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A8STRACT, 

FrOm, the approach of Maxwell transport theory, ln the eontext 

,of dense gases. conservation laws and' constitutive Integrais for. the Flow '" . :' ,~ . . 
of .identieal. smooth. i~lasti~; sphedeal granular materials ,re derived. 

The problem .of rapld simple shear flow of sueh materla!s is con~e,.ed - . 
speciflcal ty. The const! tut!ve integra)s are solved approxj~tely by the 

use of asymptotic expan~ions and series transforrllêitlons ln terms of a' . 
non-dime"nsional parameter R, which 15 the ratio of the eharaeteristlc 

mean shea,. veloci ty to the r.m.$. of the partiele fhletuatlon veloel ty . ( 

" . 

o ~ 
and is found to Cfepend upon the coefficient ôf restitution of the partlcles. 

S.v.g. and ::.:r;~~:::d.::r:;:~: :~: ::~s:: ::ema::;::::n:.:f th. 
coefficient of restitution is glven the values ofi\ound 0.8 to 0.9. 

Compa-rlsons made with several prevlous theories exhlbit.~simllar trends 

of behaviour ln t~e Constitutive relatk>nships. The present theory also 

shows fair agrèement in comparison of str~sses with the kinetic theory ~ 

of den~e gases using the hard sphere model ln the case of simple shear. 
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En appJ iquant là' t~orfe d~ tran5por~ de Maxwe 11 dans Je 

contexte des gaz, lourds, on obtient l~s lois de consèrvation et les 

intégraJe1 con~tit~tJves pour un ~()urant 'de milieux 9~anulatre dë grafns 
" 

,~, 

â fO'rmes identiques. lisses. non-élastiques. et sphériques. L'analyse 

élctue~ le ~s.t adoPtée"s~6cltJqUement au problaMe de coura~t de ,cl,sai llement 

simple et rapide. Les intégrales constJtutiv~s sont solutioun6es 
,'." , 

. approx imativement en u.tlll~ant les expans io.n,'·:asymptotlques et les 

transformations de sul tes eri foncti0t' d"un par~tre_ non-dimenslone! 

R qui est le rapport de la vitèsse charactéristlque n'Dyenne de cisallle-
. 

ment ~ la racine carrée moyenne de la vitesse de fluctuation de$ particules. 

On trouve que'R dépend du coefficient de restitution des par:tlcules. 

'Les' forces de tension prédites sont comparées aux ex~~ienees. 

de Savage et Sayed (1980); elles donneut un ordre de grandeur exacte 

'" 
o quand le coefficient de resti tutlon a une val~ur appr(),l(lmattve de 0'.8 à . , 

0.9. Des comparaisons sont fa.l'tes a .... ec; pluslerurs th60rles pr6cédentes; 

elles r6v.lent des comportèment slmi lalres co~cernantJes relltio!,s 

constitutives. La'th6orJe actut!ll1e montre aussi une bo'l"e_COrre5pond.ne~ 

en cC)tnp.rant les forces de . tension avec 'la th60rre clottlque de gaz 

lourds en uti 1 isant le' modale de la 'phare rigIde dans le cas d"un slmpl.e 

cls.i 1lement. 
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'CHAPTEt{ l INTRO.DouèTION 

, Theo' flow of "Çranular mate'Aals, which i5 but one member ' .'\ of a vast family of ~wo!phase flow systems, is a phenomenon 
; ,"' 

that exists not or:îy i,n nature ,but al$o oecu~s in'llumerous 

industrial processes. In natur6, examples of granular flow 
f' JI. 'V 

include snow avalaaches, drifé of pack ice f10w on the sea , 
'.>' \ 

,surf.~ee, landslides, submarine slides," debris flows and sedliment 

transport in rivers. Such geophysieal granulai flow systems 
j 

usually oceur on large scales and iri some "cases \they ,may be 

threats to the ~vironment and human life. Information about .J -r \ ~ 
the basic meehani~ms responsible" for these pt"\enomena may oo~~ 

bute to the mastery, and prevention of ~uch .cz:atas,trophic 'eve.n~s. , , , 
From the indus trial and engineering point of view, ample' . 
applications of granular flow exist: the transportation of 

~ 

Illand and gravel, grains, soil, ore" pills, ·oil sand, fluidized . . , 

bed burning of coal, mineraI and powder processing 1 slurry . 
flows in pipeHnes; etc. A bette::ç understanding o~ the 

governing meehanisms of S~Ch pro~esses ~y ~e bene'~icial to 

the design and' improvement of the transport equipment and 
,,~ 1l • 

handling devices'. 
\ . 

In terms of industrial ecpnomics, sueh infor-
., 

mation about the baste gran.ular bellaviour May aid in the forro 
. - \ 

of efficiency in performance of the proèesses. However, as . . . , 

is often the case, the subject is far from simple. 

Bagnold '(1954) classified the f10ws of granular 

materials into three categories: the macro-viscous, transitional 

h 
) . 

and grain-inert1a regimes. In t e maèro-visèOUS ~eg1me, the 
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• 
effects of fltÎid viscosity do~inate over that of grain inertia. 

Conv'ersely, in the ~~n-inertia re<iime, the effect of grain 

inertia dominate over that of fluid viseosity. In between 

these two limiting cases, there is the transitional regime 

wheJ;e the system transits from _inertia, ~o viscous conditions 

and both effects are important. A consistent. treatmeft and 

characterization of this <inamical problem of grany.lf flow 

taking into aCGount the effects of all three regimes is 1 
• 

extr~4y diffic~lt. Soffar not a single analytical th~ory 

which can describe satisfaetorily the general flow behaviour 

of granular m~terials has emerged.r S~ch 

the th~reticaI work i5 partially due to 
ç • ~ ---- ' 

slow develop~ent in 

the complexity of 
• 

the ma terials behaviour. As poJ.,nted ~ut in a recent, review by 

Savage (1982), a c1ear unders·tanding....6~ the mechanies- Jd.nder.t\-
j ~ 

lying granular, flows requires the utilization of ldeas from 

',f luid mechanics, plastici ty theory, soil mechanics, rheology 

and kinetic theory of gases. Another hinderance to the 

theoretical developmEmts is due to the scarcity of reliable 

eJtper imen ta l observa tions . 

1.1 Review of Previous Work 

Bagno1d (1954) developed a rudimentary theorefical 
o 

• 

anal.ysis .. Jbr simple shear of granular materials and performed 

experiments on nel;1trally buoyant, identiGal, spherical partiales 

made up of a mixture of paraffin wax and lead sterate sU$pended 

1-

in Newtonian fluids (water and a glycerine-water-alcoho1 mixture) . 

. The mixtUre of beads was sheared in a. coaxial rotating cylinder 

• J. 

, 
l 
f 

j 
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apparatus .with a flexible rubber inner cylinder wall anq 

a. rotating il!'igid 'outer cylinder. In such a device·, bo,th shear 
. 

and normal stresses were measured at various solids cqncen'tra-

tian and shear rates. In the macro-viscous regime, bath 

measured shear and normal stre~ses indicated a lin~depedence 

upon the shear rate. ln the grain-inertia regime, both the 

shear and normal ~tresses were f9unq ta behave in a nod-Newtonian 

way which depended upon the particle mass densi ty ~ the square 

of the particle diarneter and the square of the shear ra te. 

The stresses increased rapid1y wi th the :i",ncrease of solids 
,. , 

concentration, especially at ,high values. 

Savage and Sayed (1980, 1982 and-Sayed 1981) haye 
- ------ --- ~ ,. , 

carried out extensive viscometric experiments on dry granular 

materials l 'such 'as spherical glass and pOlystyrene, b~ads 1 and 

angular particles of cru shed walnut shells using a new mode! 

of annular shear cell. The device was designed to measure 

both the shear and normal stresses as functions of solids 

concentration and apparent shear rate. In their experiments 

of shearil1g single size spherical particles 1 both the shear 

and normal stresses indica ted dependence upon the square 

of the shear rate a t the lower concentrations and higher 

shear ra tes. However 1 a t higher concentrâ'tions and lower 

shear ra tes, the stresses were found to be proportional ta 

the shear rate of power less than two. This change in shear 

rate dependence was attributed to the increase of drYI 

frictional effect between particles. at high concentrations. 

c c 
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Tests with different sizes and mass' densities of the particles 

indiqate'd tl?,at the stresses de~ended upon particle, rnass 

dens. land the square of the particle diameter, supporting 

Ba,gnold 1 s experimental resul ts in the' grain-inertia r~gime. 

Stresses alsQ ... depended strongly upon solids C0ncentration. The 

tests oJ angular cru shed waln~t shells shows siml1ar trends in the 

resul ts. - When an ini tially weIl mixed binary size mixture 

of spherical particles was tested, particle segregation, having 

the small ones a t the outer radi:iJ.. and large ones a t the inner 

region of the shear cell, tlnls reported to have occurred at . 
,. 1 

the end Gf~ the test. This s~grega tional eff ect of particle 
, 

si"zes under<JlOf;hear is by i tself another distinct important 

phenomenon. As ye'L nO-- theore,tîcal explanation of this 
, 

phenomenon from a dynamical point of view has been attempted. 

with 

The main concern of the present 

the limi ti~g /ca.se",of granular flow 
.". 

work deals specifically 

in the grain-inertia 

reg ime, where the eff ect of fluid viscosity is neg ligible 

,nd the system of granular mater ials is subj ect to rapid 

deformation. The phenomenon of rapid granular flows has been 

investigated mainly along two lines of approach. The first 

one is ,based upon continuum theory ana.1ogous to the traditional 

continuum 0 theory of hydrodynamics in which the molecular 

dynamics are no t cO:Q.sidered explici tly -: The second approach 

is based upon microstructural theory analogous to the 

classical statistical mechanics in which the molecular dynamics 

are deal t with in detail and the macroscQpic parameters are 

given by means of" statistical averaging. The common goal 
\ 
\ 
\ 
1 
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is to establish the conservation and constitutive equations 

WhlCh govern the f10w of granu1ar materials under rapid 

deformation. 

Goodman and Cowin (1971, 1972) had proposed a continuum 

theory for the f10w of granu1ar materia1s in the grain-inertia 

regime. The stress tensor was assumed to be made up of two 

parts, a rate-independent part and a rate-dependent part. 
/ 

The rate-independent part .of the stress tensor was assumed to 

depend upon the solids fractlon v and the gradient of v. 

The rate-dependent part was assumed to vary linearly with 

shear rate. Nunziato, Passrnan ,and Thomas (1980) modified the 

theory of Goodman ~nd Cowin. The rate-independent part of 

the stress tensor was not changed, but the linear shear rate-

dependent part of the stress tensor incorporated a variatl0n 

of solid fraction based upon exper~ments. The choice of the 

dependence of grad v and linear shear rate in the complete 

stress tensor ia inapproprlate due to certain inconsistences 

with physlcal arguments and experiments as pointed out by 

Jenkins and Cowin (1979) and Savage (1979). 

Savage and Cowin (Savage 1979) attempted to improve 

the theory of Goodman and Cowin by incorporating variations of 

solids concentration and the square of the shear rate in the 

rate·dependent part of the stress tensor according to the 

viscometric experiments. However, the rate-independent,. or 

quasi-static, part of the stress tensor was taken to be the 

same form as that of Goodman and Cowin. The proposed consti-

tutive equations were applied ta the problems of open channel 

flow down a rough inclined chute and the f10w down a rough 
'\ ... 

• 

,. 

• 
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wall vertical channel. By choosing particular forms 'of the 

constitutive coefficients, the general traits of the predicted 

velocity profiles could be forced into agreement with the 

experimen ts. 

McTigue (1982) employed the sarne method of stress 

decomposition. In his theory, the rate-independent part of 

the stress tensor satisfied the Mohr-Coulomb failure crlterion 
4 

and depended only.upon the solids concentration v. The rate-

dependen~ stresses were found to depend upon the square of 

the shear rate by considering the collision frequency of 

each partic1e and the change of momentum 1n each e1ast1c 

col11sion together w1th an empirica1 function of solids 

concentratl0n deduced from experirnental results. The theory 

was applied to the problem of gravit y flow of granular materials 

down an inclined plane. General features of the velocity 

profile were demonstrated, however, the theary embodied at 

least more than one unknown parameter. Sayed (1981, Sayed 

and Savage 1982) had performed similar modifications to the 

continuum theory of Goodman and Cowin by using a slightly 

different forro of rate-independent stresses based upon the 

quasi-static theory of Spencer (1964) which satisfied the 

Mohr-Coulomb yie1d criterian. The rate-dependent part of the 

stress tensor was represented by a Reiner-Rivlin isotropie 

fluid model which exhibited the dependence of the square of 

the shear rate. The functional forms of several constitutive 

coefficients in the theory were determined in accordance 

with the viscometrie experimental results. The theory was 

c 
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then applied ta the problem of two-dimens~onal inclined 

chute flow of granular materials. Reasonable predictions were 

made when compared to the experiments. 

Bagnold (1954) formulated the stresses in the Couette 

flow OD rigid and smoqth granular materials from a simple 
'" , 

• microstructural point of view. The momentum transfer due to 

particle collisions between each layer was considered to be 

the dominant stress contribution. ,Thus, by multiplying the 

collision frequency with the number of grains in a unit area 

and the"momentum change of each particle per collision, the 
~ 

shear and normal stresses were found ta de~end upon the square 

of the shear rate* and sorne unknown function of concentration 

and angle which were ta be determined empirically. 

