
Data Transfer Between PostgreSQL and

its Embedded Python Environment

for In-Database Analytics

Jianhao Cao

School of Computer Science

McGill University, Montreal

August, 2021

A thesis submitted to McGill University in partial fulfillment of the

requirements of the degree of Master of Science

© Jianhao Cao, 2021

Abstract

Data science workflows generally comprise a combination of relational operations and

numerical computations. Since traditional Relational Database Management Systems

(RDBMSes) lack proper support for linear algebra operations, data scientists have

resorted to database-external analytical solutions. While some high-level language

(HLL) statistical libraries provide relational operation support, their functionalities are

not comparable to the database engine. As many RDBMSes have integrated HLL

interpreters into their implementations, it opens the possibility of an in-database

analytics solution that can leverage RDBMS’s database engine for relational operations

and utilize statistical libraries to perform linear algebra computations in the embedded

HLL environment. This thesis studies the implications of implementing such a system

for PostgreSQL, a row-oriented RDBMS, from the perspective of data movement

between the RDBMS and its embedded Python environment. We extend AIDA, a data

science framework prototype for Advanced In-Database Analytics, to support

in-database analytics in PostgreSQL. The row-based PostgreSQL has different internal

data representations from the vector-based data structures that are used in AIDA and

Python statistical packages for linear algebra operations. The challenge is that AIDA has

to enforce an expensive data-structure transformation when loading SQL result sets into

vector-based Python objects or when exposing the Python objects to PostgreSQL to

perform SQL queries over them. To alleviate such transformation overhead and facilitate

in-database analytics, we look into the optimization probabilities of transforming

i

PostgreSQL data into Python data representations and vice versa. Instead of running

SQL queries over the user defined functions that return Python data, we develop a new

optimizer-friendly data exposing mechanism based on PostgreSQL’s foreign data

wrapper feature and a second approach that loads Python objects into temporary tables

for PostgreSQL to read.

ii

Abrégé

Les flux de travail en science des données se composent généralement d’une

combinaison d’opérations relationnelles et de calculs numériques. Étant donné que les

systèmes de gestion de bases de données relationnelles (SGBDR) traditionnels ne

considèrent pas correctement les opérations d’algèbre linéaire, les experts ont recours à

des solutions analytiques externes aux bases de données. Bien que certaines

bibliothèques statistiques de langage de haut niveau (HLL) soutiennent des opérations

relationnelles, leurs fonctionnalités ne sont pas comparables à celles du moteur de base

de données. Comme de nombreux SGBDR ont intégré des interpréteurs HLL dans leurs

implémentations, il est désormais possible d’avoir une solution analytique dans la base

de données qui peut exploiter le moteur de base de données du SGBDR pour les

opérations relationnelles. Cette solution peut également utiliser des bibliothèques

statistiques pour effectuer des calculs d’algèbre linéaire dans l’environnement HLL

embarqué. Cette thèse étudie les implications de la mise en œuvre d’un tel système pour

PostgreSQL, un SGBDR orienté lignes, du point de vue du mouvement des données

entre le SGBDR et son environnement Python embarqué. Nous étendons AIDA, un

prototype de cadre de science des données pour l’analyse avancée dans la base de

données, pour soutenir la capacité d’analyse dans la base de données dans PostgreSQL.

Le PostgreSQL basé sur des lignes a des représentations de données internes qui sont

différentes des structures de données vectorielles utilisées dans les modules statistiques

AIDA et Python pour les opérations d’algèbre linéaire. Le défi est qu’AIDA doit imposer

iii

une transformation coûteuse de la structure des données lors du chargement des

ensembles de résultats SQL dans des objets Python vectoriels ou lors de l’exposition des

objets Python à PostgreSQL pour effectuer des requêtes SQL sur eux. Afin d’alléger cette

surcharge de transformation et faciliter l’analyse dans la base de données, nous évaluons

les probabilités d’optimisation de la transformation des données PostgreSQL en

représentations de données Python et vice-versa. Au lieu d’exécuter des requêtes SQL

sur les fonctions définies par l’utilisateur qui renvoient des données Python, nous

développons un nouveau mécanisme d’exposition de données, convivial pour les

optimiseurs, basé sur la fonctionnalité de wrapper de données étrangères de

PostgreSQL. Nous proposons en outre une deuxième approche qui charge des objets

Python dans des tables temporaires pour que PostgreSQL puisse ensuite les lire.

iv

Acknowledgements

Foremost, I would like to express my deep gratitude to Prof. Bettina Kemme, a truly

caring and thoughtful supervisor, for all of her meticulous guidance and continuous

encouragement. Also, I want to thank Dr. Joseph D’Silva. Not only did he inspire me to

conduct the research, but he had also been giving me precious and practical feedback

that helped me finish the work with his immense knowledge in this research field. I feel

fortunate to have been guided by these two supportive mentors throughout my master’s

studies. This work could not have been done without their kind help and support.

Secondly, I want to thank Sean MacRae for helping me translate the abstract into

French. I am also very grateful to all my companions throughout this journey. I

especially want to express my appreciation to my fellow members from the Distributed

Information System Lab for their valuable thoughts and suggestions. And I would also

like to give special thanks to my friends who encouraged me during the rough time.

Lastly, I want to thank my family for their emotional support and unfailing love. My

appreciation for them goes beyond words.

v

Table of Contents

Abstract . i

Abrégé . iii

Acknowledgements . v

List of Figures . viii

List of Listings . ix

1 Introduction 1

2 Background & Related Work 5

2.1 Relational Database Management Systems 5

2.1.1 Data Querying of Relational Databases 6

2.1.2 PostgreSQL - A Row-Oriented RDBMS 7

2.2 Data Analytics . 9

2.2.1 Database-external Analytics Solutions 9

2.2.2 HLL UDFs for In-database Analytics 10

2.2.3 The AIDA Framework . 13

2.3 Exposing HLL Data to the RDBMS . 17

2.3.1 Table-UDFs . 17

2.3.2 Virtual Tables . 20

2.3.3 SQL/MED & Foreign Data Wrapper 22

2.3.4 Multicorn . 24

vi

3 An AIDA Implementation for PostgreSQL 27

3.1 The Database Adapter Interface for PostgreSQL 27

3.1.1 AIDA Server Management . 28

3.1.2 SQL Result Set Data Structure Conversion 30

3.1.3 Relational Operations on TabularData Objects 32

3.2 Evaluation . 34

3.2.1 Test Setup . 34

3.2.2 Making SQL Result Set Computational 35

3.2.3 Relational Joins . 39

4 Exposing Python Data to PostgreSQL 44

4.1 Virtual Table Designs for PostgreSQL . 44

4.1.1 The Foreign Table Approach . 46

4.1.2 The Temporary Table Approach . 51

4.2 Evaluation . 54

4.2.1 Test Setup . 54

4.2.2 TPC-H Queries . 55

4.2.3 Data Science Workflows . 66

5 Conclusions & Future Work 69

5.1 Conclusions . 69

5.2 Future Work . 71

Bibliography 73

Acronyms 77

vii

List of Figures

2.1 Two types of RDBMS data storage . 8

2.2 An example of HLL UDF [12] . 11

2.3 High level architecture of AIDA [11] . 14

2.4 Virtual tables implementation in MonetDB [12] 20

2.5 SQL/MED components . 22

2.6 The architecture of Multicorn . 24

3.1 Architecture of AIDA adjusted to PostgreSQL 29

3.2 High Level Execution Flow of Each Conversion Method 31

3.3 Time to load data (The server and client communicate across a switch) . . . 37

3.4 Time to load data (The server and client communicate across the Internet) . 39

3.5 Joining two data sets . 41

4.1 The foreign table approach . 47

4.2 The temporary table approach . 51

4.3 TPC-H queries: 1-7 (all data sets as Python objects). 57

4.4 TPC-H queries: 8-14 (all data sets as Python objects). 58

4.5 TPC-H queries: 15-20, and 22 (all data sets as Python objects). 58

4.6 TPC-H queries 5, 7, 8, 9, and 10 (Nation as a Python object). 64

4.7 TPC-H queries 5, 7, 8, 9, and 10 (Lineitems a Python object). 64

viii

List of Listings

2.1 A SQL query example . 6

2.2 An example of a table-UDF and its usage . 18

2.3 Foreign server creation synopsis . 25

2.4 Foreign table creation synopsis . 25

4.1 An example of virtual table library usage . 45

4.2 Temporary Table Approach . 52

ix

Chapter 1

Introduction

Data analysis plays a pivotal role when it comes to decision-making in many fields. The

data-driven analytical requests in such work typically comprise a combination of

relational operations and numerical computations. Relational database management

systems (RDBMSes) are widely used for data storage and have a vigorous database

engine to execute relational queries. However, they lack user-friendly programming

paradigms that allow users to perform numerical and linear algebra computations on

the data stored inside them. Users have to retrieve the data from the RDBMS and resort

to database-external solutions for analytical workflows. Although some high-level

language statistical libraries such as pandas [24] and data science frameworks such as

Spark [35] also provide relational operation support, their implementations are not

comparable to the query optimization capability of RDBMSes. In addition, these

database-external analytics solutions have a data transfer overhead as they require

loading data from the RDBMS to their workspace or even shipping data across the

network if they reside in a remote machine.

The in-database analytics solutions arise from the fact that many RDBMSes start to

embed high-level language (HLL) environments into their systems to host in-database

programming. These RDBMSes provide an interface to retrieve relational data sets from

1

the RDBMS to the embedded HLL environment. Such data transfer eliminates the costs

of shipping data to an external system. Users can write a user defined function (UDF)

with HLL code to manipulate the data and execute the UDF inside the RDBMS.

Moreover, it is possible to return an HLL data set in a UDF and then run a SQL query

over the UDF to perform relational operations over HLL data. Therefore, with HLL

UDFs, users can leverage RDBMS’s database engine to execute relational operations and

utilize HLL statistical libraries for numerical and linear algebra computations. However,

this implementation has one limitation: it does not allow for interactive analytics as

users must pre-define operations in a UDF before executing the task.

AIDA (abstraction for Advanced In-Database Analytics) [11] was proposed to

address the agility aspect of in-database solutions. It is a Python-based framework that

follows a client-server setup. On the client side, AIDA provides a user interface that

emulates the syntax and semantics of Python statistical packages and shifts the

computation to the server component. The server component of AIDA resides inside the

embedded Python environment of an RDBMS to facilitate in-database analytics. It

executes linear algebra computations by using the statistical package NumPy and

pushes relational operations down to RDBMS’s database engine. The current

implementation of AIDA in [11] is designed for the column-oriented RDBMS MonetDB.

It is convenient to transfer data between MonetDB and AIDA to perform analytical

operations because the internal data representation of MonetDB has structural

similarities with the vector-based data structures used by the Python statistical package

NumPy. However, it remains the fact that many RDBMS implementations that are

optimized for relational operations still follow a row-oriented data storage model.

Considering the prevalence of row-oriented RDBMSes, it would be beneficial to execute

the whole analytics workflow inside a row-oriented RDBMS while leveraging its

database engine to process relational operations. In this thesis, we want to analyze the

implications of adapting AIDA for a row-oriented RDBMS to support in-database

2

analytics. Therefore, we develop an implementation for AIDA that can fully interact

with PostgreSQL, our row-based RDBMS of choice, to provide in-database analytics

support that allows for an interleaved execution of linear algebra computations and

relational algebra operations. We use different strategies to facilitate data movement

between PostgreSQL and AIDA’s workspace; this includes optimizations on loading

PostgreSQL data into AIDA’s internal representation and on exposing Python data to

PostgreSQL to perform relational operations.

To circumvent the problem that SQL queries cannot be directly performed over HLL

objects, AIDA leverages UDFs to expose Python data to the underlying RDBMS to

perform SQL queries. However, UDFs are perceived as a black-box by the RDBMS and

leave room for optimization. The concept of Virtual Table was introduced in [12] and

implemented for MonetDB, which again leverages the same data transfer optimization

as in the development of AIDA. It allows registering HLL objects as virtual tables inside

the database that can later be referenced in a SQL query. An advanced version of AIDA

uses virtual tables to facilitate running SQL queries over Python data. Unlike UDFs,

virtual tables are optimizer-friendly as they can provide the cardinality of the registered

data to the query planner. Since the implementation does not align with PostgreSQL, we

delve into how to transfer data from the embedded Python environment to PostgreSQL

by following the same optimization logic. In this thesis, we propose an

optimizer-friendly data exposing method that exploits PostgreSQL’s foreign data

wrapper feature to run SQL queries over Python data. This approach has different

versions that vary in terms of how the data is transferred to the database engine. We also

have an alternative solution that loads Python data into temporary tables for later

relational querying. Through various test cases, we evaluate our implementation of

AIDA with these two data exposing mechanisms.

The remainder of this thesis is organized as follows:

3

In Chapter 2, we present the background of this thesis. We first look at query

processing in RDBMS and then introduce the row-oriented RDBMS PostgreSQL.

Following that, we compare current data analytics solutions and present how the Python

data science framework AIDA supports in-database analytics. Lastly, we cover several

tools that allow us to transfer Python objects to PostgreSQL.

In Chapter 3, we present how we adjust AIDA’s database adapter interface to facilitate

in-database analytics inside PostgreSQL’s embedded Python environment. To evaluate

our AIDA implementation, we experiment with test cases that involve data movement

between PostgreSQL and Python space and compare it with other analytical solutions.

In Chapter 4, we demonstrate two optimizer-friendly data exposing mechanisms that

can facilitate running SQL queries over Python objects in PostgreSQL. To understand the

performance benefits of these optimized approaches, we use the TPC-H Benchmark and

an end-to-end data science workflow to evaluate them against the conventional UDF-

based approach.

