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ABSTRACT 

This paper is a survey ofpublished studies on stress analysis and mechanical behavior of cables. 

Both theoretical and experimental investigations of cables composed of helical wires, optical 

fibers, and ground wires with optical fibers (OPGW are presented. Also, the very first 

pioneering studies on stress analysis of cables are reviewed and discussed in detail. 

1 HELICAL WIRES 

1.1 Mechanics of wire ropes 

Researchers and manufacturers have been interested in the design and analysis of wire ropes 

since the 1930's. Drucker and Tachau (1945) were the first researchers to attempt to find a 

structural design criterion for wire rope. They introduced a dimensionless bearing pressure B to 

select a wire rope: 

2 T B = -  
UdD 

where T is the tension in the wire rope, U is the ultimate tensile strength of the wires, d is the 

diameter of the wire rope, and D is the pitch diameter of the sheave. Its significance was evident 

in the plot of life (number of cycles to failure) against this bearing pressure ratio B. 

The failure of a wire rope was believed to be mainly as a result of fatigue and wear and not 

directly due to excessive axial stress in the rope. The conventional procedure of plotting the 

number of bends to failure against the average tensile stress TIA (where A is the cross-sectional 

area of the wire rope), the imaginary bending stress EdlD (where E is the modulus of elasticity), 

and the sum of the two appeared to be improper considering the true cause of failure of the rope 

and widely scattered results. Drucker and Tachau proposed the nominal bearing stress (cross 

compressive stress) between a rope and a sheave, 2T/dD, as a "reasonable selection criterion," 

since it creates high contact stresses and may increase the bending stresses and the friction 

between the wires. It was postulated that the distribution of tensile stresses in a straight wire 

rope, within some limits, was uniform and equal to the average stress TIA. It was also believed 

that the contact stress was independent of wire diameter and proportional to the square root of the 

bearing pressure. Experimental measurements of contact stress were close to the analytical 

prediction, however, the range covered for determining B was limited and insufficient for design 

purposes. The preliminary study of Dmcker and Tachau motivated researchers to continue 



investigating the complexity of the analysis and design of wire rope, 

One of the earliest investigations on stress analysis in wires is the study of Hall (1951). In his 

paper, "Stresses in Small Wire Ropes," Hall disclosed that the necessity of calculating ultimate 

strength of cables used in aircrafts and control cables inspired him to investigate stresses in 

cables. He considered a wire rope made of several strands and each strand composed of wires as 

shown in figure 1.1. The strands and the wires were helically twisted around each other. Hall 

determined stresses on different parts of a wire rope by applying an axial load on the rope 

according to the following assumptions: 

the applied load was equally distributed amongst the strands and the wires in turn, 

there was neither friction nor bending in the wires and the strands, 

all strands and wires were tightly in contact with each other, such that only a static elongation 

of the rope would result from the loading. 

Tk helical wire 

Figure 1.1 Typical wire configuration in a strand 

However, many subsequent studies have revealed that these assumptions. are unrealistic. 

Considering the wire rope as a fully coupled cross section and distributing the load equally 

amongst its components means neglecting the essential characteristics of a wire rope. Applying 

his theoretical model, Hall predicted that stresses in the outer wires would be notably higher than 

those on the inner wires, and consequently, that the outer wires would likely break under the 

applied load before the inner wires. It is clear that the radial forces applied by the wires on the 

strands and by the strands on the core have significant effects on the stresses in wire rope. 

Tangential forces generated from the axial load create a torque that changes the geometry of the 

strands and affects the stresses. Nevertheless, Hall's preliminary study revealed the complexity 

of stress analysis of wire ropes. 



Six months after the release of Hall's article in Wire and Wire Products, Hruska (1951) published 

his paper titled "Calculation of Stresses in Wire Ropes" in the same journal. Hruska claimed that 

Hall made a "principle error" when he assumed that there was no fiction in the wire rope. 

Hruska stated that the elongation of all wires, under the axial load, was the same due to the great 

fiction between the wires. According to Hruska, an axial load on a wire rope produces three 

components of forces: axial tension force, radial force, and tangential force. His analysis of the 

axial tension showed that the core in a strand was always more stressed than the other wires, 

which is in contrast to Hall's prediction. He found that the stresses in the core, a,, and in outer 

wires a,, were related as 

where CY is the lay (helix) angle of the wires. 

Hmska (1952) published another article on the radial forces in wire ropes. He found that the 

radial forces increased with the lay angle, at the rate of tana sina, which yet had no effect on the 

axial forces. However, Hruska believed that the radial forces were important to consider when 

the core wire was worn or had a very small diameter, since in these situations, the strands which 

were not supported by the core would press each other. According to his analysis, the radial 

force F, per unit length of a wire under an axial load P can be found as 

where R is the radius of the cylinder on which the center lines of the wires lie (see Figure 1.2). 

Figure 1.2 Radial and tangential forces on a wire rope cross section 

Hmska (1953) also investigated tangential forces in wire ropes, and found that these tangential 

forces produced moments about the axis of the strand. He concluded that these tangential forces 



and the resulting moments would either cause rotation of the wires in free-ends boundary 

conditions, or be the moment reactions of the supports if they were fixed. The tangential force 

F, and the corresponding twisting moment M, were determined as 

FT = Psina  

M , = F T R .  

