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Abstract 

Thermal expansion can be problematic in manifold applications that require thermal stability, yet 

it can also be purposely exploited to meet specific directional requirements of thermal 

deformation. Opportunities to tailor thermal expansion in architected materials exist, but design 

options that are stiff and provide full directional authority on thermal expansion are currently 

limited by the structural characteristics of existing concepts. In this work, we report routes to 

systematically engineer thermally responsive lattice materials that are built from dual-material 

tetrahedral units that are stiff and strong. Drawing from concepts of vector analysis, 

crystallography, and tessellation, a scheme is presented for three-dimensional lattices to program 

desired magnitude and spatial directionality, such as unidirectional, transverse isotropic, or 

isotropic, of thermal expansion. Demonstrations on thermal expansion and mechanical properties 

include theoretical, computational, and experimental studies of nine representative concepts, from 

tetrahedral building blocks to compound unit cells that can tessellate structurally efficient lattices 

with tunable magnitude and prescribed directionality of thermal expansion. 

Keywords: thermal expansion, three-dimensional lattices, mechanical metamaterials, structural efficiency. 

 

1. Introduction 

Systems in extreme thermal environments are susceptible to severe temperature changes. 

Variations in temperature can lead to undesirable geometric changes in sensitive applications that 
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require very fine precision during their working conditions, such as satellite antennas, space 

telescopes, and large array mirrors (Gilmore, 2002; Yamamoto et al., 2014). As shown in Fig. 1a, 

systems that operate in space need to be thermally stable and dismiss unexpected thermal 

deformation, a feature that calls for materials with zero coefficient of thermal expansion (CTE) 

(Gilmore, 2002; Steeves et al., 2007). In other applications, on the other hand, thermal 

deformation is highly desired, and here the quest shifts to material systems that can deliberately 

deform in response to a temperature stimulus dictated by the surrounding environment. This 

scenario generally translates into a demand for large, positive or negative, CTE (Boatti et al., 

2017; Ding et al., 2017; Ge et al., 2016). Examples stemming from a broad and diversely wide 

range of applications include morphing, e.g. self-shaping, self-folding, and deployable systems 

(Breger et al., 2015; Stoychev et al., 2011; Zhang et al., 2017), self-assembly (Tibbits, 2012), 

packaging (Breger et al., 2015; Stoychev et al., 2011), actuation (Mao et al., 2016), structural 

adaptivity (Ding et al., 2017; Mao et al., 2016; Zhang et al., 2017) and biological devices 

(Stoychev et al., 2011). 

In general, low to zero CTE can be achieved with intrinsically low or negative expansion 

materials (Miller et al., 2009), used as standalone solid or in a composite form without voids 

(Sleight, 1998). As shown in Fig. 1a, ZrW2O8 and related ceramics (Korthuis et al., 1995; Mary 

et al., 1996) or Invar have low, or even negative, CTE. But most of all have shortcomings that 

limit their use in applications requiring robustness and durability over a large temperature range. 

Their faults generally correlate with the material type, and examples include: for ceramics, the 

brittleness and abrupt failure upon peaks of thermal stresses; for Invar-36 and other metals (e.g. 

Fe68Pd32) with low CTE, their limited range of temperature (Fig. 1a) (Steeves et al., 2007); and 

for fiber-reinforced composites, the interface thermal strain and failure caused by the large 

difference of CTEs between fiber and matrix (Ito et al., 2000). Similarly, for applications 
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requiring large CTEs, solid materials can feature intrinsically positive or negative CTEs, such as 

Fe72Pt28 shown in Fig. 1a. However, the available range of CTE these materials can offer remain 

too narrow (about -101 ppm /℃ to 103 ppm /℃ (Ashby, 2011)) to induce responsive and large 

deformations, such as those required for morphing and other applications (Mao et al., 2016; 

Zhang et al., 2017). An effective alternative to all solids listed above are architected materials 

made of two solids with distinct CTEs. The rational tuning of their structural geometry and/or 

selection of their components can generate desired values of CTE from large positive to negative 

including zero. 

Different concepts exist in the literature of CTE tunable architected materials. Each has its own 

characteristics and performance, and CTE tunability ( CTE∆ ) is a metric that can be used to 

discriminate between the potential of their architecture; CTE∆  measures the range of CTE 

attainable via geometric manipulation of a concept for a given pair of constituents (Xu and Pasini, 

2016). Whereas no CTE∆  exists for a single material system, dual material concepts can attain a 

range of CTE values, and the difference between the upper and lower bound represents CTE∆ . 

The larger CTE∆ , the broader the prospect of manipulating the material architecture to meet 

given CTE requirements. In the literature, the majority of concepts are in 2D (Ai and Gao, 2017; 

Grima et al., 2008; Hopkins et al., 2013; Jefferson et al., 2009; Lehman and Lakes, 2014; Lim, 

2005; Miller et al., 2008; Palumbo et al., 2011; Sigmund and Torquato, 1997; Steeves et al., 2007; 

Vandeperre and Clegg, 2003; Wei et al., 2016; Wu et al., 2016; Xu et al., 2017; Yamamoto et al., 

2014) and can accommodate only in-plane thermal deformation, including those resorting to 

origami (Boatti et al., 2017). Others are three-dimensional (Ai and Gao, 2018; Grima et al., 2008; 

Lakes, 2007; Lehman and Lakes, 2013; Lim, 2013; Miller et al., 2008; Qu et al., 2017; Steeves et 

al., 2007; Wang et al., 2016; Wu et al., 2016; Xu and Pasini, 2016) and, compared to the planar 

concepts, have a range of advantages including the ability to provide low density space filling in 
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a protective medium (Wadley, 2006), remarkable heat exchange with larger contact area (Kim et 

al., 2004), CTE tunability in all spatial directions to yield desired thermal behaviour, such as 

spatial isotropic expansion (Wu et al., 2016; Xu and Pasini, 2016), and others. The lower part of 

Fig. 1 also shows the main 3D concepts that can use one building block to construct a series of 

unit cell topologies with controllable CTE. Fig. 1g is a periodic foam built from bi-material strips 

(Fig. 1b) that are dominated by bending, a characteristic that lowers structural efficiency (i.e. 

stiffness/mass and strength/mass), and brings about unbounded CTE∆  (Lakes, 2007; Lehman 

and Lakes, 2014). Fig. 1h is a stretch-dominated lattice made of nested double-barrelled struts 

(Fig. 1c) with high structural efficiency but low CTE∆  due to the relatively modest Poisson 

effect their struts can attain, i.e. transversal mismatch of thermal expansion brings longitudinal 

contraction (Lehman and Lakes, 2013). Another concept in Fig. 1i has low specific stiffness 

(Wang et al., 2016) but can attain high CTE tunability mainly in the negative range (as shown in 

Fig. 1a for the given pair of constituents Al and Ti). Concepts built from a bi-material tetrahedron 

as building block (Fig. 1j), on the other hand, are able to ensure a sizeable CTE tunability, while 

keeping high structural efficiency due to the axial deformation endured by its members (Miller et 

al., 2008; Palumbo, 2013; Steeves et al., 2007; Xu and Pasini, 2016). While the concepts listed 

above are introduced by a number of researchers, others are generated via topology optimization 

(Sigmund and Torquato, 1997; Watts and Tortorelli, 2017), and feature a fairly complex structure. 

As shown by some illustrative examples in Fig. 1f and k, their architecture is generally bend-

dominated, thus highlighting a uniaxial specific stiffness that is lower than that of stretch 

dominated, truss-like concepts. 

The majority of the 3D building blocks discussed in the literature (Fig. 1b to e), except those 

developed via topology optimization (Fig. 1f and k) (Watts and Tortorelli, 2017), can tailor the 

CTE in only one specific direction (horizontal direction for Fig. 1b, axial direction for Fig. 1c, 
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and vertical direction for Fig. 1d and e). A more diverse performance with a multitude of tunable 

CTE directions, such as isotropic CTE, can be obtained by assembling several building blocks 

into a unit cell (as demonstrated in Fig. 1g to j). This can be achieved by studying the 

relationships between building block symmetry, tessellation patterns, and effective thermoelastic 

properties, a research path yet to be systematically explored in the context of architected 

materials. While mechanisms for tessellating building blocks into unit cells via reflection and 

translation are available in the literature (Miller et al., 2008), only special cases have been so far 

examined, with those inspired by multi-fold rotational symmetry in crystallography able to attain 

only isotropic CTE (Wei et al., 2016). However, other directional requirements of thermal 

expansion, such as unidirectional and transverse isotropic, might be also desirable in certain 

engineering applications. 

 
Figure 1: (a) CTE versus temperature for selected solids and architected materials: W-concept (Wang et al., 
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2016), S-concept (Steeves et al., 2007), Al6061 (USDOD, 1998), Ti-6Al-4V (USDOD, 1998), and two iron alloys 

(Liot, 2009). The temperature range on the earth orbit and the CTE requirement for materials used in 

communication satellites are also shown. Since CTEs of component materials, i.e. Al6061 and Ti-6Al-4V, 

selected here for demonstrative purposes, change with temperature, the effective CTE of the W-concept and 

S-concept is also a function of temperature, and its value has been numerically obtained for the temperature 

range -150℃ to 150℃. (b-k) CTE tunable building blocks in the literature: (b) a bi-layer strip concept 

(Lehman and Lakes, 2014), (c) a nested double-barrelled concept (Lehman and Lakes, 2014), (d) a flexure 

blade concept (Wang et al., 2016), and (e) a tetrahedron concept with a stationary node (Steeves et al., 2007). 

The corresponding unit cells in 3D are shown in (g) to (j). Concepts constructed via topology optimization: (f) 

a low-bulk modulus, high thermal expansion design and (k) the maximal modulus design (Watts and 

Tortorelli, 2017). We also note that a change of the constitutive materials can yield values of the CTE that 

differ from those in the figure, which are obtained for the given pair of materials: Al6061 and Ti-6Al-4V; 

prescribing the pair of materials enables a consistent comparison among the relative performance endowed by 

the architecture of each concept.  

The aim of the investigation reported here is twofold: i) to provide a comprehensive 

understanding of the mechanisms of thermal expansion in spatial lattices built from dual-material 

tetrahedron building blocks that are not only stiff and strong but also highly CTE tunable, and ii) 

to offer systematic routes to program their thermal expansion in given directions as required by 

the application. Concepts of vector analysis are used to express thermal expansion of building 

blocks and compound units along their principal, or any other, directions. In addition, notions of 

crystal symmetry are borrowed from crystallography to elucidate the relationship between 

geometric symmetry and thermal expansion of bi-material lattices assembled from either building 

blocks or compound units. The proposed framework enables the attainment of three sets of 

distinct behaviour of directional CTE: i) unidirectional, ii) transverse isotropic, and iii) isotropic. 

In addition to CTE tunability, closed form expressions are provided for the Young’s modulus, 

shear modulus, buckling and yielding strength of unit cells, here introduced to attain a high level 

of both CTE tunability and structural efficiency. A total of 21 proof-of-concepts are built and 

their effective CTE tested via three-dimensional digital image correlation (3D DIC) for model 

validation; in particular, 12 proof-of-concepts are metallic tetrahedra built from Al6061, Ti-6Al-
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4V, and Invar-36, and 9 are polymer unit cell specimens made of PTFE (Polytetrafluoroethylene), 

acrylic, and ABS (Acrylonitrile Butadiene Styrene). Concluding the paper is a discussion that 

gauges the trade-off between CTE tunability and specific stiffness, a paramount insight to 

elucidate for aerospace and other applications. 

2. 3D lattice with low-CTE tetrahedra 

In this section, we draw from concepts of vector analysis to reframe thermal expansion of 

periodic trusses as a relationship between the material length vector and the thermal displacement 

vector. These concepts are first applied to the tetrahedron building block with the goal of 

studying thermal expansion in a three-dimensional space. Then we borrow concepts from 

crystallography to show how typical relations of symmetry can be used to create unit cells with 

desired thermal expansion, such as unidirectional, transverse isotropic, or isotropic. These can be 

further tessellated into spatial trusses or lattices exhibiting prescribed thermoelastic behaviour.  

2.1. Definition of material length vector and thermal displacement vector 

In a solid, a change in temperature can cause the material to change in shape, length, area and 

volume. Here we show that via the application of the thermal displacement vector, it is possible 

to draw a simple analogy between the thermal deformation triggered in a solid material and that 

appearing in a bi-material building block. Below, the basic concepts for a solid material are 

briefly summarized and then extended to a truss system.  

Fig. 2a-I shows the material length vector, M , whose direction defines a referential direction 

along which the thermal expansion is measured, and whose magnitude describes the initial length, 

0l , i.e. the initial distance between two points, e.g. A and B, in a spatial domain. If point A is 

selected as a stationary reference, with a change in temperature ( T∆ ), point B can move away 

from its original location to reach a generic point B'  (Fig. 2a-II), creating the vector, N , which is 
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defined as the thermal displacement vector. Assuming there is no rigid-body translation or 

rotation of the material in the domain 1 2 3Ax x x , we can represent the thermal strain by the second-

order tensor, ijε   : 

( ), 1, 2,3 ,i ij jN M i jε= =       (1) 

where the subscript follows the Einstein notation. If T∆  takes place uniformly throughout the 

solid (i.e. T∆  is a scalar), the deformation is uniform, and all the components of ijε    are 

proportional to T∆  such that: 

,ij ij Tε α= ∆         (2) 

where ijα  is the CTE along the direction ij. Since ijε    is a symmetrical second-order tensor, so 

is ijα   , which is given in its three-dimensional form by: 

11 12 13

21 22 23

31 32 33

.ij

α α α
α α α α

α α α

 
 =  
  

     (3)  

In the most general case where the solid material can freely expand in any direction, N  has 

components both parallel ( N


) and transverse ( N⊥ ) to M . The magnitude of the CTE in the 

direction of M  is given by measuring ( )N M T∆


, where M  is the length of M  and 

cos( )N β= N


 (Fig. 2-a) is identical to the length change, l∆ . Then the CTE in the M  direction, 

αM , can be expressed as:  

2 ,
M T

α ⋅
=

∆M
M N        (4) 

where " "⋅  represents the dot product. Eq. (4) shows that for a unit change in temperature the 

CTE in any arbitrary direction is the thermal extension or contraction, per unit length of a line 
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drawn originally in that direction. If the thermal expansion tensor is conveniently expressed with 

respect to its mutually orthogonal principal axes, then the tensor (Eq. (3)) simplifies to:  

1

2

3

,ij

α
α α

α

 
 =  
  

       (5) 

where 1α , 2α , and 3α  are the principal CTEs in the 1x , 2x , and 3x  directions. For the remainder 

of the paper, the material length and the thermal displacement vectors are now abbreviated to ML 

and TD vectors, respectively, and mathematically expressed as M  and N , respectively. 

