
Condition-number Minimization for

Functionally Redundant Serial

Manipulators

Jérémie Léger

Master’s of Engineering

Department of Mechanical Engineering

McGill University

Montreal,Quebec

2014-12-01

Thesis submitted to McGill University in partial fulfillment of the requirements of
the degree of Master of Engineering (M.Eng.); Mechanical Engineering (Thesis)

c©Jérémie Léger, 2014.

DEDICATION

To my grandmother...

ii

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Prof. Jorge Angeles. His advice, enthu-

siasm and encouragement throughout this project have been, without a doubt, an

important part of its success. The financial support from both NSERC and McGill

University’s Faculty of Engineering GEF has also allowed me to dedicate my full

attention to this thesis. I thank them for that. I thank Jabez Technologies for their

technical support and for providing me with a free copy of RobotMaster, in order to

complete my research. Finally, to my parents and close friends, thank you for your

support and motivation. It has served well.

iii

ABSTRACT

The research objectives of this thesis are, to begin with, to investigate the geo-

metrical significance of the characteristic length of serial robots used to calculate the

condition number of their Jacobian matrix; then, to show how sequential quadratic

programming (SQP) can be used as a redundancy-resolution algorithm for robots

performing manufacturing tasks. As a performance objective the condition number

of the normalized Jacobian matrix, also called the dexterity index, is used. This

index is important, for it provides a measure of “distance” form singularities. By

staying “away” from singularities, the robot should be able to perform tasks much

more accurately. In fact, the condition number of the Jacobian bounds the ratio

of a norm of joint errors to a norm of the end-effector non-dimensional pose errors.

The dexterity index thus plays an important role in robot-assisted machining tasks,

since accuracy is one of the main issues for these applications. One major concern in

computing the condition number of the normalized Jacobian matrix lies in defining

a characteristic length, needed for normalization purposes. Without this normaliza-

tion, the condition number would not have any significance since, in its computation,

quantities with units of length squared would be added to dimensionless quantities.

To gain further understanding into the characteristic length and condition number,

a geometric interpretation of these two items, the latter as pertaining to the charac-

teristic length and condition number of the normalized Jacobian is investigated for

three-degree-of-freedom (three-dof) planar robots. The procedure can be extended

to six-dof spatial robots, but only for the interpretation of the condition number.

iv

In a second part, for manufacturing tasks such as machining, welding, deburring

and milling, sequential quadratic programming (SQP) is applied as a redundancy-

resolution algorithm. For these tasks, an axis of symmetry exists on the end-effector,

which is the tool axis. A rotation of the end-effector about this axis clearly does

not influence the task at hand. When the task is executed by a 6-dof robot, the

robot has an extra degree of freedom, allowing it to perform a secondary task. In

this case, the robot is called functionally redundant. This redundancy arises only

because of the task dimension, which is lower than the number of axes available.

Concerning functionally redundant robots, special attention must be given to their

redundancy-resolution, as conventional methods using the null space of the Jacobian

matrix are not applicable. The SQP approach developed here takes this feature into

account: it finds the Jacobian null space by identifying the tool axis in the robot base

coordinates. This is an approach similar to the recently developed Twist Decomposi-

tion Algorithm (TWA); however, the SQP is expected to provide better convergence

properties of the algorithm since a quadratic approximation of the objective func-

tion is used. A functionally redundant robot using the SQP redundancy-resolution

method is also investigated in an example to show the effectiveness of the proposed

SQP redundancy-resolution method. In this example, a comparison is made between

the quasi-Newton and Newton-Raphson methods to find the posture of minimum

condition-number for the robot. RobotMaster is used in this example to verify the

trajectory.

v

ABRÉGÉ

Les objectifs de recherche de cette thèse sont, tout d’abord, d’étudier l’inter-

prétation géométrique de la longueur caractéristique utilisée pour l’évaluation du

conditionnement de la matrice Jacobienne des robots sériels et, ensuite, montrer

comment la méthode de programmation quadratique séquentielle (PQS) peut être

utilisée pour résoudre la redondance des robots industriels pour des tâches de fabrica-

tion. Le conditionnement de la matrice Jacobienne normalisée, aussi connue comme

l’index de dextérité, est un index de performance important pour éviter les singu-

larités à l’intérieur de l’espace de travail d’un robot. En augmentant la distance des

singularitées, le robot est capable d’exécuter des tâches de façon plus précise. En

effet, le conditionnement de la matrice Jacobienne borne la taille relative du vecteur

d’erreur des articulations à la taille relative du vecteur d’erreur de positionnement et

d’orientation de l’outil. Le conditionnement de la matrice Jacobienne joue donc un

rôle important pour des robots exécutant des tâches de fabrication. L’un des défis

majeurs dans le calcul du conditionnement de la matrice Jacobienne se trouve dans

la définition d’une longueur caractéristique pour normaliser la matrice Jacobienne.

Sans cette normalisation, le conditionement de la matrice Jacobienne ne serait pas

significatif, puisque lors de son calcul, des quantités aux unités de longueur au carré

seraient ajoutées à des quantités nondimensionnelles. Dans l’optique de mieux com-

prendre la signification de la longueur caractéristique, une interprétation de celle-ci,

ainsi que du conditionnement de la matrice Jacobienne est étudié pour le cas des

robots planaires à trois dégrées de liberté (trois-ddl). Dans la deuxième partie, pour

vi

des opérations d’usinage et de soudure, la méthode PQS utilisée comme un algo-

rithme de résolution de la redondance est étudiée. Ces tâches se caractérisent par

le fait qu’il existe un axe de symétrie sur l’effecteur du robot soit l’axe de l’outil.

Dans ces cas, il est évident qu’une rotation de l’outil autour de cet axe ne change

pas la tâche qui doit être accomplie. Cette redondance, aussi connue sous le nom

de redondance fonctionnel, permet au robot d’effectuer une tâche secondaire. Elle

se caractérise aussi par une capacité du robot de faire des déplacements de son outil

ayant un ou des ddl de plus que la tâche nécessite. Cette redondance est différente

de la redondance intrinsèque d’un robot, qui se caractérise plutôt par un nombre

d’articulations plus élevé que le nombre de ddl du déplacement potentiel de l’outil.

La résolution de la redondance fonctionnelle mérite une attention spécial, puisque

les méthodes de résolution conventionnelle, qui se base sur le noyeau de la matrice

Jacobienne ne peuvent être utilisées, et ce, car en générale la matrice Jacobienne du

robot aura un noyeau vide. La méthode PQS proposée prend ce fait en considération

en identifiant l’axe redondant de l’outil en coordonnées cartésiennes. Cette approche

est similaire à l’agorithme de décomposition du torseur cinématique ; cependant des

meilleures propriétés au niveau de la convergence devraient être observées pour la

méthode PQS puisqu’elle se base sur une approximation quadratique de la fonction

objective au lieu d’utiliser une approximation linéaire. Finalement, la pertinence de

la méthode est validée par l’entremise d’un exemple. L’example démontre l’avantage

d’utiliser la méthode quasi-Newton au lieu de la méthode Newton-Raphson pour

trouver la configuration optimale du robot.

vii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ABRÉGÉ . vi

LIST OF TABLES . x

LIST OF FIGURES . xi

1 Introduction . 1

2 Interpretation of the Characteristic Length 10

2.1 Interpretation for Isotropic Robots 10
2.2 Interpretation in the Case of General Planar Robots 12

3 Minimization of the Condition Number 19

3.1 Normality Conditions of the Frobienius-Norm Condition Number 20
3.1.1 The Gradient . 20
3.1.2 Cost of Computing the Gradient 29
3.1.3 Computing the Hessian . 32
3.1.4 Cost of Computing the Hessian 37

3.2 Optimization Algorithms . 39
3.2.1 Quasi-Newton Method with BFGS Update 39
3.2.2 Line-Search Method . 41
3.2.3 SQP via ODA . 42

4 The Posture of Minimum Condition Number 45

4.1 The Unconstrained Problem . 46
4.2 The Redundant Constrained Problem 52

viii

4.2.1 SQP Redundancy Resolution 53
4.2.2 SQP in a Robot-control Algorithm 59
4.2.3 Example . 60

5 Conclusions and Recommendations for Further Research 68

APPENDIX A MATLAB Code for the SQP Redundancy Resolution . . . 71

References . 84

ix

LIST OF TABLES
Table page

4–1 Denavit-Hartenberg parameters of of the FANUC 710ic-50 with milling
tool . 48

4–2 Minimum condition number posture optimization results 51

4–3 Helicoidal trajectory data . 63

x

LIST OF FIGURES
Figure page

2–1 Planar isotropic robot at isotropic pose 11

2–2 Parallelepiped vector and area definition 13

2–3 Planar robot with tetrahedron interpretation 17

3–1 Layout of the algorithm for computing the gradient of the condition
number-squared . 23

3–2 Algorithm for computing the Hessian of the condition number-squared 36

4–1 Robots at their posture of minimum condition number 49

4–2 Initial guess posture for the FANUC 710ic-50 robot 50

4–3 Optimum posture of the FANUC 710ic-50 with milling tool 52

4–4 CLIK at the velocity level . 60

4–5 Desired trajectory . 63

4–6 Optimum trajectory . 65

4–7 Condition number along the trajectory 66

4–8 Trajectory without optimization . 67

xi

CHAPTER 1
Introduction

The growing popularity of robots for manufacturing operations has brought

about the need of robots with higher accuracy than what is currently available. The

need for accurate robots has, however, not only been reported for manufacturing

tasks. Recently, [1] a robot for surgical tasks was proposed. For high-accuracy robots,

not only the components of the robots must be precisely built and assembled, but the

path-planing and control algorithms must also be taken into consideration. In some

instances, the robot might be redundant, in which case more degrees of freedom (dof)

are available than needed; therefore, a secondary task can be accomplished. This

is the case in welding and machining operations involving an axisymmetric cutting

tool [2–5], the focus of this thesis.

The redundancy-resolution problem, however, is not only specific to serial robot.

For parallel manipulator, singularities exist in the workspace which may limit their

abilities to perform some tasks requiring a larger workspace. Using a redundant par-

allel manipulator for avoiding singularities can expand the volume of their dexterous

workspace [6, 7].

Robotic manipulators are systems that consist of a control system and a me-

chanical structure. Serial robots are characterized by an open kinematic chain [8].

The distal link is termed the end-effector. The joints are generally of prismatic and

1

revolute types; however, some other types might also be used. The focus of this work

is serial robots with revolute joints only, the most common cases in industry.

The Jacobian matrix of a robot is a posture-dependent matrix that maps joint

velocities into Cartesian velocities of the end-effector:

t = J(θ)θ̇ (1.1)

where t represents the twist of the end effector in space, θ the joint position vector

of the robot and J the robot Jacobian matrix. This matrix cannot be found from

the differentiation of the displacement function since the angular velocity is a non-

holonomic quantity. The Jacobian is found geometrically, its representation taking

the form below for robots with revolute joints everywhere, except for the ith joint,

which is prismatic [9]:

J =







e1 . . . ei−1 0 ei+1 . . . en

e1 × r1 . . . ei−1 × ri−1 ei ei+1 × ri+1 . . . en × rn






=







A

B






(1.2)

where ei is the unit vector parallel to the axis of the ith joint and ri is the vector

pointing to the operation point (OP) of the end-effector from any point on the ith

joint axis. Sub-matrices A and B map the joint velocity into the angular velocity

and the velocity of the OP, respectively.

It is well known that the redundancy of robots can be used to fulfill a secondary

task. Two types of redundancy can be identified, functional redundancy and intrinsic

redundancy. To properly define these two, it is worthwhile to define three spaces: the

joint-space J is the space of joint variables; the operational-space O is the reachable

2

Cartesian space of the end-effector; and the task-space T is the Cartesian space of

the task. For the robot to be able to accomplish a task, the relations below should

be observed:

T ⊆ O (1.3)

dim(T) ≤ dim(O) ≤ dim(J) (1.4)

Serial robots that have a joint-space dimension greater than their operational-space

dimension are termed intrinsically redundant. A well-known example of an intrinsi-

cally redundant robot is the Canadarm2, with seven joints and an end-effector with

a six-dimensional displacement group [10,11]. The degree of intrinsic redundancy is

computed as

ri = dim(J)− dim(O) (1.5)

This type of redundancy is the best-known case; it leads to rectangular Jacobian

matrices. A serial robot with an operational-space dimension greater than their

task-space dimension are called functionally redundant robots. This is often the

case in milling and arc-welding operations. The degree of functional redundancy is

computed as

rf = dim(O)− dim(T) (1.6)

Functional redundancy can lead to rectangular Jacobian matrices but not necessarily,

e.g., when the robot degree of intrinsic redundancy vanishes. This is because the

Jacobian maps joint velocities in J to end effector velocities in O. Notice that both

redundancies can co-exist in one robotic architecture. For example, if the Canadarm2

performs a five-dof task it would have both intrinsic and functional redundancies.

3

The total degree of redundancy is

rt = ri + rf (1.7)

Intrinsic redundancy has been discussed in many research papers, such as [12,13].

Redundancy-resolution algorithms are generally based on the generalized inverse of

the rectangular Jacobian matrix using the gradient-projection method (GPM), first

introduced by Liégeois [14]. In some cases, a third and even an nth priority task can

be handled if the degree of redundancy is high enough [15]. Crucial to the GPM, the

Jacobian matrix must have dimension m× n, with m > n, to be able to exploit the

Jacobian matrix null space. This is, however, not the case for all types of redundancy,

as in some instances of functionally redundant robots. As pointed out by Sciavicco

and Siciliano [16], functional redundancy can yield a non-singular square Jacobian

matrix. In this case, the Jacobian null space is empty, which renders the previously

discussed redundancy-resolution algorithm useless to handle functional redundancy.

Baron proposed to insert a virtual joint [17], thus adding a column to the Jacobian

to solve this problem. Using the modified Jacobian, the GPM can then be used.