Kanatani (1979) used~a polar continuum model for the 

flQw of rigid granular materials. Surface friction of each .. 
individual particle was- considered to be the means of energy 

dissipation. Conservation laws were derived hy using the 

couple-stress theory. The rotation of particles was regarded 

as an additional field quantity. By averaging the microscopie 

energy dissipation due to the friction of the particles, a 

macro~copic energy dissipation relation was deduced, from 

which the constitutive equations were inferred. Kanatani (1980) 

*For the reason of dimensional hamogeneity, when the stresses 
depend upon the square of the shear rate, they will also likely 
depend upon the partic1e mass density and the square of the 
particle diameter. Thus, in arder to avold repetitlon 'in the 
rest of the review, the dependence of,~he square of the shear 
rate will automatically imp1y the other dependencies, unless 
otherwise specified. 

/ 
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extended the theory to incorporate velocity and rotation 

fluctuation campanents into the Mean flow field. An equation 

of state which took into account the effect of solids cpncen-

tration was proposed. A condition of proportional partition 

of trall'S'la~ion and rotational kinetic ener'gy was imposed on 

each part~cle by introducing an unknown proportionality 
, 

~onstant. Usin~ the previous averaging method, the energy 

dissipat~on relation and the constitutive equations were 

obtained. However, tne theory.was not self-consistent in the 
1; 

sense that, it depended on an indeterminate cbnstarit. The 

co~stitut~ve equations were applied to the problem of inclined 

gravit y flow of granular particle~ and the stresses indicated 

dependence of the square of the shear rate. 

Ogawa, Umemura and Oshima (1980) used a kinematic 

statistical model of particle fluctuations and collision 

dynamics to obtain the constitutive equations and the rate 

of energy dissipation for the flow of cohesive, rough and 

inelastic granular materials. The theory, which depended only 

upon material properties such as coeffic1ent of frictio~ and 

coefficient of restitution, was applied to the gravit y flow 

of granular materials down a rough inclined plane. 

Ackermann and Shen (1982,1 considered the case of 

simple shear of rough, inelastic granular particles in a 

Newtonian fluide The stresses were formulated in a way 

similar to Baghold's analysis, but ~n addition the effects . ., 
of interstitial fluid, fricti~nal and inelastic properties 

of the particles were considered. The collisional stresses 

.. 
t 
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were deduced from the statistical kinematic consideration 

of particle collisions. Although velocity fluctuations of 
/ 

the particles were ~onsidered in the model, the final form 

9 

of the stresses for this case of simple shear had no explicit 

dependence on the assumed isotropie fluctuation component of 

the partic1e velocity. The stresses depended upon the square 

of the shear rate, material properties and certain consiti-

tutive constants which were chosen such that the predicted 

shear stress matched with the experimental resu1ts. Shen and 

Ackermann (1982, and She~ 1982) imprdved the previous theory 

and eliminated the unknown constitutive constants so that the 

theory was self-consistent. By a new estimation of the 

co1lisiona1 frequency, the stresses depended upon the velocity 

fluctuation of the particles expllcitly. Unfortunately, when 

the shear stress of the analysis was compared with the experi-

ments of Bagnold (1954), Savage (1978) and Sayed (1981), t~ 

theoretical prediction was found to he about one order of 

magnitude low. An effective particle diameter correction 

factor was introduced, which was assumed ta account for the 

effect of particle clustering during shear. The shear stress 

agreed weIl with experiments for a particular chasen value of 
• 

this factor. 

( Savage and Jeffreyo(l98l) employed the approach of the 

kinetic theory of dense gases to consider the simple Couette 

flow of smooth and e1astic particles. A pla~sible velocity 

distribution function was proposed, and the particle fluctua-

tions and collision dynamics of the particles were examined 

1 
« 
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carefully. The model involved no dissipation of energy and 

the theory depended upon an undetermined parameter R which 

was defined as the ratio of Mean shear characteristic velocity 

to the r.m.s. of the fluctuation velocity of the particles. 

The collisional component of the stresses, which was assumed 

to be the dominant contribution, compared weIl with the 

experimental results of both shear and normal stresses when 

a particular value of R was chosen. The general characteristics 

of the model exhibited several interesting results. At smal1 

values of R much less th an one, the shear stress depended 
~ 

linearly upon shear rate and the normal stress had no shear 

rate dependence. For moderate and high values of R, both 

predicted shear and normal shear were proportional to the 

square of the shear rate. 

Jenkins and Savage (1982) extended the theory of 

Savage and Jeffrey to consider nearly elastic particles under 

general deformation~ * The governinq conse~vation' l~ws and 

the constitutive equ~tions were derived in the context of , 
kinetic theory of den~e gases. The analysis involved an 

unknown coefficient in the collisional pair distribution 

function. 
~ 

The theory was applied to two problems; simple 

shearing flow between two horizontal plates and vertical 

gravit y flow down a channel. 

The above brief review shows that though the continuum , 
approach May exhibit sorne gross features of the flow of 

granular materia~s, it requires additional information from 

experiments and particular insight in choosing the most 

.. 

,) 

.J 
il 

1 
f 
~ , 

.1 

r 

• 

_1 



, . 

/ 

/ 

( 

/ 
· ' ! 

/ 0 , 

Il .. 
appropria te forrn for the constitutive coefficients. AIt the 

above mentioned continuum theories did not consider the energy 

dissipation aspect of the granular system. The materia1 

prop~rties associated with the' collisional dynamics of the 

particles do not àppear. In the microstructural approach, aIl 

the necessary properties of the system can be considered 

explicit1y ànd the macroscopic variables are obtained by the 

method of statistical averaging. Different statistical methods 

have already indicated sorne degree of success in the formulation 

0':6. the proble~ 

1.2 PlaI}' of the Present Study 

In the present study, the model employed ls based upon 

the microstructural approach developed by Savage and Jeffrey 

(1981). The theory will be extended to deal with inelastic 

particles. In the 'o1lo~i~g presentation,<Chapter 2 contains 

the general formulation of the governing conservation laws 

and constitutive integrals essential for the flow'of smooth,' 

inelastic granu1ar particles'in the context of kinetic theory 

of gases, simila:r to what' was do ne by Jenkins' a.nd Savage (1982). 

In Chapter 3, the pre~ent analysis will focus on the problem 

of simple shearing flow, called Couette flow, of granular 

materials analogous' to what was done by Savage and Jeffrey 

(1981) but with'the additional consideration of energy dissi-

pation due to the inelastic property of the particles. The 

velocity pair distribution function proposed by Savagé and 

Jeffrey will be adopted. The full analytical solutions of the 

( 

1 

j 

1 
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inteqrals of- the atr.8aes -And thé rate of, "éner9Y dis8ipation 

using series tr.nsfo~t1on will be presented in Chapter ~. 

In Chapter 5, ,9omp.a;'iaon. wil~ be made ~etwe.n the present 

theory, previous theoretical inv,âtigations and the'appropriate 

experimen1:al re.ul ta. Conc,lu.aion8 of th! • .study will be 

presented in Chapter 6 • 
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CHAPTER 2 MAY-WELL TRANSPORT EQUATION 

From the classical transport theory of gases, the 

equation of change for the mean values of dynamical quantities 

associated wlth the individua! molecules has been shown to 

generate identical hydrodynamic equations and the derivation can 

be found in numerous kinetic theory text bOOks' (Chapman & Cowling 

1970, Jeans 1940, Present 1958, Reif 1965 ... ). In this study, 

we attempt to make use of the transport theory for dense gases 

and make plausible modifications which are appropria te for the 
. 

transport of identical, smooth, inelastic, spherical granular 

materials. In general, the theory of transport phenomena has 

been~investigated mainly Along two lines of approach which are 

known to give identical results. The first approach is based 

upon Boltzmann's integrodifferential equation for the velocity 

distribution function and the second one ls based upon Maxwell's 

equa~ion of chanqe for dynamical quantities. Presently, we 
\ 

will f9ll0W closely Maxwell's formulation of the transport 

theory owing to its direct and conceptual simplicity over the 

Boltzmann's type of appro,ch, and then we will proceed to 

derive the conservation laws which govern the flow of granul~r 

materials of the type mentioned above. 
1 

2.1 Elementary Kinetic Theory 

In statistical mecha~cs, the state of a system may 

be defined by a set ~f generalized coordinates 'i and generalized 

velocity c. for each of the individual particles of the system. 
-l. 

For a system of N identical particles', each havipg 3 degrees of 
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freedom, the total number of degrees of freedom for the whole 
c 

system i9 6N. Thus the microstate of ~his system is given by, 

a set of 6N generalized coordinates ana velocities, 1.e. (r. ,ci)' 
-1. -

i = 1,2, •.• ,N·, and May be specified by a single point in the 

iN dimensional space, usually called the phase spaoe, having 

the mutually orthogonal axis .. ' EI'!2' • ,,,., EN.' E'l' ~2' .•• '~N' 

For a system of large N, it is practically impossible to knowç 

the exact microstate (r. ,c.) of the system and its evolution . , -1. -1. 

in time and space. Fortunately, in g,eneriil, practical systems 

Are de,fined by a set of macroscopic variables (n j ) where the 

range of j is much much smaller than that of ii for example, 

the njls can be average velocity, density, pressure, kinetic 

fluctuat1.on energy, heat conduétivity, viscosity, etc. The 

relationship between the microstate and thelnacrostate is tha.t" 

give~ particula~ microstate (r.,c.}, there 15 a correspondinq -1. -1. - -
rnacrostate given by a set of macrovariables (nj)' . However, 

given a particular macrostpte, there is a continuum of 

mi~rostatés (r. ,c.). In other words, à set of macrovariables 
-1. -1. 

(n.) specifies a ragion R in ~he phase space, while a set of 
• J y • c> 

microstates (r.,c.) specifies a single point. As one may guess, 
-1. -1. • 

tQe variables of the macrostate must correspond to some kind 

of mean values which are given by sorne for~ of averaging 

procedure of the micrQstatesi namely the ensemble averaging '. , 

method introduced by Gibbs (1960) which involves the principles 
~ . 
* The set (rire.) ,i-r,2, ... ,N Is the short fom of (r1 ,r2 , ••• , 

- -1. . ' - - • 

EN' gl~S2,···,gN) signifytng a set of 6N generalized coordinates 

and velocities in the pha'se space, where r1-r le +r y e z . .. x -x y - -
is the Cartesian coordinates of a particular pa~ticle and 
similarly Cl = c le +c le +c~le 1s the vélocity of the oarticl - x -x y -y ... -z ~ 

and 50 on. 
, 
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of probability. We define the normalized prObability density 

funetion ·(or called the 
. (N) " 

function) f (r. ,c. ,t) 
-1. -1. 

N-partic1e velocity distribution 
(N) such that f (ri,c. ,t) dr.dc. *. is 

- -l -1. -l. 

the probability of finding the system in the microstate 
/ 

1 

specified b~ the region r., r.+dr. 
" .l' - 1. -1-1. 

and 6., c.+dc. in the ~hase 
-1. -1.-l 

II< 

space., 'According to the theory of statistical mechanics 
. • (N) 

(e.g. Harris, 1971) f (,"!i,gi,t) sàtisfies the weIl known 

Liouvi11e's equa~ion which may be writte~ as 

,(lfeN), N 
. ôt ' + r 

i=1 

.; 

(2.1 ) 

(N) fi" 
If f (.i'~i,t) ls known, we would be able to de termine how 

each ensemble member o~particle would evolve in the phasr 
space and hence aIl the ,macrovariables could be found. However, 

q 

due to the large number of degrees of freedom involved it 

becomes an impossible task to-find a solution for sueh an 
" l' 

equation event!f afl the necessary initial conditions are known. 

Fortunately the macro8copic properties of interest in 
. 

the system do not de pend on the ensemble average taken with 

respect to f(N) 1 but rather, on averages take~ with respect ta 

the' firs't few sa-called reduced distribution functions which are 

ro~ma11y express~d as 

.. 

f(l) (!l,~l,t) :II: If(N) (~1""'!'N'21" '·,2N,t)dE2···dENd~2·· .d~N 
(2.2) 

The symbol d~ :II: Q~dydz d~notes a volume element at point • = 
(x,y,z) while d_r =" ~r e + ~r e + ~r e denotes a small x-x y-y z-z. 
vector joining ! to an adjacent point. 
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etc. , (2.3) 

Cl) • wher~ f i6 calléd the single'particle ve~city distribution 

functi?n, f(2) the two-particle or pafr v~loci~y distribution 

function~ etc.; inte~rations are xaken for all values of 

positions and velocities respectively. 

As ~sual, the single particle distribution function 

f(l) (~,:,t) is defined ~uch that f(l)(=,~,t)dfa~ is }he probab-. , 
ility of finding a particle which at time t is located in the 
, .. 
volume element betweén rand r+dr, having velocities lying in - - -
the range c and c+dc. Similarly~ the pair distribution function .. - -

(2) (2) 
f (::1"~1'E2'=2,t) i5 defined such that f ,(!1,gl'Ez.'92,t) 

dEldE2d:ld=2 !s the probAbility of finding a pair of particles 

which ~t time tare located in the v,olume elements d~land d!2 

centred at :he points ,,=1' =2 and 'having the velocities, within 

the ranges ~1 anq =l+~l; and =2 and =2+dc 2'. The single 

particle distribution function f(l) (::,=,t) provides a descrip-', 

tion of the macroscopic state of the system and permits the 
, . 

determinations of th-: tnacroseop'ic quanti ti~s O~hySical 

interest. Let us define the' local number density n(r,t) at r 
, l , -

such that n(::,t)dE is the number of particles located in the 

volume element dr at time t and is given by definition 

{2.4) 

/-
~ where integration is over al1 possible velocities. Let ~(r,c,t) 

, ,Co 
be any function that denotes a physical property of a partic~e 

located at r with veloci'ty = at time t. The mean value of, cp 

.'" which corresponds to a .specifie macroscopic var~able may he 

determined by takinq .the ensemble averàg~ wi th respect to f (1) 

, ., 
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and bl.' de,finition ls given a$ 

-= I/dr,t) 

J 

l = nCr,t)J'- (jI(:,:,t)f(:,:,t)d: 

Furthermore, we proceed to 'consider the fluxes of 

17 

(2.5) 

various properties of the particles which are of important 

.interes't in the tra.nsport theory. CQn~ider a surface element 

of area dS moving with the mean veloçity~. Take fi to be a 

unit vector drawn normal to the element in the direction from 

the negative to the positive aide (Figure 1). Due to the . 