The simple concepts for ML and TD vectors described above for a solid material (Fig. 2a), can be 

extended to a dual-material triangle truss in 2D (Fig. 2b) and further to a tetrahedron truss in 3D 

(Fig. 2c). With a temperature increase, the height rise of the dual-material triangle in Fig. 2b, 

triggered by the blue elements with low CTE is compensated by the sinking of its top vertex 

(Point B) due to the higher thermal expansion of the red bar with high CTE. In Fig. 2b-I, the ML 

vector describes the direction of thermal expansion between the midpoint of the base ( ACO , taken 

here as the reference point) and the apex (point B), which is the only CTE tunable direction in the 

triangle. By harnessing the CTE values of the solid components, 1sα  and 2sα , or the skewness of 

the blue elements, θ , we can tailor the CTE of the dual-material triangle in the vertical direction, 

so as to assume one of the following value: positive (Fig. 2b-II) with codirectional ML and TD 

vectors; negative (Fig. 2b-III) with ML and TD vectors in the opposite direction; or zero with a 

zero TD vector.  
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Figure 2: (a) Material length vector, M , and thermal displacement vector, N , for a solid material under a 

temperature change. Definition of M  and N  vectors on building blocks in 2D and 3D: (b) 2D low-CTE 

triangle and (c) 3D low-CTE tetrahedron. (d) M  and N  vectors for an assembled unit cell (d-I to d-IV) and a 

tessellated system of unit cells (d-V and d-VI) before and after thermal deformation (Steeves et al., 2007). 

Deformations are visualized considerably larger than the true ones, which are small and within the linear 

elastic regime. 

Similarly in 3D, the Μ  vector of the dual-material tetrahedron (Fig. 2c-I, (Miller et al., 2008)) is 

defined by the apex (point B) and the centroid of the base triangle (point O, taken as the reference 
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point). With a temperature increase, the height rise, i.e. the thermal expansion in the M  direction, 

triggered by the blue elements is counteracted by the sinking of its apex due to the higher thermal 

expansion of the red base (△ACD). In this case, all lateral faces (i.e. △BAC, △BAD, and △BCD) 

of the dual-material tetrahedron are low-CTE triangles (Fig. 2b-I), and the resultant of all three 

ML vectors of the low-CTE triangles (i.e. 1M , 2M , and 3M  in Fig. 2c-I) passes through points O 

and B. Thus, the direction of the resultant vector given by the sum of 1M , 2M , and 3M  (each 

representing the only CTE tunable direction in 2D) is equidirectional to the M  vector of the 

tetrahedron (green vector in Fig. 2c-I, representing the only CTE tunable direction in 3D). This 

observation highlights a directional relationship of CTE between a tetrahedron and its triangular 

faces: the resultant of the 2D ML vectors of the triangles specifies the CTE tunable direction of 

the tetrahedron, chosen here as the direction of the 3D ML vector. In other words, the direction of 

the tunable thermal expansion in the triangular faces governs that of the overall tetrahedron. This 

rule is also useful for locating the ML vector direction of other types of dual-material tetrahedra, 

along with the CTE tunable directions, as explained in the following section. As per the 

magnitude, the effective CTE in 3D, similar to the 2D case, can be tailored to be positive (Fig. 

2c-II), negative (Fig. 2c-III), and zero through a change in θ  and/or 1sα / 2sα . In both 2D and 3D 

cases, the apex point B can be termed as stationary node (Steeves et al., 2007), since for the zero-

CTE case its position relative to the reference point can remain stationary during thermal 

expansion. 

The ML and TD vectors can also express the CTE of an assembly of building blocks, such as the 

unit cell shown in Fig. 2d-III (Steeves et al., 2007). Here in this exemplifying case, simple affine 

transformations, in particular translation and rotation (Fig. 2d-II), are used to assemble the dual-

material building block (Fig. 2d-I) into a unit cell with multiple subunits (Fig. 2d-II). The 
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assembly of the four tetrahedra in Fig. 2d-II creates a high CTE octahedron core within the unit 

cell (Fig. 2d-III). The ML vectors, 1M  in orange for the octahedron core, and 2M  in green for the 

tetrahedron (Fig. 2d-III), can be defined between the center of the unit cell, point O, taken as the 

reference point, and the vertex B, separated by point A (Fig. 2d-III). The overall thermal 

expansion behavior between O and B is given by the sum of the corresponding vectors, 1M , 2M , 

and the TD vectors, 1N  and 2N , of these two thermally distinct parts, OA and AB. Hence the 

thermal expansion of the assembled unit cell in Fig. 2d-III can be simply expressed as: 

     
( )

( )1, 2 .
k k k

k

k
k

M
k

T M
α = =

∆

∑
∑M

M N
     (6) 

We now show that the above ML and TD vectors can also be applied to desired 3D tessellations 

of compound units. Fig. 2d-V shows an example with a periodic truss assembled with the 

compound cell of Fig. 2d-III. The distance between the centers of any adjacent unit cells, such as 

between centers 1O  and 2O , can be accessed via ML and TD vectors, as shown in Fig. 2d-V and 

VI. In this case, the thermal expansion of the spatial truss can be simply expressed as:  

     ( )
1 2O O 1, 2 ,

k
k

k
k

N
k

T M
α = =

∆

∑
∑





     (7) 

where kN


 and kM


 are the components of kN  and kM  parallel to 1 2O O , respectively. We 

remark here that since the projection cosine of both kN


 and kM


, i.e. cosβ , is identical, the 

terms containing the directional angle, β  in Fig. 2d-V and VI, cancel out in both the numerator 

and denominator of Eq. (7). No matter which direction is considered, the CTE for this cell 

topology is identical in all directions, thus equaling the effective CTE evaluated by Eq. (6), i.e. 

1 2O Oα α= M . We can conclude that since the thermal expansions between centers of any adjacent 
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unit cells are identical, the overall CTE of the truss material shown in Fig. 2d-V is thermally 

isotropic and the magnitude can be evaluated by the vector analysis explained above.  

The concept presented in Fig. 2c and d are given as examples to show the handiness of using 

vectors to visualize and analyze thermal expansion of a periodic truss built from single units as 

well as a more complex assembly of compound units. In both cases, the primitive building block 

is a tetrahedron that features a distinct arrangement of solids in its bars. But this is just one 

among many other material layouts that are feasible. The following sections examine all the 

possible material arrangements that can appear in the strut of a dual-material tetrahedron, each 

defining a building block with its own specific CTE profile.  

2.2. Exploration of dual-material tetrahedra 

The simplest 3D hinged structure that is free to deform upon temperature changes is a tetrahedron. 

Six types of rods can make up its frame, and different combinations of component materials or 

dimensions are possible. Below we examine all the material permutations that can occur in the 

struts of a dual-material tetrahedron, and study the relation that each of these has with the CTE 

along its principal axes. The goal here is to provide a foundational basis to understand other, 

more complicated, truss-like materials.  

2.2.1 Thermal deformation mode of dual-material tetrahedra 

Let us consider a tetrahedron made of six rods, each made of a material with either low or high 

CTE, but both positive. Fig. 3 shows all the possible material permutations that can appear by 

simply switching the position of red rods with high-CTE, 1sα , and blue rods with low-CTE, 2sα . 

In total, there are eleven possible arrangements, each visualized by a tetrahedron from Fig. 3a to 

k. For monomaterial tetrahedra (e.g. Fig. 3a and k), the thermal expansion is uniform; as there is 

no thermal mismatch, no opportunity exists to tailor the CTE. For the remaining tetrahedra, on 
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the other hand, CTE tunability is possible as the effective CTE can be adjusted in one or more 

directions. To ease the CTE assessment, we propose to classify the nine tetrahedra into three 

groups:  

I. Low-CTE tetrahedra (Fig. 3b to e), which can yield an effective CTE that is lower than 

the CTEs of both the component materials;  

II. Intermediate-CTE tetrahedron (Fig. 3f), the only one able to attain the effective CTE of a 

value between the CTEs of the two components only;  

III. High-CTE tetrahedra (Fig. 3g to j), with effective CTEs higher than both the CTEs of the 

components.  

For the sake of simplicity, the main body of the paper examines only the low-CTE cases (Fig. 3b 

to e), as the analysis of high-CTE cases can be easily completed by switching the material 

properties. The analysis of the second group (Fig. 3f) is given in Appendix A.  

The M  and N  vectors introduced in the previous section now become handy in evaluating the 

thermal expansion of all tetrahedra in Fig. 3. The direction of the 3D M  vector with CTE 

tunability is controlled by the resultant of the 2D ML vectors of its triangular faces, and can be 

purposely chosen to align along one of the principal axes of a tetrahedron. As explained in later 

sections, this choice eases the assembly of building blocks in spatial lattices and helps identify 

the direction of CTE tunability. 

Fig. 3b-I shows a tetrahedron in which one of the rods possesses high-CTE as opposed to the rest 

with low-CTE. Two low-CTE triangles equivalent to those in Fig. 2b can be found in Fig. 3b-I, △

ACD  (purple face) and △ BCD (yellow face), where only the undeformed configuration is shown 

to emphasize their ML vector, 1M  and 2M  (marked as black vectors), whose resultant sets the 

direction of the M  (green arrow) and N  vector (red arrow) for this tetrahedron. The M vector 

visualized in Fig. 3b-I is aligned with the direction of CTE tunability, i.e. the local coordinate 
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axis z, and show the thermal expansion direction of the deformed tetrahedron (Fig. 3bII). For the 

zero-CTE case, points A and B are stationary nodes with respect to the line CD in the low-CTE 

triangles. Analogously, the relative position, including the minimum distance and skew angle 

between the two skewed lines, AB and CD, can be constant under a temperature change. We can 

thus name the pair of lines AB and CD as stationary lines (SL), and call the tetrahedron shown in 

Fig. 3b as a tetrahedron with stationary lines (TL-1). Under the pin-jointed assumption, through 

Eq. (4) we can obtain its effective CTEs as: 

( )
( )

1

2
12

2 1 2 1
, 1 2

1

, 45 , 90 .
cos

1 2cos

x s

y s
TL

s s s TL
z TL

TL

α α
α α

θ
α α α θ

α
θ

−

−
−

−

=
 = ∈

− + = −

α α  (8) 

Fig. 3c and d show two other possible ways by which we can permute the positions of high- and 

low-CTE bars. Here two high-CTE bars and four low-CTE bars make up the unit: the high-CTE 

bars of the former meet at one of their vertices, while the high-CTE bars of the latter are not in 

contact. Let us first examine Fig. 3c, where the tetrahedron has two low-CTE triangles: △ ABC  

and △ ACD . We consider O'A , the resultant of the two corresponding 2D ML vectors ( 1M  and 

2M ), as the direction of M , and O as the fixed reference point. After thermal expansion, the 

deformation mode in Fig. 3c shows the tetrahedron is no longer a regular triangular pyramid. The 

N  vector, i.e. the change of the relative location between point A and the base △ BCD , indicates 

the CTE in the vertical direction can be tuned, only while being subjected to shear deformation 

due to the thermally asymmetric nature of this tetrahedron. For this reason, its thermoelastic 

properties are given in Appendix A.  

We now turn to the tetrahedron in Fig. 3d, where all four triangles have low CTE. Here, the 

resultant vector of their four 2D ML vectors passes through the midpoints of the two high-CTE 
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bars. Similar to the case shown in Fig. 3b, for the zero-CTE case, the relative location, including 

the minimum distance and the skew angle between lines AB and CD, can be kept stationary 

during thermal expansion (Fig. 4b). Thus, the tetrahedron in Fig. 3d has a pair of SLs that can be 

used for CTE tailoring. The effective CTEs of this tetrahedron with stationary lines (TL-2) can be 

obtained by applying Eq. (4) under the pin-jointed assumption as: 

( )
1

2
22 1 2

, 2 2
2

, 45 , 90 .2 cos
1 2cos

x y s

TLs s TL
z TL

TL

α α α
θα α θα

θ
−−

−
−

= =
 ∈− = −

α α   (9) 

For a tetrahedron with three high-CTE bars and three low-CTE bars, there are three possible 

ways by which bars can be arranged (Fig. 3e, f, and g). In the arrangement shown in Fig. 3e, the 

high-CTE bars are connected in a loop. During thermal expansion, the relative location between 

point A and the base △ BCD  can be kept stationary, as discussed in the previous section. Thus, 

point A is a stationary node (SN), and Fig. 3e shows a tetrahedron with a stationary node (TN). 