In Chapter 5, we summarize our findings to conclude this thesis and discuss possible

directions for future work.

4

Chapter 2

Background & Related Work

In this chapter, we will have an overview of concepts and previous research related to

our work. Section 2.1 introduces relational data querying in RDBMSes and then presents

PostgreSQL, a row-oriented RDBMS that we will work on. Section 2.2 describes

database-external and in-database analytics solutions and provides an overview of the

AIDA framework [11]. Section 2.3 discusses the strategies and optimizations of how to

expose HLL data to the RDBMS in order to run SQL queries over them for in-database

analytics.

2.1 Relational Database Management Systems

Based on mathematical set theory, Edgar F. Codd [6] proposed the relational model that

laid the foundation of RDBMSes. The relational model defines a relation as a set of values

with different attributes in the mathematical sense, which provides a logical abstraction

for data representation.

A relational database is a collection of one or multiple relations, and the system

managing the relational database is referred to as a Relational Database Management

System (RDBMS). Regardless of the internal data storage implementation of an RDBMS,

a relation is presented as a table comprising rows and columns in the database. Each

5

row in the table corresponds to a data record, also called a tuple, with column values

conforming to the attribute definitions in the relation schema. In order to connect the

underlying database storage to the application programming interface, the RDBMS is

equipped with a database engine component to process user tasks.

2.1.1 Data Querying of Relational Databases

Given the logical nature of the relational model, Edgar F. Codd defined a relational

algebra with high-level operators and a relational calculus, which is essentially an

applied predicate calculus [7].

SQL [3] is a declarative query language built upon relational calculus, while its

design also leverages the semantics of high-level operators in relational algebra. Being a

domain-specific language specialized in managing and interacting with relational

databases, it was initially developed for IBM System R [2]. Nowadays, SQL is widely

supported by RDBMS implementations because of the versatility and

implementation-independent interpretability of its syntax.

Listing 2.1 depicts a SQL query example. This query retrieves the student names and

their corresponding faculty names stored in the relational database. The FROM keyword

indicates the relations/tables that are required to execute the query. In this example,

the records from students and faculties with the same faculty id values are combined to

form a result set in a join operation, following the comparison predicate stated in the

WHERE clause. The SELECT function specifies the attributes/columns to return, and

thus, it requires performing a projection on s name and f name of the result set.

1 SELECT s name , f name

2 FROM students , f a c u l t i e s

3 WHERE s f i d = f f i d ;

Listing 2.1: A SQL query example

6

As shown in the example above, SQL provides a versatile syntax that enables users to

describe a data querying task in terms of high-level logical operations. Because of its

declarative and implementation-independent nature, SQL opens the possibility of query

optimizations by looking into its semantics. It is plausible to transform a SQL query to

another one that is logically equivalent in regard to the output result. Depending on

what kinds of transformations are made, there are two different phases of query

optimization. Some RDBMSes have a query rewrite component that uses predefined

rules to transform an input SQL query into a simplified query expression [16, 28]. The

query planner/optimizer, which usually follows the query rewrite component, is

responsible for estimating the costs of various query execution paths and applying

optimization heuristics to generate an efficient execution plan [4, 18]. Most of the time,

the efficiency of query executions depends on the accuracy of cost estimations.

2.1.2 PostgreSQL - A Row-Oriented RDBMS

PostgreSQL1 is a popular open-source row-oriented RDBMS that has well-developed

query optimization functionalities [14]. The relational model, together with the SQL

language, decouples data querying from the physical storage and architecture

implementation of RDBMSes, giving developers the flexibility to decide how to

implement an RDBMS targeting to address specific needs. Early data usage workflows

mainly consisted of single-record retrieval and write-intensive requests from the domain

of business transaction processing, which developed into the concept of Online

Transaction Processing (OLTP). Since the contiguous row-oriented disk storage model

allows for efficient query processing and disk I/O operations when the user requests

follow an OLTP workflow, contemporary RDBMSes, including PostgreSQL,

predominantly adopted a row-oriented architecture that uses a row as the minimal

1https://www.postgresql.org/

7

https://www.postgresql.org/

s_id s_name s_year … s_id
1245
1628
2573

1245 Alice 4 …

1628 Bob 4 …

2573 Chole 3 …

s_name
Alice
Bob
Chole

s_year
4
4
3

…
…
…
…

Row Oriented Column Oriented

Figure 2.1: Two types of RDBMS data storage

indivisible unit data storage (Figure 2.1) in order to accommodate OLTP-style

workflows.

In contrast to OLTP, Online Analytical Processing (OLAP) workflows consist of more

complex queries that usually slice the data and work with a subset of columns in the

relations. Row-oriented RDBMSes do not perform well on these analytical workloads as

they require reading the whole records despite that some columns are unnecessary to the

request. C-Store [31] and MonetDB [17] are the attempts from the database community

that exploit the column-oriented storage model to implement an RDBMS. The

column-oriented implementation, as shown in Figure 2.1, stores the values of each

column contiguously in the disk so that the database engine can only load the columns

that are relevant to the request.

Although the column-oriented implementation performs relatively well on

OLAP-style workflows [15], row-oriented RDBMSes still have certain advantages in

OLTP-style queries. Considering the prevalence of row-oriented RDBMSes at the current

time, it is of interest to investigate how to apply data analytics facilitation in a

row-oriented RDBMS such as PostgreSQL.

PostgreSQL is also known for using a ”process per user” client/server model [10],

meaning that each client process corresponds with one server process. When there is a

client connection request, the Postgres master process spawns a Postgres backend process

to handle requests from that client process. The Postgres master process also allocates a

shared buffer pool so that all the backend processes spawned from it can concurrently

8

access the database data to process client requests. Therefore, this ”process per user”

design allows PostgreSQL to handle multiple concurrent client connections.

2.2 Data Analytics

While SQL provides many relational operators and aggregate functions, it is not well

suited for analytical workflows because these workflows use many linear algebra

operators and require the flow control structures of high-level programming languages

that are lacking in SQL. There are recent attempts to extend the syntax of SQL to support

linear algebra query processing in RDBMS [9, 36]; however, such newly-developed

extensions are not user-friendly when it comes to complex analytical tasks.

Conventionally, data scientists rely on specialized data analytics systems to perform

relational tasks and numerical computations in a compact workflow.

2.2.1 Database-external Analytics Solutions

It is not uncommon to find relational operator implementations in HLL statistical

systems that are designed for numerical computing needs. From the perspective of

distributed query processing, these systems follow a data shipping strategy [19] that

requires loading the data from an RDBMS into the statistical systems where the

analytical task is eventually processed. These database-external statistical systems can

establish a connection to an RDBMS using standard database APIs to process SQL

queries inside the RDBMS and fetch the relational data into their workspace. Once the

data is taken out of the RDBMS and loaded into the statistical systems, they can provide

a stand-alone analytics solution to perform both relational and statistical computations

within HLL flow control structures.

Nowadays, Python is a popular programming language among data scientists as it

has a variety of statistical packages and machine learning libraries. NumPy [34] is a

9

Python package that is commonly used for numerical computing on multi-dimensional

arrays. Its internal data structures are implemented in C, and the computing functions

are optimized to be faster than purely Python-based computations. Pandas [24] is built

on top of NumPy for numerical data analysis. It also implements basic relational

operators such as filter, join, and group-by. These operators equip Python with basic

RDBMS functionalities so that we can define analytical workflows and perform the

analysis locally in the user space. There also exists distributed statistical systems such as

Spark [35], which allows distributing data sets across nodes in a cluster for large scale

data analysis. Apart from a set of relational functions, it also has a declarative API that

supports expressing relation tasks with SQL syntax [1].

Although these database-external analytics solutions provide a user-friendly

interface to perform relational operations without relying on the RDBMS, the capability

of relational processing in these systems is not comparable to conventional RDBMSes

when it comes to query optimizing. Moreover, the data transfer from the RDBMS to the

statistical system is usually constrained by the network connection. The communication

overheads of shipping raw data sets may hinder the data analysis performance. In order

to avoid these shortcomings, there have been attempts to bring data analytics into the

RDBMS.

2.2.2 HLL UDFs for In-database Analytics

User defined functions (UDFs) [23] and stored procedures [13] were proposed to extend

RDBMS’s support for customized functionalities. Like other built-in functions, they are

executable inside the RDBMS, thus avoiding data shipping. In principle, a UDF is a

function that can be integrated into a SQL statement within the SELECT, FROM, or WHERE

clause, while a stored procedure is a stand-alone executable function that can be called

through a special interface without using a SQL statement. An example is given in

Listing 2.2 in a later section, where we will discuss the usage of UDFs. As any function

10

can be made a UDF and then invoked by using a dummy SQL SELECT statement, we

only use the term UDFs to refer to in-database executable functions from here on.

Early analytics-oriented UDF implementations extend RDBMS to support near-data

numerical computations inside the RDBMS. However, these UDF implementations are

developed in the C language [5,27], making the programming model opaque as it requires

knowledge of RDBMS’s internal data representations and fails to accommodate complex

analytical workflows. However, as many RDBMSes start to integrate high-level language

(HLL) interpreters inside their systems, they start to support UDFs written in an HLL.

The usage of UDFs in RDBMS’s embedded HLL environment as a tool for in-database

analytics is explored in [29].

RDBMS
Embedded HLL

Interpreter

Database
Tables

SQL
Engine

(Optimizer)

Input params:

Results :

External
Systems

DB
 A

PI
 L

ib
ra

rie
s

…
HLL Statements

…
…
…
…

Buffer
Manager

Lo
op

ba
ck

SQ
L

qu
er

ie
s

UDF / Stored Proc.

Metadata

data access

control flow

meta info

Figure 2.2: An example of HLL UDF [12]

Figure 2.2 from [12] depicts an overview of the UDF construct in RDBMS’s

embedded HLL environment. The HLL UDF can take input parameters and return a

result set. It also has HLL source code in the UDF body for data processing. Unlike early

UDF implementations that are defined in C, users can now use an HLL and its statistical

packages, such as NumPy and pandas, to define analytical tasks inside the UDFs.

Therefore, HLL UDFs equip the RDBMS with the generic facilitation to perform

in-database analytics. Ideally, users can define an entire analytical workflow in an HLL

UDF and execute it inside the RDBMS.

11

It is noteworthy that HLL UDFs support loopback queries [29]. These loopback

queries allow the users to retrieve relational data sets from the RDBMS at any point

inside a UDF. For example, PostgreSQL has a built-in Python module, plpy, that is used

in the UDFs to push SQL queries to the database engine and bring the HLL result sets to

the UDF [32]. These loopback queries are limited to regular SQL statements, meaning

that they can only perform relational operations on database objects. Using loopback

queries inside a UDF is akin to transferring relational data from the RDBMS to a

statistical system so that users can process the data in an HLL. However, loopback

queries are executed within the RDBMS; it is more efficient to use them inside a UDF

than loading the data into a database-external statistical system.

When the HLL UDF is invoked, the RDBMS will use the embedded HLL interpreter

to process the source code in the UDF body. During the execution of the HLL UDF, it is

inevitable to transfer data between the RDBMS and its embedded Python environment:

loopback queries require loading database data sets into HLL objects, and the HLL return

value must be transferred to the RDBMS space so that the database engine can process the

result set as part of a SQL query. Due to the fact that the data types may not be compatible

across the two environments, any data movement is subject to data copy and conversion,

which is a downside of using HLL UDF to process large data sets in regard to the overall

execution time. There have been attempts to optimize data handover between the RDBMS

and the HLL environment that share similar underlying data structures [21, 29]. They

leverage the fact that the RDBMS and the HLL environment access the same memory

space to perform zero-copy transfer across the two environments without copying the

internal data structures into another representation.

Depending on the purpose and the return value, UDFs can be characterized into the

following categories [29]: (1) A scalar UDF operates on individual rows of the data, which

is common for numerical computing. (2) An aggregate UDF performs some aggregation

function on the data, possibly in groups. (3) A table-UDF returns a table-like data set for

12

further processing. With these HLL UDFs, users can define analytical logic in an HLL

and integrate statistical tasks into SQL queries. The last type of UDFs also allows the

users to leverage the RDBMS to perform relational operations on HLL objects. In other

words, if the users want to perform relational operations on a data set resulted from HLL

computations, they can return the HLL data set in a table-UDF and then integrate the

table-UDF into a SQL query that the database engine will execute. We will discuss the

usage of table-UDFs in Section 2.3.1.

To summarize, the HLL UDF is a user-friendly interface for in-database analytics.

With HLL UDFs, data is allowed to be transferred between the RDBMS and its

embedded HLL environment. As a result, users can utilize either HLL statistical

functionalities or RDBMS’s SQL engine to fulfill analytical needs of different nature.

However, it is not an agile programming tool as users are required to pre-define

analytical operations inside a UDF that does not allow for interactive analytics.

2.2.3 The AIDA Framework

AIDA (Abstraction for Advanced in-database analytics) [11] is a Python client-server

based open-source framework for in-database analytics. In contrast to stand-alone

UDFs, AIDA provides a user interface that allows for interactive analytics where clients

can submit individual operations to the system in an interactive manner facilitating

explorative data analysis. AIDA follows a client-server layout that uses Remote Method

Invocations (RMI). Figure 2.3 from [11] depicts the architecture of AIDA with its

client-side and server-side components. AIDA’s server resides inside the embedded

Python environment of the RDBMS and is started by executing a bootstrap stored

procedure. AIDA’s server component has a connection manager that is responsible for

connecting each of AIDA’s clients to a database workspace object.

