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:BSTRACT, '

From the approach“ of Maftwell transport ltheory‘ in the context

-~ .of dense gases, conser\?at'iog laws and consti.t;:ttive‘ lg;'ctegrals for. the —Flowk
of identical, smooth, ipelastic,” spherical granular materials are derived.
The probglem of rapid simp}e shear flow of such materials is consj}ieredv
specifically. The constitutive integr;_ls are solved appro:;imately by the
use of asymptotic expangit;ns an;i series transformations in ;erms of a

non-dimensional parameter R, which is the ratio of the characteristic

mean shear velocity to the r.m.s. of the particge fluctuation velocity

and is found to depend upon the coefficier?t of restitution o‘f the particles.

+ '

The pr“edlct‘ed stresses are compared with the experiments c;f
Savage and Sayed (1980) and yield the correct oNer of magni tude when the
- coefficient of restitution is given the values of dround 0.8 to 0.9.
Comparisons made with several previous theories exhibit.-similar trends
of behaviour in the constitutive relationships. The present theory also
shows fair agreement in comparison of stresses with the kinetic theory4' '

of dense gases using the hard sphere model in the case of simple shear.
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En apphquant la théorle de transmrt de Maxwell dans le

'contexte des gaz lourds, on obtient les lons de conservation et les

mtégrales con_stituﬂves pour un courant de mllieux gganulaire de grains
3 formes identiques, lisses, non-élastiques et sphériques. L'analyse
dctuel le est adoptée'Spéci%‘iquement au probléme de courm{t de cisaillement

simple et rapide. Les intégrales constltutlvgs sont solutiounées
L e

_approximativement en utiiisant les expansto_n‘s‘::asymptatique‘s et les

transformations de suites en fonctiop d'un paramétre non-dimensionel

"R qui est le rapport de la vitesse charactéristique moyenne de cisallle-

ment & la racine carrée moyenne de 1a vitesse de fluctuation des paﬂrticules.

On trouve que'R dépend du coefficient de restitution des particules.
‘Les forces de tension prédites sont comparées aux expémentes
de Savage et Sayed (1980); elles donneut un ordre de grandeur exacte

el

quand le coefficient de restitution a une valeur approximative de 0.8 a

‘0.9. Des comparaisons sont fa}'tes avec plusierurs théories précédentes;

elles révélent. des comportement simila{res concernant Jes reiatiops
constiu;tlv‘es. La théorie actuelle montre aussi une bonne correspondancq
en comparant les forces de - tenslon avec 'la th&orle cinetique de gaz

lourds en utilisant le modéle de la sphere rigide dans le cas d'un simple

cisaillement.
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) CHAPTER 1 INTRODUCTION - . i

' The: flow of granular mate’:rﬁals, which is but one member - . f

-, i

of a vast family of two—phase flow systems, is a phenomenon . .
k2 \ :

that exists not only in nature but also occurs in )ﬁumerous ' o

&

industrial processes. In naturé, examples‘ of granular f£low
L R’y
include snow avalanrches, drift of pack ice flow on the sea

o
surface, landslz.des, submarine slides, debris flows and secglment '* !

transport in rivers. Such geophysical granular fllow systems .
usually occur on large scales and in some cases ‘they may be |
threats to the e vironmenti and human life. Information abouﬁt !
the basic méchanis_ms retponsible’ for these phenomena m;y contri- - “
bute to the mastery and prevention of guch \cata.ls,trophic'eye,nts- '
From the industrial and eng:.neerlng po:.nt of view, ample ’

applications of granular flow exist- the transpbrtat:zon of .

r
T oh e

sand and gravel, grains, soil, ore, i:ills‘, ‘oil sand, fluidized

bed burning of coal, mineral and powder processing, slurry

P o ol ey 1 R,

flows in pipelines, etc. A better understanding of the
governing mechanisms of such procegses may be beneficial to

the design and’ improvement of the transport equipment and
handling d‘evices‘. In terms& of industrial ef:pnomics, such %rifor—
mation abou't‘the basic grahular beh,avic;ur ma"’y aid in the form

A s X - i
of efficiency in performance of the processes. However, as

”

is often the case, the subject is far frem simple.

.

Bagnold '(1954) classified the flows of granular

o

materials into three categories: the macro-viscous, transitional °

R Aot 1Yy AN A

' A
and grain-inertia regimes. In the macro~viscous regime, the

&

s
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effects of fluid viscosity dominate over that of grain inertia.

[

!
Conversely, in the g‘%g‘iln-inertia regime, the effect of grain
inertia dominate over that of fluid viscosity. 1In between
these two limiting cases, there is the transitional regime

where the system transits from _inertiad‘.{o viscous conditions

¢ o

and both effects are important. A consistent treatmept and .
characterization of this dgnamical problem of granul flow

taking into acgount the effects of all three regimes is

»

extremely difficult. Soffar not a single analytical theory

which can describe satisfactorily the general flow behaviour

o

of granular materials has emerged.; Such slow development in

the the%revti.caI work is partially due to the complexity of
the materials behaviour. As poi.,nbedigt in a récent{ review by

Savage (1982)' , a clear understanding _6f the mechanics. unders
& -

\
.k

lying granular flows requires the utilization of ideas from
:fluid mechanics, plasticity theory, soil mechanics, rheologx
and kinetic theory of gases. Another hinderance to the

theoretical developn’f’ents is due to the scarcity of reliable

experimental observations.

= \ -
3 . -
.

1.1 Review of Previous Work - -

Bagnold (1954) déveloped a rudiment?ry theoretical
anal.ysislgbr s‘imple shear of granular materials and performed
experiménts on neutrally buoyant, identical, spherical particles
made up of a mixture of paraffin wax and lead sterate suspended‘
in Newtonian fluids (water and a glycérine-water-alcohol mixture).

.The mixtdre of beads was sheared in a,coaxial rotating cylinder

[RUB




apparatus with a flexible rubber inner cylinder wall and
a. rotating rigid-‘outer cylinder. 1In such a devicé‘, both shear
}:',

and normal stresses were measured at wvarious solids c¢oncentra-—

P

tion and shear rates. In the macro-viscous regime, both
n.xeasured shear and normal streéses indicated a lim%"depedenc:e
upon the shear rate. 1In the grain-inertia regime, both the
Jshear and normal §tresses were fg?und_ to behave in a nor-Newtonian
way which depended upon the particole mass density; the square
of the particle diameter and the square of the shear rate.
The stresses increased rapidly with the jncrease of solids
concentration, especially at .high values,

Savage and Sayed (1980, 1982 and—Saxeic}‘_Im'Q_gl‘)'r'xa“yé
carlried out extensive viscometric experiments on dry’granuiar
. materials, such as spherical glass and polystyrene bgads, and ~
angular particles dﬁ crushed walnut shells,using a new model
of annular shear cell. The device was designed to measure
both the shear and normal stresses as functions of solids
concentration and apparent shear rate. In their experiments ;
of shearing single size spherical particles, bgth the shear
anc;l normal stresses indicated dependencé upon the square
of the shear rate at the lower concentrations and higher
shear rates. However, at higher concentrdtions and lower
shear rates, the stresses were found tt; be proportional to
the shear rate of power less than two. 'i‘his change in shear

rate dependence was attributed to the increase of dry

frictional effect between particles. at high concentrations.
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Tests with different sizes and mass densities of the particles

indicated that the stresses depended upon particle mass
densi*,and the square of the particle diameter, supporting
Bagnold's experimental'results in the'grain—inertia regime.

[y

Stresses alsquependeii strongly upon solids concentration. The

tests of angular crushed walnut shells shows similar trends in the

-

resul'ts. - When an initially well mixed binary size mixture

of sp};erical particles was tested, particle segregation, having
the small ones at the outer radii and large ones at the inner
region of the shear cell, t%as reported to have occurred at

the end of¢ the ytelst. This s‘égrzeg'ational effect of particle

sizes underesshear is by itself another distinct important

© )

phenomenon. As yet noﬁtgeore‘tiiciaiii 7e'xp'igri1&£ion of this

o

phenomenon from a dynamical point of view has been attempted.

The main cdoncern of the present work deals specifically

s

with ths limiting case+of granular flow in the grain-inertia
regime, where the effect of fluid viscosity is negligible

and the system of granular materiailsl is subject to rapid
deformation. The .phenomenon of rapid granular flows has been
invéstigated mainly along two lines of approach. The first
one is based upon continuum theory analogous to the traditional
continuum theory of hydrodynamics in which the molecular
dynamics ‘are not considered explicitly. The second approach

is based u;;on microstructural theoryuanalogous to the
classical statistical mechanics in which the molecular dynamics

are dealt with in detail and the macroscopic parameters are

given by means of statistical averaging. The comx\non goal

\
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"is to establish the conservation and constitutive equations

which govern the flow of granular materials under rapid
deformation. )

Goodman and Cowin (1971, 1972) had proposed a continuum
theory for the flow of granular materials in the grain-inertia
regime. The stress tensor was assumed to be made up of two
parts, a rate-independent part and a rate-dependent part.

The rate-indé;endent part of the stress tensor was assumed to
depend upon the solids fraction v and the gradient of v.

The rate-dependent part Qas assumed to vary linearly with
shear rate. Nunziato, Passman and Thomas (1980) modified the
theory of Goodman and Cowin. The rate-independent part of
the stress tensor was not changed, but the linear shear rate-
dependent part of the stress tensor incérporated a variation
of solid fraction based upon egberkments. Tﬁe choice of the
dependence of grad v and linear shear rate in the complete
stress tensor is inappropriate due to certain inconsistences
with physical arguments and experiments as pointed out by
Jenkins and Cowin (1979) and Savage (1979).

Savage and Cowin (Savage 1979) attempted to improve
the theory of Goodman and Cowin by incorporating variations of
solids concentration and the square of the shear rate in the
rate-dependent part of the stress tensor accordihg to the
viscometric experiments. However, the(raée-independenth ér
guasi-static, part of the stress tensor was taken to be the
same form as that of Goodman and Cowin. The proposed consti-

tutive eguations were applied to the problems of open channel

flow down a rough inclined chute and the flow down a rough

L]
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wall vertical channel. By choosing particular forms -of the
constitutive coefficients, the general traits of the predicted

velocity profiles could be forced into agreement with the

experiments.

McTigue (1982) employed the same method of stress
decomposition. In his theory, the rate-independent part of
the stress tensor satisfied the Mohr-Coulomb failure craiterion
and dependedqonly-upon the solids concentration v. The\rate-
dependenk stresses were found to depend upon the square of
the shear rate by considering the collision frequency of
each particle and the change of momentum in each elastic
collision together with an empirical function of soclids
concentration deduced from experimental results. The theory
was applied to the probiem of gravity flow of granular materials
down an inclined plane. General features of the velocity
profile were demonstrated, however, the theory embodied at
least more than one unknown parameter. Sayed (1981, Sayed
and Savage 1982) had performed similar modifications to the

continuum theory of Goodman and Cowin by using a slightly

different form of rate-independent stresses based upon the
quasi-static theory of Spencer (1964) which satisfied the
Mohr-~Coulomb yield criterion. The rate-dependent part of the
stress tensor was represented by a Reiner-Rivlin isotropic
fluid model which exhibited the dependence of the square of
the shear rate. The‘functional forms of several constitutive
coefficients in the theory were determined in accordance

with the viscometric experimental results. The theory was .
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then applied to the problem of two-dimensional inclined
chute flow of granular materials. Reasonable predictions were
made when compéred to the experiments.

Bagnold (1954) formulated the stresses in the Couette
flow of figid and §moqth granular materials from a simple
microstructural point of view.— The momentum transfer due to ‘
particle collisions between each layer was considered to be
the dominant stress contribution. Thus, by multiplying*the
collision frequency with the number of grains in a unit area
and ?he‘momentum change of each partic%s per collision, the
shear and normal stresses were found to depend upon the square

of the shear rate* and some unknown function of concentration

and angle which were to be determined empirically.

Kanatani (1979) used ,a polar continuum model for the
flow of rigid granq}ar materials. Surface friction of each
individual particle was- considered to be the means of energy
dissipation. Conservation laws were derived by using the
couple-stress theory. The rotation of particles was regarded
as an additional field quantity. By averaging thé microscopic
energy dissipation due to the friction of the particles, a

macroscopic energy dissipation relation was deduced, from

which the constitutive equations were inferred. Kanatani (1980)

*For the reason of dimensional homogeneity, when the stresses
depend upon the square of the shear rate, they will also likely
depend upon the particle mass density and the square of the
particle diameter. Thus, in order to avoid repetition in the
rest of the review, the dependence of the square of the shear
rate will automatically imply the other dependencies, unless
otherwise specified. '
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egtendedvthe theory to incorporat;’velocit; and rotaéion
fluctuation components into the mean flow field, An egquation
of state which took into account the effect of solids cpncen-
tration was proposed. A conditipn of proportional partition
of translation and rotational kinetic energy was imposed on

a

each particle by introducing an unknown proportiogality
gonsta;t. Using the previous averaging method, the energy
dissipation relation ané the constitutive equations were
obtained. However, the theory .was not self-consistent in the
sense that it depended on an ingeterminate constarnt. The
constitutive equations were applied to the proﬁiem of inclined
gravity flow of granular particles and the stresses indicated
dependence of the square of the shear rate.

