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Abstract

The nested case-control design is employed by researchers when it is too difficult or expensive

to collect and/or analyze data prospectively on rare outcomes. The sampling design is

retrospective in nature but the conclusions are prospective in nature, which can lead to

bias when analyzed inappropriately. Most nested case-control approaches employ logistic

regression, however, in this retrospective analysis, a difficulty arises when one wants to

employ causal inference methods to adjust to time-varying confounding. In this thesis, we

introduce methods that allow us to use prospective causal inference methods with time-

varying confounding, under a retrospective nested case-control sub-sampling scheme which

requires a different approach to the classic nested case-control design. We interpret the

entire cohort data set as a fixed finite population, thus, when we take our nested case-

control sample, it will be viewed as a draw from the finite population. In order to account

for causal effects, we use inverse probability (IP) treatment weighting on top of the sampling

weights. Thus, we introduce methods to solve a nested case-control problem using finite

population methods in a causal setting.
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Résumé

Le plan cas-témoins emboîté est utilisé par les chercheurs lorsqu’il est trop difficile ou trop

coûteux de collecter et/ou d’analyser prospectivement des données sur des résultats rares.

Le plan de sondage est de nature rétrospective mais les conclusions sont de nature prospec-

tive, ce qui peut entraîner des biais en cas d’analyse inappropriée. La plupart des approches

cas-témoins emboîtés utilisent la régression logistique, cependant, dans cette analyse rétros-

pective, une difficulté survient lorsque l’on veut utiliser des méthodes d’inférence causale

pour s’ajuster aux facteurs de confusion variant dans le temps. Dans cette thèse, nous intro-

duisons des méthodes qui nous permettent d’utiliser des méthodes d’inférence causale pros-

pectives avec une confusion variant dans le temps, sous un schéma de sous-échantillonnage

de cas-témoins emboîtés rétrospectif qui nécessite une approche différente du plan classique

de cas-témoins emboîtés. Nous interprétons l’ensemble des données de la cohorte comme une

population finie fixe. Ainsi, lorsque nous prélevons notre échantillon de cas-témoins emboî-

tés, il sera considéré comme un tirage de la population finie. Afin de tenir compte des effets

causaux, nous utilisons une pondération de traitement à probabilité inverse en plus des poids

de sondage. Ainsi, nous présentons des méthodes pour résoudre un problème de cas-témoins

emboîtés en utilisant des méthodes de population finie dans un cadre causal.
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Chapter 1

Introduction

The case-control design is often employed by researchers when it is too difficult to obtain

the exposure of interest prospectively or when the outcome is rare. A nested case-control

approach is a method that applies the case-control design to data that has already been

collected. The design is retrospective in nature but is used to answer prospective research

questions. This can lead to bias due to the need to rely on the odds ratio for inference due to

the selection bias in the sampling. Using the odds ratio as a substitute for relative risk is not

always appropriate and the risk difference cannot be estimated, see for example [23]. Also,

it is not obvious how to estimate inverse probability weights to adjust for confounding due

to the selection bias that results from the sampling design. Therefore, most researchers use

regression based adjustments for confounding. In this thesis, we take a different approach to

the classic nested case-control analysis. We interpret the data as a fixed finite population,

thus, when we take our nested case-control sample, it will be viewed as a draw from the finite

population. In order to estimate causal effects, we use inverse probability (IP) treatment

weighting on top of the sampling weights.

This thesis introduces methods using finite population methods in a causal setting. This

thesis uses similar ideas to those done of Morenz [16] and extends them to a causal setting.

Traditional nested case-control methods employ logistic regression; however, in this retro-
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spective analysis, a difficulty arises when one wants to employ causal inference methods to

adjust for time-varying confounding as you cannot use regression based adjustments and

you have to use inverse probability weighting, which then leads to the same selection bias

problem as before. In this thesis, we introduce methods that allow us to do causal inference

with time-varying confounding, using a nested case-control subsampling scheme.

We begin with a literature review in Chapter 2. This chapter provides a background on

finite population sampling, generalized linear models and generalized estimating equations,

nested case-control design studies and causal inference. This chapter is necessary in order

to build a solid foundation of the concepts and theory that will be used in order to build

our methods. We then introduce our methods for the cross-sectional case in Chapter 3.

In this chapter, we can obtain results for a simple cross-sectional example in closed form.

This enables us to see where finite population methods are being used in both our causal

estimands and our treatment model. We then provide a simulation study in order to show

how our estimators perform. The goal in this chapter is to rigorously show how our methods

work both mathematically and in a simulation for the cross-sectional case. We then build on

the methods introduced in Chapter 3 by extending them to the time-varying case in Chapter

4. In this chapter, we show how our methods in Chapter 3 can easily extend to multiple

time points. We then discuss the performance of our methods in both the cross-sectional and

time-varying case in Chapter 5 as well as the limitations we faced. Additionally, we discuss

how our approach relates to what has already been done as well as future directions for our

methods.
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Chapter 2

Literature Review

In this chapter, we will provide the necessary foundation for us to introduce our methods

to solve the nested case-control problem using finite population methods in a causal setting.

We will provide a foundation on finite population sampling, generalized linear models and

generalized estimating equations, nested case-control design studies and causal inference. All

of these areas are crucial in order to understand the basis for our proposed methods.

2.1 Finite Population Sampling

Sampling theory is a very important area of this thesis, as it is how we will choose the data

that we will analyze using methods that employ other areas of the background. This section

closely follows the order and concepts of the work of Lohr in Sampling: Design and Analysis

[15].

2.1.1 Overview

Finite population design-based inference, often used in survey contexts, differs from infinite

population inference in that instead of Y being a random variable drawn from an infinite

population following some distribution, we instead sub-sample from a fixed finite population.
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The y’s that we can observe are fixed, and the randomness comes from which subset of the

y’s we observe, which depends on the design D.

We first review the two different types of probability samples as defined by Lohr in Sampling:

Design and Analysis [15].

Definition 2.1.1. Simple Random Sample (SRS) A simple random sample is a subset of

a statistical population in which each possible subset has an equal probability of being chosen.

A simple random sample is meant to be an unbiased representation of a group.

Definition 2.1.2. Stratified Random Sample A stratified random sample is when the

population is divided into subgroups known as strata. An independent SRS is then taken in

each strata. The strata are formed based on individual’s shared characteristics or attributes.

2.1.2 Sampling with Unequal Probabilities

In Sampling Theory, it is known that the sampling variance can be decreased by assigning

unequal probabilities to sampling units in different strata. In order to decrease variances

without explicitly stratifying, we can use unequal inclusion probabilities [15]. The proba-

bilities are deliberately varied when sampling with unequal probabilities so that we select

different primary sampling units (psus) for the sample for which we obtain unbiased esti-

mators by employing weights in the estimation [15]. A primary sampling unit is a sampling

unit that is selected in the first stage of a sample, they are usually selected based on shared

attributes. It is important that we control the probabilities with which we will select a given

unit. Note that we will consider two different probabilities in this section, because when

sampling with unequal probabilities without replacement, selecting a unit on the first draw

can affect the selection probabilities for other units [15].

A finite population of N units is denoted by the index set U = (1, ..., N) where samples are

subsets of U . Thus we have the following probabilities with which we will select a given unit,
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ψi = P(unit i selected on the first draw), and (2.1)

πi = P(unit i in the sample). (2.2)

2.1.2.1 Unequal Probability Sampling without Replacement

We now describe the basic setting for unequal probability sampling without replacement.

Select two primary sampling units without replacement and with unequal probabilities

ψi =P(unit i selected on the first draw). The probability that unit j is selected on the

second draw depends on which unit was selected on the first draw, this is because we are

sampling without replacement [15]. Note that the order of selection matters, thus we ob-

tain

P(unit i chosen first, unit k chosen second)

= P(unit i selected on the first draw)P(unit k chosen second|unit i chosen first) = ψi
ψk

1− ψi
.

Similarly, we can see that

P(unit k chosen first, unit i chosen second) = ψk
ψi

1− ψk
.

Lohr shows that for a sample of size n = 2 we get that

P(units i and k in the sample) = πik = ψi
ψk

1− ψi
+ ψk

ψi
1− ψk

.

Therefore, Lohr defines the probability that psu i is in the sample is

πi =
∑
S:i∈S

P (S), (2.3)

where S is the collection of indices for units contained in a sample and P (S) is the probability

of obtaining the collection of sample indices S.
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2.1.2.2 The Horvitz–Thompson Estimator

Let us assume, as in Lohr’s example, that we have a without-replacement sample of n psus,

and we know the inclusion probability P(unit i in the sample) = πi and the joint inclusion

probability, P(units i and k in the sample) = πik [15].

Lohr states that we can calculate the inclusion probability πi as the sum of probabilities of

all samples containing the ith unit and has the property that

N∑
i=1

πi = n [15]. (2.4)

Lohr also states that for the πik’s, we have that

∑
k=1
k 6=i

πik = (n− 1)πi [15]. (2.5)

We have that πi/n can be interpreted as the average probability that a unit will be selected

on one of the draws, this is because the inclusion probabilities sum to n [15]. Let ti denote

the total of the psus in a one-stage sample where t̂ψ is the average of the values of ti/ψi [15].

The probabilities of selection depend on what was drawn before when the samples are drawn

without replacement [15]. By dividing ti from psu i by the average probability of selecting

that unit in a draw, πi/n instead of ψi, we obtain the Horvitz–Thompson (HT) estimator of

the population total, determined by Horvitz and Thompson in 1952 [10]:

t̂HT =
∑
i∈S

ti
πi

=
N∑
i=1

Zi
ti
πi
, (2.6)

where Zi = 1 if psu i is in the sample, and 0 otherwise [15].

For the Horvitz-Thompson Estimator we have the following assumptions:

1. sub-sampling is independent between the psus,

2. ti ⊥ Z1, ..., ZN , and

3. E[ti|Z1, ..., ZN ] = ti, V [ti|Z1, ..., ZN ] = Vi.

6



Under these assumptions we have the following for the expected value and variance for the

HT estimator in one-stage sampling:

E[t̂HT ] = t, and (2.7)

VHT [t̂HT ] =
N∑
i=1

1− πi
πi

t2i +
N∑
i=1

N∑
k 6=1

πik − πiπk
πiπk

titk, (2.8)

where t is the population total.

There is another form of the HT variance, and it is called the Sen-Yates-Grundy (SYG)

[20, 27] form of the variance and it’s given by

VSY G[t̂HT ] =
1

2

N∑
i=1

N∑
k=1
k 6=i

(πiπk − πik)
(
ti
πi
− tk
πk

)
. (2.9)

Note that the HT expression for the variance is algebraically identical to the SYG expression

for the variance. Equations (2.8) and (2.9) lead to different estimators of the variance when

the inclusion, πi, and/or joint inclusion, πik, probabilities are different [15].

Therefore, we have that the HT estimator of the variance is

V̂HT [t̂HT ] =
∑
i∈S

(1− πi)
t2i
π2
i

+
∑
i∈S

∑
k∈S
k 6=i

πik − πiπk
πiπk

ti
πi

tk
πk
. (2.10)

The SYG estimator of the variance is then

V̂SY G[t̂HT ] =
1

2

∑
i∈S

∑
k∈S
k 6=i

πiπk − πik
πik

(
ti
πi
− tk
πk

)2

. (2.11)

Lohr notes that both (2.10) and (2.11) both require πik > 0 for all units in the sample in

order to be well-defined [15]. The SYG estimator is generally more the stable of the two

variance estimators [15].
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We can pretend that the units were selected with replacement and use the with-replacement

variance estimator instead in order to avoid some of the potential instability and com-

putational complexity of the estimators (2.10) and (2.11) [15]. Let ψi = πi/n, thus the

with-replacement variance estimator is

V̂WR[t̂HT ] =
1

n

1

n− 1

∑
i∈S

(
ti
ψi
− t̂HT

)2

=
n

n− 1

∑
i∈S

(
ti
πi
− t̂HT

n

)2

. (2.12)

The with-replacement variance estimator, (2.12), is always nonnegative and it also does

not require knowledge of the joint inclusion probabilities πik [15]. In general, the with-

replacement variance estimator, (2.12), is preferred. However, when the sampling fraction

n/N is large we can overestimate the variance.