A more geometrically intuitive method, termed the twist decomposition algorithm

(TWA) [3], makes use of projection matrices in the operational space to find the

null space of the problem. Baron and Huo [18] showed that the TWA was faster

than other methods for functional redundancy-resolution, thus making it a more

attractive algorithm. One advantage of the TWA is that both functional and intrinsic

redundancies can be handled. Self-adapting weights were then proposed to improve

the convergence of the method [19]. Andres et al. [20] proposed to use the TWA and

4

the GPM in an algorithm separating the intrisic from the functional null spaces. In

this work, a redundancy-resolution algorithm similar to the TWA is formulated based

on sequential quadratic programming (SQP) [21] via the Orthogonal Decomposition

Algorithm (ODA) [22].

Both machining and welding operations have one degree of functional redun-

dancy, since a rotation of the end-effector about the drilling or welding tool axis

yields similar final results. One particularity of these operations is that the five-dof

task space is time-varying. Other cases of functionally redundant tasks are found

with spherical tools, whose degree of redundancy is three. In these cases it is ap-

parent that the rotational motion of the end-effector is irrelevant to the task being

performed. The problem can thus be formulated as one of positioning one point of

the end-effector, thereby allowing the use of GPM.

Many performance criteria have been proposed for serial manipulators. One

performance criterion should be chosen depending on the application. Performance

criteria have been developed to: avoid obstacles [23]; avoid joint limits [17,20]; min-

imize joint velocities and joint torques [24]; increase power transmission [4]; avoid

singularities [17, 25]; or even a combination of multiple criteria [2, 17, 19]. In this

work, the focus is on avoiding singularities. In singularity avoidance, the two most

popular performance criteria are manipulability [26] and condition number [25]. Ma-

nipulability is defined as

w =
√

det(JTJ) (1.8)

Clearly, when the Jacobian matrix is either singular or rank-deficient, w = 0, the ma-

nipulability index successfully identifies the singularity. A geometric interpretation

5

of manipulability is the manipulability ellipsoid, an ellipsoid with all its semi-axes

equal to a singular value of the Jacobian. The manipulability is proportional to the

volume of the ellipsoid. The major drawback of manipulability is that it is incapable

of measuring distance from singularity. A singular configuration would correspond to

a deflated manipulability ellipsoid. From this, it would be expected that distorted el-

lipsoids be closer to singularity than their undistorted counterpart, the hypersphere.

The problem with manipulability is that distorted ellipsoids can still have a high vol-

ume. This means that the volume of the ellipsoid, and consequently, manipulability,

cannot be used to measure distance from singularity. To measure distortion of the

ellipsoid, the condition number κ(·) should be used, which is defined for matrix A

with any norm || · || as

κ(A) = ||A||||A−1|| (1.9)

The condition number was first proposed by Salisbury and Craig [25] as a dexter-

ity index. As pointed out in [27], the condition number measures error amplification

in solving a system of linear equations, hence its use as a dexterity index. Cardou

in [28] argued that minimizing the condition number does not minimize the relative

error amplification, but rather tightens the bounds on the relative error, namely,

1

κ

||δθ||
||θ|| <=

||δx||
||x|| <= κ

||δθ||
||θ|| (1.10)

where x is the cartesian coordinates of the end-effector and θ the joints coordinates.

It is clear that the error amplification can be smaller when the condition number is

high; however, there is no guarantee for this to happen. Depending on the direction

of the error, the amplification could be lower or higher. The upper bound should be

6

the only bound considered in an error analysis, as it gives the worst-case scenario,

as opposed to the lower bound, giving the best-case scenario. For this reason, it can

still be argued that minimizing the condition number improves dexterity by lowering

the upper bound of the relative error. This trade-off is caused by a reduction of the

difference between the singular values when minimising the condition number. For

purely positioning and purely orienting manipulators, the condition number of the

Jacobian matrix can be used directly. In cases where both positioning and orienting

tasks are included, three-dof planar robots and six-dof spatial robots, for example, a

normalization of the Jacobian matrix must be performed and the condition number

of this normalized Jacobian matrix should be used. Without normalization, units

of angle would be added to units of length and the results would bear no physical

meaning.

Many different methods have been proposed for the normalization of the Ja-

cobian matrix. Ultimately, the problem lies in finding a proper weight to compare

translations with rotations. The characteristic length, introduced by Angeles [29] and

defined as the length that minimizes the condition number is one way of normaliz-

ing the Jacobian matrix. The characteristic length multiplies part of the Jacobian

matrix in order to have a dimensionally homogeneous Jacobian matrix with each

of its elements bearing the same units. The characteristic length’s existence being

attributed to the condition number of the normalized Jacobian matrix, these two

concept goes hand in hand, as one is define from the other. Gosselin [30] proposed

a different method, by redefining the Jacobian matrix using only point velocities.

7

In this method, multiple points of the end effector are used to fully define the mo-

tion, instead of the more traditional method of using the velocity of one point of the

end-effector and the angular velocity of the same. The idea of using multiple points

was then further investigated for parallel manipulators [31, 32], but still applicable

to serial manipulators. The problem with these methods is that they suffer from

the improper or proper choice of points on the end-effector. In some cases, if the

points are chosen in a unsymmetrical way, some orientations might also be favoured.

Take, for example, the case where three end-effector points were used to describe

its orientation, with the points aligned. It is obvious that this poor choice of points

cannot represent a rotation of the end-effector about the line defined by the points.

Choosing multiple points on the end effector is, however, a valid method if the points

are chosen robustly, for example, in a geometrically isotropic array, as is the case of

the vertices of the Platonic solids [33].

The concept of the characteristic length is not intuitive and a geometric in-

terpretation of it has yet to have been found for the spatial manipulator. This

thesis presents its geometrical interpretation for the planar case. The lack of an

interpretation has led many researchers to seek alternatives to the characteristic

length [28,34,35]. A comparison of these methods was recently published [36]. They

concluded that among the different Jacobian normalization it is hard to pin point

that one method is better than another; however, having a scaling factor included in

the optimization seemed to be the better approach.

8

In Chapter 2, the characteristic length and the Jacobian normalization will be

discussed. In Chapter 3, the normality conditions and the Hessian of the condi-

tion number will be investigated for six-dof robots. Unconstrained and constrained

optimization methods will also be discussed, as they will serve as a basis for solv-

ing the functional-redundancy problem. Chapter 4 provides methods for solving

the optimum-posture problem and the problem of path-planning for functionally re-

dundant robots. Finally, Chapter 5 provides conclusions and recommendations for

further research.

9

CHAPTER 2
Interpretation of the Characteristic Length

The normalization of the Jacobian matrix along with the definition of the char-

acteristic length is still a controversial subject, as many researchers disagree not only

on how to normalize the Jacobian matrix but also on whether a normalization makes

geometric/kinematic sense at all. Using the characteristic length as defined by An-

geles [29], some geometric insight into its meaning is given in this chapter. In a first

section, a geometric interpretation of the characteristic length is shown for isotropic

robots. In a second section, the significance of the characteristic length and of the

condition number is further investigated for the general three-dof planar robot.

2.1 Interpretation for Isotropic Robots

Using the normalization method proposed in by Angeles [29], the normalized

Jacobian matrix takes the following form

Jn =







LA

B






(2.1)

where the characteristic length L is found upon minimization of the condition num-

ber:

min
x

κ(Jn), x =

[

θ2 . . . θn L

]T

(2.2)

10

The optimization problem finds the minimum condition number posture for the robot

since all relevant joint angles to the condition number are included in the minimiza-

tion problem. In eq. (2.2), to define the condition number of the Jacobian, the

normalized Jacobian matrix is used as the argument in the condition number of

eq. (1.9). Isotropic robots are those whose Jacobian condition number can reach its

minimum value of unity. In the case of planar robots, the normalized Jacobian takes

the form

Jn =







L L L

Er1 Er2 Er3






(2.3)

where

E =







0 −1

1 0






(2.4)

Khan and Angeles [37] found a geometric interpretation of the optimum posture

of a three-dof planar manipulator. For this case, the interpretation was that the

optimum posture would form the trianglular base of a regular tetrahedron as shown

in Fig. 2–1.

•
a

a
√
3

3
aP

L

O1
O2

O3

V

Figure 2–1: Planar isotropic robot at isotropic pose

11

Note also that the characteristic length in this case was interpreted as the height

of the tetrahedron taken from the the operation point P to its opposite vertex. In the

figure, the characteristic length is denoted by L. For the isotropic six-dof DIESTRO

robot at its optimum posture, it was also shown by Angeles [9] that the links of the

robot at its optimum posture would lie on the faces of a cube where the operation

point is the center of the cube. Interestingly, the characteristic length was also found

to be the common distance from the operation point to the six faces of the box.

Particular to the isotropic case, an expression containing the characteristic

length for general serial robots was found [29]. A set of three matrix equations

including both the value of the characteristic length and the necessary conditions to

have an isotropic posture were given as

n
∑

k=1

eke
T
k = α1 (2.5)

n
∑

k=1

ek(ek × rk)
T = O (2.6)

1

L2

n
∑

k=1

(ek × rk)(ek × rk)
T = α1 (2.7)

From these expression it is apparent that the characteristic length of isotropic robots

is the root mean square of the distance of each axis to the operation point. This is

also a geometric interpretation of the characteristic length of isotropic robots.

2.2 Interpretation in the Case of General Planar Robots

Taking inspiration from the isotropic case, a reasonable assumption would be

that a tetrahedral interpretation for the general case of planar robots should exist.

12

Under this hypothesis, the geometric interpretation of the condition number for the

general planar manipulator is investigated here.

To keep the discussion general, note that a tetrahedron is a special case of

a n-simplex where n = 3. A simplex is the generalization of the triangle in n-

dimensional space. The (n − 1)-simplex has n + 1 faces. For the tetrahedron these

are the triangular faces which are readily visualized. A set of n linearly independent

vectors can define a n-simplex, as shown below. Take, for example, the tetrahedron

embedded in the parallelepiped displayed in Fig. 2–2 and defined by vectors p1, p2

and p3.

p1

p2

p3

S1

S2

S3

Figure 2–2: Parallelepiped vector and area definition

Here, Si represents the area of the face opposite to vector pi. Next, the pi

vectors are arranged in matrix form as

A =

[

p1 p2 p3

]

(2.8)

A discussion on matrices and how they relate to simplices is given by Hogben

[38]. Using the determinant and trace of matricesA andATA, geometrical properties

13

of the parallelepiped of Fig. 2–2 can be found. The volume of the parallelepiped is

Vpara = det(A) (2.9)

The sum of the Euclidean norm-squared of the vectors defining the parallelepiped is

n
∑

i=1

||pi||22 = tr(ATA) (2.10)

The sum of the areas squared of the faces Si opposite to vector pi and displayed in

Fig. 2–2 is
n
∑

i=1

Si = tr(adj(ATA)) (2.11)

where adj(·) is the adjoint of (·). The proof follows as each diagonal entry of the

adjoint represents the square of one of the faces. Take for example the first diagonal

entries.

adj(ATA))11 = det(







pT
2 p2 pT

2 p3

pT
2 p3 pT

3 p3






)

= ||p2||22||p3||22 − ||p2||22||p3||22 cos(θ23)2

= ||p2||22||p3||22 sin(θ23)2 = ||p2 × p3||22

(2.12)

which is nothing but S2
1 . In fact, this also holds for the n-dimensional case considering

the faces of the n-dimensional parallelepiped. Properties of the n-simplex can then

follow using the relation between the volume of a n dimensional parallelepiped and

a n-simplex.

Vsimpl =
1

n!
Vpara (2.13)

14

In Fig. 2–2, the parallelepiped with one possible corresponding simplex is shown.

Now, recall the Frobenius norm and the Frobenius-norm condition number

||A||F =

√

tr(AAT)

n
, κF (A) = ||A||F ||A−1||F (2.14)

From the Frobenius-norm condition number and the properties of the paral-

lelepiped shown above, it is clear that the condition-number-squared can be rewrit-

ten in terms of the properties of a parallelepiped. Using the normalized Jacobian Jn,

the condition-number-squared is rewritten as

κ2
F (Jn) =

1

n2
tr(JT

nJn)tr((J
T
nJn)

−1)

=
1

n2
tr(JT

nJn)
tr(adj(JT

nJn))

det(JT
nJn)

=

∑3

i=1 p
2
i

∑3

i=1 S
2
i

n2V2

(2.15)

Using eq. (2.13), the condition number is rewritten in a form using only properties

of simplexes. For the planar robot case, the simplex is the one in Fig. 2–2, which

leads to

κ2(J) =

∑3

i=1 p
2
i

∑3

i=1 S
2
ti

n4V2
t

(2.16)

This equation gives a geometric interpretation of the condition number in terms of

properties of a tetrahedron. This interpretation is also found in other research work

for tetrahedral meshes [39]. A second form of the interpretation can also be obtained

15

by considering the following relations

V = p1p2p3 sin(θ12) cos(φ
3
12)

= p1p2p3 sin(θ13) cos(φ
2
13)

= p1p2p3 sin(θ23) cos(φ
1
23)

(2.17)

Si = pjpk sin(θjk) i 6= j 6= k (2.18)

where pi is the Euclidean norm of pi, θij is the angle between pi and pj , φ
k
ij is the

angle between pk and the normal to the plane defined by pi and pj. Substituting

eq. (2.17) and eq. (2.18) in eq. (2.16) leads to

κ2(J) =
1

n2

3
∑

i=1

p2i

(

S2
1

V 2
+

S2
2

V 2
+

S2
3

V 2

)

=
1

n2

3
∑

i=1

p2i

(

1

p21 cos(φ
1
23)

2
+

1

p22 cos(φ
2
13)

2
+

1

p23 cos(φ
3
12)

2

)

=
1

n2

3
∑

i=1

p2i

3
∑

i=1

1

d2i

(2.19)

where di is the Euclidean norm of the vector normal to face Si pointing to its op-

posite vertex. To show that this tetrahedron can be constructed from a pose of a

planar robot, note that each column of the matrix represents a vector defining the

tetrahedron. By rotating the tetrahedron, one specific matrix of interest is obtained.