The effective CTEs of TN under the pin-jointed assumption can be expressed as: 

( )
1

2
2 1

, 2

, 30 , 90 .3 4 cos
3 4cos

x y s

TNs s TN
z TN

TN

α α α
θα α θα

θ

= =
 ∈− = −

α α   (10) 

The case where the high-CTE bars and low-CTE bars are in series, as in Fig. 3f (group two: 

intermediate tetrahedron), is also given in Appendix A. Fig. 3g shows the opposite configuration 

of Fig. 3e, and hence this building block is used to obtain high-CTE. Similarly, Fig. 3j, h, and i 

are the counterparts of Fig. 3b, c, and d, and thus these tetrahedra are viable for high-CTE 

systems. The close-form equations for the CTE evaluation of high-CTE group can be obtained 

via switching 1sα  and 2sα  in the equations of the low-CTE group. 
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Figure 3: Exploration of dual-material tetrahedra made of permutations of low (blue) and high (red) CTE 

bars. (a): monomaterial low-CTE tetrahedra with no CTE tunability; (b) to (e): tetrahedra with low-CTE; (f): 

a tetrahedron with intermediate CTE; and (g) to (j): tetrahedra with high-CTE; (k): monomaterial high-CTE 

tetrahedra with no CTE tunability. Both undeformed and deformed structures are depicted in each subfigure 

from (a) to (k). Black arrows represent 2D ML vectors. Green arrows represent 3D M  vectors along the 

direction of CTE tunability, and red arrows N .  
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2.2.2 CTE of low-CTE tetrahedron  

The CTE of the regular tetrahedra presented above can be adjusted by manipulating both material 

and geometric variables, in given directions. Evidently, the pin-jointed assumption used to derive 

Eqs. (8) to (10) reduces the CTE-dependent variables to only the skew angle and the CTE of the 

components. This section examines the role of these two CTE-dependent variables on the 

effective CTE of building blocks for both high- and low-CTE concepts (considering Fig. 3g to j 

are the counterparts of b to e). We examine three CTE-tunable building blocks with different 

linear-dominant thermal deformation modes along the principal direction: TL-1 (Fig. 3b), TL-2 

(Fig. 3d), and TN (Fig. 3e). The zero-CTE cases of these building blocks are also visualized in 

Fig. 4a, b, and c before and after thermal expansion; each tetrahedron is orientated to keep the M  

(green) vector along the vertical direction, demonstrating the concepts of stationary line and 

stationary node.  
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Figure 4: Tetrahedra with zero CTE in the principal direction (z-direction): (a) TL-1, (b) TL-2, and (c) TN 

with undeformed frame in (I) and thermal deformations with zero CTE on the z-direction in (II). The 

normalized CTEs of Low-CTE tetrahedra along the vertical direction vary with respect to the skew angle and 

ratio of the component CTE ( 1 2s sλ α α= ): (d) TL-1, (e) TL-2, and (f) TN. CTE magnitude plotted in polar 

coordinate system with respect to the principal directions, i.e. x, y, and z; the semi-axes of each ellipsoid are 

the CTE coefficients, xα , yα , and zα  of the corresponding tetrahedra with 2λ =  (A high-CTE material 

of 6
1 20 10 / Csα

−= × °  and a low-CTE material of 6
2 10 10 / Csα

−= × °  are taken here as representative 

components): (g) TL-1, (h) TL-2, and (i) TN. 

Fig. 4d, e, and f, show the effective CTEs of both low- and high-CTE tetrahedra along the z-

direction (shown in Fig. 4a to c) against the skew angles. From previous section, we recall that 

the M  vector direction (green arrow), i.e. z-direction, is the only CTE tunable principle direction 

while along the others the CTE is that of the constituent solids. As depicted in Fig. 4d, e, and f, 
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zα  of the building blocks can be tuned by changing the skew angles to cover a large range of 

values, from large negative/positive to approximately zero, demonstrating a sizeable CTE 

tunability. Fig. 4d to f also demonstrate that the CTE in the z-direction depends on the CTE ratio 

of the constituent materials, 1 2s sλ α α= . If the skew angle, θ , is given, the larger/smaller the λ , 

the lower (for low CTE concept, Fig. 3b, d, and e) or higher (for high CTE concept, Fig. 3g, i, 

and j) the effective CTE, respectively. Hence the greater the CTE distinction of the constituent 

solids, the higher the CTE tunability. The magnitude of the three ellipsoids shown in Fig. 4g, h, 

and i illustrates that the direction of the tetrahedron M  vector (z-direction), i.e. the direction of 

CTE tunability, follows the direction of a principal axis, i.e. the direction that can yield the lowest 

CTE magnitude for the case of 2λ =  (whereas the highest CTE magnitude will be for 1λ < ). 

The aforementioned building blocks distinguished by their own tunable characteristics lay the 

foundation for designing stiff and strong spatial lattices with tunable CTE, as shown in the 

following section. 

2.3. Generation of 3D bi-material lattices with desired thermal expansion  

Here we propose a scheme that systematically uses the building blocks, TL-1, TL-2, or TN, along 

with their M  and N  vectors in the CTE tunable direction to program thermal expansion in 

spatial lattices with high specific stiffness and strength. Notions of crystal symmetry, in particular 

from the crystallographic point groups, are applied to the building blocks and used to assemble 

more complex truss systems that can meet desired CTE requirements. To illustrate the scheme, 

subsections 2.3.1 to 2.3.3 present nine examples of lattices that are engineered to attain 

unidirectional, transverse isotropic, or isotropic controllable CTE. Before doing so, though, we 

first elucidate the relation between the geometric symmetry in a unit cell and the directions of its 

thermal expansion, which are typically set a priori by a given application.  
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In a general case, the thermal expansion requirements a system should attain can be specified by: 

(i) the magnitude and sign of its CTE, which can be large positive, near zero, or negative, and/or 

(ii) the thermal expansion directionality, defining its anisotropic or isotropic behaviour. The 

former is a requirement mainly governed by the geometry and components of the building blocks, 

as elucidated in sections 2.1 and 2.2. The latter correlates with the directions of the CTE 

properties that are governed by the assembly rules of tetrahedral building blocks, such as 

orientation, symmetry operations, and relative position, as explained below.  

There is a direct relation between the geometric symmetry of building blocks in the unit cell and 

the symmetry of elements of its thermal expansion tensor. To understand this, notions of 

crystallographic point groups become handy here. As the crystal properties are governed by the 

crystal symmetry, analogously the CTE properties of a lattice can be inferred by the geometric 

relationships of symmetry between building blocks. Following the Neumann’s Principle: if a 

crystal is invariant with respect to certain symmetry operations, its physical properties must also 

be invariant with respect to the same symmetry operations. This is shown in Tab. 1 for several 

systems, where the effect of crystal symmetry on the second-rank tensor properties is described 

by the reduction of independent components in its symmetrical tensor. For example, for a crystal 

with cubic symmetry that is invariant with respect to four 3-fold axes, the CTE can be expressed 

by a second-rank tensor, α , where the number of independent coefficients decreases from six to 

one; hence the CTE is isotropic. Another example is for a crystal with trigonal symmetry (Fig. 

5a), where the number of independent coefficients decreases to two.  
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System Characteristic 
Symmetry 

Number of 
independent 
coefficients 

Tensor referred to axes 
in the conventional–

orientation 

Cubic 4  3-fold axes 1 
α

α
α

 
 
 
  

  

Tetragonal 1  4-fold axes 

2 
1

1

3

α
α

α

 
 
 
  

 Hexagonal 1  6-fold axes 

Trigonal 1  3-fold axes 

Orthorhombic 

3 mutually 
perpendicular 2-

fold axes; no axes 
of higher order  

3 
1

2

3

α
α

α

 
 
 
  

 

Monoclinic 1  2-fold axes 4 
1 13

2

13 33

α α
α

α α

 
 
 
  

 

Triclinic 
A center of 

symmetry or no 
symmetry 

6 
11 12 13

12 22 23

13 23 33

α α α
α α α
α α α

 
 
 
  

 

Table 1: Relation between crystal symmetry and the thermal expansion tensor α , specified with respect to the 

principal directions (i.e. conventional orientations) of the crystals in cubic, tetragonal, hexagonal, trigonal, 

and orthorhombic systems. Crystals in a monoclinic system have only one fixed principal axis, i.e. the 

direction of 2-fold axis (with respect to the 2x  direction). Crystals in triclinic system have no fixed principal 

axis, thus the α  tensor is expressed as a general form in the last column. Groups without higher-order axes 

denote groups containing only 2-fold axes, mirror planes, and inversion center, e.g. orthorhombic, monoclinic, 

and triclinic systems. (Nye, 1985) 

The last column of Tab. 1 illustrates the CTE tensor of the corresponding crystal having its 

principal directions aligned along the axes defining the reference coordinate system of the crystal, 

i.e. 1x , 2x , and 3x . In this case, the CTE of a trigonal crystal, taken here as example, can be 

simply expressed as   
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1

1

3

,ij

α
α α

α

 
 =  
  

     (11) 

where 1α  and 3α  refer to the CTE along the principal directions. If the reference axes are rotated 

with respect to the principal directions, the components of α  can be just obtained by applying a 

transformation law for second-rank tensor, through the matrix, ( )ijl , such as: 

,mn mi nj ijl lα α′ =       (12) 

where the CTE tensor mnα′  refers to the coordinate system after transformation, and mil  and njl  

represent the components in the transformation matrix ( )ijl . The CTE value in any specific 

direction can then be evaluated through: 

,ij i jl lα α=       (13) 

where il  and jl  are the direction cosines of the original axes with respect to the new rotated axes. 

By analogy, the symmetry systems reported above can be readily transferred to assess the CTE of 

dual-material lattices built from tetrahedral building blocks. In particular during the assembly of 

building blocks, the symmetrical arrangement of tetrahedra in a unit cell can be chosen to match 

that of a point group of a crystal. Fig. 5a and b show an example for a trigonal system with a 3-

fold axes. The screw geometry illustrates that this system relies on a 3-fold axes in which a single 

geometry is replicated twice through rotation about the axis at 2 3π  intervals. By analogy, Fig. 

5c shows that the trigonal system can be enforced to assemble 4 TNs. The result is the repeating 

unit in Fig. 5d, where three TNs form the base of the 3D lattice, and upon their apexes rests the 

fourth one. All the building blocks have 3-fold axes of symmetry, which is also the rule of 

symmetry of their spatial arrangement. Hence, the correspondence between the symmetry 
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relationship of the building blocks within the unit cell and that of the crystal system used to 

assemble them, makes the CTE tensor of the overall lattice feature physical characteristics 

identical to those of a trigonal crystal. For the lattice in Fig. 5d, the CTE in Eq. (11) is defined by 

only two independent coefficients, i.e. 1α  and 3α , with only 3α  having CTE tunability. Hence the 

unit cell holds a unidirectional CTE tunability along the principal direction 3x . Therefore, the 

calculation of the CTEs along the principal directions reduces to the mere appraisal of the M  

and N  vectors of its building block, and the CTEs in any other directions can be obtained via Eq. 

(13).  

 
Figure 5: Trigonal crystallographic symmetry group applied to the generation of a spatial bi-material lattice 

with two independent coefficients, 1α  and 3α , of the CTE tensor: (a) screw geometry illustrating the 3-fold 

axes of symmetry with its top view shown in (b), (c) top view of building blocks assembled with 3-fold axes, 

and (d) axonometric view of the resulting unit cell.  

The simple example above focusing on one symmetry system has demonstrated how the 

crystallographic point groups can guide the relative arrangement of building blocks in the 

repeating unit. This is just one, among others, of the possible systems listed in Tab. 1. When one 

of these symmetry systems is enforced to arrange building blocks in a unit cell, then a direct 

correlation emerges between the geometric symmetry of the building block and the symmetry of 

the elements of its CTE tensor. The elements in the CTE tensor that are independent represent the 

CTEs of the overall lattice in the principal directions, which can be evaluated via M  and N  
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vector analysis. This is shown in the following sections, where a crystal symmetry system is used 

to assemble building blocks into a repeating unit that can satisfy prescribed CTE requirements.  

2.3.1 Unidirectional CTE Requirement 

There is theoretically an infinite number of unit cells that can be proposed to meet the 

unidirectional requirement of CTE. Fig. 6a, b, and c show three of them, each constructed with its 

own building block and a specific relation of symmetry, but all have unidirectional CTE 

tunability in the vertical direction ( 3x ). 

The first unit cell in Fig. 6a consists of eight TL-1 building blocks assembled via reflection and 

rotational transformations to make each adjacent block appear in an upside-down position. In this 

unit cell, there are only three mutually perpendicular 2-fold axes with an inversion center but no 

axes of higher order, e.g. 3-fold or 4-fold axes; hence, the unit cell has an orthorhombic 

symmetry (Fig. 6g). All ML vectors of TL-1s in Fig. 6a are parallel with the vertical direction 

and therefore the CTE-tunable mechanism of TL-1 governs the thermal deformation of the unit 

cell in the vertical direction. As revealed in Tab. 1, the CTE tensor of an orthorhombic unit cell 

has three independent components with values equivalent to the principal CTEs. Although the 

overall CTE is orthotropic, the entire lattice shows unidirectional CTE tunability with magnitude 

of 3 , 1z TLα α −=  (Eq. (8)) that is tunable in the vertical direction only. Along the other two principal 

directions 1 1sα α=  and 2 2sα α= , the periodic lattice can uniformly expand with the CTE of its 

components. The second unit cell shown in Fig. 6b is structured with eight TL-2 building blocks 

via only rotation around, and translation along, the vertical direction. This unit cell has a 4-fold 

axis with a middle mirror plan, and thus classed as tetragonal symmetry. In its CTE tensor (Tab. 

