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Abstract

The prediction of resonance in vibrating structures is a subject of importance in the őeld of

mechanical engineering and is useful for structural health as well as for estimating the capabilities of

vibrating structures. Modal analysis allows prediction of resonance by depicting of dynamics in the

frequency domain in the form of modes of vibration. While in linear systems, the notion of modes

of vibration is directly related to the principle of superposition, nonlinear dynamical systems lack

superposition and the notion of modes of vibration has been extended to nonlinear normal modes:

families of periodic motions of the dynamical system. Indeed, nonlinear normal modes correspond

to resonant frequencies and energies of the dynamical system similarly to mode-shapes and natural

frequencies in linear dynamics. This thesis focuses on the detection of nonlinear normal modes in

structures that are prone to unilateral contact.

Here, unilateral contact is described via the Signorini complementarity conditions which

exhibit a set of nonsmooth equations involving the displacement and stress of the structure at

the contact boundary. While numerical tools for nonlinear modal analysis are widely applied

for smooth nonlinear systems, determination of nonlinear modes in nonsmooth systems, such as

systems involving unilateral contact, is a challenging topic. Determination of periodic solutions in

nonsmooth systems requires both accurate numerical schemes to describe the motion of the system

and schemes to solve for periodic motions. In turn, detection of multiple periodic motions that

form a nonsmooth mode is done by continuation methods. This thesis describes both analytical and

numerical nonsmooth modal analysis of structures in unilateral contact. Analytical modal analysis

is performed for the cantilever bar of uniform area (internally resonant bar) prone to unilateral

contact. The nonsmooth modes are found by formulating the conditions for periodic motions

using the d’Alembert travelling-wave function. Analytical modal analysis in this approach results

in the discovery of nonsmooth modes composed of piecewise-smooth motions yet observed in

literature. Other than analytical nonsmooth modal analysis, numerical nonsmooth modal analysis

constitutes the dominant portion of this thesis. Since closed-form solutions are rarely available

for either one-dimensional or two-dimensional structures prone to contact, numerical methods

for nonsmooth modal analysis must be used. Existing numerical schemes to treat the unilateral

contact boundary conditions exhibit deőciencies such as: numerical chattering, energy dissipation,
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or non-physical penetration of the obstacle. For purposes of nonsmooth modal analysis, periodic

motions of structures in unilateral contact without numerical chattering or penetration of the obstacle

are sought. To this end, the nodal boundary method is conceived in this thesis. The nodal boundary

method treats the Signorini conditions by approximating the structure’s displacement using shape

functions that satisfy the Signorini complementarity conditions in a strong manner. Speciőcally,

different shape functions are used to describe the structure away from the obstacle (inactive contact

phase) and in contact with the obstacle (active contact phase). The switching method is then used to

determine the shape functions used and the contact phase(s) in any given instant of the motion. The

nodal boundary method results in motions that exhibit continuous contact phases (elimination of

numerical chattering) and allows for existence of periodic motions. The nodal boundary method is

applied to őnd periodic solutions of both the bar and the plate in unilateral contact. Speciőcally, this

thesis brings forth novel results such as the nonsmooth modal analysis of the varying-area bar and

nonsmooth two-dimensional plate.
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Abrégé

La détection d’instances de résonance dans des structures en vibration est un sujet d’importance en

génie mécanique. Elle est utile pour la santé structurelle des structures ainsi que pour prédire les

performances des structures sujettes aux vibrations. L’analyse modale permet de déterminer les

instances de résonance par investigation de la dynamique dans le domaine fréquentiel et des modes

de vibration. En dynamique linéaire, la notion des modes de vibration repose sur le principe de

superposition lequel ne tient pas pour les dynamiques non-linéaires. Pour les systèmes dynamiques

non-linéaires, la notion de modes de vibration est étendue aux modes de vibration non-linéaires:

familles de mouvements périodiques du système dynamique. En effet, ces variétés dans l’espace de

phase correspondent aux fréquences et aux énergies de résonance du système dynamique, de même

que les modes de vibration en dynamique linéaire. Cette thèse porte sur la détection des modes de

vibration non-linéaires dans les structures sujettes au contact unilatéral.

Ici, le contact unilatéral est décrit via les conditions de complémentarité de Signorini qui sont

composées des équations non-lisses entre le déplacement et la contrainte de la structure à la frontière

de contact. Alors que les outils numériques pour l’analyse modale non-linéaire ont été principalement

développés pour les systèmes non-linéaires lisses, la résolution des modes non-linéaires dans les

systèmes non-lisses, en particulier dans les systèmes impliquant un contact unilatéral, est un déő

académique. Le déő de l’analyse modale non-lisse (l’analyse modale non-linéaire des systèmes

non-lisse) des structures en contact unilatéral est double : (1) résolution des mouvements périodiques

et (2) continuation des modes non-lisses. La résolution de mouvements périodiques dans des

systèmes non-lisses nécessite des schémas numériques précis pour décrire le mouvement du système

et des schémas pour résoudre des mouvements périodiques entre tous les mouvements possibles.

Ensuite, les méthodes de continuation servent à la détection de plusieurs mouvements périodiques

qui forment un mode non-lisse.

Cette thèse décrit à la fois l’analyse modale non-lisse analytique et l’analyse modale numérique

des structures en contact unilatéral. Une analyse modale analytique est effectuée pour la barre en

porte-à-faux de section transversale uniforme (la barre avec résonance interne) en contact unilatéral

et mène à de nouveaux modes non-lisses non obtenus dans la littérature existante.

Outre l’analyse modale non-lisse analytique, l’analyse modale non-lisse numérique constitue
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la partie principale de cette thèse. Étant donné que les solutions de forme fermée sont rarement

disponibles pour les structures unidimensionnelles ou bidimensionnelles, des méthodes numériques

pour l’analyse modale non-lisse doivent être utilisées. Les schémas numériques existants pour

traiter les conditions aux limites de contact unilatéral présentent des lacunes telles que: le rebond de

contact numérique, la dissipation d’énergie ou la pénétration non physique de l’obstacle. Aőn de

réaliser l’analyse modale non-lisse, les mouvements périodiques des structures en contact unilatéral

sans rebond de contact numérique ni pénétration de l’obstacle sont recherchés. À cette őn, la

méthode de la frontière nodale est développée dans cette thèse. La méthode de la frontière nodale

traite les conditions de Signorini en approximant les mouvements à l’aide de fonctions qui satisfont

fortement les conditions de complémentarité de Signorini. Plus précisément, différentes fonctions

de forme sont utilisées pour décrire la structure éloignée de l’obstacle (phase de contact inactif) et

en contact avec l’obstacle (phase de contact actif). La méthode de commutation est ensuite utilisée

pour déterminer la (les) phase(s) de contact à un instant donné du mouvement. La méthode de la

frontière nodale génère des mouvements qui présentent des phases de contact continues (élimination

du rebond de contact numérique), et des mouvements périodiques peuvent être trouvés. La méthode

des limites nodales a été appliquée pour trouver des solutions périodiques de la barre et de la plaque

en contact unilatéral. Plus précisément, cette thèse apporte de nouveaux résultats tels que l’analyse

modale non-lisse de la barre à surface variable et de la plaque bidimensionnelle.
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Claims of Originality

This thesis explores the nonsmooth modal analysis of deformable structures that are prone to

unilateral contact with a rigid obstacle. Speciőcally, analytical nonsmooth modal analysis of the

internally resonant bar is done together with numerical nonsmooth modal analysis of various models

of the bar and the two-dimensional plate. In this context, the original contributions to knowledge of

nonsmooth modal analysis are as follows:

1. Analytical modal analysis of the bar is done via application of the method of steps and switching

on the d’Alembert solutions to the wave equation. Speciőcally, the cantilever bar prone to

unilateral contact is studied. The cantilever bar is a one dimensional deformable structure of

which internal motion is governed by the wave equation, Signorini complementarity conditions

on the contacting end and homogeneous Dirichlet conditions on the non-contacting end. The

motion of the bar away from contact can be described by the d’Alembert travelling wave

function which is used in this thesis to constitute a solution to the bar prone to contact. A

closed-form solution of the bar experiencing a single contact phase is obtained via the method

of steps together with switching method.

2. The formulation of the cantilever bar’s motion via d’Alembert functions and the method of

switching are used to form the equations for determining nonsmooth modes of the bar. Solution

of these equations then allows for deőning novel nonsmooth modes of the bar. Speciőcally,

new nonsmooth modes consisting of piecewise-smooth displacement őeld are discovered.

The results presented in this context complement current knowledge of the nonsmooth modal

space of the cantilever bar. Moreover, original conjectures on the nonsmooth modal space of

the cantilever bar are presented in this thesis.

3. A novel numerical method, the nodal boundary method, is presented in this thesis for the

nonsmooth modal analysis of structures under the framework of the őnite element method.

The nodal boundary method is based on the method of basis recombination and switching

method to treat the unilateral conditions in a strong manner. The basis recombination method

is used to deőne shape functions, based on the őnite element Lagrangian shape functions, that

answer the boundary conditions in free motion (inactive contact) and during contact (active

contact) to form an approximation of the deformable structure’s displacement őeld. The
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switching method is then used to determine the shape functions and the contact phase (either

active or inactive) in any given instant of the motion. The nodal boundary method applies to

both the bar and the plate in unilateral contact and is compared to other methods in FEM for

the treatment of Signorini complementarity conditions. Compared to other methods, the nodal

boundary method allows for the existence of periodic solutions together with elimination of

chattering and can be readily used for numerical modal analysis.

4. Nonsmooth modal analysis of the bar of varying area is performed in this thesis via the nodal

boundary method and shooting method. These nonsmooth modes are detected for different

models of the bar of varying area. The discovered nonsmooth modes őt closely to resonance

peaks in the forced response diagrams. Furthermore, nonsmooth modal analysis using the

nodal boundary method of the bar is performed for the internally resonant bar and bar with

soft support for comparisons with existing literature.

5. Nonsmooth modal analysis of the plate is performed via the nodal boundary method and

harmonic balance. New nonsmooth modes of the plate are presented including a dominantly

longitudinal mode involving mainly collision in the normal direction to the obstacle and a

transverse mode where the plate is vibrating mainly in the tangential direction to the rigid

obstacle.
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Nomenclature

Abbreviations

𝑘CPP 𝑘 (number) Contact Phases per Period (ie, 1CPP)

𝑘D 𝑘 (number) Dimensions

CN Crank-Nicolson (time marching scheme)

CPS Conditions for Periodic Solution (deőned in Section 3.2.1)

DGM Discontinuous Galerkin Method

FD-BEM Frequency Domain Boundary Element Method

FE Finite Element

FEM Finite Element Method

FEP Frequency Energy Plot

FVM Finite Volume Method

HBM Harmonic Balance Method

LCP Linear Complementarity Problem

MRM Mass Redistribution Method

NBM Nodal Boundary Method

NNM Nonlinear Normal Mode

NSM Nonsmooth Mode

ODE Ordinary Differential Equation

PDE Partial Differential Equation

SCC Sequential Continuation with Correction

TD-BEM Time Domain Boundary Element Method

WFEM Wave-Finite Element Method
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Operators

𝜕𝑥 First partial derivative in 𝑥

𝜕𝑥𝑥 Second partial derivative in 𝑥

¤◦ First deőnite derivative with respect to time

¥◦ Second deőnite derivative with respect to time

◦′ Deőnite derivative of mono-variable functions

∇ Del operator

◦⊤ Transpose of a matrix

min(◦, ◦) Minimum operator

max(◦, ◦) Maximum operator

: Frobenius inner product between two tensors

Symbols

A∗, d∗ Linear operator and non-homogeneous Dirichlet contribution for 2D-NBM

approximation

A𝑁 , A𝐷 , d Linear operator for 1D-NBM approximation of inactive and active contact

phases and non-homogeneous Dirichlet contribution

𝐴, 𝐴(𝑥) Cross-sectional area

𝐸, 𝐸 (𝑡) Energy

𝑒 Coefficient of restitution (Newton’s impact law)

𝑓 (𝑠), 𝑓0(𝑠), 𝑓𝑝 (𝑠) D’Alembert function, initial guess in d’Alembert form, and őnal state in period

in d’Alembert form

𝑔0 Initial gap distance

H Coefficients of harmonics in HBM

𝑘 Spring constant

𝐿 Length of bar

M𝑁 ,K𝑁 Mass and Stiffness matrices for active contact phase in 1D-NBM

M𝐷 ,K𝐷 , f𝐷 Mass, Stiffness and Force matrices for active contact phase in 1D-NBM

M∗,K∗, f∗ Mass, Stiffness and Force matrices for 2D-NBM approximation

𝑁 Number of discrete displacement variables

𝑁ℎ Number of harmonics in HBM

𝑁O Number of internal nodes

𝑁C Number of contact nodes

P(𝑥),P(x) Array of FE Lagrangian shape functions

p Contact conőguration

R(◦) Residual error function (in Chapter 3, denotes a linear operator)
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𝑆(◦) Switching Function (deőned in Equation (4.33))

𝑠 Parameter distinguishing periodic solutions (in Chapter 2), argument of

d’Alembert function (in Chapter 3)

𝑇 Period of motion

𝑡 Time coordinate

𝑡𝑠 Time of switch (NBM)

u(𝑡) Displacement of nodal quantities

u𝑜 (𝑡) Displacement of internal nodes

u𝑐 (𝑡) Displacement of contact nodes

𝑢(𝑥, 𝑡), u(x, 𝑡) Displacement őeld, one- and multi- dimensional

𝑣(𝑥, 𝑡), v(x, 𝑡) Velocity őeld, one- and multi- dimensional

v(𝑡) Velocity of nodal quantities, ¤u(𝑡)

𝑤,w Weight/test function(s)

𝑥, x Position coordinate(s)

𝑌 Young’s Modulus

ΓD, ΓN, ΓR, ΓC Dirichlet, Neumann, Robin and Unilateral contact boundaries

𝛾 Nitsche parameter

Δ𝑡 Constant step in variable 𝑡

𝛿𝑖 𝑗 Kronecker delta

𝜖 (◦), 𝝐 (◦) Strain function (scalar, tensor)

Θ Heaviside function

𝜃 Phase variable

𝜈 Poisson’s Ratio

𝜉 Damping coefficient

𝜌 Density

𝜎(◦),𝝈(◦) Stress function (scalar, tensor)

𝜎𝑛 Magnitude of normal component of stress or contact pressure

𝝈𝑡 Tangential component of boundary stress

𝜏 Duration of inactive contact

𝜙𝑖 (𝑥) FE Lagrangian shape functions

Ω, Γ, n Domain, domain boundary, and normal to domain boundary

𝜔 Radial Frequency

C𝑛 Space of continuous 𝑛 differentiable functions

Ĉ𝑛 Space of piecewise 𝑛 differentiable functions

Q Space of rational numbers

R,R+ Space of real and positive real numbers
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T (p) Conőguration phase of conőguration p

xiii



Contents

Dedication i

Acknowledgements ii

Abstract iv

Abrégé vi

Claims of Originality viii

Nomenclature x

1 Introduction 2

1.1 Scope of research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Organization of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature Review 6

2.1 Nonlinear modal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Nonlinear normal modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Approximation of periodic solutions to nonlinear ODEs . . . . . . . . . . 9

2.1.3 Continuation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.4 Root solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.5 Characteristics of nonlinear modal space . . . . . . . . . . . . . . . . . . 13

2.2 Nonsmooth modal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Linear elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Unilateral contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.3 Discontinuities in expected solutions . . . . . . . . . . . . . . . . . . . . . 20

2.3.4 Conservation of energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Enforcement of Signorini conditions . . . . . . . . . . . . . . . . . . . . . . . . . 21

xiv



2.4.1 Penalty methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 Weak Signorini boundary conditions . . . . . . . . . . . . . . . . . . . . . 23

2.4.3 Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Numerical methods for the Signorini problem . . . . . . . . . . . . . . . . . . . . 24

2.5.1 Finite volume strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.2 Boundary elements methods . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.3 Finite elements methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.4 Basis Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Exact Nonsmooth Modal Analysis of a Bar 31

3.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Phase condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.2 Important terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 D’Alembert solution to the Signorini problem . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Solution via the method of steps . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Non-smooth modal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Piecewise-linear mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.2 Piecewise-smooth mode(s) of the same period . . . . . . . . . . . . . . . . 46

3.3.3 Piecewise-monotonic mode . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.4 Applications to non-smooth modal analysis . . . . . . . . . . . . . . . . . 54

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Nodal Boundary Method in One Dimension 60

4.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Finite element formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Nodal boundary method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.1 Comment on application of NBM using other shape functions . . . . . . . 65

4.3.2 Inactive contact motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.3 Active contact motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.4 NBM-FEM formulation of Signorini problem . . . . . . . . . . . . . . . . 71

4.3.5 Energy conservation properties of solutions to NBM-ODE . . . . . . . . . 73

4.3.6 Notes on the NBM-FEM formulation . . . . . . . . . . . . . . . . . . . . 76

4.4 Nonsmooth modal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.1 Crank-Nicolson and shooting method in NBM . . . . . . . . . . . . . . . 77

4.4.2 Error estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.3 Sequential continuation with correction . . . . . . . . . . . . . . . . . . . 79

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

xv



4.5.1 Convergence of Crank-Nicolson and NBM . . . . . . . . . . . . . . . . . 81

4.5.2 Comparison of NBM with other numerical techniques . . . . . . . . . . . 84

4.5.3 Nonsmooth modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6 Limitations of NBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Nodal Boundary Method in Two Dimensions 95

5.1 Signorini problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Nodal Boundary Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2.1 Analogy between the 1D and 2D NBM . . . . . . . . . . . . . . . . . . . 99

5.3 Switching algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3.1 Step 1: Obtain u𝑐 (𝑡𝑖) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3.2 Step 2: Construct A∗ and d∗ . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4 NBM-ODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5 Comparative analysis of 2D NBM . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.5.1 Comparison of numerical schemes . . . . . . . . . . . . . . . . . . . . . . 112

5.5.2 Convergence of FEM based schemes . . . . . . . . . . . . . . . . . . . . . 114

5.6 Detection of NSM via HBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.6.1 Convergence of HBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.7 Nonsmooth modal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.7.1 Forced-response curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.7.2 Longitudinal NSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.7.3 Transverse NSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.8 Scope and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6 Conclusion 131

6.1 Summary of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.2 Possible future avenues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.2.1 Exact nonsmooth modal analysis using d’Alembert functions . . . . . . . . 133

6.2.2 Nodal boundary method . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.2.3 Numerical nonsmooth modal analysis . . . . . . . . . . . . . . . . . . . . 135

6.3 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A Proofs of propositions on 1CPP motions of the bar 146

A.1 Proof of Proposition 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.2 Proof of Proposition 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

xvi



A.3 Proof of Proposition 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.4 Proof of Proposition 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

B Proofs and supplementary material on the 1D-NBM 152

B.1 Proof of 𝜙′
𝑁
(1) > 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

B.2 Neumann conditions in NBM and classical FEM . . . . . . . . . . . . . . . . . . 153

B.2.1 Classical FEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

B.2.2 NBM treatment of the weak formulation . . . . . . . . . . . . . . . . . . . 154

B.3 Proof of invertible M𝑁 and M𝐷 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

B.4 Uniqueness of non-grazing solutions to NBM-ODE . . . . . . . . . . . . . . . . . 156

B.5 Semismooth-Newton and Crank-Nicolson schemes in NBM . . . . . . . . . . . . . 158

B.6 Proofs related to energy behaviour in NBM . . . . . . . . . . . . . . . . . . . . . 160

B.6.1 Conservation of energy away from instants of switch . . . . . . . . . . . . 160

B.6.2 Derivation of energy jump at switch . . . . . . . . . . . . . . . . . . . . . 161

C Proofs and supplementary material on the 2D-NBM 163

C.1 NBM approximation of contact forces . . . . . . . . . . . . . . . . . . . . . . . . 163

C.2 Time-derivative of LC(C, 𝑞(𝑡)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

C.2.1 ¤z(𝑡) away from instant of switch . . . . . . . . . . . . . . . . . . . . . . . 165

C.2.2 ¤z(𝑡) at instant of switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

C.3 Proof of piecewise-constant energy . . . . . . . . . . . . . . . . . . . . . . . . . . 168

C.4 Motions of longitudinal NSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

C.5 Motions of transversal NSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

C.6 Linear modes of the investigated plate . . . . . . . . . . . . . . . . . . . . . . . . 171

xvii



List of Figures

2.1 Nonlinear mass-spring system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Portion of NNMs in phase-space . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Sequential and pseudo-arclength continuations . . . . . . . . . . . . . . . . . . . . 12

2.4 Backbone, and forced-response, and subharmonic curves . . . . . . . . . . . . . . 14

2.5 Plate prone to unilateral contact with a rigid obstacle . . . . . . . . . . . . . . . . 16

2.6 Active and inactive contact phases of the Signorini condition. . . . . . . . . . . . . 19

2.7 penalty force: plot and physical illustration. . . . . . . . . . . . . . . . . . . . . . 22

3.1 Unilaterally constrained cantilever bar. . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Example of a 1CPP motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 A 1CPP motion and corresponding d’Alembert function . . . . . . . . . . . . . . . 36

3.4 Extension of d’Alembert function due to inactive contact conditions . . . . . . . . 39

3.5 Extension of the d’Alembert function due to active contact conditions . . . . . . . 40

3.6 NSM found in existing literature . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7 Periodic motions belonging to NSM2 . . . . . . . . . . . . . . . . . . . . . . . . 49

3.8 FEP of backbone curves pertaining to NSM3 . . . . . . . . . . . . . . . . . . . . 55

3.9 Selected NSM3 solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.10 Selected solutions from the continuum of solutions of same energy and frequency . 58

4.1 Bar of varying area prone to unilateral contact with a rigid wall. . . . . . . . . . . 61

4.2 Switching function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 NBM periodic solution for the varying area bar of 10 elements and quadratic

Lagrangian shape functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Sequential continuation with correction . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 Periodic displacement őeld corresponding to Figure 4.4 . . . . . . . . . . . . . . . 82

4.6 NBM solution for 100 elements and quadratic shape functions . . . . . . . . . . . 82

4.7 Error plots for the NBM with CN algorithm solution of a nonsmooth motion of the

cantilever bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

xviii



4.8 Comparison of rates of convergence of FEM treatments to the Signorini problem . 84

4.9 Agreement in forced-response diagram . . . . . . . . . . . . . . . . . . . . . . . . 86

4.10 NSM of the internally resonant bar detected by the NBM . . . . . . . . . . . . . . 87

4.11 NSM of the bar with soft support . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.12 Backbone and forced response curves of varying area bars . . . . . . . . . . . . . 90

4.13 Backbone curves of different area cantilever bars . . . . . . . . . . . . . . . . . . 91

4.14 Comparison of NBM motions from NSMs of varying-area bars . . . . . . . . . . . 92

5.1 A plate in unilateral contact with rigid obstacle . . . . . . . . . . . . . . . . . . . 96

5.2 Contact conőgurations for a model of two contact nodes . . . . . . . . . . . . . . . 100

5.3 Switching algorithm for the 2D-NBM and 1D-NBM. . . . . . . . . . . . . . . . . 101

5.4 Steps for the switching algorithm in 2D-NBM . . . . . . . . . . . . . . . . . . . . 103

5.5 Possible contact conőgurations after a switch . . . . . . . . . . . . . . . . . . . . 106

5.6 Investigated plate deőned in Deőnition 5.5 . . . . . . . . . . . . . . . . . . . . . . 111

5.7 Snapshots of for the NBM solution to investigated plate . . . . . . . . . . . . . . . 113

5.8 Contact node motion for various Signorini FEM solvers . . . . . . . . . . . . . . . 113

5.9 Energy of various Signorini FEM solvers . . . . . . . . . . . . . . . . . . . . . . 114

5.10 Approximation error for a őxed number of contact nodes . . . . . . . . . . . . . . 115

5.11 Convergence of HBM-NBM for the investigated plate . . . . . . . . . . . . . . . . 118

5.12 Instances of a HBM-NBM plate motion . . . . . . . . . . . . . . . . . . . . . . . 118

5.13 Comparison of HBM and CN solutions to the NBM-ODE . . . . . . . . . . . . . . 119

5.14 Agreement in forced-response diagrams obtained from different FEM schemes . . . 121

5.15 FEP of Longitudinal NSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.16 Linear mode participation in Longitudinal NSM . . . . . . . . . . . . . . . . . . . 122

5.17 Longitudinal NSM against forced response curves . . . . . . . . . . . . . . . . . . 123

5.18 Instances of a Longitudinal NSM motion . . . . . . . . . . . . . . . . . . . . . . . 124

5.19 Motion of contact boundary for a longitudinal NSM motion . . . . . . . . . . . . . 124

5.20 FEP of transverse NSM and linear mode participation . . . . . . . . . . . . . . . . 125

5.21 Transverse NSM against forced response curves . . . . . . . . . . . . . . . . . . . 126

5.22 Instances of a Transverse NSM motion . . . . . . . . . . . . . . . . . . . . . . . . 126

5.23 Motion of contact boundary for a transverse NSM motion . . . . . . . . . . . . . . 127

C.1 Longitudinal NSM solution at 𝜔 ≈ 1.99 and 𝐸 ≈ 1.1 × 10−3 marked in red

in Figure C.1(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

C.2 Longitudinal NSM solution at 𝜔 ≈ 2.02 and 𝐸 ≈ 2.1 × 10−3 marked in red

in Figure C.2(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

xix



C.3 Longitudinal NSM solution at 𝜔 ≈ 2.03 and 𝐸 ≈ 3.2 × 10−3 marked in red

in Figure C.3(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

C.4 Transversal NSM solution at𝜔 ≈ 1.9 and 𝐸 ≈ 1.2×10−3 marked in red in Figure C.4(a)170

C.5 Transversal NSM solution at 𝜔 ≈ 1.92 and 𝐸 ≈ 2.7 × 10−3 marked in red in Fig-

ure C.5(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

C.6 Transversal NSM solution at 𝜔 ≈ 1.93 and 𝐸 ≈ 4.7 × 10−3 marked in red in Fig-

ure C.6(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

C.7 Linear modes of investigated plate . . . . . . . . . . . . . . . . . . . . . . . . . . 172

xx



List of Tables

4.1 Comparison of desired properties of different FEM treatments to the Signorini

problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

1



Chapter 1

Introduction

In the őeld of structural dynamics, modal analysis is a tool that allows to predict incidences

of resonance in structures subject to oscillatory forces. Modal analysis techniques depend on

the governing equations describing the structure. For example, eigen-decomposition or Fourier

transform can be used for modal analysis in structures governed by linear differential equations.

However, most of the mechanical systems in the őeld of engineering, particularly in structural

dynamics, are governed by nonlinear laws and cannot be analyzed via linear modal analysis unless

their governing equations are linearized. Although, linearization of nonlinear systems is often not

preferred since it annihilates important phenomena existing strictly in nonlinear settings such as:

subharmonics, hysteresis, and dependence of resonant frequencies on energy [29, 39, 45, 58, 61].

For nonlinear system, the notion of modes of vibration has been extended in the form of nonlinear

normal modes (NNMs) [70,75,76]. These NNMs consist of families of periodic solutions to the

autonomous system, and they were shown to correspond to occurrences of resonance [38,39,45,84].

Similarly to eigen-modes in linear modal analysis, NNMs of a system exhibit similar behaviours to

the forced and damped system during resonance and, more importantly, the energies and frequencies

of nonlinear modes correspond closely to frequencies of and energies at resonance. Thus, nonlinear

modal analysis entails the detection of NNMs and periodic solutions composing them.

In this thesis, the nonlinear modal analysis of deformable structures prone to unilateral contact

is of interest. Modeling unilateral contact mathematically requires implementation of nonsmooth

complementarity conditions on the displacement and stress at the contacting boundary of the

structure [16, 46, 95, 96]. Thus, the nonlinearity exhibited by structures in unilateral contact is

nonsmooth. In this manuscript, modal analysis on nonsmooth systems is referred to as nonsmooth

modal analysis as opposed to conventional nonlinear modal analysis which prevalently deals with

smooth nonlinearities [84]. Nonsmooth modal analysis is useful for systems where vibrations and

contact mechanics are detrimental to structural health and performance. For example, vibrations

prone to unilateral contact are common in drilling systems and different applications in mining
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engineering [36, 62], or vibrating structures in loose supports [63, 94]. Another prominent example

is the blades of jet engines which are prone to vibration and to contact with casing due to small

clearances [9, 99].

Thus, the primary objective of this thesis is to accurately depict periodic solutions of systems

prone to unilateral contact in order to detect nonsmooth modes (NSMs). The main challenge in

determining periodic solutions to such systems lies in resolving the nonsmooth contact dynamics in

an accurate manner. Speciőcally, solutions to governing equations involving unilateral contact require

application of numerical schemes since closed-form solutions exist only for selected cases [46,84,97].

The solution of structural dynamics involving unilateral contact conditions presents two tasks: the

solution of the PDEs governing the elastodynamics and the nonsmooth problem of contact involving

the displacements and forces at the contact boundary. While methods for the solution of PDEs in

elastodynamics are common, the solution to the nonsmooth contact conditions sets a signiőcant

academic challenge. To solve for the unilateral contact boundary condition, there exist various

methodologies. However, most are not őtted for nonsmooth modal analysis and each methodology

exhibits different drawbacks in determining accurate periodic solutions of the nonsmooth system.

Main drawbacks of these methodologies include: energy dissipation annihilating periodic solutions,

non-physical chattering, and non-physical penetration of obstacles [19,24,97]. These drawbacks are

not attractive for nonsmooth modal analysis schemes since they do not allow detection of accurate

periodic solution. Hence, the main subject of this thesis lies in constructing a numerical treatment

for unilateral contact conditions that is suitable for nonsmooth modal analysis.

A novel numerical treatment of unilateral contact suitable for nonsmooth modal analysis is

proposed in this thesis and is named the nodal boundary method (NBM). The NBM is developed under

the framework of őnite elements (FEs) and by adapting the method of basis recombination [14, 58]

to the Signorini problem. Speciőcally, the nodal boundary method uses sets of basis functions that

are tailored to answer the unilateral boundary conditions. The NBM has been conceived primarily

to allow for determination of periodic solutions that do not exhibit non-physical chattering nor

penetrability of the obstacle. In this thesis, it will be shown that the NBM allows for numerical

nonsmooth nodal analysis of a variety of deformable structures prone to unilateral contact.

1.1 Scope of research

In this thesis, nonsmooth modal analysis will be performed on an elastic solid prone to frictionless

contact with a rigid obstacle. The problem of frictionless contact between two solids is conventionally

named the Signorini problem [96]. The investigated structures will be limited to one and two

spatial dimensions. Nevertheless, the developed techniques for the nonsmooth modal analysis of

the two-dimensional structure can be extended to three dimensional models (this will be discussed
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1.2 Organization of thesis

further in this thesis). The Signorini problem does not include any nonlinearities in the internal

displacements (only displacements on the contact boundary are governed by nonsmooth laws) and

the deformable structure abides linear elasticity.

The objective of this manuscript is to perform nonsmooth modal analysis of one and two-

dimensional deformable structures. To perform this task, multiple achievements and breakthroughs

were obtained. These are described here to provide further context to the main objective of this

thesis: nonsmooth modal analysis of multi-dimensional deformable structures.

Analytical (exact) nonsmooth modal analysis of the cantilever bar The motion of the cantilever

bar enjoys closed-form solution in the form of d’Alembert function. In this thesis, the method

of steps is applied on the d’Alembert functions to obtain periodic solutions to the Signorini

problem. The solutions obtained here extend the known nonsmooth modal space of the bar

beyond current literature. In turn, the nonsmooth modal space of the bar is revealed to exhibit

interesting phenomena such as modal families of the same period and energy, and a highly

dense modal space. These őndings shed a new light on previous numerical őndings and allow

to foresee difficulties in numerical approaches to nonsmooth modal analysis. Speciőcally,

the results of exact nonsmooth modal analysis of the bar inŕuence the choice of numerical

techniques used for nonsmooth modal analysis in this thesis.

Nodal Boundary Method The NBM is developed for őnding periodic solutions of the Signorini

problem. A complete derivation of the method will be presented together with accompanying

theorems and convergence tests.

Nonsmooth Modal Analysis The NBM will be used to determine the non-smooth modes in various

cases of the Signorini problem. Furthermore, vibration proőles and resonant behaviours of

the structure will be presented and discussed. Speciőcally, novel results in this thesis include

the nonsmooth modal analysis of the varying area bar and the two-dimensional plate.

1.2 Organization of thesis

The thesis is divided into six chapters, including the current introduction chapter. In Chapter 2, a

literature review for existing methodologies and recent publications on the topic of the thesis will

take place. For example, the mathematical models of linear elasticity and unilateral contact will be

presented together with known methods for linear, nonlinear, and nonsmooth modal analysis. At

last, several numerical schemes for solution of the Signorini problem are presented together with

their limitations with respect to nonsmooth modal analysis.

Chapter 3 consists of exact nonsmooth modal analysis of the bar. Here, the d’Alembert method

together with the method of steps were used to determine the conditions for periodic solutions

consisting of one contact phase per period. These conditions were solved to obtain new NSMs of
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the cantilever bar.

Chapter 4 consists of application of the NBM on the one-dimensional bar. The NBM is developed

in the framework of continuous FE and consists of a novel treatment for the contact boundary

conditions. In this chapter, the NBM will be applied on the one-dimensional Signorini problem -

the bar in unilateral contact. The NBM is then used for nonsmooth modal analysis for the cantilever

bar, bar with soft support and varying area bar (all prone to unilateral contact).

Chapter 5 details the extension of the NBM to multidimensional Signorini problems. Furthermore,

nonsmooth modal analysis on the rectangular plate will be performed.

Chapter 6 includes then conclusions and discussions in regard to nonsmooth modal analysis via

NBM. In this chapter, future avenues for future research are proposed as well.
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Chapter 2

Literature Review

2.1 Nonlinear modal analysis

Nonlinear modal analysis is the extension of linear modal analysis to dynamical systems governed

by nonlinear governing equations. Similarly to its linear counterpart, nonlinear modal analysis

allows for the prediction of resonance behaviours and frequencies in dynamical systems. In this

section, the preliminary deőnition of NNMs is őrst presented. This deőnition provides the context

for nonlinear modal analysis via detection of periodic solutions. Next, numerical techniques for

nonlinear modal analysis will be presented. At last, phenomena and behaviours speciőc to nonlinear

dynamical systems will be discussed to emphasize the importance of nonlinear modal analysis.

It is important to note that nonlinear modal analysis and nonsmooth modal analysis are treated

as different types of analysis in this thesis. The reason to this terminology involves mainly the

extension of the numerical techniques used for nonlinear smooth systems to nonsmooth systems as

it will be further elaborated in Section 2.2.

2.1.1 Nonlinear normal modes

For nonlinear dynamical systems, linear modal analysis techniques involving eigen-decomposition

fail due to the lacking of the principle of superposition. Instead, in the domain of nonlinear

modal analysis, NNMs are used. NNMs are constructs that allow identiőcation of resonance

behaviour and frequencies similar to linear modes. Building from properties of linear normal

modes, Rosenberg deőned NNMs as synchronized periodic motions of the system [70]. Later

research by Shaw and Pierre have extended Rosenberg’s deőnition to autonomous motion taking

place on a two-dimensional invariant manifold in the system’s phase space tangent to the space of

linearized motions at the equilibrium point of the system [75, p. 3]. For autonomous motions, this

two-dimensional manifold consists of periodic solutions that are coincident to the plane of motions
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of the linearized system at its equilibrium point [39, 45, 75].

There exist analytical and numerical techniques to determine the NNMs. Analytical methods

rely on őnding expressions to describe the motion of a system that depend on a single degree of

freedom [70,75]. These analytical methods are generally applied to systems of low nonlinearity [70,

75]. On the other hand, a prominent approach to nonlinear modal analysis which has been widely

used in recent years is to trace NNMs via detection of periodic solutions numerically [39,45,64,84].

To describe this numerical approach for nonlinear modal analysis, a system consisting of two point

masses of displacements u(𝑡) : R→ R2 will be analyzed. The governing equations of the system

consist of inertial and potential forces where the potential forces may consist of linear and nonlinear

terms in the displacement only (where ¤◦ and ¥◦ represent the derivative and double derivative of ◦ in

time, respectively)

M¥u(𝑡) +Ku(𝑡) + fnl(u(𝑡)) = 0, (2.1)

where M and K are square 2 × 2 mass and stiffness matrices, respectively, and consist of constant

entries. The vector function fnl(u(𝑡)) : R→ R2 describes the nonlinear contributions of the potential

forces. Speciőcally, the system is described by the following quantities

M =

[
1 0

0 1

]
, K =

[
2 −1

−1 1

]
, fnl(u(𝑡)) =

(
0.1(𝑢1 − 𝑢2)

3

0.1(𝑢2 − 𝑢1)
3

)
(2.2)

and is illustrated in Figure 2.1.

Mass 1 Mass 2

𝑢1 (𝑡) 𝑢2 (𝑡)𝑥

Linear Spring Nonlinear Cubic Spring

Figure 2.1: Nonlinear mass-spring system identiőed by Equations (2.1) and (2.2).

Finding periodic solutions to the nonlinear systems of ODEs (2.1) (and by extension, its NNMs)

requires to solve for the initial conditions u0 and v0 and period 𝑇 such that

u(0) − u(𝑇) = 0, u(0) = u0,

¤u(0) − ¤u(𝑇) = 0, ¤u(0) = v0.
(2.3)

Since closed-form solutions of Equation (2.1) to formulate the quantities u(𝑇) and ¤u(𝑇) are not

easily found, numerical methods are used to approximate these quantities. In fact, the method for

numerical nonlinear modal analysis presented in this chapter rely on numerical approximations

to Equation (2.1) that satisfy the periodicity conditions (2.3).
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The solution to Equations (2.1) and (2.3) consists of several two-dimensional manifolds. These

two-dimensional manifolds constitute the nonlinear normal modes of the system [39, 75]. In what

follows, a speciőc solution manifold of Equations (2.1) and (2.3) will be analyzed in order to

illustrate different notions in nonlinear modal analysis.

A solution manifold of Equations (2.1) and (2.3) can be parametrized as follows: u0(𝜃, 𝑠),

v0(𝜃, 𝑠), 𝑇 (𝜃, 𝑠) where 𝜃 denotes the phase variable of a given periodic motion while 𝑠 is a dummy

parameter distinguishing periodic solutions in the phase space. A space of solutions to the ODE (2.1)

(subject to Equation (2.2)) and periodicity equations (2.3) are presented in Figure 2.2.

(a) Invariant manifold in 𝑢1, 𝑣1 and 𝑢2 (b) Invariant manifold in 𝑢1, 𝑣1 and 𝑣2

Figure 2.2: Portion of NNMs of the system identiőed by (2.1) and (2.2). The surfaces represent the space of
solution to (2.3). The black curves represent solution curves for varying 𝑠 and constant phase 𝜃 = 0 (u0(0, 𝑠)
and v0(0, 𝑠)). The red curves represent solution curves for varying 𝜃 and constant dummy variable 𝑠 = 𝑠0

(u0(𝜃, 𝑠0) and v0(𝜃, 𝑠0)). Every set of initial conditions on the black curve represents a distinct periodic
solution, and initial conditions on the red curve depict different phases of the same periodic solution. In
nonlinear modal analysis, it is of interest to detect distinct periodic solution within the two-dimensional
manifold. This is equivalent to detecting the black curve in this őgure.

In fact, Figure 2.2 shows a couple of three-dimensional perspectives of the two-dimensional

manifold that constitutes the NNM. In this manifold, the phase variable 𝜃 ∈ [0, 2𝜋] depicts different

states of u(𝑡) and v(𝑡) within a period (𝑡 ∈ [0, 𝑇]) of the periodic solution. Otherwise put, őxing

the parameter 𝑠 to some constant 𝑠0 (this corresponds to the red curve in Figure 2.2), u0(𝜃, 𝑠0)

depicts different phases of u(𝑡 = 𝜃𝑇/2𝜋) given a speciőc initial condition u0(0, 𝑠0) and v0(0, 𝑠0). In

contrast, varying the variable 𝑠 while őxing 𝜃 corresponds to depiction of a given phase of different

periodic solutions of the NNM (this corresponds to the black curve in Figure 2.2). To determine

a NNM, it is of interest to determine distinct periodic solutions in the phase-space. Therefore,

the phase 𝜃 is often őxed in numerical nonlinear modal analysis and the resulting curve of initial

conditions is of interest. In practice, detection of a curve consisting of initial conditions in the same

phase is accomplished by imposing a phase condition on the system of equations (2.3) [13, p. 156].
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The phase condition is a set of equations F(u(𝑡), v(𝑡)) = 0 of which root depicts a single phase

in any periodic solution. A common phase condition requires that all initial velocities are set to

zero [6, 29, 64]

¤u(0) = 0. (2.4)

Since this phase condition is widely used [29, 39, 64] for numerical nonlinear modal analysis, it

is found suitable for numerical modal analysis in this manuscript. A different phase condition is

used in the analytical modal analysis portion of this work in Chapter 3. There, the phase condition

restricts the initial state of a motion to occur at the transition from active to inactive contact phase

of motion (see Section 3.1.1). Other examples of phase conditions include: setting one of the

motion’s Fourier coefficients to zero [65, p. 797], or orthogonality of the motion with a known

periodic motion using a Poincaré orthogonality condition [13, p. 156]. Nevertheless, the phase

condition (2.4) is proven successful for the detection of periodic solutions in this thesis (as evident

in Chapters 4 and 5). It is important to note that the phase condition depicts only a certain state of

the motion. Therefore, it is possible that the chosen phase condition may lead to ignorance of other

solutions. Although, the manuscript is focused on techniques for nonsmooth modal analysis whereas

the all presented methodologies can accommodate other phase conditions. The numerical methods

presented involve two types of algorithms necessary for the detection of NNMs: approximation of

the nonlinear Equations (2.1), (2.3) and (2.4) (discussed in Section 2.1.2), and continuation of the

space of solutions (discussed in Section 2.1.3).

2.1.2 Approximation of periodic solutions to nonlinear ODEs

In this section, two methods to approximate the solution to the Equations (2.1), (2.3) and (2.4) will

be presented: the harmonic balance method and the shooting method.

Harmonic balance method

The harmonic balance method (HBM) assumes the approximation of the motion as a series of

periodic sine and cosine functions [37, 39, 41, 93]. Since solutions with zero initial-velocity (see

phase condition in Equation (2.4)) are targeted, it is sufficient to approximate the motion as a series

of 𝑁ℎ cosine functions

𝑢𝑖 (𝑡) ≈

𝑁ℎ∑︁
𝑗=1

H𝑖 𝑗 cos(( 𝑗 − 1)𝜔𝑡) ≡ 𝑢𝑁ℎ

𝑖
(H, 𝜔, 𝑡), 𝑖 = 1, . . . , 𝑁 (2.5)

where the unknown frequency is denoted 𝜔 ∈ R, the unknown harmonic coefficients are gathered in

H ∈ R𝑁×𝑁ℎ , and u𝑁ℎ (H, 𝜔, 𝑡) denotes the HBM approximation of u(𝑡). Furthermore, it is noted

that the periodicity conditions (2.3) are satisőed for any choice of 𝜔, H and 𝑁ℎ > 0 since the motion

9



2.1 Nonlinear modal analysis

is always periodic with 𝑇 = 2𝜋/𝜔. In the HBM, the approximation (2.5) is then plugged into the

ODE (2.1) to form a residual

R(H, 𝜔, 𝑡) = M¥u𝑁ℎ (H, 𝜔, 𝑡) +Ku𝑁ℎ (H, 𝜔, 𝑡) + fnl

(
u𝑁ℎ (H, 𝜔, 𝑡)

)
. (2.6)

To determine the appropriate 𝜔 and H for the solution to the ODE, the Galerkin method is used [68].

By the Galerkin method, the appropriate𝜔 and H are chosen such that the residual (2.6) is orthogonal

to the series of cosine functions used in the approximation. Otherwise put, the appropriate 𝜔 and H

are found by solving the system of equations

𝐹𝑖 (H, 𝜔) =

∫ 2𝜋/𝜔

0
cos((𝑖 − 1)𝜔𝑡)R(H, 𝜔, 𝑡)d𝑡 = 0, 𝑖 = 1, . . . , 𝑁ℎ. (2.7)

System (2.7) is ill-deőned with 𝑁 × 𝑁ℎ equations and 𝑁 × 𝑁ℎ + 1 variables. The solution set is a

curve (H(𝑠) and 𝜔(𝑠)) similar to the expectations from nonlinear modal analysis. In the Galerkin

method, convergence to the true solution (and true modal space) of the ODE (2.1) is expected as

𝑁ℎ →∞ [41, 68, 93].

Shooting method

The shooting method [7, 69] assumes that the states u(𝑇) and ¤u(𝑇), solutions to the ODE (2.1), can

be approximated as a function of the period and initial conditions

u(𝑇) ≈ U(u0, v0, 𝑇), ¤u(𝑇) ≈ V(u0, v0, 𝑇) (2.8)

where U and V represent the approximation resulting from a numerical solver. For example,

U and V may stand for the result after a őnite number of iterations in a given time-marching

technique [7, 69, 78]. Then, plugging the approximation (2.8) into the periodicity conditions (2.3)

admits

u0 − U(u0, v0, 𝑇) = 0 (2.9)

v0 − V(u0, v0, 𝑇) = 0. (2.10)

Next, the phase condition (2.4) implies v0 = 0 and is added to Equation (2.10) to admit the numerical

nonlinear modal analysis problem

F(u0, 𝑇) =

(
u0 − U(u0, 0, 𝑇)

V(u0, 0, 𝑇)

)
= 0 (2.11)

consisting of 𝑁 + 1 variables and 2 × 𝑁 equations. In practice, 𝑁 is greater than 1 which renders the

system of equations over-determined. Nevertheless, since NNMs are expected, the solution to the

system of equations (2.11) is expected to be a curve (u0(𝑠), 𝑇 (𝑠)) [13, 64].

Lastly, the accuracy of the shooting method depends on the accuracy of U(u0, 0, 𝑇) and
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V(u0, 0, 𝑇) in approximating the ODE (2.1). Speciőcally, the accuracy of the shooting method

depends on the size of the time-step used in generating U(u0, 0, 𝑇) and V(u0, 0, 𝑇) [78].

2.1.3 Continuation methods

Both the HBM and shooting methods result in a system of equations of the type F(q, 𝑇) = 0 where

q denotes all variables describing the state’s conőguration and is introduced to simplify the notation.

For example, in the HBM (see Equation (2.7)), q denotes the harmonic coefficients H, and 𝑇 is

related to 𝜔 as follows: 𝑇 = 2𝜋/𝜔. In the shooting method (see Equation (2.11)), q denotes the set

of initial conditions u𝑜. In turn, the solution to F(q, 𝑇) = 0 is expected to constitute a hyper-curve

q(𝑠) and 𝑇 (𝑠) depicting different periodic solutions of the expected NNM.

To determine the curve F(q(𝑠), 𝑇 (𝑠)) = 0, continuation methods are used. Continuation methods

determine the solution curve (q(𝑠), 𝑇 (𝑠)) by őnding distinct solutions of the curve F(q𝑖, 𝑇 𝑖) = 0

where the superscript 𝑖 enumerates the solutions detected in the NNM. To do so, continuation

methods often require an initial guess close to the curve, e.g. a known solution (q0, 𝑇0). Then, it is

assumed that the solution curve is continuous and that the next solution on curve (q1, 𝑇1) is found

in some proximity to the point (q0, 𝑇0). It is used iteratively to őnd the remainder of the (q𝑖, 𝑇 𝑖)

solutions in the NNM.

For nonlinear modal analysis, a sufficient initial guess is generally taken to be the linearized

periodic motion at low energies. The continuation method determines a sequence of distinct solutions

along this curve which, in turn, represent the NNM. Mathematically, the continuation methods

consist of complementing the system of equations F(q, 𝑇) = 0 with an additional continuation

equation F∗(q, 𝑇, q0, 𝑇0) = 0. The continuation equation is expected to restrict the space of solutions

of 𝐹 (q, 𝑇) from a curve (q(𝑠), 𝑇 (𝑠)) to a unique point: (q1, 𝑇1).

Sequential continuation

Given a solution (q0, 𝑇0), sequential continuation assumes that the next solution (q1, 𝑇1) is found

by tuning of a single variable [13, 64]. For our purposes, it is commonly assumed that there exist a

solution of a distinct period 𝑇1 = Δ𝑇 + 𝑇0 such that the continuation equation reads

F∗(𝑇,𝑇0) = 𝑇 − Δ𝑇 − 𝑇0
= 0 (2.12)

where Δ𝑇 is controlled by the user. The main weakness of sequential continuation is its ability to

detect solution curves parametrized in 𝑇 explicitly, i.e., q(𝑇) is described via an explicit function in

𝑇 . However, as will be seen later in this section, this assumption does not hold when (q(𝑠), 𝑇 (𝑠))

consists of an implicit curve. For such curves, the pseudo-arclength continuation is commonly used.

11
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Pseudo-arclength continuation

Pseudo-arclength continuation [4] assumes that the curve is at least once-differentiable (C1) such

and that a tangent to the curve at the initial point, denoted1
(
¤q0 ¤𝑇0

)
, is known [4, p. 9]. In practice,

the tangent to the curve can be estimated using educated guesses. In pseudo-arclength continuation,

the next solution to the curve is found along the perpendicular to the tangent at some őxed distance

Δ𝑠, as shown in Figure 2.3. This is accomplished through the equation

F∗(q, 𝑇, q0, 𝑇0) = ( ¤q0)⊤(q − q0) + ¤𝑇0(𝑇 − 𝑇0) + Δ𝑠 = 0. (2.13)

Then, (q1, 𝑇1) constitutes the solution to F(q, 𝑇) and Equation (2.13). Once (q1, 𝑇1) is found, the

new tangent ( ¤q1, ¤𝑇1) is determined by solving for the tangent to all hyper-surfaces F(q, 𝑇) and

F∗(q, 𝑇, q0, 𝑇0) at the point (q1, 𝑇1) [4, 93] (𝜕◦ denotes the partial derivative with respect to ◦)


𝜕qF(q1, 𝑇1) 𝜕𝑇F(q1, 𝑇1)

( ¤q0)⊤ ¤𝑇0


(
¤q1

¤T1

)
=

(
0

1

)
. (2.14)

Indeed, pseudo-arclength continuation assumes the parametrization of the curve using the arclength

𝑠 which participates implicitly in the formulation, and the quantity Δ𝑠 in Equation (2.13) controls

the step-size along the arclength of the curve. It is important to note that the pseudo-arclength

continuation is considered practical in continuing at turning points [4, 39, 72, 93]. Accordingly, the

pseudo-arclength continuation is successful in tracing implicit solution curves, see Figure 2.3.

𝑞

𝑇
𝐹 (𝑞(𝑠), 𝑇 (𝑠)) = 0

𝐹∗ (𝑞, 𝑇) = 0
Pseudo-arclength

Δ𝑇

Δ𝑠

( ¤𝑞(𝑠), ¤𝑇 (𝑠))

(𝑞0, 𝑇0)

𝐹∗ (𝑞, 𝑇) = 0
Sequential

Figure 2.3: Comparison of sequential and pseudo-arclength continuations. The line traced by pseudo-arclength
equation crosses the curve at the blue point while the line traced by the sequential continuation equation
does not. The pseudo-arclength continuation equation depends on the tangent to the curve and allows for the
continuation of implicit curves. In contrast, sequential continuation assumes a őxed direction for the curve
and therefore fails at turning points.

In nonlinear modal analysis, the solution curves are often expected to constitute implicit curves

1While the dot notation ¤◦ is reserved for differentiation in time, it is also used to denote a tangent to a curve for
consistency with the notation presented in [13, 93]
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and the pseudo-arclength method is commonly used for the detection of NNMs. This is discussed in

depth in Section 2.1.5.

2.1.4 Root solvers

Application of nonlinear modal analysis, in this manuscript, reduces to solving a system of equations

iteratively to determine periodic solutions to nonlinear ODEs. Speciőcally, detection of either

nonlinear or nonsmooth modes requires solving(
F(q, 𝑇)

F∗(q, 𝑇, q𝑖, 𝑇 𝑖)

)
= 0 (2.15)

where F(q, 𝑇) represents the numerical scheme for obtaining a periodic solution, and F∗(q, 𝑇, q𝑖, 𝑇 𝑖)

represents the continuation equation at step 𝑖. At each step 𝑖, it is assumed that the system of

equations (2.15) exhibits a unique solution [39, 64, 93]. To solve for the system of equations

numerically, MATLAB’s fsolve is used [55]. The fsolve algorithm consists of multiple gradient-

based root solvers. In this manuscript, two numerical schemes are used depending on whether the

system of equations is well-determined, such as the HBM equations, or over-determined such as the

shooting equations: (1) for the solution of well-determined systems of equations, fsolve uses a

trust-region-dogleg gradient-based optimization [66] (2) for over-determined systems of equations,

fsolve uses the Levenberg-Marquardt scheme which solves via the set of equations as a nonlinear

least squares problem [59]. The Jacobian for both methods can be either supplied by the user or

calculated by MATLAB via őnite differences [55].

The Jacobian matrix can be derived via analytical procedures or other numerical methods by

őnding the derivatives belonging to the equations approximating the ODE, 𝜕qF(q, 𝑇) and 𝜕𝑇F(q, 𝑇),

and the continuation equation 𝜕qF∗(q, 𝑇, q0, 𝑇0) and 𝜕𝑇F∗(q, 𝑇, q0, 𝑇0). While some of these

derivatives can be trivially found, some require additional work. For example, in the shooting

method, the value of 𝜕qF(q, 𝑇) is obtained via a time-marching approximation [64]. Meanwhile,

calculation of 𝜕qF(q, 𝑇) in the HBM requires knowledge of 𝜕u(𝑡)fnl(u(𝑡)), as can be seen from

Equations (2.6) and (2.7). Along the same line, deőnition of the Jacobian to either sequential or

pseudo-arclength continuation F∗ is a trivial task. For the sake of conciseness, no further explanation

on the derivation of these Jacobians will be given in this manuscript.

2.1.5 Characteristics of nonlinear modal space

In this section, the nonlinear mass-spring system identiőed by (2.2) is used to demonstrate particular

properties of NNMs with respect to linear modes. The results and őgures shown in this section were

obtained via the shooting method and pseudo-arclength continuation.
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Figure 2.4 shows the linear and NNMs on an energy-frequency plot (FEP). In the FEP, the

nonlinear (or linear) normal mode is represented as a continuum of frequencies and energies. These

frequencies and energies are those exhibited by the periodic motions composing the NNM. Each

point in this plot represents a periodic solution of speciőc mechanical energy (sum of potential and

kinetic energies) and period of motion. Moreover, Figure 2.4 allows comparison between linear

and NNMs. While linear modes of vibration exhibit the same frequency for any energy level, the

nonlinear modes of vibration exhibit a dependency between energy of oscillation and frequency

of oscillation. Indeed, this characteristic is speciőc to nonlinear systems and does not exist in

linear systems. Another difference between nonlinear and linear normal modes is the existence of

internal resonance. Internal resonance occurs in the proximity of 𝜔1 and can be seen in a form

of łtonguež in Figure 2.4. The internal resonance in a nonlinear systems can be described as the

coincidence of different NNMs. In Figure 2.4, the őrst mode of the nonlinear system (denoted

backbone 𝜔1) coincides with the third subharmonic of the second mode of the system (starting

from 𝜔2/3). To clarify, the two modes share an identical periodic motion that can be seen as both

belonging to the őrst nonlinear mode and to the third subharmonic of the second nonlinear mode. In

contrast, linear modes do not generally interact with one another and therefore internal resonances

occur for nonlinear systems exclusively. Numerically, internal resonances can be discovered via the

pseudo-arclength method which is, therefore, the more commonly used continuation method for

nonlinear modal analysis [39, 64, 72, 93].

1
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𝜉 = 0.07
LM 𝜔2
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Figure 2.4: Backbone, and forced-response, and subharmonic curves of the system investigated in Figure 2.1.
Forced response curves are formed by performing shooting and continuation to őnd periodic solutions of the
system in expression (2.16). LM stands for linear modes of vibration and and the values 𝜔1 ≈ 0.618 and
𝜔2 ≈ 1.618 where obtained from linear modal analysis of the linearized investigated system.

