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ABSTRACT

Darmon, Lauder and Rotger conjectured that at a classical, ordinary, irregular weight
one point of the eigencurve, the relative tangent space is of dimensional two. Conjecturally,
we can explicitly describe the Fourier coefficients of the normalized generalized eigenforms
that span the space in terms of p-adic logarithms of algebraic numbers. In this thesis, we
will present a proof of this conjecure in the following special case. The weight one point is
the intersection of two Hida families consisting of theta series attached to Hecke characters
on two imaginary quadratic fields that cut out a D-extension (the dihedral group of order

8).
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ABREGE

Darmon, Lauder et Rotger ont conjecturé que en un point classique, ordinaire et irrégulier
de poids un de la courbe de Hecke, 'espace tangent relatif est de dimension deux. Con-
jecturalement, nous pouvons décrire explicitement les coefficients de Fourier des fonctions
propres normalisées généralisées surconvergentes qui engendrent 1’espace, en termes de loga-
rithmes p-adiques de nombres algébriques. Dans cette these, nous allons présenter une preuve
de cette conjecture dans le cas particulier suivant. Le point de poids un est 'intersection de
deux familles de Hida composées de fonctions théta attachées a deux caracteres de Hecke
sur des corps quadratiques imaginaires qui découpent une Dgy-extension (le groupe diédral

d’ordre 8).
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Introduction

Fix a prime number p. In [20], Hida showed that at the classical ordinary points of weight
at least two, the eigencurve is smooth and étale over the weight space. This led Bellaiche
and Dimitrov [2] to study the eigencurve at classical ordinary points of weight one. Let
f(z) = 2@1 a,e2™* be a classical cuspidal newform of weight one, level N and nebentypus
X- By the works of Deligne and Serre [15], there exists an odd continuous irreducible Artin
representation

p: Gg — GLy(C)
associated to f. Suppose o, 3 € @p are the roots of the p-th Hecke polynomial 22 —a,x+x(p).

Suppose « and (8 are roots of unity, then p-stabilizations of f, defined by

fa(2) = f(2) = Bf(pz) and f5(2) = f(2) — af(p2),

are ordinary at p. We say f is regular at p if a # 3 and f is irregular otherwise.

Bellaiche and Dimitrov showed that if the modular form f is regular at p, then the
eigencurve is smooth at f,. Additionally, the weight map is étale if and only if f is not
the theta series attached to a finite order character on a real quadratic field in which p
splits. In the latter case, Cho and Vatsal [4] showed that the weight map is not étale. In [9],
Darmon, Lauder and Rotger introduced a one dimensional space consisting of overconvergent
generalized eigenforms, which can be naturally identified as the relative tangent space of
the eigencurve at f,. Furthermore, they were able to explicitly describe the ¢-th Fourier
coefficients of a natural basis element in terms of logarithms of /-units. Darmon, Lauder
and Rotger conjectured that in the case where f is irregular at p, the tangent space is of
dimension 2, and we can describe the Fourier coefficients as logarithms of /-units in a similar
way. These results and conjectures will be explained in greater detail in chapter 4.

The main goal of this thesis is to consider the case where f, is the intersection of

two Hida families consisting of theta series attached to two Hecke characters over distinct



imaginary quadratic fields that cut out a dihedral group of order eight extension. In chapter
5 of this thesis, we will present an original proof of the aforementioned conjecture of Darmon,
Lauder and Rotger in this scenario. The first three chapters will be dedicated to developing

the theory necessary to explain the conjecture and the proof.



Chapter 1
Modular Forms

In this chapter, we will give an introduction to the theory of classical modular forms.
Most importantly, we will introduce Hecke operators, Hecke eigenforms and Galois repre-
sentations associated to eigenforms. This theory will be crucial towards motivating p-adic
modular forms in later chapters. We will discuss an important class of modular forms, theta
series attached to Hecke characters, which we will be working with frequently in future
chapters. Finally, the last section will be dedicated towards introducing modular curves and

discussing some basic results. The main reference for this chapter is [16].

1.1 Classical Modular Forms
In this section, we will first introduce congruence subgroups and their action on the
complex upper half plane, followed by the definition of classical modular forms.

Definition 1.1.1. Let N > 1 be an integer. Define the group I'(N) to be

P(N)={<‘Z Z)GSLQ(Z): (Z 2)5(; i’) modN}.

It is called the principal congruence subgroup of level N. More generally, a subgroup I' of
SLy(7Z) is called a congruence subgroup of level N if " contains the group I'(N).

Example 1.1.2. There are two special congruence subgroups

a b a b x %

[o(N) = {(C d)ESLQ(Z): <c d) (0 *> modN},
a b a b 1 %

I'(N) = {(C d)ESLQ(Z): <c d) (O 1) modN}.

Consider the map
b
— b mod N.
d

a

I''(N) — Z/NZ given by (
c

It is easy to check that this is a surjection with kernel I'(N). Similarly, the map



a b

[o(N) — (Z/NZ)" given by ( p ) —d mod N

c
is a surjection with kernel I'y (V).

There is an action of SLs(Z) on the complex upper half plane
H={reC: im(z) >0}
given by Mdébius transformation. More specifically, given v = (29) € SLy(Z) and z € 9,

define the action of v on 7 to be

ar +b
T = :
7 cT +d
Furthermore, v acts on Q U {oc} by
<3> _as+0bt
T\t) T s tar

where oo is taken to be %.

The fundamental domain of the action of SLy(Z) on the upper half-plane is “almost”
the set

D= {7653: |Re(7)] §%, | 7] 21}.

See Figure 1-1 for a pictural representation of this region. The sketch of the proof is the
following. The group SLs(Z) is generated by the matrices T = (§1) and S = (¥ '). The
transformation 7" acts on the complex upper half plane by sending 7 to 7 + 1. By applying
T or T~ a sufficient number of times, 7 can be mapped to the region [Re(r)| < 3. If the
imaginary part of the result is too small, we can apply the transformation S, which sends 7
to —%. If |7| < 1, the transformation S will increase the imaginary part of 7. By applying
T or T! again to land in the |Re(7)| < % region and repeating the whole process, we can
eventually send 7 to D. For more details, see Lemma 2.3.1 of [16].
Remark 1.1.3. The region D is not quite the fundamental domain of the action of the
group SLs(Z) on $. However, we can show that if 7,75 € D are in the same orbit, then
either Re (m) = j:% and =7 F1l;or || =1and , = —T—ll. In other words, with some
boundary identifications, D is the fundamental domain. See Lemma 2.3.2 of [16] for more

details.



Figure 1-1: Fundamental Domain, Figure 2.3 of [16]

Remark 1.1.4. Let I" be a congruence subgroup. The set of I-equivalent classes of QU{oo}
are called the cusps. These cusps have significant geometric meaning. Let Y be the set of
orbits I"\$). We have already seen that we can take D = Yg,(z). This is commonly called the
modular curve. By giving Y (I') the quotient topology 7 : $ — I'\$) = Y(I'), the modular
curves are in fact Riemann surfaces. See Section 2.1 and 2.2 of [16] for the proof of this fact.
However, these curves are not compact. To compactify them, we need to adjoin the cusps
to obtain the Riemann surface Xp = I'\ (H U QU {oo}). In the case where I' = SLy(Z),
the modular curve Xgr,(z) can identified as D* = D U {oo}. See Chapter 2 of [16] for more
details. We will discuss modular curves in greater details in the last section of this chapter.

Given v = (2%) € SLy(Z) and an integer k > 0, define a weight-k operator [7], acting

on functions f: $§ — C in the following way
(f 1)) = (em +d) 7" f (4(7)) -

Definition 1.1.5. Let N > 1 and £ > 0 be integers. Suppose I' is a congruence subgroup
of level N. A holomorphic function f : $ — C is a modular form of weight k and level N

with respect to I, if

f(7) = (e +d) ™ f(r) forall y = (24) €T and 7 € 5.



In addition, the function f has to be holomorphic at infinity. More specifically, (f[v],)(T)
is bounded as Im(7) — oo for all v € SLy(Z).
Denote the set of modular forms of weight k with respect to the congruence subgroup

[’ by My(T"). By holomorphicity, f has a Fourier series expansion of the form
f(r) = Z an(f)q" where q = e*™'7.
n=0

If in addition, ag (f [y],) = O for all v € SLy(Z), then it is called a cusp form. Denote the

space of cusp forms of weight k& with respect to I' by Si(T).

1.2 Hecke Operators

The space of modular forms of fixed weight and level is a vector space. It is endowed
with some very special endomorphisms called Hecke operators. In this section, we will define
them and show some of their basic properties.
Definition 1.2.1. Let N be a positive integer and suppose d € (Z/NZ)". Define the action

of the diamond operator (d) on My (I'1(N)) by
(d) f = flag for any a = (2%) € To(N) satistying § =d mod N.
Let x : (Z/NZ)" — C* be a Dirichlet character and define
My (N,X) = {f € My (T3 (N)) = (d) f = x(d)f for all d € (Z/NZ)'}.
Then we have the following decomposition of eigenspaces of (d):
M (T (N)) = & My (N, x) -

For a modular form f € M (N, x), x is called the nebentypus character of f. This
decomposition is not important for this thesis, but it is very important for the study of
the space My (I'1(IV)). We will see that the Hecke operators 7, commute with the diamond
operators, which means that the Hecke operators will preserve this decomposition.

The definition of the diamond operators can be extended to all natural numbers in the

following way. If ged (d, N) = 1, then define (d) = (d mod N). If ged (d, N) > 1, define



(d) = 0. For subsequent chapters, it will be useful to instead use the notation S, = £¥=2 (¢)
for £1 N to denote the operator acting on My (I'y(N)).
Definition 1.2.2. Let N > 1 be an integer and p be a prime number. For each modular

form f € My (I'y(N)) define the Hecke operator T, to be

f[((l)zjo)}k ifp\N
f[(éi)]k+f[(?\72)(8?)]k if p4 N, where mp — nN = 1.

Remark 1.2.3. Thus far, we have defined the diamond operator (d) and the Hecke operator
T, to be some maps sending modular forms to some formal power series expansion. However,
their image are in fact still modular forms. That is, they are well-defined endomorphisms on
the space My (I'1(IV)), thus justifying the name “operators”. One can alternatively define
the Hecke operator T), for any natural number n via some double coset construction (see
Chapter 5 of [16]). In that case, it will be immediately clear that they are indeed operators.
Furthermore, this construction can be used to define Hecke operators for general congruence
subgroups.

Theorem 1.2.4. Suppose pt N, then in terms of q-expansions,

(Tof) =Y anp(Hg" + 0" an ((p) ) ™.
n=0 n=0
Proof. This is just a direct calculation. Alternatively, see Proposition 5.3.1 of [16]. 0

Proposition 1.2.5. Let N > 1 be a positive integer, c,d € (Z/NZ)* and p,{ be prime
numbers. Then these operators satisfy the identities:

1. (d) T, = T, {d)

2. {e) {d) = (cd) = (d) ()

3. T,y =T,T,.

Proof. See Proposition 5.2.4 of [16]. O

Definition 1.2.6. For r > 1, recursively define



Ty = Ty Tyt — p" 1 {p) Tpy—2 for r > 2.

For a natural number n € N with prime factorization n = [ pj*, define T), = [[ 7). In light

of part three of Proposition 1.2.5, this is well-defined.

1.3 Petersson Inner Product

The goal of this section is to introduce an inner product acting on the vector space
Sk (I'1(N)). Most importantly, it will be shown that the Hecke operators are self-adjoint
with respect to this inner product. Only a sketch of the construction will be given. The
reader should consult Section 5.4 and 5.5 of [16] for more details.
Definition 1.3.1. For each 7 € $, write 7 = = + iy where z,y € R. Define the hyperbolic

measure to be

dx dy
Y2

It can easily be checked that du (y(7)) = du(r) for all v € SLy(Z). In fact, this is

dp(T) =

true for all v € GLJ (R), the group of invertible matrices with positive determinant. Fix a
congruence subgroup I' C SLy(Z). Since QU {oo} is a countable discrete set when viewed as
a subset of C U {oc} with the usual topology, it is of measure zero. Therefore, dyu naturally
extends to the set U QU {cco} and is well-defined on the modular curve Xr.

Let {7} € SLy(Z) be some chosen set of coset representatives of £I'\SLy(Z). Up to

some boundary identification, the modular curve Xt can be represented by the disjoint union
|_| 7% (D7)
For any continuous bounded function ¢ : $ — C, and any v € SLy(Z), we can check that

Jpe @ (7(7)) du(7) converges. Define

[ oo =3 [ eeaun=3 [ e

which converges as well and is well-defined.
Proposition 1.3.2. Suppose f,g € Sp(I'). Then f(r)g(r) (Im(1))* is bounded on $ and

invariant under the action of .



Sketch of the Proof. The first part can be proven by considering the g-expansion of f and
g and noticing that as Im(7) — oo, the growth rate is O(q'/") for some positive integer h.

The I'-invariance can be checked directly. 0J

Definition 1.3.3. The Petersson inner product is the Hermitian form (-,-) : Sk(I') x
Si(T") — C defined by

oghe = — [ F(@)a0r) (m(r))* du(o),

= /.
where Vr is the volume of the fundamental domain [ xp (7).
Theorem 1.3.4. As operators on the vector space Sy (I't(N)), the adjoints of the operators
(0) and T, for L1 N are

0 =" and Ty = (07T

Proof. See Section 5.5 and Theorem 5.5.3 of [16]. O

1.4 Eigenforms and Newforms

By Theorem 1.3.4, the Hecke operators commute with their adjoints and so they are
normal. By the spectral theorem in linear algebra, they are diagonalizable. Since the oper-
ators commute by Proposition 1.2.5, the operators are simultaneously diagonalizable. Thus,
there is a basis of Sk, (I'1(IV)) consisting of simultaneous eigenvectors for (¢) and 7T} for all
¢ €N, ged (¢, N) = 1. These eigenvectors are called Hecke eigenforms. If f is an eigenform
with a;(f) = 1, we say it is normalized.
Proposition 1.4.1. Suppose I' is a congruence subgroup of level N. Let Ty (L") be the Z-
subalgebra of Endy (Sk(T')) generated by T, for gcd(¢,N) = 1 and (d) for d € (Z/NZ)*.