In the late 1950's, Leissa (1959), inspired by previous investigations on wire ropes, found that 

there was "no correlation between the fatigue life of a wire rope and either the direct tensile stress 

or the bending." However, there was a relation between the rope life and the contact pressure 

amongst wires. Leissa declared that the critical zones of stresses in a wire rope were the lines of 

contact along the core and the wire, and between two adjacent wires. He applied the "maximurn- 

shear-stress" (Mohr-Coulomb) and the "maximum-normal-stress" (Rankine) failure theories to 

derive the relation between the axial tension force and the contact forces. Leissa concluded that 

the failure of brittle materials could be predicted by Rankine's theory while Mohr-Coulomb's was 

appropriate for ductile materials. 

1.2 Stress analysis of helical wires 

One of the first detailed study carried out on helical wires is the work of Machida and Durelli 

(1973). They derived linear expressions to determine the axial load, bending and twisting 

moments of helical wires, and the axial force and torsion of a core subjected to axial and 

torsional displacements. They believed that the analysis of a wire rope made of strands could be 

considered analogously to that of helical wires in a strand. 

Machida and Durelli investigated three main static loadings, namely axial loading, torsion, and 

bending. Although they ignored the interwire contact deformation and Poisson's effect due to 

axial strain, they considered tensional loading and the combination of tensional and torsional 

loadings. According to their assumptions, two types of deformations could occur in a strand: a 

displacement in the axial direction, 6, and a rotation around the axis of the strand, A (see 

Figure 1.3). They categorized four types of loadings (axial force, bending, twisting and contact 

forces) associated with strains and stresses of the helical wire, and expressed all four types of 

loadings as a function of 6 and A. On the basis of this study, the axial force P, the bending 

moment M, and the twisting moment M, acting in a helical wire, and the resultant contact forces 

F, acting on the helical wire can be found from the following equations: 



PC =.P, =- P, 
P' P 

where; 

A, cross sectional area of a helical wire, 

E Young's modulus, 

I second moment of area of the cross section of a helical wire, 

J, polar moment of inertia of the cross section of a helical wire, 

G shear modulus, 

E axial strain of the strand, 

Y normalized rotation of one pitch length of the strand (y = N2n), 

P radius of curvature of the axis of helical wire, 

P' deformed radius of curvature of the axis of helical wire. 

Figure 1.3 Axial displacement and rotation of a helical wire 

Machida and Durelli also derived expressions for the external axial force and the torque of a 

strand made of six helical wires with a central core as follows: 



P=P, +6P,cosa1 

M, = M,? + 6 ( ~ :  cosa '  - Msina '  + PRsina') 

where superscripts c and h denote the core and the helical wire, respectively. The deformed helix 

angle a', can be found as 

and for small deformation a'-a. Eqs. (1 .lo) and (1.1 1) can be expressed in terms of E and y, as 

follows 

P = A & + B y  and M , = C & + D y  (1.13) 

where: 

A =  AcE+6A,Ecos3a 

B = 6A,Esin2 a c o s ' a  

3GJ, . 
C = 6A,ERsina cos' a - - 12EZ 

s1n4acosa-- cos2 a sin3 a (1.14a-d) 
2R R 

3GJ, . 12EI 2 x  
D = 6A,ERsinb + - s ~ n  4a cosa  + - cos2 as in3 a + - GJ, 

2R R P 

They also investigated different end conditions of supports; such as axial loading with 

unrestricted ends (no torque is applied to the strand M, = 0), torsional loading (no axial force is 

applied P = O),  and axial loading with restricted ends (A = 0 or y = 0). The results of a specific 

experimental analysis were presented to support their theoretical investigation. 

As it can be seen, Machida and Durelli presented a rational model which took into account 

different possible loadings and the corresponding stresses. However, the important effects of 

friction amongst the wires, Poisson's effect. and the contact pressure between the core and wires, 

which can change the geometry, were all neglected in their model. It is noted that in their 

experimental work, an oversized epoxy model was used where the effect of friction was actually 

minimal. Despite its limitations, their work remains an important contribution as most 

subsequent investigations on helical wires have been based on this study. 

Not long after Machida and Durelli. Phillips and Costello (1973) introduced a method to 

determine the stresses in twisted wire cables. with fewer limiting assumptions than previous 

researchers. They considered a cable as consisting of thin wires subjected to an axial force and a 

twisting moment with no friction between the wires. The general nonlinear equations for the 

bending and twisting of a thin rod subjected to line loads were solved using the six nonlinear 



equations of equilibrium for each wire. In the stress analysis, they neglected the radial force 

exerted by the core on the wires because the core was relatively soft. An exact solution was 

presented to evaluate all stresses (axial, bending, twisting, and contact) in the wire. Each single 

wire in a cable was assumed to be subjected to an external bending moment and the tension T 

was considered constant along the length. The resultant axial force P and twisting moment M, on 

the cable were determined by 

P = m(Tsinaf + Nb cosa') 

M, = m(Hsinar + Mb cosa' + TR'cosa' - NbR1sina') 

where 

m number of wires in cable, 

T internal tension in the wire, 

N, component of internal force resultant in b (binormal) direction (see Figure 1.4), 

M,, H components of internal moment resultant in b (binormal) and t (tangential) directions, 

respectively, 

R' final radius of a cylinder on which the center line of a helical wire lies, 

a' final angle between the tangent to the center line of a helical wire and the plane normal to 

the axis of the helix. 
h 

Figure 1.4. Normal (n), Binormal (b), and Tangential ( t)  directions at point in helical wire 

The contact angle P, (see Figure 1.5) which locates the line of action of the line contact loads, Q, 

on a wire due to its neighbors is given by 

Figure 1.5. Contact between two adjacent 
helical wires 



Phillips and Costello presented some numerical results for a few special cases. Given a' and T 

(obtained using a Newton-Raphson procedure to solve the nonlinear equations of equilibrium) 

the wire stresses can be calculated with equations (1.18 to 1.2l)(see Figure 1.6). The normal 

stress of the wire cross section due to direct tension was given by 

where r is the radius of the wire. The maximum bending stress o, and the maximum shearing 

stress T due to torsion were given by 

and 

respectively. The maximum compressive stress due to contact is 

in which Q is the contact force between two adjacent wires per unit length. 