To demonstrate the relationship between the nonlinear modes and the forced response behaviour,

the forced response curves are sought. The forced response curves consist of periodic solutions of
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the forced and damped ODE corresponding to the investigated system identiőed by (2.2)

¥𝑢1(𝑡) + 𝜉 (C11 ¤𝑢1(𝑡) + C12 ¤𝑢2(𝑡)) + 2𝑢1(𝑡) − 𝑢2(𝑡) + 0.1(𝑢1(𝑡) − 𝑢2(𝑡))
3
= 0

¥𝑢2(𝑡) + 𝜉 (C12 ¤𝑢1(𝑡) + C22 ¤𝑢2(𝑡)) + ¤𝑢2(𝑡) − 𝑢1(𝑡) + 0.1(𝑢2(𝑡) − 𝑢1(𝑡))
3
= 2 cos(𝜔𝑡)

(2.16)

where 𝜉 denotes the damping coefficient and 𝜔 the forcing frequency. Furthermore, the values

C11 = 6.75, C12 = −1.80 and C22 = 4.95 were implemented in the explored results (these values

were chosen from aesthetic considerations only). The results for varying values of 𝜉 are presented

in Figure 2.4 in comparison to the backbone curves. In Figure 2.4, it can be seen that the curves

corresponding to normal modes lay directly at resonance peaks of the forced-response diagram,

similarly to linear modes of vibration. As such, the curves describing NNMs are often referred to

as backbone curves, and they entail the importance of nonlinear modal analysis. It is important

to note that the backbone curves were shown to intersect resonance points both analytically and

numerically for a large group of nonlinear systems [39,45,64,70,75,93]. Moreover, the internal

resonances also affect the shape of resonance curves as seen in the formation of a second peak in the

proximity of 𝜉 = 0.02 in the proximity of 𝜔1. It is important to note that intricate behaviours of

NNMs such as energy-frequency dependence and internal resonances are detrimental in vibration

analysis of nonlinear systems as the latter might feature vibratory resonances far from the natural

frequencies of the linearized system, and those vibratory resonances cannot be detected via linear

modal analysis [64, 75, 93].

2.2 Nonsmooth modal analysis

In this manuscript, the term nonsmooth modal analysis will be used to distinguish between the

modal analysis of smooth nonlinear systems and this of nonsmooth systems, such as those described

by the Signorini problem. It is noted the numerical methods investigated in Sections 2.1.2 and 2.1.3

for nonlinear modal analysis rely on the continuity and smoothness of the solutions to ODEs.

Meanwhile, nonsmooth modal analysis presents an academic challenge since methods for nonlinear

modal analysis do not readily apply for the detection of nonsmooth solutions. For example, the

model of mass-spring systems in unilateral contact treated via a fully elastic Newton impact law

requires multiple shooting for the detection of NSMs [83, 84]. Furthermore, the HBM method

cannot be applied in schemes involving Newton’s impact law due to the existence of impulse

forces [84]. However, the HBM can be used in other numerical treatments of the contact boundary

conditions [41, 74]. Although, the HBM assumes a smooth transient behaviour, contrary to the

actual nonsmooth motion, and is therefore often accompanied by the Gibbs phenomenon [41,51,74].

The detection of nonsmooth solutions is not the only challenge in nonsmooth modal analysis, but the

continuation of NSMs as well. For example, [5, 35, 84] depict NSMs that exist as piecewise-smooth
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n
𝑔0

𝑥1

𝑥2
ΓCΩΓD

ΓN

ΓN

Figure 2.5: Plate prone to unilateral contact with a rigid obstacle. This is the two-dimensional structure
explored in this thesis. The structure is always prone to unilateral contact with a rigid foundation situated a
distance 𝑔0 from the non-deformed boundary.

continuous curves on the FEP. Thus, methods which rely on the differentiability of the solution

curve, such as pseudo-arclength continuation, do not apply straightforwardly to nonsmooth systems.

On another note, in the case of mass spring systems involving an inelastic impact law, periodic

solutions were found to be isolated rather than to exist on continua [82]. Nevertheless, several

research works showed that the nonsmooth modal space coincides with resonance peaks in the

forced response diagram, similarly to modes in nonlinear smooth modes [84, 97]. Still, there

exist successful techniques for nonsmooth modal analysis. For example, in [97, 98], a brute-force

approach was taken to solve the shooting equations in order to detect periodic solutions, without the

use of continuation techniques. In [84], the shooting equations for the periodic solutions of discrete

mass-spring systems with elastic Newton’s impact law were solved by applying pseudo-arclength

continuation on smooth sections of the backbone curve. A similar detection of smooth continuous

sections of the NSMs is found in [35]. Furthermore, sequential continuation was proven successful

for the continuation of nonsmooth system in [51].

Thus, a signiőcant portion of this thesis deals in adapting nonlinear modal analysis techniques

(Section 2.1) to nonsmooth modal analysis.

2.3 Model description

For nonsmooth modal analysis of the Signorini problem, both one- and two-dimensional (𝑑 = 1, 2)

structures will be considered. The domain Ω ∈ R𝑑 describes the spatial conőguration of the

deformable structure. The position coordinates within the structure are denoted x ∈ Ω, and 𝑡 ∈ R+

is used to denote time. A displacement őeld denoted u(x, 𝑡) : Ω × R+ → R𝑑 characterizes the

deformations within the structure. The structures in this thesis are made of isotropic materials and

the two-dimensional structure consists of a thin-plate such that a plane-stress formulation can be

considered. An example of the plate in unilateral contact is presented in Figure 2.5.

In this manuscript, the rigid obstacle is described by a constant plane in 𝑥1 set at a distance

𝑔0 from the structure initially. Curved obstacles in the Cartesian space (i.e., a gap 𝑔0 variable

in space) are not explored in this thesis since it requires the implementation of contact detection
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algorithms [95, 96]. Indeed, these are beyond the scope of this research since the problem of

non-smooth modal analysis is proven to be of sufficient academic challenge.

The boundary Γ of the structure is subject to four kinds of boundary conditions. In what follows,

the vector quantity n denotes the unit outward normal to the boundary Γ. The boundary conditions

considered in this thesis are as follows:

Dirichlet (essential) boundary conditions on ΓD The displacement along this boundary is pre-

scribed.

Neumann (natural) boundary conditions on ΓN The stresses normal to this boundary

𝝈(u(x, 𝑡))n are prescribed.

Robin boundary conditions on ΓR in elastodynamics, the Robin conditions enforce a relationship

between the stress and displacement at the boundary and can be illustrated as a spring

foundation or soft support at the boundary.

Unilateral contact boundary conditions on ΓC These boundary conditions describe the unilateral

contact conditions and will be explained in Section 2.3.2.

Accordingly, these boundary conditions must deőne the whole boundary such that Γ = ΓD ∪ ΓN ∪

ΓR ∪ ΓC and the intersection between all types of boundaries is empty. In the next sections, the set

of governing equations is developed considering a linear elasticity approximation of the strains and

Signorini conditions for the unilateral boundary conditions.

2.3.1 Linear elasticity

The motion of the deformable structures is described via the theory of linear elasticity. Although this

theory is limited for small amplitude deformations, it is found sufficient to describe the mechanics and

dynamics of a large variety of mechanical systems involving unilateral contact [19,24,65,84,95,96,98].

To conform with this limitation on small amplitudes, relatively small gaps between the structure and

the rigid obstacle are considered in this study.

In this thesis, either the one- or two-dimensional formulations of linear elasticity are considered.

Primarily, the equations governing the dynamics of the structure are the stress equilibrium equations

𝜌𝜕𝑡𝑡u(x, 𝑡) − ∇ · 𝝈(u(x, 𝑡)) = 0 (2.17)

where 𝜌 stands for density, ∇ denotes the gradient operator in the spatial coordinates x. Next, the

stress within the deformable solid is denoted 𝝈(u(x, 𝑡)). At last, 𝜕𝑡𝑡 denotes partial differentiation

twice in time. In this manuscript, the symbol 𝜕𝑡 corresponds to partial differentiation in Leibniz

notation: 𝜕/𝜕𝑡.

The deőnition of the stress function changes according to the number of dimensions and model

of linear elasticity used. For the one-dimensional case 𝑑 = 1, the displacement őeld is a scalar
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function the stress in the bar reads

𝜎(𝑢(𝑥, 𝑡)) = 𝑌 𝐴(𝑥)𝜕𝑥𝑢(𝑥, 𝑡) (2.18)

where 𝑌 denotes Young’s modulus, and 𝐴(𝑥) > 0 denotes the cross-sectional area of the bar.

For the two-dimensional case 𝑑 = 2, the plane-stress formulation in linear elasticity are used to

deőne the internal stress and strains. Small deformations (| |∇u(x, 𝑡) | |2 ≪ 1) are assumed and, in

turn, the strain tensor for such displacement is represented as a linear operation on u, that is

𝝐 (u(x, 𝑡)) =
1

2
(∇u(x, 𝑡)⊤ + ∇u(x, 𝑡)). (2.19)

To simplify the formulation of the problem, isotropic materials are considered. Next, for the

two-dimensional case, the stress-strain relationship is presented via Voigt notation [34]. Speciőcally,

the plate-stress assumption of the stress-strain relationship
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is used, where 𝜎12(u(x, 𝑡)) = 𝜎21(u(x, 𝑡)) and 𝜖12(u(x, 𝑡)) = 𝜖21(u(x, 𝑡)); 𝜈 denotes Poisson’s ratio.

2.3.2 Unilateral contact

The problem of frictionless unilateral contact is treated using the Signorini conditions [96]. For

the remainder of this section, the Signorini conditions are presented under the framework of

multidimensional deformable mechanics except at points where the one-dimensional formulation is

signiőcantly different.

To describe unilateral contact, a gap function 𝑔(x, 𝑡) is introduced to describe the distance of the

deformable structure from the obstacle

𝑔(x, 𝑡) = 𝑔0 − u(x, 𝑡) · n ∀x ∈ ΓC (2.21)

where 𝑔0 represents the distance between the rigid obstacle when the deformable structure is not

deformed. Next, the contact pressure𝜎𝑛 quantiőes the repulsion the deformable structure experiences

at contact with the rigid obstacle. Mathematically, 𝜎𝑛 (u(x, 𝑡)) is deőned as the magnitude of the

normal component to the boundary stress 𝝈(u(x, 𝑡))n

𝝈(u(x, 𝑡))n = 𝜎𝑛 (u(x, 𝑡))n + 𝝈𝑡 , 𝜎𝑛 (x, 𝑡) = n⊤𝝈(u(x, 𝑡))n ∀x ∈ Γ (2.22)

where 𝝈𝑡 denotes the tangential component of the boundary stress. For frictionless unilateral contact,

the tangential component must vanish at all times 𝝈𝑡 = 0. The one-dimensional contact pressure is
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deőned as

𝜎𝑛 (𝑢(𝑥, 𝑡)) = 𝑛𝑌 𝐴(𝑥)𝜕𝑥𝑢(𝑥, 𝑡), 𝑥 ∈ ΓC (2.23)

where scalar 𝑛 = 1,−1 represents the direction of the outward pointing normal along 𝑥. Using the gap

function and the contact pressure, the Signorini conditions are presented as a set of complementarity

conditions

0 ≤ 𝑔(x, 𝑡) ⊥ 𝜎𝑛 (u(x, 𝑡)) ≤ 0, 𝝈𝑡 = 0 ∀x ∈ ΓC. (2.24)

The Signorini conditions (2.24) assume the existence of two phases of motion for each stencil x on

the boundary ΓC (also illustrated in Figure 2.6)

Inactive contact phase the structure is allowed to move freely as long as there is no contact with

the rigid obstacle. At this phase, homogeneous Neumann conditions 𝝈(u(x, 𝑡))n = 0 hold

while 0 ≤ 𝑔(x, 𝑡).

Active contact phase the structure must remain in contact with the obstacle as long as a repulsion

is exerted by obstacle on the moving structure such that 𝜎𝑛 (u(x, 𝑡)) ≤ 0. During this phase,

u(x, 𝑡) · n = 𝑔0 and 𝝈𝑡 = 0 hold to allow sliding in the tangential direction to the boundary

ΓC while contact with the obstacle is kept. In the one-dimensional case 𝑑 = 1, the active

contact phase is described by a non-homogeneous boundary condition of the type 𝑢(𝑥, 𝑡) = 𝑔0.

Throughout this phase, the structure must be repulsed such that 𝜎𝑛 (u(x, 𝑡)) ≤ 0.

For each stencil on the contact boundary x ∈ ΓC, these phases are mutually exclusive.

𝑔0

𝑥1

𝑥2

Inactive Contact Motion Active Contact Motion

Figure 2.6: Active and inactive contact phases of the Signorini condition.

Next, the term admissibility is introduced to denote a motion abiding the Signorini conditions.

Definition 2.1 (Admissibility). A motion or a state is said to be admissible if and only if it satisfies

the Signorini conditions (2.24). During inactive contact motion, the structure is allowed to move

freely in space and no force is applied on the boundary. During active contact motion, the structure

can move tangentially to the obstacle and is repulsed by the obstacle.

In this thesis, the standard Signorini problem consists then of a set of hyperbolic PDEs
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complemented with boundary conditions

𝜌𝜕𝑡𝑡u(x, 𝑡) − ∇ · 𝝈(u(x, 𝑡)) = 0 x ∈ Ω, 𝑡 ∈ R+

0 ≤ 𝑔(x, 𝑡) ⊥ 𝜎𝑛 (u(x, 𝑡)) ≤ 0, 𝝈𝑡 = 0 x ∈ ΓC, 𝑡 ∈ R
+, ΓC ≠ ∅

u(x, 𝑡) = 0 x ∈ ΓD, 𝑡 ∈ R
+

𝝈(u(x, 𝑡))n = 0 x ∈ ΓN, 𝑡 ∈ R
+

𝑘u(x, 𝑡) + 𝝈(u(x, 𝑡))n = 0, 𝑘 ≠ 0 x ∈ ΓR, 𝑡 ∈ R
+

(2.25)

where 𝑘 denotes the spring coefficient of the elastic foundation in the Robin boundary. Solutions to

this system of equations exhibit two speciőc properties that are of interest for nonsmooth modal

analysis: propagation of discontinuities and energy conservation. Both propagation of discontinuities

and energy conservation constitute academic challenges in numerical modal analysis of the Signorini

problem.

2.3.3 Discontinuities in expected solutions

At the moment of contact, the Signorini boundary conditions require an instantaneous change in

boundary conditions between inactive and active phases at a given stencil x ∈ Γ𝐶 . This immediate

change in boundary conditions is often followed by a propagation of a discontinuous wave in the

internal velocity- and stress-őelds of the elastic structure [24, 47]. Furthermore, the PDE (2.17)

deőning the dynamic linear elasticity problem is hyperbolic [49] and any propagating discontinuities

in hyperbolic PDEs are preserved [26]. Thus, it is expected that solutions involving a unilateral

contact will induce and preserve discontinuities within the stress 𝝈(u(x, 𝑡)) and velocity 𝜕𝑡u(x, 𝑡)

őelds. In turn, the space of solutions considered for this problem must allow for such discontinuities

to exist. In what follows, we shall presume that the quantities embedded in ∇u(x, 𝑡) and 𝜕𝑡u(x, 𝑡)

anywhere in (x, 𝑡) ∈ Ω×R+ and are őnite and integrable. Furthermore, it is assumed that the desired

periodic solutions of u(x, 𝑡) are continuous in any possible direction in (x, 𝑡) ∈ Ω × R+.

In theory of PDEs, the concept of characteristics is often helpful in understanding the behaviour

of a system. Characteristics are paths, deőned in the domains of interest (i.e., space and time),

along which information propagates [92]. Discontinuities follow those characteristics as well. For

one-dimensional linearly elastic solids with constant (in time and space) physical properties, the

characteristics follow straight lines in space-time [22] and propagate either backwards or forwards

along the space axis [26, 49]. For two- and three-dimensional problems, the notion of characteristic

lines must be extended. Rather, information propagates along characteristic surfaces and in inőnitely

many directions [57, 92]. This sets a difficulty for numerous numerical schemes that attempt to

preserve information in multiple dimensions since the discretized grids cannot capture characteristic

surfaces properly [49]. Thus, numerical schemes often exhibit dissipation or spurious oscillations
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along discontinuities [22, 49, 52]. The propagation of discontinuities and theory of characteristics

are useful in the analysis and interpretation of numerical methods for the Signorini problem.

2.3.4 Conservation of energy

The total energy of the structure (expressed for the two-dimensional case) prone to unilateral contact

(ΓR ≠ ∅) is given as follows:

𝐸 (𝑡) =
1

2

∫
Ω

(
𝜌𝜕𝑡u

⊤(x, 𝑡)𝜕𝑡u(x, 𝑡) +𝝈(u(x, 𝑡)) : 𝝐 (u(x, 𝑡))
)
dx+

𝑘

2

∫
ΓR

u(x, 𝑡) ·u(x, 𝑡)dx. (2.26)

where ł:ž denotes the Frobenius inner product operation. In the investigated Signorini problems,

friction mechanisms are ignored and it is suggested that the total energy should be conserved during

inactive and active contact phases (as well as in the transition between them). Thus, all solutions are

considered to be energy conservative such that ¤𝐸 (𝑡) = 0 for all 𝑡 [24,40,98]. The conservation of

energy is a desired feature for schemes in structural dynamics as it allows better approximation of

the dynamics [24,40,43,98]. These energy conserving methods focus on the conservation of the

numerical discrete approximation of the energy at different instances of time, i.e., 𝐸𝑖 ≈ 𝐸 (𝑡𝑖) with

𝐸𝑖+1 = 𝐸𝑖 for any 𝑖.

2.4 Enforcement of Signorini conditions

The Signorini problem does not generally admit closed-form solutions except for speciőc cases (such

as this presented in Chapter 3). Instead, solutions of the Signorini problem are mostly obtained

via numerical techniques [16, 84, 96]. While numerical PDE solvers for the dynamics described by

linear elasticity are abundant, the Signorini boundary conditions set an additional difficulty due to

the nonsmoothness of the boundary condition. The implementation of such boundary conditions

numerically, most often, is not evident. For example, while the FEM has speciőc guidelines on

treatment of Robin, Dirichlet or Neumann boundary conditions, the implementation of Signorini

boundary conditions leads to an ill-posed problem [16, 24, 84]. In turn, this ill-posedness can be

resolved in various manners leading to varying schemes for the solution of the Signorini problem in

the FE framework which allow different treatment of the Signorini boundary conditions.

In this section, three main strategies for the implementation of the Signorini boundary conditions

will be discussed: penalty, weak treatment, and switching.
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2.4.1 Penalty methods

Penalty methods seek to regularize and łsmoothenž the behaviour of the displacement at the contact

boundary. Regularization of the Signorini conditions consists of assigning a force f𝜇 (u(x, 𝑡), 𝜇)

characterized by a penalty parameter 𝜇. This force is often constructed such that the structure is

repulsed by a force proportional to the penetration of the obstacle [24, 58, 96]. To illustrate this

penalty force, the Signorini problem in the one-dimensional case - the unforced cantilever bar of

𝜌 = 𝑌 = 𝐴(𝑥) = 1 with unilateral contact conditions at 𝑥 = 1 with a rigid obstacle at 𝑔0 > 0 - is

considered

𝜕𝑡𝑡𝑢(𝑥, 𝑡) − 𝜕𝑥𝑥𝑢(𝑥, 𝑡) = 0 (𝑥, 𝑡) ∈ (0, 1) × R+ (2.27)

𝑢(0, 𝑡) = 0 (2.28)

0 ≤ 𝑔0 − 𝑢(1, 𝑡) ⊥ 𝜕𝑥𝑢(1, 𝑡) ≤ 0 (2.29)

The Signorini boundary conditions (2.29) describe an implicit relationship between 𝜕𝑥𝑢(1, 𝑡) and

𝑢(1, 𝑡). The resulting 𝑢(1, 𝑡) and 𝜕𝑥𝑢(1, 𝑡) then behaves in a nonsmooth fashion. However, penalty

methods to this problem are aimed to approximate the Signorini conditions via a relatively smoother

condition on 𝜕𝑥𝑢(1, 𝑡). A common penalization approach is to substitute Equation (2.29) with a

Robin condition consisting of an explicit relationship between 𝜕𝑥𝑢(1, 𝑡) and 𝑢(1, 𝑡) which is more

suited for classical numerical PDE solvers [24,96]. For example, a possible approximation of the

Signorini conditions (2.29) is the Robin condition

𝜕𝑥𝑢(1, 𝑡) = f𝜇 (𝑢(1, 𝑡)) = min(0, 𝜇(𝑔0 − 𝑢(1, 𝑡))), 𝜇 > 0. (2.30)

This Robin condition is equivalent to a soft support with a spring coefficient 𝜇 replacing the rigid

obstacle. A comparison of the penalty function with the Signorini conditions is presented in

Figure 2.7. In penalty methods, it is often considered that when the penalty parameter reaches a

0 𝑔0

0
1

𝜇

𝑢(1, 𝑡)

𝜕
𝑥
𝑢
(1
,𝑡
)

(a) Relation between stress and displacement at 𝑥 = 1 for
the Signorini conditions (2.31) [ ] and the penalized
model (2.30) [ ]

𝜇𝑥

1

𝑔0

(b) Physical illustration of the penalized one-dimensional
bar described by Equations (2.27) and (2.29)

Figure 2.7: penalty force: plot and physical illustration.
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magnitude of inőnity (i.e., 𝜇→∞ in Equation (2.30)), a more accurate depiction of the Signorini

solution will be achieved. In the context of numerical methods, a high value of 𝜇 inevitably leads to

stiff PDEs which, in turn, poses a difficulty on the convergence of numerical solvers [71]. Another

disadvantage of the penalty method is that the penalty force, at relatively high values of 𝜇, adds

signiőcant energy to the system which is not reŕective of the system in unilateral contact [19,30].

Thus, penalty methods are not discussed in this thesis.

2.4.2 Weak Signorini boundary conditions

Besides the penalty method, there exist schemes where the Signorini boundary conditions are treated

in a weak manner. In these schemes, the Signorini boundary conditions are not regularized. Rather,

approximations of the displacement at the contact boundary and contact pressures are inserted into

the Signorini conditions and introduce a residual error in the Signorini conditions. This residual

error is then projected onto the space of approximating functions to form a system of equations

to be solved. To better illustrate the weak Signorini boundary conditions, the łminž operator

representation of the Signorini boundary conditions (2.29) will be used

𝜕𝑥𝑢(1, 𝑡) = min(0, 𝛾(𝑔0 − 𝑢(1, 𝑡)) + 𝜕𝑥𝑢(1, 𝑡)), 𝛾 > 0. (2.31)

where 𝛾 is referred to as the Nitsche parameter in this manuscript (even though its use does not

always correspond to the Nitsche method [51]). The Nitsche parameter is a dummy parameter in

Equation (2.31) and the equivalence between Equation (2.29) and Equation (2.31) is valid for all

𝛾 > 0.

Weakening of the boundary condition (2.31) implies that the weak form of (2.31) is solved

instead of the form presented in (2.31). Thus, it is assumed that as the order of approximation

increases, the weak Signorini boundary conditions will be better satisőed [19, 51].

For example, the FD-BEM treatment of the Signorini boundary conditions consists of using

harmonic functions that are solutions of the governing PDE to approximate the displacement

𝑢(1, 𝑡) and stress 𝜕𝑥𝑢(1, 𝑡). A Galerkin projection is then used on Equation (2.31) to solve for the

appropriate coefficients of the harmonic functions [51]. Thus, the Signorini condition (2.31) is

not answered exactly, and it is assumed that as the number of participating harmonics increases,

the approximated solution will satisfy better the Signorini conditions. The weak treatment of the

Signorini conditions in Nitsche’s method will be discussed in Section 2.5.3.

It is important to note that the Nitsche parameter, 𝛾, introduced in (2.31) may affect the

penetration of the obstacle in FD-BEM and Nitsche in numerical solutions. However, in contrast

to penalty methods, 𝛾 does not need to be inőnite in order to ensure the Signorini conditions are

satisőed. To clarify, given a őxed value 𝛾 = 𝛾0, the accuracy of methods that use the weak Signorini

boundary conditions depends solely on the order of approximation. For example, in FD-BEM more

23



2.5 Numerical methods for the Signorini problem

accurate satisfaction of the Signorini conditions is achieved with more harmonics, while in Nitsche’s

method it is achieved by using a more elements or higher order shape functions [19].

2.4.3 Switching

The switching algorithm satisőes the Signorini by changing the boundary conditions on the system

rather than approximating the Signorini force [3]. Compared to the weak enforcement of the

Signorini conditions, the switching algorithm requires a strong implementation of the Signorini

conditions in the time domain. This is done by solving the approximated governing equations while

switching between two boundary conditions: the active and inactive contact phases. Application of

the switching method on the problem of the one-dimensional bar (2.27)-(2.29) can be described as

follows:

• For all times where inactive contact is assumed, the PDE (2.27) is solved with Neumann

boundary conditions 𝜕𝑥𝑢(1, 𝑡) = 0. During inactive contact, the motion must abide 𝑔0 −

𝑢(1, 𝑡) ≥ 0.

• For all times where active contact motion is assumed, the PDE (2.27) is solved with Dirichlet

conditions 𝑢(1, 𝑡) = 𝑔0. During active contact, the motion must abide 𝜕𝑥𝑢(1, 𝑡) ≤ 0

It is noted that the accuracy of the switching method relies on the accuracy of the PDE solver and on

őnding the appropriate time of switch. An example of a PDE solver applying the switching method

is the őnite volume method complemented with ghost cell method for the treatment of boundary

conditions. The switching method is referred to as łŕoating-boundaryž methods [77, 98]. Another

example is the mass redistribution method [40] which also employs a switching mechanism.

2.5 Numerical methods for the Signorini problem

To solve the Signorini problem numerically, a PDE solver must be chosen. In this manuscript, three

general frameworks are discussed: őnite volume methods, boundary elements methods, and őnite

element methods.

2.5.1 Finite volume strategies

In this thesis, őnite volume strategies refer to methods solving the weak form of a PDE via the

discretization of quantities of interest using discontinuous shape functions. Namely, two families

of numerical methods are considered: őnite volume methods (FVM) and discontinuous Galerkin

methods (DGM). While the discontinuous Galerkin is generally considered as combination of FEMs

and őnite volume methods [33, p. 7]. The DGM can also be seen as the extension of FVM via
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discontinuous piecewise-polynomial shape functions [81]. In fact, the DGM and FVM share some

important features such as approximation of solutions via discontinuous functions and the usage of

ŕuxes in numerical schemes. Since either FVM or DGM are not explored in depth in this section,

the description of őnite volume strategies will be done in terms of DGM for the sake of conciseness.

Most properties and formulation of DGM presented in this section are also shared by the FVM (in

this context, the FVM is equivalent to application of DGM with piecewise constant shape functions).

In DGM, the domain is discretized into elements, and the quantities of interest in the PDE are

approximated using discontinuous functions. The discontinuous functions are assumed to be smooth

within the elements and discontinuous on element boundaries. Then, the elements are coupled using

ŕuxes on the boundaries. Since the displacement őeld in the Signorini problem is assumed to be

continuous, the DGM (and FVM) has been largely applied on the velocity-stress formulation of the

PDE which indeed consist of discontinuities [49, 84, 98]. To illustrate the DGM and őnite volume

strategies, the velocity-stress formulation of the bar in Equation (2.27) is introduced

𝜕𝑡𝑣(𝑥, 𝑡) = 𝜕𝑥𝜎(𝑥, 𝑡)

𝜕𝑡𝜎(𝑥, 𝑡) = 𝜕𝑥𝑣(𝑥, 𝑡)
(2.32)

where 𝑣(x, 𝑡) ≡ 𝜕𝑡𝑢(x, 𝑡) represents the velocity őeld of the structure in question. In the DGM, a

given element of domain 𝑅𝑖 and boundary 𝜕𝑅𝑖 inΩ abides the following weak form of Equation (2.32)

evaluated against test function 𝜔(𝑥)∫
𝑅𝑖

𝑤(𝑥)⊤𝜕𝑡 �̄�(𝑥, 𝑡)d𝑥 = −

∫
𝑅𝑖

𝜕𝑥𝑤(𝑥)𝜎(𝑥, 𝑡)d𝑥 +

∮
𝜕𝑅𝑖

𝑤(𝑥)𝜎(𝑥, 𝑡)d𝑥

︸                   ︷︷                   ︸
Boundary Integral = Flux Term

(2.33a)

and ∫
𝑅𝑖

𝑤(𝑥)⊤𝜕𝑡𝜎(𝑥, 𝑡)d𝑥 = −

∫
𝑅𝑖

𝜕𝑥𝑤(𝑥)𝑣(𝑥, 𝑡)dx +

∮
𝜕𝑅𝑖

𝑤(𝑥)𝑣(𝑥, 𝑡)dx

︸                  ︷︷                  ︸
Boundary Integral = Flux Term

. (2.33b)

Since approximations to 𝑣 and 𝜎 consist of discontinuities on 𝜕𝑅𝑖, the boundary integral are rather

treated as ŕuxes [33]. These ŕuxes consist of terms from neighbouring cells 𝑅𝑖+1, 𝑅𝑖−1, etc. and

are in fact integral to őnite volume strategies. In both DGM and FVM, the ŕuxes will affect and

determine the behaviour exhibited by the numerical solutions [33, 49, 52].

The boundary conditions in őnite volume strategies are generally treated using the ghost cell

method. By the ghost cell method, boundary conditions are applied by assuming speciőc values of

outside the boundary (via ghost elements/cells) such that the mean the ghost and interior elements

satisfy the boundary conditions [33, 49, 97]. The ghost cell method readily allows for the switching

method by simply modifying the boundary ŕuxes according to the perceived contact phase of the

structure. In fact, the switching method has been proven successful in nonsmooth modal analysis of
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the bar under the framework of the Wave-FEM (WFEM, the proposed implementation is in essence

FVM with an up-wind ŕux) [97]. However, the WFEM was not proven successful for the case of the

bar with varying area or the two-dimensional case. In these cases, dissipation of energy was reported

and periodic solution involving unilateral contact could not be found [97]. Similarly, other FVM

schemes have reported signiőcant dissipation of energy [47,52] which also impedes the detection of

periodic solutions. Thus, őnite volume strategies are not further considered in this manuscript.

2.5.2 Boundary elements methods

BEMs solve a PDE using its fundamental solution as the trial function [17]. In this formulation, the

states within the structure are related to the state of structure along the boundaries of Ω × R+ via

fundamental solutions (or approximations of fundamental solutions). For example, a time-domain

BEM (TD-BEM) formulation of the wave equation describing the cantilever bar

𝜕𝑡𝑡𝑢(𝑥, 𝑡) + 𝜕𝑥𝑥𝑢(𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ [0, 1] × R+ (2.34)

admits a solution involving boundary integrals and fundamental solutions to the wave equation

𝑢(𝑥, 𝑡) =

∫ 𝑡

0
𝑝∗(𝑥, 𝑡, 0, 𝑟)𝑢(0, 𝑟)d𝑟 +

∫ 𝑡

0
𝑝∗(𝑥, 𝑡, 1, 𝑟)𝑢(1, 𝑟)d𝑟 + . . .∫ 𝑡

0
𝑢∗(𝑥, 𝑡, 0, 𝑟)𝜕𝑥𝑢(0, 𝑟)d𝑟 +

∫ 𝑡

0
𝑢∗(𝑥, 𝑡, 1, 𝑟)𝜕𝑥𝑢(1, 𝑟)d𝑟 + . . .∫ 1

0
𝑢∗(𝑥, 𝑡, 𝑠, 0)𝜕𝑡𝑢(𝑠, 0)d𝑠 +

∫ 1

0
𝜕𝑟𝑢
∗(𝑥, 𝑡, 𝑠, 0)𝑢(𝑠, 0)d𝑠.

(2.35)

Here, 𝑢∗(𝑥, 𝑡, 𝑠, 𝑟) and 𝑝∗(𝑥, 𝑡, 𝑠, 𝑟) represent the fundamental solutions to displacement and stress,

respectively [50, 91]. Equation (2.35) is then discretized in both space, 𝑥𝑖, and time, 𝑡 𝑗 , to form an

iterative algorithm calculating the state 𝑢(𝑥𝑖, 𝑡 𝑗 ) given initial state and boundary conditions [50, 91].

Moreover, the TD-BEM formulation allows for the application of the switching method in obtaining

the solution of the Signorini problem [91]. In fact, nonsmooth modal analysis of the bar in unilateral

contact was proven successful [50, 91]. Although, since TD-BEM requires knowledge of the

fundamental solution, it cannot be readily applied to a wide variety of systems since they are not

readily equipped with a fundamental solution. For example, the application of TD-BEM to the bar

with varying-area or the two-dimensional Signorini problem where the fundamental solution is

not available, requires additional approximation of the fundamental solution [50, 51]. Although,

investigation of the problem of nonsmooth modal analysis using TD-BEM and frequency-domain

BEM (FD-BEM) has recently proven fruitful, and research on the topic is currently ongoing in the

structural dynamics laboratory of McGill University [51]. Since application of BEM on nonsmooth

modal analysis is ongoing, BEM methods will not be explored in this thesis.
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2.5.3 Finite elements methods

In what follows, the Signorini problem in the FEM will be presented together with review of

existing treatments of the Signorini boundary conditions. For the sake of conciseness, derivation of

elementary terms in FEM will not be presented in this section.

In the FEM, the domain of the structure is discretized into elements and quantities of interest in

the PDE are approximated using piecewise-smooth continuous functions. FEMs are widely used in

the domain of structural dynamics and modal analysis. In general, FEMs are considered adaptable

to complex geometries, nonlinear material properties and heterogeneous materials [34].

In classical FEM, shape functions within each element consist of Lagrangian polynomials and

nodal quantities. The Lagrangian polynomials of the FE model are collectively gathered in P(𝑥).

The nodal quantities 𝑢(𝑥𝑖, 𝑡) where 𝑥𝑖 are the nodal loci 𝑖 = 1, 2, . . . , 𝑁 with 𝑁 being the number of

nodes are denoted 𝑢𝑖 (𝑡) (i.e., 𝑢(𝑥𝑖, 𝑡) ≈ 𝑢𝑖 (𝑡)). Both nodal quantities and the Lagrange polynomials

are used to approximate the displacement őeld

𝑢(𝑥, 𝑡) ≈ P(𝑥)u(𝑡). (2.36)

Using this approximation, the PDE is discretized to form an ODE in the nodal quantities u(𝑡). To

illustrate the FEM, the Signorini problem of the one-dimensional cantilever bar in Equations (2.27)-

(2.29) is used. The FEM approximation of this problem can be represented as follows:

M¥u(𝑡) +Ku(𝑡) = GT𝜆(𝑡)

𝑢0 = 0

0 ≤ 𝑔0 − 𝑢𝑁 (𝑡) ⊥ 𝜆(𝑡) ≤ 0

(2.37)

where 𝜆(𝑡) deőnes the contact pressure at the tip of the bar, i.e., 𝜕𝑥𝑢(1, 𝑡) = 𝜆(𝑡), and G is a vector

satisfying 𝐺𝑖 = 0 for 𝑖 = 1, 2, . . . , 𝑁 − 1 with 𝐺𝑁 ≠ 0 relating the stress at the boundary to the

internal quantities. The problem presented in (2.37), is in fact ill-posed and does not have a unique

solution [16, 19, 24, 84]. However, there exist multiple techniques to render formulation (2.37)

solvable. Each of these techniques entails a different enforcement of the unilateral conditions in the

FEM. A selected few will be explored in this section.

Newton’s impact law

One commonly used method in applications is the addition of a Newtonian impact law to expres-

sion (2.37). The Newtonian impact law imposes a relationship between the incoming and outgoing

velocities at the contact boundary at the moment of impact

if 𝑢𝑁 (𝑡) = 𝑔0 then ¤𝑢𝑁 (𝑡
+) = −𝑒 ¤𝑢𝑁 (𝑡

−) (2.38)
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where 1 ≥ 𝑒 ≥ 0 denotes the coefficient of restitution. In continuous time, this impact law does not

allow penetration of the obstacle. However, nonsmooth modal analysis of the Signorini problem via

FEM with Newton’s impact law is not an evident task. To őnd periodic solutions, the ODE must

allow energy conservation necessitating a fully elastic Newton impact law 𝑒 = 1. Application of

𝑒 = 1 leads to chattering which is not exhibited in the true solution to the Signorini problem [24].

In contrast, a Newton impact law 𝑒 = 0 eliminates chattering but dissipates energy for non-zero

pre-impact velocities. Thus, periodic solutions with non-zero pre-impact velocities cannot be

found although these exist in the true modal space of the solution to the Signorini problem [84, 98].

Furthermore, application of these methods for nonsmooth modal analysis of the continuous problem

(i.e., for high 𝑁) was found computationally expensive and infeasible as reported in [84, p. 23].

Mass redistribution method

The outlining principle of mass redistribution methods (MRMs) [40] is to render the system of

equations (2.37)solvable by eliminating the inertia of the contact node(s).

To present the mass redistribution formulation, equations involving the contact node 𝑢𝑁 are

speciőed in Equation (2.37)[
M𝑂𝑂 M𝑂𝐶

M⊤
𝑂𝐶

M𝐶𝐶

] (
¥u𝑂 (𝑡)

¥𝑢𝑁 (𝑡)

)
+

[
K𝑂𝑂 K𝑂𝐶

K⊤
𝑂𝐶

K𝐶𝐶

] (
u𝑜 (𝑡)

𝑢𝑁 (𝑡)

)
=

(
0

G𝑁𝜆(𝑡)

)

0 ≤ 𝑔0 − 𝑢𝑁 (𝑡) ⊥ 𝜆(𝑡) ≤ 0.

(2.39)

where u𝑜 (𝑡) gathers all internal nodes that are not prone to contact. The MRM then seeks to eliminate

the inertia of contact nodes. This is done by elimination of M𝑂𝐶 , M𝐶𝐶 in M and substitution

of a redistributed mass matrix MMRM instead of the matrix MOO. With these substitutions,

expression (2.39) reads[
MMRM 0

0 0

] (
¥u𝑂 (𝑡)

¥𝑢𝑁 (𝑡)

)
+

[
K𝑂𝑂 K𝑂𝐶

K⊤
𝑂𝐶

K𝐶𝐶

] (
u𝑂 (𝑡)

𝑢𝑁 (𝑡)

)
=

(
0

G𝑁𝜆(𝑡)

)

0 ≤ 𝑔0 − 𝑢𝑁 (𝑡) ⊥ 𝜆(𝑡) ≤ 0.

(2.40)

The last row of Equation (2.40) then allows to construct a function of 𝜆 in terms of u(𝑡)

𝜆(u(𝑡)) =
1

𝐺𝑁

(K⊤𝑂𝐶u𝑂 (𝑡) + 𝐾𝐶𝐶𝑢𝑁 (𝑡)) (2.41)

which then allows for a reduced ODE formulation of the Signorini problem in FEM:

MMRM ¥u𝑂 (𝑡) +K𝑂𝑂u𝑂 (𝑡) = −K𝑂𝐶𝑢𝑁 (𝑡)

0 ≤ 𝑔0 − 𝑢𝑁 (𝑡) ⊥
1

𝐺𝑁

(K⊤𝑂𝐶u𝑂 (𝑡) + 𝐾𝐶𝐶𝑢𝑁 (𝑡)) ≤ 0.
(2.42)

The formulation of the matrix MMRM is a key component in the MRM since it allows to deőne 𝜆
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in terms of u(𝑡) (see Equation (2.41)). The formulation MMRM consists of redistributing the mass

of the contact node(s) via solution of a constrained optimization problem [40]. The constraints

include preservation of the center of mass, inertia and the total mass of the original structure [40].

The ODE (2.42) exhibits a unique solution, and the MRM converges to the true solution of the

Signorini problem with higher number of elements or order of shape functions [24,32,40]. However,

a disadvantage of this method is that it requires either a construction of a new mass matrix (or usage

of speciőc quadrature rules as shown in [31]).

It is noted that in [24, 65] apply the MRM by ignoring the mass of contact nodes (i.e., by setting

MMRM = MOO) and can be applied readily to existing FE models. Furthermore, it has been shown

that ignoring the mass on the contact boundary is suitable for nonsmooth modal analysis [65],

However, in this approach the original eigen-frequencies and mode shapes are modiőed and the

modiőed mass matrix is not representative of the original mass matrix [65, 84]. Therefore, in the

following chapters, this approach to mass redistribution will not be addressed. Furthermore, it will

be shown that the NBM eliminates the contact node from the system of equations without requiring

a construction of a new mass matrix.

Nitsche’s method

In unilateral contact mechanics, the Nitsche method solves the ill-deőnition of the FEM formulation

by introducing a relationship between the contact pressure 𝜆(𝑡) and the displacement 𝑢𝑁 (𝑡). In [19],

a general 𝜃-formulation of the Nitsche method is presented where different values of 𝜃 are used

to admit ODEs of different properties. For example, 𝜃 = 1 allows for a symmetric formulation

of the resulting FEM-ODE. Only the Nitsche method with 𝜃 = 0 (which constitutes the simplest

implementation) is explored in this manuscript for the sake of conciseness.

The formulation of the contact pressure in Nitsche’s method is done via the introduction of the

FE approximation of the stress at the contact boundary into the łminž formulation of the Signorini

contact conditions (2.31):

𝜆(u(𝑡)) = min(0, 𝛾(𝑔0 − 𝑢(1, 𝑡)) + 𝜕𝑥𝑢(1, 𝑡)) ≈ min(0, 𝛾(𝑔0 − 𝑢𝑁 (𝑡)) + P′(1)Tu(𝑡)). (2.43)

The FEM-ODE (2.37) with the Nitsche stress approximation then reads (in this manuscript, ◦′

denotes differentiation of a mono-variable function ◦ with respect to its argument)

M¥u(𝑡) +Ku(𝑡) = GT min(0, 𝛾(𝑔0 − 𝑢𝑁 (𝑡)) + P′(1)Tu(𝑡)), 𝛾 > 0. (2.44)

The Nitsche formulation treats the Signorini boundary conditions weakly and penetration of the

obstacle is effectively allowed for őnite 𝑁 [20]. It is expected that, as the number of nodes

or order of shape functions increases, we will have 𝑢𝑁 (𝑡) → 𝑢(1, 𝑡), 𝜆(u(𝑡)) → 𝜕𝑥𝑢(1, 𝑡) and

P′(1)Tu(𝑡) → 𝜕𝑥𝑢(1, 𝑡) such that expression (2.43) is equivalent to the Signorini conditions (2.31).

29



2.5 Numerical methods for the Signorini problem

However, since the Nitsche method allows for penetration of the obstacle at őnite 𝑁 , it is not

considered for nonsmooth modal analysis.

2.5.4 Basis Recombination

The method of basis recombination [14, p. 112] assumes that the shape functions used in the

approximation of the PDE satisfy the boundary conditions. The methodology is commonly used in

Galerkin approaches for the solution of nonlinear PDEs [44,58]; [61, p. 300]. In comparison with

FEM, WFEM or FVM, basis recombination assumes that any type of boundary conditions is always

answered in a strong manner. However, application of basis recombination to problems involving

contact conditions has yet been attempted to the knowledge of the author. Thus, the dominant portion

(Chapters 4 and 5) of this manuscript focuses on numerical modal analysis using basis recombination

techniques, otherwise referred to as the nodal boundary method (NBM). Speciőcally, the NBM

consists of two innovative approaches: (1) the NBM modiőes the Lagrangian shape functions to

answer the Neumann conditions strongly (which is not done in classical őnite element) (2) the NBM

solves the Signorini problem by switching between two families of shape functions describing both

active and inactive contact. The method is explained in length for both the one-dimensional case

(Chapter 4) and the two-dimensional case (Chapter 5). While the NBM is used to solve the problem

of nonsmooth modal analysis, FEM with Nitsche or Newton’s impact law are used to validate the

obtained results and for comparative analysis.
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Chapter 3

Exact Nonsmooth Modal Analysis of an

Internally Resonant Bar

This chapter entails the exact nonsmooth modal analysis of the cantilever bar of uniform area

in unilateral contact. The uniform area bar is referred to as the internally resonant bar due its

commensurate fundamental frequencies, i.e., the fundamental frequencies of the bar are integer

multiples of its őrst fundamental frequency 𝜔𝑛 = 2𝜋𝑛/𝑐 where 𝑐 is the speed of sound in the bar and

𝑛 = 1, 2, 3, . . . [84,97,98]. The nonsmooth modal analysis of the internally resonant bar has attracted

experimental interest [65] and was investigated analytically and numerically in semi-discrete and

continuous settings in space [12, 48, 60, 74, 80, 84, 85, 98]. The bar of uniform area enjoys the

well-known d’Alembert travelling-wave solution [26, 84], and, in this chapter, this d’Alembert

travelling-wave solution of the bar is used to formulate a closed-form solution of the bar’s motion

prone to contact via the switching method. The formulation of the bar prone to contact presented in

this chapter is used to őnd new NSMs of the bar. Also, existing theory on the nonsmooth bar will be

revisited and extended through new theorems developed in this chapter. At last, the results presented

here have implications on numerical techniques for nonsmooth modal analysis and inŕuence the

choice of continuation techniques later in the thesis.

The outline of this chapter is given as follows: the formulation of the bar in unilateral contact is

brieŕy recalled in Section 3.1. Preliminaries to nonsmooth modal analysis, such as the d’Alembert

solution to the contact problem, formulation of the periodicity condition, and lemmas on the

existence of solutions are exposed in Section 3.2. Then, nonsmooth modal analysis is performed

and compared with existing literature in Section 3.3. At last, discussion and implications of the

őndings in this chapter on the remainder of the thesis are presented in Section 3.4.

The őndings in this thesis were published in [85] and [89]. Large part of this chapter replicates

the article [89]. Although, novel results based on the methodology presented in [89] are presented

in Section 3.3.3. These results affirm conjectures that were presented in [89] and were developed
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more recently. Also, Section 3.1.1 is added to this chapter (and does not appear in [89]) in order

to provide context on the choice of phase condition in reference to earlier discussion on the phase

condition in Section 2.1.1.

Furthermore, it is important to note the contribution of Dr. Stéphane Junca in the writing of this

chapter, speciőcally in establishing a robust mathematical terminology (prominently in Section 3.1.2)

and for advising on the validity of the propositions and theorems presented in this chapter.

3.1 Problem statement

As depicted in Figure 3.1, we consider the displacement őeld 𝑢(𝑥, 𝑡) inside a bar of length 𝐿, where

𝑥 and 𝑡 denote physical position and time, respectively. Assuming linear elasticity, the displacement

𝑔0𝐿

𝐿

𝑥

𝑢
(
𝑥, 𝑡

)

Figure 3.1: Unilaterally constrained cantilever bar.

of the bar with area 𝐴(𝑥) = 𝐴 satisőes the non-dimensional wave equation

𝜕𝑡𝑡𝑢(𝑥, 𝑡) = 𝜕𝑥𝑥𝑢(𝑥, 𝑡), 𝑥 = 𝑥/𝐿, 𝑡 = 𝛼𝑡/𝐿, (3.1)

where 𝛼 =
√︁
𝜌/𝐴𝑌 > 0. To simplify further the notations, the dimensionless coordinates 𝑥 and 𝑡 are

introduced and, for the remainder of the article, the displacement is expressed exclusively in these

coordinates, i.e., 𝑢(𝑥, 𝑡). As non-smooth modal analysis requires obtaining periodic solutions of the

autonomous system [38, 76, 84], the analysis will be performed on a single period of motion, of

normalized period 𝑇 such that the domains 𝑡 ∈ [0, 𝑇] and 𝑥 ∈ [0, 1] are considered.

On the boundary 𝑥 = 1, the bar is prone to unilateral contact with a rigid wall initially at a

normalized distance 𝑔0 > 0. For the sake of simplicity, non-smooth modes consisting of a single

active contact per period are sought; these are referred to as 1CPP (one active Contact Phase per

Period) modes [84, 97].

Definition 3.1 (1CPP motion). A periodic motion of the bar with period 𝑇 is said to be a 1CPP

motion if there exist an instance in time 𝑡0 and a duration 𝜏 such that the bar is in inactive contact

for 𝑡 ∈ [𝑡0, 𝑡0 + 𝜏] and in active contact for 𝑡 ∈ [𝑡0 + 𝜏, 𝑡0 + 𝑇].

Without loss of generality, we can pick 𝑡0 = 0. A 1CPP motion at 𝑥 = 1 with 𝑡0 = 0 is illustrated

in Figure 3.2.
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𝜏 𝑇

𝑔0

0
𝑡

Figure 3.2: Example of a 1CPP motion: 𝑢(1, 𝑡) [ ] and 𝜕𝑥𝑢(1, 𝑡) [ ]. Note the cusps in 𝑢(1, 𝑡) (indicating
discontinuities in 𝜕𝑡𝑢(1, 𝑡)) away from the instance of contact. Indeed, these cusps are expected in motions
prone to unilateral contact [24, 50, 57, 84, 97]. The noted cusps emanate from contact discontinuities which
are preserved in hyperbolic PDEs [49]. As a consequence, it assumed that displacement of 1CPP motions are
continuous and piecewise-C1. This is discussed further in Section 3.2

A 1CPP motion should satisfy the boundary conditions

Cantilever bar 𝑢(0, 𝑡) = 0 ∀𝑡 ∈ [0, 𝑇] (3.2)

Inactive contact 𝑢(1, 𝑡) ≤ 𝑔0 ∀𝑡 ∈ [0, 𝑇] and 𝜕𝑥𝑢(1, 𝑡) = 0 𝑡 ∈ [0, 𝜏] a.e. (3.3)

Active contact 𝑢(1, 𝑡) = 𝑔0 ∀𝑡 ∈ [0, 𝑇] and 𝜕𝑥𝑢(1, 𝑡) ≤ 0 𝑡 ∈ [𝜏, 𝑇] a.e. (3.4)

together with the periodicity conditions

𝑢(𝑥, 0) = 𝑢(𝑥, 𝑇) ∀𝑥 ∈ [0, 1] (3.5)

𝜕𝑡𝑢(𝑥, 0) = 𝜕𝑡𝑢(𝑥, 𝑇) 𝑥 ∈ [0, 1] a.e. (3.6)

where a.e. denotes almost-everywhere in the prescribed domain and is used for piecewise-continuous

functions not deőned on speciőc loci. Speciőcally, the indication a.e. shall apply to constraints

involving the derivatives of the displacement őeld (stress and velocity) due to the choice of solution

space, as discussed in Section 2.3.3.

Note that solutions where the bar enters into contact with the wall with zero incoming velocity

at the contact boundary, known as grazing motion [16], are valid solutions to (3.1)-(3.4). However,

such solutions are intentionally omitted in the discussion for the sake of conciseness. Accordingly,

the restriction where the tip of the bar must approach the wall with positive incoming velocity just

before contact is considered:

lim
𝑡→𝜏−

𝜕𝑡𝑢(1, 𝑡) > 0. (3.7)
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3.1.1 Phase condition

As mentioned previously in Section 2.1.1, a phase condition must be added to the periodicity

conditions (periodicity conditions in Equations (3.5) and (3.6)) in order to depict solutions that do

not belong to the same phase-space (i.e., there exist no continuum of initial conditions that answers

the phase conditions and pertains to the same periodic solution in the phase-space). The phase

condition is implemented by Deőnition 3.1 and Equation (3.7). In Deőnition 3.1, the motion is

constrained to start at inactive contact and to end at active contact with a single contact phase per

period. Given that periodic solutions are sought, the initial condition used for a motion of the type

Deőnition 3.1 must lie at the intersection between inactive and active contact phases. Furthermore,

Deőnition 3.1 requires that the solution to the phase condition be an isolated point. For grazing

motions, there may exist a continuous interval in time where 𝜕𝑥𝑢(1, 𝑡) = 0 and 𝑢(1, 𝑡) = 𝑔0 and, for

such motions, there is no single point in time that separates active contact phase from the inactive

contact phase. For example, a grazing motion may exhibit an interval where it is possible to have

𝜕𝑥𝑢(1, 𝑡+) = 0 and 𝑢(1, 𝑡+) = 𝑔0 for 𝑡 ∈ [𝜏, 𝑡𝑔) where 𝑡𝑔 < 𝑇 and 𝑡𝑔 − 𝜏 denotes the duration of

grazing [82]. However, for non-grazing motion, the switching instance between inactive and active

contact phases can be deőned by an isolated instance in time (for the investigated 1CPP motion, this

is 𝑡 = 0 and 𝑡 = 𝜏). Here, non-grazing motions are sought and are restricted by Equation (3.7). In

sum, since non-grazing motions of the type in Deőnition 3.1 are sought, the initial conditions must

lie on the point of intersection at the beginning of inactive contact phase and at the end of active

contact phase which constitutes the phase condition for this problem. Furthermore, any distinct set

of initial conditions answering the periodicity conditions in Equations (3.5) and (3.6) and producing

a 1CPP motion constitutes a distinct periodic motion in the phase-space.

3.1.2 Important terminology

We deőne non-smooth modes as families of motions deőned by non-smooth d’Alembert functions.

Piecewise-linear modes consist of piecewise-linear d’Alembert solutions, as depicted in Figure 3.3

and piecewise-smooth modes consist of piecewise-smooth d’Alembert functions, which include

piecewise-linear d’Alembert functions. This distinction will be used to further emphasize the novelty

presented in this manuscript. To clarify, an example of a piecewise-smooth yet not piecewise-

linear d’Alembert function is illustrated later in the manuscript, in Figure 3.7, where the newly

detected piecewise-smooth modes are discussed. Still, it should be understood that both families

(piecewise-smooth and piecewise-linear) pertain to the family of non-smooth modes.
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3.2 D’Alembert solution to the Signorini problem

The d’Alembert solution satisfying Equations (3.1) and (3.2) reads [26, p. 69]

𝑢(𝑥, 𝑡) = 𝑓 (𝑡 + 𝑥) − 𝑓 (𝑡 − 𝑥), ∀(𝑥, 𝑡) ∈ [0, 1] × [0, 𝑇] (3.8)

where the function 𝑓 , referred to as the d’Alembert function, can be deőned up to a constant. In the

sequel, the convention

𝑓 (−1) = 0 (3.9)

is chosen and does not affect the displacement, velocity or stress solutions derived. With 𝑡 = 0 and

𝑥 = 1 in (3.8), this convention yields 𝑓 (1) = 𝑢(1, 0). Moreover, for (𝑥, 𝑡) ∈ [0, 1] × [0, 𝑇], 𝑓 has to

be deőned on the interval [−1, 1+𝑇]. Deőning 𝑓 is, therefore, equivalent to determining a cantilever

motion of the bar. Section 3.2 shows how the boundary conditions (3.3)-(3.6) are translated into

conditions on the d’Alembert function.

According to the assumptions of continuous displacement őeld solution established in Sec-

tion 2.3.3, 𝑓 is chosen as a continuous and piecewise-C1 function on its domain of deőnition, that

is 𝑓 ∈ C0( [−1, 1 + 𝑇]) ∩ Ĉ1( [−1, 1 + 𝑇]). This means that the classical derivative of 𝑓 is deőned

everywhere except over a őnite number of points on any bounded set. Also, at a point1 𝑠 where 𝑓 ′ is

not deőned, the right limit 𝑓 ′(𝑠+) and the left limit 𝑓 ′(𝑠−) still exist. An equality involving 𝑓 ′ is

thus satisőed at all points of the considered interval except at the őnite number of points where 𝑓 is

not differentiable.

In previous research on the topic of interest [84,97,98], nonsmooth modal analysis was formulated

using the displacement, stress and velocity őelds and was performed by computing initial conditions

that generate admissible periodic solutions. Instead, in this manuscript, the d’Alembert function

is exploited exclusively, which leads to new insights. To illustrate the idea, a known admissible

periodic solution and its associated d’Alembert function are plotted in Figure 3.3.

Before solving Equations (3.1)-(3.6) using the d’Alembert function, the considered solution

space is characterized.

