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Highlights 

⚫ The applications of regenerated cellulose films and hydrogels in food packaging 

are promising. 

⚫ The mechanical and barrier properties of regenerated cellulose materials can be 

modulated to fulfill different requirements. 

⚫ Regenerated cellulose films and hydrogels provide versatile matrices for active and 

intelligent packaging construction. 

⚫ Regenerated cellulose materials are generally safe but the migration of functional 

fillers should be considered carefully. 

Abstract 

Nowadays, much attention has been paid to combat international plastic pollution. 

Especially, the nondegradable plastic packaging materials have created significant 

disposal and pollution issues threatening human health and development. In addition to 

the promised 100% recyclable packaging, the utilization of biodegradable packaging 

materials can also help address the issue. Cellulose is abundant and renewable, and 

cellulose-based materials have been regarded as an alternative to petroleum-based 

plastic food packaging. With the development of cellulose solvents, various regenerated 

cellulose films and hydrogels have been fabricated for different applications. In this 

review, we summarize the recent progress in the preparation of regenerated cellulose 

films and hydrogels, and highlight their potential applications as biodegradable 

packaging, active packaging, and intelligent packaging. Finally, the biodegradability 

and safety of cellulose-based materials are stated, and future opportunities and 

challenges in this active research area are described.  
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Introduction 

Food packaging waste comprises approximately one-third of all Canadian household 

waste, and only 20% is recovered for reuse and recycling. Among them, synthetic 

plastics suffer from poor biodegradability and limited ways to reuse and recycle, and 

thus cause serious environmental issues. Food packaging developed from natural 

polymers provides an alternative solution and has attracted more and more attention. 

Cellulose is the most abundant renewable and biodegradable polymer on earth, and has 

several advantages such as inexpensiveness, low density, non-toxicity, versatility, and 

superb mechanical properties [1]. Cellulose-based food-packaging materials, for 

example paper and cloth, have been widely utilized. However, with the requirements of 

improved protection of food products, the exploration of novel food packaging with 

multiple functional properties is urgent. The development of various cellulose solvents 

enabled the processing of cellulose into different forms of materials. Especially, after 

dissolution, regenerated cellulose films and hydrogels can be fabricated by modulating 

physical and chemical interactions. They possess three-dimensional porous structures, 

which allow the incorporation of functional fillers and are thus applied as active or 

intelligent packaging materials [refs, 6-12?]. According to the Web of Science search 

result, 10,254 research papers on cellulose-based materials have been published in last 

two years, and 404 (3.94%) of them are related to food packaging applications. The 

utilization of cellulose-based materials in food packaging is promising and still has a 

huge potential. Several reviews have summarized different forms of cellulose-based 

materials such as cellulose films [2], fibers [3], hydrogels [4], microspheres [5], and 

composites [1], without the focus on food packaging purpose. Therefore, in this review, 

we have summarized recent strategies of fabricating regenerated cellulose-based films 

and hydrogels and their potential applications in food packaging. The considerations of 

biodegradability and toxicity are highlighted, and future opportunities, challenges, and 

research directions are described.  

 

Recent studies on regenerated cellulose film and hydrogel production  
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 Extensive studies have discussed various cellulose solvents including N-

methylmorpholine-N-oxide (NMMO), LiCl/DMAc, ionic liquids (ILs), and alkali/urea 

solutions to develop a more efficient and environmentally friendly method for cellulose 

dissolution and regeneration. Figures 1 (a) to (d) illustrate the appearance of regenerated 

cellulose films produced from different raw materials and solvents. Recent research 

mainly focused on optimizing dissolution conditions and strategies of non-solvent 

regeneration that influence morphological and mechanical properties of regenerated 

cellulose films [13]. For instance, cellulose source [14], wood type (hard or soft) [9], 

pulping process (acid sulfite or kraft sulfate) [9], and coagulants used to regenerate 

cellulose were compared to investigate their effects on the morphology of cellulose 

films [15,16]. A novel cellulose pretreatment for the dissolution in LiCl/DMAc was 

recently proposed that used O2 plasma irradiation to activate cellulose chains and 