(random fluctuations of the particles, they May pase in and out 

of dS and thus create a flux of p'article properties across 

the surface element. ~or particle~ of velocity y relative 

to dS, the n_umber' of such particles which pass through the 

surface element i5 just the'number contained in the cylinder 

of volume, 1 fi· y 1 dt dS and is therefore given by f (1) (E,g ~ t,) dg 

1 fi·y'l dt dS ("sèe~ 1965) • The net amount of <p which" is 
\ 

"transpor~ed per unit time per unit area acro~s the surface 

el~ment dS in its positive normal d~ection is just thé 
\ " 

difference of the ~mount of ~ carriedin from that~carried out. 

Since each particle carries. the propérty <P (!',ç,t) ~ the total 
, 

,'amcmnt of <P carried by the, particles .out of dS, H t (r, t), in - "ou -
the positive fi direction' in time dt is giv~n by 

.. 
• 

(2.6) 
\, 

.Similarly the total amount of ~ carried in, ~in(=,t), .in time 

dt i5 ~iven by. 

. 
./ 

1 \ , 
1 
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Fig. 1 The e1ement of area of dS wi~h unit normal fi moving 
with mean ~elôcity u divides the medium into (+) and 
(-) reqion. Thé.figures i11uatrate particlea passing 
in (fram +ve to -ve .ide) and out (fr~ -ve,to +ve 
side) of the ele.ment of area dS in time dt (Beif 1965) 
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fi'H (r,t)dtdS = 
-ln - ! f (1) 1 ~ 1 (r,c,t)dc n·v dtdS~(r,c,t) 

fi· v<O - - - - - -
(2.7) 

By noting that in ~ntegral (2.6) n·v = In·yl and in lntegra1 

(2.7) n·v = - IÔ'yl, the net flux of ~ ~er unlt t~me per unlt 

area, ~(E,t), in the positive fi direction l~ found by dlvidlng 

the difference of (2.7) from (2.6) by dtdS, and it becomes 

(2.8) 

Thus, the flux vector H(r,t) rnay be expressed as - - , 

(2.9) 

2.2 Formulat~on of Transport Theory 

Fo~lowing the treatment of Relf (1965) we attempt to 

derive the equation of change for the mean value of dynarnical 

quant~ties <~(r,~,t»for the, flow of granular mater~als. Conslder 

a fixed volume element between rand r+dr which contalns 

n(!,t)dr particles in mot~on. The total mean value <n~>d! 

of the dynarnica1 quantity ~ for aIl particles in the volume 

element dI increases in the time interval between t and t+dt 

by an amount 

(2.10) 

where the quantities ~ represent various contributions from 

different means of interactions. 

Firstly, W. t i5 àn intrinsic increase in the total l.n . 
mean value of ~ in dE because of the change of the quantity 

<t>(E,~,t) of each particle with respect to l.ts position and 

velocity perhaps due to an external force field. For each 

.. 
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particle of velocity ç, it changes position by an amount 

dr = ~dt and velocity by dc = (E/m) dt; 50 the corresponding 

change in ~ is given by 

(D<j»dt = È..P.. d t+~· vd t + a ~ • r dt 
dt dE - dC m (2.11) 

where f 15 the exterr.al force acting on the particles wi th mass 
1 

m. Thus the in tr ins ic increase ln the rnean value of <Il in the 

volume element is 

t/l int 
(2.12) 

Secondly, t/l kF is, a kinetic flux increase in the 

total mean value of <1> because of the net kinetic flux of 

particles which enter and leave the volume element dr in time 

dt. The increase in the mean value of ~ caused by partic1es 

enter1ng dr at r in time dt i5 

(2.13) 

by using simi1ar arguments fr~m èetermining the flux of 

dynamical quantities. Corresponding1y the decrease caused 

by particles leaving the volume element dr at a new location 

E+dr is gi ven by 

(2.14) 

fubtracting (2.14) from (2.13), the kinetic flux increase t/l
kF 

is given as 

= - (2.15) 

Thirdly, 1/1 l 15 a col1isional increase in bohe total co 

~ean value of ~ in d. because of the random interparticle 

collisions in such volume element. To obtain t/I l' we follow 
co 

.t 

a treatment analogous to Enskog's analysis of the collisional 

~ 
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transfer of molecular properties in dense gases using the 

hard spheres model as described by Chapman & Cowling (1970). 

Consider two identical particles 1 and 2 of diameter a 

centered at 01 and 02 colliding with a relative velocity 

~ = 21 - 2 2 as shown in Figure 2. In time dt prior to the 

collision, particle 2 moved through a distance of qdt relative 

to particle 1. At cOllision"; center 02 of particle 2 mùst 

lie within an area of a 2dk which is a surface element on a 

sp.here of radius a and centre 01' Hence, for a collision to 

occur within time dt then 02 must lie inside the volume 

2 o dk(k'g)dt, where k is a unit vector along the centre line - - -
from particle 1 to 2 and dk is the s~lid angle. Thus the 

probable number of collisions per unit time such that 01 Iles 

within the volume dr and in which 21'~2 and k Ile within the 

ranges, d~ l' d~ 2 and dk i8 

(2.16) 

Dur ing a collision particle l at r gains a guantity (<Pi -<Pl) 

of the property ~ at-the expense of particle 2, where primed 

guantity denotes that after the collision. The total gain 

for aIl collisions inside the volume elernent dr in time dt 

is therefore 

2 
1jJ l,""drdta 
co -

JJf(~'9)f(2)(r,gl,!+a~,g2,t)d~d2Idg~(ti-<Pl) 
~.~>O (2.17) 

where ~'9>0 is the/integration limits accounting for aIl those 

particles that are about to collide. Interchan~ing the roles 

of particle land 2 or correspondingly the subscript 1 and 2 

.. 
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1 , 
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Fig. 2 Binary CelliSion of P4rticles 
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in equation (2.17) and not1ng that ~ ... -~ and k+-k we obtained 

a similar expression of the form 

2 
1/1 l==drdta co - III (~'9) f(2) (f-C1~'fl'!'f2,t)d~d~ld~2(4>i-Ç2) 

k'q>O 
- - (2.18) 

( 2) \ 
Expanding f (E'fl,!+o~'f2,t) in (2.17) into Taylor series, 

it gives 

f ( 2) (E, f 1 ' E+a~ , ~ 2' t) = ( 1 + cr~· v+ i! (a~· V) 2 + ••• ) f ( 2) (!- a~, ~ l' E ' S 2' t) 

( 2.19) 

~ taking half the sum of (2.17) and (2.18) and using (2.19) 

. the collisional increase can be expressed in the form 

where e ( <p) 

and x ( 4» 

1 3 
- "2 cr [ 1 l 2 J (<P'-<I» (k'g)k 1+ -, ok·V+ -, (ok'V) 

~ 'q> 0 l 1 - - - 2. - 3. 

(2. 2l) 

J (<I>i+$2-<I>l-<I>2) (~.~) f(2) (f-o~'~l'E,f2,t) 
k'q>O - -

d!sd~1d<22 (2.22) 

Ths collisional transfer contribution 8(</» may be interpreted 

" as a flux vector term of property ~ while X(Ô) May be seen as 

analogous to a source or sink term (more discussion in Appen-, 
dix A) . 

With the use of equations (2.12), (2.15) and (2.20~ the 

equatifn of change for the 

(2.10; can be written as 

~ 
dt <nef'> ;;; 

Mean value of dynamica1 guantity 

(2.23) 

.. , 
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Subsequently, we may use !:he above equation to obtain the 

conservation 'equations that govern the 'flow of identical, 

smooth, inelastic, spheri'cal granular materials. By letting 

~ be the mass of a particle m in (2.22), it gives the equation 

of conservation of ma5S 

}t = -v. (p~) (2.24) 

where p = mn i5 the bulk mass density and u is the mean 

velocity. Letting ~ be ms the linear momentum of a particle 

with fluctuation velocity defined as y = ~-~ in (2.23), it 

gives the equation of conservation of linear momèntum 

du 
P~ v·p ( 2.25) p ---"" = -dt -

with p = p + P (2.26) 
~k ~c 

~ 

and Zk = P<y v> (2.27) -
p = '-Je 

e (me) (2.28) 

where P is the pressure tensor made up of a kinetic or 

diffusional part -Pk and a collisional part P , and b is 
~ 'Vc -

the external force per unit mass. Letting ~ be 1/2 mc 2 

the kinetic translational energy of a particle in (2.23), 
. 

it gives the equàtion of conservation of the translational 

fluctuation kinetic energy 

lp dT = P :Vu - V·g - Y (2.29) 
dt -2 '" 

3 T 
<v2 > (2.30 ). "2 - -2-with 

g = Qk +Q (2.31) 
-c 

and P v 2 > Qk= 2" <v (2.32) 

1 
l 
i 
{ 

1 
1 

1 
1 
1 
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(2.33) 

(2.34) 

where 3T/2 is the fluctuation specifie kinetic energy, g 

is the f;Lux of fluctuation enerqy consisting of a kinetie 

part Qk and a eollisional part gc' y is the collisional rate 

of energy dissipation per unit volume due to the inelasticity 

of the partieles. 
, 
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CHAPTER 3 

GENERAL IN1'EGRAL FORM FOR 'THE STRESS TENSOR AND ENERG'{ 

DISSIPATION FOR THE CASE OF SIMPLE SHEAR 

CQnsider an assembly of identical, smooth, inelastic, 

spherical particles of diameter. cr which is subjected ta motion 

consisting of simple shear with mean velocity ~ == u (z) ~y' 

where ~ is the unit vector in the y-direction as shown in 
. 

Figure 3. The instantaneous veloei ty S (!:, t) of a particle 

in a volwne element d. differs from i ts local rnean translational 

velocity !!(r) by a random fluctuating part Y(E,t) due to inter-

parficle collisions, i.e., l 
(3.1 ) 

The effect of the interstitial fluid is' assumed to be negligible 

and for simplicity the surface friction of the particles is 

also neglected. 

In this an~lysis, we are concerned with situations where 

granular mater ials are being sheared a t moderately high soli ds 

concentration and mean shear ra te such that the effect: of inter-

particle collisions domina tes over that of free particle diffusion 

:petween layers. I~other words, the mean free path is likely 

ta be smaller than the diameter of the Pclrticles, hence the 

,probability of particles transfering momentum by going from one 

layer ta another is small. Thus, the major stress contribution 

cornes from the c01lisional transfer of momentum between particles. 

Furthermore; we assume that the collisions are almost instantaneous 

and the probability of mul tiple interparticle collisions is 

negligibly smal! so that only binary collisions need to be treated. 

-26-
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At very high concentration, this assumption i5 expected to 

break down critically due to the clustering and prolonqed 

contacts of particles. 

Since dry friction is ignored, the inelasticity of 

the particles which damps out and converts t~e fluctuation 

kinetic energy into heat acts' as the only· dissipative mechanism. 

Partie les are assumed ta have no rotational energy but trans­.,. 
latianal energy only. The ine lastic collisions of particles 

are characterized by the coefficient of restitution e of the 

particles which varies from zero to one depending on the 

mater ia1. For per fectly elastic collisions, e has' the value 

of one which corresponds to no energy dissi?ation in the system. 

For e less than one, the rate of energy dissipation is a 

function of the coefficient "Of resti tution and the impact 

velocities which de pend upon the shear rates and velocity 

fluctuation. However, if e equals zero, the particles no 

longer rebound after a collision. Multiple collisions would 

there fore be frequent contrary to the assumption of binary , 
collis~on. Hence we restrict ourselvès te consider only 

particles wi th a moderately high value of e such that the 

impact dura tian during a collision is smali compared to the 

average time interval between collisions and that neg1igib1e 

permanent deformation of particles occurs. Furthermore, we 

assume that the coefficient of restitution is constant, thougn 

experiments have shawn that e actually depends on the impact 

veloci ty (Goldsml th 1960). Such phenomenon of impact wouid 

no doubt present another degree of difficulty, nevertheless, 

we are conten~ at the present to the first arder of approxi-

mation to take e as a Mean value. 

, , 
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As sugqested by Savage and Jeffrey (1981) we follow 
~ 

the approach of kinetic theory of ..dense gases. and use a pre-

c011isiona1 description of both positions and velocities of 

the fJarticl4:'s.. This enables us to calculate the stress 

components and the rate of energy dissipation in the system 
. ~ 

by the use of the statistical mechanics method as presented 

in Chapter 'l'wo. 