1), there are only two independent coefficients: 1 1sα α=  and 3 , 2z TLα α −=  (Eq. (9)). This unit cell, 

although obtained with symmetry relationship different from that of the previous model, still 
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keeps all ML vectors of the building blocks along the vertical direction and therefore results in a 

unidirectional CTE controllable in the vertical direction. The unit cell in Fig. 6c uses the TN 

tetrahedron, which has a trigonal symmetry (Fig. 5b and Fig. 6i). As discussed above, the only 

two independent coefficients are 1 1sα α=  and 3 ,z TNα α=  (Eq. (10)), thereby demonstrating 

unidirectional CTE tunability.  

The three concepts in Fig. 6 feature dissimilar symmetry systems constructed via different affine 

transformations, however, they all keep the M  vectors in the CTE tunable direction along 

direction 3x . The direction 3x  of each concept follows the direction of the 2-fold, 3-fold, and 4-

fold axes, which are principal directions. Each unit cell, therefore, inherits the CTE tunability of 

its building block in the principal direction 3x . Fig. 6p, q, and r illustrate their omnidirectional 

CTEs in a spherical coordinate system, from which a pertinent symmetry in thermal expansion 

appears for each case. The direction with the lowest CTE (dark blue in the legend), i.e. a single 

vertical axis for each unidirectional concept, is the principal direction of CTE tunability. No CTE 

tunability is viable along the other principal directions, i.e. plane 1 2x x− .  

 
Figure 6: Unit cells with unidirectional CTE tunability: (a) TL-1 concept, (b) TL-2 concept, and (c) TN 
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concept. Green arrows represent the ML vectors of the building blocks, all oriented along the 3x  direction. (d), 

(e), and (f) are images of their physical ball-and-stick models. (g), (h), and (i) show the deformed and 

undeformed concepts with the main characteristic symmetry of the building block arrangement. The order of 

rotational symmetry is given by one of the three graphical symbols: a cusped oval, a triangle, and a square. (j), 

(k), and (l) are the top view of the unit cell assembly. (m), (n), and (o) show an axonometric view of the unit 

cell assembly. (p), (q), and (r) show CTE magnitude plotted in polar coordinate system with respect to the 

principal directions, i.e. 1x , 2x , and 3x ; the semi-axes of each CTE ellipsoid are the CTE coefficients, 1α , 

2α , and 3α  of the corresponding unit cell. 

2.3.2 Transverse isotropic CTE Requirement 

Fig. 7a, b, and c show three unit cells, each assembled with its own building block but all have 

trigonal symmetry to meet transverse isotropic CTE requirement. In the first example (Fig. 7a), 

low-CTE stationary lines of six TL-1s form the inner core with two sets of triadic building blocks 

at the same altitude ( 3x ) arranged with equal angular spacing. On the middle mirror plane (Fig. 

7g), three additional low-CTE bars are added, combined with the six low-CTE stationary lines, 

forming a central triangular bipyramid. This operation, considered along with the periodic 

tessellation in Fig. 7m, is enforced to lock any mechanism as well as to make the unit able to 

perform as a pin-jointed structure. As shown in Fig. 7g, the unit cell consists of 3-fold rotational 

symmetry, analogous to the trigonal crystal, it has only two independent components in the CTE 

tensor, 1α  and 3α . All TL-1 ML vectors deviate outward from the vertical direction by an 

identical deviation angle, γ  ( ( )0 , 90γ ∈ α α with 75γ = α  in Fig. 7a), which, together with the 

skew angle and component CTEs, controls the horizontal effective CTE with in-plane isotropic 

CTE tunability ( 1 2α α= ). In the out-of-plane principal direction, i.e. 3x , if the tessellation of unit 

cells (shown in Fig. 7j and m only along plane 1 2x x− for visual simplicity) allows connection 

only at the peaks of the triangular bipyramid, there is no CTE tunability, resulting in 3 2sα α= . 

Thus, the overall effective CTEs of the unit cell in Fig. 7a are expressed as: 



28 
 

( )1 2
2 2 1 2

1 2 1

3 2

cos tan cos
,cos tan

s s s s

s

α θ γ α α α θ ξ
α α

θ γ ξ
α α

−

−

  + − +  = =
 +
 =

    (14) 

where ( )1 221 2cosξ θ= − .  

Similarly, for the second example in Fig. 7b, TL-1s are replaced by TL-2 building blocks to 

construct a unit cell with transverse isotropic controllable CTE. A triangular bipyramid core is 

constructed via six high-CTE stationary lines and three high-CTE bars added in the middle mirror 

plane. All TL-2s have an identical γ  ( ( )0 , 90γ ∈ α α with 75γ = α  in Fig. 7b). The symmetry 

relationship of the building blocks within the unit cell in Fig. 7b is identical to that of TL-1 

concept (Fig. 7a), and the unit cell has thermal expansion behavior expressed as: 

( )1 2
1 2 1

1 2 1

3 1

cos tan 2 cos
.cos tan

s s s

s

α θ γ α α θ ξ
α α

θ γ ξ
α α

−

−

 + −
 = =
 +
 =

    (15) 

The third example in Fig. 7c shows that TN building blocks can also be manipulated to construct 

a unit cell with transverse isotropic CTE. Six TNs deviate from the vertical direction by γ  

( (0 , 90γ ∈ 
α α  with 90γ = α  in Fig. 7c) and round up their high-CTE base members, together with 

the three high-CTE bars added on the middle mirror plane, to form the edges of a central 

polyhedron. Fig. 7i shows the unit cell in a 3-fold rotational symmetry, analogous to a trigonal 

crystal, resulting in only two independent components in the CTE tensor, 1α  and 3α . Within the 

horizontal plane, the concept has in-plane isotropic CTE tunability ( 1 2α α= ). The out-of-plane 

tessellation (along plane 1 2x x−  in Fig. 7o) reveals a mere connection via the high-CTE cores, 

yielding 3 1sα α=  with no CTE tunability in the vertical direction. For this reason, the thermal 
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expansion behavior of the unit cell in Fig. 7c is expressed by: 

( )2
2 1 1

1 2 2

3 1

3 4cos cos
,2 3 cos

s s

s

α θα ζ α θ
α α

θ ζ
α α

 − +
 = =
 +
 =

    (16) 

where ( )1 223 4cosζ θ= − . 

 
Figure 7: Low-CTE unit cells with transverse isotropic CTE tunability: (a) TL-1 concept, (b) TL-2 concept, 

and (c) TN concept. Green arrows represent the ML vectors of the building blocks. (d), (e), and (f) are images 

of their physical ball-and-stick models. (g), (h), and (i) show the deformed and undeformed concepts with 

main characteristic symmetry of the building block arrangement. The order of three-fold rotational symmetry 

is given by the triangle symbol. (j), (k), and (l) the top view of the unit cell assembly; (m), (n), and (o) show an 

axonometric view of the unit cell assembly. (p), (q), and (r) show CTE magnitude plotted in polar coordinate 

system with respect to the principal directions, i.e. 1x , 2x , and 3x ; the semi-axes of each CTE ellipsoid are the 

CTE coefficients, 1α , 2α , and 3α  of the corresponding unit cell.  

We remark that the top views shown in Fig. 7j, k, and l are the 3D analogues of previous 2D 

concepts (Wei et al., 2016). The assembly of other spatial unit cells can be inspired by other 2D 

cell topologies in the literature (Miller et al., 2008; Steeves et al., 2007). Furthermore, as shown 
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in the examples of Appendix A, the vertical direction ( 3x ) can also possess CTE tunability by 

decreasing the deviation angle, γ . Fig. 7p, q, and r show the omnidirectional CTEs of the 

concepts in a spherical coordinate system. A central horizontal plane circularly shaped (dark blue 

in Fig. 7p to r) shows principal directions with CTE tunability for each transverse isotropic 

concept. Contour plot symmetry in Fig. 7p to r also reflects the symmetry in thermal expansion, 

such as no CTE tunability is viable in the vertical direction.  

2.3.3. Isotropic CTE Requirement 

Fig. 8 shows three unit cells, one for each row, possessing isotropic controllable CTE, with TL-1s, 

TL-2s, and TNs as their building blocks respectively. A regular octahedron core is constructed by 

either stationary lines of TL building blocks or high-CTE base triangles of TNs. This monolithic 

core has a uniform thermal expansion in all directions and connects all building blocks via 

identical distance to the center of each unit cell for given angular space. All the unit cells have a 

cubic envelope as the unit cell domain. Along the four body diagonal directions of the cubic 

domain, four 3-fold axes can be found for each unit cell (Fig. 8g, h, and i), thus showing a cubic 

symmetry. Analogous to the cubic crystal, there is only one independent coefficient in the CTE 

tensor of each concept, and therefore each unit cell has identical thermal expansion in all 

directions. Hence, the tessellated periodic lattices, with all unit cells connected by either 

stationary nodes or stationary lines (Fig. 8j to o), feature a CTE that is isotropic with adjustable 

magnitude given by: 

( ) 2
2 2 1 2

1

cos cos
,

cos
s s s s

Iso TL

α θ α α α θ ξ
α

θ ξ− −

 + − + =
+

   for Fig. 8-a; (17) 

( )2
1 2 1

2

cos 2 cos
,

cos
s s

Iso TL

α θ α α θ ξ
α

θ ξ− −

+ −
=

+
   for Fig. 8-b;     (18) 
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( )2
1 2 12 cos 4 3 cos

,
2 cos

s s s
Iso TN

α θ α α θ ζ
α

θ ζ−

+ −
=

+
   for Fig. 8-c. (19) 

The unit cells examined in Fig. 8 are some among many other possibilities. Fig. 2d shows another 

example of a unit with isotropic CTE tunability, previously studied in the literature (Steeves et al., 

2007); this cell has an analogous spatial structure of carbon atoms in a diamond, i.e. cubic 

symmetry. More examples are shown in Appendix A. Fig. 8p to r indicate the omnidirectional 

CTEs of the concepts in a spherical coordinate system. Evidently, the isotropic CTEs are 

described by monocoloured spheres, reflecting the symmetry in thermal expansion. The principal 

directions can be randomly selected within the entire spherical space, yet obtaining the identical 

lowest CTE for each unit cell. 

 
Figure 8: Unit cells with isotropic CTE tunability: (a) TL-1 concept, (b) TL-2 concept, and (c) TN concept. 

Green arrows represent the ML vectors of the building blocks. (d), (e), and (f) are images of their physical 

ball-and-stick models. (g), (h), and (i) show the deformed and undeformed concepts with the main 

characteristic symmetry of the building block arrangement. The order of three-fold rotational symmetry is 

given by the triangle symbol. (j), (k), and (l) are the top view and assembly. (m), (n), and (o) show an 

axonometric view of the unit cell assembly. (p), (q), and (r) show CTE magnitude plotted in polar coordinate 

system with respect to the principal directions, i.e. 1x , 2x , and 3x ; the semi-axes of each CTE ellipsoid are the 
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CTE coefficients, 1α , 2α , and 3α  of the corresponding unit cell. 

2.3.4 Geometrical constraints of compound unit cells  

For the nine concepts illustrated in Fig. 6, 7 and 8, the effective CTEs in the CTE tunable 

direction can be programmed through a change of the skew angle, θ , of the building block. The 

range of θ  is restricted by certain values that preserve the tetrahedral shape of the building block, 

as well as avoid causing collision between adjacent unit cells during thermal expansion. For 

concepts with transverse isotropic CTE, the range of θ  is also governed by γ . Tab. 2 shows the 

allowable range of θ  for each cell topology with ϕ  representing the packing factor of the lattice. 

A packing factor correlates to a given tessellation. For example, a packing factor of 100% is 

shared by the unit cells shown in Fig. 6m, n, and o. In contrast, for the unit cells with isotropic 

CTE given ranges of their skew angles result in tessellations with lower packing factors, such as 

50% for the tessellation shown in Fig. 8o ( 60θ = ° ). Differences in the packing factor are 

controlled by the requirement of the inner polyhedron, e.g. octahedron in Fig. 8c, to thermally 

expand without touching adjacent cells.  

 Unidirectional Transverse Isotropic Isotropic 

TL-1 
and 

TL-2 

( )45 , 90α α

100%ϕ =  

( )
1

2 245 ,arccos 1 csc γ
− 

+ 
 

α , 50%ϕ =  ( )(45 arccos 3 3 


α，

 50%ϕ =  

( )
1

2 2arccos 1 csc , 90γ
− 

+ 
 

α , 100%ϕ =  ( )( )arccos 3 3 , 90α

 100%ϕ =  

TN ( )30 , 90α α

100%ϕ =  

( )
1

2 2

2

3 cos 430 ,arccos
3sin 3

γ
γ

− 
 − 

+   
  

 

α , 50%ϕ =  (30 , 60 
α α , 

50%ϕ =   

( )
1

2 2

2

3 cos 4arccos , 90
3sin 3

γ
γ

− 
 − 

+   
  

 

α , 100%ϕ =  ( )60 , 90α α , 
100%ϕ =  

Table 2: Admissible range of the skew angle, θ , for the building blocks of the concepts visualized in Fig. 6, 7 
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and 8. γ  and ϕ  represent the deviation angle and packing factor respectively. 

2.3.5. Summary points for prescribing thermal expansion in spatial lattices 

There are plentiful ways to construct 3D lattices from tetrahedral building blocks. Below, the key 

notions explained above are summarized to help assemble tetrahedron-based lattices that can 

meet given magnitude and directional requirements of thermal expansion. The distinguishing 

features are the building blocks with the definition of their ML and TD vectors, and the 

symmetry construction operations used to assemble them in the repeating unit.  