2.1.2.3 Weights in Unequal-Probability Samples

The Horvitz–Thompson estimator can be written using sampling weights [15]. Lohr defines

the first-stage sampling weight for psu i as

wi =
1

πi
. (2.13)

Thus, Lohr shows that the HT estimator for the population total is

t̂HT =
∑
i∈S

wit̂i. (2.14)

Secondary sampling units (ssus) are a random sample selected within each primary sampling

unit. Thus, for a without replacement probability sample of ssus within psus, we define,

πj|i = P (jth ssu in the ith psu included in the sample | ith psu in the sample), (2.15)

for a without replacement probability sample of secondary sampling units (ssus) within psus

[15].
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Thus, we have that

t̂i =
∑
j∈Si

yij
πj|i

, (2.16)

where πj|iπi is the overall probability that ssu j of psu i is included in the sample [15]. Thus,

Lohr defines the sampling weight for the (i, j)th ssu as

wij =
1

πj|iπi
, (2.17)

and the HT estimator of the population total as

t̂HT =
∑
i∈S

∑
j∈Si

wijyij [15]. (2.18)

Lohr shows that the population mean is estimated by

ˆ̄yHT =

∑
i∈S
∑

j∈Si wijyij∑
i∈S
∑

j∈Si wij
=

t̂∑
i∈S
∑

j∈Si wij
. (2.19)

Note that estimator ˆ̄yHT is a ratio, so in order to estimate its variance one needs to form the

residuals from the estimated psu totals [15].

2.2 Generalized Linear Models and Generalized Estimating Equa-

tions

2.2.1 Generalized Linear Models (GLMs)

2.2.1.1 Overview

The ordinary linear regression model is commonly used to describe a linear relationship

between the mean of a response variable and a set of explanatory variables. Generalized linear

models (GLMs) extend standard linear regression models to encompass non-normal error

distributions and possibly nonlinear functions of the mean. They have three components:

(1) random component, (2) linear predictor, and (3) link function [2].
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2.2.1.2 Exponential Dispersion Family Distributions for a GLM

In this thesis, we focus on an exponential family form that encompasses standard distri-

butions such as the normal, Poisson, and binomial and that has general expressions for

moments and for likelihood equations. We will define the three components of a GLM for

the exponential family form.

The random component of a GLM consists of a response variable y with independent obser-

vations (y1, ..., yn) from a distribution having probability density or mass function for yi of

the form

f(y, θ, φ) = exp

{
yθ − b(θ)
a(φ)

+ c(y, θ)

}
(2.20)

This is called an exponential dispersion family [2].The parameter θ is the natural parameter,

and the parameter φ is the dispersion parameter. We have that a(φ) = φ
wi
, where the weight

wi is known, and if φ is known then it is an exponential family, and if φ is not known then

it is an exponential dispersion family.

The expected value and the variance are given by:

E[Y ] = b′(θ) = µ, and (2.21)

V ar[Y ] = b′′(θ)a(φ). (2.22)

We also have that the mean-variance relationship is denoted by ν(µ) = b′′(θ). We have that

our systematic component is X which is our n× p design matrix of the form

X =


X1

X2

...

Xn


. (2.23)

Our linear predictor is η = Xβ where β ∈ Rp×1 vector of parameters and η ∈ Rn×1. The

link function is a function g applied to each component of E(y) that relates it to the linear

10



predictor,

E[Y |X] = µ[Xβ] = µ[η] ⇐⇒ g[E[Y |X]] = XB,

g[E[Y |X]] = g[µ] = XB = η. (2.24)

The canonical link is the case where g[µ] = θ = Xβ.

We will focus on the canonical link, as it simplifies exposition, although other link functions

could be used. This is important as although the mean may be restricted, we do not want

to impose constraints on β.

2.2.1.2.1 Estimation for GLMs Our main interest within the context of GLMs are maximum-

likelihood estimators and their properties.

By maximum-likelihood, we have that the likelihood for a GLM that is an exponential

dispersion family is

L(β) =
n∏
i=1

f(yi, θi, φ), (2.25)

thus the log-likelihood for yi is given by

`(β) =
n∑
i=1

log(f(yi, θi, φ)) =
n∑
i=1

{
yθ − b(θ)
a(φ)

+ c(y, θ)

}
︸ ︷︷ ︸

`i

. (2.26)

Let β̂ = argmaxβ∈Rp`(β) be our maximum-likelihood estimator (MLE) for the GLM g[E[Y |X]] =

g[µ] = XB = η.

We have that the score equation for the ith response is

∂`i(yi, θi, φ)

∂βj
=
yi − b′(θi)
a(φ)

1

b′′(θi)

1

g′(µi)
xij = 0, j = 1, ..., p, (2.27)

and the score equations are

∂`

∂βj
=

n∑
i=1

yi − b′(θi)
V ar[yi]

1

g′(µi)
xij = 0, j = 1, ..., p. (2.28)
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Note that things simplify when the canonical link is used as g[µi] = θi = νi. Thus, our score

equation for the ith response then becomes

∂`i(yi, θi, φ)

∂βj
=
yi − b′(θi)
a(φ)

xij = 0, j = 1, ..., p. (2.29)

We know that β̂ is the β̂n that solves

∂`

∂β
(β̂n) = 0. (2.30)

2.2.1.3 Models for Binomial Data

Analysts typically assume a binomial distribution for the random component of a generalized

linear model (GLM) for binary responses [2].

Let Y1, ..., Yn be independent observations where miYi ∼ Bin(πi,mi). We know that the

exponential family for a binomial distribution is the following

f(y, π,m) =

(
m

y

)
πy(1− π)m−y = exp

{
ylog π

1−π + log(1− π)
1
m

+ log

(
m

ym

)}
. (2.31)

We have that E(Yi) = πi, V ar
(

1
mi
πi(1− πi)

)
. We have that a(φ) = 1

mi
where mi = wi is

known. The canonical link (2.24) for the binomial function is

g[E[Y |X]] = g(π) = log
π

1− π
. (2.32)

From its exponential dispersion representation, the binomial natural parameter is the log

odds, denoted logit, for which the model is referred to as logistic regression [2].

There are also other links such as the probit link (g(π) = Φ−1(π)) and the complementary

log-log link (g(π) = log(−log(1− π))). However, the logit link is preferred to the probit link

because: the logit link is canonical (which simplifies calculations), the logit link is explicit,

and the logit link gives us a nicer interpretation as we can calculate odds ratios. In this

thesis we will only consider the logit link.
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2.2.1.3.1 Simple Logistic Regression If we want to measure the association of the exposure

(interchangeably referred to as treatment throughout this thesis) x with the probability of

outcome π(x), then we can fit the simple logistic regression model

log
π(x)

1− π(x)
= α + βx, (2.33)

using maximum likelihood.

In order to examine the probability of the outcome conditional on exposure we have the

following if the predictor is continuous

π(x) = logit−1(x) =
exp(α + βx)

1 + exp(α + βx)
. (2.34)

If we would like to test if the exposure is associated to the outcome, we can focus on testing

β, as β = 0 implies that log π(x)
1−π(x)

does not linearly depend on x. We aren’t focusing on α

as it is less interesting because if the xi’s are centered ( 1
n

∑
xi = 0) then α is the log-odds

at x̄.

The log-odds ratio is very important for the interpretation of β, it is denoted as

β = log
π(x+ 1)

1− π(x+ 1)
− log π(x)

1− π(x)
= log

π(x+1)
1−π(x+1)

π(x)
1−π(x)

, (2.35)

where
π(x+1)

1−π(x+1)

π(x)
1−π(x)

is the odds-ratio.

We also have that
π(x+ 1)

1− π(x+ 1)
= eβ

π(x)

1− π(x)
.

If β > 0, then π(x) is increasing in x, thus exposure increases the probability of Y = 1. If

β < 0, then π(x) is increasing in x. If β = 0, π(x) is equal in the two exposure groups,

where the probability only depends on α. We will only test β 6= 0 as it provides a better

interpretation.
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2.2.1.3.2 Properties and Interpretations of Logistic Regression This section closely follows

the order and concepts of the work by Agresti in Chapter 5.2 of Foundations of Linear and

Generalized Linear Models [2].

We can extend the simple logistic regression model (2.33), to multiple covariates, i.e.

log
πi

1− πi
=

p∑
j=1

βjxij, and (2.36)

πi =
exp(

∑p
j=1 βjxij)

1 + exp(
∑p

j=1 βjxij)
. (2.37)

Note that our intercept, formerly known as α is now denoted as β0.

Note that for βj,

∂πi
∂xij

= βj
exp(

∑p
j=1 βjxij)

[1 + exp(
∑p

j=1 βjxij)]
2

= βjπi(1− πi). (2.38)

Now we consider a single binary indicator x. Agresti states that the model logit(πi) = β0+β1

then describes as 2×2 contingency table, which represents two classifications of a set of counts

or frequencies, where

logit[P (y = 1, x = 1)]− logit[P (y = 1, x = 0)] = [β0 + β1(1)]− [β0 + β1(0)] = β1 [2]. (2.39)

Agresti states that eβ1 is the odds ratio

eβ1 =
P (y = 1, x = 1)/[1− P (y = 1, x = 1)]

P (y = 1, x = 0)/[1− P (y = 1, x = 0)]
[2]. (2.40)

The odds πi/(1 − πi) are an exponential function of xj and they multiply by eβj per unit

increase in xj, which then adjusts for the other explanatory variables in the model [2].

2.2.2 General Estimating Equations (GEEs)

2.2.2.1 Overview

The General Estimating Equations (GEE) approach is an extension of Generalized Linear

Models (GLMs). The essence of GEEs is to simply model the mean response, as opposed to
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modeling the within-subject covariance structure for correlated data [7]. Thus, for GEEs we

do not need to specify the covariance structure correctly in order to obtain valid estimates

of regression coefficients and standard errors [7].

Essentially, unlike a GLM, with a GEE you do not specify the underlying probability model.

Instead, you specify only the mean, and the covariance function. The most common use of

GEE is to fit a marginal model for longitudinal and/or clustered data analysis [7].

Assume that we observe: a response variable Y which can either be continuous or categorical,

and a set of k explanatory variables X = (X1, ..., Xk) which can be discrete, continuous or a

combination where Xj is a ni×k matrix of covariates. A GEE is of a similar form as a GLM,

however, a full specification of the joint distribution of the responses is not required [7]. The

random component of a GEE is any distribution of the response that we can use for a GLM

(such as binomial, multinomial, normal, etc.) [7]. The systematic component is a linear

predictor of any combination of continuous and discrete variables [7]. The link function,

like for a GLM, can be the identity, log, logit link, or others, and it must be specified for a

GEE.

In addition to specifying the mean, we need to specify the covariance function for the mea-

sures. For the covariance function, we have the following assumptions. We have correlated

or clustered responses, Y1, ..., Yn, meaning that the clusters are not independent [7]. We do

not need to satisfy the homogeneity of variance and we can have correlated errors [7]. In

order to estimate the parameters, GEEs use quasi-likelhood estimation rather than maxi-

mum likelihood estimation (MLE) or ordinary least squares (OLS) [7]. We need to specify

the covariance structure for the clustered responses.

Here are the four most commonly used correlation structures: (note that the correlation

structures do not depend on the subject, thus they are the same for each subject):
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Independence - (correlation is independent)
1 0 0

0 1 0

0 0 1

 , (2.41)

Exchangable (or Compund Symmetry)
1 ρ ρ

ρ 1 ρ

ρ ρ 1

 , (2.42)

AutoRegressive Order 1 (AR 1) 
1 ρ ρ2

ρ 1 ρ

ρ2 ρ 1

 , (2.43)

Unstructured

Where ρij = corr(Yij, Yik) for the ith subject at times j and k
1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1

 . (2.44)

2.2.2.2 Quasi-Likelihood

GEEs are quasi-likelihood equations with estimates that are quasi-likelihood estimators.

The GEE estimates are obtained by using an iterative algorithm, denoted an iterative quasi-

scoring procedure, thus meaning that there are no closed-form solutions [7].

Quasi-likelihood was applied to GEEs by Liang and Zeger [28] in 1986 and works as fol-

lows.
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Quasi-likelihood can be used with a variety of outcomes as it is a methodology for regression

that requires few assumptions about the distribution of the dependent variable [28]. One

only needs to specify the relations between the outcome mean and covariates as well as

the mean and variance in quasi-likelihood as opposed to specifying the distribution as in

likelihood analysis, thus, quasi-likelihood is useful in developing methods that can be used

for several types of outcome variables [28].