Then the map given by
Te(T) x S, () — C

(T, f) = al(Tf)



is a perfect C-bilinear pairing, which is also Ty (I')-equivariant. Thus, it induces an isomor-

phism of vector spaces Si(T") = (Tx(T))".

Proof. See Section 6.6 of [16] for the proof of the weight k& = 2 case. The same proof will

also work for general weight k. O

This shows that any algebra homomorphism A : Ty (I'; (V) — C is the system of Hecke
eigenvalues attached to some eigenform. In fact, they take values in Z, because the Fourier
coefficients of normalized eigenforms are algebraic integers (see Section 6.5 of [16]). By fixing
an embedding Q — @p, the Fourier coefficients can be seen to have values in @p, which will
be the approach taken in later chapters. Unfortunately, these systems of eigenvalues do not
necessarily correspond to unique eigenvectors. Before we attempt to fix this, we will state a
corollary.

Corollary 1.4.2. A cusp form f is a normalized eigenform if and only if its Fourier coeffi-
cients satisfy the following:

1. ay(f) = 1.

2. For all primes p, and integers n > 2, we have aypn (f) = a,(f)agm—1(f)—x(p)p"taym—2(f).

3. For all integers m,n satisfying ged (m,n) = 1, we have amp(f) = am(f)an(f).

Proof. This essentially follows from the fact that the Hecke operators satisfy these properties.

For a more detailed and convincing argument, see Proposition 5.8.5 of [16]. O

Suppose N is a positive integer and suppose d | N. Let

d 0
Qq = .
01

ig: Sk (Di(Nd™)) x Sp (Ti(Nd™Y)  — Sk (I1(N))

Define the map

(f,9) — fH+glad,.

10



By checking the necessary properties, it is easy to see that there is a natural inclusion
Sk (T (Nd™1)) C Sk (T1(N)). It is also an easy exercise to show that g [ag], € Sk (T'1(N)).
This shows that 74 is well-defined.

Definition 1.4.3. The space of oldforms is the subspace of Sy (I'1(NNV)) given by

SN = 30y (S (Ti(vp)?),

primes p|N
Let
Spe (T (V) = SP (T (V)

be the orthogonal complement of the space of oldforms with respect to the Petersson inner
product.
By Atkin-Lehner Theory (see [1] and Sections 5.6-5.8 of [16] for more details), we have
the following important theorem.
Theorem 1.4.4.
1. The spaces Spev (Ty(N)) and S (T (N)) are stable under the Hecke operators Ty, and
(ny for all n € N.
2. The spaces both have an orthogonal basis of Hecke eigenforms for the Hecke operators
T, and (n) for alln € N with ged (n, N) = 1.
3. Suppose f, f' € Sp” (I'y(N)) are non-zero eigenforms for the Hecke operators T,, and
(n), for alln € N with ged (n, N) = 1. If f and f" have the same system of eigenvalues

then f, f' differ by some constant scalar.

Proof. See Proposition 5.6.2, Corollary 5.6.3 and Theorem 5.8.2 of [16] for the proofs of part

1,2, and 3 respectively. 0

Definition 1.4.5. A normalized eigenform in S} (I'y(N)) is called a newform.

1.5 Galois Representations
Now we are ready to introduce one of the most important results in the theory of

modular forms. Every eigenform has an associated Galois representation that satisfies some

11



special properties. The study of these Galois representation is a very important and active
part of number theory. Additionally, the basis of the proof of Fermat’s Last Theorem, was
determining when a certain class of Galois representations (coming from elliptic curves) are
modular (coming from modular forms).
Theorem 1.5.1. Let f be an eigenform of weight k, level N and nebentypus x. Suppose p
is a prime number and fix a finite extension K of Q,. Let Ky denote the K-algebra over Q,
generated by all the Fourier coefficients a,(f) and the values of x.
1. Suppose k > 2. Then there exists an irreducible Galois representation
pr: Go = GLy(Ky),
such that for all primes £ { Np, the representation py is unramified at ¢ and the char-
acteristic polynomial of py (Froby) is x* — as(f)z + x ()01,

2. Suppose k = 1. Then there exists an irreducible Artin representation
pPr: GQ — GLQ((C),
of conductor N, such that for all {1 N, the characteristic polynomial of ps (Froby) is

x® — ag(f)x + x(0).

Proof. For the original proofs, see [13] for part 1 and [15] for part 2. Other good references,
but only for the case where the weight is k& = 2, are Chapter 1 of [7] and Chapter 9 of
[16]. O

1.6 Hecke Character and Theta Series

In this section, we will introduce Hecke characters. From these characters, we can define
and study a special class of modular forms called Hecke theta series. References for these
topics include Chapter 8 of [3], Chapter 5 of [25], Section 3.2 of [30], Lecture 1 of [32], [37]
and [39].

1.6.1 Hecke Character
Let K/Q be a finite field extension of degree n. Let n = r; +2ry, where 71 is the number

of real embeddings K < R and ry is the number of complex embeddings K — C, up to

12



complex conjugation. Let Ok be its ring of integer, I be the group of ideles of K, and Py
the group of principal ideles. Let Cx = Ik /Py denote the idele class group of K.
Definition 1.6.1. A continuous character y : Cx — C* is called a Hecke character.
Suppose a = (ay) € Iy is an idele, then it determines an ideal A = [[, pUr(@)  This
assignment determines a surjective group homomorphism Cx — Clg of the idele class group

to the ideal class group. There is an absolute norm on ideles given by

N(a) = H |aplp,
p

where if p is an infinite place corresponding to an embedding i : K — C, then

li(ap)| if 7 is a real embedding.
|%’p =

li(a,)]> if 7 is a complex embedding.
By the product formula, 91 is trivial on Pk, and so 1 is a well-defined map on Ck (see
Chapter 3, Proposition 1.3 of [31]). Given a Hecke character x, there exists a character
X1 : Cx — C*, such that for all a € Ck, x(a) = x1(a)I(a)? for some o € R, where x;
takes values in the unit circle of C (see Proposition 1.1 of [32] for the proof). Such a Hecke
character x; is called unitary.

Recall that a basis of open sets of 1 of the idele class group is

l_IU,g XHOX,

peSs pgS

where S is a finite set of places that includes all the infinite ones, and U, is some basic
open set of K,°. Since x is required to be continuous, its kernel is a closed subgroup. It is
then immediate that the kernel must contain O, for all but finitely many p { oco. Fix such
a place p, and consider the induced character y, : K, — C*. Since O C ker xy, X, 18
uniquely determined by its value on a uniformizer. This analysis shows that x, is given by
Xp(a) = |afy for some u € C. We say ¥, is unramified in this scenario, and its conductor is

0,.

13



Now, consider the ramified case (p { oo such that O) is not contained in the kernel of
X). Take a small neighbourhood U C C* of 1 that contains no nontrivial subgroups. Since
the sets 1+ p" form a basic neighbourhood of 1 in K°, x, L(U) must contain 1+ p¢ for some
e € N. Then x,(1 + p°) must be a subgroup of U, but there is none by our choice of U.
Hence, 1 4 p® C ker x,. Let e, be the smallest such number. Then the local conductor of x
at p is defined to be p. Piecing all the local conductors together, we say the conductor of
x is m =[], p (only finitely many of these terms are not Oy).

Now, we will introduce the definition of a classical Hecke character. Let I be the group
of fractional ideals and P the group of principal ideals. Fix a non-zero ideal m of Ok and
denote

Im) = {IeJ:ged(l,m)=1},
Pm) = PnNlI(m),
Ky = {aGKX ca=1 modxm},

P, = {aOk: a€ Ky},

where the mod * denotes multiplicative congruence. That is, for all prime ideals p | m,
ord, (a — 1) > ord,(m).
Definition 1.6.2. A Hecke character of modulus m is a group homomorphism y : I(m) —

C*, such that there exists a continuous group homomorphism,
Xoo ! (R®g K)* 2 R™ x C™ — C*,
such that if & € Ky, then y ((o)) = x2 (1 ® @) = x!(«). The character Y, is called the

infinity type of x.
Proposition 1.6.3. Let u,, denote the n-th roots of unity of C. Then there exists n > 1 and

a finite order character € : (Og/m)* — u, such that
x (@) = (@)X (1 ® a) for all « € K* prime to m.

Proof. See Proposition 1.2 of [32]. O

14



Now, we will like to show how to obtain a classical Hecke character from an idelic Hecke
character x. Define x : I(m) — C* in the following way. For each place p, let 7, denote a

choice of uniformizer. For each ideal A € I(m), let

~ ordy A
X(A) = HXP(% ).
p
The goal now is to determine the infinity type character of x. Suppose a € K, and suppose

at each prime p, a, = ﬂgrd*’aup for some unit u, € O,°. By the definition of the conductor,

for all primes p { m, we have x,(u,) = 1. It follows that x,(a,) = Xp(ﬂsrdpa). For the primes
p | m, by the definition of a =1 mod *m, it must be that a, € ker x,. Combining everything
together, we obtain the identity
1=x(a) = [Txoap) = [To(m™™) T [ xo(an) = X ((a) T ] xo(ap).
P pfm ploo ploo
Define Xoo(a) = [[,1o Xp(ap). From the identity above, we can deduce that x ((a)) = X (@)
for all a € Ky, as required. See [37] and [39] for more details and the converse (constructing
an idelic Hecke character from a classical Hecke character).
Up to scaling by a power of the norm map, we can assume that Y., is unitary. Then,

for each 1 <p < ry + ry, there exists u,, v, € R such that for each principal ideal (a) € Py

ri4T) up

el = T () ol

p=1 P

where

u, €{0,1} ifp<mnm ri4re
P and Z v, = 0.
u, € Z ifp>nr p=1

If u, = 0 for all complex embeddings (1 < p < r; 4+ r2) and v, = 0 for all infinite places,

then we call Yo, a class character. It is easy to see that class characters have finite orders.

1.6.2 Hecke Theta Series
This subsection will be dedicated to introducing theta series attached to Hecke charac-

ters. The main reference for this material is Chapter 5 of [25] and Section 4.8 of [30].
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First, consider the case where K = @(\/c_l) is a quadratic imaginary field, so that r; =0
and ro = 1. Let D be the discriminant of K. Suppose x is a unitary Hecke character with

modulus m. Then y is given by

a

@)= (&) foral (@ € P

Jal
for some u € Z>. We can extend y to all fractional ideals, by declaring x(A) = 0 for all
A¢ I(m).

Definition 1.6.4. Let £ = u + 1 be a positive integer. Define the weight k& Hecke theta
series for the character y to be

bl 2) = D x(DN() 7 g™,
190k

where N is the absolute norm.

Theorem 1.6.5. The Hecke theta series 0y (x, z) is a modular form of weight k and level
N’ = |D| N(m) with nebentypus xs- (2). Here, (2) is the Kronecker symbol. The character
Xr is defined by xr(n) = ;‘S—?T)L)) for all integers n € (Z/N'Z)*. The theta series is a cusp
form, unless k =1 and x = ¢ o N, where ¢ is some Dirichlet character. If x is primitive

(its conductor is m), then 0 is a newform.
Proof. See Theorem 4.8.2 of [30]. O

Suppose K = Q(\/E) is a real quadratic field of dicriminant D. In this case, r; = 2 and
ro = 0. Let x be a unitary Hecke character of modulus m. Suppose that v; = v, = 0, and

(ug,uz) = (1,0) or (0,1). That is, if @’ is the conjugate of some a € K, then
/

X ((a)) = — = sign(a) or 4 sign(a’) for all a € P(m).

/|

Such a character x is said to be of mixed signature, because it is even at one of the
archimedean places and odd at the other. The abelian extension F' of K corresponding
to the kernel of the idelic character y will have both real and complex places.

Definition 1.6.6. Define the Hecke theta function associated to y to be
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0(x.2) = > x(Dg"".

IOk

Theorem 1.6.7. The theta series 0 (x, z) is a cusp form of weight 1 of level D - N(m), with

nebentypus character ¥(t) = (2) x ((t)). If x is primitive (if m is its conductor) then 0 is a
newform.
Proof. See Theorem 4.8.3 of [30]. O

The importance of these theta series is the equality between the L-function attached to
its corresponding Artin representation (via Theorem 1.5.1) and the L-function attached to
the Hecke character. We will briefly explain this result.

Let x be a unitary Hecke character. Define the Hecke L-function attached to x to be

Lixs)= Y x(NI =] (0—x®)N@ ™)~
190k P
It converges absolutely and uniformly for Re(s) > 1+ 6 for any § > 0.

Let p be a finite dimensional representation on some Galois group G. Then the Artin

L-function associated to p is defined to be

1
He 1;[ det (1 — N(p)~p'v (Frob,))’

It is the product of the inverses of the characteristic polynomials of Frobenius elements
evaluated at N(p)~*. Here, I, is the inertia subgroup of p, and p’» is the restriction of p to
the subspace of elements fixed by I,. This construction is made so that it does not matter
which choice of the Frobenius element is picked, even if p is ramified.

Let K be a quadratic field (real or imaginary) and suppose Y is a class character. By
global class field theory, we can view x as a character on Gal (K /K ) where K is the
maximal abelian extension of K (inside some separable closure). Since x is a finite order
character, it factors through some finite field extension L/K. Let p = Indy be the induced
representation of x to Gal (L/Q). Then the Galois representation p is in fact the associated

Artin representation of the Hecke theta series given by Theorem 1.5.1. Furthermore, there
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is an equality of L-functions,
L(x,s)=L(p,s).
See Section 4.8 of [30] for more details.

1.7 Modular Curve

In this section, we will return to study the theory of modular curves. Another con-
struction of these objects will be given when we introduce representable functors in the next
chapter.
Definition 1.7.1. Let I" be a congruence subgroup. Define the modular curve to be Y (I') =
'\$. For the following special congruence subgroups, we will use the following special

notations:
Y(1) =Y (SLy(Z)), Yo(N) =Y ([o(N)), Yi(N) =Y (T'y(N)), and Y(N) =Y (T(N)).

