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Abstract

A technique for combining equalization and differentially coherent detection is pro-
posed for use in wireless communication when carrier phase recovery is difficult. A
decision-feedback differentially coherent scheme, which generates an improved refer-
ence phase, is combined with a linear equalizer and the LMS algorithm is used to
adapt the equalizer to an unknown channel. In addition, the proposed receiver is
simulated for various two-dimensional signal constellations over multipath channels.
It is shown that for high SNR, the degradation of this structure is negligible with
respect to combined coherent detection and equalization. Therefore, this equalized
differentially coherent detection scheme can be used when carrier phase tracking (i.e.

coherent detection) is difficult and intersymbol interference is a major obstacle.
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Résumé

Cette these propose une technique combinant |'égalisation et la détection cohérente
différentielle pour la radiocommunication quand le rétablissement de la phase du
signal porteur est difficile. Un systeme cohérent différentiel a rétroaction améliorant
la phase de référence est combiné a un égalisateur linéaire. La procédure “CMM” est
ensuite utilisée pour adapter 1’égalisateur a ui canal inconnu. De plus, une simulation
du récepteur est faite avec des constellations de signaux a deux-dimensions pour des
canaux rulti-routes. Il est démontré que, pour un grand RSB, la dégradation de la
performance de cette technique est négligeable par rapport a la combination classique
de la détection cohérente et de 1’égalisation. Donc, cette technique de détection
cohérente différentielle égalisée peut-étre utilisée quand la poursuite de la phase du
signal porteur (c.a.d. la détection cohérente) est difficile et que I'interférence entre

symboles est une probleme majeur.
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Chapter 1

Introduction

Recent years have witnessed an increased interest in bandwidth efficient modulation
schemes. The simplest and most widely used technique for achieving high bandwidtix
efficiency is based on two-dimensional modulation formats [1]. With these schemes,
demodulation is usually performed coherently, which means that carrier phase track-
ing is necessary. In many situations (such as communication over fading multipath
channels, or short burst communications such as TDMA or Frequency Hopping), car-
rier phase tracking is a difficult task, and thus noncoherent demodulation techniques
have to be used. The noncoherent demodulation methods for two-dimensional formats
are based on differentially coherent techniques, and thus the phase information has
to be differentially encoded. In these schemes, carrier phase tracking is not necessary;

however, this is achieved at the expense of SNR performance.

In the last year, new differentially coherent detection techniques have been
introduced [2]-[5]. The chief merit of these detection schemes 1s their low SNR degra-
dation with respect to corresponding coherent detectors. One of the potential appli-
cations of the new differentially coherent strategies is for Indoor Wireless and Mobile
Communications. In these systems, intersymbol interference due to multipath is a

major problem. Therefore, the extent to which the new differentially coherent de-




tection techniques can be suitable for these applications depends on the performance
of these schemes in an intersymbol interference environment, and the possibility of
combining them with equalization. This subject has not been considered yet (as far

as we know), and this work makes a first step in this direction.

Two-dimensional modulation, where the data is encoded into the phase and
amplitude of a sinusoidal carrier has been extensively studied in [1], [6]-[11]. In this
work, Phase Shift Keying (PSK), Quadrature Amplitude Modulation (QAM) and
V29 signal constellations [12], [13, page 243] will be used in a combined amplitude
and differential phase modulation scheme, which uses amplitudes and phase differ-
ences to convey information. This modulation scheme is used instead of combined
amplitude and phase modulation because the differential phase encoding enables the
use of differentially coherent detection. Differentially coherent detection simplifies
the receiver structure significantly since no phase tracking is performed and thus,
is very attractive when carrier phase tracking is difficult. However, it has an SNR
performance degradation compared to coherent detection that approaches 3 dB fer
MPSK (M>2). As a result, we propose to use the decision-feedback differentially
coherent detection structure of [2] because of its low SNR degradation and relatively
low complexity. Our objective is to consider this scheme over ISI channels, while
focusing on the multipath environment. The decision-feedback differentially coherent
detector of [2] can be naturally combined with known equalization techniques, while
the other proposed differentially coherent detectors [3]-[5], seem to require special

equalization methods.

In this work, we consider linear equalization, because of its reduced complex-
ity. In addition, the Mean-Square-Error (MSE) criterion is used to find the optimum
linear equalizer for known channels. However, in practice, th» multipath characteris-
tics of these channels are usually not known so that adaptive equalization is necessary.

Therefore, we also consider the Least-Mean-Squares (LMS) adaptation algorithm [14],
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mainly because of its simplicity and robustness and also because it is one of the more

popular algorithms used in practice.

This thesis is organized along the following lines. Chapter 2 presents the
rationale of combining linear equalization with decision-feedback differentially coher-
ent detection, and introduces the system model. In Chapter 3, the minimum MSE
(MMSE) and optimum equalizer coefficieats are derived for known channels, taking
into account reference phase errors, and numerical results are presented for some mul-
tipath channels. In Chapter 4, the LMS adaptive algorithm is used for adapting the
equalizer to an unknown channel and Adaptive Mean-Square-Error (AMSE) simu-
lation results are presented. Finally, Chapter 5 states the conclusions and suggests
further work. This is followed by a bibliography of related articles and two appen-
dices. Appendix A presents an overview of the overall computer program and lists
the MMSE program file and a sample test case. Appendix B lists the AMSE program

file, a sample test case and additional program files.
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Chapter 2

Combining Equalization and
Decision-Feedback Differentially

Coherent Detection

The subject of this chapter is the integration of linear equalization with differentially
coherent detection. Section 2.1 discusses the need for differentially coherent detection
and linear equalization in a communication system. Section 2.2 describes the base-
band system model, including the proposed receiver which combines an improved
differentially coherent detection structure with a linear equalizer. Finally, Section
2.3 focuses on the advantages of this proposed receiver over conventional coherent

receivers which combine coherent detection and linear equalization.
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2.1 Equalization and Decision-Feedback Differen-

tial Coherent Detection

Any communication system consists of three components: transmitter, channel and
receiver. The main objective in any communication system is to transmit information
as accurately as possible. The transmitter encodes the discrete-time information into
a continuous-time signal which is transmitted over the channel. The receiver must
recover the information from the received signal which is a distortea version of the
transmitted signal. This distortion is due to the channel. Channel distortion can be
generated by noise, fading, as well as time-dispersion. Therefore, the transmitter and

receiver have to be designed with the communications channel in mind.

An important parameter of a communication system is the method by which
the information is encoded into the transmitted signal, the modulation method. Much
attention has been given to two-dimensional modulation, where the data is encoded
into the phase and amplitude of a sinusoidal carrier [6]-[8], mainly because of its
bandwidth efficiency. A close relative to this amplitude and phase modulation is

amplitude and differential phase modulation.

Differential phase modulation structures the sinusoidal carrier such that car-
rier phase differencss »ad not actual carrier phases convey information [15). Thus,
carrier phase tracking, which tracks absolute phases, is not necessary at the receiver
since phase differences between successive signals (and not the absolute phases of the
signals) convey information. The phase encoding adds little to the complexity of the
transmitter. In this work, combined amplitude and differential phase modulation,

with differentially coherent detection, is considered.

A diflerentially coherent detector estimates the transmitted information by
making use of phase differences between successive symbols. In the absence of channel

distortion, differentially coherent detection is an attractive alternative to coherent




detection especially when carrier phase recovery is difficult. It has been successfully
applied with PSK modulation, particularly for binary PSK (BPSK) signal 16, page
174]. This gives an extremely simple receiver for BPSK with a small degradation
in performance. However, for MPSK (M>2), it gives an SNR degradation that
approaches 3 dB as M increases. In [2], an improved differentially coherent detection
technique was introduced. The proposed differential receiver structure uses past phase
decisions to modify L previous received samples. These modified samples were then
summed to give an improved phase reference. This strategy can be considered as an
open loop version of a coherent receiver with decision-feedback carrier phase tracking.
It was found that the performance of this improved differentially coherent detection

approaches that of coherent detection for high SNR.

A stated earlier, the channel distorts the transmitted signal. In a time-
dispersive channel, the effect of each transmitted symbol extends beyond the time-
interval used to represent that symbol. This is due to the dispersion effect of the
channel which broadens pulses and causes them to interfere with one another. The
distortion caused by the resulting overlap of received signals is ~alled intersymbol
interference (ISI). Its effect is most easily described in an equivalent baseband pulse

amplitude modulation (PAM) system. Such a system is shown in Figure 2.1.

i(t)=__§_': a[]§(t - jT) —sf Ch;?tf;el Y s ito+ k7)

Figure 2.1: A Baseband PAM model

In Figure 2.1, §(t) is the Dirac delta function and the “channel” includes the
effect of the transmitter filters, the transmission medium and the receiver filters. The

channel’s impulse response is g(t) and the input signal Z(t) is a sequence of data




symbols a[j] which are transmitted at instants T through the channel where T is the
signaling (or symbol) interval and “is used to represent the complex envelope (CE)

notation. Therefore, the CE of the received signal §(t) is given by

0= 3 alilat - i7) 2.1)

j=—oo

H the received signal is sampled at instant kT + to, where 1o accounts for the channel

delay and the sampler phase, we get

Gto+ kT) = alklg(t)) + % aljlilto + KT - 5T) (2.2)
desired term é=—°°' ik ~— P
ISI

The ISI is induced by g(to+:T), ¢ # 0. The ISI is zero if §(to +:T")=0, : # 0; that is,
if §(t) has zero crossings at T-spaced intervals. When §(¢) has such uniformly spaced
zero crossings, it is said to satisfy Nyquist’s criterion [13, page 157]. The criterion

specifies a frequency-domain condition on the received pulses for zero ISI. It can be

expressed as:

Grif)= S GU-2)=T Jor Ifl< 5 (2.3)

h=-0c0

where G(f) is the channel frequency response (i.e. the Fourier transform of §(t)),
Gr(f) is the folded channel spectral response after symbol-r-te sampling and the

frequency band |f| < 3k is the Nyquist or minimum bandwidth.

One class of pulse shapes which are ISI-free and commonly used, is the raised-

cosine family with cosine roll-off around |f| = 3. It can be expressed as
) sm(1r-7—,) cos(gir-t-)
§(t) = a1rt (2.4)

t
— 1 - (—)2
2 - ()
where « is the roll-off factor with a value between 0 and 1. From [13, page 158], the

transfer function G(w) of §(t) (w = 2rf) is given by

T 0< jw| < U5k
6w ={ 5 (1-sin[ il -] ) = <li< O (25)
0 |w| > -(—)-”"'



G(w) and §(t) for o = 0,0.3,0.6, 1.0 are shown in Figures 2.2 and 2.3. It is easily seen
that these frequency responses ((w) satisfy Nyquist’s criterion, and thus there is no
ISL In practice, the effect of ISI can be seen from a trace of the received signal on
an oscilloscope with its time base synchronized to the symbol clock. For a two-level
PAM system, if the channel satisfies the zero ISI condition, there are only two distinct

levels at the sampling instant.

Although the transmitter and receiver are designed so that Nyquist’s criterion
is satisfied, in practice, the channel distorts the signals so that actually the criterion
is not satisfied and ISI results. As a result, equalizers, which are designed to deal
with ISI, are used [17). The objective of an equalizer is to reduce the effects of 1S] on

the process of data recovery from the received signal.

Equalizers which use delays and tap-gain multipliers, and operate in the time-
domain are known as discrete-time filters. In these, current and past received signals
(and maybe past receiver decisions) are weighted by different tap-gains, and used
to reduce the ISI at a particular time instant. There are two categories of discrete-
time equalizers, namely linear transversal equalizers and decision-feedback equalizers
(DFEs). In linear transversal equalizers, current and past values of the received signal
are linearly weighted by the equalizer taps and summed to produce an output. These
equalizers are usually implemented with a finite number of taps for physical reasons,
i.e. as a finite :impulse response (FIR) filter. As a result, they cannot remove all ISI.
In addition, a linear equalizer introduces gains at those frequencies where the folded
channel has loss and this gain amplifies noise at those frequencies. Thus, the noise
power at the equalizer output is larger than if the linear equalizer was not present, i.e.
noise is enhanced by the linear equalizer. Nevertheless, linear equalizers are used in
practice since they are good approximations to the ideal filter for a sufficient number
of FIR filter taps and can be used in an adaptive mode. DFEs are recursive nonlinear

equalizers that make use of past receiver decisions and are comprised of a forward
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and feedback filter. The forward filter is similar to a linear transversal filter. Its
function is to eliminate precursor ISI (samples of the pulse response before the main
lobe) while the function of the feedback filter is to cancel the postcursor ISI (samples
of the pulse response after the main lobe), see Figure 2.3. In addition, DFEs do not
enhance noise as much as linear equalizers and are less sensitive to sampling phase
errors. However, DFEs suffer from feedback error propagation. Therefore, they are

more difficult to use in adaptive mode due to this lack of guaranteed stability.

This work considers linear equalization for systems that employ differential
detection. This subject has been given consideration in the literature [15], [18]-]20].
A linear equalizer following a differential detector as in [18], has the difficult task
of equalizing a nonlinear channel due to the quadratic nature of the channel depen-
dent terms at the differential detector output. As a result, a linear equalizer cannot
effectively equalize the channel, and non-linear equalization techniques should be con-
sidered. Therefore, a linear equalizer should precede the differential detector as in [15],
since it has to equalize a linear channel. In [19], a scheme for : .aptive equalization
of incoherently demodulated signals was presented. In the scheme, a linear equalizer,
placed after an envelope dctector, was used to make an estimate of the ISI due to
multipath fading and acted as an ISI canceller (i.s.i.c). In addition, differential phase
estimation and phase tracking estimation were both used in the receiver structure.
Also, the equalizer structure had complex tap-gains and real input values, instead of
the usual complex tap gains and complex input values, which reduced the system com-
plexity by fifty percent. However, in this scheme, the linear equalizer has the difficult
task of coping with the nonlinearity introduced by the envelope detector. Adaptive
equalization for differential coherent reception in the presence of channel distortion
was also studied in [20]. A linear equalizer, with seven taps, was placed before a
differential detector and differential data encoding was performed by multiplying the
previously transmitted data symbol by the current data symbol. Simulations were

done at high SNR for BPSK and QPSK. Similar rates of convergence were shown for a

11
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coherent receiver and the differential detection receiver. However, the MSE obtained
for the differential case was about 3 dB larger than that obtained in the coherent
case. We intend to solve this problem by using the improved differentially coherent

detection technique of [2].

In [2], an improved differentially coherent detection recciver was introduced
for an ISl-free additive white Gaussian noise channel. The main advantage of this
differentially coherent detection technique is its nesigible degradation with respect
to coherent detection. With ISI, there is need for an equalizer as well. By placing
a linear equalizer before differentially coherent detection, the effects of the ISI can
be reduced and detection is performed on an almost ISI-free signal. Ifurthermore,
equalization 1s performed without the need for carrier phase tracking, improving the

robustness of the system to carrier phase noise, and carrier phase hits.

2.2 Baseband System Model

The baseband model (complex envelope) for the system considered 1n this work 1s
shown in Figure 2.4. In this work. continuous-time signals use ( ) brackets and
discrete-time signals [ ] rectangular brackets. Figure 2.4 will now be briefly described:

The system 1s composed of three conceptual parts: transmitter, channel and receiver

2.2.1 Transmitter

The transmitter model consists of a differential phase encoder followed by a trans-
mitter filter §r(t). Let us consider two dimensional modulated data signals specified
by the complex envelope (CE) notation. The CE of the transmutted signal 1s given
by
o0
s(t)= Y. blk]e*™gp(t — kT) (2.6)

k=—oc

12
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Figure 2.4: Baseband System Model




where b[k]e’**] are the amplitude and differentially phase-encoded data transmitted

at time instant k7" and T is the duration of a symbol interval.

Amplitude and Differential Phase Modulation

Symmetric signal constellations e.g. PSK, QAM, V29, are commonly used for two-
dimensional modulation. In this work, the symmetric constellations shown in Fig-
ure 2.5 are used and each constellation point is specified by an amplitude b and phase
. In our scheme, the transmitted phase data is differentially encoded so that phase
differences and not absolute phase values convey information. The encoded phase
@[n] is given by

gln] = ¢[n — 1] © ¢[n] (2.7)
where @ means phase addition modulo 2. Therefore, the transmitted amplitude
and differential phase encoded information symbols are b[n]e?*™ where b[n]e’*l" (=
a[n] = a,[n] + ja;[n]) are the actual data symbols and a,[n] and a;{n] are the real and

imaginary components of the actual data respectively.

The average power E[b%[n]] of each constellation is normalized to unity.
Therefore, all points in a MPSK constellation will have unit amplitude with each
point k having a phase of 2% where k = 1,...,M. In a 4PSK system, b[n] = 1
and ¢[n] assumes values from the set of (0,3, ). In addition, the mimimum Eu-
clidean distance dni, for this constellation is v/2. For 8PSK, #[n] assumes values

from (0,+%,+%,+3,7) and the minimum distance is 0.7654.

For the 16QAM system, a,[n] and a,[n] are first chosen independently from
the set [£1,:£3]. The average signal power is normalized to one and the signal points
are rescaled accordingly. Therefore, b[n] assumes values from (=, 1, ) and ¢[n]
(and not ¢[n]) from the set of (0, £0.17, £0.257, £:0.47, +£0.67, £0.757, £0.97, =)
depending on which signal point is transmitted. In addition, the minimum distance

between any two signal points is equal to 0.6325.

14
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Figure 2.5: Symmetric Two-Dimensional Signal Constellations

The 8V29 constellation consists of two sets of QPSK signals on different circles
where the outer circle has a radius 7’; times that of the inner radius. Also, the two
QPSK constellations are out of phase by §. Thus, b[n] assumes values from the set
of (721-1-, %) and ¢[n] from (0, £%, 3, £, r). In addition, its minimum distance

1s equal to 0.8528.

The 16V29 constellation consists of four sets of QPSK signals on different
circles where the second circle has a radius 7’-2- times that of the inner radius, the
third circle has a radius /2 times that the second and the fourth is 555 times that
of the third. Also, QPSK constellations on odd circles are out of phase with respect
to QPSK constellations on the even circles by . Thus, b[n] assumnes values from the

set of (;;’75,53, 725,5%) and ¢[n] from (0, £5, +3, +3%, ). Finally, its minimum

M N
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distance is equal to 0.5443.

Transmitter Filter

The transmitter filter is a pulse shaping filter with a real impulse response gr(t). The
desired overall impulse response §(t) (= gr(t)*jc(t) *jr(t) where * denotes convolu-
tion.) is a Nyquist raised-cosine response with roll-off factor a, assuming e (t) = 6(t).
Also, the transfer function of the desired Nyquist raised-ccsine response is divided
equally between the transmitter and the receiver filters. Thus, the transmitter filter
is designed so that its transfer function Gr(w) is equal to \/m where G(w) is the
transfer function of the desired Nyquist response g(2). In our model, the roll-off factor
a is set to zero so that the raised-cosine Nyquist response has zero excess-bandwidth.
Therefore, the transmitter’s impulse response jr(t) can be expressed as:

an(t) = 2nlE) (28)

(v3)

and the transfer function Gr(w) is given by

(2.9)

2.2.2 Channel

The channel response is represented by the complex impulse response §o(t) and ad-
ditive white Gaussian noise #i(t). A multipath channel model is used. Thus, the
complex impulse response §¢(t) can be expressed as
Ny
do(t) = 3_ plile?*P(t — 7)) (2.10)
=1
where N, is the number of paths in the channel, p[z] is the amplitude attenuation in

path 7, 0[z] is the phase-shift in path i and 7[i] is the relative signal delay due to path
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i. Consequently, the receiver input, #(t) can be expressed as
7(t) = 3(t) * g (1) + 74(t) (2.11)

where (1) is the transmitted signal, §c(t) is the channel impulse response and #(1)
is additive white Gaussian noise with zero-mean and N, [Watt/Hz] power spectral

density of the real and imaginary component.

2.2.3 Receiver

The baseband equivalent receiver consists of a filter with impulse response gg(t)
followed by a sampler. The sampler is followed by a linear equalizer and then by the

decision-feedback differential coherent detection structure of [2].

Receiver Filter

As previously stated, the transmitter and receiver filters are designed so that the
overall response in an ideal channel is a Nyquist raised-cosine response. In addition,
the desired Nyquist transfer function is divided equally between the two filters, which

gives an optimal receiver structure for an ISI-free channel. Thus, the receiver filter

has transfer function Gg(w) which is given by

Gr(w) = Gr(w) = {G(w) (2.12)

where Gr(w) is the transfer function of the transmitter filter impulse response, which
is given in (2.9) and G(w) is the transfer function of the desired overall response.

Using (2.11), the receiver filter output §(t) is given by
§(t) = {3(2) * ge(t) + A(t)} * gr(t) (2.13)

where 3(t) is the transmitted signal, gc(t) is the channel impulse response, #i(t) is the

channel additive white Gaussian noise and §r(t) is the receiver filter impulse response.
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Thus, the receiver filter output can also be expressed as
§(t)= Y blk]e*Mg(t — kT) + na(t) (2.14)
k=—0c0
where

§(t) = gr(t) * go(t) * ga(t)

and
Ar(t) = / = At — 7)ga(r)dr

Therefore, the noise 72 g(t) has zero-mean and power spectrum density

P(w) = 2No|Gr(w)’ (2.15)

where Gp(w) denotes the Fourier transform of gg(t). Sampling the received signal
§(t) at t = nT", the discrete-time output y[n| can be expressed as:
y[n] = Z blk]e**Mg[n — k] + ng[n] (2.16)
k=—-oc0
where g[n — k] = §([n — k|T), ng[n] = fig(nT) and b[k]e?** are the amplitude and

differentially phase-encoded data transmitted at time instant k7.

Linear Equalizer

The linear equalizer has 2N+1 complex taps and equalizes both in-phase and quadra-
ture components using its real and imaginary taps. The input to the linear equal-
izer is given in (2.16). The adaptive digital equalizer has complex coefficients ci[n]:
= —N,...,0,...,N where co[n] is the reference tap and [n] corresponds to a par-

ticular symbol interval or iteration. Thus, the equalizer output z[n] is given by:

N
dnl= Y exlnlyln — K (2.17)
k=—N

There are many criteria for obtaining the optimum linear equalizer coefficients for a

known channel. The peak distortion criterion would have been sufficient if only the
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ISI is to be minimized [21). However, the noise must be taken into account. Therefore,
the Mean Square Error(MSE) criterion is used.

For an unknown or time-varying channel, the equalizer must adapt itself. The
speed and stability of convergence are important factors which must be considered
in choosing an adaptive algorithm. In fact, many different adaptive algorithms exist
and a survey on adaptive equalization can be found in [22]. One adaptive algorithm
is the Least-Mean-Squares (LMS) gradient algosithm, which was proposed in [14] and
has been extensively used in the last few decades. In this work, the LMS algorithm
is employed because of its simplicity and robustness and is the subject of Chapter
4. Finally, there has been recent work on faster-converging algorithms [23]-[25], and

these algorithms are briefly discussed in Chapter 4.

Decision-Feedback Differentially Coherent Detection

We use an improved differentially coherent detection structure, introduced in {2} which
can reduce the SNR degradation with respect to coherent detection. The principles

on which this detection strategy rely on will now be discussed.