3.2.1 Solution via the method of steps

Consider the Cauchy problem consisting of the governing PDE (3.1) with boundary conditions (3.2)-

(3.4) and initial conditions 𝑢(𝑥, 0) = 𝑢0(𝑥) and 𝜕𝑡𝑢(𝑥, 0) = 𝑣0(𝑥). The periodicity conditions (3.5)-

(3.6) will be considered later in Section 3.2.1. The d’Alembert function is deőned on [−1, 1]

1The variable 𝑠 is used both in this chapter and in Appendix A to denote the argument of the d’Alembert function,
i.e., 𝑓 (𝑠), in contrast to the use of 𝑠 in Chapter 2 where it is used to distinguish between periodic solution in the
two-dimensional manifold.
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3.2 D’Alembert solution to the Signorini problem

(a) Displacement őeld 𝑢(𝑥, 𝑡) = 𝑓 (𝑡 + 𝑥) − 𝑓 (𝑡 − 𝑥) [ ]
with motion of tip of the bar 𝑢(1, 𝑡) [ ]

(b) d’Alembert functions from Figure 3.3(a) seen as sur-
faces: 𝑧(𝑥, 𝑡) = 𝑓 (𝑡 + 𝑥) [ ] and 𝑧(𝑥, 𝑡) = 𝑓 (𝑡 − 𝑥) [ ]

−1 1 𝑇 𝑇 + 1

𝑔0

𝑠

𝑓 (𝑠)

(c) (Piecewise-linear) d’Alembert function 𝑓 (𝑠) corresponding to Figure 3.3(a)

Figure 3.3: A 1CPP motion from [98] and corresponding d’Alembert function.

as [26, p. 69]

2 𝑓0(𝑠) ≡ 2 𝑓 (𝑠) =



𝑢0(𝑠) + 𝐶0 +

∫ 𝑠

0
𝑣0(𝜁) d𝜁 𝑠 ∈ [0, 1],

− 𝑢0(−𝑠) + 𝐶0 +

∫ −𝑠

0
𝑣0(𝜁) d𝜁 𝑠 ∈ [−1, 0] .

(3.10)

Our convention (3.9) implies

𝐶0 = 𝑢0(1) −

∫ 1

0
𝑣0(𝜁) d𝜁 . (3.11)

Note that imposing a value on the constant𝐶0 does not affect any of the őelds of interest: displacement

𝑢(𝑥, 𝑡), velocity 𝜕𝑡𝑢(𝑥, 𝑡) or stress 𝜕𝑥𝑢(𝑥, 𝑡). Additionally, the notation 𝑓0 is introduced to describe

the part of 𝑓 depending exclusively on initial conditions, i.e., 𝑓0(𝑠) ≡ 𝑓 (𝑠) ∀𝑠 ∈ [−1, 1] (as discussed

later, the d’Alembert function beyond 𝑠 > 1 depends on both boundary and initial conditions).

Therefore, to simplify the terminology used in the remainder of this chapter, 𝑓0 will be referred

to as initial conditions. Moreover, as the d’Alembert function is assumed to be continuous for

𝑠 ∈ [−1, 1], the space of initial conditions 𝑢0 and 𝑣0 consists of those generating piecewise-C1

continuous functions 𝑓0.

As mentioned previously, the d’Alembert function in (3.8) is a solution to (3.1) and (3.2).
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However, the boundary condition at 𝑥 = 1 remains unsatisőed. To satisfy boundary conditions at

both 𝑥 = 1 and 𝑥 = −1, the d’Alembert function is generally extended from [−1, 1] to [−1, 𝑇 + 1]

via initial conditions using reŕections at 𝑠 = 1 and 𝑠 = −1 [26, 67]. In the present article, this

extension will be derived by solving the boundary conditions Equations (3.3) and (3.4) in terms of

the d’Alembert function (omitting inequality constraints)

Inactive contact 𝑓 ′(𝑡 + 1) + 𝑓 ′(𝑡 − 1) = 0, 𝑡 ∈ [0, 𝜏] a.e. (3.12)

Active contact 𝑓 (𝑡 + 1) − 𝑓 (𝑡 − 1) = 𝑔0, 𝑡 ∈ [𝜏, 𝑇] . (3.13)

Collectively, Equations (3.12) and (3.13) represent a degenerate Neutral Delay Differential Equation

(NDDE) which requires knowledge of an initial condition on 𝑓 spanning a domain of length equal to

the delay [25]. Namely, to solve (3.12), the d’Alembert function must be known for any 𝑠 ∈ [−1, 1].

Here, the values of 𝑓 (𝑠) for 𝑠 ∈ [−1, 1] are given by the initial conditions (3.10). Thus, given 𝑓0,

Equation (3.12) determines 𝑓 on [1, 𝜏 + 1] and, consecutively, Equation (3.13) determines 𝑓 on

[𝜏 + 1, 𝑇 + 1].

In what follows, we derive the conditions on 𝑓0, 𝜏 and 𝑇 in order to őnd 1CPP solutions of

the cantilever bar. To this end, we use the method of steps to construct solutions to the inactive

contact motion (3.12) and active contact motion (3.13), separately, using linear arguments. The

nonlinearity of the problem at hand arises when the inequalities in (3.3) and (3.4) together with

periodicity conditions (3.5) to (3.6) are enforced on the d’Alembert function.

Inactive Contact Motion

This section details the extension of the d’Alembert function to the domain 𝑠 ∈ [−1, 1 + 𝜏] via

boundary condition (3.12). Beforehand, since (a) the tip of the bar is in contact with the wall at the

end of the period, see (3.4), (b) the motion must be periodic, see (3.5), and (c) the tip of the bar

must be initially in contact with the obstacle to preserve continuity in time from (3.8), the tip of the

bar must contact the obstacle at the beginning of the period

𝑢(1, 0) = 𝑓 (1) − 𝑓 (−1) = 𝑓0(1) − 𝑓0(−1) = 𝑓0(1) = 𝑔0. (3.14)

Next, the inactive contact condition (3.12) leads to

𝑓 ′(𝑠) = − 𝑓 ′(𝑠 − 2), 𝑠 ∈ [1, 𝜏 + 1] a.e. (3.15)

Integration of (3.15) reads

𝑓 (𝑠) = 𝑔0 − 𝑓 (𝑠 − 2), ∀𝑠 ∈ [1, 𝜏 + 1] . (3.16)
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3.2 D’Alembert solution to the Signorini problem

By the method of steps, given 𝑓 (𝑠) = 𝑓0(𝑠) for 𝑠 ∈ [−1, 1], the solution to (3.16) is

𝑓 (𝑠) =



𝑓0(𝑠) 𝑠 ∈ [−1, 1]

𝑔0 − 𝑓0(𝑠 − 2) 𝑠 ∈ [1, 𝜏 + 1]
, 0 ≤ 𝜏 ≤ 2 (3.17)

this deőnition applies strictly to the case of 𝜏 ≤ 2 since the domain of deőnition of initial conditions

is of length 2. Instead, for 2 < 𝜏 ≤ 4, we obtain

𝑓 (𝑠) =




𝑓0(𝑠) 𝑠 ∈ [−1, 1]

𝑔0 − 𝑓0(𝑠 − 2) 𝑠 ∈ [1, 3]

𝑔0 − 𝑓 (𝑠 − 2) 𝑠 ∈ [3, 𝜏 + 1]

(3.18)

Here, the last component, 𝑓 (𝑠) = 𝑔0 − 𝑓 (𝑠 − 2) 𝑠 ∈ [3, 𝜏 + 1], is determined by substituting the

previous step, 𝑓 (𝑠) = 𝑑 − 𝑓0(𝑠 − 2) 𝑠 ∈ [1, 3], in 𝑓 (𝑠 − 2), admitting

𝑓 (𝑠) =




𝑓0(𝑠) 𝑠 ∈ [−1, 1]

𝑔0 − 𝑓0(𝑠 − 2) 𝑠 ∈ [1, 3]

𝑓0(𝑠 − 4) 𝑠 ∈ [3, 𝜏 + 1]

, 2 < 𝜏 ≤ 4. (3.19)

A solution of the type (3.19) is illustrated in Figure 3.4. Further extension of the d’Alembert function

for 𝜏 > 4 is not illustrated because the d’Alembert function subject to (3.15) is 4-periodic

𝑓 (𝑠) = 𝑓 (𝑠 − 4), ∀𝑠 ∈ [3, 𝜏 + 1], 𝜏 > 2. (3.20)

In fact, an inactive contact motion sets an upper bound on the value of 𝜏 for a 1CPP.

Proposition 3.2 (Maximal duration of an inactive contact for a 1CPP). For 1CPP motions, the

duration of inactive contact motion must satisfy

𝜏 < 4. (3.21)

As well, initial conditions must satisfy

𝑓0(𝑠) ≥ 0 ∀𝑠 ∈ [−1,min(1, 𝜏 − 1)], (3.22)

𝑓0(𝑠) ≤ 𝑔0 ∀𝑠 ∈ [−1, 𝜏 − 3] if 2 < 𝜏 < 4. (3.23)

Proof. Proof for this proposition is provided in section Appendix A.1 □

In turn, the inactive contact phase must end with the bar contacting the obstacle

𝑢(1, 𝜏) = 𝑓 (𝜏 + 1) − 𝑓 (𝜏 − 1) = 𝑔0 (3.24)

and the velocity of the tip at this instant 𝜏 must be strictly positive, due to (3.7), such that

𝜕𝑡𝑢(1, 𝜏
−) = 𝑓 ′(𝜏− + 1) − 𝑓 ′(𝜏− − 1) > 0. (3.25)
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1
−𝑔0

𝑔0

−1 2 3 𝜏 + 1

𝑓0 (𝑠 − 4)𝑓0 (𝑠) 𝑔0 − 𝑓0 (𝑠 − 2)

𝑠

𝑓 (𝑠)

(a) D’Alembert function as deőned for 𝑡 ∈ [−1, 3]. Red and Olive functions represent the extension beyond 𝑡 = 1,
via (3.19) and depend on the function in blue

2 𝜏
−𝑔0

𝑔0

0

𝑢(1, 𝑡)

𝑓 (𝑡 + 1)

𝑓 (𝑡 − 1)

𝑓 (𝑡 − 1)

𝑓 (𝑡 + 1)

𝑡

(b) Displacement at tip and d’Alembert function components, 𝑢(1, 𝑡) = 𝑓 (𝑡 + 1) − 𝑓 (𝑡 − 1) for 𝑡 ∈ [0, 2]. Colours
correspond to plot 3.4(a)

2 𝜏

−3𝑔0

3𝑔0

0

𝑓 ′ (𝑡 − 1)

𝑓 ′ (𝑡 − 1)

𝑓 ′ (𝑡 − 1)

𝑓 ′ (𝑡 − 1)𝑓 ′ (𝑡 + 1)

𝑓 ′ (𝑡 + 1)𝑓 ′ (𝑡 + 1)

𝑓 ′ (𝑡 + 1)

𝜕𝑥𝑢(1, 𝑡) 𝑡

(c) Stress at tip and d’Alembert function components, 𝜕𝑥𝑢(1, 𝑡) = 𝑓 ′ (𝑡 + 1) + 𝑓 ′ (𝑡 − 1) = 0 (due to inactive contact), for
𝑡 ∈ [0, 2]. Colours correspond to plot 3.4(a)

Figure 3.4: Extension of d’Alembert function due to inactive contact conditions (3.15) given speciőc initial
conditions 𝑓0 (here, piecewise-cubic polynomials for the sake of illustration) and 𝜏 = 7/3 ≥ 2, and resulting
motion.

Active contact motion

Similarly to the procedure presented in Section 3.2.1, the d’Alembert function is extended for

𝑠 > 𝜏 + 1 via condition (3.13), which equivalently reads

𝑓 (𝑠) = 𝑔0 + 𝑓 (𝑠 − 2), ∀𝑠 ∈ [𝜏 + 1, 𝑇 + 1] . (3.26)

Note that 𝑓 (𝑠 − 2) is assumed to be known for 𝑠 ∈ [𝜏 + 1, 𝑇 + 1], by virtue of (3.17) or (3.19).

An illustration of extension (3.26) is provided in Figure 3.5. Moreover, we note that 𝑢𝑥 (1, 𝑡) is

2-periodic during active contact since

𝑢𝑥 (1, 𝑡 + 2) = 𝑓 ′(𝑡 + 3) + 𝑓 ′(𝑡 + 1) = 𝑓 ′(𝑡 + 1) + 𝑓 ′(𝑡 − 1) = 𝑢𝑥 (1, 𝑡), 𝑡 ∈ [𝜏, 𝑇] a.e. (3.27)
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𝜏 + 1𝑇 − 1

−𝑔0

𝑔0

𝜏 − 1 𝑇 + 1
𝑓 (𝑠)

𝑔0 + 𝑓 (𝑠 − 2)

𝑠

𝑓 (𝑠)

(a) D’Alembert function for 𝑡 ∈ [𝜏 − 1, 𝑇 + 1]. Extension beyond 𝑡 = 𝜏 + 1 via (3.26) [ ]
dependent on the blue plot

𝜏 𝑇

−𝑔0

𝑔0

𝑢(1, 𝑡)

𝑓 (𝑡 + 1)

𝑓 (𝑡 − 1)

Inactive Contact Active Contact

𝑡

(b) Displacement at tip and d’Alembert function components

Figure 3.5: Extension of the d’Alembert function due to active contact conditions (3.15) given speciőc initial
conditions 𝑓0 and 𝑓 in inactive contact motion (shown in Figure 3.4) from (3.17) and (3.19), and resulting
motion.

holds true. This imposes a bound on the duration 𝑇 − 𝜏 of active contact.

Proposition 3.3 (Maximal duration of an active contact for a 1CPP). For 1CPP motions, the duration

of active contact motion, 𝑇 − 𝜏 where 𝑇 > 𝜏, must satisfy

𝑇 − 𝜏 < 2, (3.28)

and the d’Alembert function must satisfy

𝑓 ′(𝑡 − 1) ≤ 0 𝑡 ∈ [𝜏, 𝑇] a.e. (3.29)

Proof. Proof for this proposition is provided in section Appendix A.2 □

Periodicity and admissibility conditions

The periodicity of the solution is now determined by a difference equation involving the d’Alembert

function.

Proposition 3.4. The displacement 𝑢 is 𝑇-periodic if its associated d’Alembert function satisfies

𝑓 ′(𝑠 + 𝑇) = 𝑓 ′0 (𝑠) ∀𝑠 ∈ [−1, 1] a.e. (3.30)
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and 𝑓 ′ is 𝑇-periodic. Conversely, if (3.30) is fulfilled, then 𝑢(𝑥, 𝑡) = 𝑓 (𝑡 + 𝑥) − 𝑓 (𝑡 − 𝑥) consists of

a periodic motion. Thus, (3.30) is true if and only if 𝑢(𝑥, 𝑡) is periodic in time with period 𝑇 .

Proof. Proof for this proposition is provided in section Appendix A.3 □

Summary of necessary conditions for periodic solutions

Via the d’Alembert travelling wave solutions, the conditions for őnding a periodic solution consist

of functional equations and inequalities summarized below.

Conditions for Periodic Solutions of the Bar in Unilateral Contact (CPS) For 𝑔0 > 0, a 1CPP

motion subject to (3.1)-(3.6) and described by 𝑢(𝑥, 𝑡) = 𝑓 (𝑡 + 𝑥) − 𝑓 (𝑡 − 𝑥) requires finding 𝜏 < 4,

𝑇 < 𝜏 + 2 and 𝑓0(𝑠) continuous and piecewise C1 on [−1, 1] such that (equation tags are recalled)

𝑓0(−1) = 0 (3.9)

𝑓0(1) = 𝑔0 (3.14)

No penetration conditions for 𝑡 ∈ [0, 𝜏] (𝑢(1, 𝑡) < 𝑔0):

𝑓0(𝑠) ≥ 0 ∀𝑠 ∈ [−1,min(1, 𝜏 − 1)] (3.22)

𝑓0(𝑠) ≤ 𝑔0 ∀𝑠 ∈ [−1, 𝜏 − 3] if 2 < 𝜏 < 4 (3.23)

Positive incoming velocity and contact at 𝑡 = 𝜏 (𝑢(1, 𝜏) = 𝑔0, 𝜕𝑡𝑢(1, 𝜏−) > 0):

𝑓 (𝜏 + 1) − 𝑓 (𝜏 − 1) = 𝑔0 (3.24)

𝑓 ′(𝜏− + 1) − 𝑓 ′(𝜏− − 1) > 0 (3.25)

Repulsion by obstacle for 𝑡 ∈ [𝜏, 𝑇] (𝜕𝑥𝑢(1, 𝑡) < 0):

𝑓 ′(𝑠) ≤ 0 𝑠 ∈ [𝜏 − 1, 𝑇 − 1] a.e. (3.29)

Periodicity condition:

𝑓 ′(𝑠 + 𝑇) − 𝑓 ′0 (𝑠) = 0 ∀𝑠 ∈ [−1, 1] (3.30)

where 𝑓 ′ is defined by combining (3.17) and (3.26) and then differentiating as

𝜏 ≤ 2 : 𝑓 ′(𝑠) =




𝑓 ′0 (𝑠) 𝑠 ∈ [−1, 1]

− 𝑓 ′0 (𝑠 − 2) 𝑠 ∈ [1, 𝜏 + 1]

𝑓 ′(𝑠 − 2) 𝑠 ∈ [𝜏 + 1, 𝑇 + 1]

(3.31)
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or

2 ≤ 𝜏 < 4 : 𝑓 ′(𝑠) =




𝑓 ′0 (𝑠) 𝑠 ∈ [−1, 1]

− 𝑓 ′0 (𝑠 − 2) 𝑠 ∈ [1, 3]

𝑓 ′0 (𝑠 − 4) 𝑠 ∈ [3, 𝜏 + 1]

𝑓 ′(𝑠 − 2) 𝑠 ∈ [𝜏 + 1, 𝑇 + 1]

(3.32)

While a complete closed-form solution to the CPS could not be found, it will be shown that the

CPS can be solved for some cases.

3.3 Non-smooth modal analysis

3.3.1 Piecewise-linear mode

In this section, the CPS are solved to őnd the NSM in [12, 97] where it was proven that NSMs

parametrized by the period must be piecewise-linear. Such mode is known to exist for 𝑇 ∈ (3, 4)

and 𝜏 ∈ (2, 4) [97], see Figure 3.6 for the initial conditions

𝑢0(𝑥) =
𝑔0𝑥

3 − 𝑇
, 𝑣0(𝑥) = 0 ∀𝑥 ∈ [0, 1] . (3.33)

1 3
4

𝑔2
0

2

𝐴

𝐵

Frequency (𝜔/𝜔1)

Energy

(a) Frequency energy plot (b) Motion at point 𝐴 (c) Motion at point 𝐵

Figure 3.6: NSM found in [12, 97]. In plot (a): 𝜔 = 2𝜋/𝑇 and 𝜔1 = 2𝜋/4.

To őnd this piecewise-linear mode via the CPS, periods 𝑇 ∈ (3, 4) and inactive contact durations

𝜏 ∈ (2, 4), with 2 > 𝑇 − 𝜏 > 0. For 𝜏 ∈ (2, 4), the d’Alembert function is described by (3.32) and

its last component, 𝑓 ′(𝑠) ∈ [𝜏 + 1, 𝑇 + 1], is deőned implicitly by previous components. Here, we

will deőne the last component explicitly in 𝑓 ′0 (𝑠) using the requirement 𝑇 ∈ (3, 4). We őrst note that

for 𝑇 ∈ (3, 4) and 𝜏 ∈ (2, 4) the argument of the last component in (3.32), 𝑠 − 2 ∈ [𝜏 + 1, 𝑇 + 1],

must span 𝑠−2 ∈ [3, 5] (or 𝑠 ∈ [1, 3]). Therefore, the last component of 𝑓 is determined exclusively
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by 𝑓 (𝑠) for 𝑠 ∈ [1, 3]. Namely, for 𝜏 ∈ (2, 4) and 𝑇 ∈ (3, 4), we obtain

𝑓 ′(𝑠) =




𝑓 ′0 (𝑠) 𝑠 ∈ [−1, 1]

− 𝑓 ′0 (𝑠 − 2) 𝑠 ∈ [1, 3]

𝑓 ′0 (𝑠 − 4) 𝑠 ∈ [3, 𝜏 + 1]

𝑓 ′(𝑠 − 2) 𝑠 ∈ [𝜏 + 1, 𝑇 + 1]

=




𝑓 ′0 (𝑠) 𝑠 ∈ [−1, 1]

− 𝑓 ′0 (𝑠 − 2) 𝑠 ∈ [1, 3]

𝑓 ′0 (𝑠 − 4) 𝑠 ∈ [3, 𝜏 + 1]

− 𝑓 ′0 (𝑠 − 4) 𝑠 ∈ [𝜏 + 1, 𝑇 + 1]

(3.34)

without loss of generality. Before plugging Expression (3.34) into the CPS, we determine the

appropriate space of functions for 𝑓0. Here, since the sought NSM consists of piecewise linear

displacements, it is assumed that 𝑓0 consists of piecewise-linear functions. Next, the loci of

non-smoothness in 𝑓0 are determined. This is done by noting the CPS conditions (3.23) and (3.29)

apply for two adjacent non-overlapping domains: [−1, 𝜏 − 3] and [𝜏 − 3, 𝑇 − 3]. Thus, it is trivial

to assume that loci of non-smoothness are 𝜏 − 3 and 𝑇 − 3. Accordingly, we dissect 𝑓0 into three

parts spanning [−1, 𝜏 − 3], [𝜏 − 3, 𝑇 − 3], and [𝑇 − 3, 1] to obtain a piecewise-linear and continuous

function

𝑓0(𝑠) =




𝑎0 + 𝑏0𝑠 𝑠 ∈ [−1, 𝜏 − 3]

𝑎0 + 𝑏0(𝜏 − 3) + 𝑏1(𝑠 − 𝜏 + 3) 𝑠 ∈ [𝜏 − 3, 𝑇 − 3]

𝑎0 + 𝑏0(𝜏 − 3) + 𝑏1(𝑇 − 𝜏) + 𝑏2(𝑠 − 𝑇 + 3) 𝑠 ∈ [𝑇 − 3, 1] .

(3.35)

Then, the piecewise-linear 𝑓0 (3.35) is plugged into the CPS conditions such that

Eq.(3.9) ⇒ 𝑎0 = 𝑏0 (3.36)

Eq.(3.22, 3.23, 3.24) ⇒ 𝑏0 = 𝑔0/(𝜏 − 2) (3.37)

Eq.(3.14, 3.36, 3.38) ⇒ 𝑏2 = −𝑏1(𝑇 − 𝜏)/(4 − 𝑇) (3.38)

Eq.(3.24, 3.25, 3.29) ⇒ 𝑏1 > 0. (3.39)

Expressions (3.36)-(3.38) are plugged back into (3.35), itself inserted in (3.34), to form an expression
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of 𝑓 dependent on 𝑏1, 𝜏 and 𝑇 only

𝑓 (𝑠) =




𝑔0
𝜏−2 (𝑠 + 1) 𝑠 ∈ [−1, 𝜏 − 3]

𝑔0 + 𝑏1(𝑠 − 𝜏 + 3) 𝑠 ∈ [𝜏 − 3, 𝑇 − 3]

𝑔0 + 𝑏1
(𝑇−𝜏)
4−𝑇 (1 − 𝑠) 𝑠 ∈ [𝑇 − 3, 1]

𝑔0 −
𝑔0
𝜏−2 (𝑠 − 1) 𝑠 ∈ [1, 𝜏 − 1]

−𝑏1(𝑠 − 𝜏 + 1) 𝑠 ∈ [𝜏 − 1, 𝑇 − 1]

−𝑏1
(𝑇−𝜏)
4−𝑇 (3 − 𝑠) 𝑠 ∈ [𝑇 − 1, 3]

𝑔0
𝜏−2 (𝑠 − 3) 𝑠 ∈ [3, 𝜏 + 1]

𝑔0 − 𝑏1(𝑠 − 𝜏 − 1) 𝑠 ∈ [𝜏 + 1, 𝑇 + 1] .

(3.40)

It is noted that the őrst component of 𝑓 does not depend on 𝑏1 since Equations (3.9) (which deőnes

the reference point for 𝑓 ) and (3.24) (which establishes contact with the rigid wall at the beginning

of the active contact motion) are sufficient to determine the constants 𝑎0 and 𝑏0.

Next, we will show that the free parameter 𝑏1 becomes a mono-valued function of 𝜏 as soon as

periodicity is enforced. For the d’Alembert function, periodicity (3.30) reads

𝑓 ′𝑝 (𝑠) ≡ 𝑓
′(𝑠 + 𝑇) = 𝑓 ′0 (𝑠) ∀𝑠 ∈ [−1, 1] (3.41)

where 𝑓𝑝 denotes the section of the d’Alembert function deőning the motion at the end of the period.

Based on the d’Alembert function (3.40), 𝑓 ′𝑝 reads

𝑓 ′𝑝 (𝑠) =




𝑏1 𝑠 ∈ [−1, 3 − 𝑇]
𝑔0
𝜏−2 𝑠 ∈ [3 − 𝑇, 𝜏 − 𝑇 + 1]

−𝑏1 𝑠 ∈ [𝜏 − 𝑇 + 1, 1]

(3.42)

and, accordingly, 𝑓0 reads

𝑓 ′0 (𝑠) =




𝑔0
𝜏−2 𝑠 ∈ [−1, 𝜏 − 3]

𝑏1 𝑠 ∈ [𝜏 − 3, 𝑇 − 3]

−𝑏1 𝑠 ∈ [𝑇 − 3, 1] .

(3.43)

Naturally, the őrst requirement for equality of 𝑓𝑝 and 𝑓0 is that their loci of non-smoothness will

be congruent. Currently, the components in (3.42) and (3.43) do not span identical domains. It is

chosen to establish a relationship between 𝜏 and 𝑇 such that the loci of non-smoothness align. Here,

equality between 𝑓𝑝 and 𝑓0 can be enforced as soon as the domains of deőnition (or support) of the

last component of each function are identical, i.e., 𝑇 − 3 = 𝜏 − 𝑇 + 1 or

2𝑇 (𝜏) = 𝜏 + 4. (3.44)
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This relationship also agrees with the piecewise-linear mode in [97] reproduced in this section.

Furthermore, it can be easily noted that at 𝑠 = −1, a periodic solution requires 𝑓 ′𝑝 (−1+) = 𝑓 ′0 (−1+)

𝑓 ′0 (−1+) = 𝑏1(𝜏) =
𝑔0

𝜏 − 2
= 𝑓 ′𝑝 (−1+) (3.45)

Plugging Equations (3.44) and (3.45) into (3.42) and (3.43), we note that the periodicity conditions

are indeed satisőed

𝑓 ′0 (𝑠) = 𝑓 ′𝑝 (𝑠) =
𝑔0

2𝑇 (𝜏) − 6




1 𝑠 ∈ [−1, 𝑇 (𝜏) − 3]

−1 𝑠 ∈ [𝑇 (𝜏) − 3, 1]
(3.46)

for arbitrary 𝑇 ∈ (3, 4). The necessary initial conditions for the NSM are obtained by integrating

Equation (3.46)

𝑓0(𝑠) =
𝑔0

2𝑇 (𝜏) − 6



𝑠 + 1 𝑠 ∈ [−1, 𝑇 (𝜏) − 3]

2𝑇 (𝜏) − 5 − 𝑠 𝑠 ∈ [𝑇 (𝜏) − 3, 1]
(3.47)

Thus, any initial condition (3.47), for the aforementioned 𝑇 and 𝜏, generates a periodic motion. This

piecewise-linear mode is now properly deőned.

NSM1: Piecewise-Linear Mode of the Cantilever Bar in Unilateral Contact Given 𝑔0 > 0,

𝑢(𝑥, 𝑡) = 𝑓 (𝑡 + 𝑥) − 𝑓 (𝑡 − 𝑥) with 𝑓 such that

𝑓 (𝑠) =
𝑑

2𝑇 − 6




𝑠 + 1 𝑠 ∈ [−1, 𝑇 − 3]

2𝑇 − 5 − 𝑠 𝑠 ∈ [𝑇 − 3, 𝑇 − 1]

𝑠 − 3 𝑠 ∈ [𝑇 − 1, 2𝑇 − 3]

4𝑇 − 9 − 𝑠 𝑠 ∈ [2𝑇 − 3, 𝑇 + 1]

(3.48)

represents a non-smooth nonlinear mode for all 𝑇 ∈ (3, 4)2.

To show NSM1 is equivalent to the piecewise-linear mode introduced in [97], it is noted that

NSM1 at 𝑡 = 𝑇 − 2 generates the displacement and velocity őelds

𝑢(𝑥, 𝑇 − 2) = 𝑓 (𝑇 − 2 + 𝑥) − 𝑓 (𝑇 − 2 − 𝑥)

=
𝑔0

2𝑇 − 6
(𝑇 − 3 − 𝑥) −

𝑔0

2𝑇 − 6
(2𝑇 − 3 + 𝑥) = −

𝑔0𝑥

𝑇 − 3
, ∀𝑥 ∈ [0, 1] (3.49)

𝜕𝑡𝑢(𝑥, 𝑇 − 2) = 𝑓 ′(𝑇 − 2 + 𝑥) − 𝑓 ′(𝑇 − 2 − 𝑥)

= −
𝑔0

2𝑇 − 6
+

𝑔0

2𝑇 − 6
= 0, ∀𝑥 ∈ [0, 1] (3.50)

which agree with (3.33). Since the solution is unique with respect to initial condition [73], NSM1 is

2Note that any reference to 𝜏 has been omitted as it is not critical for illustrating the mode NSM1.

45



3.3 Non-smooth modal analysis

indeed equivalent to the piecewise-linear mode presented in [97]. Furthermore, we note that NSM1

exists for both rational and irrational periods in (3, 4). This fact has been also established in [12]

where it is stated that a continua of periodic solutions spanning different periods must consist of

piecewise-linear displacements. However, it has been speculated that for the case of rational 𝑇 ,

families of periodic solutions that are not piecewise-linear may exist. Here, using the d’Alembert

formulation and the CPS, we have found these families of periodic solutions.

3.3.2 Piecewise-smooth mode(s) of the same period

For 𝑇 ∈ Q, previous works have only reported piecewise-linear modes [12,97]. Here, it is shown

that piecewise-smooth solutions exist as well. In fact, these solution play a big role in identifying

the modal space of the cantilever in unilateral contact and exhibit some of the difficulties expected

in numerical approaches to nonsmooth modal analysis. This section details a methodology for

determining analytically these piecewise-smooth modes. An illustrative example is provided.

Assume that both 𝑇 and 𝜏 belong to Q such that 𝑇 and 𝜏 can be described by 𝑛, 𝑝 < 𝑛, and 𝑚

belonging to N, namely,

𝑇 = 𝑛/𝑚, 𝜏 = 𝑝/𝑚. (3.51)

To accommodate for the CPS conditions spanning non-uniform domains, such that no penetration

conditions (3.22)-(3.23) and negative repulsion force condition (3.29) are satisőed, it was found

useful to dissect 𝑓0 into 2𝑚 equal components, each consisting of a smooth function 𝑎𝑖 (𝑠)

𝑓0(𝑠) =




𝑎0(𝑠 + 1) 𝑠 ∈ [−1,−1 + 1/𝑚]

𝑎1(𝑠 + 1 − 1/𝑚) 𝑠 ∈ [−1 + 1/𝑚,−1 + 2/𝑚]
...

𝑎𝑖 (𝑠 + 1 − 𝑖/𝑚) 𝑠 ∈ [−1 + 𝑖/𝑚,−1 + (𝑖 + 1)/𝑚]
...

𝑎2𝑚−1(𝑠 − 1 + 1/𝑚) 𝑠 ∈ [1 − 1/𝑚, 1]

(3.52)

where the functions 𝑎𝑖 have the following features:

𝑎𝑖 : [0, 1/𝑚] ↦→ [0, 𝑔0] , 𝑖 = 0, 1, . . . , 𝑝 − 2𝑚 − 1 (3.53)

𝑎𝑖 : [0, 1/𝑚] ↦→ [0,∞) 𝑖 = 𝑝 − 2𝑚, 𝑝 − 2𝑚 + 1, . . . , 2𝑚 − 1. (3.54)

These functions can be nonlinear in 𝑠 in contrast with (3.35) where 𝑎0 stands for a constant. The

condition 𝑎𝑖 (𝑠) ≥ 0 is a consequence of (3.22). In this manuscript, only 1CPP with 𝜏 > 2 are

considered so 𝑎𝑖 (𝑠) ≤ 𝑔0 from (3.23). Moreover, to preserve the continuity of 𝑓0, the following

must hold: 𝑎𝑖−1(1/𝑚) = 𝑎𝑖 (0) for all 𝑖 = 1, 2, . . . , 2𝑚 − 2. This dissection of 𝑓0 allows then for an
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easy depiction of the solution space of the CPS for 𝑇 ∈ Q.

As an example, a solution for 𝑛 = 10, 𝑝 = 8 and 𝑚 = 3, i.e., inactive motion duration 𝜏 = 8/3

and period 𝑇 = 10/3, is derived in the remainder of this section (for other choice of parameters 𝑝, 𝑛

and 𝑚 this method may fail as further discussed in Section 3.3.4).

First, the periodicity condition (3.30) of the CPS is solved. For 𝜏 = 8/3 and 𝑇 = 10/3, 𝑓 ′(𝑠 +𝑇)

is derived via Equation (3.32) and reads (derivation has been omitted for the sake of conciseness)

𝑓 ′(𝑠 + 𝑇) =




−𝑎′4(𝑠 + 1) 𝑠 ∈ [−1,−2/3]

−𝑎′5(𝑠 + 1) 𝑠 ∈ [−2/3,−1/3]

𝑎′0(𝑠 + 1/3) 𝑠 ∈ [−1/3, 0]

𝑎′1(𝑠) 𝑠 ∈ [0, 1/3]

−𝑎′2(𝑠 − 1/3) 𝑠 ∈ [1/3, 2/3]

−𝑎′3(𝑠 − 2/3) 𝑠 ∈ [2/3, 1]

(3.55)

while the initial condition reads

𝑓 ′0 (𝑠) =




𝑎′0(𝑠 + 1) 𝑠 ∈ [−1,−2/3]

𝑎′1(𝑠 + 2/3) 𝑠 ∈ [−2/3,−1/3]

𝑎′2(𝑠 + 1/3) 𝑠 ∈ [−1/3, 0]

𝑎′3(𝑠) 𝑠 ∈ [0, 1/3]

𝑎′4(𝑠 − 1/3) 𝑠 ∈ [1/3, 2/3]

𝑎′5(𝑠 − 2/3) 𝑠 ∈ [2/3, 1] .

(3.56)

Then, Equation (3.30) can be easily solved by equating each of the components in 𝑓0(𝑠) to their

corresponding components in 𝑓 (𝑠 + 𝑇) admitting

𝑎′0(𝑠) = −𝑎
′
4(𝑠) = 𝑎

′
2(𝑠), ∀𝑠 ∈ [0, 1/3] (3.57)

𝑎′1(𝑠) = −𝑎
′
5(𝑠) = 𝑎

′
3(𝑠), ∀𝑠 ∈ [0, 1/3] . (3.58)

From conditions (3.57) and (3.58), it is gathered that 𝑓0 such that a periodic solution ensues depends

solely on the choice of 𝑎0(𝑠) and 𝑎1(𝑠). Thus, applying all other conditions in the CPS (besides the

already solved periodicity condition), a non-smooth mode is obtained as described below.

NSM2: Piecewise-Smooth Mode of the Cantilever Bar in Unilateral Contact For an inactive

contact duration 𝜏 = 8/3 and period 𝑇 = 10/3, the arbitrary piecewise-smooth functions 𝑎0(𝑠) and
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𝑎1(𝑠) in the domain 𝑠 ∈ [0, 1/3], with the constraints

Continuity of 𝑓0: 𝑎0(1/3) = 𝑎1(0) (3.59)

Eq.(3.9, 3.24) : 𝑎0(0) = 0 (3.60)

Eq.(3.14) : 𝑎1(1/3) = 𝑔0 (3.61)

and, recalling the remaining CPS conditions,

Eq.(3.25) ⇒ 𝑎′0(0) > 0 (3.62)

Eq.(3.22, 3.23, 3.29) ⇒ 0 < 𝑎0(𝑠) ≤ 𝑔0, ∀𝑠 ∈ [0, 1/3] (3.63)

Eq.(3.22, 3.23, 3.29) ⇒ 0 ≤ 𝑎1(𝑠) ≤ 𝑔0, ∀𝑠 ∈ [0, 1/3] (3.64)

define a non-smooth mode with 𝑢(𝑥, 𝑡) = 𝑓 (𝑡 + 𝑥) − 𝑓 (𝑡 − 𝑥) where 𝑓 is defined in (3.32) with initial

condition

𝑓0(𝑠) =




𝑎0(𝑠 + 1) 𝑠 ∈ [−1,−2/3]

𝑎1(𝑠 + 2/3) 𝑠 ∈ [−2/3,−1/3]

𝑔0 + 𝑎0(𝑠 + 1/3) 𝑠 ∈ [−1/3, 0]

𝑔0 + 𝑎1(𝑠) 𝑠 ∈ [0, 1/3]

2𝑔0 − 𝑎0(𝑠 − 1/3) 𝑠 ∈ [1/3, 2/3]

2𝑔0 − 𝑎1(𝑠) 𝑠 ∈ [2/3, 1] .

(3.65)

NSM2 consists of periodic motions existing exclusively for 𝑇 = 10/3. Two distinct NSM2

motions are shown in Figure 3.7. From conditions (3.59)-(3.64) on functions 𝑎0 and 𝑎1, we

understand that NSM2 exists in a convex (because of inequalities) subspace of (𝐶1 [0, 1/3])2. In

turn, using the procedure presented in this section with different 𝑚, 𝑛 and 𝑝, similar mode can be

derived for any period of the type 𝑇 ∈ Q and 𝜏 ∈ Q. However, for some values of 𝑚, 𝑛 and 𝑝, the

proposed methodology could not generate periodic solutions.

3.3.3 Piecewise-monotonic mode

While most of this chapter consists of őndings published in [89], this section provides original

content and complements the őndings of the author in [89].

It has been found that by restricting the deőnition of the 𝑎𝑖 (𝑠) functions in (3.52) to a single

differentiable monotonic function 𝜂(𝑠) ∈ C1 [0; 1/𝑚] and coefficients 𝑐𝑖 allows derivation of a

piecewise-monotonic mode existing on each rational period 𝑇 ∈ (3, 4). The main importance of

this section is to provide a concrete example of a piecewise-smooth mode and to also show that

piece-monotonic mode exist for the dense group 𝑇 ∈ Q(3, 4).
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Figure 3.7: Periodic motions belonging to NSM2. The location of these motions in the FEP will be presented
later in Figure 3.8.

The derivation of the piecewise monotonic mode starts by restricting the set of variables 𝑎𝑖 (𝑠).

Here, 𝑎𝑖 (𝑠) = 𝑐𝑖𝜂(𝑠) for 𝑖 = 0, 1, . . . , 2𝑚 − 1 are plugged into the space of initial condition in (3.52)

to admit

𝜂(0) = 0, 𝜂(𝑠) ∈ C1 [0; 1/𝑚] (3.66)

𝑓0(𝑠) =




𝑐0𝜂(𝑠 + 1) 𝑠 ∈ [−1,−1 + 1/𝑚]

𝑐0𝜂(1/𝑚) + 𝑐1𝜂(𝑠 + 1 − 1/𝑚) 𝑠 ∈ [−1 + 1/𝑚,−1 + 2/𝑚]

𝜂(1/𝑚)
1∑︁
𝑖=0

𝑐𝑖 + 𝑐2𝜂(𝑠 + 1 − 2/𝑚) 𝑠 ∈ [−1 + 2/𝑚,−1 + 2/𝑚]

...

𝜂(1/𝑚)
𝑗−1∑︁
𝑖=0

𝑐𝑖 + 𝑐 𝑗𝜂(𝑠 + 1 − 𝑗/𝑚) 𝑠 ∈ [−1 + 𝑗/𝑚,−1 + ( 𝑗 + 1)/𝑚]

...

𝜂(1/𝑚)
2𝑚−2∑︁
𝑖=0

𝑐𝑖 + 𝑐2𝑚−1𝜂(𝑠 − 1 + 1/𝑚) 𝑠 ∈ [1 − 1/𝑚, 1]

(3.67)
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Here, the restriction in Equation (3.66) is introduced to answer the CPS condition (3.9): 𝑓 (−1) = 0.

Note that the formulation of 𝑓0(𝑠) suggested in Equation (3.67) does not constitute an approximation

and does not affect the accuracy of the solution. In fact, all the solutions developed here are exact

and admissible 1CPP solutions of the cantilever bar.

In what follows, the CPS problem conditions will be formulated in terms of and solved for

𝑐𝑖 and 𝜂(𝑠) such that a NSM can be concisely deőned. Furthermore, it will be shown that the

solutions to the CPS problem largely depend on 𝑐𝑖, and 𝜂(𝑠) can exist in a subspace of monotonic

smooth functions. At last, to simplify the following derivation, the piecewise smooth modes consist

of motions with 𝜏 ∈ (2, 4) and 𝑇 ∈ (3, 4) (or 2𝑚 < 𝑝 < 4𝑚 and 3𝑚 < 𝑛 < 4𝑚) such that the

formulation of the d’Alembert function in Equation (3.34) applies (other ranges of 𝜏 and 𝑇 were not

explored).

In order to formulate the CPS conditions, the d’Alembert function 𝑓 (𝑠) is generated by the initial

conditions (3.67) via expression (3.34), applicable for 𝜏 ∈ [2, 4] (the derivation has been omitted

for the sake of conciseness)

𝑓 (𝑠) =




𝑐0𝜂(𝑠 + 1) 𝑠 ∈ [−1,−1 + 1/𝑚]

𝑐0𝜂(1/𝑚) + 𝑐1𝜂(𝑠 + 1 − 1/𝑚) 𝑠 ∈ [−1 + 1/𝑚,−1 + 2/𝑚]

𝜂(1/𝑚)
1∑︁
𝑖=0

𝑐𝑖 + 𝑐2𝜂(𝑠 + 1 − 2/𝑚) 𝑠 ∈ [−1 + 2/𝑚,−1 + 2/𝑚]

...

𝜂(1/𝑚)
2𝑚−2∑︁
𝑖=0

𝑐𝑖 + 𝑐2𝑚−1𝜂(𝑠 − 1 + 1/𝑚) 𝑠 ∈ [1 − 1/𝑚, 1]

𝜂(1/𝑚)
2𝑚−1∑︁
𝑖=0

𝑐𝑖 + 𝑏0𝜂(𝑠 − 1) 𝑠 ∈ [1, 1 + 1/𝑚]

𝜂(1/𝑚)

( 2𝑚−1∑︁
𝑖=0

𝑐𝑖 + 𝑏0

)
+ 𝑏1𝜂(𝑠 − 1 − 1/𝑚) 𝑠 ∈ [1 + 1/𝑚, 1 + 2/𝑚]

...

𝜂(1/𝑚)

( 2𝑚−1∑︁
𝑖=0

𝑐𝑖 +

𝑛−2∑︁
𝑖=0

𝑏𝑖

)
+ 𝑏𝑛−1𝜂(𝑠 − 𝑇 − 1 + 1/𝑚) 𝑠 ∈ [𝑇 + 1 − 1/𝑚,𝑇 + 1]

(3.68)

where the variables 𝑏𝑖 are introduced to simplify the notation and are described by the scheme

𝑏𝑖 =




−𝑐𝑖 𝑖 = 0, 1, . . . , 2𝑚 − 1

−𝑏𝑖−2𝑚 𝑖 = 2𝑚, 2𝑚 + 1, . . . , 𝑝 − 1

𝑏𝑖−2𝑚 𝑖 = 𝑝, 𝑝 + 1, . . . , 𝑛 − 1.

(3.69)
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It is noted that 𝑏𝑖 are always fully deőned if the coefficients 𝑐𝑖 are deőned. In this section, the matrix

presentation of the scheme (3.69) will be useful to derive the NSMs

b = R(𝑚, 𝑛, 𝑝)c (3.70)

where R(𝑚, 𝑛, 𝑝) is a rectangular 𝑛 × 2𝑚 matrix.

Next, using the 𝑓 (𝑠) deőned in (3.68) and (3.70), the periodicity conditions (3.30) can be

expressed as follows:

𝑏𝑖+𝑛−2𝑚−1𝜂
′(𝑠) = 𝑐𝑖𝜂

′(𝑠), 𝑖 = 0, 1, . . . , 2𝑚 − 1, 𝑠 ∈ [0, 1/𝑚] (3.71)

where the term 𝜂′(𝑠) can be omitted without loss of generality

𝑏𝑖+𝑛−2𝑚−1 = 𝑐𝑖 𝑖 = 0, 1, . . . , 2𝑚 − 1. (3.72)

Next, Equation (3.70) is plugged into (3.72) to formulate the periodicity conditions in 𝑐𝑖 exclusively

2𝑚−1∑︁
𝑗=0

R𝑖+𝑛−2𝑚, 𝑗 (𝑚, 𝑛, 𝑝)𝑐 𝑗 = 𝑐𝑖 𝑖 = 0, 1, . . . , 2𝑚 − 1. (3.73)

The remainder of the CPS conditions are constructed in terms of 𝑐𝑖, 𝑏𝑖 and 𝜂(𝑠) where all functional

inequalities apply for 𝑠 ∈ (0, 1/𝑚)

𝐸𝑞.(3.14) : 𝜂(1/𝑚)

( 2𝑚−1∑︁
𝑖=0

𝑐𝑖

)
= 𝑔0 (3.74)

𝐸𝑞.(3.24) : 𝜂(1/𝑚)
𝑝−1∑︁

𝑖=𝑝−2𝑚

𝑏𝑖 = 𝑔0 (3.75)

𝐸𝑞.(3.22) : 𝑐 𝑗𝜂(𝑠) ≥ −𝜂(1/𝑚)
𝑗−1∑︁
𝑖=0

𝑐𝑖, 𝑗 = 0, 1, . . . , 2𝑚 − 1 (3.76)

𝐸𝑞.(3.23) : 𝑐 𝑗𝜂(𝑠) + 𝜂(1/𝑚)
𝑗−1∑︁
𝑖=0

𝑐𝑖 ≤ 𝑔0, 𝑗 = 0, . . . , 𝑝 − 3𝑚 − 1 (3.77)

𝐸𝑞.(3.25) : 𝜂′(1/𝑚)𝑏𝑝−2𝑚−1 < 𝜂
′(1/𝑚)𝑏𝑝−1 (3.78)

𝐸𝑞.(3.29) : 𝑏𝑖−2𝑚−1𝜂
′(𝑠) ≤ 0, 𝑖 = 𝑝 + 1, 𝑝 + 2, . . . , 𝑛 (3.79)

Here, conditions (3.74) to (3.79) can be simpliőed into expressions exclusively in c by restricting

the choice of functions 𝜂(𝑠) to monotonically increasing functions such that

𝜂(0) = 0, 𝜂(1/𝑚) = 1, 𝜂′(𝑠) > 0 ∀𝑠 ∈ (0, 1/𝑚). (3.80)
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3.3 Non-smooth modal analysis

Plugging restrictions (3.80) and the relation (3.70) into conditions (3.74) to (3.79) admits

𝐸𝑞.(3.14) :
2𝑚−1∑︁
𝑖=0

𝑐𝑖 = 𝑔0 (3.81)

𝐸𝑞.(3.24) :
𝑝−1∑︁

𝑖=𝑝−2𝑚

2𝑚−1∑︁
𝑗=0

𝑅𝑖 𝑗𝑐 𝑗 = 𝑔0 (3.82)

𝐸𝑞.(3.22) :
𝑗∑︁
𝑖=0

𝑐𝑖 ≥ 0, 𝑗 = 0, 1, . . . , 2𝑚 − 1 (3.83)

𝐸𝑞.(3.23) :
𝑗∑︁
𝑖=0

𝑐𝑖 ≤ 𝑔0, 𝑗 = 0, 1, . . . , 𝑝 − 3𝑚 − 1 (3.84)

𝐸𝑞.(3.25) :
2𝑚−1∑︁
𝑗=0

𝑅𝑝−2𝑚−1, 𝑗𝑐 𝑗 <

2𝑚−1∑︁
𝑗=0

𝑅𝑝−1, 𝑗𝑐 𝑗 (3.85)

𝐸𝑞.(3.29) :
2𝑚−1∑︁
𝑗=0

𝑅𝑖 𝑗𝑐 𝑗 ≤ 0, 𝑖 = 𝑝 + 1, 𝑝 + 2, . . . , 𝑛. (3.86)

To simplify the notation, the CPS conditions in c (Equation (3.73) and Equations (3.81) to (3.86))

are collectively presented using the matrix notation

𝐸𝑞.(3.73, 3.81, 3.82) : G1(𝑚, 𝑛, 𝑝)c = 𝑔0g1 (3.87)

𝐸𝑞.(3.83, 3.84, 3.86) : G2(𝑚, 𝑛, 𝑝)c ≥ 𝑔0g2 (3.88)

𝐸𝑞.(3.85) : G3(𝑚, 𝑛, 𝑝)c > 0 (3.89)

where G1 is a rectangular matrix (2𝑚 + 2) × 2𝑚 and g1 is a vector of size 2𝑚 + 2. In turn, G2 is a

rectangular matrix of size (𝑛 − 𝑚 + 1) × 2𝑚, g2 is a vector of size 𝑛 − 𝑚 + 1, and G3 is a vector of

size 1 × 2𝑚.

It is noted that since 𝜂(𝑠) does not participate in the CPS conditions (3.87) to (3.89), any

𝜂(𝑠) such that (3.80) holds generates a valid 1CPP solution given that c answers (3.87) to (3.89).

In fact, since there exist inőnitely many functions 𝜂(𝑠) satisfying (3.80) (e.g., 𝜂(𝑠) = (𝑚𝑠)𝜁

with 𝜁 ∈ (0,∞)), determining c such that expressions (3.87) to (3.89) hold true is equivalent to

determining a piecewise-monotone mode.

NSM3: Piecewise-Monotonic Mode of the Cantilever Bar in Unilateral Contact Consider

𝑚, 𝑛 and 𝑝 belonging to N and defining the inactive contact duration 𝜏 = 𝑝/𝑚 ∈ Q(2, 4) and

period 𝑇 = 𝑛/𝑚 ∈ Q(3, 4). If there exists c ∈ R2𝑚 such that expressions (3.87) to (3.89) hold,

then any 𝜂(𝑠) subject to restriction (3.80) generates a NSM via the initial conditions (3.67). The

corresponding motions on NSM3 are then described via 𝑢(𝑥, 𝑡) = 𝑓 (𝑡 + 𝑥) − 𝑓 (𝑡 − 𝑥) where 𝑓 is
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Chapter 3 Exact Nonsmooth Modal Analysis of a Bar

defined in Equation (3.32).

The restrictions applied here on the space of initial conditions (3.67) has allowed to transform

the CPS from a set of conditions including functional equations into a linear system of equalities and

inequalities (3.87) to (3.89). The system can be indeed solved for some choices of 𝑚, 3𝑚 < 𝑛 < 4𝑚

and 2𝑚 < 𝑝 < 4𝑚. In this manuscript, the problem described by (3.87) to (3.89) is not solved

directly, but a subgroup of its solutions is explored. Nevertheless, it is possible to solve the problem

in (3.87) to (3.89) using analytical tools.

For example, the system of linear equations (3.87) can be őrst solved via the reduced row

echelon form. For different 𝑚, 𝑛 and 𝑝, Equation (3.87) can exhibit no solutions, unique solutions

or inőnitely many solutions (characterized by one or more free variables in c). In the case of unique

solutions, it is important to verify whether inequalities (3.88) and (3.89) are satisőed. If not, the

solution is rejected. Otherwise, in the case of inőnitely many solutions, the free variables can be

adjusted such that inequalities (3.88) and (3.89) are satisőed.

Next, instead of solving the CPS conditions (3.87) to (3.89), a subgroup of NSM3 is derived

using NSM1 (which is available in its closed-form in Equation (3.50)).

Notable NSM3 solutions

In what follows, a subspace of NSM3 will be built by analysis of motions from NSM1. To clarify, it

is possible to show that motions on NSM1 (particularly those exhibiting 𝑇 ∈ Q(3, 4)) belong to

NSM3 with 𝜂(𝑠) = 𝑚𝑠 (i.e., linear monotonic functions). Then, the constants c are extracted and

are used to build other piecewise-monotonic modes with the same c but different 𝜂(𝑠). Indeed, this

approach allows to extract important conclusions about the modal space of the internally resonant

bar in unilateral contact.

The problem presented in (3.87) to (3.89) is derived from the CPS. Therefore, if the initial

conditions 𝑓0(𝑠) of a given 1CPP motion with 𝑇 ∈ (3, 4) and 𝜏 ∈ (2, 4) can be put in the form of

an NSM3 initial condition (described in Equation (3.67)), this motion belongs to NSM3 (since it

satisőes the CPS conditions by deőnition).

Indeed, the initial conditions 𝑓0(𝑠) generating NSM1 on rational periods 𝑇 = 𝑛/𝑚 can be always

formulated in the form (3.67) and constitutes a subspace of NSM3. For example, the initial condition

of NSM1 motion (3.48) on 𝑇 = 3.5 reads

𝑓0(𝑠) = 𝑔0



𝑠 + 1 𝑠 ∈ [−1, 1/2]

2 − 𝑠 𝑠 ∈ [1/2, 1]
(3.90)

can be put in terms of (3.67) with 𝑚 = 2, 𝑛 = 7 and 𝑝 = 6 by choosing 𝜂(𝑠) = 2𝑠 and

𝑐0 = 𝑐1 = 𝑐2 = 𝑔0/2 and 𝑐3 = −𝑔0/2 which satisfy G1(2, 7, 6)c = 𝑔0g1, G2(2, 7, 6)c ≥ 𝑔0g2
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3.3 Non-smooth modal analysis

and G3(2, 7, 6)c > 0 (elaboration of these equalities and inequalities is omitted for the sake of

conciseness).

Furthermore, since the constants c answer the CPS (3.87) to (3.89), a mode of the type NSM3

can be generated by the initial conditions for 𝜂(𝑠) = 2𝑠

𝑓0(𝑠) =
𝑔0

2




𝜂(𝑠 + 1) 𝑠 ∈ [−1,−1/2]

1 + 𝜂(𝑠 + 1/2) 𝑠 ∈ [−1/2, 0]

2 + 𝜂(𝑠) 𝑠 ∈ [0, 1/2]

3 − 𝜂(𝑠 − 1/2) 𝑠 ∈ [1/2, 1]

= 𝑔0




𝑠 + 1 𝑠 ∈ [−1,−1/2]

𝑠 + 1 𝑠 ∈ [−1/2, 0]

𝑠 + 1 𝑠 ∈ [0, 1/2]

2 − 𝑠 𝑠 ∈ [1/2, 1]

(3.91)

The above procedure can be generalized for all motion of NSM1 with periods 𝑇 ∈ Q(3, 4), and

the subspace of NSM3 is formed in Proposition 3.5.

Proposition 3.5. Consider the set of rational periods 𝑇 = 𝑛/𝑚 ∈ (3, 4) and 𝜏 = 𝑝/𝑚 where

𝑝 = 2𝑛 − 4𝑚. The constants

𝑐𝑖 =
𝑔0

2𝑛 − 6𝑚




1 𝑖 = 0, 1, . . . , 𝑛 − 2𝑚 − 1

−1 𝑖 = 𝑛 − 2𝑚, 𝑛 − 2𝑚 + 1, . . . , 2𝑚 − 1
(3.92)

always answer conditions (3.87) to (3.89) and, therefore, generate NSM3 modes.

Proof. Proof for this proposition is provided in section Appendix A.4 □

Effectively, Proposition 3.5 details a NSM parametrized by 𝜂(𝑠) (subject to (3.80)) for every

rational period 𝑇 ∈ Q[3, 4]. An example of these modes is found in Figures 3.8 and 3.9. Note that

the found NSMs include also the NSM1 modes at their lowest energy. From Figure 3.8, it can be

noted that the modal space of the internally resonant bar is highly dense including many branches

connecting to the main NSM1 branch at every rational period. In fact, it can be conjured to be even

denser than presented in Figure 3.8 since the presented modes belong to a subspace of NSM3 which

is, in itself, a subspace of all CPS solutions. This density of the modal space, while an interesting

topic in itself, has also repercussions on the development of nonsmooth modal analysis techniques.

These will be discussed in the following section.

3.3.4 Applications to non-smooth modal analysis

Via the d’Alembert function, novel NSMs, see NSM2 and NSM3, were derived. While non-smooth

modes of the bar in unilateral contact were considered to consist mainly of piecewise-linear

functions [12, 84, 97], it has been shown that other piecewise-smooth solutions may exist as well.