RJn =







L L L

r1 r2 r3






(2.20)

16

where

R =







1 0T

0 ET






(2.21)

is a rotation matrix, representing a rotation of the columns of Jn. Under the above

rotation, it is now apparent that the tetrahedron can be constructed from a pose of

the robot. Fig. 2–3 shows such a construction for a non-isotropic robot having all of

its link lengths equal.

a

aa

P

Rp1
Rp2

Rp3

L

Figure 2–3: Planar robot with tetrahedron interpretation

In Fig. 2–3, as is the case for the general case of planar robots, the base of the

tetrahedron is formed by the first two links of the robot. The third link determines

where the normal to the base pointing to the fourth vertex is placed. This normal

has a length L, the robot characteristic length. The three rotated vectors pi defining

the tetrahedron are also shown on the figure.

An interpretation can now be given for the characteristic length of planar robots.

As was the case for isotropic planar robots, the characteristic length is the height

of a tetrahedron formed by the links of the planar robot. One major difference

when the robot cannot reach an isotropic posture is that the tetrahedron is not

regular. This being said, the characteristic length is then needed to construct the

tetrahedron; hence, the characteristic length cannot be found geometrically by using

17

this tetrahedron, except for the particular case where this tetrahedron takes a special

form. The only instance found where it does take a special form, is when the robot can

reach an isotropic posture. The geometric interpretation of the condition number

given in this section is valid for robots having n × n square Jacobian matrices.

In the case of the spatial robot, the tetrahedron would generalize to a 6-simplex.

Unfortunately, the characteristic length interpretation given here is specific to planar

robots and cannot be generalized to spatial robots in a similar way.

18

CHAPTER 3
Minimization of the Condition Number

The fundamentals of the procedure for minimizing the condition number of a

given robot are now considered. This chapter aims to provide background on opti-

mization and the normality conditions of the problem in order to lay the groundwork

for the task ahead. The Frobenius-norm condition number will be used, as it has

the advantage of being an analytical function of its argument. This choice allows

us to use the much faster gradient-based methods for the optimization algorithms,

as opposed to direct search methods, which require too many function evaluations.

Most gradient methods, as Newton methods, require second derivatives of the ob-

jective function. Conjugate gradient methods are popular; however, they suffer of a

slower linear convergence rate. As a compromise, quasi-Newton methods are avail-

able. These methods keep the advantages of gradient methods; however, they use

previous information on the gradient, to compute an approximate Hessian; in some

cases, quasi-Newton methods use the function values to obtain an estimate of the

Hessian matrix. These algorithms are often found to converge superlinearly (between

linear and quadratic). Quasi-Newton method can, however, only be used for uncon-

strained problems. For the constrained problem, sequential quadratic programming

(SQP), gradient based methods, are preferred, as they are simple to implement, are

widely used in practice and have good convergence properties. Other methods such

as the Lagrange multipliers method could have been used; however, using Lagrange

19

multipliers, the size of the design vector would have doubled for a six-dof robot

performing a five-dof task.

In this chapter, efficient methods for computing the gradient and Hessian of

the Frobenius-norm condition number of the normalized Jacobian matrix will first

be considered. Then, an introduction to quasi-Newton methods and to SQP will

be given to provide background information on unconstrained and constrained opti-

mization methods respectivaly, as required in this work.

3.1 Normality Conditions of the Frobienius-Norm Condition Number

In this first section, the gradient and Hessian of the Frobenius-norm condition

number needed for the normality conditions of eq.(3.1) are found.

LT∇κ2 = 0 and LTHL > 0 (3.1)

In eq.(3.1), L is the null space of the constraint Jacobian in the optimization problem,

∇κ2 is the gradient of the condition number and H is its Hessian. The normality

conditions are of the utmost importance in the problem of finding the minimum

condition number using a gradient method. Here, the normality conditions are found

using a geometrical approach. The square of the condition number is minimized, as

it is easier to work with than the condition number itself.

3.1.1 The Gradient

To find the gradient, we recall the square of the condition number of the nor-

malized Jacobian matrix from eq. (2.14):

κ(Jn)
2
F =

1

n2
tr(JT

nJn)tr(J
−1
n J−T

n) (3.2)

20

where Jn is the normalized Jacobian matrix. A useful property of the trace function

is recalled below:

dtr(M)

dx
= tr

(

dM

dx

)

(3.3)

where M is an arbitrary differentiable matrix dependent on x, the design variable

vector. Relation (3.3) follows from the linearity of both the trace and the derivative

operators, under the assumption of the smoothness of the matrix argument M. In

our case, the matrix at hand is Jn, which, in light of eqs. (1.2) and (2.1), is a smooth

function of the joint-variable vector θ, playing the role of the design-variable vector

x. The derivative of the inverse matrix will be needed, as recalled below:

dA−1

dx
= A−1dA

dx
A−1 (3.4)

From eqs. (3.3) and (3.4), the partial derivative of the square of the condition number

with respect to the ith component of x is found as

∂κ2

∂xi
=

1

n2

∂tr(JT
nJn)

∂xi
tr(J−1

n J−T
n) + tr(JT

nJn)
∂tr(J−1

n J−T
n)

∂xi

=
1

n2

[

tr

(

∂JT
n

∂xi
Jn

)

+ tr

(

JT
n

∂Jn

∂xi

)]

tr(J−1
n J−T

n)

− tr(JT
nJn)

[

tr

(

J−1
n

∂Jn

∂xi
J−1
n J−T

n

)

+ tr

(

J−1
n J−T

n

∂JT
n

∂xi
J−T
n

)]

=
2

n2
tr

(

∂JT
n

∂xi
Jn

)

tr(J−T
n J−1

n)− 2tr(JT
nJn)tr

(

J−1
n J−T

n J−1
n

∂Jn

∂xi

)

(3.5)

To find the normality conditions of the condition number itself, we rewrite the nor-

mality conditions as

∂κ

∂xi
=

∂κ2

∂xi
2κ

(3.6)

21

Replacing eq. (3.5) into eq. (3.6) the normality conditions for the condition number

are

∂κ

∂xi
= tr

(

∂JT
n

∂xi
Jn

)

√

tr(J−T
n J−1

n)

tr(JT
nJn)

−tr
(

J−1
n J−T

n J−1
n

∂Jn

∂xi

)

√

tr(JT
nJn)

tr(J−T
n J−1

n)
= 0, i = 1, . . . n

(3.7)

In the case of the six-dof revolute joint robot the normality conditions thus become

∇κ2 =





















∂κ2

∂L
∂κ2

∂θ2
...

∂κ2

∂θ6





















(3.8)

where ∂κ2/∂θ1 is not included because the condition is invariant to θ1. Note that

the normality conditions for serial robots with other than six axes follow the same

pattern. The six-dof revolute-joint robot was only chosen here as one particular

example. Since the normality conditions are computed at every iteration of an op-

timization algorithm, it is worthwhile to find an efficient way to compute them.

Inspecting eq.(3.5) closely, the normality condition along with the condition number

can be computed efficiently as described in Fig.3–1 and algorithm 1.

22

Figure 3–1: Layout of the algorithm for computing the gradient of the condition
number-squared

23

Data: Jn, r1, . . . , r6

Result: The gradient of the square of the Frobenius norm condition number

of the normalized Jacobian matrix

begin

LU decompose Jn;

Solve JnJ
T
nX = 1 for X using the LU decomposition;

Solve JnY = X for Y using the LU decomposition;

tr1← tr(JT
nJn);

tr2← tr(X);

for i← 1 to n do

Find ∂Jn/∂xi using eq. (3.21);

tr3i ← tr

(

Y
∂J

∂xi

)

;

tr4i ← tr

(

JT
n

∂Jn

∂xi

)

;

∂κ2

∂xi

← 2(tr4itr2− tr3itr1);

end

end

Algorithm 1: Computation of the normality conditions
In the algorithm above, computational efficiency has been considered. The LU

decomposition allows for multiplying by the inverse Jacobian matrix in a efficient way

upon solving a sequence of triangular systems of equations. The intermediate step of

finding X is also important, as this matrix is needed twice in the computation. The

topic of computational cost of this algorithm is discussed further in Section 3.1.2.

24

Finding the partial derivatives of the normalized Jacobian matrix is now dis-

cussed. Prior to this, the independent variable x in the analysis has been left ar-

bitrary. The only assumption was that the Jacobian matrix is differentiable and

depends on x. The Denavite Hartenberg (DH) parameters [8] and joint angles are

all possible candidates that could be considered as variables in the optimization. The

characteristic length, the translation of prismatic actuators and angles of revolute

joints shall be investigated, since they determine the posture of a given robot. The

choice of DH parameters, on the other hand, is the job of robot design [40], which is

not the intent here, since the focus of the study is robot operation.

Starting with the simplest of the three variables considered , the partial deriva-

tive with respect to the characteristic length is found, for the case of a robot having

only revolute joints, as

∂Jn

∂L
=







e1 . . . e6

0 . . . 0






(3.9)

The partial derivative of the normalized Jacobian matrix with respect to the

translation of a prismatic actuator of the robot depends on the location of the actu-

ator within the robot architecture. Assuming that the prismatic actuator is located

at the kth joint, the partial derivative of the Jacobian matrix with respect to the kth

joint variable dk takes the form

∂Jn

∂dk
=







0 . . . 0 0 . . . 0

e1 × ek . . . ek−1 × ek 0 . . . 0






(3.10)

where ei is the unit vector parallel to the axis of the ith revolute joint. The equation

above can be found intuitively by interpreting the ith column of the Jacobian matrix

25

as the influence the ith joint has on the operation-point velocity. Apparently, when

only the actuator at the kth joint moves, no change in the angular velocity of the

end-effector occurs. For the kth to nth joints, it is also apparent that the influence

of these joints on the end-effector velocity will remain unchanged as all bodies will

translate together when the actuator is extended or retracted. For these reasons,

the elements of the first three lines of the derivative will vanish, and the elements of

the kth to nth columns will follow suit. The influence of the first k − 1 joints on the

Cartesian velocity of the end-effector will, on the other hand, be modified. This is

reflected in the change in vector ri, which can be seen by the relation

ri = ai + · · ·+ ak−1 + d+ ak+1 + · · ·+ an, s.t. dk = dkek (3.11)

and then by differentiating eq. (3.11) with respect to d

∂r

∂d
= ek (3.12)

When considering a prismatic actuator at the ith joint, the ith column of the

derivative of the Jacobian matrix will also be an array of zeros since the direction of

the displacement of the actuator remains unchanged.

The derivative with respect to a revolute-joint angle is now considered. More

complex than the characteristic-length and prismatic-actuator cases, a clear geomet-

ric interpretation still exists in a similar way. First, the partial derivative of block

A of the Jacobian matrix, where the ith column is the axis of the ith revolute joint.

Apparently the kth revolute joint has no effect on the orientation of the first k joint

26

axes, and hence,

∂A(mi)

∂θk
= 0, i ≤ k (3.13)

where mi notes that the ith column. For the remainder of block A, columns k + 1

to n, the axis of these joints will clearly undergo a rotation about the kth axis. The

change in orientation of the ith axis is the derivative of block A and is given by the

cross product.

∂A(mi)

∂θk
= ek × ei, i > k (3.14)

The derivative of block B is now considered. As in the case of block A, the

problem is separated into two part using joint k. By the differentiation rule of the

product and the previously found derivatives of vectors ei, the derivative of block B

can be expressed as

∂B(mi)

∂θk
=















(ek × ei)× ri + ei ×
(

∂ri
∂θk

)

if i > k

ei ×
(

∂ri
∂θk

)

. if i <= k
(3.15)

for the case of revolute joints and

∂B(mi)

∂dk
=











ek × ei if i > k

0 if i <= k
(3.16)

for the case of prismatic joints.

To find ∂ri/∂θk, two cases are to be considered. In the first case, when i ≤ k,

vector ri is recalled:

ri = ai + · · ·+ ak−1 + rk (3.17)

27

Note that ai, when i < k, is independent of θk, and ∂rk/∂θk = ek × rk. Thus,

∂ri
∂θk

= ek × rk, i ≤ k (3.18)

The second case, when i > k, vector ri is rotated, its derivative being

∂ri
∂θk

= ek × ri, i > k (3.19)

The derivative of one column of block B with respect to a revolute joint angle is then

∂B(mi)

∂θk
=











(ek × ei)× ri + ei × (ek × ri) if i > k

ei × (ek × rk) if i <= k
(3.20)

Using the Jacobi identity [38], column ∂B(mi)/∂θk can be further simplified to

reduce computational cost. The derivative of the ith column of the Jacobian matrix

with respect to the kth joint angle is then

∂J(mi)

∂θk
=

























































Lek × ei

ek × (ei × ri)






if i > k







0

ei × (ek × rk)






if i ≤ k

(3.21)

The method used in this section to find the derivative of the Jacobian matrix is

consistent with the ones in the literature [41,42] where the derivatives of screws are

also discussed in detail.