• Building blocks with their thermal expansion. The bi-material tetrahedron is the smallest 

building block chosen here for generating a periodic 3D lattice. Nine relevant material 

permutations are available (Fig. 3b to j), among which the most practical are those with 

stationary lines, TL-1 and TL-2, and with stationary node, TN. For each of them, the 

material length vector, ML, and the thermal displacement vector, TD, provide a visual and 

handy description of the magnitude and direction of their thermal expansion. They assist 

in meeting requirements of given CTE magnitude and closed form expressions are given 

in section 2.2 to quantify them. 

• Unit cell construction for prescribed CTE behaviour. Building blocks can be used to 

assemble complex compound units either with unidirectional CTE tunability (e.g. Fig. 6a) 

or with a number of tunable CTE directions (e.g. Fig. 8c), as prescribed by the application 

requirements. The crystal systems in Tab. 1 can assist their arrangement to satisfy 

directional requirements. If the symmetry relations of one crystal system transfer to the 

geometrical arrangement of building blocks in a unit cell, analogously the independent 

tensor components of that crystal system return into the CTE tensor of the overall lattice. 

Here, the tensor components of the unit cell represent the CTEs in the principal directions, 

either with or without CTE tunability, of the overall lattice. By following this strategy the 
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overall thermal expansion of a spatial lattice built from compound units can be assessed 

through the ML and TD vectors of its constitutive building blocks (section 2.2).  

In this summary, we also remark that unit cell construction should also meet tessellation 

requirements, such as those ensuring minimum static and kinematic determinacy, among others. 

If the assembly process leads to an unstable mechanism, additional members are necessary to 

lock in any mechanism, and additional struts can be inserted to match the CTE of its surrounding 

elements so as to avoid altering the direction(s) of CTE-tunability. In addition, because there are 

multiple tetrahedral building blocks and numerous relations of symmetry to choose from, the 

number of 3D tessellations capable of satisfying given CTE requirements can be countless. This 

work has presented nine of them (Fig. 6 to 8) obtained by implementing the scheme presented 

here, and the following section describes their proof-of-concept fabrication and thermal testing. 

Additional concepts showing the viability of the method are given in Appendix A. 

3. Fabrication and experimental validation 

3.1. Component materials 

This section presents the fabrication and CTE testing of i) the building blocks, TN and TL-2, 

made from metallic constituents, and ii) the nine lattice concepts shown in Fig. 6 to 8, made from 

polymers. The six constituent materials selected are: Al6061, Ti-6Al-4V, and Invar-36 as metallic 

constituents; and acrylic, Teflon® PTFE, and ABS as polymer constituents. Tab. 3 shows their 

relevant properties.  

Material Al 6061 Ti-6Al-4V Invar-36 Acrylic PTFE ABS 
Young’s modulus (GPa) 70.8 113.8 140.0 3.2 0.475 2.6 

CTE (×10−6/℃) 23.0 11.5 1.5 67.0 123.0 94.5 
Table 3: Properties of solid materials for proof-of-concept fabrication (USDOD, 1998) 
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3.2. Engineering of specimens 

3.2.1 Fabrication of building block samples 

Testing samples of building blocks were fabricated via pin-jointed metallic bars (Fig. 9a to d). Ti-

6Al-4V shafts (low-CTE) were cut and sanded to the desired length (Fig. 9b and d) with each end 

shaped into a crevice. A flake in the shape of a ring tongue terminal was fastened in the crevice 

of bars by interference fit and strengthened via administering epoxy glue (LePage Epoxy Gel, 

Henkel, Canada) to serve as a hinge axle sleeve for pinned joints. As shown in Fig. 9, Al6061 

shafts (high-CTE) are thicker (diameter of 6.4 mm) than the Ti-6Al-4V bars (diameter of 3.2 mm) 

so as to construct a stable base with through-holes drilled directly to serve as hinge axle sleeves. 

All the high CTE bars have given length of 50mm (Fig. 9b and d), and the length of low-CTE 

bars vary for modifying the skew angle at given values. Then the assembly of the different 

tetrahedral samples were completed using bolts, screw nuts and washers. Since only rotation 

occurs and no bending moment appears at the joints, the tested CTE of pin-jointed building 

blocks are validated via closed-form equations in section 2.3 relying on the pin-jointed 

assumption. Furthermore, in the fabricated prototypes shown in Fig. 9, the length of the flakes 

(totalling about 12 mm at both ends), compared with the typical length of the shaft (about 40 to 

55 mm), is not negligible. Thus, the thermal effect of flakes on the overall effective CTE of 

lattices is taken into account to amend the analytical model as further explained in Appendix B.  

3.2.2 Fabrication of unit cell specimens 

To ease the understanding of the spatial arrangement of building blocks in all unit cells, we built 

ball-and-stick models as proof-of-concepts (Fig. 6 to 8). Connection balls (10 mm diameter) have 

several blind holes (with a 1.6 mm diameter and 2 mm depth) in different orientations on the 

surface (Fig. 9g) to connect sticks (Fig. 9e and f). All the spheres are 3D printed (printer: Original 

Prusa i3 MK2) by ABS. The sticks were laser cut into different lengths, all from 1.6-mm-
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diameter rods made from either PTFE (high-CTE) or acrylic (low-CTE). Both ends of the sticks 

were plugged into the blind holes of spheres and then rigidly fixed by resin glue (LePage Epoxy 

Gel, Henkel, Canada). The thickness of the resin adhesive layer was very thin making the thermal 

expansion of resin glue negligible. In contrast, the ABS connection ball had a non-negligible 

thermal expansion, and this deviation is considered in a later section validating experimental 

measures against theoretical and simulation results. 

 
Figure 9: Testing samples: (a) TN (components: Al6061 and Ti-6Al-4V); (b) assembly drawing of a TN; (c) 

TL-2 (components: Al6061 and Ti-6Al-4V); (d) assembly drawing of a TL-2; (e) TN concept with rigid joints 

(components: acrylic and PTFE for bars and ABS for joints); (f) assembly drawing of proof-of-concepts with 

rigid joints; (g) ball for rigid joint (a flat surface at the bottom is used to ensure continuous contact with the 

carrier of the 3D printer); (h) testing sample with black and white pattern for DIC testing.  

Moreover, since the CTE properties of the concepts here introduced are primarily dependent on 

the unit cell geometry besides the CTEs of the constituent solids, the principles can be applied to 

systems across a wide range of length scales, and hence fabricated with both conventional and 

advanced methods. Additive manufacturing is a viable method that can be effortlessly used to 

assemble in large volume bi-material lattices with smaller element size, as demonstrated by 

recent works appeared in the literature on this topic (Qu et al., 2017; Takezawa and Kobashi, 

2017; Wang et al., 2016). 
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 3.3. Experimental method 

Both tetrahedral building blocks (Fig. 9) and compound unit cells (Fig. 6 to 8) were 

experimentally investigated to validate their CTEs. For the former, 12 physical samples were 

tested to verify the respective theoretical models of TL-2 and TN building blocks (Eqs. (9) and 

(10) in section 2.2.1) with two dissimilar pair of material combinations and three different skew 

angles (see Appendix B for the images of the physical samples of the building blocks). The first 

material combination consisted of Al6061 and Ti-6Al-4V (i.e. Al/Ti), and the second consisted of 

Al6061 and Invar (i.e. Al/Invar). In all cases, Al was the high CTE material while Invar and Ti 

were the low CTE materials. The three skew angles of the building blocks for each material 

combination varied between 53° to 65° with approximately equal angle difference. For example, 

if the 12 samples were organized into four sets of three, the first set would consist of three TL-2 

samples made from Al/Ti with skew angles 53.5°, 61.7° and 63.7°, respectively. Besides building 

blocks, nine physical samples of the compound unit cells were tested, one for each of the 

concepts shown in Fig. 6 to 8 (see Appendix B for the images of the compound unit samples). 

The skew angles of all samples were set to 60α , and the CTEs along the principal directions were 

measured by assessing the relative thermal displacement of the connection balls.  

3D DIC tests (schematic setup shown in Appendix B) were performed to measure the thermal 

displacement of all samples with randomly distributed black and white pattern painted on the 

surface (Fig. 9h). DIC testing consists of capturing images, before and after heating the sample 

within a heating chamber, at selected temperatures so that elongation can be measured. Testing 

temperature was monitored and managed from 25℃ to 75℃ (for polymer samples) or to 150℃ 

(for metallic samples) through a PID (proportion-integration-differentiation) controller (CN7800, 

Omega, US). A data acquisition system (NI cDAQ 9174) was used to measure the temperature 

heterogeneity via collecting three thermocouples from different locations in the chamber. The 
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temperature heterogeneity was regulated within 5% of the real-time temperature through the 

application of a rotational air fan. DIC system calibration ensured an epipolar projection error 

below 0.01 pixel, i.e. the average error between the position where a target point was found in the 

image and the theoretical position where the mathematical calibration model located the point. 

Two CCD (charge coupled device) cameras (PointGrey, Canada) were used to focus on an area 

of 240×200 mm2 with a resolution of 2448×2048 pixel; based on the image resolution, any 

deformation smaller than 0.98 µm (0.01 pixel) was merged with the epipolar projection error. 

Using the DIC correlation software, Vic-3D (Correlate Solution Inc.), virtual extensometers were 

placed on the reference image and tracked through the images to measure the displacement 

between pairs of pixel subsets. The thermal deformation field (Fig. 10) was obtained from the 

relative displacement between these pairs of subsets. The effective CTE was calculated from 

thermal strain and temperature change. Finally, the accuracy of the whole testing system was 

verified with CTE measurements of a solid material, Al6061, taken from a commercial 

thermomechanical analyzer, TMA Q400 (TA Instrument, US). A comparison of their measured 

(22.6×10-6/°C) and DIC predicted mean CTE (23.0×10-6/°C) shows an error of 1.7%. The 

epipolar projection error is at 0.98 µm, which governs the smallest measured CTE value of the 

samples, i.e. 0.27×10-6/°C. Hence, the low magnitude of these errors warrants the required 

accuracy for the DIC system used in this work.  

3.4. Experimental results  

The thermal testing results of both the building blocks and compound unit cells are here 

compared with results from either numerical analysis (Fig. 10) or closed-form expressions (Fig. 

11). The role of component materials and skew angle on the effective CTE is emphasized. In 

addition, the effect of connection type, either pin-joint (building blocks) or rigid-joint (unit cells), 

is assessed to validate the pin-jointed assumption of the closed-form expressions derived for ideal 
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building blocks and compound unit cells. 

As shown in Fig. 10a to h, a TL-2 and a TN, both pin-jointed with similar θ  and identical 

components of Al/Ti, are taken as representatives to illustrate the tunable thermal displacement 

that each tetrahedron can provide along the principal directions. The horizontal thermal 

displacement shown in Fig. 10 (a and b for TL-2 with 61.7θ = α , e and f for TN with 63.3θ = α ) 

indicates that for both building blocks, the effective CTE is high and positive (23×10-6/°C), 

identical to that of the high-CTE constituent Al, i.e. no CTE tunability. In the vertical direction of 

TL-2 (Fig. 10c and d), the nearly alike light-green color on nodes used for CTE measurement (i.e. 

nodes B1 and B2 in Fig. 10d) indicates a near zero distance change. Thus, the effective CTE of 

TL-2 specimen in the vertical direction is almost vanishing (3.70×10−6/°C). In contrast, along the 

vertical direction of TN (Fig. 10g and h), the distance between the two corresponding nodes, D1 

and D2 in Fig. 10h used for CTE measurement, increases during thermal expansion, which 

results in a positive effective CTE (8.42×10−6/°C), a value below those of its constituents Al 

(23×10−6/°C) and Ti (11.5×10−6/°C). Thus for similar skew angle and identical constituents, TL-2 

can attain a lower CTE than TN. 
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Figure 10: Thermal displacement distribution in a pin-jointed TL-2 ( 61.7θ = α , Al/Ti) measured 

experimentally (a and c), and computationally (b and d), in the horizontal and vertical directions, respectively. 

Thermal displacement distribution in pin-jointed TN ( 63.3θ = α , Al/Ti) and rigid-jointed TN ( 60θ = α , 

acrylic/Teflon) tested (for pinned: e and g; for rigid: i and k) and computed numerically (for pinned: f and h; 

for rigid: j and l) in the horizontal and vertical directions, respectively.  

To assess the assumption of the unit cell connections, pin- versus rigid-joints, we compare the 

results shown in Fig. 10e to h, to those in Fig. 10i to l illustrating the tested thermal displacement 

distribution of a unit cell specimen (Fig. 6f). In both directions, the thermal distribution of the 

former made of Al and Ti, parallel that of the latter, made of acrylic and PTFE, despite the 

difference in magnitude caused by each given pair of constituent materials.  

Fig. 11a illustrates the impact of the skew angle, building block type, and component material on 

the effective CTE of building blocks. For all sets of samples, the CTE reduces significantly with 

decreasing skew angle, whereas for high values the CTE is less sensitive; nevertheless, CTE 

tuning across the range of skew angle here considered can be achieved for both TN and TL-2. In 

addition, for prescribed pair of materials, i.e. (Al/Ti) and (Al/Invar), the red and green curves 
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show the CTE trend of TN with respect to the skew angle, and the blue and violet curves that of 

TL-2. The results show that the CTE of TL-2 can be tuned to a smaller value than that of TN, 

hence the CTE∆  of TL-2 is larger in the given range of skew angle. Another insight that can be 

gained from Fig. 11a pertains to the role of the CTE ratio of the constituents, i.e. 1 2s sλ α α= . 

The greater the CTE distinction of the constituent solids ( Al-Invar 15.3λ ≈  which is higher than 

Al-Ti 2.0λ = ), the larger the CTE tunability of a building block. We also remark that the largest 

negative CTE a building block can reach in all experiments of this work is -26.2×10−6/°C 

(Al/Invar TL-2 with 54.1θ = α ) which is well below the CTE values of its components.  