Theorem 1.7.2. We have the following bijections of the complex points of the modular
curves.
1. Yo (N) (C) is in bijection with the set of isomorphism classes of pairs (E,C'), where E
1s an elliptic curve over C and C' is an order N cyclic subgroup of E.
2. Yi(N) (C) is in bijection with the set of isomorphism classes of pairs (E, P), where E
is an elliptic curve over C and P € E (C) is a point of exact order N.
3. Y(N) (C) is in bijection with the set of equivalent classes of triples (E, P,Q), where E
is an elliptic curve over C and P,Q € E (C) generate E[N] = (Z/NZ)?, the N-torsion

subgroup of E. We also require that ey (P, Q) = e*™/N | where ey is the Weil pairing.
Proof. See Section 1.5 and most importantly, Theorem 1.5.1 of [16]. O

Corollary 1.7.3. Since Yy(1) = Y (1), the complex points of the curve Y (1) is in bijection
with the isomorphism classes of elliptic curves over C.

In the next chapter, we will see that these results are easy corollaries, because these
modular curves are coarse moduli spaces that represent some functor classifying isomorphism

classes of elliptic curves with some level N structure.
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Chapter 2
Deformation Theory

Let n be a positive integer and let

p: Gg — GL,(F,)
be a Galois representation. The goal of this chapter is to study the possible lifts of p to a
Galois representation

p: Go — GLy(Z,),
with the property that p = p mod p. Later, we will apply this theory to our study of
representations associated to modular forms. In this chapter, we will introduce representable
functors and criterions for obtaining representability. Finally, we will discuss tangent spaces
of a deformation functor and several important additional conditions that can be imposed
on representable functors and still remain representable. The main references for this theory
are the works of Mazur from [28] and [29]. Another good reference is the 2009-2010 seminar

at Stanford University on modularity lifting from [26] and [27].

2.1 Representable Functors

Definition 2.1.1. Let C be a locally small category. That is, for all a,b € Object(C),
Hom (a, b) is a set. A functor F : C — Sets is called representable if there exists an object
R € Object(C) and a natural isomorphism ¢ : Hom (R,:) — F. Such an R is called
universal. If F is contravariant, then the natural isomorphism is with Hom (-, R).

By Yoneda’s Lemma, natural transformations ¢ : Hom (R, ) — F are in one to one
correspondence with elements in F(R). That is, given a natural transformation ®, we get a
special element in F(R) which is ® (Idr). This shows that if F is representable by (R, ®),
then there is an universal element ¢ € F(R) which uniquely determines ®.

We will encounter two types of representable functors in this thesis.

1. In the first case, the functor F maps certain subcategories of rings to isomorphism

classes of framed elliptic curves. That is, every element of F(A) is some isomorphism
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class of elliptic curves with some additional structure over some base ring A. The
universal space Spec R is called the moduli space and the universal element c is called
the universal elliptic curve.

2. In the next scenario, F(A) will be the set of deformations of some given base repre-
sentation to the ring A, up to strict equivalence. The object R is called the universal
deformation ring, and c is the universal representation.

Let A, B € Object (C). Since ® is a natrual isomorphism, it induces an isomorphism
of sets &4 : Hom (R, A) — F(A). Additionally, for all f: A — B, we have the following

commutative diagram.
Hom (R,A) ————— Hom (R, B)

&g D4

Suppose B = R. Let a € F(A) and let f = ®4(c) € Hom (R, A). Since @' (Idg) = c is

the universal element, our commutative diagram maps the following elements to one another.

Id € Hom (R,R) ——— Hom (R, A) > f
dr Dy
ce F(R) ) s F(A) 3 a

The interpretation of this result in scenario one is that every framed elliptic curves on any
base space Spec A comes about as a pull-back of the universal framed elliptic curve in a
unique way. Similarly, in the second scenario, we can also say that any deformation arises

from the universal deformation in a unique way.

2.2 Modular Curve Revisited
In this section, we will introduce some moduli problems of classifying isomorphism

classes of framed elliptic curves. The standard references for this section are [14] and [24].
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Let Z be a ring, and let C; be the set of Z-algebras. Often times, we will just take
Z = 7, but this theory applies in positive characteristics as well.

Definition 2.2.1. Define the functor F; : C; — Sets by
Fz (A) = {isomorphism classes of elliptic curves over Spec A} .

An elliptic curve E over a scheme S, is a scheme E with a smooth proper morphism p : £ —
S, whose geometric fibres are smooth curves of genus one, together with a sectione: S — E
called the zero section. The zero section e identifies the point at infinity of each fibre in the
classical definition of elliptic curves.

Given a Z-algebra homomorphism from f : A — B, the morphism F(f) : F(A) —

F(B) is given by base extension. That is, given an elliptic curve E over A,
f(f)(E) - E XSpecA Spec B

Remark 2.2.2. If we view an elliptic curve as a variety defined by a Weierstrass equation
in the classical sense, Fz(A) is the set of families of elliptic curves over a base space SpecA.
Instead of considering the category of elliptic curves over a ring A, it is also possible to
consider the category of elliptic curves over a general scheme S.

This functor is not representable in general. The problem is that there are elliptic
curves F; and F5 that are not isomorphic over some ring, say a field K, but they may be
isomorphic over some base extension, such as an algebraic closure K. To salvage this, we
can add additional structures in the definition of our functor, which we will do. Another
approach is to settle with a coarse moduli space, which is a unique universal space whose
points are in bijection with the isomorphism classes of elliptic curves, but does not have an
universal element. See [24] for more details on the theory of coarse moduli spaces.
Definition 2.2.3. For an elliptic curve E over a scheme S, with smooth proper morphism
p: E— 5, let wgg denote the invertible sheaf p. (Q}E/S> on S.

Consider the functor

Fz(A) = {isomorphism classes of (E,w) over Spec A},
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where E is an elliptic curve over Spec A4, and w is a basis of wg,4. Here, w can be thought
of as a nowhere vanishing section of 2}, /4 on E. This functor is then representable (see [24]
for more details).
Definition 2.2.4. A framed elliptic curve over a ring A with level N-structure is a triple
(E,w,ay), where ay is of one of the following types.

1. Type 0, ay is a subgroup scheme of order NV on E/4.

2. Type 1, an : Z/NZ — E[N],a, where £(1) is a section of order N on E 4.

3. Type 2, ay = (P,Q) where (P, Q) is a Z/N Z basis for E[N].

If N is invertible in A, then the functor F, parametrizing isomorphism classes of framed
elliptic curves over A is representable, for any of the above types (see [24] for more de-
tails). Suppose R is the universal Z-algebra and denote M = SpecR, which is called
the moduli space. By representability, every framed elliptic curve (F,w,ay) € Fz(A) for
some A € Cyz corresponds to a morphism in Hom (R, A), which is the same as a morphism
Hom (Spec A, M). This says that the A-valued points on this moduli space are exactly the
isomorphism classes of framed elliptic curves. The similarity of this result and Theorem 1.7.2
is due to the fact that the modular curves Y (I') we defined in Chapter 1, are coarse moduli
spaces that represent the functor of framed elliptic curves (E, ay). The moduli space M is
naturally a cover of Y (I').

Remark 2.2.5. It is possible to consider another moduli problem so that the resulting
moduli space corresponds to the compact modular curves X (I'). To do so we will need to
replace elliptic curves with generalized elliptic curves and replace the level N-structures with
Drinfeld structures. See [6] for more details.
Remark 2.2.6. The coarse moduli spaces Y (I') are fine moduli spaces (they are universal
spaces that represent the functor) in the following cases:

1. the congruence subgroup I' is I'(N) for N > 3.

2. the congruence subgroup I' is I'y(N) for N > 4.
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Additionally, when I" = T'y( V), the moduli space is never fine. See [17] for a deeper discussion

and see [14] for the proofs of these facts.

2.3 Deformation Functors

For the rest of the chapter, let G be a profinite group and & be a finite field of charac-
teristic p. Let k [¢] /€* denote the ring of dual numbers over k. Let A be a complete discrete
valuation ring with residue field k, such as the ring of Witt vectors W (k).

Let Cy be the category of local Artinian A-algebras with residue field k, along with local
morphisms between the objects. Let Cx denote the category of complete local Noetherian
A-algebras with residue field k.

Definition 2.3.1. The group G is said to satisfy the p-finiteness condition ®, if for every
open subgroup Gy of finite index, it satisfies one of the following equivalent definitions (see
28] for more details).

1. The pro-p completion of G is topologically finitely generated.

2. The abelianization of the pro-p completion of Gy is of finite type over Z,.

3. There are only a finite number of continuous homomorphisms Gy — F,,.
Example 2.3.2. Let K be a number field and S be a finite set of primes of K. Then Gk g,
the Galois group associated to the maximal extension of K unramified outside .S, satisfies
the p-finiteness condition.
Example 2.3.3. Suppose L is some finite extension of Q,. Then G = Gal(L/L) also
satisfies ®,,.

Suppose p : G — GL,(k) is a continuous representation, which we will refer to as a
residual representation. Suppose A € Cr. We say a continuous representation p : G —
GL,(A) is a lift or a deformation of p if p mod my = p, where m4 is the maximal ideal
of A. Two lifts p, v are strictly equivalent, denoted by ~, if they differ by an element of
ker (GL,,(A) — GL,(k)) by conjugation. Now consider the following two functors:

e Def” (p) (A) ={p: G — GL,(A): p mod my = p}.
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e Def (p) (A) = Def” () (4)/ ~.
The former is called the framed deformation functor, while the latter is called the deformation
functor. In essence, we have “framed” some basis of p and the deformation is considering
the set of pairs (p, 5) where p is a lift of p and S is a lift of the chosen basis. There is a
canonical forgetful functor Def” — Def defined by forgetting the chosen basis.

We can prove that for each A € éA,

Def™ (p) (A) = lim Def~ (p) (A/m’,) .
A
The same result holds for the deformation functor under strict equivalence. This shows that

for a lot of results, we only need to study the deformations on the category C,. In particular,

if the functors are representable over Cy, then they are pro-representable over Ca.

2.4 Schlessinger’s Criterion and Representability

Our first goal is to show that these functors are representable (or pro-representable).
To do this we need the Schlessinger’s Criterion.
Definition 2.4.1. Suppose A, B € Cy. A morphism f : A — B is called small if it is
surjective and its kernel is principal and annihilated by my.
Theorem 2.4.2. (Schilessinger’s Criterion) Suppose D : Cpn — Sets is a covariant functor,
with the property that D(k) is a point. Suppose A, B,C € Cy, and we have morphisms

A — C and B — C. Canonically, we have a map
¢: D(Ax¢cB) = D(A) xp) D(B).
Suppose D satisfies the following properties.
1. ¢ is a surjection whenever B — C' is a small morphism.
2. ¢ 1is a bijection when C' =k and B = k€] /€.
3. D (kle] /€?) is finite dimensional.
4. @ is a bijection whenever A — C' and B — C' are equal and small.

Then D 1is representable.
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Proof. See [33] for the proof of this result. O

Theorem 2.4.3. Suppose G satisfies ®,, then Def (p) is representable in Ch. If, in addition,

Endg (p) = k, then Def(p) is representable as well.
Proof. See Proposition 1.6 of [26]. O

The additional condition, Endg (p) = k can be satisfied if p is absolutely irreducible,
or if n = 2 and p is a non-split extension of distinct characters. Note, these are not the
only scenarios in which the additional condition can be satisfied, but they will suffice for this
thesis. For the rest of the chapter, we will assume that these conditions are satisfied so that

Def (p) is representable.

2.5 Tangent Space
Definition 2.5.1. For a functor D : Cy — Sets, define its tangent space to be tp =
D (k [€] /€%).

Notice that given p € tp and g € G, we have p(g) = p(g) (1 + ec(g)) for some ¢ € Ad (p).

Since p(gh) = p(g)p(h) for all g,h € G, by applying the previous identity, we find that

c(gh) = p~ (h)e(9)p(g) + c(h).
This shows that ¢ is a 1-cocycle and so ¢ € Z' (G, Adp). By considering p up to strict
equivalence, it can be deduced that ¢ € H' (G, Adp). Hence, tp = H' (G, Adp).
In the case where D is representable, by a A-algebra R, we have the following isomor-

phism of k-vector spaces
tp = tR/D = Homk (QR/A XR k’, ]{3) = Homk (mR/ (m% + mAR) ,/{7) ,

which justifies the name tangent space. For a proof of this fact, see Section 17 of [29].
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2.6 Deformation Conditions

In this section, we will discuss some subfunctors of Def(p) obtained by imposing some
conditions on the possible lifts and explore their representability. The main reference for
this material is Section 23 of [29].

Let F,, = F,,(A, G) be a category defined in the following way. The objects of F}, are pairs
(A,V), where A € Cy and V is a free A-module of rank n with a continuous A-linear action
of G on V. For example, we can take V' to be the representation space of p: G — GL,(A).
A morphism (A,V) — (A, V') consists of a morphism A — A’ in the category Cy and a
A-module morphism V' — V' that induces a G-compatible isomorphism V ®4 A" = V.
Definition 2.6.1. Let V be a representable space of p (say V = k" viewed as a G-module
by the action of p). A deformation condition D for p is a full subcategory DF,, that contains
(k;, \7), and satisfies:

1. Suppose there is a morphism between two objects of Fiy, (A4,V) — (A", V'). If (A,V)
is an object of DF,,, then so is (A, V).

2. With the same set up, if A — A’ is injective and (A’, V) is an object of DF,, then so
is (A,V).

3. Suppose we have morphisms

A B

NS

C
for some A, B,C' € Cy. Let

pa: AxegB— A and pg: AXeB— B

be the natural projections. Suppose (A x¢ B,V) € Object(F,). Let Vy =V ®,, A
and Vg =V ®p, B. Then

(A xc B,V) € Object(DF,) if and only if (A,V4), (B,Vg) € Object(DFE,).

Given a deformation condition D, define a subfunctor Defp(p) of Def(p) in the following

way. For all A € Cy, define Defp(p)(A) to be the subset of Def(p)(A) that are in the category
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DF,, up to strict equivalence. By extending Defp(p) through limits, we can also view it as
a functor on Cy.
Theorem 2.6.2. If D is a deformation condition, then Defy(p) is also representable on Cy

and pro-representable on Ca.