One way of interpreting a differentially encoded scheme is in terms of phase
references. Differential phase encoding preprocesses the signal such that the required
phase reference for estimating the information is carried by the previous symbol.
Therefore, in differentially coherent detection, there is no need to establish an absolute
phase reference, since the previous symbol phase is used for that. This simplifies
the receiver structure when compared to coherent detection which requires carrier
phase tracking. However, this is achieved at the expense of a loss of about 3 dB in
performance relative to coherent MPSK(M> 2). This is because in a differentially
coherent (DC) scheme, the phase reference is impaired by channel noise in the same
way as the information phase. Therefore, in a DC scheme, detection is performed with

a noisy phase reference, and when compared to ideal coherent detection, where the
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phase reference is noise-free, it gives a degradation in performance. Quantitatively,
in a DC scheme, the SNR of the reference signal is the same as the SNR of the
information signal. In a coherent scheme, the SNR of the reference signal is infinite
(ideal coherent case) and the SNR of the information signal is finite. Thus, the DC
detection technique can be generalized so that the reference signal is extracted from
a number of past symbols which results in smoothing the channel noise. Using this
method, the SNR of the reference signal 1s increased and the jperformance should

approach that of a coherent scheme. This is the approach used in [2].

The differentially coherent detection structure generates a reference phase by
summing the aligned past L equalizer outputs z[n — L], .... z[n — 1]. BEach of the
previous L equalizer outputs, except the most previous one, i.c. z[n — 1], has its
phase incremented by the sum of the phase decisions ¢'s of the signals between it and

z[n — 1]. Therefore, the aligned equalizer outputs z/[n -} 2 =2...., L are given by

=i = sfn 1] exp [ 3 oln— ] 2.18)

Summing the 2'[n —i],¢ = 1,..., L where z/[n — 1] = z[n — 1] gives

v[n] = |v[n]|e?" = Z Z[n -] = Z [n— 2] exp [_} Zg[n - k]] (2.19)

=1
The result of this coherent summation of the equalizer outputs, v{rn], has a larger SNR
due to the smoothing of the noise and as a result, its phase j[n] is a better estimate
of the exact phase reference ¢[n — 1]. The reference phase estimate fAln] is then
subtracted from the phase of the equalizer output z[n]. Thus, the decision variable
presented to the threshold detector is z[n]e=?". The threshold detector generates an
output decision symbol be?® which mimimizes the squared error |z[n]e=2n] — bere|2.

The error ¢[n] is then used to adapt the equalizer coefficients.

The reference phase estimation process derived above was analyzed for an
additive white Gaussian noise channel in [2] for MPSK. In the alignment of the

vectors, actual information phases @[n — k|}fZ} are used. In practice, the receiver
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operates in a decision-feedback mode (i.e. ¢o’s used in the alignment process would be
the ¢ decisions on previous phases). To simplify the analysis, the feedback decisions
are assumed error-free. The effect of error: in the feedback decisions would be te
reduce momentarily the SNR of the reference signal which obviously depends on L.
For small L, a decision-feedback error is more noticeable. However, the persistence
time of this effect is only L symbols and is thus short. For L=1, this is just the
double error effect in DC receivers. For large L, a decision-feedback error is not very

noticeable since the SNR reduction in the reference signal is small. However, the

effect lasts for L symbols.

2.3 Comparison with Equalization and Coherent

Detection

The advantages of our “differential” receiver, which combines an improved differen-
tially coherent detection scheme and linear equalization, over conventional “coherent”

receivers, which combine coherent detection and equalization, will now be discussed.

The first advantage of the differential receiver is that it can be used in fading
multipath channels where carrier phase tracking is difficult. This is because the
proposed differential receiver avoids carrier phase tracking with little performance
degradation. If a coherent receiver were employed, carrier phase tracking would be
quite complicated since carrier phase recovery is very difficult in these channels and
since there is coupling between the phase estimation and equalization which affects
the system performance. Therefore, the improved differentially coherent detection

scheme is very attractive for fading multipath channels.

The second advantage of the differential receiver is that it can be used in burst
communication. In burst communication, data is usually transmitted in short bursts,

i.e. over a very short time period. As a result, coherent receivers cannot be used
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since there is not enough data for carrier phase tracking. The proposed differential
receiver is ideal for this situation since it does not track absolute carrier phases and

can adapt very quickly to bursts of data.

The third advantage is that the differential receiver employs baseband equal-
ization. Baseband equalization is preferred for many technologi-al reasons and can
be used to compensate for asymmetrical baseband impairments [26{. However, for
coherent receivers, it introduces a delay in decision-oriented carrier phase estimation
loops, which causes inaccurate '~tection. As a result, passband equalization (which
is more difficult to implement digitally) is usually employed since it allows coherent
receivers to deal with carrier phase tracking more easily. For the differential receiver,
no carrier phase tracking is necessary and therefore baseband equalization (which can
be implemented more easily in a digital fashion) can always be used without any of

the disadvantages associated with coherent receivers.

Finally, the proposed differential receiver avoids phase ambiguities due to
symmetric signal constellations since it assumes that phase differences (and not abso-
lute phases as coherent receivers with decision-directed phase tracking assume) convey

information.
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Chapter 3
Equalization for Known Channels

This chapter analyses the equalized decision-feedback differentially coherent detection
technique of Chapter 2, using the MSE criterion for channels whose characteristics
are known beforehand. Section 3.1 derives the MMSE and optimum equalizer coef-
ficients in terms of the auto-correlation matrix A and the cross-correlation column
vector B. Section 3.2 expresses these two quantities in terms of the channel charac-
teristics, assuming perfect reference phase estimation. Section 3.3 analyzes reference
phase estimation errors and their effects on MMSE calculations. Section 3.4 presents

numerical results. Finally, Section 3.5 concludes the chapter by discussing the MMSE

numerical results.

3.1 MMSE Analysis

In this section, the MSE criterion is used to derive the optimum equalizer coefficients
and the minimum MSE (MMSE) for known channels. All quantities involved in the
analysis are shown in Figure 2.4.

The actua! data symbols b[n]e7*l") are assumed to be statistically indepen-

dent and equiprobable. In addition, the average signal power of each constellation is
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normalized to one. Thus,

E [b*[n]] = 1 (3.1)

The optimum equalizer coefficients will now be derived using the MSE criterion. The

equalizer coefficients are optimum if they minimize the MSE :
Ele[n)

where €[n] is the error between the differentially detected equalized output and the

desired data symbol. It can be expressed as

eln] = z[n]e~ 38 — p[n]ereln) (3.2)

dessred signal
where f3[n] is the reference phase estimate, i.e. phase estimate of ¢[n — 1]. Thus,
Eleln] ! = Ezln]e-#") — glnjeretr)|” (3.3)
Now if ¢[n] = [c_n[n},-- -, co[n], - - ., cn[n] |7 represents the (2N+1) equalizer
coefficients at the n-th symbol interval and y¥[n] = [y[ln — N),...,y[0],...,y[n+ N]],

then (2.17) becomes
zn] = ¢ [n] y[n] (3.4)

Substituting (3.4) into (3.3), we get
Ele[n] [ = E | [n]y[n]e-# — bnjesetrl] (3.5)

After some manipulation,

Eleln] |2 = ¢7[n) Adn] — 2Re [¢*T[n]B] + E [¥[n] (3.6)
where
A=F [z'[n] gr[n]] (3.7)
and
B=E [b[n]eiv[nlg-[n]eiﬂlﬂl] (3.8)
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Thus, it is easily seen that A is the auto-correlation matrix of y[n] and B is the
cross-correlation matrix between the received data y[n] (phase-shifted by 3[n]) and
the transmitted data symbols b[n]e#". The MSE can be minimized by differentiating

with respect to ¢[n] and equating to zero. Therefore

OE|e[n]|?
—_—= -28=0 .
adn] 2Acln] - 2B (3.9)
and the optimum solution is
Cope[nt] = A'B (3.10)
Now, using (3.1) and (3.10) in (3.6), the MMSE £ can be expressed as
fmin =1 — BT.A—I_E (3.11)

3.2 MMSE with Perfect Reference Phase

From the previous section, it is seen that B depends on the reference phase estimate

B[n) which is related to the exact reference phase ¢[n — 1] via:
Bln] = ¢ln — 1]+ n[n] (3.12)

where n[n] is the error of this estimator. The random variable 7[n] depends on an
ensemble of samples z[k], k < n — 1, and thus, it is almost uncorrelated with any
single sample y[n — k], ~N <k < N. Using this assumption and substituting (3.12)

in (3.8), B can be expressed as:

B = E[bnley [n]ei#e-)] £ [emi] (3.13)

B = kE[b[n]eM"]g‘[n]]‘E [ej"[“]] (3.14)
B

B = _B.E[e’"’["]] (3.15)

where B is the cross-correlation vector with errorless reference phase estimation. For

the moment, perfect reference phase estimation will be assumed (i.e. 5[n]=0 and B
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= B). The matrix A and the column vector B will now be simplified in terms of the

overall impulse response and the SNR. From (3.7),
[ - T
A =E [y [n)y"[n]]
where
y¥in) =[yln — N),...,yln),.. .,yln + N

and y[n] is defined in (2.16). Thus, fori,7 = —N,...,0,..., N,

Ai; = Ely’ln+ilyln+;]]
= E [{ S bln+i — Kl #m+-Hg (k] + np[n + i]]

k=—00

x { S bln+j — 0e™50gl1) + ngln + 5] }

l=-00

¢ [ S S b — Hbln o+ j - [Jemrdmn-H et gl’l]
&

==00 I=—00

i bin + i — K=" g" (k) ng[n + J']J }

k= —ov

+E [ng[n+ i) ng[n + 7))

+2R {E’

= (D+2)+@3)

(1) = i 2 g‘[klg[llE[b[n+i—k]b[n + j_[]ej{¢[n+5-1]—¢[n+-—k]}}
(4)

k=—o0 I=-00
Fori—k #j-1,

(4) = E [b[n + i — k] b[n + j — 1] eFlelnti=lit-teintr—iti]} ]
= E[tln+i— kbln +j—1]] E [eflelnti-Detolnti-ira]} ]
= Eltl+i—kbn+j-1]] E[eolntil] ... pleielni-kal]

0 P

=0
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since the ¢'s are statistically independent and E[e?¥] = 0 for symmetrical constella-

tions. Now, fori — k=3 — I,

(4) = E[fn+i-k]

= 1
Therefore,
E [b[n+ i~ klbn+j - ]]ei{¢[n+i—ﬂ—¢[n+i-k]}] = bik -1 (3.16)
1 2= :
where 6;; = . Thus, using (3.16),
0 24

(1)

i

i g°[¥] i g[1)bi-nj-1

k=-00 {=-00

- S eH Y ol

k=-00 l=wo0

= 3 o[Hlk—i+3)

fe=—c0

(2)

2% [ i g'lk] E [bln+ i — ke npn 4 j]| }

k=-—00

R _fj g'[k] E [bln+ i — K]e -8 ]| Efngln + j]]}

= 0

where the noise ng and data be’? are assumed uncorrelated and fig(t) is a zero-mean

process.
® = B[ [T w0l 0T )3 n +51T — 7 e’
= / / E[n*(r n('r')] R([n +4T — 7) gr([n +j]T — 7')drdr’
2N05(1—f')
= 2No/ Gr([n+iT ~7)gr ([n +4)T —7)dr
= 2No;
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since fi(t) is white and §gr(t) * n(t) satisfies Nyquist’s first criterion. Therefore, for
i,j =-=N,...,0,..., N.
A=) g"[Klglk — i+ j]+ 2Neé;; (3.17)
k=-co

The matrix A is Hermitian and positive semi-definite. Now, from (3.14),
B=F [b[n]ej"["]_q‘[n]]

where

BT = [B[-N],...,B[0),..., B[N]]
yT[n] = [yln— N],...,ylnl,...,yln+ N]]
Thus, for t = =N,...,0,...,V,

Bli] = E [bn}e*™y*[n + 4]

= E b[n]efﬂ"l{ f: [b[n+z' - k]e-#f"“-"lg'[k]] + nk[n +i]}]
k=00

= E| Y bln]bin+ i — k| eHelnl-dnti-Mlgii) [ 4 B [b[njer] B [njln +1]]
N ————a——

_k=-oo P

The summation and expectation operators can be interchanged since they are linear.

Therefore,
B[i] = E glk] E [b[n] bln + i — k] e:'{é[n]~¢[n+i—k]}'i
= 50..7-1. —
= > glkéa
k=—co
Blil =gl (3.18)

using (3.16). Therefore, the errorless column vector B i * ply a truncated overall

impulse response vector, i.e. B = [g[—N],..., g[0],...,9[N]].
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{ 3.3 Reference Phase Error Analysis

In the previous section, perfect reference phase estimation was assumed. However, in
9 9
practice, phase estimation errors will occur. In our analysis, perfect receiver decisions

are assumed, and estimation errors are due mainly to channel noise and ISI.

From, Section 3.2, only B depends on n[n] via (3.15). Therefore, the depen-
dence of B (and the MMSE) on the reference phase error 7[n] defined in (3.12) wil!
now be found by analyzing F [ej"["]]. From (2.19),

. L -1
fofn] [ 80 = 3 zfn — i] exp [,- 3 oin - k]]

i=1 k=1
L
= Sen-deplish-ll-de-d)]  (@19)

Also, the past equalizer outputs can be expressed by :
2[n — 1] = bln — i) " 4 g[n — i (3.20)

where £[n—i] is the equalization error. From [13], for high SNR and with E [b%[n]] = 1,

Elgfn—id)] = 0 (3.21)
Eleln~ i = N[ ’; —— df — (3.22)
- Tm=z—oo Ge(f — )| +No
~ N,T _’gf —= fif — (3.23)
- '7_’....-2_:., Ge(f — )

Substituting (3.20) into (3.19), we get
v[n] [eP™ = {XL: blr — 4]+ ie[n - i]e""l""?} e7oln-1] (3.24)
- |v‘[:”ei{¢[n-ll+‘;':]} (3.25)

where

lv[n]]em™ = i‘ bln — i+ ie[n — g]e#In-i) (3.26)
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and n[n] is the phase estimation error. For 5n] <« 1 and E[p[n]] = 0,

E [e] ~ 1- %E [7%In] (3.27)

L
From (3.26), it is seen that n[n] is the phase error of a (rea!) phasor Y_b[n — i

i=1
perturbed by noise ie[n - i}e=#"= and thus the results from [2] can be used.
Thus, we fix b[n — lf,=.l. .,bln — L] and calculate the conditional variance of 7[n], i.e.
E[n?[n]|b[n —1],...,b[n — L]]. For high SNR and fixed b[n — i],2 = 1,...,L, the
asymptotic distribution of 5{n] is Tikonov [2] and the conditional probability density

function (pdf) pain] |bin—1)...bin-L])(¥) can be expressed as :

(v) ~ exp[ A[b[n — 1],...,b[n — L] ]cos(v))]
Plate) -1 0n-2) (V) ¥ =5 g T e

(3.28)

where Iy is the modified Bessel function of order zero and A is the SNR of the (real)

L L
phasor Y_ b[n — i] perturbed by the noise )_ ¢[n — i]e3#["~ which can be expressed

{3 - q}z
2

E [ Y e[n - iJe~7#in-1 2

as

Afbln—1],...,bn — L] =

bln — 1],...,b[n—L]]

=1
(3.29)
L
where the numerator is the power of Y_ b[n — i] and the denominator is the variance

s=1

L

of Ee[n — ge~9#"1 for fixed b[n —i], i = 1,...,L. Now, the denominator can be
=1

expressed as

L
El] Ze[n — g)e~d¢ln—i 2

i=1

b[n—l],...,b[n—L]]

L L
= F [Z Z E[n - i]e‘[n _ k]e_j{ﬂ""ﬂ—ﬂn—k]}

i=1 k=1

bln-1],...,bn— L}
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L L
Y. Y Eleln—ile*n—k] | bfn —1},...,bfn - L]] x

=1 k=1
E [esttin-a-din-t} | yln —1],....b[n — L]]
=6;5 ssnce Eferv |b)=0 for :wmctrieal constellations. 7
EE [leln ~i] 2] bn = 1),...,bn — L]] (3.30)
=1

where we used the fact that the equalization error €[n — 7] is practically uncorrelated

with e#—. Therefore, substituting (3.30) into (3.29), we get

{52n - i]},

Alpln —1},...,5[n~ L] ] = < =1 (3.31)
Z;E [leln = 4] 1| bfn = 1], ,bfn — L] ]
and
2 ~ 1
E [r'[n] | bln - 1],.,bn — L]] =~ X [b[n ] (3.32)
ZE[le[n—z] | ofn - 1],.,4n — L]]
i=1 = (3.33)
{; bln — z]}
Therefore,
L N
. Z:E[Ie[n—illzlb[n-l],...,b[n-—L]]
E[m)] = E (= (3.34)
{z b[n — z]}
‘I=1 ; J
L 1
o~ ; Eleln -4 . E (3.35)
= {; b[n — z]}

Here we assumed that E{le[n —¢]|? | bjn - 1], .,b[n — L]] is uncorrelated

with {Z b[n - z]} For large L, then {2 bjn - c]} ~ [? {E[b)}® ~ K, where K

i=1 i=1
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is a constant and thus, it is clear that the assumption is valid. For small L, then
Elle[n - i) 2| bn — 1],...,b[n — L] ] ~ E[|e[n — 1] |?] since only a small fraction of
signal samples which are stored in the equalizer are fixed, and thus the equalization
error is almost the same as the one obtained when no signal sample is constrained.
Thus, the assumption is valid again. Therefore, with (3.23) the variance of the phase

estimation error is given by

E [n*[n)] ~ LN.T [ ’l’ 3 s E|— L (3.36)
T ...ZZ., !Gc(f - 7) {; bln - i]}
Also, from (3.15) and (3.27),
B=B.{1- E[rk]} (3.37)
which shows that
|B| < |B| (3.38)
The MMSE
bmin=1-B" A7'B (3.39)

is larger than the one with B (perfect reference phase estimation). The optimum

equalizer coefficients are

Cope[n] = A71B (3.40)

The optimum equalizer coefficients for a known channel can be computed by finding
A-? first. However, there is another numerical way of finding the optimum equalizer
coefficients without inverting the matrix A. This is done by using the MSE Gradient
(MSEG) algorithm [13] :

dn+1] = o) 5 2L (3.41)

dn+1 = cn]— A[B- Aclr]] (3.42)

drn+1] = [I+AA]dn]- B (3.43)
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It should be noted that in (3.43), [r] denotes the number of iterations and not a
particular time instant nT in the data symbol sequence. To ensure convergence, the

step-size A must satisfy
2

Amaz(A)

where Amee(A) is the maximum eigenvalue of the matrix A.

0<A<

3.4 Numerical Results

The MMSE was calculated for various 2-D constellations, channels, SNRs, number
of equalizer taps (2N+1) and L (number of equalizer outputs used to generate the

phase estimate of previous transmitted symbol) which are listed below.

o Five constellations: 4PSK, 8PSK, 16QAM, 8V29 and 16V29.
e Five channels: A, B,C, X, and Y.

o Three SNRs(=Z&[rl-1.): 8 dB, 15 dB, and 25 dB.

e Number of equalizer taps (2N+1): 1,3,...,21.

e Values of L used: 1,2, 3 and 5.

The five channels tested were multipath channels with impulse response given by
(2.10). Multipath propagation, in these channels, can be viewed as signal transmission

subjected to different paths with differing relative amplitude attenuation, phase-shifts

and delays. In addition, if EL:p[i] < 1 and p[l}=1, 0[1]=0, 7[1]=0, in (2.10), the
channel is minimum phase [‘Zzi and has mainly postcursor ISI. In our simulations,
all the channels tested are minimum phase. The five channels and their impulse
responses are listed below. Channels A, B and C each have two paths each, while X

and Y have three and five paths respectively.
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: o (1) = 8(t) — 0.58(t — 0.5T)

: o (t) = 8(t) — 0.56(2 — L.5T)

: o (t) = 6(t) — 0.56( — 3.5T)

: Go(t) = 6(t) — 0.36(t — 0.5T) + 0.5;6(¢ — 3.5T)

< X O W »

: Go(t) = 6(t) — 0.36(t — 0.7T) — 0.078(¢ — 1.5T') + 0.0756(t — 1.5T)
+0.16(t — 1.8T) 4 0.2j6( — 3.5T")

The matrix A and the column vector B had complex values due to the complex
impulse response of the multi-path channels. A zero roll-off factor was used. The
element values of A and B were calculated using the equations (3.17), (3.18), (3.36)
and (3.37). The MMSE calculations were performed by matrix inversion for various
N and L. For each constellation, the squared minimum distance d3,;, between any

two points was compared with the MMSE results to get a better indication of the

system performance.