Figure 1.6. Normal stress (o,), Bending stress (o,,), and Shearing stress (r) in wires 

This theoretical analysis is incomplete due to the neglect of frictional forces between the wires. 

The relative movements amongst the wires due to tension and twisting of the cable generate 

resisting forces that are closely related to the contact forces and stresses in the wires. Therefore, 

the friction forces can directly affect the stresses calculated by Phillips and Costello. On the 

other hand, if there is more than one layer of wires, which is a common situation, the friction and 

contact forces of wires with adjacent and lower wires, and also the friction between the wires and 

the core affect the stresses. The approach proposed by Phillips and Costello does not consider 



the case of many layers of wires with a hard core. However, their investigation was the first to 

account for the contact forces and their interaction with other forces. Their study was not 

supported with any experimental work, which might have revealed important aspects that were 

not taken into consideration. 

1.3 Advanced analytical and experimental studies of cables 

The response of wire rope strands to axial tensile loads was more recently investigated 

theoretically and experimentally by Uttings and Jones (1987). They performed a series of tests 

on straight single steel strands of a seven-wire cable (a core with six wires, see Figure 1.7) 

subjected to static axial loads with different end restraints. They were the first to present a 

mathematical model considering the change of helix angle under load, Poisson's effects in wires, 

the effects of friction and wire flattening at the contact surfaces. 

Section A-A 

Figure 1.7 Geometry of a seven-wire strand 

Moreover, Uttings and Jones conducted the first series of systematic experiments to determine 

the accuracy of their theoretical models, and to make comparison with previous theories 

presented by Machida and Durelli (1973). Phillips and Costello (1973), and Velinsky et al. 
(1984). Their experiments were carried out on a strand of 1.5 m length which was bent through 

360' circular arcs of about 25-40 mm diameter in order to achieve efficient gripping at the 

supports. Under these conditions, the load-elongation behavior was nonlinear. 



The resultant axial force and twisting moment were calculated using Eqs. (1.15) and (1.16) of the 

analysis by Phillips and Costello (1973), adding PC and M: to consider the contribution of the 

core, where 

P, = EA,& and MtC = EZcI$,/(l + v) (1.22) 

are the core tension and twisting moment, respectively. The axial strain of the strand is 

sina' 
c= (1+5)  (1.23) 

sina-1 
where 5 is the strain of helical wire axis, and the rotation per unit length I), is 

R(l+c) 1 -- (1.24) 
"=R'tana'  tana 

Neglecting wire flattening and Poisson's effects, the final helix radius R under all conditions of 

loading is 

R = (d, + dh)/2 (1.25) 

where d, and d,, are core wire and helical wire diameter respectively. Uttings and Jones 

considered some aspects of friction in their theoretical analyses, such as: Poisson's effect, zero 

friction between wires, friction with zero slip, and friction with some slip. They determined the 

helix radius of a strand under axial load (Eq. 1.26) considering Poisson's effect and the same 

modulus of elasticity for the core and helical wires. 

They took into account the wire flattening by imposing 6Q = f (Q) as a flattening effect on the 

wire radius. Therefore Eq. (1.26) becomes 

The wire flattening effect is determined empirically from experiments and considered as a 

function of Q, the contact force per unit length of helical wire. However, it is not clear how 

important the effect of contact force is on the reduction of the radius. 

End effects were neglected in the previous analyses by Machida and Durelli (1973), Phillips and 

Costello (1973), and Velinsky er a1.(1984). Uttings and Jones assumed that when there was no 

friction between the wires, any changes in the strand geometry occur over a transitional length 

L, at each end of the strand adjacent to the end grip. They postulated that when friction without 

slip was considered between wires, the frictional resistance from the core wire prevents some of 



the rotation and bending of the helical wires about their axis. Furthermore, the friction force 

between the helical wire and the core was considered by treating each wire as a thin rod after 

Phillips and Costello (1973), and Love (1944). 

A friction force per unit length of helical wire F; acts as shown in Figure 1.8 with components 

F',, and F',, which are tangential and parallel to the wire axis along the line of contact, 

respectively. The equal and opposite force acting on the core wire has two components F',,, and 

F C A  Considering the core wire as a helical wire with a = 90•‹, they calculated the total friction 

force on the core per unit length of core as 

where, 

F frictional force on the core per unit length of core with no slip between wires, 

PC,, frictional force on the core per unit length of core with no slip between wires in the 
direction parallel to the wire axis, 

F frictional force per unit length of core with no slip between wires in the direction 

tangential to the wire axis. 

Figure 1.8 Interwire friction with no slip-forces 

The frictional force acting on the helical wire per unit length is equal and opposite to the force 

acting on the core wire: 

where, 

F '  frictional force on the helical wire per unit length with no slip between wires, 

F',,, frictional force on the helical wire per unit length with no slip between wires in the 
direction parallel to the wire axis, 



F frictional force on the helical wire per unit length with no slip between wires in the 
direction tangential to the wire axis. 

By applying thin rod theory, Uttings and Jones calculated F',, and F',, as 

where 

A = sin a cosa(l/S2 - l/S, ) 

B = sin2 a/S, + cos2 a/S, + 1/6S4 

C = cos2 a/S, +sin2 a/S2 + 1/6S, 

and, 

M: twisting moment about the axis of a helical wire, 

S, torsional stiffness of the core wire, S, = El,/{r: sina(l+ v)} 

S, axial stifmess of the core wire, S, = EA,/sina 

S, bending stiffness of the helical wire, S, = El,/rh' 

S, torsional stiffhess of the helical wire. S, = EI,/{~~'(I + v)} 
L,  transitional length adjacent to strand termination. 