Ogawa, Umemura and Oshima (1980) ;sed a kinematic
statistical model of particle fluctuations and collision
dynamics to obtain the constitutive equatioﬁs and the rate
of energy dissipation for the flow of cohesivé, rough and
inelastic granular materials. The éheory, which depended only
upon material properties such as coefficient of friction and
coefficient of restitution, was applied to the gravity flow
of granular materijals down a rough inclined plane.

Ackermann and Shen (1982 considered the case of
simple shear of rough, inelastic granular particles in a
Newtonian fluid. The stresses were formulated in a way
similar to Bignold's analysis, but in addition the effects

of interstitial fluid, frictional and inelastic properties

of the particles were considered. The collisional stresses
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were deduced from the statistical kinematic consideration

of particle collisiogs. Although velocity fluctuations of
the particles were -considered in the model, the final form

of the stresses for this case of simple shear had no explicit
dependence on the assumed isotropic fluctuation component of
the particle velocity. The stresse; depended upon the square
of the shear rate, material properties and certain consiti-
tutive constants which werekchosen such that the predicted
shear stress matched with the experimental results. Shen and
Ackermann (1982, and Shen 1982) imprdved the previous theory
and eliminated the unknown constitutive constants so that the
theory was self-consistent. By a new estimation of the
collisional frequency, the stresses depended upon the velocity
fluctuation of the particles expl{citly. Unfortunately, when
the shear stress of the analysis was compared with therexperi-
ments of Bagnold (1954), Savage (1978) and Sayed (1981), the
theoretical prediction was found to be about one order of
magnitude low. An effective particle diameter correction
factor was introduced, which was assumed to account for the
effect of particle clustering during shear. The shear stress
agreed yell with experiments for a particular chosen value of
this factor.

ﬁ: Savage and Jeffrey o(1981) employed the approach of the
kinetic.theory of dense gases to consider the simple Couette
flow of smooth and elastic particles. A plausible velocity

distribution function was proposed, and the particle fluctua-

tions and collision dynamics of the particles were examined

o e Ak e

e
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carefully. The model involved no dissipation of energy and
the theory depended upon an undetermined parameter R which
was defined as the ratio éf mean shear characteristic velocity
to the r.m.s. of the fluctuation velocity of the particles.

o

The collisional comgonent of the stresses, which was assumed
to be the dominant contribu;ion, compared well with the
experimental results of both shear and normal stresses when
a particular value of R was chosen. The general characteristics
?f the model exhibited several intereéting results. At small
%;Iues of R much less than one, the shear stress depended .
linearly upon shear rate and the normal stress had no shear
rate dependence. For moderate and high values of R, both
predicted shear and normal shear were proportional to the
square of the shear rate. ’

Jenkins and Savage (1982) extended the theory of
Savage and Jeffrey to consider nearly elastic particles under
general deformation. The governing consegvationjlaws and
the constitutive equations were derived in the context of
kinetic theory of dense gases. The analysis involved an
unknown coefficient in the collisional pair distribution
function. The theory was applied to two problems; simple
shearing flow between two horizontal plates and vertical
gravity flow down a channel.

The above brief review shows thatathough the continuum
approach may exhibit some gross features of the flow of

granular materials, it requires additional information from

experiments and particular insight in choosing the most

NN e et 2 sk
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appropriéte form for the constitutive coefficients. AlTl the |
above mentioned continuum theories did not consider the energy
dissipatio; aspect of the granular system. The material
properties associ&ted with tbe'co;lisional dynamics of the
particles do not appear. In the microstructural approach, all
the necessary properties of the system can be considered .
explicitly and the macroscopic variables are Bbtained by the
method of statistical averaging. Different statistical methods
have already indiéated some degree of success in the formulation
of. the problemt

. ~

1.2 Pplang of the Present Study

In the‘present study, the model employed is based upon
the microstructural aéproach developed by Savage and Jeffrey
(1981). The theory will be extended to deal with iﬁelastic
particles. 1In the %ollo&iﬁg presentation,. Chapter 2 contains
the general formulation of the governing conservation laws
and constitutive integrals essential for the flow of smooth,:
inelastic granular particles in the context of kinetic theory
of gases, similar to what was done by Jenkins' and Savage (1982).
In Chaptef 3, the present analysis will focus on the problem
of simple shearing flow, called Couette flow, of granular
materials analogous’ to what was done by Savage and Jeffrey
(1981) but with the addiéional consideration of energy dissi-
pation due to the inelastic property of the particles. The
velocity pair distribution function proposed by Savage and

Jeffrey will be adopted. The full analytical solutions of the

[RESSUIVER
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integrals of- the stréises and the rat§ ofwehergy”dissipation
using series transformation will be presented in ch;pter 4.

In Chapter 5,lgompa:;ioﬁi will be mﬁdé patweeh the present
theory, previocus theoretical invéitiéations and the‘approgfiate
experimentai feéults. Conclusions of this study will be

presented in Chapter 6.
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CHAPTER 2 MAXWELL TRANSPORT EQUATION

From the classical transport theory of gases, the
equation of change for the mean values of dynamical quantities
associated with the individual molecules has been shown to ~
generate identical hydrodynamic equatioﬁs and the derivation can
be found in numerous kineéic theory text books.(Chapman & Cowling
1970, Jeans 1940, Present 1958, Reif-i965 ..»). In this study,
we attempt to make use of the transport theory for dense gases
and make plausible modifications which are appropriate for the
transport of identiéal, smooth, inelastic, spherical granular
materials.  In general, the theory of transport phenomena has
been‘investigated mainly along two lines of approach which are
known to give identical result;. The first approach is based
upon Boltzmann's integrodifferential equation for the velocity
distribution function and the second one is based upoﬁ &axwell's
equation of change for dynamical qdéntities. Presentlyﬂ we
will fo*low closely Maxwell's formulation of the transp9rt
theory owing to its direct and conceptual simplicity over the
Boltzmann's type of approach, and then we will proceed to

derive the conservation laws which govern the flow of granular

materials of the type mentioned above.

2.1 Elementary Kinetic Theory

4

In statistical mechanics, the state of a system may
be defined by a set of generalized coordinates L and generalized

velocity ¢, for each of the individual particles of the system.

For a sysﬁem of N identical particles, each having 3 degrees of

-13~
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Jmethod introduced by Gibbs (1960) which involves the principles

14
freedom, the total number of degrees of freedom for the whole S
system is 6N. Thus the microstate of this system is given’by,
a set of 6N generalized_coordinates and velocities, 'i.e. (gi,gi),
i=1,2,...,N%, and may be specified by a single point in the
®N dimensional space, usually called the phase space, having
the mutually orthogonal ;xisd'gl,gz,.}.,g v gi’SZ""’QN'
For a s?stem of large N, it is practically impossible to knowg

the exact microstate (gi,gi) of the system and its evolution

.

i

ﬁn time and space. Fortunately, in qenergl, practical systems

are defined by a set of macroscopic variables (nj) where the ‘
range of j is much much smaller than that of i; for example,
the n.'s can be average veiocity, density, pressure, kinetic
fluctuation energy, heat conductivity, viécosity, etc. The
relationship between the microstate and the’hacrostate is that *
glvek\a particular microstate (r 2-N }, there is a corresponding
macrostate given by a set of macrovariables (n ). .However,
given a particular macrostate, there is a continuum of
microstates (gi,gi). In other words, a set of macrovariables
(n.) specifies a régioﬁ R in the phase space, while a set of
ﬁicrostat;s (gi,gi) speci{iés a ;lngle point. As one may guess,
the variables of the macrostate must correspond to some kind

of mean values which are given by some form of averaging

procedure of the micrqstates; namely the ensemble averaging

* The set (r 1S5 1=1,2,...,N 15 the short Form of (fi ' TYIRERY
Ige S17 _2....,9 ) signifying a set of 6N generallzed coordinates o
and‘velocities in the pha’se space, where El'rxlgx+ry
is the Cartesian coordinates of a particular particle and

similarly € = cxlgx+cy1ey+czlez is the velocity of the particl

and so on.
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of probability. We define the normalized probability density

function {or called the N-particle veélocity distribution
: ) (N) e
function) f(N)(Ei'Si't) such that £ (;i,gi,t) dr.dg;* is

the probability of finding the system in the microstate
V4

v . x 1 . -
specified by the region r.., £i+§£i and ¢,, ¢;*dg; in the phase

space. ‘'According to the theory of statistical mechanics

(e.g. Harris, 1971) f(N)Q;i,gi,t) gsatisfies the well known

’

Liouville's equation which may be written as

s o z ‘ -g'-’-_..........._..-...—.-..
-9t ] E;i i agi ot

| =0 (2.1)

rd
»

If f(N)(ri,;i,t) is known, we would be able to det;rmine how
each ensemble member o;\particle would evolve in the phas?
space and hence all the .macrovariables could be found. However,

° ]
due to the large number of degrees of freedom involved it

becomes an impossible task to-find a sclution for such an ‘

equation even iif all the necessary initial conditions are known.
-

Fortunately the macroscopic properties of interest in

the system do not depend on the ensemble averaqé taken with

£ (N)

- respect to » but rather, on averages taken with respect to

the first few sa-called reduced distribution functions which are

formally expressed as

.

(N)

(1) =
£ (£, g, % £ (gl,...,EN,gl,...,gN,t)dgz...dEngz...dgN

- . ‘ ‘ (2.2)

*The symbol dr = dxdydz denotes a volume element at point f =

(x,y,z) while dr é-Arxgx + Arygy + Ar_e  denotes a small
vector joining r to an adjacent point.

4
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f(z)(rl,cl,rz,cz,t)= ff(N)(rl,...,rN,cl,...,cN,t)dr ..dr dc - -dey
etc., ) ) | (2.3)
where f(l) is called the single partlcle ve&oczty dlstrlbutlon
function, f(z) the two-particle or pair velocity dlstrlbutlon
function, etc.; integrations are taken for all values of

E
‘ —~

positions and velocities respectively. gl

As usual, the single particle distribution function
f(l)(g,g,t) is defined such that f(l)(f,g,t)dfﬁé is the probab-
ility of finding a partiéle which at time t i; located in the
boiume eiement between r and r+dr, having velocities l;ing in
the range c‘and c+dc. Similarly, the pair distribution funciion
f(z)(rl,cl,rz,cz,t) is defined such that f(Z)(r ,cl,rz,c £)
dr drzdcldg2 is the probability of finding a pair of partlcles

whlch at time t are located in the volume elements dgland dgz

" centred at the points‘gl, r; and'having the velocities within

the ranges ¢ and c1+dc1, and <, and 92+§52.~ The single
particle distribution function f(l)(g,g,t) provides a descrip—r‘
tion of the macroscopic state of the system and permits the
determinations of the macroscopxc quantltles qgaphyslcal
interest. Let us define the local number denslty n(r,t) at r
such that n(r, t)dr is the number of particles located in the

volume element dr at time t and is given by definition

n(r,t) = [£(r,c,t) dc {2.4)

where integration is over all possible velocities. Let ¢(£,g,t)
be any function that denotes a physical property of a part{b{e

located at r with velocity c at time t. The mean valué of, ¢
. o
which corresponds to a specific macroscopic variable may be

determined by taking .the ensemble averidge with respect to f(l)
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and by definition is given as : - ‘ *
4 h J 4 . ;
. i

<p(r,t)> = ;(f,t) = 57%7Ey£»¢(£,c,t)f(r,c,t)dc (2.5) )

Furtﬁermore,'we proceed to consider the fluxes of
various properties of the particleé which are of important ‘ ;

interest in the transport theory. Ccn$ider a surface element

\

of area dS moving with the mean velogity u. Take fi to be a

unit vector drawn normal to the element in tpe direction from

the negative to the positive 8ide (Figure 1l). Due to the

N e e ke o it

‘random fiuctpations of the particles, they may pass in and out
of dS and thus create a flux of particle properties across g ,
thé surface element. For particlgp of velocity v relative
to dS, the number of such particles which pass through the

surface element is just the number contained in the cylinder

of voluine |i-v|dt dS and is therefore given by f(l)(g,g,tﬁdg

|ﬁ.g]dt ds (see WEYf 1965). The net amount of ¢ which is
3y
' transported pef unit time per unit area acrogs the surface

element dS in its positive normal dﬂ?ection is‘just the o

~

difference of the amount of ¢ carried . in from that" carried out.