The client component is responsible for shifting user-written tasks from the client

side to AIDA’s in-database server component, which follows the logic of query

13

Figure 2.3: High level architecture of AIDA [11]

shipping [19]. Similar to many popular data science frameworks, AIDA’s client API is

based on Object-Relational Mappings (ORM) [25], which provide object-oriented

methods to define operations on the data sets that are stored in the RDBMS. Since

AIDA’s server resides inside the embedded Python environment of the RDBMS, the

database workspace object can use NumPy to perform linear algebra requests and

leverage RDBMS internal Python APIs to push down relational requests to the database

engine. The database adapter implementation in the database workspace functions as a

bridge that interconnects the SQL engine of the underlying RDBMS with the rest of

AIDA through RDBMS-specific APIs. This modular design approach makes AIDA

portable to another RDBMS by implementing a new database adapter.

The abstraction of data sets in AIDA is referred to as TabularData, and it allows the

users to perform both relational operations and linear algebra computations in an

interleaved fashion. TabularData objects can encapsulate data sets no matter if they are

database tables or Python data represented by NumPy arrays.

TabularData objects reside in AIDA’s server component and thus in the embedded

Python environment of the RDBMS. A TabularData object has two internal Python

representations in the Python environment. In order to accommodate linear algebra

operations, both representations are vector-based. The first internal data representation

is a dictionary-columnar format that is used to hold data obtained from relational

14

operations. It is essentially a Python dictionary with column names as keys and the

values being the column data in NumPy array format. The second one is a

two-dimensional array representation for linear algebra operations such as matrix

multiplications. This matrix format is only possible when all the columns in the data set

have the same data type.

Applying an operation on a TabularData object will result in a new TabularData

object; however, the new TabularData object may not be materialized with an internal

data representation. In other words, a TabularData object can have empty internal data

representations at a given time. A particular internal representation of the TabularData

object will not be materialized until the data representation is requested for the first

time, and the materialized data representation can be reused for future operations.

AIDA separates request operations by their nature: relational operations will be

pushed down to RDBMS’s database engine, and the statistical package NumPy will be

in charge of linear algebra computations. AIDA performs relational operations lazily as

it combines relational operations and only translates them into a SQL query when it is

required to materialize the internal data representation of a TabularData object. With

such a lazy approach, AIDA can benefit from the query optimization capability of the

RDBMS instead of executing each simple relational operation separately. On the other

hand, linear algebra operations require immediate materialization of the result

TabularData object as NumPy does not optimize combined linear algebra operations.

In order to facilitate the cohesive execution semantics and both relational operations

and linear algebra computations in an interleaved manner, AIDA will transfer the data

sets between the embedded Python environment and the underlying RDBMS if they do

not exist in the respective execution environment. When AIDA needs to materialize a

TabularData object that results from relational operations, the database adapter will

push down the translated SQL query to the database engine for execution and then load

the result data set from the database to the embedded Python environment. The result

15

set is used to form the dictionary-columnar format internal representation used by the

TabularData object. The data transfer in this direction is managed by RDBMS APIs. In

contrast, the data transfer from the Python environment to the RDBMS has several

possible implementations. When AIDA needs to perform relational operations on a

TabularData object that has been materialized in the Python space, it transfers the

TabularData object’s internal data representation to the RDBMS. In AIDA’s base

implementation, the database adapter automatically creates table-UDFs that return the

dictionary-columnar data representation for the TabularData objects, which are then fed

to the database engine. The data transfer process is one of the impact factors of executing

the SQL query that integrates the table-UDF. An advanced implementation of AIDA

uses virtual tables [12] to expose the dictionary-columnar data to the RDBMS. We will

present these data exposing mechanisms in more detail in Section 2.3.

The first implementation of AIDA [11] is built on top of MonetDB - a

column-oriented RDBMS. Given that MonetDB and NumPy share the same underlying

C representation of numeric values and vector-based data structures, it is possible to

transfer data between MonetDB and its embedded Python environment with a

minimum level of data conversions. As the RDBMS and the embedded Python

interpreter run in the same process with shared memory, the data transfer requires

zero-copy if the data types are compatible across the two environments and no data

conversion is needed. The result set returned by a SQL query is handed over to the

embedded HLL environment without making copies of the underlying data structures

whenever possible. Similarly, when a UDF returns HLL vectors to perform relational

operations, MonetDB can access this data without any explicit copy in many cases. That

is, the AIDA implementation for MonetDB can leverage such structural similarities to

optimize data movement in both directions. Nevertheless, for row-oriented RDBMSes,

transferring data between RDBMS and the embedded Python environment will impose

inevitable overheads of data conversions. In this thesis, we consider using PostgreSQL

16

as a row-oriented example to study the implications of such behaviors, and we also aim

at optimizing the overall data transfer process.

2.3 Exposing HLL Data to the RDBMS

Executing SQL queries over data sets that are not stored in the RDBMS is cumbersome as

it traditionally requires loading the data into a database table; Python DB-API [22] allows

the users to prepare SQL INSERT statements with Python data objects and send the SQL

statements to the RDBMS. In the scope of our study, since the data sets already reside

inside RDBMS’s embedded Python environment, we want to explore a more elegant data

exposing mechanism to directly perform SQL queries over such data sets.

2.3.1 Table-UDFs

The term table-UDF, as mentioned in Section 2.2.2, is used to describe a UDF that returns

an HLL data object which follows a table-like structure with column attributes and

records containing data values. Listing 2.2 demonstrates how to define a table-UDF in

PostgreSQL’s syntax and use it in a SQL query. The body of this table-UDF is a

programming snippet written in Python. It uses a pandas function to load student

information into PostgreSQL’s embedded Python environment from a CSV file, whose

filename is given as an input argument of the table-UDF. Once the data set is loaded into

the Python environment, further Python operations can be applied in the UDF body. The

result data set has to be prepared in a row-based format to be compatible with

PostgreSQL’s internal data representation before it is returned to PostgreSQL’s database

engine.

Regarding the usage of a table-UDF, it can appear in a SQL query similar to regular

database tables as in the last line of Listing 2.2. However, the data engine actually invokes

the HLL UDF that returns a row-based result set instead of scanning through data pages

17

1 CREATE FUNCTION students (f i lename TEXT)
2 RETURNS TABLE (s i d INTEGER, s name TEXT) AS $$
3 # Read t h e d a t a from a CSV f i l e .
4 import pandas as pd
5 df = pd . read csv (f i lename)
6

7 # Data m a n i p u l a t i o n . . .
8

9 # P r e p a r e t h e r e s u l t s e t in a d a t a s t r u c t u r e c o m p a t i b l e wi th t h e RDBMS.
10 r e s u l t = . . .
11 re turn r e s u l t
12 $$ LANGUAGE plpython3u ;
13

14 SELECT s i d FROM students (' /data/students . csv ') where s name = ' John Doe ' ;

Listing 2.2: An example of a table-UDF and its usage

from the disk. As for the SQL query in Listing 2.2, after the student data set is transferred

from the embedded Python environment to the RDBMS space, the SQL engine performs

a selection operation on its records to find the student with the name John Doe, followed

by a projection to find the student id in the row record.

Although table-UDFs provide a programming tool for the RDBMS to execute SQL

queries over non-database HLL data objects, it still leaves room for improvement [12].

Below we will discuss some deficiencies of the approach that uses a Table-UDF to perform

SQL queries over an HLL data object.

Query execution plans: PostgreSQL has a sophisticated cost-based query planner to

optimize execution plans [32]. The query planner uses statistical metadata, such as data

set cardinality, to estimate the cost of each individual operation within the SQL query

and generate an execution plan that has the smallest overall cost. However, Table-UDFs

are perceived as a black-box to the RDBMS SQL engine. Although a table-UDF can pre-

define how many rows it will return as part of the UDF creation statement in a declarative

manner, it usually cannot foresee how many rows the result set will contain, leaving this

option irrelevant to UDFs of analytical workflows. In general, a UDF fails to inform the

query planner of the cardinality of its result set. Not having such information, the query

18

planner simply uses a constant value to estimate the execution cost, which can lead to

inaccurate cost estimations, and therefore, an execution plan with poor performance.

Data conversion and transfer overheads: When data is transferred from the embedded

HLL environment to the RDBMS, any HLL data whose types are not compatible with

the database data types must be converted to proper database representations. When a

table-UDF is invoked from the SQL engine, the whole result set will be transferred to

the RDBMS space in an eager manner, meaning that each column with an incompatible

data type has to be converted no matter whether the column is actually needed to process

the SQL query. As an example, despite that only the column s id is projected in the SQL

query in Listing 2.2, the entire data set of student information will be transferred to the

RDBMS nevertheless, which causes unnecessary data type conversion overheads during

data transfer.

Repeating HLL operations: Although the table-UDF approach is flexible in the way

that it allows users to write HLL operations to process the data before handing the result

set to the RDBMS, the HLL operations defined in the HLL snippet are indivisible and

thus, have to be executed whenever the SQL engine invokes the table-UDF. If a

table-UDF is used more than once in a SQL query, the HLL operations defined inside the

UDF will be repeatedly and collectively executed for each table-UDF invocation from the

RDBMS’s SQL engine. As in Listing 2.2, the HLL result set has to be transformed into a

data structure that is compatible with the structural representation of PostgreSQL before

being sent to the SQL engine. Should the table-UDF be requested several times, even

within the same SQL query, the data format transformation of the result set also happens

multiple times, wasting the computing resources. Depending on the result set’s size, the

computation cost of repeated data format transformation may not be negligible.

It is worth mentioning that PostgreSQL has a new feature that allows the users to

attach a customized planner support function to a target UDF after the release of

PostgreSQL 12 [32]. Although this planner support function can inform the query planner

19

about the number of rows that the target UDF will return, the target UDF is still subject

to the last two deficiencies mentioned above.

2.3.2 Virtual Tables

The concept of virtual tables [12] provides a new data exposing mechanism to alleviate

the drawbacks of table-UDFs. It can facilitate running SQL queries over data objects

in RDBMS’s embedded HLL environment in an optimizer-friendly fashion. Originally

developed in MonetDB, Figure 2.4 from [12] illustrates the architecture of the virtual table

implementation with the following implementation designs:

RDBMS
Embedded HLL

Interpreter

Database
Tables

SQL
Engine

(Optimizer)
UDF / Stored Proc.

Input params:

…
HLL Statements

…
…
…

…
…

Results :

External
Systems

DB
 A

PI
 L

ib
ra

rie
s

DataFrame

TabularData…

pandas

AIDA

Python
Objects

VT
-li

b

Buffer
Manager

Loopback
SQL queries

Metadata

data access

control flow

meta info

VT modules

Figure 2.4: Virtual tables implementation in MonetDB [12]

The core of this implementation is the virtual table library which interconnects the

RDBMS and its embedded HLL environment. No intrusive changes were made to the

RDBMS. The virtual table library provides an HLL API to register HLL data objects that

have a table-like data structure in the RDBMS. Despite that the data set is known to the

RDBMS, the data set still resides in memory without being materialized down to data

storage files.

20

The library only delivers a virtual view of the registered HLL data set to the RDBMS.

The virtual tables can be used in a SQL query in the same way as regular database tables.

The underlying data representation is concealed from both the RDBMS SQL engine and

the users, where any data type conversion and data transfer will be taken care of by the

virtual table library. This enables a lazy conversion strategy that the library only converts

and transfers data in the columns when they are explicitly requested by the SQL engine.

In contrast to table-UDFs that follow a black-box setup, the virtual table library can

collect metadata information from the registered HLL objects before transferring the data

to the RDBMS space. Such information is crucial to the query planner; therefore, virtual

tables are optimizer-friendly as they can provide the cardinality of registered data to the

query planner in the hope of an optimized execution plan. Virtual tables also provide a

more flexible interface to interact with the RDBMS: the virtual table library can register a

data set at any point in an analytical workflow, whereas the table-UDF approach can only

return a data set at the end of the UDF body, not allowing any further data processing

within the UDF. Moreover, once the HLL object is registered as a virtual table, we can

then perform SQL queries over the data set without caring how the data is obtained.

However, if we use table-UDFs, we have to execute all the source code in the UDF body

to expose the return value to the RDBMS, which may lead to unnecessary computing if

the table-UDF is invoked more than once, as we described in Section 2.3.1. Therefore, we

can use virtual tables within HLL UDFs or in-database analytics systems, such as AIDA,

to facilitate data movement between the RDBMS and its embedded HLL environment.

The virtual table implementation for MonetDB in [12] also leverages the fact that the

internal representation of MonetDB tables shares similar underlying data structures with

many Python objects used in statistical libraries, such as NumPy arrays. MonetDB uses

memory-mapped I/O [17]: When MonetDB’s buffer manager receives a request to

retrieve a column, it can map the data storage file into a memory address as if the

column is a memory resident. Since the registered Python data is already an in-memory

21

resident, MonetDB can directly access the memory address of the Python data to process

a SQL query over the virtual table [12].

Although such optimizations for MonetDB do not align with PostgreSQL because of

different data representations between the two RDBMSes, a virtual table implementation

for PostgreSQL is still possible by following the same logic to generate efficient execution

plans even when accessing data inside PostgreSQL’s embedded Python environment.

2.3.3 SQL/MED & Foreign Data Wrapper

The foreign data wrapper interface was introduced into the SQL standard as part of the

SQL/MED (SQL Management of External Data) extension [26]. This extension defines an

interface between the RDBMS and a foreign data wrapper with the objective to provide

a standardized access method for external data that is not stored in the local RDBMS.

Since we are interested in transferring data from the embedded HLL environment to the

RDBMS space, this interface is worth further exploration.