eliminate glycosidic bonds, leading to the improved dissolution of cellulose and 

enhanced mechanical properties of regenerated films [17]. Zheng and co-workers 

applied three imidazolium-based ILs, namely AmimCl, BmimCl, and EmimAc, to 

dissolve cellulose , where BmimCl showed the best dissolution capacity to dissolve 

cellulose within 8 min at 90 ℃ [18]. However, the AmimCl dissolution system was the 

optimal option due to the short gel formation time (13 min) and the superior tensile 

strength of the produced film, revealing the good molecular network arrangements and 

strong intermolecular interactions. The effect of dissolution temperature was 

highlighted by Wei et al. that in the range of -2 to -12.5 ℃, a decrease in temperature 

resulted in more cellulose dissolution in NaOH/urea solution [19]. The regenerated 

cellulose film prepared at -10 ℃ was optimal due to its best mechanical properties, 

transparency, and thermostability. 

For the production of cellulose hydrogels, the double-crosslinking strategy has 

been applied recently by combining chemical and physical crosslinking to obtain the 

hydrogels with dimensionally stable and recoverable double network structures [20,21]. 

For example, nanocellulose was crosslinked with epichlorohydrin (ECH) and metal 

salts (FeCl3 or CaCl2) to produce double-crosslinked hydrogels [22]. A three-
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dimensional network was formed due to the interconnected nanofibrils with no 

aggregation in crosslinked domains. A highly deformable cellulose hydrogel (126% of 

tensile strain) containing chitin and chitosan was formed via free radical polymerization 

of synthesized allyl cellulose, and had good transparency and ionic conductivity at -20 ℃ 

working condition [23]. This hydrogel was further immersed in saturated NaCl solution 

to initiate double crosslinked network, which thus had an improved tensile strain (236%) 

and was still stretchable at -24 ℃, because the incorporation of physical crosslinking 

maintained the hydrogel integrity [24]. A similar cellulose hydrogel with excellent 

mechanical properties, good transparency, and anti-freezing capacity was also reported, 

where ECH was used to crosslink cellulose dissolved in benzyltrimethyl ammonium 

hydroxide solution [25].  
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Figure 1. Photos of regenerated cellulose films (top) and hydrogels (bottom) prepared 

from (a) xxx in LiCl/DMAc [16], (b) xxx in NaOH/urea solution [26], (c) xxx in 

AmimCl [27], (d) xxx in BmimCl [28], (e) bagasse cellulose filaments (BCF) [29], (f) 

oxidized BCF [29], (g) Zn2+ crosslinked BCF [30], and (h) xxx cellulose with amino-

terminated hyperbranched polyamic anchored nanosilver [31]. 

 

Potential applications in food packaging 

Regenerated cellulose films 

Cellophane is the commercial transparent film regenerated from a viscose solution; 

however, carbon disulfide and other by-products of viscose process cause serious 

environmental pollution [32]. Currently, regenerated cellulose films are prepared from 

eco-friendly solvent systems, and usually form composites with other polymers or 

additives to improve mechanical properties, optical properties, barrier properties, and 

thermostability. The applications of regenerated cellulose films in food packaging can 

be mainly classified into three aspects: biodegradable packaging, active packaging, and 

intelligent packaging. A pure cellulose film regenerated from durian rind dissolved in 

LiCl/DMAc was regarded as the alternative to cellophane [33]. It had a smooth surface, 

good transparency, high strength (44 MPa), good thermostability, and biodegradability 

(100% decomposed in 4 weeks). The cellulose film prepared from xxxxxx dissolved in 

ionic liquid showed comparable tensile strength and thermal stability, and the pineapple 

sample packaged by the regenerated film showed the decreased weight loss and well 
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maintained firmness and vitamin C content after 2 days [34]. Another similar cellulose 

film regenerated from xxxxxx dissolved in ionic liquid also demonstrated the capacity 

to extend the storage life and commodity rate of mango to about 7 days [35]. The 

incorporation of nanoparticles (NPs, nanocellulose, metallic nanoparticles, etc.) and 

polymers (chitosan, etc.) is the traditional way to reinforce the mechanical and barrier 