Theorem 3.6. There exist piecewise-smooth modes of the cantilever bar in unilateral contact which

are not necessarily piecewise-linear.
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Figure 3.8: FEP of the backbone curves of NSMs satisfying Proposition 3.5 for 𝑇𝑖 = 3.01, 3.02, . . . , 3.99 and
𝜂(𝑠) = (1 − 𝜁) (𝑚𝑠)6 + 𝜁𝑚𝑠 with 𝜁 = (0, 1] (the value bounds are chosen such that condition (3.80) holds).
Black lines [ ] denote the NSM3 modes. Black dots [ ] denotes NSM1 motions occurring for 𝜁 = 1. The
red dot [ ] the NSM2 motion in Figures 3.7(a) and 3.7(b) and the blue dot [ ] indicates the NSM2 motion in
Figures 3.7(c) and 3.7(d). The red lines [ ] represent the family of 1CPP in Figure 3.9.

Proof. An example of such piecewise smooth mode is NSM2 in Section 3.3.2. Using the same

methodology as presented in 3.3.2, with different values 𝑝, 𝑛 and 𝑚, it is possible to őnd other

modes of the same type (see Section 3.3.3 for a more simpliőed methodology). □

Conjecture 3.7. For all 𝑇 ∈ Q where a periodic motion of the cantilever bar in unilateral contact

exists, there exists a piecewise-smooth mode of the type discussed in Theorem 3.6.

As mentioned previously, using the methodology in Section 3.3.2, we have found solutions for

other 𝑇 ∈ Q. In fact, Proposition 3.5 conőrms there exist piecewise-smooth modes for a dense group

of 𝑇 ∈ Q[3, 4]. Conjecture 3.7 is also supported analytically in [12, p.7] where it is stated that any

mode that is not piecewise-linear would exist only for 𝑇 ∈ Q.

At last, the detected modes discussed in conjecture 3.7 exhibit a peculiar property: inőnitely

many periodic solutions for the same energy and same period. This property is proven below.

Theorem 3.8. For the cantilever bar in unilateral contact, there exist continua of piecewise-smooth

periodic solutions of the same energy and frequency.

Proof. Contrary to proofs of preceding propositions, the proof of Theorem 3.8 will be presented

here rather in the appendix since the graphical depiction of this theorem, in Figure 3.10, corresponds

directly to the example in this proof.
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−1 1 𝑇 𝑇 + 1

𝑔0

0

𝑓 (𝑠)

(a) D’Alembert functions for 𝜁 = 0.05 [ ] 𝜁 = 0.25 [ ] 𝜁 = 0.5 [ ] 𝜁 = 0.75 [ ], and 𝜁 = 1 [ ]

(b) Displacement őeld, 𝜁 = 0.05 (c) Displacement őeld, 𝜁 = 0.5

Figure 3.9: Selected NSM3 solutions described in Proposition 3.5 for 𝑚 = 2, 𝑛 = 7 and 𝜂(𝑠) = (1− 𝜁) (𝑚𝑠)6 +
𝜁𝑚𝑠. The FEP of this modal family is depicted in Figure 3.8.

The proof consists of őnding a family of periodic functions, subspace of NSM2, of the same

energy.

To start, we consider the dimensionless energy of the cantilever bar:

2𝐸 (𝑡) =

∫ 1

0
𝜕𝑥𝑢(𝑥, 𝑡)

2 + 𝜕𝑡𝑢(𝑥, 𝑡)
2 d𝑥 (3.93)

Plugging the d’Alembert expression of the stress and velocity (3.8) gives:

2𝐸 (𝑡) =

∫ 1

0
( 𝑓 ′(𝑡 + 𝑥) + 𝑓 ′(𝑡 − 𝑥))2 + ( 𝑓 ′(𝑡 + 𝑥) − 𝑓 ′(𝑡 − 𝑥))2d𝑥 (3.94)

= 2

∫ 1

0
𝑓 ′2(𝑡 + 𝑥)d𝑥 + 2

∫ 1

0
𝑓 ′2(𝑡 − 𝑥) d𝑥 (3.95)

The second term can be put then in terms of 𝑓 ′(𝑡 + 𝑥) via a basic change of variable

𝐸 (𝑡) =

∫ 1

0
𝑓 ′2(𝑡 + 𝑥)d𝑥 −

∫ −1

0
𝑓 ′2(𝑡 + 𝑥)d𝑥 =

∫ 1

−1
𝑓 ′2(𝑡 + 𝑥)d𝑥 =

∫ 𝑡+1

𝑡−1
𝑓 ′2(𝑠)d𝑠. (3.96)

Also, note that the energy under unilateral contact is preserved [24,84,98] and can be represented in
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terms of initial conditions, in the d’Alembert form 𝑓0, exclusively

𝐸 (𝑡) = 𝐸 (0) =

∫ 1

−1
𝑓 ′20 (𝑠)d𝑠 ≡ 𝐸. (3.97)

Plugging 𝑓0 from NSM2 (3.65) leads to (the simpliőcation procedure has been omitted for the sake

of conciseness)

𝐸 = 3

∫ 1/3

0
𝑎′20 (𝑠)d𝑠 + 3

∫ 1/3

0
𝑎′21 (𝑠)d𝑠. (3.98)

Any functions 𝑎1 and 𝑎0 satisfying (3.98) generate a periodic solution with 𝑇 = 10/3, 𝜏 = 8/3 and

prescribed energy 𝐸 . For example, a linear function 𝑎0 and cubic function 𝑎1 belonging to NSM2

can be denoted as follows: (some steps in the derivation of the following expressions were omitted

to facilitate reading)

𝑎0(𝑠) = 𝑏1𝑠 (3.99)

𝑎1(𝑠) = 27
(
𝑔0 −

𝑏1

3

) 𝑠3 + 𝑏2𝑠

1 + 9𝑏2
+
𝑏1

3
(3.100)

where, to satisfy the remainder of the NSM2 conditions (3.59)-(3.64), 𝑏1 and 𝑏2 must abide

0 < 𝑏1 ≤ 3𝑔0, (3.101)

𝑏2 > 0. (3.102)

To obtain the energy of this NSM2 motion, (3.99) and (3.100) are plugged into (3.98):

𝐸 (𝑏1, 𝑏2) =
9(45𝑏2

2 + 10𝑏2 + 1) (𝑏1 − 3𝑔0)
2

5(9𝑏2 + 1)2
+ 𝑏2

1 (3.103)

For several energy values, 𝐸 , there exist inőnitely many values 𝑏1 and 𝑏2 (i.e., inőnitely many NSM2

solutions) generating motions of the same energy. For example, 𝐸 (𝑏1, 𝑏2) = 9𝑔2
0 is satisőed for any

𝑏1 =
6𝑔0

7 + 90𝑏2 + 405𝑏2
2

(3.104)

and 0 < 𝑏2 < ∞ satisőes (3.101) and (3.102). Thus, 𝑏2 ∈ (0,∞] with Equations (3.99), (3.100)

and (3.104) represents a family of periodic solution with the same energy and period in NSM2.

Several solutions from this piecewise-smooth mode are depicted in Figure 3.10. It is interesting to

note that the solution presented in Figures 3.7(a) and 3.7(b) also exhibits energy 𝐸 = 9𝑔2
0 and shares

the same loci in the FEP of the family of solutions discovered here. Thus, it is indicative that there

could exist many more families of solutions with the same energy and period. □

Similarly to Conjecture 3.7, for 𝜏, 𝑇 ∈ Q where periodic motions can be found, there also exist

energy-frequency (or period) pairs consisting of piecewise-smooth modes of the type mentioned in

Theorem 3.8. This mode is also depicted as a red point in Figure 3.8.

57



3.4 Discussion

−1 1 𝑇 𝑇 + 1

−𝑔0

𝑔0

0
𝑠

𝑓 (𝑠)

(a) D’Alembert functions for selected 𝑏2 values. 𝑏2 = 𝑔0/5 [ ] 𝑏2 = 3𝑔0/5 [ ], and 𝑏2 = 𝑔0 [ ]

(b) Displacement őeld, 𝑏2 = 𝑔0/5 (c) Displacement őeld, 𝑏2 = 𝑔0

Figure 3.10: Selected solutions from the continuum of solutions of same energy and frequency described
by (3.99), (3.100) and (3.104) deőned by the 𝑏2 values. All depicted solutions are motions of energy 𝐸 = 9𝑔2

0
and period 𝑇 = 10/3. Their location on the FEP diagram corresponds to the red point in Figure 3.8.

3.4 Discussion

It has been noticed that the true nonsmooth modal space of the investigated bar features a dense

cluster of NSMs. For example, the NSM2 existing on convex subsets of the functional space

C1 [0, 1/3]. Furthermore, a cluster of NSMs pertaining to NSM3 and belonging to C1 [0, 1/𝑚] (for

various 𝑚) has been found to exist for the periods 𝑇 ∈ (3, 4). In fact, it can be suggested that the

isolated periodic solutions discovered in [97] belong to the space of iso-periodic NSMs discussed in

Section 3.3.2. This last statement is supported by the fact that the numerical method used to obtain

the isolated solutions in [97] produces Signorini solutions for rational periods and inactive contact

durations 𝑇, 𝜏 ∈ Q similar to the piecewise-smooth modes discussed in Theorem 3.6.

The methodology presented here unfortunately does not extend to the nonsmooth modal analysis

of other structures in unilateral contact. For example, for the bar with soft support (Robin conditions

at 𝑥 = 0), the periodicity conditions admit a set of functional equations involving integral terms in the

initial conditions which could not be solved given the methodology presented here. Furthermore, for

the varying area bar and two-dimensional structures in unilateral contact, there exist no d’Alembert

travelling-wave function and therefore the proposed methodology is not applicable.
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The results presented here also have implications on the remainder of the thesis. Speciőcally,

the cluster of NSMs discovered in this chapter sets numerous difficulties on numerical modal

analysis. These difficulties are explained in detail for the remainder of this section. The NSMs

discovered here exist in functional spaces that are subsets of C1 as shown by NSM2 and NSM3

with Theorem 3.5. However, the continuation methods presented in Section 2.1.3 are constructed to

őnd two-dimensional manifolds. To clarify, since the numerical approximation of the nonsmooth

modal space reaches the exact modal space at convergence, it is expected that the solution space

to the periodicity conditions (with phase conditions) not be a two-dimensional manifold but may

consist of a hyper-surface parametrized with more than two parameters (such as NSM3). In turn, as

convergence is reached, the solution to the equations solved in nonlinear modal analysis (periodicity

conditions, phase condition and continuation equation) may not be unique and may not be suitable

for traditional gradient-based root solvers (which require solutions to exist as isolated point).

Another difficulty of numerical nonsmooth modal analysis is imposed by the existence of

iso-periodic NSMs for every rational period 𝑇 ∈ Q[3, 4], as implied from Theorem 3.5 and shown

in Figure 3.8. Speciőcally, both sequential and pseudo-arclength continuation methods may have

difficulties in revealing the modal space. Sequential continuation, as demonstrated in Section 2.1.3,

assumes a unique solution for a őxed period 𝑇𝑖. However, the space of iso-periodic NSMs for

rational periods 𝑇 contradicts this assumption. In turn, the pseudo-arclength continuation method

may experience difficulties since it requires a deőnition of a tangent to the space of solutions of the

periodicity equations. However, a tangent to the space of solutions is not deőned at intersection

between branches or for solution spaces that do not constitute a curve [4]. Here, intersections

between branches in the investigated modal space occur on a dense set of periods and the existence

of nonsmooth modal families on rational periods may therefore introduce difficulties to pseudo-

arclength continuation, upon convergence of the model. While these conclusions pertain to the

speciőc nonsmooth modal space of the internally resonant bar, precautions will be taken in the

application of numerical nonsmooth modal analysis in this thesis as these behaviours may not be

exclusive to the internally resonant bar.
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In Chapter 3, analytical tools were employed to determine the modal space of the uniform area bar

in unilateral contact. However, these analytical techniques could not have been extended to study

the uniform-area bar with soft-support or the varying-area bar. Thus, to perform nonsmooth modal

analysis of models of the bar other than the uniform-area bar, numerical techniques must be used.

In Section 2.5, several numerical methods were inspected and it was concluded that none of the

methods allow for the detection of periodic solutions without chattering and without penetration of

the rigid obstacle. Thus, as stated in the introduction to this thesis (Chapter 1), the nodal boundary

method (NBM) is developed for nonsmooth modal analysis. In contrast with the numerical methods

mentioned in Section 2.5, the NBM has been successful in performing nonsmooth modal analysis of

the varying-area bar and the two-dimensional plate.

In this chapter, the NBM will be presented for the one-dimensional bar in unilateral contact.

The main novelty in this chapter is the nonsmooth modal analysis of the varying-area bar prone to

contact. However, for comparison with existing literature, the NBM is also applied to the case of the

uniform-area cantilever bar with and without soft support. It is important to note that the NBM is

not limited to the one-dimensional case of the bar. Indeed, in the following chapter (Chapter 5),

application of NBM for nonsmooth modal analysis of the deformable plate in unilateral contact is

presented.

While most of this chapter is replicated from an article published in [87], some of the sections

were modiőed to make for a more coherent reading in the context of this thesis. Furthermore, several

new sections were added to expand on subjects presented in [87] and to provide a more robust proofs

and foundation to various aspects of the NBM. These sections include: Section 4.4.1 detailing

application of Crank-Nicolson and shooting method, Appendix B.5 elaborating the Crank-Nicolson

algorithm, Section 4.5.2 comparing the performance of NBM against other numerical methods,

Figure 4.9 which provides comparisons of forced-response curves obtained by NBM and other

numerical methods, proof of invertible NBM mass matrices (Appendix B.3), and proof of uniqueness
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Chapter 4 Nodal Boundary Method in One Dimension

of solutions of NBM-ODE (Appendix B.4).

In this chapter, Section 4.1 presents the problem of the nonsmooth modal analysis of the varying-

area bar and introduces notation and terminology to be used in this chapter. Next, in Section 4.2

the FEM formulation is reminded to give context for the derivation of NBM. In Section 4.3, the

NBM will be derived from basic principles and supporting theorems will be presented. Then, the

shooting method and sequential continuation with the NBM will be discussed in Section 4.4. At

last, nonsmooth modal analysis of various cases involving the bar will be performed in Section 4.5.

There, proofs of convergence will be presented as well.

4.1 Problem statement

The cantilever bar of varying-area illustrated in Figure 4.1. The displacement őeld of the bar is

𝑔0𝐿

𝐿

𝑥

�̄�0 𝑢
(
𝑥, 𝑡

)
�̄�(𝑥)

Figure 4.1: Bar of varying area prone to unilateral contact with a rigid wall.

denoted 𝑢(𝑥, 𝑡), where 𝑥 and 𝑡 represent the physical position and time, respectively. The bar is

clamped to a wall at 𝑥 = 0 and is prone to unilateral contact with a rigid obstacle at its other end

𝑥 = 𝐿, where 𝐿 denotes the length of the bar. At rest, the rigid obstacle is set at a distance 𝑔0𝐿 from

the tip of the bar.

The time and space coordinates are normalized here, similarly to the normalization procedure in

Equation (3.1) of Section 3.1. Upon normalization of the physical coordinates, the PDE governing

the motion of the varying-area bar reads

𝜕𝑡𝑡𝑢(𝑥, 𝑡) = 𝜕𝑥 (𝐴(𝑥)𝜕𝑥𝑢(𝑥, 𝑡)), ∀𝑥 ∈ (0, 1), 𝑡 ∈ (0,∞). (4.1)

where subscripts denote partial differentiation with respect to the denoted variable. Furthermore, the

following non-dimensional coordinates are introduced: 𝑥 = 𝑥/𝐿 and 𝑡 = 𝛼𝑡/𝐿. Here, 𝛼 is introduced

as a normalization factor 𝛼2 = 𝑌 �̄�0/𝑚 where 𝑌 > 0, 𝑚 > 0 and �̄�0 ≡ �̄�(0) > 0 representing

Young’s modulus [N/m2], the constant mass per unit length of the bar [kg/m], and the physical area

of the bar at 𝑥 = 0 [m2], respectively. In turn, 𝐴(𝑥) > 0 is a non-dimensional quantity representing

the area variation in the bar and 𝐴(0) = 1 holds. The physical cross-sectional area of the bar abides
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4.1 Problem statement

�̄�(𝑥) = �̄�(𝑥𝐿) = 𝐴(𝑥) �̄�0. Moreover, we use the following Dirichlet boundary condition at 𝑥 = 0:

𝑢(0, 𝑡) = 0, ∀𝑡 ∈ (0,∞). (4.2)

At 𝑥 = 1 (ie, 𝑥 = 𝐿), we impose the Signorini boundary condition

0 ≥ 𝑢(1, 𝑡) − 𝑔0 ⊥ 𝜎𝑛 (𝑢(1, 𝑡)) ≤ 0 ∀𝑡 ∈ (0,∞), 𝜎𝑛 (𝑢(1, 𝑡)) = 𝐴(1)𝜕𝑥𝑢(1, 𝑡) (4.3)

to describe contact of the bar with the rigid wall, where the non-dimensional gap distance 𝑔0 and the

stress at the contact end of the bar 𝜎𝑛 (𝑢(1, 𝑡)) are introduced. Namely, the Signorini conditions (4.3),

in the continuous setting, can be seen as a switching of boundary conditions at 𝑥 = 1:

Active contact conditions: 𝑢(1, 𝑡) = 𝑔0 and 𝜎𝑛 (𝑢(1, 𝑡)) ≤ 0 (4.4)

Inactive contact conditions: 𝜎𝑛 (𝑢(1, 𝑡)) = 0 and 𝑢(1, 𝑡) ≤ 𝑔0. (4.5)

It is noted that the contact node is known a priori, and the methodology developed here is done under

this assumption. While this assumption allows us to simplify the formulation, it is also valid for

many engineering applications. Nevertheless, the methodology presented here can be also extended

to cases where to contact nodes are not known a priori.

For nonsmooth modal analysis, it is also required to őnd the initial conditions 𝑢init(𝑥) and 𝑣init(𝑥)

generating periodic solutions:

𝑢(𝑥, 𝑇) = 𝑢(𝑥, 0) = 𝑢init(𝑥), ∀𝑥 ∈ [0, 1] (4.6)

𝜕𝑡𝑢(𝑥, 𝑇) = 𝜕𝑡𝑢(𝑥, 0) = 𝑣init(𝑥), ∀𝑥 ∈ [0, 1] (4.7)

where 𝑇 denotes the period of motion. Accordingly, to solve the problem numerically, we use the

FEM with NBM (NBM) for the treatment of boundary condition on the governing boundary value

problem in Equations (4.1) and (4.5). Next, the shooting method and continuation are used to depict

the continua of solutions satisfying Equations (4.6) and (4.7).

While the problem of modal analysis of the bar in unilateral contact with a constant cross-section,

𝐴′(𝑥) = 0, was studied both analytically and numerically in [12, 84, 98] (and Chapter 3), the same

techniques could not be implemented for the case of 𝐴′(𝑥) ≠ 0. Namely, analytical techniques

have relied on the exact solution to the wave equation to describe both inactive and active contact

phases in a closed-form manner. The WFEM exhibits numerical properties favouring the existence

of periodic solutions (such as energy conservation and preservation of characteristic quantities) only

for the case of the bar with constant cross-section [97]. These favourable properties no longer exist

for the case of the varying area bar since the upwind-ŕux used in the WFEM does not accurately

solve for the transfer of quantities between elements [49, chapter 9]. In contrast, it will be shown that

the NBM allows for the detection of periodic solutions in the varying area bar by implementation of

a Galerkin-Bubnov method and boundary shape functions to satisfy the Signorini conditions.
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Chapter 4 Nodal Boundary Method in One Dimension

4.2 Finite element formulation

In order to apply FEM on the one-dimensional Signorini problem, the displacement within the bar

is approximated by 𝑢ℎ (𝑥, 𝑡). The approximation 𝑢ℎ (𝑥, 𝑡) consists of a series of piecewise Lagrange

polynomials 𝜙𝑖 (𝑥), 𝑖 = 0, 1, 2, . . . , 𝑁 , and corresponding nodal quantities 𝑢𝑖 (𝑡) [34] located at the

nodes 𝑥𝑖 = 𝑖/𝑁 for 𝑖 = 0, 1, 2, . . . , 𝑁 , as classically achieved in FEM. The approximation thus reads

𝑢(𝑥, 𝑡) ≈ 𝑢ℎ (𝑥, 𝑡) =

𝑁∑︁
𝑖=0

𝜙𝑖 (𝑥)𝑢𝑖 (𝑡) ≡ P(𝑥)u(𝑡), where 𝜙𝑖 (𝑥 𝑗 ) = 𝛿𝑖 𝑗 and 𝑢𝑖 (𝑡) ≈ 𝑢(𝑥𝑖, 𝑡) (4.8)

with u(𝑡) storing the time-domain nodal displacements and 𝛿𝑖 𝑗 denoting the Kronecker Delta.

Furthermore, we introduced the vector quantity P(𝑥) ≡
(
𝜙0(𝑥) 𝜙1(𝑥) . . . 𝜙𝑁 (𝑥)

)
to simplify the

representation of the őnite-element in matrix form. The FEM applies to the weak form of PDE (4.1).

It requires the deőnition of test functions w(𝑡) corresponding to the nodal displacements u(𝑡). In

the NBM, the test functions w(𝑡) will be subject to change through time (according to the phase of

contact motion), while it is not the case in classical FEM. This will be clariőed in Section 4.3. Hence,

application of the FE approximation on the weak form of PDE (4.1) with cantilever condition (4.2)

(𝑢0(𝑡) = 0 and such that 𝜙0(𝑥) is omitted from P(𝑥)) yields

w⊤(𝑡)M¥u(𝑡) + w⊤(𝑡)Ku(𝑡) − 𝑤𝑁 (𝑡)𝜎𝑛 (𝑢(1, 𝑡)) = 0, ∀w(𝑡) (4.9)

where M is the mass matrix, K is the stiffness matrix, with respective entries

M =

∫ 1

0
P(𝑥)⊤P(𝑥) d𝑥, K =

∫ 1

0
𝐴(𝑥)P′(𝑥)⊤P′(𝑥) d𝑥. (4.10)

While this notation is conventional in FE analysis, it is reminded here since the NBM formulation

will rely on it signiőcantly. Speciőcally, the NBM modiőes the weak form (4.9) throughout the

motion and the test functions w(𝑡) actively participate in its formulation. We now introduce the

NBM to treat the Signorini conditions (4.4) and (4.5) in the FE framework. There, the displacement

and the stress at 𝑥 = 1 will be approximated using 𝑢ℎ (𝑥, 𝑡)

𝑢(1, 𝑡) ≈ 𝑢ℎ (1, 𝑡) = 𝑢𝑁 (𝑡), 𝜎𝑛 (𝑢(1, 𝑡)) ≈ 𝐴(1)𝑢
ℎ
𝑥 (1, 𝑡) = 𝐴(1)

𝑁∑︁
𝑖=1

𝜙′𝑖 (1)𝑢𝑖 (𝑡), (4.11)

respectively. While the approximation 𝑢(1, 𝑡) ≈ 𝑢𝑁 (𝑡) is equivalent to the one used in the classical

FEM, the above stress approximation 𝜎𝑛 (𝑢(1, 𝑡)) ≈ 𝐴(1)𝑢ℎ𝑥 (1, 𝑡) is non-traditional. To clarify, in

the classical FEM, implementation of Neumann conditions is done in a weak sense, and the motion

of the nodes does not satisfy the Neumann condition for any grid. Instead, the error in satisfaction of

the Neumann condition is reduced with increasing the number of elements or degree of polynomials.

In the NBM, the Neumann conditions are imposed on the shape functions for any choice of number

of elements or degree of polynomial such that the stress at the end of the bar is always strictly zero
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4.3 Nodal boundary method

and the Neumann condition is exactly satisőed throughout inactive contact motion. In fact, this is

the key to the implementation of the NBM, as described below.

4.3 Nodal boundary method

In NBM, the FE approximation is obtained by inserting (4.11) into (4.3) such that

0 ≥ 𝑢𝑁 (𝑡) − 𝑔0 ⊥ 𝐴(1)
𝑁∑︁
𝑖=1

𝜙′𝑖 (1)𝑢𝑖 (𝑡) ≤ 0. (4.12)

The main proposition in NBM is that condition (4.12) is solved by constructing shape functions

capable of satisfying the inactive and active contact conditions. To do so, the boundary node 𝑢𝑁 (𝑡)

is isolated in (4.12) such that

𝑔0 ≥ 𝑢𝑁 (𝑡), 𝑢𝑁 (𝑡) ≤ −

𝑁−1∑︁
𝑖=1

𝜙′𝑖 (1)

𝜙′
𝑁
(1)

𝑢𝑖 (𝑡), (𝑢𝑁 (𝑡) −𝑔0)

(
𝑢𝑁 (𝑡) −

𝑁−1∑︁
𝑖=1

𝜙′𝑖 (1)

𝜙′
𝑁
(1)

𝑢𝑖 (𝑡)

)
= 0. (4.13)

Indeed, if (4.13) holds then (4.12) holds as well. By separating 𝑢𝑁 (𝑡), we impose that 𝑢𝑁 (𝑡) is no

longer dictated by the ODE (4.9) but is dictated exclusively by condition (4.13). The following

points introduce the remaining steps of the derivation (which will be elaborated in the upcoming

sections):

1. To solve for the motion during inactive contact, the Signorini conditions (4.13) require that

𝑢𝑁 (𝑡) = −

𝑁−1∑︁
𝑖=1

𝜙′𝑖 (1)

𝜙′
𝑁
(1)

𝑢𝑖 (𝑡), 𝑢𝑁 (𝑡) ≤ 𝑔0. (4.14)

Substitution of the above into the FE approximation (4.8) effectively creates a family of shape

functions that always satisőes the inactive contact conditions

𝑢(𝑥, 𝑡) ≈

𝑁−1∑︁
𝑖=1

(
𝜙𝑖 (𝑥) − 𝜙𝑁 (𝑥)

𝜙′𝑖 (1)

𝜙′
𝑁
(1)

)
𝑢𝑖 (𝑡). (4.15)

In other words, any solution obtained using the above approximation satisőes the homogeneous

Neumann condition taking place during inactive contact. In the FEM, all functions 𝜙𝑖 (𝑥)

have local support and are non-zero for the elements containing the node 𝑢𝑖 (𝑡). In the case of

NBM, the principle of local support is followed as well, and only the shape functions at the

element including the contact node 𝑢𝑁 (𝑡) are affected by the approximation (4.15). In turn,

the inactive contact inequality in (4.14) reads

𝑢𝑁 (𝑡) ≤ 𝑔0 ⇒ −

𝑁−1∑︁
𝑖=1

𝜙′𝑖 (1)

𝜙′
𝑁
(1)

𝑢𝑖 (𝑡) ≤ 𝑔0. (4.16)

2. To solve for the motion during active contact, we construct a family of shape functions that
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always answers

𝑢(𝐿, 𝑡) ≈ 𝑢𝑁 (𝑡) = 𝑔0, 𝑢𝑁 (𝑡) ≤ −

𝑁−1∑︁
𝑖=1

𝜙′𝑖 (1)

𝜙′
𝑁
(1)

𝑢𝑖 (𝑡). (4.17)

Evidently, the set of shape functions answering this condition admits

𝑢(𝑥, 𝑡) ≈

𝑁−1∑︁
𝑖=1

𝜙𝑖 (𝑥)𝑢𝑖 (𝑡) − 𝜙𝑁 (𝑥)𝑔0. (4.18)

Thus, any solution that is obtained using the above approximation satisőes the Dirichlet

condition in (4.17). In turn, the active contact inequality in (4.17), under this approximation

becomes

𝑢𝑁 (𝑡) ≤ −

𝑁−1∑︁
𝑖=1

𝜙′𝑖 (1)

𝜙′
𝑁
(1)

𝑢𝑖 (𝑡) ⇒ −

𝑁−1∑︁
𝑖=1

𝜙′𝑖 (1)

𝜙′
𝑁
(1)

𝑢𝑖 (𝑡) ≥ 𝑔0. (4.19)

3. The different sets of shape functions described in (4.15) and (4.18) will lead to different

sets of ODEs governing inactive and active contact motions, respectively. The Signorini

conditions are then satisőed by switching between the two sets of functions according to

inequalities (4.16) and (4.19), which are mutually exclusive, as expected from the Signorini

conditions. At the moment of switch, the internal nodal displacements and velocities (internal

nodes are those with indexes 𝑖 = 1, 2, . . . , 𝑁 − 1) are assumed to be continuous in time.

4. The NBM formulation results in an ODE, featuring discontinuous mass and stiffness matrices,

which exhibits periodic solutions.

4.3.1 Comment on application of NBM using other shape functions

Although the NBM is derived in this manuscript using the classical FEM piecewise Lagrangian

shape functions, this method can be also formulated using other shape functions. However, for other

shape functions, precautions must be considered. One such precaution is that the shape functions

must admit a stress approximation that is not always vanishing at the contacting end. To clarify, the

NBM relies on the approximation of stress for the switching between active and inactive contact

phases, as seen in Equation (4.12). In order to allow for a switching between contact phases, the

shape function must be chosen such that the stress approximation at 𝑥 = 1 does not exhibit 𝜙′𝑖 (1) = 0

for all 𝑖 = 1, . . . , 𝑁 .

The linear modes of the cantilever bar with uniform area

𝜙𝑖 (𝑥) = sin

(
(2𝑖 − 1)𝜋𝑥

2

)
, 𝑖 = 1, 2, . . . , 𝑁. (4.20)

will be investigated as an example of a set of shape functions that cannot be used in NBM. These

mode shapes bear the undesired property 𝜙′𝑖 (1) = 0, ∀𝑖. For such shape functions, the active
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contact phase cannot occur as can be seen by plugging Equation (4.20) into the Signorini conditions

Equation (4.12)

0 ≥ 𝑢𝑁 (𝑡) − 𝑔0 ⊥ 0 ≤ 0→ 𝑔0 ≥ 𝑢𝑁 (𝑡). (4.21)

In simple terms, Equation (4.21) shows that the linear modes of the cantilever bar exhibit inactive

contact motions exclusively and therefore a switch between contact phases cannot occur.

The choice of shape functions is crucial for other methods in contact dynamics and not only the

NBM. In fact, for the shape functions (4.20), both the mass redistribution method [40] and Nitsche’s

method would fail. The mass redistribution method would fail in the same fashion as NBM since it

relies on strong enforcement of the Signorini boundary condition. In turn, Nitsche’s method would

not be able to approximate adequately the Signorini problem. This is illustrated in the remainder of

this section. In Nitsche’s method, the Signorini boundary conditions are enforced via the following

approximation of the stress at the contact boundary

𝜎𝑛 (𝑢(1, 𝑡)) ≈ −max

(
0, 𝛾(𝑢𝑁 (𝑡) − 𝑔0) − 𝐴(1)

𝑁∑︁
𝑖=1

𝜙′𝑖 (1)𝑢𝑖 (𝑡)

)
, 𝛾 > 0 (4.22)

where 𝛾 is set to be constant [19]. The Signorini condition is then satisőed as 𝑁 →∞

𝜎𝑛 (𝑢(1, 𝑡)) = lim
𝑁→∞

−max

(
0, 𝛾(𝑢𝑁 (𝑡) − 𝑔0) − 𝐴(1)

𝑁∑︁
𝑖=1

𝜙′𝑖 (1)𝑢𝑖 (𝑡)

)
(4.23)

𝜎𝑛 (𝑢(1, 𝑡)) = −max(0, 𝛾(𝑢(1, 𝑡) − 𝑔0) − 𝜎𝑛 (𝑢(1, 𝑡))), 𝛾 > 0 (4.24)

and is equivalent to the Signorini condition (4.3) [20]. The convergence of Nitsche’s method largely

relies on the participation of the stress approximation in the right-hand side of Equation (4.23). This

property is disrupted for the 𝜙𝑖 (𝑥) in Equation (4.21). For these shape functions, the Nitsche stress

approximation (4.22) reads

𝜎𝑛 (𝑢(1, 𝑡)) ≈ −𝛾max(0, 𝑢𝑁 (𝑡) − 𝑔0). (4.25)

Since the stress approximation is omitted from the right hand side of (4.25), the resulting

approximation (4.25) is equivalent to a penalty force with penalty parameter 𝛾 [24]. The penalty

method does not share the same convergence properties as Nitsche’s method. It can be seen that by

taking the limit of Equation (4.25) as 𝑁 →∞:

𝜎𝑛 (𝑢(1, 𝑡)) = lim
𝑁→∞

−𝛾max(0, 𝑢𝑁 (𝑡) − 𝑔0) = −𝛾max(0, 𝑢(1, 𝑡) − 𝑔0). (4.26)

This term, in contrast to Equation (4.24), is not equivalent to the Signorini conditions.

Nevertheless, it is possible also to consider global shape functions for the NBM instead of the

FEM functions of local support used in this manuscript. For example, if one wishes to use NBM
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with global support functions, one may use:

𝑢(𝑥, 𝑡) ≈ 𝑎(𝑡) sin(𝜋𝑥/2) + 𝑏(𝑡)𝑥 (4.27)

which admits a non-vanishing stress approximation at the contact end:

𝜕𝑥𝑢(1, 𝑡) ≈ 𝑏(𝑡). (4.28)

and thus allows for the existence of negative stress at the contact end. To apply the NBM on

approximation (4.27), it is őrst plugged into the inactive contact conditions of the Signorini

problem (4.12) admits

𝑢𝑥 (1, 𝑡) = 0, 𝑢(1, 𝑡) ≤ 𝑔0 → 𝑏(𝑡) = 0, 𝑎(𝑡) ≤ 𝑔0 (4.29)

Then, the approximation (4.27) is plugged into the active contact conditions of Equation (4.12)

gives:

𝑢𝑥 (1, 𝑡) ≤ 0, 𝑢(1, 𝑡) = 𝑔0 → 𝑏(𝑡) = 𝑔0 − 𝑎(𝑡), 𝑎(𝑡) ≥ 𝑔0 (4.30)

Finally, the NBM shape functions for the approximation (4.27) are put as follows:

𝑢(𝑥, 𝑡) ≈



𝑎(𝑡) sin(𝜋𝑥/2) 𝑎(𝑡) ≤ 𝑔0

𝑎(𝑡) (sin(𝜋𝑥/2) − 𝑥) + 𝑔0𝑥 𝑎(𝑡) ≥ 𝑔0

(4.31)

It is noted that the FEM Lagrange functions are utilized in this manuscript rather than global

functions of the type (4.27) since FEM functions are utilized frequently in structural dynamics [34].

4.3.2 Inactive contact motion

The inactive contact motion condition (4.5) in the NBM framework is

𝜎ℎ𝑛 (u(𝑡)) ≡ 𝐴(1)𝑢
ℎ
𝑥 (1, 𝑡) = 𝐴(1)

𝑁∑︁
𝑖=1

𝜙′𝑖 (1)𝑢𝑖 (𝑡) = 0, 𝑢𝑁 (𝑡) ≤ 𝑔0. (4.32)

where we use 𝜎ℎ𝑛 (u(𝑡)) to denote the FE approximation of the stress at 𝑥 = 1. To clarify, the true

stress in the bar reads 𝜎𝑛 (𝑢(1, 𝑡)) ≈ 𝜎ℎ𝑛 (u(𝑡)) according to Equation (4.11), and the homogeneous

Neumann condition 𝜎𝑛 (𝑢(1, 𝑡)) = 0 is satisőed by virtue of Equation (4.32). for the inactive contact

motion, we impose that 𝑢𝑁 (𝑡) satisőes equation (4.32) such that

𝑢𝑁 (𝑡) = −
1

𝜙′
𝑁
(1)

𝑁−1∑︁
𝑖=1

𝜙′𝑖 (1)𝑢𝑖 (𝑡) ≡ 𝑆(u
𝑜 (𝑡)), u𝑜 (𝑡) =

(
𝑢1(𝑡) 𝑢2(𝑡) . . . 𝑢𝑁−1(𝑡)

)⊤
. (4.33)

Here, u𝑜 (𝑡) gathers internal nodal displacements whereas the contact node is represented in 𝑢𝑁 (𝑡).

This distinction is őxed and an internal node cannot turn into a contact node (or vice-versa)

throughout the motion of the bar. This distinction between internal nodes and nodes prone to contact
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is also used in the MRM formulation [40]. Thus, in the NBM, the loci of contact nodes must be

known a priori. Although the loci of contact nodes is not always known in advance, for the case

of small strains, the loci of contact nodes can be assumed to be known and őxed without loss of

generality.

In Equation (4.33), we introduce the function 𝑆, acting on u𝑜 (𝑡), to simplify the notation.

Actually, 𝑆 appears naturally throughout the derivation of both inactive and active contact motions

in NBM. Indeed, this function is of integral importance to NBM and serves for multiple purposes:

it deőnes the conditions for the switching between phases, the motion of the contact node during

inactive contact phase, and the contact force applied on the bar during active contact phase. These

roles of 𝑆 are illustrated in Figure 4.2 and are explicitly explained later in Section 4.3.4. For the

remainder of this article, the function 𝑆 will be referred to as the switching function.

0 0.5 1 1.5 2 2.5 3 3.5

0

𝑔0

𝑡

𝑢𝑁 (𝑡)

𝑆(u𝑜 (𝑡))

𝜎ℎ
𝑛 (u(𝑡))

Figure 4.2: Switching function and associated quantities. The switching function dictates the phase of
motion. For 𝑆(u𝑜 (𝑡)) ≤ 𝑔0, inactive contact motion takes place, and active contact motion takes place
otherwise. Moreover, the displacement at the contact boundary abides 𝑢𝑁 (𝑡) = 𝑆(u𝑜 (𝑡)) during the
inactive contact phase, 𝑆(u𝑜 (𝑡)) ≤ 𝑔0, and the approximation of the stress at the contact boundary abides
𝜎ℎ
𝑛 (u(𝑡)) = 𝐴(1)𝜙

′
𝑁
(1) (𝑔0 − 𝑆(u

𝑜 (𝑡))) during the active contact phase.

Following the substitution 𝑢𝑁 (𝑡) in (4.33), u(𝑡) can be related to u𝑜 (𝑡) via a linear operator

A𝑁 ∈ R𝑁×𝑁−1

u(𝑡) = A𝑁u𝑜 (𝑡) A𝑁
𝑖 𝑗 =



𝛿𝑖 𝑗 𝑖 = 1, . . . , 𝑁 − 1 and 𝑗 = 1, . . . , 𝑁 − 1,

−
𝜙′𝑗 (1)

𝜙′
𝑁
(1)

𝑖 = 𝑁 and 𝑗 = 1, . . . , 𝑁 − 1.
(4.34)

In turn, the displacement őeld during inactive contact is approximated as follows:

𝑢(𝑥, 𝑡) ≈ P(𝑥)A𝑁u𝑜 (𝑡), 𝑢𝑁 ≤ 𝑔0 (4.35)

In fact, Equation (4.35) constitutes the matrix form of Equation (4.15) (previously presented in

the overview of the NBM). The matrix form representation in Equation (4.35) will be helpful in
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introducing the ODE governing the inactive contact motion.

The inequality condition for the inactive contact phase (4.32) (non-penetration) can be put in

terms of the nodes u𝑜 (𝑡) via the switching function

𝑢𝑁 ≤ 𝑔0 ⇒ 𝑆(u𝑜) ≤ 𝑔0. (4.36)

To derive the ODE governing the inactive contact motion, we insert the inactive motion con-

straints (4.34) and (4.36) into the weak-form of the PDE, Equation (4.9),

w⊤(𝑡) (MA𝑁 ¥u𝑜 (𝑡) +KA𝑁u𝑜 (𝑡)) = 0 (4.37)

𝑢𝑁 (𝑡) = 𝑆(u
𝑜 (𝑡)), ¥𝑢𝑁 (𝑡) = 𝑆( ¥u

𝑜 (𝑡)), 𝑆(u𝑜 (𝑡)) ≤ 𝑔0. (4.38)

In classical FEM, it is generally assumed Equation (4.37) is true for all w(𝑡) and the subsequent

omission of w(𝑡) from the equation takes place. Here, however, omission of w(𝑡) will lead to an

over-deőned system of ODEs (𝑁 − 1 variables in u𝑜 for 𝑁 equations). To remedy this, we use the

Galerkin-Bubnov method where we project the residual (the term multiplying w in Equation (4.37))

on the same solution space used for u(𝑡) [44]. This strategy has been proven successful in other

applications and is commonly used when shape functions that satisfy the boundary conditions are

involved in the approximation [44,58]; [61, p. 300]. It is further noted that the strategy taken here

in deriving the NBM has also been referred to as basis recombination [14, p. 112]. Following the

Galerkin-Bubnov method, we project the residual resulting from the approximation (4.35) on the

composing trial functions. Under representation (4.9), this results effectively in modiőcation of the

test-function as follows:

w(𝑡) = A𝑁w𝑜 (4.39)

where w𝑜 gathers all test function contributions corresponding to the internal nodes u𝑜 (𝑡). Then,

substitution of (4.39) into (4.37) and omission of w𝑜 results in the reduced ODE (of 𝑁 −1 equations)

(M𝑁 ¥u
𝑜 (𝑡) +K𝑁u𝑜 (𝑡)) = 0, M𝑁 = (A𝑁 )⊤MA𝑁 , K𝑁 = (A𝑁 )⊤KA𝑁 (4.40)

where the subscript 𝑁 in M𝑁 (or K𝑁) is used to denote the NBM coefficients corresponding to

answering homogeneous Neumann conditions. We remark that, via the NBM, the displacement

𝑢𝑁 (𝑡) has been effectively removed from the ODE such that neither the equation nor the inequality

constraint in expression (4.40) includes 𝑢𝑁 (𝑡).

In sum, the approximation of the inactive contact in NBM constitutes the most novel contribution

of this methodology as it enforces the homogeneous Neumann condition in strong fashion. In

fact, the NBM can be generally used to enforce the Neumann condition in strong fashion even

outside of the context of the Signorini problem. To help the readers understand this approach more

clearly, Appendix B.2 compares the enforcement of Neumann conditions in classical FEM and the

NBM.
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4.3.3 Active contact motion

The active contact condition in NBM, derived from Equation (4.13), reads

𝑢𝑁 (𝑡) = 𝑔0 implying ¤𝑢𝑁 (𝑡) = 0 and 𝑤𝑁 (𝑡) = 0 (4.41)

Effectively, this approximation applies in the active contact phase and the velocity of the contact

node is discontinuous at the moment of contact. Here, the test function vanishes on Dirichlet

boundaries (ie, 𝑤𝑁 (𝑡) = 0 during active contact) which is common practice for general FEM

approximations [26, 34, 44]. Next, the complementarity condition (4.13) can be rewritten in terms

of the switching function

𝐴(1)
𝑁∑︁
𝑖=1

𝜙′𝑖 (𝐿)𝑢𝑖 (𝑡) ≤ 0, (4.42)

−

𝑁−1∑︁
𝑖=1

𝜙′𝑖 (1)

𝜙′
𝑁
(1)

𝑢𝑖 (𝑡) ≥ 𝑢𝑁 (𝑡), (4.43)

𝑆(u𝑜 (𝑡)) ≥ 𝑔0. (4.44)

The transition between statements (4.42) and (4.43) requires that 𝜙′
𝑁
(1) > 0 holds. Otherwise, in

the case 𝜙′
𝑁
(1) ≤ 0, both inactive and active contact phases would have to occur for 𝑆(u𝑜 (𝑡)) < 0,

that is simultaneously, which disagrees with the mutual exclusivity of the inactive and active contact

conditions in the complementarity conditions (4.3). Accordingly, for 𝜙′
𝑁
(1) > 0, we note that

the active contact motion occurs for 𝑆(u𝑜 (𝑡)) > 𝑔0, and the inactive contact motion occurs for

𝑆(u𝑜 (𝑡)) < 𝑔0 such that both are mutually exclusive. Fortunately, for the case of Lagrangian

polynomials used here, the statement 𝜙′
𝑁
(1) > 0 has been proven to hold for any number of elements.

The proof can be found in Appendix B.1.

We continue with the substitution of expressions (4.41) and (4.44) into the FEM-ODE (4.9)

where (4.41) is őrst recast in the matrix format

w(𝑡) = A𝐷w𝑜, u(𝑡) = A𝐷u𝑜 (𝑡) + 𝑔0d, 𝑆(u𝑜 (𝑡)) ≥ 𝑔0 (4.45)

where

A𝐷
𝑖 𝑗 =



𝛿𝑖 𝑗 𝑖 = 1, . . . , 𝑁 − 1; 𝑗 = 1, . . . , 𝑁 − 1

0 𝑖 = 𝑁; 𝑗 = 1, . . . , 𝑁 − 1
and 𝑑𝑖 =




0 𝑖 = 1, . . . , 𝑁 − 1

1 𝑖 = 𝑁.
(4.46)

We then plug (4.45) into (4.9) to obtain an ODE in terms of u𝑜 multiplied by w𝑜 forming the scalar

equation

(w𝑜)⊤(M𝐷 ¥u
𝑜 (𝑡) +K𝐷u𝑜 (𝑡) + 𝑔0f𝐷) = 0, 𝑆(u𝑜 (𝑡)) ≥ 𝑔0 (4.47)
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where

M𝐷 = (A𝐷)⊤MA𝐷 ,K𝐷 = (A𝐷)⊤KA𝐷 , and f𝐷 = (A𝐷)⊤Kd, (4.48)

and the subscript 𝐷 is used to denote the coefficients corresponding the ODE answering the

non-homogeneous Dirichlet conditions. Assuming equation (4.47) should be valid for all values w𝑜,

the following ODE formulation is obtained:

M𝐷 ¥u
𝑜 (𝑡) +K𝐷u𝑜 (𝑡) + 𝑔0f𝐷 = 0, 𝑆(u𝑜 (𝑡)) ≥ 𝑔0. (4.49)

Equation (4.49) is equivalent to the ODE obtained by application of classical FEM on the clamped-

clamped bar. Furthermore, the NBM formulation of the ODE for the active contact phase is

equivalent to this described by the basis recombination method for non-homogeneous boundary

conditions [14, p. 112]. However, the NBM adds the restriction 𝑆(u𝑜 (𝑡)) > 𝑔0 to infer that the bar

must be repulsed at all time throughout contact, as required by the active contact condition (4.4).

In the next section, we combine the ODEs corresponding to both active and inactive motions,

Equations (4.40) and (4.49) respectively, to construct the ODE approximation for the original

Signorini problem.

4.3.4 NBM-FEM formulation of Signorini problem

The switching method [3,98] is used for the enforcement of the Signorini conditions in NBM. In the

switching method, the Signorini complementarity conditions are answered by alternating between

the boundary conditions (4.4) and (4.5) both in the test and trial functions such that the inequality

constraints are satisőed. In NBM, this translates to switching between Equations (4.40) and (4.49),

and the complete NBM-ODE reads




M𝐷 ¥u
𝑜 (𝑡) +K𝐷u𝑜 (𝑡) + 𝑔0f𝐷 = 0 𝑆(u𝑜 (𝑡)) ≥ 𝑔0

M𝑁 ¥u
𝑜 (𝑡) +K𝑁u𝑜 (𝑡) = 0 𝑆(u𝑜 (𝑡)) ≤ 𝑔0.

(4.50)

We note that at the moment of switch, denoted 𝑡𝑠 such that 𝑆(u𝑜 (𝑡𝑠)) = 𝑔0, the resulting NBM-ODE

(4.50) raises two conŕicting deőnitions to the ODE. This conŕict is resolved by extending the active

and inactive contact NBM conditions as follows:

Active contact NBM: 𝑆(u𝑜 (𝑡)) > 𝑔0, or 𝑆(u𝑜 (𝑡)) = 𝑔0 and 𝑆( ¤u𝑜 (𝑡−)) > 0 (4.51)

Inactive contact NBM: 𝑆(u𝑜 (𝑡)) < 𝑔0, or 𝑆(u𝑜 (𝑡)) = 𝑔0 and 𝑆( ¤u𝑜 (𝑡−)) < 0 (4.52)

which is mathematically sound since the velocity at the moment of switch indicates whether an

active contact or an inactive contact occurs after the switch. Furthermore, note that the case of

zero velocity 𝑆( ¤u𝑜 (𝑡−𝑠 )) = 0 before contact is not investigated in deőnitions (4.51) and (4.52). Such

solutions are referred to as grazing solutions and propose a challenge that is beyond the scope
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of this manuscript (the reader may refer to [16, p. 385] for some of the intricacies involved with

determining grazing periodic motions). Since grazing motions are excluded, the NBM is limited

in its solutions. Thus, it is important to note that the NBM is not presented as a scheme for the

generation of physically accurate simulations. Rather, the NBM is used for the modal analysis and

detection of periodic Signorini compliant non-grazing motions.

Next, at the instant of switch, we impose that the internal displacements u𝑜 (𝑡) and velocities

¤u𝑜 (𝑡𝑠) are continuous

Continuity of internal states: u𝑜 (𝑡+) = u𝑜 (𝑡−), ¤u𝑜 (𝑡+) = ¤u𝑜 (𝑡−), 𝑆(u𝑜 (𝑡)) = 𝑔0 (4.53)

while only the contact node is characterized by discontinuous velocity, as will be shown later in

Equation (4.57). The condition for the continuity of the internal states (4.53) corresponds to common

application of the Signorini conditions both numerically and analytically [19, 24, 40, 84, 98]. Thus,

both internal displacements and internal velocities are assumed to be always continuous and only

the acceleration ¥u𝑜 (𝑡) is discontinuous at instants 𝑡𝑠 (as can be deduced from Equation (4.50)). The

discontinuity of internal accelerations at the moment of switch is a consequence of the NBM and is

not expected in the true solution. However, solutions of the NBM still show good agreement with

the true solution as 𝑁 →∞, as illustrated in Section 4.5.

Given that the acceleration is discontinuous at the moment of switch, it is more convenient to

represent the ODE (4.50) in terms of the acceleration at 𝑡+

¥u𝑜 (𝑡+) =



−(M𝐷)

−1(K𝐷u𝑜 (𝑡) + 𝑔0f𝐷) active contact NBM

−(M𝑁 )
−1(K𝑁u𝑜 (𝑡)) inactive contact NBM

(4.54)

where M𝐷 and M𝑁 are always invertible. See proof in Appendix B.3.

In turn, the approximation of 𝑢(𝑥, 𝑡) in NBM is deőned via expressions (4.35) and (4.45)

𝑢(𝑥, 𝑡) ≈ 𝑢ℎ (𝑥, 𝑡) =P(𝑥)u(𝑡) =




P(𝑥) (A𝐷u𝑜 (𝑡) + 𝑔0d) 𝑆(u𝑜 (𝑡)) ≥ 𝑔0

P(𝑥)A𝑁u𝑜 (𝑡) 𝑆(u𝑜 (𝑡)) ≤ 𝑔0.
(4.55)

At last, from expression (4.55), we obtain nonsmooth expressions at the contacting end (with

strict inequality applied on the active contact condition) for the displacement

𝑢(1, 𝑡) ≈ 𝑢𝑁 (u
𝑜 (𝑡)) =



𝑔0 𝑆(u𝑜 (𝑡)) ≥ 𝑔0

𝑆(u𝑜 (𝑡)) 𝑆(u𝑜 (𝑡)) ≤ 𝑔0

(4.56)

velocity

𝜕𝑡𝑢(1, 𝑡) ≈ ¤𝑢𝑁 (u
𝑜 (𝑡), ¤u𝑜 (𝑡)) =




0 𝑆(u𝑜 (𝑡)) > 𝑔0

𝑆( ¤u𝑜 (𝑡)) 𝑆(u𝑜 (𝑡)) < 𝑔0

(4.57)
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and stress

𝜎𝑛 (𝑢(1, 𝑡)) ≈ 𝜎
ℎ
𝑛 (u(𝑡)) =



𝐴(1)𝜙′

𝑁
(1) (𝑔0 − 𝑆(u

𝑜 (𝑡)) 𝑆(u𝑜 (𝑡)) ≥ 𝑔0

0 𝑆(u𝑜 (𝑡)) ≤ 𝑔0.
(4.58)

We note that 𝜎𝑛 (𝑢(1, 𝑡)) is continuous in the NBM formulation contrarily to the discontinuous

behaviour of the true solution to the Signorini problem [12, 84, 98]. However, in Section 4.5 it will

be shown that the method still converges. Furthermore, it is important to note that schemes utilizing

Newton’s impact law with 𝑒 = 0 are characterized by continuous contact pressure as well and still

show convergence to the true solution [24].

The Signorini problem is hence formulated as the nonsmooth ODE (4.54) in u𝑜 (𝑡) with unique

solutions given initial conditions u𝑜 (0) and ¤u𝑜 (0). Indeed, solutions to the ODE (4.54) are unique

so long they do not describe grazing motions. For the proof of this statement, see Appendix B.4.

Furthermore, the solutions generated by the NBM are characterized by sticking phases. Sticking

phases are continuous intervals of time of non-zero measure where active contact motion occurs.

To clarify, sticking phases stand in contrast to chattering exhibited by schemes utilizing a Newton

impact law with 𝑒 = 1 [84]. This is a noteworthy property of this scheme since sticking phases occur

in the true solution to the Signorini problem as demonstrated in Chapter 3 and in [24, 84, 98].

On another note, the acceleration ¥𝑢𝑁 (𝑡) obtained by differentiating Equation (4.57) involves the

Dirac-delta distribution at the instance of switch, which may affect the formulation of the NBM-ODE

since it participates in its deőnition, see Equation (4.38). However, the inŕuence of the Dirac-delta

in the NBM formulation was not investigated in this manuscript and is suppressed to simplify the

formulation. Nevertheless, numerical experiments show that the NBM-ODE (4.54) admits solutions

that converge to the true motion for large 𝑁 . Such numerical experiment is explored in Section 4.5.1.

Next, since periodic solutions require energy conservation, we investigate the energy conservation

properties of solutions to the NBM-ODE.

4.3.5 Energy conservation properties of solutions to NBM-ODE

Solutions to the NBM-ODE (4.54) are equipped with the energy metric

2𝐸 (𝑡) =

∫ 1

0
𝜕𝑡𝑢(𝑥, 𝑡)

2 + 𝐴(𝑥)𝜕𝑥𝑢(𝑥, 𝑡)
2 d𝑥 ≈ ¤u⊤(𝑡)M ¤u(𝑡) + u⊤(𝑡)Ku(𝑡) (4.59)

and exhibit the following properties:

1. The ODE preserves energy for 𝑆(u𝑜 (𝑡)) > 𝑔0 and 𝑆(u𝑜 (𝑡)) < 𝑔0, away from instants 𝑡𝑠 such

that 𝑆(u𝑜 (𝑡𝑠)) = 𝑔0.

2. At a time instant 𝑡𝑠, where a transition between active and inactive contact occurs (namely, at

an instant where 𝑆(u𝑜 (𝑡𝑠)) = 𝑔0 and 𝑆( ¤u𝑜 (𝑡𝑖)) ≠ 0), an instantaneous change in energy Δ𝐸
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occurs

Δ𝐸 = 𝐸 (𝑡+𝑠 ) − 𝐸 (𝑡
−
𝑠 ) = −|𝑆( ¤u

𝑜 (𝑡𝑠)) |
(1

2
𝑀𝑁𝑁𝑆( ¤u

𝑜 (𝑡𝑠)) +

𝑁−1∑︁
𝑗=1

𝑀𝑁 𝑗 ¤𝑢 𝑗 (𝑡𝑠)
)
. (4.60)

The energy after transition may either decrease (Δ𝐸 < 0), increase (Δ𝐸 > 0) or be conserved

(Δ𝐸 = 0).

For the proof, Appendix B.6.1 establishes lemmas regarding statement 1 and Appendix B.6.2 details

the proof of statement 2. Thus, NBM solutions are not always energy conservative and may dissipate

or gain energy at contact. From numerical experiments, it has been noticed that a large portion of

NBM solutions is indeed energy dissipative. Although, similarly to Newton’s impact law 𝑒 = 0,

the energy dissipation in the solution decreases with convergence to the solution, this is further

discussed in Section 4.5.1.