Tables 3.1-5 list the MMSE results for each constellation with L=1, for various
SNRs and number of equalizer taps (=2/N+1). Table 3.6 lists the average gain i in
MMSE (in dB) that is achieved by increasing the value of L for nine equalizer taps.
The average gain p (for a particular SNR and constellation) was calculated as follows:
Assume we want to calculate u for L equal to «, i.e. p,. For each channel C;, the
MMSE result for L=1 was divided by the MMSE result for L= to give a MMSE
ratio @(C;). The Q,(C5)s for each channel C; were then summed and the total was
divided by the number of channels tested N, i.e. 5, to give an average Q... To find
4 in dB, the logarithm to the base 10 was taken and then multiplied by 10. Thus for
a particular SNR, constellation and L=+, we have

1 &
py = 10 log,q [N’Z Q.,(C.)J 3.41)

€i=1

Finally, results for a sample MMSE test case are given in Appendix A.
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Channel A

Channel B

Channel C Channel X Channel Y
SNR | 8dB | 15dB | 25dB | 8dB } 15dB } 25dB | 8dB | 15dB | 25dB | 8dB | 15dB | 25dB | 8dB | 15dB ; 25dB
2N +1

1 0.5552 | 0.3160 | 0.2498 | 0.3319 | 0.1987 | 0.1667 | 0.3651 | 0.2226 | 0.1886 | 0.4245 | 0.1948 | 0.1318 | 0.3947 | 0.2046 0.155;
3 0.4600 | 0.1354 | 0.0312 | 0.3135 | 0.1669 | 0.1294 | 0.3647 | 0.2215 ] 0.1872 | 0.3925 | 0.1423 | 0.0714 | 0.3445 | 0.1222 | 0.0604
5 0.4570 | 0.1332 | 0.0284 | 0.2605 | 0.0877 | 0.0399 | 0.3627 | 0.2181 | 0.1832 | 0.3887 | 0.1375 | 0.0664 | 0.3421 | 0.1194 | 0.0575
7 0.4540 | 0.1285 | 0.0228 | 0.2603 | 0.0846 | 0.0345 | 0.3363 | 0.1760 | 0.1351 | 0.3841 | 0.1330 | 0.0616 | 0.3391 | 0.1167 | 0.0545
9 0.4525 | 0.1267 { 0.0211 | 0.2536 | 0.0716 | 0.0183 | 0.2937 | 0.1097 | 0.0592 | 0.3696 | 0.0989 | 0.0176 | 0.3250 | 0.0864 | 0.0162
11 0.4515 | 0.1254 | 0.0197 | 0.2531 | 0.071: | ".0175 | 0.2878 | 0.1011 | 0.0495 | 0.3692 | 0.0984 | 0.0170 | 0.3249 | 0.0856 | 0.0149
13 0.4508 | 0.1245 | 0.0187 | 0.2514 , 0.0680 | 0.0134 | 0.2853 { 0.0976 | 0.0456 | 0.3690 | 0.0980 | 0.0165 | 0.3247 | 0.0851 | 0.0141
15 0.4502 | 0.1238 | 0.0180 | 0.2509 | 0.0676 | 0.0130 | 0.2818 | 0.0851 | 0.0277 | 0.3689 | 0.0976 | 0.0156 | 0.3245 | 0.0844 | 0.0130
17 0.4498 | 0.1233 | 0.0175 | 0.2502 | 0.0664 | 0.0116 | 0.2805 | 0.0827 | 0.0249 | 0.3683 | 0.0957 | 0.0130 | 0.3240 | 0.0829 | 0.0109
19 0.4995 | 0.1228 | 0.0170 | 0.2498 | 0.0661 | 0.0113 | 0.2793 | 0.0805 { 0.0222 { 0.3681 | 0.0955 { 0.0128 | 0.3239 | 0.0827 | 0.0106
21 0.4492 | 0.1225 | 0.0167 | 0.2494 | 0.0655 | 0.0107 | 0.2773 | 0.0756 | 0.0155 | 0.3680 | 0.0953 | 0.0125 | 0.3238 | 0.0826 | 0.0105

Table 3.1: MMSE with L=1, for 4PSK, Squared Minimum Distance = 2.0
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Channel A Channel B Channel C Channel X Channel Y
SNR | 8dB | 15dB | 25dB | 8dB | 15dB | 25dB | 8dB | 15dB | 25dB | 8dB | 15dB | 25dB | 8dB | 15dB | 25dB
2N +1 ]
1 0.5552 | 0.3160 | 0.2498 | 0.3319 | 0.1987 | 0.1667 | 0.3651 | 0.2226 7886 0.4245 | 0.1948 | 0.1318 | 0.3947 | 0.2046 0.1?52—
3 0.4600 | 0.1354 | 0.0312 | 0.3135 | 0.1669 | 0.1294 | 0.3647 | 0.2215 | 0.1872 | 0.3925 | 0.1423 | 0.0714 | 0.3445 | 0.1222 | 0.0604
5 0.4570 | 0.1332 | 0.0284 | 0.2605 | 0.0877 | 0.0399 | 0.3627 | 0.2181 | 0.1832 | 0.3887 | 0.1375 | 0.0664 | 0.3421 | 0.1194 | 0.0575
7 0.4540 | 0.1285 | 0.0228 | 0.2603 | 0.0846 | 0.0345 | 0.3363 | 0.1760 | 0.1351 | 0.3841 | 0.1330 | 0.0616 | 0.3391 | 0.1167 | 0.0545
9 0.4525 | 0.1267 | 0.0211 | 0.2536 | 0.0716 | 0.0183 | 0.2937 | 0.1097 | 0.0592 | 0.3696 | 0.0989 | 0.0176 | 0.3250 | 0.0864 | 0.0162
11 0.4515 | 0.1254 | 0.0197 | 0.2531 | 0.0711 | 0.0175 | 0.2878 | 0.1011 { 0.0495 | 0.3692 | 0.0984 | 0.L..- ' n.3249 | 0.0856 | 0.0149
13 0.4508 | 0.1245 | 0.0187 | 0.2514 | 0.0680 | 0.0134 | 0.2853 | 0.0976 | 0.0456 | 0.3690 | 0.0980 { 0.0165 | 0.3247 | 0.0851 | 0.0141
15 0.4502 | 0.1238 | 0.0180 | 0.2509 | 0.0676 | 0.0130 | 0.2818 | 0.0851 | 0.0277 | 0.3689 | 0.0976 | 0.0156 0.32‘.15 0.0844 | 0.0130
17 0.4498 | 0.1233 | 0.0175 | 9.2502 | 0.0664 | 0.0116 | 0.2805 | 0.0827 | 0.0249 | 0.3683 | 0.0957 | 0.0130 | 0.3240 | 0.0829 | 0.0109
19 0.4995 | 0.1228 | 0.0170 | 0.2498 | 0.0661 | 0.0113 | 0.2793 | 0.0805 | 0.0222 | 0.3681 | 0.0955 | 0.0128 { 0.3239 | 0.0827 | 0.0106
21 0.4492 | 0.1225 | 0.0167 | 0.2494 | 0.0655 | 0.0107 | 0.2773 | 0.0756 | 0.0155 | 0.3680 | 0.0953 | 0.0125 { 0.3238 | 0.0826 | 0.0105

Table 3.2: MMSE with L=1, for 8PSK, Squared Minimum Distance = 0.5858
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Channel A Channel B Channel C Channel X Channel Y
SNR | 8dB |} 15dB | 25dB | 8dB | 15dB | 25dB |{ 8dB | 15dB |25dB | 8dB | 15dB | 25dB | 8dB | 15dB | 25dB
2N 41

1 0.6470 | 0.3216 | 0.2499 | 0.3671 | 0.2004 | 0.1667 | 0.4085 | 0.2247 | 0.1886 | 0.4931 | 0.1986 | 0.1318 | 0.4493 | 0.2074 041'521
3 0.5715 1 0.1424 | 0.0313 { 0.3496 { 0.1686 | 0.1294 | 0.4081 | 0.2237 | 0.1872 | 0.4649 | 0.1463 | 0.0715 | 0.4493 | 0.1253 | 0.0605
5 0.5691 { 0.1403 { 0.0285 | 0.2994 | 0.0897 | 0.0399 | 0.4063 | 0.2202 | 0.1832 { 0.4616 | 0.1416 | 0.0665 | 0.4014 | 0.1226 | 0.0576
7 0.5667 | 0.1356 | 0.0229 | 0.2992 | 0.0865 | 0.0345 ] 0.3817 | 0.1783 | 0.1351 |} 0.4576 | 0.1371 } 0.0617 } 0.3987 | 0.1199 | 0.0546
9 0.5655 | 0.1339 | 0.0212 | 0.2928 | 0.0736 | 0.0183 | 0.3420 | 0.1121 | 0.0592 | 0.4448 | 0.1032 | 0.0176 | 0.3859 | 0.0896 | 0.0162
11 0.5647 | 0.1326 { 0.0198 | 0.2924 { 0.0731 | 0.0175 | 0.3365 | 0.1036 | 0.0496 | 0.4444 | 0.1027 | 0.0170 | 0.3858 | 0.0889 | 0.0149
13 0.5642 | 6.1317 | 0.0188 | 0.2908 } 0.0699 | 0.0134 | 0.3342 | 0.1001 | 0.0457 | 0.4442 | 0.1023 | 0.0165 | 0.3855 | 0.0883 | 0.0142
15 0.5637 [ 0.1310 { 0.0181 | 0.2903 | 0.0695 | 0.0131 | 0.3310 | 0.0876 | 0.0277 | 0.4442 | 0.1019 | 0.0157 } 0.3854 | 0.0877 | 0.0130
17 0.5634 | 0.1305 | 0.0175 | 0.2897 | 0.0684 | 0.0117 | 0.3297 | 0.0852 | 0.0249 | 0.4436 | 0.1000 | 0.0130 | 0.3850 | 0.0862 | 0.0109
19 0.5631 | 0.1300 | 0.0171 | 0.2893 | 0.0680 | 0.0113 | 0.3286 | 0.0830 | 0.0222 | 0.4434 | 0.0998 | 0.0129 | 0.3849 | 0.0860 | 0.0106
21 0.5629 | 0.1297 { 0.0167 | 0.2889 | 0.0675 | 0.0107 | 0.3267 | 0.0781 | 0.0155 | (.4433 | 0.0996 | 0.0126 | 0.3848 | 0.0859 | 0.0105

Table 3.3: MMSE with L=1, for 8V29, Squared Minimum Distance = 0.7273
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Channel A Channel B Channel C Channel X Channel Y
SNR | 8dB [ 15dB | 25dB | 8dB | 15dB { 25dB | 8dB | 15dB | 25dB | 8dB | 15dB | 25dB | 8dB | 15dB | 25dB
2N +1
1 0.6814 | 0.3239 | 0.2499 | 0.3811 | 0.2011 | 0.1668 | 0.4258 | 0.2256 | 0.1886 | 0.5198 | 0.2001 | 0.1318 | 0.4708 | 0.2086 | 0.1552
3 0.6132 | 0.1453 | 0.0314 | 0.3640 | 0.1693 | 0.1294 | 0.4254 | 0.2245 | 0.1873 | 0.4931 | 0.1480 | 0.0715 | 0.4269 | 0.1266 | 0.0605
5 0.6110 | 0.1432 | 0.0285 | 0.3150 | 0.0904 | 0.0400 | 0.4236 | 0.2211 | 0.1832 | 0.4900 | 0.1432 | 0.0665 | 0.4247 | 0.1239 | 0.0576
7 0.6089 | 0.1385 | 0.0229 | 0.3148 | 0.0873 | 0.0345 | 0.3998 | 0.1792 | 0.1351 | 0.4861 | 0.1387 | 0.0617 | 0.4221 | 0.1211 | 0.0546
9 0.6078 | 0.1368 | 0.0212 | 0.3085 | 0.0743 | 0.0183 | 0.3612 | 0.1131 | 0.0592 | 0.4740 | 0.1049 | 0.0176 | 0.4099 { 0.0910 | 0.0163
11 0.6071 | 0.1355 | 0.0198 | 0.3081 | 0.0739 | 0.0175 | 0.3559 | 0.1046 | 0.049G | €.4737 : 0.1044 | 0.0170 | 0.4098 | 0.0902 | 0.0150
13 0.6066 | 0.1346 | 0.0188 | 0.3066 | 0.0707 | 0.0134 | 0.3537 | 0.0969 | 0.0457 | 0.4735 | 0.1040 | 0.0165 | 0.4095 | 0.0837 | 0.0142
15 0.6062 | 0.1339 { 0.0181 | 0.3061 | 0.0703 | 0.0131 | 0.3505 | 0.0886 | 0.0277 | 0.4735 | 0.1036 | 0.0157 | 0.4094 | 0.0890 | 0.0131
17 0.6059 | 0.1334 | 0.0176 | 0.3055 | 0.0692 | 0.0117 | 0.3493 | 0.0862 | 0.0249 | 0.4729 | 0.1017 { 0.0131 | 0.4090 | 0.0875 | 0.0110
19 0.6057 | 0.1330 | 0.0171 | 0.3051 | 0.0688 | 0.0113 | 0.3482 | 0.0840 | 0.0222 | 0.4728 { 0.1016 | 0.0129 | 0.4089 | 0.0873 | 0.0106
21 0.6055 | 0.1326 | 0.0168 | 0.3047 | 0.0683 | 0.0107 | 0.3464 | 0.0791 | 0.0155 | 0.4727 | 0.1013 | 0.0126 | ¢ 4088 | 0.0872 | 0.0105

Table 3.4: MMSE with L=1, for 16QAM, Squared Minimum Distance = 0.4
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Channel A Charnel B Channel C Channel X Channel Y
SNR | 8dB [ 15dB {25dB | 8dB | 15dB { 25dB | 8dB [ 15dB [ 25dB | 8dB | 15dB | 25dB | 8dB | 15dB | 25dB
2N +1 L —
1 0.7698 | 0.3304 | 0.2500 | 0.4203 { 0.2030 | 0.1668 | 0.4736 { 0.2280 | 0.1886 | 0.5920 | 0.2046 | 0.1319 | 0.5297 , 0.2119 | 0.1552
3 0.7205 | 0.1535 | 0.0314 | 0.4043 | 0.1713 | 0.1294 { 0.4733 | 0.2270 | 0.1873 | 0.5694 | 0.1527 | 0.0715 | 0.4908 | 0.1303 | 0.0605
5 0.7189 ] 0.1514 | 0.0286 | 0.3584 | 0.0926 | 0.0400 | 0.4716 | 0.2235 | 0.1832 |} 0.5667 ) 0.1480 | 0.0665 } 0.4888 | 0.1275 ) 0.0576
7 0.7174 | 0.1468 { 0.0230 | 0.3582 | 0.0895 { 0.0345 { 0.4498 | 0.1818 | 0.1352 | 0.5634 | 0.1435 | 0.0618 | 0.4865 | 0.1248 | 0.0546
9 0.7166 | 0.1451 { 0.0213 { 0.3524 | 0.0766 | 0.0183 { 0.4144 | 0.1159 | 0.0593 | 0.5531 | 0.1099 { 0.0177 | 0.4756 | 0.0948 | 0.0163
11 0.7161 ] 0.1438 | 0.0199 | 0.3519 ) 0.0761 | 0.0175 ) 0.4095 ) 0.1074 | 0.0496 | 0.5528 |} 0.1094 | 0.0171 } 0.4756 | 0.0940 | 0.0150
13 0.7157 | 0.1429 { 0.0189 | 0.3505 { 0.0730 | 0.0135 { 0.4075 | 0.1039 | 0.0457 | 0.5527 | 0.1090 | 0.0166 | 0.4753 | 0.0935 | 0.0142
15 0.7155 | 0.1422 | 0.0182 | 0.3501 | 0.0726 | 0.0131 { 0.4046 { 0.0915 | 0.0277 | 0.5526 | 0.1085 | 0.0158 | 0.4752 | 0.0928 | 0.0131
17 0.7153 | 0.1417 } 0.0177 | 0.3495 ] 0.0715} €.0117 | 0.4035 | 0.0891 | 0.0250 } 0.5522 | 0.1067 | 0.0130 { 0.4748 { 0.0913 | 0.0110
19 0.7151 { 0.1413 | 0.0172 | ¥.3491 | 6.0711 | 0.0113 | 0.4025 | 0.0869 | 0.0222 | 0.5521 | 0.1065 | 0.0129 | 0.4748 | 0.0911 | 0.01C7
21 0.7149 | 0.1409 | 0.0169 | 0.3488 | 0.0705 { 0.0107 | 0.4008 | 0.0820 | 0.0156 | 0.5520 | 0.1063 | 0.0126 | 0.4747 | 0.0910 | 0.0106

Table 3.5: MMSE with L=1, for 16V29, Squared Minimum Distance = 0.2963
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=2 L=3 L=5

SNR | 8dB | 15dB | 25dB | 8dB | 15dB | 25dB | 8dB | 15dB | 25dB
Constellation |
4PSK m—m (;J(l:——g.449 0.,08(0 0.004 | 0.489 | 0.087 | 0.004
8PSK 0.375 | 0.067 | 0.004 | 0.449 | 0.080 | 0.004 | 0.489 | 0.087 | 0.004
8V29 1.012 | 0.205 | 0.004 | 1.173 | 0.234 | 0.008 | 1.243 | 0.244 | 0.008
16QAM 1.274 | 0.266 | 0.010 | 1.440 | 0.297 | 0.014 { 1.509 { 0.307 | 0.014
16V29 1.833 | 0.427 | 0.020 | 2.062 | 0.468 | 0.024 | 2.148 | 0.483 | 0.024

Table 3.6: Average Gain in MMSE dB over (L=1) for 9 Equalizer Taps

3.5 Observations

For each of the tested channels, we observed the following: For a specific number of
equalizer taps, the higher the SNR is, the lower is the MMSE. For a reasonably small
MMSE, the SNR should be at least 25 dB. For a given SNR, the MMSE decreased
monotonically as the number of taps increased. The reduction in MMSE by increasing
the number of equalizer taps is larger at higher SNR. Increasing the number of taps
above nine does not reduce the MMSE appreciably and thus does not improve the

system performance significantly.

For each constellation and fixed value of L, the number of equalizer taps and
the SNR were varied and the channels were placed in order of increasing MMSE
as shown in Table 3.7. For an SNR of 25 dB, channels A and C have the largest
MMSE values. For an SNR of 8 dB, channels A and X have the largest MMSE. Thus,
equalization of channel C is more sensitive to the SNR (i e. larger noise enhancement)
than channel A. In addition, at an SNR of 25 dB, channel Y has the smallest MMSE
and at 8 dB, channel B bas the smallest. Thus, Y has the least ISI but the addition

of noise degrades the performance of the MMSE equalizer in channel Y more than it

40




Number of SNR | Channels in Order of
Equalizer Taps | in dB | Increasing MMSE
8 B,C,Y,X A
9 15 B,Y,X,C, A
25 Y, X,B, A, C
8 B,C,Y,X, A
21 15 B,C, Y, X, A
25 Y,B,X,C, A

Table 3.7: Channels in Order of Increasing MMSE.

does in channel B. This shows that channel Y can be better equalized than B, at the
expense of a larger noise enhancement.

Reference phase estimation errors are due to channel noise and ISI only since
in our analysis, perfect receiver decisions were assumed. In addition, the amplitude of
the signal points also affects the reference phase errors since it determines the symbol
SNR. As a result of these reference phase errors, the MMSE depends also on the value
of L and the size and type of signal constellation. This can be seen from (3.36). The
MMSE dependence on these two parameters will now be discussed: From (3.37), the
column vector B differs from perfect phase estimation column vector B by a factor
which is proportional to the variance of the phase estimation error n[n}, i.e. E [p3[n]]

(3.36). From the results, a number of observations can be made:

First, for very high SNR, i.e. more than 25 dB, the MMSE results of all signal
constellations approach the ideal MMSE results for a coherent receiver regardless of

the value of L, since E [9*[n]] approaches zero for very high SNR (3.36).

Second, the MMSE results were observed to be the same for 4PSK and 8PSK
always. This was because, for MPSK, E [7?[n]] is independent of the constellation

size M and inversely proportional to L since b[n] is constant and equal to unity (3.36).
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However, although they give the same MMSE results, 4PSK has a smaller probability
of error P, than 8PSK since its minimum distance 1s larger. Therefore, for the same

P., the SNR of the 8PSK constellation must be raised to a suitable higher value.

Third, 16V29, 160QAM and 8V29 gave larger MMSE 1esults than MPSK
Thus, constellations with signal points of varying amplitudes have degradations
performance, i.e. larger MMSE results, compared to constant amphtude signal con-
stellations. In addition, the 16V29 constellation gave larger MMSE results than both
16QQAM and 8V29, since it has signal points with smallest amplitudes. Therefore, con-
stellations with smaller amplitude signal points have larger degradations in MMSI

performance.

Using a larger L, the constellations with smaller amplitude symbol points had
larger MMSE performance gains, i.e. larger reductions in MMSE. Thus, by increasing
L, 16V29, 16QAM, 8V29 and MPSK had performance gains which decreased in that
order. As a result, using a larger L reduces the difference in MMSE performance
between the V29, QAM, and PSK constellations. Furthermore, by increasing L, the
system performance approaches that of combined coherent detection and equalization.
In addition, the gain in MMSE(dB), i.e. u, by using a value of L larger than one, was
very significant, especially for low SNR. Also, using L=3 or L=5 gives appreciable
gains in performance over L=2. However, larger values of L do not yield appreciable
performance gains over L=3. Therefore, three appears to be the best value for L.
This is because increasing L increases the SNR of the reference signal from which the
phase reference is extracted until it approaches coherent PSK. [t appears that the
reference phase SNR of the differential detected signal sufficiently approaches that of

a coherently detected signal at L=3.

Finally, the difference in MMSE between coherent and differentially coherent
detection is smaller here than in {20]. This is due to the way that the reference phase

is derived in this work. In [20], an adaptive equalizer was used for differentially co-
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herent reception and the MMSE obtained was about 3 dB more than that obtained
in the coherent case. One previous equalizer output was used to generate the refer-
ence estimate and its conjugate was used in the decision variable, together with the
equalizer output. Thus, errors in the reference estimate caused both amphtude and
phase errars in the receiver’s decisions. In our case, the improved phase reference
estimate 3[n], (which can be generated by using more than one past equalizer output
to smooth channel noise), is used only to phase-shift the current equalizer output.
In other words, we process the reference sample by a limiter which removes the am-
plitude noise. Thus, our reference estimate causes only phase errors in the receiver’s
decisions and therefore, the difference in MMSE between coherent detection and dif-
ferential detection is less than 3 dB in our case. In addition, increasing L allows
the system performance to approach that of combined coherent detection and linear
equalization. As a result, our proposed receiver has better system performance which

approaches that of combined coherent detection and linear equalization.
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Chapter 4

A daptive Equalization for

Unknown Channels

The combination of decision-feedback differentially coherent detection with adaptive
equalization is considered in this chapter. In Section 4.1, the conventional Least-
Mean-Square (LMS) adaptive algorithm and some fast-converging algorithms, e.g.
Kalman are briefly reviewed. Following this, the LMS algorithm, which is used for
adapting the linear equalizer, is described. Simulation results (for a specific number
of equalizer taps, SNR and L) and graphs which compare average convergence rates
and residual MSEs for different test cases (i.e. different constellations, channels and
step-sizes.), are presented in Section 4.2. Finally, these results are discussed in Section

4.3.

4.1 The LMS Adaptive Equalizer

For many practical wireless systems, the channel characteristics are usually not known
beforehand, and therefore the equalizer must adapt to the unknown channel. In

addition, the characteristics of these channels may vary sufficiently with time so that
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adaptive equalization is also necessary during normal data transmission.

A comprehensive survey on the early days of adaptive equalization can be
found in [17). In 1960, Widrow and Hoff {14] presented the Least-Mean-Squares
(LMS) error adaptive filtering scheme which has been used extensively in the last
three decades. In addition, key papers [27] and [28] have contributed to the under-
standing of the convergence of the LMS stochastic u;*>te zlgorithm for transversal
equalizers, including the effect of channel characteristics (eigenvalue spread of the
auto-correlation matrix) and the number of equalizer taps on the rate of convergence.
First, in [27), the assamption of statistical independence for the random equalizer
input vectors y[r] (from one instant [n] to another instant [n+1]), which direct equal-
izer convergence, was investigated and it was found that although this assumption is
far from true, the results obtained using this assumption are in excellent agreement

with the actual performance of the LMS equalizer convergence.

In [28], Ungerboeck considered the MSE criterion instead of the expected
tap-gain errors relative to their optimum values (considered by Gersho in [21]). In
addition, he assumed the equalizer input vectors y[n] at successive instants to be
statistically independent and showed that the influence of the number of equalizer
taps, and not only the channel characteristics, dominates the speed of convergence.
This was opposed to [21], where the speed of convergence (for Gersho’s criterion,
i.e. the expected tap-gain errors relative to their optimum values) was shown to
depend only on the channel characteristics. As a result, Ungerboeck suggested a new
criterion for stability, which imposed a much narrower upper bound on the step-size
than the one found in [21] and a corresponding optimum initial step-size parameter
for LMS adaptive equalization. Finally, he showed the MSE convergence is faster
in practice than theoretically predicted and suggested that step-sizes slightly less
than the optimum step-size should be chosen, since the assumption of statistical

independence of the equalizer input vectors y[n] at successive instants is not true in
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practice.

In our simulations, the LMS algorithm is used to adapt the linear equalizer to
the channel because of its simplicity and robustness. However, its main drawback is its
slow convergence compared with the more sophisticated algorithms [23]-[25]. In [23],
the Kalman filtering algorithm was described. It can be used to estimate the equalizer
coefficients vector at each symbol interval and its convergence rate was shown to be
proportional to the number of equalizer taps and independent of the eigenvaluespread.
However, it requires on the order of N? operations per iteration for an equalizer
with NV taps. In [24], a self-orthogonalizing algorithm was compared to the Kalman
algorithm of [23] and the LMS algorithm. The algorithm tries to accelerate the rate
of convergence by reducing the eigenvalue spread of the channel-correlation matrix,
i.e. by making the eigenvalues equal, since a large eigenvalue spread slows the rate
of convergence. It was found that the proposed self-orthogonalizing algorithm, which
was less complex than the Kalman, converged much faster than the LMS algorithm
but was slower than the Kalman algorithm. The Kalman algorithm of [23] was later
recognized as a form of a Recursive-Least-Squares (RLS) algorithm and the idea of
fast Kalman filtering was introduced [25). This algorithm took advantage of the
data structure by using the “shifting property” of RLS algorithms and reduced its
computational complexity to an order of N operations per iteration for an equalizer
with V taps. Therefore, the algorithm performs as well as the one in [23] while

avoiding its computational complexity.