properties of regenerated cellulose films [38-40]. A recent study recommended that the 

addition of Ca2+ in cellulose/ionic liquid solution significantly improved the tensile 

strength (85.86 MPa) and thermal stability (351 ℃) of regenerated cellulose films; 

however, the transparency was reduced [27]. The modulation of polymer network 

structure is another way to enhance the performance. Ye and co-workers revealed that 

the well-ordered arrangement of polymers at nanoscale and macroscale facilitated the 

improvement of mechanical and optical properties [7]. A dual crosslinking approach 

was applied to control the aggregation of cellulose chains and resulted in a nanofiber-

structured cellulose film with remarkable tensile strength (253.2 MPa) and top value of 

transparency (91%). Wang and co-workers obtained a similar film by using 

benzyltrimethyl ammonium hydroxide as solvent followed by a simple water 

evaporation strategy in regeneration [44]. The fabricated film had a dense network, high 

tensile strength (158 MPa), excellent transmittance (89.94%), and good gas barrier 

properties in a 40% humidity environment [44]. At the same time, some research works 

focused on the low elasticity and high UV transparency of regenerated cellulose films 

[36], which may lead to the ruptured packaging and deteriorated food [37]. For instance, 

the elongation percentage, water vapor permeability, and visual appearance of cellulose 

films were improved by the addition of glycerol and polyvinyl alcohol [36]. Besides, 

the incorporation of 2 wt% of graphene oxide (GO) in cellulose films endowed good 

visible light transmittance (78%) and UVA (66.7%) and UVB (54.2%) shielding 

property [41]. The enhanced UV shielding capacity and hydrophobicity of cellulose 

films were also observed after the addition of CeO2 [42]. Typical properties and 

potential applications of some recently reported cellulose films are summarized in Table 

1. 
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Table 1. Typical properties and potential applications of recently reported regenerated 

cellulose films and hydrogels. 
Forms Compositions Tensile strength 

(MPa) 

WVP 

(10-9 g/m·s·Pa) 

Initial degradation 

temperature (℃) 

Applications Refs 

Films CMC-Cur-ZnO 41.8 1.67 210 Antioxidant and antimicrobial packaging [45] 

Durian rind C 44 / 270 “Green” and low-cost packaging [33] 

BC-ZnO 92.4 / 337 Highly flexible packaging [46] 

RC-ZnO 126.61 5.42 270 Antimicrobial packaging [47] 

GS-MCC 41.87 2.49 170.3 “Green” and low-cost packaging [48] 

Gelatin-CNC 20 0.03 200 Biodegradable packaging [49] 

Gelatin-BC-MgO 0.71 0.03 / Egg packaging and preservation [50] 

PVA-Gelatin-CNC 13.8 0.46 250 Biodegradable packaging [51] 

Reactive CNF 47 3.40 260 Hydrophobic packaging [52] 

CNF-ZnO-GSE 140 0.51 221 Antioxidant and antimicrobial packaging [53] 

MC-CNF-SPA 46.6 0.02 230 Intelligent packaging [54] 

FP-SCNF-FP 287 / / Low oxygen-permeable packaging [55] 

OEO-Tween-CNF 24.63 / / Antimicrobial packaging [56] 

OC-Nisin peptide 99.2 0.004 / Antimicrobial packaging [57] 

CMC-Starch 32.6 3.27 234 Transparent packaging [58] 

GG-HEC-Lignin 39 2.18 148.2 Antioxidant and biocompatible packaging [59] 

Hydrogels PVP-CMC (film) 24.4 0.23 / Biodegradable packaging [60] 

Collagen-CNC 0.90 / / Biocompatible and biodegradable packaging [61] 

TOBCF-Zn2+ 0.28 / / Intelligent packaging [29] 

C-PAAm 0.63 / 150 Highly flexible packaging [62] 

NaIO4-CNF-PVA 0.43 / 310.9 Thermostable packaging [63] 

Note: WVP, water vapor permeability; CMC, carboxymethyl cellulose; Cur, curcumin; C, cellulose; 