DBMS
SQL

Engine

Foreign
Data

Wrapper

SQL/MED
API

Foreign
Server

Foreign
Server

Implementation-dependent
API

Foreign
Table

Foreign
Table

Transparent View
on External Data

External Data
Source

External Data
Access Interface

Figure 2.5: SQL/MED components

22

Figure 2.5 demonstrates the main components of the SQL/MED standard. Since SQL

is designed for the relational model, should the external data be expected to fit into the

RDBMS seamlessly, it has to be perceived as regular relational tables to the RDBMS. To

address this requirement, SQL/MED brings up the notion of foreign tables to represent

external data. The foreign tables are designed to provide a transparent view of the

external data, which conceals the fact that the data is not stored locally. Therefore,

external data is known to the RDBMS as a database table. Since the external data source

can contain a collection of different data sets, SQL/MED defines a foreign server concept

as the abstraction for the external data source, which allows the RDBMS to access

multiple data sets that are maintained in one external data source in the same manner.

Furthermore, if multiple external data sources share a common interface, it is

plausible to use a single module within the RDBMS to access the external data managed

by such data sources. This module is framed as a foreign data wrapper in SQL/MED.

Therefore, the onus of accessing such data sources and regulating their corresponding

foreign servers is on the foreign data wrapper.

SQL/MED specifies an interface for the RDBMS and the foreign data wrapper to

interact with each other. When the RDBMS’s SQL engine and the foreign data wrapper

need to work together to process SQL queries over a foreign table, their interaction can

be divided into the following two phases [26]:

1. A query planning phase: the RDBMS and the foreign data wrapper exchange

information to produce an execution plan for the query.

2. A query execution phase: the query is executed in accordance with the plan, and

the foreign data is transferred to the RDBMS.

PostgreSQL implements a foreign data wrapper interface with routine functions for

such interaction [32]. It allows the query planner to inquire about the cardinality

23

information of external data in order to generate an optimized execution plan and also

regulates how the external data is transferred to the SQL engine for query execution.

There have been studies on leveraging PostgreSQL’s foreign data wrapper feature to

access external data from non-relational databases or the file system [8,30]. Although the

foreign data wrapper feature was originally designed to expose external data to

PostgreSQL, the same mechanism can be applied to access the data in PostgreSQL’s

embedded Python environment. In our case, we will explore the possibility of using this

feature to provide an optimizer-friendly data exposing mechanism to access the data

represented inside AIDA’s TabularData objects.

2.3.4 Multicorn

PostgreSQL
Database

Engine
Multicorn
Extension

SQL/MED
API

Foreign Data Wrapper
Python Class

Python
Data

Python
Data

Multicorn API

Multicorn

Foreign Data Wrapper
Python Class

Figure 2.6: The architecture of Multicorn

Multicorn [20] is a third-party foreign data wrapper implementation for PostgreSQL.

It has an interface that allows users to develop a foreign data wrapper in Python. Figure

2.6 captures how the SQL/MED components are presented in Multicorn. The Multicorn

24

extension interacts with the database engine in accordance with PostgreSQL’s foreign

data wrapper API. It accesses the foreign data through a Python class which manages

the actual data retrieval from the external source. Although this Python class is referred

to as a ”foreign data wrapper” class in Multicorn, it is used to create the foreign server

(see Listing 2.3).

There are two steps to set up the connection between PostgreSQL’s SQL engine and

the foreign data. First, we need to create a foreign server with Multicorn extension as

in Listing 2.3. A foreign server needs to be created only once to store it in PostgreSQL’s

system catalogs. In the OPTIONS clause of the CREATE statement, it is required to include

an option to provide the path to a foreign data wrapper class that we want to use to create

the foreign server. Secondly, we need to create a foreign table with that foreign server as

in Listing 2.4. At this step, data type information of columns has to be included in the

CREATE statement, along with other options specific to its foreign server and foreign data

wrapper class. The foreign table provides an abstract view of the external data so that it

can appear in SQL queries as a regular database table. For every foreign table, there is

a running instance of the foreign data wrapper class that is responsible for accessing the

foreign data.

1 CREATE SERVER server name FOREIGN DATA WRAPPER multicorn

2 OPTIONS (wrapper ' path to a Python c l a s s ') ;

Listing 2.3: Foreign server creation synopsis

1 CREATE FOREIGN TABLE table name (

2 column name data type

3 . . .)

4 SERVER server name

5 OPTIONS (option name ' value ' , . . .) ;

Listing 2.4: Foreign table creation synopsis

25

Multicorn defines a base Python class with signatures of the functions that will be

called from the Multicorn extension to access the foreign data. To present the foreign

table as a regular database table, Multicorn does not only provides routine functions to

process data queries but also supports an API for insert, update, and delete statements.

Since our objective is to expose Python data objects to the RDBMS, we only focus on

the read aspect of the foreign data wrapper. In order to facilitate query planning, the

foreign data wrapper can provide the exact data set’s cardinality to the query planner if

the corresponding function is implemented. And then, a foreign scan function is invoked

for query execution. The foreign data wrapper class has to implement a function that

provides the rows of the foreign data in an iterative manner. The Multicorn extension

will convert the row-based Python data set to PostgreSQL’s internal data representation

before sending it to the SQL engine.

Therefore, we can create a specialized Multicorn foreign data wrapper by

implementing these methods to regulate how to expose a Python object from the

embedded Python environment to PostgreSQL’s SQL engine through the Multicorn

extension. Similar to using a table-UDF, the foreign data wrapper still requires

transferring the data set for every invocation of the foreign table from the SQL engine.

However, it is different in the sense that the foreign-data wrapper can provide

meta-information to the query planner and allows transferring only a subset of the data

depending on the execution request.

26

Chapter 3

An AIDA Implementation for

PostgreSQL

In this chapter, we extend AIDA to be able to interact with the row-based RDBMS

PostgreSQL. Some specific characteristics of PostgreSQL make our development a

non-trivial process. We present the challenges that we have encountered during the

development and our attempts to alleviate their influence on AIDA’s usability. Lastly,

we evaluate the performance of our AIDA implementation with regard to data

movement between PostgreSQL and AIDA’s workspace.

3.1 The Database Adapter Interface for PostgreSQL

PostgreSQL has an embedded Python interpreter, in which we can integrate the AIDA

server. Programs running inside the embedded Python environment can use the built-in

plpy module to push down SQL queries to PostgreSQL’s database engine and bring the

SQL result set to the Python environment. Furthermore, since PostgreSQL supports

table-UDFs, it allows exposing AIDA’s Tabular Data objects, which are HLL objects, as

regular database tables to PostgreSQL’s SQL engine for executing relational operations

27

over them. AIDA’s modular design approach allows it to abstract such RDBMS-specific

interface by designing a database adapter to interconnect the rest of AIDA with the

RDBMS. In order to regulate the data transfer between PostgreSQL and the embedded

Python environment, we adjust AIDA’s database adapter interface so that it is specific to

PostgreSQL.

3.1.1 AIDA Server Management

To start AIDA’s server-side component, we need to execute a bootstrap stored procedure

that runs AIDA’s server component in PostgreSQL’s embedded Python environment.

The procedure starts up a connection manager for managing AIDA’s connection to

remote clients and a remote object manager for handling RMI requests from AIDA’s

client-side. Since PostgreSQL uses a ”process per user” client/server model as described

in Section 2.1.2, we have to make the stored procedure long-lasting to keep AIDA’s

server component alive. When we start the stored procedure, a Postgres backend

process is spawned by the Postgres master process to manage the connection and

execution of that stored procedure. Once the stored procedure finishes, the connection is

lost, and thus, the Postgres backend process also vanishes, together with the running

instance of AIDA’s server.

To resolve this issue, we introduce a ”looping mechanism” by having an infinite loop

in the bootstrap procedure to prevent the Postgres backend process from terminating and

keep the connection manager as well as other Python objects in the embedded Python

environment alive indefinitely. Thus, this long-lasting Postgres backend process, which

executes the bootstrap procedure, plays the role of AIDA’s server process.

However, such an approach means that this process will have to execute all of

AIDA’s operations from different AIDA clients. In more detail, when a new AIDA client

connects to the AIDA server, the connection manager will create a database workspace

object for this connection. Since the workspace objects are created inside the looping

28

bootstrap procedure running inside the PostgreSQL backend process, the SQL engine

interface in the Python environment, the plpy module, is shared across database

workspaces and thus AIDA client connections. This necessitates synchronizing SQL

query requests that are generated from different database workspaces. Consequently, we

introduce a synchronized queue that is shared by the database workspaces for storing

the SQL requests that will be pushed down to PostgreSQL’s SQL engine through the plpy

module.

Embedded Python
Interpreter

SQL
Engine

Database
Tables

Connection
Manager

Remote Object
Manager

Marshaling
Module

AIDA

AIDA
Client

API

PostgreSQLClient System

RM
I

RM
I

Jupyter Notebook
Python Interpreter

Database
Workspace

Stub
Client 1

Database
Workspace

Stub
Client 2

Database
Adapter

Database
Workspace

Database
Adapter

Database
Workspace

plpy
module

Looping
Mechanism

Request
Queue

Postgres
Backend
Process

Figure 3.1: Architecture of AIDA adjusted to PostgreSQL

Figure 3.1 depicts how the looping mechanism and the synchronized queue

collaborate in the adjusted AIDA framework. When AIDA’s client-side requires to

materialize a TabularData object from a sequence of relational operations, the database

adapter in the corresponding database workspace adds the translated SQL request to the

shared request queue and waits until the query result is added to a result queue that

belongs to this database workspace. Each iteration of the infinite loop in the bootstrap

procedure loads a request from the queue and gives the corresponding database adapter

29

exclusive access to the plpy module for executing the SQL query. Subsequently, the result

set returned by the SQL engine will be processed for formatting and then put into the

result queue of the database workspace so that the original request caller can retrieve the

result set from the queue. A limitation of this approach is that the SQL query requests

from two different AIDA clients cannot be executed in parallel as their requests will be

synchronized.

3.1.2 SQL Result Set Data Structure Conversion

When AIDA needs to execute relational operations to materialize a TabularData object,

it is the database adapter’s job to submit the translated SQL query to PostgreSQL and

prepare the query result in a column-based format. As described in Section 2.2.3, the

TabularData object in AIDA has two internal representations: (i) the first representation is

a dictionary-columnar format, which is essentially a Python dictionary of column names

paired with the column data in NumPy arrays, (ii) the second representation is built on

top of a matrix of contiguous columns, where all the columns have the same data type.

The original implementation of AIDA for MonetDB [11] took advantage of the

zero-copy optimization that was possible because of the similarity of their data

structures. Thus, formatting MonetDB’s result set into the TabularData object’s internal

representation was nearly instantaneous in most cases without copy or transformation

with the exception of string values. However, the row-oriented PostgreSQL has

distinctly different internal storage data structures from the vector-based data structures

used in AIDA and the statistical packages on which AIDA relies. The plpy module

returns the result set in a row-by-row format. Therefore, the database wrapper has to

perform a data structure transformation to transform this row-by-row result set into the

TabularData object’s dictionary-columnar representation. Nevertheless, such

row-to-column transformation is expensive to perform if the result set is relatively large.

30

A naive conversion method performs the transformation in Python space. To

alleviate the transformation cost, we implemented two advanced methods to perform

the transformation on top of the internal data structures. All three methods are depicted

in Figure 3.2.

Embedded Python Interpreter of PostgreSQL

SQL
Engine

Database
Tables

AIDA
Database
Adapter

Database
Workspace

plpy
Module

New
API

TabularData

Dictionary-
columnar data

Method 3
Conversion
happens here

Row-based
Result Set

C Extension
Module

Row-based
Result SetMethod 1

Method 2

Conversion

happens here

Conversion
happens here

Figure 3.2: High Level Execution Flow of Each Conversion Method

1. The naive conversion method: When the plpy module returns a row-based result

set to the embedded Python environment in which AIDA’s server resides, we first

create empty NumPy arrays for each of the columns in the result set and then iterate

over each row to fill these NumPy arrays. At the end, the appropriate annotations

are created to build a full-fledged TabularData object in the dictionary-columnar

representation. These conversion steps are written in Python and are executed by

the embedded Python interpreter of PostgreSQL.

2. Convert with an extension module written in C: Instead of performing the

conversion in the Python environment, we use Python/C API1 to loop over the

1https://docs.python.org/3/c-api/

31

https://docs.python.org/3/c-api/

rows and perform the transformation on top of the internal data structures as it is

faster to do so in C. That is, once we receive the Python row-based result set via the

plpy module, we pass it to the extension module to transform the result set into the

dictionary-columnar format.

3. Perform the transformation within the plpy module:. In this version, we add a

new method to PostgreSQL’s plpy module, which performs the data structure

conversion before returning the result set to the Python environment. Instead of

returning a Python row-based, this method directly creates a dictionary-columnar

result set from the output produced by PostgreSQL’s SQL engine and wraps the

internal C representation of the result set as a Python object. When AIDA’s

database adapter needs to execute an SQL query, it invokes this method rather

than the original execution method. Therefore, there is no further operation

required after the object is received in the embedded Python environment. It is

notable that this last option modifies the plpy module provided by PostgreSQL.

Strictly speaking, it does not consider PostgreSQL as a black-box anymore, but

PostgreSQL itself was extended to support AIDA.

3.1.3 Relational Operations on TabularData Objects

As we have described in Section 2.2.3, TabularData objects that are created from a

relational operation are not immediately materialized. Instead, a lazy execution strategy

takes place to avoid the materialization of intermediate results. Thus, a TabularData

object is only materialized when the client either explicitly requests its data or because it

becomes an input for a linear algebra operation. If it depends on other non-materialized

objects, AIDA will translate the combination of relational operations into a single SQL

query and use PostgreSQL’s database engine to execute the query.