Proof. Check that it still satisfies Schlessinger’s criterion. See Section 23 of [29] for more
details. O

Suppose Def(p) is represented by R and Defp(p) is represented by Rp. Since R is
universal, there is a natural morphism R — Rp. This morphism is in fact surjective, because
the induced map on cotangent spaces coming from Defp(p) (k[e]/€2) C Def(p) (kle]/€?) is
injective. This tells us that by picking the conditions nice enough, the ring Rp is a quotient
of R. Geometrically, the space Spec Rp is a closed subscheme of SpecR.

We will now consider three very important examples of deformation conditions.
Example 2.6.3. Let Defp(p)(A) be the set of p: G — GL,,(A) where det p = detp. It is
not hard to show that the tangent space tp = Defp(p)(k[e]/€®) is isomorphic to

tp = H' (G,Adoﬁ) ,
where Ad°p is the trace zero adjoint representation.

Let 6“" : G — R be the determinant of the universal representation of the full
deformation functor. Let § be the determinant of 5 , and let

5G5S AR
where the last morphism is just the one giving R the structure of an A-algebra. Then
Rp = R/I where [ is the ideal generated by 6(g) — §“"*(g) € R for all g € G. For more
details, see Section 25 of [29].
Example 2.6.4. Suppose K is a global field and S is a finite set of primes of K. Let G g
be the Galois group of the maximal extension of K unramified outside S. Recall that G g
still satisfies the p-finiteness condition ®,. If p is unramified at some p € S, then the set of

lifts of p that are still unramified at p is a deformation condition.
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Example 2.6.5. Let K be a local field with residue field characteristic p. Let Ix C Gk be

its inertia subgroup. A representation p: Gx — GL,(A) is ordinary if

OV
p‘IKg 0 * ’
0 0 ¥,

where 9, : Gxg — A* is unramified. Then the set of ordinary lifts of p is a deformation
condition. See Section 30 of [29] for a proof of this fact. The ordinary condition will be very
important for this thesis, as the Galois representations associated to modular forms that we
will encounter are ordinary.

The field K does not necessarily have to be a local field. By picking an embedding Q <
@p, there is a canonical embedding Gal (@p/(@p) — Gal (@/Q) that identifies Gal (@p/(@p)
as the decomposition group of Gal (@/Q) at p. Then we say a representation p : Gg —
GL,(A) is ordinary at p if p ‘GQp is ordinary. Similarly, we can extend this definition to

Galois groups of number fields.
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Chapter 3
p-adic Modular Forms

In this chapter, we will survey several important topics in the theory of p-adic modular
forms in order to set up for the rest of this thesis. We will start with Serre’s original definition
[34] to motivate p-adic modular forms. Our next goal will be to define Katz’s overconvergent
modular forms [22]. To do so, we will give an alternate definition of classical modular forms
in terms of a moduli problem, and introduce the Hasse invariant. Furthermore, we will
introduce generalised p-adic modular functions as defined by Katz in [23] from the point
of view of Emerton [18]. The advantage of taking Emerton’s point of view is that we can
naturally introduce the eigencurve. Finally, we will introduce Hida families and give an

important example of a family of theta series.

3.1 Serre’s p-adic Modular Forms
We will first introduce Serre’s p-adic modular forms as defined in [34]. Fix a prime p.
Let v, denote the standard p-adic valuation on Q,, normalized so that v,(p) = 1. For a

formal power series f(q) = Y ", ang™ € Q,[q], we define the valuation of f to be

0,(f) = inf v, (a,).

n

Say that a sequence of power series f; € Q,[¢] converges to f € Q,[q] if v, (fi — f) = o0 as
1 — 00.
Let m > 1 be a positive integer (m > 2 if p = 2). Let

Z)(p—Vp" ' Z=L/p" L XL/ (p-1)Z ifp#2

X =
7.)2m %, if p=2
Let
ZyxZ/(p—1)Z ifp+#2
X =limX,, =
<_

There is a natural injection Z — X whose image will be a dense subgroup of X.
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Definition 3.1.1. A p-adic modular form is a formal power series

fl@) =) ang" € Q4]

such that there exists a sequence f; consisting of classical modular forms of weight k; with
coefficients in Q such that lim f; = f.

Theorem 3.1.2. Suppose f is a non-zero p-adic modular form, which is the limit of a se-
quence of classical modular forms f; of weight k; with rational coefficients. Then the sequence
of k;’s converge in X. The limit is called the weight of f and does not depend on the choice
of the f;’s.

Proof. See Theorem 2 of Chapter 1 of [34] for the proof. O

3.2 Alternate Definition of Classical Modular Forms

In the next few sections, we will explore an important class of p-adic modular forms
called overconvergent modular forms. However, before we define these objects, we will need
to introduce an alternative way to define classical modular forms in order to motivate the
construction of overconvergent modular forms. The main references for this section are [14]
and [24].

Let 7 = Z [%] and let C be the category of Z-algebras. Here, we can also let C be
the category of R-algebra for some fixed ring R where 6 is invertible, or the category of
S-schemes, for some fixed scheme S. Everything below can be defined in the exact same
way, by replacing Z with R or S. Let F : C — Sets be the functor sending A € Object(C)
to the set F(A) of framed elliptic curves (E,w,ay) over A, up to isomorphism. Here, w is
a basis element of w4 and ay is some level N structure (ignore ay if N = 1). Recall that
this functor is representable, by some Z-algebra R.

Definition 3.2.1. A weakly holomorphic modular form f over Z is an element of R. Alter-
natively, a modular form f over Z is a rule, that sends a framed elliptic curve (E,w, ay) /A

over a Z-algebra A to an element f (F,w,ay) € A, satisfying:

30



1. f only depends on the isomorphism class of (E,w, ozN)/A.
2. f commutes with base change. More specifically, given a Z-algebra homomorphism
g: A— B, wehave amap F(g): F(A) — F(B) given by base change of the framed

elliptic curves. Then
f (F(g) ((E,CU,O(N)/A)) =4g (f ((E,M,OZN)/A)) .
Proposition 3.2.2. These definitions are equivalent.

Sketch of the Proof. First, let’s view f as an element a € R. Suppose (F,w, aN)/A is some
framed elliptic curve over a Z-algebra A. By representability, this gives rise to a morphism
¢ € Hom (R, A). Then ¢(a) gives rise to an element in A, which we define to be f (F,w, ay).
It is not hard to check that f satisfies the above properties.

Conversely, suppose we view f as a rule described above. Let a = f (Euniv, Wunivs ON, univ) €

R be the value of f evaluated at the universal framed elliptic curve. 0

Definition 3.2.3. A weakly holomorphic modular form f is of weight k if it satisfies the
additional property that
f (B, w,an)/a) = A" f (B ,w,ay),4) for all A € A™.

To get the “g-expansion” of f, we will draw some intuition from the case of complex
numbers. Recall that all elliptic curves over C is isomorphic to C modulo a lattice. More
specifically, the lattice can be chosen to be of the form (1,7) = Z + Z7 for some 7 € $.
The exponential map gives us an identification C/ (1,7) =% C* /¢% where q = ™", and the
map is z — e*™* = t. A canonical choice of differential for this elliptic curve is given by
% = 2midz. Given a modular form f, we can define f(q) = f ((CX/qZ, %) € Clq]. It can
checked that the modular property of the classical modular form definition follows directly
from the properties defined by viewing f as a rule.

Definition 3.2.4. For all x € C, define the divisor function to be

ox(n) = Z dr.

dn
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For a positive integer k, define the series sx(q) to be

si(g) =) ox(n)g".

n>1

Furthermore, define

5s3(q) + 7s5(q)
12 '

The series a4(q) and ag(q) converges for all ¢ € K* and |q| < 1, where K is the field of

as(q) = —5s3(q), and ag(q) = —

complex numbers C or K is a p-adically complete field. Otherwise, we can just view these
series as formal power series.

Theorem 3.2.5. Let E, be the elliptic curve defined by the Weierstrass equation y* + xy =
3 + a4(q)x + ag(q) defined over Z((q)). Then (Eq de ) is isomorphic to (C* /g%, %) over

7%
C and (Q)/q", %) over Q,.

Proof. See Theorem 1.1 and Theorem 3.1 in Chapter 5 of [38]. O
The elliptic curve Ej is called the Tate curve and 25@ is called its canonical invariant

differential. Since a4(q) and ag(q) have integral g-expansions, the Tate curve can be defined
over fields of positive characteristics as well. However, it only has good reduction if p > 5.
For a weakly holomorphic modular form f, the finite tailed Laurent series f (E,, Wean) €
Z((q)) is called the g-expansion of f when the level is 1. For a general Z-algebra A, we
define the g-expansion of f over A to be the series f ((Ey,wean)/a) € Z((q)) ®7 A.
For general level N, the level N structure ay is defined over Z[(y]((¢¥)). However,
it is not unique, but there are only finitely many of them, called the cusps. For each ay

structure, we have a finite tailed Laurent series

2z~

f ((quwcamaN)/A) € Z[CN] ((q )) Rz A.

The cusp that we canonically took to get a classical g-expansion is the cusp at infinity. A
weakly holomorphic modular form f is called a modular form if all of its ¢-expansions at
all cusps are power series in Z [(N][[q%]]. A modular form f is called a cusp form if its ¢

expansions at all cusps are in ¢/~ Z[Cy][q].
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3.3 Hasse Invariant
Fix a prime p # 2,3, and suppose R is a F,-algebra. For an elliptic curve E/R, we have
the p-th power absolute Frobenius map F;,. More specifically, since every open affine subset
U = Spec A of E is an [F,-algebra, we have a Frobenius endomorphism on U. By piecing
these together, we obtain the absolute Frobenius F;,. This endomorphism also induces a
p-linear endomorphism of H! (E, Og), where O is the structure sheaf. By picking a base w
of wp/ g, we have also picked a dual base i of H' (E,Of). Then
o

abs

(n) = A(E,w)n
for some A (F,w) € R. We also have the following identity,
F*

abs

(A ') = A(E, Aw) X'y for all X € R,
On the other hand,
F;bs ()\7177) = )\pr*

abs

() = APA(E,w) .
Combining the two identities, we find that
A(B,  w) = AN"PA(E,w).

This shows that A is a weakly holomorphic modular form mod p of weight p — 1 and level
1. In fact, it is a modular form, with g-expansion A ((Eq, Wean) /le) =1 € F,[q] (see Section
2.0 of [22]). We call A the Hasse invariant.

Since this construction is not very enlightening to what we want to do next, we will
present another construction of the Hasse invariant, following the works of Serre [36]. The
motivation here, is to study modular forms over IF,. Let Z = Z,) the localization of Z at

(p), and define modular forms over Z of level 1 the same way we have in this chapter.

Definition 3.3.1. Define the Ramanujan delta function to be

Alg) =q [ -q¢"* € qZ]q].
n=1
which is a weight 12 cusp form. For a positive integer k, define the Fisenstein series of

weight 2k to be
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where By, is the 2k-th Bernoulli number.
Proposition 3.3.2. Let My(Z) denote the ring of modular forms over Z of weight k. Then
My, is free over Z, and generated by {EZEg : da + 6b = k}

Proof. This is a standard result. See Section 1.1 of [16]. O

Corollary 3.3.3. My (F,) = My (Z) ® F, is then a F,-vector space, generated by E$E}.
By mapping each modular form to its corresponding g-expansion, we get a map M (F,) —

Fp[[Q]]-

Proposition 3.3.4. The above map is injective.

Proof. Suppose ). s NapESEL(q) = 0 for A,y € F,. For each a, b, pick S\Q,b € 7 to be a
lift of A\yp. Then we must have
> AabESEY(q) € pZ[q].
da+6b=k

Since My (Z) is free with basis E{ES, p | 5\,17;, and so A\, = 0 in [F,,. O

While the weight k ¢-expansion map is injective, the map M (F,) = @M (F,) — F,[q]
is not. There can be modular forms of different weights with the same g-expansion over [F,,.
Let M(F,) denote the image of M(F,) in F,[q], whose elements we call modular forms mod
p . To understand this space, we can study the kernel,
I = ker (F,[Ey, Es] — Fplq]) - (3.1)
It turns out to be a principal ideal, generated by A(z,y) — 1 € F,[z,y|, where A is an
irreducible homogenous polynomial of degree p — 1 satisfying the identity A (Ey, Eg) = E,_1.
By showing that £, ; mod p = 1 (has ¢ expansion 1 in F,[q]), A is exactly the Hasse
invariant we had previously defined. The construction we have described only works if
p # 2,3. However, when p = 2 or 3, there are other methods of lifting the Hasse invariant.
See [36] for more details.
Theorem 3.3.5. An elliptic curve E g is supersingular if and only if A(E,w) = 0 for all

W.

34



3.4 Overconvergent Modular Form
Now, we will define overconvergent modular forms following the definition of Katz [22].

The main idea is that we cut out a disk of radius r around each supersingular elliptic curve
from the modular curve, and define modular forms on the resultant space.
Definition 3.4.1. Let Ry be a p-adically complete ring. Let r € Ry, N > 1 be an integer
prime to p. A weakly holomorphic p-adic modular form f of level N, weight k& and growth r
is a rule that to any quadruples (E/R,w,ay,Y), gives an element f (E/R,w,ay,Y) € R,
subjecting to the requirements that

e R is an Ry-algebra where p is nilpotent (p" = 0 for some n > 0).

e E/R is an elliptic curve.

® wis a base of wg k.

e oy is some level N-structure.

e Y € R satisfies the property that Y - E, 1 (F,w) =7.
Similar to the definition of classical modular forms, we also require that f only depends on
the isomorphisms classes of the quadruple, and commutes with base change. Additionally,

f satisfies the identity
f(B/R w,an, N7'Y) = X" f(E/R,w,a,,Y) forall \ € R*.