28

In the case of a prismatic joint at the ith joint, the derivative of the ith column

of the Jacobian is

∂J(mi)

∂θk
=









































0

ek × ei






if i > k

0 if i ≤ k

(3.22)

3.1.2 Cost of Computing the Gradient

The cost of computing both the condition number and the normality conditions

is now discussed. To keep things simple, the Jacobian matrix, and vectors ri will be

supposed already known; their computation cost will not be discussed here. However,

from [9], it is known that the cost of computing the Jacobian is

costJacobian = 62(n− 1) flops (3.23)

The cost of each substep of the algorithm in Fig. 3–1 is now calculated. First,

start with the exact cost of the LU decomposition. The efficient way of decomposing

a n× n matrix by the LU decomposition as shown in [27] yields a cost of

costLU = (2n− 1)(n− 1) flops (3.24)

The cost of finding tr(JTJ) is of finding the n diagonal entries of JTJ and then

summing them up. One diagonal entry cost 2n− 1 flops. The cost of computing the

trace is then

costtr1 = n(2n− 1) + n− 1 = 2n2 − 1 flops (3.25)

29

Using the LU-decomposed matrix, the inverse problem is more efficiently solved

for a general matrix by solving two triangular systems by forward and backward

substitution. The cost of solving a triangular system is

costtriangle = n+

n
∑

i=1

i− 1 =
n(n+ 1)

2
flops (3.26)

For the case of finding the gradient of the condition number it is efficient to store a

matrix X such that

JTJX = UTLTLUX = 1 (3.27)

Using the LU decomposition, four triangular systems, one for each of the above

factors of J, are solved to find X

costX = 4costtriangle = 2n(n + 1) flops (3.28)

The cost of computing tr(X) is then

costtr2 = costX + n− 1 = (2n+ 1)(n+ 1)− 2 flops (3.29)

To find matrix Y, another two triangular systems are to be solved; however, in this

case matrix X is known.

costY = 2costtriangle = n(n+ 1) flops (3.30)

The cost of the upper branch in Fig. 3–1, which must only be computed once at each

iteration, regardless of the number of variables considered in the optimization, is

costupper = costLU + costY + costtr2 + costtr1 = 7n2 + n− 1 flops (3.31)

30

The cost of the lower branch is different, partly because ∂J/∂xi must be com-

puted for every variable xi considered in the optimization. The case of a six-dof

robot with revolute joints only is considered here. For this case, eq. (3.8) gives the

gradient of the condition number. Finding ∂J/∂L is available at no cost, since it

only requires block A. The cost of the ith column of ∂J/∂θk found in eq. (3.21) is

costdJi =











27 flops if i > k

18 flops if i ≤ k
(3.32)

since each cross product cost 9 flops. The total cost of finding the five ∂J/∂θi is then

costdJdx =

6
∑

k=2

6
∑

i=1

costdJi(k, i) = 630 flops (3.33)

The added cost of both tr3 and tr4 then follows in a similar way as the cost of tr1

costtr4 = costtr3 = 6costtr1(n = 6) = 426 flops (3.34)

The cost of the lower branch for a six-joint robot is then

costlower = costtr3 + costtr4 + costdJdx = 1482 flops (3.35)

and the cost of computing dκ2/dx, by adding the cost of eq. (3.5) when the traces

are known to costupper and costlower, is then

costgradient = costupper(n = 6) + costlower + 24 = 1763 flops (3.36)

31

which is a reasonably low cost for using the exact gradient of the condition number

in an iterative procedure. Note also that most of the cost is attributed to the lower

branch of the algorithm, which includes the derivative of the Jacobian.

3.1.3 Computing the Hessian

For completeness, it is now shown how to compute the Hessian of the condition

number. From Section-3.1.1, it was demonstrated that the gradient of the condition

number-squared can be expressed as

∂κ2

∂xi
=

2

n2
tr

(

∂JT
n

∂xi
Jn

)

tr(J−T
n J−1

n)− 2tr(JT
nJn)tr

(

J−1
n J−T

n J−1
n

∂Jn

∂xi

)

(3.37)

Once again, it is preferred to work with the condition number-squared, as it leads to

expressions that are simpler to handle. Differentiating κ2
F with respect to x a second

time, the Hessian is obtained as a symmetric matrix of the form

∂2κ2

∂x2
=















∂2κ2

∂x21
. . .

∂2κ2

∂x1∂xn
...

. . .
...

∂2κ2

∂xn∂x1
. . .

∂2κ2

∂x2n















(3.38)

32

Each of its entries ∂2κ2/∂xi∂xj must be found. Differentiating each entry of ∂κ2/∂x2

in a similar way as done for the gradient, each entry of the Hessian can be found as

∂2κ2

∂xj∂xi
=

2

n2

[

tr

(∂

(

JT
n

∂Jn

∂xi

)

∂xj

)

tr(J−1
n J−T

n)

− 2tr

(

JT
n

∂Jn

∂xi

)

tr

(

J−1
n J−T

n J−1
n

∂Jn

∂xj

)

− 2tr

(

JT
n

∂Jn

∂xj

)

tr

(

J−1
n J−T

n J−1
n

∂Jn

∂xi

)

− tr(JT
nJn)tr

(∂

(

J−1
n J−T

n J−1
n

∂Jn

∂xi

)

∂xj

)]

(3.39)

where the only two new terms, after computing the gradient, are

tr

(∂JT
n

∂Jn

∂xi
∂xj

)

=tr

(

∂JT
n

∂xj

∂Jn

∂xi

)

+ tr

(

JT
n

∂2Jn

∂xj∂xi

)

(3.40a)

tr

(∂J−1
n J−T

n J−1
n

∂Jn

∂xi
∂xj

)

=tr

(

J−1
n J−T

n J−1
n

∂2Jn

∂xj∂xi

)

(3.40b)

− tr

(

J−1
n J−T

n

∂JT
n

∂xj
J−T
n J−1

n

∂Jn

∂xi

)

− tr

(

J−1
n

∂Jn

∂xj
J−1
n J−T

n J−1
n

∂Jn

∂xi

)

− tr

(

J−1
n

∂Jn

∂xi
J−1
n J−T

n J−1
n

∂Jn

∂xj

)

=tr

(

Y
∂2Jn

∂xj∂xi

)

− tr

(

X
∂JT

n

∂xj
XT ∂Jn

∂xi

)

− tr

(

J−1
n

∂Jn

∂xj
Y
∂Jn

∂xi

)

− tr

(

J−1
n

∂Jn

∂xi
Y
∂Jn

∂xj

)

33

Notice that many of the terms needed for computing the condition number and its

gradient are recurring here. An efficient algorithm for computing the Hessian of the

condition number would take this into account if the gradient and condition number

must also be computed. There are, however, new matrices to be found; these are

the ∂2J/∂xi∂xj matrices. Similar to computing the derivative of the Jacobian, the

second derivative can be found columnwise. In the case of a robot with revolute

joints only, the second derivative of the Jacobian with respect to a (θk, θl) pair is

∂2Jn(mi)

∂θk∂θl
=

































































































Lek × (el × ei)

ek × (el × (ei × ri))






if k ≤ l < i







0

ek × (ei × (el × rl))






if k < i ≤ l







0

ei × (ek × (el × rl))






if i ≤ k ≤ l

(3.41)

Note that the cases where k ≤ l are the only ones considered because of the symmetry

property of the Hessian, which yields

∂2Jn

∂θk∂θl
=

∂2Jn

∂θl∂θk
(3.42)

An efficient algorithm for computing the Hessian is given below.

34

Data: Jn, r1, . . . , r6

Result: Finds the Hessian of the square of the Frobenius norm condition

number of the normalized Jacobian matrix

begin

LU decompose Jn;

Solve JnJ
T
nX = 1 for X using the LU decomposition;

Solve JnY = X for Y using the LU decomposition;

tr1← tr(JTJ);

tr2← tr(X);

for i← 1 to n do

Find ∂Jn/∂xi using eq. (3.21);

tr3i ← tr

(

Y
∂J

∂xi

)

;

tr4i ← tr

(

JT
n

∂Jn

∂xi

)

;

for j ← 1 to i do

Find ∂2J/∂xi∂xj using eq. (3.41);

Find tr5ij using eq. (3.40a) ;

Find tr6ij using eq. (3.40b) ;

∂2κ2

∂xi∂xj
← 2(tr5ijtr2− 2tr4itr3j − 2tr4jtr3i − tr1tr6ij) ;

end

end

end

Algorithm 2: Computation of the Hessian matrix

35

Figure 3–2: Algorithm for computing the Hessian of the condition number-squared

In the algorithm above, a similar scheme to the algorithm for the gradient has

been adopted. One advantage of this scheme is that the gradient and function value

can also be computed with little added cost. The complexity of the algorithm is also

made evident by the diagram of Fig. 3–2, which shows the dependence of each sub-

problem on the other sub-problems. It should also be noted that the computation

of the exact Hessian is very sensitive to ill-conditioning of the normalized Jacobian.

In fact, some significant absolute errors in the Hessian were observed for condition

numbers as low as 80 when comparing our method with a numerical method with

a high number of sample points [43], an adaptive robust numerical differentiation

36

package for Matlab. The problem is most likely caused by the high number of

matrix inversions that must be made in order to compute the Hessian, particularly

for tr6, which requires four inversions of the Jacobian.

3.1.4 Cost of Computing the Hessian

The cost of finding the Hessian with the method described above is now dis-

cussed. In Section-3.1.2, it was found that the cost of finding the gradient for the

six-dof revolute joint robot is 1763 flops. To find the Hessian, the same elements of

the gradient must be found with an additional two elements for which the computa-

tional cost is now discussed.

First, the cost of computing the 21 matrices ∂2Jn/∂xk∂xl is considered. From

eq. (3.41) the cost of one single column can be found as

costd2Ji =











45 flops if i > l

27 flops if i ≤ l
(3.43)

The cost of ∂2Jn/∂xk∂xl using eq. (3.43)is then

costd2J(l) = 270− 27l (3.44)

and it follows that the total cost of computing the 21 matrices ∂2Jn/∂xk∂xl is found

as

cost21d2J =

6
∑

k=1

6
∑

l=k

costd2J(l) = 5761 flops (3.45)

The cost of finding the 21 different tr5ij knowing all ∂2Jn/∂xk∂xl is similar to

the cost of tr1 and can be found as

costtr5 = 21(2costtr1) = 84n2 − 42 = 2982 flops (3.46)

37

For tr6ij, the computational cost is found by the cost of each trace in eq. (3.40b).

The cost of tr(Y∂2Jn/∂xj∂xi) is the same cost as of tr1 since the cost of Y and

∂2Jn/∂xj∂xi has already been considered. The cost of tr(X∂JT
n/∂xjX

T∂Jn/∂xi) is

that of two matrix-matrix multiplications and then finding the trace by only com-

puting the diagonal entries of the product, namely, (2n3 + n2 − 1). The cost of

tr(J−1
n ∂Jn/∂xjY∂Jn/∂xi) is that of solving two triangular systems, for the inver-

sion of Jn, and finding the trace by computing only the diagonal entries, namely,

(5n2/2 + n− 1). The total cost of tr6 is then

costtr6(n = 6) = 21(costtr1 + 2n3 + n2 − 1 +
5n2

2
+ n− 1) (3.47a)

= 21(2n3 +
11n2

2
+ n− 2) = 13314 flops

Finally, by summing up all of the different computational costs including the one for

eq. (3.39) when the traces are known, the total cost of finding the Hessian is

costhess = costupper + costlower + cost21d2J + costtr5 + costtr6 + 210 (3.48a)

= 23796 flops

From this analysis, it is apparent that computing the exact Hessian is a costly

operation. In fact, the cost is close to 13.5 times the cost of computing the gradient.

The primary reason for this lies in the 21 independent entries that must be computed

along side with the 21 second derivative matrices that also must be computed. For

this reason, the use of the Hessian is not recommended in the iterative algorithms,

especially given that, for trajectory optimization, a new optimisation problem is

solved for each trajectory point. The advantage of using the approximate Hessian

38

is later investigated in more details in section 4.1 through an example. The exact

Hessian could, nonetheless, be useful as an initial guess for the approximative Hessian

when an approximation is used to save on computation cost in iterative procedures.

3.2 Optimization Algorithms

Having found ways to compute the gradient and Hessian of the condition num-

ber, optimization methods are now discussed. As mentioned above, the quasi-Newton

and sequential quadratic programming methods of optimization are preferred, as

they have good convergence properties and obviate the Hessian computation, which

is a costly operation. In this section, a quasi-Newton method will first be discussed

along with a line search method that is crucial for the success of the quasi-Newton

method. Then, the SQP via the orthogonal decomposition algorithm (ODA) us-

ing the Broydon-Fletcher-Goldfarb-Shanno (BFGS) update of the Hessian matrix is

discussed. SQP using BFGS has been shown to have superlinear convergence [44].

3.2.1 Quasi-Newton Method with BFGS Update

Quasi-Newton methods are a class of optimization methods that approximate

the Newton-Raphson method, but are unique in that they use the gradient and,

in some cases, function values of the objective function, to approximate its exact

Hessian. Generally converging superlinearly, these methods are faster than their

quadratic converging counterpart, the Newton-Raphson method, which uses the ex-

act Hessian. They also converge much faster than the conjugate gradiant and steepest

descent methods, which have only linear converge.

The quasi-Newton method used here is similar to the Newton-Raphson method

as, at each iteration of the method, a search direction dk is found by solving the

39

equation.

Bkdk = −∇f(x) (3.49)

where ∇f(x) is the gradient of the objective function, and Bk is an approximation

of its exact Hessian. The point xk+1 is found by a line search, choosing a good α, in

the direction of dk. Line search will be discussed in Subsection 3.2.2.

xk+1 = xk + αdk (3.50)

Quasi-Newton methods differ in the way of computing the approximate Hessian Bk

or, more commonly, its inverse Hk. The two most popular methods of updating the

Hessian are the Davidon-Fletcher-Powell (DFP) and the Broydon-Fletcher-Goldfarb-

Shanno (BFGS) methods [21, 45]. The BFGS update for the Hessian and inverse

Hessian is

BBFGS
k+1 = Bk −

Bksks
T
kBk

sTkBksk
+

yky
T
k

sTk yk

(3.51a)

HBFGS
k+1 = B−1 = Hk −

Hkyks
T
k + sky

T
kHk

yT
k sk

+

(

1 +
yT
kHkyk

yT
k sk

)(

sks
T
k

yT
k sk

)

(3.51b)

where

yk = ∇f(xk+1)−∇f(xk) (3.52)

and

sk = xk+1 − xk (3.53)

In general, the BFGS update of the inverse is preferred, since it is known to be

robust and gives immediately the inverse. The quasi-Newton method, with BFGS

40

update, is not perfect; certain conditions on each step must be respected to ensure

convergence of the algorithm. To guarantee a descent direction, the Hessian approx-

imation should be positive-definite; in the worst-case scenario, positive semi-definite.

This becomes apparent by the relation below, where eq. (3.49) is projected onto dk.

dT
kBkdk = −dT

k∇fk (3.54)

If this relation is not met, then the search direction will be flipped from a descent

direction to a climbing direction. At this point, divergence of the procedure can

occur. A combination of a good approximation of the Hessian and a good line search

must be used to satisfy the positive-definiteness condition.

3.2.2 Line-Search Method

As discussed earlier, line search methods are very important to the convergence

of quasi-Newton methods. The line search problem is defined as

min
α

f(xk + αdk) (3.55)

Ideally, the line search yields the minimum along the search direction. This is,

however, not always possible or efficient, as the function can be extremely complex

and hence, its computation too costly. It is often sufficient to do a line search that

satisfies a set of conditions. A popular set used in this thesis for the line search of

the quasi-Newton method is known as the Wolfe conditions [21].