However, statements 1 and 2 also indicate that solutions of the NBM-ODE may exhibit a periodic

energy evolution in time. Indeed, this property is favourable for the detection of periodic solutions,

and it is expected that the NBM can be used for the detection of periodic solutions to the Signorini

problem. From numerical experiments, such periodic solutions to the NBM were found. An example

of a periodic solution is shown in Figure 4.3 from which it is clear that the NBM allows for the

existence of periodic solutions with sticking phases. In contrast, solutions obtained via Nitsche’s
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Figure 4.3: NBM periodic solution for the varying area bar 𝐴(𝑥) = 1 − 𝑥/2 and 𝑔0 = 0.1 of 10 elements
and quadratic Lagrangian shape functions (𝑁 = 20). This model is used to illustrate different aspects of the
NBM methodology (a similar model with different 𝑁 is used in Figure 4.4) Note that the total energy is
dissipated at the moment of contact but is completely regained at the end of the contact phase. Due to this
characteristic, the NBM allows for the existence of periodic solutions with sticking phases. In Figure 4.3(a),
and all the following displacement őeld plots, shaded rectangular surfaces and dotted lines highlight active
contact phases and gap from wall, respectively.

method exhibit sticking phases only at convergence (ie, for high number of elements) [19] and

solutions of scheme with Newton’s impact law 𝑒 = 1 exhibit chattering [24]. While solutions to
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Newton’s impact law with 𝑒 = 0 exhibit sticking phases, they also exhibit energy dissipation for

non-zero impact velocity [24] and therefore do not allow for periodic solutions. The NBM, in

comparison to Newton’s impact law 𝑒 = 0, allows for a regain of energy in transition from active to

inactive contact.

Indeed, the existence of periodic solutions in NBM relates largely to the fact that energy can be

regained throughout the motion, as seen in Figure 4.3. We note here that the NBM does not have

an explicit impact law and the energy jumps (whether loss or gain) are instead explained by the

change in shape functions at the moment of switch.

In the true solution, at the instance of switch, 𝜕𝑡𝑢(𝑥, 𝑡+𝑠 ) = 𝜕𝑡𝑢(𝑥, 𝑡
−
𝑠 ) holds true for 𝑥 ∈

(0, 1) [12, 84]. However, in NBM, the approximations of 𝜕𝑡𝑢(𝑥, 𝑡+𝑠 ) and 𝜕𝑡𝑢(𝑥, 𝑡−𝑠 ) involve two

different sets of shape functions, described in Equations (4.16) and (4.19). For example, during

closing contact (switch from inactive to active contact), the contact node’s velocity ¤𝑢𝑁 vanishes

as dictated by the shape functions in (4.19) and a loss in energy ensues at this instance. This is

similar to application of 𝑒 = 0 using Newton’s impact law in FEM. However, in opening contact

(switch from active to inactive contact), there is a gain of energy since the shape functions dictating

the inactive contact motion (4.16) allow for non-zero ¤𝑢𝑁 after the switch. This is different than

application of 𝑒 = 0 using Newton’s impact law in FEM where the velocity ¤𝑢𝑁 is zero at opening

contact. In sum, the regain in energy is a consequence of the switching mechanism and shape

functions introduced in NBM. To better illustrate this mechanism, we use the example of the NBM

model of the bar with linear shape functions.

For the NBM model of the bar with linear shape functions we have 𝜙′
𝑁
(1) = 1, 𝜙′

𝑁−1(1) = −1 and

𝜙′𝑖 (1) = 0 for 𝑖 = 1, 2, . . . , 𝑁 − 2. In turn, for the bar with linear shape functions, the displacement

and velocity of the contact node during inactive contact, 𝑆(u𝑜 (𝑡)) < 𝑔0, are given as follows:

𝑢(𝑥 = 1, 𝑡) ≈ 𝑢𝑁 (𝑡) = 𝑆(u
𝑜 (𝑡)) = 𝑢𝑁−1(𝑡) (4.61)

𝜕𝑡𝑢(𝑥 = 1, 𝑡) ≈ ¤𝑢𝑁 (𝑡) = 𝑆( ¤u
𝑜 (𝑡)) = ¤𝑢𝑁−1(𝑡) (4.62)

where Equations (4.61) and (4.62) are deduced from Equations (4.56) and (4.57) for linear Lagrange

shape functions, respectively. From Equations (4.61) and (4.62), we see that, for linear shape

functions, 𝑢𝑁 (𝑡) = 𝑢𝑁−1(𝑡) holds during inactive contact motion. Physically, it means that the last

element of the bar acts as a rigid body throughout inactive contact motion. During active contact

motion, 𝑆(u𝑜 (𝑡)) > 𝑔0, the last element of the bar acts as an elastic body similar to FEM with

Newton’s impact law 𝑒 = 0 since the approximating shape functions used in Equation (4.19) are

identical to implementation of a non-homogeneous Dirichlet condition in FEM. Thus, upon closing

contact, the last element of the bar transforms from a rigid element to an elastic element and loses

energy due to vanishing ¤𝑢𝑁 . However, in opening contact, the bar transforms from an elastic element

to a rigid element, and the bar regains energy as the velocity of the contact node equals the velocity
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of the previous node ¤𝑢𝑁 (𝑡) = ¤𝑢𝑁−1(𝑡). For higher order shape functions, a similar mechanism takes

effect, however it cannot be illustrated as transformation of the last element between rigid and elastic

body. Rather, the jump in energy is explained as a consequence of changing between two families of

shape functions of the NBM.

Along the same line, the terms dissipation and gain of energy will be used to describe the

evolution of the energy metric in time rather than implying any physical energy transfer in or out

of the system. Moreover, in the NBM, it was evident from numerical experiments that the energy

jump Δ𝐸 diminishes for large 𝑁 . An example of such experiment is presented in Section 4.5.1.

Nevertheless, an analytical proof for the convergence of Δ𝐸 to zero with higher number of elements

is not presented in this manuscript.

To conclude, the behaviour of the energy metric in the NBM should be understood as a

consequence of the Galerkin-Bubnov method rather than as a physical imposition on the system (as

done by implementing a Newton impact law with 𝑒 = 0, for example).

4.3.6 Notes on the NBM-FEM formulation

In this section, we will explore differences and similarities between the NBM and other existing

methods for the treatment of the Signorini conditions.

The Signorini conditions are implemented in the NBM-ODE in Equation (4.54) via switching

between systems of ODEs. We note that the Wave-FEM [98] also implements the Signorini

conditions via switching between two discrete dynamical systems (one governing inactive contact

motion and the other governing active contact motion). Also, the NBM can be considered similar to

the MRM [40] since the MRM effectively modiőes the stiffness matrix on the switch between active

and inactive contact whereas the NBM modiőes both the mass and stiffness matrix on the switch.

The solution proposed to the NBM-ODE (4.54) constitutes a Filippov solution to discontinuous

ODEs [23]. In Filippov theory, the behaviour of a motion around a discontinuity (𝑆(u𝑜 (𝑡)) = 𝑔0 in

Equation (4.54)) is either crossing or sliding. Crossing solutions are solutions do not remain within

the discontinuity and are not attracted to the point of discontinuity (i.e., these solutions cross the

point of discontinuity). In the case of the NBM-ODE, the switching conditions (4.51)-(4.52) include

only crossing solutions, since, assuming a continuous and once-differentiable solution u𝑜 (𝑡), and

therefore continuous 𝑆(u𝑜 (𝑡)), it is evident that a point 𝑆(u𝑜 (𝑡−)) = 𝑔0, 𝑆( ¤u𝑜 (𝑡)) > 0 enters active

contact conditions and 𝑆(u𝑜 (𝑡+)) > 0 is expected (and vice-versa for the inactive contact conditions).

However, grazing solution for which 𝑆(u𝑜 (𝑡)) = 𝑔0 and 𝑆( ¤u𝑜 (𝑡−)) = 0 are considered sliding

Fillipov solutions since they are expected to remain at the point of discontinuity. Whilst this type of

solutions is not investigated in this manuscript, it is important to note that the Filippov theory allows

for solution at a discontinuity by composing a mean differential equations from the active contact
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NBM and inactive contact NBM components of (4.54). However, this is not further investigated in

this article. Moreover, while the Filippov solution is proposed for the NBM-ODE (4.54), it is not the

only methodology for the solution of the NBM-ODE. Other methodologies such as regularization of

the NBM around the discontinuity may be taken are possible (for more methods, see [90]). Here,

it has been chosen to not consider grazing solutions which allows for the implementation of the

Filippov solution in a straight-forward manner.

On another note, we would like to state that the NBM-ODE does not introduce explicitly an

impact law. To clarify, in schemes utilizing Newton’s impact law, different coefficients of restitutions

may be used 𝑒 ∈ [0, 1] to solve the Signorini problem for a single FE model. In contrast, the NBM

formulation of the Signorini conditions is unique with respect to the FE model. Still, we can draw a

parallel between the NBM and FEM schemes utilizing Newton’s impact law. The NBM coincides

with Newton’s impact law 𝑒 = 0 during the active contact motion and away from switching instants.

There, the NBM abides exactly the same ODE abided by the Newton impact law 𝑒 = 0 since the

shape functions discretizing the governing PDE are equivalent to those used in classical FEM for a

őxed 𝑢𝑁 (𝑡) = 𝑔0. However, during inactive contact motions, the ODE dictating the motion of nodes

is distinct from the one used in implementation of Newton’s impact law since the set of NBM shape

functions to discretize the PDE (4.16) is distinct from this used in classical FEM. For example,

for the case of őrst-order shape functions, the NBM preserves the length of the contact element

during inactive contact motion: 𝑢𝑁 (𝑡) = 𝑆(u𝑜 (𝑡)) = 𝑢𝑁−1(𝑡) (i.e., the contact node has the same

displacement as the node before it) which does not occur in the classical FEM scheme.

4.4 Nonsmooth modal analysis

In the preceding sections, the NBM and FEM were used to approximate the solution to the initial

boundary value problem exposed in Equation (4.1) to Equation (4.4). To solve for the remaining

conditions, we require that u𝑜 (𝑡) and ¤u𝑜 (𝑡) are periodic, see Equations (4.6) and (4.7),

u𝑜 (0) = u𝑜 (𝑇) (4.63)

¤u𝑜 (0) = ¤u𝑜 (𝑇). (4.64)

In this article, we attempt to őnd such solutions and corresponding period using the shooting method.

Moreover, continuation is used for the detection of NSMs, i.e., families of periodic solutions [64].

4.4.1 Crank-Nicolson and shooting method in NBM

In NBM, the shooting equations require a initial displacements u𝑜0 . Furthermore, all initial velocities

are set to zero ¤u𝑜 (𝑡) = 0 to őx the phase of the motion (see phase condition in Section 2.1.1). For
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the NBM, the shooting equations read

u𝑜 (𝑇) = u𝑜0, v𝑜 (𝑇) ≡ ¤u𝑜 (𝑇) = 0 (4.65)

where u𝑜 (𝑡) and v𝑜 (𝑡) (introduced to denote nodal velocities) are both subject to the ODE (4.54).

To approximate u𝑜 (𝑇) and ¤u𝑜 (𝑇), the Crank-Nicolson (CN) scheme (or Newmark scheme with

𝛽 = 1/2 and 𝛾 = 1/4 [43]) is used since it is characterized by energy conserving properties. The

CN scheme in the context of NBM reads

u𝑜𝑖+1 = u𝑜𝑖 +
Δ𝑡

2
(v𝑜𝑖+1 + v𝑜𝑖 ) (4.66)

v𝑜𝑖+1 = v𝑜𝑖 +
Δ𝑡

2
(a𝑜𝑖+1(u

𝑜
𝑖+1, v

𝑜
𝑖+1) + a𝑜𝑖 (u

𝑜
𝑖 , v

𝑜
𝑖 )) (4.67)

a𝑜𝑖 (u
𝑜
𝑖 , v

𝑜
𝑖 ) =



−(M𝐷)

−1(K𝐷u𝑜
𝑖
+ f𝐷) 𝑆(u𝑜

𝑖
) > 𝑔0 or 𝑆(u𝑜

𝑖
) = 𝑔, 𝑆(v𝑜

𝑖
) > 0

−(M𝑁 )
−1(K𝑁u𝑜

𝑖
) 𝑆(u𝑜

𝑖
) < 𝑔0 or 𝑆(u𝑜

𝑖
) = 𝑔, 𝑆(v𝑜

𝑖
) < 0.

(4.68)

It is important to note that the CN scheme is proven to conserve energy for classical FEM models in

dynamics of autonomous and undamped structures [43]. In principle, any other ODE scheme could

be chosen. Although, in NBM, it is of interest to conserve the energy of the structure away from

contact in order to be able to obtain an overall accurate motion. The CN scheme is implicit and

requires the implementation of a root solving procedure to őnd u𝑜
𝑖+1 and v𝑜

𝑖+1 in Equations (4.66)

and (4.67). The root solving method used here is a Newton algorithm referred to as inexact Newton

(or semismooth Newton) [18, 27]. The semismooth-Newton algorithm is detailed in Appendix B.5.

To approximate the őnal states u𝑜 (𝑇) and v𝑜 (𝑇), a discretization of the time span 𝑡 ∈ [0, 𝑇] into

𝑁𝑡 steps is considered with the time-step Δ𝑡 = 𝑇/𝑁𝑡 . The approximated time-marching solutions are

denoted u𝑜 (𝑇) ≈ u𝑜
𝑁𝑡

and v𝑜 (𝑇) ≈ v𝑜
𝑁𝑡

. Substitution of these approximations into Equation (4.65)

reads

u𝑜𝑁𝑡
(u𝑜0, 𝑇) − u𝑜0 = 0 (4.69)

v𝑜𝑁𝑡
(u𝑜0, 𝑇) = 0 (4.70)

where it is emphasized that the őnal states u𝑜
𝑁𝑡

and v𝑜
𝑁𝑡

are both functions of the initial displacements

u𝑜0 and period of motion 𝑇 . The shooting equations can be then solved using MATLAB’s fsolve

via a semismooth Newton procedure. The derivation of the Jacobian for the shooting equations

describing a nonsmooth motion is explained in length in [8]. Furthermore, it is worth noting that the

CN method is also known as the 𝜃 = 1/2 implicit method and is commonly used for the solution of

discontinuous ODEs arising in mechanical and electrical engineering [2].
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4.4.2 Error estimation

For cases where the solution 𝑢(𝑥, 𝑡) exists, a proper error estimate of the NBM solution is the 𝐿2

norm | |𝑢−𝑢ℎ | |2 where 𝑢ℎ (𝑥, 𝑡) is deőned in Equation (4.55). However, in the absence of closed-form

solution, such as the periodic solutions sought for the varying-area bar, other error metrics are

needed. While the error in the residual resulting from the approximation constitutes a common error

metric for the Galerkin-Bubnov method [44,79], the residual of the PDE (4.1) under the NBM-FEM

approximation requires knowledge of 𝜙′′𝑖 (𝑥) for 𝑥 ∈ [0, 1]. However, since 𝜙𝑖 (𝑥) is described using

the piecewise Lagrangian used in FE framework, the double derivative of 𝜙𝑖 (𝑥) is not deőned on

element boundaries. Therefore, to quantify the error, the residual estimator [79, p. 93]

𝑅(𝑡) = ℎ4
𝑁𝑒∑︁
𝑗=1

∫
E 𝑗

( 𝑁∑︁
𝑖=1

𝜙𝑖 (𝑥) ¥𝑢𝑖 (𝑡) − 𝜙
′′
𝑖 (𝑥)𝑢𝑖 (𝑡)

)2

d𝑥 (4.71)

is used, where ℎ describes the length of the element, 𝑁𝑒 denotes the total number of elements and

E 𝑗 is the domain of the element 𝑗 excluding its boundaries such that any given 𝜙′′𝑖 (𝑥) is deőned

everywhere in E 𝑗 , and the boundary of the elements are excluded from the error metric (4.71). It

is noted, that while the error metric effectively excludes points of discontinuity, it evaluates the

accuracy of the solution in ranges where the approximation of 𝑢(𝑥, 𝑡) is clearly deőned. Thus,

it is considered a proper metric for the evaluation of the solution’s accuracy. For the NBM, we

must evaluate the integral of 𝑅(𝑡) for 𝑡 ∈ [0, 𝑇]. Since the acceleration ¥u(𝑡) is discontinuous at the

moment of switch 𝑡𝑠, we deőne the residual error by excluding instances of discontinuity, similarly

to the residual estimator,

𝑅𝜖 =

∫ 𝑡1−𝑠

0
𝑅(𝑡) d𝑡 +

∫ 𝑇

𝑡
(𝑁𝑠−1)+
𝑠

𝑅(𝑡) d𝑡 +
𝑁𝑠∑︁
𝑗=1

∫ 𝑡
( 𝑗+1)−
𝑠

𝑡
𝑗+
𝑠

𝑅(𝑡) d𝑡 (4.72)

where 𝑡 𝑗𝑠 denote various distinct instants of switch through the motion and 𝑁𝑠 deőnes the total

instances of switch in [0, 𝑇]. We duly note that the residual error does not take into account the

discontinuities in time, and may be an inaccurate error metric for the Signorini problem. However,

the metric 𝑅𝜖 does deőne the quality of the approximation of inactive and active phases of motion by

their respective shape functions. Thus, 𝑅𝜖 is useful in determining the accuracy in the approximation

of the active and inactive contact phases. Nevertheless, if the exact solution to the problem is known,

the more accurate error norm | |𝑢 − 𝑢ℎ | |2 will be used instead of 𝑅𝜖 .

4.4.3 Sequential continuation with correction

As discussed in Section 3.4, methods useful for numerical nonsmooth modal analysis of the bar may

not be suitable for nonsmooth modal analysis of the varying-area bar or the multi-dimensional cases
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due to the existence of a dense modal space. Nevertheless, it was reported in [51] that sequential

continuation led to successfully revealing the NSMs of the bar prone to unilateral contact for a

FD-BEM. Similarly, application of sequential continuation on the NBM shooting equations, leads

to successful detection of NSMs. Although, application of sequential continuation in the NBM

was accompanied with signiőcant numerical error and large computation times. Rather, a different

approach to sequential continuation was deemed more successful: sequential continuation with

correction. This approach and its motivation are explained in the remainder of this section.

The space of solutions of the system (4.69) to (4.70) [51, 98] describing the NSM is denoted

(q0(𝑇), 𝑇) where q0 is introduced to simplify the notation and it denotes the initial guess q0 = u𝑜0 . In

the solution of the NBM shooting equations (4.69) to (4.70), it has been noticed that the sequential

continuation of curves with 𝑁 ≥ 10 faces difficulties in obtaining solutions on the backbone curve

(q0(𝑇), 𝑇) such as long computation times and non-convergence. It is conjured that continuation

these difficulties ensue from the dense modal space of the bar and insufficiency of the initial guess.

However, it was found that for large 𝑁 , it is more efficient to obtain solutions by őrst őnding

solution with a low 𝑁 and then apply a shooting algorithm while recursively increasing the number

of nodes for each point in the low-𝑁 curve. We refer to this method as sequential continuation with

correction (SCC). To distinguish between curves approximated using different 𝑁 , we will denote a

solution continuum as follows: (q0(𝑇), 𝑇)
𝑁 . The steps of sequential continuation with correction

are:

1. Obtain the nonlinear normal mode with low 𝑁 (for instance, 𝑁 = 4), stored as the series

(q𝑘0 , 𝑇
𝑘 )4, 𝑘 = 1, 2, . . . , 𝑁𝑐.

2. For the point 𝑖 = 1 in the series (q1
0, 𝑇

1)𝑁 , perform shooting on a system with higher number

of nodes 𝑁+. First, interpolate (q1
0)
𝑁 using the shape functions P(𝑥) to obtain an initial guess

for the desired 𝑁+ approximation.

3. Solve the shooting equations with 𝑁+ nodes with period 𝑇1 and obtain (q1
0, 𝑇

1)𝑁+.

4. Steps 2 and 3 may be repeated for higher number of nodes with the period 𝑇1 constant.

5. Repeat 2, 3 and 4 for all points in the series discovered in step 1, i.e., 𝑘 = 2, 3, . . . , 𝑁𝑐.

Figures 4.4 and 4.5 are used to illustrate the method.

It is important to note that failure of sequential continuation was expected due to existence

of iso-periodic solutions, as explained in Section 2.5. Nevertheless, sequential continuation with

correction seems to detect periodic solutions successfully. It is estimated that for őnite 𝑁 , the space

of periodic solution of the bar in unilateral contact is less dense than the solutions described in

Section 3.3.4. Furthermore, since sequential continuation with correction is used, it is possible to

focus on speciőc solutions of the modal space and thus avoid any continuation issues emanating from

the dense solution space Section 3.3.4. For example, in Figure 4.4, large portions of the backbone

curves 𝑁 = 20 and 𝑁 = 30 are almost congruent which indicates convergence to speciőc periodic
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Figure 4.4: Sequential continuation with correction (SCC): every point represents a periodic solution of
speciőc frequency and energy. The curve for 𝑁 = 4 is found using sequential continuation. For each point on
this curve, a shooting algorithm is applied to obtain a periodic solution in higher 𝑁 and the same frequency.
Dotted line relates to Figure 4.5 depicting solutions along this line. The results in this őgure and in Figure 4.5
were obtained using CN and NBM with 𝑔0 = 0.1 and 𝐴(𝑥) = 1 − 𝑥/2.

solutions in the modal space. Furthermore, the solutions for small 𝑁 seem to exhibit backbone

curves that are two-dimensional manifolds. Thus, the backbone curve can be readily detected for

NBM-ODEs of small 𝑁 (for example, 𝑁 = 4) and improved by correction for higher 𝑁 .

4.5 Results

4.5.1 Convergence of Crank-Nicolson and NBM

In this section, we verify the validity of the NBM for the cantilever bar of uniform area, i.e., 𝐴(𝑥) = 1,

∀𝑥 ∈ [0, 1] and 𝑔0 = 0.1. For this model, analytical solutions and nonsmooth modal analysis results

were derived in the form of NSM1 in Section 3.3.1. Here, a motion from the exact NSM1, with

period 𝑇 = 3.5, is compared with its NBM approximation. The corresponding NSM displacement

őeld can be obtained from Equation (3.48) as follows:

𝑢(𝑥, 𝑡) = 𝑓 (𝑡 + 𝑥) − 𝑓 (𝑡 − 𝑥) with 𝑓 (𝑠) = 0.1




−𝑠 𝑠 ∈ [−1, 1],

𝑠 − 2 𝑠 ∈ [1, 2.5],

3 − 𝑠 𝑠 ∈ [2.5, 4.5] .

(4.73)

The NBM model is assigned the initial conditions generating the exact periodic solutions. The

exact initial conditions are discretized and their values are taken at loci 𝑥𝑖 corresponding to the
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(a) 𝑁 = 4, 𝑅𝜖 = 1.75 × 10−2 (b) 𝑁 = 20, 𝑅𝜖 = 2.8433 × 10−4 (c) 𝑁 = 30, 𝑅𝜖 = 1.0904 × 10−4

Figure 4.5: Periodic displacement őeld corresponding to Figure 4.4, for period 𝑇 = 3.7812. With higher
number of nodes, the obtained displacement őeld is more accurate as evident by the lower 𝑅𝜖 value.

NBM-FEM nodes 𝑢𝑖 (𝑡)

𝑢𝑜𝑖 (0) = 𝑓 (𝑥𝑖) − 𝑓 (−𝑥𝑖) = −0.2𝑥𝑖 and 𝑣𝑜𝑖 (0) = 𝑓 ′(𝑥𝑖) − 𝑓
′(−𝑥𝑖) = 0 (4.74)

inserted in the implicit CN time-marching with 𝑁𝑡 = 2000 steps and Δ𝑡 = 1.75 · 10−3. The error

used in the convergence analysis is expressed in the 𝐿2-norm

| |𝑢 − 𝑢ℎ | |2 =
1

𝑇

√√√∫ 1

0

∫ 𝑇

0
(𝑢(𝑥, 𝑡) −

𝑁−1∑︁
𝑖=1

𝜙𝑖 (𝑥)𝑢
𝑜
𝑖
(𝑡) + 𝜙𝑁 (𝑥)𝑢𝑁 (u𝑜 (𝑡)))2 d𝑡 d𝑥 (4.75)

where 𝑢𝑁 (u𝑜 (𝑡)) is deőned in Equation (4.56). A sample of the solution for 𝑁 = 200 is illustrated

in Figure 4.6. The motion plotted in Figure 4.6 shows very close to piecewise linear surface which

is indeed the expected solution for the given initial conditions as presented in Equation (4.73).

(a) Displacement őeld (b) Velocity őeld

Figure 4.6: NBM solution emerging from initial conditions (4.74) for 100 elements and quadratic shape
functions (𝑁 = 200). We note a small disturbance in the velocity őeld Figure 4.6(b). This disturbance in the
velocity őeld seems to travel along characteristic lines and diminishes progressively as higher number of
elements and degree of polynomials are used. In Figure 4.6(b), and all following velocity őeld plots, a bolded
line on the 𝑡 axis highlights active contact phases.
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Chapter 4 Nodal Boundary Method in One Dimension

Figure 4.7 denotes convergence of 𝐿2 error and Δ𝐸 for the cantilever bar solution with NBM

and C-N algorithm. From Figure 4.7(a), we note that, for any shape function polynomial degree,

convergence is approximately of őrst order in terms of the number of elements. Indeed, since the
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(b) Error in energy jump Δ𝐸 , see Equation (4.60),
occurring at the őrst switching instance from inactive
to active contact

Figure 4.7: Error plots for the NBM with CN algorithm solution of a nonsmooth motion of the cantilever barr.
Curves denote different order of Lagrangian shape function in the FE approximation

exact solution is only once piecewise differentiable as evident from Equation (4.73), the order of

convergence of the FE methods is limited to őrst order [34, p. 117]. Since the order of convergence

in FE based method is expected to be linear, it can be said that the number of elements affects the

solution’s accuracy more than the order of shape functions. However, it was found that for the

application of shooting method, dealing with higher shape functions has allowed to reduce the

number of variables while reducing both the residual error and computation time. Thus, in the

upcoming nonsmooth modal analysis Section 4.5.3, the authors deemed a set of 20 elements with

quadratic shape functions ideal in terms of accuracy and computation time.

Furthermore, in Figure 4.7(b), we see that as the number of elements or order of shape functions

increases, the energy jump Δ𝐸 (discussed previously in Section 4.3.5) decreases. Compared to the

𝐿2 convergence rate in Figure 4.7(a), the rate of convergence Δ𝐸 → 0 seems to be affected by the

order of shape functions and shows a higher rate with increasing polynomial order. This indicates

that, in NBM, a higher order of shape functions or higher number of elements allows for better

energy conservation throughout the motion. Although, besides the empirical evidence shown here,

no analytical investigation was done to prove this statement.
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4.5.2 Comparison of NBM with other numerical techniques

The NBM exhibits numerical non-grazing solutions that converge to the exact solution. Although, it

is of interest to compare the NBM to other numerical techniques. Here, the convergence of NBM

will be compared to other FEM treatments of the Signorini problem, presented in Section 2.5.3, for

the same exact solution presented in Equation (4.73). Furthermore, advantages of the NBM over

existing methods are discussed in this section. Figure 4.8 shows the different rates of convergence

for the FEM methods discussed in this manuscript in comparison to the NBM.
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Figure 4.8: Comparison of rates of convergence of FEM treatments to the Signorini problem. In all tests, the
FEM approximation consists of quadratic (degree 2 polynomial) Lagrangian shape functions.

From Figure 4.8, it is evident that the NBM exhibits a comparable rate of convergence to the

other investigated methods. Nevertheless, the NBM also offers other advantages in regard to other

methods. The remainder of this section shall focus on those advantages in the context of the results

presented in Figure 4.8.

To start, the NBM is compared to Nitsche’s method. For low 𝑁 , the NBM exhibits lower 𝐿2

errors than Nitsche’s method in Figure 4.8. Evidently, the Nitsche method allows penetration of the

obstacle for őnite 𝑁 . The penetration of the obstacle is controlled by the parameters 𝛾 and Δ𝑥 (the

length of the element). In fact, from our results in Figure 4.8, it can be shown that the parameter 𝛾

affects the error with respect to the true solution. Thus, the lower 𝐿2 error of NBM for low 𝑁 can be

explained the fact that the NBM restricts penetration for any 𝑁 while the penetration in Nitsche’s

method is sensitive to the value of 𝛾 at low 𝑁 . Next, NBM is compared to the implementation

of Newton’s impact law with 𝑒 = 0, 1. From Figure 4.8 the NBM exhibits similar convergence

rate to Newton’s impact law schemes. However, as previously discussed in Section 2.5.3, motions

generated by implementation of Newton’s impact law either exhibits artiőcial chattering (𝑒 = 1)

or dissipates energy at contact (𝑒 = 0). In contrast, the NBM is capable of generating periodic

solutions without artiőcial chattering at contact. An overview of the discussed advantages of NBM
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Chapter 4 Nodal Boundary Method in One Dimension

over existing numerical techniques is outlined in Table 4.1.

Convergence No-Penetration No-Chattering Periodic Solutions
Nitsche ✓ ✗ N/A ✓

𝑒 = 0 ✓ ✓ ✓ ✗

𝑒 = 1 ✓ ✓ ✗ ✓

NBM ✓ ✓ ✓ ✓

Table 4.1: Comparison of desired properties of different FEM treatments to the Signorini problem.

It is also worth mentioning that the MRM (see Section 2.5.3) is not analyzed in this section.

In fact, the NBM is similar in many aspects to the MRM: both exhibit a continuous active contact

phase by restricting the motion 𝑢𝑁 (𝑡) such that the Signorini conditions are satisőed. Although, the

advantage of the NBM over the MRM lays in its implementation. While the MRM requires solution

of an optimization problem in order to formulate the reduced mass matrix [40], the NBM does not

require to do so and the formulation of the NBM mass matrices M𝑁 and M𝐷 is done via row and

column operations on the classical FEM mass matrix M (eg, the formation of M𝑁 in 4.40).

4.5.3 Nonsmooth modes

In this section, the nonsmooth modal analysis techniques developed in Section 4.4 are used on three

variations of the bar: the internally resonant cantilever uniform area bar, the uniform area cantilever

bar with soft support, and the varying area cantilever bar. To verify the validity of the NSMs

presented here, we will compare each NSM with its corresponding forced-response diagram since it

is expected that the backbone branch will align with the frequency and energy at resonance [64, 97].

All results in Section 4.5.3 are generated for a gap distance 𝑔0 = 0.001 to comply with the models

investigated in [51, 97]. Furthermore, all NSMs were generated via FE models of 20 elements

and quadratic shape functions for which the backbone branches were depicting resonant points

sufficiently.

Forced-response curves

The forced response-curves are generated by solving the equation

𝜕𝑡𝑡𝑢(𝑥, 𝑡) + 𝜉𝜕𝑡𝑢(𝑥, 𝑡) + 𝜕𝑥 (𝐴(𝑥)𝜕𝑥𝑢(𝑥, 𝑡)) = �̄� cos(𝜔𝑡) (4.76)

where 𝜉, �̄� and 𝜔 denote the damping coefficient, forcing amplitude and the forcing frequency,

respectively. This governing PDE is complemented with the Signorini boundary conditions (4.5)

and (4.4) as well as the boundary conditions imposed at 𝑥 = 0 by the model in questions. The

resulting Signorini problem is then solved for 𝜉 = 0.1, 0.2, . . . , 0.7 and for frequencies 𝜔 within
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Figure 4.9: Agreement in forced-response diagram (�̄� = 0.05 and 𝜉 = 0.1) for the internally resonant bar bar
with 20 elements and Quadratic shape functions (𝑁 = 40) across different numerical methods in FEM.

the range of the detected NSM. For each set of values 𝜉 and 𝜔, we record the sum of kinetic and

potential energies of the structure at steady state to plot the forced-response diagrams.

In practice, it is assumed a steady state is reached as 𝑡 → ∞. Although we often expect a

forced motion to reach a periodic steady state, for some frequencies, quasi-periodic or chaotic

solutions take place [98]. Thus, to obtain the forced-response curve, the Signorini problem is solved

until a periodic motion is obtained or until the energy’s mean value throughout a forcing period is

sufficiently stable.

All forced-response curves were obtained using the FEM framework with 20 elements and

quadratic shape functions and solved via SICONOS [1]. SICONOS uses a Moreau-Jean scheme to

implement the Newton-impact law in the resulting system of ODEs. Here, the Newton-impact law

is applied on a classical FEM approximation of the model in question, that is without application of

NBM. The coefficient of restitution used to generate the forced responses in sections 4.5.3 to 4.5.3 is

𝑒 = 0. It is important to note that forced-response diagrams for the models have been also obtained

using SICONOS with 𝑒 = 1, Nitsche’s method, and NBM. Nevertheless, for the choice of 20

elements and quadratic Lagrange shape functions, all the forced-response curves yielded very similar

results. An example of the comparison between forced-response diagram is presented in Figure 4.9.

Figure 4.9 shows that the forced-response obtained by all numerical schemes are relatively similar,

and their resonance peaks lie on approximatively same frequencies. In Sections 4.5.3, 4.5.3 and 4.5.3,

the detected NBM NSMs lie on resonance peaks that are common to forced-response curves by all

numerical schemes. Thus, in these sections, only forced response curves generated via SICONOS

with 𝑒 = 0 are shown for the sake of conciseness.
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Chapter 4 Nodal Boundary Method in One Dimension

Internally resonant bar

The internally resonant bar of uniform area 𝐴(𝑥) = 1 is an example that has been investigated both

numerically [51, 98] and analytically in Chapter 3 and in [12, 84]. The system is known to manifest

an intricate modal space consisting of families of iso-periodic periodic solutions in a dense set of

periods and families of periodic solutions of the same frequency and energy.

In Figure 4.10(a), we compare the curve obtained by NBM to the curve of piecewise-linear

analytical solutions obtained in [97]. It is clear that the NSM obtained from NBM lays closely to
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(a) Forced response curves
(b) Displacement őeld of solution 𝑎, forced and
damped motion generated by SICONOS with 𝑒 = 0

(c) Velocity őeld of solution 𝑎, autonomous motion
generated using NBM with CN time-marching

(d) Displacement őeld of solution 𝑎, autonomous
motion using NBM with CN time-marching

Figure 4.10: NSM of the internally resonant bar detected by the NBM. (�̄� = 0.05). Exact NSM is the
piecewise-linear NSM1 detected for the internally resonant bar in Section 3.3.1. 𝜔1 = 𝜋/2 and 𝐸1 ≈ 5.9×10−7.
We note here that the velocity őeld Figure 4.10(c) involves porous oscillations which are common to methods
in the FE framework. However, a heat-map representation of the velocity őeld is useful in demonstrating that
the found solution follows (approximately) the characteristic lines, exhibited by the exact solution [97].

the exact piecewise-linear NSM1 from Section 3.3.1. We note that there exist other exact periodic

solutions with higher energies to the NSM1 curve as was concluded in Chapter 3. To clarify, it
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is stated in Section 3.3.4, that the spectrum of the internally resonant bar consists of iso-periodic

NSMs existing as lines above the exact NSM branch in the frequency-energy diagram. Therefore,

the group of solutions found by NBM may be considered numerically accurate due to the existence

of solutions above the Exact NSM curve. Nevertheless, we note that the NBM backbone curve does

cross all points of resonance in the forced-response diagram. This shows that the NBM is useful for

the modal analysis of the Signorini problem.

Constant cross-section bar with soft support

Similarly to [51, 97], the bar with soft support features a uniform cross-sectional area 𝐴(𝑥) = 1

where the homogeneous Dirichlet condition at 𝑥 = 0 is replaced with the Robin condition

𝑘𝑢(0, 𝑡) = 𝜕𝑥𝑢(0, 𝑡), 𝑘 = �̄� 𝐿/(𝐸𝐴0) (4.77)

where 𝑘 is the physical stiffness coefficient of the spring. The NBM was used to handle the Signorini

boundary condition at 𝑥 = 1 while the soft support condition (4.77) was treated using the classical

FE technique.

For this experiment, we set 𝑘 = 0.5 to replicate the results in [51, 97]. Corresponding results are

shown in Figure 4.11. Again, as in the case of the internally resonant bar, the alignment between

occurrences of resonance and the NSM detected by NBM is clear. The motions obtained in the NBM

analysis are similar to those obtained in [51] for the same values. Speciőcally, the displacement

őelds depicted in Figures 4.11(b) and 4.11(c) are similar to those presented in [51, (a) and (b) in

Figure 11].

In Figure 4.11(a), it seems apparent that both displacements relate to two different branches

of the solution. Moreover, the forced response curves of less damped motions have two peaks

which may indicate the existence of two distinct NSM branches. Here, the branch corresponding to

solution 𝑞2 has been detected until a maximal energy point. Backward sequential continuation has

then revealed a distinct a set of points to which the solution 𝑞1 belongs. These points seem to consist

of a curve and the origin of this curve coincides with a subharmonic 4 of the second fundamental

frequency 𝜔2. This coincidence with the subharmonic 𝜔2/4 may suggest the existence of an

internal resonance in the proximity of both curves. Further attempts using sequential continuation to

reveal the internal resonance between the curves were not successful. Indeed, the use of sequential

continuation prevents us from conőrming conődently the existence of the two distinct branches

since the method does distinguish between branches belonging to different continua [4]. In order to

affirm this hypothesis, a continuation method capable of resolving internal resonances is required.

A method generally used for the detection of internal resonances is the pseudo-arclength

continuation [64]. However, the use of pseudo-arclength continuation relies on the a tangent to

the backbone curve to formulate the next solution along the curve [4]. Due to the nonsmoothness
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Figure 4.11: NSM of the bar with soft support with 𝑘 = 0.5 detected by the NBM. Forced response curves
with �̄� = 0.025 and 𝜉 = 0.1, 0.2, . . . , 0.7. First natural frequency 𝜔1 ≈ 0.65, second natural frequency
𝜔2 ≈ 3.3 and grazing energy 𝐸1 ≈ 5.9 × 10−7.

of the motions in NSMs, such tangent cannot be formulated at every point on the branch. In fact,

pseudo-arclength continuation was applied in [51, p. 9] for the detection of NSMs. While some

continuous sections of the NSM were detected, pseudo-arclength continuation has failed to reveal

internal resonances and could not reveal backbone curves for long ranges of frequencies [51, p. 10].

Varying-area bar

While modal analysis of the bar of uniform area has been the subject of both analytical or

numerical analysis [51,97], it required knowledge of the d’Alembert function or Green’s function

or characteristic lines. Here, the NBM allows for modal analysis of the varying-area bar since it

allows detection of periodic solutions in the autonomous varying-area bar prone to contact. For the

varying area bar in Figure 4.1, several area functions 𝐴(𝑥) were considered. In order to simplify the

discussion for the remainder of this section, the following terminology is introduced to distinguish
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between the investigated models:

heav-bar 𝐴(𝑥) = 1 − 0.5Θ(𝑥 − 0.5)≡ 𝐴ℎ (𝑥) (4.78)

lin-bar 𝐴(𝑥) = 1 − 𝑥/2≡ 𝐴𝑙 (𝑥) (4.79)

quad-bar 𝐴(𝑥) = 0.5𝑥(2 − 𝑥)≡ 𝐴𝑞 (𝑥) (4.80)

where Θ(𝑥) denotes the Heaviside function, and the heav-bar hence exhibits two cross-sectional

areas: 𝐴0 for 𝑥 ∈ [0, 0.5𝐿] and 0.5𝐴0 for 𝑥 ∈ (0.5𝐿, 1]. Furthermore, it is worth noting that all

models consist of bars with decreasing areas such that 𝐴(0) = 1 and 𝐴(1) = 0.5. The corresponding

NSM is illustrated in Figure 4.12(a). The detected NSMs of the lin- and quad-bars are illustrated
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(b) lin-bar (𝐴(𝑥) = 𝐴𝑙 (𝑥)). 𝜔1 ≈ 1.44, 𝜔3 ≈ 6.72 and
𝐸1 ≈ 4.98 × 10−7
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(c) quad-bar (𝐴(𝑥) = 𝐴𝑞 (𝑥)). 𝜔1 ≈ 1.35, 𝜔3 ≈ 6.32 and
𝐸1 ≈ 4.31 × 10−7

Figure 4.12: Backbone and forced response curves (�̄� = 0.05) for the varying area bars. NSMs detected by
the NBM with 20 elements of quadratic shape functions. The depicted points in sub-őgures (a), (b) and (c)
correspond respectively to solutions 𝑏, 𝑐, and 𝑑 investigated in Figure 4.13(b).

in Figures 4.12(b) and 4.12(c), respectively. Indeed, the NSMs obtained by the NBM coincide

the resonant points in the forced-response diagrams as expected from theory of nonlinear modal

analysis [64, 84].

The effect of area variation on the modal space of the bar in unilateral contact is of interest. In
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contrast to the conclusions from the bar with soft support in Section 4.5.3, no internal resonances were

detected for the cases of the varying area bar around the subharmonic 𝜔3/4 or other subharmonics

within spectrum of the backbone curve. Next, Figure 4.13 illustrates the backbone curves of all

varying area models and that of the uniform area investigated in Section 4.5.3. In Figure 4.13(a), the

backbones of the varying area bars exhibit higher energies for the same normalized frequencies when

compared to the uniform area bar (investigated in Section 4.5.3). In other terms, the behaviour of the

varying area bars can be characterized as łsofterž in relation to the uniform area bar. Along the same

line, it is noted that while the lin- and quad-bars exhibit a similar stiffening pattern, the heav-bar is

characterized by the softest stiffening. Thus, it is indicative that the varying area function affects the

stiffening behaviour and, in turn, the range size of resonant frequencies. Next, in Figure 4.13(b),

comparison of the varying-area bar NSMs with respect to their true (not normalized) frequencies

shows that the area variation causes backward shifts in the backbone curves towards lower frequency

ranges. We note that the backward shifts in Figure 11(b) originates in the vertical line portions of

the backbone curves below normalized energy 1. These vertical line portions depict linear modes of

vibrations where no contact occurs and 𝑢𝑁 (𝑡) < 𝑔0 throughout the whole duration of motion. Since

the sections of linear vibration modes of the varying area bars are shifted backwards in frequency,

we conjure that the backward shifts are a consequence of the area variation’s effect on the linear

mode shapes of the bar rather than the contact dynamics introduced to the system.
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Figure 4.13: Backbone curves of different area cantilever bars corresponding to Figures 4.10(a) and 4.12.

At last, speciőc motions on the NSMs of the heav-bar, quad-bar and lin-bar are plotted in

Figure 4.14. it is noted that the NSM motions of the varying area bar models, while qualitatively

similar to the NSM motions of the uniform area bar depicted in Figures 4.10(c) and 4.10(d), exhibit

piecewise nonlinear displacement őelds in space-time rather than piecewise-linear displacement

őeld of the uniform area bar.
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(a) Displacement őeld solution 𝑏 (b) Velocity őeld solution 𝑏

(c) Displacement őeld solution 𝑐 (d) Velocity őeld solution 𝑐

(e) Displacement őeld solution 𝑑 (f) Velocity őeld solution 𝑑

Figure 4.14: Comparison of selected autonomous NBM motions from the backbone curves of all varying-area
bars. The locations of the selected motions on the FEP is noted in Figures 4.12 and 4.13(b).

4.6 Limitations of NBM

In this section, we provide a summery of all limitations to NBM and include possible spectrum of

applications of NBM to other structures.

The limitations of NBM can be summarized as follows:

1. The choice of shape functions to approximate 𝑢(𝑥, 𝑡), in the NBM, must be able to exhibit

non-zero and negative stress 𝐴(1)𝜕𝑥𝑢(1, 𝑡). This limitation is common to the Nitsche method

and MRM as well. See Section 4.3.1 for further elaboration.
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2. The NBM relies on distinction between internal nodes and nodes prone to contact. Furthermore,

those are őxed in throughout the motion and must be known a priori. See Section 4.3.2 for

context and further discussion.

3. The NBM formulation does not cover the case of grazing motions as they were beyond the

scope of this paper. Currently, the rules for implementing active or inactive contact are (4.51)

and (4.52). It is suspected that additional rules are required to allow NBM to capture grazing

motions. This is further discussed in Section 4.3.4.

4. The acceleration term ¥𝑢𝑁 (𝑡) exhibits a dirac-delta function at the switch between inactive and

active contact by deőnition (obtained by differentiating Equation (4.57)). The dirac-delta

does not appear in the NBM-ODE formulation and its effects were yet explored. Further

elaboration on the matter is given at the last paragraph of Section 4.3.4.

4.7 Discussion

The NBM for the treatment of Signorini boundary conditions in the framework of FEM was presented.

The method was developed for nonsmooth modal analysis purposes entailing the detection of periodic

solutions to the autonomous Signorini problem. Compared to application of Newton’s impact law in

FEM or WFEM, the resulting ODE from the NBM formulation for the varying area bar allows for

the existence of periodic solutions with a continuous sticking phase at contact.

The NBM assumes different approximations of the contacting nodal displacement 𝑢𝑁 (𝑡) during

inactive and active contact phases. The state 𝑢𝑁 (𝑡) is dictated by (1) boundary conditions and

(2) nodes that are not prone to contact (internal nodes). While the treatment of active contact is

done similarly to classical FEM (clamped condition at end of bar), in the treatment of inactive

contact, the homogeneous Neumann boundary condition is enforced in a strong sense such that

the approximation of the contact stress vanishes, that is 𝜎𝑛 (𝑢(1, 𝑡)) = 0, throughout the entire

inactive contact duration. The two associated approximations of the quantity 𝑢𝑁 (𝑡) can be seen as

constituting two distinct sets of shape functions. The residuals for the inactive and active motion

approximations are then projected onto their respective set of shape functions to form two distinct

ODEs. The Signorini problem is then solved by switching between the sets of shape functions both

in trial and test functions.

Moreover, nonsmooth modal analysis via NBM resulted in valid backbone curves aligning with

resonances of forced-response diagrams. These results were obtained for three cases: the cantilever

bar of uniform area, the cantilever bar with soft support, and the cantilever bar of varying area.

The results presented for the uniform area bar and the bar with soft support have agreed with

previous research on the topic. Furthermore, the NBM has allowed for the characterization of

two distinct NSMs of the bar with soft support. The two distinct curves seem to relate via an
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internal resonance as one of the curves originates from a sub-harmonic of the motion. However,

affirmation of this result could not be achieved with sequential continuation and the detection of

internal resonances in NSMs is subject for future research (this is further discussed in Chapter 6)

Furthermore, application of the NBM to discover the modal space of the bar of varying area

in unilateral contact has been proven successful and the results show good agreement with the

forced-response curves.

The NBM has been expanded to the framework of multidimensional Signorini problems

successfully. Furthermore, the NBM was proven to exhibit periodic solutions to the Signorini

problem in two dimensions and NSMs were found. The NBM formulation for multidimensional

problems enjoys the same advantages of this in the one-dimensional case (1) mass and stiffness

matrix of the FE models are modiőed via a series of column and row operation (similar to deőnition

of M𝑁 and K𝑁 in (4.40)) (2) the resulting composite ODE can be solved via explicit or implicit

time marching techniques and (3) existence of a continuous contact phase. These will be discussed

in the next chapter.

Supplementary Material

Excerpts of scripts and algorithms used to perform the analysis and generate őgures in this chapter

are available on Zenodo [86].
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Chapter 5

Nodal Boundary Method in Two Dimensions

In Chapter 4, the NBM was derived in the context of the bar prone to unilateral contact with a

rigid foundation. The NBM was proven successful for the nonsmooth modal analysis of various

bar geometries. In this chapter, the formulation of the NBM is extended for the nonsmooth modal

analysis of two-dimensional structures.

Nonsmooth modal analysis of two-dimensional structure has been attempted prior in [97].

In [97], the FVM was used to determine periodic solutions to the cantilever plate prone to unilateral

contact. However, the FVM has yet been able to detect periodic solutions to the Signorini problem

in two-dimensions due to high energy dissipation exhibited by numerical solutions [97]. Thus,

this chapter answers the most challenging topic in this thesis: nonsmooth modal analysis of

multi-dimensional structures. To this end, the NBM formulation is extended to two-dimensional

structures and is used for nonsmooth modal analysis. Still, it should be noted that the NBM is not

extended beyond two-dimensions even though notes regarding three-dimensional extensions are

presented in Section 5.8.

This chapter follows a structure similar to Chapter 4. Section 5.1 lays the Signorini problem of

the two-dimensional plate and necessary terminology for this chapter. Next, Section 5.2 discusses

brieŕy the FEM formulation and sets the framework for the 2D-NBM. In turn, Section 5.3 derives

the switching algorithm responsible for the treatment of Signorini conditions in NBM (this section

is equivalent to sections 4.3.2 and 4.3.3 of the 1D-NBM). In Section 5.4, the 2D-NBM is derived

and its properties are discussed. Then, techniques for the nonsmooth modal analysis in 2D-NBM

are presented in Section 5.6, and nonsmooth modal analysis of the plate via NBM is performed

in Section 5.7. The scope and limitation of the presented 2D-NBM methodology are discussed in

Section 5.8. Section 5.9 constitutes of the conclusion of this chapter.
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5.1 Signorini problem

g0
g0

Figure 5.1: A plate in unilateral contact with rigid obstacle (in yellow) under plane stress assumptions. The
plane stress assumption is valid for thin plates and no net out-of-plane forces acting on the plate.

5.1 Signorini problem

We investigate the problem of a two-dimensional mechanical system prone to unilateral contact with

a rigid foundation. Let the structure be deőned by a domain Ω ⊂ R2. The displacement őeld of the

structure u(x, 𝑡) : Ω × R+ → R2 obeys the partial differential equation

𝜌𝜕𝑡𝑡u(x, 𝑡) − ∇ · 𝝈(u(x, 𝑡)) = 0, (x, 𝑡) ∈ Ω × [0,∞) (5.1)

where 𝜌 describes the density of the structure and the stress őeld 𝝈(u(x, 𝑡)) : Ω × R+ → R2×2 is

formulated assuming plane stress and isotropic material [34]. Using Voigt’s notation, the stress-strain

relationship is

©
«
𝜎11(u(x, 𝑡))

𝜎22(u(x, 𝑡))

𝜎12(u(x, 𝑡))

ª®®¬
=

𝑌

1 − 𝜈2



1 𝜈 0

𝜈 1 0

0 0
1

2
(1 − 𝜈)


©«
𝜖11(u(x, 𝑡))

𝜖22(u(x, 𝑡))

𝜖12(u(x, 𝑡))

ª®®¬
→ 𝝈(u(x, 𝑡)) = D𝝐 (u(x, 𝑡)) (5.2)

where both the stress and strain őelds consist of symmetric tensors such that 𝜎21 = 𝜎12 and 𝜖21 = 𝜖12.

According to Voigt’s notation, 𝝈 and 𝝐 gather the non-redundant terms in the stress (𝜎11, 𝜎22 and

𝜎12) and strain tensors (𝜖11, 𝜖22 and 𝜖12), respectively. Furthermore, D gathers the constant physical

properties 𝑌 and 𝜈 and deőnes the strain-stress relationship for the plane-stress approximation.

Illustration of a structure approximated by plane stress and prone to unilateral contact is portrayed

in Figure 5.1. Nevertheless, the presented formulation is not limited to the plane-stress assumption

and is applicable to other linear relationships between stress and strain. However, similarly to the

1D-NBM, the 2D-NBM does not apply to nonlinear relationship stress-strain relationship.

The boundary of the structure is deőned by Γ and is further partitioned as follows: Γ =

ΓD ∪ ΓN ∪ ΓC. The portions ΓN and ΓD denote parts where homogeneous Neumann and Dirichlet
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Chapter 5 Nodal Boundary Method in Two Dimensions

BCs are applied, respectively,

𝝈(u(x, 𝑡))n = 0, (x, 𝑡) ∈ ΓN × [0,∞) (5.3)

u(x, 𝑡) = 0, (x, 𝑡) ∈ ΓD × [0,∞) (5.4)

where n denotes the outward normal to the boundary Γ. ΓC describes the portion of the boundary

prone to unilateral contact. For (x, 𝑡) ∈ ΓC × R
+, the Signorini complementarity conditions

apply [96], that is

0 ≤ 𝑔0 − u(x, 𝑡) · n, 𝜎𝑛 (u(x, 𝑡)) ≤ 0, (𝑔0 − u(x, 𝑡) · n)𝜎𝑛 (u(x, 𝑡)) = 0 (5.5)

where 𝜎𝑛 = n⊤𝝈(u(x, 𝑡))n denotes the contact pressure deőned on ΓC. Moreover, 𝑔0 deőnes the

distance between the non-deformed boundary ΓC and the rigid obstacle. For the rectangular plate,

the boundary ΓC constitutes a constant gap 𝑔0 (ie, the initial gap with the rigid obstacle does not

vary in space or time) and forms a straight line parallel to the contact boundary of the structure

(see Figure 5.1 for the illustration of a őxed constant-gap with the rigid obstacle). Curved boundaries

of the rigid obstacle or variable gap functions (of the type 𝑔0(𝑡, x)) are not considered in this work.

In what follows, the dynamic Signorini problem in (5.1) to (5.5) is solved using NBM within

the FEM framework. The next section discusses the NBM treatment of the Signorini condition

complementarity conditions (5.5).

5.2 Nodal Boundary Method

Similarly to the 1D-NBM, the formulation of the 2D-NBM relies on the FEM Lagrangian shape

functions. In this section, a brief overview of the FEM formulation of the plate is given. Important

terminology for the derivation of the 2D-NBM is also introduced.

In FEM, the displacement őeld is approximated using piecewise continuous Lagrange polynomial

shape functions, stored in P(x) : R2 → R2×𝑁 , and nodal quantities u(𝑡) ∈ R𝑁 where 𝑁 denotes the

total number of nodes for a given number of elements and order of Lagrange polynomials such that

the displacements are approximated as follows:

u(x, 𝑡) ≈ P(x)u(𝑡), (x, 𝑡) ∈ Ω × [0,∞). (5.6)

For conciseness, the arrays u(𝑡) and P(x) exclude nodal quantities relating to homogeneous Dirichlet

boundaries ΓD. These quantities are naturally omitted from Equation (5.6) and do not participate in

the ODE formulation of the FEM.

The 2D-NBM also uses the stress őeld approximation of the FEM. The stress őeld in the

FE model is represented as a linear function of the nodal quantities u(𝑡). Speciőcally, the FEM
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5.2 Nodal Boundary Method

approximation of Equation (5.2) reads

𝝐 (P(x)u(𝑡)) = B(x)u(𝑡) (5.7)

𝝈(P(x)u(𝑡)) = DB(x)u(𝑡) (5.8)

where B(x) stores the space-differentiated Lagrangian polynomials within the element, as done

traditionally in the FEM [34]. Similarly to the 1D-NBM derivation, we shall distinguish between

internal nodal displacements u𝑜 (𝑡) and displacements of nodes prone to unilateral contact denoted

u𝑐 (𝑡). In the multidimensional framework, there exist multiple nodes that are prone to unilateral

contact on ΓC. Accordingly, the displacement vector reads u(𝑡) = (u𝑜 (𝑡) u𝑐 (𝑡))⊤ with 𝑁 = 𝑁O +𝑁C.

The weak formulation of Equation (5.1) uses test functions w corresponding to nodal quantities and

reads

w(𝑡)⊤(M¥u(𝑡) +Ku(𝑡)) − w𝑐 (𝑡)⊤𝝀 = 0, w(𝑡) =

(
w𝑜 (𝑡)

w𝑐 (𝑡)

)
(5.9)

where w𝑐 (𝑡) and w𝑜 (𝑡) denote the test function corresponding to nodes prone to contact and internal

nodes, respectively. Similarly to the 1D-NBM (see Equation (4.9)), the quantities in w(𝑡) vary

depending on the contact phase of the structure and play an active role in the derivation of the

NBM-ODE. In Equation (5.9), M, K and 𝝀 are the FE mass matrix, stiffness matrix and vector of

contact forces, respectively, and are deőned as

M = 𝜌

∫
Ω

P(x)⊤P(x)dx, K =

∫
Ω

B(x)⊤DB(x)dx, 𝝀 =

∫
ΓC

P(x)⊤𝝈(u(x, 𝑡))ndx. (5.10)

The FE approximation of the Signorini conditions (5.5) reads

0 ≤ 𝑔01 − u𝑐 (𝑡), 𝝀 ≤ 0, (𝑔01 − u𝑐 (𝑡))⊤𝝀 = 0 (5.11)

where 1 is a vector of size 𝑁C × 1 with all entries being 1.

In the NBM, the contact forces 𝝀 are őrst approximated using the FE Lagrange shape functions

as

𝝀 =

∫
ΓC

P(x)⊤𝝈(u(x, 𝑡))ndx ≈

∫
ΓC

P(x)⊤𝝈(P(x)u(𝑡))ndx ≡ 𝝀
NBM(u(𝑡)) (5.12)

where 𝝀
NBM(u(𝑡)) denotes the NBM approximation of contact forces (approximation (5.12) is

equivalent to the use of the FEM stress as the boundary stress in the 1D-NBM in Equation (4.32)).