 Since each particle carries. the property ¢ (r,c,t), the total T

s'amount of ¢ carried by the particles out of ds, H e (E/t), in

the positive fi direction in time dt is given by | . )

* AH_(r,t)dtdS = [ £V (£,c,t)dc|h-v[dtase (x,c, t) -
Sout 'L Aev>0 £.€ cin°y z .

L

, ‘ ‘ ' (2.6)

)
.

.Similarlf the total amount of ¢ carried in, H, (r,t),.in time

dt is given by ‘
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The element of area of dS with unit normal fi moving
with mean velocity u divides the medium into (+) and
(=) region. The figures illustrate particles passing
in (from +ve to -ve side) and out (from =-ve, to +ve
side) of the element of area 4S in time dt (Reif 1965)
s ~ ‘
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A+B__(r,t)dtds = £ (r,c,t1ac|h-videdse(r,c,t)
n

"y<0 (2,7)

-

~

By noting that in integral (2.6) n-y = lﬁ-yl and in integral
(2.7) ﬁ-y = —lﬁ-yl, the net flux of ¢ fper unit time per unit
area, H(r,t), in the positive n direction 1S found by dividing

the difference of (2.7) from (2.6) by dtdS, and it becomes

(1

n-H(g,t) =/ £ ' (r,c,t)dc h-ve (2.8)

Thus, the flux vector H(r,t) may be expressed as

Bir,t) = £ (r,c,t)yvede = neve> (2.9)

1

2.2 Formulation of Transport Theory

Following the treatment of Relf (1965) we attempt to

derive the equation of change for the mean value of dynamical

?

guantities <¢ (r,c,t)>for the flow of granular materials. Consider

a fixed volume element between r and r+dr which contains

n(r,t)dr particles in motion. The total mean value <n¢>dr
of the dynamical quantity ¢ for all particles in the volume
element dr increases in the time interval between t and t+dt

by an amount

3 =
FE Nexdrdt = et ke Voo (2.10)

k]

where the quantities y represent various contributions from

different means of interactions. ¥

s Firstly, is an intrinsic increase in the total

1‘)int
mean value of ¢ in dr because of the change of the quantity
¢(r,c,t) of each particle with respect to 1its position and

velocity perhaps due to an external force field. For each




P

e 20

~

§
particle of velocity ¢, it changes position by an amount

dr = cdt and velocity by dc = (F/m)dt; so the corresponding

change in ¢ 1is given by

(0p)at = 3¢ aesd.yae + 2. Lae (2.11)

where F is the external force acting on the particles with mass
- 2

m. Thus the intrinsic increase 1in the mean value of ¢ in the

(4

volume element is

wint = n<D¢>drdt (2.12)

Secondly, ka is, a kinetic flux increase in the
total mean value of ¢ because of the net kinetic flux of
particles which enter and leave the volume element dr in time

dt. The increase in the mean value of ¢ caused by particles

entering dr at r in time dt is

<n¢c> drdt ) (2.13)
by using similar arguments frem cetermining the flux of
dynamical quantities. Correspondingly the decrease caused
by particles leaving the volume element dr at a new location

r+dr is given by

- <n¢c>drdt + == - <ngc>drdt (2.14)

or
Subtracting (2.14) from (2.13), the kinetic flux increase ka

is given as

B
ka = - ?E -<néc>drdt (2.15)

Thirdly, ¥_,; is a collisional increase in the total
mean value of ¢ in dr because of the random interparticle
collisions in such volume element. To obtain wcol' we follow

L4
a treatment analogous to Enskog's analysis of the collisional
&
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transfer of molecular properties in dense gases using the
hard spheres model as described by Chapman & Cowling (1970).
Consider two identical particles 1 and 2 of diameter ¢
centered at 0l and 02 colliding with a relative velocity

q = glc- ¢, as shown in Figure 2. 1In time dt prior to the
collision, particle 2 moved through a distance of gdt relative
to particle 1. At collisionflcenter 02 of particle 2 must

lie within an area of ozdg which is a surface element on a

sphere of radius ¢ and centre 0 Hence, for a collision to

1
occur within time dt then 02 must lie inside the volume
ozdg(g-g)dt, where k is a unit vector along the centre line
from particle 1 to 2 and dk is the s0lid angle. Thus the
probable number of collisions per unit time such that Ol lies

within the volume dr and in which €yrc, and k lie within the

ranges, dc,, dc, and dk is
(2) 2
£ (x, cyirt+ok,c,,t) 07k(k-q) dkdg,dc,dr (2.16)

During a collision particle 1 at r gains a quantity (¢i_¢l)
of the property ¢ at- the expense of particle 2, where primed
quantity denotes that after the collision. The total gain

for all collisions inside the volume element dr in time dt

is therefore

_ 2 . (2) '
) l-d_r_dtov JIT(k-q) £ (5'91'§+°]—(’92’t)d’fd‘-’ld‘—:z“’l )

co
k-q>0 (2.17)

where E-q>0 is the‘integration limits accounting for all those

particles that are about to collide. Interchan$ing the roles

of particle 1 and 2 or correspondingly the subscript 1 and 2

ot m e —d & e
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)

in equation (2.17) and noting that g*—g\and k+-k we obtained

a similar expression of the form

(2)

A

—ardto® fff (x-q) £

E-g>0

. (£-0k,gy/T.gy t) dkdg,de, (95=¢))

col
(2.18)

(2)

»
Expanding f (g,gl,g+og,g +t) in (2.17) into Taylor series,

2
it gives

1
27

£02) (z,c . rok, c s th=(L4ok- 74

1
(2.19)

,i::::ZEy taking half the sum of (2.17) and (2.18) and using (2.19)

the collisional increase can be expressed in the form

Yooy = [-V-8(8) + x(¢) ] drat (2.20)
where 8(9) = - 1 o3 o (¢:-¢ )(k-q)k[l+-l,—ok-v+-—l-T(crk-V)2
2 1 "1 = 2 - 2! - 3!
kq>0
+ .. £¢2) (r-ok,c.,r,e.,t) dkde. dc (2.21)
. = —'-}"""'2’ - "l _2 .
o? (2)
and x(¢) = — f oo+ l-0.-0,) (k-q) £ (k=0k,c,,r,C,,t)
2 " 1 72 "1 "2° "= 2 = ='=1"=-"=2
—.g>0
dkdg,dc, (2.22)
The collisional transfer contribution 6(¢) may be interpreted
N

as a flux vector term of property ¢ while x(¢) may be seen as
analogous to a source Or sink tern:(more discussion in Appen-
dix A) .

, With the use of equations (2.12),(2.15) and (2.20)} the

equation of change for the mean value of dynamical quantity

(2.10)/ can be written as

]

% <n¢> = n<dD¢> - V - <nN¢Cé¢> - V.0(4) + x(¢) (2.23)

(O}_S’V) 2+- . -)f(z) (5_0151911519211-)
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Subsequently, we may use the above equation to obtain the
conservation equations that govern the flow of identical, !
smooth, inelastic, spherical granular materials. By letting

¢ be the mass of a particle m in (2.22), it gives the equation

of conservation of mass

%% = -V- (pu) (2.24)

where p mn is the bulk mass density and u is the mean
velocity. Letting ¢ be m¢c the linear momentum of a particle
with fluctuation velocity defined as v = c-u in (2.23), it

gives the equation of conservation of linear moméntum

dy

pge =P - V-P (2.25)
with P =p +0D (2.26)
and ‘?k = p<v v> (2.27)
P = 8(mc) (2.28)

where P is the pressure tensor made up of a kinetic or
diffusional part‘gk and a collisional part‘gc, and b is
the external force per unit mass. Letting ¢ be 1/2 mc2
the kinetic translational energy of a particle in (2.23),

it gives the equation of conservation of the translational

fluctuation kinetic energy

3 4ar _ _ .. C Y.en

ip dc = E.V_L_] v 9 Y (2.29)

' 3 g v (2.30
with —2" = 3 . )- .
i
Q=9 tQ (2.31) %

=L 2
and Q=3 <y v> ﬁ (2.32)
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Q.= 0(1/2, mv?) g (2.33)
y = -x(1/2.nc?) (2.34)

where 3T/2 is the fluctuation specific kinetic energy, Q
is the flux of fluctuation energy consisting of a kinetic
part Q. and a collisional part Q_, v is the collisional rate
of energy dissipatibn per unit volume due to the inelasticity

of the particles.
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CHAPTER 3
GENERAL INTEGRAL FORM FOR THE STRESS TENSOR AND ENERGY

DISSIPATION FOR THE CASE OF SIMPLE SHEAR

Consider an assembly of identical, smooth, inelastic,
spherical particles of diameter. g which is subjected to motion
_.y'
where gy is the unit vector in the y-direction as shown in

consisting of simple shear with mean velocity u = u(z)e

Figure 3. The instantaneous velocity c(r,t) of a particle
in a volume element dr differs from its local mean translational
velocity u{r) by a random fluctuating part v(r,t) due to inter-
particle collisions, i.e., 7

clr, t) = u(p) + vir,t) - (3.1)

The effect of the interstitial fluid is’ assumed to be negligible
and for simplicity the surface friction of the particles is

also neglected.

s

In this analysis, we are concerned with situations where
granular materials are being sheared at moderately high solids
concentration and mean shear ra‘te such that the effect of inter-
particle collisions dominates over that of free particle diffusion
between layers. Irfother words, the mean free path is likely
to be smaller than the diameter of the particles, hence the
,probability of particles transfering momentum by going from one
layer to another is small. Thus, the major stress contribution
comes from the collisional transfer of momentum between particles.
Furthermore; we assume that the collisions are almost instantaneous

and the probability of multiple interparticle collisions is

negligibly small so that only binary collisions need to be treated.

_26_
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At very high concentration, this assumption is expected to
break down critically due to the clustering and prolonged
contacts of particles.
Since dry friction is ignored, the inelasticity of
the particles which damps out and converts the fluctuation
kinetic energy into heat acts as thé only. dissipative mechanism.

Particles are assumed to have no rotational energy but trans- a
lational energy only? The inelastic collisions of particles

are characterized by the coefficient of restitution e of the
particles which varies from zero to one depending on the
material. For perfectly elastic collisions, e has the value .
of one which corresponds to no energy digsipation in the system.
For e less than one, the rate of energy dissipation is a
function of the coefficient of restitution and the impact
velocities which depend upon the shear rates and velocity
fluctuation. However, if e equals zero, the particles no

longer rebound after a collision. Multiple collisions would
there fore be frequent contrary to the ?SSumption of binary
collision. Hence we restrict ourselvés to consider only
particles with a moderately high value of e such that the

impact duration during a collision is small compared to the
average time interval between collisions and that negligible
permanent deformation of particles occurs. Furthermore, we
assume that the coefficient of restitution is constant, though -
experiments have shown that e actually depends on the impact
velocity (Goldsmith 1960) . Such phenomenon of impact would

no doubt present another degree of difficulty, nevertheless,

we are content at the present to the first order of approxi-

mation to take e as a mean value.

PSR
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'As suggested by Savage and Jeffrey (1981) we follow
the approach c;f kinetic‘theory of dense gases and use a pre-
collisional ﬁeacription of both positions and velocities of
the particles. This éhables us to calculate the stress
components and the rate of enmergy dissipation in the‘system

. ] h ] ‘
by the use of the statistical mechanics method as presented

in Chapter Two.

3.1 The Non-Egquilibrium Configurational and Collisional Pair

Distribution Function

Since only binary collisions for identical, smooth,

inelastic, spherical particles are considered, we require the form

of the complete pair distribution function £(2) (Z10C77X,/Cy0 t)

as defined previously. Following almost exactly what Savage
and Jeffrey (1981) had proposed, we assume that the complete

pair distribution function can be expressed as the product of
the pair correlation function g(;l.l_:z) and the single particle
g(1)

velocity distribution function for each particle,

(1) g(1)

(2) .

(3.2)
where subscripts 1 and 2 denote the positions and velocities
of particles 1 and 2 respectively.
In the kinetic theory of dense gases, the pair-correla-
t}on function 9(51,52) accounts for the correlation of position
between molecules due to the influence of the potential energy

associated with each molecule. To be more rigorous, g(r,,r,)

R R
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should be replaced by 9(51'91'52'92't) which takes into account
not only the precollision correlation of positions but also

the velocities of the molecules (see Reed and Gubbin 1973).