A weakly holomorphic modular form f is holomorphic if at all level N structures oy,

the value of f at
(Eqa Weans AN, T (Ep—l(Eqa wcan))il)

is in Z[q] ® (Ro /pN RO) [C(n]. Similarly, f is a cusp form if its value at the same quadruple
is in ¢Z[q] ® (RO/pNRO) [Cn]. Denote by My (Rg, N,r), the space of holomorphic p-adic
modular forms over Ry of weight k, level N and growth r. Similarly, denote the space of
p-adic cusp forms of weight k, level N and growth r by Sy (Ry, N,r). If r is not a p-adic
unit, we call these modular forms overconvergent.

We will now give some motivation for this construction. To define p-adic modular

forms, we would like the congruences of the g-expansions of modular forms to be congruences
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themselves. For example, since
Ep—l(Q) =1 mod b,

we would like to to have the identity £, 1 — 1 = pf for some modular form f defined over
R. However, this will not hold for the following reason. Let (F,w) IR be a supersingular
elliptic curve. Since E,_; is a lift of the Hasse invariant, by Theorem 3.3.5, we must have
E, 1(E,w) =0 mod p.

Let M (N) denote the modular curve associated to I'1 (V)-type framed elliptic curves over
Z,, and M(N) its compactification. Another definition of classical modular forms, is that
they are sections of bundles on the modular curve. Let M (N)s, denote the resulting modular
curve after we have removed a disk of radius r around every elliptic curve with supersingular
reduction. In essence, we still allow elliptic curves that are not “too” supersingular. By
defining p-adic modular forms to be the sections of some bundles on M (N)s,., we will have
the desired congruence property (see [19] for a deeper discussion of this fact). The earlier
definition of overconvergent modular forms is equivalent to this construction. If there exists
Y € Rsuch that Y - E, 1 (E,w) = r, then |E,_ (E,w)|, > |r|,. This shows that the elliptic
curve (E,w) is at least |r| , away from supersingular elliptic curves. When r is a p-adic unit,
the resultant modular curve consists only of ordinary elliptic curves.

Another extremely important motivation to studying the space of overconvergent mod-
ular forms is that the U, operator is better behaved on this space. We will now briefly
describe this result. We can define the Hecke operators T, and diamond operators (d) acting
on the space My, (R, N,r). Their action on g-expansions will coincide with their action in
the classical case. Since this result suffices for the purposes of this thesis, we will take this
to be the definition. See Chapter II, Section 2.1 of [19] for more details. By examining the
acting of the Frobenius, we can define another important continuous operator on the space
of overconvergent modular forms, called the U, operator. On g-expansions, U, is given by

the map

Up : Zanqn — Z anpqna
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which we will take to be the definition. The space of overconvergent modular forms My (Ry, N, r)
is a p-adic Banach space (see Section 2.6 of [22]). The action of U, on this space has the
following nice property.

Theorem 3.4.2. Let K denote the field of fractions of Ry. Suppose N > 3 and p 1 N.

Assume that k #1 or N < 11. Then the map
Up : Mk(Ro,N, 7“) QK — Mk(R07N7Tp> ® K

is a bounded homomorphism of p-adic Banach spaces. In other words, U, improves overcon-

vergence.
Proof. See Proposition I1.3.6 and Corollary 11.3.7 of [19]. O

Corollary 3.4.3. With the same assumptions as the previous theorem. Assume in addition
that Ry is a p-adically complete discrete evaluation ring such that Ry/pRy is finite and
p

0 < ord,(r) < 1. Then U, is a completely continuous operator on the space My(Ry, N, 1)

in the sense of [35].
Proof. See Proposition I1.3.15 of [19]. O

This corollary allows us to study the spectral theory of U, on the space of overconvergent
modular forms. In particular, for all & > 0, the set of eigenvalues A of U, satisfying ord,(\) =
« is finite and its generalized eigenspace is finite dimensional (see Section I1.3 of [19]).

Meanwhile, the kernel of U, is infinite dimensional.

3.5 The Hecke Algebra

In this section, we will introduce the space of generalized p-adic modular functions as
defined by Katz [23]. This space contains the space of overconvergent modular forms defined
in the previous section, and still satisfy nice congruence properties between modular forms
of different weights. Similar to the classical case, we also have a duality between the space of
generalized p-adic modular functions with the Hecke algebra acting on it (technically, only

true for the parabolic case and with slight modifications for the non-parabolic functions, see
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Chaper 3, Section 1.2, 1.3 of [19]). In light of this duality, we will instead study the Hecke
algebra following the approach of [18] instead. An advantage of this is the ability introduce
the eigencurve more easily later in this chapter.

Let N be a positive integer. For each k > 1, let Tx(/N) be the Z-subalgebra of
End (My (T'1(N))) generated by the Hecke operators T, and S, = ¢*72((), where ¢ { N
are primes. By definition, we will also have T, for all n € N with ged(n, N) = 1. If the level
N is understood, we will denote Ty (N) by just Ty.

Recall that a Hecke eigenform can be viewed as an algebra homomorphism A : T, — C,
where X is the system of eigenvalues attached to f, given by Tf = XN(T)f for all T € Ty.
Additionally, the values of A\ are in fact algebraic integers, ie. in Z. This means that by
fixing a prime p { N and an embedding Q — @p, A can be viewed as taking values in @p,
still denoted by A. By reducing modulo the maximal ideal of Zp, we get a homomorphism
AT, — Fp.

Definition 3.5.1. Let ']I‘Sgp ) denote the subalgebra of T generated by 7, and S, for primes
¢t Np. The restriction of some system of eigenvalue \ to T,(gp ) will be denoted A® and called
a p-deprived system of eigenvalues.

Proposition 3.5.2. Suppose A1, Ay : T — C or @p agree on Ty for all but finitely many

(1 N, then they must be equal. Hence, ’]I‘,(f’) has finite index inside Ty,.
Proof. See Proposition 1.26 and Corollary 1.27 of [18]. O

Definition 3.5.3. Let T(SP,Z(N ), or T(Sp,)c if the level is understood, be the Z-subalgebra of the
endomorphisms of iél M; (T'y(N)) generated by T, and S, for primes ¢ 1 Np. Here, the action
of Ty and Sy is the ;liagonal action on each direct summand by the Hecke operators of the
same name.

Suppose k' > k. Then we have a surjection

T, — T%)
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obtained by restriction on the spaces in which the Hecke operators act. By tensoring, we get

another surjection
Z, @2 T, — L, ©7 TY).

By taking projective limits with respective to the above surjections, we obtain the p-adic

Hecke algebra
T = T(N) = limZ, ®; T?).
- <
k
The space of modular forms that T acts on is called the space of generalized p-adic modular

k
functions, defined by Katz [23]. Furthermore, there is a canonical injection ']I'(Spll <—>]:[1 T;.

By passing through limits, we obtain an injection

T[] (Z,®2Ts).

k>1

Theorem 3.5.4. T is a product of finitely many complete Noetherian local Z,-algebras.
Proof. See Theorem 2.7 of [18]. O

Definition 3.5.5. A Z,-algebra homomorphism ¢ : T — Zp is called a p-adic system of
Hecke eigenvalues.

We can canonically construct a p-adic system from a classical system of eigenvalues
@) ']I‘,(Cp ) Zp in the following way. The p-deprived system of eigenvalues \?) extends

) Z,. By precomposing with the surjection

to a Z,-algebra homomorphism Z, @z T
T - Z,®z T,(cp ), we have obtained the desired homomorphism.
Theorem 3.5.6. Let & : T — Zp be a p-adic system of Hecke eigenvalues. Then there is a

continuous, semisimple representation
Pe GQ — GLQ (@p) s
that is unramified at all primes ¢+ Np. For such a prime {, the characteristic polynomial of

Froby is of the form x* — &(Ty)x + £(S).

Sketch of the Proof. If £ is classical, originating from some classical system of eigenvalues A,
then set ps = p) coming from Theorem 1.5.1. The rest follows from the fact that classical

systems are “dense”. See Theorem 2.11 of [18] for more details. O
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3.6 Weight Space

Our goal is to construct a “weight” associated to p-adic system of Hecke eigenvalues
that generalizes the classical notion. That is, if £ : T, — Zp is a p-adic system of Hecke
eigenvalues coming from a classical system of weight &, then £ should have weight k.

Let ¢ =4 if p =2 and ¢ = p otherwise. Denote the group 1+ ¢Z, by I'. Define £ to be

the set

£={lprime : {=1 mod Nq} CT.
We claim that £ is dense in I'. Suppose o = 1+ ga € I' for some a € Z,. Let n be a
positive integer. Since p { N, we can let ¢ = § mod p". Since 14 Ngc and Ngp" are
trivially coprime, Dirichlet’s theorem on primes in arithmetic progression tell us that there
are infinitely many positive integers m such that 1 + Nqc + Ngp"m is a prime. Suppose

¢ =14 Ngc+ Ngp™m € £ is such a prime. From the identity
{—a=q(Nc—a+p"m)=0 mod p",
we can deduce that ¢ — « has p-adic valuation greater than n as required.

Proposition 3.6.1. Let Z,[I'] = liin Z, [L/)T*"] denote the completed group ring of I' over
Zy,. The map £ — T* given by ¢ &—;LSg, extends to a continuous Z,-algebra homomorphism
w: Z,[I'] — T*.

Proof. Suppose A is a classical system of eigenvalues of weight k. Since / = 1 mod Ny,
then trivially £ = 1 mod N. This means (¢) = (1) acts trivially on modular forms and so

A{l) = £*=2(¢) = (*=2. Since the map

£ — Z, @, T given by z s 2"
is continuous on I', it naturally extends to a continuous map I' — <Zp Rz ’]I‘,(f )>X. By
passing through inverse limits, we get a continuous map I' — T*, which uniquely extends to

a Zy-algebra homomorphism as required. O

A Z,-valued point of Z,[I'] is a morphism Spec Z, — Spec Z,[I'], which is equivalent to

a character y : [I' — Z; . In this way, SpecZ,[I'] can be viewed as “the space of characters
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of I'. Let k € N be a positive integer. Consider the character x, : I' — Z; given by
xk(z) = %72, The Zp—point Xk is called the point of weight k on SpecZ,[I']. The set
{X#} > is Zariski dense in Spec Z,[I']. In this way, Spec Z,[I'] can be viewed as the “weight
space”.

To justify these names, suppose A\ : T — Zp is a classical system of Hecke eigenvalue,
and £ : T — Zp is its associated p-adic system. Notice that for all £ € £, the map £ o w is

given by
E(w(f)) = &(Sp) = €2

Since £ is dense in I', the map € o w is given by x — 272 on all of I. That is, £ o w = Yy
is the point of weight k. Hence, the map w, can be thought of as sending a p-adic system of
eigenvalue to its corresponding weight.

Remark 3.6.2. Recall that in the definition of Serre’s p-adic modular form, the weight
space is p — 1 number copies of I'. Here, we are just taking one of these disks.

Remark 3.6.3. There is a natural isomorphism Z,[T] = Z,[I'] by sending 1 + T to the

topological generator [1 4 ¢]. This is commonly called the Iwasawa algebra of the group T'.

3.7 The Eigencurve

Let G,, denote the group scheme SpecZ, [T, T~']. Suppose f is a classical eigenform of
level N and weight k& with system of eigenvalues A\;. We can associate a @p—valued point of
SpecT xz, G, to f in the following way. The first coordinate will be  : SpecT — Z,, the
associated p-adic system of eigenvalues that we have constructed in the last section, and the

second coordinate is «, a root of the p-th Hecke polynomial of f,

2% — Ap(Tp)x +pk_1/\f ((p) = a? — A (Tp)z + pAp(Sy).-
Let X be the set of such @p—valued points. Let X°'d be the subset of X whose @p—valued
points (&, «) satisfies the additional constraint that a € Z; )

Definition 3.7.1. Let C be the rigid analytic Zariski closure of X inside (Spec T %z, (Grm)an.

It is called the eigencurve of tame level N. Let C°'¥ be the Zariski closure of X°™ inside
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SpecT Xz, G,,. Denote the analytification of C° the same way. It is called the ordinary
part of the eigencurve.
Theorem 3.7.2. The eigencurve C is one-dimensional, thus justifying the name eigencurve.

More specifically, the map
C <= (SpecT xz, Gp)™" — (Spec Z,[I'])™"
1s flat with discrete fibres. The last map is given by projection onto SpecT followed by the

weight map w.
Proof. See [5] for more details. O

Let T* be the quotient of T[U,] that acts faithfully on the space of generalized p-adic
modular functions. Let f be a classical modular form, and suppose a and 3 are the roots of

its p-th Hecke polynomial. Then the p-stabilizations of f, defined to be
fo(r) = f(7) = Bf(p7), or fs(7) = f(7) — af(pT)

are U, eigenvectors with eigenvalues a and 3 respectively. Therefore, Spec T* contains X
and its Zariski closure. However, due to the infinite dimensional kernel of U, as remarked
earlier in the chapter, Spec T* is much bigger than C and C°™.

Define the ordinary projector to be e = lim U;}!, which exists and is well-defined (see

n—o0

Section 7.2 of [21]). Suppose f is an eigenvector of U, with eigenvalue «, then

foif laf, =1
0 if |a], <1

This shows that e projects the space of generalized p-adic modular functions to the space
of ordinary generalized p-adic modular functions. Let T° be the quotient of T* that acts
faithfully on the space of ordinary functions. Then, in fact, C°? = Spec T°¢ and is finite
over Z,[I']. This shows that we can view C as the union of many families of modular
forms parametrized by the weight. It is the union of Hida families, which we will introduce

in the subsequent section. See [18] for a deeper discussion into this result.
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3.8 Hida Families

In this section, we will introduce Hida families. They can be viewed as a family of Galois
representations, parametrized by the weight. Instead of taking the geometric approach to
constructing these families, as Hida originally did, we will define them as A-adic forms
following Chapter 7 of [21].

Fix a prime p. Recall that Z; = (1 +¢Z,) x p =T x p where g =4 if p=2and ¢ =p
otherwise; and p is the group of (p — 1)-ths roots of unity for p odd and {£1} for p = 2. We
will now define the two natural projections of Z; in this decomposition.