The Wolfe conditions are given as a set of two inequalities. The first is the

sufficient decrease condition, which can be stated as

f(xk + αdk) ≤ f(xk) + c1α∇fT
k dk (3.56)

41

where the constant c1 ∈ {0, 1} is typically chosen as 10−4. The second condition

is the curvature condition, which ensures a large-enough step to make progress in

finding a solution.

c2∇fT
k dk ≤ ∇f(xk + αdk)

T (3.57)

where the constant c2 ∈ {c1, 1} is typically chosen as 0.9 for quasi-Newton methods.

The combined conditions should guarantee a new point xk that decreases both the

function and its gradient norm. The positive-definite condition in eq. (3.54) will be

satisfied if eq. (3.57) is satisfied.

To find a valid value of α, a cubic estimate of the function is constructed from

the function value and gradient values of two points along the line. The minimum is

then found for α by solving for the minimum value of the cubic estimate function.

Since the latter is a cubic, only the roots of a quadratic function must be found. If

the minima does not satisfy the Wolfe conditions, the minimum is then used along

with the information of a previous point to construct a new estimate. The procedure

is repeated to find a new minimum. Note that this is an iterative procedure, with

the Wolfe conditions as the stopping criterion.

3.2.3 SQP via ODA

Sequential quadratic programming (SQP) is an optimization algorithm intended

to solve constrained optimization problems. Here, a SQP method via the orthogonal

decomposition algorithm (ODA) will be shown. The SQP method implemented here

makes use of the ODA [46]. The method will later be used for redundancy-resolution

42

in Section 4.2. The problem being solved with SQP via ODA takes the form:

f(x)→ min
x

, s.t. h(x) = 0 (3.58)

where f(x) is the function to be minimized, h is a vector of constraints and x

is a set of design variables. This is a nonlinear equality constrained problem. For

the case of the functionally redundant robot, the constraints will be the Cartesian

coordinates of the end-effector, a nonlinear function that does not always admit

an exact solution. In SQP, the function f(x) to minimize is approximated at each

iteration by a quadratic function, which leeds to the problem:

f(xk +∆xk) ∼ f(xk) +∇fTk∆xk +
1

2
(∆xk)T (∇2f)k∆xk → min

∆xk

(3.59)

Similar to the ODA [22], the ∆xk step vector is decomposed into two orthogonal

components.

∆xk = ∆vk + Lk∆uk (3.60)

where Lk is an orthogonal complement of the Jacobian of hk. A step in the direction

of Lk should, therefore, not pertub the constraints for small displacements ∆u. In

this form, the adjustment ∆vk is used to take the convergence toward the constraint,

while ∆uk is used to minimise f . An improvement ∆vk in satifying the constraint

is computed as the minimum-norm solution of an underdetermined system, namely,

Jk∆vk = −hk (3.61)

where Jk is the Jacobian of h at the kth iteration and hk is the constraint vector

at this same iteration. With the minimum-norm solution ∆vk, the optimization

43

problem is then rewritten with design vector ∆uk.

f(∆(u)k) ∼ f(xk) + (∇f)Tk (∆vk + Lk∆uk) (3.62)

+
1

2
(∆vk + Lk∆uk)T (∇2f)k(∆vk + Lk∆uk)→ min

∆uk

The optimum can then be found as

∆uk = −(LT
k (∇2f)kLk)

−1LT
k ((∇2f)k∆vk + (∇f)k) (3.63)

Note that, in this form, the Hessian of the function is needed. In most cases, the

Hessian is too expensive to compute. To solve this problem, the BFGS approximation

of the Hessian is used. The least computationally expensive form is then:

∆uk = −(LT
kBkLk)

−1LT
k (Bk∆vk + (∇f)k) (3.64)

where Bk is a approximation of (∇2f)k
1 based on gradients of the function using

eq. (3.51).

The original optimization problem in eq. (3.59) can then be solved by using

eqs. (3.61), (3.64) and (3.60) iteratively, till the normality conditions are reached

within a given tolerance.

1 ∇2, not to be mistaken with the Laplacien, is employed here in the sense of the
Hessian of a function.

44

CHAPTER 4
The Posture of Minimum Condition Number

The practical problem of finding the robot posture of minimum condition num-

ber when the robot traverses a given trajectory is now considered. First, the un-

constrained problem, which consists of finding the posture of minimum condition

number, will be solved. This is important, as the characteristic length is defined

in this way [29]. The unconstrained problem is also important, as it can give some

visual insight of the optimum posture to both the operator and the designer. The

operator can then optimally choose the location and orientation of the part being

welded or machined with respect to the robot [47]. The second problem to be solved,

of the constrained type, is more interesting from a practical point of view. What

is meant here by the constrained problem is the problem of minimizing the condi-

tion number of a robot along a prescribed trajectory in configuration space. In this

case, the trajectory is the constraint. Applications of the constrained problem are

in machining operations with axisymmetric tools and also in arc-welding operations.

In these applications, the functional redundancy of the robot can be used to min-

imise the condition number, thereby increasing the accuracy of these manufacturing

operations.

45

4.1 The Unconstrained Problem

The problem of finding the posture of minimum condition number can be defined

as

min
x

κ(Jn) (4.1)

where x and Jn can take different forms, depending on the robot and the norm

adopted to define the condition number. The two most common cases are the three-

dof planar robot and the six-dof spatial robot, both having revolute joints only. In

all cases, the condition number is not a function of θ1 when the condition number is

based on an invariant norm, namely the Euclidean or the Frobenius norm. This can

be readily visualized, as the robot dexterity is not affected by a change of viewpoint.

In most cases, the remainder of the joints do influence the condition number as well

as the characteristic length. In the special case in which the operation point lies on

the final-joint axis, the angle associated with this joint does not affect the invariant

condition number. The reason is that the final axis does not influence the position of

the operation point and, therefore, does not affect the Jacobian matrix. The design

vector for six-dof robots not having their operation points on its final-joint axis is:

x =

[

θ2 . . . θ6 L

]T

(4.2)

To solve the optimization problem, the gradient of κ should be equated to zero.

In some cases, a formula for the gradient can be derived. This was done by Khan

and Angeles [37] for a planar robot but still a numerical solution was warranted due

to the combersome expression of κ. Following a similar procedure for the six-dof

robot would lead to even longer and more complex expressions. This is because of

46

the algebraic complexity of the Jacobian inverse and the need to multiply it by itself

multiple times in the gradient, making the equations hard to display, let alone be

manipulated. For these reasons, it is recommended to solve the optimization problem

via an optimization algorithm, instead of trying to find the roots of ∇κ.

In Section 3.1.4, it was shown that computing the Hessian is too costly for an it-

erative procedure. In Section-3.2.1, the quasi-Newton method was discussed in some

detail, as it is a desirable optimization method for this type of problem. Recall that

the quasi-Newton method approximates the Newton-Raphson method while obviat-

ing the need for the exact Hessian of κ and still providing a superlinear convergence.

For these reasons, it is recommended here to use a quasi-Newton method to find the

posture of minimum condition number.

To show the effectiveness of the method for the unconstrained problem, the

minimum condition number posture of the FANUC 710ic-50 robot with a milling tool

attached to its end-effector will be found by means of the quasi-Newton method and

by the Newton-Raphson, as implemented in Matlab, using fminunc while providing

the gradient as described in Section 3.1.1. The Denavit-Hartenberg parameters of

this robot with the milling tool are shown in Table 4–1. The operation point is

considered to be at the tip of the milling tool for this particular robot.

47

Table 4–1: Denavit-Hartenberg parameters of of the FANUC 710ic-50 with milling
tool

joint i ai(mm) bi(mm) αi(
◦)

1 150 0 −90

2 870 0 180

3 170 0 −90

4 0 −1016 90

5 0 0 −90

6 −287.692 −607.777 120

The choice of an initial guess is very important to the procedure as it could

become trapped in a local minimum. From previous experiments, the optimum

posture is often found when the robot curls into itself, as made apparent in the

examples of optimum postures shown in Fig. 4–1.

48

•

a

a

√
3

3
a

P

O1 O2

O3

(a) Isotropic planar robot

•

a

a

a

P

O1 O2

O3

(b) “equilateral” planar robot

(c) DIESTRO robot (isotropic) [37]

Figure 4–1: Robots at their posture of minimum condition number

As for the characteristic length, taking the root mean square value (rms) of the

distance from each axis to the operation point should serve as a good initial guess

since, for the isotropic case, this value is the characteristic length at the optimum

posture. For the robot of Table 4–1, a posture for which the robot curls into itself is

θ =

[

0 20◦ −20◦ 0 −90◦ 0

]T

(4.3)

49

Figure 4–2: Initial guess posture for the FANUC 710ic-50 robot

As the problem is apparently non-convex, a proof of convexity being to cumber-

some to find given the complexity of the Hessian of the condition number, multiple

stationary points is likely to occur. Other possible starting postures could arise

from the different inverse kinematic solutions to a same Cartesian posture of the

end-effector, since the algorithm would most likely not be able to pass through a

singularity and change the configuration of the robot. In this light, no claim is made

that the optimum solution found here is indeed the global minimum. Figure 4–2

shows the robot at the posture given in eq. (4.3). The rms value of the distance

of each axis to the operation point for this posture is 298.5933 mm; therefore, the

initial guess for the optimization is

x0 =

[

20◦ −20◦ 0 −90◦ 0 298.5933 mm

]T

(4.4)

50

The stopping criterion for the algorithm is the normalized step size. Normalization is

done by dividing the characteristic length by the rms value of the distance from each

axis to the operation point, 298.5933 mm. For comparison purposes, the problem is

also solved with the Newton-Raphson methods. Table 4–2 displays the results of the

optimizations and Fig. 4–3 shows the robot at its optimum posture.

Table 4–2: Minimum condition number posture optimization results

quasi-Newton Newton-Raphson

optimum x

































0.4424◦

−35.7223◦

0

−118.5801◦

0

485.5933 mm

































































0.4150◦

−35.7372◦

0

−118.5897◦

0

485.1522 mm

































number of iterations 31 66

number of function evaluation 238 67

number of flops (approx.) 419,500 1,594,300

condition number 6.5046 6.5046

stopping criterion (step size) 10−6 10−6

51

Figure 4–3: Optimum posture of the FANUC 710ic-50 with milling tool

As expected, the optimum posture is one where the robot curls into itself. The

characteristic length of the robot is 485.5933 mm, about twice the rms value of

the distance between the operation point and each axis, which is 242.7693 mm at

the optimum posture. A solution was found in 31 iterations, which demonstrates

the effectiveness of the quasi-Newton method. In fact it was approximately 3.8 times

faster than the Newton-Raphson method. This is a consequence of the quasi-Newton

method not having to calculate the exact Hessian.

4.2 The Redundant Constrained Problem

In solving the constrained problem two types of redundancies can be identified.

These are the functional and the intrinsic redundancies, each with its particularities.

In this section, a redundancy-resolution scheme for a functionally redundant robot

is developed. This scheme is based on SQP.

52

4.2.1 SQP Redundancy Resolution

In order to setup the SQP problem, two key elements must be identified. The

first is the objective function to be minimized. The second is the set of constraints of

the problem. In this case, the constraints pertain to the trajectory that the robotic

arm must follow, while the objective function is the condition number squared.

The five-dof constrained problem can be formulated, as suggested by Angeles

[48], by means of two points separated by a distance d. Choosing this approach,

a rotation about the axis that passes trough these two points does not change the

location of these two points, this rotation being the functional redundancy. The

constraint of the problem is then defined as

h =







p1 − a1

p2 − a2






= 0 (4.5)

where p1 and p2 are the current position vectors of points 1 and 2, respectively, while

a1 and a2 are their desired position vectors. When the unit vector eact is parallel to

the axis on which points P1 and P2 lie, p2 can be found as

p2 = p1 + deact (4.6)

A similar relation is found for the desired points with edes denoting the vector parallel

to the direction of the desired axis. Using the absolute position of point 1 and the

relative position of point 2 with respect to point 1 leads to a second form of the

constraints, namely,

h =







deact − dedes

p1 − a1






= 0 (4.7)

53

the first three components representing the error in the relative position. The con-

straint vector h of eq.(4.7) is a nonlinear function of the joint angles θ, for which, in

the general case, a solution θ can only be found by iterative procedures. Only for

the decoupled robots does a exact solution θ to h exist [9]. To keep the algorithm

general, the case for which the robot is not of the decoupled type is considered in this

sub-section. The problem, therefore, can not be simplified to a unconstrained type

by eliminating variables using the constraint equations. The use of a constrained

optimisation algorithm is thus essential to solve this problem. The Jacobian of the

constraint of eq. (4.7) is

Jp =
dh

dx
=







B2 −B1

B1






(4.8)

where B1 and B2 are the lower blocks of the robot Jacobian as defined in eq. (1.2).

To gain insight into the first three rows of Jp, a second form of the result is given

here

dp2 − p1

dt
= (B2 −B1)θ̇

= d
deact
dt

= ω × deact

= −dCPM(eact)ω

(4.9)

where CPM(·) is the cross product matrix of (·) [9] and the angular velocity ω is

found as

ω = Aθ̇ (4.10)

54

where block A was defined in eq. (1.2). This leads to

Jp =







−dCPM(eact) 03×3

03×3 13×3













A

B1






(4.11)

In this decomposed form of Jp, the Jacobian matrix of eq. (1.2) is made apparent

using the angular velocity of the end-effector and the velocity of P1.

The significance of the distance d, separating the two points, discussed bellow,

cannot be neglected. Too small or too big of a length will render the constraint

Jacobian ill-conditioned. In fact, the problem of choosing the proper length is very

similar to to the one of choosing an initial guess for the characteristic length, as the

condition number of the constraint Jacobian depends on it in the same way. For this

reason, it is recommended to use the characteristic length as the distance between

the two points.

Now, the orthogonal complement L of Jp, whose columns span the null space

of the latter, is found. As stated by Huo and Baron [3], it is much simpler to find

the functional redundancy in operational space than it is to find it in joint space.