They also concluded that if the friction between the core and the helical wires was insufficient to 

resist rolling contact, slip would occur. Therefore, slip occurs when the force acting on the core 

per unit length of helical wire F:, is greater than the contact force Q per unit length of helical 

wire multiplied by the coefficient of static friction p between the core and the helical wires. 

Uttings and Jones have modified the expression of Q given by Phillips and Costello concerning 

the reduced bending moment and torque in the helical wires in the presence of the friction. It 

should be noted that the theoretical analyses presented by Uttings and Jones do not account for 

more than one layer of helical wires. Also. the behavior will be even more complex if the core 

and the helical wires in different layen have different moduli of elasticity. Moreover, the large 

displacements of the wires and the core are not considered. In both of the analyses by Phillips 

and Costello (1973) and Uttings and Jones (1987). the cable is considered short and straight 

which is not appropriate in transmission lines and stayed bridges applications where the catenary 

configuration of the cable and the large displacements of the wires have significant effects on 



cable stresses. 

Uttings and Jones (1987-Part II) also compared their theoretical predictions with experimental 

results. Their experiments revealed that a single strand subjected to an axial load can be 

extended up to 2.3% more if taking into account Poisson's effects, friction, and wire flattening at 

the contact surfaces. In addition, the strand extension was greater under a given load with less 

torsional restraint on the supports. Their analytical model overestimated the measured torque 

generated in a strand under axial load and the torque was larger in strands with smaller helix 

angles. According to the mathematical model of Uttings and Jones, slip does not occur between 

the wires in a strand under axial load, except possibly in the transitional lengths near the strand 

ends. They realized that plastic yielding occurs at the contact surfaces and the effective point of 

contact in each wire moves without slip in the direction of the friction force acting on the wire. 

Therefore, contact between the core and each helical wire is no longer along a line. In addition, 

slip cannot be predicted in the presence of wire flattening which increases the contact area. They 

concluded that "whereas friction and wire flattening have very little effect on estimates of the 

overall strand response, the deformation of individual wires can be significantly affected by the 

magnitude of friction and contact forces and the proximity of strand terminations." 

Raoof and Hobbs (1988) have proposed an analytical model for analysis of multi-layered 

structural strands. They presented several graphs to determine the intenvire and interlayer 

contact forces. Each layer of wires in a multi-layered strand was treated as a statically 

indeterminate orthotropic cylinder with an equivalent modulus of elasticity. The analysis 

assumed that the wires in each layer just touch each other when there is no axial load on the 

strand and that strand was fixed against rotation at its ends. They determined the radial rigid 

body motion of the wires which would occur due to the change in lay angle in the absence of the 

central core. The radial force calculated agreed with the force determined by Hall (Eq. 1.3). 

They calculated the contact angle, P (see Figure 1.5) between the adjacent wires as 

in which the changes in the lay angle and helix radius were ignored. A more exact method of 

calculating P was given by Costello and Phillips (1974) which is introduced in the next section 

(Eq. 1.71). In their work, Raoof and Hobbs implied that the intenvire slip would not occur with 

"a small enough range to mean ratio of axial loadings,". However, full-slip occurs in case of 



"large disturbances", hence, interwire friction forces were negligible compared to the change of 

the force in the wires. The modulus of elasticity for the full-slip and no-slip conditions was 

independent of the coefficient of friction p. They presented that the ratio of Eno-sliplEfull-slip is 

fairly constant for a practical range of mean axial load. The full-slip axial stiffness predictions 

were supported by experimental results on large diameter spiral strands with various diameters 

and lay angles of wire and strand. 

The analysis of friction and wear in a wire rope was given analytical attention by Le Claire 

(1989). He addressed this problem to provide an upper bound estimate of the mechanical power 

transmission losses in a wire rope bent over a sheave. He postulated that the wires in a strand 

have no tendency to slide relative to one another under an axial load and the cross section of the 

strand remains plane, though distorted; likewise, the outer wires do not slide relative to the center 

wire or adjacent outer wires. As the strand is bent, however, relative motion can occur. 

Analytical results revealed that a wire rope in which the outer wires contact only the center wire 

(or layer beneath) and have a smaller diameter than the center wire, experiences a smaller 

mechanical power loss due to friction at the points of contact. He concluded that the above 

results indicate that contact occurs between adjacent layers but not between wires or strands in 

the same layer. 

Le Claire (1991) also extended a linear theory for wire ropes that considered individual wire 

geometry and equilibrium including the effect of contact deformation between wires. After 

reviewing the approach of the axial response of a simple strand taken by Velinski et al. (1984) 

and Costello (1983), Le Claire extended the method to include the effect of contact deformation 

of a compliant layer. The cross section of a simple strand illustrated in Fig. 1.7 has a helix angle 

of a, measured from the perpendicular axis of the strand, and the helix radius, R = r ,+r , ,  which 

locates the helical wire centerline. The components of curvature K,,  K',, and twist (P,, can be 

determined from Eqs. (1.34-1.35). 

COS? a 
K * = O  and K ; = -  

R 

sin a cosa 
' P h  = 

The length h of the strand-and the length I of a helical wire are related as 

The ends of the helical wire of length h make an angle of 8 with the strand axis where 



Re = lcosa (1.37) 

Under axial load, both the helix angle and the helix radius change by small amounts 6 a  and 6r. 