3.1 The Non-Equilibrium Configurationai and Colli~ional Pair 

Distribution Function 

Since only binary collisions for identical, smooth, 

inelastic, spherical particles are considered, we requ~re the form 

'of .~ 1 '.:1 • • b . f . f ( 2) ( ) 
~ne comp ete pal.r u.l.strl u tl.on unctlon 5:1' SI'! 2' S2' t 

as defined previously. Following almost exactly what Savage 

and Jeffrey (1981) had proposed, we assume that the complete 

pair distribution function can be expressed as the product of 

the pair correlation function g(!l'~2) and the single particle 

veloci ty distribution function f (1) for each particle, 

(2) (1) (1) 
f (!l'~l':2'S2,t) ... g(!1'E2)f (:l'~l,t)f (:2's'2,t) 

(3.2) 

wharf!!' subscr ipts land 2 denote the positions and veloc i ties 

cif particles land 2 re'specti vely. 

In the kinetic theory of dense gases, the pair-correla-

tion function g(!l '!2) accounts for the correlation of :position 

between mo1ecules du~ to the' influence of the potential energy 

associated with each molecule. To be more rigorous, 9 (El' E2) 

î , 
i 
; 
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should be repl,aced by g(!1'Sl'~2'~2,t) ~hich takes into account 

not only the precollision corrèlation of positions but also 

the velocities of the molecules (see Reed and Gubbin 1973). 

The main difficulty in the kin~tic theory lies in finding auch 
• 

unknown correlation function g(!1~Sl'E2'S2,t) fo~ the cases of 

dense gases. Enskog studied the case where the rnol~cules werJ 

taken to be hard spheres (Chapman and Cowling 1970). This 

qreatly simplifies the correlation function $ince hard sphere 

rnolecu1es no 1onger have either long range or short rang~ potential 

influence on each other, therefore the cbrrelation of velocities 
, u'" 

for the molecu1es need not be specified. Wi th the assumptions 

of binary collision and molecular chaos, the pair correlation 

function q(!1'Sl'!2'~2,t) is replaced by g(!I'?2). Enskog made 

a further assumption that g(!1,E2' may be apprQximated by the 

local equi1ibrium pair correlation function g(~) and,a number 

of collisiona1 transfer of molecular prope~tes may then be 

expressed in terms of 9 (E). 

Analogous to what was done by Enskog, Savage and Jeffrey 

(1981) app1ied the theory of hard spheres dense gases to the 

analysis of smooth, ha rd , elastic and spherical granular materials. 
J 

In principle, the hard sphere theory may be expected to work 

better in the case of granular particles than that of molecules 

in the sense of the absence of repulsive and attractive forces 
( 

betwe~n the grains (except when electrostatic fO~S build up 

to an extent that they would play a significant role in grain fIow). 



c 

( 

\' 
1 

Savage and Jeffrey (19Bl) made no attem~t to solve the 
. 

B9'ltzmann equat;ion by a perturbation method ta obtain the 
~ 

complete pair distribution function as Enskog did but rathér 

..., ( 2) 
they proposed 'the plausible forro of f (!1,Sl'!:2,S2,t) 

ap~ropriate for granular flow by using physical arguments, 

which we will adopt also. 

31 

Le~' us suppose w ith Savage and Jeffrey (19 81l that the 

single veloci ty distribution is locally Maxwellian about the 

mean transport velo.ci ty. In the case of fluidized beds, the;, 

experiments of Carlos and Richardson (1968) show sorne justifi-

cation for this assumption., In more recent work dealing with 

nurnerical modelling of 2 dimensional granular flow, Campbell 

(1982) investigated the form of the .single particle velocity 

'"" ana the spatial pair distribution. The velocity d~stribution 

was found to be qui te close to the Maxwellian forro. Thus we 

also adopt th~ forro of Maxwe~lian velocity d~stribution function 

for f(l) and further make the assumption that there is no 

fluctuation gradient in the system, hence 2 
(1) 1 3/2 . (2-E-) 

f (E,g,~(E» = n(21fT) exp (- --:t':2T=---- ( 3 .3) 

where 3T/2 = <v2>/2 i8 defined as before th~ specifie kinetic 

energy of fluctuation, <v2 > is the mean square of velocity 

fluctuation assumed to be constant, and n i5 the number density 

at r. The assumption of <v2) being independent of position 

implies that the system is 1 isothermal' due to the kinetic 

fluctuation energy being the same everywhere. In general. this 

assumption is not true, but it is possible for the simple shear 

flow case to be examined here. 
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Savage and Jeffrey (l9Bl) have 111so proposed the form . , 
of the pair correlation function. The way that they determine 

. . 
such a function ie by making a kinematic argument. DUe to the 

presence of the mean shear ~, the pair correlation functio,n 

g (!' l'!:2) differs from the equilibrium isotropie pair correlation 

function (or better known as the equilibrium radial distribution 

function) 9
0

(0) which i5 evaluated at contact /f
l
-!2/ = (1. 

Consider a particle moving along wi th the local mean transport 

velocity, i t would likely experif;mce more collisions wi th 

pait.icles on its 'upstreaml quadrants than its 'downstream f qnes 
..J:",-: 

('Figure 4). This effect gbi~s rise to a bias in the distri-

but ion of collisions. Essentially, Savage and Jeffrey (1981) 

argued that the ratio of the non-equilibrium pair correlation 

function g (El' E2) to the corresponding equilibrium one 9
0 

(a) 

may be given by the ratio of the probability of collision of 

a pair of partic1es at r1 and r2 having velacities in the 
l 

ranges of ~l' and ~l' ~2 and ~2 respectively in the non-

equilibrium state ta the probability of JOllision of such 

particles in the equilibrium state in the sense that Vu=O 1 giving 

(3.4) 

where, erfc (x) is the .complementary error function 

, erfc (x) 
2 <XI _t2 

= =m J e dt 
1T x 

(3.5) 

Since g (!:l ' E2) descr ibes the distributi.on of collisions for a 

particular configuration of a pa.rticle, Savage and Jeffrey (1981), 

choose to calI cj (!:l' !:;2.) the coilisional pair distribution 

) . 
i . 
l , 

1 
j 
, l' 
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, 
1 
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j 
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· Upstream· 
quadrants 

Fig. 4 Anisotropie collision distr~bution of each particle 
arises due to the mean shear motion. Shaded 'upstream' 
quadrants reeeive more'collisions thaD the 'downstrearn' 
on es (Savage and Jeffrey 1901) 
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funct10n 1nstead of the pa1r correlatlon functlon. The abeve 

forro of the coillsionai palr dlstributl0n functl0n 1S cast 1n 

a slightly different form than that of Savage and Jeffrey. The 

tensor product ~~:V~ = (~.V~)·~ may be expressed 1n terms of 
.. 

the spherical coordinates 8 and cp (Fl.gure 3) as 

kk:V'u du = dz S1n e cos e s1n cp (3.6) 

hence 
:;t erfc ( 13 (cr du/ 2 los 2 dz ,<v> ) sl.n8cos8sincp) 

'1 ( 3 • 7) 

The variations of 9(EI,E2)/go(O) wl.th e for varlOUS values 

of 1312 R S ln cp, where 

R = 
du 

0-
dz 

2 1/2 <v ) 
(3.8) 

is the ratl.O of mean shear characterlstlc velocity te the r.m.s. 

precollisl0n veloeity fluctuatl.on, is shown ln Figure 5*. For 

smali values of R 9(El,E 2)/go(O) is eillpsoidal, and for large 

R the varlations in 9(El,E2)/gO(a) are step-like. Recent 

computer experiments done by Campbell (1982) show similar forma 

of anisotropy in the collisional distribution at low concentra-

tion, however, at high concentrations spikes appear in the 

distribution funetion. 

For the equilibrium radial distribution function, we 
" 

adopt the semi-empirical equation by Carnahan and Starling (1969) 

as suggested by Savage and Jeffrey (1981), wh~ch for a system 

of identical hard spheres can be expressed in terms of the solids 

fractlon v as 

* The single partie le distribution function and the collisional 
pair distribution function given by Savage and Jeffrey (1981) 

need to be corrected by replacing <v 2 > with 2<v2 >/3. 
p ! 
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« 



..... &)& 4pt; .. ·V."+'~oH'" " ...... 

it , 
" . 
) 

~ 

.. 

2·0 

-- 1·5 
9(rhf2) 

90(0-; L» 

1·0 

0·5 

.. 
o 

<r 

, ,,--

.. 

• 

30 60 30 120 150 150 

B Cdeglees) 

Fig. 5 Co11isional pair distribution function (Savage and Jeffrey 1981) 

~ 

w 
V1 

1 



"'0 

( 
, ,. 
~ 
4 

j 
""'" 

3\) 
+ + 

2(1-v)2 

2 v 
3 2(1-\) 

36 

( 3 .9) 

This equation i5 evaluated at contact r:o and agrees weIl with 

computer similations of molecular dynamics for values of \) up 

to O.S. Combining eguations (3.3) and (3.4) with the use of 

( 2) 
(3.9), the complete pair distribution function f (El'~1'E2'~2,t) 

given by (3.2) is 

( 3.10) 

By using the above equation, we can determine the stress tensor 

and the rqte of energy dissipation as discussed in Chapter Two 

once the collisional properties are known. 

3.2 Stress Tensor and the Rate of Energy Dissipation 

In a collision between two identical, smooth, inelastic, 

spherical particles of diameter 0 with mass m, the total 1inear 

momentum is conserved. The momentum of both particles may be 

expressed in the following ways 

me' == -1 (3.11) 

(3.12) 

where primed quantities denote the values after the collision 

and ~ is the impulse of force associated wi~h the change of 

momentum due tQ the inelastic collision. The precollision 

relative v~locity ~ = ~1-~2 is related to the post-collision 

! 

1 

1 

J 
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one q' = ~i-~i ~n the component normal to the plane of contact 

as 

( 3.13) 

where k is the unit vector along the centre Ilne from particle 

l to 2 as deflned before. Hence, the impulse ~ may be written 

~n terms of the precoll~s~on relatlve veloclty as 

(3.14) 

From thlS we may relate the particle veloclt~es before and 

after the colllsion as 

( 1.e) fia ~1- -2--- (~'9)~ ( 3 .15) 

( 1.e) 
~i= f2+ 2 (~'9)~ ( 3 .16) 

These enable us to proceed to formulate the expresslon for the 

stress (or called pressure) tensor and the rate of energy 

dlssipatlon. 

As mentloned prevl0us1y, the dominant stress generatlon 

is assumed to come from the rate of co1lisional transfer of 

momentum of ine1astic partic1es. Thu8, we may take the total 

stress tensor to be approximately equtl to the rate of collisiona1 

transfer of momentum, i.e. P ~ P whieh i5 given by equation (2.28) 
- -c 

wlth the dynamical quantity ~ = m9. Using equation (3.15) and 

substituting into (2.28) neglecting higher order terms, the 

stress tensor la 

p= (l.e) 
4 

3 2 (2) 
lm 0' f (k'S) kkf (r

1
,c

1
,r

2
,c

2
,t)dkdC de 

~'9>O - -- - - - - - -1 -2 
(3.17) 

« 

1 

1 
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If the particles were eiast~c, i.e. e=1, we essent1ally obtain 

the sarne in~egral forrn glven by Savage and Jeffrey (1981). J 
To obtain the rate of energy disSipation per unit volume 

we cons1der the energy lost ô€ durlng each collislon which rnay 

be expressed as 

(3.18) 

and by letting ~ a ~ rnc
2 

it becomes 

(3.19)~ 

Renee, by noting that y --X(~ rnc 2 ) belng the energy slnk term 

ln equation (2.34) the lntegral expression for the rate of 

energy diss1pati0n per unit volume ia 

As can be seen immediately if the particles were e1astlc, l.e. 

e=1, there would be no energy dissipation because y ls zero. 
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CHAPTER 4 

SOLUTIONS FOR THE STRESS TENSOR AND THE RATE OF 

ENERGY DISSIPATION PER UNIT VOLUME 

The stress tensor P and the rate of energy dissipa-..... 

tion per unit volume y given bV equations (3.17) and (3.20) 

respectively may be evaluated by using the proposed complete 

pair distribution function f(2) in (3.9) and they may be 

written as 

(l+e) 
p = ..... 4 

and 

2 3 n m 0 

(2'ITT) 3 

exp (-

n
2
m 0

2 
f (k.q)3 go(v) erfc (a~t:Vy) 

(2'ITT) 
3 ~·~>o - - 2T~ 

2 2 
(~l-l!l) +(~2-~2) 

exp (- 2T ) d~dç,l dç 2 

• 

( 4 . 1) 

( 4 • 2) 

The velocities ~l and ~2 can be expressed in terms of the 

variables ~, the center of mass velocity, and 9' the 

relative velocity 

~l = w + ~ S (4.3a) 

( 4 • 3b) 

with the modulus of the Jacobian being unit y, i.e., d~ld~2 = 

Also the mean velocities of the particles ~l and ~2 

may be expressed in the following ways: 

-39-
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(4.4a) 

(4.4b) 

where E is the position of the point of contact of the 

particles. Using equations (4.3a,b) and (4.4a,b), the stress 

tensor and the rate of energy dissipation per unit volume May 

be written as 

t 2 3 
P -= (l+e) n ma 2 ') akt·Vu f ( k • cr) k_k_9 o ( v) e r (~ ) 

4 ( 21fT) 3 - :ol L ~·~>o 2T~ 

4w2 + (a + ak Vu)2 
-0 ~ 

exp (- -------~4~T-----------) d~d!od~ (4.5) 

and 

y .. n
2
ma

2 
) (otis.: VY) 

(2 w
T») f (~.~) go(v) erfc L 

.. ~ 'S>O 2T:' 