In operational space, the null space is nothing but a twist defined by the free-axis

direction. Using the normalized Jacobian, the redundant direction in operational

space is transformed into a direction in joint space, the orthogonal complement L

being

L = J−1
n







edes

0






(4.12)

where Jn is used instead of J to reduce roundoff-errors amplification. The other

possible directions of the null space would arise from the null space of the robot

55

Jacobian itself, for robots with more than six joints. This is, however, not the focus

of this work, as we have assumed that the robot in question has as many joints as

its operational-space dimension (only functional redundancy is considered). For this

case, eq. (4.12) fully defines the null space of Jp

Solving eqs. (3.61) and (3.64) is now considered in more detail. For this partic-

ular problem, using eq. (4.7) as the constraint, eq. (3.61) expands to

Jp∆v =







−CPM(eact) 03×3

03×3 13×3






Jn∆v = h (4.13)

Note that h does not necessarily lie in the range of Jp; however, the directions that

lie outside of the range are known and well defined in operational space. In fact,

they are the redundant directions of the robot. One way to make sure that the

right-hand side of eq. (4.13) lies in the range of Jp consists in multiplying both sides

of the equation by a singular matrix to yield a projection matrix on the left, with

its singular directions in the same directions of those of Jp. This eliminates the

components of h that do not lie in the range of Jp:







−CPM(eact)CPM(eact) 03×3

03×3 13×3






Jn∆v = PJn∆v

=







CPM(eact) 03×3

03×3 13×3






h

(4.14)

56

where P is the matrix that projects a vector onto the range of Jp; the distance d = L

is included in the robot normalized Jacobian. A solution ∆v can now be found as

∆v = J−1
n te (4.15)

where

te =







−CPM(eact) 03×3

03×3 13×3






h (4.16)

the projection matrix P having no effect on the solution of the system, since the

right-hand side of eq. (4.14) lies entirely in the range of P. Since matrix P plays

no role [27] in solving eq. (4.14) and eq. (4.15) can be used. If eq. (4.15) is used

then, te can be expressed in the form of a normalized twist since the normalized

Jacobian maps joint velocities to normalized twists. This is shown by expanding h

and computing the product.

te =







−CPM(eact) 03×3

03×3 13×3













deact − dedes

p1 − a1







=







d(eact × edes)

p1 − a1







(4.17)

which bears the form of a normalized twist, the first three components of te providing

a measure of the error in the orientation of the end-effector. The product eact ×

edes gives the direction of the axis about which the end-effector should rotate, its

magnitude being the sine of the angle that separates the two axes.

57

A potential pitfall in using the sine of the angle is its inability to distinguish

angles in the first quadrant from angles in the second quadrant. A more intuitive

way of choosing the magnitude is by using the angle between the two axes directly.

In fact, when the angle is small, both methods should perform equally well, since

sin(θ) ∼ θ in this case. The angle itself is chosen here, instead of its sine, as the

angle gives the constraint error a more direct physical meaning.

In the unlikely case that both axes are collinear but in opposite directions, the

algorithm would also fail to recognize that the orientation error is at its maximum

since the cross product would vanish. A simple means to avoid this problem is by

introducing additionally the cosine of the angle. When this situation occurs, any

axis normal to edes can be used to define the error.

After solving for ∆v, to converge towards the constraint, the quadratic problem

of the condition number can then be minimised using eq. (3.64). The solution to

eq. (3.64) using a BFGS update of the Hessian matrix is now recalled [45]:

∆uk = −(LT
kBkLk)

−1LT
k ((Bk∆vk + (∇f)k) (4.18)

Note that the product LT
kBkLk yields a scalar value when a six-dof robot performing

five-dof tasks is considered. The foregoing product and its inverse are thus simple to

evaluate, as only matrix-vector, vector-vector and scalar-vector products are needed.

The BFGS updating method requires an initial guess of the Hessian. It is

common to use the identity matrix times a scalar for this first guess; however, in

this work it has been chosen to use the exact Hessian as an initial estimate. With

58

this provision, errors that might arise from a poor estimate of the Hessian matrix

using a scaled version of the n× n identity matrix, are reduced.

Finally, a step ∆x is given by eq. (3.60). The primary difference in this re-

dundancy-resolution scheme from others such as TWA lies in the computation of the

step ∆u. Using an approximation of the Hessian in the algorithm, better convergence

properties should be expected using the SQP method.

The redundancy-resolution algorithm introduced here could then be used to

generate a sequence of trajectory points for off-line robot programming. It applies

to serial functionally redundant robot, not limiting itself to six-dof robot or to the

decoupled type. The method can also be generalized to handle both intrinsic and

functional redundancies by properly defining matrix L.

4.2.2 SQP in a Robot-control Algorithm

Implementation of the SQP algorithm in a robot-control algorithm is now in-

vestigated. The closed-loop inverse kinematics (CLIK) scheme [49] will be used here

within SQP in a control scheme. CLIK controllers can be implemented at the velocity

level and at the acceleration level. Only a velocity-level controller will be considered

here.

The robot-control scheme for a typical CLIK controller at the velocity level is

described in Fig. 4–4 [50]; CLIK typically takes the form

q̇ = J−1(ẋd +Kp(xd − x)) + null space optimization terms (4.19)

59

Figure 4–4: CLIK at the velocity level

This controller tries to solve, in real time, the optimization problem in eq.(3.58).

Some examples of computer simulation and experiments using this robot-control

scheme are available in the literature [50,51]. In these cases, intrinsically redundant

robots were used, along with a GPM scheme for the redundancy resolution. Similar

convergence to the trajectory should be expected using the SQP algorithm, since the

same terms appear for the control of the trajectory. The difference in using the SQP

algorithm lies in the use of the orthogonal complement L. With the SQP algorithm,

eq. (4.19) becomes

θ̇ = J−1
n (td +Kpte) + (LT

kBkLk)
−1LT

k ((BkJ
−1
n te + (∇f)k) (4.20)

where Kp is a diagonal matrix of control gains and td is the desired twist; eq. (4.20),

replacing eq.(3.60) in the previous subsection, can then be used as a robot-control

scheme.

4.2.3 Example

To show the effectiveness of the SQP algorithm as a redundancy-resolution al-

gorithm, the CLIK scheme at the velocity level is used here to find the minimum

60

condition-number trajectory. In this example the trajectory to be followed is defined

along a helix, on which a slot is to be milled on a cylinder. The FANUC 710ic-50

robot with DH parameters in Table 4–1 will be used. As the secondary objective,

the condition number squared of the normalized Jacobian matrix will be minimized.

The helicoidal trajectory can be described by the parametrization below:

x = R cos(∆φ− φ) (4.21)

y = pφ (4.22)

z = R sin(∆φ − φ) (4.23)

where φ is the angle of rotation around the cylinder axis, R the radius of the cylinder,

p in mm/rad the pitch of the helix and ∆φ a constant offset angle. The tool is oriented

normal to the cylinder; hence, the desired axis of symmetry of the tool is parallel to

the unit vector

en =













− cos(∆φ− φ)

0

− sin(∆φ− φ)













(4.24)

The velocities are found by differentiation of the expressions in eqs. (4.21), (4.22),

(4.23) and (4.28) with respect to time. In this case only φ is dependent on time, and

hence,

ẋ = Rφ̇ sin(∆φ− φ) (4.25)

ẏ = pφ̇ (4.26)

ż = −Rφ̇ cos(∆φ− φ) (4.27)

61

ėn =













−φ̇ sin(∆φ − φ)

0

φ̇ cos(∆φ− φ)













(4.28)

The above components are in a frame attached to the cylinder. A more useful

representation of the helix is in the robot base frame. Rotation matrix Rcyl and

position vector pcyl are introduced to describe the position and orientation of the

cylinder in the robot base frame. Finally, the desired position and velocity of the

operation point on this trajectory are described in base-frame coordinates by

p = pcyl +Rcyl













x

y

z













(4.29)

edes = Rcylen (4.30)

ṗ = Rcyl













ẋ

ẏ

ż













(4.31)

ėdes = Rcylėn (4.32)

For this particular example, the data displayed in Table 4–3 were used to describe

the trajectory. Figure 4–5 shows the part to be machined and the desired trajectory.

62

Table 4–3: Helicoidal trajectory data

radius of cylinder R (mm) 250

start/end angle φ (◦) 0/90

offset angle ∆φ (◦) 180

Velocity φ̇ (◦/s) 9

pitch of helix p (mm/rad) 500/π

pcyl (mm)

[

1300 1000 0

]T

Rcyl (unitless) 1

Figure 4–5: Desired trajectory

The problem of finding the optimum posture at the first trajectory point is

now considered. This posture will then serve as the initial guess for the trajectory-

tracking problem. As shown in Section 4.1, the characteristic length L of the FANUC

63

710ic-50 robot is 485.5933 mm. With the chosen robot and tool, the milling axis is

defined in base-frame coordinates by

eact = Q1
6













sin(−60◦)

0

cos(−60◦)













(4.33)

where Q1
6 is the rotation matrix that transforms vectors from components in robot

frame 6, attached to the end-effector, to those in base-frame 1. The error vector

definition using the angle error θerr is given by

te =







Lθerr
(eact × edes)

||eact × edes||2
p1 − a1






(4.34)

where θerr is the angle between desired and actual milling axis. As an initial guess

to the problem, the optimal posture of the robot was chosen as

θ =

[

0 0.4424◦ −35.7223◦ 0 −118.5801◦ 0

]T

(4.35)

where four decimal points is chosen as this is the resolution of a 13 bit encoder. The

first point of the trajectory is

[

pT eTdes

]T

=

[

1050 1000 0 1 0 0

]T

(4.36)

Using SQP, the optimal posture for the first point is found as

θ =

[

29.9052◦ 23.2777◦ 0.9907◦ −56.6009◦ −83.3305◦ 102.7566◦
]T

(4.37)

64

Knowing the optimal posture for the first point, the remainder of the trajectory

can be found using the CLIK scheme with SQP. By discretizing the operation into

small time intervals of 0.1 second and knowing, from the data in Table 4–3, that the

trajectory takes 10 seconds to traverse it, 101 trajectory points are generated for the

optimization of the trajectory in joint space.

0 2 4 6 8 10
−200

−150

−100

−50

0

50

100

150

time (s)

jo
in

t a
ng

le
s

(d
eg

)

θ
1

θ
2

θ
3

θ
4

θ
5

θ
6

Figure 4–6: Optimum trajectory

The optimum joint trajectory is displayed in Fig. 4–6 with the corresponding

condition number in Fig. 4–7. The MATLAB code used for this example is available

in appendix A. Jabez Technologies Inc.’s RobotMaster simulation package was then

used to validate the trajectory.

65

0 2 4 6 8 10
14

14.5

15

15.5

16

16.5

17

17.5

time (s)

co
nd

iti
on

 n
um

be
r

of
 th

e
no

rm
al

iz
ed

 J
ac

ob
ia

n
m

at
rix

Figure 4–7: Condition number along the trajectory

A maximum condition number of 17.42 was reached. Given that the minimum

condition number posture was found to be 6.50, the joint trajectory found by SQP

is extremely well conditioned. The low condition number can be attributed to two

major driving factors. The first is the SQP optimization scheme, the second, equally

important, being the location of the machined part with respect to the robot. Even

with this high number of trajectory points, the optimization runs on MATLAB in

less than 10 seconds. This is a reasonable waiting time for a trajectory optimization

procedure. Ascertaining graphically the solution at the 85th trajectory point, the

reciprocal of the condition number for a rotation about the tool axis is shown on

Fig. 4–8

66

0 50 100 150 200 250 300 350 400
0.052

0.054

0.056

0.058

0.06

0.062

0.064

angle of rotation about tool axis (offset from optimum in deg)

in
ve

rs
e

of
 c

on
di

tio
n

nu
m

be
r

Figure 4–8: Trajectory without optimization

In Fig. 4–8, the x-axis represents the angle of rotation of the end-effector about

the tool axis from the optimum posture. The y-axis is the inverse of the Frobenius-

norm condition number. For this particular trajectory point, the end-effector can

undergo a full rotation of 360◦ without passing trough a singularity and the condition

number is π-periodic with respect to a rotation about the tool axis. More impor-

tant, the optimum posture found by SQP corresponds to the maximum value on the

graph, and, consequently, the posture of minimum condition number. The SQP is an

effective tool in modifying the joint trajectory to be able to accomplish a task with

a minimum condition number of the normalized Jacobian matrix. The procedure

outlined in this example could be used in off-line trajectory planning software to find

optimally conditioned trajectories.

67

CHAPTER 5
Conclusions and Recommendations for Further Research

In summary, the condition number as a kinetostatic performance index for serial

manipulators was investigated. First, a geometric interpretation of the condition

number and the characteristic length was given for three-dof planar robots. Next, the

redundancy-resolution of functionally redundant serial manipulators was investigated

and solved by means of SQP.

The first result was the geometric interpretation of the characteristic length for

a planar manipulator. The Frobenius-norm condition number and condition number

can be described with a tetrahedron. The downside of this interpretation is that it

does not give any insight into the value of the characteristic length, since no special

form of the tetrahedron was observed for general robots. In fact, the characteristic

length is needed to build the tetrahedron. The method can be generalized to six-dof

spatial robots; however, no interpretation of the characteristic length could be found

for these robots in this way.

As a second result, the normality conditions of the Frobenius-norm condition

number of the normalized Jacobian matrix, alongside with SQP for redundancy res-

olution, was discussed in detail. Expressions of the normality conditions were found

using the normalized Jacobian matrix and its derivatives. An expression for the

Hessian of the condition number then showed that the Hessian is computationally

expensive, to be avoided in iterative procedures. The normality conditions were then

68

used in a redundancy-resolution algorithm based on SQP. In this contribution, the

SQP procedure was set up for functionally redundant robots performing a five-dof

task. The approach is valid for general robots. With the aid of the ODA, the search

procedure decomposes the problem into a pair of orthogonal vector increments. The

first maintains the robot on the desired trajectory, the second decreases the condition

number. The advantage of SQP lies in the optimization part of the algorithm. Using

an approximation to the Hessian in a second-order scheme, the SQP should outper-

form other methods that use only the gradient in a first-order scheme. This is more

apparent when optimizing cumbersome objective functions such as the Frobenius-

norm condition number of the normalized Jacobian, whose gradient can undergo

major changes with small changes in the joint-variable values of the robot. The SQP

was then shown to work with an example using MATLAB code and the RobotMaster

simulation package. The method can be implemented in commercial software such a

RobotMaster for off-line trajectory planning.