The corresponding change in lengths h and I, using Eq. (1.36) is 

6h=61sina+lcosa6a (1.38) 

and the corresponding change of 0 given by Eq. (1.37) is 

The corresponding change in the components of curvature and twist are 

and 

2cosasina cos2 a 
~ K ~ = O  and 6K;=- 6 ~ i  - ---- 6R 

R R2 

cos2 a - sin2 a sin a cos a 
h h  = 6a  - 6R. R R2 

The axial strain of the strand and the helical wire are E = 6 M  and 5,=61/1 respectively. The 

Eqs. (1.38) and (1.40) relate these strains as 

6 a  
E = t h + -  

tan a 
The strand twist per unit length is ) = 60h, and Eqns. (1.36), (1.37), and (1.39) are combined to 

yield 

-- 6R 
60 - --) 

Rtana 

If the strand axial strain (E) and twist per length (4) are known , Eqns. (1.42) and (1.43) provide 

the helical wire axial strain (c,), the change in helix angle (ha), and the change in helix radius 

(6R). A third equation can be obtained by relating the change in helix radius to Poisson's effect 

in the wires as follows: 

where v is Poisson's ratio. By using Eqns. (1.42) to (1.45), c,, 6 a  and SR can be determined. 

Meanwhile, Eqs (1.40) and (1.41) are used to find 6Kh, 6 ~ , ,  and 67,. The bending moment 

components M:, M,h and torque M,h which result on a cross section of a helical wire in 

response to these changes are 



The shear force components N:, N:, the tension T,, and the external force components per unit 

length X,,, Y,, Z, maintain the helical wire in equilibrium, where 

T,, = n ~ ~ r i c ,  (1.48) 

sin a cos a cos2 a 
X, = N," 37 and Y,=O,Z,=O (1.49) 

R 
The strand axial force P and the twisting moment M, required for the specified value of strand 

axial strain and twist per unit length, are found by summing the response of the m helical wires 

and center wire, as follows: 

P = E , E X ~ :  + m(T,, sin a + N,h C O S ~ )  (1.50) 

Figure 1.9 shows the cross section of a wire rope with a compliant layer of thickness t,. 

Neglecting contact deformations, this layer also effects the change in helix radius by its Poisson 

contraction and Eq. (1.44) can be written as 

where V is the Poisson's ratio of the compliant layer. 

r* 
Figure 1.9 Cross section of a simple strand with compliant layer 

In order to consider the contribution of contact forces, Le Claire added a term proportional to the 

contact force per unit length between the helical wires and the compliant layer to Eq. (1.52) as 

follows: 



vhrhSh +SR = - E ( v ~ ~  + Vctc )+ Chhe (1.53) 

where C, is the contact compliance between the helical wires and the compliant layer, andf,, is 

the contact force exerted by the compliant layer on a helical wire. If the modulus of the 

compliant layer is significantly less than the wire modulus, the effect of contact deformation on 

the change of the helix radius will be significant. Adding another layer of helical wires to the 

simple strand cross section (see Figure 1 .lo) makes it a complex strand. 

r h  

Figure 1.10 Cross section of two-layer strand with two compliant layers 

Contact forces between wires result in deformations that reduce the helix radius of the wires in 

the strand and consequently reduce the equilibrium contact force per unit length and tension 

resulting in the wires. The deformations due to contact between wires of multilayered metallic 

strand are expected to be small, but should not be neglected. Moreover, multilayered cables used 

for signal transmission, often consist of several nonmetallic components and are subjected to 

unavoidable imposed strains. The deformations due to contact between the nonmetallic 

components may be significant and possibly beneficial due to the reduction in contact load and 

tension. 

Le Claire extrapolated the results of one and two layers to a multilayered strand. For a strand 

with layer i = 1,2, ..., n, where n is the number of layers, Eqs. 1.42, 1.43 and 1.53 become 

Sa,  E=S;+- 
tana, 

Sa,  - 



where ci, = tan-'[p,/2n(Ri - q)] and Ei = tan?[p,/2n(~,  + r, +ti)]. 

and Eqs. (1.40 and 1.41) and (1.45- 1.49) become 

Zcosa, sina cos2 a, 
6Ki = O , ~ K ;  = - &a, -- 6Ri 

R, R,? 

cos2 a, -sin2 a, sina,  cosa, 
69, = &a,  - 6R,. 

R, R: 

XE, R; ~ , h ,  = 0, and M:, = - 6~ 
4 

cos' a, sina,  cosa, ~ , h ,  = 0, and N:, = M:, - - 
R, 

M:i Ri 

sina,  cosa, COS' a, 
Xi = Nbh, - A ,  7 , y =0 ,  Z, = O  

R, 
Their results indicate that the presence of the compliant layer between wire layers reduces the 

tension experienced by the wires in the strand by at least one order of magnitude over the case in 

which the deformation is neglected or the compliant layer is absent. This effect is desirable in 

instrumental cables such as optical cables to preserve signal quality. Numerical results for three 

and ten-layer metallic strands indicate that neglecting contact deformations predicts greater wire 

tension and equilibrium contact force by 3% and 1 I% for the three and ten-layer strands, 

respectively. 

1.4 Coefficient of friction of wires 

Fee and Quist (1992) performed several tests to determine an effective coefficient of fiction for 



a cable pulled on top of an in-place cable (see Figure 1.1 1). They measured the cable pulling 

friction using a specially designed, multiple conduit bend apparatus. They considered that the 

coefficient of friction was dependent on conduit type, cable jacket type, lubricant presence and 

type, and normal pressure or sidewall pressure. They also developed a testing method to 

evaluate these parameters. All of the studies reported concerning the coefficient of friction 

indicate that the greater the normal forces between the cable and the conduit, the lower the 

effective coefficient of friction. The test was performed using a multi-bend apparatus in order to 

pull the cable through consecutive conduit bends, which produces rapidly increasing tension. 