4w2 + (9 +ak'Vu)2 
exp (- -0 4T ) d~d~odS (4 .6) 

vith !o - ~-~. Several integrat~ons May then be performed 

(Appendix B) to yield 

(l+e) 2 3 
p • n ma 
..., 8 (trT)~ 

and 

y -
(1-e 2 ) n 2

m0
2 

16 (trT)'i 

.. 

f (~'S)2 ~1!go(v) erfc (a.ils.: t;]~) 
2T~ ~·<J.>O 

(_(15'sa + 
2 

exp o&À: VU) ) d~d(~.<J.) 4T 

f (~'S)3go(V) erfc (a!s!s.:Vy) 

2TJ15 
~·c;po 

2 (15·g + aIsk:Vy) 
exp (- 4T ) d~d(~·~) 

(4.7) 

(4.8) 

1 , 
i 

1 



<-

41 

Lettinq ç ~ = ~.g/(4T) , the above equat~ons may be rewritten 

as 

( 4.9) 

and 

y = 

(4.10) 

By not1ng that the bu1k solid density Pb = nm, solid fract10n 

3 
v = nno /6 and the mean shear ve10city to r.m.s. velocity 

fluctuat10n ratio R = O(d2I çZ) as defined prev1ously, the 
<v > 

stress tensor and the rate of enerqy disS1pation may be non-

dimens10na11zed ta become 

p* = 

and 

( 
f r.; 3 erfc (~) 

pO 

(4.12) 

where the parame ter t ia defined ae·eording to equations (3.6) 

and (3.7) to be 

~ - ak!s:Vi _ 
2T'i 

IJ'R 
2 sin e cos e sin ifl (4.13) 

1 
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Furthermore, from Figure 3 the un~t vector ~ may be defined 

to be 

k = sin 6 cos ~ e + sin 6 s~n ~ e 
~ -x ~ -y 

and the s01id angle 

+ cos 6 e -z 

dk = sin a d6dCP 

(4.14) 

(4.15) 

Thus by ~king use of equations (4.14) and (4.15), the non-

dimensional stress tensor and rate of energy dissipation per 

unit volume can be expressed as 

and 

y* :: 2 

with 

[00 f2TI fTI e2~~ erfc (t) exp (_(e+~)2) 
ç ... O 4>=0 0=0 

sin e de def! de 

100 
f2TI JW ç3 erfc (~) exp (_(ç+~)2) 

ç=O q,=0 0""0 

sin e de dCP dç 

( 

sin20cos2cp 

kk = sin20cos~sincp 

sinecos6coscp 

sin2Scoscpsincp 

sin
2
08in

2
4> 

sin6cosSsincp 

(4.16) 

(4.17) 

1 Unfortunately the ~ntegrations of (4.16) and (4.17) cannot b~ 

performed analytically and numerical integration seems to be 
a sensible alternative. However, analytica1 solutions of 

such ~ntegrals are desirable even though the solutions might 

be approximate ones. Hence in order to by-pass the 

numerica1 integration and see sorne important features of the 

s 
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solutions, we will use the mechod of akymptot~c expans~on 

and series transformation to obta~n the approximate forms 

of the stresses and the rate of energy dissipation per unit 

volume. 

Savage and Jeffrey (1981) had cons~dered the 

collisional stress tensor for the case of simple shear of 

smooth, hard, elastic and spherical granular materials and 

found essentially the same integral form as given by equation 

(4.1) with e"'l. In order to obtain the solution of the integral, .,. 
~hey performed numerical ints~rations as weIL as asymptotic 

expansions both for small and large values of the parameter R 

in the integrand and discussed the physical sign~ficance 

involved. The parameter R, being the ratio of Mean shear 

characteristic velocity to the r.m.S. fluctuation velocity, 

depends on the material properties of the particles. When 

a mass of granular material is subjected to simple shear by 

external means, the velocity fluctuat~ons of the particles 

will increase in magnitude until the energy dissipation inside 

the bulk solid is balanced with the mechanical work input. 

Energy May be dissipated in the form of thermal heat caused 

by the inelastic collisions and the frictional rubbing of 

particles. Thus R May obtain values dependlng upon the 

dOefficient of restitution and the dry frictional coefficient 

of the particles. The case considered by Savage and Jeffrey 

(1981) was a system of no energy dissipation. As a result, 

the parameter R could not be determined directly from the 

material properties. However, the present analy~is takes into 

~ ~------~----~~ 
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~ccount the inelasticity though ignores the dry frict~on 

of the particles, R will be known once the balance of work 

done and energy dissipation is established. 

Following the treatment of Savage and Jeffrey (1981), 

the integrands of the non-dimensional stress tensor and rate 

of energy dissipation per unit"volume given by (4.16) and 

(4.17) respeetively wilt be expanded in terms of the parameter 

R asymptotieally for smaii and large values and the expansions 

will be matched by means of series transformation to obtain 

the form of approximate solutions valid for general values 

of R. The rat$ of work done by shear will then be equated 

with the rate of energy dissipation per unit volume to obtain 

a relationship between the parameter R and the coefficient of 

restitutiçn e of the partic1es. 

4.1 Solution for smali R expansion 

Consider R ta be small, then correspondingly the 

magnitude of t given by equation (4.13) will also be small, 

i.e. 1imit t + O. Hence, the comp~ementary error function and 

the exponent1al funet10n 1n the integrands of the integra1s 

(4.l6) and (4.17) MaY be expanded as follaws: 

2 
00 t 2n+ l 

erfc (~) = 1 - r (_I)n 
fi n=O n! ( 2n+l) 

2 41
3 

41 5 (p7 
... 1- 241 + (4.19 ) -- +-

li 31i 5 liT 211Tr 
and 

) 

, 
1 

1 
l 
i 
t 
f 
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2 2 
exp (-(ç+$) ) = e-Ç (1-2C$ + 

With the above expansions, the integration of dç in both 

integrals May be performed terM by term to yield 

and 

where 

F ($) 

and 

G(~) 

Using 

/TT .. --4 

J:n fn 55 F{~) sin e ded~ 
~=O 9=0 

J2tr fn G( iIJ) sin e dedej> 
<1>=0 a-o 

4 6 13 7 16 
- -- $ - 140 $ + 

'4 5 fi 315 ;.rr 

103 $11 + 736 ~12 + 0 (ilJ13 ) 
23760 lS592Sh 

1 

1 = 2' - (3h + -r .!..)~ + 3 ~2 _ (fi + 
2 

...!L-) ~3 + 
;:; 3m 

+ ....L t S _ 1 ~6 8 t 7 + l, ~8 + 17 

Sin 5" 10sfi IT S40h 

l ~4 
4 

~9 

43 tlO 64 ~11 167 ~12 + 0 (tll ) + 2520 + + 47520 1732S/iT .. 

the definition of ~ in (4.13) and also the dyadic 

45 
"\ 

(4.20) 

(4,21) 

(4.22) 

(4.23) 

1 

(4.24) 

product ~~ given by (4.18), the components of the non­

dimensional st~esses and the rate of energy dissipation per 

uni't· volume may be integrated and expressed in terms of the 

ratio R as 

'" 

" 
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. 
\;- 4 (5. + 2.) ~... R

4 
R

6 
8lR

S 

.. P~X = 3R2 + 2 fi 3SIiT IS0IS1T'" 230945tr - -r4~24r.9Mjn!8r'J1'8~Ô:-;rO=tr 

RIO 12 
... T't'T4 6~9::-::6r.SI'l'"lOI:"'::O~O~1T- - 0 ( R ) (4.25) 

4 + (fi + 2 -.!.L _ R
4 

. 9R
6 

. 
Pyy == p~Z == 7 2 fi> 3Sh 21451T + ~j0945tr - 3863Q800'l1' 

p* yz 

y* = 

- p* zy 

4 

RIO 
+ 1130S000tr 

= - 12 __ R_+ 

sl3ir R 5$ 

+ 
16554l376131T 

+ 6 + 9R 

8008131T 29920/3tr 

9R3 
+ 63R5 

/fi R3 sl3'1T R . 280fii 8QOa /j";" 1244672/3~ 

10449R
7 

+ I3527R9 
+ O(R

l1 ) 
4966241280131T 197789696000lli 

(4.26) 

(4.27) 

(4.28) 

The non-dimepsio~al normal stress PyY 1S found·to be the 

sarne as p* whlIe-'px~x differs from both in the second term zz . 

onward. The series given by (4.25) and (4,.26) shows that . 

.-

these "stresses have even powers of R depenàence.. Truncating 

after the first terms of the series, we find the corresponding' 

dimens10nal normal stresses are is~tropic and have no de~ndence 

of partiele diameter and sheat rate. The.second term gives rise 

to anisotropy between Px:x and p • P whiçh depends upon the 
yy zz . 

square of the particle dïameter and shear rate similar ta 

the results of Bagnold's stress model (1954) in his ~rain-
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• 
~lnertia 

J..... ~onsist 

/ 
reg~me. H~gher order terms of the normal stresses 

, 

of coefficlen~s of rap~dly decreaslng magnltude and 

alternat~ng siqns and ~ncreaslng even powers of part~cle 

diameter and shear rate dependence. S~m~larly, the non­

dlmens~onal shear stress P* = P* a~d the rate of energy 
yz zy 

dissipation per unit volume y* given by (4.27) and (4.28) have 

odd powers of R dependence. Cons~der~ng Just the f~rst term' 

of both serles, the corresponding dirnensional shear stress 

depends linearly upon the particle diameter and shear rate 

while y depends inversely on the particle diameter and has 
~ 

no dependence of shear rate. Higher order terms glve results 

analogous to thos~ of the normal stresses. AlI of the above 

mentioned quantities depend on the velocity fluctuations 

associated with the interpartlcle collisions which cause the 

behaviour of the flow of granular materials to be different 

from that of liquid flow. 

4.2 Solution for large R 

C~nsider R to be large, i.e., limit R .. ~ The 

complementary error function in the integrands of bath 

integrals (4.16) and' (4.17) obeys 

limit erfc 
R .. QI) 

(13 
2 

R sin9co8asin~) • 2 fer (sinecosesin~) <0 
( (4.29) 

= 0 f~ (sinecosesin~) >0 

Thus the ranges of integration will be taken over the face 

of the sphere where 
11' o < e ~ '2 for 11' < ~ ~ 2n and 

11' < e < 3; for 0 ~ ~ ~~. For large R, the integrals may 

be evaluated asymptotically by the method of s~eepest descent 

to yield 

. - --- -- -_. --.,--, '-'-
, -... • .-__ --~-'''_. _____ ... L 

1 

1 

1 



c. 

( 
, 

l 

4 
P'" = 35 

y'" = 8 
J5ii 

l 

( : 
48 
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3 (4.30) 

8/lT 

(4.31) 

In these f~rst order large R solutions, the stress tensor 

P is proportional to the square of partlcle diameter and 
""' 
shear rate while the rate of energy dissipation per unit 

volume y is proportional to the square of partiele diameter 

and cube of the shear ra te. The ratlo of shear to normal 

stress, I p /P 1 = 8/3'Tf = tan 40.3°. 
yz zz 

4.3 General solution for R 

The expansions for small R and the astmptotic values 

for large R of the non-dimensional stress tensor and rate 

of energy dissipation per unit volume May be forced to joïn 

to give series that are valid for all R by the method of 

series transformation, namely the 'quasi-Euler' transformation. 

The traditional Eulér transformation appropria te for the 

above series tak~ the form' (Van Dyke 1964) 

(4.32) 

where d is an arbitrary ~onstant. By putting the se~ies 
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of p* and y* in terms of c and d in the small R expansion* .... 
from (4.25) to (4.28), the transformed expressions are 

• 

p* :II (l-€) (! + 
xx Ed 3 

4 (4.33) 
35 fi 

p* _ p* = (!:.E.) (! + -.!.L(fiT + .1...) (~) 
yy zz Ed 3 3S/iT 2 /Tf l-f 

p* "" p* = _(b) ~(...!.L + l (~)_ 57 (~) 3) (4.35) 
yz zy cd 5.,1')"; snn l-e: 800SI3iT l-e: 

y* ,. 9 --:=J~) 3) 
800aI3ïT l-e:: 

(4.36) 

We may further expand the factors (l-E)~, (1_f)3/2, (l_E)-I, 

(l_e:)-2 and (1_e:)-3 into power series up to the degree 

corresponding to that of the parameter R in the original 

series, the expansions become 

* 

(4.37) 

P* ... p* - !3(€d,-1 + (0.3896982 - !3 d- 1 )_ 1.4839622xlO-4 (Cd)2 yy zz 
(4.38) 

p* • p* - -(e:d)-~(O.78l764 - (0.390882 - 0.065147 d)e: yz zy 

- (0.0977205-0.0325735 d + 2.31S5434 x 10- 3 d2
)e:

2 ) 

(4.39) 

The number of terms used in the series are only up to the power 
of 4 or lels of the parameter R because additional terms show 
little improvement in the transformed series. 

j 

· t 
j 

f 
i 
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y* = (Ed)-J/2 (1.30294 + (1.95441 - 0.390882 d)€: 

+ (0.4886025 - 0.195441d + O.010470054d2)E 2 

+ (0.0814338 - O.0488603d + 5.235027xlO- 3d2 

50 

(4.40) 

The advantaqe of usinS the Euler transformation ia 

that the magnitude of R can be taken out to infinity while 

the transformed variable (+1, hence the va1idity of the 
li> 

transformed ceries rnay be extended for all values of R. Let 

us take E to be one in the transformed expansions of p* and 

y* given by eq. (4.37) to (4.40), the series now depends 

only on the arbitrary constant d. Each of these series may 

he fitted to give identical asymptotic results corresponding 

to those given in (4.30) and (4.31) simply by solving the 

ap~priate value of d in each case. Thus, the final forms 

of the series valid for general Rare' 

2 
p* • 0.049130173504 (R )-1 + 0.0807692290523 

xx R2+27.1387873936 

2 
_ 0.0156136882706 ( R )2 

R
2
+27.1387873936 

(4.41) 

2 
p* "'"' P* .. 0.07504766006422( 2 R )-1+ 0.314650599358 

YY zz R +17.7665018192 

2 
_ 0.0468410571429 (R ) 2 

R
2
+17.766S018192 

(4.42) 

-~--------

1 
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2 
p* = p* = _ ( R )-~ (0.172045391382 

yz Z y R 2 + 2 0 . 6 4739 4 119 3 

2 
+ 0.210001387831 ( R ) 

R2
+20.6473941193 

2 
0.0910205975593 ( R )2) 

R2
+20.6473941193 

(4.43) 

2 
y* = (R ,-3/2(1.55614373166 

R2+0.888348036208 . 