In future works, SQP should be compared to other methods such as TWA in

order to better asses its performance. Other types of functional redundancies have

not been discussed in this thesis; they should also be studied using SQP. Robots with

both functional and intrinsic redundancies should also be studied, as this could be

useful for some robots such as the Canadarm2 for performing functionally redundant

tasks. In this thesis, joint limits were not considered, a SQP method with inequality

constraints (the joint limits) could potentially be used to take these constraints into

account. Given the importance of singularity avoidance in parallel manipulators,

SQP should also be tested for these type of mechanisms.

69

It was also observed that the computation of the gradient and the Hessian were

sensitive to the condition number of the normalized Jacobian matrix. This should be

investigated further, as the algorithm could potentially break down if the posture is

near a Jacobian singularity. This would be caused by a poor numerical computation

of the gradient, which would lead to undesirable joint steps by having an erroneous

gradient and also by a consequent erroneous approximation of the Hessian matrix.

70

APPENDIX A
MATLAB Code for the SQP Redundancy Resolution

Main Code

1 % main program to run SQP s imu la t i on

2 % note that the j a cob ian program i s where the DH parameters

are con f i gu r ed

3 c l e a r a l l

4 c l c

5 t end =10; % t o t a l time to complet the t r a j e c t o r y

6 d e l t a t =0.1 ; % con t r o l s t ep

7 n=t end / d e l t a t ; % number o f po int f o r s imu la t i on

8 [pose , o r i en t , dpose , do r i en t]= t r a j e c t o r y 2 (t end , d e l t a t) ; %

genera t e s the intended t r a j e c t o r y

9 x0=[−0.3195;−10.7744; −47.5477; 0 .5337 ;−83 .2256 ; −1.5715]∗ pi

/180 ; % Sta r t ing po int t r a j 2 No opt

10 l =485.59; % c h a r a c t e r i s t i c l ength

11 [de l tax , x , dkappaprev , Hprev]=SQP step exact hess (x0 , l ,

pose (: , 1) , o r i e n t (: , 1) , dpose (: , 1) , do r i en t (: , 1)) ; % f i r s t

s tep to i n i t i a l i s e opt im i za t i on and have hes s i an guess

12 xprev=x0 ; % i n i t i a l i z e p r ev i ous po int

71

13 % i n i t i a l i s a t i o n o f v a r i a b l e s be f o r e loop

14 po in t s=zero s (3 , n) ;

15 eu l e r=zero s (3 , n) ;

16 t h e t a i=ze ro s (6 , n) ;

17 time=zero s (n , 1) ;

18 kappai=time ;

19 ve l=zero s (1 , n) ;

20 o r i e n t e r r=time ;

21 po s e e r r=time ;

22 i =1;

23 % loop and i n t e r g r a t e a l l po in t s o f the t r a j e c t o r y

24 f o r t=d e l t a t : d e l t a t : t end

25 % fo r p l o t s

26 [J , r coord , R, e , ˜]= jacob ian (x) ; % foward kinemat ics

27 kappai (i)=cond ([l ∗ eye (3 , 3) , z e ro s (3 , 3) ; z e ro s (3 , 3) , eye

(3 , 3)]∗ J , ’ f r o ’) ;

28 po in t s (: , i)=r coo rd ; % l o c a t i o n o f OP

29 eu l e r (: , i)=f i n d e u l e r (R) ; % o r i e n t a t i o n o f EE

30 t h e t a i (: , i)=x∗180/ p i ;

31 ve l (1 , i)=norm(dpose (: , i)) ;

32 o r i e n t e r r (i)=acos (dot (e , o r i e n t (: , i))) ∗180/ p i ;

33 po s e e r r (i)=norm(r coord−pose (: , i) , 2) ;

34 time (i)=t ;

72

35 count=i ;

36 % end o f computations f o r p l o t s

37 % SQP algor i thm

38 i=i +1;

39 k=1; % con t r o l constant (ad ju s t f o r time)

40 % a l so see con t r o l constant in SQP step and

SQP step exact

41 x=x+de l t ax∗ d e l t a t ∗k ;

42 [de l tax , x , dkappaprev , Hprev]=SQP step (x , l , xprev ,

dkappaprev , Hprev , pose (: , i) , o r i e n t (: , i) , dpose (: , i) ,

do r i en t (: , i)) ;

43 xprev=x ; % update xprev

44 end

45 % use f p r i n t (s ee matwork documentation) to conver t the data

to a t ext f i l e f o r i t

46 % to be read by robotmaster (. pathx f i l e)

47 t e x t f i l e d a t a =[po in t s ; eu l e r ∗180/ p i ; z e ro s (1 , count) ; ve l] ;

% data f o r t ext to be pr in t ed

48 f i l e ID=fopen (’ t r a j e c t o r y . pathx ’ , ’w ’) ;

49 f p r i n t f (f i l e ID , ’<pathData>\n <opera t i on id=”1”>\n ’) ; %

opening statement o f pathx f i l e

50 formatSpec1 = ’<m>j c %1.6 f %1.6 f %1.6 f %1.6 f %1.6 f %1.6 f %u

%1.3 f</m>\n ’ ;

73

51 formatSpec2 = ’<m> l c %1.6 f %1.6 f %1.6 f %1.6 f %1.6 f %1.6 f %u

%.3 f</m>\n ’ ;

52 f p r i n t f (f i l e ID , formatSpec1 , t e x t f i l e d a t a (: , 1)) ;

53 f p r i n t f (f i l e ID , formatSpec2 , t e x t f i l e d a t a (: , 2 : count)) ; % <m>

j o i n t c on t r o l type−XYC alpha beta gama−MCAM Contour f l a g

(0)− f e ed ra t e (mm/s) </m>

54 f p r i n t f (f i l e ID , ’</operat ion >\n </pathData> \n ’) ;% end path

55 f c l o s e (f i l e ID) ;

56 %plo t s

57 f i g u r e % p lo t the p o s i t i o n

58 p lo t ([0 , time ’] , pose (1 , :) , ’ : r ’ , [0 , time ’] , pose (2 , :) , ’ : b ’ , [0 ,

time ’] , pose (3 , :) , ’ : g ’ , time ’ , po in t s (1 , :) , ’ r ’ , time ’ ,

po in t s (2 , :) , ’ b ’ , time ’ , po in t s (3 , :) , ’ g ’)

59 l egend (’ x componant o f d e s i r ed t r a j e c t o r y ’ , ’ y componant o f

d e s i r ed t r a j e c t o r y ’ , ’ z componant o f d e s i r ed t r a j e c t o r y ’ ,

’ x componant o f a c tua l t r a j e c t o r y ’ , ’ y componant o f a c tua l

t r a j e c t o r y ’ , ’ z componant o f a c tua l t r a j e c t o r y ’)

60 x l ab e l (’ time (s) ’)

61 y l ab e l (’ c a r t e s i a n po s i t i o n (mm) ’)

62 f i g u r e % p lo t the o r i e n t a t i o n e r r o r (ang le in deg)

63 p lo t (time , o r i e n t e r r)

64 x l ab e l (’ time (s) ’)

65 y l ab e l (’ o r i e n t a t i o n e r r o r (deg) ’)

74

Trajectory

1 % Trajctory o f a s l o t tw i s t i n g around a cy l i nd e r

2 f unc t i on [pose , o r i en t , dpose , do r i en t]= t r a j e c t o r y 2 (t end ,

d e l t a t)

3 count=1;

4 R=50; % rad iu s o f cy l i nd e r

5 d ang le=180∗pi /180 ; % o f f s e t ang le

6 dphi=(p i /2) / t end ; % de f i n e v e l o c i t y by angular v e l o c i t y

7 p=R/(p i /2) ; % p i t ch o f h e l i x

8 po s i t i o n =[400 ; 0 ; 0] ; % de f i n e l o c a t i o n o f cy l i nd e r wrt

robot

9 o r i e n t a t i o n=eye (3 , 3) ; % de f i n e r o t a t i on matrix o r i e n t a t i o n

o f cy l i nd e r wrt to robot base frame

10 % i n i t i a l i z e v a r i a b l e s

11 n=c e i l (t end / d e l t a t) ;

12 pose=zero s (3 , n) ;

13 dpose=pose ;

14 o r i e n t=pose ;

15 dor i en t=pose ;

16 f o r t =0: d e l t a t : t end

17 phi=t ∗dphi ; % s t a r t s at zero

18

19 x=R∗ cos (d angle−phi) ;

75

20 z=R∗ s i n (d angle−phi) ;

21 y=p∗phi ;

22

23 x dot=dphi∗R∗ s i n (d angle−phi) ;

24 z dot=−dphi∗R∗ cos (d angle−phi) ;

25 y dot=p∗dphi ;

26

27 pose (: , count)=po s i t i o n+o r i e n t a t i o n ∗ [x ; y ; z] ;

28 o r i e n t (: , count)=−1/R∗ o r i e n t a t i o n ∗ [x ; 0 ; z] ;

29 dpose (: , count)=o r i e n t a t i o n ∗ [x dot ; y dot ; z dot] ;

30 dor i en t (: , count)=o r i e n t a t i o n ∗ [0 ; 1 ; 0] ∗ dphi ;

31

32 count=count+1;

33 end

34 end

SQP Step

1 % one step o f the SQP algor i thm

2 f unc t i on [deltax , x , dkappa , H]=SQP step (x , l , xprev ,

dkappaprev , Hprev , pose , o r i en t , dpose , do r i en t)

3 [J , r coord , R, e , r e c r]= jacob ian (x) ; % foward kinemat ics

and ja cob ian

4 [dkappa , kappa , ˜]=normal eq3 (J , l , r e c r) ; % f i nd normal

equat ion and cond i t i on number

76

5 L=J \ [o r i e n t ; z e ro s (3 , 1)] ; % in s t an t nu l l space

6 [e r , e o] = f i n d e r r p o s e (pose , o r i en t , r coord , e) ; % pose

and o r i e n t a t i o n e r r o r

7 k=10;% con t r o l constant

8 de l t av=J \ ([do r i en t ; dpose]+k ∗ [e o ; e r]) ; % converge to

con s t r a i n t

9 H=BFGS up(x , xprev , dkappa , dkappaprev , Hprev) ; % f i nd

hes s i an approximation

10 Hp=H; % no c o r r e c t i o n f o r p o s i t i v e d e f i n i t e

11 B=L’∗Hp∗L ;

12 de l tau=B\(−L’ ∗ (H∗ de l t av+dkappa)) ;

13 de l t ax=de l t av+L∗de l tau ;

14 end

Pose Error

1 % to f i nd e r r o r

2 % here pose and o r i e n t are the wanted pose and r and e are

the ac tua l pose

3 % the e r r o r po int in the c o r r e c t i n d i r e c t i o n a l ready no need

to p la ce

4 % nega t ive s i gn in a lgor i thm that uses i t

5 f unc t i on [e r , e o] = f i n d e r r p o s e (pose , o r i en t , r , e)

6 e r = pose−r ; % e r r o r f o r l i n e a r p o s i t i o n

7 i f abs (dot (o r i en t , e))>1

77

8 i f dot (o r i en t , e)<0

9 ang le=pi ;

10 e l s e

11 ang le=0;

12 end

13 e l s e

14 ang le=acos (dot (o r i en t , e)) ; % ang le o f s e t o f the axes

15 end

16 cp=c r o s s (e , o r i e n t) ;% axes to turn about to get the ang le

17 i f norm(cp)==0

18 e o=zero s (3 , 1) ;

19 e l s e

20 e o=cp/norm(cp)∗ ang le ; % method ange le

21 %e o=cp;% method with s i n (ang le)

22 end

23 end

Normality Conditions

1 f unc t i on [dkappa , kappa , Jinv]=normal eq3 (J , l , r e c r)

2 Jn=[l ∗ eye (3 , 3) , z e ro s (3 , 3) ; z e ro s (3 , 3) , eye (3 , 3)]∗ J ;

3 [L , U, P]= lu (Jn) ; % LU=PJ ou J=P’LU

4 Jinv=U\(L\P) ;

5 X=Jinv ’∗ Jinv ; % f i nd X

78

6 Y=U\(L\(P∗X)) ; % f i nd Y

7 t r 1 =0;

8 t r 2=t r a c e (X) ; % compute t r a c e ((J ’ J) ˆ−1)

9 t r 3=zero s (6 , 1) ;

10 dkappa 2=tr3 ;

11 t r 4=t r3 ;

12 f o r i =1:6

13 t r 1=t r1+Jn (: , i) ’∗Jn (: , i) ; % compute t r a c e (J ’ J)

14 dJ=j a c o b i a n d e r i v a t i v e (J , l , r e c r , i) ; % f i nd ja cob ian

d e r i v a t i v e

15 f o r j =1:6

16 t r 3 (i)=t r3 (i)+Y(j , :) ∗dJ (: , j) ;% compute t r a c e (YdJ)

17 t r 4 (i)=t r4 (i)+Jn (: , j) ’∗dJ (: , j) ;% compute t r a c e (JdJ)

18 end

19 end

20 dkappa=2∗(t r 4 ∗ tr2−t r 3 ∗ t r 1) ; % grad iant wrt to x=[L theta2

. . . theta6]

21 kappa=tr1 ∗ t r 2 ;

22 end

BFGS Update of the Hessian

1 % funct i on to make BFGS update

2 f unc t i on H=BFGS up(x , xprev , grad , gradprev , Hprev)

79

3 sk=x−xprev ;

4 yk=grad−gradprev ;

5 H=Hprev−((Hprev∗ sk) ∗(sk ’∗Hprev)) /(sk ’∗Hprev∗ sk)+(yk∗yk ’) /(sk

’∗ yk) ;

6 end

Jacobian Matrix and Forward Kinematics

1 % f i nd s the Jacobian and does foward kinemat ics

2 f unc t i on [J , r coord , R, e , r e c r]= jacob ian (theta)