42 
 

 
Figure 11: (a) Predicted curve and experimental results of effective CTE for Al/Ti and Al/Invar building 

blocks (TL-2 and TN) within a range of skewness, along with the CTE of the solid materials. (b) Predicted and 

experimental CTE results along the principal direction/s: vertical direction ( 3x ) for the concepts with 

unidirectional CTE and principal directions within the plane 1 2x x−  for other concepts here examined. 

Fig. 11b compares the experimental (specimens with rigid-joints) and theoretical (closed-form 

expressions with pin-joints) results for the CTE of all the compound units. The relatively small 

errors associated with the testing results, which go as high as 6.3%, validate the CTEs under pin- 

and rigid-joint assumptions displaying small deviations, hence respecting the small deformation 
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assumption. Another insight concerns the effective CTE of the building blocks here investigated. 

As shown in Fig. 11b, comparing the three concepts with unidirectional CTE tunability (i.e. 

specimens 1, 2, and 3 in Fig. 11b), specimens with stationary lines (TL-1 and TL-2) have smaller 

effective CTE values than that of specimens with stationary nodes. The conclusion up to this 

point is summarized as TL concepts have larger CTE tunability than TN concepts which also 

applies to the concepts with identical transverse isotropic or isotropic CTEs. The comparison 

between three concepts made of TL-1s (i.e. specimens 1, 4, and 7 in Fig. 11b), or other concepts 

made of the identical building block, show an increase in the effective CTE when the CTE-

tunable directionality increases from unidirectional (one principal direction) to transvers isotropic 

(two principal directions) and then to isotropic CTE (three principal directions). An increase of 

CTE-tunable directionality is accompanied by the presence and size increase of the monomaterial 

core of concepts. For example, unidirectional cells contain no monomaterial core, but transverse-

isotropic cells have small cores compared to isotropic cells’ large cores. The presence and size of 

a monomaterial core make the effective CTEs increase with the size of the core. However, TL-2 

concepts are more significantly affected by the high-CTE (red) cores than TL-1 concepts with 

low-CTE (blue) cores. Thus in Fig. 11b, with a triangular bipyramid core, specimen 4 has a larger 

CTE than specimen 5, while in contrast, specimen 7 has a smaller CTE than specimen 8 when an 

octahedron core is constructed for the isotropic concepts. The fabrication and testing method 

reported in this work can also be applied to building blocks with effective CTEs higher than that 

of the constituents (i.e. high-CTE cases as shown in Fig. 3) as well as concepts with more 

complex architecture. 

4. Mechanical properties 

To understand how a programmable CTE truss-system behaves as a bulk material with effective 

properties, we adopt here a classical continuum-based approach that relates the stress-strain 
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behaviour of the unit cell to that of the global level. In doing so, we assume that the characteristic 

length of the unit cell is at least one or two orders of magnitude below the characteristic length of 

the truss-system. This scale separation between the global response and that of the unit cell 

allows us to calculate the effective properties through a continuum model (Arabnejad and Pasini, 

2013). For three dual-material unit cells with unidirectional CTE tunability (TL-1, TL-2 and TN 

concepts shown in Fig. 6), we present in the main body of the text closed-form expressions of 

their elastic properties, and in Appendix E their buckling and yielding strength. For unit cells 

with transverse isotropic or isotropic CTEs (concepts shown in Fig. 7 and 8), a numeric approach 

is used to obtain their elastic properties.  

4.1. Relative density 

Tab. 4 lists the relative density *ρ , i.e. the volume fraction, of all nine unit cells. *ρ  is given by 

the ratio of the volume of the solid components, solidV , to the volume of the unit cell, unit cellV : 

*
soli u ced nit llV Vρ = . The expressions rely on the assumption that all high- and low-CTE bars have 

a circular cross-section with radius a , and bars made of identical material have identical length. 
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Table 4: Relative density of all nine unit cells, where 1l  is the length of high-CTE bars with circular cross 

section of radius a , γ  is the deviation angle (Fig. 7), ( )1 223 4cosζ θ= − , and ( )1 221 2cosξ θ= − . 
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4.2. Elastic stiffness  

The continuum-based modeling approach offers a practical and efficient method for analyzing a 

periodic medium (Arabnejad and Pasini, 2013; Vigliotti et al., 2014). It is based on the 

substitution of the discrete model with an equivalent continuum. A number of approaches, such 

as those relying on standard mechanics and asymptotic homogenization theory (Hollister and 

Kikuchi, 1992), have been proposed for developing continuum models, and for determining the 

appropriate constitutive relations (Vigliotti et al., 2014). Using the standard mechanics approach 

(Hualin and Wei, 2006) (see Appendix C for more details), here we examine the three unit cells 

with unidirectional CTE tunability (Fig. 6a to c) for demonstration purposes. The macroscopic 

stiffness tensor for the TL-1 concept:  
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where 1TLC −  is the effective stiffness matrix of TL-1 concept and 1sE , 2sE  are Young’s modulus 

of two components, respectively. The stiffness matrix in Eq. (26) shows a typical material in an 

orthorhombic system referring to the coordinate system shown in Appendix C. Analogously, for 

the TL-2 concept the stiffness tensor is:  
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 (27) 

which shows a typical material in a tetragonal system. The macroscopic stiffness tensor for the 

TN concept can be written as:  
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which is the stiffness tensor of a typical material in a trigonal system. The homogenized stiffness 

matrix relates the macroscopic strains to the macroscopic stresses of the homogenized material. 

Tab. 5 reports the closed form expressions of the effective Young’s modulus of the three 

concepts in the vertical direction (i.e. the principal direction with CTE tunability, 3x ) and shear 

modulus in the 1 2x x−  plane.  
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Table 5: Effective Young’s modulus (in direction 3x ) and shear modulus (on the 1 2x x−  plane) for TL-1, TL-

2, and TN concepts with unidirectional CTE tunability. 

Similar to the CTE maps presented in section 2.2.2 for the three building blocks, TL-1, TL-2 and 

TN, Fig. 12 visualizes the spatial variation of the Young’s moduli in spherical coordinates for 
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their corresponding unidirectional concepts. The symmetries of the surfaces shown in Fig. 12 

also feature the geometrical symmetry of each concept: Fig. 12a for the orthorhombic system, Fig. 

12b for the tetragonal system, and Fig. 12c for the trigonal system.  

 
Figure 12: Three-dimensional surfaces showing the variation of Young’s moduli along the principal directions 

for (a) TL-1, (b) TL-2 and (c) TN concepts. The length of the radius vector is the Young’s moduli of each 

concept taken Al/Ti as components. All concepts have identical beam length to diameter ratio of 0.04. 

As shown in Fig. 13, for concepts with unidirectional CTE tunability, the normalized specific 

Young’s moduli and shear moduli change with the skew angle and Young’s modulus ratio of 

components (i.e. Young’s moduli of low-CTE material over high-CTE material: 2 1s sE E ). In Fig. 

13, an increase in skew angle causes rising Young’s modulus and falling shear modulus due to 

concept degeneration. For all the three concepts, the normalized vertical Young’s moduli 

gradually converge to 1 and the normalized shear moduli gradually converge to 0. Fig. 13a and b 

also indicate that, for each concept, the effective stiffness, including both Young’s and shear 

moduli, increases with the stiffness ratio of the components. This is caused by the low-CTE 

material (material two in this work) predominantly located along the 3x  direction with stiffness 

( 2sE ) increasing with the component stiffness ratio. Comparing concepts of given skew angle, 

the TN concept generally has Young’s moduli in the vertical direction higher than those of 

stationary lines. In contrast, concepts constructed via TL-1 and TL-2 have similar vertical 

Young’s moduli. As shown in Fig. 13b, no concept is absolutely superior to others for all skew 
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angles, as the shear moduli converge at different rates to zero with θ  approaching 90α . In 

addition to stiffness, buckling and yielding strength, other properties that pertain to structural 

efficiency, are derived and summarized in Appendix D. 

 
Figure 13: Normalized specific stiffness in the vertical direction for TL-1, TL-2, and TN building blocks as a 

function of the skew angle for selected values of the stiffness ratio of the components ( 2 1s sE E ): (a) Young’s 

modulus and (b) shear modulus. *ρ  represents relative density.  

5. Discussion on thermal expansion, specific stiffness, and their 

trade-off  

Thermal expansion. The CTE of bi-material lattice materials depends on the CTE mismatch of 

materials, the skew angle, i.e. the interplay of the structural members, as well as the stiffness 

mismatch of materials and joints. Fig. 14 reveals the role of the skew angle in the thermal 

expansion performance of each low-CTE unit cell. As a general trend, we observe that as the 

skew angle increases from the minimum to the maximum value of θ  range (Tab. 2), the CTEs for 

all units converge gradually to that of the low-CTE solid material ( 610 10 / C−× °  in Fig. 14). The 

similar upper bound indicates the largest CTE∆  comes from the concept obtaining the lowest 

CTE value. As shown in Fig. 14, with a given range of skew angles and given directional 

behaviour (i.e. unidirectional, transverse isotropic, or isotropic), the lowest effective CTE a TL-1 
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and TL-2 concept can achieve is generally lower than that of the TN concept. This demonstrates 

that concepts with stationary lines have a better CTE tunability, because the CTE tunability of 

TL-1 and TL-2 building blocks is higher than that of the TNs (Fig. 4). Similarly, when comparing 

TL-1 with TL-2 concepts, the latter has generally a larger CTE∆ , especially for concepts with 

small or no monomaterial core (i.e. transverse-isotropic and unidirectional, respectively). 

However, for isotropic concepts, above 53θ = α  TL-2 has higher CTE values than TL-1, as the 

influence of TL-2 high-CTE octahedron core is far larger than that of the low-CTE core of the 

TL-1 concept. For lattices assembled with a given building block, TL-1, TL-2, or TN, the CTE 

tunability is often the smallest for unit cells with isotropic CTE, followed by unit cells with 

transverse isotropic CTE. This can also be attributed to the influence of larger single-material 

core (octahedron) of isotropic-concepts than the core (triangular bipyramid) of the transverse-

isotropic concepts; the former is more effective in counteracting the CTE tunability via larger 

monomaterial core and hence impairing CTE tunability. On the other hand, the largest CTE 

tunability in the principal direction can be achieved by unit cells which have unidirectional CTE 

with no monomaterial core. 

 
Figure 14: Relation between CTEs and skew angle for the nine unit cells here under investigation. A high-
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CTE material of 6
1 20 10 / Csα

−= × °  and a low-CTE material of 6
2 10 10 / Csα

−= × °  are taken here as 

representative components. For unit cells with unidirectional low CTE, the CTE refers to the vertical 

direction ( 3x ). For unit cells with transverse isotropic and isotropic low CTE, the effective CTE refers to the 

principal directions in the plane 1 2x x− . Each line style indicates one of the three building blocks which a 

unit cell is built from. The CTE of a benchmark isotropic concept (Steeves et al., 2007) with identical effective 

CTE to the isotropic TN concept is also shown in purple for comparison. 

The experimental results in section 3.4 show that the CTEs under the pin- and rigid-jointed 

assumptions deviate marginally from each other. Under the pin-jointed assumption, the stiffness 

mismatch of the component materials has no effect on the effective CTE, as opposed to the case 

of the rigid-jointed assumption, where the stiffness mismatch of the components can play a role 

on CTE tunability. A relative comparison between the three factors here examined shows that the 

effect of the stiffness mismatch is secondary to the influence of the other two, namely the 

interplay of structures and the CTE mismatch of materials. Appendix A reports additional results 

on the CTE of rigid-jointed bi-material lattices obtained for a number of Young’s modulus ratio 

of the constituent solids. 

Specific stiffness. As per the sensitivity of the elastic properties, Fig. 15 shows computational 

results of their normalized Young’s modulus in the direction of CTE tunability, versus both *ρ , 

relative density, and θ , skew angle. The relative density ranges from 0 to 0.2. Different 

representative fields of the skew angle are selected for each concept to indicate the variation trend 

of unit cell stiffness. Along the vertical axes, sketches show the variation of the unit cell 

geometry with the skew angle. 

The specific stiffness of all concepts increases linearly with *ρ . For increasing θ  with constant 

*ρ , the Young’s modulus is also observed to raise for unidirectional concepts (Fig. 15a to c), 

while a parabolic effect appears for the remaining concepts (e.g. Fig. 15f and i), i.e. a rise is 
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followed by declining modulus. This can be attributed to the changing alignment of the high-

stiffness component (i.e. low-CTE Ti bars) along the loading direction: i) for unidirectional 

concepts, increasing θ  results in an incremental alignment along 3x ; ii) for both transverse-

isotropic and isotropic concepts, the same incremental alignment is initially experienced along 

the loading direction, before beginning to deviate from the loading direction above a specific θ  

value. The parabolic effect can also be observed for Fig. 15d, e, g, h, and j when a larger range of 

θ  is plotted. 

For given *ρ  and θ ,  Fig. 15 highlights also similarities between the stiffness of TL-1 and TL-2 

concepts. Compared to TL-2 concepts, TL-1 concepts feature slightly higher values of specific 

stiffness, due to presence of more Ti bars. However, TN concepts generally outperform the others 

in stiffness, especially for transverse-isotropic (Fig. 15f) and isotropic concepts (Fig. 15i) where 

the parabolic effect is observed at 60θ ≈ ° , resulting in a much higher specific stiffness than TL 

concepts with identical θ , *ρ , and CTE directionality. Fig. 15j plots also the specific stiffness 

values for the benchmark (Steeves et al., 2007). Compared to this baseline, we notice that 

unidirectional and transverse-isotropic concepts produce higher stiffness along the direction of 

CTE tunability, but the isotropic concepts are comparable for given geometric and constituent 

parameters. 