2 
_ 1.91949649499 ( R ) 

R2 +0.888348036208 

R2 2 
~--------------) 
R

2
+0.888348036208 

+ 0.386063604215 

R2 3 
~----=----------) 
R

2
+0.888348036208 

+ 0.0500467045239 (4.44) 

These resu1ts are shown in Figures 6 to 9 together 

with the successive partial surns of the original series given 

by (4.25) to (4.28). The transforrned series of the stress 

tensor gives values which are identical on graph with the. 

numerical integration performed by Savage and Jeffrey (1981) *. 

Thus we may have confidence that the transformed series of 

the rate of energy dissipation per unit volume y* is indeed 

va1id a1so~* 

* The present ratio R is rnu1tiplied by a conversion factor of 
{2/3 in order to confirrn the resu1ts of Savage and Jeffrey 
Cl9 BI} due to the error in their f (1) as noted previous1y. 

**Later comparison of nurnerica1 computation done by Dr. Jeffrey 
and the present transforrned series of rate of energy dissipa­
tion has shown that both calculations agree in average te 3 
significant figures. 
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4.4 Relationship between R anà e 

The energy balance equation for the equilibrium 

state of steady kinetic fluctuation energy with no energy 

flux der i ved f rom the energy conserva tion law 9 i ven by (2.29) 

takes the form 

- p: Vu - y = 0 
'V -

(4.45) 

From this, we may determine th~ rela tionship between the 

coefficient of restitution e and the mean shear velocity to 

'X' •• m. s. fluctuation' veloei ty ratio R for the case of simple 

shear by noting that 

Using equations (4.43) and (4.44) together with the non­

'. 

(4.46) 

dimensional parameters given in (4.11) and (4.12), equation 

(4.46) yields 

e ;: 
P* 

l ~ - 2y* 

If the coeff~cient of .restitution of a certain granular 

material were given, we could solve the eorresponding 

value of It simply by using (4.43) and (4.44), hence the 

values of stresses and energy dissipation could be 

l4.47} 

calculated. This relationship between e and R 15 plotted 

in Figure 1.0 whieh indieates a range of values of e between 

land -1. When e equals zero 1 R has the value of upper bound 

aDeut 2.73. Physically the coefficient of restitution e has 

its usual range from zero to one as the parameter R goes 
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from zero to infinity. An inter pretation of the negat1ve 

values of e which correspond to large R 15 not obv1aus. 

One possible clue 15 that the present analysis is 

incomplete in the sense that we have ignored frictional 

energy dissipation which undoubtedly plays an important 

role. In other words, if we were to consider aiso 

frictional losses, the lower value of e might be brought 

back to zero. The negative value of e may be regarded 

s1mply as a fictitious value which has no physical meaning. 

In aIl the existing theories (Ogawa, et al. 1980, Shen 

1982, Jenkins and Savage 1982) including the present 

one, aIl the relationships of e vs. R behave in a similar 

manner and can yield negative e for large R as shown 1n 

Figure 10. Detailed discussions of each of these theore-

tica1 formulations are reserved for Chapter 5. 
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CHAPTER 5 THEORY VERIFICATION 

In recent years, a number of microstructural theories 

involving statistical averaging methods of obtaining the 

constitutive equations for rapid granular ~ldw were proposed. 

The most pertinent ones.are the theories put forward by Ogaw~, 

Umemura and Oshima (1980), Shen (1982), Jenkins and Savage (1982). 

The common characteristics o~ these theories and the present 

one i5 that the constitutive relationships are calculated 

explicitly and do not rely upon any empirical phenomenological 

coefficients which are determined from viscometric exper iments 

or by other means. Instead, in aIl these formulations the 

constitutive' relations are expressed in terms of material 
1 

properties such as adhesive coefficient, coefficient of kinetic 

friction and coefficient of restitution, etc. for the individual 

particle. Once these coefficients are known, the macro-

scopie continuum properties of granular f10w can be determined 

explicitly. In this chapter, previous theories will be compared 

with the present analysis and the appropriate experimental 

results. When necessary, the algebraic form of the previous 

theories will be recast to correspond to the present analysis 

in order to make direct compariso~s. 

5.1 Comparison Between the Present Theory and Previous 

Theoretical Works 

5.1.1 Ogawa, Umemura and Oshima (1980) 

Ogawa, et al. (1980) determined the stress tensor and 

the rate of energy dissipation for the flow of adhesive, rough, 

inelastic spherical granular particles by employing a simple 

statistical kinernatic model of particle collision. In their 

-58-
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model~ the frimtion of the pa-rticles was considered but particle 

rotation was ignored. Furthermore, the fluctuations were 

assumed ta be random and ~sotropic, and no kinetic energy 

flux i8 involved. in the analysis. The constitutive equations 

of stresses and rate of enepgy dissipation were determined 

by averaginq the rate of transfer of kinetic fluctuation , 
energy of the particles over aU possible collisions. 

Each' particl~ i9 considered to be inside an imaqinary 

collision sphere of radius b which represents the 'wall ' being 

set up by the neighbouring partiales. In each collision, a 
. 

fraction of a' of the particle ia assumed to adhere to the 

surface of tile sphere and the rest (l-a') iébound from i t with 

a loss of kinetic energy. The fraction a', or called adhesive 

coefficient here, is assumed to be constant. Multiplying the 

number density of particles by the change in kinetic energy 

per coll:i'sion and the estima ted collision frequency of magni­

tude <v2>~/~2b-a) gives the total rate of change of fluctuation 
~J 

energy per unit volume which la then equated to the rate of 

work done by stresses a~\the rate of energy dissipation per 

uni t volume. By comparing the forms of both sid~s, Ogawa', et 

al. proposed the following const~tutive equations of stress 

tensor and the rate of energy dissipation Yo: 

p = .., 

= - K 

~ 
(5.2) 

. 
said to correspond, to the f packed sta te 1 of gr anular 

" 

. , 

i 
1 
1 
i 

j 
1 , 
l 
{ 

t 
i 
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materials, 0iJ' .. CU .• +U. i)/2 i8 the rate of strain tensor, 
1,J j, • _, , 

ôij is the unit tensor and for the 'Case qf cehestonless and 

smooth particles, the K 's are qiven. as #" 

K .. - ( 1-.2) 
(5.3) 

0 j 
.. 2 k 1 - - 9" e(3+e) 1 (5.4) 

1<2 .. 
(1+e) 2 

(5.5) 9 

.' 
with K3 • o. 
Consider the case of simple shear fl.ow ef qranulat, materialà. 

We may non-dimensionalize and eltpress! and 'Vo in taras ôt 

the parame ter R aà· 
/' 

'Pxx ,. P 
yy 

:0 P 
u: and PyZ .. P zy . C5.6a,b) 

P zz .. '1 (v) 
4ep+e) 

a2 (au) 2 9R
2 

Pp fi 4J 

P
1Z --If 2 (\/) 

(l+e) 2 

Pp a2(.!!) 2 UR 
3z , , 

and 
'Vo 

.. "3(v) 
, Cl-e2! '" 

02(3u) 3 3RJ 
Pp 3y 

and Pp ia the' ma •• densi-t;:y ,of ~.ol.i4, part1c:.l.~ 

'. - .. ~(_F_l ., .... ----~~~ •• --
.~; "Z\· .. 

.~ -, . 

(5.7) 

(5.8) 

(5.9) 

(5.10.) 
" . 

(5.11) 

a: 



\~ 

i 
i 
t 
f , 

~\ 

61 

The dependence of R ln the stresses P and y resembles 
o 

the first term small R solution of P and y of the present 
IV 

theory given by equations (4.25) to (4.28). Unfortunately, 

the stresses of both theories depend differently on the coef-

ficient of restitution e, we cannot compare them directly 

until a re1ationship of e and R is established for the theory 

-of Ogawa, et al. However, we may compare the non-dimensional 

rate of energy dissipation by dividing equation (5.9) by a 

~ormalizing concentration function defined as 

2 
o/(v) = v g (v) 

o 

Taking the solid fractions v to be 0.5 and v* = 0.64 for a 

(5.13) 

randomly packed state, the first term small R solution of 

the present theory gives y* = 1.3029 R- 3 from (4.2B) and the 
,r 

one of Ogawa et al. y* = Yo = 0.6477 R- 3 
o p v 2g 02(ddu)3(1_e2) 

p 0 Z 

(note Pb = vp ). If we take v* to be 0.74 corresponding to 
• p 

an array of closest packed spheres, y~ is lowered giving 

y* = 0.3980 R- 3 • This shows that the rate of energy dissi-
o d 

pation of Ogawa e~ al.(1980)is about 2 or 3 times lower than 

that of the present theory depending on what the packed state 

,is meant~to be. In order to compare the theories with no 

ambiguity, both values of v* will be considered in each 

calcula tion. 

Using the balance equation of ~ate of work done by 
" 

~tresses and the .rate of energy dissipation per unit volume, i.e. 
" 

~ 
'\ 

P .. D' j = y assuming under a stea sta , we may obta~a 
~J ~ 0 • 
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relationship between Rand e in the1r model which is 

(5.14) 

Interestingly, the variation of R with e behaves in a similar 

manner as equation (4.47) of the present theory that the 

coefficient of restitution has a range of values between 1 and 

-1 as R goe8 from zero to infinity as shown in F~gure 10. 

The valué of e being zero corresponds to the upper bound of 

R" 4.512, 'J". O.64or R· 4.2988 with v*. 0.74. In genera1 

the values of e correspond ta higher values of R than those of 

the present theory. 

Now we May compare the stresses· by div-iding equations 

( 5 . 7) and (5.8) by (5.13) gi ving 

and 

p 
yz (l+e) 2 

1eR 

The concentration functions ~l' ~2 and '3 given by (5.10) 

(5.15) 

(5.16) 

(5.17) 

(s.a) 

to (5.12) associated with the normal stresses, shear stresses 

and the rate of energy dissipation per unit volume respec-

tively are showrl in Fig. 11 together wi ) of the present 

• Sign convention of the stresses of Ogawa, et al.(1980)is 
changed in accordance with those used in the present 
analysis. 

) 

f 
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theory given by (5.13). Both theories show quite a different 

variation with concentration v. Using the Rand e relationship 

in (5.14), we may determine the stresses. The variations of 

the normal and shear stresses in terms of Rand e are show~ in 

Figs. 12 to 15 together with those of the present theory. 

The stresses of Ogawa 7 et al. are much lower than the present 

ones. For example, when e - 0.9 with v* = 0.74, the normal 

~tresses of Ogawa, et al. are about 16 tlmes lower and .the shear 

stresses are about 7 times lower as shown in the Figs. 14,15. These 

differences in stresses amplify further wlth the decrease of e. 

The reason for such large quantitative differences in the 

stresses is not clear, but is possibly due to the number of 

assumptions made involving the averaging process in their theory. 

In aIl of the abave calculations of stresses for 

comparison, the solid fraction v is taken to be 0.5 as the 

reference value. We may set up modlfication factors for the 

stresses shown in each of these graphs to he 
1# 

CoN(v) = Cl (v)/Cl (0.5) (5.19) 

for the normal stresses and 

(5.20) 

for the shear stresses. These relations are shawn in Figure 

16. For a given value of v other than 0.5, one may take 

'the corresponding correction values from these figures and 

mu1tiply them with the respective stresses obtained from 

.. 
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Figs. 12 to 15 to give the correct values of stresses of 

Ogawa, et al. 

5.1. 2 Shen (982) 

Shen (1982) had used a similar statistical model and 

derived her constitutive equations for rough, inelastic 

spherieal particles inc1uding interstitial fluid drag effects. 

The case a simple shear of granular materia15 was considered 

and assumptions similar to those of Ogawa, et al.(1980) were 

made. The fluctuation velocity was assumed to be isotropie 

and rotary inertia effects were neglected. The stresses were( 

determined by letting 

P. , • p. ·~.·f 
1J 1 J 

(5.21) 

where Pi is the average number of particles per unit area which 

i5 normal to the i-th coordinate direction, 6M j is the average 

j-th eomponent of the momentum transfer per collision and f 

is the eollisional frequency of a particle inside that unit 

area. A similar formulation for the stresses was originally 

used by Baqnold(1954~ The rate of energy dissipation per unit 

volume was qiven by1'-

\ 
\ whe~e n is the number 

'collisional frequency 

y - n·F·E (5.22) 
./ 

of parti~ per uni t volume. F is the 

of a pattiele and E i5 the energy 105e 

of eaeh partiele pe~ collision. The magnitude of the collision 

frequeney F vas estimated in a manner similar to that of Ogawa, 

et al. (1980) by wri ting 

F • 2f - <v
2>s/s (5.23) 

where S ia the Mean separation distance of the partieles. 
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In order ta simplify the ana1ysis of the dynamics of 

particle, collisions, a number of approximations were made. 