We will use notation that resembles the notation used by Liang and Zeger. Consider the

observations (yij,xij) for times tij, where j = 1, ..., ni and subjects i = 1, ..., K. We have

that yij is our outcome variable and that xij is a p × 1 vector of covariates. We let yi be

the ni × 1 vector (yi1, ..., yini
)′ and xi be the ni × p matrix (xi1, ..., xini

)′ for the ith subject.

Note that Liang and Zeger drop the j subscript and treat each subject’s data as a scalar as

quasi-likelihood has previously been applied to the regression context where ni = 1∀i.

Define µi as the expectation of yi and let

µi = h(xiβββ) (2.45)

where βββ is a p × 1 vectors of parameters, and where h−1 is the link function (note that

typically in GLM, the link function is denoted g).

In quasi-likelihood, the variance, vi, of yi is expressed as a known function, g (which is the

variance function, typically denoted as ν(µ) in GLM), of the expectation, µi, it is expressed

as follows

vi = g(µi)/φ (2.46)

where φ is a scale parameter, which is treated as a nuisance parameter as the focus of quasi-

likelihood is on methods for inference about βββ. Note that φ here plays a similar role to a

GLM where a(φ) = φ.

We have that the quasi-likelihood estimator is the solution of

Sk(βββ) =
K∑
i=1

∂µi
∂βk

v−1
i (yi − µi) = 0, for k = 1, ..., p. (2.47)
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Note that (2.47) only applies if we have iid (independently and identically distributed) vari-

ables at the true µ. Liang and Zeger also note that (2.47) are actually the score equations for

βββ when yi has a distribution from the exponential family, and their solution can be obtained

by an iteratively weighted least squares [28].

2.2.2.3 Quasi-Likelihood applied to Longitudinal Data

Liang and Zeger [28] in 1986 applied the quasi-likelihood approach to the analysis of longi-

tudinal data, which we will introduce. For the vector of responses, yyyi, for the ith subject, we

must examine the mean and covariance [28].

Let RRRi(ααα) be the ni × ni "working" correlation matrix (working is in quotations because as

expressed above, the correlation matrix in a GEE may and is often misspecified, note that

even if it is misspecified the GEE approach works) [28]. In our case, we have that RRRi(ααα) is

assumed to be fully specified by ααα which is the s× 1 vector of unknown parameters, which

is the same for all subjects [28].

We then obtain the following working covariance matrix

VVV i =
AAA

1/2
i RRRi(ααα)AAA

1/2
i

φ
, (2.48)

where AAA1/2
i is an ni × ni diagonal matrix with g(µij) as the jth diagonal element [28].

Note that even when RRRi(ααα) is incorrectly specified, we can obtain estimators that are con-

sistent and have consistent variance estimates.

Liang and Zeger extended (2.47) which were our score equations to the longitudinal case as

follows

K∑
i=1

DDD′iVVV
−1
i SSSi =

K∑
i=1

[
∂µµµi
∂βββk

]′ [
AAA

1/2
i RRRi(ααα)AAA

1/2
i

φ

]−1

(yyyi − µµµi) = 0, with µµµi = (µi1, ..., µin)′.

(2.49)

Note thatDDDi = ∂µµµi
∂βββk

is n×p. When ni = 1, we have that (2.49) reduces to the quasi-likelihood

equations (2.47). The regression coefficients are consistent as they are guaranteed by the
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equations (2.49) when the link function is correctly specified [28]. Liang and Zeger also note

that DDD′iVVV
−1
i does not depend on the yyy’s so that if E[SSSi] = 0, equations (2.49) converge to 0

and have consistent roots [28]. Also note that equations (2.49) are the score equations for βββ

for Gaussian outcomes [28].

Let UUU i(βββ,ααα) = DDD′iVVV
−1
i SSSi. Note that if we would like to adjust for confounding but don’t

want to make regression based adjustments, we can add inverse probability weights Wi to

UUU i as follows (see section 2.4.1.1.2),
∑K

i=1UUU i(βββ,ααα)Wi =
∑K

i=1DDD
′
iVVV
−1
i SSSiWi = 0.

We have that β̂ββR is an estimator of βββ for any RRRi(ααα), and is the solution of (2.49). Liang and

Zeger proved that β̂ββR is a consistent estimator of βββ [28].

Liang and Zeger introduced what is known as the "sandwich estimator" which is defined as

follows

VVV R = limK→∞K

(
K∑
i=1

DDD′iVVV
−1
i DDDi

)−1 [ K∑
i=1

DDD′iVVV
−1
i cov(yyyi)VVV

−1
i DDDi

](
K∑
i=1

DDD′iVVV
−1
i DDDi

)−1

= limK→∞K
(
VVV −1

1 VVV 0VVV
−1
1

)
,

(2.50)

where α̂(YYY ,βββ, φ) and φ̂(yyy,βββ) are K1/2 consistent estimators of α and φ respectively.

By replacing cov(yyyi) by SSSiSSS ′i and ααα,βββ and φ by their estimates in (2.50), without evaluating

cov(yyyi) directly, we can estimate VVV R consistently [28]. They also noted that β̂ββR does not

depend on the choice of ααα and φ [28].

We can also define the "sandwich estimator" from the work of Albert, Liang and Zeger [29]

in 1988 as follows

Vβ̂Vβ̂Vβ̂ = MMM−1
0 MMM1MMM

−1
0 , (2.51)

where VVV i(α) = AAA
1/2
i RRRi(α)AAA

1/2
i ,

MMM0 =
K∑
i=1

∂µ̂̂µ̂µ′i
∂βββ

V̂̂V̂V −1
i

∂µ̂̂µ̂µi
∂βββ

, (2.52)
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and

MMM1 =
K∑
i=1

∂µ̂̂µ̂µ′i
∂βββ

V̂̂V̂V −1
i (YYY i − µ̂̂µ̂µi)(YYY i − µ̂̂µ̂µi)′V̂̂V̂V −1

i

∂µ̂̂µ̂µi
∂βββ

[29]. (2.53)

Note that in this case β̂̂β̂β is the solution of

UUU(βββ) =
K∑
i=1

∂µ̂̂µ̂µ′i
∂βββ

V̂̂V̂V −1
i (α)(YYY i − µµµi). (2.54)

Note that (2.51) is the sandwich estimator for any link.

The regression coefficients, the correlation, and the scale parameters, ααα and φ, are solved for

iteratively in order to solve the GEE for β̂ββR [28]. We can calculate an updated estimate of

βββ by iteratively reweighted least squares given an estimate of RRRi(ααα) and of φ [28].

Liang and Zeger point out that φ does not need to be estimated since if the elements of RRR

are multiples of the parameters, ααα, then we can estimate βββ without estimating φ directly

and it can be accounted for in RRRi(ααα) [28].

When RRRi is misspecified, β̂ββR and VVV R are both robust to the misspecification, and the con-

fidence intervals for βββ will be asymptotically correct, however, we can increase efficiency by

choosing the working correlation matrix to be close to the actual one [28].

Nevertheless, the specification of the mean (µi), needs to be correct, however, RRR can be

incorrect. If RRR is misspecified, then our estimate is consistent but not efficient, and if RRR is

correct, then our estimate is both consistent and efficient.

2.2.2.4 Summary

A reason why GEEs are so powerful is that even if the covariance is misspecified, GEE

estimates of model parameters are valid [7]. The standard errors will not be precise if the

correlation structure is misspecified [7]. Whereas, a chosen model in practice is not necessar-

ily correct, thus, the GEE approach can be preferred over a GLM approach. However, if the

chosen model for a GLM is correct, the estimate will be more efficient and consistent in a
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GLM approach rather than the GEE approach. Choosing whether a GLM or a GEE is more

suitable for the analysis is a difficult choice which is up to the statistician as both methods

are considered to be "better" depending on the situation. However, there are doubly robust

methods that could be employed but they are beyond the scope of this thesis.

Typically, GEEs are used to determine confidence intervals, as the "sandwich estimator"

is incredibly powerful for determining the standard errors for an estimate. They are also

typically used for clustered data.

2.3 Nested Case-Control Design Studies

In order to understand the methods in this thesis, we will need to define some terms. A

cohort is a group of people who share a common characteristic or experience within a defined

period [14]. A cohort study is a longitudinal study that samples a cohort, performing a cross-

section at intervals through time (typically a randomized collection of prospective data) [14].

Retrospective means looking back in time, thus using existing data such as medical records.

Prospective means requiring the collection of new data.

In order to determine if an exposure is related to an outcome, case-control study designs are

used [14]. The case-control study can be described simply in the case of binary exposure

and response. First, one samples from the sub-population cases (a group that has the

outcome) and then samples from the sub-population of controls (a group known to not have

the outcome) [14]. Then, one compares the frequency of the exposure in the case group

to the frequency of exposure in a control group [14]. By definition, a case-control study is

always retrospective because it stratifies by the outcome then samples exposures rather than

sampling exposures and outcomes jointly or stratifying on exposures first.

Case-control studies have certain advantages compared to other study designs as they are

comparatively inexpensive to implement [14]. Case-control studies start with those who are

known to have the outcome, thus, they are mainly employed for studying rare outcomes and
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for investigating outbreaks as it can be more achievable to enroll enough participants [14].

As case-control studies are efficient, they are used as a preliminary analysis of a suspected

risk factor for a common condition, this helps determine the need for a longitudinal study,

which would be costly and time-consuming [14].

2.3.1 Nested Case-Control Studies and Logistic Regression

In order to estimate the effects of a single binary risk factor on disease risk, log odds regression

models can be employed [4]. Only by considering each factor after stratification to control

for effects of the others, and only by considering each level of exposure separately relative

to baseline may multiple categorical risk factors be accommodated [4]. Recall the logistic

regression model defined in equations (2.36) and (2.37). A key feature of the logistic model

for case-control studies is that the regression coefficients have a relative risk interpretation.

Breslow formulated the case-control study as:

P (Y = 1|X = x1)P (Y = 0|X = x0)

P (Y = 0|X = x1)P (Y = 1|X = x0)
= exp[(x1 − x0)βββ], (2.55)

where (x1 − x0)βββ represents the log relative risk for a subject with exposure x1 versus one

with exposure x0 [4].

Agresti [1] discusses conditional logistic regression and methods for comparing categorical

responses for two paired samples. He lets (Yi1, Yi2) denote the ith pair of observations

i = 1, · · · , n. Let Yit be the outcome for observation t for subject i, we thus have the

conditional model

logit[P (Yit = 1)] = αi + βxt [1]. (2.56)

As the effect β is defined conditional on the subject, it is called a conditional model [1].

It follows that

P (Yit = 1) =
exp(αi + βxt)

1 + exp(αi + βxt)
. (2.57)
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Independence of responses for different subjects and for two observations on the same subjects

are normally assumed [1]. However, Agresti notes that the responses are non-negatively

associated when averaged over all subjects [1]. He also notes that dependence in matched

pairs is not accounted for in the model [1]. Non-negative association through the model

structure is taken into account by fitting the model [1].

Note that observations (yi1, yi2) in a matched pair don’t always refer to the same subject [1].

Consider a binary response Y in a nested case-control setting, according to criteria that could

influence the response, we have that each case (Y = 1) is matched with a control (Y = 0)

[1]. In a nested case-control setting for subject t in matched pair i, Agresti considers the

model

logit[P (Yit = 1)] = αi + βxit. (2.58)

Agresti notes that the retrospective study only provides insight on the distribution of X

given Y but the probabilities modeled refer to the distribution of Y given X [1]. As the odds

ratio, exp(β), refers to the XY odds ratio that relates to both conditional distributions it

can be estimated [1].

If our binary response has p predictors for nested case-control matched pairs, we can gener-

alize the model (2.58) to

logit[P (Yit = 1)] = αi + β1x1it + β2x2it + · · ·+ βpxpit,

where xhit denotes the value of predictor h for observation t in pair i, t = 1, 2 [1].

2.4 Causal Inference

This section closely follows the order and concepts of the work of Hernán and Robins in their

book Causal Inference: What If [9].
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2.4.1 Cross-Sectional Setting

In this section, we will discuss the areas of Causal Inference in the cross-sectional setting

that are relevant to the methods in this thesis.