The coefficient of friction was calculated by measuring the incoming and outgoing tensions, as 

Where 

p effective coefficient of friction, 

n number of bends, 

To,, measured pulling tension, 

T, measured incoming tension , 
W occupancy or weight empirical correction factor. 

Figure 1.11 Cable A on top of in-place cables B or C 

According to the experimental results, the coefficient of friction decreases as the incoming cable 

tension increases, in other words, as the sidewall pressure increases. Furthermore, the effective 

coefficient of friction for a nonlubricated cable was above 0.45, and it varied between 0.22 to 

0.08 for a lubricated cable. On the basis of experimental results the weight correction factor (W) 

in Eq. (1.65) was found as 

where d and d'are the diameter of the upper cable (A) and the lower cable (B or C) respectively. 

Fee and Quist suggested a further study to understand the influence of normal pressure on the 



effective coefficient of fiction. They also concluded that a coefficient of 0.5 is conservative in 

calculations involving lubricated cables. 

The effect of dry friction and interwire slippage in an axially loaded cable is addressed in the 

work of Huang and Vinogradov (1992). They defined the interwire fiction as a local 

displacement of the wire surface with respect to the core or other wires. The cable composed of 

a core and n wires wound around it in such a way that each wire, in the first row, interfaces two 

adjacent wires and the core along the helix. Since the pretension load was large compared to the 

oscillating load, the interwire fiction forces were determined by pretension load. They asserted 

that the interwire slippage could occur by the twisting and bending deformation of the wires. 

There were two types of contact between the wires: parallel contact between the wires of a same 

layer, and cross contact between the wires of different layers (see Figure 1.12). Huang and 

Vinogradov stated that, the distributed friction torque, mj is related to the contact force, F,, 
between the wires in different layers, as 

Figure 1.12 (a) Interwire contact and (b) Contact forces in cross touching 

In case of cross contact, F, was calculated from the equilibrium condition, as shown in Fig. 1 .lo, 

as 

where Pn is the interwire distributed forces in the normal direction and can be presented 

approximately, using Love's (1944) equation of equilibrium, 



in which F, is the axial component of the resultant force in a wire cross section and is found 

from the geometry of the developed helix (Vinogradov and Huang, 1991), 

and K,, is the cable axial rigidity in non slipping part which is equal to, 

For the parallel type of contact, the contact pressure is 

P, - p(EA),sin4a F, = -- - 
2sinp 2RK, cosp 

where p is the contact angle as evaluated by Costello and Phillips (1974), 

cosp = - 
1 - 1 

co'a / I +  tan2(E)sin2a tan2asin2(-)sin2a+ctan2(-) 
m rn m " [ m " I 

As expected, the contact forces are proportional to the axial load for both types of contact. 

Huang and Vinogradov (1994) also examined a cable as a system of helical wires and a core with 

distributed dry friction forces at the interfaces. In the analysis of the cable under a uniform 

bending moment, they found that there was a critical bending curvature when slip occurred 

between the wire and the core. They assumed small deformations theory and elastic material, 

and Poisson's effect in the wire was also neglected and only friction forces between the wires and 

the core were considered. The equations of a rod element derived by Love (1944) were used for 

the wires. Huang and Vinogradov claimed that slippage between wires was unlikely to occur 

when the bending deformation of the cable was small. This means that the interwire friction 

force is sufficient to hold the wires together and the cable behaves like a solid beam. In such a 

case, the corresponding bending rigidity was calculated as the sum of the second moments of 

area of all the individual wires of the cross section of the cable. They noted that with a large 

helix angle, the wires wound around the core had a nearly elliptical cross section. By increasing 



bending, the interwire traction force increases and when it is equal to or larger than the fiction 

force, slippage occurs. They concluded that with increasing bending, the slip spreads 

symmetrically kom the neutral plane over the entire area of the cross section of the cable. 

Huang and Vinogradov (1996) also studied the extension of the cable in the presence of dry 

friction. In the analysis of a cable under tension, they showed that slippage occurred due to the 

twisting and bending deformations of the cable. They asserted that due to the symmetry of the 

cable, neither the helical wire nor the core rotate at the middle section of the cable. However, far 

fiom the middle, as the twisting and bending stresses increase (due to increasing axial tension), 

the friction forces in the wire might be overcome, and slippage would take place. According to 

Huang and Vinogradov, two different slips occurred: a micro-slip and a macro-slip. The micro- 

slip occurred locally at the contact patch and the macro-slip took place along some length and 

was not uniform along the cable. The latter slip originated in the parts of the cable close to the 

ends and spread along some length towards the middle of the cable. They concluded that the 

elongation of the cable is nonlinear with the axial load, and that the energy dissipation due to dry 
fiction is proportional to the cube of the tensile load and in inverse proportion to the fiction 

forces, which is a typical characteristic of losses in dry fiction joints. 

Ura et al. (1991) have presented the friction properties of a wire rope for a cable puller when the 

rope is pulled. Experiments on three types of wire ropes revealed that a gripper with a curved 

surface created a large grasp force comparing to a flat gripper due to its greater contact surface. 

The coefficient of friction, which is here the ratio of pulling force to grasping force, had 

remarkable variations because of changing contact conditions. The results also showed that the 

radial displacements of the rope due to the compressive force of the gripper were much less than 

with the flat gripper. It was concluded that the real contact condition of the wire rope surface 

depends on the radial compressive load as well as the shape of the gripper. 