32

If a materialized TabularData object then becomes an input of subsequent relational

operations, the object eventually needs to be handed over to PostgreSQL to run the SQL

query over it. The default data exposing mechanism in the original implementation of

AIDA [11] is to use a table-UDF, as described in Section 2.2.3, to transfer the TabularData

object’s dictionary-columnar representation to PostgreSQL’s SQL engine.

In principle, this is also how the original AIDA implementation for MonetDB [11]

exposes TabularData objects to MonetDB. However, it performs a much simpler task to

transfer the data from AIDA to the embedded Python environment as the dictionary-

columnar format is exactly the format needed by MonetDB.

Again, since PostgreSQL is a row-orient RDBMS, the data exposed to the SQL engine

is expected to be in a row-based format. Thus, this introduces yet another data structure

conversion, but in the opposite direction, namely from the dictionary-columnar

structure to a row-based format. Within the table-UDF, it essentially does the opposite of

the previously mentioned row-to-column data structure conversion; that is, it transfers

the dictionary-columnar data to a row-based format that resembles the result set

returned by PostgreSQL’s plpy module.

In contrast, as a stand-alone data analysis solution, pandas has a set of relational

operators for its own DataFrame objects that are conceptually similar to AIDA’s

TabularData objects. If relational operations are performed on data that is already

retrieved from the RDBMS and maintained in the DataFrame objects, then pandas uses

its own implementation, which works on the column-based DataFrame objects and does

not require any conversion. Hence, the data structure conversion from the columnar

structure to the row-based format in order to use a row-oriented relational database

engine is an extra overhead that is not encountered by other systems besides our

implementation of AIDA for PostgreSQL.

In our AIDA implementation for PostgreSQL, we design a workaround to avoid such

column-to-row data structure conversion by also supporting a row-based representation

33

for the TabularData objects in AIDA. In particular, for a materialized TabularData object

that is the result of relational operations, while we get the Python row-based result set

from PostgreSQL and convert it into the dictionary-columnar format, we can also cache

the row-based result set as an extra representation. Therefore, when this TabularData

object needs to be exposed to PostgreSQL for running SQL queries over, we can directly

return the cached row-based result set instead of performing the expensive

column-to-row conversion. However, this workaround is only possible with the first two

result set preparation methods that we have described in Section 3.1.3 and is

incompatible with the extended plpy module approach as we do not receive a row-based

result set with this implementation. Also, it is noteworthy that such optimization has a

space versus efficiency trade-off as it needs to maintain both the dictionary-columnar

and row-based representations to avoid the column-to-row conversion in the hope of a

performance improvement. Furthermore, it is only possible for a subset of the

TabularData objects; a row-based result set is not available for TabularData objects that

are derived from linear algebra operations. Finally, while this avoids the column-to-row

conversion, PostgreSQL still uses a row-by-row iteration model to retrieve the rows,

which includes copying each row into the database space; this overhead cannot be

avoided with the current PostgreSQL interface.

3.2 Evaluation

3.2.1 Test Setup

With our AIDA implementation for PostgreSQL, we have to transform the row-based

SQL result set to a columnar format when retrieving data from PostgreSQL. In the other

direction, we have to convert AIDA’s TabularData objects from a dictionary-columnar

format to a row-based structure before feeding them to PostgreSQL to perform relational

operations.

34

The question is whether this data structure conversion overhead is more expensive

than bringing the data to the client space and executing analytical operations as done

with external data analytics solutions. In order to evaluate the performance of our AIDA

implementation for PostgreSQL, we use the numerical synthetic data sets from [11] to

test our system. The details of the data sets will be described in the corresponding

experiments.

To measure the overall overhead of our AIDA implementation for PostgreSQL, we

evaluate the performance of AIDA in terms of response time against a purely UDF-based

approach for data analytics as described in Section 2.2.2. We also run the experiments

with NumPy and pandas as client-based applications that transfer the data to the client

side and process the data in user space with the respective package.

We run the experiments on two nodes with identical specifications of Intel® Xeon®

CPU E3-1220 v5 @ 3.00GHz and 32 GB DDR4 RDIMM. The two nodes are connected via

a Dell™ PowerConnect™ 2848 switch in a Gigabit private LAN. One node runs

PostgreSQL with AIDA embedded or not, depending on the system tested. The other

runs the AIDA client or the external data analytics systems, NumPy and pandas, with

which we compare.

Unless explicitly specified, we use PostgreSQL 12.3, Python 3.5.2, NumPy 1.12.1,

pandas 0.23.3, and psycopg2 2.7.5. with default settings. In all the experiments, we start

to take time measurement after a warm-up phase.

3.2.2 Making SQL Result Set Computational

We use this test case to study the cost of transforming the row-based SQL result sets into

a columnar format that is compatible with linear algebra operations. We run the

experiments with database tables that each has 100 columns of randomly generated

floating-point numbers. The number of rows in the data tables varies from 1 to 1 million.

We took these numerical synthetic data sets from [11].

35

For AIDA, we materialize TabularData objects to load the database tables. The

row-based SQL result set is converted to the dictionary-columnar representation during

the materialization. We also examine how the conversion methods that we described in

Section 3.1.2 can influence the performance of the materialization process. We denote

them as follows:

• AIDA: We convert the row-based result set that we receive from the plpy module to

a columnar format in Python space. That is the naive conversion.

• AIDA-CM: We use the extension module to perform the conversion with the

underlying data structure of the row-based result set in C.

• AIDA-MAPI: We modify the plpy module and use the customized function that

directly returns a dictionary-columnar representation of the SQL result to the

embedded Python environment.

We measure the loading time at AIDA’s client side that initiates the load request.

Although the data itself still resides in the server end, the cost of RMI communication is

included in the loading time. However, we expect this to be small because no actual data

is transferred to the client side. Apart from the AIDA variants mentioned above, we also

run the experiments with the following test candidates:

• DB-UDF: Instead of using the AIDA framework, we use a Python UDF to load the

data and convert the result set into the dictionary-columnar format as a TabularData

object. The Python UDF is executed on the server side. Thus, there is no client-server

communication cost and no AIDA runtime overhead.

• NumPy and pandas client-based applications: We use psycopg2, a Python DB-API

implementation for PostgreSQL, to retrieve the SQL result set from PostgreSQL to

user space and perform the data structure transformation on the client side. The

NumPy implementation creates a dictionary-columnar representation that is

36

similar to the internal representation of TabularData objects, while pandas creates

its DataFrame object that contains labeled axes for rows and columns. As the

performance of retrieving data from PostgreSQL depends on the cursor buffer size

of psycopg2, we test with the default buffer size of 100 and also an optimized

buffer size of 1 million, to accommodate the largest database table in this test case.

This optimized setting is recorded as NumPyOpt. The loading time of these two

applications is measured at the client side, which includes the communication and

data shipping cost.

Figure 3.3: Time to load data (The server and client communicate across a switch)

Figure 3.3 shows loading time on a logarithmic scale. For small data sets less than

100 rows, the AIDA variants take about 20 times longer than DB-UDF, approximately

five times more than NumPy, and 20% slower than pandas. Such worse performance

can be attributed to AIDA’s framework overhead of handling RMI communication and

managing the creation and meta-data of TabularData objects at runtime.

For larger tables with more than 100 rows, AIDA starts to show the benefits of

keeping data inside the RDBMS. Since DB-UDF avoids any client-server communication

and does not have framework overhead, it has relatively better performance than others.

37

When we compare AIDA variants with DB-UDF, the framework overhead becomes less

noticeable as the size of the database table increases. For the small table with 100 rows,

DB-UDF is 4 times faster than AIDA solutions, but with the larger table of 1 million

rows, the two optimized AIDA variants are actually slightly faster than DB-UDF. Both

AIDA-CM and AIDA-MAPI are faster than AIDA by around 10% because of their

optimization of the data structure conversion process. AIDA-MAPI is slightly faster

than AIDA-CM, making it the most efficient AIDA implementation for PostgreSQL.

However, the difference between these two variants is not to a noticeable degree.

Pandas has extra computation cost when it constructs a pandas DataFrame, which

contains labeled axes for both rows and columns. For tables with more than 10 rows, it

becomes slower than AIDA solutions. AIDA-MAPI takes 10% less time than pandas at

100 rows and 35% less time when the table size reaches 1 million rows. For large tables,

the performance of NumPy lies in between pandas and the AIDA solutions; this is mainly

because of data shipping cost.

Considering NumPy and pandas take data out of PostgreSQL and transfer it to the

client side, their performance is significantly constrained by the client-server network

condition and the hardware on the client side. On the other hand, AIDA performs the

data structure conversion in PostgreSQL’s embedded Python environment, and thus it is

not likely to be affected by the network condition while leveraging the high-end server

computation power. To emulate a more realistic client-server connection, we re-run the

experiments with the client on a remote machine that communicates with the server

across the Internet. The remote machine has the following hardware: Intel® Core™ CPU

i5-5257U @ 2.70GHz and 8GB DDR3 RAM. Since we have witnessed that AIDA-MAPI is

the most efficient conversion method, we will run the rest of the evaluations with this

conversion method unless explicitly specified.

Figure 3.4 shows the loading time of the cases that the client communicates with the

server across the Internet on a logarithmic scale. While AIDA-MAPI is not being

38

Figure 3.4: Time to load data (The server and client communicate across the Internet)

affected too much by the network condition (as only one RMI request is sent across the

Internet), NumPy and pandas applications need to transfer the data from the server and

process it in the user space. We see a huge increase in their loading time. When the table

has 1000 rows, AIDA-MAPI outperforms NumPy and pandas, where AIDA-MAPI

takes only around 30% of the time needed by NumPy and pandas to load the table into a

computational object. This trend continues as the data set size increases. At 1 million

rows, AIDA-MAPI is 9 times faster than NumPy or pandas. The performance of

DB-UDF remains unchanged as it does not have client-server communication.

3.2.3 Relational Joins

In this test case, we want to analyze how AIDA can leverage PostgreSQL’s SQL engine

to perform a join operation in comparison with the join functionality implemented in

pandas. We experiment with two data sets taken from [11]; each has 11 integer columns

and 1 million rows. One of the columns, the primary key, is unique and identical in both

data sets, while the rest of the fields may share the same value between the two data sets

or not.

39

We have two baseline test cases: (1) We use the merge function in pandas to join

the data sets represented by pandas DataFrame objects. We do not consider the time

to load the data set to DataFrame objects as we have seen the overhead in the previous

section. That is, all data is already on the client side. Note that the client we use is as

powerful as the machine that hosts PostgreSQL and AIDA. (2) DB-UDF assumes the data

sets are stored in relational database tables within PostgreSQL. Therefore, it executes an

SQL query joining the tables inside the UDF body and then loads the result set into a

dictionary-columnar format. That is, data transformation is performed only once.

Regarding AIDA, the join operation will be translated into a SQL query on these two

data sets. In terms of where the data sets reside, we consider the following three

scenarios: (1) The data sets are stored as database tables in PostgreSQL. Therefore, AIDA

simply pushes down a SQL query to the SQL engine. We refer to this case as AIDA. (2)

The data sets to be joined reside in materialized TabularData objects that resulted from

linear algebra operations. In order to perform the join, AIDA needs to expose these two

data sets to PostgreSQL. As described in Section 3.1.3, we use table-UDFs to perform the

data structure conversion and then return the Python object to PostgreSQL. We refer to

this case as AIDA-UDF. (3) The data sets reside in materialized TabularData objects that

resulted from relational operations; thus, they can have previously cached row-based

result sets. We directly expose the cached row-based result set to PostgreSQL for the join.

We refer to this case as AIDA-cache. To summarize, all AIDA variants produce a

TabularData object with the dictionary-columnar representation. Therefore, DB-UDF

and all AIDA variants have the overhead of transforming the row-based result set to a

columnar format. AIDA-UDF has the additional overhead to transform columnar

TabularData objects to rows and transfer the rows to PostgreSQL, while AIDA-cache

only has the additional overhead to transfer the previously cached rows of AIDA’s

TabularData objects.

40

Figure 3.5: Joining two data sets

Figure 3.5 shows the join execution time in milliseconds (left axis) and the cardinality

of the result set (right axis); both on a logarithmic scale. As the number of join columns

increases, the join query becomes more complex and yields less result records. The result

set has 1 million rows when we join only on the primary key and zero rows when we

perform the join on all the columns.

Interestingly, with one to three join columns, pandas has the best performance. Such

behavior can be attributed to the fact that pandas performs little optimization for the join

operation. While the basic join plan is sufficient for simple joins, it fails to accommodate

complex joins, even though pandas has no data conversion overhead as the data sets are

already loaded into pandas DataFrame objects.

AIDA outperforms pandas when we join on more than 3 columns. The execution time

of AIDA decreases from 1 to 5 join columns and increases only slightly after. The reason

is that with few join columns the SQL result set is large and the row-to-column data

structure conversion for the result set is expensive. The conversion cost decreases as the

result set becomes smaller. Note that AIDA assumes the data sets reside in PostgreSQL

41

tables; thus, it can take advantage of PostgreSQL’s sophisticated query planner for the

complex joins. The only data structure conversion needed in this case is for the SQL

result set.

DB-UDF has similar performance to AIDA, also executing the join within the RDBMS

on database tables. While it does not have a framework overhead, it spends slightly more

time than AIDA to finish the entire execution because AIDA benefits from the optimized

conversion of the join result set into a dictionary-columnar structure.

