variables for determining the health services usage across the given time

period.

Table 6.6 shows the fitted values of both double lasso and hierachical penalization

(λ̂dlasso
1 , λ̂dlasso

2 ) and (λ̂hier
1 , λ̂hier

2 ), respectively. These values are more complicated to inter-

pret as the response variable depends on both φ and β as well as the presence of dummy

variables that are present in the model. Let β∗ and φ∗ be the fitted values from the model

and β∗−j = (β∗1 , · · · β∗j−1, β∗j+1, · · · , β∗p) ∈ Rp−1. We also denote xi,t,j as the binary dummy

variable mentioned earlier in this section. From 1.1, that the expected value of the re-

sponse variable can be calculated as
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E[Yi,t|xi,t,j] = x>i,tβ
∗ +

q∑
r=1

φ∗r(Yi,t−r − x>i,t−rβ
∗),

= xi,t,jβ
∗
j + x>i,t−jβ

∗
−j +

q∑
r=1

φ∗r(Yi,t−r − xi,t−r,jβ∗j − x>i,t,−jβ
∗
−j).

Now, given that dummy variables take the value 0 or 1, the expected value of response

variable when xi,t,j is 0 and 1 are

E[Yi,t|xi,t,j = 0] = x>i,t−jβ
∗
−j +

q∑
r=1

φ∗r(Yi,t−r − x>i,t,−jβ
∗
−j),

and

E[Yi,t|xi,t,j = 1] = β∗j + x>i,t−jβ
∗
−j +

q∑
r=1

φ∗r(Yi,t−r − β∗j − x>i,t,−jβ
∗
−j)

respectively. Hence the difference between these two expected value is

E[Yi,t|xi,t,j = 1]− E[Yi,t|xi,t,j = 0] = β∗j +

q∑
r=1

φ∗r(−β∗j )

= β∗j (1−
q∑
r=1

φ∗r).

This means that when dummy variable xi,t,j is 1, then the expected value Yi,t increases

by β∗j (1−
∑q

r=1 φ
∗
r). Now to put this in the context of the data, we consider an individual

with following properties:

1. Being a male

2. Being single

3. Living in urban areas

The results from the hierarchical penalization model indicate:

36



• The expected value of frequency of hospital visit changes by −0.162× [1− (0.735−

0.201 + 0.220− 0.166− 0.027)] = −0.071 due to this individual being a male.

• The expected value of frequency of hospital visit changes by 0.419 × [1 − (0.735 −

0.201 + 0.220− 0.166− 0.027)] = 0.184 due to this individual being single.

• The expected value of frequency of hospital visit changes by 0.048 × [1 − (0.735 −

0.201 + 0.220− 0.166− 0.027)] = 0.021 due to this individual living in urban areas.

For continous variables age2000, incidentyear, and incidentage, we can interpret the result

as folllowing:

• One unit increase of age2000, changes the expected value of frequency of hospital

visit by −0.499× [1− (0.735− 0.201 + 0.220− 0.166− 0.027)] = −0.219

• One unit increase of incidentyear, changes the expected value of frequency of hospital

visit by 0.003× [1− (0.735− 0.201 + 0.220− 0.166− 0.027)] = 0.001

• One unit increase of incidentage, changes the expected value of frequency of hospital

visit by 0.465× [1− (0.735− 0.201 + 0.220− 0.166− 0.027)] = 0.204

Similar calculation for the double Lasso model shows that:

• The expected value of frequency of hospital visit changes by 0.877 × [1 − (0.614 −

0.096 + 0.007− 0.029− 0.007)] = 0.448 due to this individual being a male.

• The expected value of frequency of hospital visit changes by 0.782 × [1 − (0.614 −

0.096 + 0.007− 0.029− 0.007)] = 0.400 due to this individual being single.

• No changes are expected to the value of frequency of hospital visit due to this indi-

vidual living in urban areas.