3 % funct i on to compute the j a cob ian matrix

4 t h e t a o f f s e t = [0 ; −90 ; 0 ; 0 ; 0 ; 0]∗ pi /180 ;

5 theta=theta+t h e t a o f f s e t ;

6 %parametre DH

7 alpha=[−pi /2 ; p i ; −pi /2 ; p i /2 ; −pi /2 ; 180∗ pi / 1 8 0] ;

8 a i =[150 ; 870 ; 170 ; 0 ; 0 ; −287.692] ;

9 bi =[0 ; 0 ; 0 ; −1016; 0 ; −607.777] ;

10 %other data

11 p i t ch=−60∗pi /180 ;% only support p i t ch f o r now

12 % var i ab l e i n i t i a l i z a t i o n

13 J=zero s (6 , 6) ;

14 Q=zero s (3 , 3 , 6) ;

15 P=Q;

16 f o r i =1:6

80

17 Q(: , : , i)=rot mat (theta (i) , a lpha (i)) ;

18 end

19 P(: , : , 1)=Q(: , : , 1) ;

20 J (1 : 3 , 1) =[0 ; 0 ; 1] ;

21 f o r i =2:6

22 P(: , : , i)=P(: , : , i −1)∗Q(: , : , i) ;

23 J (1 : 3 , i)=P(: , 3 , i −1) ;

24 end

25 r=[a i (6) ∗ cos (theta (6)) ; a i (6) ∗ s i n (theta (6)) ; b i (6)] ;

26 r e c r=zero s (3 , 6) ;

27 r e c r (: , 6)=P(: , : , 5) ∗ r ;

28 J (4 : 6 , 6)=P(: , : , 5) ∗[− r (2) ; r (1) ; 0] ;

29 f o r i =5:−1:1

30 a=[a i (i) ∗ cos (theta (i)) ; a i (i) ∗ s i n (theta (i)) ; b i (i)] ;

31 r=a+Q(: , : , i) ∗ r ;

32 i f i ˜=1

33 J (4 : 6 , i)=P(: , : , i −1)∗[− r (2) ; r (1) ; 0] ;

34 r e c r (: , i)=P(: , : , i −1)∗ r ; % r i in frame 1

35 e l s e

36 J (4 : 6 , i)=[−r (2) ; r (1) ; 0] ;

37 r e c r (: , i)=r ;

38 end

39 end

81

40 r coo rd=r ; % output coo rd ina t e s o f po int (d i r e c t k inemat ics)

41 R=P(: , : , 6) ; % ouptut r o t a t i on matrix f o r o r i e n t a t i o n

42 % f ind the redundant ax i s

43 y a x i s t o o l=−c r o s s (c r o s s (J (1 : 3 , 5) , J (1 : 3 , 6)) , J (1 : 3 , 6)) ;

44 f i n a l r o t=vrrotvec2mat ([y a x i s t o o l ; p i t ch]) ;

45 e=f i n a l r o t ∗J (1 : 3 , 6) ; % output redundant axes

46 end

Jacobian Derivative

1 %funct i on to compute the d e r i v a t i v e wrt the ta k (k==1 i f

c h a r a c t e r i s t i c l ength)

2 f unc t i on dJ=j a c o b i a n d e r i v a t i v e (J , l , r e c r , k)

3 dJ=zero s (6 , 6) ;

4 f o r i =1:6

5 i f k==1

6 % a l l z e ro s i f wrt theta1

7 % dJ (1 : 3 , i)=J (1 : 3 , i) ; % i f wrt to L

8 e l s e i f k>=i

9 dJ (4 : 6 , i)=c r o s s (J (1 : 3 , i) , c r o s s (J (1 : 3 , k) , r e c r (: , k)))

; % i f k>=i

10 e l s e

11 dJ (: , i)=[l ∗ c r o s s (J (1 : 3 , k) , J (1 : 3 , i)) ; c r o s s (J (1 : 3 , k) ,

c r o s s (J (1 : 3 , i) , r e c r (: , i)))] ; % i f k< i

82

12 end

13 end

14 end

83

References

[1] Z. Li, D. Glozman, D. Milutinovic, and J. Rosen, “Maximizing dexterous
workspace and optimal port placement of a multi-arm surgical robot,” in Proc.
2011 IEEE International Conference on Robotics and Automation (ICRA),
(Shanghai, China), pp. 3394–3399, May 9-13 2011.

[2] W. Zhu, W. Qu, L. Cao, D. Yang, and Y. Ke, “An off-line programming system
for robotic drilling in aerospace manufacturing,” The International Journal of
Advanced Manufacturing Technology, vol. 68, pp. 2535–2545, 2013.

[3] L. Huo and L. Baron, “Kinematic inversion of functionally redundant serial
manipulators: application to arc-welding,” Trans. of the Canadian Society for
Mech. Eng., vol. 29, pp. 679–690, 2005.

[4] S. H. H. Zargarbashi, W. Khan, and J. Angeles, “Posture optimization in
robot-assisted machining operations,” Mechanism and Machine Theory, vol. 51,
pp. 74–86, 2012.

[5] S. H. H. Zargarbashi, W. Khan, and J. Angeles, “The jacobian condition number
as a dexterity index in 6r machining robots,” Robotics and Computer Integrated
Manufacturing, vol. 28, pp. 694–699, 2012.

[6] A. Müller and P. Maisser, “Generation and application of prestress in re-
dundantly full-actuated parallel manipulators,” Multibody System Dynamics,
vol. 18, pp. 259–275, 2007.

[7] R. Boudreau, X. Mao, and R. Podhorodeski, “Backlash elimination in parallel
maniplators using actuation redundancy,” Robotica, vol. 30, pp. 379–388, 2012.

[8] R. S. Hartenberg and J. Denavit, Kinematic Synthesis of Linkages. New York:
McGraw-Hill, 1964.

[9] J. Angeles, Fundamentals of Robotic Mechanical Systems. Theory, Methods, and
Algorithms. New York: Springer, 2007.

84

85

[10] J. Hervé, “Analyse structurelle des mécanisms par groupes de déplacements,”
Mechanism and Machine Theory, vol. 13, pp. 437–450, 1978.

[11] J. Hervé, “The lie group of rigid body displacement, a fundamental tool for
mechanism design,” Mechnism and Machine Theory, vol. 34, pp. 719–730, 1999.

[12] N. Arenson, J. Angeles, and L. Slutski, “Redundancy-resolution algorithms
for isotropic robots,” Advances in Robot Kinematics: Analysis and Control,
pp. 425–434, 1998.

[13] T. Yoshikawa, “Basic optimization methods of redundant manipulators,” Labo-
ratory robotics and automation, vol. 8, pp. 49–60, 1996.

[14] A. Liégeois, “Automatic supervisory control of the configuration and behavior of
multibody mechanisms,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 12, pp. 868–871, 1977.

[15] Y. Nakamura, H. Hanafusa, and T. Yoshikawa, “Task-priority based redundancy
control of robot manipulators,” The International Journal of Robotics Research,
vol. 6, pp. 3–15, 1987.

[16] L. Sciavicco and B. Siciliano, Modelling and Control of Robot Manipulators.
London: Springer, 2000.

[17] L. Baron, “A joint-limits avoidance strategy for arc-welding robots,” in Proc. In-
ternational Conference on Integrated Design and Manufacturing in Mechanical
Engineering, (Montreal, Canada), May 16-19 2000.

[18] L. Baron and L. Huo, “Inverse kinematics of functionally-redundant serial ma-
nipulators: A comparaison study,” in Proc. 12th IFToMM World Congress,
(Besançon, France), 2007.

[19] L. Huo and L. Baron, “The self-adaptation of weights for joint-limits and
singularity avoidances of functionally redundant robotic-task,” Robotics and
Computer-Integrated Manufacturing, vol. 27, pp. 367–376, 2011.

[20] J. Andres, L. Gracia, and T. Josep, “Implementation and testing of a cam post-
processor for an industrial redundant workcell with evaluation of several fuzzified
redundancy resolution schemes,” Robotics and Computer-Integrated Manufac-
turing, vol. 28, pp. 265–274, 2012.

86

[21] J. Nocedal and S. J. Wright, Numerical Optimization. New York: Springer,
1999.

[22] J. Angeles, K. Anderson, and C. Gosselin, “Constrained design optimization
using orthogonal decomposition,” Mechanical Design, vol. 112, pp. 255–256,
1990.

[23] S. Khadem and R. Dubey, “A global cartesian space obstacle avoidance
sheme for redundant manipulators,” Optimal Control Applications and Meth-
ods, vol. 12, pp. 279–286, 1991.

[24] R. Dubey and J. Y. S. Luh, “Redundant robot control using task based perfor-
mance measures,” Journal of Robotic Systems, vol. 5, pp. 409–432, 1988.

[25] J. K. Salisbury and J. J. Craig, “Articulated hands: Force control and kinematic
issues,” The International Journal of Robotics Research, vol. 1, pp. 4–17, 1982.

[26] T. Yoshikawa, “Manipulability of robotic mechanisms,” The International Jour-
nal of Robotics Research, vol. 4, pp. 3–9, 1985.

[27] D. S. Watkins, Fundamentals of Matrix Computations. New York: Wiley, 2010.

[28] P. Cardou, S. Bouchard, and C. Gosselin, “Kinematic-sensitivity indices for
dimensionally nonhomogeneous jacobian matrices,” IEEE Transactions on
Robotics, vol. 26, pp. 166–173, 2010.

[29] J. Angeles, “The design of isotropic manipulator architectures in the presence of
redundancies,” The International Journal of Robotics Research, vol. 11, pp. 196–
201, 1992.

[30] C. M. Gosselin, “The optimum design of robotic manipulators using dexterity
indices,” Robotics and Autonomous Systems, vol. 9, pp. 213–226, 1992.

[31] G. Pond and J. Carretero, “Formulating jacobian matrices for the dexterity
analysis of parallel manipulators,” Mechanism and Machine Theory, vol. 41,
pp. 1505–1519, 2006.

[32] S.-G. Kim and J. Ryu, “New dimensionally homogeneous jacobian matrix formu-
lation by three end-effector points for optimal design of parallel manipulators,”
IEEE Transactions on Robotics and Automation, vol. 19, 2003.

87

[33] J. Angeles, “Rigid-body pose and twist estimation in the presence of noisy re-
dundant measurements,” in Proc. Eighth CISM-IFToMM Symposium on Theory
and Practice of Robots and Manipulators, (Cracow), June 2-6 1990.

[34] L. Stocco, S. Salcudean, and F. Sassani, “Matrix normalization for optimal robot
design,” in Proc. IEEE International Conference on Robotics and Automation,
(Leuven), May 16-20 1998.

[35] J. Lee, K. Eom, B. Yi, and I. Suh, “Design of a haptic device,” in Proc. IEEE
International Conference on Robotics and Automation, (Seoul), May 21-26 2001.

[36] S. Khan, K. Andersson, and J. Wikander, “Jacobian matrix normalization - a
comparison of different approaches in the context of multi-objective optimiza-
tionof 6-dof haptic devices,” Journal of Intelligent & Robotic Systems, 2014.

[37] W. A. Khan and J. Angeles, “The kinetostatic optimization of robotic manipula-
tors: The inverse and the direct problems,” J. Mech. Des. Journal of Mechanical
Design, vol. 128, p. 168, 2006.

[38] L. Hogben, Handbook of Linear Algebra. New York: Chapman and Hall/CRC,
2013.

[39] L. A. Freitag and P. M. Knupp, “Tetrahedral mesh improvement via optimiza-
tion of the element condition number,” International Journal for Numerical
Methods in Engineering, vol. 53, pp. 1377–1391, 2002.

[40] F. Ranjbaran, J. Angeles, M. A. Gonzlez-Palacios, and R. V. Patel, “The me-
chanical design of a seven-axes manipulator with kinematic isotropy,” Journal
of Intelligent and Robotic Systems, vol. 14, pp. 21–41, 1995.

[41] H. Bruyninckx and J. DeSchutter, “Symbolic differentiation of the velocity map-
ping for a serial kinematic chain,” Mechanism and Machine Theory, vol. 31,
pp. 135–148, 1996.

[42] A. Müller, Advances in Robot Kinematics: Derivatives of Screw Systems in
Body-Fixed Representation. Netherlands: Springer, 2014.

[43] J. D’Errico, “Adaptive robust numerical differentiation.” http:

//www.mathworks.com/matlabcentral/fileexchange/13490-adaptive-

robust-numerical-differentiation, Accessed: July 20, 2014.

88

[44] T. Liu and D. Li, “Convergence of the bfgs-sqp method for degenerate prob-
lems,” Numerical Functional Analysis and Optimisation, vol. 28, pp. 927–944,
2007.

[45] H. Yabe, H. Ogasawara, and M. Yoshino, “Local and superlinear convergence
of quasi-newton methods based on modified secant conditions,” Computational
and Applied Mathematics, vol. 205, pp. 617–632, 2007.

[46] C.-P. Teng and J. Angeles, “A sequential-quadratic-programming algorithm us-
ing orthogonal decomposition with gerschgorin stabilization,” Mechanical De-
sign, vol. 123, pp. 501–509, 2001.

[47] A. M. Lopes and E. S. Pires, “Optimization of the workpiece location in a
machining robotic cell,” Advanced Robotic Systems, vol. 8, pp. 37–46, 2011.

[48] J. Angeles, “Iterative kinematic inversion of general five-axis robot manipula-
tors,” The International Journal of Robotics Research, vol. 4, pp. 37–46, 1986.

[49] B. Siciliano, “A closed-loop inverse kinematic scheme for online joint-based robot
control,” Robotica, vol. 8, pp. 231–243, 1986.

[50] J. Wang, Y. Li, and X. Zhao, “Inverse kinematics and control of a 7-dof re-
dundant manipulator based on the closed-loop algorithm,” Advanced Robotic
Systems, vol. 7, pp. 1–9, 2010.

[51] I. Soto and R. Campa, “Two-loop control of redundant manipulators: analysis
and experiments on a 3-dof planar arm,” Advanced Robotic Systems, vol. 10,
pp. 1–7, 2013.