For AIDA-UDF and AIDA-cache, we have to expose the TabularData objects to the

database engine, which incurs extra overhead because MonetDB-style zero-copy data

transfer is not possible. This cost is the dominant factor by far. Regarding AIDA-UDF,

we barely see any difference in the execution time with different join columns because

the actual join execution time and the final conversion of the SQL result set into a

TabularData object play a much smaller role. For the key-join, AIDA-UDF takes 3.5

times longer than AIDA, and for an 11-column join, AIDA-UDF takes nearly 100 times

longer, the only reason being the costly data transfer to the SQL engine.

With AIDA-cache, we do not need to perform a column-to-row conversion to expose

the data sets; Therefore, we can see that AIDA-cache spends about 70% less time than

AIDA-UDF in general. But we also notice that AIDA-cache still takes twice as much time

as AIDA for a single-column join and 25 times longer for an 11-column join because of

the significant overhead caused by sending data via table-UDFs to the SQL engine, even

though the cached data is in a row-based format and compatible with PostgreSQL. This

shows that the row/column data structure conversion is only one part of the problem.

The other is that the interface used to feed data to PostgreSQL not only still copies the data

but also does so on a record-by-record basis, making the data transfer very inefficient.

With these results, we can conclude that as long as the data resides in PostgreSQL, it is

beneficial for AIDA to use the RDBMS’s sophisticated join implementation for large data

sets. However, it is not favourable to use a row-based RDBMS for relational operations if

42

the data to be manipulated does not reside in the database or cannot be exposed to it via

a special mechanism such as zero-copy transfer. Even a simple join implementation that

works directly on the data, such as implemented in pandas, will be more efficient as data

conversion becomes the dominant factor.

43

Chapter 4

Exposing Python Data to PostgreSQL

In this chapter, we have a much closer look at the data transfer from the embedded

Python environment to PostgreSQL and explore possibilities of optimizing SQL queries

over Python data. Following the same optimization logic of virtual tables in [12], we

want to implement the concept of virtual tables for PostgreSQL. First, we develop a

foreign table-based approach that leverages PostgreSQL’s foreign data wrapper feature

to provide an optimizer-friendly data exposing mechanism with lazy strategies on data

transfer. Moreover, we consider using temporary tables to present another approach to

transfer the Python object to PostgreSQL. In order to understand the cost benefits of

these designs, we evaluate these two methods against the conventional table-UDF

approach that we used in our AIDA implementation described in the last chapter. We

use the TPC-H Benchmark and an end-to-end data science workflow for our evaluation.

4.1 Virtual Table Designs for PostgreSQL

As pointed out in Section 2.3.2, the virtual table construct implemented in MonetDB has

been proved to be an efficient data exposing mechanism when compared to table-UDFs

in terms of running SQL queries over table-like data objects maintained in the embedded

Python environment of an RDBMS.

44

To preserve the versatility of virtual tables, we adapt the same library design as in the

MonetDB implementation: the functionality of virtual tables is implemented in a virtual

table library that exposes a Python API to the client. This API can be used inside UDFs,

stored procedures, or data science frameworks such as AIDA. The virtual table library

allows for data registration and query execution, and it also separates the underlying

data transfer implementation from the user interface. Users only need to change a flag

attribute to alter the underlying data exposing mechanism; therefore, different

implementations can be easily exchanged and tested.

Listing 4.1 shows a basic usage example of the virtual table library for PostgreSQL. The

syntax is similar to the one used by the virtual table library implemented for MonetDB

[12]. The virtual table manager object enables the registration of Python objects as virtual

tables in the database system (regTable) and the execution of SQL queries on virtual

tables (executeQry). It also enables that the result set returned is a Python object.

1 CREATE FUNCTION minor students (f i lename TEXT)

2 RETURNS TABLE (s id INTEGER, sname TEXT) AS $$

3 from v t l i b import VTManager

4 import pandas as pd

5 vtm = VTManager ()

6 df = pd . read csv (f i lename)

7 . . .

8 # r e g i s t e r t h e Python o b j e c t a s a v i r t u a l t a b l e

9 vtm . regTable (df , ' s tudents ')

10

11 # e x e c u t e a SQL query o v e r t h e r e g i s t e r e d d a t a

12 r e s u l t = vtm . executeQry ('SELECT sid , sname FROM students WHERE age < 1 8 ; ')

13 r e s u l t = map(nameToUpper , r e s u l t)

14 re turn r e s u l t

15 $$ LANGUAGE plpython3u ;

Listing 4.1: An example of virtual table library usage

45

In contrast to MonetDB, PostgreSQL is a row-oriented system and requires further

accommodation for data transfer. The architecture and design differences between these

two systems make it impossible to directly migrate or have the same virtual table

implementation for PostgreSQL as what was developed for MonetDB.

When implementing virtual tables for PostgreSQL, we face the challenge that a

data-structure conversion is necessary if the registered object is stored in a column-based

format, as this is the case for TabularData objects in AIDA or DataFrame objects in

pandas, because PostgreSQL processes SQL query in a row-based manner. Thus, our

design choices must take the impact of data structure conversion into consideration.

The internal implementations of these methods for PostgreSQL use two quite

different mechanisms. The first one uses the foreign wrapper feature of PostgreSQL,

which allows PostgreSQL to access external data via foreign tables. In the context of this

foreign data wrapper approach, we have implemented several variations. Alternatively,

as a more versatile approach, we also devise a temporary table approach that does not

need to introduce extra PostgreSQL extensions but directly loads the Python data into

temporary tables for short-term access. In the remainder of this section, we describe both

approaches in detail.

4.1.1 The Foreign Table Approach

Figure 4.1 depicts the high-level architecture of the approach using foreign tables. The

virtual table library provides a Python API to register a table-like Python object as

virtual table as shown in Listing 4.1, concealing the details of how to do that from the

user interface. At the time of registration, the virtual table library caches the table-like

Python object with its registration name as a Python key-value pair. For each column of

the data set, the library internally maps its Python data type to a database data type and

uses this meta-information to create a foreign table in PostgreSQL’s system catalog so

that the virtual table can be used in SQL queries as if it were a regular database table.

46

RDBMS
Embedded HLL

Interpreter

PostgreSQL
Database

Engine
UDF / Stored Proc.

Input params:

…
HLL Statements

…
…
…

…
…

External
Systems

DB
 A

PI
 L

ib
ra

rie
s

DataFrame

TabularData…

pandas

AIDA

Python
Objects

VT
-li

b
Loopback

SQL queries

Metadata

data access

control flow

meta info

Data
Preparation

VT modules

Multicorn
Extension

Multicorn
Foreign Data Wrapper

Python Class

Foreign Table
Column Types

Iterative
Scan

Cardinality

Figure 4.1: The foreign table approach

Using the foreign table approach as a virtual table implementation requires us to

integrate the Multicorn extension and implement a Multicorn foreign data wrapper

class. As described in Section 2.3.4, the API functions to be implemented in the

Multicorn foreign data wrapper class facilitate both the query planning phase and query

execution phase. We can expose the meta-information to the query planner and only

transfer a subset of the registered data during the query execution. Therefore, the onus

of regulating how to access the registered data lies on a concrete Multicorn foreign data

wrapper class.

Multicorn Foreign Data Wrapper Class Initialization and Data Preparation

Although PostgreSQL obtains an abstract view of the Python data after the registration,

the Multicorn foreign data wrapper class is only initialized when the foreign table is

requested for the first time in a SQL query. In the constructor of the Multicorn foreign

47

data wrapper class, we find the cardinality of the registered data set. That is, the

meta-information will be collected only once at the initialization time of the Multicorn

foreign data wrapper class. The same applies to other data preparation operations that

we only want to execute once for a foreign data set.

Since column-based Python data objects cannot be directly transferred to PostgreSQL’s

database engine, we need to convert the data set into a row-based format before offering

the tuples to the Multicorn extension. We have analyzed several options. In the first

implementation, we perform all the conversion in one shot at the initialization time of

a Multicorn foreign data wrapper class and provide the full tuples to the SQL engine

every time when the foreign table receives a scan request. In an alternative approach, we

provide the SQL engine at query execution time with reformatted tuples that only contain

the attributes needed for the query. We outline the approaches in detail further below.

Query Execution

As mentioned in Section 2.3.3, the execution of SQL queries over a foreign table can be

divided into two phases: the query planning phase and the query execution phase.

At the query planning phase, the foreign data wrapper can use the column data type

information to estimate the expected width of a tuple. In our specific Multicorn foreign

data wrapper class, we have to implement the corresponding functions that provide such

information to PostgreSQL’s query optimizer. In particular, if the mapped PostgreSQL

data type of a column has a fixed size, we directly add the size to the expected tuple

width. Otherwise, we use a hard-coded constant value to estimate the width of a variable-

length column and apply this estimated size to the expected tuple width. For each query

planning inquiry from PostgreSQL’s planner, we return the number of rows in the data

set as well as the estimated tuple width of the columns that are needed to process the

query for the query planner to estimate any plan cost.

48

PostgreSQL offers an iterative foreign scan interface to Multicorn. What we have to

implement for a Multicorn foreign data wrapper class is a function that fetches one row

at a time from the prepared row-based Python data set and then transfers the row to the

Multicorn extension. Python data objects in that row are translated to C strings at the

Multicorn extension before being sent to PostgreSQL SQL engine as pass-by-reference

PostgreSQL Datums. However, such iteration and data type conversion are executed for

every foreign scan of the foreign table. We want to explore the possibility of reducing the

data transfer, and thus, the data type conversion overhead.

To analyze how the two aspects above will influence the performance of foreign tables,

we have three different implementation variants, each using a different strategy for data

format conversion and data transfer in the Multicorn foreign data wrapper class.

1. The Trivial Implementation: This implementation performs the column-to-row

data format conversion on the entire Python data in one shot eagerly when the

Multicorn foreign data wrapper class is initialized. The row-based data set is still a

Python object, and this row-based Python data set will be used for subsequent

query execution of the foreign table. The iterative foreign scan function sends one

row of the Python data at a time to the Multicorn extension for data type

conversion. The Multicorn extension converts the Python data to Datum,

transforming the row into a virtual tuple table slot with pass-by-reference Datum

attributes before sending it to PostgreSQL’s database engine. This tuple table slot

contains data for all the columns, no matter if some columns are required in the

SQL query or not.

2. The Need-Based Transfer Implementation: This implementation also performs

the column-to-row data format conversion at the Python level in one shot during

the initialization of the Multicorn Foreign data wrapper class. However, when a

particular SQL query invokes the foreign scan function, the foreign data wrapper

class prepares each row with only the columns that are needed in the query as

49

projections are pushed down to the foreign data wrapper class. Therefore, only the

data in the requested columns are sent to the Multicorn extension for data type

conversion. The Multicorn extension then inserts nulls at the column positions that

are not needed in the SQL query and provides the SQL engine with a tuple table

slot that only has the requested data. Thus, less data is transferred at execution

time.

3. The Lazy Conversion Implementation: This implementation performs a lazy data

structure conversion for columns on an ad-hoc basis. It does not transform the

columnar Python data set to a row-based structure at the initialization time.

Instead, it performs the column-to-row conversion for the requested columns over

time as queries are submitted for the foreign table. A first query on the foreign

table only takes the columns that are requested by the query and transforms them

into row format. Further queries then might add data from other columns to the

cached rows whenever they are the first query that requests that column. Like the

need-based data transfer implementation, this implementation only sends the

requested columns in the cached rows to the Multicorn extension during the

iterative foreign scan. The positions of other non-inquired columns in the virtual

tuple table slots will be inserted with nulls before the Multicorn extension sends

them to PostgreSQL’s database engine.

Our foreign table approach performs the column-to-row data structure conversion for

each column only once. It also provides cardinality information to PostgreSQL’s query

optimizer in the hope of a better execution plan and attempts to reduce the transfer load

by only providing requested column data. Although it has such advantages over the

table-UDF approach, data type conversion and data transfer from the embedded Python

environment to PostgreSQL are still performed for each foreign scan request. Similar to

the table-UDF approach described in the previous chapter, the foreign table approach also

transfers the data on a per-record basis when it exposes a Python object to PostgreSQL.

50

4.1.2 The Temporary Table Approach

As pointed out in [12], loading the table-UDF’s result set into a temporary table can

circumvent the drawbacks of repeatedly using the table-UDF to a certain degree. The

data transfer between the embedded HLL environment and the RDBMS only happens

once, and the cardinality information will be known to the RDBMS afterward as the data

set is stored in a temporary table. Therefore, the SQL queries over the temporary table

can be optimized by the query planner. In this section, we use temporary tables to

present a second data exposing mechanism to facilitate running SQL queries over

Python objects.

RDBMS
Embedded HLL

Interpreter

PostgreSQL
Database

Engine
UDF / Stored Proc.

Input params:

…
HLL Statements

…
…
…

…
…

External
Systems

DB
 A

PI
 L

ib
ra

rie
s

DataFrame

TabularData…

pandas

AIDA

Python
Objects

VT
-li

b

Temp
Buffers

Loopback
SQL queries

Metadata

data access

control flow

meta info

Table-UDF

VT modules

Temporary Table
Column Types

Statistical
Information
via ANALYZE

Temporary
Tables

Figure 4.2: The temporary table approach

Figure 4.2 illustrates the high-level architecture of the temporary table approach. It is

lightweight to use a temporary table for short-term access to registered data as a

temporary table only exists for the database session in which it is created. Temporary

tables have dedicated temporary buffers maintained by individual PostgreSQL backend

51

processes; they may have a higher cache hit rate in the temporary memory to access the

data without being affected by operations on regular database tables that use shared

buffers. Therefore, it is plausible to load the registered data from the embedded Python

environment to a temporary table and then use it to query the data. This avoids the

repeated data transfer overhead that occurs to both table-UDF and foreign table

approaches when we run multiple SQL queries over the same registered Python object.