The main one is that R(1+ l/À)«l where À = 0/5 is defined as 

the linear concentration of the particles. This eliminates 

the consideratidn of the effect of anisotropie collisions. 

Another important assumption 18 that tan-1 ~(l+e)+O and ~ is 

the coefficient of friction. Bence the friction con~~effect 

is excluded. For the purpose of comparison in the case of 

negligible interstitial fluid effect and smooth particle, 
( 

the stresses and the rate of energy dissipation may be 

written in terms of the parame ter R as 

y* -5 

p ~ p = P and P = P xx yy zz yz zy 

P zz 

0.212(1+e) 
• - Cl(v) R 

(5. 24a,b)..;-, 

(5.,25 ) 

(S.26) 

(5.27) 

(5.28) 

* When \wo particles collide, the post-collisional,velocity com­
ponents lparallel to the plane of contact are restr1cted by the 
effect~f friction and inelasticity of the particles. The effect 
of particle rotation due ta the frictional forces is neglected. 
Hence, a 1 friction cane 1 of an interior angle of, tan- l 1J (l+e) , /1. 
may be found such that for collisions occuring w1thin the fr1ct10n 
cone, the component of total relative momentum Along the plane 
of contact will vanish. 

\ 
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lnterestingly, the above ·stresses and rate of energy 

dissipation per unit volume have the sarne form of R dependence 

as those of Ogawa, et al. U980) and the first terrn small R 

solution of l and y of the present theory. However, the 

concentration functions associated with the stresses differ 

from those of 9gawa, et al. CL980). A formula for Rand e may 

be established easily by using the balance law of rate of 

shear work and energy dissipation which gives 

R2 .. (v) 1/3 (l-e) 
V* 0.2120 (~29) 

The plot of this equation is given together with the previous 

ones in Figure 10 which shows that R has an upper limit of 

about 2 when e - O. Its behaviour is different from the 
"f 

previous two in the sense that~the range of e starts from one 

and ex tends to negative infinity as R takes on values from 

zero t.o infinity. 

Computations for the stresses in terms of Rand e ~re 

performed in a manner similar to those of Ogawa, et al. U98~ and 

are shown in Figs. 12 to 15. The magnitude of Shen's stresses 

are higher than those of Oqawa, et al. U98~; however,' they are 

still considerably lower than those of the present theory. For 

example, when e - 0.9 with v* • 0.74 and v • 0.5, the normal 
fi\ stresses of Shen are about 6 times lower and the shear stresses 

~e about 2.5 times lower as shown in Figs. 14 & 15. With a 

decrease of e, these differences are enlarged further. The 

variations of stresses with v may be described by the factors 

similar to those used in tthe discussion of the theory of Ogawa" 

et al. (1980). For the theory of Shen (1982), they may be 

defined as 

-- .. --- ----------'";"-

" 
1 
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CSN ( v) - c 3 ( v) le 3 ( 0 • 5) 

for the normal stresses and 

Css ( v) - Cl (v) le 1 (0 . 5) 

for the shear stresses. They are shown in Figure 17. 

We may also compare the rate of energy dissipation. 
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C5.30) 

(5.31) 

Consider the case of v* ~ 0.64 and v-O.S. Thé non-dimensiona1 . . , 
rate of energy dissipation per unit volume of Shen (1982) is 

-3 
found to be y~ - O.4858~ from (5.27) which is about 2.S'times 

'-, 
lower than the first term small R solution of the present theory 

'-~ 
which is y* - 1.3029 R ., In the Case of v'le· 0.74 and v - 0.5, 

y~ - O.2t85 R-
3 

which is about 4 times 10wer than y*. 

5.1.3 Jenkins and Savage (1982) 

Jenkins and Savage 0.982) have dea1t with the problem of 

general deformation of smooth, near1y elastie spherieal granular 

materials. Following an approach simi!ar to the kinetic theory 

of dense gases outlined in Chapman and Cowling a.970), they 
• 
determi~ated the general collisional constitutive equations 

for the stresses, kinetic energy flux and rate of energy dissi-

pation per unie volume. Essentially, their theory is applicable 

to general deformations but is an asymptotic analysis for sma!l 

R. T~eir pair distribution function "f(2) and single partiele 

distribution funetion f(l) were taken to have the saroe forms 

used in the present theory as given by equation (3.2) and (3.3) 

.with similar assumptions made. A general collisional pair 
~ 

distribution function 9(EI'E2} was assumed on the basis of 

dimensional arguments to be 
1 
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Clakk: Vu 
9 (r

l
,r

2
) = 9 (v) Cl -

- - 0 
(5.32) 

where a is a constant. If Cl :: l, g(!1'::2) is essentia11y the 

first order expansion for sma11 R of the 9 (::1 '~2) of the 

present theory given by equation ( 3 • 4). which i's the same one 

used by Savage and Jeffrey (1981). By using thls linearized 

, f(2), the integra1s for the c0111sional flux of fluctuation 

energy gc in (2.33), the collisiona1 stress tensor E in (2.28) 

and the rate of energy dissipatidh per unit volume in (2.34) 

may be evaluated to yield 

Q - - KVT -c 

fc = (Ka-l(wT)~ - ~ (2+a) tr~)~ 

y = 6(1-e)K(T+(~/4-Cl/3)a(T/~)~ 
/ 

-' 

where K = 2vgo (v) (1+e)po(T/n)~ 

o a ( u . . +u j .) 12 
..., l,) ,l. 

and l is'the unit tensor. 

_ 2K (2+Cl)D 
5 '" 

2 
tr.e'/o 

Consider the case of simple shear u_ = u(z) e with -y 
no fluctuation gradients, i.e., Q - 0, and takinq the 

-c 

collisiona1 stresses to be the dominant contributions, the 

cpnstitutive equations with Œ = l become 

p* D P* : p* 4 
xx yy zz ... 3R2 

p* 
yz 

y* ... 

- p* zy 

4 

12 ----sl3iT R 
, 

J .-

/5.33) 

(5.34) 

(5.35) 

(5.36 ) 

(5.37) 

(5.38) 

(5.39) 

(5.40) 

J), 
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which are exactly the first term solutions of the present 

theory. The parameter R and the coefficient of restitution 

e relation May be found readily to be 

R2 ,. 10 (l-e) 
T (5.41) 

This equation of R is p10tted Along w1th the others 1n Fig. 10 

It shows the sarne functional behaviour as that of Shen (1982) 
... 

with the upper bound of R - 1.8257 being the lowest. The 

, stresses given by (S.38) and (5.39) are pl~tted non-dimensionally 

aqainst both Rand e ir F1gS. 12 to 15. In the graphs of 

s~resses vs. R, obvious deviations in magnitudes between the 

stresses of Jenkins and Savage and those of the present theory 

can be' noted in the figures. In the plot of stresses vs, e, 

the magnitudes of the shear stress of Jenkins and Savage and 

that of the pre~ent theory are too close to be distinguished 

on the graph, whi1e the difference in the normal stress is 

more noticeable. 

AlI four of the microstructural theories, including 

the present theory, basically show the sarne form and trend of 

behavi~r in the constitutive equations at least for the case 

of identiçal, smooth, inelastic granular materials. Ouantita-

tively the magnitudes of the macroscopic properties modelled 

by analogs to the kinetic theory of dense gases are considerably 

higher than those considered from the kinematic particle 

collision models. In o~der to verify aIl these theories~ we 

of the appropriate experimental data available. 

.. ,. 
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5.2 Comparison Between Theories and Experiments 

Savage and'sayed (1980) have performed a number of 

tests of dry granular materials under high shear raté in their 

annular shear cell in which the interstitial fluid dS air. 

In these experiments, both shear and normal stresses were 

obtained when various mean concentrations of granular particles 

sheared. The range of concentrations v tested is between 

0.45 and 0.53 which is considered to be high and probably 

most appropria te for the comparison of the present analysis. 

The,materials used were 1.0 mm diameter polystyrene spheres 

of specifie gravit y 1.095 and ,1. B mm diameter·Ballotini spher.ical 

glass bead~ of specifie gravit y 2.97. These experimental data, 

firs'tly used by Savage and Jeffrey (19B1) to verify their 

stresses, are shown in Figs. 18 and 19. Stresses increase 

rapidly upon increasing high concentration. 

Unfortunately, the material properties such às the 

coefficieht o~ restitution of each material are not given or 

known, therefore ve have,to choose a value for e in~order to 

calculate the stresses in each of the four theories. For 
f 

the stre'sses of Ogawa, et al. (1980) and Shen (1982) wi th the ... 

coefficient of friction taken ta be zerQ, only computations 

of e = 0.9 are shawn, whereas for the stre~ses of Jenkins and 

Savage'~982) and the present theory, 'calculations of e = 0.95, 

0.9 and 0.8 are shawn in Figs. 18 &' l~.T~ese values of e from 
,-

:/' 

0.95 to 0.8 are probably in the range for the glass beads (see 

,,' , 

'1 , 

, 
."" .. - - -'- ... --""~_._--
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Goldsmith 1960), however, little information about the value 

of e for the polystyrene beads is available except that it 

should be lower than that of the glass beads. Since stresses 

increase with increasing values of e as predicted by the 

present mOdel, the stresses associated with glass beada should 

be higher than tpose with the Qolystyrene beads. However r 

the experimental data show the opposite trend. The stresses 

for the polystyrene beads are slightly higher. The differences 

between the theoretical prediction and the experimental evidence 
( 

areprobably due to the incompleteness of the present theory 

in the sense that surface friction of the granular materials is 

ignored. Glass beads are brittle materials, 50 when they are 

sheared under high shear rate and loads, the beads are roughened 

and surface friction would no doubt become an important energy 

dissipative mecha~m. According to the theories of Ogawa, et 

al. n980) and Shen U98~, stresses decrease with increasing 

values of coefficient of friction. Thus, it is possible for the 

stresses associated with the glass beads to b~ lower than 

those of the polystyrene beads since the coefficient of fri~ion 

of the glass beads i8 probably higher in this case. 

At e = 0.9, the shear stress of t~e present theory and 

that of Jenkins and Savage n98~pass right through the exper}­

mental results, bu~the normal stress predicted i8 a bit high 

in magnitude. This shows not only that these two theories 

predict the righ1 order of magnitude of stresses but also 

that the amall R linearization ls quite sufficient especially 

for hi~ values of e. At the,same value of e = 0.9, the normal 
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stress of Shen U982) i5 very close te the experimental"data 

especially when v* = 0.64 , but the shear stress is off 

considerably; for example, when v = 0.5 and v* = 0.64 ~hen's 
!oo 

shear stress is about 4 times lower in magnitude and 6 times 

lower if v* == 0.74. Both shear and normal stresses 'f>redicted 

by Ogawa, et al.(198m have the 10west magnitudes and fall . 
short by a large amount; for example, when v = 0.5 and 

v* = 0.64, their shear stress is about 12 times too 'low while 

their normal stress is about 4 times lower than the data. 

If v* = 0.74, their shear stress is about 16 times too low 

while their normal stress is about 5 times 10wer t.an the 

tests. 

As complementary information, we may plot the shear to 

normal stress ratio against solid concentration v as in 

Figure 20. The stress ratio for the present theory may be 

found readi1y by dividing equation (4.43) by (4.44) giving 

p 

Jp~ZI 
zz 

p* 
= I-E p* 

zz 

similarly by taking the quotient of equations (5.38) and 

~5:39) the stress ratio for Jenkins and Savage (1982) is 

312 Cl-e)! 
l51T 

and from equations (5.7), (5.8) and (5.14,) the stress ratio 

for Ogawa, et al. (1980) is 

(5.42) 

(5.43) 
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Also from equations (5.25) and CS.26) the stress ratio for 

Shen (1982) is 

P 
I p

Yz 
zz 

,73 

(5.44) 

(5.45) 

As shown in the figure, aIl the above theoretical predictions 

fall below the e~perimental values. compa~ the pr.t;sent 
-f 

theory and the one o'f Jenklns and Savage repres~nt predict\'ons 
fi 

closest to the test results. The shear to normal stress ratio , 

of Ogawa, et al. (1980) and Shen (1982) are both about 4 times.~ 

tao low when e = 0.9. One obvious characteristic shown in 

Fig. 20 is ~hat the stress ratio of each of the theories, 

except shen 's, does not depend upon concentration. From the 

experimental results, the stress ratio of the glass beads 

indicates a slight dependence on concentration, while the stress 

ratio of the polystyrene beads indicates a stronqer dépendence. 

So far, the present theory has fair agreement with 

the experiments on granular materials .. Apparently, this theory 

i8 hot limited in the consideration of granular particles only. 
; 

Slnce the theory follows the sam~ line!of approach as the 
-~' 8'" 

kinetic theory of dense gases, we may draw ~ comparieon between 

the two readily. 

5.3 Comparison Between the Present Theory and the Kin~tic 
Th~ory of Dense Gases 

The hard sphere molecular mOdel for dense qases used 

by Enskog as presented'in Chapman and Cow1ing (197œ 18 the most 
I.~ ----

_ --.-appropriate theory for comparison., We require only thJi! . ' 
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part of stresses that ar.ise from the co11isional transfer of 

which 

1~016 38 06 2 < 2>~ 1 ~ (v + • v Xo(v» m v (0 - - V-uI) l3i 5 a2 ...... 3 -.., (5.46) 

5 2 = 1 + 2 v + 4.5904 v' (5.47) 

where the factor Xo(v) is ana1ogous tO,tne radia~ distribution 

function ~t contact in. uniform gas. 