Definition 3.8.1. Let w be the Teichmuller character Z,; — Z, defined by

w(z) = lim 27",
n—oo

The image of w(x) is u € Z. Let (-) : ZY — T be the map given by (z) = w(x) "z.

log,, ()

Let u=1+¢ €I For each z € T', define s(z) = o)

€ Zy,. The map s induces an
isomorphism s : I' = Z,. Hence, we can write = us@),

Definition 3.8.2. Suppose K/Q, is a finite field extension, and O its ring of integers. Let
A = Ok[X]. Fix a character x with modulus p®q for some a € Z (not necessarily primitive).

Say that a formal power series

F(X.q) =) ay(X)q" € Alq]

n=0

with a,(X) € A is a A-adic form of character y, if for all but finitely many positive integers
k’ 0
FufF —1,q) = Zan(uk —1)¢" € Ok[dq]
n=0

is the g-expansion of a classical modular form in M} (Fg(po‘q), xwk, OK). If almost all of
the F' (uk -1, q)’s are cusp forms (resp. ordinary), then we say F' is a A-adic cusp (resp.
ordinary) form.

Since uF — 1 = (1+¢)" — 1, we get that |uk — 1|p < 1. Hence, the evaluations a,(u* —

1) do converge for all n > 0. From the isomorphism Z,[I'] = Z,[X], we see that the
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parametrization by A agrees with the parametrization over the weight space from the previous
chapter.

Let M (x,A) and M (x,A) denote the space of A-adic forms and ordinary A-adic
forms respectively. Similarly, let S (y, A) and S (x, A) denote the subspace of cuspidal

A-adic forms.

3.8.1 Hecke Operators on A-adic Forms

In this section, we will define Hecke operators acting on the space of A-adic forms.
Naturally, we can demand that the action fo the Hecke operators on A-adic forms should
agree with the action of the classical Hecke operators after taking the weight k specialization

map. Suppose k is the character
k: [ — A" given by z e (14 X)5@,
By applying the weight k£ specialization, we obtain the identity
(1 + (u¥ — 1))8(@ = @) = g
In particular, for an integer n coprime to p,
r((n) (= 1) = ()" = w™F(n)n*,
Definition 3.8.3. Let F' be a A-adic form with character x, with coefficients a,(F)(X) € A

for all £ > 0. For all integers n coprime to p, define

a (T, F)(X)= ) k((b)) (X)x(b)b‘la%(F)(X),
blged(£m)

where the summation is over all divisors of ged (¢, n) that is also prime to p.

By computation, we find that at any weight k specialization,

a (T,F)(uF =1) = > w ™ O)x(0)  an (F)(u* - 1)

b2
blged(¢,n)

= a (T, (F(u* —1))).

This is exactly our desired property for the Hecke operator on A-adic forms.
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Let H° (y,A) and h°™ (x, A) be the subalgebra of the endomorphisms of M4 (y, A)
and S (, A) respectively, generated by T;, for all positive integers n. The reason why we
are restricting ourselves to the ordinary case, is beacause of the following theorem.

Theorem 3.8.4. There is a perfect A-bilinear pairing
(-, 0 H (x,A) x M (x,\) = A
and similarly for the cuspidal forms.

Proof. See Theorem 5 of Section 7.3 of [21]. O

This shows that by considering the ordinary forms, we have a duality between the Hecke
algebra and the A-adic forms, just like in the classical case. In fact, both of these algebras
are free of finite rank over A as well (see Theorem 1 of Section 7.3 of [21]). Similar to the
classical case, there is a basis of M°™ (x, A) and S (y, A) consisting of eigenforms for T;,
for all positive n (see Theorem 6 of the same section in [21]). In fact, F' is an eigenform iff
almost all of its specializations are. Finally, we also have Galois representations associated
to normalized eigenforms.

Theorem 3.8.5. Let I be a A-adic normalized eigenform in S (x, A), and let L be the quo-
tient field of A. Suppose X : h°™ (x, A) — A is its corresponding A-algebra homomorphism.

Then there exists a unique Galois representation
p: Gg — GLy(L),
such that p is continuous, absolutely irreducible and unramified oustide p. Additionally, for
all primes £ # p, the -th Hecke polynomial is given by
det (T — p(Frobe)) = T* = N(To)T + x(a)r ({a)) ¢~
Sketch of the Proof. Idea: for almost all the weight k£ specializations, we have a Galois rep-
resentation associated to the classical eigenforms. Glue these representations together by

going through the theory of pseudo-representations. See Theorem 1 of Section 7.5 of [21] for

more details. O
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Note that the image of A and k are in A, and so this representation is truly one that
parametrizes the family of Galois representation associated to classical eigenforms.
Theorem 3.8.6. (Hida’s Control Theorem) Let k > 1 be a positive integer, and let €
be a primitive finite order character of T'/TP". Then for all classical modular form f
in Mg (Fg(p‘)‘p),exw_k;OK[e]), there exists a A-adic form F of character x such that
F (e(u)u* — 1) = f. In the case where k > 2, the map F +— F (e(u)u® — 1) induces isomor-

phisms

1%

M (x, A) /Py e M (x, A) M (Co(p™p), exw ™ ; Ok le])

S (X, A) [P eS (o A) = S (Do(p™p), exw ™ ; Okle])

where Py is the ideal generated by X — (e(u)u® —1).

Proof. See [20] or Theorem 3 of Section 7.3 of [21]. O

3.9 The Hida Family of Theta series

In this section, we will compute an explicit example of a Hida family, which will be a
family of theta series. This example will be very important for the actual thesis problem.
The presentation of this section will follow the example in Section 7.6 of [21].

Let K/Q be a quadratic imaginary field with ring of integers Ok. Fix a prime p that
splits in K into distinct primes p and p. By fixing an embedding Q — @p, it determines a
prime ideal p above p in K. Let Ok, denote the completion of Ok at p. Suppose ¥ is a

Hecke character of K with conductor ¢p where ¢ is an ideal prime to p, satisfying
Y((a))=a foralla=1 mod cp.

Let M = Q,(v) and let Oy be its ring of integers. Write Oy, = Wi X ppr where Wy, is
Zy-free and jup is a finite group. Similar to the notations used early, we will denote the
projections of Oy, to Wy and pps by () and w respectively.

Let U be the subgroup of W), topologically generated by (¢(1)) for all ideals I coprime

to p. The natural inclusion of I' = 1 + ¢Z,, into M = Q,(¢) is given in the following way.
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The group I' is naturally a subgroup of Ok, and the natural inclusion into M is given by
the map z — (¥ (2)). From the construction, we see that we have a natural injection

' & U
z = (Y(2)).

Suppose [U : '] = p? < 0. Since p splits, we can pick a generator A of U such that \P" =
u=1+44q.
Let T = Oy[Y] 2 A = Oy[X] where Y satisfies the identity (1+Y)” = (1 + X).

Consider the I-adic form

= 3 00a) () 0¥

where the summation is over all ideals a of K prime to p. By s(a), we mean W, SO
g

that \*(®) = (¥(a)). By definition,
(1+ (=)™ = WO = (i)

This calculation shows that the weight k specializations of F, are
Fy (N =1,q) Zw YN,

They are precisely the theta series attached to the character v (w>k_2.

Remark 3.9.1. If we took our Hecke character ¥ to be unitary, then a cuspidal family of

Z¢ klN)

where y is a character induced from composmg a p-adic embedding with a Hecke character

theta series is given by

Xoo ON the idéle class group of K satisfying

Xoo (@) = @

for all & = 1 modulo the conductor of .. This xo called a canonical Hecke character.
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Chapter 4
Classical Weight One Points on the Eigencurve

In this chapter, we will introduce the main conjecture tackled in this thesis, as well as

known results that motivate the conjecture.

4.1 Known Results

Let g(q) = >_,>1 anq" be a newform of weight one, level I'; (V) with nebentypus x. By

Theorem 1.5.1, there exists an odd continuous irreducible Artin representation

py: Gg — GLy (C)
which is unramified outside N. Additionally, for all primes £ 1 N, p, (F'rob,) has characteristic
polynomial 2% — asx + x(¢).

Fix a prime number p{ N. Since the eigenvalues of g are in Q, by fixing an embedding
ip Q- @p, we can assume that p, takes values in @p. Suppose oy, 3, € @p are the roots
of the p-th Hecke polynomial 2% — a,z + x(p). The newform ¢ is said to be regular at p if
a, # By, and irreqular at p if oy, = B,.

Let C be the eigencurve of tame level NV induced by the Hecke operators U, and T, with
primes ¢ { Np as described in Chapter 3. Suppose w : C — W is the weight map.
Theorem 4.1.1. In the case where g is regular at p, the eigencurve C is smooth at g,.
Additionally, w is étale at g, if and only if there does not exists a real quadratic field K in

which p splits and p |¢,. is reducible.
Proof. See the work of Bellaiche and Dimitrov in [2]. O

Let K be a real quadratic field of discriminant D > 0, where p = pp’ splits. Suppose 7

is the non-trivial involution of Gal (K/Q). Suppose
¥ G = Gal (K/K) — C

is a ray class character of mixed signature of order m with conductor f, and central character

Xo- Let L = Q(ft,), where p,, is the set of m-ths roots of unity. Let ¢’ denote the character
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o1 and 7,@ denote the character 1 /1. Let H be the ring class field of K fixed by the kernel
of 1&

Let g = 6y, the theta series associated to 1. By Theorem 1.6.7, it is a newform of
weight one, level N with nebetypus x where N = D - Ng/qfy, and x = 7x,. Fix a prime p,
and assume that g is regular at p. In this scenario, it is expected that the ramification index
of the weight map w at g, is exactly 2, so w is not étale. Darmon, Lauder and Rotger [9]
described the Fourier coefficients of the generalized overconvergent modular forms that span
the relative tangent space. We will now present the details of this result.

Let Sy (Np,x) and Sfp ) (N, x) denote the space of classical and p-adic overconvergent
modular form of weight k, level N with nebentypus character x and coefficients in C,. Let T
be the Hecke algebra of level Np spanned over Q by T, for primes ¢ { Np and U, for primes
¢ | Np. The p-stabilization g, gives us an algebra homomorphism A\, : T — L. More

specifically, ), satisfies

ag(9a) | N
Ago (T70) = a¢ (ga) for £4 Np and Ao (Up) = :
Q ifl=p
Definition 4.1.2. Let [, denote the kernel of A\, . Let

51 (NP, x) [9a] = 51 (Np, x) [y
be the I, -torsion elements of Sy (Np, x) . Similarly, define

S (N, x) [9a] = S (N, x) [12]

to be the I7 -torsion elements of S (Np, x) .
The elements of the latter space are called overconvergent generalized eigenforms at-
tached to g,. An element in this space is called normalised if its first coefficient is equal to

0. There is a natural inclusion

S1 (N, X) [ga] = S (N, x) [9a].-

49



In our scenario, S (N, x) [ga] is two dimensional, so it contains an eigenform that is not a

multiple of g,. Denote the unique normalised generalized eigenform relative to g, by
7= an(9)d"

n=2
The Hecke operators act on ¢/, in the following way:
Tyg., = a(ga) 9o + s (92) ga  for all primes £ { Np,
U9, = a4(90)d, + aq (ga) go for all primes q | Np.
Suppose £ 1 N is a prime that is inert in K/Q. Since H is a ring class field of conductor
prime to ¢, the prime ¢ splits completely in H/K. Let 3, denote the set of these primes

in H above ¢, which is naturally a principal Gal (H/K)-set. Fix A € ¥, and suppose

uy € Oy [1/M]" ® Q is a A-unit of H where ordyuy = 1. Let

u(,\) = Z VY (0) @ ouy € L ® Oy[1/0].

c€Gal(H/K)

This construction is invariant of the choice of uy, but it does depend on the choice of A € ¥,
(see [9] for details). In the article, the authors defined a special map 1 : 3, — p,,. With it,

we can define
w(, 6) = n(\) ® u (w /\> e L®Oyl1/0",

which will no longer depend on the choice of \ € ¥,.

With the fixed embedding ¢, : Q= @p, we have a p-adic logarithm on H*, which we
can extend to a map log, : L ® H* — @p by declaring it to be L-linear.
Theorem 4.1.3. After some scaling, the Fourier coefficients of the normalized generalised

eigenform g’, attached to go can be described in the following way. For all {{ N,

0 if Xk (€) =1

ap (92) = A .
log, u(y,€) if xx(€) = -1

Then, forn > 2, ged (n,N) =1,
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1 A
an (g2) = 3 > log, u(th, €) (ordyn + 1) anse (ga)
Ln
where the sum is over all primes that are inert in K.

Proof. See the work of Darmon, Lauder and Rotger in [9)]. O

4.2 Conjecture

Having now established some motivation and background, we are now able to state the
main conjecture of this thesis project. The statement of the conjecture comes from [8]. We
will restrict ourselves in the scenario where g is irregular at p, and so the p-stabilization g,
is unique. The conjecture is essentially an alternative version of Theorem 4.1.3 in the irreg-
ular case. It describes the Fourier coefficients of the normalized generalized overconvergent
eigenforms in terms of logarithms of algebraic numbers.

Suppose g € S; (N, x) is a newform, and let g, be its unique p-stabilization. The Hecke

operators Ty for £1 Np and U, for ¢ | N act semi-simply on the space

Sl (Np7 X) [ga] = @pga EB @pﬁ)

where §(¢) = g(¢*). However, the action of U, on this space is not semi-simple. By con-

struction, Upga = @ga- 1f g(q) = 3273, anq", then we can write

o0 (e 9]

9(q) = g(¢") = Z anq"’ = Z bqu where b, =

n>1 >1 0 else

an, = agy, if £ =npfor some n € N

By applying the U, operator, we get

Upd(@) =D bipa" = ag’ = g(q) = gala) + ag(q).

0>1 >1

Notice that the first and p-th Fourier coefficients of g and g are

(a1(9a), ap(ga)) = (1,a) and  (a1(g),a,(9)) = (0,1).
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This suggests that we can find a natural linear complement of Sy (Np, x) [ga]) in Sfp) (N, X) [9a]
consisting of generalized eigenforms ¢ with the property that (a1(g),a,(g)) = (0,0). Let
Sfp ) (N, x) [9a]o denote the space of these forms, and call the elements in this space normal-
1zed.