The LMS algorithm will now be discussed. It is similar to the MSEG al-
gorithm (3.41) but uses an instant squared errer instead of the mean squared error
because the ensemble averages represented by the matrix A and B are not known in
practice. The LMS algorithm is also referred to in the literature as the stochastic

gradient (SG) algorithm [13]. Using the LMS algorithm, the filter coefficient vector ¢
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{ is updated by
A d|e[n]|?

cln +1] = ¢n] - 3 0dn] (4.1)

where ¢[n] is the error at the n-th iteration, [n] denotes a particular symbol interval

(or time instant t=nT), ¢[r] = [c-~]n],...,co[n],...,cn[n]] and X is the step-size.

Using (3.2), the error is given by:

£[n] = z[n]e"jﬂ["] - b(n]eivl"‘]
NI N —

desired signal
where f[n] is the reference phase estimate. Differentiating the instant squared error

l¢[r]|? with respect to ¢[n], we get :

Oleln]l* _ 2lnle=38m) _ plnlei®lye*In]edPIn
W—%[]v I} — b[n] “)2[] i) (42)

where z[n] = T[n]y[n]. Therefore, substituting (4.2) in (4.1), we get :

dn+1] = ¢n]-A ﬂn]e‘j"["] - b[n]e-""[“}l y" [n]eiin) (4.3)
dn)
dn+1) = c[n] - Ae[n]y*[n)e?d (4.4)

Thus, each equalizer tap cix[n] is updated using the error ¢[n], the phase

reference estimate A[n) and the received sample yn + k] for k = —N,...,0,..., N.

The algorithm of (4.4) will now be explained referring to Figure 2.4. The
equalizer adaptation is driven by the error signal e[n], which indicates to the equalizer
in which direction the coefficients c;[n] must be changed to reduce the squared error
le[n])?. Specifically, the input sample to the equalizer, y[n~k] is taken from the output
of the same unit delay and is used for multiplication by cx[n]. The resulting product
contributes to the summation for z[n], which is then phase-shifted by A[n] and the
data symbol b[n]e?¥I"] is subtracted from it to give the error €[n]. The increment of
the tap coefficient ca[n] 1s —Ae[n]y*[n — k]e?In), wnere y*[n — k] is phase-shifted by

ﬂ[n] to compensate for the unknown rotation of these samples.
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In wireless communication systems, the adaptive equalizer should be able
to track the time-varying multipath characteristics usually encountered. Therefore,
the rate of convergence of the adaptive algorithm employed is very important and is
determined by the step-size A. For the LMS algorithm, the best convergence rate and
the allowable values of the step-size A, which guarantee stability of convergence, are
dictated by the number of equalizer coefficients (2N +1), and to a lesser extent, by
the eigenvalue spread of the matrix A (i.e. which depends on channel characteristics)

(28]. From (28], the allowable step-sizes X are

0< A< 2 (= 2 ) (4.5)
(2N + l)E“y[n”z] - /\1 + ...+ A2N+1 '
where );,...,A\sn41 are the 2N+1 eigenvalues of the auto-correlation matrix A and

E[ly[n]|?] is the expected squared amplitude of the equalizer input y(n]. Also, the

optimum step-size suggested is

1

Ao = GNT D EWWRIF] (49)

The depe~dence of LMS convergence on A is as follows: Starting with zero, as we
increase ), the speed of convergence and the residual MSE increases, until we reach
the maximum speed at A,p:. Continuing to increase A, slows the rate of convergence
(but the residual MSE still increases) until eventually we reach instability at twice
the optimum step-size. Therefore, there is a tradeoff between the rate of convergence
and the residual MSE. In fact, for fastest convergence, the residual MSE is twice that
of the MMSE [13]. Therefore, if the step-size is too small, the equalizer would not
adapt fast enough (i.e. within an agreed time frame or number of symbols) or if it
is too large, the equalizer would blow up (not stable) (4.5). Therefore, A should be
chosen such that the rate of convergence is fast yet has a reasonable (not necessarily

minimum) residual MSE.

In adaptive equalization, there are two modes. The first mode is the initial

acquisition which uses a training sequence which is known to the receiver. This mode
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( is used to initially adapt the equalizer to the channel and, thus uses actual data
be’* to generate the error signal. Once the equalizer converges in an specific period of
time, the second mode of adaptive equalization can begin. In the second mode, actual
receiver decisions are substituted for the known training sequence and normal data
transmission occurs. This mode of equalizer adaptation is called the decision-directed
mode since receiver decisions be’® are used to generate the error €[n], and the phase
estimate f[n]. This is seen from Figure 2.4 and equalizer adaptation takes place in a

decision-feedback manner. However, this mode of equalizer adaptation cannot track

fast variations in the channel characteristics. As a result, it may be necessary to use

the first mode to re-adapt the equalizer to the channel.

The adaptive MSE (AMSE) simulation results using the LMS adaptive algo-

rithm for different test cases will now be discussed.

4.2 Simulation Results

Simulations of the equalizer adaptation were performed using the LMS algorithm.

Three parameters of the simulations were kept constant:

o Nine (=2N+1) equalizer taps were used. Using a larger number of taps in-
creases the delay in the equalizer and does not result in any substantial gain in

performance, with the channels that were tested in this work.

o Three equalizer samples used to generate the improved reference phase estimate
(i.e. L was chosen to be 3) since the gain in performance over L=2 is substan-
tial and because using any larger value of L eg. L=5 does not result in an

appreciable gain in performance.

o The SNR was set to 25 dB. A lower SNR would require a prohibitive large

number of simulations.
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The three other parameters in the simulations form the basis for different test
cases. These parameters are the signal constellation, the channel and the step-size \.

The choices for each were as follows:

e Four constellations: 8PSK, 8V29, 16QAM and 16V29.
e Two channels: A and X.

e Step-sizes: 0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05 and 0.1. For our nine
tap equalizer and with E[ly[n]|?] = 1, Ungerboeck’s optimal step-size is 0.1.
Results were examined and the two step-sizes A=0.005 and A=0.05 were chosen

for presentation since they best summarize the trade-offs in selecting the step

size.

For the LMS simulations, training sequences were used, i.e. perfect receiver
decisions were assumed. Each sequence had a length of 3220 data symbols to en-

sure that steady-state convergence had been achieved. All nine equalizer taps were

initialized to zero for each trial.

Initially, in our simulations, twenty independent trials were performed for
each test case (i.e. choice of constellation, channel and step-size) and an average
learning curve was calculated. However, the average learning curves were very noisy
due to an insufficient number of trials. At an SNR of 25 dB, it was found that we
need approximately sixty trials to get reasonable smcoth average learning curves. All
simulation results were then examined and are summarized by eight graphs and two

tables, shown on the next few pages.

The first four graphs, i.e. Figures 4.1-4, were each derived for a separate
test case (i.e. either 8PSK or 16QQAM used in either channel A or X, using A equal
to 0.005). Each graph plots the squared error versus the number of iterations and

compares sixty trial runs with an average learning curve. It is seen that the number
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Channel A Channel X

Step-5Size | 0.005 | 0.05 | 0.005 | 0.05
Constellation )
8PSK 0026 | 0.032 | 0.021 | 0.026
8V29 0.025 | 0.029 | 0.023 | 0.028
16QAM 0.027 | 0.032 | 0.023 | 0.028
16V29 0.025 |{ 0.029 | 0.024 | 0.029
MMSE Results 0.021¢ 0.0176

Table 4.1: Comparison of Residual MSEs and MMSEs for 25 dB

of independent trials, i.e. 60, used to calculate the curves was sufficient since the

dispersion 1s reasonable.

Consequently, the last four graphs, i.e. Figures 4.5-8, compare the average
learning curves of different test cases. Each graph corresponds to a particular con-
stellation, and compares four different test cases (i.e. either A=0.005 or A=0.05 used
in either channel A or X). Finally, each graph plots the loganthm of the MSE versus
the number of iterations so that differences in convergence behaviour between the

different test cases can be noticed more easily.

Table 4.1 compares the residual MSEs obtained from Figures 4.5-8 with the
calculated MMSE results of Section 3.4. In order to compare the constellations from
a probability of error point of view. we used the squared minimum Euclidean distance
42, normalised to the number of bits per symbol. log, M, and the residual MSE, €.

mn

This quantity in [dB] 1s given by:

o = 10log,q [dfm lig%’-] (4.7)

Although, o may not give an accurate indication to the actual probability of error

P, = K exp [d’ M] which can be arrived at since P, is proportional to the

mn f
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Constellation o for Channel A o for (*hannel X

A=0.005 { A=0.05 | with MMSE } A=0.005 | A\=0.05 | with MMSE
8PSK 18.3 17.4 19.2 19.2 18.3 20.0
8V29 19.4 18.8 20.2 19.8 18.9 209
16QAM 17.7 17.0 18.8 18.4 17.6 19.6
16V29 16.7 16.1 17.5 16.9 16.1 18.3

Table 4.2: o for different test cases

mn

exponent of the SNR {13] and [d"’ 1"—‘!2—&] represents the normakhized SNR for any M-
ary constellation, it can be used for a benchmark comparison of the different schemes
from the probability of error point of view. As a result. we can compare o for the
tested constellations under t'.. same SNR (see Table 4.2). The larger o is, the smaller

the probability of error and the better is the system performance.

Finally, the simulation results for a sample AMSE test case are given

Appendix B.

4.3 Observations

For the first four graphs. i.e. Figures 4 1-4. we see that the average learning curves
for sixty independent trials and an SNR of 25 dB are reasonably smooth and give a
good indication of the average convergence performance. If the curves were too noisy,
more independent trials would have been required to calculat the average learning
curves. Finally, we note that the trial runs give a better indication of what should be

expected in an actual system implementation.

We will now look at Figures 4.5-8. where each figure compares the average

convergence rates for different channels and step-sizes. for a given constellation. A
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MSE convergence cutoff point of 0.05 was chosen since the average learning curves
passed through this level only once before settling down to the residual MSE levels
between 0.02 and 0.035. Thus. the average learning curves for different channels and

step-sizes were compared for each graph. using this MSE cutoff level of 0.05. The

following was observed:

For channel A. the A=0.05 step-size converged after approximately 125 sym-
bols and the A=0.005 step-size converged after about 1000 symbols. For channel X,
the A=0.05 step-size converged after approximately 100 symbols and the A=0.005
step-size converged after about 750 symbols. Thus. for a given ), the rate of conver-
gence s faster for channel X than for channel A. In addition. the rate of convergence

for the A=0.05 is faster than for A=0.005.

Table 4.1 shows that the residual MSEs approach but never reach the MMSE
results calculated 1n Section 3.4. This 1s due to the equalizer coefficients which are
never exactly optimum. For a given A. Table 4.1 shows that the residual MSE is
smaller for channel X than for channel A. Alsc, for a given channel, the residual MSE
is larger for A=0.05 than for A=0.005 In addition, it was found that the A=0.05
and A=0.005 step-sizes have average residual MSEs of 50% and 25% excess MSEs
respectively, where excess MSE is the MSE over and above the MMSE possible. Asa
result, this shows that the larger the step-size A. the larger the excess MSE, since the
equalizer coefficients have a larger variance about the optimum values. For A=0.05,
we sece that the proposed receiver adapts very quickly to unknown channels while
giving a restdual MSE which 1s only a small percentage larger than that of A=0.005.
Thus, A=0.05 sc- ms to be a better choice.

In addition, the speed and stability of the MSE convergence were compared
for the tested constellations. Close examination of the last four graphs and Table 4.1

shows that [6V29 converges slightly faste:r .nd has a slightly smaller residual MSE

than 16QAM (which is more noticeable in channel A). However, frora Table 4.2,
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16QAM has a smaller probability of error due to its larger minimum distance dpn.
Also. 8PSK is better than 8V29 in terms of both convergence speed and residual
MSE which was more noticeable in channel X than in channel A. Nevertheless, the
minimum distance dp,n of 8V29 is larger than that of SPSK, and from Table 4 2, we
have that 8V29 has a smaller probability of error than 8PSK. especially for channels

with severe ISl e.g. channel A.

Finally, Table 4.2 compares o for the tested constellations and shows that
o decreases (the probability of error increases) for 8V29, 8PSK, 16QAM, 16V29, in
that order, for the tested channels. In addition, Table 4.2 allows us to calculate the
increase in SNR necessary to achieve the same 0. On the average, for A=0.005. the
SNR must be increased by 0.7 and 1.0 dB for channels A and X respectively, to acheve
the o associated with the MMSE. Also, for A=0.05, the SNR must be mcreased by
an average of about 0.9 dB and 1.1 dB for channels A and X respectively, to achieve

the same o as the A=0.005 case.
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Chapter 5

Conclusions

A combined linear equalization and decision-feedback differentially coherent detection
structure for indoor wireless communication channels was proposed. These channels
were modeled as multipath channels since multipath propagation is one of the major
impairments in wireless communication systems. In these channels, carrier phase
tracking is difficult and differentially coherent reception is attractive since it does
not require phase-tracking. However, there is a loss in performance compared to
coherent detection that approaches 3 dB for MPSK(M >2). Therefore, an iraproved
technique based on decision-feedback differentially coherent detection was used whose
performance approaches that of coherent detection. In addition, this differentially
coherent scheme can be combined quite easily with known equalization techniques.
This is necessary since ISI due to multipath is a major problem in these channels.
In this work, the integration of decision-feedback differential detection with linear
equalization has been considered. In addition, two-dimensional signal constellations
were considered, in the hope of achieving a high data transmission rate, in a given

bandwidth.

The MSE criterion was used and MMSE results were calculated for known

channels, taking into account reference phase estimation errors. It was seen that
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the MMSE performance degrades for 16V29, 16QAM, 8V29 and 8PSK in decreasing
order, since constellations with signal points of smaller amplitude have a larger degra-
dation. However, using a larger value of L, i.e. number of equalizer outputs used to
generate the reference phase, reduces the degradation in MMSE performance, since
constellations with smaller amplitude signal points gain more in MMSE performance.
Thus, the performance of the V29 and QAM signal constellations approach that of the
PSK signal constellation and a high data transmission rate can be achieved in a given
bandwidth. Furthermore, increasing L allows the system performance to approach

that of combined coherent detection and equalization.

In an adaptive mode, the LMS algorithm was used. The simulations were
performed with a 9 tap equalizer, L=3 and an SNR of 25 dB since for known channels,
these values were found to be to be sufficient for a reasonably small MMSE. Using
a MSE cutoff level of 0.05, the equalizer converges within 125 iterations and has
a residual MSE of about 0.029 (50% excess MSE) for A=0.05. For A=0.005, the
equalizer converges within 1000 iterations with a residual MSE of 0.024 (25% excess
MSE). Therefore, A=0.05 seems to be the better choice. In addition, 8PSK (16V29)
converges slightly faster and has a slightly smaller residual MSE than 8V29 (16QAM).
However, the difference in MSE convergence performance for the tested constellations
is almost negligible for L=3. Finally, at the same E}, the constellations 8V29, 8PSK,
16QAM and 16V29 have probabilities of error in increasing order.

For a sufficiently large L, e.g. L=3, the combination of the decision-feedback
differentially coherent detection structure with linear equalization performs as well as
combined coherent detection and linear equalization, with the advantage that it can
be used when carrier phase tracking is difficult e.g. fading multipath channels, burst
communication. In addition, the receiver shows very small MMSE differences be-
tween different two-dimensional constellations. Over practical wireless channels, the

proposed rece'ver seems to have significant advantages with respect to conventional
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coherent receivers and we will now suggest further work in this area of combining

equalization with differentially coherent detection.

5.1 Suggestions for Further Work

To simplify the analysis, receiver decisions were assumed error-free with high SNR
and actval information phases p[n — k] for k = 1,..., L — 1 were used in the equalizer
adaptation simulations. Therefore, it would be of interest to analyze the effects of
decision errors on the adaptation process and on the residual MSE as well. In addition,

simulations should also be performed for non-zero excess-bandwidth pulses.

To improve performance, one can use decision-feedback equalizers (DFEs)
with the decision-feedback differentially coherent detection structure of [2]. The DFE
cancels the dominant postcursor ISI in minimum phase multipath chanr:ls without

noise enhancement. Therefore, this combination is worth further investigation.

Improving the reference phase estimation for the QAM and V29 constella-
tions may improve results. Therefore, reference phase estimation which is optimized
for amplitude and phase signal constellations should be used in conjuncture with dif-
ferential detection. Also, the reference phase estimation for non-stationary channels
can be improved by introducing a forgetting factor. Therefore, past equalizer outputs
can be weighted such that the more recent equalizer outputs will have more influence

on the reference phase estimate, thus improving the phase tracking capabilities.

Finally, the adaptive equalizer should be tested using faster adaptation algo-
rithms e.g. fast Kalman algorithm [25].
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Appendix A

A.1 Program Overview

The computer program was written using the C programming language and ran under the
SUN 0S. The program consists of seven separate files. Data was read from a specified input
file and all results were written to a specified output file. In addition, two other output files
were created for ease of plotting the LMS simulation results. One file stored trial results
and the other stored the average learning cvrves, i.e. average results of 60 trials.

Input File Data

o Test constellation: PSK, QAM, V29 and any other format.

e Multipath channel Parameters: Number of paths-1, amplitude attenuations, phase-
shifts and relative delays

o Roll-off factor of overall desired response. Any number from 0 to 1.

e Step-sizes to be used in LMS simulations.

e Noise Power in dB.

e Number of Equalizer Taps besides the reference tap: called N,i.e. min.,max.,step.
e Number of Equalizer Outputs for phase estimate: L, i.e. min.,max.,step.

¢ The output data filenames.

Program Files and Functions

The seven files and their functions are as follows:

¢ EQ.C: Main program file. Reads input file and generates output files. Calls MMSE.C
and AMSE.C.
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¢ MMSE.C: Calculates MMSE numerical results. Calls CINV.C
AMSE.C: Calculates LMS simulation results. Calis RANDOM.C

e CINV.C: Inverts a complex matrix using LU Decomposition.
o RANDOM.C: Generates Uniform and Gaussian distributed random numbers.

COMPLEX.C: Library of complex arithmetic operations.

UTIL.C: Utility subroutines.

Program Details

The convolution of the overall pulse response g[n] with the encoded data was limited to 440
terms centered at §[0]). It was found that increasing this number to 1000 did not provide
any significant differences. In the program, the number of equalizer taps was N +1, i.e. the
equalizer had N /2 taps on both sides of the reference tap ¢[0] and the maximum number
allowed is 41 including the reference tap. In addition, the transmitter and receiver filters
were designed such that their overall response §(t) was Nyquist. The pulse shape used was
the raised-cosine pulse with a roll-off factor of a. The transmitter and receiver transfer

functions were both \/G(jw).

The Random and Gaussian number generators used, were provided in [29). In addi-
tion, a complex matrix inversion program to invert the Hermitian matrix A, was developed
using the real matrix inversion program in [29). It was tested rigorously and was very sta-
ble. In the LMS simulations, each test case was sub jected to 60 independent trials, each of
length 3220 and the average learning curve was calculated. In addition, the data for each
test case was stored in files coded as "123.456”. The codes are shown in table A.1.

Therefore, the file eoa.25a contained the data of the average learning curve for
8PSK, A=0.005, channel A and 25 dB SNR. Also, the data file grx.25 held the raw data for
60 trials for 1I6QAM, A=0.05, channel X and 25 dB SNR.

[ Code | Parameter | Allowed Symbols and Meaning |

1 Constellation e:8PSK; g:16QAM; h:8V29; j:16V29;
2 Step-Size A 0:0.005; r:0.05

3 Channel a:Channel A; x:Channel X;

45 SNR in dB 25:25 dB;

6 File Data Type | a:average; nothing:60 trials;

Table A.1: Data File Code Table
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A.2 MMSE Program File and Test Case

MMSE.C

#include <stdlidb.h>
#include <stdio.h>
#include <math.h>

#define MY 2566 /* Max number of signals in constellation ./
#define OIFSET 220 /# Position of Reference Response */
#define MAXTERMS 440 /+ Nunber of terms in Convolution ./
#define MAITAPS 40 /+* Maximum Nuzber of Taps in Equalizer ./
#define im 2 /% Used for Print Display o/
#define PI 3.1415926564

#define ERROR 0.00000001

typedef struct FCOMPLEX {

double r,i;

} tcomplex;
L T T Ty P T e Y
/ssssssnes N - Number of signals in constellation seesensnsse/
/esssesnes J+1 - Total number of Equalizer Taps e sanree/
/esessesss SIG_SET - Signal points in Constellation ssesasansas/
/#sssesess g - overall impulse response srnsneasenn/
/%sssasnss £ - receiver impulse response ssassnssins/
/#sessness fp - file pointer to output data file sesssvanans/
/#sssnsnns yal - stores step-sizes that will be used in simulation wwsss/
/esssssnsr J0 - noise pover to signal energy power sHeadanane/

ALITTY PRI SR PP PR PRSP AL DY PAL P L DAL LA LS DA LA L e DITILL DL 2 Y LT e 1y
double MINMEANSQERR(M,N,SIG_SET,g,f,fp,val,N0)

int M, N;

fcomplex SIG_SET[MAX+1], 5IHAXTERHS+1] , T[MAXTERMS+1};
FILE *fp;

float val[Bm+1], NO;

{

P T T L T T T T T P P P P P T Py
/esisesnssrransnses Complex DPEZALOrS SHESISNERRINISEIERS 4400 EIsNsRe/
P T T T T T P P P P P PP P P Ty
double Cabs();
fcomplex Cadd(), Csub(), Cmul(), Cdiv();
fcomplex Complex(), Conjg(), Arg(), RCmul();
P T T U T T L L LT L T ey
/e#sssvunss y - received signal, b - input data signal  wsessssssansers/

/®sssasnnmes bd - differentially encoded phase TR L P LTI ¥
/%sssssenss | - y correlation matrix, INV - 1 inverse CTTITIIT L ST TTT Vi
/ewssesnmss B - cross - correlation matrix bet. b and y sssssssssnsssan/
/%sxexnnnrx C -~ gqualizer vector ssassesneeenrns/
/##ssssansx NSE - mean square srror, pdt = 1 - MSE PIIITIIY S T L T ¥
/#*ssasenss dummy - dummy variable TR T L Y LY Y
/esssessess y -~ gum of z[n-il*e[j(sum of angles)] T T T Ty
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/0‘.‘“t.”“....‘t‘...t‘tt..‘“‘t‘t.‘..t‘t““‘.‘tt"0‘.‘.‘!“..0‘.".0/
fcomplex A[MAITAPS+1) [MAXTAPS+1), INVIKAXTAPS+1] [MAXTAPS+1];
fcomplex I[MAXTAPS+1] [KAXTAPS+1];
fcomplex BIMAXTAPS+1], C[MAXTAPS+1];
fcomplex pdt;

doubl: NSE;
/“.‘..‘.“"““.t..“‘..‘.‘..“‘ti‘..‘“.t“-".”..“““‘#‘.“““tt/

/esesessses Cd, Cs vectors calculated during ideal gradient algorithm #=/
/eessensses AC - pdt estimste of i matrix and C matrix (LTI IZL DI TT T ] )
/esssaseess T - Identity matrix, 41 = I - 4 SeessssnRaResIdnS /
et e YT EARAA P L R ATTL LI DR DA AL DT DD L DL R T IR T LT I

fcomplex CA[MAXTAPS+1]), Cs[MAXTAPS+1];

fcomplex AC[MAITAPS+1);

fcomplex A1[MAXTAPS+1][MAXTAPS+1];