Note that these temporary tables require extra space. Should memory space be too

small, this might lead to swapping.

1 CREATE FUNCTION studentsIntermUDF ()

2 RETURNS TABLE (s id INTEGER, sname TEXT) AS $$

3 # d a t a p r e p a r a t i o n

4 r e s u l t = . . .

5 re turn r e s u l t

6 $$ LANGUAGE plpython3u ;

7

8 CREATE TEMP TABLE students AS SELECT * FROM studentsIntermUDF () ;

9 SELECT sid FROM students WHERE sname = ' John Doe ' ;

Listing 4.2: Temporary Table Approach

Listing 4.2 shows the high level flow of the temporary table-based approach. The

virtual table library defines a table-UDF to return the Python object to the PostgreSQL

database engine. It then uses the CREATE TEMP TABLE AS command to create a

temporary table whose input is the result set of the Table-UDF. The temporary table’s

columns will have the same names and data types as in the output result of the SELECT

command on the Table-UDF. When PostgreSQL executes the table-UDF, it transfers the

Python data returned from the Table-UDF directly into the temporary table. Thus, data

transfer only happens once when the temporary table is created. However, as we have

discussed before, it leads to a data copy on a per-record basis. The temporary table can

then be used in SQL queries, just as any other regular database table. For any SQL

52

queries over the temporary table, the database engine will directly access the tuples in

the temporary buffers; this reduces the execution cost compared to our previous

solutions, which transfer data from the embedded Python environment to PostgreSQL

for every query execution.

Although the data that resides in a temporary table is known to PostgreSQL, it

provides very little meta-information about itself to the query planner. PostgreSQL has a

feature called autovacuum, whose purpose is to automate the execution of VACUUM and

ANALYZE commands [32]. The autovacuum daemon maintains and updates the statistical

information of database tables. It is automatically executed after a large number of

inserted, updated, or deleted tuples. First, VACUUM collects the storage space occupied

by the table tuples that are either deleted or obsoleted by an update. Then, ANALYZE

collects statistical information from the cleaned tuples of the table. The collected

statistical information of that table is stored in PostgreSQL’s system catalog and can be

used by the query planner to generate an optimal execution plan. Because the

autovacuum daemon cannot access the temporary tables [32], PostgreSQL’s query

planner by default estimates the characteristics of a temporary table by counting how

many buffer pages a temporary table occupies and by using the column data type

information to estimate the cardinality of the temporary table. However, the estimation

often diverges from the actual value, especially for temporary tables with

variable-length columns. Ideally, the query planner needs more accurate and extensive

statistical information about a temporary table to generate the optimal execution plan.

To collect the statistical information of a temporary table and its columns, we can

explicitly run an ANALYZE command on that temporary table. Once the statistics about

the temporary table is added into PostgreSQL’s system catalog, the query planner can

use the meta-information to generate an efficient execution plan for SQL queries over the

temporary table. Depending on the size of the temporary table, collecting statistical

metadata may be expensive. We are interested in evaluating the trade-off between using

53

a simpler execution plan to access the temporary table data vs. spending extra time to

collect temporary table statistics in the hope of executing the SQL query with an

optimized plan.

4.2 Evaluation

4.2.1 Test Setup

Our implementations provide alternative approaches to expose Python data to

PostgreSQL, and we would like to evaluate the usability of these implementations and

compare their performance with the conventional table-UDF approach over practical

test cases. AIDA, as a data science framework, supports relational operations by running

SQL queries over Python data objects. By default, it uses Table-UDFs as the default data

exposing mechanism. For the purpose of the evaluation, we replace the table-UDF

generation component with the virtual table library and evaluate our implementations

with test cases of business-oriented queries in the TPC-H Benchmark and an end-to-end

data science workflow that requires frequent data movement between PostgreSQL and

the embedded Python environment. We measure the performance in terms of the

response time of operation requests with each data exposing approach.

We use different data exposing mechanisms in AIDA’s server component to run the

experiments and set up the client-server connection on the same nodes as mentioned in

Section 3.2.1: The hardware specifications are Intel® Xeon® CPU E3-1220 v5 @ 3.00GHz

and 32 GB DDR4 RDIMM. The node that runs PostgreSQL with AIDA’s server component

and the other node that runs the AIDA client are connected via a Dell™ PowerConnect™

2848 switch in a Gigabit private LAN. For software, we use PostgreSQL 12.3, Python

3.5.2, NumPy 1.12.1, pandas 0.23.3, psycopg2 2.7.5, and Multicorn 1.4.0. Unless explicitly

specified, we use default settings for all software. In all the experiments, we only start to

take time measurement after a warm-up phase.

54

4.2.2 TPC-H Queries

To evaluate the usability of our data exposing implementations for PostgreSQL and

compare them with table-UDFs, we first run experiments with the TPC-H

Benchmark [33]. The TPC-H Benchmark captures a Business-to-Consumer system

consisting of tables such as customer, orders, line-item, etc. The database can be created

with different scale factors (SFs), where SF 1 leads to a database of roughly 1 GB. The

TPC-H queries are modelled after real-world commercial questions, which are complex

and made up of a variety of relational operations. Notably, the richness of selectivity

conditions in these queries will help us better understand how the data characteristics

will influence PostgreSQL’s query planner. With regard to the scale factor of the TPC-H

Benchmark, we choose to use SF 1 in our experiments as 1 GB of data is already large

enough to analyze how the data transfer affects the performance of virtual tables. We

use AIDA’s ORM-style API to run Python workflows that are translated from TPC-H

SQL queries 1-20 and 22. Query 21 is left out because it cannot be translated by using

AIDA’s syntax. We set up AIDA’s server component with the following data exposing

mechanisms:

• db-tbl: The data set is in regular database tables. No data conversion takes place

when running queries over those tables, and PostgreSQL has full access to the

characteristics of these tables. This is our base case, which has the lowest overhead

by construction.

• tbl-udf: The data set is stored in Python objects, and AIDA uses table-UDFs to

expose the data to PostgreSQL.

• ft: The data set is stored in Python objects, and AIDA uses the trivial

implementation of foreign tables to expose the data to PostgreSQL. The foreign

data wrapper eagerly transforms the columnar object to a row-based format at the

initialization time and transfers all the data to PostgreSQL for each query request.

55

• ft-needed-cols: The data set is stored in Python objects, and AIDA uses the

needed-based implementation of foreign tables to expose this data to PostgreSQL.

The foreign data wrapper class still eagerly transforms the columnar object at the

initialization time but only transfers the requested columns to PostgreSQL at the

runtime of a SQL query.

• ft-lazy: The data set is stored in Python objects, and AIDA uses the lazy conversion

implementation of foreign tables to expose this data to PostgreSQL. The foreign

data wrapper class lazily performs the column-to-row data transformation for the

columns when they are requested for the first time and caches them in a row-based

structure for later use. This implementation also only transfers the requested

columns for a query request.

• tp: The data set is stored in Python objects, and each Python object is loaded into

a temporary table by using a table-UDF. PostgreSQL will then use the temporary

table to access the data.

• tp-analyzed: After the data is loaded into the temporary table, we run an ANALYZE

command on the temporary table to collect statistical information from the

temporary table.

An individual test unit consists of one of the TPC-H queries and one of the

implementation options described above. Within each test unit, the query is executed

twice. We measure the execution time for each run separately and show the results with

suffixes of -1 and -2, respectively. The virtual tables requested in the query are created

when the query is executed for the first time. Thus, the first two foreign table variants

perform the column-to-row transformation on the entire data set in the first run of the

query. In contrast, the third foreign table variant performs the transformation lazily for

the columns that are requested in the query during the first foreign table scan. Similar to

foreign tables, the temporary table approach only loads the data into a temporary table

56

at its creation time. Therefore, we expect the second run of each query to take less time

for our virtual table implementations. Note that the execution time does not include any

data transfer from the server to the client side; the query execution solely occurs on the

server side. Since we experiment with AIDA, we include the time spent on loading the

SQL result set into a TabularData object. This overhead occurs for all test candidates.

All Data Sets as Python Objects

In our first test case, we load all the TPC-H data sets into AIDA’s TabularData objects in

the dictionary-columnar representation. All test candidates except db-tbl, where the data

is stored in regular database tables, have the Python objects at the start-point.

Figures 4.3 - 4.5 depict each query’s execution time with different data exposing

mechanisms in seconds (y-axis in a logarithmic scale). Although most queries follow the

same trend, there are three queries that deviate from others (i.e. queries 2, 19, and 22).

We will discuss these three queries case by case later.

Figure 4.3: TPC-H queries: 1-7

(all data sets as Python objects).

57

Figure 4.4: TPC-H queries: 8-14

(all data sets as Python objects).

Figure 4.5: TPC-H queries: 15-20, and 22

(all data sets as Python objects).

Overall Trend: For the present, we confine ourselves to the 18 queries that follow the

general trend. In the following, when we discuss the execution time, we calculate them

as the sum of the execution times of all 18 queries.

We have the best performance when running the queries directly on database tables

(db-tbl), with a total execution time of 17 seconds. This comes as no surprise because no

data conversion is needed and the query planner has full access to precise

58

meta-information. In contrast, Table-UDFs, bearing the deficiencies mentioned in

Section 2.3.1, are relatively expensive to use. The first runs of table-UDFs (tb-udf-1) take

about 1960 seconds in total, which is 115 times more than running the queries with

regular database tables on average. The execution time difference between the first and

second runs of Table-UDFs is not significantly noticeable because PostgreSQL needs to

re-perform all the expensive operations, such as data structure transformation and data

type conversion for both executions of the query.

Regarding our implementations of virtual tables, we start by looking at the trivial

foreign table implementation (ft-1 and ft-2). The first executions take approximately 105

times more than the regular database tables, which is also about 90% of the execution

time of table-UDFs. We determined that running the same query with table-UDFs and

foreign tables can result in different execution plans. The reason is that foreign

table-based implementations inform PostgreSQL’s query planner of the cardinality

information about the data sets, whereas table-UDFs cannot foresee how many rows

they will return. The query planner uses a constant value of 1,000 rows to estimate the

output of table-UDFs. Since table-UDFs and the naive foreign table implementation

perform similar conversions in the first execution, the performance improvement from

using foreign tables can be attributed to the fact that the query planner can benefit from

the cardinality information provided by the foreign tables and generate efficient plans.

Since the column-to-row data transformation of the Python data is only performed once

when the foreign table first appears in a query call (ft-1), the subsequent executions (ft-2)

do not need to repeat the transformation. Thus, we can see there is a 12% decrease in

execution time when we compare the second executions to the first runs when using the

naive foreign table implementation.

Our two other foreign table variants aim at further reducing the data transfer

overhead. These two variants will have the same execution plan as the naive foreign

table approach because they provide the same cardinality information to the query

59

planner. Therefore, they optimize the data transfer process in seek of performance

improvement. Although the first optimized variant (ft-needed-cols) still performs the

column-to-row data structure transformation in one shot, it only transfers the tuples

with the columns that are requested in a query during the foreign table scan. Not

transferring the columns that are not needed in the queries reduces the execution time of

first runs (ft-needed-cols-1) to 1170 seconds, which is roughly 35% faster than naive

foreign tables and 40% faster than Table-UDFs. We can see the same improvement in the

second runs as well. The last implementation variant (ft-lazy) performs both the

column-to-row data structure transformation and the data exposing process lazily. There

is a further 10% improvement when we compare ft-needed-cols-1 and ft-lazy-1, as we

avoid adding unnecessary columns into the row-based data structure cached by the

foreign data wrapper class. These two variants have roughly the same execution times

for the second runs as they share the same data transfer optimization strategy.

For the temporary tables, we set the size of temporary buffer space to 128 MB, which

is the same as the default size of the shared memory buffers in PostgreSQL; we do so

to reduce the influence of disk I/O requests when we compare using regular database

tables and temporary tables. The two temporary table-based approaches take a very long

time for the first runs. In contrast to the other approaches, where we directly run the SQL

queries over either table-UDFs or foreign tables, the first query execution of the temporary

table-based approach consists of two separated parts: first load Python data sets into

temporary tables via Table-UDFs, and then run SQL queries over these temporary tables.

In the second run, the execution time is purely the time spent on running the SQL query

over the data stored in these temporary tables. The difference between the first and the

second run reveals the time spent on loading Python data into temporary tables via Table-

UDFs. In the first runs of the vanilla temporary table approach (tp-1), loading the data

into temporary tables costs around 1,670 seconds in total, taking up 93% of the execution

time. Nevertheless, when we compare the first runs of the temporary table approach (at

60

1785 seconds in total) and the table-UDF approach (at 1960 seconds in total), we observe a

9% drop in the overall execution time, given that the temporary table approach performs

the data transfer exactly once even if the data set could be requested multiple times in

some queries.

Remember that the temporary table does not store the data size information by

default. PostgreSQL’s query planner estimates the temporary table’s row number based

on how many pages it occupies. However, this estimation is not always accurate and

will not always lead to an efficient execution plan. Therefore, we have a second solution

that explicitly runs an ANALYZE command to collect the statistical information about a

temporary table and its columns. The time spent on running ANALYZE commands on the

temporary tables is about 25 seconds, which is merely 1.5% of the total execution time of

tp-analyzed-1. In addition, with the collected statistical information, running the SQL

queries over the temporary tables alone is 70% faster than the vanilla temporary table

approach and more than 30 times faster than the foreign table approaches in the second

runs (tp-analyzed-2). Therefore, this approach is favourable when we want to execute

SQL queries over the exposed data multiple times as we only transfer the data once

instead of repeating data transfer for each request from the SQL engine.