52 
 

 

Figure 15: Contour plots for specific stiffness ( ( ) ( )1 1s sE Eρ ρ with E  representing the effective stiffness 

in the CTE tunable direction and ρ  representing the density of the lattice) versus skew angle and relative 

density: Young’s modulus in the vertical direction of cell topologies with unidirectional CTE: (a) TL-1, (b) 

TL-2, and (c) TN concept; Young’s modulus in the horizontal direction of cell topologies with transverse 



53 
 

isotropic CTE: (d) TL-1, (e) TL-2, and (f) TN concept; and Young’s modulus of cell topologies with isotropic 

CTE: (g) TL-1, (h) TL-2, and (i) TN concept. S-concept (Steeves et al., 2007) is plotted as a benchmark in (j) to 

compare elastic performances. 

Trade-off between CTE tunability and specific stiffness. The results above give an indication 

of existing trade-offs between the properties of the concepts here studied: CTE∆  and specific 

stiffness. To better understand these trade-offs, Fig. 16a shows bars of CTE∆  and specific 

stiffness simultaneously, and in Fig. 16b CTE∆  is plotted versus specific stiffness to demonstrate 

Pareto-fronts, both for all concepts made of Al and Ti. 

For Fig. 16a, the CTE∆  bars are calculated for all concepts under a given stiffness value (1 GPa), 

while bars of structural efficiency are all derived from concepts with equal CTE (6.5×10-6/℃), a 

value lower than the CTE of their base materials: Al/Ti). This allows for a consistent comparison 

of their thermo-elastic performance. The bars are arranged in order of increasing number of CTE 

tunable principal directions, from unidirectional to isotropic concepts. Evidently, with increasing 

number of CTE tunable directions, there is a penalty in both CTE∆  and structural efficiency. The 

decrease in CTE∆  is due to the presence and increasing size of monomaterial cores, as 

previously observed. The drop in structural efficiency, however, is attributed to the distribution of 

load bearing bars along the CTE tunable directions, thus resulting in a more uniform load 

capacity, but with lower effective stiffness along a specific direction. For unidirectional and 

transverse-isotropic concepts, TL-2 unit cells provide the best CTE∆  and specific stiffness 

values, followed closely by TN concepts, while both performing significantly better than TL-1. 

However, for isotropic concepts, the TN thermo-elastic performance exceeds that of TL-2, due to 

the reduced performance of the TL-2 core. 
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Figure 16: (a) Comparison of proposed and existing bi-material concepts for given bar thickness ratio of 0.04 

on the basis of (i) CTE tunability ( Max MinCTE CTE CTE∆ = − ) shown as blues bars for Young’s 

modulus of 1GPa in the CTE tunable direction, and (ii) specific stiffness (Young's modulus/Density: /E ρ ) 

for prescribed CTE of 6.5×10-6/℃, in red. (b) CTE tunability plotted versus structural efficiency. The relative 

specific stiffness and CTE tunability are plotted in the vertical direction for unidirectional and isotropic CTE 

concepts, and in the horizontal direction for other concepts. The thermoelastic properties of a benchmark  

isotropic concept (Steeves et al., 2007) is also shown in purple for comparison. 

The Pareto-front curves shown in Fig. 16b are generated from a parametric study of the unit cells, 

where the skewness angle and the thickness-to-length ratio are the active variables for given 
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materials (Al/Ti). The curve shapes emphasize the trade-offs between the two metrics plotted: an 

attempt of increasing structural efficiency results in a reduced CTE∆ . This common trend 

demonstrates that the desired deformation that a large CTE tunability would require is generally 

antagonist to the high specific stiffness that is distinctive of a structurally efficient architecture. 

Here we notice that unidirectional concepts excel in structural efficiency along their CTE tunable 

direction; but for increasing CTE∆ , their specific stiffness drops. Transverse-isotropic unit cells 

are unable to attain the highest level of specific stiffness, but, within their attainable range, they 

generally provide higher CTE∆  compared to unidirectional concepts. Finally, for isotropic 

concepts, including S-concept (Steeves et al., 2007), there is a sacrifice in both CTE∆  and 

structural efficiency, except for the isotropic TN unit cell, which maintains performance similar 

to its transverse-isotropic counterpart. Overall, Fig. 16a and b provides a comprehensive 

comparison of the thermo-elastic performance of the concepts here examined, bearing in mind 

that no CTE directionality is ultimately superior to the rest as the direction of CTE tunability is 

entirely dependent on the application requirements. Other structural properties, such as yield and 

buckling strength, have been evaluated for specific concepts, as examples, and their expressions 

are provided in Appendix D. 

In summary, this work has added to the body of the existing literature three fundamental aspects. 

The first is on the concepts and their mechanisms of thermal deformation. Three groups (low-

CTE, intermediate-CTE, high-CTE) are introduced for the tetrahedral building block to tune the 

effective CTE at values that can be lower, in between, or higher than the constituent material 

CTEs. For the low-CTE group, three specific mechanisms are identified for a bi-material 

tetrahedron: two with stationary-lines, and the third with a stationary-node, the only one known 

in the literature. The second novel feature of this work is a systematic method to rationally 

assemble building blocks into compound units, such as the nine here introduced, that can attain 
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desired magnitude and directionality of thermal expansion in three-dimensional lattices. The third 

is a path forward for resolving the trade-off between CTE tunability and specific stiffness, which 

has led to the assembly of building blocks into stiff and strong, yet high CTE tunable spatial 

lattices with application across the spectrum of length scale. 

6. Conclusions 

This paper has investigated thermal expansion of spatial bi-material lattices built from tetrahedral 

building blocks. The material length vector and thermal displacement vector are first defined to 

assess thermal expansion of truss concepts, and then used to examine all the possible material 

permutations that can occur in the struts of a dual-material tetrahedron. Drawing from concepts of 

crystallography and tessellation, a scheme has been presented to understand the relationships 

between CTE tunability of tetrahedral building blocks, structural symmetry of unit cells, 

independent elements in the CTE tensor, and effective thermoelastic properties of periodic truss, 

which can be built from single units as well as more complex assembly of compound units. The 

results establish underlying principles governing tailorable thermal expansion in dual-material 

lattice materials, where desired CTE magnitude and spatial CTE directionality can be 

programmed a priori to satisfy given CTE requirements, such as unidirectional, transverse 

isotropic, or isotropic. Closed-form expressions for predicting and tuning CTE performance are 

validated through computational and experimental studies on proof-of-concept prototypes. 

Results illustrated in maps have been discussed within the context of structural efficiency and 

CTE tunability, two properties that are generally in conflict at a degree dependent on the unit cell 

type. This works has also shown that three-dimensional lattices can be systematically assembled 

with high specific stiffness to attain large CTE tunability over a substantial range of temperature, 

thus appealing to a large palette of applications where low mass, thermal stability and thermal 

actuation are primary goals.  
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Appendix A: Additional concepts and stiffness mismatch of 

materials 

Fig. A1 depicts two dual-material tetrahedra with CTE tunability that can be used to generate six 

supplementary unit cells with given CTE behaviour. The first tetrahedron (Fig. A1a) has low-

CTE tunability in the vertical direction with shear thermal deformation during expansion. The 

second tetrahedron, intermediate tetrahedron, is able to obtain the effective CTE of a value 

between the CTEs of the two components only. The additional concepts shown in Fig. A1 can not 

only obtain transverse isotropic and isotropic CTE, as with concepts shown in Fig. 7 and Fig. 8, 

but also orthotropic CTE, as shown in Fig. A1b. The unit cell shown in Fig. A1b has CTE 

tunability in both the x1 and x3 directions with different magnitudes. With the x2 direction 

exhibiting no CTE tunability, the concept overall demonstrates orthotropic CTE tunability.  

 
Figure A1: Dual-material tetrahedra along with compound unit cells (a): tetrahedron with low-CTE (four 

low-CTE bars and two high-CTE bars, L4H2); (b) to (d): unit cells constructed from the low-CTE 

tetrahedron shown in (a); (e): tetrahedron with intermediate CTE (L3H3); and (f) to (h): unit cells assembled 

from the low-CTE tetrahedron shown in (e). 

The effective CTE of the dual-material tetrahedra shown in Fig. A1a and e ( M  direction) can be 
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expressed respectively as:  
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Fig. A2 shows unit cells with transverse isotropic CTE governed by the deviation angle, γ , and 

the skew angle, θ . The decrease of γ  and increase of θ  allow the connection of unit cells (Fig. 

A2a to d) in the out-of-plane principal direction via only stationary lines or stationary nodes. In 

contrast with concepts shown in Fig. 7, which have no CTE tunability in the vertical direction, 

concepts in Fig. A2 have CTE tunability in all three principal directions. Comparison of concepts 

depicted in Fig. A2c and d shows the effects of γ  and θ  on the packing factor, ϕ . Differences in 

the packing factor are controlled by the need of the inner octahedron to thermally expand without 

touching adjacent cells (Fig. A2k and l). A packing factor of 50% could be obtained for 

tessellation in Fig. A2k. In contrast, dissimilar skew angles for the concept in Fig. A2d results in 

a tessellation with higher packing factors, i.e. 100%. 
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Figure A2: Low-CTE unit cells with transverse isotropic CTE tunability: (a) TL-1 concept, (b) TL-2 concept, 

(c) and (d) TN concepts. (e) to (h) show an axonometric view of the unit cell assembly; (i) to (l) are the top view 

of assembly. θ , γ , and ϕ  are skew angle, deviation angle, and packing factor respectively. Dash yellow line 

indicates the compound unit cell within the assembly. 

 

In the following we assess the effect of the stiffness mismatch of materials and joint assumption.  

Fig. A3 visualizes the effective CTE in the vertical direction for rigid-jointed TL-2 and TN 

concepts with unidirectional CTE tunability, here chosen for demonstrative purposes. Both the 

skew angle and the Young's modulus ratio 1 2s sE E  of the components (i.e. Young's moduli of 

high-CTE material over low-CTE material) play a role in the effective CTE but to a different 

extent. The effect of the stiffness mismatch of materials is secondary compared to that caused by 

a change in the skew angle, i.e. the interplay of structures. The former has a non-negligible 

influence only at low values of the skew angle (e.g. below 50θ = °  for TL-2 concept, and below 

35θ = °  for TN concept). If the low-CTE material has a larger Young’s modulus (i.e. 1 2s sE E< ), 

an increase in 1 2s sE E , i.e. the Young's modulus ratio of the components, reduces the effective 

CTE to a lower value; this phenomenon is caused by the high-CTE elements inducing a larger 

compensation of thermal expansion with increased stiffness. In contrast, if the high-CTE material 

has a larger Young’s modulus (i.e. 1 2s sE E> ), the impact of the stiffness mismatch of materials 

on the effective CTE is negligible. 
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Figure A3: CTE dependence of TL-2 and TN concepts with unidirectional CTE tunability, on stiffness 

mismatch of materials (i.e. Young's modulus ratio of high-CTE material over low-CTE material: 1 2s sE E ), 

skew angle, and joint assumption. 

 

Appendix B: Testing setup and testing samples  

Fig. B1 shows the schematic of the experimental set-up built to test the thermal expansion of 

specimens. It consists of a heating chamber and a DIC system. The heating chamber with 

dimensions of 200(L)×200(W)×150(H) mm is made of glass to provide an unobstructed view for DIC 

measurements. Testing samples were set on the copper plate with thermal transfer grease (Fuchs 

Lubricants Co., US) between the two. 

 
Figure B1: Experimental set-up used to measure thermal expansion: (a) 1) PID controller; 2) Computer; 3) 

Power source; 4) DAQ system; 5) Heating chamber; and 6) CCD cameras, and (b) schematic of the apparatus.  
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Twelve physical samples (Fig. B2) were tested to validate the thermoelastic properties of the 

building blocks. Four sets, each of three samples, were constructed: two sets consisted of Al6061 

and Ti-6Al-4V (Fig. B2-I and III), and the other two were made from Al6061 and Invar (Fig. B2-

II and IV). Each set of material combinations included one of two configurations consisting of 

stationary lines or stationary nodes, at three skew angles (Fig. B2a to c). This ensures that each 

building block was tested using two different material combinations and three different skew 

angles.  

 
Figure B2: Thermal testing experiments for tetrahedra with stationary lines (I with Al/Ti and II with Al/Invar) 

and tetrahedra with stationary nodes (III with Al/Ti and IV with Al/Invar). Samples with three skew angles of 

roughly 55° (a), 60° (b), and 65° (c) are tested.  

 

Sample 

Measured CTE in 
the vertical 
direction 

( 610 / C−× ° ) 

Predicted CTE in 
the vertical 
direction 

( 610 / C−× ° ) 

Absolute 
error 

( 610 / C−× ° ) 

Joint to 
length 
ratio 
(%) 

TN (Al/Ti, 53.7θ = α )   3.62 ± 0.56 3.97 -0.35 30.8 

TN (Al/Ti, 59.7θ = α )   7.65 ± 0.45 7.35 0.30 27.6 

TN (Al/Ti, 63.3θ = α )   8.42 ± 0.39 8.77 -0.35 26.5 

TN (Al/Invar, 56.2θ = α ) -3.60 ± 0.61 -3.48 -0.12 30.4 
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TN (Al/Invar, 61.0θ = α )   0.97 ± 0.54 0.13 0.84 29.2 

TN (Al/Invar, 64.0θ = α )   1.69 ± 0.25 1.73 -0.04 28.3 

TL-2 (Al/Ti, 53.5θ = α ) -11.58 ± 0.32 -11.61 0.03 32.0 

TL-2 (Al/Ti, 61.7θ = α )   3.70 ± 0.41 4.49 -0.79 30.0 

TL-2 (Al/Ti, 63.7θ = α )   6.47 ± 0.68 6.08 0.39 28.6 

TL-2 (Al/Invar, 54.1θ = α )  -26.2 ± 0.49 -26.8 0.60 31.0 

TL-2 (Al/Invar, 59.6θ = α ) -10.40 ± 0.64 -9.98 -0.42 27.0 

TL-2 (Al/Invar, 64.9θ = α )  -2.50 ± 0.35 -2.26 -0.24 26.2 

Table B1: Predicted and experimentally measured CTE values for TN and TL-2, accompanied by their 

standard deviation, along with the joint length ratio, i.e. the length ratio of a copper flake to a bar, of each 

testing sample. 