The main difficulty in the kinetic theory lies in finding such
unknown correlation function g(gl)gl,gz,gé,t) for the cases of
dense gases. Enskog studied the case wher%\the moi:cules were
taken to be hard spheres (Chapman and Cowling 1970). This
greatly simplifies the correlation function since hard sphere
molecules no longer have either loné range or short range potential
influence on each other, therefore the correlgtion of velocities
for the molecules need not be gpecified. w;th the assumptions
of binary collision and molecular chaos, the pair correlation
function g(gl,gl,gz,gz,t) is replaced by g(;l,;z). Enskog made
a further assumption that g(gl,gz) may be apprqx%ma%ed by the
local equilibrium pair correlation function g(r) and. a numb;r

of collisional transfer of molecular propertes may then be

expressed in terms of g(r). ¢

Analogous to what was done by Enskog, Savage and Jeffrey
(1981) applied the theory of hard spheres dense gases to the
aqalysis of smooth, hard, elastic and spherical granular materials.
In principle, the hard sphere theory may be expected to work
' bette£ in the case of granular particles than that of molecules
in th? sense of the absence of repulsive and attr;ctive forces
betwegn the grains (except when electrostatic fOfgks build up

to an extent that they would play a significant role in grain flow).
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Savage and Jeffrey (1981) made no attempt to solve the
Bqlt;zmann equation by a perturbation method to obtain the

complete pair &istribution function as Enskog did but rather
(2) (r

o

they proposed ‘the plausible form of £ 1,91,52,92,&

apﬁropriate for granular flow by using physical arguments,

which we will adopt also.

1

Let;' us subpose Qith Savage and Jeffrey (1981) that the

single velocity distribution is locally Maxwellian about the

mean transport velocity. In the case of fluidized beds, the.

experiments of Carlos and Richardson (1968) show some justifi-

cation for this assumption.. In more recent work dealing with
numerical modelling of 2 dimensional granular flow, C;mpbell
(1982) investigated the form of the single particle velocity
and the spatial pairhdistribution. The velocity distribution
was found to be quite close to the Maxwellian form. Thus we
also adopt the form of Maxwe%lian velocity distribution funct

for f(l) and further make the assumption that":t there is no

fluctuation gradient in the system, hence

. (c-u) 2
(1) _ 1,3/2 _-igu :
f (_r,,gpg(l_:)g) = n(-z-;r-.l—.) exp ( 5T ) (3.3)

where 3T/2 = <v2>/2 is defined as before theg specific kinetic

energy of fluctuation, 2> is the mean square of velocity

ion

fluctuation assumed to be constant, and n is the number density

at r. The assumption of <v?s being independent of position

implies that the system is 'isothermal' due to the kinetic

fluctuation energy being the same everywhere. 1In general. this

assumption is not true, but it is possible for the simple shear

flow case to be examined here.
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éavage and Jeffrey (1981) have also proposed the form,
of the pa;'.r correlation function. \T'he way that they determine ‘
such a function is by making a kinematic argument. Due to the
presence of the mean shear u, the pair éorrelation function
g(r,,r,) differs from the equilibrium ’isotropic pair correlation
function {(or better known as the equilibrium radial ciistribution
function) g (o) which is evaluated at contact |r,-z,| = o.
Consider a particle moving along with the local mean transport
velocity, it would likely exper:ience more collisions with
pa~f'l‘.icles on its 'upstream' quadrants than its 'downstream’ ones
(Figure 4 ). This ef;ect gix}gs fise to a bias in the distri-
bution of collisions. Essentially, Savage and Jeffrey (1981)
argued that ‘the ratio of the non-equilibrium pair correlation
function 9(51'52) to the corresponding equilibrium one go(c)
may be given by the ratio of the probability of collision of ]
a pair of particlec.; at £ and I, having velocities in the .
ranges Of g_l'and 9—91' S5 and -d-92 respectively in the non-

equilibrium state to the probability of dollision of such

particles in the egquilibrium state in the sense that Vu=0, giving

LN

9(ry.I,) okk:Vu
-—-—T-——-go 5 = erfc(—--ﬂ-zT 2) ) (3.4)
iy

where erfc(x) is the complementary error function

2 » -2
erfe(x) = 173 J e dt ‘ {3.5)
o X

Since g(r,.,r,) describes the distribution of collisions for a
particular configuration of a particle, Savage and Jeffrey (1981)

choose to call g(r,,r,) the collisional pair distribution

3
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‘Upstream’
quadrants

Fig. 4 Anisotropic collision distribution of each particle
arises due to the mean shear motion. Shaded 'upstream'
guadrants receive more collisions thap the 'downstream'
ones (Savage and Jeffrey 1981)
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function i1nstead of the pair correlation function. The above
form of the collisional pair distribution function 1s cast 1in

a slightly different form than that of Savage and Jeffrey. The
tensor product kk:Vu = (k-Vu)-k may be expressed in terms of

S
the spherical coordinates 6 and ¢ (Fiqure 3) as

kk:Vu = %g sin 6 cos 8 sin ¢ (3.6)

5

3 d
hence g(;l,gz)/go(O) = erfc (—7 (o a§/§v2>5)51n9cosesin¢)

T (3.7)
The variations of q(rl,gz)/go(o) with 8 for various values

of /372 R sin ¢, where

du
o

dz
R = (3-8)
v 172

<

is the ratio of mean shear characteristic velocity to the r.m.s.
precollision velocity fluctuation, is shown in Figure 5*. For
small values of R g(;l,gz)/go(o) is ellipsoidal, and for large
R the variations in g(gl,gz)/go(c) are step-like. Recent
computer experiments done by Campbell (1982) show similar forms
of anisotropy in the collisional distribution at low concentra-
tion, however, at high concentrations spikes appear in the
distribution function.

For the equilibrium radial d%?tribution function, we
adopt the semi-empirical equation by Carnahan and Starling (1969)
as suggested by Savage and Jeffrey (1981), wh%ch for a system
of identical hard spheres can be expressed in terms of the solids

fraction v as

The single particle distribution function and the collisional
pair distribution function given by Savage and Jeffrey (1981)

need to be corrected by replacing <v2> with 2<v2>/3.
»
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Fig. 5 Collisional pair distribution function (Savage and Jeffrey 1981)
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g (0;v) = 1l + 3v + v2 (3.9)
° (=v) * 51-v)?  2(1-v) 3

This equation is evaluated at contact r=o and agrees well with
computer similations of molecular dyrniamics for values of v up

to 0.5. Combining equations (3.3) and (3.4) with the use of
(3.9), the complete pair distribution function f(z)(gl,gl,gz,gz,t)

given by (3.2) is

2 okk:V (c.-u.)? )2
(2) n Xk:Vu c,-u.) “+(c,-u,)
£ (x e 00,00, ,t)= g _(v) erfcl exp (-—=+ 1 =2 72
=11 =20 =2 (21rT)3 o —2;‘1‘77 2T
) (3.10)

By using the above eguation, we can determine the stress tensor
and the rate of energy dissipation as discussed in Chapter Two

once the collisional properties are known.

3.2 Stress Tensor and the Rate of Energy Dissipation
* In a collision between two identical, smooth, inelastic,
spherical particles of diameter o with mass m, the total linear

momentum is conserved. The momentum of both particles may be

expressed in the following ways
mgy =mg; - J (3.11)

mgé = mg, + J (3.12)

where primed gquantities denote the values after the collision
and J is the impulse of force associated with the change of
momentum due to the inelastic collision. The precollision

relative Yflocity g =c,-¢, is related to the post-collision

e PRt oty 15 <At R W 3 ML
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1n the component normal to the plane of contact

k.g' = - e(k-q) (3.13)

where k is the unit vector along the centre line from particle
1 to 2 as defined before. Hence, the impulse J may be written

1n terms of the precollision relative velocity as

J =3 (lve) (k- @k (3.14)

)

From this we may relate the particle velocities before and

after the collision as

' e _ (l+e) .
5] Sl -5 (l_( 9))_( (3.15)
‘- {1+e) .
92— 92+ 5 (l_( g)]_( (3.16)

These enable us to proceed to formulate the expression for the
stress (or called pressure) tensor and the rate of energy
dissipation.

As mentioned previously, the AOminant stress generation
is assumed to come from the rate of collisional transfer of
momentum of inelastic particles. Thus, we may take the total
stress tensor to be approximately equil to the rate of collisional
transfer of momentum, i.e. P = gc which is given by equation (2.28)
with the dynamical quantity ¢ = mc. Using equation (3.15) and
substituting into (2.28) neglecting higher order terms, the

stress tensor is

P= 2-=! mo I (k-

i
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If the particles were elastic, i.e. e=]l, we essentially obtain
the same integral form given by Savage and Jeffrey (1981).
To obtain the rate of energy dissipation per unit volume

we consider the energy lost A¢ during each collision which may

be expressed as

Ae = ¢l + Qz - ¢i - ¢é (3.18)

and by letting ¢ = k& mc2 it becomes

e = 7 (1-e?) (k-g) 2 (3.19)

Hence, by noting that y =-y(k% mcz) being the energy sink term
1n equation (2.34) the integral expression for the rate of

energy dissipation per unit volume is

(1-e%) 2 (2)

Y =—g —~ mo / (E-g)Bf

(£y4C7/L,,C,,t)dk dc. dc (3.20,
K-g>0 17=1'=2"=2 1 2

As can be seen immediately if the particles were elastic, 1l.e.

e=]l, there would be no energy dissipation because y is zero.
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CHAPTER 4
SOLUTIONS FOR THE STRESS TENSOR AND THE RATE OF

ENERGY DISSIPATION PER UNIT VOLUME

The stress tensor P and the rate of energy dissipa-
tion per unit volume y given by equations (3.17) and (3.20)
respectively may be evaluated by using the proposed complete

(2)

pair distribution function f in (3.9) and they may be

written as

2 3
(l1+e) n'm ¢ 2 okk:Vu
p = / (k-g) "kkg_(v)erfc (—“—g‘)
- 4 (21> k-g>0 " © 2T
(g,7uy) *+ig,muy)
exp (- 5T ) d5691d92 (4.1)
and
2 2 2
(l1-e”) n'm o 3 okk:Vu
= / (k-g)” g (v) erfc (_“_E‘)
8 (2nT) > k-q>0 ~ 2T
(e;7yy) “ (epyy) j
exp (- 3T ) dgdgldgz (4.2)

»
The velocities <, and 92 can be expressed in terms of the

variables w, the center of mass velocity, and g, the

relative velocity

91=!’+’5‘3 (4.3a)
_c_2=V_v-%g_ (4.3Db)

with the modulus of the Jacobian being unity, i.e., dgldgz =
dwdq. Also the mean velocities of the particles u, and u,

-

may be expressed in the following ways:

..39..
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g, {(r;) = ulr) - u (4.4a)

1 K-V
K.V

u (4.4b)

nla  Nja

u,(r,) = u(r) +

where r is the position of the point of contact of the
particles. Using equations (4.3a,b) and (4.4a,b), the stress
tensor and the rate of energy dissipation per unit volume may

be written as

¢ 2 3
(l+e) n“m 2 1V
P = 4 g s (k-g)° kkg_ (v) erff <9§§§—!)

(2nT)3 k-q>0

432 + (g + ok - vu) 2
exp (- T —) dkdw_dg (4.5)
and
;W 1zed) n’mo” (k') ® g (v) erfc (ZEhilH
b (2am) > Tk-g>0 " ° 2T
435 + (g +ok-vu)
exp (- 1T ——) dkdw_dq (4.6)

L

with w, = w-u. Several integrations mav then be performed

(Appendix B) to yield

2 3
(l+e) n"mo 2 okk:V
P = / (k-g)* kkg_(v) erfc (—Kﬁ-gu)
~ 8 (nT) k-g>0 4 -Te 2T
(k-g_+ okk:vy)°
exp (- T > ) dkd(k-q) (4.7)
and
2 2 2
(1-e“) n“mo 3 okk:7
Yy = / (k-g) "g_(v) erfc ( )
18 (am ™ "k-g>0 3 % 2T
" p (- g+ okt ® ) g (4.8)
exp = 4T xdix-q .
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Letting ¢ = _-g/(4T)%, the above equations may be rewritten
as
(1+e)n2mo3T 2 okk:V
pe LtlamT L cdg () erre Tk
™ 2T
‘ okk:Vu, 2
exp (- (¢ + —-E_-) ) dkdg (4.9)
2T
and
2,2 2.2/3 .
y (l-e )ngmo T s C39°(v) erfc (okk.Vu)
m >0 2T

okk:Vy, 2
exp (- (¢ +—£‘*§2) ) dkdg (4.10)
’ 27

By noting that the bulk solid density Py = nm, solid fraction
v o= nw03/6 and the mean shear velocity to r.m.s. velocity

fluctuation ratio R = Elﬂ%égi’ as defined previously, the

<v >
stress tensor and the rate of energy dissipation may be non-

dimensionalized to become

£ 2
pr = = 3 S L kk erfc(o)

4
3/2
obvgo(v)(og%)2(£§2L m /3R >0

exp (- (g+0)2) dkdg (4.11)
and ‘r
Y 2 3
Y* = = S [ erfc (¢)
obvgo(v)oz(g%)3(l—e2) 73/2 /383 £>0
exp (-(z+0)2)dkdg (4.12)

where the parameter ¢ is defined according to equations (3.6)

and (3.7) to be

¢ = okk:Vy KI R 8in 8 cos 6 sin ¢ (4.13)

ar 2
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Furthermore, from Figure 3 the unit vector k may be defined

to be
k = sin 6 cos ¢ e + 8in 9 sin ¢ gy
+ cos 8 e, (4.14)
and the solid angle \\ ’
dk = sin 6 46d¢ (4.15)

Thus by making use of equations (4.14) and (4.15), the non-

dimensional stress tensor and rate of energy dissipation per

unit volume can be expressed as

K¢ 4 r® 2w m 2 _ 2
P* = :377;2 J i) I t°kk erfc (9) exp (-(z+%)°)
=0 ¢=0 0=0
sin 6 46 d¢ dg (4.16)
and i &
2 o 27 . 3 2
Y* = f f J7 7 erfc (9) exp (-(g+9)7)
737273 RS =0 ¢=0 6=0
sin 6 d6 d¢ A4dg (4.17)
with $
4
sin26c0s2¢ sinzecos¢sin¢ sinfcosb /f/
kk = sinzecos¢sin¢ sinzesin2¢ sinfcosfsing (4.18) /
1k ' /

I

\\\_,///

Unfortunately the integrations of (4.16) and (4.17) cannot be

sinfcosbcos¢ sinfcosfsing co

performed analytically and numerical integration seems to be
a sensible alternative. However, analytical solutions of ;
such 1ntegrals are desirable even though the solutions might
be approximate ones. Hence in order to by-pass‘the

numerical integration and see some important features of the




. SIS h, e

solutions, we will use the method of akymptotic expansion

and series transformation to obtain the approximate forms

of the stresses and the rate of energy dissipation per unit

volume.