Similarly to the 1D-NBM, this approximation is not traditional to the FEM, where usually 𝜆 is

usually used to denote prescribed Neumann conditions [34].

Then, the contact forces in Equation (5.12) are inserted into Equation (5.11) to form the Signorini

conditions in NBM in u(𝑡) exclusively:

0 ≤ 𝑔01 − u𝑐 (𝑡), 𝝀
NBM(u(𝑡)) ≤ 0, (𝑔01 − u𝑐 (𝑡))⊤𝝀NBM(u(𝑡)) = 0. (5.13)
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Finally, given u𝑜 (𝑡), the Signorini conditions are applied on the contact nodes in a strong manner by

solving Equation (5.13) for u𝑐 (𝑡). This procedure will be elaborated in the next sections.

It is noted that the derivations of both 2D-NBM and 1D-NBM methodologies follow similar steps

such as the deőnition of the stress on the contact boundary in Equation (5.12) and the application of

the switching method. Therefore, it is useful to őrst discuss the similarities and differences between

the 1D and 2D NBM.

5.2.1 Analogy between the 1D and 2D NBM

The NBM-ODE in the multidimensional case takes a similar form to the NBM-ODE in the one-

dimensional case (4.54). The general form of the NBM-ODE in both the one- and multi- dimensional

cases can be put as follows:

¥u𝑜 (𝑡+) = −M∗(u𝑜 (𝑡))−1(K∗(u𝑜 (𝑡))u𝑜 (𝑡) + f∗(u𝑜 (𝑡))) (5.14)

where

M∗(u𝑜 (𝑡)) = A∗(u𝑜 (𝑡))⊤MA∗(u𝑜 (𝑡)) (5.15)

K∗(u𝑜 (𝑡)) = A∗(u𝑜 (𝑡))⊤KA∗(u𝑜 (𝑡)) (5.16)

f∗(u𝑜 (𝑡)) = A∗(u𝑜 (𝑡))⊤Kd∗(u𝑜 (𝑡)). (5.17)

For example, in the 1D case, A∗(u𝑜 (𝑡)) and d∗(u𝑜 (𝑡)) are deőned as

A∗(u𝑜 (𝑡)) =




A𝐷 active contact

A𝑁 inactive contact
and d∗(u𝑜 (𝑡)) =




d active contact

0 inactive contact
(5.18)

where the quantities A𝐷 , A𝑁 and d are deőned in Equations (4.34) and (4.46). In both the 1D-NBM

and 2D-NBM, the form of A∗(u𝑜 (𝑡)) and d∗(u𝑜 (𝑡)) depends on the contact phase of the structure.

However, in comparison to the 1D-NBM, there are now more than two possible phases. In the

2D-NBM, each contact node in u𝑐 (𝑡) can be either in active or inactive contact phase, and there

effectively exist 2𝑁C distinct contact phase conőgurations (all possible permutations for the set of

nodes 𝑁C being either in active or inactive contact). In this chapter, the contact phases of all nodes

prone to contact are collectively referred to as contact configurations.

As a consequence, the deőnition of A∗(u𝑜 (𝑡)) and d∗(u𝑜 (𝑡)) (and the deőnition of the 2D-NBM-

ODE (5.14)) depends on the notion contact conőgurations.

Definition 5.1 (Contact conőguration). Consider a FE model of a deformable structure consisting

of 𝑁C nodes that are prone to contact, with corresponding displacements u𝑐 (𝑡). At any given instant

𝑡, each of the nodes is either in active or inactive contact phase (grazing motions are ignored in

this manuscript). A contact configuration is defined as the collection of active and inactive contact
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5.2 Nodal Boundary Method

phases corresponding to each node prone to contact. The boolean variable 𝑝𝑖, 𝑖 = 1, 2, . . . , 𝑁C,

denotes the contact phase applied on the displacement of a given contact node 𝑢𝑐
𝑖
(𝑡):

𝑝𝑖 (u
𝑐 (𝑡)) =




1 if 𝑢𝑐
𝑖
(𝑡) in active contact

0 if 𝑢𝑐
𝑖
(𝑡) in inactive contact.

(5.19)

As a result, each contact configuration corresponds to a unique array p.

Definition 5.2 (Conőguration space). The configuration space denotes the space of all possible

displacements u𝑐 (𝑡) belonging to a specific configuration p(u𝑐 (𝑡)). The configuration space is

denoted S(p) such that for a given p∗, S(p∗) = {u𝑐 (𝑡) : p(u𝑐 (𝑡)) = p∗}.

Definition 5.3 (Conőguration phase). Assume a FE model with contact node displacement u𝑐 (𝑡)

and a given contact configuration p𝑖 starting from some time 𝑡0 and lasting for a duration 𝜏 > 0.

The time interval 𝑡 ∈ (𝑡0, 𝑡0 + 𝜏) is referred to as the configuration phase if and only if

1. u𝑐 (𝑡) ∈ S(p𝑖) for all 𝑡 ∈ (𝑡0, 𝑡0 + 𝜏).

2. The interval (𝑡0, 𝑡0 + 𝜏) is defined such that a switch between contact configurations occurs

outside of it. Otherwise put, u𝑐 (𝑡−0 ) ∉ S(p𝑖) and u𝑐 (𝑡+0 + 𝜏) ∉ S(p𝑖) must hold.

To simplify further the notation, T (p) denotes the configuration phase (𝑡0, 𝑡0 + 𝜏) corresponding to

a configuration p.

An example illustrating all possible contact conőgurations for the case 𝑁C = 2 is found in

Figure 5.2.

p = [1, 0] p = [1, 1] p = [0, 0] p = [0, 1]

Figure 5.2: All possible contact conőgurations for a model of two contact nodes 𝑁C = 2 (2𝑁C = 4 contact
conőgurations). Nodes shapes and colors: diamond-red ( ) denotes active contact, square-blue ( ) denotes
inactive contact and circle-black ( ) denotes internal nodes u𝑜. Each contact conőguration is represented
using a distinct p deőned in Equation (5.19).

As stated previously, each contact conőguration admits a distinct set of ODEs. Indeed, for a

given FE model, there exist 2𝑁C distinct ODEs each describing the motion of a speciőc contact

conőguration. To determine the NBM-ODE for a given contact conőguration, an algorithmic

approach is taken. This algorithmic approach is referred to as the switching algorithm, direct

extension to the switching function 𝑆(u𝑜 (𝑡)) in the 1D-NBM. Also, in the 1D-NBM, the contact

phase of motion and the deőnition of the NBM-ODE at a speciőc instant 𝑡 are dictated by the value

of the switching function 𝑆(u𝑜 (𝑡)) (see Equations (4.51) and (4.52)). Analogously, in 2D-NBM,
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Chapter 5 Nodal Boundary Method in Two Dimensions

the role of the switching algorithm is to deőne the NBM-ODE and the contact conőguration at any

instant 𝑡. This algorithm is illustrated in Figure 5.3(a).

Input
u𝑜 (𝑡𝑖), ¤u𝑜 (𝑡𝑖)

Switching Agorithm
Output

u𝑐 (𝑡𝑖),A∗,d∗

(a) Switching algorithm: inputs and outputs. This algorithm is used extensively in the 2D-NBM. The inputs are the
displacement and velocities of internal nodes at a speciőc time 𝑡𝑖 and the outputs are the contact nodes u𝑐 (𝑡𝑖) and
the quantities A∗ and d∗. The quantities A∗ and d∗ are mainly used for constructing the NBM-ODE as described in
Equations (5.14) to (5.17)

Input
u𝑜 (𝑡𝑖), ¤u𝑜 (𝑡𝑖)

Switching Algorithm: 1D-NBM

𝑢𝑐 (𝑡𝑖) ≡ 𝑢𝑁 (𝑡𝑖) =

{
𝑔0 𝑆(u𝑜 (𝑡𝑖)) ≥ 𝑔0

𝑆(u𝑜 (𝑡𝑖)) 𝑆(u𝑜 (𝑡𝑖)) ≤ 𝑔0
(i)

A∗ =

{
A𝐷 Active contact NBM

A𝑁 Inactive contact NBM
(ii)

d∗ =

{
d Active contact NBM

0 Inactive contact NBM
(iii)

Output
𝑢𝑐 (𝑡𝑖),A∗,d∗

(b) Switching algorithm: illustration of the 1D-NBM case. This representation borrows expressions from Chapter 4 to
construct the algorithm: Equation (i) to Equation (4.56), the Equations (ii) and (iii) refer to Equation (5.18). In the
1D-NBM, the notion of switching algorithm is not a necessity since the switching mechanism is governed by 𝑆(u𝑜 (𝑡))

and all outputs are readily obtained for any value of 𝑆(u𝑜 (𝑡)). Instead, in the 2D-NBM, a switching function (of the
type 𝑆(u𝑜 (𝑡))) does not exist, and a numerical root-solving algorithm is necessary to derive the outputs

Figure 5.3: Switching algorithm for the 2D-NBM and 1D-NBM.

The switching algorithm takes as input the internal displacements u𝑜 (𝑡). Then, for a given őnite

element model, it outputs u𝑐 (𝑡) and quantities A∗(u𝑜 (𝑡)) and d∗(u𝑜 (𝑡)) for the contact conőguration.

The switching algorithm is presented in the context of the 1D-NBM in Figure 5.3(b): 𝑢𝑐 (𝑡) is

readily deőned from the switching function 𝑆(u𝑜 (𝑡)), and the formulation of the quantities A∗

and d∗ directly follows from it as well. Since 𝑆(u𝑜 (𝑡)) can be derived and has a closed-form

expression (see Equation (4.33)), the notion of a switching algorithm is not necessary. However, in

the 2D-NBM, the solution to the Signorini conditions requires a root-solving algorithm to obtain

u𝑐 (𝑡) from the Signorini complementarity conditions (5.13). Furthermore, the construction of A∗

and d∗ necessitates an application of a matrix-inverse algorithm. In sum, both numerical algorithms

are used in the switching algorithm which is presented in the following section.

5.3 Switching algorithm

The switching algorithm enforces the Signorini conditions (5.11) in a strong sense. To this end,

the latter must be put in terms of the nodal displacements u(𝑡). Speciőcally, the term 𝝀 in (5.11)
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must be expressed in terms of u(𝑡). This is achieved in Equation (5.12) by introducing the quantity

𝝀
NBM(u(𝑡)) which is an expression of the linear elasticity constitutive law on the contact boundary,

that is the FE approximation of the contact forces. In this section, Equation (5.12) is revisited and

𝝀
NBM(u(𝑡)) is developed, before proceeding with the derivation of the switching algorithm. In

Equation (5.12), it is possible to ignore the tangential stress contributions which are zero ∀x ∈ ΓC

due to frictionless contact: 𝝈(P(x)u(𝑡))n = 𝜎𝑛 (P(x)u(𝑡))n. This implies the suppression of

the tangential stress in Equation (5.9) in a weak manner. Although the main motivation for the

conception of the NBM is the strong enforcement of the contact condition, only conditions in the

normal direction are considered in this manuscript. Equation (5.12) thus simpliőes to

𝝀
NBM(u(𝑡)) =

∫
ΓC

P(x)⊤𝜎𝑛 (P(x)u(𝑡))ndx (5.20)

that is

𝝀
NBM(u(𝑡)) = Nu(𝑡) with N =

( ∫
ΓC

P(x)⊤(nn⊤)Ṽ(n)DB(x)dx

)
(5.21)

where the expression for N is derived in Appendix C.1 and the term Ṽ(n) is deőned in Equation (C.3)

of Appendix C.1. N𝑐 and N𝑜 are introduced as the contributions of N corresponding to the contact

nodes and internal nodes, respectively, such that Equation (5.21) reads

𝝀
NBM(u(𝑡)) = N𝑜u𝑜 (𝑡) + N𝑐u𝑐 (𝑡), N =

[
N𝑐

N𝑜

]
. (5.22)

The operator N in Equation (5.21) is critical to the formulation of the 2D-NBM. Plugging

Equation (5.22) into (5.13) yields

0 ≤ 𝑔01 − u𝑐 (𝑡) ⊥ N𝑜u𝑜 (𝑡) + N𝑐u𝑐 (𝑡) ≤ 0. (5.23)

Equation (5.23) formulates a linear complementarity problem (LCP) in u𝑐 (𝑡). To simplify upcoming

notation, the general LCP is deőned in Deőnition 5.4.

Definition 5.4 (Linear Complementarity Problem). A LCP is defined as follows:

Find z such that: 0 ≤ Cz + q ⊥ z ≥ 0. (5.24)

The LCP has a unique solution for any q if the matrix C is a 𝑃-matrix, that is if every minor of C is

positive-definite [11]. In this work, the solution to the linear complementarity problem (5.24) is

denoted

z = LC(C, q) (5.25)

Under the notation in Equation (5.24), Equation (5.23) constitutes a LCP in u𝑐 (𝑡) where the
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quantities C, z and q are deőned as follows:

C = N𝑐, z = 1𝑔0 − u𝑐 (𝑡), q = −N𝑜u𝑜 (𝑡) − 𝑔0N𝑐1 (5.26)

It is noted that Equation (5.23) is equivalent to the complementarity conditions of the 1D-NBM

enforced on 𝑢𝑁 (𝑡) in Equation (4.13). In contrast to the 1D-NBM complementarity conditions,

the solution of Equation (5.23) cannot be obtained in closed form and instead requires the use of

dedicated numerical solvers [11,28]. In Section 5.3.1, it will be shown that LCP (5.23) can be solved

numerically for any given u𝑜 (𝑡). It is important to note that in the MRM, the Signorini problem is

also converted into an LCP in u𝑐 (𝑡) [40]. Indeed, the formulation of the Signorini condition as an

LCP in u𝑐 (𝑡) is only possible by formulating N in Equation (5.22).

In what follows, Equation (5.23) is solved numerically to obtain u𝑐 (𝑡𝑖) for any given u𝑜 (𝑡𝑖). The

quantities A∗ and d∗ are obtained by inspecting the resulting contact forces 𝝀NBM(u(𝑡𝑖)) and u𝑐 (𝑡𝑖).

This is illustrated in the algorithm’s ŕow chart in Figure 5.4.

Input
u𝑜 (𝑡𝑖), ¤u

𝑜 (𝑡𝑖)

Switching Agorithm 2D-NBM

1. Solve numerically for u𝑐 (𝑡𝑖) in

0 ≤ 𝑔01 − u𝑐 (𝑡𝑖) ⊥ N𝑐u𝑐 (𝑡𝑖) + N𝑜u𝑜 (𝑡𝑖) ≤ 0

2. Construct A∗ and d∗ from 𝝀
NBM (u(𝑡𝑖)) and u𝑐 (𝑡𝑖)

Output
u𝑐 (𝑡𝑖),A∗,d∗

Figure 5.4: Steps for the switching algorithm in 2D-NBM. Steps 1 and 2 of this algorithm are described in
Sections 5.3.1 and 5.3.2, respectively.

To facilitate the exposition, both outputs of the switching algorithm, u𝑐 (𝑡𝑖) and (A∗, d∗), are

discussed separately in Sections 5.3.1 and 5.3.2, respectively.

5.3.1 Step 1: Obtain u𝑐 (𝑡𝑖)

In the 2D-NBM, the motion of the contact nodes is dictated by the solution to the linear complemen-

tarity problem deőned in Equation (5.23). Speciőcally, Equation (5.23) is solved for u𝑐 (𝑡) for any

u𝑜 (𝑡). The solution to (5.23) is presented according to Equation (5.25) where the components C, q

and z were deőned in Equation (5.26) as follows:

u𝑐 (u𝑜 (𝑡)) = 𝑔01 − LC(N𝑐,−N𝑜u𝑜 (𝑡) − 𝑔0N𝑐1). (5.27)

Equation (5.27) deőnes the displacement u𝑐 (𝑡) in the NBM and constitutes the strong enforcement

of the NBM Signorini conditions (5.23). As explained in Deőnition 5.4, u𝑐 (u𝑜 (𝑡)) in Equation (5.27)

exists and is unique for any u𝑜 (𝑡) if the matrix N𝑐 is a 𝑃-matrix. Particularly, distinct őnite element

models, consisting of a speciőc number of elements and speciőc polynomial degree of shape function,

admit distinct N𝑐. Since the NBM formulation relies on the existence and uniqueness of solutions of
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5.3 Switching algorithm

the LCP (5.23), it is necessary to prove that any őnite element approximation results in N𝑐 that is

a 𝑃-matrix. For the single dimensional case, the LCP problem is a scalar equation and the proof

required to show that the shape function of the last element always exhibits 𝜙′
𝑁
(1) > 0 (this is proven

in B.1). However, a general proof of N𝑐 being a 𝑃-matrix for any FE model is not further explored.

Instead, for all cases considered, the N𝑐 is veriőed numerically to be a 𝑃-matrix numerically via

eigenvalue algorithms (speciőcally, MATLAB’s eig algorithm [55]). The implications of the

existence and uniqueness of solutions of the LCP (5.23) are further discussed in Section 5.8.

In practice, the solution to Equation (5.27) for a given u𝑜 (𝑡𝑖) is found numerically via the

semismooth Newton’s method [10,18,28]. It is applied on the łmaxž formulation of the LCP (5.23),

which reads:

u𝑐 (𝑡𝑖) − 𝑔01 +max(0, 𝑔01 − u𝑐 (𝑡𝑖) + N𝑐u𝑐 (𝑡𝑖) + N𝑜u𝑜 (𝑡𝑖)) = 0. (5.28)

For all numerical experiments, the semismooth Newton algorithm applied on Equation (5.28) always

converged to satisfactory accuracy.

In what follows, the displacements of contact nodes are denoted u𝑐 (u𝑜 (𝑡)) since u𝑐 (𝑡) depends

exclusively on u𝑜 (𝑡) for any time instant 𝑡𝑖, as seen in Equation (5.27). Given u𝑐 (u𝑜 (𝑡)), the

corresponding contact pressures (5.22) are obtained as follows:

𝝀
NBM(u𝑜 (𝑡)) = N𝑐u𝑐 (u𝑜 (𝑡)) + N𝑜u𝑜 (𝑡) (5.29)

= N𝑐 (𝑔01 − LC(N𝑐,−N𝑜u𝑜 (𝑡) − 𝑔0N𝑐1)) + N𝑜u𝑜 (𝑡). (5.30)

5.3.2 Step 2: Construct A∗ and d∗

Before deriving the quantities A∗ and d∗, their role in the NBM formulation is established. It is stated

in Section 5.2.1 that the quantities A∗ and d∗ depend exclusively on the contact conőguration of the

structure. Thus, the notation A∗(p) and d∗(p) will apply in this section for the sake of consistency.

The role of the quantities A∗(p) and d∗(p) is to primarily deőne the 2D-NBM approximation of

the displacement corresponding to a contact conőguration p (similarly to the roles of B and B𝑑 in

Equation (4.55) of the 1D-NBM):

u(x, 𝑡) ≈ P(x)u(𝑡) = P(x) (A∗(p)u𝑜 (𝑡) + d∗(p)). (5.31)

Speciőcally, the quantities A∗(p) ∈ R𝑁×𝑁O and d∗(p) ∈ R𝑁 are deőned by the relationship between

the displacements of contact nodes u𝑐 (𝑡) and internal nodes u𝑜 (𝑡) as follows:

u(𝑡) = A∗(p)u𝑜 (𝑡) + d∗(p) →

(
u𝑜 (𝑡)

u𝑐 (𝑡)

)
=

[
I

A(p)

]
︸  ︷︷  ︸

A∗ (p)

u𝑜 (𝑡) +

(
0

d(p)

)
︸  ︷︷  ︸

d∗ (p)

(5.32)
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where A(p) is a 𝑁C × 𝑁O matrix and d(p) is a vector of size 𝑁C. The matrices A(p) and d(p) are

linear operators that are used to deőne relationships between u𝑐 (𝑡) and u𝑜 (𝑡) for a given contact

conőguration p, that is

u𝑐 (𝑡) = A(p)u𝑜 (𝑡) + d(p). (5.33)

They are deőned such that u𝑐 (𝑡) in Equation (5.33) also satisőes the conditions implied by the

contact conőguration p (see Deőnition 5.1){
Active contact phase 𝑢𝑐𝑖 (𝑡) = 𝑔0 if 𝑝𝑖 = 1

Inactive contact phase 𝜆NBM
𝑖 (u(𝑡)) = 0 if 𝑝𝑖 = 0

𝑖 = 1, 2, . . . , 𝑁C. (5.34)

In sum, A∗(p) and d∗(p) create a displacement approximation that satisőes that contact conőguration

conditions (5.34). It is important to note that the contact conőguration does not enforce physical

admissibility to the Signorini conditions (ie, the inequality conditions of the NBM-LCP (5.23) are not

addressed). In order to deőne A∗(p) and d∗(p) resulting in a physically admissible approximation,

the following must be achieved:

1. Deőnition of A(p) and d(p) (see Equation (5.32))

2. Deőnition of a contact conőguration p that always satisőes the LCP (5.23)

In what follows, A(p) and d(p) are őrst determined for arbitrary contact conőguration p. Then,

a contact conőguration p that always satisőes the LCP (5.23), denoted pNBM(u𝑜 (𝑡)), is derived in

order to őnally culminate in a formulation of A∗(pNBM(u𝑜 (𝑡))) and d∗(pNBM(u𝑜 (𝑡))) that is always

physically admissible.

Definition of A(p) and d(p)

For a given contact conőguration p, the quantities A(p) and d(p) are derived from the affine

relationship between u𝑐 (𝑡) and u𝑜 (𝑡) described in Equation (5.34). To illustrate clearly the

derivation, Equation (5.34) (while recalling the deőnition of 𝝀NBM(u(𝑡)) from Equation (5.22)) is

put in matrix form

L𝑐 (p)u𝑐 (𝑡) + L𝑜 (p)u𝑜 (𝑡) = l(p) (5.35)

where

𝐿𝑐𝑖 𝑗 =



𝛿𝑖 𝑗 𝑝𝑖 = 1

(𝑁C)𝑖 𝑗 𝑝𝑖 = 0
𝑖 = 1, 2, . . . , 𝑁C, 𝑗 = 1, 2, . . . , 𝑁C (5.36a)

𝐿𝑜𝑖 𝑗 =




0 𝑝𝑖 = 1

(𝑁O)𝑖 𝑗 𝑝𝑖 = 0
𝑖 = 1, 2, . . . , 𝑁C, 𝑗 = 1, 2, . . . , 𝑁O (5.36b)
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and

𝑙𝑖 =



𝑔0 𝑝𝑖 = 1

0 𝑝𝑖 = 0
𝑖 = 1, 2, . . . , 𝑁C. (5.36c)

By isolating u𝑐 (𝑡) using representation (5.35), A(p) and d(p) are obtained (as they are deőned in

Equation (5.32))

u𝑐 (𝑡) = A(p)u𝑜 (𝑡) + d(p) u𝑐 (𝑡𝑖) ∈ S(p) (5.37)

A(p) = −(L𝑐 (p))−1L𝑜 (p) d(p) = (L𝑐 (p))−1l(p). (5.38)

At last, A∗(p) and d∗(p) are obtained by inserting expression (5.38) into expression (5.32):

A∗(p) =

[
I

−(L𝑐 (p))−1L𝑜 (p)

]
, d∗(p) =

(
0

(L𝑐 (p))−1l(p)

)
. (5.39)

It is clear here that A∗(p) and d∗(p) are deőned by the contact conőguration of the deformable

structure.

Ambiguity at the instant of switch

It is important to note that A∗(p) and d∗(p), as deőned in Equation (5.39), are ill-deőned for

switching instants 𝑡𝑠 where, at a given node 𝑖, the contact force and gap are zero:

𝑢𝑐𝑖 (u
𝑜 (𝑡𝑠)) − 𝑔0 = 𝜆NBM

𝑖 (u𝑜 (𝑡𝑠)) = 0. (5.40)

At an instant of switch, according to Equation (5.34), both contact phases 𝑝𝑖 = 1 and 𝑝𝑖 = 0 may

apply. Thus, at the moment of switch, there exist distinct deőnitions of L𝑐 (p), L𝑜 (p) and l(p)

and, by virtue of Equation (5.39), distinct deőnitions of A∗(p) and d∗(p). To illustrate this aspect,

Figure 5.5 presents an instance of ambiguity of contact conőgurations in the case of two contact

nodes, 𝑁C = 2. In what follows, the contact phase deőnition (5.34) is enforced in order to avoid

Possible Configurations after switch
𝑡 = 𝑡+𝑠

Configuration at switch
𝑡 = 𝑡−𝑠

Figure 5.5: Possible contact conőgurations after a switch for 𝑁C = 2. The case where both contact nodes
experience a switch ( ) is illustrated. When both contact nodes experience a switch, there exist four possible
distinct contact conőgurations that the element can take after contact. Thus, at the moment of switch itself,
there exist four distinct sets of quantities A∗ and d∗ to generate the NBM-ODE (5.14). However, given the
velocities of contact nodes ¤u𝑐 (𝑡) and the rate of change of contact forces ¤𝝀

NBM
(𝑡), it is possible to determine

a unique contact conőguration immediately after the switch. This is done by reőning the deőnitions of active
and inactive contact phases in Equations (5.43) and (5.44).
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ambiguity in the deőnition of A∗(p) and d∗(p) at the switch.

Before treating A∗(p) and d∗(p) at the instant of switch, we recall that a similar ambiguity at the

instant of switch occurred in the 1D-NBM (see discussion in the őrst paragraph of Section 4.3.4). In

the 1D-NBM, this ambiguity is resolved by complementing the deőnitions of active and inactive

contact phases with conditions on 𝑆( ¤u𝑜 (𝑡𝑠)) at the switch, see Equations (4.51) and (4.52).

For the 2D-NBM, a similar approach is taken. The active and inactive contact conditions at

the switch are complemented with additional restrictions on the velocity of the contact node and

rate of change of the contact force at the switch. After the switch, if the motion is non-grazing, one

of two outcomes is expected: (1) either the contact forces will decrease (𝜆NBM
𝑖
(𝑡+𝑠 ) < 0) while the

contact node enters an active contact phase or (2) the velocity of the contact node will be negative

( separation of the contact node from the obstacle) while the contact node enters inactive contact

phase. Mathematically, the deőnition of active and inactive contact phases now reads




Active contact: 𝑢𝑐
𝑖
(𝑡) = 𝑔0 or ¤𝜆𝑖

NBM
(u(𝑡+𝑠 )) < 0

Inactive contact: 𝜆NBM
𝑖
(u(𝑡)) = 0 or ¤𝑢𝑐

𝑖
(𝑡+𝑠 ) < 0

(5.41)

𝑡𝑠 = {𝑡 : 𝑢𝑐𝑖 (𝑡) − 𝑔0 = 𝜆NBM
𝑖 (u(𝑡)) = 0} (5.42)

for 𝑖 = 1, 2, . . . , 𝑁C.

Definition of contact configuration from solution to LCP

To deőne matrices A∗(p) and d∗(p) such that a physically admissible displacement approxima-

tion (5.31) is obtained, it is necessary to deőne p based on the solution to the NBM-LCP (5.23). The

contact displacement and contact force solutions to the NBM-LCP (5.23) (see also Equations (5.27)

and (5.29)) are inserted into the contact conőguration deőnition (5.41) admitting the NBM conditions

Active NBM contact: 𝜆NBM
𝑖 (u𝑜 (𝑡)) < 0 or ¤𝜆NBM

𝑖 (𝑡+𝑠 ) < 0 (5.43)

Inactive NBM contact: 𝑢𝑐𝑖 (u
𝑜 (𝑡)) < 𝑔0 or ¤𝑢𝑐𝑖 (u

𝑜 (𝑡+𝑠 ), ¤u
𝑜 (𝑡+𝑠 ), 𝑡

+
𝑠 ) < 0 (5.44)

𝑡𝑠 = {𝑡 : 𝑢𝑐𝑖 (u
𝑜 (𝑡)) − 𝑔0 = 𝜆NBM

𝑖 (u𝑜 (𝑡)) = 0} (5.45)

where the time-derivative of u𝑐 (u𝑜 (𝑡)) after the switch, ¤𝑢𝑐
𝑖
(u𝑜 (𝑡𝑠), ¤u

𝑜 (𝑡𝑠), 𝑡
+
𝑠 ), is obtained by

differentiating expression (5.27)

¤u𝑐 (u𝑜 (𝑡𝑠), ¤u
𝑜 (𝑡𝑠), 𝑡

+
𝑠 ) = − lim

𝑡→𝑡+𝑠

d

d𝑡
LC(N𝑐,−N𝑜u𝑜 (𝑡) − N𝑐1𝑔0), (5.46)

and the time-derivative of the contact force after the switch is deőned by differentiating Equation (5.29)

¤𝝀(u𝑜 (𝑡𝑠), ¤u
𝑜 (𝑡𝑠), 𝑡

+
𝑠 ) = N𝑐 ¤u𝑐 (u𝑜 (𝑡𝑠), ¤u

𝑜 (𝑡𝑠), 𝑡
+
𝑠 ) + N𝑜 ¤u𝑜 (𝑡𝑠). (5.47)
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It is important to note that the derivative in Equation (5.46) (which also participates in Equation (5.47))

is not trivial to calculate. In fact, the LCP solution LC(C, q(𝑡)) can exhibit a discontinuous derivative

at the instant of switch, and the operation
d

d𝑡
LC(C, q(𝑡)) requires an algorithmic approach. This

algorithm is derived in Appendix C.2.

Next, the deőnition of contact conőguration is updated with conditions (5.43) and (5.44)

𝑝NBM
𝑖 (u𝑜 (𝑡), ¤u𝑜 (𝑡)) =




1 Active NBM contact (5.43)

0 Inactive NBM contact (5.44)
(5.48)

and A∗(pNBM(u𝑜 (𝑡), ¤u𝑜 (𝑡))) and d∗(pNBM(u𝑜 (𝑡), ¤u𝑜 (𝑡))) are now deőned uniquely for all states

except for grazing motions where the velocity and stress at the moment of switch are zero

𝑢𝑐𝑖 (u
𝑜 (𝑡)) = 𝑔0, ¤𝜆NBM

𝑖 (u𝑜 (𝑡𝑠), ¤u
𝑜 (𝑡𝑠), 𝑡

+
𝑠 ) = ¤𝑢

𝑐
𝑖 (u

𝑜 (𝑡𝑠), ¤u
𝑜 (𝑡𝑠), 𝑡

+
𝑠 ) = 0. (5.49)

Thus, it is important to note that the NBM formulation in this manuscript does not apply to grazing

motions.

To simplify the notations, A∗(pNBM(u𝑜 (𝑡), ¤u𝑜 (𝑡))) and d∗(pNBM(u𝑜 (𝑡), ¤u𝑜 (𝑡))) are denoted as

functions in u𝑜 (𝑡) only, that is A∗(u𝑜 (𝑡)), d∗(u𝑜 (𝑡)) for the remainder of this chapter.

5.4 NBM-ODE

The formulation of the NBM-ODE relies on the NBM displacement approximation (recall Equa-

tions (5.31) and (5.32))

u(x, 𝑡) ≈ uℎ (x, 𝑡) ≡ P(x)u(𝑡) = P(x) (A∗(u𝑜 (𝑡))u𝑜 (𝑡) + d∗(u𝑜 (𝑡))). (5.50)

Speciőcally, the 2D-NBM-ODE uses the Galerkin-Bubnov method in its formulation (similarly to

the 1D-NBM-ODE in Sections 4.3.2 and 4.3.3) as described in the remainder of this section.

Application of the Galerkin-Bubnov is presented őrst in the context of a given conőguration

phase, where A∗(u𝑜 (𝑡)) and d∗(u𝑜 (𝑡)) are constant (recall, A∗(u𝑜 (𝑡)) and d∗(u𝑜 (𝑡)) depend on the

contact conőguration). Then, the switching method is used to formulate the general NBM-ODE.

To formulate the NBM-ODE, The weak form of the PDE (5.1) is őrst exposed∫
Ω

w(x, 𝑡)⊤𝜌𝜕𝑡𝑡u(x, 𝑡)dx +

∫
Ω

𝝐 (w(x, 𝑡)) :𝝈(u(x, 𝑡))dx . . .

−

∫
ΓC

w(x, 𝑡)⊤𝝈(u(x, 𝑡))ndx = 0
(5.51)

Here, it is noted that the test functions, w(x, 𝑡) are time dependent which is not customary. However,

as form of the test function in the 1D-NBM depends on the contact phase, it shall depend on the

conőguration phase for the 2D-NBM. Next, by application of the Galerkin-Bubnov method [44, 79]
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requires that shape functions composing the displacement approximation (5.50) are also used for

the test-functions. For a given conőguration phase, the test function approximation reads:

w(x, 𝑡) = P(x)A∗(u𝑜 (𝑡))w𝑜, 𝑡 ∈ T (pNBM) (5.52)

where d∗(u𝑜 (𝑡)) does not participate since it represents a particular solution to the non-homogeneous

Dirichlet boundary where the test functions vanish. Plugging Equations (5.50) and (5.52) into the

weak form (5.51) then admits

w𝑜⊤(A∗)⊤(M𝜕𝑡𝑡 (A
∗u𝑜 (𝑡)+d∗)+K(A∗u𝑜 (𝑡)+d∗))−w𝑐⊤

𝝀
NBM(u𝑜 (𝑡)) = 0, ∀𝑡 ∈ T (pNBM) (5.53)

where the dependence of A∗(u𝑜 (𝑡)) and d∗(u𝑜 (𝑡)) on u𝑜 (𝑡) is omitted for the sake of conciseness.

The choice of test functions in Equation (5.52) also eliminates the last term in Equation (5.53) since

the test function vanishes (𝑤𝑐
𝑖
= 0) for all nodes in active contact, and 𝜆NBM

𝑖
(u𝑜 (𝑡)) = 0 for all

nodes in inactive contact (see Equation (5.34)). Hence, Equation (5.53) can be further simpliőed as

follows:

w𝑜⊤(A∗)⊤(M𝜕𝑡𝑡 (A
∗u𝑜 (𝑡) + d∗) +K(A∗u𝑜 (𝑡) + d∗)) = 0, ∀𝑡 ∈ T (pNBM) (5.54)

Next, it is noted that the quantities A∗(u𝑜 (𝑡)) and d∗(u𝑜 (𝑡)) depend on the contact conőguration

and are constant for 𝑡 ∈ T (pNBM). Therefore, for a given conőguration phase, the following holds

𝜕𝑡𝑡 (A
∗(u𝑜 (𝑡))u𝑜 (𝑡) + d∗) = A∗(u𝑜 (𝑡)) ¥u𝑜 (𝑡), ∀𝑡 ∈ T (pNBM) (5.55)

Then, plugging Equation (5.55) into Equation (5.54) and generalizing for any w𝑜 admits

M∗(u𝑜 (𝑡)) ¥u𝑜 (𝑡) +K∗(u𝑜 (𝑡))u𝑜 (𝑡) + f∗(u𝑜 (𝑡)) = 0 ∀𝑡 ∈ T (pNBM) (5.56)

where

M∗(u𝑜 (𝑡)) = A∗(u𝑜 (𝑡))⊤MA∗(u𝑜 (𝑡)) (5.57)

K∗(u𝑜 (𝑡)) = A∗(u𝑜 (𝑡))⊤KA∗(u𝑜 (𝑡)) (5.58)

f∗(u𝑜 (𝑡)) = A∗(u𝑜 (𝑡))⊤Kd∗(u𝑜 (𝑡)). (5.59)

Equations (5.56) to (5.59) correspond directly to Equations (5.14) to (5.17). Similarly to the

quantities A∗(u𝑜 (𝑡)) and d∗(u𝑜 (𝑡)), the quantities M∗(u𝑜 (𝑡)), K∗(u𝑜 (𝑡)) and f∗(u𝑜 (𝑡)) are constant

for 𝑡 ∈ T (pNBM).

The general 2D-NBM-ODE is expressed by applying the switching method on the ODEs

formed by the Galerkin-Bubnov method Equation (5.56). Application of the switching method

implies that the NBM-ODE always satisőes the Signorini conditions. This results in switching the

displacement approximation according to the NBM contact phase conditions (5.44) and (5.43). This

switching procedure for the displacement approximation is already embedded in the deőnition of

A∗(u𝑜 (𝑡)) and d∗(u𝑜 (𝑡)). It is important to note that at the time of switch, the acceleration term
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5.4 NBM-ODE

(see Equation (5.55)) exhibits a Dirac-delta function due to the appearance of a Dirac-delta in the

acceleration of contact nodes. In this manuscript, this Dirac-delta function is ignored (similar

approach is taken for the 1D-NBM in Section 4.3.4), and the general NBM-ODE is formed by

simply generalizing Equation (5.56) to any conőguration phase, as follows:

M∗(u𝑜 (𝑡)) ¥u𝑜 (𝑡) +K∗(u𝑜 (𝑡))u𝑜 (𝑡) + f∗(u𝑜 (𝑡)) = 0. (5.60)

This system of ODEs is piecewise-linear and discontinuous due to A∗(u𝑜 (𝑡)) and d∗(u𝑜 (𝑡)) which

are embedded in the coefficients M∗(u𝑜 (𝑡)), K∗(u𝑜 (𝑡)) and f∗(u𝑜 (𝑡)). At the instant of switch, it

is required that both the internal displacements u𝑜 (𝑡) and velocities ¤u𝑜 (𝑡) remain continuous (the

same condition is applied in the 1D NBM-ODE in Equation (4.53))

𝑢𝑜𝑖 (𝑡
+
𝑠 ) = 𝑢

𝑜
𝑖 (𝑡
−
𝑠 ), ¤𝑢𝑜𝑖 (𝑡

+
𝑠 ) = ¤𝑢

𝑜
𝑖 (𝑡
−
𝑠 ) (5.61)

Since the system of ODEs is discontinuous in time, it is assumed that the internal accelerations

¥u𝑜 (𝑡) are discontinuous as well. The NBM-ODE (5.60) is thus better formulated as follows:

¥u𝑜 (𝑡+) = M∗(u𝑜 (𝑡))−1(K∗(u𝑜 (𝑡))u𝑜 (𝑡) + f∗(u𝑜 (𝑡)))

¤𝑢𝑜𝑖 (𝑡
+
𝑠 ) = ¤𝑢

𝑜
𝑖 (𝑡
−
𝑠 )

(5.62)

where 𝑡𝑠 denotes the time of switch (deőned in Equation (5.45)), and the coefficients M∗(u𝑜 (𝑡)),

K∗(u𝑜 (𝑡)) and f∗(u𝑜 (𝑡))) vary according to the contact conőguration at the limit 𝑡+ (the contact

conőguration pNBM is deőned in Equation (5.48)).

The energy metric in 2D-NBM is

2𝐸 (𝑡) =

∫
Ω

𝜌𝜕𝑡u(x, 𝑡)
⊤𝜕𝑡u(x, 𝑡) +𝝈(u(x, 𝑡)):𝝐 (u(x, 𝑡))dx ≈ ¤u(𝑡)⊤M ¤u(𝑡) +u(𝑡)⊤Ku(𝑡). (5.63)

Otherwise, the energy metric can be also represented in terms of internal quantities u𝑜 (𝑡) and ¤u𝑜 (𝑡)

by plugging Equation (5.50) into Equation (5.63) as follows:

𝐸 (𝑡) ≈
1

2
( ¤u𝑜 (𝑡)⊤M∗ ¤u𝑜 (𝑡) + u𝑜 (𝑡)⊤K∗u𝑜 (𝑡) + (d∗)⊤Kd∗) + u𝑜 (𝑡)⊤f∗ (5.64)

Similarly to solutions of the 1D-NBM ODE, solutions to the 2D-NBM ODE are expected to preserve

energy away from instants of switch. The fact that ¤𝐸 (𝑡) = 0 for 𝑡 ∈ T (pNBM) (energy is preserved

away from instants of switch) is proven in Appendix C.3. In fact, when a 2D-NBM solution passes

through different contact conőgurations in its motion, it exhibits a piecewise-constant energy (see

Figure 5.9 in the next section). In a similar fashion to the 1D-NBM, the 2D-NBM allows for a regain

in energy throughout the motion. Thanks to this property, periodic solutions of the 2D-NBM exist

and nonsmooth modal analysis via 2D-NBM is possible.
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Figure 5.6: Investigated plate deőned in Deőnition 5.5

5.5 Comparative analysis of 2D NBM

In this section, the 2D NBM-ODE is solved via time marching and compared to other method-

ologies such as Nitsche’s method and the various Newton’s impact law methods. For the solution

of the 2D-NBM ODE, the CN scheme is used and its application to (5.62) is similar to that for

the 1D-NBM ODE (see Section 4.4.1). However, the CN scheme application speciőcally to the

2D-NBM-ODE is not detailed in this manuscript for the sake of conciseness. In the remainder of

this chapter, the system of interest is investigated via different FE models and the same physical

conőgurations are used in all numerical experiments.

Definition 5.5 (Investigated plate). The investigated plate has dimensions Ω = {𝑥1 ∈ [0, 1]; 𝑥2 ∈

[0, 0.5]} and its boundary conditions span

ΓD = {𝑥1 = 0; 𝑥2 ∈ (0, 0.5)} (5.65)

ΓN = {𝑥2 = 0; 𝑥1 ∈ (0, 1)} and {𝑥2 = 0.5; 𝑥1 ∈ (0, 1)} (5.66)

ΓC = {𝑥1 = 1; 𝑥2 ∈ 0, 0.5} (5.67)

with physical properties 𝜌 = 𝑌 = 1 and 𝜈 = 0.2. The initial gap between the obstacle and the plate

is constant and set to 𝑔0 = 0.01. The investigated plate is illustrated in Figure 5.6.

Since both the comparative study and nonsmooth modal analysis of the investigated plate are

computationally expensive, the analysis is limited to a single model of the plate. The suggested model

provides practical and novel insights that are sufficient for this thesis. Nevertheless, other possible

avenues are discussed in Section 5.8. At last, numerical solutions obtained using schemes involving

Newton’s impact laws are obtained using SICONOS [1] and are denoted by the corresponding

coefficient of restitution: 𝑒 = 0 and 𝑒 = 1.
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5.5.1 Comparison of numerical schemes

The NBM and other FEM-based schemes are implemented on the investigated plate to demonstrate

the capabilities of the NBM in comparison to existing methods. The results shown in this section

were generated via the discretization of the domain Ω into a 20 × 20 square element grid with each

element consisting of linear shape functions. The implicit CN scheme (or Newmark scheme with

𝛽 = 1/2 and 𝛾 = 1/4 [43]) is used across all numerical schemes. The scheme is chosen since it

preserves the discrete energy for linear motions in elastodynamics [43].

The time-step for all shown solutions is chosen in the plateau of convergence. This, it is assumed

that numerical errors related to the truncation error of the CN scheme are minimized. Furthermore,

𝛾 = 2000 is chosen in Nitsche’s method since the resulting solutions exhibit adequately small

penetration while admitting a relatively non-stiff ODE (Nitsche’s method leads to a stiff ODE for

higher values of 𝛾).

The initial conditions are:

u(x, 0) = 0, 𝜕𝑡u(x, 0) =

(
0.05𝑥1

0

)
, x ∈ Ω. (5.68)

The resulting motion of the plate is presented in Figure 5.7 to Figure 5.9. Figure 5.7 consists of

different snapshots of the motion for 𝑡 ∈ [0, 5]. In Figure 5.8, the motion of the node located at

x = (1 0.25)⊤ on the boundary ΓC is illustrated. At last, Figure 5.9 shows the energy through time

for various FEM Signorini treatments.

In Figure 5.8(a), the NBM shows good agreement in the displacement őeld with other methods.

Moreover, the NBM shows a behaviour similar to Newton’s impact law 𝑒 = 0. It is noted that the

energy loss in NBM is considerably larger than 𝑒 = 0. However, it is noted that the NBM is primarily

conceived for the detection of periodic solutions for nonsmooth modal analysis. Thus, the NBM is

primarily used for the depiction of periodic solutions (which are possible at any grid) and is not

intended for the purposes of general initial-value problem solutions. Nevertheless, the NBM does

converge to solutions generated by other FEM methodologies and the energy dissipation is expected

to reduce upon convergence. This is further discussed in Section 5.5.2. Otherwise, the Nitsche

solution exhibits signiőcant penetration of the obstacle (situated at 0.01 in the 𝑥1 direction), and

Newton’s impact law 𝑒 = 1 exhibits considerable chattering. The difference between the numerical

schemes is more prevalent in Figure 5.8(b) showing contact node velocity. Qualitatively, this őgure

shows that the NBM suffers the least from spurious oscillations. Indeed, application of Newton’s

impact law 𝑒 = 1 is known to exhibit chattering behaviour which contributes to the existence of

spurious oscillation [24]. It is also evident in Figure 5.8(b) that Nitsche’s method exhibits spurious

oscillations, known to exist when applied for relatively coarse grids [20]. While application of

Newton’s impact law 𝑒 = 0 exhibits less dispersion than either Nitsche or 𝑒 = 1, the NBM exhibits
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(a) 𝑡 = 0.83 (b) 𝑡 = 1.66 (c) 𝑡 = 2.5

(d) 𝑡 = 3.33 (e) 𝑡 = 4.16 (f) 𝑡 = 5

Figure 5.7: Snapshots of the NBM solution to the investigated plate (Deőnition 5.5) with initial condi-
tions (5.68). Displacements along the 𝑥1 and 𝑥2 directions are multiplied by 10 (as well as the rigid obstacle’s
location relative to the structure) for illustration purposes. Motion of the red node presented in Figure 5.8.
Colour gradient represents the őeld | |10P(x)u(𝑡𝑖) | |2 where 𝑡𝑖 represents the snapshot time.
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Figure 5.8: Contact node motion for various Signorini FEM solvers of the investigated plate (Deőnition 5.5)
with initial conditions (5.68). Location of the contact node indicated in Figure 5.7.

qualitatively the least spurious oscillations among all schemes, as evidenced in Figure 5.8(b).

In Figure 5.9, we remark that Newton’s impact law 𝑒 = 1 is energy-conservative while both the

NBM and 𝑒 = 0 are energy dissipative during contact occurrences. On the other hand, the solution
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Figure 5.9: Energy of various Signorini FEM solvers for the investigated plate with initial conditions (5.68)

generated by Nitsche’s method increases in energy with time. It is important to note that Nitsche’s

method does not always exhibit increase in energy and may exhibit energy dissipation as well [20].

Although the 2D-NBM largely dissipates in energy, small regains are noticeable slightly after 𝑡 = 4

which correspond to changes of conőguration phase and separation of the center contact node from

the obstacle (see Figure 5.8(a)).

From this comparative analysis, the 2D-NBM shows advantages similar to the ones exhibited by

the 1D-NBM: continuous active contact phases, energy regains, no chattering and no penetration of

the obstacle. However, the 2D-NBM is shown to exhibit less spurious oscillations. It is important to

note that elimination of spurious oscillations is advantageous numerically. For example, motions

with spurious oscillations often necessitate a smaller time-step (to resolve the oscillations) than

their less spurious equivalents and are generally avoided [56]. Nevertheless, it is yet unknown

whether the NBM always exhibits less spurious oscillations than other schemes. In order to affirm

this proposition, a thorough stability analysis of the 2D-NBM scheme needs to be conducted. This

analysis is beyond the scope of this thesis and is therefore not conducted.

5.5.2 Convergence of FEM based schemes

In section Section 5.5, an example of FEM schemes for the solution of the Signorini problem is

given. From numerical testing, it is revealed that the various numerical approximations, including

NBM, converge to the same solutions for a őxed number of contact nodes. To demonstrate this, a

convergence test is conducted. In this convergence test, the investigated plate is discretized using four

contact nodes (𝑁C = 4) and a varying number of internal nodes 𝑁O through the following grid: 5× 3

(𝑁O = 16), 10 × 3 (𝑁O = 36), 20 × 3 (𝑁O = 76), 30 × 3 (𝑁O = 116), 40 × 3 (𝑁O = 156) and 50 × 3

(𝑁O = 196). The 2D-NBM solutions are compared to 𝑒 = 0, 1 and Nitsche’s schemes. Since no

closed-form solution is available, the solution generated by 𝑒 = 0 and the 60 × 3 grid constitutes the
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Chapter 5 Nodal Boundary Method in Two Dimensions

baseline for the converged solution. The convergence error in each grid conőguration is measured

by computing the 𝐿2 norm of the difference in displacements with respect to the baseline.

The 𝐿2 error and attendant convergence rate for all schemes and grids are presented in Figure 5.10.

It is noted that all schemes have a relatively similar rate of convergence. Another evidence to
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Figure 5.10: Approximation error for a őxed number of contact nodes. In all tests, the approximation error
assuming convergence to the model generated by Newton’s impact law with 𝑒 = 0 and 60 × 3 grid. The
models are varying in internal nodes 𝑁O while the number of contact nodes is őxed 𝑁C = 4. Note that all
method converge to the solution generated by Newton’s impact law with 𝑒 = 0 and 60 × 3 grid.

convergence is in Section 5.7.1 which shows that all forced-response diagrams obtained by different

FEM schemes with a 50 × 3 grid are virtually equivalent.

From this convergence test, it is possible to conjure that different FE schemas of the Signorini

problem converge to the same solution for a őxed number of nodes. Although this conjectures is not

investigated further in this thesis, its repercussions are discussed in Chapter 6.

5.6 Detection of NSM via HBM

To perform nonsmooth modal analysis using the 2D-NBM, periodic solutions to Equation (5.62)

should be found. Although the shooting method can be used to őnd periodic solutions using 2D-

NBM (similarly to the 1D-NBM), numerical experiments showed it was computationally expensive.

Instead, a combination of HBM and 2D-NBM was shown to be more efficient. This section serves

to elaborate on these aspects. The resulting HBM-NBM approach is then used for the nonsmooth

modal analysis of the investigated plate.

for the application of HBM, the displacement of internal nodes u𝑜 (𝑡) is approximated as a series
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of 𝑁ℎ cosine functions of frequency 𝜔

𝑢𝑜𝑖 (𝑡) ≈

𝑁ℎ∑︁
𝑗=1

𝐻𝑖 𝑗 cos(( 𝑗 − 1)𝜔𝑡) ≡ 𝑢𝑁ℎ

𝑖
(H, 𝜔, 𝑡) (5.69)

where the cosine coefficients are 𝐻𝑖 𝑗 stored in H and u𝑁ℎ (H, 𝜔, 𝑡) is used to denote the HBM

approximation of u𝑜 (𝑡). The trial solution (5.69) is plugged into Equation (5.62) to form the residual

R𝑁ℎ (H, 𝜔, 𝑡) = M∗(u𝑁ℎ (H, 𝜔, 𝑡)) ¥u𝑁ℎ (H, 𝜔, 𝑡) + . . . (5.70)

K∗(u𝑁ℎ (H, 𝜔, 𝑡))u𝑁ℎ (H, 𝜔, 𝑡) + f∗(u𝑁ℎ (H, 𝜔, 𝑡)). (5.71)

To őnd a solution to the 2D-NBM-ODE, H and 𝜔 are found by projecting the residual onto the

composing cosine functions and equating this projection to zero. This procedure yields

F
𝑁ℎ

𝑖
(H, 𝜔) =

∫ 𝑇

0
cos(𝑖𝜔𝑡)R𝑁ℎ (H, 𝜔, 𝑡)d𝑡 = 0, 𝑖 = 0, 1, 2, . . . , 𝑁ℎ (5.72)

where 𝑇 = 2𝜋/𝜔.

The integration quadrature operation in (5.72) is done via trapezoidal integration with 20𝑁ℎ as it

was proved sufficient for őnding accurate solutions. In Section 2.1.3, it is noted that the HBM must

be complemented with continuation methods in order to őnd nonsmooth modes of the 2D-NBM

ODE (5.62). In this section, the SCC, explained in Section 4.4.3, is used in order to determine

periodic solutions. However, compared to Section 4.4.3, for the 2D-NBM-HBM, SCC is conducted

by őxing the initial energy of the motion (5.63) rather than the period of motion. It was found the

SCC in the frequency domain did not result in solutions for all frequencies. However, őxing the

energy of motion was proven successful and the algorithm almost always resulted in a periodic

solution. It is important to note that the reason for which őxing the energy of the motion results

more often in successful solutions rather than őxing the period of motion is yet unknown and further

investigation of the topic is not conducted in this manuscript. To clarify, in the root solving problem,

the set of equations to be solved consists of Equation (5.72) and the continuation equation

𝐹
𝑁ℎ

cont(H, 𝜔) = 𝐸 (u
𝑁ℎ (H, 𝜔, 𝑡 = 0)) − 𝐸 𝑖 (5.73)

𝐸 (u𝑜 (𝑡)) =
1

2
( ¤u𝑜 (𝑡)⊤M∗ ¤u𝑜 (𝑡) + u𝑜 (𝑡)⊤K∗u𝑜 (𝑡) + (d∗)⊤Kd∗) + u𝑜 (𝑡)⊤f∗ (5.74)

where 𝐸 𝑖 is the energy level sought and the energy metric (5.64) is reminded in Equation (5.74).

As a consequence, application of SCC to the above system follows the steps:

1. For small 𝑁ℎ (say 𝑁ℎ = 3), SCC is performed on Equation (5.72) for a range of energies 𝐸 𝑘

to őnd the corresponding HBM coefficients H. For low 𝑁ℎ, periodic solutions are generally

found with relative ease. The resulting HBM coefficients are denoted H𝑁ℎ,𝑘 .

2. The HBM approximation for each 𝐸 𝑘 is improved by considering a higher number of harmonics

𝑁ℎ using the previous solution with fewer harmonics as initial guess, the new harmonics being
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set to zero.

3. Repeat step 2 for higher values of 𝑁ℎ, using the previous solution as initial guess.

Although Equation (5.72) is non-smooth due to NBM-ODE, it was solved using MATLAB’s

fsolve [66].

5.6.1 Convergence of HBM

To measure the accuracy of the HBM approximation, the residual error in Section 4.4.2 is formulated.

It is deőned as

Residual Error =

����
����
√︄

1

𝑇

∫ 𝑇

0
R𝑁ℎ (H, 𝜔, 𝑡)2d𝑡

����
����
2

(5.75)

It is worth noting that Bernung and Haller in [15] have shown numerous cases where the HBM

approximation for large 𝑁ℎ does not converge to a true periodic solution of the approximated system.

In order to guarantee that the HBM produces solutions that are representative of NBM-ODE motions,

it is proposed to compare the HBM solution to the time-marched solution via the metric

Approximation Error =

����
����
√√√

𝜔

2𝜋𝑁𝑡

𝑁𝑡∑︁
𝑖=0

(u𝑁ℎ (H, 𝜔, 𝑡𝑖) − u𝑜 (𝑡𝑖))2

����
����
2

(5.76)

u𝑜 (0) = u𝑁ℎ (H, 𝜔, 0), ¤u𝑜 (0) = ¤u𝑁ℎ (H, 𝜔, 0) = 0 (5.77)

where the quantities u𝑜 (𝑡𝑖) are approximated using a CN algorithm with 𝑁𝑡 time-steps where 𝑁𝑡 is

sufficiently large.

For the FEM approximation of the plate, a 10× 10 grid of square elements and linear Lagrangian

shape functions are used. In order to study the convergence, it is important to focus on a speciőc

solution of HBM equations (5.72) (recall from Section 2.1.2 that the set of HBM equations describes

a continuum of solutions). Therefore, it is necessary to provide an additional condition to the HBM

equations (5.72) so that the complete set of equations is well-determined. The additional constraint

is implemented on the energy of the motion via Equation (5.73) with energy őxed at 0.002: this

value is chosen since it is high enough to guarantee contact with the rigid obstacle.

The set of HBM conditions developed in Equations (5.72) and (5.73) was successfully solved

for increasing number of harmonics 𝑁ℎ = 3, 5, . . . , 19. The residual and approximation errors are

illustrated in Figure 5.11. They are both characterized by slow convergence rates. This is expected

when HBM is used to approximate nonsmooth solutions [42, 51]. Still, the solution obtained via

HBM őts closely the NBM-ODE solution and the reduction in residual error and approximation

error is expected to improve with increasing 𝑁ℎ.

In Figure 5.13, the HBM solution with 𝑁ℎ = 19 is compared against the time-marched solution

starting with the initial state of the approximated HBM motion (i.e., the initial guess in Equation (5.77)
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Figure 5.11: Convergence of HBM-NBM for the investigated plate approximated via a 10× 10 grid and linear
shape functions.