Note that the result of the Double Lasso penalization model is more stable and efficient

than the hierarchical Lasso penalization model while training on the datasets. Therefore,

we recommend to use the results from Double Lasso penalization model. To summa-
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Figure 6.1: Solution paths for (a) β̂ for the double Lasso case; (b) φ̂ for the double Lasso

case;

38



Variable Double Lasso Hierarchical Lasso

age2000 3 2
incidentyear 1 1
incidentage 2 3
SEX 4 6
MARSTATI 6 5
RESINDX 8 4
INCSECI 7 8
INCSECE 5 7

Table 6.4: Order of entrance of variables in β̂ into the model

Variable Double Lasso Hierarchical Lasso

φ1 1 (1)
φ2 2 (1)
φ3 3 (1)
φ4 4 (1)

Table 6.5: Order of entrance of variables in φ̂ into the model

Variable Hierarchical Lasso Double Lasso

age2000 -0.499 -0.137
incidentyear 0.003 0.702
incidentage 0.465 -0.017
SEX 1 -0.162 0.877
SEX 2 0.071 18.936
MARSTATI 1 0.419 0.782
MARSTATI 2 0 0
MARSTATI 3 -0.828 1.184
RESINDX 1 0.048 0
RESINDX 2 -1.386 0
INCSECI 0 0 0
INCSECI 1 0 0.436
INCSECI 2 0 -1.489
INCSECI 3 0 0.126
INCSECE 0 0 0
INCSECE 1 0 0
INCSECE 3 0 0.311

Table 6.6: Value of fitted β
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Variable Hierarchical Lasso Double Lasso

φ1 0.735 0.614
φ2 -0.201 -0.096
φ3 0.220 0.007
φ4 -0.166 -0.029
φ5 -0.027 -0.007

Table 6.7: Value of fitted φ

rize, the results from the plot (6.1) and the tables (6.4), and (6.6) allow us to interpret the

model. Table (6.4) shows the significance of the variables to the model in which the order

of entrance indicating the order of significance of variables to the model. Here, variables

that enter the model at lower order are higher in significance compared to the models

that enter the model at a higher order. Since the expected value of the response variable

Yi,t depends on both β and φ, we could interpet that the change of the expected value

of frequency of hospital visit of an individual due to these values. Analyzing the values

in Table (6.6) for the Double Lasso, we can find that being female increases the expected

value of frequency of hospital visit more compared to male. For marital status, “Sepa-

rated, divorced, or widowed” increases the expected value more than being “Single”. For

residential status, there are no significant difference between living in urban areas and liv-

ing in rural ares. For income security benefits status at index, receiving in “Saskatchewan

Assistance plan” has a higher increase followed by “Senior- based income security ben-

efits”, and then “Family-based income security benefits”. For income security benefits

status at exit, being “Senior- based income security benefits” increases expected value of

response variable. Similar analysis can be made with the hierarchical Lasso but the results

are less reliable than Double Lasso implementation.
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Chapter 7

Conclusion

Longitudinal data analysis is frequently used to model changes in the outcome of interest

overtime. In the present study, we provided an overview of usage of traditional machine

learning methods such as penalization techniques in longitudinal data analysis and com-

pare the penalization methods that induce sparsity in the coefficients while constructing

a hierarchy between the variables. There are many penalization methods that induces

sparsity. One of the most widely used model for variable selection is Lasso. Lasso selects

variables that are important in predicting the response variables by setting less important

variables to zero. Variants of Lasso can prompt many different properties in the coeffi-

cient while maintaining its sparsity. For example, sparse group Lasso can induce sparsity

on the coefficients while maintaining group-wise sparsity. Hierarchical group Lasso can

further incorporate hierarchy within its coefficients. We proposed similar work in the

longitduinal data analysis. In longitudinal data, there are two coefficients that control

the response variable: coefficient β and autoregressive coefficient φ, which allows time

dependent effect to the response variable. First model we used is double Lasso where

we applied Lasso on β and φ. This model is intended to give sparsity to both β and

φ. Second model we investigated is hierarchical Lasso penalization model. Similar to

the hierarchical group lasso, we intend to induce chain-like hierarchy on φ. We provide

the details of how this algorithm is applied, showing the optimization process that uses
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iterative steps to first optimize for β and subsequently, φ. Also, we discuss the param-

eters and settings used on glmnet and SPAMS package in order to run the algorithm as

intended. We demonstrated the results of these two algorithms on a simulated dataset,

with varying size n and time points T . To correctly select optimal hyper-parameters, we

used a modified cross validation (CV) approach to account for the temporal aspect of this

dataset. Lastly, we test the results of these algorithms on a real dataset to examine which

variable selection approach outperforms than others in terms of having a better predic-

tion accuracy and a more interpretability of the resulting models. In the demonstration

study, we aim to model the frequency of hospital visits among those with incident de-

mentia in the province of Saskatchewan during 2000-2006. We offer step-by-step details

about the selection process and interpretation based on the results of these two models.

Overall, base on both simulated dataset and and demonstration studies we conclude that

these penalized models outperform than unpenalized ones and the double Lasso model

provides more stable and robust results.
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