2 OPTICAL FIBERS 

2.1 Introduction 

Optical fibers are widely used in telecommunication network systems. The low-loss and high- 

bandwidth transmission characteristics of optical fibers make them ideal for transmitting voice, 

data and video images. An optical fiber is composed of two main parts: an inner cylinder of 

glass which is called the core and a cylindrical shell of glass or plastic of lower refractive index 

called the cladding (Cherin, 1983). The core is typically made of a high-silica-content or multi- 

component glass. The cladding of the fiber is also made of a high-silica-content, multi- 

component glass, or plastic. 

2.2 Mechanics of Optical Fibers 

The study of the mechanical behavior of optical fibers is a specialty of optical fibers engineering. 

The number of studies related to the mechanics of fiber optics is small compared to other areas 

such as materials and manufacturing, but the proper modelling of the mechanical behavior of 

optical fibers is important in order to design fibers of optimal mechanical and optical 

performance. Suhir (1993) showed that the nonlinear stress-strain relationship of optical fibers, 

which was obtained experimentally under uniaxial tension by Mallinder and Proctor (1964), 

Krause et al. (1979) and Glaesemann et al. (1988), is also valid for compression and bending 

deformations, provided that the axial strains are not exceeding 5%.. He considered the effect of 

the material nonlinearity of optical fibers on the stability of short bare fibers, and also examined 

free vibrations of fibers subjected to tension and bending deformations with large deflections. 

The stress-strain relationship in optical fibers subjected to uniaxial tension (+) or compression (-) 

can be described as 

where o and E are the stress and strain in the fiber, E, is the initial modulus of elasticity of the 

fiber (ie. in the region of very small strain, and q is the parameter of nonlinearity. For most 

optical fibers the Young's modulus is E, = 72 GPa and the nonlinearity parameter is q = 6 . 
Suhir evaluated the buckling critical stress, thermal stresses and strains, and maximum stresses 

due to compression. He also assessed the effect of stress-strain relationship on the critical 

(buckling) stress in infinitely long dual-coated fibers, and in very short bare fibers. He 

concluded that in dual-coated fibers, the nonlinear stress-strain relationship results in a 



significant reduction in the critical stress. Meanwhile, the strain corresponding to the critical 

stress was about 8% which was above the 5%. However, for a very short fiber, the material 

nonlinearity had a higher effect on the critical stresses and it should be considered. 

Suhir (1995) also investigated the short-term and long-term durability of optical fibers. The 

evaluation of the short- and long-term reliability of the fibers and the adhesive and cohesive 

strength of the coating materials is done by proof-testing. It has been found (Krause, J. T. 1988, 

not reviewed by the author) that the specimen for proof-testing for a finite coating compliance 

can be sufficiently long for the optical fiber to be loaded to the same intensity as in an infinitely 

long structure. 

2.3 Reliability of Optical Fibers 

Szentesi (1986) has discussed the reliability of optical fiber cables considering the design and the 

characteristics of cables. He implied that cable failures were dominated by uncontrollable factors 

and the mechanical reliability is very high for the intrinsic cable and splices. The three important 

characteristics of optical fibers were discussed, namely their strength, attenuation, and 

microbending, all of which may be affected by environmental conditions. The behavior of 

optical fibers under tensile loading is nearly elastic and its failure is brittle. According to 

Szentesi, the strength of optical fibers is determined by randomly distributed surface defects, 

mostly due to mechanically or chemically induced cracks or flaws. The fracture probability is a 

function of fiber stress, fiber length, and time of loading which is modeled as a Weibull 

distribution. Szentesi declared that the attenuation of the fibers increases at the longer 

wavelengths due to the diffusion of the hydrogen into the glass core in hydrogen atmospheres. 

For example, single-mode fibers which slow long-term loss increments at 1 310 nm are expected 

to remain less than 0.02 dBkm after 25 years at 20•‹C in one atmosphere of hydrogen (Pin and 

Marshall). The strength of an optical fiber is drast~cally affected by microbending, and fiber 

coating plays a dominant role in minimization of microbending. If a coating is deficient, 

degradation of microbending resistance or strength of the fiber is inevitable. 

2.4 Optical Fiber Cables 

Optical fiber cables are being used widely in communication networks. One possible structure of 

the optical fiber cables consists of several fiber optics inserted in a slotted rod, which is a load- 

carrying member located either at the core or around the optical fibers ribbons. A fiber ribbon 

consists of several coated optical fiben (see Fig. 2.1). Optical fiber ribbons are either tightly or 



loosely inserted into helically shaped rectangular slots. The looseness of the fibers is created by 

the extra length of the fibers in the helical slots relative to the length of the cable. The 

dimensions of the slots are larger than the diameter of the ribbons, allowing for the additional 

length of the ribbon. If the cable is subjected to axial tension, the initial looseness of the fibers 

will prevent any fiber elongation (and stress) until the cable extension becomes equal to the 

initial fiber overlength. 

Hatano et al. (1986) investigated theoretically and experimentally the structural design of a new 

type of cable assembly with several optical fibers tightly inserted into slots (Figure 2.1). They 

claimed that such a cable has many advantages such as compactness, high controlling of fiber 

strain and protection of fibers from lateral forces. The latter is achieved by freeing the movement 

of the ribbons along its axis when the cable is bent. 