BC, bacterial cellulose; RC, regenerated cellulose; GS, Lemang bamboo; MCC, microcrystalline 

cellulose; CNC, cellulose nanocrystals; GSE, grape seed extracts; MC, methyl cellulose; CNF, 

cellulose nanofibrils; SPA, saffron petal anthocyanin; FP, fluoropolymer; SCNF, succinylated 

cellulose nanofibers; OEO, oregano essential oil; OC, 2,3-dialdehyde cellulose; GG, gellan gum; 

HEC, hydroxyethyl cellulose; PVP, polyvinyl pyrrolidone; TOBCF, TEMPO-oxidized bagasse 

cellulose filaments; PAAm, polyacrylamide; PVA, polyvinyl alcohol.  
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Active food packaging is one of many possible applications of regenerated 

cellulose films, in which antimicrobial agents could be incorporated to inhibit the 

growth of foodborne bacteria [Carbohydrate Polymers 241 (2020) 116256, 39,64,65]. 

In recent years, much attention has been paid to natural antimicrobials such as essential 

oils and extracts [66]. For instance, poacic acid as a plant-based antimicrobial agent 

was added in cellulose film to inhibit the growth of S. aureus [56], while oregano 

essential oil in the film showed an excellent inhibition rate (99.99%) against E. coli and 

L. monocytogenes [31]. A comparative study indicated that the cellulose films 

incorporated with Ag, ZnO, and CuO NPs inhibited the growth of E. coli and S. aureus 

through the release of reactive oxygen species [39]. Ag NPs were preferred due to their 

best inhibition capacity against both bacteria [39]. Gu and co-workers demonstrated 

that hyperbranched polyamide-amine could be used as a binder to ember Ag NPs and 

further control the release rate [31]. The produced film exhibited a microbial inhibition 

capacity and maintained the freshness of cherry tomatoes for 9 days [31].  
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Figure 2. (a) UV-vis spectra and (b) optical images of intelligent cellulose films at 

different concentrations of ammonia solution. The color of cellulose films (c) before 

shrimp spoilage, (d) after shrimp spoilage, and (e) applied cellulose films [67]. 

Intelligent cellulose-based films were also designed and employed to monitor the 

quality and condition of packaged food. Ding et al. [67] revealed a pH-responsive film 

composed of regenerated cellulose, polyvinyl alcohol, and acidochromic dye, which 

showed a pH-responsive color change within pH 7-12, good tensile strength (35 MPa), 

thermostability (about 150 ℃), and leakage resistance in acidic and basic environments. 

The methyl cellulose-based film loaded with saffron petal anthocyanin was reported 

with a wide pH-response range from 1 to 14, and successfully applied to indicate the 

freshness of lamb meat [54]. As shown in Figure 2, the prepared intelligent film could 

be used to detect ammonia formation and indicate the freshness of shrimps [67]. The 

anthocyanins-embedded cellulose/chitosan film had a wide pH response ranged from 2 

to 12 and an excellent color stability for one month [68], while the similar 

cellulose/chitosan film embedded with alizarin was applied to monitor the spoilage of 

minced beef [69]. The pH value of minced beef elevated from 6.2 to 6.76 after storage 

at 4 ℃ for 4 days, and the color of the film changed correspondingly from brown to 

purple, revealing the high microbial load (>7 log CFU/g) beyond the acceptable limit 

[69]. 
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Regenerated cellulose hydrogels 

Recent studies on regenerated cellulose hydrogels are summarized in Table 1. 

Compared to regenerated cellulose films, the applications of hydrogels in food 

packaging are relatively less. Cellulose hydrogels can be regarded as an attractive 

absorbent material with superhydrophilicity, good structural stability after water 

absorption, and negligible influence on the sensory attribute of food [70,71], and be 

applied in food packaging to control the humidity and water activity of food. A 

superabsorbent cellulose hydrogel was prepared by crosslinking CMC with ECH, 

which had a desirable water retention value of 725 g water/g dry hydrogel [71]. Yang 

et al. provided a novel method to fabricate cellulose hydrogels by crosslinking with 

methylenebis acrylamide (MBA) in LiOH/urea solvents [72]. The interactions among 

water and -OH and -NH groups from polymer network endowed hydrogels with a good 

water absorption capacity of 220 g water/g dry hydrogel. The composite hydrogel of 