In the case of simple shear, V·y=O, the normal and 

shear stresses become 

p = p p 4 PbvXo (V)<v2> = = -xx yy zz 5 
~. , 

m<v 2>1:s p p 1.016 (v+ 38.06 v2xo (v» au = = 
yz zy 2& 5 (12 ai 

We may again non~dimensiona1ize these stre~ses in terms of 

the parame ter R to be 

ançl 

__ P_Y,!--Z --=-- = _ 
p (a_au).2 
p az 

1.ai6 
, 12 

, 

1 

Considèr the stresses of the present thepry, the first term 

smal1 ;a solutions 'are sufficiel!t ainee we are dealing wi th , , 
... 

elastie bard &pheres, . i.ft. e -;;0 1. Not-è th_.t when e ,. ;L, 

(5 .. 48) 
• 

(5.49) 

(5.50) 

(5.51) 
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there will be no energy dissipation in the system, hence 

the parameter R remains indeterminate but not zero. From 

equations (4.25) and (4.26), the normal and shear stresses 

are 

2 
4v g (v) p 

zz o c-
3R2 (5.52) 

= -
2 •• 

i2\1 9 (v) o 

sl3iT R 
(5.53) 

Comparing the expressions of stresses between the two 

t~eories, the functional difference is between Xo(v),and go(\I) 

These two functions are plQtted in Figure 21 which shows that 

they differ by a large amount at high concentration. Since 

go(v) i5 derived semi-empirically'from computer similations 

of moiecular dynamics, one would presumably take 9 (v) ta be 
! , 0 

\,/ .. 
more accurate than X (v) especially at hiqher concentration. 

o 

4t For th~ purPQse o~ comparison ve not only use the formula 

of Xo(v) as given by Chapman and Cowling to calcula te their 
1 • 

stresses bQt also we replace xo(v) by go(v). These two 

calculations of st~elses are both shown in F.!gures 22 and 23 

together vith the stresses of the present theory as in (5.52) 

and (5.53). ' By using their X (v), both of their sheàr and 
. 0 .., 

normal stresses are lew compared to those of the present theory. . . ( , 
But vhen ve let X (v) = 9 (v), their shear stress 18 quite 

0/0 ' 

close to the_~resent-one especia~ly at high concentration of 

y - 0.2 onward. However, their no~l stress differs fram 

the present one by a factor of 5/1. This shows'that the 
-' 

, 
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present theory 15 compatible with the formai analysis of 

dense gases of hard sphere modei at ieast in the~case of 

simple shear. 
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CIIAPTER 6 CONCLUS ION , 

In this study, the conservation laws and constitutive 

integrals appropriate for the f10w of identical, smooth, 

inelastic, sphe~ical granular materials are formutated in the 

.. context of the transport theory of dense gases. The rapid 

sil'lple shear f low of grànular mater ials is studied in parti.-
, 1 

cular. Wi th the use of the pair veloci ty dlstribution function 

prapased by Savage and Jeffrey (1981), the constitujive 
, -

integrals for the co11isional stresses and the rate of energy 

dissipation are appraximated by asymptotic expansions and 

series transformations in terms' of a parameter R which is 

defined as the ratio of mean shear characteristic velocity 

to the r.m.s. of the fluctuation veloc1.ty of, the particles . 
•• .. 0 

The pararneter R is found to depend upon the ~oefficient of 

restitution of the partic1es through the balance of energy. 

Thus, the stresses and the rate of energy dissipation are 

determined uniquely by the dissipative material property, 

the' coefficient of restitution e of thEf p a:t:tic1es. 

The present study ls compared wlth previous theoretical 

investigations "and exper iments. All t'fle theor ies exhibi t 

general agreement in the form of the constitutive relationships 

8eveloped for the case of simple shear. Although the theories 

are based upon different statisti~al averaging methods and 

dynamic cons~derations the relationships between the parameter 

R and the coeff icient of restitution e are quit~ slmilar. In 

the compar1son of stresses between exper 1ments' and theoretical 
( 

predictions, the theories of Ogawa, et al. (1980) and Shen (1982) 
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yield stresses generally lower than the measurements. 
\ 

The stresses predicted by the theory of Jenkins and Savage 
. 

(1982) and the present· analysis s~ow the correct order of 

magnitude. Furthermore, the ~ma1l R solutions of the 

stresses of the present theory, which are exactly those' 
c 

derived by Jenkins and 5avage (1982), indicate f.air agree-

ment with the stresses predicted by the kinetic theory of 

dense gases using the hard sphere model • .. 
The present analysis has considered only the trans-

lational aspec t of the particles ln the qranular f low 

system of simple shear. The effect of dry friction and the 

rotational motion of the particles are bath plausible 

extensions that can be made in the theory. These two aspects 

are expected to become" more important especially at ,high 
- . 

concentration. The collisional stresses are assumed to be 
. 

the dominant streqs contributions at high concentration, 

whereas the kinetic. or diffusional part of tbe stresses can 

be expected to play 'a major role at low concentration: 

Numerous refinements can be made in the theory. The full 

potential of th~ approach o~inetic ,the~ry of dens~ gases 

for the investigation of the flow of granular m:terials has 
- -Ji 

yet to be expl'Ored. 't 
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APPENOIX A 
... 

Collisional Change of oynamical Quantity 
J 

In Chapter 2, we ~ave formulated the collisional 
; 

change Wcol of the me~n valve of dynamical quanitity ~ of 

the particle in a binary collision. In this appendix, we 
... "'11c 

will discuss in sorne length the physical arguments involved 

in the decomposition ot' ~ l into, a flux terrn e(~) ~nd a 
o co 

sink term X(~) as presented in equations (2.20) to (2.21). 

It will be shown that although the formulation and final 

expressions for-" l in the present i~~lysiS are slightly 
. co 

" , 
different from those'of Jenkl.ns and Savage (1982) 'and Condiff, 

Lu and Dahler (1965), the results from aIL these analysis are 

~ essentially equivalent. 

Consider the collisional change of ~ at position r 

in a volume element dr as shown in Fig. 2. The change of 

the dynamical qUantity of particle l at ! is $i - ~l' where 

primed quantity denotes value after the collision. Thus, 

~quation (2.17) as previously presented in Chap~er 2 is 

... , .... 

\ Sinee particle land 2 are identical, we ma~~nterchange 
their roles or correspondingly their sUbscriP~'~"and 2~nd 

. 
note that g~-g and k+-k. Expression (A.l) 

," drdta 2 
"'col = r (k 'q) ) (A.2) 

k'q>O - -

- The pair velocity 

equation (A.I) is evaluated at the point,~ _ 
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1. ' 

in a {phase space of 12 âi~ensions. SirnJlarly, the pair 

ve10city distribution funct{on in equation (A.2) f(~) (X)is 

e:ra1uated at the point!.: (E-a~'Sl"!:'~2,t) in the phase space.· 

We assum~' that" f(2') and its partial derivatives up ta the order 

n are cantinuous in the neighbourhaod R of X. Since X differs 

0fly spa~ially from Y 1!ly an amount a~, ~ i8 assumed to be weIl 

withi·n the regièn R. Thus we May relate f(2) qp in (A.l) "and 

f(2)(X) in (A.2) in thefollowingway. Firstly, we re-wri te 

1,2. Similarly, f(2) <X) 'f(2) (X)to be f(2) (r. ,c, ,t) where i = 
- -l. -~ . 

may be written as fCZ) (r.-ak,c. ,t). Using a Taylor expansion 
-1. .- -~ 

(Fulks 1961) we May express f(2) (Ei,2i ,t) in terms of 

f(2) (r.-ak,c, ,t) spatially as 
-~ --1. 

'. 

.. 

Cl) . 2 . 1 n (2) f '(r.,c.,t)=[l+ok·V+t{ok.V) + ••. + -, (ok·'V) + ... Jf Cr.-ak"c. ,t) 
-~ -~ -. - n. .. -.1. --.1. 

(A.3) 

By so doing, we May evaluate the chançe.of the dynamica1 , 

'quantity due to cOllision of particles land 2 at the same ~hase 

point .. In the present case, f(2) is evaluated at pèLnf ! in 

the phase space 50' that all the macroscopic variables due to 

collisions May be weighted by the same kernel or weiçhtinç 

function. Taking half the sum of (A.l) and (A.2) and using 

(A.3) the collisional change May be expressed in the form of . . ' 

(A.4) 

where e(~) = 

(A.5) 

. ;. « 

1 

j .' t 
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and 

o 
t ,-

The colliiionai transfer ~tribution e(~) m~y be interpreted 

as the flux of change oCdynamical quantity" of the pak"ticle at 

r in the 1< dl.rection due to the co1,lision. The contribution 

X(<P> May be considered as a term for the sink of'dynamical 

quantity at !: since it ,represetlts the total change of $ of the 

partiel es in the binary collision. For eXaMple, if the dynami-
\ 

eal quantity is the translational energy of the partiele, i.e. 

4> = t mc 2 , then ectmc 2) will represent the flux of kinetic 

energy and X (imc 2) w;lll represent the "1'Os8 of kinetie energy 

due to the inelastic collision of particles. 

A.I Jenkins and' Savage (1982) ~ 
1 

/' Jenkins and Savé!ge (1982) have formul.ated the collisional 

change of the mean v~lue of dynamic~l quanti ty ~y using a 
G 

slightly different approach of physieal argument. A partiele 

veloeity 21 ât r is considéred to co11ide with a partiele having 

velocity 22 at r+ak inside a volume element di as shown in 

Fig. 2. By using the same kind of co1~sional çonsideration 

as in the present theory, the aollisional change of the Mean 

value of 'dynamieal quantity at ! ie found 'to be given by 
. 

equation (A .1). 'An identical collision ia considered to ocour 

between a partiele' wi th veloei ty 21 at !-.a~ and a particle 

wi th veloci ty S2 at r. In this ,case I/I co1 ls given by (A. 2) 

• 
c 

f 

i 
j 
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\ 

·Using>. the 
. ' ,f 

earlier, the 

k~~d: of 'Taylorl expansfon 'of ~ f (~) as present'ed 
:. .. 

collisional chartge of thetmean·value of dynamica~ 

" 

, 
.1 .. quantity Wco1 " the flux tetm SCCP) and the sink ~erm XCt/» are 
: ~ 
.f 

~ 1 

.. 
given bY"equations (A.4), (A.5) and (A.6) respectively.' Tl}e 

, 

formulation of Jenkins and Savage is equivalent to the ,present 
, 

arlalysis, éxcept that tpey consider two sp&tially different 

identical binary collisio'ns while the present one considers the 

interchange of identièa1 partic1es in the same co1lision~ 

Î /, 

( 

A.2 Condiff, Lu and Dahler (1965) 

Condiff, Lu and Dahler (1965) have dealt with the same 

subject from a somewhat different point of view. They consider 

a di1ute gas of perfec tly rough 1 elastic spheres. In their 

formulation, translational and rotational dynamical qu~ntities 

of the rnolecules are exchanged due to particle interactions, .. 
UsAng an argument similar to that of the present theory, the 

coilisional. change of the mean val.ue of dynamical quantity 

ljJ'col is found ,to be 'given by equati0!1 (A.I) and (A.2). The 

obvious difference between the two theories is tha:t a ~air 

translational and rotational velocity distribution function , 
( 2) 

~ (E'!1'E+a~'!2,t), where Tl : (9i'~i) and ~i is th~ 

rotational veloci ty, is required for their case. The decomposi-

tion of Wcol into 8(<jl) and X(<j» as in equation (A.4) is used. r 

However, their col1lsional transfer contribution terms 6(t/» and 

x (t/» are presented in ...!pdiff erent way from the present ones ," 

In their theory, the integral of e(q,) is weighted by 

, 
1 
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f(2) (!'1:1,!,+a~~!2,t) while tne int~gral \)f x(</» in weighted by 
( 2) 

f (!"-a~'!1'E'!2,t). The reason for having 8<<1» and'x('<kl,' 

evaluated at different phase points is not clear"and Condiff, 

et al. provide no explanàtion. The term e (~) in their case , 
.~ ,b represents flux of the change of tran.slational and 

rotatiolial dynamical quantities of the particle. The term 

x <4» _represents the totaL exch"ange of translational and 

rotationa~ dynamical quantities in a binary collision. 

Analogous "to the present apalysis, we ~y ignore 
~ 

the rotational aspect of their formulation and take e(~) 

to be the flux of only translational dynamical quantity of 
l , 

~ . 
the p'article ~d X (<jJ) to be, the total change of translational 

. \ ~ 
dynamical quantity in a binary collision of srnooth, inelastic . . 

1 

part<icles. If we follow similar; procedures of m~nipulation 
v 

of the present theory - to rearrange the Taylor expansion 

of f(2) in their analysis, the same integral forms as given 

in equations (A'.S) and (A.6) will be achieved readily. 
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APPENDIX B 

r 1 

'Sorne standard ~tegra'tions involving exponenti.als 
ltY .~ 

(Chapman & cowling 1970) are presented below, 

)-

(a) If n is an'~ven posAtive'integer, then 

~ 

3 n-l -(n+l)/2 
2" "1 2 Cl 

(bt n i.r.n~dd positive integer, then 

J~ e-at2 t n dt = l -(n+l)/2 
o 2 a 

If , 

<\1 
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