If X is randomized, then correlation (association) between X and Y can be inferred to be

causal.

2.4.1.0.1 Potential Outcomes Let X be a binary exposure and let Y (x) denote what you

observe if the subject receives level (x), thus the potential responses are (Y (x=0), Y (x=1)) =

(Y (0), Y (1)). Note that only one of these can be observed as the subject can only receive

one level of the exposure. Recall that exposure is interchangeably referred to as treatment

throughout the this thesis. If Y is the observed response from your sample then,

Y = XY (1) + (1−X)Y (0). (2.59)

If X is randomized, then X ⊥ (Y (0), Y (1)), thus the conditional expected value of Y given

X is

E[Y |X = x] = E[Y (x)]. (2.60)

Therefore we have that E[Y |X = 1] = E[Y (1)|X = 1] = E[Y (1)], the mean of the potential

outcome Y (1) in the population. If X is binary, and randomized (X ⊥ (Y (0), Y (1))), we have

that

E[Y |X = 1] = P [Y = 1|X = 1] = P [Y (1) = 1]. (2.61)

Note that if X 6⊥ (Y (0), Y (1)) we have that E[Y |X = x] = E[Y (x)|X = x] 6= E[Y (x)] for

either X = 0 or X = 1 (or both).

One can also make a weaker assumption that (Y (0), Y (1)) ⊥ X|L, where L is some set of

covariates.

We now define the Average Treatment Effect (ATE) to be

ATE = E[Y (1) − Y (0)] = E[Y (1)]− E[Y (0)]. (2.62)
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Note, that we can only observe a subject that receives one level of exposure, which creates

a problem because we cannot compare potential outcomes within the same subject.

If (Y (0), Y (1)) ⊥ X, we have that

E[Y |X = x] = xE[Y (1)|X = x] + (1− x)E[Y (0)|X = x]

= xE[Y (1)] + (1− x)E[Y (0)].
(2.63)

We can determine the sample average of people who received X = 1 as follows

E[Ȳ1] = E

[∑n
i=1 YiXi∑n
i=1Xi

]
= EX1,...,XnEY1,...,Yn|X1,...,Xn

[∑n
i=1 YiXi∑n
i=1Xi

]
= EX1,...,Xn

[
1∑n
i=1 Xi

n∑
i=1

EY1,...,Yn|X1,...,Xn [YiXi]

]
.

Note that here we fix what people received and are treating it as constant. Before we continue

the derivation, we have the following assumptions:

• Assumption 0: Subjects are a random sample of population

• Assumption 1: Subjects are independent

• Assumption 2: X is independent of everything including their potential outcomes,

(Y
(0)
i , Y

(1)
i ) ⊥ Xi if Xi is randomized (this is why we run randomized trials)
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E[Ȳ1] = EX1,...,Xn

[
1∑n
i=1 Xi

n∑
i=1

EYi|Xi
[YiXi]

]

= EX1,...,Xn

[
1∑n
i=1 Xi

n∑
i=1

E
Y

(0)
i ,Y

(1)
i |Xi

[(XiY
(1)
i + (1−Xi)Y

(0)
i )Xi]

]

= EX1,...,Xn

[
1∑n
i=1 Xi

n∑
i=1

E
Y

(0)
i ,Y

(1)
i |Xi

[XiY
(1)
i ]

]

= EX1,...,Xn

[
1∑n
i=1 Xi

n∑
i=1

XiEY (1)
i

[Y
(1)
i |Xi]

]

= EX1,...,Xn

[
1∑n
i=1 Xi

n∑
i=1

XiE[Y
(1)
i ]

]

= E[Y
(1)
i ]EX1,...,Xn

[
1∑n
i=1Xi

n∑
i=1

Xi

]
= E[Y (1)].

Thus the sample average of people who received X = 1 is, under a random assignment of

X,

E[Ȳ1] = E[Y (1)]. (2.64)

Similarly, for Ȳ0 replace Xi with (1 − Xi), thus the sample average of people who received

X = 0 is

E[Ȳ0] = E[Y (0)]. (2.65)

We can now extend our assumption to (Y
(0)
i , Y

(1)
i ) ⊥ Xi|Li, where Li is some set of covariates.

We want to find L such that potential outcomes are independent of exposure given a set of

covariates. If we find this set of covariates, L, then we can correct for the bias in estimating

the mean potential outcome from observed data.

2.4.1.0.2 Directed Acyclic Graphs (DAGs) In causal inference, expert knowledge is required

and assumptions about the causal relationships between exposure, outcome and other vari-

ables are necessary [9].

One can represent said expert knowledge and assumptions about the causal relationships

through Directed Acyclic Graphs (DAGs) [9]. They help clarify conceptual problems and
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enhance communication among researched by summarizing knowledge and assumptions in an

intuitive way [9]. By using DAGs in causal inference, it helps one visualize your assumptions

prior to your analysis.

Direct causal effects are denoted in DAGs by the presence of an arrow pointing from one

variable to another, the absence of an arrow means that there is no direct causal effect from

one variable to another. Note that the arrow does not specify whether the causal effect is

harmful or protective [9].

In our situation we have that X is the exposure, Y is the outcome and let L be a confounder,

assume that we have the following:

Figure 2.1 – Example of a DAG

X Y

L

In Figure 2.1, the arrow from X to Y means that exposure affects the probability of the

outcome. Furthermore, L affects both X and Y . Note that two variables are dependent if

there exists a directed path from one variable to another. Thus, in Figure 2.1 we have that

X and Y , L and X, and L and Y are dependent.

Note that in Figure 2.1 we have that Y 6⊥ X and Y 6⊥ X|L, and if you don’t account for the

presence of L in the analysis (even in X and Y are causally independent) you will get bias.

Figure 2.2 – Another Example of a DAG

X Y

L
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In Figure 2.2, we have that L is a confounder as its a common cause of X and Y . We have

that X and Y are marginally dependent, and that Y ⊥ X|L but Y 6⊥ X.

2.4.1.1 Inverse Probability (IP) Weighting

We want to determine the average causal effect of exposure on outcome. In this section we

will describe how to estimate this affect using inverse probability (IP) weighting.

2.4.1.1.1 Basis for the Methods We want estimate the average causal effect of exposure

X on the outcome Y . We classify individuals as exposed, X = 1, and unexposed, X = 0,

otherwise. The outcome Y is binary.

We have that the probability of outcome under the exposure and control can be written

as Ê[Y |X = 1] and Ê[Y |X = 0], where the difference is denoted Ê[Y |X = 1] − Ê[Y |X =

0].

We define E[Y (x=1)] as the probability of outcome that would have been observed if all

individuals in the population had been exposed, and E[Y (x=0)] if all the individuals in the

population had not been exposed.

We define the average causal effect on the additive scale as E[Y (x=1)] − E[Y (x=0)], that is,

the difference in outcome that would be observed if everyone had been exposed compared

with unexposed [9].

The observed population difference E[Y |X = 1] − E[Y |X = 0] is generally different from

the causal difference E[Y (x=1)] − E[Y (x=0)] [9]. The former will not generally have a causal

interpretation if the exposed and the unexposed difference with respect to characteristics

that affect outcome, due to potential confounding [9]. We let L be a confounder of the effect

of X on Y and our analysis will need to adjust for L.

The exposed and unexposed also differ in their distribution of other variables, if these vari-

ables are confounders they need to be adjusted for in the analysis [9]. We let L represent a

vector of the measured covariates.
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2.4.1.1.2 Estimating IP Weights in the Cross-Sectional Case A pseudo-population is created

when IP weighting is used where the direct effect from the confounders L to the exposure

X is eliminated; therefore, all confounding is eliminated if the confounders L are sufficient

to block all backdoor paths from X to Y [9]. That is, the association between X and Y in

the pseudo-population consistently estimates the causal effect of X on Y [9].

Hernán and Robins informally define that the pseudo population is created by weighting

each individual by the inverse of the conditional probability of receiving the exposure level

(P [X = 1|L], conditional probability of exposure i.e. the propensity score) that the individ-

ual received [9]. They define the individual-specific IP weights for exposure X as

WX =
1

f(X|L)
, (2.66)

where f(X|L) is the probability of exposure conditional on the measured confounders, i.e.

P [X = 1|L] for the exposed and P [X = 0|L] for the unexposed [9]. Note that only P [X =

1|L] needs to be estimated for a dichotomous exposure as P [X = 0|L] = 1 − P [X = 1|L]

[9].

We can fit a logistic regression model for the probability of exposure with the confounders

included as covariates in order to obtain parametric estimates of P [X = 1|L] in each of the

strata defined by L [9].

We now compute the difference, Ê[Y |X = 1]−Ê[Y |X = 0], in the pseudo-population created

by estimating the IP weights. In the pseudo-population, in the absence of confounding for the

effect of X, we have that association is causation, thus a consistent estimator of the causal

difference, E[Y x=1] − E[Y x=0], is also a consistent estimator of the associated difference,

E[Y |X = 1] − E[Y |X = 0] [9]. To estimate Ê[Y |X = 1] − Ê[Y |X = 0] in the pseudo-

population, Hernán and Robins fit the (saturated) linear mean model E[Y |X] = θ0 + θ1X

by weighted least squares, with individuals weighted by their estimated weights
(

1

P̂ [X=1|L]

)
for the exposed and

(
1

1−P̂ [X=1|L]

)
for the unexposed [9].

The IP weights, (2.66), adjust for confounding by L because they create a pseudo-population
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in which all individuals have the same probability of having X = 1 and X = 0. Thus, X

and L are independent from the pseudo-population which implies that all backdoor paths

from exposure X and the outcome Y via L are eliminated.

The IP weights, (2.66), are known as nonstabilized weights. There are other IP weights

known as stabilized weights that are also used that result in an unbiased estimate of the

ATE. Note that in a saturated model, there is no difference in using stabilized instead of

nonstabilized weights; however in a nonsaturated model, some argue it is better to use

stabilized weights [9]. However, in our case we will only be focusing on nonstabilized weights

as in (2.66) in order to simplify the presentation. All the methods presented in this thesis

could be extended to the case of stabilized weights with minimal additional work.

2.4.1.1.3 Marginal Structural Models Hernán and Robins consider a linear model for the

mean outcome under the dichotomous exposure level x, referred to as a saturated marginal

structural model, that is defined as follows

E[Y x] = β0 + β1x [9]. (2.67)

Note that in (2.67) that the covariates and confounders are marginalized out. As the outcome

variable of this model is counterfactual, and hence generally unobserved, it is referred to as

a marginal structural mean model [9]. Models of this type cannot be fit to data of any

real-world study, as we don’t observe all potential outcomes for all subjects [9].

In structural mean models, the parameters for exposure correspond to average causal effects

[9]. In (2.67) β1 = E[Y x=1]−E[Y x=0] as E[Y x] = β0 when x = 0 and E[Y x] = β0 + β1 when

x = 1. Thus, β1 is the average causal effect of exposure on the outcome.

Recall that a pseudo-population is created when IP weighting is used. Using IP weighted

least squares, the model, E[Y |X] = θ0 + θ1X, is fit to the pseudo-population. We have that

association is causation in the pseudo-population under their assumptions [9]. Thus, θ1 has

the same causal interpretation as the parameter β1 from (2.67). Therefore, it follows that θ̂1

is a consistent estimator of the causal effect in the population, β1 [9].
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2.4.2 Time-Varying Setting

In this section, we will discuss the areas of Causal Inference in the time-varying setting that

are relevant to the methods in this thesis. This section closely follows the order and concepts

of the work in Part III of Causal Inference: What If, by Hernán and Robins [9].

2.4.2.1 Time-Varying Exposures

2.4.2.1.1 The Causal Effect of Time-Varying Exposures Let us consider a time-fixed exposure

variableX, letX = 1 be exposed andX = 0 be unexposed, at time 0 and an outcome variable

Y measured K time points later. Thus, consider a time-varying dichotomous exposure Xk

that may change at every k time point, where k = 0, 1, 2, · · · , K with K being the last time

point. To denote exposure history we have that X̄k = (X0, X1, · · · , Xk) is the history of

exposure from time 0 to time k. We will represent X̄K as X̄ when we refer to the entire

exposure history through K. We will assume no individuals were exposed before the start

of the study at time 0, namely, X−1 = 0 for all individuals [9]. An individual who is

always exposed continuously has exposure history X̄ = (X0 = 1, X1 = 1, · · · , XK = 1) =

(1, 1, · · · , 1) = 1̄ and an individual who is never exposed has exposure history X̄ = (X0 =

0, X1 = 0, · · · , XK = 0) = (0, 0, · · · , 0) = 0̄ [9].