(a) 𝑡 = 0𝑇 (b) 𝑡 = 0.2𝑇 (c) 𝑡 = 0.4𝑇

(d) 𝑡 = 0.6𝑇 (e) 𝑡 = 0.8𝑇 (f) 𝑡 = 𝑇

Figure 5.12: Instances of a HBM-NBM plate motion throughout a period of motion with 𝑇 ≈ 3.0962. The
displacement of the contact node marked with a red dot (•) is presented in Figure 5.13(a). The displacement
of the internal node marked with a red square (■) is presented in Figure 5.13(b). Colour gradient represents
the őeld | |P(x)u(𝑡𝑖) | |2 where 𝑡𝑖 is the snapshot time.

is used). While there exist some őtting error (see Figure 5.11 for 𝑁ℎ = 19) between the time-

marched and HBM solutions and a noticeable error in energy, see Figure 5.13(c), it is evident from

Figures 5.13(a) and 5.13(b) that the displacements generated by both HBM and CN őt closely and

the HBM motion still generates a relatively accurate motion to the NBM-ODE.

Furthermore, it can be clearly seen that the HBM approximation to the NBM-ODE still admits a

118



Chapter 5 Nodal Boundary Method in Two Dimensions

0 0.25𝑇 0.5𝑇 0.75𝑇 𝑇
−8

−6

−4

−2

0

·10−2

𝑡

𝑥
1
-d

is
pl

ac
em

en
t

(a) Contact node displacement

0 0.25𝑇 0.5𝑇 0.75𝑇 𝑇

−2

0

2

·10−2

𝑡

(b) Internal node displacement

0 0.25𝑇 0.5𝑇 0.75𝑇 𝑇

0.95

0.975

1

𝑡

N
or

m
al

iz
ed

E
ne

rg
y
𝐸
(𝑡
)/
𝐸
(0
) NBM-HBM 𝑁ℎ = 19

NBM-CN

(c) Normalized Energy, 𝐸 (0) = 0.002

Figure 5.13: Comparison of HBM and CN (time-marched solution) solutions to the NBM-ODE for a period
of motion 𝑇 ≈ 3.0962, The nodes plotted in Figures 5.13(a) and 5.13(b) are marked in Figure 5.12.

non-smooth contact node motions, see Figures 5.13(a) and 5.13(b). In fact, the NBM-ODE can

exhibit nonsmooth displacements and velocities at the contact boundary even when HBM is used to

approximate the motion of internal nodes. This is largely due to the fact that the nonsmoothness

in the displacement of contact node is dictated by the switching of the contact conőguration and

does not depend on the HBM approximation. While the nonsmooth behaviour of contact nodes is

not affected by the HBM approximation, the location of discontinuities in nodal velocities (i.e., the

instants of switch) are affected by the HBM approximation.

5.7 Nonsmooth modal analysis

To perform nonsmooth modal analysis of the investigated plate in unilateral contact with a rigid

obstacle, the HBM and SCC are used. The nonsmooth modes of the plate are compared against

forced responses.

In Section 5.7.1, the forced-response motion is deőned for validation of the resonance points

detected by the NSMs. Then, two NSMs are discussed: longitudinal in Section 5.7.2 and transverse
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5.7 Nonsmooth modal analysis

in Section 5.7.3. The longitudinal NSM originates from the second natural frequency of the

underlying linear plate system (𝜔2 ≈ 1.57) and consists of displacement mainly in the longitudinal

direction (normal to the obstacle). The transverse NSM originates from the third natural frequency

of the underlying linear plate system (𝜔3 ≈ 1.73) and consists of displacement in transverse direction

(tangent to the obstacle). It is important to note that an NSM exists around the őrst natural frequency

𝜔1 which consists also of motions in the transverse direction however it is not discussed for the sake

of conciseness.

5.7.1 Forced-response curves

The nonsmooth mode of the investigated plate is compared against the forced-responses obtained

from the PDE

𝜌𝜕𝑡𝑡u(x, 𝑡) + 𝜉𝜕𝑡u(x, 𝑡) − ∇ · 𝝈(u(x, 𝑡)) = f cos(𝜔 𝑓 𝑡), (x, 𝑡) ∈ Ω × [0,∞) (5.78)

where f describes the amplitude and direction of the applied force and 𝜔 𝑓 is the forcing frequency. In

the forced response diagrams, the ranges of damping coefficients 𝜉 and forcing magnitudes are chosen

such that resonances occur in the same range of energies as the detected NSM. The forced-response

curves are obtained by solving the PDE (5.78) through 20 periods 2𝜋/𝜔 𝑓 , considered sufficient to

reach a steady state.

To compare between forced-response and NSM energies, the root mean square of mechanical

energy throughout a period of motion is used

�̃� (𝑇) =

√︄∫ 𝑇
0
𝐸 (u(𝑡))2d𝑡

𝑇
(5.79)

where 𝐸 (u(𝑡)) is deőned in Equation (5.63) and 𝑇 is the period of the motion in question. for the

forced-response motions, the value �̃� is calculated at the steady state.

The forced-response curves were generated using three different treatments of the Signorini

conditions: 2D-NBM, Newton’s impact law, and Nitsche’s method. In all methods, a őnite element

grid of 50 by 3 elements was chosen. Figure 5.14 displays a comparison of the forced-response

curves generated by the different treatments of the Signorini conditions.

All forced-response curves in Figure 5.14 show good agreement in terms of the loci of resonant

points. From numerical experiments, this agreement also carries for other values of f. Indeed, the

fact the 2D-NBM generates forced-response curves that lie closely to forced-response curves by

other techniques constitutes a proof of work for the 2D-NBM. Since the forced-response curves

closely align, those generated by SICONOS with 𝑒 = 0 are chosen for the comparison against the

detected NSMs.
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Figure 5.14: Forced-response diagrams obtained for the 50 by 3 model of the plate in unilateral contact,
f =

(
0.05 0

)
for varying frequencies 𝜔 𝑓 and damping coefficients 𝜉. �̃� is deőned in Equation (5.79) and

is calculated throughout the last period of motion 𝑡 ∈ [19(2𝜋/𝜔 𝑓 ), 20(2𝜋/𝜔 𝑓 )]. This őgure portrays the
equivalence between the forced response diagrams obtained via different FEM based methodologies.

5.7.2 Longitudinal NSM

This NSM is excited by applying forces oscillating in the longitudinal direction and, at low energies,

this NSM coincides with the second linear mode of vibration (see Mode 2 in C.7) of the investigated

plate. To determine the NSM, a 50 by 3 FEM model is used with HBM-NBM algorithm consisting of

10 harmonics (judged sufficient for the convergence of the backbone curve). The NSM is illustrated

in Figure 5.15.

In this section, the contribution of linear normal modes and the corresponding forced-response

diagrams will be used to analyse the obtained NSM following the procedure in [97, p.75] is used. In

brief, the contribution of a linear mode 𝑖, denoted ulin
𝑖 (x) in a given motion 𝑗 of the NSM, denoted

uNSM
𝑗
(x, 𝑡), is quantiőed by the projection of the NSM motion onto the linear mode. This admits a

time dependent coefficient

𝑎lin
𝑖 𝑗 (𝑡) =

∫
Ω

ulin
𝑖 (x) · u

NSM
𝑗
(x, 𝑡)dx∫

Ω
ulin
𝑖
(x) · ulin

𝑖
(x)dx

. (5.80)

Then, the numerical metric representing the linear mode’s participation in a given NSM motion is

obtained by taking the root mean square value of 𝑎lin
𝑖 𝑗 (𝑡) over a period 𝑇𝑗 of the NSM motion 𝑗 :

�̃�𝑖 𝑗 ≡
1

𝑇𝑗

√︄∫ 𝑇 𝑗

0
𝑎lin
𝑖 𝑗
(𝑡). (5.81)
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Figure 5.15: FEP of longitudinal NSM of the plate originating from the 2nd linear mode. The NSM is found
using NBM-HBM with 𝑁ℎ = 10. The grazing energy is 𝐸2 ≈ 3.5 × 10−5 and the corresponding natural
frequency at grazing is 𝜔2 ≈ 1.57.

The participation of linear mode 𝑖 in an NSM motion 𝑗 is represented using the quantity

𝑝𝑖 𝑗 ≡
|�̃�𝑖 𝑗 |∑𝑁𝑙

𝑖=0 |�̃�𝑖 𝑗 |
(5.82)

where 𝑁𝑙 represents the number of linear modes of vibration used for the approximation. The

participation of linear modes in the longitudinal NSM is presented in Figure 5.16. Figure 5.16

shows a signiőcant participation of other linear modes than the second linear mode in the NSM.

The participation of more than one linear mode in NSM motions is characteristic and is expected in
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Figure 5.16: Participation (deőned in Equation (5.82)) of 10 őrst linear modes in the longitudinal NSM. �̃�
stands for the root-mean-square value of 𝐸 (𝑡) through a period of motion. Grazing energy 𝐸2 ≈ 3.25 × 10−5.
Modes illustrated in Appendix C.6.
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Chapter 5 Nodal Boundary Method in Two Dimensions

nonlinear normal modes in general [97]. It is worth noting that the participation of longitudinal

modes (modes excited by longitudinal forces) is dominant compared to transverse modes. For

example, the 2nd, 5th 7th and all other linear modes appearing in Figure 5.16 are longitudinal

modes (see illustrations of linear modes in Appendix C.6). Nevertheless, it is important to note that

other transverse modes (such as 1st and 3rd modes) participate in the NSM but their participation is

negligible compared to the participation of longitudinal modes.

Next, the NSM is compared to the forced response diagrams in Figure 5.17. To generate these

forced response curves, a force oscillating exclusively in the longitudinal direction with amplitude

f = (0.02 0)⊤ was used. Furthermore, Figure 5.17 shows that the NSM passes closely to all

resonances detected in the forced response curve.
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Figure 5.17: Longitudinal NSM emanating from 2nd linear mode from Figure 5.15 against forced response
curves generated for f =

(
0.02 0

)⊤
. Solution 𝐴 (𝑇 ≈ 3.12, �̃� ≈ 0.0018) is illustrated in Figure 5.18 and in

Figure 5.19.

Figures 5.18 and 5.19 depict the NSM motion at the intersection between the backbone curve and

the forced response for 𝜉 = 0.17 (see Solution 𝐴 in Figure 5.17). The őgures depict the second linear

mode at the same energy as the NSM motion for comparison purposes. The motions are compared

at fractions of their respective periods rather than in exact times. Both NSM and linear motion

show close resemblance away from contact. For example, in Figure 5.18, the plate follows the

linear mode’s trajectory for the most part until a contact with the obstacle is achieved. Furthermore,

Figure 5.19 shows that a similar negative amplitude is reached by the structure for the same energy.

However, the contribution of other modes can be seen along the 𝑡 axis in Figure 5.19. Even away

from contact, it is evident that the NSM solution (solution 𝐴) does not follow a cosine trajectory

(like the second linear mode) and has contribution from higher harmonics in time.
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(a) 𝑡 = 0 (b) 𝑡 = 0.2𝑇 (c) 𝑡 = 0.4𝑇

(d) 𝑡 = 0.6𝑇 (e) 𝑡 = 0.8𝑇 (f) 𝑡 = 𝑇

Figure 5.18: Instances of the longitudinal NSM motion in solution 𝐴 (see Figure 5.21, 𝑇 ≈ 3.12, �̃� ≈ 0.0018).
Colour gradient represents the őeld | |P(x)u(𝑡𝑖) | |2 where 𝑡𝑖 denotes an instant time. The black-dashed outline
represents the motion of the linear mode with frequency 𝜔2 (𝑇 ≈ 3.98) and energy 𝐸 (𝑡) = 0.0018 (same level
of energy as solution 𝐴). Other motions on of the longitudinal NSM are presented in Appendix C.4

(a) Solution 𝐴, 𝑇 ≈ 3.12, �̃� ≈ 0.0018 (b) Linear mode, 𝑇 ≈ 3.98, �̃� = 0.0018

Figure 5.19: Motion of contact boundary for the solution 𝐴 and third linear mode of vibration at the same
energy. Snapshots of both solution 𝐴 and the linear mode’s motions are presented in Figure 5.18.

5.7.3 Transverse NSM

The transverse NSM is excited by applying a force oscillating in the transverse direction 𝑥2 and, at

low energies, coincides with the third linear mode of vibration of the investigated plate, shown in C.7.
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Chapter 5 Nodal Boundary Method in Two Dimensions

To identify the NSM, a 50 by 3 FEM model of the approximated plate is used with HBM-NBM

algorithm consisting of 10 harmonics (similarly to the Longitudinal NSM, the curve sufficiently

converged for 10 harmonics). The NSM is illustrated in Figure 5.20 together with the contribution

of the őrst ten linear modes of vibration in the NSM. From Section 5.7.3, it is evident that the

presence of unilateral contact admits an NSM where energy increases with increasing frequency

and it is expected that excitation with higher frequencies would result in a higher energy of motion

at resonance (for frequencies within the range of NSM frequencies, of course).
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(a) FEP of NSM
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(b) Linear mode participation in NSM

Figure 5.20: FEP of transverse NSM originating from the third linear mode and participation (deőned in
Equation (5.82)) of ten őrst linear modes in the NSM. The NSM is found using NBM-HBM with 𝑁ℎ = 10.
Grazing energy 𝐸3 ≈ 3.25 × 10−5 and natural frequency at grazing 𝜔3 ≈ 1.73.

From the modal participations in Figure 5.20(b), it is clear that the third linear mode has the

largest participation within the NSM throughout all energy levels. At energies higher than the

grazing energy, other modal contribution are present. Interestingly, even though the plate is excited

using exclusively transverse forces, it can be seen that the unilateral contact condition triggers

exclusively longitudinal modes of vibration, see Figure C.7. While in linear systems, only the third

mode will be present, the contribution of longitudinal modes in the NSM motion are expected due

to the contact pressure acting in the longitudinal direction.

The NSM is compared to the forced response in Figure 5.21. A force oscillating exclusively in

the transverse direction with amplitude f = (0 0.05)⊤ was chosen. The NSM passes closely to all

resonances detected in the forced response curve which validates the accuracy of the NBM-HBM

method in detecting the NSMs.

The plates vibration proőle of the NSM close to the resonant peak of the 𝜉 = 0.2 curve is

presented in Figure 5.22 and contact boundary motion in the 𝑥1 direction for this speciőc motion is

presented in Figure 5.23.

In Figure 5.22, the vibration is characterized by a collision of a single corner of the plate against
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Figure 5.21: NSM emanating from the third linear mode from Figure 5.20 against forced response curves
generated for f = (0 0.05)⊤. Solution 𝐵 (𝑇 ≈ 3.27, �̃� ≈ 0.0027) shown in Figures 5.22 and 5.23.

(a) 𝑡 = 0 (b) 𝑡 = 0.2𝑇 (c) 𝑡 = 0.4𝑇

(d) 𝑡 = 0.6𝑇 (e) 𝑡 = 0.8𝑇 (f) 𝑡 = 𝑇

Figure 5.22: Instances of the Transverse NSM motion in solution 𝐵 (see Figure 5.21, 𝑇 ≈ 3.27, �̃� ≈ 0.0027).
Colour gradient represents the őeld | |P(x)u(𝑡𝑖) | |2 where 𝑡𝑖 represents the snapshot time. The black-dashed
outline represents the motion of the linear mode with frequency 𝜔tan (𝑇 ≈ 3.64) and energy 𝐸 (𝑡) = 0.0027
(same level of energy as solution 𝐵). Other motions of the longitudinal NSM are presented in Appendix C.5

the rigid obstacle and never a simultaneous collision of all stencils on the contact boundary against

the obstacle (compared to the longitudinal NSM in Figure 5.19). Comparing the NSM and the

third linear mode in Figure 5.22, it is noted that the NSM motion follows closely the third linear

mode’s trajectory. This is also indicated in the large contribution of the third linear in the NSM in
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(a) Solution 𝐵, 𝑇 ≈ 3.27, �̃� ≈ 0.0027 (b) Linear mode, 𝑇 ≈ 3.64, �̃� = 0.0027

Figure 5.23: Motion of contact boundary for the solution 𝐵 and third linear mode of vibration at the same
energy. Snapshots of both motions are presented in Figure 5.22.

Figure 5.20(b). Nevertheless, the deformation proőles of NSM and linear motions in the phase-space

differ and are not entirely congruent which is likely related to the participation of other linear modes

in the motion. Furthermore, Figure 5.23 shows that the contact boundary reaches a minimum of

the same magnitude in both the NSM motion and in the linear mode. In the presence of unilateral

contact, the minimal amplitude of the contact node is equivalent to that of the third linear mode.

Both longitudinal and transverse NSMs show that the NBM-HBM approach is successful in

predicting resonance points in forced responses. It is noted that the presence of unilateral contact

conditions with a positive gap has a hardening effect on the backbone curve. The NSM motion also

shows contributions from other linear modes, although the contribution of the mode from which the

NSM emanates still carries dominant participation.

Both NSMs were shown as proof of work of the NBM-HBM approach. However, given the

proposed methodology, nonsmooth modal analysis of the investigated plate can be done for varying

thickness, varying forces and in a larger frequency spectrum.

5.8 Scope and Limitations

In this chapter, the 2D-NBM was applied successfully for the nonsmooth modal analysis of a

rectangular plate in unilateral contact with a rigid obstacle situated at a őxed gap 𝑔0 from the

non-deformed structure. Although not explored, the proposed 2D-NBM formulation may also apply

for rectangular plates with Robin boundary conditions or varying density, dimensions, Young’s

modulus or Poison’s ratio. The methodology can also apply to plane-strain approximations and is

not exclusive to plane-stress.

It should be said that the presented formulation of the 2D-NBM does not readily apply to
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non-rectangular plates or non-constant gap functions. Assuming non-rectangular plate affects the

formulation of the NBM approximation of contact forces (5.20) and, consequentially, the formulation

of the matrix N𝑐 in the LCP solution (5.26). Thus, it is of primary importance to verify that the

resulting N𝑐 for curved boundary conditions is a 𝑃-matrix to guarantee a unique solution exists for

the NBM-LCP (5.25). For non-constant gap functions, the Signorini complementarity conditions

involve a more intricate Signorini problem as both the normal n in the NBM approximation of

contact forces (5.20) and the gap function in the Signorini problem (5.13) must involve restrictions

on both 𝑥1 and 𝑥2 axes [96, p. 126]. Thus, the NBM must produce a N𝑐 that is a 𝑃-matrix for any

possible conőguration. In this case, one cannot resort to numerically verify every possible N𝑐 for

any possible normal to the rigid boundary n. Thus, a more generic proof of N𝑐 being a 𝑃-matrix for

any possible n is necessary for this case.

Also, the formulation has been tested for rectangular elements only but is general to any type

of elements as long as the choice of shape functions permits an approximation of a non-zero

contact force (5.21). A similar notion is explored in the 1D-NBM in Section 4.3.6. It is also worth

noting that the 2D-NBM approximation categorically requires that the NBM-LCP Equation (5.23)

always admits a unique solution u𝑐 (𝑡) for any u𝑜 (𝑡). The uniqueness and existence of solutions to

Equation (5.23) depends on the type and number of shape functions.

In all examples, the uniqueness of LCP solutions was affirmed by verifying numerically that N𝑐

is a 𝑃-matrix, see Section 5.3.1. However, a general proof of uniqueness and existence of solution

to the NBM-LCP 5.23 for any type of őnite elements is not yet developed.

At last, the current NBM approximation is not limited to the two-dimensional case only but may

apply to three-dimensional settings as well. The uniqueness and existence of the NBM-LCP 5.23

solutions must be affirmed for this case.

We note that application of NBM on problems involving tangential forces (such as friction [96])

is currently under question and the proposed NBM approach applies only on the normal direction

of contact forces. The linear complementarity problem resulting from the NBM implementation

of the Signorini conditions with friction is more intricate and sets additional restrictions on the

choice of shape functions. Speciőcally, the Signorini complementarity problem (5.13) will involve

also a complementarity condition on the velocity of contact nodes, normal forces and tangential

forces at the contact boundary [96, Eq. 4.45]. for the application of NBM, the tangential forces

must be approximated using the FEM formulations such that they result as functions of the nodal

displacement (similar to the treatment of contact pressures in Equation (5.29)). While it is possible

to approach this problem using NBM, it is unknown whether the NBM will result in admissible

solutions for the friction problem. Thus, application of NBM to problems involving friction or

tangential forces remains in question and necessitates a thorough examination.
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5.9 Discussion

Nonsmooth modal analysis of two-dimensional structures requires (1) accurate simulation of the

motion prone to unilateral contact, (2) ability to depict periodic solutions of the investigated system,

and (3) continuation of periodic solutions for the detection of families of periodic solutions. The

2D-NBM with HBM and SCC have been proposed for numerical nonsmooth modal analysis and to

answer these challenges.

While there exist numerous approaches for the simulation of two-dimensional structures in

unilateral contact, most do not admit accurate solutions for low grid models. Current numerical

schemes either allow penetration, exhibit numerical chattering or suffer from dissipation of energy,

and thus do not allow for the detection of periodic solutions. The 1D-NBM has been proposed in

Chapter 4 to remedy those issues for one-dimensional problems, and its formulation is extended in

this chapter to two-dimensional structure. Compared to existing methods, the 2D-NBM features

favourable properties such as continuous active contact phases and non-penetration of the obstacle

at any grid. The NBM is derived by applying the Signorini conditions on the contact nodes in a

strong sense. Thus, motion of nodes in the contact boundary is restricted such that the conditions of

active and inactive contact are enforced exactly by the NBM approximation of the displacement. In

turn, similarly to the 1D-NBM, the displacement of nodal quantities on the contact boundary is

dictated solely by the Signorini complementarity conditions and displacement of internal nodes. As

a result, the contact nodes do not participate in the NBM-ODE. The NBM-ODE admits a set of

nonsmooth ODEs with coefficients that depend on the contact conőguration of the structure. In

comparison to the 1D-NBM where the contact problem is solved by switching between two distinct

ODEs (describing either active or inactive contact phases), in the 2D-NBM, there exist 2𝑁C possible

distinct ODEs to describe each contact conőguration. A switching algorithm which allows choosing

the appropriate ODEs among all possible 2𝑁C distinct ODEs is developed for the 2D-NBM. The

switching algorithm consists of an LCP solver which determines the current contact conőguration

and of linear matrix operations to determine proper mass and stiffness matrix to be used in the

contact conőguration.

The 2D-NBM is used to generate periodic solutions for nonsmooth modal analysis. To

demonstrate the validity of the proposed 2D-NBM scheme, its solution of the Signorini problem

involving the plate in unilateral contact is compared to other FEM schemes. The results of these

comparisons show that the NBM successfully exhibits non-penetration and continuous active contact

phases. Furthermore, the results suggest that the 2D-NBM exhibits less spurious oscillations than

existing methods. Most importantly, the 2D-NBM allows for a regain of energy throughout the

motion and, thus, for the detection of periodic solutions with sticking phases and no-penetration.

Also, a convergence analysis of the 2D-NBM with respect to other FE schemes showed that, for a
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őxed number of contact nodes, all schemes converge to the same solution. This convergence test

also conőrms the validity of the 2D-NBM solution to Signorini problem.

The HBM is applied to the 2D-NBM for the detection of periodic solutions. Speciőcally, it is

shown that the HBM converges for increasing number of harmonics and successfully determines

an accurate periodic solution of 2D-NBM-ODE. Nonsmooth modal analysis is then preformed

by applying HBM with sequential continuation on the 2D-NBM-ODE. Nonsmooth modes were

successfully determined and two modes are demonstrated in this manuscript: a NSM excited

by longitudinal force (Longitudinal NSM) and a NSM excited by transverse force (Transverse

NSM). Both NSMs were found to be in close proximity to resonance peaks in the corresponding

force-response diagrams. Also, both NSMs showed a hardening behaviour of the backbone curve.

Analysis of the participation of linear modes in the detected NSMs allowed for better under-

standing of the motions within the NSM. For example, it was shown that the longitudinal NSM

mostly consists of linear longitudinal modes. Meanwhile, the transverse NSM demonstrate strong

participation of both transverse and longitudinal modes due to contact forces applied on the structure

(the contact force applies in the longitudinal direction). Furthermore, selected NSM motions are

compared to the linear mode with the dominant contribution. The comparison showed that NSM

motions have similar amplitudes during inactive contact phases, and the linear mode and generally

follow a similar trajectory to the dominant participating linear mode. However, the contribution of

other modes in the motion are non-negligible and can be seen in the time evolution which differs

signiőcantly between NSM motions the linear mode.

Although it was yet attempted, the presented formulation of the 2D-NBN is generic enough

to readily extend to research avenues including arbitrarily shaped-boundaries and three spatial

dimensions.

Supplementary Material

Excerpts of scripts and algorithms used to perform the analysis and generate őgures in this chapter

are available on Zenodo [88].
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Chapter 6

Conclusion

6.1 Summary of thesis

This thesis is focused on nonsmooth modal analysis of structures prone to unilateral contact and the

Signorini complementarity conditions are used to describe the unilateral contact conditions. In the

őeld of mechanical engineering, applications involving vibrations and unilateral contact are common.

Nevertheless, the nonsmooth modal analysis of such structures is an academically challenging topic,

and the methodologies for nonsmooth modal analysis in literature are not readily applicable.

Since closed-form solutions are not generally available for the Signorini problem, numerical

approaches must be used for the nonsmooth modal analysis. While linear modal analysis relies on

the superposition principle to derive the natural frequencies and modes of vibration, these cannot be

derived for nonsmooth systems where the principle fails.

Nonsmooth modes are families of periodic solutions to the autonomous structure and constitute

an extension of the notion of linear modes of vibration to nonsmooth systems. Like linear modes,

detection of resonance frequencies and behaviours in the forced system are possible. In this thesis,

the detection of nonsmooth modes requires the accurate simulation of contact mechanics, detection

of periodic solutions, continuation of nonsmooth modes.

The work in this thesis focused on two different approaches for nonsmooth modal analysis: (1)

analytical nonsmooth modal analysis via d’Alembert functions and (2) numerical nonsmooth modal

analysis of the one-dimensional bar and the two-dimensional plate.

An elaborate introduction to the nonsmooth modal analysis and the current state of numerical

methods for nonsmooth modal analysis of structures prone to unilateral contact is given in Chapter 2.

In Chapter 3, the analytical study of the nonsmooth modal space of the internally resonant bar

takes place. The motivation behind analytical modal analysis of the bar was to understand the

difficulties in nonsmooth modal analysis given a closed-form solution. Speciőcally, the accurate

simulation of contact mechanics is obtained by application of the method of steps on the d’Alembert
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traveling-wave solution of the bar. In this approach, the conditions for periodic solutions are formed

based on d’Alembert solution. This constitutes a set of linear functional equations (the CPS), of

which the solutions are families of periodic solutions (i.e., NSMs). It is shown that the previously

deőned piecewise-linear modes of the bar constitutes a part of a larger solution space to the CPS and

new nonsmooth modes were derived using the CPS. Particularly, piecewise-smooth modes that are

iso-periodic and exist in a dense set of periods and a set of nonsmooth modes of the same frequency

and energy were exhibited. Furthermore, it was shown that such nonsmooth modal spaces cannot be

readily discovered by existing numerical methods. Speciőcally, the widely used pseudo-arclength

continuation method is not readily applicable to the dense space of periodic solution families which

includes inőnitely many branching points since the notion of a tangent to the curve does not exist.

Thus, in the numerical modal analysis section of this thesis, alternative continuation methods were

considered such as sequential continuation with correction (SCC). The SCC, presented in Chapter 4,

relies on the fact that, for low order approximations, the nonsmooth modal space does not include as

many branching points as higher order approximations. Consequently, continuation methods can

be applied for low order approximations to determine low order NSMs. Then, corrections to the

low order periodic solutions within the NSM are obtained by increasing the order of approximation

while őxing either the frequency or energy of the solution.

The larger portion of this thesis focuses on numerical modal analysis of structures prone to

unilateral contact. In current literature, such methods are limited to a narrow set of models. For

example, the WFEM and TD-BEM were proven successful for nonsmooth modal analysis of the

bar with constant cross-sectional area. However, extension to other models such the varying-area

bar or two-dimensional plate failed due to signiőcant dissipation of energy through time in the

developed schemes. One objective of this is thesis is primarily to conceive a numerical scheme for

nonsmooth modal analysis of multi-dimensional structures. To this end, a new numerical treatment

of the Signorini boundary conditions, the nodal boundary method, was introduced. The suggested

method treats the Signorini conditions in the framework of őnite elements. Existing treatments of the

Signorini conditions suffer from numerical deőciencies such as: dissipation of energy, non-physical

chattering, or penetration of the rigid obstacle. These deőciencies prevent the detection of periodic

solutions. The NBM is developed for purposes of nonsmooth modal analysis and resolves the

deőciencies in existing FE schemes. It can őnd periodic motions with continuous contact phases

(sticking phases). Using the NBM, nonsmooth modal analysis of both the varying area bar and the

two-dimensional plate in unilateral contact were performed.

In Chapter 4, the 1D-NBM is developed in the context of the bar prone to unilateral contact.

It considers separate approximations (separate families of shape functions) to treat the inactive

contact conditions (boundary conditions describing the structure away from rigid obstacle) and

active contact boundary conditions (describing the boundary when contact with rigid obstacle
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is imposed). The discretized PDE is solved by switching between these sets of shape functions

where the switching procedure is responsible for detection of contact. In sum, the nodal boundary

method culminates in a nonsmooth ODE where only the nodes internal to the considered system

participate. The nonsmooth modes are successfully detected using the SCC and shooting method

for the internally resonant bar, the bar with soft support and the varying area bar. For all models,

the nonsmooth modes aligned closely with resonance peaks in the forced response. As well, the

internally resonant bar and the bar with soft support featured periodic solutions that were previously

obtained using WFEM and TD-BEM.

In Chapter 5, the 2D-NBM is developed in the context of a plate prone to unilateral contact. The

2D-NBM relies on similar principles as that of 1D-NBM: implementation of Signorini conditions

in a strong manner and exclusion of contact nodes by switching between different ODE systems

describing different contact conditions. However, the NBM implementation on multidimensional

structures presents another challenge: switching between more than two systems of ODEs. Thus,

while the 1D-NBM required switching between two ODEs describing distinct contact phases, the

switching in the 2D-NBM requires depiction of an ODE out of 2N
𝐶

potential ODEs describing different

contact conőgurations. The switching mechanism in the 2D-NBM is implemented using root

solving algorithms. A dedicated switching procedure is developed to both obtain the displacement

of contact nodes based on internal nodes (i.e., solution of the Signorini problem for a given instance

in time), and formulation of the corresponding ODE for the contact conőguration. Comparison of

the 2D-NBM to other FE based schemes shows that the 2D-NBM exhibits favourable properties

such as: elimination of chattering and low spurious oscillations. Also, the 2D-NBM was shown to

converge to motions generated by other schemes for a high enough number of internal nodes.

Periodic solutions in the 2D-NBM were detected using the HBM since shooting method proved

to be too expensive. Besides the 2D-NBM being able to generate solutions via time-marching

techniques, it can also accommodate spectral methods such as the HBM. The resulting 2D-NBM-

HBM solution is used to detect NSMs of the plate via the SCC. Two NSMs are explored in this

thesis: Longitudinal NSM and Transverse NSM. Both NSMs are found in proximity to the resonance

peaks of forced response.

6.2 Possible future avenues

6.2.1 Exact nonsmooth modal analysis using d’Alembert functions

The methodology for exact nonsmooth modal analysis presented in Chapter 3 relies on the d’Alembert

solution described in Equation (3.8) to the wave equation and the method of steps. While the

d’Alembert solution describes the motion of the bar for either homogeneous Neumann conditions
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or non-homogeneous Dirichlet conditions (which are the inactive and active phases of contact,

respectively), the switching mechanism is implemented using the method of steps. While the

methodology was not developed for other conőgurations of the bar, it may be possible to apply it on

the bar with soft-support (i.e., Robin condition on that non-contacting end) or the two colliding

bars [51] since both enjoy the existence of d’Alembert function. However, the described methodology

does not apply to the bar of varying area or the two-dimensional case where the d’Alembert solution

does not apply. Moreover, the methodology used for exact nonsmooth modal analysis is not limited

to 1CPP and may extend to include more contact phases per period. In fact, experiments done for

more contact phases per period show that the strategy for őnding iso-periodic nonsmooth modes

(described in Section 3.3.2) also works for 𝑘CPP solutions. These experiments were not shown in

this thesis for sake of conciseness.

The results brought forward in this context also present avenues for future research. For example,

it is revealed that the nonsmooth modal space of the bar is dense and inőnitely many NSMs exist

within a short span of frequencies. It is of interest to determine how the density of the modal

space affects the forced-response of the internally resonant bar. While it is known that the NSMs

correspond to resonance behaviour of the structure, it is not known how the existence of dense

iso-periodic solutions of the type in NSM3 or NSM2, which include multiple periodic solutions at

given frequency-energy points, relate to a resonant behaviour. Stability analysis of the discovered

NSMs is also of interest as it can give further knowledge on the motions of the bar prone to unilateral

contact.

Another interesting direction for future research using the methodology presented here is in the

reduction of the density of the modal space by depicting solutions of speciőc types. The density

of the modal space, as noted in [51, 97], does not allow to outline trends in behaviours in the

modal space. For example, restriction of the CPS to synchronous motions of the type discussed by

Rosenberg [70] may be beneőcial in outlining speciőc behaviours in the modal space.

6.2.2 Nodal boundary method

It is noted that the scope and limitations of NBM are discussed in depth in Sections 4.6 and 5.8.

However, it is important to add that the 1D-NBM can be applied for contact problems involving

the one-dimensional bar with varying Young’s modulus 𝐸 , density 𝜌, or area 𝐴 and with any

boundary conditions on the non-contacting ends (so long that these can be implemented via classical

őnite-element). Furthermore, application to contact problems involving a moving wall or collision

between two bars is also possible with 1D-NBM. In turn, the 2D-NBM formulation in Chapter 5

can be readily applied for contact problems involving the plate with different boundary conditions

on the non-contacting boundaries and varying density or shape or varying shape of plate, given
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that the gap distance remains constant. Currently, the 2D-NBM applies to a variety of useful

cases and may be applied to practical applications such as one/two-dimensional simpliőcations of

blade-casing contact [9] or drills [62]. However, it is of interest to determine whether the application

of NBM easily extends to three-dimensions or other governing equations (such as the beams or shell

structures) and thus extend the usage of NBM to any practical application. At last, the 2D-NBM

scheme suffers from long computation times due to semismooth-Newton method called for both

solution of the NBM-LCP in Section 5.3.1 and solution of the CN time-step [43]. The 2D-NBM

may be improved by assuming other time-marching schemes for LCP solution schemes. An analysis

of the performance of the 2D-NBM for different numerical scheme may lead less computationally

intensive technique and, thus, improvement of nonsmooth modal analysis capabilities with the NBM.

6.2.3 Numerical nonsmooth modal analysis

The dense modal space discovered in Chapter 3 has signiőcant implications on the implementation

of numerical nonsmooth modal analysis techniques. Speciőcally, the general solution space does not

allow for simple implementation of continuation methods [51,97]. However, in the numerical analysis

portion of this thesis exposed in Chapters 4 and 5, it was revealed that low order approximations

allow for simple application of sequential continuation culminating in the formulation of SCC in

Section 4.4.3. Although the SCC is based on sequential continuation, application of pseudo-arclength

on low order approximation may be possible as well since the detected NSMs did not exhibit

any disturbances or branching points for low order approximation. Another possible continuation

method is the asymptotic numerical method (ANM) [21] which allows detection of large sections

of the backbone curve via a quadratic approximation in the arclength parameter of the solution

curve. Implementation of this methodology to the continuation problem in the NBM faces two

issues: (1) the solution space involves many branching points, and a quadratic approximation may

not be successful in detecting (2) the set of equations is non-smooth and thus a quadratic form

of the approximation is not readily obtained (although probable given some regularization of the

discontinuous NBM-ODE). Although, it was shown in [51,84] that the backbone curve for a discrete

approximation of the bar equation involves a piecewise-differentiable backbone curve. Thus, it

may be possible to apply ANM (or pseudo-arclength continuation) on differentiable portions of the

backbone curve and thus discover the space of solutions via detection of separate branches.

However, it is also worth to investigate alternatives to continuation methods. For example, the

simplex method [54] is a non-gradient optimization method and may be able to discover more

than multiple periodic solutions. Although the continuation problem is generally formulated as a

root-solving problem rather than an optimization problem, it can be formulated as an optimization

problem by minimizing the norm of the participating functions in the root-solving problem. Because
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it does not rely on gradients, the simplex method is a good candidate for determining periodic

solution in a dense modal space.

The NBM formulation allows for usage both the HBM, used in 2D-NBM, and shooting method,

used in 1D-NBM, for detection of periodic solutions. Although the shooting method may theoretically

apply to both the one dimensional and two-dimensional cases, it was noticed, through numerical

experiments, that the HBM may determine a periodic solution for a larger space of initial guesses

than the shooting method. Speciőcally, the HBM, in the SCC approach, resulted in a more efficient

computational algorithm than the shooting method (which took a signiőcantly higher number of

iterations to őnd a solution). Nevertheless, it is important to note that the shooting method relies on

the accuracy of the ODE solver to determine a periodic solution whilst the HBM requires the usage of

many shape functions to approximate the ODE solution appropriately. Moreover, the HBM utilizes

smooth functions to describe the ODE solution (which is non-smooth and only once differentiable).

Although, from a practical standpoint, as the number of degrees-of-freedom increases, the HBM has

reached a sufficiently accurate solution in a feasible computation time (number of iterations).

Furthermore, it is noted that the phase condition chosen requires all velocities to reach a zero

point. It is possible that by choosing this phase condition other solutions are neglected. Therefore, it

may be beneőcial to consider other phase conditions such as the one presented in Section 3.1.1 or

Poincaré orthogonality condition [13, p. 156].

It is important to remind the convergence of FEM schemes for a őxed number of nodes in

Section 5.5.2. In this convergence test, it was shown the various FEM treatments of the Signorini

problem applied for a őxed number of contact nodes converge to the same solution. It is of interest

to examine whether the convergence of different schemes for a őxed number of contact nodes can be

generalized to any FE model. If proven true, this conjecture could point to a unique solution to the

Signorini problem in FE. A unique solution of the Signorini problem for a őxed number of contact

nodes would allow to perform a convergence analysis with respect to the number of contact nodes.

Since the number of contact nodes affects directly the size of the grid (and in turn, the computational

effort necessary), this would allow for better estimation of the necessary computational effort in

reaching a suitable approximation of the solution to the Signorini problem.

6.3 List of publications

The following publications resulted from this dissertation:

1. D. Urman and M. Legrand. Nonlinear modal analysis of the bar in unilateral contact via

analytical weak-solutions to the wave equation. 27th Canadian Congress of Applied Mechanics.

Sherbrooke, Canada, 2019.

2. D. Urman and M. Legrand. Nodal-boundary őnite-element method for periodic solutions of
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Signorini problems. XI International Conference on Structural Dynamics. Athens, Greece,

2020.

3. D. Urman and M. Legrand. Nodal-boundary őnite-element method for the Signorini problem

in two dimensions. ASME 2021 International Design Engineering Technical Conferences &

Computers and Information in Engineering Conference. Online, 2021.

4. D. Urman, M. Legrand, and S. Junca. D’Alembert function for exact non-smooth modal

analysis of the bar in unilateral contact. Nonlinear Analysis: Hybrid Systems, 43, 2021.

doi:10.1016/j.nahs.2021.101115.

5. D. Urman and M. Legrand. Nonsmooth modal analysis of a rectangular plate in unilateral

contact. 10th European Nonlinear Dynamics Conference. Lyon, France, 2022.

6. D. Urman and M. Legrand. Nonsmooth modal analysis of a varying cross-
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Appendix A

Proofs for propositions on 1CPP NSMs of the

uniform-area bar

A.1 Proof of Proposition 3.2

Proof. First, we will show that a 1CPP motion cannot occur for 𝜏 ≥ 4. To this end, we show that a

motion with 𝜏 = 4 will never initiate an active contact phase. Then, by extension, we will show that

motions with 𝜏 > 4 will not initiate an active contact phase either.

To start, we note that a duration 𝜏 = 4 coincides exactly with the period of the bar if it were

always in inactive contact motion (a motion of the bar where 𝜕𝑥𝑢(1, 𝑡) = 0 for all 𝑡 ∈ [0,∞)).

Thus, a motion with 𝜏 = 4 could hypothetically repeat for 𝑡 ∈ [4,∞) in periods of 4, as shown

in Equation (3.20), and still satisfy the wave equation (3.1), cantilever condition (3.2), and the

set of Signorini conditions describing inactive contact motion: 𝑢(1, 𝑡) ≤ 𝑔0 and 𝜕𝑥𝑢(1, 𝑡) = 0 for

all 𝑡 ∈ [0,∞). Speciőcally, such a motion would be a solution to Signorini problem while never

initiating an active contact phase. Using the uniqueness theorem for this Signorini problem [73], we

can then justify that a motion that never initiates an active contact phase for 𝑡 ∈ [4,∞) (following

the inactive contact motion taking place for 𝑡 ∈ [0, 𝜏] with 𝜏 = 4) is the only possible solution. To

clarify, since (I) there must exist a unique solution to the considered initial-value problem [73], and

(II) there always exists a solution that is exclusively in inactive contact for 𝑡 > 𝜏 = 4; there cannot

exist any motion with 𝜏 = 4 that enters into an active contact phase. By the same logic, we can

conclude that any inactive motion that lasts from 𝑡 = 0 until some time 𝑡 > 4 - for example, a motion

with 𝜏 > 4 - must also be exclusively an inactive contact motion that never initiates active contact.

Accordingly, we conclude that a motion with 𝜏 ≥ 4 never initiates active contact (the stress at 𝑥 = 1

is always zero) and, therefore, cannot pertain to the group of 1CPP motions.

Next, the constraints (3.22)-(3.23) are derived by plugging the resulting d’Alembert function for
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inactive contact into the inactive contact inequality constraint (3.3): �̄�(1, 𝑡) = 𝑓 (𝑡+1)− 𝑓 (𝑡−1) ≤ 𝑔0

∀𝑡 ∈ [0, 𝜏]. Starting with the d’Alembert function (3.17) for 𝜏 ≤ 2, we obtain

𝑓 (𝑡 + 1) − 𝑓 (𝑡 − 1) = 𝑔0 − 2 𝑓0(𝑡 − 1) ≤ 𝑑 ∀𝑡 ∈ [0, 𝜏], 0 < 𝜏 < 2 (A.1)

which can be simpliőed into

𝑓0(𝑡) ≥ 0 ∀𝑡 ∈ [−1, 𝜏 − 1], 0 < 𝜏 ≤ 2. (A.2)

Next, plugging (3.17) for 2 < 𝜏 < 4 into 𝑓 (𝑡 + 1) − 𝑓 (𝑡 − 1) ≤ 𝑔0, ∀𝑡 ∈ [0, 𝜏], we obtain

𝑔0 ≥ 𝑓 (𝑡 + 1) − 𝑓 (𝑡 − 1) =



𝑔0 − 2 𝑓0(𝑡 − 1) 𝑡 ∈ [0, 2]

2 𝑓0(𝑡 − 3) − 𝑔0 𝑡 ∈ [2, 𝜏]
2 < 𝜏 < 4. (A.3)

The inequality constraint is then assigned separately in 𝑡 ∈ [0, 2] and 𝑡 ∈ [2, 𝜏] and, with further

simpliőcation, admits

0 ≤ 𝑓0(𝑡) 𝑡 ∈ [−1, 1], 2 < 𝜏 < 4 (A.4)

𝑔0 ≥ 𝑓0(𝑡) 𝑡 ∈ [−1, 𝜏 − 3], 2 < 𝜏 < 4. (A.5)

At last, conditions (A.2) and (A.4) lead to (3.22) and condition (A.5) is (3.23) verbatim, which

concludes the proof. □

A.2 Proof of Proposition 3.3

Proof. By contradiction, it is shown that for 𝑇 − 𝜏 ≥ 2 a non-grazing 1CPP periodic motion cannot

occur.

For 𝑇 − 𝜏 = 2, the active contact duration equals the period of 𝜕𝑥�̄�(1, 𝑡), which is 2-periodic

through (3.27). In future time 𝑡 > 𝑇 , 𝜕𝑥�̄�(1, 𝑡) can therefore be described using active contact

conditions exclusively. The same applies for 𝑇 − 𝜏 > 2. Since uniqueness is guaranteed, any motion

with 𝑇 − 𝜏 ≥ 2 remains in active contact motion for any 𝑡 > 𝑇 and therefore never switches to

inactive contact (such motion, by deőnition, would not be periodic). Thus, the bound (3.28) must

hold to guarantee the existence of 1CPP.

The restriction (3.29) is derived by plugging (3.26) into the active contact inequality condi-

tion (3.4). □

A.3 Proof of Proposition 3.4

Proof. The proof is divided into three parts. First, it is shown that (3.30) can be derived from the

periodicity conditions (3.5) and (3.6) (in their d’Alembert form). Second, we show Equation (3.30)
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implies that 𝑓 ′ is 𝑇-periodic. Third, it is shown if 𝑓 abides (3.30) then 𝑢(𝑥, 𝑡) is 𝑇-periodic (in time)

by virtue of uniqueness of the solution to the Signorini problem

It is shown that (3.30) can be derived from (3.5) and (3.6) (in their d’Alembert form) and

vice-versa. A periodic solution, such that (3.5) and (3.6) are valid, requires that

𝑓 (𝑇 + 𝑥) − 𝑓 (𝑇 − 𝑥) = 𝑓0(𝑥) + 𝑓0(−𝑥) ∀𝑥 ∈ [0, 1] (A.6)

𝑓 ′(𝑇 + 𝑥) − 𝑓 ′(𝑇 − 𝑥) = 𝑓 ′0 (𝑥) + 𝑓
′
0 (−𝑥) 𝑥 ∈ [0, 1] a.e. (A.7)

respectively. Differentiating Equation (A.6) with respect to 𝑥 yields:

𝑓 ′(𝑇 + 𝑥) + 𝑓 ′(𝑇 − 𝑥) = 𝑓 ′0 (𝑥) − 𝑓
′
0 (−𝑥) 𝑥 ∈ [0, 1] a.e. (A.8)

In turn, adding (A.7) to (A.8) and subtracting (A.7) from (A.8) results in

𝑓 ′(𝑇 + 𝑥) = 𝑓 ′0 (𝑥) 𝑥 ∈ [0, 1] a.e. (A.9)

𝑓 ′(𝑇 − 𝑥) = 𝑓 ′0 (−𝑥) 𝑥 ∈ [0, 1] a.e. (A.10)

respectively. Next, 𝑠 = 𝑥 and 𝑠 = −𝑥 are substituted into (A.9) and (A.10), respectively

𝑓 ′(𝑇 + 𝑠) = 𝑓 ′0 (𝑠) 𝑠 ∈ [0, 1] a.e. (A.11)

𝑓 ′(𝑇 + 𝑠) = 𝑓 ′0 (𝑠) 𝑠 ∈ [−1, 0] a.e. (A.12)

which can then be assembled to (3.30).

Also, 𝑓 ′ abiding (3.30) is periodic. To prove this, we show that 𝑓 ′(𝑠 + 𝑇) = 𝑓 ′(𝑠) for

𝑠 ∈ [−1, 𝑇 + 1] a.e. by assuming that 𝑓 ′(𝑠 +𝑇) and 𝑓 ′(𝑠) are deőned by the same NDDEs and initial

conditions (formulated as problem I and II).

Problem 1 The determination of 𝑓 ′(𝑠) for 𝑠 ∈ [1, 𝑇 + 1] can be obtained from an NDDE problem

formed by the inactive boundary conditions (3.12) and the derivative of the active contact

boundary conditions (3.13)

NDDE I

𝑓 ′(𝑠) =



− 𝑓 ′(𝑠 − 2) 𝑠 ∈ [1, 𝜏 + 1] a.e.

𝑓 ′(𝑠 − 2) 𝑠 ∈ [𝜏 + 1, 𝑇 + 1] a.e.
(A.13)

Initial conditions I

𝑓 ′(𝑠) = 𝑓 ′0 (𝑠) 𝑠 ∈ [−1, 1] a.e. (A.14)

Problem II Similarly, for 𝑠 ≥ 𝑇 +1, it is expected that the same boundary conditions apply. Namely,

determining 𝑓 ′(𝑠) for 𝑠 ∈ [𝑇 + 1, 2𝑇 + 1] requires solving
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NDDE II

𝑓 ′(𝑠) =



− 𝑓 ′(𝑠 − 2) 𝑠 ∈ [1 + 𝑇, 𝜏 + 𝑇 + 1] a.e.

𝑓 ′(𝑠 − 2) 𝑠 ∈ [𝜏 + 𝑇 + 1, 2𝑇 + 1] a.e.
(A.15)

where the initial conditions are assumed to be known from Equation (3.30)

Initial conditions II

𝑓 ′(𝑠) = 𝑓 ′0 (𝑠 − 𝑇) 𝑠 ∈ [𝑇 − 1, 𝑇 + 1] a.e. (A.16)

Note that both initial conditions I and II are given by the same function 𝑓 ′0 (𝑠) for 𝑠 ∈ [−1, 1] a.e.

Similarly, NDDEs I and II are equivalent up to a phase difference 𝑇 . As shown in sections 3.2.1

and 3.2.1, the solution to NDDE I is unique with respect to initial conditions (given 𝑓0(−1) = 0

as in (3.9)). Similarly, using the method of steps, one can show that NDDE II produces a unique

solution with respect to initial conditions (given 𝑓0(−1) = 0). Therefore, the solutions 𝑓 ′(𝑠)

for 𝑠 ∈ [−1, 𝑇 + 1] and 𝑓 ′(𝑠) for 𝑠 ∈ [𝑇 − 1, 2𝑇 + 1], must be equal, that is 𝑓 ′(𝑇 + 𝑠) = 𝑓 ′(𝑠),

𝑠 ∈ [−1, 𝑇 + 1] a.e. and, by induction, we can show the relationship holds for the extensions of 𝑓 ′ in

𝑠 > 2𝑇 + 1: 𝑓 ′(𝑛𝑇 + 𝑠) = 𝑓 ′((𝑛 − 1)𝑇 + 𝑠), 𝑠 ∈ [−1, 𝑇 + 1] a.e., 𝑛 = 2, 3, . . . ,∞ which also means

that 𝑓 ′ is periodic: 𝑓 ′(𝑇 + 𝑠) = 𝑓 ′(𝑠), 𝑠 ∈ [−1,∞) a.e.

Finally, to show that statement (3.30) leads to �̄�(𝑥, 𝑡) 𝑇-periodic, we integrate (3.30) to obtain

𝑓0(𝑠) = 𝑓 (𝑠 + 𝑇) − 𝑓 (𝑇 − 1) ∀𝑠 ∈ [−1, 1] (A.17)

which, in turn, admits the identities �̄�(𝑥, 𝑇) = 𝑓 (𝑇 + 𝑥) − 𝑓 (𝑇 − 𝑥) = 𝑓0(𝑥) − 𝑓0(−𝑥) = �̄�(𝑥, 0),

∀𝑥 ∈ [0, 1] and 𝜕𝑡 �̄�(𝑥, 𝑇) = 𝑓 ′(𝑇 + 𝑥) − 𝑓 ′(𝑇 − 𝑥) = 𝑓 ′0 (𝑥) − 𝑓
′
0 (−𝑥) = 𝜕𝑡 �̄�(𝑥, 0), 𝑥 ∈ [0, 1] a.e..

Through uniqueness [73], conditions (3.30) implies a 𝑇-periodic motion of the bar in dimensionless

time. □

A.4 Proof of Proposition 3.5

Proof. The proof consists of őrst converting the initial conditions of NSM1 motions on rational

periods into the formulation of initial conditions presented in Equation (3.67). Following this

conversion, it will be shown that NSM1 motions on rational periods belong to NSM3 motions with c

abiding Equation (3.92) and 𝜂(𝑠) = 𝑚𝑠 as stated in Proposition 3.5. Second, it will be shown that 𝑐𝑖

deőned in Equation (3.92) are solutions of Equations (3.87) to (3.89) since they are produced from

a NSM of the bar: NSM1 (all NSMs of the bar must answer the CPS conditions). Thus, instead of

solving CPS in Equations (3.87) to (3.89) for a particular solution c, the solution c is derived from

the known NSM1 which already answers the CPS conditions.

First, it is desired to convert NSM1 motions to NSM3 motions on rational periods. Thus, the
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rational period 𝑇 = 𝑛/𝑚 is plugged into the initial conditions for NSM1 from Equation (3.47) to

derive the initial conditions of NSM1 for rational periods

𝑓0,NSM1(𝑠) ≡
𝑔0𝑚

2𝑛 − 6𝑚



𝑠 + 1 𝑠 ∈ [−1, 𝑛/𝑚 − 3]

2𝑛/𝑚 − 5 − 𝑠 𝑠 ∈ [𝑛/𝑚 − 3, 1]
(A.18)

where 𝑓0,NSM1(𝑠) is used to simplify upcoming notation. Next, to convert 𝑓0,NSM1 to initial conditions

of NSM3 (Equation (3.67)), the function 𝜂(𝑠) must be linear to result in a piecewise linear function

like described in Equation (A.18). Therefore, 𝜂(𝑠) = 𝑚𝑠 is imposed since it is the only linear

function that satisőes the conditions on 𝜂(𝑠) (3.80). Consequentially, the initial conditions for

NSM3 (3.67) for 𝜂(𝑠) = 𝑚𝑠 are denoted 𝑓0,NSM3(𝑠, c)

𝑓0,NSM3(𝑠, c) ≡




𝑚𝑐0(𝑠 + 1) 𝑠 ∈ [−1,−1 + 1/𝑚]

𝑐0 + 𝑚𝑐1(𝑠 + 1 − 1/𝑚) 𝑠 ∈ [−1 + 1/𝑚,−1 + 2/𝑚]
...∑2𝑚−2
𝑖=0 𝑐𝑖 + 𝑚𝑐2𝑚−1(𝑠 − 1 − 1/𝑚) 𝑠 ∈ [−1 + (2𝑚 − 1)/𝑚, 1]

(A.19)

In order to convert 𝑓0,NSM1(𝑠) to 𝑓0,NSM3(𝑠, c), the quantity c such that 𝑓0,NSM3(𝑠, c) = 𝑓0,NSM1(𝑠)

must be determined.

To simplify the derivation of the value c from 𝑓0,NSM3(𝑠, c) = 𝑓0,NSM1(𝑠), it can be shown

that 𝑓 ′0,NSM3(𝑠, c) = 𝑓 ′0,NSM1(𝑠) ⇒ 𝑓0,NSM3(𝑠, c) = 𝑓0,NSM1(𝑠). To prove the last statement, it is

noted that both 𝑓0,NSM3(𝑠, c) and 𝑓0,NSM1(𝑠) functions are assumed to be continuous, piecewise

differentiable, and integrable with 𝑓0,NSM3(−1, c) = 𝑓0,NSM1(−1) = 0, 𝑓0,NSM3(𝑠, c) = 𝑓0,NSM1(𝑠).

Thus, the following procedure is valid

𝑓 ′0,NSM3(𝑠) = 𝑓 ′0,NSM1(𝑠) ∀𝑠 ∈ (−1, 1) a.e. (A.20)∫ 𝑠

−1
𝑓 ′0,NSM3(𝜇) d𝜇 =

∫ 𝑠

−1
𝑓 ′0,NSM1(𝜇) d𝜇 ∀𝑠 ∈ [−1, 1] (A.21)

𝑓0,NSM3(𝑠) + 𝑓0,NSM3(−1) = 𝑓0,NSM1(𝑠) + 𝑓0,NSM1(−1) ∀𝑠 ∈ [−1, 1] (A.22)

𝑓0,NSM3(𝑠) = 𝑓0,NSM1(𝑠) ∀𝑠 ∈ [−1, 1] (A.23)

Hence, the coefficients 𝑐𝑖 which satisfy 𝑓 ′0,NSM3(𝑠, c) = 𝑓 ′0,NSM1(𝑠) also satisfy 𝑓0,NSM3(𝑠, c) =

𝑓0,NSM1(𝑠).

To obtain the functions 𝑓 ′0,NSM3(𝑠, c) and 𝑓 ′0,NSM1(𝑠), Equations (A.18) and (A.19) are differenti-
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ated

𝑓 ′0,NSM3(𝑠, c) =




𝑚𝑐0 𝑠 ∈ [−1,−1 + 1/𝑚]

𝑚𝑐1 𝑠 ∈ [−1 + 1/𝑚,−1 + 2/𝑚]
...