Let T be the Hecke algebra of level Np over Q, generated by Ty for £ Np and U, for
¢ | Np. By duality of eigenforms and Hecke algebras, as discussed in the previous chapters,

we have identifications

S1(Np, x) [ga] = Hom (T/Iga, Qp) , and S§p) (Np, x) [9a] = Hom (T/[gg, @p) )

To get the first isomorphism, we also need S; (Np, x) [¢a] = Sfp) (Np, X) [9a).- We can prove
this by checking the g-expansions and finding that all the forms in S{p ) (Np, x) [9a) are in

fact classical. There is also a natural exact sequence
0— 1y, /1 —T/I2 — T/, —0.
By passing the above exact sequence through duality with the Hom (-, @p) functor, we obtain

the following proposition.

Proposition 4.2.1. There is a natural isomorphism of vector spaces

S1 (Np,X) [galo = Hom (I, /15, Qp) - (4.1)

The proposition shows that the space of normalized generalized eigenforms can be iden-

tified with the tangent space of the eigencurve at g,, relative to the weight space. We can

then study the space of normalized generalized eigenforms by studying the tangent space of
modular deformations with constant determinant.

Suppose
py: Go — Autg, (V) = GLz (Q)

is the 2-dimensional Artin representation associated to g by Theorem 1.5.1. Since p, is
an Artin representation, it factors through a finite quotient Gal(L/Q). With the fixed
embedding i, : Q — Q,, we can assume that L C Q,. Let Wg = Adp, = End(V}) denote
the space of endomorphisms of V,, also called the adjoint representation of p,. An element

o € Gal(L/Q) acts on an element w € Wg by conjugation in the following way:
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gxw = py(o)owo pg_l(a).
Let W, = Adopg denote the subspace of W, consisting of trace zero endomorphisms. The
adjoint representation also factors through a finite quotient G = Gal (H/Q). Since ker p, C
ker Adp,, H is a subfield of L.

There is a canonical exact sequence of G-modules
0—W, =W, —Q,—0,

with a canonical G-equivariant splitting given by

- 1
p: W, — W, given by p(A) :A—éTr(A) 1.
By enlarging L, we can assume that p, (L[Gg|) = M, (L) to get a two dimensional
L-vector space V? and an identification ¢ : V> ®p, Q, — Vy. Similarly, we have G-stable

L-vector spaces

Wo=AdVy and Wy = AdV?
with identifications
L W;@LQP%WQ and 1: W7 @, Q, = W,.
Let [-,-] and (-,-) denote the Lie bracket and the symmetric non-degenerate pairing on
the spaces Wg, Wy, W;, W, given by
[A,B] = AB — BA, and (A, B) = Tr (AB) respectively.
It is easy to check that these maps are compatible with the G-action. That is, for all o € G,
lox AjoxB] =0 %[A,B],and (0 xA,0xB) = (A, B).
From Section 2.5, we recall that the tangent space associated to the deformation of p,
with constant determinant can be identified with the set H' (Q,Ad°(V;)) = H' (Q, W,).

Since G = Gal(H/Q) = Go/G g, the inflation-restriction exact sequence is given by
0— H' (G, WEH) — H" (Gg,W,) = H' (G, W) — H* (G, W) .
Since G is a finite group, and WgGH is a characteristic zero representation, H! (G, WgGH ) =

0= H? (G, WgGH). By the definition of H, the action of G on W, is trivial. Thus, we have

an isomorphism
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H' (Go, W,) = H (G, W,) = Homg (G, W,) .
Now we will describe elements in Home (G, W,). Since W, is an abelian group, a homomor-
phism from Gy to W, passes through G% the Galois group of the maximal abelian extension
of H. By class field theory, these correspond to continuous homomoprhisms from the idele

class group. By respecting the p-adic topology, we see that

OH®Z)X
H! wW,) =~ H (On®2))" 4% 4.2
(Goty) = Hom (G w, ) (12

>~ ker (Homg (Og @ Z,)" ,W,) = Homg (O} ® Zy, Wg)> .
We will now study the space Home (O ® Z,)* , W,) following Section 3.1 of [2]. Let log, :
QY — Q, denote the standard logarithm sending p to 0. Notice that Oy ® Z, = 1, On,

where H, is the completion of H with respect to p. Every continuous homomorphism in

Hom((’)flp,@p) is given by

u Z ax,Ap (log, u) = Z ay, (log, (Apu))

for some ay, € @p, where J, is the set of all embeddings H, — @p. From the fixed embedding

ip Q< @p, we have the following commutative diagram

]

which gives us a partition G = II,,J,. Hence, Hom ((OH ® Zp)x,@p) is spanned by

(log, (i, 00) ® 1)),

and the action of ¢’ € G on this basis is given by

o' (log,, ((ip 0 0) ® 1)) veq = = (log,, ((ip oaa)@l))geG.

Therefore, we have an isomorphism of G-representations

Q,[G] = Hom ((On ®Z,)",Q,)

Zag > (u Qv Z a, log, (z'p(g—l(u))v)> .

oelG
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By Schur’s lemma we find that
dimg, Homg ((On ® Z,),W,) = dimg, (Hom ((On ©7,)%,Q,) @ W,)"  (4.3)
. = a
= dimg, (Q, [G]@W,)" =3.
By Dirichlet’s unit theorem (see Appendix), O} ® Z, = Ind%Zp — 1g where ¢ is a
complex conjugation, and 14 is the trivial representation. By simple computation, we can

show that complex conjugation acts on W, with eigenvalues 1, —1 and —1. By Frobenius

reciprocity,
dimg, Homg (O ® Z,,, W,) = 1. (4.4)

To summarize, we have proved the following proposition.

Proposition 4.2.2. The space H'(Gg, W,) is two dimensional as a Q, vector space.
Proof. Apply equation (4.3) and equation (4.4) to equation (4.2). O

By the irregularity of g, the prime p splits completely in H. With the fixed embedding
H — @Q,, and a chosen prime py of H above p, let log, : H, — Q, denote the pp-adic
logarithm that factors through log,. By equation (4.4),
dimy, (05 @ W) =1
For all u € Oy, w € Wy, let
€ (uw) = éz;(au) (0 xw) € (050 W,)°.
oe

Then the elements

&o (1, w) = (log,, ®id) & (u,w) = é Zlogpo (ou) - (0 xw) € W,

ceG

spans a 1-dimensional L-vector subspace of W,. Let w(1) be any generator of this space.
For each prime ¢ 1 Np, choose a prime A in H above ¢. Suppose h is the class number

of H. Let 11y be a generator of the principal ideal \*, and let
m=u®h e (0y1/0") ®z L.
Let 0, € G denote Frobenius map associated to A. Set

Wy = pglon) € Wgo and  wy = p(wy) € Wy
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With this notation, denote

€)= 5 3 (ou) @ (7 xwn) € (On 1/ 9 W)
oceG
w(l) =&, (uy,wy) = é Zlog‘30 (ouy) - (0 *wy) € W,
oeG

Finally, let
M(l) = [w(l),w(l)] € W,.

Since u, is well-defined up to some non-zero scalar multiple of O}, the above elements are
well-defined up to an element of (C’)IX{ ® W;)G and L - w(1), respectively. Additionally, the
image of w(¢) inside W,/ (L - w(1)) does not depend on the choice of X above ¢. Hence, M ()
is independent of all the choices made to define it.

We are now able to state the conjecture.
Conjecture 4.2.3. (Theorem 5.3 of [8], whose proof depends on Conjecture 4.1) Given any

w € W,, there is an associated ¢°, € S§p) (N, X) [9a]o given by

Qg (92;) = (w, M(L))
for all primes ({ Np. The map w v g’, induces an isomorphism between W,/ (L - w(1)) and

SP (N, x) [9alo-

Corollary 4.2.4. S (N, x) [ga]o is two dimensional.

4.3 Conjecture in the CM Case
We will discuss some special choices we can make in the case g is a CM form to simplify
the conjecture. Suppose there exists an imaginary quadratic field K/Q and a finite order

character
Y, : G = Gal (K/K) — L~

such that g = 0, the theta series attached to 1,. The associated Artin representation is
then V> = Ind%¢,. Let 7x be the non-trivial automorphism of Gal (K/Q) and let ¢, be the
character 1, o 7. Since p, is irreducible, 1, and ¢, must be distinct. The action of G’k on

Vy and V; decomposes into two G k-stable lines

V; = S:bg D Q:Z)’g and Vg = gwg D 21%,
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where G'¢ acts as 1, and vy, respectively. Then W; and Wg decomposed into four G k-stable
lines in the following way

Wy = (Hom(g,, £5,) @ Hom(£,, £5,)) @ (Hom(s, , £5,) ® Hom(Ly,, £5,))

W, = (Hom(Ey,,Ly,)® Hom(Lyy, £4y)) & (Hom(Ly,, Lyy) & Hom(Ly;, Ly,)) ,
where the two dimensional spaces in the brackets are Gg-stable. They are isomorphic to

Ind%1 and Ind% v, where ¢ = Yy/1y,. To summarize, we have
We = L(rx) ®Indpe and W, = Q, (tx) ® Ind}e).

Recall that the adjoint representation factors through a finite quotient Gal(H/K). By the
analysis above, we see that H is the ring class field of K attached to .

By choosing some appropriate basis (e, e2) of £fbg X £f% which induces a natural basis
€11, €12, €21, €29 Of V[N/;, we can assume that L (yg) is identified with the space of diagonal
matrices that have trace zero, and Ind%/z is the space of off-diagonal matrices. Fix 7 €

Go\Gk, and by scaling our basis, we can additionally assume that

0 t
Pg<7'>_<t 0>7

where the determinant —t* = (1) (recall that x is the nebentypus character, and so this
has to be satisfied).
Let Gy = Gal (H/K) be the maximal abelian normal subgroup of the dihedral group

G = Gal(H/Q). Let .
€y = @ Z ’(,D_l(O')O' €L [Go] .

geGo

Pick a unit u € O, and define
Uy = ey(u) and Tuy = ey (Tu).
It is easy to see they are elements of OF ® L such that Gy acts via the characters ¢ and

Y =17t Let w = (§}). By our choice of basis, for all o € Gy, p,(0) is a diagonal matrix
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and of the form

The action of conjugation then gives us

0*w-<8 ¢E))>,and(07)*w:< _? 0).
Y= (e) 0

Since G acts on Of; @ W, diagonally, we find that

E(ww) = Z ou) @ (0 *w)

UEG
= |—é|<2( (0 *w +Z ((07)u (57)*w)>
oeGoy 6€Go

- |G| (Z W(o)(ou) @ w + lefl(é) (5(Tu))®(7*w)>

geGy [en

o 1 ( 0 TUy, )
2 Uy, 0
Hence, we can naturally pick w(1) to be

0 lo T
w(1) = (log,, ®id) (26(u,w)) = By (TU)
logpo (u¢) 0

Similarly, we can make some simplications to w(¢) and 9t(¢) as well. This will depend

on whether ¢ is split or inert in K.

4.3.1 [/ is split in K
Suppose that the prime (¢) = AN is split in K. Assume that g is regular at ¢, so that
Yg(or) # Y, (0x). By Dirichlet’s Unit Theorem,

O[1/0* ® L= Indg™/ L & nd 3" ¥ L — 1ax/0),

where ¢ is a complex conjugation and G is a decomposition group of A in Gal(K/Q).
The group G, is trivial, because ¢ splits in K. Since K/Q is imaginary quadratic, (¢) =
Gal (K/Q). Hence
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OK[l/g]X X L= Inleral(K/Q)L - 1Gal(K/Q)~
Similarly, we have an isomorphism

Oul)*
Ox

® L ~1Indg L

where w is any fixed prime above ¢ in H. Since g is regular at ¢, we can let oy and 3, be the

distinct roots of the characteristic polynomial of F'rob,. Then on the adjoint representation

874

Frob, acts with eigenvalue 1,5 and g—‘; Since the roots are distinct, % # 1 # % By

Frobenius reciprocity, we find that
G

Oglix
dimp, (OK[l/f]X ® W;)G =1 and dimy ( Ig)[’f] ® ng> = 1.

X
H

Therefore, the following natural inclusion induces an isomorphism of L-vector spaces.
o (OO e\
((’)K[l/f] ® Wg) =S| — W,
On

This suggests that we can construct uy from O[1/¢] ® L instead.

Following the general construction, first pick 1y to be a generator of \*, where h is the
class number of K. Let uy = 1y ®h~!. Let 0y, 0n € Gy be the Frobenius elements associated
to A and \. With these choices, we compute and find that

- we(on) 0 _ PN = (X)) (10

Since py(0) is a diagonal matrix, it is easy to check that for all o € Gy

1 0 1 0 1 0 -1 0
o * = and (o) * = :
0 -1 0 -1 0 -1 0 1
Combined this with the fact that for all 0 € Gy = Gal (H/K), K is fixed,

w(l) = | z:logpo ouy) (o *wy)

| oceG

" by(V) 1 0 10
5(A) ‘G’g (Z log,, (ouy) ( 0 1 ) + Z log,,, (d7uy) ( 0 1 ))

ceGo 0eGo
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Z/’g()‘) _7/19(/\/) L0 -10
7. ‘G’ (‘GO‘ -logpo(u)\) ( 0 1 ) + ‘Go‘IOgPO(TH)\) ( 0 1 ))

_ )~ (Y) (log,, (1) — logy, (Tus)) ( (1) : )

4 -1

S ()0 4)

M) = [w@),w()]
_ Yg(A) — Yy (X) o Ux 0 —2logy, (Tuy)
- e () ( )

Finally,

4 2log,, (uy) 0
_ 1/}90‘) - 1/}90‘/) log (%) 0 - logpo (Tuw) ‘
2 o\ u) log,,, (1) 0

4.3.2 [ is inert in K
Now assume / is inert in K. Since p,(o,) has trace zero, o, has distinct eigenvalues, so
g must be regular at £. Choose a prime \ of H above ¢, and suppose o, is the Frobenius

element associated to A\. Then with respect to our basis,

3 0 by
WAZWA:pg(UA): .
C 0

As usual, pick 11y to be a generator of the ideal A", where h is the class number of H. Recall

that Oy[1/0)*/OF = @ Z- \. Using the latter notation, pick ity € (Oy[1/(]*/O}) ® L such
Ale
that it has prime factorization

(ﬁ)\) = b))\ + C) (7')\) .