Assume we have a value for the outcome Y the end of our study at time K + 1. Our goal is

to estimate the average causal effect of the time-varying exposure X̄ on the outcome Y . For

the time-varying exposure, Xk, we need to take into account the effect all times k between 0

and K as the average causal effect of a time-varying exposure cannot be defined for a single

time-point k [9]. Thus, the average causal effect is redefined in a time-varying setting as the

difference between the counterfactual mean outcomes under two exposure strategies from

time k = 0 to time k = K [9].

2.4.2.1.2 Treatment Strategies Hernán and Robins define a treatment strategy as a rule

to assign exposure at each time k [9]. Recall, the terms treatment and exposure are used

interchangeably in this thesis. For example, the always expose strategy is denoted by x̄ =
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(1, · · · , 1) = 1̄, and the never expose strategy is denoted by x̄ = (0, · · · , 0) = 0̄ [9]. Thus, they

define an average causal effect of X̄ on the outcome Y as the difference between the mean

counterfactual outcome Y x̄=1̄ under the always exposed strategy and the mean counterfactual

outcome Y x̄=0̄ under the never expose strategy [9]. Thus, an average causal effect of X̄ on

the outcome Y is E[Y x̄=1̄]− E[Y x̄=0̄] [9].

Consider the time-varying covariate Lk measured at time-point k in all individuals. Let the

variable Lk be dichotomous. At time zero, we could let L0 = 0. We could then consider

the exposure strategy of when Lk = 0, do not exposure and when Lk = 1, begin exposure

and expose continuously after that time [9]. The value of the individual’s evolving Lk will

effect their exposure xk at time k which is an example of a dynamic treatment strategy [9].

Hernán and Robins define static treatment strategies as non-dynamic strategies for x̄ for

which exposure does not depend on covariates [9].

The exposure strategies of interest need to be specified in order to ensure that a well-defined

average causal effect of a time-varying exposure [9]. The causal effect for time-varying

exposures do not have a single definition [9]. For pairs of exposure strategies, as many

causal effects can be defined [9].

A sequentially randomized experiment is where, for an individual, exposure is randomly

assigned at each time k, however, they are not as commonly used in practice [9].

2.4.2.1.3 Time-Varying Confounding Let us consider a DAG that contains time points k =

0, 1, 2 · · · . Consider covariate Lk that affects subsequent exposures Xk, Xk+1, · · · and that

affects the outcome Y through an unmeasured covariate. We need the data on L̄k for all

individuals in order to have no unmeasured confounding for the effect of X̄ and to estimate

the causal effects of treatment strategies, thus, L̄k are defined to be time-varying confounders

for the effect of time-varying exposure on the outcome [9]. However, unmeasured confounding

can still be present, thus, bias can still arise when comparing treatment strategies.

If the confounder affects the exposure and the exposure affects the confounder, there is
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treatment-confounder feedback, but treatment-confounder feedback is not necessary in order

to have time-varying confounding [9]. Robins shows that traditional methods cannot be used

to correctly adjust for time-varying confounders and treatment-confounder feedback as they

may induce bias and thus not provide a valid estimate of the causal effect even with sufficient

longitudinal data [17].

In general, when the joint effect of the exposure components Xk can be estimated simultane-

ously and without bias, then valid estimation of the effect of treatment strategies is possible

[9]. However, even when data on all time-varying confounders are available, this may not be

possible to achieve using stratification [9].

2.4.2.1.4 Estimating IP Weights in the Time-Varying Case Recall that the denominator of

the IP weights is an subject’s probability of receiving the exposure, conditional on the sub-

ject’s confounder values [9]. When we have time-varying exposure and confounders we need

to generalize the IP weights (2.66) [9]. We can extend the definition of the IP weights in

the cross-sectional case to the time-varying case by noting that the denominator of the IP

weights is now an subject’s probability of receiving their exposure history, conditional on the

subject’s confounder history.

Hernán and Robins state that the general form of the nonstabilized IP weights in the time-

varying case is

W X̄ =
K∏
k=0

1

f(Xk|X̄k−1, L̄K)
, (2.68)

for k = 0, 1, · · ·K [9].

A pseudo-population is created when these IP weights are used where mean of Y x̄ is the same

to that in the actual population, however, we have constant randomization probabilities at

each time point k [9].

We need to estimate f(Xk|X̄k−1, L̄K) from the data in observational studies [9]. We can

fit a logistic regression model to estimate the conditional probability of a dichotomous ex-

posure P [Xk = 1|X̄k−1, L̄k] at each time k for high-dimensional data [9]. The estimates
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f̂(Xk|X̄k−1, L̄K) from these models will then replace f(Xk|X̄k−1, L̄K) in W x̄ [9]. The result-

ing estimates of E[Y x̄] and E[Y x̄] − E[Y x̄′ ] will be biased if these estimates are based on a

misspecified logistic model [9].

A model that combines information from many strategies to help estimate a given E[Y x̄]

needs to be determined as the number of unknown quantities, E[Y x̄], can be more than the

sample size [9]. One can assume, under strategy x̄, the effect of exposure history x̄ on the

mean outcome increases linearly as a function of the cumulative exposure cum(x̄) =
∑K

k=0 xk

[9]. Hernán and Robins state that this is shown in the marginal structural mean model

E[Y x̄] = β0 + β1cum(x̄) (2.69)

for all x̄, which is a more general version of the marginal structural mean model for cross-

sectional exposures discussed in Section 2.4.1.1.3.

We have that the average causal effect of the time-varying exposure, x̄ is measured by β1 and

that β1 × cum(x̄) is equal to E[Y x̄]− E[Y x̄=0̄], which is the average causal effect [9].

As discussed in the cross-sectional case in Section 2.4.1.1.3, the ordinary linear regression

model is fit in order to estimate the parameters of the marginal structural model as fol-

lows

E[Y |X̄] = θ0 + θ1cum(X̄) (2.70)

Recall that in the pseudo-population, weighted least squares with weights being estimates

W X̄ are used [9]. Similarly to the cross-sectional case, Hernán and Robins determined that

θ̂1 is a consistent estimator of β1 [9].

If the marginal structural model is misspecified, the estimates of E[Y x̄] will be incorrect

[9].
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Chapter 3

Causal Methods for Cross-Sectional Case Control

Methods

In this chapter, we introduce our proposed methods for a simple, single time point in a

nested case-control study. In this, we can illustrate the estimator in closed form and then

run a simulation in order to show how our methods work in practice.

3.1 Cross-Sectional Methods

3.1.1 Causal Methods

Suppose that exposure, also denoted treatment, X, outcome Y and a set of confounders L

are observed for N individuals. Let Y (x) denote the possibly unobserved, potential outcome

that would be observed if, possibly counterfactually, exposure X were set to level x = 0

(unexposed) or 1 (exposed). Let Y and L be binary, and X be randomized. Thus, the

probability that our outcome is Y = 1 given different levels of exposure is

E[Y (x)] = P [Y (x) = 1|X = x]. (3.1)

We have two models: X = 1|L = 0, 1.
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For the most saturated model, we will have 4 different probabilities of Y = 1, P (Y (1)|L =

1), P (Y (0) = 1|L = 1), P (Y (1) = 1|L = 0), P (Y (0) = 1|L = 0). We want to compute the

effect of treatment. Recall that from 2.4.1.0.1, we have that Y = XY (1) + (1−X)Y (0). As

X is binary and randomized, then X ⊥ (Y (0), Y (1)), thus our expected value is E[Y |X =

1] = E[Y (1)|X = 1] = E[Y (1)] = P [Y = 1|X = 1] = P [Y (1) = 1].

Assume that (Y (0), Y (1)) ⊥ X|L, where L is the confounder. We have that the average

treatment effect of our exposure is

Average Treatment Effect (ATE) = E[Y (1) − Y (0)] = E[Y (1)]− E[Y (0)]. (3.2)

Additionally, as (Y (0), Y (1)) ⊥ X, we have that E[Y |X = x] = xE[Y (1)] + (1 − x)E[Y (0)].

Note that as L is a confounder, and X is randomized, it follows that L is independent of

exposure. L is also a confounder of the effect of exposure, X, on the outcome, Y .

In order to account for the causal effects, we employ IP treatment weighting, as outlined in

2.4.1.1.2, we define our unstabilized weights as follows

WX =
1

f(X|L)
=


1

P [X=1|L]
treated,

1
P [X=0|L]

= 1
1−P [X=1|L]

untreated.

(3.3)

Our goal is to estimate E[Y (x)] in order to determine the ATE. Our estimator is defined as

follows

Ê[Y (x)] = P̂ [Y (x) = 1|X = x]. (3.4)

More generally, to obtain estimates of P [X = 1|L], we often fit a logistic regression model

for the probability of exposure with the confounders included as covariates. To estimate

Ê[Y (x)], we fit a saturated linear mean model E[Y |X] = θ0 + θ1X by weighted least squares,

with the individuals weighted by their estimated weights.
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3.1.2 Sampling Methods

Recall, our goal is to use finite population methods in a causal setting in order to analyze

nested case-control sampled data. We now combine the causal methods and finite population

methods from Chapter 2. In a nested case-control analysis, we normally include all of the

cases (those with outcome Y = 1 in our sample) and then take a random sample of the

controls. In this thesis, we focus on a SRS of all controls.

Let i denote an individual, then define πi = P(unit i in the sample). If individual i is a case,

then πi = 1. Let j denote another individual, if j is a control, then πj = nc/Nc, where Nc is

the total number of controls and nc is the sample number of controls.

We use the Horvitz-Thompson estimator, defined as follows in Section 2.1.2.2

t̂HT =
∑
i∈S

ti
πi

=
N∑
i=1

Zi
ti
πi
,

where S is the sample from the cohort and Zi = 1 if individual i is in the sample, and 0

otherwise.

We can rewrite the Horvitz–Thompson estimator for our problem using the sampling weights.

The first-stage sampling weight for individual i in the nested case-control sample is

wi =
1

πi
=


1 case,

Nc

nc
control.

(3.5)

Thus, the HT estimator for the cohort total is t̂HT =
∑

i∈S wit̂i. Note that wi is our sampling

weight.

We want to apply the above finite population methods to our causal cohort. Recall our IP

treatment weights in equation (3.3). Let U be our entire cohort, and let S be our sample

from the cohort. Additionally, let 1{Xi=x,Li=li} be the indicator function which is equal to 1

if the condition is satisfied (if Xi = x and Li = l) and 0 otherwise (if X 6= x and/or Li 6= li)

for individual i. Recall that we’re restricting in this case to binary L. We have that the
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probability of exposure for each level of L for the entire cohort is

P [X = x|L = l] =

∑
i∈U 1{Xi=x,Li=li}∑

i∈U 1{Li=li}
. (3.6)

Note that equation (3.6) is known as the propensity score. In order to determine our weights,

we want to estimate the probability of exposure for each level of L. By doing so, we determine

the probability of exposure for each level of L for the sample from the cohort and multiply

that by wi to account for the sampling weights, thus giving us our HT estimator.

P̂ [X = x|L = l] =

∑
i∈S 1{Xi=x,Li=li}wi∑

i∈S 1{Li=li}wi

. (3.7)

By plugging in the values of wi, we get the following

P̂ [X = x|L = l] =

∑
i∈Scase

1{Xi=x,Li=li} · 1 +
∑

i∈Scontrol
1{Xi=x,Li=li} · Nc

nc∑
i∈Scase

1{Li=li} · 1 +
∑

i∈Scontrol
1{Li=li} · Nc

nc

. (3.8)

In order to simplify the notation and make it more understandable, we define the follow-

ing:

∑
i∈Scase

1{Xi=x,Li=li} = n1xl = number of cases with X = x and L = l in the sample,

∑
i∈Scontrol

1{Xi=x,Li=li} = n0xl = sample number of controls with X = x and L = l in the sample,

∑
i∈Scase

1{Li=li} = n1•l = number of cases with L = l in the sample,

∑
i∈Scontrol

1{Li=li} = n0•l = number of controls with L = l in the sample,

nc = n0•• = number of controls in the sample.