𝑚𝑐𝑛−2𝑚 𝑠 ∈ [−1 + (𝑛 − 2𝑚)/𝑚,−1 + (𝑛 − 2𝑚 + 1)/𝑚]
...

𝑚𝑐2𝑚−1 𝑠 ∈ [−1 + (2𝑚 − 1)/𝑚, 1]

(A.24)

𝑓 ′0,NSM1(𝑠) =
𝑔0𝑚

2𝑛 − 6𝑚




1 𝑠 ∈ [−1,−1 + (𝑛 − 2𝑚)/𝑚]

−1 𝑠 ∈ [−1 + (𝑛 − 2𝑚)/𝑚, 1]
(A.25)

Here, equating the same components in 𝑓 ′0,NSM3(𝑠, c) = 𝑓 ′0,NSM1(𝑠) admits c as deőned in Equa-

tion (3.92) and the equality 𝑓0,NSM3(𝑠) = 𝑓0,NSM1(𝑠) is obtained. In what follows, the values c that

satisfy Equation (3.92) and 𝑓 ′0,NSM3(𝑠, c
∗) = 𝑓 ′0,NSM1(𝑠) are denoted c∗.

Next, since the 𝑓 ′0,NSM3(𝑠, c
∗) = 𝑓0,𝑁𝑆𝑀1(𝑠) was shown to satisfy the CPS conditions (as

elaborated in Section 3.3.1), the quantity c∗ also satisőes the system of CPS equations and

inequalities (3.87) to (3.89) which ends to proof. □
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Appendix B

Proofs and supplementary material on the

1D-NBM

B.1 Proof of 𝜙′
𝑁
(1) > 0

Lemma B.1. Consider the Lagrangian shape functions 𝜙𝑖 (𝑥) for 𝑖 = 1, 2, . . . , 𝑁 consisting of

uniformly spaced nodes on loci 𝑥𝑖 = 𝑖/𝑁 used in the classical FE treatment of the PDE (4.1). For

these shape functions 𝜙𝑖 (𝑥), the value of 𝜙′
𝑁
(1) depends on the order of shape functions only.

Proof. The proof follows from the construction of shape functions in the FEM. In the classical FEM,

the structure is divided into elements and each element consists of a set of shape functions that are

piecewise Lagrange polynomials. These shape functions are local to the element and their deőnition

depends only on the order of the polynomial chosen for this speciőc element [34]. Thus, the value

𝜙′
𝑁
(1) is dependent only on the order of shape functions used. □

This lemma will be necessary in the generalization of the theorem below to any number of

elements and any order of shape functions.

Theorem B.2. For the classical FE approximation for the PDE (4.1) with Lagrangian shape

functions 𝜙𝑖 (𝑥) 𝑖 = 1, 2, . . . , 𝑁 based on uniformly spaced nodes 𝑥𝑖 = 𝑖/𝑁 , the statement

𝜙′𝑁 (1) > 0 (B.1)

always holds.

Proof. The proof consists of őrst proving Inequality (B.1) for the case of a single element by

inspecting the exact expression of the Lagrangian function. Then, the proof is expanded to any

number of elements and/or shape functions by virtue of Lemma B.1.
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We start by approximating the bar’s displacement using a single element. It follows then that the

parameter 𝑁 (𝑁 ≥ 1) corresponds to the order of the shape function such that

𝜙𝑖 (𝑥) =
∏

0≤𝑚≤𝑁
𝑚≠𝑖

𝑥 − 𝑥𝑚

𝑥𝑖 − 𝑥𝑚
, 𝑥 ∈ [0, 1] . (B.2)

Then, for 𝜙𝑁 (𝑥), we can simplify the expression using 𝑥𝑖 = 𝑖/𝑁 to simplify the denominator

𝜙𝑁 (𝑥) =

𝑁−1∏
𝑚=0

𝑥 − 𝑥𝑚

𝑥𝑁 − 𝑥𝑚
= 𝑁𝑁

𝑁−1∏
𝑚=0

𝑥 − 𝑥𝑚

𝑁 − 𝑚
. (B.3)

Then, we take the derivative of 𝜙𝑁 (𝑥) to obtain

𝜙′𝑁 (𝑥) = 𝑁
𝑁
𝑁−1∑︁
𝑗=0

1

𝑁 − 𝑗

∏
0≤𝑚≤𝑁−1

𝑚≠ 𝑗

𝑥 − 𝑥𝑚

𝑁 − 𝑚
. (B.4)

To show 𝜙′
𝑁
(1) > 0, we simply evaluate every term in the expression

𝜙′𝑁 (1) = 𝑁
𝑁
𝑁−1∑︁
𝑗=0

1

𝑁 − 𝑗

∏
0≤𝑚≤𝑁−1

𝑚≠ 𝑗

1 − 𝑥𝑚
𝑁 − 𝑚

= 𝑁𝑁
𝑁−1∑︁
𝑗=0

1

𝑁 − 𝑗

∏
0≤𝑚≤𝑁−1

𝑚≠ 𝑗

1

𝑁

𝑁 − 𝑚

𝑁 − 𝑚

=

( 𝑁𝑁

𝑁𝑁−1

) 𝑁−1∑︁
𝑗=0

1

𝑁 − 𝑗
= 𝑁

𝑁−1∑︁
𝑗=1

1

𝑁 − 𝑗
= 𝑁

𝑁∑︁
𝑗=1

1

𝑗
.

(B.5)

We note that all the quantities presented here are exclusively positive and that their sum and product

will also be positive such that 𝜙′
𝑁
(1) > 0 holds. By virtue of Lemma B.1, we may conclude that if

𝜙′
𝑁
(1) > 0 holds for a single element, it will hold for any number of elements as well. □

B.2 Neumann conditions in NBM and classical FEM

This section compares the treatment of Neumann conditions in NBM and FEM in order to emphasize

the novelty in the NBM. For sake of simplicity, the NBM and classical FEM are both applied on the

cantilever bar PDE (4.1), boundary condition (4.2) and

𝜕𝑥𝑢(1, 𝑡) = 0, (B.6)

for a constant cross-section area 𝐴(𝑥) = 1. The discussion also applies for the case of varying area.

Both classical FEM and NBM are derived from the weak formulation:

∀𝑤(𝑥),

∫ 1

0
𝑤(𝑥)𝜕𝑡𝑡𝑢(𝑥, 𝑡)d𝑥 +

∫ 1

0
𝜕𝑥𝑤(𝑥)𝜕𝑥𝑢(𝑥, 𝑡)d𝑥 − 𝑤(1)𝜕𝑥𝑢(1, 𝑡) = 0. (B.7)

Both methodologies are derived using the same set of Lagrangian shape functions and nodal

quantities deőned in Equation (4.8).
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B.2.1 Classical FEM

The set of Lagrangian functions is used both to approximate the nodal displacements and test

functions as

𝑢(𝑥, 𝑡) ≈ P(𝑥)u(𝑡), 𝑤(𝑥) ≈ P(𝑥)w. (B.8)

Plugging Equation (B.8) into Equation (B.7) results in

w⊤M¥u(𝑡) + w⊤Ku(𝑡) − 𝑤𝑁𝜕𝑥𝑢(1, 𝑡) = 0. (B.9)

In Equation (B.9), it is assumed that the homogeneous Dirichlet condition at 𝑥 = 0 has been treated

by omitting 𝑢0 and 𝑤0. In turn, the enforcement of Equation (B.6) results in the elimination of the

last term in Equation (B.9). Followed by the generalization to any w yields:

w⊤M¥u(𝑡) + w⊤Ku(𝑡) − 𝑤𝑁✘✘
✘
✘✘𝜕𝑥𝑢(1, 𝑡) = 0, (B.10)

w⊤M¥u(𝑡) + w⊤Ku(𝑡) = 0, ∀w, (B.11)

M¥u(𝑡) +Ku(𝑡) = 0. (B.12)

It should be notet that the elimination of the last term in (B.10) leads to a weak enforcement

only of the homogeneous Neumann condition since 𝜕𝑥𝑢(1, 𝑡) ≈ P′(1)u(𝑡) ≡ 𝜎FEM
𝑛 (u(𝑡)) does not

necessarily vanish, as speciőed in the strong formulation. However, it is generally understood that

𝜎FEM
𝑛 (u(𝑡)) → 0 as the number of nodes or order of shape function increases.

B.2.2 NBM treatment of the weak formulation

In the NBM treatment, a set of shape functions is built such that the Neumann conditions are

enforced in a strong manner. To this end, the FEM approximation of 𝜕𝑥𝑢(1, 𝑡) is restricted to

satisfy Equation (B.6) in the following manner:

𝜕𝑥𝑢(1, 𝑡) ≈ P′(1)u(𝑡) = 0, ∀𝑡. (B.13)

This restriction is implemented by isolating the last nodal displacement in Equation (B.13) such that

the term 𝑢𝑁 (𝑡) reads

𝑢𝑁 (𝑡) = 𝑆(u
𝑜 (𝑡)) (B.14)

where 𝑆(u𝑜 (𝑡)) is recalled from Equation (4.33). Plugging Equation (B.14) into the original

approximation of 𝑢(𝑥, 𝑡) leads to

𝑢(𝑥, 𝑡) ≈ P(𝑥)A𝑁u𝑜 (𝑡) ≡ 𝑢NBM(𝑥, 𝑡) (B.15)

where A𝑁 is recalled from Equation (4.34). The approximation in Equation (B.15) satiőes

𝜕𝑥𝑢
NBM(1, 𝑡) = 0 which implies that the Neumann condition is enforced strongly. Application of
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the Galerkin-Bubnov method [44, 79] on Equation (B.15) requires that the test function 𝑤(𝑥) is

approximated using the same set of shape functions, ie

𝑤(𝑥) = P(𝑥)A𝑁w𝑜 . (B.16)

In Equations (B.15) and (B.16), it is assumed that the homogeneous Dirichlet condition on 𝑥 = 0 has

been treated by omitting 𝑢0 and 𝑤0. Plugging Equation (B.15) into Equation (B.7) and generalizing

for any w𝑜 implies

M𝑁 ¥u𝑜 (𝑡) +K𝑁u(𝑡) = 0 (B.17)

which, for any initial conditions, admits an approximation that satisőes the Neumann condition (B.6)

strongly.

By enforcing strongly the contact condition for active and inactive contact phases, the NBM

admits two distinct system of ODEs in terms of the internal displacements u𝑜. This allows for

simple implementation of the switching method as the same nodal quantities are involved in both

systems, as shown in Section 4.3.4.

B.3 Proof of invertible M𝑁 and M𝐷

Theorem B.3. The matrices M𝑁 and M𝐷 defined in Equation (4.40) and Equation (4.48), respectively,

are non-singular.

Proof. The proof is established by showing that M𝑁 and M𝐷 by showing that they are positive-deőnite

(and thus do not exhibit zero eigenvalues), such that for any y ≠ 0 (y ∈ R𝑁−1)

y⊤M𝑁y > 0 (B.18)

y⊤M𝐷y > 0. (B.19)

To prove that M𝑁 and M𝐷 are positive-deőnite, it is őrst noted that the mass matrix M is

positive-deőnite. To demonstrate that M is positive-deőnite, the product z⊤Mz (R𝑁 ∋ z ≠ 0) is őrst

put in terms of the Lagrangian functions composing it

z⊤Mz =

∫ 1

0
y⊤P(𝑥)⊤P(𝑥)yd𝑥 =

∫ 1

0
(yP(𝑥))⊤(P(𝑥)z)d𝑥 =

∫ 1

0
| |P(𝑥)z| |22d𝑥. (B.20)

From Equation (B.20), it can be shown that M is positive deőnite if P(𝑥)z ≠ 0 for any z ≠ 0. Since

Lagrangian functions are used in P(𝑥), z can be seen as standing for nodal values. Also, it is known

that if any of the nodal values is non-zero, the value of the function P(𝑥)z must be non-zero at least

for a single element. Thus, for any vector z ≠ 0, P(𝑥)z ≠ 0 for 𝑥 ∈ [0, 1] holds and the mass matrix

is positive-deőnite by virtue of (B.20).
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Next, from Equation (4.40) and Equation (4.48), M𝑁 and M𝐷 can be written in terms of M

y⊤M𝑁y = (A𝑁y)⊤MA𝑁y (B.21)

y⊤M𝐷y = (A𝐷y)⊤MA𝐷y. (B.22)

Thus, to show that inequalities (B.19) and (B.18) hold, it is required to show that A𝑁y ≠ 0

and A𝐷y ≠ 0 for y ≠ 0. Then, the positive-deőniteness of M𝑁 and M𝐷 follows from M being

positive-deőnite (which was already shown in expression (B.20)).

It is noted that for A𝐷y ≠ 0 and A𝑁y ≠ 0 for any y ≠ 0 to hold, A𝐷 and A𝑁 must consist of

linearly independent columns (A𝐷 and A𝑁 must be full-rank). The columns of these matrices are

revealed from expressions (4.34) and (4.46) as follows

A𝑁
=


e𝑁−1

1 e𝑁−1
2 . . . e𝑁−1

𝑁−1

−
𝜙′1(1)

𝜙′
𝑁
(1)

−
𝜙′2(1)

𝜙′
𝑁
(1)

. . . −
𝜙′
𝑁−1(1)

𝜙′
𝑁
(1)


(B.23)

A𝐷
=

[
e𝑁−1

1 e𝑁−1
2 . . . e𝑁−1

𝑁−1

0 0 . . . 0

]
=

[
e𝑁1 e𝑁2 . . . e𝑁

𝑁−1

]
(B.24)

where e𝑁−1
𝑖
∈ R𝑁−1 are the standard basis vectors in 𝑁 − 1 space. From Equation (B.23) and

Equation (B.24), it can be noted that the őrst 𝑁 − 1 rows of either A𝑁 or A𝐷 consists of all standard

basis vectors in 𝑁 − 1. These standard basis vectors remain linearly independent regardless of any

values on the last row. Thus, A𝑁 and A𝐷 are full-rank due to the linear independence of the standard

basis columns composing them. At last, since A𝑁 and A𝐷 are full-rank and M is positive deőnite,

y⊤M𝐷y = (A𝐷y)⊤MA𝐷y > 0 (B.25)

y⊤M𝑁y = (A𝑁y)⊤MA𝑁y > 0. (B.26)

for any y ≠ 0, and both M𝐷 and M𝑁 are positive-deőnite and non-singular.

□

B.4 Uniqueness of non-grazing solutions to NBM-ODE

In order to prove the uniqueness of the NBM-ODE non-grazing solutions, a formal deőnition of

non-grazing solutions in NBM is őrst established.

Definition B.4 (non-grazing NBM motion). A motion u𝑜 (𝑡) that is solution of Equation (4.54) is said

to be non-grazing if for every switch instant 𝑡𝑠 : 𝑆(u𝑜 (𝑡𝑠) = 𝑔0 it is always true that 𝑆( ¤u𝑜 (𝑡𝑠)) ≠ 0.

In laymen terms, at any switching instant, the value of 𝑆( ¤u𝑜 (𝑡𝑠)) represents the velocity before

the beginning of the active contact phase (see Equation (4.57)) or the derivative of the stress function
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before the beginning of the inactive contact phase (see Equation (4.58)). Next, the theorem of

uniqueness for such non-grazing solutions is stated below with a proof.

Theorem B.5 (Uniqueness of non-grazing NBM motions solutions to the NBM-ODE). Consider

the NBM-ODE defined in Equation (4.54) with initial conditions u𝑜 (0) = u𝑜0 and ¤u𝑜 (0) = v𝑜0 which

pertain non-grazing NBM motions. If the NBM-ODE generates a non-grazing NBM motion, it is

unique with respect to initial conditions.

Proof. The proof follows from the uniqueness of solutions to both components of Equation (4.54). It

starts by noting that the initial conditions are non-grazing and therefore if 𝑆(u𝑜0) = 𝑔0 then 𝑆(v𝑜0) ≠ 0

and the structure’s contact phase is determined by the NBM inactive or active contact conditions

(4.52) or (4.51), respectively. Next, it is assumed that the initial conditions answer the inactive

contact NBM conditions stated in Equation (4.52). Nevertheless, the proof can be formulated in a

similar fashion with initial conditions answering active contact NBM conditions (4.51).

Case 1: Inactive contact motion For the duration of inactive contact, the NBM-ODE is:

¥u𝑜 (𝑡) = −M−1
𝑁 K𝑁u𝑜 (𝑡), u𝑜 (0) = u𝑜0 and ¤u𝑜 (0) = v𝑜0 (B.27)

This system is well-posed as it consists of a linear ODE. Regarding the possible outcomes

for the solution, there exist two possibilities: either (1) a switching moment occurs such that

𝑆(u𝑜 (𝑡)) = 𝑔0 for some 𝑡 > 0 or (2) 𝑆(u𝑜 (𝑡)) < 𝑔0 for 𝑡 ∈ [0,∞) at which case the solution is

unique by well-posedness. For case (1), the time of switch is 𝑡𝑠 and the solution to

¥u𝑜 (𝑡) = −M−1
𝑁 K𝑁u𝑜 (𝑡), u𝑜 (0) = u𝑜0 and ¤u𝑜 (0) = v𝑜0 ∀𝑡 ∈ [0, 𝑡𝑠) (B.28)

is a unique, continuous and differentiable motion u𝑜 (𝑡) for 𝑡 ∈ [0, 𝑡𝑠). Since the solution is

differentiable for 𝑡 ∈ (0, 𝑡𝑠) and starts with 𝑆(u𝑜0) < 𝑔0 (or with 𝑆(u𝑜0) = 𝑔0 and 𝑆(v𝑜0) < 0),

the velocity a 𝑡𝑠 must abide 𝑆( ¤u𝑜 (𝑡𝑠)) ≥ 0. Furthermore, since non-grazing NBM motions are

considered, it is assumed that 𝑆( ¤u𝑜 (𝑡𝑠)) > 0 occurs at the moment of switch. Then, for 𝑡 > 𝑡𝑠,

the active contact NBM motion (4.51) takes effect. This is described in Case 2 below. Here,

the initial displacement and velocity should be assigned with the displacement and velocity at

the moment of switch: u𝑜0 ← u𝑜 (𝑡𝑠) and v𝑜0 ← ¤u
𝑜 (𝑡𝑠).

Case 2: Active contact motion For the duration of active contact, the NBM-ODE is:

¥u𝑜 (𝑡) = −M−1
𝐷 (K𝐷u𝑜 (𝑡) + f𝐷), u𝑜 (0) = u𝑜0 and ¤u𝑜 (0) = v𝑜0 (B.29)

This system is well-posed as a linear ODE. Regarding the possible routes for the solution of

the NBM-ODE, there exist two possibilities: either (1) a switching moment occurs such that

𝑆(u𝑜 (𝑡)) = 𝑔0 for some 𝑡 > 0 or (2) 𝑆(u𝑜 (𝑡)) > 𝑔0 for 𝑡 ∈ [0,∞] in which case the solution is

unique by well-posedness. For (1), we denote the moment of switch 𝑡𝑠 and the solution to

¥u𝑜 (𝑡) = −M−1
𝐷 (K𝐷u𝑜 (𝑡) + f𝐷), u𝑜 (0) = u𝑜0 and ¤u𝑜 (0) = v𝑜0, ∀𝑡 ∈ [0, 𝑡𝑠) (B.30)
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is a unique, continuous and differentiable motion u𝑜 (𝑡) for 𝑡 ∈ [0, 𝑡𝑠). Since the solution

is differentiable for 𝑡 ∈ (0, 𝑡𝑠) and 𝑆(u𝑜 (𝑡𝑠)) > 𝑔0 (or with 𝑆(u𝑜0) = 𝑔0 and 𝑆(v𝑜0) > 0),

the velocity at 𝑡𝑠 must abide 𝑆( ¤u𝑜 (𝑡𝑠)) ≤ 0. Furthermore, since non-grazing motions are

discussed, it is assumed that 𝑆( ¤u𝑜 (𝑡1)) < 0 occurs at the moment of switch. Then, for 𝑡 > 𝑡𝑠,

the inactive contact NBM motion (4.52) takes effect. This is described in Case 1 above. Here,

the initial displacement and velocity should be assigned with the displacement and velocity at

the moment of switch: u𝑜0 ← u𝑜 (𝑡𝑠) and v𝑜0 ← ¤u
𝑜 (𝑡𝑠).

From Cases 1 and 2, it is noted that the motion is composed of unique solutions to the inactive and

active contact conditions with respect to their initial or switching conditions. Thus, starting from an

initial condition, the sequence of inactive and active motions is unique for non-grazing motions. □

For grazing motions, the NBM-ODE is ill-posed and deőnitions (4.52) and (4.51) must be

extended to include the case 𝑆( ¤u𝑜 (𝑡𝑠)) = 0. This requires inspection of the acceleration term (similar

to Newton’s impact law with 𝑒 = 0). However, since grazing motions are not considered in this

thesis, this extension is avoided for sake of conciseness.

B.5 Semismooth-Newton and Crank-Nicolson schemes in NBM

To őnd u∗ ≡ u𝑜
𝑖+1 and v∗ ≡ v𝑜

𝑖+1 such that Equation (4.66) and Equation (4.67) are answered, the

following problem is solved

F(u∗, v∗) ≡

(
F1(u

∗, v∗)

F2(u
∗, v∗)

)
≡

©«
−u∗ + u𝑜

𝑖
+
Δ𝑡

2
(v∗ + v𝑜

𝑖
)

−v∗ + v𝑜
𝑖
+
Δ𝑡

2
(a(u∗, v∗) + a(u𝑜

𝑖
, v𝑜
𝑖
))

ª®®¬
= 0 (B.31)

where F1(u
∗, v∗) and F2(u

∗, v∗) were introduced to simplify the notation in the upcoming derivations

of the semismooth-Newton solver. Next, we recall from Equation (4.68) the deőnition of the

acceleration for a given displacement and velocity pair (u∗, v∗)

a(u∗, v∗) =



−(M𝐷)

−1(K𝐷u∗ + f𝐷) 𝑆(u∗) > 𝑔0 or 𝑆(u∗) = 𝑔0, 𝑆(v
∗) > 0

−(M𝑁 )
−1(K𝑁u∗) 𝑆(u∗) < 𝑔0 or 𝑆(u∗) = 𝑔0, 𝑆(v

∗) < 0.
(B.32)

In the Newton-Raphson method, the root of F(u∗, v∗) is found via the iterative scheme:

q 𝑗+1 = q 𝑗 − J−1(q 𝑗 )F(q 𝑗 ), q 𝑗 =

(
u∗𝑗

v∗𝑗

)
. (B.33)

where q 𝑗 is introduced to simplify upcoming notation and J(u∗, v∗) denotes the Jacobian of F(u∗, v∗)

J(u∗, v∗) =

[
𝜕u∗F1(u

∗, v∗) 𝜕v∗F1(u
∗, v∗)

𝜕u∗𝜕F2(u
∗, v∗) 𝜕v∗F2(u

∗, v∗)

]
. (B.34)
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In what follows, each of the components in J(u∗, v∗) will be identiőed. First, determination of the

derivatives of F1(u
∗, v∗) is a trivial matter

𝜕u∗F1(u
∗, v∗) = −I, 𝜕v∗F1(u

∗, v∗) =
Δ𝑡

2
I. (B.35)

Then, the derivatives of F2(u
∗, v∗) read

𝜕u∗F2(u
∗, v∗) =

Δ𝑡

2
𝜕u∗a(u

∗, v∗), 𝜕v∗F2(u
∗, v∗) = −I +

Δ𝑡

2
𝜕v∗a(u

∗, v∗) (B.36)

and require more attention due to the derivative of the nonsmooth acceleration term a(u∗, v∗). Here,

the semismooth-Newton approach is introduced. Newton-Raphson methods require that the Jacobian

be deőned everywhere near the root. However, due to the existence of the nonsmooth term a(u∗, v∗),

the existence of the Jacobian cannot be always guaranteed. Thus, the semismooth-Newton method

allows usage of the derivatives of a(u∗, v∗) locally, assuming that the current guess is situated away

from any discontinuities [27]. As such, the derivatives of a(u∗, v∗) are obtained by differentiating

Equation (4.54) (and plugging the deőnitions of NBM Inactive and Active contact in Equation (4.52)

and Equation (4.51))

𝜕u∗a(u
∗, v∗) =



−(M𝐷)

−1K𝐷 𝑆(u∗) > 𝑔0 or 𝑆(u∗) = 𝑔0, 𝑆(v
∗) > 0

−(M𝑁 )
−1K𝑁 𝑆(u∗) < 𝑔0 or 𝑆(u∗) = 𝑔0, 𝑆(v

∗) < 0
(B.37)

𝜕v∗a(u
∗, v∗) = 0. (B.38)

Then, plugging Equations (B.35) to (B.38) into the Equation (B.34), the local-Jacobian is obtained

J(u∗, v∗) =

[
−I Δ𝑡

2 I

−Δ𝑡
2 (M𝑁 )

−1K𝑁 −I

]
if 𝑆(u∗) > 𝑔0 or 𝑆(u∗) = 𝑔0, 𝑆(v

∗) > 0 (B.39)

and

J(u∗, v∗) =

[
−I Δ𝑡

2 I

−Δ𝑡
2 (M𝐷)

−1K𝐷 −I

]
if 𝑆(u∗) < 𝑔0 or 𝑆(u∗) = 𝑔0, 𝑆(v

∗) < 0. (B.40)

We note during the process of nonsmooth modal analysis, the speciőc state 𝑆(u∗) = 𝑔0 with

𝑆(v∗) = 0 is rarely reached and the deőnition of the Jacobian above is rarely an issue. However, it is

possible that for large time steps, the semismooth-Newton method does not őnd a solution (or, in

fact, a solution does not exist). In such cases, the time step Δ𝑡 is reduced to a őnite threshold in

order to determine whether a grazing solution is reached (a grazing solution exhibits 𝑆(u∗) = 𝑔0

with 𝑆(v∗) = 0). If a grazing solution is reached, the motion is rejected. Nevertheless, it is conjured

that for a small enough Δ𝑡, the method converges if the initial conditions generate a non-grazing

motion. However, a proof for the convergence of the semismooth-Newton procedure for non-grazing

motions is not provided in this manuscript.
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B.6 Proofs related to energy behaviour in NBM

B.6.1 Conservation of energy away from instants of switch

In order to answer item 1 in Section 4.3.5, we introduce two lemmas on the energy conservation

during active and inactive contact motions, away from a switch (𝑡𝑠 such that 𝑆(u𝑜 (𝑡𝑠)) = 𝑔0).

Lemma B.6. For the FEM-NBM ODE (4.40) developed for a cantilever bar in inactive contact

conditions, the energy (involving boundary nodes and non reduced matrices) term

2𝐸 (𝑡) = ¥u⊤(𝑡)M¥u(𝑡) + u⊤(𝑡)Ku(𝑡) (B.41)

is conserved, that is ¤𝐸 (𝑡) = 0 for 𝑆(u𝑜 (𝑡)) < 𝑔0.

Proof. This lemma is proven by developing the term ¤𝐸 from Equation (B.41) and plugging the

solution of Equation (4.40).

First, we differentiate equation (B.41) with respect to 𝑡, and for symmetric M and K (as they are

in the given in the FE formulation [34]) we obtain

2 ¤𝐸 (𝑡) = ¥u⊤(𝑡) (M ¥u(𝑡) +Ku(𝑡)). (B.42)

Next, we note that for inactive contact 𝑆(u𝑜 (𝑡)) < 𝑔0, the NBM formulation of 𝑢𝑁 in (4.33) admits

¤𝑢𝑁 = 𝑆( ¤u𝑜 (𝑡)). Under this restriction, the relationship between ¤u(𝑡) and ¤u𝑜 (𝑡) can be described

via ¤u(𝑡) = A𝑁 ¤u𝑜 (𝑡). Next, substitution of the previous identity into expression (B.42) admits
¤𝐸 (𝑡) = ¤u𝑜⊤(𝑡) (M𝑁 ¥u

𝑜 (𝑡) +K𝑁u𝑜 (𝑡)) = 0, for 𝑆(u𝑜 (𝑡)) < 𝑔0 where the last equality completes this

proof by virtue of (4.40). □

Lemma B.7. For the FEM-NBM ODE (4.49) developed for a cantilever bar with non-homogeneous

Dirichlet conditions, the energy metric (B.41) (similar to the energy metric used in lemma B.6) is

conserved, that is ¤𝐸 (𝑡) = 0 for 𝑆(u𝑜 (𝑡)) > 𝑔0.

Proof. This theorem is proven by developing the term ¤𝐸 (𝑡) from equation (B.41) and plugging the

solution of equation (4.49). We note that application of (4.41) implies that

¤𝑢𝑁 (𝑡) = 0. (B.43)

We can conclude that u(𝑡) belongs to the same space as w in (4.45), ie

¤u(𝑡) = A𝐷 ¤u𝑜 (𝑡). (B.44)

Thus, we plug-in the identities (4.45) and (B.44) into (B.42) such that ¤𝐸 (𝑡) = ¤u𝑜⊤(𝑡) (M𝐷 ¥u
𝑜 (𝑡) +

K𝐷u𝑜 (𝑡) + 𝑔0f𝐷) = 0, for 𝑆(u𝑜 (𝑡)) > 𝑔0 where the last equality is obtained by virtue of (4.49). □
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B.6.2 Derivation of energy jump at switch

In this section, the jump in energy in NBM solutions (see item 2 in Section 4.3.5), Δ𝐸 , is developed

mathematically to obtain the relation in Equation (4.60). This jump in energy occurs upon switching

between active to inactive contact.

In what follows, the energy jump is derived for the case opening contact (transition from active

to inactive contact) and is denoted Δ𝐸𝐴/𝐼 . This derivation procedure can be then replicated for the

case of closing contact (transition from inactive to active contact) denoted Δ𝐸𝐼/𝐴. In this paper, the

term Δ𝐸𝐼/𝐴 is presented but not its derivation. Finally, the general term Δ𝐸 describing the energy

jump between active and inactive contact (regardless of the order of contact phases) is derived from

both Δ𝐸𝐴/𝐼 and Δ𝐸𝐼/𝐴.

To develop the term Δ𝐸𝐴/𝐼 , we őrst denote 𝑡𝑠 as the time of switch at opening contact. At

opening contact, the stress at the contacting end of the bar, 𝜎ℎ𝑛 (u(𝑡𝑠)), is zero

𝜎ℎ𝑛 (u(𝑡𝑠)) = 𝐴(1)𝜙
′
𝑁 (1) (𝑔0 − 𝑆(u

𝑜 (𝑡𝑠))) = 0. (B.45)

Furthermore, the following statements hold

1. The bar is in contact with the wall during the moment of switch (see Equation (4.56))

𝑢𝑁 (𝑡𝑠) = 𝑔0. (B.46)

2. The velocity of the contact node during active contact (just before the switch) is zero (see

Equation (4.57))

¤𝑢𝑁 (𝑡
−
𝑠 ) = 0. (B.47)

3. The derivative of the stress function at the tip of the bar is positive

¤𝜎ℎ𝑛 (u(𝑡
−
𝑠 )) = 𝐴(1)𝜙

′
𝑁 (1) (𝑔0 − 𝑆( ¤u

𝑜 (𝑡𝑠)) > 0. (B.48)

since the stress before the switch must be strictly negative during active contact (by Equa-

tion (4.58) and assuming non-grazing motion), zero at the switch (see Equation (B.45)), and

𝜎ℎ𝑛 (u(𝑡)) is continuous at all times (see Section 4.3.4). From Equation (B.48) we can also

deduce that

𝑆( ¤u𝑜 (𝑡𝑠)) < 0 (B.49)

since 𝐴(1) > 0 by deőnition, and 𝜙′
𝑁
(1) > 0 holds as proven in Appendix B.1.

4. After the switch, the system is in inactive contact, and the velocity of the contact node is

negative by virtue of Equations (4.57) and (B.49):

¤𝑢𝑁 (𝑡
+
𝑠 ) = 𝑆( ¤u

𝑜 (𝑡𝑠)) < 0. (B.50)

In fact, it is expected that the velocity after the switch is negative as after the transition from
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active to inactive contact, the bar should separate from the wall (for non-grazing motions).

To simplify the notations in the upcoming equations, we present the energy of System (4.59)

using block matrices:

2𝐸 (𝑡) =
[
¤u𝑜 (𝑡)⊤ ¤𝑢𝑁 (𝑡)

] [
M𝑜𝑜 M𝑜𝑁

M⊤
𝑜𝑁

𝑀𝑁𝑁

] [
¤u𝑜 (𝑡𝑠)

¤𝑢𝑁 (𝑡)

]
+

[
u𝑜 (𝑡𝑠)

⊤ 𝑢𝑁 (𝑡)
] [

K𝑜𝑜 K𝑜𝑁

K⊤
𝑜𝑁

𝐾𝑁𝑁

] [
u𝑜 (𝑡𝑠)

𝑢𝑁 (𝑡)

]
.

(B.51)

Then, we can describe the system’s energy just before the moment of switch (during active contact)

by plugging Equations (B.46) and (B.47) into Equation (B.51)

2𝐸 (𝑡−𝑠 ) =
[
¤u𝑜 (𝑡𝑠)

⊤ 0
] [

M𝑜𝑜 M𝑜𝑁

M⊤
𝑜𝑁

𝑀𝑁𝑁

] [
¤u𝑜 (𝑡𝑠)

0

]
+
[
u𝑜 (𝑡𝑠)

⊤ 𝑔0

] [
K𝑜𝑜 K𝑜𝑁

K⊤
𝑜𝑁

𝐾𝑁𝑁

] [
u𝑜 (𝑡𝑠)

𝑔0

]
. (B.52)

Next, the energy of the system at 𝑡+𝑠 , presuming that the bar is in inactive contact motion, is given by

plugging Equations (B.46) and (B.50) into Equation (B.51):

2𝐸 (𝑡+𝑠 ) =
[
¤u𝑜 (𝑡𝑠)

⊤ 𝑆( ¤u𝑜 (𝑡𝑠))
] [

M𝑜𝑜 M𝑜𝑁

M⊤
𝑜𝑁

𝑀𝑁𝑁

] [
¤u𝑜 (𝑡𝑠)

𝑆( ¤u𝑜 (𝑡𝑠))

]
+ . . .

[
u𝑜 (𝑡𝑠)

⊤ 𝑔0

] [
K𝑜𝑜 K𝑜𝑁

K⊤
𝑜𝑁

𝐾𝑁𝑁

] [
u𝑜 (𝑡𝑠)

𝑔0

]
, 𝑆( ¤u𝑜 (𝑡𝑠)) < 0.

(B.53)

Then, the term Δ𝐸𝐴/𝐼 is given as follows (where calculations where omitted for sake of conciseness)

Δ𝐸𝐴/𝐼 = 𝐸 (𝑡
+
𝑠 ) − 𝐸 (𝑡

−
𝑠 ) = 𝑆( ¤u

𝑜 (𝑡𝑠))
[
M⊤𝑜𝑁 ¤u

𝑜 (𝑡𝑠) +
1
2𝑀𝑁𝑁𝑆( ¤u

𝑜 (𝑡𝑠))
]
, 𝑆( ¤u𝑜 (𝑡𝑠)) < 0. (B.54)

Similarly, if we would have started our derivation with the assumption that 𝑡𝑠 denotes a instance

of closing contact, we would őnd that the energy jump satisőes

Δ𝐸𝐼/𝐴 = −𝑆( ¤u𝑜 (𝑡𝑠))
[
M⊤𝑜𝑁 ¤u

𝑜 (𝑡𝑠) +
1
2𝑀𝑁𝑁𝑆( ¤u

𝑜 (𝑡𝑠))
]
, 𝑆( ¤u𝑜 (𝑡𝑠)) > 0. (B.55)

At last, we derive the general term for the energy jump Δ𝐸 by combining Equations (B.54) and (B.55)

Δ𝐸 = −|𝑆( ¤u𝑜 (𝑡𝑠)) |
[
M⊤𝑜𝑁 ¤u

𝑜 (𝑡𝑠) +
1
2𝑀𝑁𝑁𝑆( ¤u

𝑜 (𝑡𝑠))
]
. (B.56)

This term is presented using the elements of M in Equation (4.60).
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Appendix C

Proofs and supplementary material on the

2D-NBM

C.1 NBM approximation of contact forces

In this section, the NBM approximation of the contact forces,

𝝀(u(𝑡)) ≈

∫
ΓC

P(x)⊤𝜎𝑛 (P(x)u(𝑡))ndx (5.20)

is developed in order to deőne 𝝀(u(𝑡)) as a linear operation on u(𝑡). The objective is to determine

N such that

Nu(𝑡) =

∫
ΓC

P(x)⊤𝜎𝑛 (P(x)u(𝑡))ndx. (5.20)

The formulation of N allows then to formulate the Signorini conditions (5.11) as an LCP in u (as

shown in Equation (5.23)) and is therefore crucial for the NBM formulation.

To determine N, the term encapsulated by the function 𝜎𝑛n in Equation (5.20) (the argument

P(x)u(𝑡) is omitted for most of this section for sake of conciseness) is őrst expanded. To do so, it is

őrst recalled the 𝜎𝑛n constitutes the contribution of 𝝈n in the normal direction

𝝈n = 𝜎𝑛n + 𝝈𝜏 . (C.1)

Otherwise put, 𝜎𝑛n constitutes the projection of 𝝈n on the direction n

𝜎𝑛n = projn(𝝈n) = n(n⊤𝝈n) = (nn⊤)𝝈n. (C.2)

Thus, it is only required to evaluate the term 𝝈n in terms of u(𝑡). Since the relationship between

stress and displacement is given using Voigt’s notation (5.8), the term 𝝈n is put in to its Voigt
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notation form:

𝝈n = Ṽn𝝈, Ṽn =

[
𝑛1 0 𝑛2

0 𝑛2 𝑛1

]
(C.3)

where 𝑛1 and 𝑛2 are the components of the normal vector n =

(
𝑛1 𝑛2

)⊤
. Then, substitution of the

FE stress approximation (5.8) into Equation (C.2) and further into Equation (5.20) reads

𝝀 ≈ Nu(𝑡), N =

( ∫
ΓC

P(x)⊤(nn⊤)Ṽ(n)DB(x)dx

)
. (C.4)

C.2 Time-derivative of LC(C, 𝑞(𝑡))

A methodology to deőne the derivative of a time-dependent LCP is given. Consider a continuous

and differentiable vector function q(𝑡) : R→ R𝑁C for an arbitrary integer 𝑁C > 0 and the P-matrix

C such that the function

z(q(𝑡)) = LC(C, q(𝑡)) (C.5)

is well-deőned for any 𝑡. It is also known that the function LC(C, q) is Lipschitz continuous for any

in q [53, p. 592]. Therefore, it can also be deduced that z(q(𝑡)) is Lipschitz continuous as well for

continuous q(𝑡). In what follows, z(q(𝑡)) is referred to as z(𝑡) in short.

We develop a methodology to deőne the derivative of z(𝑡)

¤z(𝑡) =
d

d𝑡
LC(C, q(𝑡)). (C.6)

It is recalled that z(𝑡) satisőes the complementarity condition (5.24) for any 𝑡.

To determine the derivative of z(𝑡), the elements of z(𝑡) are categorized with respect to the

equalities they answer in the complementarity conditions:

1. Type 1 elements are indexed 𝑖 ∈ I1 and exhibit

𝑞𝑖 (𝑡) +

𝑁C∑︁
𝑗=1

𝐶𝑖 𝑗 𝑧 𝑗 (𝑡) = 0, and 𝑧𝑖 (𝑡) > 0. (C.7)

Type 1 elements are collected under z1(𝑡).

2. Type 2 elements are indexed 𝑖 ∈ I2 and exhibit

𝑞𝑖 (𝑡) +

𝑁C∑︁
𝑗=1

𝐶𝑖 𝑗 𝑧 𝑗 (𝑡) > 0, and 𝑧𝑖 (𝑡) = 0. (C.8)

Type 2 elements are collected under z2(𝑡).
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3. Type 3 elements are at a switching instance where both components of the LCP are zero

𝑧𝑖 (𝑡) = 𝑞𝑖 (𝑡) +

𝑁C∑︁
𝑗=1

𝐶𝑖 𝑗 𝑧 𝑗 (𝑡) = 0 (C.9)

and are indexed 𝑖 ∈ I3. Type 3 elements are collected under z3(𝑡). Elements in z3(𝑡)

experience a switch between type 1 and type 2.

In this formulation, z(𝑡) is the union of z𝑖 𝑖 = 1, 2, 3 where for any 𝑡 at least one element types is

present. To clarify, for some instances 𝑡, it is possible to have I1 = I3 = ∅ and z(𝑡) = z2(𝑡).

Although this section deals with the general LCP rather than the Signorini complementarity

conditions, it is useful to present a physical interpretation to the general LCP in terms of the NBM

Signorini conditions (5.23). Hence, type 1 elements correspond to nodes in inactive contact motion,

type 2 elements correspond to nodes in active contact motion and type 3 elements experiences a

switch (ie, contact with the obstacle is made and the NBM stress at the instance of contact is zero).

Also, for non-grazing motions, instances of switch where Equation (C.9) holds are expected to be

instantaneous and not last of continuous interval of times. Thus, in this section, it is assumed that

z3(𝑡) transition between type 1 and type 2 elements and that Equation (C.9) holds for stencil of time

rather than intervals of time.

Here, the derivative of z(𝑡) away from instances of switch (ieI3 = ∅) is derived in Appendix C.2.1.

Next, the behaviour of the ¤z(𝑡) at the moment of switch where I3 ≠ ∅ is described in Appendix C.2.2.

To simplify the derivation of this methodology, block quantities C𝑖 𝑗 and q 𝑗 corresponding to

elements on indices I 𝑗 are introduced and the components of the LCP problem read

z(𝑡) =
©
«
z1(𝑡)

z2(𝑡)

z3(𝑡)

ª®®
¬
, C =


C11 C12 C13

C21 C22 C23

C31 C32 C33


q(𝑡) =

©
«
q1(𝑡)

q2(𝑡)

q3(𝑡)

ª®®
¬
. (C.10)

C.2.1 ¤z(𝑡) away from instant of switch

For LCPs the elements in z(𝑡) are either of type 1 or type 2 and I3 = ∅ since no element of z(𝑡)

experiences a switch. For those instances, the LCP according to notation (C.10) reads[
C11 C12

C21 C22

] (
z1(𝑡)

z2(𝑡)

)
+

(
q1(𝑡)

q2(𝑡)

)
⊥

(
z1(𝑡)

z2(𝑡)

)
≥

(
0

0

)
. (C.11)

Given the element types 1 and 2, the equalities in Equation (C.7) and Equation (C.8) hold respectively.

This equalities are put in the block form (C.10)

C11z1(𝑡) + C12z2(𝑡) = q1(𝑡) (C.12)

z2(𝑡) = 0 (C.13)
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C.2 Time-derivative of LC(C, 𝑞(𝑡))

from which the solution to the LCP is readily available and reads(
z1(𝑡)

z2(𝑡)

)
=

(
(C11)−1q1(𝑡)

0

)
(C.14)

In turn, the derivative ¤𝑧(𝑡) is obtained by differentiating (C.14) as follows

¤z(q(𝑡), ¤q(𝑡), 𝑡) =
d

d𝑡
LC(C, q(𝑡)) =

(
−(C11)−1 ¤q1(𝑡)

0

)
(C.15)

where C11 is invertible since it is a minor of C which is established to be a 𝑃-matrix.

C.2.2 ¤z(𝑡) at instant of switch

At switching instants, I3 ≠ ∅ holds and elements 𝑖 ∈ I3 answer the condition Equation (C.9).

To simplify further discussion, the instant of switch is denoted 𝑡𝑠. At 𝑡𝑠, ¤𝑧𝑖 (𝑡−𝑠 ) = ¤𝑧𝑖 (𝑡
+
𝑠 ) may

not necessarily hold for all 𝑖 since elements in z3(𝑡) experience a switch between type 1 and type

2. However, it is demonstrated in this section that, for a given state q(𝑡𝑠) and ¤q(𝑡𝑠) (both are

assumed to be continuous quantities in 𝑡), the states ¤𝑧𝑖 (𝑡+𝑠 ) and ¤𝑧𝑖 (𝑡−𝑠 ) can be found by solving an

additional LCP problem in the derivatives. This methodology is developed here. Speciőcally, the

proposed methodology is focused on őnding ¤𝑧𝑖 (𝑡+𝑠 ). Guidelines for determining ¤𝑧𝑖 (𝑡−𝑠 ) follow a

similar procedure which is explained brieŕy at the end of this section.

By deőnition, z1(𝑡𝑠) and z2(𝑡𝑠) and z3(𝑡𝑠) answer respectively Equation (C.7), Equation (C.8)

and Equation (C.9). Here, the items z𝑖 (𝑡) 𝑖 = 1, 2, 3 are isolated from Equation (C.7) to Equation (C.9)

(this procedure is omitted for sake of conciseness) and are represented using the block notation

introduced in Equation (C.10)

z1(𝑡𝑠) = −(C
11)−1(C13z3(𝑡𝑠) + q1(𝑡𝑠)) (C.16)

z2(𝑡𝑠) = 0 (C.17)

z3(𝑡𝑠) = −(C
33)−1(C31z1(𝑡𝑠) + q3(𝑡𝑠)) = 0. (C.18)

With the given the block notation, the derivatives ¤z1(𝑡𝑠) and ¤z2(𝑡𝑠) is őrst established for the

moment of switch. Then, the LCP problem to solve for ¤z3(𝑡𝑠) is formed. It is őrst noted that z1(𝑡)

abides Equation (C.16) for both 𝑡 = 𝑡−𝑠 and 𝑡 = 𝑡+𝑠 . Thus, the derivative of ¤z1(𝑡) takes the form:

¤z1(𝑡+𝑠 ) = −(C
11)−1(C31¤z3(𝑡+𝑠 ) + ¤q

1(𝑡𝑠)). (C.19)

It is noted that the value of ¤z1(𝑡+𝑠 ) is affected by ¤z3(𝑡+𝑠 ). However, the value of ¤z3(𝑡+𝑠 ) is ambiguous,

since z3(𝑡+𝑠 ) may become either a type 1 or a type 2 element. Therefore, ¤z1(𝑡+𝑠 ) = ¤z
1(𝑡−𝑠 ) may not

hold due to the behaviour of ¤z3(𝑡) at 𝑡𝑠. Thus, determination of ¤z1(𝑡+𝑠 ) requires knowledge of ¤z3(𝑡+𝑠 ).

Next, it is noted that z2(𝑡𝑠) is expected to remain constant at 𝑡𝑠 since it does not experience a switch
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by deőnition and

¤z2(𝑡+𝑠 ) = ¤z
2(𝑡−𝑠 ) = 0 (C.20)

holds for the switching instant.

To derive the quantity ¤z3(𝑡+𝑠 ), it is recalled that z3 can become either a type 1 or a type 2 element.

In block form (C.10), this is put as follows

lim
Δ𝑡→0

0 ≤ C31z1(𝑡𝑠 + Δ𝑡) + C33z3(𝑡𝑠 + Δ𝑡) + q3(𝑡𝑠 + Δ𝑡) ⊥ z3(𝑡𝑠 + Δ𝑡) ≥ 0. (C.21)

Then, given (1) Equation (C.21) holds and that z3(𝑡) is (2) Lipschitz continuous and (3) abides (C.9),

the derivative ¤z3(𝑡+𝑠 ) must abide the following restrictions

C31¤z1(𝑡+𝑠 ) + C33¤z3(𝑡+𝑠 ) + ¤q
3(𝑡𝑠) ≥ 0 (C.22)

¤z3(𝑡+𝑠 ) ≥ 0 (C.23)

(¤z3(𝑡+𝑠 )) (C
31¤z1(𝑡+𝑠 ) + C33¤z3(𝑡+𝑠 ) + ¤q

3(𝑡𝑠)) = 0 (C.24)

which form an LCP problem in ¤z3(𝑡+𝑠 )

0 ≤ C31¤z1(𝑡+𝑠 ) + C33¤z3(𝑡+𝑠 ) + ¤q
3(𝑡𝑠) ⊥ ¤z

3(𝑡+𝑠 ) ≥ 0 (C.25)

Plugging Equation (C.19) into Equation (C.25) then admits

0 ≤ −C31(C11)−1(C13¤z3(𝑡+𝑠 ) + ¤q
1(𝑡𝑠)) + C33¤z3(𝑡+𝑠 ) + ¤q

3(𝑡𝑠) ⊥ ¤z
3(𝑡+𝑠 ) ≥ 0 (C.26)

the solution to this LCP is denoted

¤z3(𝑡+𝑠 ) = LC(C̃, 𝑞) (C.27)

C̃ = −C31(C11)−1(C13) + C33, q̃ = −C31(C11)−1 ¤q1(𝑡𝑠) + ¤q
3(𝑡𝑠). (C.28)

Furthermore, the solution (C.27) exists and is unique, since z3(𝑡) is Lipschitz continuous and the

derivatives z3(𝑡+𝑠 ) and z3(𝑡−𝑠 ) exist everywhere. In practice, the solution (C.27) can be found via the

semismooth Newton method. Thus, the term ¤z(𝑡+𝑠 ) is obtained by combining Equation (C.19), Equa-

tion (C.20) and Equation (C.27) as follows

¤z(𝑡+𝑠 ) =
d

d𝑡
LC(C, q(𝑡)) =

©«
−(C11)−1(C31LC(C̃, q̃) + q1(𝑡𝑠))

0

LC(C̃, q̃)

ª®®¬
(C.29)

C̃ = −C31(C11)−1(C13) + C33, q̃ = −C31(C11)−1 ¤q1(𝑡𝑠) + ¤q
3(𝑡𝑠). (C.30)

It is noted that the derivative ¤z3(𝑡−𝑠 ) can be found by looking at the problem in reverse time

𝑡 = −𝑡. In this case, the LCP condition to Equation (C.25) would exhibit sign changes since the

derivative ¤z3 is expected to be negative prior to the switch. However, the result ¤z3(𝑡−𝑠 ) is not relevant
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C.4 Motions of longitudinal NSM

for the derivation NBM and is omitted from this manuscript for sake of conciseness.

C.3 Proof of piecewise-constant energy

The proof for energy conservation in a given conőguration phase is similar to the proof of energy

conservation away from switching instants in Appendix B.6.1. To prove conservation of the

NBM-ODE in a given conőguration phase T (pNBM), the derivative of the energy metric in time

d𝐸/d𝑡 is developed and the energy of NBM-ODE solution is shown to exhibit constant energy for a

given conőguration phase, away from switching instant.

First, let us recall the energy metric

2𝐸 (𝑡) = ¤u(𝑡)⊤M ¤u(𝑡) + u(𝑡)⊤Ku(𝑡). (C.31)

Plugging the NBM approximation of the displacement (5.50) to the energy metric, we obtain

2𝐸 (𝑡) = ¤u𝑜 (𝑡)⊤(A∗)⊤M(A∗) ¤u𝑜 (𝑡) + (A∗u𝑜 (𝑡) + d∗)⊤K(A∗u𝑜 (𝑡) + d∗) (C.32)

for all 𝑡 ∈ T (pNBM). As stated in Section 5.4, for a given conőguration phase, A∗ and d∗ are

constant. Thus, differentiation of Equation (C.32) reads

¤𝐸 (𝑡) = ¤u𝑜 (𝑡)⊤(A∗)⊤M(A∗) ¥u𝑜 (𝑡) + ¤u𝑜 (𝑡)⊤(A∗)⊤K(A∗u𝑜 (𝑡) + d∗) ∀𝑡 ∈ T (pNBM). (C.33)

Then, Equation (C.33) is developed as

¤𝐸 (𝑡) = ¤u𝑜 (𝑡)⊤(A∗)⊤(M(A∗) ¥u𝑜 (𝑡) +K(A∗u𝑜 (𝑡) + d∗)) (C.34)

= ¤u𝑜 (𝑡)⊤(M∗ ¥u𝑜 (𝑡) +K∗u𝑜 (𝑡) + f∗) (C.35)

= 0 ∀𝑡 ∈ T (pNBM) (C.36)

where the last equality is justiőed by Equation (5.56) and concludes the proof for conservation of

energy for NBM motions within a conőguration phase.

Upon change of conőguration, A∗ and d∗ change and may therefore trigger a change in the quantity

𝐸 (𝑡) according to Equation (5.63). Thus, the energy of a motion experiencing different contact

phases is in fact piecewise constant which is also evident in numerical experiments in Sections 5.5

and 5.6.

C.4 Motions of longitudinal NSM

This is section includes őgures of motions within the longitudinal NSM.
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(a) FEP (Figure 5.17) (b) 𝑡 = 0 (c) 𝑡 = 0.16𝑇 (d) 𝑡 = 0.33𝑇

(e) 𝑡 = 0.5𝑇 (f) 𝑡 = 0.66𝑇 (g) 𝑡 = 0.83𝑇 (h) 𝑡 = 𝑇

Figure C.1: Longitudinal NSM solution at 𝜔 ≈ 1.99 and 𝐸 ≈ 1.1 × 10−3 marked in red in Figure C.1(a)
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(a) FEP (Figure 5.17) (b) 𝑡 = 0 (c) 𝑡 = 0.16𝑇 (d) 𝑡 = 0.33𝑇

(e) 𝑡 = 0.5𝑇 (f) 𝑡 = 0.66𝑇 (g) 𝑡 = 0.83𝑇 (h) 𝑡 = 𝑇

Figure C.2: Longitudinal NSM solution at 𝜔 ≈ 2.02 and 𝐸 ≈ 2.1 × 10−3 marked in red in Figure C.2(a)

169



C.5 Motions of transversal NSM
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(a) FEP (Figure 5.17) (b) 𝑡 = 0 (c) 𝑡 = 0.16𝑇 (d) 𝑡 = 0.33𝑇

(e) 𝑡 = 0.5𝑇 (f) 𝑡 = 0.66𝑇 (g) 𝑡 = 0.83𝑇 (h) 𝑡 = 𝑇

Figure C.3: Longitudinal NSM solution at 𝜔 ≈ 2.03 and 𝐸 ≈ 3.2 × 10−3 marked in red in Figure C.3(a)

C.5 Motions of transversal NSM

This is section includes őgures of motions within the transversal NSM.
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(a) FEP (Figure 5.21) (b) 𝑡 = 0 (c) 𝑡 = 0.16𝑇 (d) 𝑡 = 0.33𝑇

(e) 𝑡 = 0.5𝑇 (f) 𝑡 = 0.66𝑇 (g) 𝑡 = 0.83𝑇 (h) 𝑡 = 𝑇

Figure C.4: Transversal NSM solution at 𝜔 ≈ 1.9 and 𝐸 ≈ 1.2 × 10−3 marked in red in Figure C.4(a)
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(a) FEP (Figure 5.21) (b) 𝑡 = 0 (c) 𝑡 = 0.16𝑇 (d) 𝑡 = 0.33𝑇

(e) 𝑡 = 0.5𝑇 (f) 𝑡 = 0.66𝑇 (g) 𝑡 = 0.83𝑇 (h) 𝑡 = 𝑇

Figure C.5: Transversal NSM solution at 𝜔 ≈ 1.92 and 𝐸 ≈ 2.7 × 10−3 marked in red in Figure C.5(a)
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(a) FEP (Figure 5.21) (b) 𝑡 = 0 (c) 𝑡 = 0.16𝑇 (d) 𝑡 = 0.33𝑇

(e) 𝑡 = 0.5𝑇 (f) 𝑡 = 0.66𝑇 (g) 𝑡 = 0.83𝑇 (h) 𝑡 = 𝑇

Figure C.6: Transversal NSM solution at 𝜔 ≈ 1.93 and 𝐸 ≈ 4.7 × 10−3 marked in red in Figure C.6(a)

C.6 Linear modes of the investigated plate

This section includes illustrations of the őrst 20 linear modes of the investigated plate (deőned

in Deőnition 5.5) for purposes of context to linear mode contribution diagrams in Figures 5.16

and 5.20(b). The illustration is provided in Figure C.7.
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C.6 Linear modes of the investigated plate

(a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6 (g) Mode 7 (h) Mode 8

(i) Mode 9 (j) Mode 10 (k) Mode 11 (l) Mode 12

(m) Mode 13 (n) Mode 14 (o) Mode 15 (p) Mode 16

(q) Mode 17 (r) Mode 18 (s) Mode 19 (t) Mode 20

Figure C.7: Linear modes of investigated plate. Red and blue contours represent the negative amplitude of
deformation and positive amplitude of deformation, respectively.
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