/“‘...““..‘““‘.-‘l.\t‘.“‘..‘t‘l“""““.““‘.‘.‘.l#‘t‘.‘#.‘.t.‘./

/essswesess {4,k ki,kk,n ~ indices, rn - random # generated sessssn/
/#ssssssses pos - reference point, jin = jiin sassann/
/ssswesersr Diff - mean square differsnce vithout equalizer raanen/
/esssesssss Store, Store2 ~ intermediate differences wnensnn/

asssses/

/essssssess alpha - step-size

/esssssssse cinv - inverts complex matrix sessnen/
/vessessies rani - generates unifornly distributed r.v setpsnn/
/essssssers gasdev - generates gaussian distributed r.v anssnn/
/#ssseessss noise - additive channel noise components at diff. instante=/
/esensssses w - noise after passing through receiver sasrnen/

/“‘-“‘.‘i‘t‘.”lt“‘.l.‘t‘“".“‘.‘.‘O‘tl...tt!tt‘t..tt‘#ti.ttt“t..‘/
int i, j, jim, k, n;
int max_num, chk;
float alpha;
double Dift, Store, Store2;

void cinv();
Lt P PP T P P D R e TP A PR P PR LR T Y 2 L

/esnesnssrenssesvsnsansess Gat Nunber of Step-Sizes sssasuscsssssdssrssn/
/.l.‘““‘ﬁl.‘...‘t‘.“‘.*.““‘..‘....“.‘.‘““‘...“...““.““"“‘/
chk = 0;
do
{
chk++;
}
while (vallchx] ¢= 0.0);
max_num = chk - 1;
P L L L L L T T T P T Y PP I P P PP P v P e T 1Y}
/essnansisnsnssissnnnsnnisssnssny Initialize sesessnnnsassmrsnnnnnsrnnss/
/SR ER GRS REEIRAEN S EAINEREBRAREREBEE S NGNS EE R AR EE R SR AR SR RRRA Rk Bk /
for (1=0;i<=MAXTAPS;i++)
{
B{i] = Complex(0.0,0.0);
for (j=0;3j<=MAXTAPS;j++) 4[il[j] = Complex(0.0,0.0);
}
for (i=0;i<=MAXTAPS;i++) C[i] = Complex(0.0,0.0);
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wer

for (i=0;i<MAXTAPS;i++) gl[i]l = Complex(0.0,0.0);
for (1=0;i<NAXTAPS;i++) gIMAITERMS-i] = Complex(0.0,0.0);
/‘...“.‘.-‘.‘.”‘...‘.‘t“.‘““‘O‘.““t““‘.lt.““‘t““.“““‘.‘“/
/esemssssssssnnssssss Geot Auto-Correlation Matrix A R AL IIIT L LTI L LYy
/t...““""..ltt.““tlt‘..“.“‘.‘.“.t“".“t".‘.““..“tt“““.‘/
for (i=1;i<=N+1;1i++)
{
tor (J=1;j<=N+1;§++)
{
it ((i==j) a& (i>1))
ACi10T = Al11(1];
else
{
for (k=0;k<=MAXTERMS;k++)
{
it ( ((k-1+1)>=0) &k ((k-1i+j)<=MAXTERMS) )
A[11[3) = cadd(a[il[j],Cmul(Conjg(glx]),glk-i+j]1));
}
if (i==j) Alil[i).x + =2 = ¥O;

A T P T AL P LT TR LT AR Y RV R RS Y Y P P DI S DI I LT PREIT E Yy
/essssssssnsrsssrssss Got cross-correlation Vector B I IITET PRI TR T LTy

/.“““‘."“‘.l.“‘.““‘..“.““““““““““"..““‘.“““‘.-‘l/
for (i=1;i<=N+1;i++)
B[i] = Conjg(g[i+OFFSET-§/2-1]);
/e%sss Inverts A to INV, dim N+1, A unchanged sseses/
cinv(A,INV,N+1);
£flush(fp);
/‘-‘.‘.‘l.‘““.‘-.‘.‘.t““.“.““““i““““‘.“.“““““‘..-““‘/
/essnassssnnnsnssnnasnsssss Optinmun EQualizer ssssssssssssssssssssssssnas/
P L L L T T T T T YY
pdt = Complex(0.0,0.0);
for (i=1;i<=N+1;i++)
{
C[i-1] = Complex(0.0,0.9);
Zor (J=1;j<=N+1;j++)
c[i~1] = cadd(c[i-1] ,Caul(INVIil[j]1,B[3j]1));
pdt = Cadd(pdt,Cmul(Conjg(B[il),c[i-11));
}
£flush(fp);
/““‘.“““%““‘#‘.“*“t‘*““““““‘#‘...““*“#“t‘..“#‘.“.t‘#/
/i..‘““‘.““‘l“.““‘--‘.‘ check to ses AC = B ‘...“““.‘l““#“‘t/
/“‘.““l“.‘-"!“‘"““‘.““‘.‘-..“““““tl‘t““.‘#t“‘"‘##“"/
/*
for (i=1;i<=K+1;i++)
{
AC[i]l = Complex(0.0,0.0);
for (j=1;j<=N+1;j++) I[il[j] = Complex(0.0,0.0);
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I[11[i).x = 1.0;
}
for (i=1;i<=N+1;i++)
{
for (j=1;j<=N+1;j++) AC[i]l = Cadd(AC[il,Cmudl (A[il[j],Cl[j-1]));
it (i%im == 1) fprintf(fp,"\n");
fprintt(2p,“P[)3d])=%8.42,%8.42§ “,i,ac[1]).r,AC[i].1);
}
fflush(fp);
o/
/90000800 HESESRIHESESREISIESEERISAREPEESICES RS IS H SRS RRe SRR RN Nnn/
/essesssesesessss Theoretical Interest - Ideal Grad. Alg. s=sessnssssssssn/
/essennesnssssssns C[i] = c[i](I-;lph. x A) - alpha x B sesssssssssnssnss/
P2 LT T T PP T P ST TR T P PR P PR DAL P LT ST DI LD Ty

/e
fprintf(fp,"\n\n s+ses KEAN SQUARE GRADIENT ALGORITHM sune);

for (chk=1:chk<=max_num;chk++)
{
for (3=0;i<=MAYTAPS;i++) C[i] = Complex(0.0,0.0);
11 (o) c[u/2+1].xr = 1.0;
else C[0).x = 1.0;
alpha = val[chk];
fprintf(fp,"\nalpha=’8.4f\n",alpha) ;
it (alpha ¢= 0.0)
{
for (i=1;1i<=N+1;1++)
for (J=1;j<=0+1;j++)
41{i1 (§] = Csub(I[i][j],RCmul(alpka,A[i][j1});
k=0;
do
{
K++;
for (i=1;i<=N+1;i++)
{
AC[i] = Complex(0.0,0.0);
cs{i] = c[i];
for (j=1;j<=W+1;j++)
AC[i] = cadd(Ac[i),Cmul(A1[i][j],c[§-1]));
}
for (i=1;i<=N+1;i++)
c[1-1] = cadd(ac[i] ,RCmul(alpha,B[i]));
Diff = 0.0;
tor (i=0;i<=N;i++) ca[i] = Csub(C[i],Cs[i]);
for (i=0;i<=N;i++) Diff += Cabs(Cd[il);
}
while (Diff > ERROR);

v = Complex(0.0,0.0);
for (i=1;i<=N+1;1i+4+)
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{
if ((1%Nm ==1) &2 (i != 1)) fprintf (fp,"\n");
- tprintt(£p,"Cl%3d)=%8.4¢,%8.42§ *,i-8/2-1,C[i-1].r,C[i-1].i);
v = Cadd(v,Cmul(Conjg(B[i]),Cc[i-1]1));
}
tprintf(2p,"\nTimes in loop=/%3d, pdt1=Y8.41,%8.41]j " x,v.r,v.i);
}
}
./
/....‘..-“‘.““‘....“....“"“‘.t‘..‘.....““““.““‘...‘/
fprintt (£p,"\nMinizsum Mean Square Error \n");
MSE = 1 - Cabs(pdt);
tprintf (fp,"PDT=Y8.4£+%8.4¢2j" ,pdt.r,pdt .i);
f1lush(tp);
return(MSE);

Input File

ga26.06
1
0.5
180
0.5
q

16

1
0.06
26.0
2

20
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o,
s

Output File

Numbevefpaths = 1

Peth@#1Gecopod m 05300, Gegng = 180.000, deley = 08500

Integral = 2.1204
Relifactor = 6.0006

10 - QAM

Qempgep = 13418, Preg = 0.2500

Qempseg = 1.0000, Preg = 05000

Qampgep = 0.4472, Preg = 02400

agoum{l] = 1.5008

3] = 0.383)3

[3) = 0.1420

sqeum{s] = 0.0483

ol] = —0.9407, ~0.0487)4{2] = ~0.3163, ~0.0487)
.H = 0.3163, ~0.048756[¢) = 0.9487, —0.9487)

ofS) = —~0.9487, ~0.3182) 28] = —-0.3162, ~0.3162)
.H = 0.3162, —0.316250[8] = 0.9487, —0.3163;

o[t = —~0.9487,0.316254[10) = -0.31632,0.3163,
o[11) = 0.31€3,0.31624{13) = 0.9487, 0.3163;
o(13) = —0.9487,0.9487)0[14) = —0.3163,0.9487,
o{18] = 0.3162,0.0487,4[16) = 0.9487, 0.9487;
NO/2 = 35.00004B

NO/2 = 0.0032

Numberof BeuahizerTapabendesCl0] = 0
MinimumbMieanSquareBrror

PDT = 0.78032 4 0.0000)

N0, MMSE = 02498

L IlMMSE = 0.2490
Lu3MMSE = 02498
L 3MMSE = 02408
LabMMSE = 02408

Nembevofh;ssliserTapsbendesCi0) = 2
Min.numMfeanSquareBrror

PDT = 0.9688 4 0.0000)

N=2, MMSB = 003132

Lu iMMSE = 0.031¢
L= 3MMSE = 0.0312
L= 3SMMSE = 00312
LulMMSE = 00313

Numbevof ByusliserTapsdendesClO] = ¢
MwmimumAdcanSquareBrror

PDT = 0.9718 4 0 0000y

Nuxdo, MMSE = 0.0284

Lu IAMMSE = 00280
Lu3MMSRE = 0.028¢
L= 3IMMSE = (0284
L= SMMSB = 00284

Numbevof ByuahserTapsbesdesCl0] = &
MwmimumbfcanSquareBrvor

POT = 0.9713 4 0.0000y

Nud¢ MMSE = 00227

L= IMMSE = 00219
L= 3IMMSE = 00328
L= 3SMMSB = 0.0228
LelMMSE = 00228

Numbevof BeushiscrTapsbendesCl0] = §
MimimumAifesnSguareBrror

PDT = 0.9790 4 0.0000y

Ne s, MAMSB = 0.0210

L= IMMSE = 093212
L = JMMSE = 0.0211
L = SMMSE = 0.0210
L = AMMSB = 00210

Numberof BguahserTapsbesndesC[0] = 10
MnimumifeanSguareBrrer

PDT = 0.9804 4 ~0.0000,

N =10, MMSE = 0,0196

Lx1MMSE = 0019
L = 3aMMSE = 0.019¢
L = 3MMSB = 00198
L = bMMSE = 0.0198

Numberof BaualiserTapobendesC0]) = 13
MinimumMMeanSegnareBrror

PDT = 0.9813 + 0.6000,

N =12, MAMSE = 00187

L = IMMSE = 00188
L = IMMSE = 00107
L= 3IMMSB = 0.0107
L =WMMSEB = 0.0187

Numberof BgualizerTapsdeanrdesC[0] = 14
MinimumAfeanSqguareBrror

PDT = 09830 4+ -0.0000y

N=14, MMSB = 00180

L = 1MMSE = 00101
L = 2MMSE = 60180
L = AMMSEB = 00180
L = sMMSE = 0.0180

Numberof BgualizserTapsbesdesC[0] = 16
MumimsmifeanSguareBrror

PDT = 0.8826 4 0.0000y

N =18, MMSB = 00174

L = lMMSE = 0.0176
L w IMMSE = 0.0174
L = IMMSE = 00174
L = sMMSE = 0.017¢

Numberof BgualizerTapsbessdesC[0] = 18
MnimumhicanSquareBrror

PDT = 09830 + 4.0000;

N =l AMSED =00170

L =1MMSE = 00171
L= IMMSB = 00170
L = SMMSE = 00170
L = sMMSE = 00170

Numberof BgualixerTapobesdesCl0] = 20
MinimasmAfeanSeuareBrror

PDT = 0.9834 + 0.0000)

N =30, MMSE = 00186

L= 1MMSE = 0.0148
L = 3MMSE = 00148
L = JMMSPB = 0.0168
L = SMMSE = 0.0188




Appendix B

B.1 AMSE Program File and Test Case

AMSE.C

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

#define MAX 256 /¢ Max Number of signals allowed in a set ¢/
#define MAXTERMS 440 /* Max Bumber of convolution terms ./
#define OFFSET 220 /* Position of referemce tap s/
#define RUN 3220 /* Number of signals in a sequence s/
#detine MAXTAPS 40 /* Max Number of Complex Taps Allowed s/
#define Nm 2 /% Used for Printed Output s/
#define KKMAX 60 /* Max number of Runs ./
#datine PI 3.141592664

#detfine ERROR 0.000000001
#define CELLSIZE 500
#define MAXCELL 20
#define STEP 100

typedef struct FCOMPLEX {

double r,i;

} fcomplex;
JA L DT P P T P PP T T T P PP e PP T e PR T T TR T T ¥
/essnssssnnnnrssss Uges LNS adaptiv. ;],sorithn to [(TIT T P TTTT Ty
A LI IITYIT T T T update equalizer coefficients (T YT T 1Y)
/#*ssssssnsnassess Parameters just like in MINNEANSQERROR #eesesss/
A LTI TP AT PR T T T T T TR T Ty

ADAPTIVEMSE(L,M,N ,SIG_SET,g,?,fp,21,12,val,N0)

int L, N X;

fcomplex SIG_SET[MAI+1], g[MAXTERMS+1], f [MAXTERMS+1];
FILE »fp, *f1;
float val[im+1], ¥O;
{
double Cabs();
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Zcomplex Cadd(), Csub(), Cmul(), Cdiv();
fcomplex Complex(), Conjg(), Arg(), RCmul();
fcomplex y[RUN+1], b[RUN+1], bd[RUN+1);
fcomplex CIMAITAPS+1];
AL DI YT ITIY T PP PR P PR R R R R PP T PR TR L PR D T T Y
/evesessssssssss 3 - gqualizer outputs senessetssses/
/essessssssnsnss tenp - used for phase estimation ssesssssesss/
/essensssssssnes ostimate - estimate of data signal ssssssssssses/
/eesssssssessnse grroxr = estimate - actual SESuREIEB e/
/essessssessenes foc ~ dumny variable for upd.tin& sSeesesstsenes/
AT TP DL TP T PR DY PRI T P DAY T PR T T L P T T Py

fcomplex z[RUN+1], b_arg[RUN+1], temp[MAXITAPS+1]);

fcomplex estimate, error, fac[MAXTAPS+i];

fcomplex v, v_arg, mnoise[RUN+1], w[RUN+1];

float alpta, stdv, rani1();

double suxz, suml, Amse[RUN+i];

double sum2[MAXCELL+1], sum3[MAXCELL+1], amse;

f£loat gasdev(), cnt[MAXTAPS+1];
/‘...‘.“"‘..““‘..‘.“““‘.‘.t“.t“."‘l“.‘t““./
/esesssssvssnse Indices I ITTTITT T 2ITTTY Y 4
/““‘.t‘t‘...“l"....‘”‘l".t“‘.“‘.“ll“‘.t‘t‘.“/

int i, j, jim, k, k1, kk, I, n;

int idum, idum2, max_num, chk;
/-‘..‘.‘“‘“-..“.t‘.“‘.l‘..‘.“‘l“““‘tt‘.‘..““t.“‘#/
/eesssssssssessss Determine Number of Step-sizes sssssnsssis/
/.‘..““t“...“““.t".tt‘.“.t‘.t‘““l.l‘..‘tl‘.““-‘t/

chk = 0;
do
{

chk++;
}

while (val(chk] != 0.0);
max num = chk - 1;
stdv = sqrt(N0);
Y T L T T Ty
for (chk=1;chk<zmax_pum;chk++)
{
alpha = vall[chk];
it (alpha != 0.0)
{
fprintf(fp,”\n Step = %6.3f\n" ,alpha);
for (k=0;k<=RUN;k++) bd[k] = Complex(0.0,0.0);
for (1=0;i<=RUN;it++) Amse[i] = 0.00;
bd[0] .r = 1.0; amse = 0.0;
for (i=0;i<=MAXCELL;i++) sum3[i] = 0.0;
PALTT T T LITTT I DR T T DT T P pmpppasony
FALLE L L T L T I oy
for (kk=1;kk<=KKMAX;kk++)
{
for (i=0;i<=MAXTAPS;i++) C[i] = Complex(0.0,0.0);
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/sssssss Different Equalizer Initialization seesesssessss/
/+ it (1>0) C[N/2].r = 1.0;
else C[0]l.r = 1.0;
»/
/‘.“...““““.“tt“..‘l““..‘.“‘.‘.l“".‘.‘.l“‘../
sum = 0.0;
sumi = 0.0;
for (i=0;i<=MAXCELL;i++) sum2[i] = 0.0;
i=1;i<=M;i++) ent[i] =0.0;

idum2 = kk;
tprintf(fp,"\n %24, ",kk);
for (k=1;k<= RUN;k++)
{
m = ((int) (zani(&idum)sd))%M +1;
for (i=1;i<=M;i++)
{
if (rn == 1) cnt[i]++;
}
/e%ss idum = k *eesusn/
blk] = SIG_SET[r];
b_arglk] = Arg(blk});
bd[k] = Cmul(b_arg[k] ,bd[k-1]);
noise[k] = Complex(gasdev(&idum2),gasdev(kidum2));
noise[k].r »= stdv ;
noise[k].i *= stdv ;
}
fprintf(fp,"\n");
for (i=1;i<=M;i++)
{
ent[i] /= RUN;
tprintf(tp,”%8.41" ,cnt[i]);
}
tflush(fp);

for (n=1;n<= RUN;n++)
{
yinl = Complex(0.0,0.0);
w[nl = Complex(0.0,0.0);
for (k=0;k<=MAITERMS ;k++)
{
k1 = k - OFFSET;
if ((n >k1) &k (k1 >= n ~ RUN))
{
yin] = Cadd(y[nl],Cmul(bd[n-ki-1],Caul(bln-x11,glk])));
w[n] = Cadd(w[n] ,Coul(noiseln-k1],2[x]));
}
}
ynl] = Cadd(y[n],v[nl);
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.
;
4

}
/esesssnsssssss LS ADAPTIVE ALGORITHN sseesss o/

nes3;
do

{

/e%es Get Phase encoded estimate for prev. signal sss/
z[n] = Complex(0.0,0.0);

sum = 0.0;

for {(i=1;i<=L;i++) temp[i) = Complex(0.0,0.0);

tor (i=0;i<=N;i++)

¢ it ((n+1)>0/2) z[n] = Cadd(z[n],Cmul(C[i],y[n+i-¥/2]));
:or (i=1;4¢sL;i++)
¢ itz (n>i) templil = z[n-i];
:or (1=2;i<sL;i++)
¢ for (j=n-i+1;j<=n-1;j++)
i it (j) templi] = Cmul(templil,b_axgljl);
}

v = Complex(0.0,0.0);
for (i=1;i<z=L;i++) v = Cadd(v,templil);
it (Cabs(v) == 0.0) v = Complex(1.0,0.0);

V_arg = Arg(v);

estimate = Cmul(z[n],Conjg(v_arg));
error = Csub(estimate,bnl);

sum = Cabs(errox) * Cabs(erxor);

foxr (1=0;i<=N;i++)

{
fac(i] = Complex(0.0,0.0);
it ((n+i)>N/2)

{
fac[i] = Cmul(Conjg(yIn+i-¥/2]),v_arg);
fac[i] = Cmul(tac[i] ,erxror);
)}
Cc[i] = Csub(C[i] ,ACmul (aipha,fac[i]));
}
it ((n%STEP == 0) || (n ==1))
{

it (n<=RUN-OFFSET) fprintf(£1,"%4d %8.4f\n" ,n,sum);
fflush(f1);

}
Anse{n] += sum;
sumi += sum;

it ((n> O)&k(n<= 500)) sum2[1] += sum;

81



else it ((n> 500)&&(n<=1000)) sum2[2]
else if ((n>1000)2&k(n<=1600)) sux2[3]
else if ((n>1500)&k(n<=2000)) sum2(4)
else it ((n>2000)&&X(n<=2500)) sum2([5])
else if ((n>2500)&&(n<=3000)) sum2[6]
nt++;

}

vhile (n<=RUN-OFFSET);

+

sum;
sum;
sunm;
sum;
sum;

+

+

+
o oun o o

+

sumi /= (RUN - OFFSET);
amse += sumi;
for (1=0;i<=MAXCELL;i++) sum2[i] /= CELLSIZE ;
fprintf (1p,"\n");
for (i=1;i<=6;i++) fprintf(fp,"%8.41" ,sum2[i]);
2flush(fp);
for (i=0;i<=MAXCELL;i++) sum3[i]l += sum2{i] ;
fflush(f£1);
tprintf(£1,"\n");

)}

for (n=1;:n<=RUN;n++) Amse[n] /= KKMAX;

fprintf(£2," 1 %8.4f\n",Amse[1]);

f£f1lush(£2);

for (n=1;n<=RUN;n++)

{
it ((n%STEP == 0) && (n<=RUN-OFFSET))
{

if (n<RUN-OFFSET) fprintf(£2,"%4d %8.4f\n",n,Amse[n]);
else fprintf(£2,"%4d %8.42",n,Anse[n]);
£11ush(12);
}
}
amse /= KKMAX;
fprintf (fp,"\nStep Size=YB.4f,\tAverage MSE = 78.4f\n",alpha,amss);
fprintt (£p,")4d\n" ,KKMAX) ;
for (i=0;i<=MAXCELL;i++) sum3[i)] /= KKMAX ;
for (i=1;i<=6;i++) fprintf(Lp,"%10.42",sun3[i]);
tprintf(fp,"\n");
f£flush(1p);
}
}
}
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Input File

€x35.08
2

0.3

180
0.8

0.2

20

E A )

q

16

1
0.0
%.0
2

20

2

1

[ 3

1
grx.26

Average Output File

1 1.1300
100 0.0438
200 0.028¢
300 0.0312
400 0.0218
800 0.02¢8
400 0.0312
700 0.0243
800 0.0301
900 0.02¢4”