Savage and Jeffrey (1981) had considered the

collisional stress tensor for the case of simple shear of

smooth, hard, elastic and spherical granular materials and

found essentially the same integral form as given by equation

(4.1) with e=1. In order to obtain the solution of the integral,

&
they performed numerical intacrations as well as asymptotic

expansions both for small and large values of the parameter R

in the integrand and discussed the physical significance

involved. The parameter R, being the ratio of mean shear

characteristic velocity to the r.m.s. fluctuation velocity,

depends on the material properties of the particles. When

a mass of granular material is subjected to simple shear by

external means, the velocity fluctuations of the particles

will increase in magnitude until the energy dissipation inside

the bulk solid is balanced with the mechanical work input.

Energy may be dissipated in the form of thermal heat caused

.

by the inelastic collisions and the frictional rubbing of

particles. Thus R may obtain values depending upon the

ocoefficient of restitution and the dry frictional coefficient

of the particles. The case considered by Savage and Jeffrey

(1981) was a system of no energy dissipation. As a result,

the parameter R could not be determined directly from the

material properties.

However, the present analysis takes into

[P

[N
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(, account the inelasticity though ignofes the dry friction
of the particles, R will be known once the balance of work
dgne and energy dissipation is established.

Following the treatment of Savage and Jeffrey (1981),
the integrands of the non-dimensional stress tensor and rate
of energy dissipation per unit'vqlume given by (4.16) and
(4.17) respectively wili be expanded in terms of the parameter
R asymptotically for small and large values and the expansions
will be matched by means of series transformation to obtain
the form of approximate solutions valid for general values
of R. The rate of work done by shear will then be equated
with the rate of energy dissipation per unit volume to obtain
a relationship between the parameter R and the coefficient of

restitution e of the particles.

4.1 Solution for small R expansion
Consider R to be small, then correspondingly the'
magnitude of ¢ given by equation (4.13) will also be small,
i.e. limit ¢ - 0. Hence, the complementary error function and
the exponential function in the integrands of the integrals
, (4.16) and (4.17) may be expanded as follows:

0 ¢2n+l

2 n
erfc (¢) =1 - — § (-1)
/5 n=0 n:(2n+1)
3 5 7 .
=1- 22 , 298¢ _ ¢ 0 (4.19)

Yo 3/m 5vm  21/m
and

e
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2 -2 2.2 4 .33
exp (~(c+®)7) = e (1-22¢ + 20707 - 3 £7¢7+...)
4 6
2 ¢ [
(lJ" (b + -2—- - -6— + 4..) (4.20)

With the above expansions, the integration of dz in both

4 2 .7 . '
p* = 72" 1™ xk F(8) sin 6 dod¢ (4,21)
~ 3722 4 e=0
and
2 21 LT . :
y* = -/ =3 s /" G(®) sin 6 ded¢ (4.22)
T Y3 R ¢=0 6=0
where
F(?) = L. 36 + (Zi-+ JL)¢2 - T3 0 x ot 4+ 12 5>
o 3 = 3 3
. kil
h
4 6 13 .7 16 8 67 .9 s Tio
- 08 - L3 o7 4 L6 L8, 0 - 4
45/ 140 315/7 3024 225/7
103 .11 736 12 13
- 203 G110 736 0 4l2 4 (eldy (4.23)
23760 155925/
and d
(o) = 3 - (iéf + o+ 3 0% - (%§'+ L) o34 208
v 3T
+ 290 - % 08 - 8 o7 4 5 o8 4+ L7 59
343 105/7 ) 540/T
!
+ 230 ol0 , 84 G11 415;0 #12 4 o (o13) (4.24)
17325/ . .

integrals may be performeé terin by term to yield

-

Using the definition of ¢ in (4.13) and also the dyadic

product kk given by (4.18), the components of the non-
dimensional stredgses and the rate of energy dissipation per
unit volume may be integrated and expressed in terms of the

ratio R as

IS
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4 ’
i . 4 6 w8
] (} v 4 r 2 4 R R 81R
* Pex = T2t T Y2 T~ Tsomsm ¢ " T24978B007 :
i y XX 3R2 2 /T 3577 150157 09457 9| on
: ' 10 -
f - 12 ‘ )
. * Taggesooor ~ ° (B  (4.25) |
' : 4 6 8
4 vT 2 12 R . 9RY . 81R
p* = p* = + (I £y 2E L + -
gy = P T 5 t 2t 2 3,5 745w * 7305457 T FW6308007
10 ) s
R 12
‘ * 1r30%000% ~ O% ) : (4.26) |
) a
{
e wpr oo d2 R STRD | 9> Lo ;
yz zy 5/37 R 5/37  8008/3W 29920/31 !
v .
\ 1809R’ 83437 8 11
+ R - + O(R™7)  (4.27)
165541376737 2472371200073 7 -
~ 4 6 9R 9R3 63R°

+ + - + = . ¢
/3T 5 s/3W R 280/3%  8008/37  1244672/3%

Y* =

10449R’ , 135278 + or'Y) (4.28)

4966241280/37 197789696000V37 - 1

The non-dimepsional normal stress P;y is found-to be the
same as P! while PX differs from both in the second term
onward. The series given by (4.25) and (4.26) shows that

these vstresses have even powers of R dependence.. Truncating {

after the first terms of the series, we find the corresponding’

dimensional normal stresses are isotropic and have no degendence

of particle diameter and shear rate. The .second term gives rise

to anisotropy between P . and Pyy’ Py w?igh depends upon the
( square of the particle diameter and shear rate similar to

the results of Bagnold's stress model (1954) in his gfain—

»
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lnert{a regime. Higher order terms of the normal stresses
*R consist of coefficients of rapidly decréasxng magnitude and

alternating signs and i1ncreasing even powers of particle

diameter and shear rate dependence. Similarly, the non-

dimensional shear stress P;z = P;y aid the rate of energy

dissipation per unit volume v* given by (4.27) and (4.28) have

odd powers of R dependence. Considering just the first term

of both series, the corresponding dimensional shear stress

depends linearly upon the particle diameter and shear rate

while vy depends inversely on the particle diameter and has

no dependence of shear ragz. Higher order terms give results

analogous to those of the normal stresses. All of the above

mentioned quantities depend on the velocity fluctuﬁtions ‘

associated with the interparticle collisions which cause the

behaviour of the flow of granular materials to be different

from that of liquid flow.

»
3

4.2 Solution for large R

Consider R to be large, i.e., limit Rh» o, The
complementary error function in the integrands of both
integrals (4.16) and’ (4.17) obeys

limit erfc (%? R sindcosfsing) = 2 for (singcosgsing) <0

R + « { . )
= 0 for (singcosesing) >0

(4.29)

Thus the ranges of integration will be taken over the face

of the sphere where 0 < 6 < % for m < ¢ < 2m and

m<o < E L for 0 < ¢ < 7. For large R, the integrals may

2
be evaluated asymptotically by the method of steepest descent

to yield
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(' 1 0 0

Pt = é% 0 3 8/ (4.30)

0 8/m 3

Y*z—-&—

357 (4.31)

In these first order large R solutions, the stress tensor
g is proportional to the square of particle diameter and
shear rate while the rate of energy dissipation per unit
volume y is proportional to the square of particle diameter
and cube of the shear rate. The ratio of shear to normal

- P o
stress, IPyz/Pzzl = 8/31 = tan 40.3".

4.3 General solution for R

The expansions for small R and the asymptotic values
for large R of the non-dimensional stress tensor and rate
of energy dissipation per unit volume may be forced to join
to give series that are valid for all R by the method of
series transformation, namely the 'quasi-Euler' transformation.
The traditional Eulér transformation appropriate for the

above series také% the form (Van Dyke 1964)

e = -—%—-— (4.32)

where 4 is an arbitrary constant. By putting the sexies

-

Ca v lamatg s
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of B* and y* in terms of ¢ and d in the small R expansion*

from (4.25) to (4.28), the transformed expressions are

xx 35 /1 /T

ed 1 - ed

= (g4 3
1l-€ 150151 "1-¢

)7) (4.33)

) (

4 12 /7

l-e 2, ,ed 3
= P* = () (= + (-——= + —) ( )
2 35/ T 17F

)7)  (4.34)

1 (ed

p* -
Yy ed” "3 2 21457 "1-¢

-

= P* = _(l—e %( 1z | 1 (Ed ) - 57 (Ed )3) (4.35)

P*
yz 2y ed’ 537 s5/37 1°€ goos/3m 1TE

l-¢ 3/2(41 + 6 ed + 9 ed )2

9 ed ,3
y* = (=) (=) { - ————(3==)")
ed /37 s5/3% 7% 280/3% 1°° 70087371
(4.36)
We may further expand the factors (1—6)5, (1-5)3/2, (1-e) "~
2

1

r

(1-~€) “ and (l--e:).3 into power series up to the degree

corresponding to that of the parameter R in the original

series, the expansions become

~

L4 -1 -1 =5, 1,2
Phe = 3(e9) d”™%) - 2.119946x10  °(ed)

wi b

+ (0.1298994 -

(4.37)

1

p* = B! = %(ed)- + (0.3896982 - 3 a1y_ 1.4839622x10"%(cq)?

[ -

YY
(4.38)

P;z = P;y = -(Ed)-8(0.781764 - (0.390882 - 0.065147 d)¢

3

- (0.0977205-0.0325735 d@ + 2.3185434 x 10 d2)e2)

(4.39)

*

The number of terms used in the series are only up to the power
of 4 or less of the parameter R because additional terms show
little improvement in the transformed series.
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3/2

Y* = (ed) (1.30294 + (1.95441 - 0.390882 d)¢

—

+ (0.4886025 - 0.195441d + 0.010490054d2) ¢

+ (0.0814338 -~ 0.0488603d + 5.235027x10-3d2

- 3.660858x10  %a3)e3) (4.40)

The adv§ntaqe of using the Euler transformation is
that the magnitude of R can be taken out to infinity while
t%? transformed variable €+1, hence the validity of the
transformed ceries may be extended for all values of R. Let
us take € to be one in the transformed expansions of P* and
Y* given by eq. (4.37) to (4.40), the series now depends
only on the arbitrary constant d. Each of these series may
be fitted to give identical asymptotic results corresponding
to those given in (4.30) and (4.31) simply by solving the
apP!d%riate value of d in each case. Thus, the final forms
of the series valid for general R are’ *

2

P¥ = 0.049130173504 (——2 y 1
R%+27.1387873936

+ 0.0807692290523

2

- 0.0156136882706 (—g——n )2 (4.41)
R%+27.1387873936
R? -1
P2, = P}, = 0.07504766006422(— )14 0.314650599358
 R*+17.7665018192
! 2

- 0.0468410571429 ( 3 R )2
R"+17.7665018192

(4.42)
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$
;
P§z =P o= - (— R )% (0.172045391382 g
Y R“+20.6473941193 §
3
2 ;
+0.210001387831 (— R ) :
R°+20.6473941193 ;
5 i
- 0.0910205975593 (— R )2) (4.43) :
R“+20.6473941193
RZ -3/2
Y= (= ) (1.55614373166
R“+0.888348036208
o2
- 1.91949649499 (— )
R“+0.888348036208
R? 2
+ 0.386063604215 (— )
R“+0.888348036208
R? 3
+ 0.0500467045239 (— )7) (4.44)

R"+0.888348036208

These results are shown in Figures 6 to 9 together :
with the successive partial sums of the original series given
by (4.25) to (4.28). The transformed series of the stress
tensor gives values which are identical on graph with the .
numerical integration performed by Savage and Jeffrey (1981)*.
Thus we may have confidence thaé the transformed series of

the rate of energy dissipation per unit volume Y* is indeed

valid also¥**

*
The present ratio R is multiplied by a conversion factor of
Y2/3 in order to confirm the resul i of Savage and Jeffrey
(1981) due to the error in their £{1) as noted previously.