Therefore, our probability can be written as

P̂ [X = x|L = l] =
n1xl + Nc

n0••
n0xl

n1•l + Nc

n0••
n0•l

. (3.9)

This estimated probability accounts for the sampling as well as the causal effects.
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Recall that our exposure is dichotomous, X = 0, 1, and that we have two levels of our

confounder L = 0, 1. Therefore, we have the following estimators

P̂ [X = 1|L = 1] =

∑
i∈S 1{Xi=1,Li=1}wi∑

i∈S 1{Li=1}wi
=
n111 + Nc

n0••
n011

n1•1 + Nc

n0••
n0•1

,

P̂ [X = 1|L = 0] =

∑
i∈S 1{Xi=1,Li=0}wi∑

i∈S 1{Li=0}wi
=
n110 + Nc

n0••
n010

n1•0 + Nc

n0••
n0•0

,

P̂ [X = 0|L = 1] = 1− P̂ [X = 1|L = 1] = 1−
∑

i∈S 1{Xi=1,Li=1}wi∑
i∈S 1{Li=1}wi

=
n101 + Nc

n0••
n001

n1•1 + Nc

n0••
n0•1

,

P̂ [X = 0|L = 0] = 1− P̂ [X = 1|L = 0] = 1−
∑

i∈S 1{Xi=1,Li=0}wi∑
i∈S 1{Li=0}wi

=
n100 + Nc

n0••
n000

n1•0 + Nc

n0••
n0•0

.

Now, we can use our estimator for the probability of exposure for each level of L, in order

to estimate the probability that our outcome is Y = 1 given different levels of exposure

(X = 0, 1).

Recall that we want to determine E[Y (x)], let us consider

E[Y (x)] = P [Y (x) = 1|X = x] =

∑
i∈U 1{Yi=1,Xi=x}

N
, (3.10)

where N is the number of people in the cohort. However, (3.10) does not work, as it will

be biased due to confounding. Therefore, let us adjust for confounding using IP treatment

weighting in the cohort as follows:

E[Y (x)] = P [Y (x) = 1|X = x] =

∑
i∈U

1{Yi=1,Xi=x}
P [Xi=x|Li=li]

N
. (3.11)

Note, this is on the whole cohort. Thus, let us define our estimator accounting for the

sub-sampling as follows

Ê[Y (x)] = P̂ [Y (x) = 1|X = x] =

∑
i∈S

1{Yi=1,Xi=x}

P̂ [Xi=x|Li=li]
wi

N
. (3.12)

When we plug in the values of wi, we get the following

Ê[Y (x)] =

∑
i∈Scase

[
1{Yi=1,Xi=x}

P̂ [Xi=x|Li=li]

]
· 1 +

∑
i∈Scontrol

[
1{Yi=1,Xi=x}

P̂ [Xi=x|Li=li]

]
· Nc

nc

N
. (3.13)
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Let ∑
i∈Scase

1{Yi=1,Xi=x} = n1x• = number of cases with Y = 1 and X = x in the sample,

∑
i∈Scontrol

1{Yi=1,Xi=x} = n1x• = number of controls with Y = 1 and X = x in the sample = 0.

Recall that all controls have Y = 0, therefore
∑

i∈Scontrol

[
1{Yi=1,Xi=x}

P̂ [Xi=x|Li=li

]
= 0. Therefore, we

obtain

Ê[Y (x)] =

∑
i∈Scase

[
1{Yi=1,Xi=x}

P̂ [Xi=x|Li=li]

]
N

=
1

N

∑
i∈Scase

·

[
1{Yi=1,Xi=x}

P̂ [Xi = x|Li = li]

]
. (3.14)

By plugging in our estimator P̂ [Xi = x|Li = li] we thus obtain

Ê[Y (x)] = P̂ [Y (x) = 1|X = x] =
1

N
·
∑
i∈Scase

1{Yi=1,Xi=x}[∑
i∈S 1{Xi=x,Li=li}wi∑

i∈S 1{Li=li}wi

]
=

1

N
·
∑
i∈Scase

1{Yi=1,Xi=x}[
n1xl+

Nc
n0••

n0xl

n1•l+
Nc

n0••
n0•l

] . (3.15)

As our exposure is dichotomous, we obtain the following estimators:

Ê[Y (1)] = P̂ [Y (1) = 1|X = 1] =
1

N

∑
i∈Scase

·

[
1{Yi=1,Xi=1}

P̂ [Xi = 1|Li = li]

]

=
1

N
· n11•[

n1xl+
Nc

n0••
n0xl

n1•l+
Nc

n0••
n0•l

] .

Ê[Y (0)] = P̂ [Y (0) = 1|X = 0] =
1

N

∑
i∈Scase

·

[
1{Yi=1,Xi=0}

P̂ [Xi = 0|Li = li]

]

=
1

N

∑
i∈Scase

·

[
1{Yi=1,Xi=0}

1− P̂ [Xi = 0|Li = li]

]

=
1

N
· n11•[

1−
n1xl+

Nc
n0••

n0xl

n1•l+
Nc

n0••
n0•l

] .
We have thus determined our estimator as a function of counts for the probability that our

outcome is Y = 1 given different levels of exposure (X = 0, 1), taking into account different

levels of our confounder (L = 0, 1).
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Recall that our goal is to estimate the Average Treatment Effect (ATE) (2.62). Therefore

we want to estimate the ATE for the cohort and compare that to the ATE for the sample

from the cohort. We will estimate two different ATE’s for the sample from the cohort, the

difference is the estimation of the propensity score, P [X = x|L = l]. One will use the

estimated propensity score from the full cohort, the other will use the estimated propensity

score determined from the sampled cohort.

Additionally, we can compute the true value of the ATE, and compare that to our three

estimates. For the true value of the ATE, we need to calculate the true value of E[Y (x)],

which is defined as follows

Etruth[Y (x)] = P [Y (x) = 1|X = x, L = 1]P [L = 1] + P [Y (x) = 1|X = x, L = 0]P [L = 0]

= P [Y (x) = 1|L = 1]P [L = 1] + P [Y (x) = 1|L = 0]P [L = 0].

(3.16)

Recall that L is a confounder, and as we are conditioning on it we have that P [Y (x) = 1|X =

x, L = l] = P [Y (x) = 1|L = l].

Note that in our case, as we include all of the cases in the cohort, the cases have probability

1 of being sampled, and the controls are chosen via a SRS, thus the controls have probability

nc/Nc of being sampled (where nc = sample number of controls, Nc = cohort number of

controls). Therefore if i is a case and j is a case we have that V̂SY G = 0 as πiπk = πik,

and if i is a case and j is a control, or vice-versa we also have V̂SY G = 0 as πiπk = πik.

Therefore, we have that the covariance is 0, and we have 0 variability as all of the cases

are included in the sample. Thus, this simplifies our analysis. However, if we use the with-

replacement variance estimator, (2.12), it will never equal zero, thus, it will actually get

more complicated. Therefore, in our case the Sen-Yates-Grungy (SYG) estimator of the

variance would be recommended, (2.11), as it simplifies if we have two cases, or a case and

a control.

In the following section, we will create a synthetic cohort, and then using our methods, we

will sample from it and then compute the ATE for each method.
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3.2 Simulation

3.2.1 Simulation Background

For the simulation studies we used the simcausal R package [24, 25]. In our case, it was a

very useful vehicle for setting up our simulation, and we were able to easily extract both true

and estimated causal effects and the package enabled us to conduct transparent simulation

studies that can be easily reproduced. Another benefit of using this package is that it is very

easy to adapt our simulation, by adding time points, nodes, or adapting dependencies.

For the cross-sectional simulation, we started by replicating an example in the "Understand-

ing Marginal Structural Models for Time-Varying Exposures: Pitfalls and Tips" paper by

Shinozaki and Suzuki [22]. In their paper, they have an example with one time point. Their

example supposes that exposure Xi, outcome Yi, and set of covariates Li are observed for in-

dividual i = 1, · · · , n. Let Y x
i denote the possibly unobserved, potential outcome that would

be observed if, possibly counterfactually, exposure Xi were set to level x = 0 (unexposed)

or 1 (exposed). Note, from now on they omit the subscript i to avoid confusion. Then,

the average causal effect of exposure X on outcome Y may be defined as E[Y 1] − E[Y 0],

which compares counterfactual expectations (or risks for a binary outcome) of Y1 and Y0 in

the same cohort along the difference-scale. We can illustrate the causal effects from their

example in a DAG as follows:
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L

X

Y

Figure 3.1 – DAG for Cross-Sectional Example as Generated from the simcausal Package

In their hypothetical cohort they assigned a sample size of n = 1, 240. The following table

(Table 1 from the paper), illustrates their hypothetical cohort. In our simulation we use

the proportion of combinations from Table 3.1 as population level probabilities for simula-

tion.

Table 3.1 – Cross-Sectional Hypothetical Cohort Data from the Shinozaki and Suzuki Paper

used in our Simulation in 3.2.2

Stratum

L X P(X|L) E[Y|X,L]

1 1 0.226 0.75

1 0 0.581 0.6

0 1 0.145 0.333

0 0 0.048 0.25

In our simulation, we chose a cohort size of N = 100, 000. The following probabilities,

P (L), P (X|L), and P (Y = 1|L,X), were the same ones used in the paper, as shown in Table

1 in the paper. We then defined our DAG in the simcausal package using the structure
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in Figure 3.1 and the probabilities defined in the Shinozaki and Suzuki paper and ran our

simulation.

3.2.2 Simulation Results

In our simulation, we had two different versions: one keeping the cohort constant with 50

simulations, and one having 10 different cohorts with 50 simulations. We found that 50

simulations gave very stable results and allowed us to explore more scenarios.

In our results, we have the values of E[Y X=1] and E[Y X=0]. We calculated the true value,

the estimated value using the IP treatment weights. We also calculated the sampled value

using the true propensity score as well as the sampled value estimating the propensity score

from the sampled cohort. Additionally, we calculated the difference from the truth, which is

the estimated value subtracted from the true value as well as the percentage difference from

the truth.

Recall that the goal of our simulation is to determine how much you lose by sub-sampling.

Essentially, we want to know if you achieve a close enough level of accuracy without analyzing

the full cohort prospectively. For very large datasets, by not using the full cohort, one reduces

analytical complexity. Note that we showed theoretically that our results using sub-sampling

are unbiased due to the properties of IP treatment weighting. We now want to observe how

our results vary from simulation to simulation.

To better understand our results for each treatment scheme, we looked at the number of

and the proportion of participants for each treatment scheme and outcome on the simulated

cohort. This is outlined in Table 3.2 below. Recall that the size of our cohort is N = 100, 000.

We then took an average of the estimates over each replication of the sub-sampling and

dataset. Recall, we did 50 replications for 10 datasets. Additionally, we looked at the

percentage difference of our two sampling estimates from the estimate on the whole dataset.
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Table 3.2 – Summary of Individuals for each Treatment Scheme and Outcome in the Cross-

Sectional Case

X Y Count Proportion

0 0 74,677 0.74677

0 1 4,161 0.04161

1 0 19,621 0.19621

1 1 1,541 0.01541

Table 3.3 – Estimated Mean Counterfactual per Treatment for each Estimator in the Cross-

Sectional Case

Treatment True Cohort Estimate Sampled (Full Prop Score) Sampled (Est Prop Score)
Sampled (Full Prop Score)

% Difference from Est

Sampled (Est Prop Score)

% Difference from Est

X = 0 0.0543 0.0532 0.0532 0.0532 1.00% 1.00%

X = 1 0.0687 0.0707 0.0708 0.0708 1.00% 1.00%

From Table 3.3, we can see that the mean values of the estimate on the whole dataset,

as well as the two sampled estimates are very close to the true value. We can also see

that the percentage difference of each sampling estimate compared to the full data estimate

only differs by 1.00%, thus, indicating that we do not deviate much from the estimate by

sampling, in both the full and estimated propensity score case. Additionally, we can see that

both sampling estimates perform almost as well as the estimate on the full data and that

both sampling estimates give the same estimate.

We then look at the average standard error of the estimates over each replication and dataset.