1000 © 0297
1100 0.0284
1300 0.028¢
1300 0.0317
1400 0.0282
1800 0.022¢
160¢ 0.0209
1700 0.0270
1800 0.0328
1900 0.0291
2000 0.0239
2100 0.0290
3300 0.0249
3300 0.028¢
4400 0.028¢
2500 o0.0287
2800 0.0330
3700 0.0334
2000 0.0282
a0  0.0317
3000 0.0278
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Raw Output File

1
100
200
300
400
500
600
Y00
800
900

1000
1100
1200
1300
1400
1500
1800
1700
1800
1900
2000
2100
2200
2300
2400
2800
2600
2700
2800
2900
3000

100
200
300
400
500
600
700
800
200
1000
1100
1200
1300
1400
1500
1600
1700
1800
1800
2000
2100
2200
2300
2400
2500
2800
ar00
2800
2900
3000

1.8000
0.0303
0.0163
0.032¢
0.0416
0.0700
0.0322
0.1289
0.0118
0.012¢
0.0045
0.0188
0.0049
0.039)
0.0982
0.0004
0.0018
0.0100
0.0010
0.0097
0.0048
0.0088
0.0030
0.0047
0.0137
0.0222
0.0011
0.129¢
0 0093
0.0304
0.0398

0.2000
0.0073
0.0009
0.0293
0.0820
0.0179
0.0187
0.0018
0.0092
0 0018
0.0033
0.0044
0.03v¢
0.0090
0.1033
0.0172
0.002¢
0.018
0.0681
0.0581
0.0014
0.0487
0.0008
0.0297
0.0079
0.0074
0.0329
0.0124
0.1140
0.0210
0.0249

400
800

100

900
1000
1100
1200
1300
1400
1800
1600
1700
1800
1900
2000
2100
2200
2300
2400
2800
2600
aroo
2800
w00
3000

100

200

300

400

500

600

100

800

200
1000
1100
1200
1300
1400
1800
1800
1700
1800
1900
2000
2100
2200
3300
2400
2500
2600
aro0
2800
2800
3000

1.8000
0.0247
0.0102
0.0472
0.001%
0.0089
0.0385
0.0815
0.0003
0.0372
0.003¢
0.0026
0.0214
0.0114
0.0149
0.0004
0.0080
0.0019
0.028¢9
0.0119
0.0297
0.0007
0.0894
0.0130
0.0428
0.01¢5
0.0312
0.0114
0 0243
0.0313
0.0914

1.8000
0.0687
0 0209
0.001¢
0.0264
0.043¢6
0.0320
0.024)
0.0048
0.0187
0.0481
0.0571
0.0381
0.0116
0.0210
0.0241
00171
0.0741
0.013¢8
0.0188
0.0174
0.0137
0.0242
0.0273
0.0171
0.0187
0.0380
0.0462
0.0165
0.0134
eo117

100
200
300
400

100
800

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
3300
2400
2800
2600
27100
2800
2900
3000

100

200

300

400

500

60u

700

200

200
1000
1100
1200
1300
1400
1800
1600
1700
1800
1900
2000
2100
3300
2300
2400
2500
2600
2700
2800
2909
3000

1.8000
00129
0.0409
00181
0.038%
0.0044
0.0107
0.0362
0.0102
0.0418
0.0388
0.0033
0.0192
0.0181
0.0186
0.0302
0.0040
0.0b78
0.0307
0.0122
0.0268
00123
0.0003
0.0270
00218
0.0432
0.0996
0.0023
0.0101
0 0084
0.0199

1.0000
0.0058
00032
0.0167
0.0296
0.01832
0.0042
0.0013
0.0041
0.0231
0.0377
0.0028
0.0109
00213
0.024¢
0.0120
0.0112
0.0033
0.0108
0.0085
0.0870
0.0106
0.0407
0.0040
00033
9.0079
0.0210
0.0085
0.0184
0.028¢
0.0092
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100
00

700

800
1000
110
13200
1300
1400
1600
1600
1700
1800
1900
2000
100
2200
2300
2400
2800
2000
2700
2800
2200
3000

100

200

300

400

900

400

100

800

200
1000
1100
1300
1300
1400
1600
1600
1700
1300
1900
2000
100
3200
3300
2400
00
2800
2700
2800
2900
3000

1.0000
0.047¢
0.04%0
0.033¢
08001
0.0030
0.034
0.0123
0.0092
0.0816
0.040t
0.02¢4
0.010¢
0.0029
0.0024
0.0223
0.0019
0.0336
0.12%1
0.0788
0.0013
0.0088
0.026¢
0.023¢
0.0001
0.0012
0.0278
0.0044
0.0088
0 038
0.0125

0.2000
0.0173
0.0204
0.087¢
0.0198
0.01%¢
0.0554
0.0127
0.0132
0.0480
0.0707
0.0032
0.0400
0.023¢
0.0018
0.0002
0.013
0.0218
0.0088
0.0310
0.0184
0.02°%
L
v.031(
0.0192
0.0033
0.,037¢
0.0062
0.0204
0.1068
0.0141

100
200
300
400
800
€00
100
800

1000
1100
1300
1300
1400
1800
1800
1700
1800
1960
2000
2100
2200
2390
2400
2800
2600
3700
2800
2900
3000

100

200

J00

400

500

600

700

800

200
1000
1100
1200
1300
1400
1500
1800
1700
1800
1900
2000
2100
2200
2300
2400
2500
2800
2700
2800
3900
3000

1.8000
0.1148
0.0349
0,004
0.00232
0.0107
0.0218
0.0318
0.0111
0.0338
0.087¢
0.0212
0.0048
0.0001
00074
0.0269
0.0203
0.0914
0.0835
0.0007
0.0034
0.0192
o.0188
0.0701
0.0387
00593
0.0379
0.0489
00194
0.02397
0 0803

1 0000
0.0488
00371
0.1078
0 0691
0.0277
0.0348
000326
0 0288
0.0384
0.0207
0.0498
0.0117
0.0T156
0.0032
0.04¢43
0.0230
0.0060
09210
0.0264
0.1079
00121
G.008¢
0 0228
0.0147
0 0841
00282
0.0030
0.0033
0.0083
0.0223

100

300

300

400

500

400

T00

800

800
1000
1100
1200
1300
1400
1800
1800
1700
1800
1900
2000
3100
3200
2300
2400
2500
2600
aro00
2800
2900
3000

100

200

300

400

500

600

100

300

200
1000
1100
1200
1300
1400
1800
1600
1100
1800
1900
2000
2100
2300
2300
2400
2800
2600
3700
2800
2900
3000

1.0000
0.0049
0.0198
0.02¢8
0.0098
0.0078
0.03¢8
0 0140
00078
0 0088
0 08832
0.08¢9
0.0328
0.0183
0.0408
0 0031
0 0088
00104
0.0232
0.0111
0.0313
01019
0 0098
0 0262
0 0b¢4
0 0888
0 0184
00272
0.0844
0 0088
0.046¢

1 8000
005873
0.01m1
0.0689
0.0277
0 0180
0 0029
0.0411
0.0066
00123
0 0320
0 008Y
0 0888
0 026)
0 008Y
0.0241
0 0120
00147
0 0004
0 0084
0 0002
0 0099
0 0340
0 6029
0.0162
0 0008
0 0247
0.0008
0.0313
0.0214
0.0283




1800
300

0
500

100

1000
1100
1200
1300
1400
1800
1600
1700
1800
1900
2000
2100
2200
2300
00
2800
600
2700
800
2%00
3000

800

00

100

800

200
1000
1100
1200
1300
1400
1500
1600
1700
1800
1500
3000
2100
2200
300
2400
2800
2600
2100
2000
2%00
3000

1.8000
0.0824
0.0178
0.0244
0.0458
0.0202
00908
0.02¢0
0.000%
0.0101
0.0720
0.0082
0.0024
0.0005
0.030¢
0.0069
0.01%8
0.012)
0.1104
0.0008
0.0310
0.008)
0.0338
0.0220
0.124¢4
0.0101
0.9073
0.0303
0.002¢
0.0227
0.0198

1.0080
0.0148
0.03%¢
0.0447
0.0088
0.0114¢
0.0088
0.0180
0.0032
0.03%¢
0.0132
0.01yY
0.0010
0.0483
0010
0.0077
0.0388
0.028
0.0204
0.01%
0.0478
0.1863
0.0084
0.0097
©.027¢
0.0308
0.02¢3
0.00%¢
0.007¢
0.011¢
0.0344

400
500
€50

1000
1100
1200
1300
1400
1800
1600
1700
1800
1900
2000
2100
2200
aso0
2400
2800
2600
2700
2800
2900
3000

100

200

300

400

s00

400

700

800

000
1000
1100
1200
1300
1400
1800
1600
1700
1800
1900
2080
2100
2200
3300
2400
2800
2600
27100
2800
2900
3000

1.0000
0.0493
0.0073
0.0013
0.0329
0.0110
0.0813
0.0063
0.00838
©0.0060
0.0491
0.0220
0.001¢
0.1041
0.0378
0.0009
0.0233
c.0071
0.0058
0.,074¢
0.0894
0.10€3
0.0210
0.0044
0.0110
0.063Y
0.008¢
0.0231
0.0114
0.0341
0.0210

1.0000
0.0180
0.0898
0.008¢
0.0043
0.0388
0.1183
0.0:78
0.0140
0.0471
0.0981
00480
0.0483
0.0388
0.0183
0.0178
0.015¢
00179
0.0884
0.C062
0.n223
0.0021
0.0248
0.0019
0.0069
0.0038
0.0084
0.01327
0.0207
0.0811
0.0188

100
200
300
400
500
600
700
800

1000
1100
1200
1300
1400
1500
1600
1700
1800
19120
2000
2100
2200
2300
2400
2500
3600
2700
3800
2900
3000

100

200

300

400

500

s00

700

800

00
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
1000
3100
2200
2300
2400
%00
2600
2100
2000
2900
3000

1.0000
0.0470
0.0841
0.0000
0.0184
0.0328
0.017¢
0.0004
0.0078
0.0038
0.0089
0.0131
0.0104
0.01%¢
0.0008
0.0109
0.0001
0.0006
0.0041
0.0370
0.0029
0.0808
0.0168
0.0028
0.0568
0.1088
0.0380
0.0093
0.0270
0.0077
0.0088

1.0000
0.0087
0.0148
0.0782
0.008¢%
0.0308
0.0093
0.0048
0.0116
0.0062
0.0085
08211
0.0013
0.0494
6. 102
[ SN

0.01

0.017

0.003
0.0133
0.0932
0.0102
0.0018
0.0198
0.009.
0.0242
0.0341
0.0208
0.0300
0.0923
0.003}
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200
300
400
800
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800

2000
2100
2200
2300
2400
2800
2000
ar00
2000
%00
3000

0.2000
0.0292
0.007¢
0.0278
0.013¢
0.0270
0.0391
0.027
0.1088
0.0030
0.0089
0.0244¢
0.0183
0.008¢
0.0834
0.0129
0.0069
0.0005
0.0219
0.0323
0.0000
0.0258
0.0088
0.0210
0.0148
0.0288
0.00%2
0.003¢
0.0283
0.011)
0.001¢

1.0000
0.079¢
0.0032
0.0087
0.0198
0.0411
0.0410
0.007¢
0.0038
0.0010
0.0131
00478
0.01688
0.0227
0.0029
0.0073
0.0807
0.0199
0.0091
0.0017
0.0163
0.007T2
0.0203
0.0138
0.029%
0.0208
0.0016
0.2019
0.0028
0.0022
0.032%

100
200
300
400
500
€00
rT00
800

1000
1100
1200
1300
1400
1800
1600
1700
1800
1900
2000
2100
3200
2300
2400
2800
2600
3700
2800
2900
3000

100

200

300

400

800

€00

700

800

900
1000
1300
13200
1300
1400
1800
1800
1Y00
1800
1900
2000
2100
2200
2300
2400
2800
2600
2,00
2800
2900
3000

1.4000
0.034¢
0.0038
0.0202
0.0184
0.013¢
0.1132
0.0803
0.0319
0.0213
09108
0.0288
0.0180
o.0109
0075
0.0279
0.0083
0.0022
0.0877
0.0010
0.0148
0.0145
0.0033
0,007
0.0383
0.002¢
0.011%
0.0061
0 0488
0.0142
00140

0.2000
00412
00334
003205
0.0099
0.0802
0013
0.0087
0 0460
0 0036
0.008¢
0 0210
0.0328
0.1309
0.0113
0.0491
0.0370
0.032¢
0.0322
0.000¢
0.0311
0.0253
0.019¢
0.004¢
[ 2131
0.0399
0.0248
6.0035
¢.013¢
0.0448
0019

100

300

300

400

860

400

100

400

900
1000
1100
1200
1300
1400
1.0
1600
1700
1800
1900
2000
2100
3200
2300
2400
800
2400
700
2800
2900
3000

100

200

300

400

800

600

T00

800

900
1000
1100
1300
1300
1406
1800
1600
1190
1300
1900
2000
2100
00
2300
2400
2800
2600
3100
800
2900
3040

3 8000
0.0608
0.02%
0.010¢
0.012¢
0.0087
0.0801
0.004#
0.0303
0.002¢
o.00vy
0.0380
0.0024
0.037%
[P 1)
o.017Y
0.032¢
0.0044
0.020¢
0.0054
0.0312
0.0018
0.0234
©.000¢
0.0003
O 0163
0.048¢
0.0832
O oo4er
0.0014
o 01))

6.2000
00874
O 1060
©0.0081
0 0170
0.0448
¢.aon
0 0294
0.0097
0.090}
0.0181
0.00m
0.0144
0.0882
0.008¢
0 088t
0.00»"
0.0

1 1% 2%

0.0131
0 o087
€ 0308
0.0833
0.048b
0.009
0.0870
0.0088
0.0110
0.08¢¢
0.103
0.0Ce2




1100
1200
1300
1406
1800
1400
1700
1800
1820
2000
3100
3200
2300
2400
2800
2600
2700
2800
2900
3000

100
200
300
400
830

T00

800

200
2000
1100
1200
1300
1400
1800
1800
1700
1800
1900
2000
23100
2200
2300
3400

2800
2700
2800
2900
3000

1.8000
006868
00887
00094
6.8844¢
00734
¢.1088
0.0194
08148
0.0000
0.0283
0.8380
0.047Y
e.0i88
.0348
0.0088
0.8000
0.0313
0.023¢
0.0113
0.04089
0.9023
0.00310
0.0087
0.0084
0.008¢
0.1228
9.0319
¢.0298
07148
0.0198

1.8000
0.0188
9.0098
0.0836
0.0050
0.0078
0.0089
0.9248
0.0850
00133
6.0241

0.0188
0.0014
00051
001

00433
00158
0.0198
00028
00870
00088
00838
00083
0.0018
Q0882
0.0021

0.0390
0.038¢

08837

0.000¢

00071

600
100
800

1000
1100
1200

1400
1800
1600
1700
1800
1900

2100
2200
2300
2400
2800
2600
2700
2800
29000
3000

100
200
300
<00
00
600
700
800
200

1190
1200
1300
1400
1800
1600
1700
1800
1900
2000
2100
2300
2300
3400
800
2600
aroo
800

3000

1.0000
0.1348
0.0149
0.013
0.0103
0.0102
0.0282
0.0302
0.0108
00009
0.0030
0.0001
0.031¢
0.0082
0.02¢¢
0.0298
0.0793
0.0621
0.0117
0.011¢
0.0084
0.0313
0.0061
0.0240
0.0028
0.0028
02310
0.0110
0.096¢
0.003¢
9.0204

1.0000
0.1438
0.0302
0.0133
0.0010
0.0029
0.0164
0.0173
00198
0.0028
[ X1/1]
0.00%8
0.016¢
0.0088
0.0204
0.001¢
0.0):4
0.0370
0.023)
0.0580
0.0018
0.0068
0.0054
0.098)
0.8003
0.0011
0.0047
0.0883
0.0482
0.0008
0.0393

200
300
400

1100
1200
1300
1400
1800
1800
1700
1800
1900
2090
3180
2300
2300
2400
2800
2400
2100
2800
2900
3000

300
400
800
600
700
800

1000
1100
1200
1300
1400
1800
1800
1700
1800
1900
2000
2100
2200
2300
2400
2800
2000
aroo
2800
2900
3000

0.2000
0.0123
©.0087
9.0081
0.0033
0.0145
0.0088
0.1140
0.0093
0.0398
0.0784
0.0220
0.0872
0.0138
0.0882
0.0269
0.0091
0.004%
0.0084
0.0389
0.0883
0.0204
0.0423
0.0234
0.0970
0.0080
0.0417
0.0860
0.0148
0.0413
0.0388

1.0000
0.1183
0.0584
0.0830
0.0033
0.0347
0.0043
0.0118
0.1965
00372
0.007¢
0.0277
0.0163
0.0867%
0.0489
00033
0.000¢
0.0188
0.0078
0.0113
0.0182
0.0087
0.0278
0.0089
00270
0.028¢
0.0821
0.1781
0.0038
7.0080
0.0110
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100
200
300
€00
800

T00
800
200

1100
1200
1300
1400
1800
1600
1700
1800
1900
23070
nAHa
2iJ0
2300
2400
2800
2600
2700
2800
29090
3000

100
200
300
400
800
600
700
800
e00
1000
1200
1300

1400
1500
1600
1700
1800
1900
23000
2100
3200
2300
2400

2600
2700
2800
2900
3000

10000
0.1648
0.0079
0.0332
0.0589
0.0304
00220
0.0003
0.1823
00128
0.082¢
01493
0.1692
20318
0.0815
0.0149
n.0038
0.0876
0.0489
00120
0.0338
0.0386
0.0107
0.0248
0.0088
0.0039
0.0409
0.0547
0.0473
00710
0.0470

1.0000
0.0287
0.1337
0.0480
0.0432
0.0461
0.0382
0.0101
0.0198
0.0318
0.0308
0.0016
0.0339
0.0408
0.0401
0.0088
0.0037
0.04¢6
0.0829
0.0079
00273
0.0880
0.0832
0.0337
0.0024
0.0231
0.0070
00490
sony
0.0934
80093

100
200
300
400
800
600
100
so0

1000
1100
1200
1300
1400
1500
1600
1700
1800
1800
2000
2100
2200
2300
2400
2500
2600
2%00
2800
2900
3000

100
200
30

1.0000
0.1764
0.0281
0.0187
0.0011
0.0040
0.0308
0.0183
0.0134
0.03%
0.0633
0.0083
0.8483
0.0031
0.039¢
0.0892
0.077¢
2.018¢
0.0807
0.0097
0.0106
0.020¢
0.0286
0.0471
0.0287
0.0075
0.0¢9)
6.0602
0.0160
0.0328
0.0020

1.0000
0.0887
0.0031
0.0413
0.0244
0.0208
0.009¢
0.0305
0.1032
0.0340
3.0209
0 8071
6.0318
0.0438
0.0209
0.0640
0.0383
0.1398
0.1838
o.0111
0.0322
0.0801
0.0087
0.0291
0.0314
0.004¢
0.0893
0.001%
0.0141
0.0358
0.0143

wo

300
400

600
T00

200
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2800
2800
2700
2800
2900
3000

100
300
300
400
800
600
700
800
200
1000
1100
13200
1300
1400
1800
1600
1700
1800
1900
2000
2100
2200
2300
2400
2800

2700
2800

3000

0.32000
0.0101
0.0490
0.0087
0.0058
0.0088
0.0823
0.002¢
0.0358
0.0705
0.0085
0.0330
0.0104
0.0108
0.0289
0.00564
0.0527
0.0208
0.0442
0.0883
0.0008
0.0369
0.0238
0.1148
0.0024
0.0715
0.01350
0.0131
0.0533
00113
0.0373

0.2000
0.0038
0.0213
00087
0.0099
00320
00014
0.0067
00028
0.0487
0.0110
0.0033
0.0301
00318
0.0602
0.0050
0.0126
0.0077
0.0160
0.0018
0.0082
00146
0.1389
0.0080
0.0003
0.0887
0.0671
0.0118
0.0132
0.0093
0.007¢




1106
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000

1.8000
0.0327
@.0113
0.0048
0.02¢¢
0.0073
0.0034
0.0093
0.0268
0.0093
0.1288
0.0638
©.0207
0.0477
0.0324
0.0042
0.0090
0.0020
0.0098
0.0388
0.0185
0.0381
*.007Y
0.0287
0.008¢
0.1872
©.012¢
0.0098
0.0229
0.020%
0.0287

1.8000
0.0003
0.0212
0.0144
0.0300
0.0332
0.0080
0.029)
0.0187
0.0089
0.0120
0.009%0
0.0237
0.04328
0.0881
0.0r240
0.0318
0.0011
0.003¢
0.0024
0.0390
0.02113

0.0138
0.0801

0.0889
0.00>%
0.0263
0.01%8

0.0:30
00171

0.0381

100
200

400
500
400
700
800

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200

2400
2800
2600
2700
2800
2900
3000

100

200

300

400

$00

€00

roo

800

200
1000
31100
1200
1300
1400
1800
1600
1700
1800
1900
a000
2100
2200
2300
2400
2500
3600
2700
2800
2900
3000

1.0000
0.0780
0.0073
0.0183
0.0182
0.0941
3.065¢
6.00312
0.069%
0.9018%
[F13{]
0.009¢
0.0028
0.0848
0.02T0
0.0391
0.0289
0.0088
0.0047
0.0023
0.0108
0.0018
0.9208
0.0148
0.0114
0.0082
0786
0.0018
0.0318
0.0038
0.0988

1.8000
0.080T
2.0011
0.0029
0.0034
0.0044
0.0081
0.021¢
0.0703
0.02¢8
0.0047
0.0033
0.0047
0.0138
0.0042
0.0383
0 0
0.0044
0.0809
0.0068
0.0299
0.0332
0.0238
0.0380
0017
0.031¢
0.0280
0.0403
0.0864¢
0.0131
0.0434

400
800
600
700
800

1000
1100
1200
1300
1400
1800
1600
ir00
1800
1900
2000
2100
2200
2300
2400
2500
3600
2700
2800
%00
3000

100

200

00

400

800

600

700

§00

00
1000
1100
1200
1300
1400
1800
1800
1700
1800
1900
2000
2100
3200
2300
3400
2800
2600
areo
2000
3900
3000

1.0000
0.0313
0.0981
0.0281
0.0052
0.0039
0.02¢¢
0.0048
0.8310
0417
0.0242
0.030
0.018¢
0.0148
0.0881
0.010%
0.0091
0.0120
0.0747
0.0188
0.0310
0.007
0.0088
0.0097
0.0043
0 0227
0.017)
0.0348
0.001¢
0.022¢
0.0887

1.0000
0.0413
0.0083
0.1228
0.0104
0.0087
0.0092
0.0768¢
0.0087
0.0127
0.0010
©.0282
0.0081
0.0010
0.018¢8
0.0040
0.0322
0.0829
0.0027
0.0080
0.0083
0.0172
0.011¢
0.003¢9
0.0984
0.0818
0.0418
0.0598
0.003)
o.0817
0.0323
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100

300
400
800
400
100
800

1000
1100
1200
1300
1400
1500
1600
1700
1800
1800
2000
3100
2200
2300
2400
2500
3800
2700
2800
2900
3000

100
200
300
400
800
400
r00
800

1000
1100
1200
1300
1400
1800
1800
1700
1800
1900
200C
2100
2200
2300
2400
2800
2600
2700
2800
2900
3000

18800
0.0223
0.0208
0.0i91
0.04587
0.0199
0.0209
0.0045
0.0T66
0.0073
0.2433
0.003¢
0.0010
0.0813
0.018¢
0.0223
0.2010
0.0183
0.038¢
0.0831
0.0002
0.0027
0.0340
0.0833
0.1111
0.0178
0.042¢
0.0793
0.0183
0.0024
0.003b