Fiber ribbon 

Steel wire 

Figure 2.1 A typical cable with optical fibers 

The design of the coating and slot structures were optimized to minimize the tensile force on the 

fiber ribbons. Hatano er al. also took into consideration bending, twisting as well as residual 

strains in optical fibers during cable manufacturing and installation. They measured optical 

losses at each stage of the manufacturing process and after installation in the field. These 

measurements showed the excellent performance during manufacturing. Also, the measured 

optical losses after installation were satisfactory. 



3 GROUND WIRE WITH OPTICAL FIBERS (OPGW) 

3.1 Introduction 

Overhead ground wires with optical fibers (OPGW) are used widely in transmission lines. The 

primary function of the ground wire is to protect the line electrically against lightning, while 

optical fibers incorporated in the core of the cable serve a telecommunication purpose. 

Traditional ground wires are composed of helical galvanized steel strands. In recent years, the 

traditional ground wires have been replaced with ground wires carrying optical fibers which are 

protected inside the cable core. In most constructions, the fibers are designed to be stress free or 

to resist only low stresses under normal operation loads. 

The structure of optical fiber cables typically consists of several fiber optics arranged in ribbons 

or strands, which are either tightly or loosely inserted into helically shaped slots on an aluminum 

spacer. The relative looseness of the fibers is created by the extra length of the fibers compared 

to that of the cable. The large diameter of the slots with respect to the diameter of the fiber 

ribbons or strands allows for the additional length of the fibers, which is also referred to as 

excess length or overlength. Due to compatibility of strains and displacements, the optical fibers 

will not experience any elongation and stress until the overall cable extension equals the fiber 

overlength. 

3.2. Mechanics of an OPGW 

Russ et al. (1986) investigated the optical and mechanical characteristics of an OPGW. Several 

experiments were performed to assess the characteristics of the OPGW such as attenuation 

changes due to heat cycling at low and high temperatures, creep, tensional behavior, and 

performance in simulated short-circuit tests. The OPGW tested was composed of an optical fiber 

unit surrounded by an aluminum tube covered with one or more layers of aluminum clad steel 

strands (Figure 3.1). The fibers are tightened with a filling compound which restraints fiber 

movements, microbending, and local pressure against the fibers under various loads. Two 

typical constructions were tested, namely the loose tube construction and the tight tube 

construction. 



Aluminum Clad Win 

Aluminum Pipe 

Optical Fiber Unit 

Figure 3.1 Cross section of the OPGW tested by Russ et aL 

For the loose construction, Russ et al. verified that under the uniaxial tension test, no attenuation 

was generated when the cable extension remained below the initial fiber overlength. However, 

the attenuation increased drastically for extensions in the excess of the overlength because the 

fibers are then unrestrained. Conversely, no attenuation loss was measured in the tight 

construction before the cable failure. 

The only detailed three-dimensional finite element modeling study of an OPGW reported in the 

literature is the work of Abt et al. (1989), which was restricted to the study of a grooved 

aluminum spacer (slotted rod) as illustrated in Figure 3.2 and summarized below. The optical 

fiber unit was a loose-type and was composed of 600 optical fibers arranged in a ribbon structure. 

The forces and bending moments in the slotted rod of an optical fiber cable were determined 

using Love's equilibrium equations (1944). The deformations of the slotted rod subjected to 

forces and bending moments were derived using a three-dimensional finite element model. The 

results showed that for the particular cable studied, the deformations of the slotted rod were very 

small: it was concluded that for an extensional strain of 0.1% and a bending curvature of 111 100 

mm-1, the clearance between the fibers and the lateral wall of the slot was sufficient to meet the 

design criteria. It should be emphasized that this study was limited to an isolated slotted rod 

without considering the other components of the optical fiber cable, i.e. neither the external 

metallic envelope nor the optical fibers inserted in the slots. 

Slot md 

Figure 3.2 Cross section of aluminum spacer (slotted rod) adapted from Ab6 ef a1.(1989) 



3.3 Mechanical Reliability of OPGW 

Savadjiev and McComber (1995) have investigated the reliability of a typical loose construct 

OPGW used in cold climatic regions prone to atmospheric icing. As experienced in the recent 

eeezing rain storm in Eastern Canada, ice accretions can be sufficient to fail individual cable 

components (aluminum wire or optical fibers) or even the whole OPGW. A statistical approach 

was used for all random factors to determine the behavior of the real line cables. Using Monte 

Carlo statistical trials technique, they concluded that the optical fibers had a lower reliability than 

the metallic strands. They suggested that this reliability could be improved with a relatively 

small increase in the depth of the spacer helical groove. 

3.4 Detailed Study of the Mechanical Behavior of OPGW 

The complex cross section of an OPGW makes it difficult to understand its behavior under 

various types of loadings, and more sophisticated analysis than that presented in this review is 

necessary to advance knowledge in this field. Consequently, the author is currently conducting a 

detailed study of the mechanical behavior of an OPGW using state-of-the art finite element 

modeling (ADINA, 1997). The OPGW investigated is a loose type construction manufactured 

by Phillips-Fitel at its Rimouski plant and used widely by Hydro-Qukbec on its overhead 

transmission network (see Figure 3.3). The scope of the study is to model the mechanical 

behavior of the optical ground wire (OPGW) used in overhead transmission lines, in order to 

predict the stress state in the optical fibers and as a result, estimate the opto-mechanical 

reliability of the cable under various loads. 

Aluminum alloy wires 

Aluminum tube 

Optical fibers 

Aluminum spacer 

Aluminum Clad (20%) A iteel wires 

Qur; 3.3 Cross section of the OPGW used by Hydro-QuCbec 



It is noted that results of the numerical model will be verified using the results o f  mechanical 
tests carried out at Hydro-Qukbec's research facilities (High Power Laboratory and full-scale 
experimental line) in Varennes, Canada. 
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