Furthermore, let

. 1 _ .
() = ey (1) = 1 D0 07N (@)o (@)
Ol oeGo
Similar to the calculations in the previous section, for all o € G,

0K wy = ( 0 vo)br > and (07)xwy = ( 0 vlo)en ) :
@ 0 ) ¢ o)y 0
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This can easily be seen by the fact that the off-diagonal matrices is given by Ind%@b. With

these calculations, we find that

w(l) = é(Zlogpo (Uu,\)*(a*w,\)>

oeG

_ b o (o 0 Y (a)ba . 0 W(8)ex

oce€Go

0 1ngo Uq/,fl (E)
log,, Ty (¢) 0 .

1 Ry(t) 0
im(f)—2< 0 —R¢(£)>

o= )
log,, uy  log, Tuy ()

6€Go

N | —

Hence,

where

Now, we are ready to state the specialized version of conjecture 4.2.3 in the CM case.

Conjecture 4.3.1. There exists a canonical basis (g1, g2) of S£p) (N, X) [9a]o where
1. the Fourier coefficients as(g1) are supported on primes £ + Np that are split in K.
Additionally, if (€) = AN then

ag(g1) = (g(A) = 1hg(X)) - logy, (ux/u3).

2. the Fourier coefficients as(ga) are supported on primes ¢ 1 Np that are inert in K. More

specifically,
ag(gg) = Rw(f)

If we assume the general case conjecture is correct, this is a simple corollary. Let

0 a
U}1:2'

where a, b satisfies alog, (1) — blog, (Tuy) =1, and let
1 1 0

Wy = — - .
2 \0 -1
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Then under the isomorphism of the general conjecture, w; gives rise to g; and ws gives rise

to go. This is exactly Theorem 6.1 of [8].
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Chapter 5
Special Case of the Conjecture

We will now give a proof of the conjecture in a special scenario, where the Artin repre-

sentation associated to g has image isomorphic to the dihedral group of order 8.

5.1 Introduction
The special case we will describe in this section is same scenario that is considered in
[10]. Let F/Q be a totally real field of degree r + 1, with embeddings vy, ..., v;..

Definition 5.1.1. A quadratic extension F}/F' is an almost totally real extension of F' if
Fi ®pp REC, and Fy ®p,, R¥R&R forall 1 <j <7

In particular, consider the case where F = Q(+/N) for some N > 0 is a real quadratic
field. Since F) has two real places and one imaginary place, it is not Galois over Q. Let
L be its Galois closure. By construction, L = F}F, where F; is the Galois conjugate of
Fy over Q and Gal(L/Q) = D, the dihedral group of order 8. Additionally, the Galois
group Gal (L/F) is isomorphic to (Z/2Z)* the Klein 4-group. The field F} is of the form
Q < a— b\/ﬁ) where a,b € Z are such that d = a®> — Nb* < 0. To summarize, we have the

following diagram mapping out all the subextensions of L/Q.

Here, every line indicates an extension of degree 2. Although, we can explicitly write down
the generators of all these fields, it will not be necessary for the rest of the thesis. Moreover,

there are additional properties that characters of these fields satisfy that may be of great
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use for future work, but not for the rest of the thesis, so we will not mention them. See
Proposition 3.2 of [10] for more details.

Let
wK : GK — {:i:l}

be the Galois character of K that cuts out the extension K;. That is, keri¢x = Gkg,.

Similarly, let
Uar + Gar — {&1, +i}

be the Galois character that cuts out the extension L.

By viewing these Galois characters as idele class characters, they are Hecke characters
of types we have seen in earlier chapters. Let 0, and 6,,, denote the weight one Hecke theta
series associated to Yx and ¥y;. Let pg = Indgﬁw;( denote the associated Artin represen-
tation attached to 0y, , and similarly for the field M. Since D4 only has one irreducible two
dimensional representation, px = pys. This implies that 0y, = 0y,,. By Theorem 3.8.6, we
have two Hida families attached to each theta series and the families intersect at a classical
weight one point corresponding to the p-stabilization of 8y, .

By the irregularity assumption, the prime p has to be split in both K and M. Therefore,
we can apply the theory established in Section 3.8 to explicit describe the Hida families
attached to 0y, and 0y,,. In the next section, we will use these two explicit families to
compute the tangent space of the eigencurve at this particular weight one point and prove
Conjecture 4.2.3.

Remark 5.1.2. The fields L and H are named specifically to match the notations used
to define the conjecture. That is, we can show that Gy = Gal(L/L) = ker pr and Gy =
Gal(H/H) = ker (Adpr).

5.2 Explicit Fourier Coefficients

Let g = 0,, = 0,,,- We know from Section 3.9 that the Galois representations associated

to the cuspidal family of ordinary theta series at weight £ is given by

Gg k-1
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where vg is a canonical Hecke character. By letting k be a “weight variable” that we can

manipulate analytically,

d k-1
Tk . vy =log, vk.

We find that the /-th Fourier coefficient of the generalized eigenform is

Tr ((Indgg(wz( log,, VK)) (UA))

where ) is a prime of K above ¢, and o) is a Frobenius of A\. When / is inert, the represen-

tation has trace 0, so the eigenform is supported on split primes.

Suppose / is split in K and let h be the class number of K. Suppose u, is a generator

of M*. Then
log, vic(oy)" = log, v ((1x)) = log, (uy),
which implies that
log, vic(0x) = h™" log, (11y) = log, uy,

where uy = 1y ® h™! € Ok[1/4]* ® L. Using this dictionary, and the previously defined

basis, we find that

(In a2 (e log, UK)) (03) = ( Ui (02) log, uy 0 ) |

0 ¢K(O')\/) Ing u’/\
Since we are considering the deformations consisting of constant determinants, we need to
apply the canonical projection p : W, — W, given by A s A — sTr(A)I. Hence the (-th

Fourier coeffiicient of the generalized eigenform is

%Tr ( Vi (ox) log, (uy/u)) 0

0 ¥ <A>1g<u'/ux>> = 3 log, (/1) (Vx() = (%)
K\(O) )10 LN

This is exactly the eigenform described by part 1 of Conjecture 4.3.1. Denote this normalized
generalized eigenform by gx. By the same construction, we also have gj; coming from the
other imaginary quadratic field M.

By construction H = KM is a biquadratic field. If ¢ splits completely in H, then the
Frobenius map oy, = 1 for all primes A in H above ¢. This implies both a,(gx) and a,(gy)

are zero, because (o)) = Yk (oy). Hence, the Fourier coefficients of gx are supported on

65



the primes ¢ that are split in K, but are inert in M. For such a prime ¢, ¢i (o)) = —¢k(oN),
which shows that as(gx) is non-zero.
Theorem 5.2.1. In the scenario described above, the dimension of Sfp) (N, x) [9a]o, the

space of normalized generalized eigenforms, is two.

Proof. We showed that the Fourier coefficients of gx are supported on primes ¢ that are split
in K and inert in M. Similarly, the Fourier coefficients of g,, are supported on primes ¢ that
are split in M and inert in K. Since these sets of primes are distinct, gx and g, are linearly

independent. O

Let gx1 and gx 2 denote the two normalized generalized overconvergent modular form
constructed from Conjecture 4.3.1. We already know that gx1 = 2¢gx. An interesting
problem would be to describe gy as a linearly combination of gk ; and gx .

Suppose wg,1,wk,2 € Wy are a choice of pre-images of gk, and gx 2 under the isomor-
phism described in Conjecture 4.2.3. Recall that the construction of the general conjecture
purely works with the field H and the representation p,. To obtain wg 1, wr 2 € W, through
the construction described in Section 4.3, we made a choice of basis {ex 1, ex2} of V, and
similarly for the field M.

Let A € End(V},) be the endomorphism of V; sending eys; to ex1 and epr2 to ex 2. Then

A induces an endomorphism of W,. Suppose
WM = QWi + Gawr, + asw(1l)x for some aq, aq,a3 € L,
where w(1)x denotes the choice of w(1) with respect to the field K. Since w(1)x and w(1),

span the same one dimensional L-vector space, a; and as are not both zero. By applying

the isomorphism given by Conjecture 4.2.3, we find that
1 1

1
gMm = 59M,1 = §G19K,1 + 561291(,2-
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Chapter 6
Conclusion

Let g be an ordinary newform of weight one that is irregular at a prime p. Suppose g, is
its unique p-stabilization. In this thesis, we studied the relative tangent space of the eigen-
curve at g,. More specifically, by Proposition 4.2.1, the elements of the tangent space can
be naturally identified with the space of normalized generalized eigenforms S§p ) (N, x) [9a]o-
Following the general R = T philosophy, we hope to produce an isomorphism between the
tangent space of all ordinary deformations with constant determinants, with the relative
tangent space of the eigencurve at g,. This led Darmon, Lauder and Rotger to conjecture
that we should be able to describe the Fourier coefficients of the normalized generalized
eigenforms in terms of logarithms of algebraic numbers, via this conjectural isomorphism.
The explicit statement of this conjecture was given in Conjecture 4.2.3. In the case where g
was a theta series attached to a Hecke character on an imaginary quadratic field, we made
a reduction of the conjecture, described in Conjecture 4.3.1.

In the special scenario the thesis considered, we obtained two Hecke characters ¢y and
¥y on imaginary quadratic fields K and M that cut out a Dy-extension (the dihedral group
of order 8). Additionally, the weight one theta series attached to the two characters are
equal by construction. This implies that the two Hida families of theta series attached to
the character as described in Section 3.9, intersect at weight one. By explicitly computing
the tangent space attached to the Hida families, we proved Conjecture 4.3.1. That is, the
relative tangent space of the eigencurve at g, is of dimension two, and the Fourier coefficients
of the normalized generalized eigenforms can be described explicitly in terms of logarithms
of global units, as conjectured.

Let E be an elliptic curve over Q. By modularity, there exists a normalized newform of
weight 2 satisfying L(f,s) = L(E,s). Suppose

p: Gg — Aut(V,) = GL,(L)
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is an Artin representation with coefficients in come finite extension L C C of Q. Suppose
p factors through a finite extension Gal(H/Q). The Birch and Swinnerton-Dyer conjecture
predicts that the analytic rank of the Hasse-Weil-Artin L-function L(E, p, s) is the same as

the algebraic rank defined to be
dimL HOHIGQ(‘/p, E(H) (9 L)

Let g and h be weight one newforms with associated Artin representations p, and p;,. Assume
that p is an irreducible constituent of pg, = py ® p, and assume that pg, is self-dual. In
[11], the authors proposed the elliptic Stark conjecture, which gives a formula describing a
p-adic iterated integral attached to (f, g, h), which is a p-adic avatar of the special value of
L(E, pgn, 1), in terms of formal group logarithms of global points on E(H).

In the statement of the elliptic Stark conjecture, there is an underlying hypothesis that
the space of overconvergent generalized eigenforms Sfp )(N , X)[ga] consists of only classi-
cal forms. This hypothesis is expected to not hold when ¢ is irregular at p. However, if
Conjecture 4.2.3 holds true, we can explicitly describe the Fourier coefficients of normalized
generalized eigenforms, which forms a natural linear complement Sfp ) (N, x)[ga]o of the space
of classical forms inside S{p )(N , X)[ga]. This will allow us to define and study an alternative
version of the elliptic Stark conjecture. Furthermore, in [11], the authors are able to prove
the elliptic Stark conjecture in the case where g and h are theta series associated to a com-
mon imaginary quadratic field K in which p splits. This result gives us great hope that the
conjecture can also be proven in the irregular case if we assume g is as described in Section

5.1 and h is a theta series associated to K.
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Appendix A- Dirichlet’s Unit Theorem

Theorem. (Dirichlet’s S-Unit Theorem). Let K be a number field. Suppose S is a finite set
of places of K, that includes all the infinite ones. Let K° be the multiplicative group given
by
KS:{QGKX : |a\p:1f0rallp§é5}.
Then K* is the direct sum of a cyclic group with a free group of rank |S| — 1.
More specifically, the map
A K = TR
pes
a — (loglaly),cq

has kernel p(K) (the roots of unities of K ) and its image is a complete lattice
{(ap) € HR : Zap = O}
peSs peS

of dimension |S| — 1.
Proof. See Chapter VI, Proposition 1.1 of [31] or Chapter II, Section 18 of [3]. O

In this thesis, we will need to know more than the rank of K as a group, but also its
structure as a Galois module. Let G = Gal (K/Q). We will consider the special case where
T is a set of place of QQ containing the infinite places, and S is the set of places of K lying
above those in T. Let Ys be free abelian group generated by S. We have a natural action

of G on Ys by permuting the places A € S above p € T'. By fixing a place A € S above each

p € T', we can additionally say that
Ys & @perIndg Z,

where G is the decomposition group of A, and acts trivially on Z. Let

Xg = {ZaA)\GYS: Za,\:O}.

AeS AeS
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Then we have a natural exact sequence of G-modules
0-X—>Y SZ—0,

where e : Y ayA — > A is the augmentation map. With this exact sequence, we can then

show that by viewing CXg and CYys as C[G]-modules, their associated characters satisfy

Xvs = Xxs T 1a
where 1¢ is the trivial character. See Section 3.2 of [12] for the proof and more details. In
this thesis, we are most interested in the cases where K is an imaginary quadratic field, and
1. S is the set of infinite places
2. S is the set of infinite places and the primes above some rational prime p € Q that
splits completely
In the first case, K° = O, which is just the normal Dirichlet unit theorem. Furthermore,

as G-modules, we have the isomorphism
~ TG
where ¢ is a complex conjugation, and 1¢ is the trivial representation. In the latter case,

K% = Og[2]*. We have an isomorphism of G-modules
p

Ok[1/p]* ® C = Ind{;,C & Indg;, C — 1,

where A\ is a prime in K above p and G is its deocomposition group.
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