0.2000
0.0277
00488
0.0103
00064
0.0190
013218
0.033¢
0.0180
08071
0.010¢
00118
0.0312
0.0397
0.0041
0.0088
0.0183
00188
0.0087
00233
0.0168
0.0237
0.0163
0.0138
0.0303
0.0035
0.0033
0.0039
0.0168
0.0308
0.0438

100

400
500
800
roo
800

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2630
2100
2200
2300
2400
2500
2600
aro0
2800
2900
3000

100

200

300

400

800

€00

0

800

200
1000
1100
1200
1300
1400
1500
1800
1700
1000
1%00
2000
2100
2200
2300
2400
500
2000
ar00
2800
%00
3000

1.8000
0.0870
0.0374
0.0208
[ X1134
0.0788
fn.0181
0 00Ts
0 0168
0.030¢
0.011%
0.029L
0.0820
0.0274
0.0447
0.031¢
0.0101
0.0089
0 0081
0.0382
0.032¢
0 0989
0.0023
0 0072
00136
0.0010
0,02¢)
0.0029
0.0293
0.0193
0.0389

1.8000
0.0001
©0.0019
0.0290
0.0313
0.0159
0.0117
0.0427
0.0010
0.03¢49
0.0002
0 1088
0.0187
0 0008
0.0014
0.0221
0.0003
0.0018
0.052¢
0.0230
0.0184¢
0.0169
¢ 0237
0 01683
0.0428
09230
0.0041
0 6020
0.0228
0.037¢
0.0182

100

200

300

400

800

400

100

800

200
1000
1100
1200
1%00
1400
1800
1600
1100
1800
1900
2000
00
2200
2300
3400
2500
3800
2100
2800
2900
2000

100

200

00

400

800

600

100

400

200
1000
1100
1300
1300
1400
1800
1800
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000

1.8000
0.0208
0.0034
0.0214
0.000%
0.027¢
0.0018
8.0380
0.0619
0.0230
0.0004
0.0199
© 0808
0.0380
0.028¢
0.016)
0.0000
0.07¢8
0.0770
0.0386
0.022)
0.0097
G 0210
0.0238
0.0130
0 0898
© 02>
0.0888
6 0007
0.0010
0 10648

1.0000
0.1139
0.0068
0.03813
0.0068
0.04588
0.0729
0 0038
0 0601
0.0191
0.0081
0 0048
5.0263
0.0080
00123
© 0036
00183
0.009¢
0.0319
0.0308
0 0038
0 0220
0 00YY
¢.0303
0 oose®
0 0189
0 0494
0.0432
0 0001
00113
0 0069




S

600
700

1000
1100
1200
1300
1400
1500
1600
1700
1800
19200
2000
2100
2200
2300
2400
2500
3800
aroo
2000
2900
3000

100
200
300

500

800

T00

800

200
1000
1100
1200
1300
1400
1800
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2100
00
2900
3000

1.0000
G.0089
0078
0.0237
0017
00291
0.0138
0.0049
0.0092
0.0109
0.0162
0.03¢Y
0.004¢
0.0128
0.0201
0.0300
0.0030
0.0983
0.0842
03163
0.0702
0.003¢
0.0190
0.0082
0 0084
0.0189
0 0442
0.043¢
0.1048
0.0130
0.03¢4¢

0.2000
0.0891
0.0188
0.0111
0 0081
0.0881
0.0026
0.0084
0.0705
0.0887
0.0110
0.0TY
0.0134
0.1428
0.0230
0.0111
0.0008
0.032%
00111
0.037¢
0.0111
0.0051
0.0140
0.0081
0.007%
0.00¢8
0.1860
0.0043
0.0012
0.0260
0.0030

309
400

700
800

1000
1100
1300
1308
1400
1800
1600
1700
1800
1900

2100
2200
3300
2400
2500
2600
2700
2800
2900
3000

100
200
300
400
800
€00
T00
800
200
1000
1100
1200
1300
1400
1800
1600
1700
1800
1902

100
3200
3300
2400
asoe
2600
aroo
2800
2900
3000

1.0000
0.0008
0.01168
0.0877
0.01712
0.0110
9.0142
o087
0.0424
0.038)
0.0181
0.0247
0.1202
©0.0080
0.0038
e.007?
0.0140
0.0488
0.0167
0.0703
0.0073
0.0389
2.0210
0.0074
0.0104
0.022¢6
0.0828
0.044%
0.0088
0.003¢
0.0493

1.8000
0.0838
0.000¢
0.034%
0.0400
0.0188
0.070)
0.0246
0.0218
0.0738
0.0002
0.0931
0.033¢4
0.0419
0.0240
0.0124
0.0008
0.0021
0.0460
0.0215
0.007¢
0.0813
6.03060
0.0301
0.013%
0.013¢0
0.004¢
0.102¢9
0.60se
0.0142
0.0892

100

300
400
800
600
To0
800

1000
1100
1300
1300
1400
1800
1800
1700
1800
1800
2900
3100
2200
2300
2400
2500
2600
2700
2400
2900
3000

100
200
300
400
$00
400
To00
800

1000
1100
1290
1300
1400
1800
1600
1760
1400
1900
2000
3100
3200
2300
2400
2800
2000
av00
2600
2900
3000

14000
0.0089
0.0887
0.0158
0.0198
0.0091
0.0038
0.0023
0.0248
0.0027
0100
0.0229
0.0180
0.0188
0.0343
0.0087
G.0872
0.0127
0.0071
0.0018
0.0082
0.0487
0.0144
0.0188
0.0239
0.0020
0.0083
0.0366
0.005¢
0.0214
00181

1.0000
0.0208
9.0208
0.0793
0.0174
0.0183
0.0042
0.0120
0.0026
0.014¢
0.0491
00111
0.0414
0.0443
0.0243
0.0142
0.0830
0.0090
0.0458
0.0683
0.0091
0.0308
0.0123
0.1697
0.0081
0.039¢
0.0384
0.0270
0.0032¢
0.0308
0.0408
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100

200

300

400

500

400

700

800

200
1000
1100
1300
1300
1400
1800
1600
1700
1000
1900
2000
2100
2200
2300
2400
2500
2400
2700
asoo
2900
3000

100
200
o
400
800
€60
tTo0
800

1000
1100
13200
1300
1400

1600
1700
1800
1900
2000
100
2200
2300
2400

2600
av00
2800
2900
3000

14000
0.0237
0.0222
0.031%
0.0049
0.0481
00076
0.0103
0.0432
0.011)
0.0067
0.0231
0.0250
0.0892
0.0070
0.0083
0.0985
0.0326
0.0098
0.0428
0.0318
0.0008
0.0195
0.0301
0.0132
0.0143
9.0258
0.03271
0.0153
0.0048
0.0097

1.0000
0.0079
0.0188
0.0107
0.0437
0.0014
0.0117
0.0388
0.0087
0.0218
0.04¢1
0.00%¢
0.0487
0.0114
0.0387
0.00%¢
0.0371
00535
.0084
0.0162
0.0028
0.0333
0.012)
0.6434
0.01%0
0.0190
0.003¢
0.028¢
0.0884
0.0838
0.0159

100
200
300
400
800
00
700
00

1000
1100
1200
1300
1400
1800
1690
1700
1800
1900
2000
2100
2200
2300
2400
2500
2800
ar00
2000
29500
Jooc

100

200

oo

400

800

€00

T00

800

800
1000
1100
1200
1300
1400
1500
1800
1700
1800
1900
2000
2100
2200
2300
2400
2500
2000
aroeo
2800
2900
3000

1.0000
0.0231
0.0862
0.0803
0.0236
0.0492
0.0040
0.009¢
0.0027
0.0102
0.00956
0.0038
0.0431
0.01%¢
0.0029
0.0377
0.019¢
0.0474
0.0277
0.0978
0.0431
0 7540
o0.0Tos
0.0277
0.0827
0.0408
0.0082
0.1243
0.0003
0.0328
0.0021

0.3000
0.0016
0.0484
0.0372
0.0062
0.0083
0.0329
0.0875
0.0488
0.6905
0.0042
0.0218
0.0294
0.0087
0.0180
0.01%0
0.0037
0.0042
0.0081
0.0148
0.0067
0.03326
0.1630
0.0487
0.0039
0.0321
0.0208
0.023¢
00210
0.0337
0.0019

100
200
300
400
500
$00
700
800
oo
1000
1100
1290
1300
1400
1500
1600
1700
1800
1990
2000
2100
2200
2300
2400
2500
2600
2700
2300
2900
3000

100

200

300

400

800

600

T00

800

200
1000
1100
1200
1300
1400
1500
1600
1100
1800
1900
2000
2100
2200
2300
2400
2000
2600
2700
2300
2900
3000

1.3000
0 0858
0.019¢
0.0324
0.0596
0.0497
PLIRE
04 243
0.0098
0.0802
0.0365
0.0181
0.0008
00789
0.0472
0.0410
0.0338
0.0322
0.0290
0.0134
0 0101
€.00322
0.0177
0.0159
0 08268
0.0175
0.0771
0.0011
0.0760
0 0046
0.0043

0 2000
0.02712
0.008%
0.0056
0.0380
0.0390
0.0099
0 0383
0 0296
0.0423
0.0188
0.1002
0.0582
0.0376
0 0645
0.0920
00220
0.0069
0.081¢
0.009¢
0.0012
0.1032
0.0129
0.001¢
o017H
0.0278
o0.0110
0.0311
0.0043
0 0664
¢ 0803




B.2 Additional Program Files

EQ.C

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

#define MAX 266 /* Max # of signals in constellation */
#define MAX_PATHS 30 /¢ Max # of paths in channel »/
#dstine PI 3.141592664

#define MAXTERMS 440 /#* Number of terms in convolution ./
#define OFFSET 220 /# Position of reference tap »/
#define MAXTAPS 40 /* Max # of taps alloved s/
#define Nm 2 /% Used for display purposes ./
#define SIKP 100 /+ No of gaps used by simpson rule =/

tyvpedef struct FCOMPLEX {
double r,i;
} fcomplex;

main()

{
int i, j, k, num_ch;
float Gc_mod [MAX_PATHS+1], Gc_ang[MAX_PATHS+1], delay[MAX_PATHS+1];
float xoll, vallWm+1];
double kdel[MAX _PATHS+1], mag;
double MINMEANSQERR(), MNSE, LMMSE;
fcomplex SIG_SET[MAX+1), g[MAXTERNS+1], £ [MAXTERMS+1];
fcomplex Cadd(), Csub(), Cmul(), Cdiv();
fcomplex Complex()}, Conjg(), Arg();
double Cabs(), Sum;

FILE =#fp, »f1, »£2;

int L, M, N, N1, ki1;

int Lmin, Lmax, Lstep, Nmin, Nmax, Nstep;

int jim, max_num, chk, 1, m;

void ADAPTIVEMSE();

char choice, filename[10], file_nl1[13], file_nla[14];

int n, Diff_Mag, done;

float NO, magsum;

double point[SIMP+1], qam_mag[MAX+1], v29_mag[MAX+1], treq[MAX+1];
double integral, hvalus[SIMP+1], factor, fac, sqsum[MAXTAPS+1];
double amt[SIMP+1];

fcomplex value[SIMNP+i], addi, add2, fstore;

[RERARE AR AR RS R RRE R AR SRR OB SRR ASRES R B SR ER S S AN SRR RS SR R0/
priitf ("Enter FILEFAME to be written tof>_x 6 characters) :");
scanf ("%s",filenane);
fp = fopen(filename,"a");
it (fp == NULL)
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g

{
printf (“Cannot open File");
exit(1);

}

/.“.“‘“.‘0.“‘..“ﬁ““.““".l‘..“ﬁ.“‘“‘.“““.““.t“‘/
print?("ENTER NUMBER OF EXTRA PATHS IN CHANNEL: ");
scanf("%d", \\num_ch); /* Number of paths in channel »/

fprintf (fp,"\nNunber of paths = %2d\n",num_ch);
printf("Nuxber of paths = %2d\n",num_ch);
for (iz1;i<=num_ch;it++)

{

print? (“\nFor PATH #¥d, enter parameters\n",i);
printf (“Path Magnitude Response - Gc_mod

scanf ("%2", \\Gc_mod[il);

™)

printf (“Path Angle Response in Degrees — Gc_ang :");

scant ("“%2", \\Gc_ang(il);
Ge_angli] = Ge_ang[i]/180.00;
printf (*Path Time Delay in units of T - delay
scanf (41", \\delay[i]);
)}
for (i=1;i<=num_ch;i++)

{

")

fprintf (£p,"Path #%2d Gc_mod=Y7.3f, Gc_ang=/7.3f,
delay=%7.3t\n",i,Gc_mod[i],Gc_ang[i]*»180,delay[i]);

}

/“““““‘“"“....“l“‘.“"‘.“‘.l.i“t.“..“..li‘.“‘.#“"/

/** Using Simpson’s Rule to Evaluate an integral ssesssssssssssssis/
/..-.““."..“‘ﬁ.".“0“.‘.“.."““‘....““..‘.‘..“‘..““"/

for (n=0;n<=SINP;n++)
{
pointin] = - 1.0/2 + 1.0 &« n / SIMP;
}
integral = 0.0;
for (n=0;n<=SIMP;n++)
{
hvaluein] = 0.0;
value[n] = Complex(0.0,0.0);
for (i=1;i<=num_ch;i++)
{
add1l = Complex(Gc_mod[i]ecos(Gec_ang[il+PI),
Gc_mod[i]#sin(Gc_ang[il+PI));
add2 = Complex(cos(2*PIsdelay[i])*point[n]),
-sin(2¢PI*delay[i] spoint[n]));
addl = Cmul(addi,add?);
value[n] = Cadd(valuel[n] ,add1);
}
value(n] = Cadd(value[n],Complex(1.0,0.0));

hvalue[n] = 1.0 / ( Cabs(value[n]) * Cabs(value™ni) ):

}

for (n=0;n<=SINP;n++)
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integral += hvaluel[n] ;
integral -= 0.5 * ( hvalue[0] + hvalue[SIMP] );
integral /= SIMP;
2printt(fp,"\nIntegral =%8.41" ,integral);
£21ush(p) ;
/#“.“‘...m.. Sh‘p‘ .“."‘t“..‘..“‘t“..““..“b/
printf(“Enter Roll factor between O and 1.");
scanf (42", \\roll);
fprintf(fp,“\nRoll factor =%8.41",7roll);
/‘...“.“.‘.."l#.‘..““‘ﬁ.“."‘.““““““t..‘t/

/+ Determine the overall impulse response vt s/
/* transaitter, channel and ./
/* Teceiver. ./

/““““.““““““.&“““"‘@“.“““’—“‘.‘f:.../
for (k=0:k<=MAITERHS: k++)
{
glx] = Complex(0.0,0.0);
k1 = k - OFFSET;
glkl.r = sin(PI~k1)/(PIsk1)s
cos(roll*PIsk1)/ (1 ~(2¢xolleki)={2erollek1));
it (xt ==0) g[OFFSET).r = 1.0000;
for (i=1;i<=num_ch;i++)
{
kdelfi] = ¥1 - delay[i];
it ((kd=21[i] != 0.0000) \\ \\ (roll == 0.0))
{
gkl .x += Gc_mod[i] * cos(Gc_ang[i]l*PI)
* sin(PIskdel[i])/ (PIskdel[i]);
g(k] .i += Gc_mod[i]l * sin(Gc_ang[i]*PI)
* gin(PI*kdel(i])/{TIskdel(1i]);
}
else it ((kdal[il != 0.0000) \\ \\ (roXl != 0.0))
{
gk] .x += Ge_mod[i]l * cos(fc_ang[il*PI)
* zin{PIskdel[i]" /' .ekdell[il)
* cos(rollesPI=kdel[i])
/ (1 - (2+rollekdelil)*(2+rollekdel(il));
gk} .i += Gc_mod[i] * sin(Gc_anglil*PI)
* gin(PIskdel[i])/(PI>xdel[i])
= cos(roll*PIskdel[i])
/ (1 - (2*rollvkdel{il)*(2sroll*kdel[i]));
}
else
{
glkl.x += Gc_mod[i] * cos(Gc_ang[il+PI);
glk]l.i += Gc_mod[i] * sin(Gc_anglil*PI);
}
}
/*
it ((x¥¥m)==1) fprint?(fp,“\n");
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fprint?(tp,"gl%ed]=%3.41,%8.42j *,k1,glx].x,glk].i);
./
}

£f1ush(fp) ;
/..“..““..‘ ‘.‘.‘“‘.‘.‘.“.‘.‘.“......‘...“‘.““.“‘.‘.‘.l“/

/* Determine receiver response for channel additive noise ./
/‘.l“..““‘.t..“‘.‘.“".t‘.t‘t“t‘.‘.“‘t“..“‘#‘*‘.‘tt‘.tt“/
for (k=0;k<=MAXTERMS;k++)
{
k1 = k - OFFSET;
2[x] = Complex(0.0,0.0);
it (re)) == 0.0) £[OFFSET].r = 1.0;
else

{
for (1=0;1<=SIMP;i++) amt[i]
for (i=0;i<=SINP;i++) amt[i]

0.0;
sqrt(1-sin(PI+(2+i/SINP -1)/2));

aon

/eesss gven k1 sssess/
if ((k1 *=0) \\ \\ (k1%2 == 0))
{
fstore = Complex(0.0,0.0);
for (i=0;i<=SIMP;i++)
fstore.r += 2 * amt[i] * cos(xrollsPIskis(2+i/SINP - 1));

fstore.r -= (amt[0] + amt{SIMP]) ¢ cos(xrollsPIskl);
fatora.r *= (xoll/SIMP/sqrt(2.0));
2[kx].r = sin(ki#PI*(1-xoll))/PI/k1 + fstore.r ;

for (i=0;i<=SIMP;i++)
fstoxe.i += 2 ¢ amt[i] * sin(zo0llePIski*(2¢i/SINP - 1));
tstore.i ~= (amt[SINP] - amt[0])) * sin(xollsPIekl);
fstore.i = (roll/SINP/sqrt(2.0));
f(k].i = fstore.i;
}
/etsss odd ki1 sessess/
else if ((k1 != 0) \\ \\ (k1%2 !=0))

{
fstore = Complex(0.0,0.0);
for (1=0;3i<=SIMP;i++)
fstore.r += 2 # umt[i] * cos(rollePIskis(2¢i/SIMP ~ 1));
fstore.xr -= (amt[0] + amt[SINP]) * cos(xollsPInk1);
fstore.x *= (roll/SINP/sqrt(2.0));
f(k].r = sin(k1ePI*(1-10l11))/PI/k1 - fstore.r ;
for (i=0;i<=SIMP;i++)
fstore.i += 2 * amt[i] » sin(xroll*PIsk1+(2«i/SIMP - 1));
fstore.i -= (amt[SIMP] - amt[0]) * sin(rollsPIskil);
fstore.i *= (roll/SINP/aqrt(2.0));
f£[x].i -= fstore.i;
}

else if (k1 ==0)




fstore = Complex(0.0,0.0);
for (1=0;1<=SINP;1i++)
fstore.r += 2 * amt[i];
fstore.r -= (amt[0] + amt[SINP]);
fstore.x *= (roll/SIKP/sqrt(2.0));
£[OFFSET]) .r = 1 - roll + fstore.r;
}
}
}
£1ush(1p);
/“““..‘.“‘....“‘...-‘.“““"“‘.-‘..l"‘.‘-‘.‘.‘...."‘.-"/
/% Determine the input data signals »/
/¢ Eithexr PSK, QAM, V29 or other, M=2,4,8,16,32,64,128,266 /
/““‘..‘.t"“‘..“.‘.‘.“"“““..““.“‘.....“..‘...‘.““.'/
for (i=0;i<=MAX;i++) SIG_SET(i] = Complex(0.0,0.0);
for (i=0;i<=MAXTAPS;i++) sqsum[i] = 0.0;
Sum = 0.0;
printr("\n WHAT SIGNAL CONSTELLATIOK IS DESIRED?\n");
printf (" Enter P or p(PSK), Q or q(QAM), V or v(V29)“);
printf (" or something else \n\t:");
scanf ("%s", \\choice);

it ((choice == ’p') || (choice == 'P’))
{
printf("PSK Chosen: How Many Points?: ");
scanf ("/d", \\N);
fprint?(fp, *“\n\nY%dPSK" N);
for (k=1;k<=M;k++)
{

SIG_SET[k] .x = cos(2#PI*k/M);
SIG_SET[k] .i = sin(2+PIsk/N);
}
}
else if ((choice == 'Q’) (| (choice == q’))
{

print2("QiM chosen: How Many Points?: ")
scanf ("%d", \\N);
fprinte(fp,* \n\n%2dGAN" K);
Mi = (int)(float)sqrt(1.00¢M);
for (k=0;k<=M1-1;k++)
{
for (ki=1;k1<=N1;ki++)
{
SIG_SET[k#M1+k1].xr = (2.0%k1 - M1 - 1);
SIG_SET[k*M14k1).i = (2.0%k - M1 + 1);
Sum = Sum + SIG_SET[k*M1+k1].r » SIG_SET[keMi+ki].r +
SIG_SET[k*Mi+k1]).i » SIG_SET[ksMi+k1).i;
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printf (*\nSum of squares= %8.41",Sum);
Sum = sqrt(Sum/NM);
Diff_Mag = 0;
for (i=1;i<=MAX;i++) ftreq[i] = 0.0;
tor (di=1;i<=MAX;i++) qanm _mag{i] = 0.0;
for (k=0;k<zM1-1;k++)
{
for (ki=1;k1<=M1;k1++)
{
SIG_SET[keM1+k1] .xr /= Sunm;
SIG_SET[k*M1+ki].i /= Sum;
mag = Cabs (SIG_SET [keX1+k1]);
done = 1;
for (i=1;i<=Diff_Mag;i++)
{
it (qam_mag[i] == mag)
{
treqli] += 1.0/X;
done = 0;
)
}
if (done == 1)
{
Dift_Mag++;
qan_wag[Diff_Magl = mag;
freqiDiff_Magl += 1.0/M;
}
)}
}
for (i=1;i<=Diff_Nag;i++) sqsum[1] += freqlil/qam_maglil/qan_waglil;

for (i=1;i<=Diff _Mag;i++)
for (j=1;j<=Diff _Mag;j++)
sqsun[2] += freqli] ¢ freql;] /(qam_mag[i)+qam_mag[j])
/(qam_mag[i]+qam_mag(jl);
for (i=1;i<=Diff_Mag;i++)
for (j=1;j<=Diff_Mag;j++)
for {(k=1;k<=Diff_Mag;k++)
sqsun[3] += freqli] * freq[j] * freqlk]
/ (qam_mag[il+qam_nmag[j] +qam_mag[x])
/ (qam_mag[il+qam_mag[j]+qan_mag[x]);
for (i=1;i<=Diff_MNag;i++)
for (j=1;J<=Diff _Mag;j++)
for (k=1;x<=Diff_MNag;k++)
for (1=1;1<=Diff_Mag;1l++)
for (m=1;m<=Diff_Nag;m++)
sqsun[6] += treq[i] » freq[j] * freqik] = freq[l] * freqim]
/(qan_mag[i) +qam_mag[j] +qam_mag [k]+qam_mag[1] +qam_mag(m])
/(qan_mag[i] +qam_nag[j] +qan_mag [k]+qam_mag[l] +qam_magim]);
for (i=1;i<=Diff_Mag;i++)

94




{

tprintf(fp,”\nQam_Mag= ¥8.4f, Freq = %8.41",qam _magl[il,ftreq[i]);

. }
for (d=1;i<=6;i++)
{
if (i!=4) fprintf(£p,"\nsqsum[ldl= ¥8.41",i,sqsun[il);

}

}

else if ((choice == 'V} || (choice == ?v?))