Tab. B1 tabulates the CTEs of building blocks obtained both from theory and experiments for 

given pair of materials. The joint-to-length ratio (averaging about 29%), referring to the length 

ratio of a copper flake (made of copper with CTE of 16×10-6/℃) to a bar, characterizes the 

impact of flakes in the measured values of CTEs. Considering the joint impact, the absolute error 

goes no higher than 0.84×10−6/°C. 

The nine samples of compound units are shown in Fig. B3. Randomly distributed black and white 

pattern is painted on the surface of ABS connection balls for DIC testing.  
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Figure B3: Thermal testing experiments for nine compound units with an identical skew angle of 60°. 

Appendix C: Calculation of elastic stiffness for truss members 

Using the standard mechanics approach here, the microscopic strain tensor, ijε , at any point 

within the representative volume element (RVE) can be linearly expressed by the macroscopic 

strain tensor klε  through the local structural tensor ijklM : 

ij ijkl klMε ε= .        (C.1) 

From the constitutive relation, we have: 

ij ijpm pmCσ ε= ⋅ ,      (C.2) 

where ijσ  is the microscopic stress tensor and ijpmC  is the stiffness matrix of the component. The 

effective stress matrix can be simply defined by a volumetric average through integrating the 

microscopic stress over the RVE and dividing by the RVE volume: 

1
RVE

ij ij RVEV
RVE

dV
V

σ σ= ∫ ,     (C.3) 

where RVEV  is the volume of the RVE. Substituting Eqs. (C.1) and (C.2) into Eq. (C.3) results in 

1
RVE

ij ijpm pmkl RVE klV
RVE

E M dV
V

σ ε= ∫ ,    (C.4) 

where ijpmE  is the elastic properties of solid components. From Eq. (C.4) the effective stiffness 

matrix ijklC  is defined as  

1
RVE

ijkl ijpm pmkl RVEV
RVE

C E M dV
V

= ∫ .    (C.5) 

Since the RVEs of dual-material unit cells consist of discrete members, the volumetric average 

through integration simplifies to become a mere summation. The relation between the effective 
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strain of the thk  truss member, ( )k
pmε , and the local axial strain along the bar member, ( )kε , is 

given by (Mohr, 2005): 

( ) ( ) ( )k k k
ij ijNε ε= ,      (C.6) 

where ( )k
ijN  is the linear transformation operator from the local to global coordinates of the thk  

member: 

( ) ( )2 2 2 kk
ijN l m n mn nl lm =   ,   (C.7) 

where ( ), ,l m n  are the direction cosines of the member. Furthermore, the local stress-strain 

relation is given by: 

( ) ( ) ( )k k k
sEσ ε= ,      (C.8) 

where ( )k
sE  is the Young’s modulus of the solid component of the thk  unit cell member. The 

relation between the effective stress of the lattice, ( )k
ijσ , and the local stress in the lattice member, 

( )kσ , is given by: 

( ) ( )( ) ( )Tk k k
ij ijNσ σ= ,      (C.9) 

where T denotes transposition. By substituting Eqs. (C.6) and (C.8) into Eq. (C.9), we can obtain 

the effective stress via a summation:  

( )( ) ( ) ( ) ( ) ( )T

1

1 k
k k k k k

ij ij s pm pm
kRVE

N E N A L
V

σ ε
=

= ∑ ,   (C.10) 

where ( )kA  and ( )kL  are the cross-sectional area and length of the thk member, respectively. From 

Eq. (C.10) we can extract the macroscopic stiffness tensor component as follows: 
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( )( ) ( ) ( ) ( ) ( )T

1

1 k
k k k k k

ijpm ij s pm
kRVE

C N E N A L
V =

= ∑ ,   (C.11) 

For ease of representation of the constitutive equations, we introduce vector notation for the 

tensors. We write the effective stiffness tensor as:  

T=C N RN ,       (C.12) 

where N  is the transformation operator for a lattice with M  sets of struts, i.e. sharing the same 

directional orientation, size/volume and solid component: 

2 3 2
1 1 1 1 1 1 1 1 1

2 3 3
M M M M M M M M M

l m n m n n l l m

l m n m n n l l m

 
 =  
  

     N ,  (C.13) 

where ( ), ,i i il m n  are the directional cosines of the thi  set of struts with axes 1x , 2x , and 3x , 

respectively. R  is given by:  

1

0

0
i

M

r

r

r

 
 
 
 =
 
 
  





R ,     (C.14) 

with 

si i i
i

RVE

E A Lr
V

= .       (C.15) 

Here we examine the three unit cells with unidirectional CTE tunability (Fig. 6a to c) for 

demonstration purposes. The coordinate systems defined for these concepts are depicted in Fig. 

C1. As shown in Fig. C1, struts sharing cross sectional area and component, parallel and equally 

distant from each other can be considered as one set of struts. Since TL-1 and TL-2 concepts 

have identical strut location, they both use the coordinate system shown in Fig. C1a. 
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Figure 17: The coordinate system defined for (a) TL-1 and TL-2 concepts, and (b) TN concept. Different sets 

of trusses are marked in different colors and numbered accordingly.  

For the topologies shown in Fig. 6a, b, and c, we summarized all the directional cosines, element 

length, and the effective Young’s modulus of each set of struts, ir , in Tab. C1 (for TL-1 and TL-2 

concept) and Tab. C2 (for TN concept). 

Truss Set No. 1 2 3 4 5 6 
l 2 2  2 2  0  0  2 cosθ−  2 cosθ  

m 2 2  2 2−  2 cosθ−  2 cosθ  0  0  

n 0  0  ξ  ξ  ξ  ξ  

Length 1l  1l  1

2cos
l
θ

 1

2cos
l
θ

 1

2cos
l
θ

 1

2cos
l
θ

 

r for TL-1 
2

1
2

1

2 cosE a
l

π θ
ξ

 
2

2
2

1

E a
l
π
ξ

 
2

2
2

1

E a
l
π
ξ

 

r for TL-2 
2

1
2

1

2 cosE a
l

π θ
ξ

 
2

2
2

1

E a
l
π
ξ

 

Table C1: Unit vector components, lengths, and effective Young’s moduli of TL-1 and TL-2 concept truss 

members 

Truss Set No. 1 2 3 4 5 6 

l 0  
3

2
 3

2
 3 cos

3
θ−  2 3 cos

3
θ  3 cos

3
θ−  

m 1 
1
2

−  
1
2

 cosθ  0  cosθ−  

n 0  0  0  3 3ζ  3 3ζ  3 3ζ  
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Length 1l  1l  1l  1

2cos
l
θ

 1

2cos
l
θ

 1

2cos
l
θ

 

r 
2

1
2

1

4 cosE a
l
π θ

ζ
 

2
2
2

1

2E a
l
π
ζ

 

Table C2: Unit vector components, lengths, and effective Young’s moduli of TN concept truss members 

By substituting the values of directional cosines into Eq. (C.12), we obtain the macroscopic 

stiffness tensor for the TL-1, TL-2, and TN concepts with unidirectional CTEs as shown in Eqs. 

(26) to (28). 

Appendix D: Yield and buckling strength 

Tetrahedral building blocks were chosen in this study because of their high structural efficiency, 

which includes strength/mass, in addition to stiffness/mass. For this reason, here we also examine 

the overall strength performance, and we do so by adopting notation and terminology used in 

Appendix C. In this section, the yield and buckling strength of the three concepts with 

unidirectional CTE tunability are derived as examples for other concepts. From Eq. (C.9), we can 

obtain: 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )T Tk k k k k k k
ij ij ijA N A N fσ σ= =    (D. 1) 

where ( )kf  is the axial load of the thk  bar. Considering the same simplification steps discussed 

earlier, the stretching forces vector, f , of struts can be defined as, 

{ }T
1 i Nf f f=  f      (D. 2) 

where if  is the axial load of the thi  set of struts. Thus, we have 

T=S N fσ        (D. 3) 

with  
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1

0

0
i

N

S

S S

S

 
 
 
 =
 
 
  





     (D. 4) 

iS  is the area occupied by one strut in the thi  set. From Eq. (C.12), we have 

T 1−=I N RNC       (D. 5) 

where I  is a unit matrix. Thus, we have 

T T 1−N f = S = N RNC Sσ σ      (D. 6) 

So the stretching forces vector, f , can be derived as  

1−f = RNC Sσ       (D. 7) 

Taking the yield strength of a strut as Yσ , and the Euler buckling strength as Eσ , the ultimate 

force a strut can carry is (Fan et al., 2008) 

2

2

2

, yield by tension
, yield by compression
, buckling by compression

Y

ij Y

E

a
f a

a

σ π
σ π
σ π


= −
−

   (D. 8) 

The force carried by each strut can be computed according to Eq. (D. 7). If any component of 

vector f  reaches ijf  defined in Eq. (D. 8), the corresponding global stress would be equal to the 

strength of the lattice material. The Euler buckling load of the struts is given by 

( )2 3 4 24E sP n a E lπ=  while the plastic yielding load is 2
Y YP aπ σ= , with n  determined by 

supporting conditions at strut ends. Thus, the critical aspect ratio is given by  

2
s

cr
Y

En al π
σ

=       (D. 9) 

Under compression, if the length of the strut is larger than the critical length, then the strut will 
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buckle and the buckling strength is given by 

2 2 2

24
s

E
n E a

l
πσ =       (D. 10) 

The initial yield surfaces under general macroscopic loadings are composed of the envelope of, at 

most, twelve super-planes in the stress space, and represented as follows for the TN concept: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 3 122 2

1 3 23 13 122

1 3 23 132

2 cos 1 3 2 cos 1 2 cos 2 cos 1 2 2 cos 1

2 cos 2 cos 4 cos 3 3 4 cos

2 cos 1 2 cos 2 cos 1 3 2 cos 1 2 cos 1 3 2 cos 1

cos cos

2 cos 1 2 cos 2 cos 1 3 2 cos 1 2 cos 1

cos

θ θ θ θ θ
σ σ σ σ

θ θ θ θ

θ θ θ θ θ θ
σ σ σ σ σ

θ ζ ζ ζ θ

θ θ θ θ θ
σ σ σ σ

θ ζ ζ ζ

+ + + +
− + + +

− −

+ + + + +
− − − −

+ + + +
− + −

( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

12

3 23 132 2

3 132 2

3 23 132 2

*

3 2 cos 1

cos

3 2 cos 1 3 3 2 cos 1 2 cos 1

2 cos 4 cos

3 2 cos 1 2 cos 1

2 cos

3 2 cos 1 3 3 2 cos 1 2 cos 1

2 cos 4 cos

, yield by tensi
Y

θ
σ

θ

θ θ θ
σ σ σ

ζ θζ θζ

θ θ
σ σ

ζ θζ

θ θ θ
σ σ σ

ζ θζ θζ

ρ σ

+
+

+ + +
+ −

+ +
+

+ + +
− −

=

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

*

*

on

, yield by compression

, buckling by compression

Y

E

ρ σ

ρ σ

−

−





 (D. 11) 

The yield criterion in the stress space for TL concepts is: 

( ) ( )

( ) ( )

1 2 3 122

1 2 3 122

1 2 3 232 2 2

1 22 2

cos 1 cos 1 2 cos cos 1 2 cos 1

cos cos cos

cos 1 cos 1 2 cos cos 1 2 cos 1

cos cos cos

cos 1 cos 1 cos 1 cos 1 2

2 cos 2 cos cos

cos 1 cos 1

2 cos 2 cos

θ θ θ θ θ
σ σ σ σ

θ θ ξ θ

θ θ θ θ θ
σ σ σ σ

θ θ ξ θ

θ θ θ θ
σ σ σ σ

θ θ ξ θ ξ

θ θ
σ σ

θ θ

+ + + +
+ − +

+ + + +
+ − −

+ + + +
− + + −

+ +
− + +

*

*

3 232

1 2 3 132 2 2

1 2 3 132 2 2

, yield by tension

cos 1 cos 1 2

cos

cos 1 cos 1 cos 1 cos 1 2

2 cos 2 cos cos

cos 1 cos 1 cos 1 cos 1 2

2 cos 2 cos cos

Y
ρ σ

ρ σ
θ θ

σ σ
ξ θ ξ

θ θ θ θ
σ σ σ σ

θ θ ξ θ ξ

θ θ θ θ
σ σ σ σ

θ θ ξ θ ξ

= −
+ +

+

+ + + +
− + −

+ + + +
− + +

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

*

, yield by compression

, buckling by compression

Y

E
ρ σ−







 (D. 12) 
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According to Eqs. (D.11) and (D.12), the yield surface of the lattice in the macroscopic 

( )1 2 3, ,σ σ σ  and ( )12 23 13, ,σ σ σ  space is sketched in Fig. D1. 

 
Figure 18: Yield (solid and dash line) and buckling (solid and dot dash line) surface in macroscopic 

( )1 2 3, ,σ σ σ  space: (a) for TN and (c) for TLs; and in ( )12 23 13, ,σ σ σ  space: (b) for TN and (d) for TLs.  
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