Table 3.4 – Estimated Standard Error per Treatment for each Estimator in the Cross-

Sectional Case

Treatment True Cohort Estimate Sampled (Full Prop Score) Sampled (Est Prop Score)
Sampled (Full Prop Score)

% Difference from Est

Sampled (Est Prop Score)

% Difference from Est

X = 0 0 0.000793 0.000782 0.000782 0.985% 0.985%

X = 1 0 0.00178 0.00170 0.00170 0.956% 0.956%
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From Table 3.4, we can see that the standard error for the full estimate as well as both

sampled estimates are very similar. This is also reflected in the percentage difference of

each sampled estimate from the estimator, as the percentage differences are very small.

Additionally, we can see that the standard error is higher for the X = 1 treatment scheme,

however note that in Table 3.2, we can see that there is a smaller proportion of individuals

who underwent theX = 1 treatment scheme, which naturally would give us a higher standard

error. From Table 3.4 we can deduce that we only get ∼ 1.00% more standard error from

sampling, meaning that by sampling, we do not lose much accuracy. Additionally, there is no

real difference between our sampling estimates using the full versus the estimated propensity

score.

In order to fully visualize our estimated values, we have the following boxplot in Figure 3.2

to show the true and estimated values for each treatment scheme.
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Figure 3.2 – Boxplot of the Estimates in the Cross-Sectional Case

Boxplot showing the estimated value for the truth as well as for our three estimators: the full data

estimator, the sampled data with the full data propensity score estimator and the sampled data

with the sampled data propensity score. The boxplots are shown for each treatment regime: X = 0

and X = 1. Recall that the estimate is of E[Y (X=x)].

As our aim is to determine the quality of our estimates, and to see if we can maintain that

quality by sampling, we visualized the percentage difference from the truth for each estimate.

This is shown in Figure 3.3.
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Figure 3.3 – Percentage Difference from the Truth in the Cross-Sectional Case

Boxplot showing the percentage difference from the truth of three estimators: the full data

estimator, the sampled data with the full data propensity score estimator and the sampled

data with the sampled data propensity score. This was calculated by the following formula:

100× Estimated Value−True Value
True Value .

From Figure 3.3, we can see that our estimates vary more from the truth in the X = 1

treatment scheme, and are very close to the truth in the X = 0 treatment scheme. Note

that both arms in the sub-sampled data have the same number of observations. However, for

our data the inverse probability treatment weights for the exposure arm are more unstable.

Additionally, we can see that the difference of our two sampling estimates from the truth are

very close to the difference of the estimate from the full dataset from the truth. Thus, this

shows us that our sampling performs almost the same as our estimate from the full dataset,

meaning that we are not losing accuracy by sampling as well as we are not losing accuracy
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by using the estimated propensity score versus the propensity score determined on the whole

dataset.

As we did 50 replicates on 10 datasets, we want to see if there is a lot of variation between

datasets. In Figure 3.4 we can see the average value over all the replications for each estimate

over each dataset.
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Figure 3.4 – Average Estimates per Dataset in the Cross-Sectional Case

Graph showing the estimated values for our three estimators for each dataset. For each of 10

datasets, 50 replications were run. Each line is for each if the 10 datasets in order to see how the

estimated value changes for each estimator.

We can see in Figure 3.4 that there is more variation between datasets than between esti-

mators.

Additionally, we want to determine the effect of the sample size in our sub-sampling. We

initially chose to have the same number of cases as controls. In the cross-sectional case we
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had 5, 702 cases out of a cohort of N = 100, 000, thus we took a SRS of n = 5, 702 of the

94, 298 controls. We then ran our simulation by doubling the number controls, thus for the

5, 702 cases out of a cohort of N = 100, 000, thus we took a SRS of n = 2× 5, 702 = 11, 404

of the 94, 298 controls. By doubling the number of controls in the sample, the standard

error per treatment per estimator is slightly smaller. However, similar to the results in

Table 3.4 we still obtain only ∼ 1.00% more standard error from sampling, even though we

are including twice as many controls in the analysis. However, we do have a slightly lower

percentage difference of the estimated values from the truth when doubling the number of

controls.

These results do not come as a surprise as it is known that the number of cases drive

the accuracy of the estimator, not the number of controls. Hsieh, Bloch and Larsen [12]

determine, in equation (1) of their paper, that the required total sample size is determined

by

n = (Z1−α/2 + Z1−β)/[P1(1− P1)β∗2], (3.17)

where n is the required total sample size, β∗ is the effect size to be tested, P1 is the event

rate at the mean of treatment X, and Zu is the upper uth percentile of the standard normal

distribution [12]. We can see that they determine that the required total sample size depends

most on the event rate, which means that it depends on the number of cases, which in our

case is Y = 1. Due to the nested case-control sampling that we employ, it is such that

all of the individuals who experience the event, the cases, are included in the sample, with

probability 1 of being included, and then we take a SRS of the controls. Therefore, by

doubling the number of controls, the number of cases remains unchanged, thus only slightly

affecting the results.
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Chapter 4

Causal Methods for Time-Varying Case Control

Methods

In this chapter, we extend the cross-sectional outcome methods introduced in Chapter 3

to the time-varying case. We first introduce the methods mathematically. Then, as in

the previous chapter, we run a simulation study to illustrate how our methods work in

practice.

4.1 Time-Varying Methods

4.1.1 Causal Methods

Recall in Chapter 3, we assumed exposure, also denoted treatment, X, outcome Y and a set

of confounders L for N individuals. Let us extend this cross-sectional example to multiple

time-points. We define a time-varying setting with multiple time points k = 0, 1, · · · , K.

We observe a time-varying dichotomous treatment Xk that may change at every k time

point of follow-up, where k = 0, 1, 2, · · · , K with K being the last time point. Denote X̄k =

(X0, X1, · · · , Xk) as the history of exposure from time 0 to time k and L̄t = (L0, L1, · · · , Lk)

as the confounder history from time 0 to time k. Let X̄ denote the entire treatment history
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and L̄ denote the entire confounder history.

Recall from Chapter 2 that in a time-varying setting with multiple time points k = 0, 1, · · · , K,

the IP treatment weighting formula based on L for the counterfactual mean E[Y x̄] is the

average of Y among subjects with X̄ = x̄ in a stabilized pseudo-population constructed

by weighting each subject by their subject-specific stabilized IP treatment weights [8]. We

define our unstabilized weights as follows:

W X̄ =
K∏
k=0

1

f(Xk|X̄k−1, L̄k)
. (4.1)

We define the counterfactual mean, E[Y x̄], as follows,

E[Y x̄] = β0 + β1 ∗ cum(x̄)

= β0 + β1 ∗
K∑
k=0

xk.
(4.2)

It follows that average causal effect, E[Y x̄]− E[Y x̄=0̄], is equal to β1 ∗ cum(x̄) [9].

By extending what we had in the cross-sectional case we have that the alternative expression

of E[Y x̄]

E

[(
K∏
k=0

1{X̄=x̄}

P (Xk|X̄k−1, L̄k)

)
∗ Y

]
. (4.3)

4.1.2 Sampling Methods

We then will apply case-control sampling to the dataset, as we did in the cross-sectional

case. That is, we included every case in our sample and then took a SRS of the controls

with nc = sample number of controls and Nc = total number of controls. Thus, we had the

following probabilities of inclusion, where πi is the probability that unit i is in the cohort:

πi =


1 case,

nc

Nc
control.

(4.4)
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Thus, the sampling weights are:

wi =
1

πi
=


1 case,

Nc

nc
control.

(4.5)

As in the single time point case, our weights were the product of the sampling weights and

the IP treatment weights giving us a HT estimator. It’s the same in the time-varying case,

thus, our weights then are:

Wi =


∏K

k=0
1

f̂(Xk|X̄k−1,L̄k)
case,∏K

k=0
1

f̂(Xk|X̄k−1,L̄k)
∗ Nc

nc
control.

(4.6)

As in Chapter 3, we need to estimate the propensity score f(Xk|X̄k−1, L̄k) = P (Xk|X̄k−1, L̄k),

this will be done by we fitting a logistic regression model for the probability of exposure with

the exposure and confounder history included as covariates.

We then applied the weights in (4.6) to our sample from the cohort in order to determine

the treatment effects as we did in the full cohort case. Thus, we get that the estimate of the

counterfactual mean is

Ê[Y x̄] = Ê

[∑
i∈S

wi

(
K∏
k=0

1{X̄=x̄}

P̂ (Xk|X̄k−1, L̄k)

)
∗ Y

]
. (4.7)

We then want to estimate the counterfactual mean of each treatment scheme, this can give

is the ATE for each treatment scheme. Therefore we want to estimate the counterfactual

mean of each treatment scheme for the cohort and compare that to the counterfactual mean

of each treatment scheme for the subsampled cohort. We will estimate two different coun-

terfactual means of each treatment scheme for the sample from the cohort, the difference

between the estimators is the estimation of the propensity score, P (Xk|X̄k−1, L̄k). One will

use the estimated propensity score from the full cohort, the other will use the estimated

propensity score determined from the sampled cohort. Additionally, we will determine the

true value of the counterfactual mean of each treatment scheme and compare it to our three

estimates.
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In the following section, we will create a cohort, and then using our methods, we will sample it

and then determine the counterfactual mean of each treatment scheme for each method.

4.2 Simulation

4.2.1 Simulation Background

As with the cross-sectional time case, we used the simcausal R package [24, 25].

For the time-varying simulation, we decided to start by replicating the simple example in

the "Understanding Marginal Structural Models for Time-Varying Exposures: Pitfalls and

Tips" paper by Shinozaki and Suzuki [22]. In their paper, they have an example with two

time points. At baseline they do not include a confounder and just have treatment (we will

denote it by X0) which is randomized. At time point 1, there is a confounder (L1) and

another treatment (X1). We can illustrate the causal effects from their example in a DAG

as follows:

X_0
L_1

X_1

Y_1

Figure 4.1 – DAG for Time-Varying Example as Generated from the simcausal Package

In their hypothetical cohort, they had a sample size of n = 15, 000. Note that they de-
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note treatment at baseline by X1, and the confounder and treatment at time point 2 by

X2, and L2, respectively. The following table (which is Table 4 from the paper), illustrates

their hypothetical cohort. In our simulation we use the proportion of combinations from

Table 4.1.

Table 4.1 – Time-Varying Hypothetical Cohort Data from the Shinozaki and Suzuki Paper

used in our Simulation in 4.2.2

X1 L2 X2 N Y = 1 P(X1) P(X2|X1,L2)

1 1 1 720 576 0.3 0.8

1 1 0 180 108 0.3 0.2

1 0 1 1,800 720 0.3 0.5

1 0 0 1,800 900 0.3 0.5

0 1 1 5,670 4,536 0.7 0.9

0 1 0 630 567 0.7 0.1

0 0 1 840 294 0.7 0.2

0 0 0 3,360 1,008 0.7 0.8

In our simulation, we chose a sample size of N = 100, 000. The following probabilities,

P (X0), P (L1|X0), P (X1|L1, X0) and P (Y = 1|X0, L1, X1), were the same ones used in the

paper, as shown in Tables 2, 3 and 4 in the paper. We then defined our DAG in the simcausal

package using the structure in Figure 4.1 and the probabilities defined in the Shinozaki and

Suzuki paper and ran our simulation. In order to determine the true causal effects, we used

the simcausal package. Note that we only estimated effects for static interventions in our

specified simulation study.

In order to determine the IP weights, we followed the equation used in the paper, which

when adapted to our simulation is shown in (4.8):

E

[
I(X0 = x0, X1 = x1)

P (X0)P (X1|L1, X0)
Y

]
. (4.8)

The methods we employed to determine our estimator is outlined in the previous sec-

tion.
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4.2.2 Simulation Results

In our simulation, we had two different versions: one keeping the dataset constant with 50

simulations, and one having 10 different datasets with 50 simulations.

In our results, we have the values of E[Y x̄] for each static treatment regime ({X0 = 0, X1 =

0}, {X0 = 0, X1 = 1}, {X0 = 1, X1 = 0}, {X0 = 1, X1 = 1}). We calculated the true

value, the estimated value using the IP treatment weights. We also calculated the sub-

sampled estimator using the true propensity score as well as the sub-sampled value using

the estimated propensity score from the sub-sampled subjects. Additionally, we calculated

the difference from the truth, which is the estimated value subtracted from the true value

as well as the percentage difference from the truth.