**Later comparison of numerical computation done by Dr. Jeffrey
and the present transformed series of rate of energy dissipa-
tion has shown that both calculations agree in average to 3
significant figures.
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4.4 Relationship between R and e
The energy balance equation for the equilibrium
state of steady kinetic fluctuation energy with no energy
flux derived from the energy conservation law given by (2.29)

takes the form

- P:Vu -y =0 (4.45)

From this, we may determine thg’ relationship between the
coefficient of restitution e and the mean shear velocity to
r..m.s. fluctuation velocity ratio R for the case of simple

shear by noting that
- P d_u = Y (4046)

Using equations (4.43) and (4.44) together with the non-~
-
dimensional parameters given in (4.11) and (4.12), equation

(4.46) yields

P*
e =1 -73!’—?,— (4.47)

I1f the coefficient of restitution of a certain granular
material were given, we could solve the corresponding

value of R simply by using (4.43) and (4.44), hence the
values of stresses and energy dissipation could be
calculated. This relationship between e¢ and R is plotted

in Figure 10which indicates a range of values of e between

1 and ~-1. When e equals zero, R has the value of upper bound
about 2.73. Physically the coefficient of restitution e has

its usual range from zero to one as the paraineter R goes

A s At &
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from zero to infinity. An inter pretation of the negative
values of e which correspond to large R is not obvious.
One possible clue is that the present analysis is
incomplete in the sense that we have ignored frictional
energy dissipation which undoubtedly plays an important
role. In other words, if we were to consider also
frictional losses, the lower value of e might be Erought
back to zero. The negative value of e may be regarded
simply as a fictitious value which has no physical meaning.
In all the existing theories (Ogawa, et al.‘1980, Shen
1982, Jenkins and Savage 1982) including the present

one, all the relationships of e vs. R behave in a similar
manner and can yield negative e for large R as shown in
Figure 10. Detailed discussions of each of these theore-

tical formulations are reserved for Chapter 5.
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CHAPTER 5 THEORY VERIFICATION
In recent years, a number of microstructural theories
involving statistical averaging methods of obtaining the
constitutive equations for rapid granular flow were proposed.

The most pertinent ones are the theories put forward by Ogawg,

Umemura and Oshima (1980), Shen (1982), Jenkins and Savage (1982).

The common characteristics of these theories and the present

one is that the constitutive relationships are calculated
explicitly and do not rely upon any empirical phenomenological
éaefficients which are determined from viscometric experiments
or by other means. Instead, in all these formulations the
constitutive relations are expressed in terms of material
properties such as adhesive coefficient, coefficient o% kinetic
friction and coefficient of restitution, etc. for the individual
particle. Once these coefficients are known, the macro-

scopic continuum properties of granular flow can be determined
explicitl&. In this chapter, previous theories will be compared
with the present analysis and the appropriate experimental
results. When necessary, the algebraic form of the previous
theories will be recast to correspond to the present analysis

in order to make direct comparisons.

5.1 Comparison Between the Present Theory and Previous

Theoretical Works

5.1.1 Ogawa, Umemura and Oshima (1980) .

Ogawa, et al. (1980) determined the stress tensor and
the rate of energy dissipation for the flow of adhesive, rough,
inelastic spherical granular particles by eméloyiqg a simple
statistical kinematic model of particle collision. In theié.
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model the frietion of the particles was considered but particle

rotation was ignored. Furthermore, the fluctuations were

assumed to be random and j,sotropic, and no kinetic energy

~

flux is involved in the analysis. 'rine constitutive equations
of stresses and raée of enepgy dissipation were determined
by averaging the rate of transfer of kinetic fluctuation
energy of the particles over all possible collisions.
Each particle is congidered to be inside an ix;laginary
collision sphere of radius b which represents the 'Wall' being
set up bg the neighbouring pgrticles. .In each collision, a
fraction of o'of the fparticle is assumed to adhere to the
surface of the sphere and the rest (l-a') rébound from it with
a léss of kinetic energy. The fraction a',or called adhesive
coefficient here, is assumed to be constant. Multiplying the
number density of particles by the change in kinetic ;nergy

per collision and the estimated collision frequency of magni- -

tude <v2>!’/(2b—a) gives the total rate of change of f£luctuation

& B

energy per unit volume which is then equated to the rate of
work done by stresses ant, the rate of energy dissipation per
unit volume. By comparing the forms of both sides, Ogawa, et
‘al. proposed the following constitutive equations of stressr

tensor and the rate of energy dissipation Yo!

; .

- b 2 2.k o
P = (K, <v>68, +b<v > (KD, ,+K..D, §,.)) (5.1)
TP VA i3 203 5+K 3084 5

v = - K Pb <v?>3/2 (5.2)

o R a1-(wyn 3 b \

’
€

where v* is ‘said to correspond to the 'packed state' of granular

)
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materials, Dij = (ui,j+uj,i)/2

.. is the unit tensor and for the <case of cohééiouless and

1j

S b s e S s s b v

<

is the rate of strain tensor,

F

smooth particles, the K's are given.as .

) 2
- - (1-e7)
K __..3..__

e{3+e)

with K3 = ‘.0.

Consider the case of Bimi:le shear flow of granular materials.

We may non-dimensionalize and express P and Y o in terms of s

the parameter R as-

.Pxx = PYY = Pzz

] _ .
zz 4e(3+e)
3 T ¥, ===

pp 3z . 9R
P 2
y2 =Y _ (V) (l+e)
o, o434 2 3R
p 3z
Yo ’ 4(1-e? ¢
amd Py = vy )
p.. 0 (=) : 3R
P Yy
where ‘{’l(v) = %— —-———-Y-r;—-‘r/l
(1-(vAv¥) )
.y, (413
‘!’2(v) ‘lfl( v)
ey (L3
¥a(v) =¥, *)‘

AY

and p, is the mass density of the solid particle:

and Pyz = sz

-~

%
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S
(5.3)

7 (5.4)

(5.5)

’
f

'

‘(5.6a,b)

(5.7)

(5.8) .

-, . %

1Y

(5.9)

C(5.10)

LA

é

(5.11)

(5.12)
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The dependence of R 1n the stresses E and Yo resembles
the first term small R solution of P and y of the present
theory given by equations (4.25) to (4.28). Unfortunately,
the stresses of both theories depend differently on the coef-
ficient of restitution e, we cannot compare them directly

until a relationship of e and R is established for the theory

-of Ogawa, et al. However, we may compare the non-dimensional

rate of energy dissipation by dividing equation (5.9) by a
normalizing coricentration function defined as

Y(v) = v2 g, (v) (5.13)

Taking the solid fractions v to be 0.5 and v* 0.64 for a

randomly packed state, the first term small R solution of

the present theory gives y* = 1;3029 R—3 from (4.28) and the
Yo -
one of Ogawa et al. y* = ° = 0.6477 R 3
© o vig o233 (1-e%)
pp go dz

(note Py = vpp). If we take v* to be 0.74 corresponding to

an array of closest packed spheres, Y; is lowered giving

ya = 0.3980 R-3. This shows that the rate ?f energy dissi-

'

pation of Ogawa et al.(1980)is about 2 or 3 times lower than
. .

that of the present theory depending on what the packed state

is meant to be. In order to compare the theories with no

N

y

ambiguity, both values of v* will be considered in each

calculation.

Using the balance equation of rate of work done by

stresses and the rate of energy dissipation per unit volume, i.e.
a

\ R
ijDij = v assuming under a StégagﬁifitE} we may obtainya

‘
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relationship between R and e in their model which is
2 _ vy 2/3 1-e
R” = 24(v*) (TTE) (5.14)

Interestingly, the variation of R with e behaves in a similar
manner as equation (4.47) of the present theory that the
coefficient of restitution has a range of values between 1 and
-1 as R goes from zero to infinity as shown in Figure 10.

The valud of e being zero corresponds to the upper bound of

R = 4.512, vfe 0.640r R = 4.2988 with v* = 0.74. In general
the values of e correspond to higher values of R than those of

the present theory. P

Now we may compare the stresses* by dividing equations

(5.7) and (5.8) by (5.13) giving

P ‘
22 = ¢, (v) del3tel (5.15)
2(3y,2 1 9R

PpV 90 (337

P 2 )
yz = - (l+e)

y) 2(?2)2 CZ(V) 18R {5.16)

PV 950 (33
where C;(v) =¥, (v}/¥(v) (5.17)
and C,(v) = ¥, (v)/¥ (V) < (5.18)

The concentration functions Wl, Wz and W3 given by (5.10)
to (5.12) associated with the normal stresses, shear stresses
and the rate of energy dissipation per unit volume respec-

tively are showr! in Fig. 11 together wifﬁﬁfTV) of the present

*Sign convention of the stresses of 09435, et al.(1980)is
changed in accordance with those used in the present

analysis.

AN e T AR,

LTI Vg e

N e e

PN

ot T e

B L ¥ TR VTR nANpuve O

JRUG—




" the corresponding correction values from these figures and

63

theory given by (5.13). Both theories show quite a different

variation with concentration v. Using the R and e relationship

Wk el L o Rt AR i b

in (5.14), we may determine the stresses. The variations of
the normal and shear stresses in terms of R and e are shown in
Figs. 12 to 15 together with those of the present theory. Q
The stresses of Ogawa, et al. are much lower than the present |
ones. For example, when e = 0.9 with v¥ = 0.74, the normal

spresses of Ogawa, et al. are about 16 times lower and the shear
stresses are about 7 times lower as shown in the Figs. 14,15. These
differences in stresses amplify further with the decrease of e.

The reason for such large quantitative differences in the i
stresses is not clear, but is possibly due to the number of

assumptions made involving the averaging process in their theory.

In all of the above calculations of stresses for
comparison, the solid fraction v is taken to be 0.5 as the

reference value. We may set up modification factors for the

¢

stresses shown in each of these graphs to be

&
CON(v) = Cl(v)/Cl(O.S) (5.19)
for the normal stresses and
Cos(v) = Cz(v)/Cz(O.S) (5.20)

for the shear stresses. These relations are shown in Figure

16. For a given value of v other than 0.5, one may take

multiply them with the respective stresses obtained from ‘
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Figs. 12 to 15 to give the correct wvalues of stresses of

Ogawa, et al.

5.1.2 Shen (1982)

Shen (1982) had used a similar statistical model and
derived her constitutive equations for rough, inelastic
spherical particles including interstitial fluid drag effects.
The case a simple shear of granular materials was considered
and assumptions similar to those of Ogawa, et al.(1980) were
made. The fluctuation velocity was assumed to be isotropic
and rotary inertia effects were neglected. The stresses were

determined by letting

Py = Py AMof (5.21)

.

where P is the average number of particles per unit area which
is normal to the i-th coordinate direction, AMj is the average
j-th component of the momentum transfer per collision and £

is the collisional frequency of a particle inside that unit
area. A similar formulation for the stresses was originally
used by Bagnold(1954). The rate of enerdy dissipation per unit

volume was given byt

( Y = n:F-E (5.22)

\

\

g

R g

where n is the number of particles per unit volume, F is the
collisional frequency of a pafticle and E is the energy lose
of each particle per collision. The magnitude of the collision
frequency F was estimated in a manner similar to that of Ogawa,
et al. (1980) by writing

F = 2f = <vi>iys , (5.23)

where S is the mean separation distance of the particles.
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In order to simplify the analysis of the dynamics of

particle. collisions, a number of approximations were made.