CMC and PVP at a ratio of 1:1 could absorb 1134% water, and delayed the deterioration 

of blueberries for 15 days,  While the addition of guar gum slightly decreased the water 

absorption capacity (895%) but enhanced the mechanical properties [60]. A similar 

CMC-PVP-based hydrogel was applied to package table grapes, spinach, and tomatoes 

at room temperature for 30 days [73]. Alam and Cristopher noted that the water-

absorption property of cellulose hydrogels was relevant to the concentration and 

chemical nature of polymers, and the optimal water absorption capacity (610 g water/g 

dry hydrogel) was found when cellulose hydrogel contained 25% of chitosan [74]. 

Another research focus was on the improvement of mechanical resistance by 

incorporating  crosslinkers, polymers, and metallic compounds in cellulose hydrogels. 

Huber and co-workers [75] used undissolved micro-cellulose as a crosslinker to 

enhance the mechanical properties of hydrogels, resulting in lower gelation temperature 

and shorter heating time during the gelation process. The reinforcement of mechanical 

properties of cellulose hydrogels via the incorporation of Fe3+ was also elucidated,  and 

the increase of Fe3+ content at low iron ion concentration levels formed more tridentate 

coordinates with the carboxyl groups of cellulose [76]. However, the iron ions at high 
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concentrations transformed tridentate into monodentate or bidentate, which 

deteriorated the toughness of hydrogels. Ye and co-workers  constructed a dual-

crosslinked cellulose hydrogel with the improved compressive strength (9.4 MPa) and 

tensile strength (1.7 MPa) by using two different crosslinkers namely ECH and 

polyethylene glycol diglycidyl ether [77].  

 

Figure 3. Color response of (a) cellulose-based hydrogels for intelligent food packaging 

application; (b) Changes in the color of hydrogel with chicken breast freshness in 4 

days at 4 ℃; (c) Changes in CO2, O2, and microbial counts of chicken breast stored at 

4 ℃ over 7 days [29]. 

Like regenerated cellulose films, cellulose hydrogels were also employed as a three 

dimensional matrix to fabricate antimicrobial or pH-responsive packaging by 

incorporating functional fillers. Compared to the dense structure of films, the porous 

network of cellulose hydrogels facilitates the transportation of bioactive compounds 

and enables quickly starting signaling pathways. The antimicrobial capacity was 

determined by the network density and concentration of active compounds [85]. 
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Curcumin loaded in a bacterial cellulose hydrogel had a release rate of 76.99% in 6 h 

and significantly inhibited the growth of S. aureus [78]. The bactericidal effect was also 

found in the grapefruit seed extract-loaded cellulose hydrogel due to the existence of 

choline and ethanolamine [79]. Silver NPs were widely used to inhibit the growth of 

gram-negative bacteria (P. aeruginosa), gram-positive bacteria (S. aureus), and yeast 

(C. albicans) [83,84]. A novel strategy was proposed to produce hydrogels by using 

ECH to chemically crosslink bacterial cellulose and polyethyleneimine (PEI) in 

NaOH/urea solution [86]. The disruption of cell membranes by the polycationic nature 

of PEI caused a bactericidal activity against S. aureus and E. coli. The synergistic effect 

of several antimicrobial compounds was also investigated. For example, a hydrogel 

made from dialdehyde cellulose and chitosan was embedded with ZnO NPs and two 

bioactive compounds (quercetin and onion peel drug) to inhibit the growth of S. aureus 

and T. rubrum [81]. A comparable effect was found in the hydrogel filled with curcumin 

and ZnO NPs [82]. For the construction of intelligent packaging materials, as shown in 

Figure 3, two pH-responsive dyes (bromothymol blue and methyl red) were 

incorporated in a nanocellulose-based hydrogel as a food quality indicator to monitor 

the freshness of chicken breast [29]. The hydrogels showed a noticeable color change 

from green to red after three days due to the emission of CO2 from microbial growth, 

indicating the detected microbial loads exceeded the acceptable limit for consumption 

(>6 log CFU/g). A tough, self-healing and pH-responsive hydrogel was produced from 

cellulose, polyvinyl alcohol, and borax, which could recover to the original state within 

15 s after high shear strain and display a color change from yellow to red and purple 

when pH value increased from 5 to 12 [87].  