Recall that the goal of our simulation is to determine how much you lose by sub-sampling.

Essentially, we want to know if you achieve a close enough level of accuracy without using

the full dataset. By not using the full dataset, one saves time and money. Note that we

showed that our results using sub-sampling are unbiased. We want to assess the effect of the

inference when you sample. We also want to observe how our results vary from simulation

to simulation.

To better understand our results for each treatment scheme, we looked at the number of

and the proportion of participants for each treatment scheme and outcome on the simulated

dataset. This is outlined in Table 4.2 below. Recall that the size of our simulation is

N = 100, 000.

From Table 4.2, we see that the treatment regime X̄ = {X0 = 1, X1 = 0} has the lowest

proportion.

We then took an average of the estimates over each replication and dataset. Recall, we did

50 replications for 10 datasets. Additionally, we looked at the percentage difference of our

two sampling estimates from the estimate on the whole dataset.

From Table 4.3, we can see that the mean values of the estimate on the whole dataset, as

56



Table 4.2 – Summary of Individuals for each Treatment Scheme and Outcome in the Time-

Varying Case

X0 X1 Y Count Proportion

0 0 0 25,451 0.25451

0 0 1 1,032 0.01032

0 1 0 40,238 0.40238

0 1 1 3,271 0.03271

1 0 0 12,335 0.12335

1 0 1 711 0.00711

1 1 0 16,097 0.16097

1 1 1 865 0.00865

Table 4.3 – Estimated Mean Counterfactual per Treatment for each Estimator in the Time-

Varying Case

Treatment Scheme True Cohort Estimate Sampled (Full Prop Score) Sampled (Est Prop Score)
Sampled (Full Prop Score)

% Difference from Est

Sampled (Est Prop Score)

% Difference from Est

X0 = 0, X1 = 0 0.0672 0.0663 0.0664 0.0660 1.00% 0.996%

X0 = 0, X1 = 1 0.0634 0.0618 0.0619 0.0619 1.00% 1.00%

X0 = 1, X1 = 0 0.0530 0.0518 0.0517 0.0515 1.00% 0.995%

X0 = 1, X1 = 1 0.0489 0.0482 0.0482 0.0482 1.00% 1.00%

well as the two sampled estimates are very close to the true value. We can also see that

the percentage difference of each sampling estimate compared to the full data estimate only

differs by ∼ 1.00%, thus, indicating that we do not deviate much from the estimate by

sampling, in both the full and estimated propensity score case. Additionally, we can see that

both sampling estimates perform almost as well as the estimate on the full data.

We then look at the average standard error of the estimates over each replication and dataset.

From Table 4.4, we can see that the standard error for the full estimate as well as both

sampled estimates are very similar. This is also reflected in the percentage difference of

each sampled estimate from the estimator, as the percentage differences are very small. We

have the highest percentage difference from sampling for the {X0 = 0, X1 = 1} treatment

scheme. However, similar to the results in Table 4.4, we can deduce that we only observe
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Table 4.4 – Estimated Standard Error per Treatment for each Estimator in the Time-Varying

Case

Treatment Scheme True Cohort Estimate Sampled (Full Prop Score) Sampled (Est Prop Score)
Sampled (Full Prop Score)

% Difference from Est

Sampled (Est Prop Score)

% Difference from Est

X0 = 0, X1 = 0 0 0.00214 0.00221 0.00202 1.03% 0.941%

X0 = 0, X1 = 1 0 0.00104 0.00121 0.00133 1.16% 1.27%

X0 = 1, X1 = 0 0 0.00113 0.00119 0.00119 1.05% 1.06%

X0 = 1, X1 = 1 0 0.00159 0.00160 0.00159 1.00% 0.997%

∼ 1.00% more standard error from sampling for the other treatment schemes, meaning that

by sampling, we barely lose any accuracy for those treatment schemes. Additionally, there

is no real difference between our sampling estimates using the full versus the estimated

propensity score.

In order to fully visualize our estimated values, we have the following boxplot in Figure 4.2

to show the true and estimated values for each treatment scheme.
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Figure 4.2 – Boxplot of the Estimates in the Time-Varying Case

Boxplot showing the estimated value for the truth as well as for our three estimators: the full

data estimator, the sampled data with the full data propensity score estimator and the sampled

data with the sampled data propensity score. The boxplots are shown for each treatment regime:

(“0− 0” = {X0 = 0, X1 = 0}, “0− 1” = {X0 = 0, X1 = 1}, “1− 0” = {X0 = 1, X1 = 0}, “1− 1” =

{X0 = 1, X1 = 1}). Recall that the estimate is of E[Y x̄].

As our aim is to determine the quality of our estimates, and to see if we can maintain that

quality by sampling, we visualized the percentage difference from the truth for each estimate.

This is shown in Figure 4.3.
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Figure 4.3 – Percentage Difference from the Truth in the Time-Varying Case

Boxplot showing the percentage difference from the truth, per treatment scheme, of the three

estimators: the full data estimator, the sampled data with the full data propensity score estimator

and the sampled data with the sampled data propensity score. This was calculated by the following

formula: 100× Estimated Value−True Value
True Value .

From Figure 4.3, we can see that our estimates vary more from the truth in the {X0 = 1, X1 =

0} treatment scheme, and are very close to the truth in the {X0 = 1, X1 = 0} treatment

scheme. Additionally, we can see that the difference of our two sampling estimates from the

truth are very close to the difference of the estimate from the full cohort from the truth.

Thus, this shows us that our sampling performs almost the same as our estimate from the

full cohort, meaning that we are not losing accuracy by sampling as well as we are not

losing much accuracy by using the estimated propensity score versus the propensity score

determined on the whole dataset, only precision.
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As we did 50 replicates on 10 datasets, we want to see if there is a lot of variation between

datasets. In Figure 4.4 we can see the average value over all the replications for each estimate

over each dataset.
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Figure 4.4 – Average Estimates per Dataset in the Time-Varying Case

Graph showing the estimated values for our three estimators for each dataset. For each of 10

datasets, 50 replications were run. Each line is for each if the 10 datasets in order to see how the

estimated value changes for each estimator.

We can see in Figure 4.4 that there is a slight variation between datasets, indicating that

there is variability between datasets.

Additionally, we want to determine if there is an effective sample size in our sub-sampling.

We initially chose to have the same number of cases as controls. In the time-varying case

we had 5, 879 cases out of a cohort of N = 100, 000, thus we took a SRS of n = 5, 879 of

the 94, 121 controls. As with the cross-sectional case, we then ran our simulation again by
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doubling the number controls, thus for the 5, 879 cases out of a cohort of N = 100, 000, thus

we took a SRS of n = 2× 5, 879 = 11, 758 of the 94, 121 controls. By doubling the number

of controls in the sample, the standard error per treatment per estimator is slightly smaller.

However, as in Table 4.4 we still only get ∼ 1.00% more standard error from sampling. This

indicated that even by doubling the controls, we do not gain much accuracy as when we

had the same number of controls as cases. However, we do have a slightly lower percentage

difference of the estimated values from the truth when doubling the number of controls.

These results does not come as a surprise as we determined in the previous chapter that the

number of cases drive the accuracy of the estimator, not the number of controls.
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Chapter 5

Discussion and Future Work

In Chapters 3 and 4, we developed methods to address nested case-control causal analyses

using finite population methods in a causal setting in both a cross-sectional and multivariate

time case. Our approach uses all of the cases of the cohort in our sample and then takes a

simple random sample (SRS) from the controls. In order to adjust for the unequal probabil-

ity sampling of cases and controls, we used inverse probability weighting to determine the

sampling weights and applied them to our Horvitz-Thompson estimator. This resulted in

the sampling weights for the cases being equal to 1, and the weights for the rest of the sam-

ple from the cohort (the sampled controls) being determined using IP treatment weighting.

Once the sub-sampling was performed, we also had two different estimators, one using the

propensity score that was estimated on the whole cohort and one using the propensity score

that was estimated on the sub-sampled cohort. We had 3 estimators overall, that using IP

treatment weighting for the causal weighting on the whole cohort, the sampled estimator us-

ing the true propensity score as well as the sampled estimator using the estimated propensity

score from the sampled cohort.

From each of our simulations, in both the cross-sectional and time-varying case, we can see

that there is minimal loss in accuracy when we sample our data, therefore, this is extremely

important and useful result as it is a lot cheaper and less time consuming to sample. Further,
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there is minimal loss from estimating the propensity score from the sampled data, rather

than the full data. From our results, we can also see that increasing the sample size does

not make a large difference in the accuracy or precision of the estimator. This is extremely

useful, as there are situations where it would be difficult to obtain a large sample size from

your cohort, therefore, we have shown that we can obtain accurate results using smaller

sample sizes.

Our methods used logistic regression, however, in our analysis, we discovered that it wasn’t

necessary to obtain accurate estimators. Additionally, we mainly used maximum likelihood

and GLMs instead of method of moments and GEEs, and we obtained the same values of

the estimators as when GEEs were used. GEEs take significantly longer to run which is why

we only used GLMs in this thesis.

Estimating the variance of our proposed estimators is beyond the scope of our thesis. Morenz

[16] determined closed forms of the variance for his estimators, which are similar to ours, so

if we were to look at the variance, we would employ similar techniques as him. Estimating

the standard errors would be something to further explore in future work. However, it can

be difficult to obtain reliable asymptotic variance estimators for causal problems in general;

it would be even more difficult in the presence of sub-sampling. An alternate approach

would be to use resampling estimators for the variance. However, one should note that using

resampling for design based estimators requires different techniques than is used in standard

bootstrapping estimators.

Much of the literature for analysis of nested case-control studies focuses on logistic regression

models. The use of conditional logistic regression, treating the nested case-control study as

a sample matched on time, is frequently discussed [19]. However, our goal was to combine

the traditional analysis of nested case-control studies with causal methods, to avoid issues

using the conditional logistic approach with time-varying data.

Rose and van der Laan divide the literature on the analysis of nested case-control study

designs loosely into three groups [19]. The first, analyzes the nested case-control sample as a
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case-control sample, ignoring the first stage of sampling the cohort, for example Barlow et al.

[3]. The second, analyzes the nested case-control sample as a missing data structure, such

as Robins et al. [18]. The third group straddles both of these groups, for example Breslow

and Cain [5]. We fall into the third group, as does the work of Rose and van der Laan. The

literature has covered similar estimators in similar contexts, however, the literature does not

combine causal methods with nested case-control methods as we do, and they focus on the

cross-sectional case. The paper by Kim et al. provides a link between causal analysis and

using conditional logistic regression in nested case-control studies, however, they use a Cox

model [13].

Zhao and Lipsitz [30], compare Breslow and Cain’s estimator to their own. They conclude

that when outcome and exposure are binary and the logistic link function is used, Breslow

and Cain’s [5, 6] estimator is preferable, since it appears more efficient than other estimators

and the computation of estimates is easy using existing software [30]. Breslow and Cain

have a cross-sectional estimator that requires the use of logistic regression and the use of

an offset, as opposed to weighting, to account for the inclusion probability of a subject.

Their estimator does not depend on the outcome, rather they condition on the inclusion

probability. They also use the conditional mean, whereas Zhao and Lipsitz use the marginal

mean, like we do. Zhao and Lipsitz’s estimator resembles our own in the cross-sectional case

but without the IP treatment weighting.

Robins et al. include a discussion of a missingness framework for the estimation of IP treat-

ment weighted marginal causal parameters for nested case-control study designs [18]. They

compare different nested case-control estimators to their semiparametric estimator.

Our estimators are very close to that of Zhao and Lipsitz, however, we use causal inverse

probability treatment weighting on top of it. As mentioned, Zhao and Lipstiz show by

simulation that Breslow and Cain’s estimator has a lower variance, and Robins et al. discuss

the efficiency of both. It would be of interest to know if the same conclusions as Robins et

al. are obtained from a finite population perspective, however the loss of efficiency could be
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the estimation of the random quantity which complicates the problem. Breslow and Cain’s

estimator is not easily extendable to the time-varying setting with causal confounding, one

would need to explore this further to determine if you can add a causal weight to their

estimator.

It follows that the methods developed in the literature, namely that of Robins et al. and

Breslow and Cain, are much more complicated than ours, and do not appear to be as

generalizable as our methods.
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