]

The main one is that R(l+ 1/A)<<1l where A 0/8 is defined as
the linear concentration of the particles. This eliminates
the consideration of the effect of anisotropic collisions.
Another important assumption is that tan-l u{l+e)+0 and p is
the coefficient of friction. Hence the friction cone* effect
is excluded. For the purpose of comparison in the case of

negligible interstitial fluid effect and smooth particle,
(

the stresses and the rate of energy dissipation may be

written in terms of the parameter R as {
Pox = Pyy = Pzz and Pyz = sz (5.24a,bh&
Pz - C.(v) 8/2 (l+e) (5.25)
\)2 02(3‘—'1-)2 3 T R )
op Yo 92
Poz 0.212(1+e)
= - C, (V) ———m— (5.26)
v2 02(35)2 1 R
pp 9 3z
Y
S 5
YX = = C.(v) = (5.27)
S 2 2,0u,2, 2 3
PpY 90 (x3) "(1-e7) 4R
where C3(v) = T3(v)/W(v) (5.28)

collide, the post-collisional velogcity com-
;oﬁggggkggrgiigic%gsthe plane of contact are restricted by the

effect’éf friction and inelasticity of the particles. The effect
of particle rotation due to the frictional forces is_?eglected.
Hence, a 'friction cone' of an interior angle of tan u(l+re) 4
may be found such that for collisions occuring within the friction
cone, the component of total relative momentum along the plane

of contact will vanish.
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Interestingly, the above stresses and rate of energy
dissipation per unit volume have the same form of R dependence
as those of Ogawa, et al. (1980) and the first term small R

solution of P and y of the present theory. However, the

concentration functions associated with the stresses differ
from those of Qgawa, et al. 1980l A formula for R and e may
be established easily by using the balance law of rate of

shear work and energy dissipation which gives

2

v,1/3 (l-e)
R™ = (5377 5312

(5

w;29)

0
¢

The plot of this equation is given together with the previous
ones in Figure 10 which shows that R has an upper limit of
about 2 when e = 0. 1Its behaviour is different from the
previous two in the sense that“the range of e starts from one
and extends to negative infinity as R takes on values from

zero to infinity.

Computations for the stresses in terms of R and e %re
performed in a manner similar to those of Ogawa, et al. (1980 and
are shown in Figs. 12 to 15. The magnitude of Shen's stresses
are higher than those of Ogawa, et al. (1980; however, they are
still considerably lower than those of the present theory. For
example, when e = 0.9 with v* = 0.74 and v = 0.5, the normal
stresses of Shegpare about 6 times lower and the shear stresses
are about 2.5 times lower as shown in Figs. 14 & 15. With a
decrease of e, these differences are eﬁlarged further. The
variations of stresses with v may be described by the factors
similar to those used in "he discussion of the theofy of Ogawa,
et al. (1980). For the theory of Shen (1982), éhey may be

defined as

o g
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CSN(\J) = C3(v)/C3(0.5) (5.30)
for the normal Stresses and
CSS(v) = Cl(v)/Cl(O.S) (5.31)

for the shear stresses. They are shown in Figure 17.

We may also compare the rate of energy dissipation.

Congider the case of v = 0.64 and v = 0.5. The non-dimensional

rate of energy dissipation per unit volume of Shen (1982) is

found to be v§ = o.4858\§’3 from (5.27) which is about 2.5 times

\\
lower than the first term small R solution of the present theory

—3

which is y* = 1.3029 R ., In the case of v* = 0.74 and v = 0.5,

v§ = 0.2985 R™3 which is about 4 times lower than y*.

5.1.3 Jenkins and Savage (1982)

Jenkins and Savage (1982) have dealt with the problem of
general deformation of smooth, nearly elastic spherical granular
materials. Following an approach similar to the kinetic theory
of dense gases outlined in Chapman and Cowling 1970), they
éetermiﬂated the general collisional constitutive equations
for the stresses, kinetic energy flux and rate of energy disgsi-
pation per uni€ volume. Essentially, their tﬁeory is applicable
to general deformations but is an asymptotic analysis for small

R. Their pair distribution function f(z)

(1)

and single particle
distribution function £ were taken to have the same forms

used in the present theory as given by equation (3.2) and (3.3)

L With similar'gssumptions made. A general collisional pair

distribution function 9(51,52) was assumed on the basis of

dimensional arguments to be
/

it e sl 0 8 <0 el
!
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9(51.52) = go(v) (1 - —) {(5.32)

where a is a constant. If a = 1, 9(51,52) is essentially the
first order expansion for small R of the g(gl,rz) of the
present theory given by equation (3.4) which is the same one

used by Savage and Jeffrey (198l). By using this linearized
f(2)

, the integrals for the collisional flux of fluctuation
energy gc in (2.33), the collisional stress tensor P in (2.28)
and the rate of energy dissipatidh per unit volume in (2. 34)

may be evaluated to yield (

Qc = - gVT (5.33)

-1 Lk K 2x
gc (o ~(nT) T (2+a) trg); - = (2+a)D (5.34)
Y = 6(l-e)x (T+(n/4=a/3)0(T/m) " trD) /o’ (5.35)
LN p;
where k = 2\ago(\.v)(l~t-<-:)o<7(T/1r);i {(5.36)
e D = (ui,j+uj,i)/2 (5.3??
and I is" the unit tensor.
Consider the case of simple shear u = u(z) ey with
» no fluctuation gradients, i.e., gc = 0, and taking the
collisjional stresses to be the dominant contributions, the
constitutive equations with o = 1 become
4
* o p* = pP% =
Pxx PYY Pzz ;;7 (5.38)
12
P* = P* = (5.39)
Yz ZY s5/3m R ¢
4 .
y* = (5.40)
R4k r3

-
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which are exactly the first term solutions of the present
theory. The parameter R and the coefficient of restitution

e relation may be found readily to be

R® = %9 (1-e) (5.41)

This equation of R is plotted along with the others in Fig. 10
It shows the same functional behaviour as that of Shen (1982)

with the upper bound Of R = 1.8257 being the lowest. The

. stresses given by (5.38) and (5.39) are plotted non-dimensionally

against both R and e ip Figs. 12 to 15. In the graphs of
stresses vs. R, obvious deviations in magnitudes between the
stresses of Jenkins and Savage and those of the present theory
can be' noted in the figures. 1In the plot of stresses vs, e,
the magnitudes of the shear stress of Jenkins and Savage and
that of the present theory are too close to be distinguished
on the graph, while the difference in the normal stress is
more noticeable.

All four of the microstructural theories, including
the present theory, basically show the same form and trend of
behaviggr in the constitutive equations at least for the case
of identigal, smooth, inelastic granular materials. Quantita-
tively the magnitudes of the macroscopic properties modelled
by analogs to the kinetic theory of dense gases are considerably
higher than those considered from the kinematic particle
collision models. In ogxder to verify all these theories, we

shall make use of the appropriate experimental data avajilable.

g
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5.2 Comparison Between Theories and Experiments

Savage and'Sayed (1980) have performed a number of
tests of dry granular materials under high shear rate in their
annular shear cell in which the interstitial fluid 4s air.
In these experiments, both shear and normal stresses were
obtained when various mean concentrations of granular particles
were sheared. The range of concentrations v tested is between
0.45 and 0.53 which is considered to be high and probably
most appropriate for the comparison of the present analysis.
The materials used were 1.0 mm diameter polystyrene spheres
of specific gravity 1.095 and 1.8 mm diameter®Ballotini spherical
glass beadp of specific gravity 2.97. These experimental data,
firstly used by Savage and Jeffrey (1981) to verify their
stresses, are shown in Figs. 18 and 19 . Stresses increase

rapidly upon increasing high concentration.

Unfortunately, the materjal properties such as the
coefficient of restitution of each material are not given or
known, therefore we have to choose a value for e in order to
calculate the stresses in each of the four theories. For
the stresses of Ogawa, et al. (1980) and Sheﬁ‘(1982) with the 4
coefficient of friction taken to be zero, only computations
of e = 0.9 are shown, whereas for the stresses of Jenkins and
Savage (1982) and the present theory, calculations of e = 0.95,
0.9 and 0.8 are shown in Figs. 18 &‘19.Tn?se values of e from

N NE
0.95 to 0.8 are probably in the range for the glass beads (see
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Goldsmith 1960), however, little information about the value

of e for the polystyrene beads is available except that it
should be lower than that of the glass beads. Since stresses
increase with increasing values of e as predicted by the
present’model, the stresses associated with glass beads should
be higher than those with the polystyrene beads. However,

the experimental data show the opposite trend. The stresses

for the polystyrene beads are slightly higher. The differences
betyeen the theoretical prediction and the experimental evidence
are probably due to the incompleteness of the present theory

in the sense that surface friction of the granular materials is
ignored. Glass beads are brittle materials, so when they are
sheared under high shear rate and loads, the beads are roughened
and surface friction would no doubt become an important energy
dissipative mechanism. According to the theories of Ogawa, et
al. (1980) and Shen (1982, stresses decrease with increasing

values of coefficient of friction. Thus, it is possible for the
stresses associated with the glass beads to be lower than

those of the poly;tyrene beads since the coefficient of friction
of the glass beads is probably higher in this case.

At e = 0.9, the shear stress of the present thecry and
that of Jenkins and Savage (1982) pass right through the experj-
mental results, but the normgl stress predicted is a bit high
in magnitude. This shows not only that these two theories
predict the righi order of magnitude of stresses but also
that the small R linearization is quite sufficient especially

for high values of e. At the same value of e = 0.9, the normal

. ,
W, C2
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. . stress of Shen (1982) is very close to the experimental-data

especially when v* = 0.64 , but the shear stress is off

considerably; for example, when v = 0.5 and v* = 0,64 Shen's
shear stress is about 4 times lower in magnitude and 6 times
lower if v* = 0,74, Both shear and normal stresses predicted

by Ogawa, et al.(1980) have the lowest magnitudes and fall '

short by a large amount; for exahple, when v = 0.5 and %
v = 0.64, their shear stress is about 12 times too low while ;
their normal stress is about 4 times lower than the data.
If v = 0.74, their shear stress is about 16 times too low
while their normal stress is about 5 times lower tkan the

tests.

.

e

As complementary information, we may plot the shear to
normai stress ratio against solid concentration v as in
Figure 20. The stress ratio for the present theory may be

found readily by dividing equation (4.43) by (4.44) giving ;

Py (Pl |
15551 = 1582
P, X (5.42) , i
similarly by taking the quotient of equations (5.38) and
(5.39) the stress ratio for Jenkins and Savage (1982) is 13
. Pyz 3/2 3
el = == (1-e) (5.43)
ZZ Yaw .
and from equations (5.7), (5.B) and (5.14) the stress ratio
for Ogawa, et al. (1980) is .
&
/
e T T T R
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xz| = Wre)? 3(ive),y ¢ (5.44)
P, e(3+e) '8(l+e) )
Also ffom equations (5.25) and (5.26) the stress ratio for
Shen (198R) is
P2 0.1151 72 v« 1/6 }
[ = = (=) 777 (1-e) (5.45)

|
. Pzz 2v/2 v *

As shown in the figure, all ;he above theoretical predictions
fall below the experimenta% values. Compar vely the prq?ent
theory and the one of Jenkins and Savage represent predictigns
closest to the test results. The shear to nor?al stress ratio
of Ogawa, et al. (1980) and Shen (1982)'are both about 4 times «
too low when e = 0.9. One obvious characteristic shown in
Fig. 20 is that the stress ratio of each of the theories,
except Shen's, does not depend upon concentration. From the
experimental results, the stress ratig of the glass beads
indicates a slight dependence on concentration, while the ;tress
ratio of the polyst&rene beads indicates a stronger dependence.
So far, the present theory has fai£ agreemént with
the experiments on granular materials. Apparently, this theory
is not limited in the consideration ofygfhnular particles only.
Since the theory follows the same line}of approach as the

=4

3 : ] 2B
kinetic theory of dense gases, we may draw a comparison between

the two readily.

5.3 Comparison Between the Present Theory and the Kinetic
Theory of Dense Gases ? :

The hard sphere molecular model for dense gases used

by Enskog as presented ' in Chapman and Cowlingfl97m is the most

4_._,appropfiage theory for comparison.. We require only the

-

pror

Ve wao e ot

. . s N N P 7:1,‘ %o &?- thrte
. . e . ot R 53w r ST
g Co L AREERTR



i

g, e
T

part of stresses that arise from the collisional transfer of
momentum in correspondance to the piesent alysis; which

are given as

S -

_ 4 .2 509 g _ 2%
B = (g <v> - 2= Ap v’ ‘UV-g)pbvxo(V)E
1,016 , ' . 38.06 2 n<y 2> 1. )
- 1016 (4 3806 2, () B2 o - lyun  (5.46)
kil o s

2

and x_(v) = 1 + g-v + 4.5904 v° (5.47)

where the factor xo(v) is analogous to the radial distribution
function at contact in uniform gas. .
In the case of simple shear, V.y=0, the normal and

shear stresses become
2

- - -4 2
- Pxx = Pyy = Pzz 3 Obeo(V)<V > {5.4Q)
> :
p =p . Ll:016 . 3806 2 o omey®¥ qu oo
yz zy 2/3 5 %o I TR

o

We may again non-dimensionaljize these stresses in terms of

the parameter R to be

“ 2
) o 4AvTy (V) .
zzau 2 ¥ 02 ' ! (5.50)
DP(G 5;) - 5R" .
and . 1 , .
P - : . ‘ .
“"7‘%%‘5‘ = - 438 G B0 ot 4 s
p (oz>)- Z L
P a9z

-

IS B . °

Consider the stresses of the bresent thénxyf the first term

small R solutions are sufficient since we are dealing with
. T . P .

elastic hard spheres,  i.e. e = 1. Note that when e = 1,

o - a, et -

°




&

EIEC R S S

W e .