Biodegradability and toxicity of cellulose-based materials 

The biodegradability of cellulose may be affected by chemical modifications. 

Leppänen et al. reported that the biodegradation rate of regenerated cellulose depended 

on the degree of substitution (DS) [90]. Regenerated cellulose from ionic liquid was 

completely degraded after 4 weeks in a natural composting environment, while 
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cellulose acetate with DS 2.5 prevented the attachment of enzymes and showed no 

biodegradability in enzymatic hydrolysis and natural composting environment [90-91]. 

Haske-Cornelius et al. suggested to use esterase to degrade cellulose acetate with DS 

lower than 1.8, which could be enhanced by the synergistic effect of cellulase [92]. 

Cellulose nanocrystals are usually combined with regenerated cellulose to prepare all-

cellulose materials; however, the incorporation of micro- and nanocellulose could lead 

to the decreased biodegradability [93,94]. It was because of that the increased 

crystallinity of all-cellulose materials hampered the water diffusion in polymer matrix 

and affected the disintegration kinetics [95,96]. Cui and co-workers demonstrated that 

okara cellulose hydrogels prepared by ECH crosslinking in LiOH/urea solution could 

completely decompose in 28 days [97]. The biodegradation process of crosslinked 

cellulose hydrogel was caused by the presence of microorganisms in soil, which 

initiated the cleavage of crosslinkages and disrupted covalent bonds, resulting in the 

decomposed network structure [98]. Regarding to the safety and toxicity of cellulose-

based materials, various forms of cellulose including raw cellulose and regenerated 

cellulose, as well as it derivatives such as CMC, cellulose acetate, ethyl cellulose, etc., 

have been regarded as safe food substances according to the U.S. Department of 

Agriculture, and considered as the food additives by the FDA regulations [ref]. 

Nevertheless, the release and migration of functional additives from regenerated 

cellulose matrices should be carefully investigated. For instance, the minor release of 

Ag NPs didn’t affect the survival rate of shrimp after an exposure of 24 h [100], but Ag 

NPs with high concentration (≥500 μg/mL) showed the significant cytotoxicity to Caco-

2 and FHC human colon cells [101], and 100 ppm of Ag NPs remarkably decreased the 

vitality of hepatocellular carcinoma cells close to zero over 24 h [83].  

 

Conclusions and outlook 

Recent research focuses on optimizing dissolution conditions and developing new 

strategies to improve the properties of regenerated cellulose films and hydrogels, for 

example, the double-crosslinking method. Both cellulose films and hydrogels exhibit 
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potential to be applied in food packaging. Particularly, the regenerated films provide a 

solution for biodegradable wrapping materials, and the regenerated hydrogels can serve 

as a three dimensional matrix for absorption and quick signal response. Various organic 

and inorganic fillers can be incorporated in regenerated cellulose films and hydrogels 

to enable special functionalities, such as antimicrobial property and pH responsive color 

change. Generally speaking, regenerated cellulose materials are safe to be used for food 

packaging, but the release and migration of functional fillers should be evaluated. 

Future research in the following areas is required to promote their real applications: 

1. The design of food packaging materials should be linked to a specific food product.

Some research works just simply emphasized the improvement in mechanical and

barrier properties, but did not mention the requirements for packaging materials.

Especially for the development of active and intelligent packaging, various aspects

such as initial status, storage condition and quality change of food product should

be understood in advance.

2. The feasibility of new packaging materials should be considered. Processes should

be available for mass production, and all the modifications and additives should be

economically practical. The selection of cost-effective cellulose solvent system and

the efficient recycle of solvent will help reduce the cost of regenerated cellulose

materials.

3. The release and migration of functional fillers from regenerated cellulose packaging

at different conditions (pH, temperature, solvent, food components, etc.) should be

carefully studied. Although some active compounds are chemically bonded to

cellulose matrices, the fate of these chemicals in the environment after the materials

are disposed and degraded should be evaluated.
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