{

printf("v29 chosen: How Many Points?: ");
scanf ("%d", \\M);
printf(")d v29 SIGRAL SET" ,M);
fprint2(fp,"\n\n’%2dv29",K);
M1 = M/8;
printf("\nM1 ==Yd",M1);
mag = 1.0;
Di¢f_Mag = M1 = 2;
for (i=0;i<=MAX;i++) v29_magli] = 0.0;
for (di=0;i<=N1-1;i++)
{
j=8si+ 1;
tor (k=j;k<=j+3:k++)
{
SIG_SET[k].r = mag * cos(PI#(2s+k-1)/4);
SIG_SET[k].i = mag * sin(PI*(2+k~-1)/4);
Sum = Sum + SIG_SET[k].r s SIG_SET[k].r
+ SI1G_SET{X].i *» SIG_SETIX].i;

}
v29_mag[2+i+1] = mag;
mag = mag * (2*i+3) / (2%i+1) / sqrt(2.0);
tor (k=j+4;k<=j+T;k++)
{
SIG_SET[k].r = mag * cos(PI®k/2);
SIG_SET[X].i = mag * sin(PIek/2);
Sum = Sum + SIG_SET[k].r * SIG.SET[k].r
+ SIG_SET[Kk].i * SIG_SETIX].i;
}
v29_mag[2*i+2] = mag;
nag *= sqrt(2.0);

printf ("\nSum of squares= }8.4f£",Sum);
Sum = sqrt(Sum/M);
for (k=1;k<=H;k++)
{
SIG_SET[Xx].r /
SIG_SET[x].i /
}
for (i=1;i<=Diff_Mag;i++) v20_magli] /= Sum;

Sum;
Sum;

L
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for (3=1;i<=Diff Mag;i++)
sqsum[1] += 1.0/(v28_magli])/(v29_magl[i)) ;

for (i=1;i<=Diff_Kag;i++)
for (j=1;j<=Diff Mag; j++)
gqsum(2] += 1.0 /(v29_mag[i]+v20_mag(ljl)
/(v29_magli]+v29_nag[jl);
for (1=1;i<=Diff_MNag;i++)
for (j=1;j<=Dittf Mag;j++)
for (k=1;k<=Diff Mag;k++)
sqsun[3] += 1.0 /(v29_mag[i)+v20_mag[j]l+v29_mag [x]1)
/ (v29_mag [11+v29_mag[j1+v29_mag[kl);
for (i=1;i<=Diff_Mag;i++)
for (j=1;j<=Diff Mag;j++)
for (x=1;k<=Diff_Kag;k++)
for (1=1;1<=Diff_Mag;l++)
for (m=1;m<=Diff_Hag;m++)
sqeum[5) += 1.0
/(v29_nag[i1+v29_nag [j1+v29_mag(k])+v29_mag[1]+v29_mag [ml)
/(v29 _mag[i1+v29_mag [j1+v29_mag(x]+v28_mag[1]+v29 _mag [ml);
for (i=1;1<=6;i++)
sqsum[i] /= pow( (double) Diff_Mag, (double) i);
fprintf (£p,"\n") ;
for (i=1;i<=5;i++)
fprintt(fp,"%8.11" ,pow( (double) Diff_Mag, (double) i));
for (i=1;i<=Diff_Mag;i++)

{
tprintf (fp,"\nV20_Hag= %8.41",v29 _maglil);
}
for (i=1;i<=5;i++)
{

it (i1=4) fprintf(fp,”\naqsun[%d)= %8.42",i,sqsunml(il);
}
}
else /* ANY OTHER SET s/

{
print?(”\n Entar Number of Points in Signal Constellation:\n");

scanf (“%d", \\H) ;
fprintf (£p,"\n\nSignal Set not PSK or QAM or V28");
for (k=1 ;k<=M;k++)
{
printf (»SIG[%dl .r =" ,k);
scant ("%f",SIG_SETIx).x);
printf (“SIG[%al .i = “,k);
scanf ("%2",SIG_SET[k].i);
Sum = Sum + SYIG_SET{k] .r » SIG_SET[x].r +
SIG_SETIk].i » SIG_SET[k].i;
}
printf(“\nSum of squares = %8.4f",Sum);
Sum = sqrt(Sun);
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for (k=1;k<=M;k++)
{
SIG_SET[k].r /= Sum;
SIG_SET[x].i /= Sum;
}
}

/'t#'l..“ﬁ't*‘t‘t#w“#‘!$#iti.#t“#“.t“.‘ﬂ*‘t“‘t“*‘l““t‘#“ttttttt/

/resnunnpansensanssaesnsss Print Constellation Set ssesussssssadmenrsssns/
P T T e e L T T P T T T T L T P PPy
for (k=1:k<=M;k++)
{
if ((xY¥m) == 1) fprintz(fp,“\n");
tprintf(tp,"l['/.3dJ=’/.8.4t,‘/.8.4tj ® x,SIG_SET[k].r,SIG_SET[k] .1);
}
f2lush(fp);
LTI e T e P T I T LY TR R P P e T R P T P P R R T R T P T T T

/% What are the step-sizes that are used =/
D L D A L T DD PP T L P T TPy
for (i=0;i<=Em;i++) vallil= 0.0;
printf ("\nEumber of ALPHAS to be entexed:");
scanf (“%d", \\max_num) ;
for (chk=1;chk<=max_num;chk++)
{
print?(“Enter ALPHALY24]:",chk);
scanf("%£", \\vallchkl);
)}

/lt““l““#.#.t“##lt‘.“t#t‘t#‘i‘-l‘.t““l“‘l““t#l..“'##‘lt“‘/

/% Detearmine Noise Fower v/
/*“t‘t"“‘.‘l#“#‘*‘t‘ﬁ““"“‘.tti'.“.tt‘it“t.i‘ti.*‘*“#“*‘ﬁ“t/
scanf (%", \\NO0);
fprintf(fp,"\n\nN0/2= %8.4¢ dB-,N0);
B0 /= 10.0;
N0 = 1.0/pow(10.0,K0);
tprintf(fp,"\nk0/2= %8.4f ",N0);

£flush(Lp);
Y L T Y Y
/* Determine L and ¥ ranges and steps +/

/..ﬁ"..“."‘*'.‘*‘*‘*““*.‘..‘*.“U".“.‘..‘““.“."‘.‘..-“‘V"/

scanf ("%d", \\Nmin);

scanf (*%d", \\¥max);

;anf ("%d", \\Nstep);

scanf ("/d", \\Lmin);

scanf ("/d", \\Lmax);

scanf ("%d", \\Lstep);
/“‘*‘*“‘*““*."‘*.‘#“““*“‘“‘...“““.‘-‘"““.“‘.“““.‘.“‘/
/** Pexrform Simulations »/
L L A R R PP P TP T T T Y

for (N=0;N<=Emax;N=NK+Wstep)

{

{
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tprint?(fp,“\n\nlunber of Equalizer Taps besides C[0] = %2d4",N);
£21ush(tp);
MMSE = NINMEANSQERR(M,¥,SIG_SET,g,1,fp,val,N0);
tprintf (tp, \nN=%2d, \tMMSE=%B.4f\n" N , MSE) ;
£flush(1p);
for (L=Lain;L<=Lmax;L=L+Lstep)
{
if (L = «
{
fprintf(2p,”\oL = %2d *,L);
magsur = 0.0; factor = 0.0; fac = 0.0;
12 ((choice == ’p’) || (choice == ’P’))
1{
magsun = 1.0 = L;
factor = L * RO * integral / (magsum * magsum);
fac =1 - (0.5 » factor * factor);
LMNSE = 1 - (1-MNSE) * fac * fac;
tprintf (£p,"MMSE=/8.42" ,LMMSE) ;

}
else it ((choice == 'q’) || (choice == 'Q’))
{
factor = L ¢ NO ¢ integral * sqsua[L] ;
fac =1 - (0.5 » tactor * factor);
LMNSE = 1 - (1-MMSE) » fac * fac;
tprintf (£p,"MMSE=Y8.42" ,LMNSE) ;
}
else if ((choice == 'v’) || (choice == 'V ))
{
factor = L « NO * integral ¢ sqsum[L];

fac = 1 - (0.5 * factor & factor);
LMMSE = 1 - (1-KMSE) * fac ¢ fac;
fprintf (fp,"NMSE=Y8.42" ,LMNSE) ;
}
else fprint2(fp,”\n PROGRAM NOT AVAILABLE FOB SIGNAL SET");
fflush(2p);
if (N == 8) &2 (L == 3)
{
scanf ("%s",fila_nl);
£1 = fopen(file_nl,"w");
if (£1 == FULL) printf("Cannot open File"); exit(1);
sprintf (file_nla,"’slc",file_nl,’a’);
£2 = fopen(file_nla,"v");
if (£2 == NULL)
{
printf ("Cannot open File"); exit(1);
}
ADAPTIVBHSE(L.H.l,SIG_SB‘l‘,g,t.1p.’11,t2.val.l0);
fclose(£1);
fclose(£2);
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}
}
}
}
fclose(fp);
}

CINV.C

AL IITED DT DI P T D P P T P T P T Ty
/esnsssenss CINV() ~ Taken from: Numerical Recipes in C s#s»/
/esenssunss Lltered to invert complex matrices senn/
/#wsesssses instead of just real matrices snn/
L T T T PP T P T T T T T PP T T
#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#define MAXTAPS 40
#define TINY 1.0e-20

typedet struct FCOMPLEX {
double r,1;
} Zfcomplex;

fcomplex Cadd(),Csub(),Cmul(),Cdiv(),RCrul(),Complex();
double Cabs();

AT TP TTT Y TE P TTT r LT L L ses
/sessrannsnnssnrss LUBKSB s% sheeEd ssen/
AT TYIT I PP LT DT . sesenskisnshnn/

void lubksb(4,¥,indx,b)
fcomplex A[MAXTAPS+1] [MAXTAPS+1], bIMAXTAPS+1];
int ¥, indx[MAXTAPS+1];
{
int i, ii=0, ip, j;
fcomplex sunm;

for (i=1;i<=N;i++)
{
ip = indx[il;
sun = blip];
blip] = b[li);
iz (i)
for (j=ii;j<=i~1;j++) sum = Csub(sum,Cmul(a[i][j],b[j1));
else if (Cabs(sum)>0.000) ii= {i;

bli] = sunm;
}
for (i=N;i>=1;i--)
{

sun = b[i];
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tor (j=i+1;j<=N;j++) sum = Csub(sum,Caul (A[i][j],v[j1));
it ( Cabs(a[i]1[1]) > 0.00)
{
bli] = Cdiv(sum,A[i][i]);
}
else bl[i]l=sum;
}
}

LTI T P TP P P P P TP P TP P P T Y
/eenstees LUDCHP ¢o440480000sestsassssstissanns/
AL T T P P P PP T PR T T TR e T Y
void ludcmp(A,N,indx,d)

int ¥, indx[MAXTAPS+1];

double ¢d;

fcomplex A[MAXTAPS+1] [MAXTAPS+1];

{
int i, imax, j, k;
double big, dum, temp;
double *vv, svector();
fcomplex sum, dum2, dum3;
void nrerror(), free_vector();

vv = vector(1,H);
ed = 1.0;
for (i=1;i<=N;i++)
{
big = 0.0;
for (J=1;j<=N;j++)
{

it ((temp = Cabs(Alil[j])) > big) big = texmp;
}
it (big
vv[i] =
}

== 0.0) nrerror("Singular matrix in routine LUDCMP");
1.0/big;

for (j=1;j<=N;j++)

for (i=1;3<j;i++)
{
sum = A[1]1[;j];
for (k=1;k<i;k++)
sum = Csub(sum,Crul (A[i][x],a[x][j]));
Ali1[§] = sum;
)
big = 0.0;
for (i=j;i<=N;i++)
{
sun = A[11(j];
for (k=1;k<j;k++)
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sum = Csub(sum,Cwal (A[i][x],A[X]1[§1));
A[11[3] = sum;
i2 ((dum= vv[i] * Cabs(sum)) >= big)
{
big = dunm;
imax = i;
}
}
it (§!=imax)
{
for (k=1;k<=N;k++)
{
dun2 = A[imax] [x];
Alimax][x] = a[j]1(x];
A1 [x] = dum2;
}
od = ~ (+d);
vv[imax]=vv[j];
)
indx(j] = imax;
if (Cabs(A[JI[j1) == 0.0) /sesse Question »»/
{
printt ("\nTINYYY/d",j);
printf("\nd = %8.4£+%8.423",A[51 (3] .x,a[51[§].1);
Al3103] .x = TINY;
4[j1[j1.1 = 0.00;

it (3'=0)
{
dum3 = Complex(1.0,0.0);
dum? = Cdiv(dum3,A[j1(31);
tor (i=j+1;i<=N;i++) A[11[j] = Cmul(A[i] [j],dum2);
}
}
free_vector(vv,i,X);
}
P L UL P T T T T T T T T YTy
/resessssss matrix Inversion program sessnsnns/
P L T e T T T T T YY1 Y

#define Mn 3

void cinv(d,y,N)
fcomplex A[MAXTAPS+1] [MAXTAPS+1], y[MAXTAPS+1] [MAXTAPS+1];
int X;
{
int i, j, indx[MAXTAPS+1], k;
fcomplex ID[MAXTAPS+1] [MAXTAPS+1],AA[MAXTAPS+1] [MAXTAPS+1];
fcomplex col [MAXTAPS+1];
double d;
int jim;

™
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/essssess Save Natrix A in Ak seessssssnRes/
for (i=1;ic=N;i++)

for (j=1;j<sh;j++)

{

y[i1[j] = Complex(0.0,0.0);
AA[1103] = al41[4];
}

/esssusssnsnssenesssns TEVERT NATRIX sesssssssnsssssasssssns/
ludcmp(A,¥,indx, \\d); /* Decomspose matrix just once */
tor (j=1;j<=N;j++)

{

/* Find inverse by columns */
for (1=0;i<=N;i++)
{
col[i] = Complex(0.0,0.0);
}
cellj] = Complex(1.0,0.0);
lubkab(A,¥,indx,col);
for (i=1;i<=¥;i++) yl[il[j] = collil);
}
/essnssessssesRecover A matrix from Adsssssssssssussnss/
for (i=1;i<=N;i++)
for (J=1;j<=N;j++)
Alil1[j) = aalil[5];

RANDOM.C

#include <stdlib.h>
#include <math.h>

#define MAIS 98
AT T TSI PR TP O e I PR I D PR P PP P PP TR T PP Ty T e L T Ty

/esessesss Returns uniform r.v from 0.0 to 1.0 sennssnns/
/essunnnes *eeEnnsrs/
/#*ssesess From: Numerical Recipes in C. Ch.7 pg.207 ssssasssss/
PALT LT L T T T T P T T T T T T 11 7)
float ranO(idum)
int sidum;
{

uta*'c floav y, maxran, v[MAXS];

float dum;

static int i££=0;

int j;

unsigned int i, k;

void nrerror();

it (eidum < O || iff ==0)
{
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ity

i

do

{
k = 1i;
i1i=1<1;

} while (i);

maxran = k;

srand(*idum);

sidum = 1;

for (§=1;J<MAXS;j++)
dus = rand();

for (J=1;j<MAXS;j++)
v[j] = rand();

1;
2;

"

}

j=14+ye (MAIS -1)/maxran;

it ((§ > (MAXS-1)) ] (§ < 1))
nrerror("RAN0: THIS CANNOT HAPPEN");

y = v[jl;

v[3] = rand();

return(y/maxran);

}

#define M1 2690200

#define IA1 7141

#define IC1 54773

#define RM1 (1.0/M1)

#define M2 134456

#define IA2 8121

#define IC2 28411

#define RM2 (1.0/M2)

#define M3 243000

#define IA3 4561

#define IC3 51349
/“““..‘..“‘.“““““.‘.“‘...‘9‘.‘.‘“.““'.#“."‘#.‘.-t“‘./
/#sssssasss returns a uniformly distributed r.v from 0.0 to 1.0 ssss/

/#ssssssens Set idum to any negative value to initialize or s/
/#snsnssees reinitialive the sequence. sens/
/#sssasnsss From: Numerical Recipes in C. Ch.7 pg 210 e/

YT L g P P P P T T T LTy
float rani(idum)
int *=idum;
{
static long ix1, ix2, ix3;
static float r[98];
float &emp;
static int i££.0;
int j;
void nrerror();
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it (eidum < 0 || iff == 0)
{
i1t = 1;
ix1 = (IC1-(eidum)) 7% M1i;
ix1 = (TAteix1+IC1) % Mi;
ix2 = ix1 % M2;
i23 = ix1 % M3;
for (j=1;j<=07;j++)
{
ix1 = (TAleixi+IC1) % M1;
ix2 = (IA2¢ix2+1C2) % N2;
r[j)= (ix1+ix2+RM2)*RN{;
}
*idum = 1;
}
ix1
ix2
ix3

(Ia1+ix1+4IC1) % M1;
(IA2+ix2+41C2) % M2;
(IA3+ix3+1IC3) % H3;
3 1 + ((97%1x3)/M3) ;
it (§>97 || j<1) nrerror(“"RAK1: This cannot happen");
temp = rl[jl;
r{j] = (ix1+ix2sRN2)*RM1;
return(temp);
}

/....“‘.l.‘.‘.".“‘.‘..‘.“.‘O‘."..“‘..““......“/
/#»es Returns a normally distributed deviate with ®sss/
/#¢ss zero-mean and unit variance, using rani(idum}esss/
/**s» ag the source of uniform deviates wern/
/#ees From Numerical Recipes in C. Ch 7.3 pp.216-7 »sss/
P L L T T T T PP T T T T T PP e I PR TP P TPy
float gasdev(idum)

int s=idum;

{

static int iset = 0;

static float gset;

float fac, r, vi, v2;

float rani();

if (iset == 0)

{ /* We don’t have an deviate handy so */
do
{

/l““‘l#ti#.‘t'.“‘“.“?i’.'.“‘.‘..“‘..““““/
/** pick two uniform number:s in the square ext- =/

/#+ ending from -1 to +1 in each direction s/
/»= Sae it they are in the unit circle, if not =»»/
/%% txry again w/

P T T P T P T P e gy
vi = 2.0 * rani(idum) -~ 1.0;
v2 = 2.0 » yani(idum) - 1.0;
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T = vle vl +v2s v2;
}
vhile (z>= 1.0);
fac = sqrt(-2.0+log(r)/r);
/l‘..‘.“‘#“‘..t‘-t..‘.“.“"“‘l“‘..l.‘.“.‘.‘U.‘/
/+* Now make the Box-Nuller Transformation to get s/
/%* two normal deviates. Return one and save the s/
/%s other for the next time. s/
/PR EEEREARBELSEFILANSRSICEASELEESARORSPEEROESDS RS/
gest = vl & fac;
L T P Y T P PP T T L L L T Y

/e+ Set flag. s/
T T L L e pa ey
iset = §;
return(v2stac);

}

else

{

L T T T E T e e e Ty
/** Ve have an extra deviate handy, so unset the =/

/** flag, and return the extra deviate. s/
/“‘““‘.‘.‘.‘..“.t.‘“‘.“.‘.“‘....“.““‘.."“/
iset = 0;
return(gset);
}
}
COMPLEX.C

#include <stdio.h>
#include <math.h>

typedef struct FCOMPLEX {
double r,i;
} fcomplex;

fcomplex Cadd(a,b)
fcomplex a,b;
{

fcomplex c;

¢.T = a.r + b.x;
c.i=a.i+hb.i;
return(c);

}

fcomplex Csuk{a,b)
fcomplex a,b;
{
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2complex ¢;

c.r = a.r - b.r;
c.i=a.i-~0.1;
retnrn(c);

}

fcomplex Cmul(a,b)
fcomplex a,b;
{

fcomplex c¢;

c.rca.xr *b.r-a.i*b.i;
c.i=a.i«b.r+a.rxresb.i;
return(c);

}

fcomplex Cdiv{a,b)
fcomplex a,b;
{
fcomplex c;
double r,den;

if (fabs(b.r) »= tabs(b.i))
{

r=b.i/b.r;

den =z b.r + r * b.1;

c.r= (a.x +xr * a.i)/den;

c.i=(a.i -r* a.r)/den;
}
else
{

r = b.x/ b.i;

den = b.i + r ¢ b.x;

= (a.r*r + a.i)/den;

c.iz (a.i s~ a.r)/den;
}
return(c);

}

fcomplex Complex(re,im)
double re,im;
{

fcomplex ¢;

c.T = Ye;
c.i = im;
return(c);

}
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double Cabs(z)
fcomplex z;

{
double x, y, ans, temp;

x = tabs(z.x);
y = fabs(z.1);
it (x==0.0) ans = y;
else if (y==0.0) ans = x;
else it (x>y)
{
temp = y/x;
ans = x * sqrt(1.0 + temp * temp);
}
slse

{

texmp

ans
}
return(ans);

}

x/y;
y * 8qrt(1.0 + temp * temp);

fcomplex Conjg(z)
fcomplex z;
{

fcomplex c;

c.T = 2z.r;
c.i=-z.4;
raturn(c);

}

fcomplex r:qrt(z)
fcompley &;
{
fcomplex c;
double x, y, w, 1;
it ((z.r == 0.0) \\ \\ (z.i == 0.0))
{
c.r =c.i = 0.0;
return(c);

y/x;
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}
else
{
T = x/y;
v = sqrt(y) * sqrt(0.6¢(r+sqrt(1.0 + r * 1r)));
}
if2 (z.r >= 0.0)

{
c.re=uw;
c.i= z.1/(2.0 « ¥w);
}
slse
{
ci= (z.4>0)?2w: -w;
c.r=12.1/(2.0 % c.i);
}
return(c);
}
}
fcomplex RCmul(x,a)
double x;
fcouplex a;
{
fcomplex ¢;

€.T = X % a.r;
c.i =xea.i;
return(c);

}

fcomplex Arg(z)
fcomplex z;
{
fcomplex ¢;
c.r = z.r/Cabs(z);
c.i = z.1i/Cabs(z);
return(c);

}

UTIL.C

/i‘."“‘-‘“‘.‘“‘.“‘“““‘I‘.‘.."“..‘l‘t.t#‘.t.#.““‘/

/esseesses Utility progran: Numerical Recipes in C ssssssas/
PATTE DL T T T T P T T T P P P paermpeamary

#include <malloc.h>
#include <stdio.h>
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void nrexror(error_text)
char error_text[];
{

void exit();

fprintf(stderr,"Numerical Recipes run-time error..\n");
fprintf (stderx,"%s\n" ,error_text);
fprintf(stderr,”...now exiting to system...\n");
exit(1);

}

double =vector(nl,nh)
int nl, nh;
{

double *v;

v=(double *)malloc((unsigned) (nh-nl+1)»sizeof (doudble));
if (!v) nrerror("allocation failure in vector()");
return(v-nl);

}

void free_vectoxr(v,nl,nh)
double =v;
int nl, mnh;
{

free({(chars) (v+nl));
}
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