-

\

—

:
§
-
!
b
:
i
5

v

(i

75

there will be no energy dissipation in the system, hence
the parameter R remains indeterminate but not zero. From

equations (4.25) and (4.26), the normal and shear stresses

»

are
2
P 4vg (v)
22 = 2L (5.52)
(o——) 3R
P . 12\)29';(\))
—_—r . —2 (5.53)
) Jp(°az S/371 R

Comparing the expressions of stresses between the two
theories, the functional difference is between xo(vi‘and go(v)
These two functions are plotted in Figure 21 which shows that
they differ by a large amount at ﬁigh concentration. Since
g (v) is derived semi-empirically‘from computer similations
of molecular dynamics, one would presumably take 9, (v) to be
more accurate than Xo (v) espe01ally at higher concentratlon
For the purpgse of comparison we not only use the formula ‘
of xo(v) as given by Chapman and Cowling to calculate their
gtreséés but also we replace xo(v) by g (v). These two
calculations of stredses are both shown in Figures 22 and 23
toqeth;r with the stresses of the present theory as in 25.52)
and (5.53). By using their x (v), both of their shear and
normal stresses are low compared to those of the present theory.
But when we let %o (v) g (v), their shea} stress is quite
close to the present one espec1ally at high concentration of
y = 0.2 onward. However, their normal stress differs from

the present one by a factor of 5/3. This shows that the
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present theory 1s compatible with the formal analysis of
dense gases of hard sphere model at least in the case of
simple shear.
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CHAPTER 6 CONCLUSION 3

)
!
'

In this study, the conservation laws and constitutive | ,

e B ey 7 T 1T

inteqrals appropriate for the flow of identical, smooth,

-

inelastic, spherical granular materials are formulated in the

context of the transport theory of dense gases. The rapid

simmple shear flow of granular materials is studied in parti-

~ 1

cular. With the use of the pair velocity distribution function
proposed by Savage and Jeffrey (1981), the constitu}:,ive
inte’gralé for the collisional stresses ’and the rate of energy
dissipation are approximated by asym;totic expansions and :
series transformations in terms’ of a parameter R-which is

defined as the ratio of mean shear characteristic velocity

to the r.m.s. of the fluctuation velocity of: Ehe particl‘es.

The parameter R is found to depend upon the ;:oéfficieni: of
restitution of the particles through the balance of energy. <,
Thus, the stresses and the rate of energy dissipation are

determin’ed unigquely by the dissipative material property.

the coefficient of restitution e of thg particles,

The present s'tudy is compared with previous theoretical
investigations "and experiments. All the theories exhibit
general agreement in the form of the constitutive relationships
aeyeloped for the caée of simple shear. Although the theories
are based upon different statistical averaging methods and
dynamic considerations the relationships between the parameter
R and the coefficient of restitution e ;re quite similar.‘ Inn . ~
the comparison of stresses between experiments: and theoretical

predictionls, the theories of Ogawa, et al, (1980) and Shen {1982)

" "‘91- ¢ i
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yield stresses generally lower than the measurements.

The stresses predicted by the theory of Jegkins and Savage
(1982) and the present analysis show the correct Afder of
magnitude. Furtherﬁore, the small R solutions of—the ‘

stresses of the present theory, which are exactly those"

derived by Jenkins andLSavage (1982), indicate fair agree-

. ment with the stresses predicted by the kinetic theory of

dense gases using the hard sphere model.

The present analysis has considered only the trans-

lational aspect of the'particles in the granular flow

system of simple shear. The effect of dry friction and the
ro;ational motion of the particles are both plausible
extensions that can be made in the theory. These two aspects
are expected to become more important especially at,high
concentration.  The collisional stresses are assumed to be
the dominant stregs contributions at high concentration,
whereas the kinetic or diffusional part of tlhie stresses can
be expected to play ‘a major role Ft low concentration.
Numerous refinements can be made in the theory. The full
potential of the approach o?/;ineticytheéry of densé gases

¥
for the investigation of the flow of granular materials has

/]
g

yet to be explored.

»
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‘primed quantity denotes value after the collision. Thus,

APPENDIX A

LS

Collisional Change of Dynamical Quantity
y] :

4

In Chapter 2, we have formulated the collisional

B B R ey S g iy

change wcol of the mean valye of dyn;mical guanitity ¢ of
the particle in a binary collision. In thiihappendix, we
will discuss in some lékgth the pﬁxsical arguments involved
in the decomposition gf'wcol‘into,a flux term 6(¢) and a
sink term x(¢)'as presented in equations (2.20) to (2.21).
It will be shown that although the formulation and final

expressions for~chol in the present ggalysis are slightly

different from those of Jenkins and Savage (1982) and Condiff, 1

Lu and Dahler (196%5), the results from all these analysis are

essentially equivalent.

’

Consider the collisional change of ¢ at position r

in a volume element dr as shown in Fig. 2. The change of

S o

the dynamical quantity of particle 1 at r is ¢i - ¢1, where -

equation (2.17) as previously presented in Chhpger 2 is

- 2 ) (2) : ‘.
Yooy = 4r dt o k-é>o(E q £ (5'91'§+°5a92't’dEdgldEz(?l ¢,)(A.1)

~.

~

N

Since partlcle 1 and 2 are identical, we may-interchange
AN
their roles or correspondlngly thelr subscrlptfl and Zxand '

note that g+-g and §+-§. Expression (A.l) may be

2 (2)
v = drdto” [ (k-q) £ 7" (r~ok,cy,x c dc,dc, (¢,-¢5) (A.2)
col K-g>0 - = na TR 17=2"72

s
&

" The pair velocity distribution jﬁébtion f(z)(x) in

equatlon (A.1) is evaluated at the point. X = (I, cl,r+ok cz,t)
v . T /
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. in ajphase space of 12 digensions. Similarly, the pair
|
. velocity distribution function in equation (A.2) f(%’(g)is

Y

evaluated at the point Y = (g-og,gl)g,gz,t) in the phase space..

We assuﬁk'thaE'f(zx and its partial derivatives up to the order

n are continuous in the neighbourhood R of Y. Since X differs
o‘nly spatially from Y by an amount ok, X is assumed to be well

within the region R. Thus we may relate f(Z)(g) in (A.l)"&nd
f(2)

£(2)

(¥) in (A.2) in the following way. Firstly, we re-write

(x)to be £%)(p ,c.,t) where i = 1,2. sSimilarly, £'2)(y)

may be written as Using a Taylor expansion

(Fulks 1961) we may express f(z)(gi,gi,t) in terms of

f(Z)(gi—cg,gi,t) spatially as

£(2) 1

S . (2) -
ar(ok-V) .. JE (g, ~0ksc, s 1)

(£, 0 t) =[146k - V44 (0k V) 2404

(A.3)

By so doing, we may evaluate the change‘of-the dynamical

‘quantity due to collision of particles 1 and 2 at the same phase

£(2)

point. - In the present case, is evaluated at point Y in

the phase space so that all the macroscopic variables due to

» a

collisions may be weighted by the same kernel or weighting
function. Taking half the sum of (A.l) and (A.2) and using

(A.3) the collisional change may be expressed in the form of

Yoo = [~V-0(d) + x(¢)] drdt (A.4”
' T 3 1 1, o2
where 68(¢) = - 5 / (¢71-¢;) (k-q)k[1+770k V455 (0k V) “+...]
‘k-g>0 - ’ :
" - - s - //
- ' ox . /
(‘ f(ziﬂg-og,gl.g.gz,t)dgdgldgz ./ (A.5)
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o2 (2), ’ : ‘3

and x(¢) = 5 / (¢l'*¢é-¢1'¢2) (lf'g)f (g‘-ol_(.gl.r _Z.t) ‘ >
[} E g i ! ) K ' & ;i

dkde, dgc, ' . - (A.6)

4 - 0 §

”

The colligional transfer <-\ntr1butxon 6 (¢) may be lnterpreted
as the flux of change of -.dynamical quantlty of the pafticle at
r in the k direction due to the COlllSlOn The contribution "
x (¢) may be considered as a term for the sink of dynamical
quantity at r since it represents the total change of ¢ of the
particles in the binary collision. ¥for example, if the dyna}mié
cal quantity is the translational energy of the particle, i.e.
= § mcz, then e(imcz) will represent the flux of kinetic
energy and X(imcz) will represent the'loss of kinetic energy
due to the inelastic collision of particles.

A.l1 Jenkins and Savage l1982) >
/ Jenkins and Savage (1982) have formulated the collisional

change o’f the mea,n value of dynamic;al qu&ntity by using a
slightly different appro.uach of pﬁyaical ’argument. A particle
velocity ¢, dt r is considered to collide with a particle having
velocity ¢, at r+ok inside a volume element dr as shown in

Fig. 2. By using the same kind of collisional consideration

as in the present theory, the collisional change of the mean
value of dynamical quantity at r is found to be given by .
equation (A.l). @an identical collision is considered to ocour x

between a particle with velocity ¢; at r-vk and a particle

with velocity S5 at r. In this case wcol is given by (A.2)

©

T Ot i« Tt s e i
. - Mema x e -
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Ugingarhe kind of Taylor expansfbn'of'f(?) as presented

T

]
earlie}, the collisional change of the®* mean-value of dynamical

quantity wcol” fhe flux term 6(¢) and the sink term x(¢) are
givep byégqaations (p.4), (A.5) and (A.6) respéctively.’ Tae
formulatiop of Jenkins and Savage is equivalent to the present
aﬁalysis; dxcept that they consider\twd spatially different
identical binary collisions while the present one considers the

interchange of identical particles in the same collision\

5

4 -

A.2 Condiff, Lu and Dahler (1965)

r

Condiff, Lu and Dahler (1965) have dealt with the same
subject from a somewhat different point of view., They consider
a dilute gas of perfectly rough, elastic spheres. In their
formulation, translational and rotational dynamical quéntities
of the molecules are exchaﬁged due to particle interactions.
Usdng an argument similar to that of the present theory, the
collisional.change of the mean value of dynamical gquantity

v

col
obviodus difference between the two theories is that a;ggir

is found .to beréiven by equation (A.1l) and (A.2). The

translational and rotational velocity distribution function

(2) _ ‘e ‘
f (E'Il'£+°5'lz't)' where 1, = (gi,gi) and w, is the

~

1
rotational velocity, is required for their case. The decomposi-
tion of wcol into 8(¢) and x(¢) as in equation (A.4) is used.
However, their collisional transfer contribution terms 6(¢) and

x(¢) are presented in‘%Pdifferent way from the present ones.

In their theory, the integral of 6(¢) is weighted by

- > - [ —

T VR
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(2) - « . e L
£ 7 (x,1;,r+0k,T,, 1) while the integral Bf y(¢) is weighted by

f(Z)(E'UE'11r£'IZ't)- The reason for having 6(¢) and x(¢)
evaluated at different phase points is not.clear'and Condiff,
et al. provide no explandtion. The term 6(¢) in Fheir case
ré;resents 5’5 flux of éhe change of translational and
rotatiohgl dynamical quantities of the particle. The term
x(¢) ,xrepresents the total.exchange of translational and
rotationa¥ dynamical quantities in a binary colliSLon.
Analogous'to the present analysis, we may ignore
tpegrotational.aspect of their formulation and take 8 (¢)
to be the’flux of only translational dynamical quantity of
the partlcle a\? X (¢) to be the total change of translational
dynamlcal quantity in a binary collision of smooth, inelastic
particles. If we follow similar procedures of manlpulatlon

A
of }he present theory - to rearrange the Taylor expansion

A

of f(z) in their analysis, the same integral forms as given

in equatibns (Av5) and (A.6) will be achieved readily.

Y

g o e e

rmt . e



v

T

W‘mm;wmmw

PR T R T

enlda - At DL s AT v —

3
. ] ~ E
- T 3
¢ . ; :
) o
, g
' * ¥ 3
APPENDIX B §
—_ A \ oo ’ §
'‘Some standard 'gxtegra‘tions involving exponentials i
' ' ’ \ \ H
(Chapman & walir}g 1970) are presente.;i below: X ,?
. . B \
’ .4
» .
(a) If n is an’even positive ‘integer, then . %
?
fmg —atz' nogp = 4T 1 .3 Bn-—l a-(n+l)/2 (8.1) s{
0 Q 7 27 .1 2 . '
(by If nis anﬁdd positive integer, then i
- ?_ 2 - [y R
(7 e ¢t ar = 3 o7 (MHN/2 (2oL, (B.2) *
[ 2 . ‘\\\ .
* -
; . o \
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