Although temporary tables have dedicated memory buffers, the performance of the

second runs on the temporary tables is not always close to running the query with regular

database tables. The scans of temporary tables are currently not performed in parallel in

PostgreSQL, whereas the pages of a regular database table can be divided among parallel

worker processes for scanning. Thus, the second execution of using analyzed temporary

tables (tp-analyzed-2) is still roughly 50% slower than directly running the queries on

regular database tables. Nevertheless, as data transfer is avoided at the second run, this

is more optimal than the other data exposing mechanisms.

Outlier Queries: There are three queries that deviate from the general trend (i.e. queries

2, 19 and 22). We will have a detailed look at them in this subsection.

61

Running query 2 with table-UDFs is faster than most of our optimization methods

except tp-analyzed. The reason is that PostgreSQL’s inaccurate selectivity estimates

coincidentally yield an optimal execution plan for table-UDFs. The TPC-H query 2

re-written in AIDA syntax consists of multiple joins. PostgreSQL’s query planner cannot

predict the exact number of rows that will be produced by a join or a selection unless it

has the relevant statistical information about the attributes in the condition. Although

foreign tables provide the cardinality information for the data set, none of these data

exposing mechanisms provides statistical information about columns in the data sets.

Therefore, the query planner might yield inaccurate selectivity estimates and choose a

sub-optimal plan. In fact, when we run query 2 with foreign tables or temporary tables

that are not analyzed, PostgreSQL ends up performing nested loop joins on the

intermediate result sets that the query planner estimates to be small but are actually

large. In contrast, tables-UDF is perceived as a black-box that constantly returns 1,000

rows to the query planner regardless of how many rows the data set actually contains.

With this cardinality information, the query execution plan of query 2 happens to be a

chain of hashed joins between table-UDFs and intermediate join results, which leads to

better performance. As the analyzed temporary table approach provides statistical

information about the columns to PostgreSQL, it benefits from an efficient execution

plan. Even bearing the data transfer time in the first run, it is still faster than the other

data exposing mechanisms for query 2.

When looking at query 19, we find it takes surprisingly long if we run the query with

table-UDFs. This query involves joining two large data sets. When we run the query

with table-UDFs, the query planner perceives that the two function scans will only

produce 1,000 rows each and decides to use a nested loop to join these two data sets.

However, the two data sets actually have 800,000 rows and 6,001,215 rows, respectively.

Performing a nested loop join on these two data sets is a very expensive operation and

leads to an inefficient execution plan. All of our virtual table implementations avoid the

62

expensive nested loop join because they expose the correct cardinality information to the

query planner.

Lastly, it is unexpected to see that running query 22 with regular database tables is

slower than using table-UDFs. After digging into the execution plans, we find that the

problem is related to how PostgreSQL handles the NOT IN operator. In query 22, there

is an operation that selects the rows with an attribute that is not in another data set. The

data set in the NOT IN operator has 1,500,000 rows; thus, it is large. To perform the NOT

IN operation, PostgreSQL is inclined to build a hash table for the data inside the NOT IN

operator and traverses the outer row set to verify if the attribute is in the hash table.

However, if the query planner finds that the size of the hash table exceeds the work mem

size in PostgreSQL’s configuration file, it will use a naive NOT IN validation in the

execution plan instead. Since regular database tables, foreign tables, and temporary

tables provide the cardinality information to PostgreSQL’s query planner, they are all

affected by this decision rule and run the query with the expensive naive NOT IN

validation. Table-UDFs, on the other hand, only provide a constant value of 1,000 rows

to the query planner despite that this number diverges from the real size of the data sets.

Therefore, running this query on Table-UDFs will follow an execution plan that uses a

hash table to perform the NOT IN operation. And it turns out that this is more efficient

than the naive solution despite the lack of memory space for the hash table.

One Data Set as a Python Object

In order to understand the performance impact for scenarios where there are fewer

Python data objects involved in a SQL query, we run the experiments where only one

data set is loaded as a Python object. The other data sets are still stored as regular

database tables in PostgreSQL. Considering the impact of the data size on data transfer,

we load a small data set, nation, and a large data set, lineitem, as a Python object,

63

respectively. In this test case, we re-run TPC-H queries 5, 7, 8, 9, and 10, which have

these two data sets in common, and analyze their execution costs.

Figure 4.6: TPC-H queries 5, 7, 8, 9, and 10

(Nation as a Python object).

Figure 4.7: TPC-H queries 5, 7, 8, 9, and 10

(Lineitems a Python object).

To start with nation, we load it as a Python object but keep all other tables within

the database and re-run the 5 queries mentioned above. Figure 4.6 shows the execution

times of each query in seconds. The nation data set only has 25 rows and 4 columns,

and thus, it introduces very little data conversion and transfer overheads. We can see that

64

there is no significant difference between the execution costs of the first and second runs

of any particular test candidate. Although our virtual table implementations outperform

table-UDFs in queries 8, 9 and, 10, there exist scenarios like queries 5 and 7, where using

a foreign table is slower than a table-UDF. PostgreSQL’s query planner assumes every

table-UDF would produce exact 1,000 rows. Given that this estimate is relatively close to

the actual row number in the scale of RDBMS, it is not clear which approach will lead to

an optimal execution plan.

In contrast to nation, lineitem is a large data set consisting of 6,000,125 rows. The

execution cost of running the queries over the loaded Python object is shown in Figure 4.7,

with the y-axis on a logarithmic scale. We notice that the overall trend that we have seen

in the previous test case can also be observed in this experiment. Using the foreign table-

based approach can still lead to a sub-optimal execution because of PostgreSQL’s query

planner’s inaccurate selectivity estimates of intermediate operations. This holds true for

query 8. But summing up the execution times of all the queries, the trivial foreign table

approach is up to 70% faster than table-UDFs. As expected, a large data set introduces

more data conversion and transfer overheads. We see a 14% drop in total execution time

by only transferring the columns that are requested in SQL queries in ft-reduced-cols

and ft-lazy compared to the trivial foreign table approach (ft) in the second runs. Also,

the first runs of ft-lazy are 5% faster than ft-reduced-cols as it performs the column-to-

row data structure conversion lazily. For the temporary table-based implementations,

there is no significant difference in the query costs no matter whether we analyze the

temporary tables or not. Loading the data into temporary tables takes up around 98%

of the execution costs in the first runs. If we only look at the time spent on running the

queries over temporary tables in the second runs, it is over 300 times faster than table-

UDFs and relatively close to using regular database tables.

To summarize, cardinality information is crucial to the query planner when it comes

to execution plan decision-making. This is not only limited to the Python objects that we

65

want to expose to PostgreSQL but also applies to the selectivity estimates of result sets

produced by intermediate operations. The query planner tends to yield an efficient

execution plan if we provide cardinality information to it. Compared to table-UDFs, our

foreign table-based implementation can optimize SQL queries over Python objects

because it can provide accurate cardinality information and applies an ad hoc data

transfer strategy. However, a significant amount of time is still spent on transferring the

data from the embedded Python interpreter to the SQL engine for each query request.

On the other hand, the temporary table-based implementation eliminates the overhead

of recurrent data transfer in subsequent query invocations. Furthermore, it can collect

additional statistical information to facilitate generating execution plans for complex

SQL queries.

Nevertheless, as observed several times in this thesis, the iterative data transfer

approach in which tuples have to be copied and fed to PostgreSQL, no matter which

interface is used (table-UDF, foreign table, or temporary table), leads to the dominant

performance impact.

4.2.3 Data Science Workflows

AIDA supports complex analysis such as end-to-end data science workflows, which

usually perform linear algebra and relational operations collaboratively. In such

workflows, AIDA needs to translate the relational operations into SQL queries and move

data back and forth between the embedded Python environment and PostgreSQL for

in-database analytics. In this test case, we experiment with the short BIXI workflow

from [11], which uses bicycle trip data1 to predict the duration of a trip given the trip

distance. In the short BIXI workflow, the data scientist is assumed to have domain

knowledge on what data sets and features are required to train the machine learning

model. The data sets used in this workflow are stored as distinct tables in the database.
1https://www.kaggle.com/aubertsigouin/biximtl

66

https://www.kaggle.com/aubertsigouin/biximtl

In order to obtain the prediction variables and target feature, the data scientist uses both

relational and linear algebra operations to build the training and test sets in AIDA. These

two data sets are then used to train and evaluate a linear regression model. To analyze

how AIDA performs on such a data science workflow with different data exposing

mechanisms, we only measure the execution time of the SQL queries that run on Python

objects.

Because data science workflows are usually written with an interleaved combination

of linear algebra and relational operations, it is unlikely to find many complex relational

operations in such workflows. In fact, the SQL queries that are translated from the

operations in the BIXI workload are relatively simple compared to TPC-H queries; they

merely have a maximum of three data sets being joined. When looking at the entire

workflow, there is a total of 19 Python data sets that are being exposed to PostgreSQL to

run SQL queries over. Most of them are numerical result sets that are accessed by

PostgreSQL’s SQL engine only once, with the exception of two data sets that appear in

SQL queries twice and three times, respectively. The first one is a data set with 4,880

rows of 1 column, and the second has 2,256,283 rows and 4 columns.

Running all SQL queries found in the BIXI Workload using Table-UDFs takes 87.638

seconds. When we use the trivial foreign table approach, the cost comes down to 83.578

seconds. The other two foreign table-based virtual table implementations both see a 5%

decrease compared to the trivial foreign table approach due to the same data transfer

optimization strategy. As for the temporary table-based virtual table implementations,

the measured time consists of two parts: loading Python data into PostgreSQL’s

temporary buffers via Table-UDFs and running the translated queries on the temporary

tables. Using the temporary table approach yields a total execution time of 62.757

seconds, or 63.636 seconds if we run the queries with analyzed temporary tables and

include the time spent on collecting statistical information. This is quite remarkable as

only 2 queries benefited from the objects already being stored in temporary tables.

67

With these results, we can conclude that these translated queries are simple enough

that the query planner cannot benefit from additional meta-data other than the cardinality

information. The real execution burden is on the data transfer process. When we use a

table-UDF or a foreign table to access a Python object, the data must be transferred to the

SQL engine for every query request. Although the foreign table variants have an ad hoc

data transfer strategy, the data type conversion that occurs in each data transfer process

is still remarkably expensive. To circumvent the recurrent data transfer, we can use the

temporary table-based implantation where the data is only transferred to PostgreSQL

once at the creation time of the temporary table. With this approach, we can avert the

repetition of data transfer and boost the query performance, especially if the SQL engine

needs to access an enormous data set more than once. We see that even if this does not

happen frequently, it can benefit overall execution.

68

Chapter 5

Conclusions & Future Work

In this chapter, we will summarize the achievements of this thesis, present our findings,

and lastly, discuss possible directions for future work.

5.1 Conclusions

In this thesis, we extended the Python-based AIDA framework for the row-based

RDBMS PostgreSQL to support interactive in-database analytics. Because PostgreSQL’s

internal data representation is not aligned with the statistical package used in AIDA, we

cannot benefit from the data transfer optimizations that were possible with the original

implementation of AIDA for MonetDB [11]. While AIDA can still switch between linear

and relational algebra operations, it is very expensive to convert the row-based

PostgreSQL data to the columnar Python data representation suitable for linear algebra

operations and vice versa. To address this problem, we designed a database adapter

interface to facilitate transferring data from PostgreSQL to AIDA’s workspace for

executing analytical tasks. We have devised optimized data conversion methods that

directly work on the underlying structure of the transferred data in C. Through

experiments, we have proven that such data transfer inside AIDA is more efficient than

69

loading PostgreSQL data into a database-external environment to form a computational

object for data analytics.

In the other direction, we find that there are certain limitations to transferring Python

data to PostgreSQL by means of table-UDFs. Although AIDA leverages PostgreSQL’s

database engine to execute relational operations, the costly performance of the SQL

queries that run over table-UDFs makes the use of PostgreSQL’s database engine less

attractive. To optimize running SQL queries over Python data, we developed two

optimizer-friendly data-exposing mechanisms for implementing the virtual table

concept proposed in [12]: the first one is based on PostgreSQL’s foreign data wrapper

feature, and the second one uses temporary tables to hold the data. They provide an

alternative approach to expose table-like Python data to PostgreSQL and facilitate

running SQL queries over them. Although these two designs also transfer data on an

iterative record-by-record basis, both of them can provide data characteristics to

PostgreSQL’s query planner in the hope of an optimized execution plan. The foreign

table-based implementations transfer the data in each column on an ad hoc basis to

reduce the data transferring overheads in each foreign table scan. Although there are

still scenarios that the query planner will produce a sub-optimal execution, using foreign

tables to expose Python data to PostgreSQL tends to have better performance compared

to the conventional Table-UDF approach. As another option, the temporary table-based

approach only transfers the Python data to PostgreSQL once and stores the transferred

data in temporary buffers for later query requests. If a Python object is to be accessed in

multiple SQL queries, it is favourable to use this method to avoid repeated data transfer

overheads.

70

5.2 Future Work

While bringing data into another environment to perform relevant operations, we want

to avoid iteratively copying the data on a record-by-record basis. One promising

optimization would be to modify the memory management component of the database

system to perform a bulk transfer of the data between PostgreSQL and AIDA’s

workspace. However, how to work around the challenge of row/column data structure

conversion has to be further explored. Another optimization possibility is to divide the

overall data transfer process and execute sub-tasks in parallel. Such a parallel copy

mechanism can help to boost the overall performance.

Looking at another direction that targets the optimization of in-database analytics in

general, it seems promising if we can reduce the amount of data transferred across the

two environments to perform interleaved relational and numerical computations. As in

the case of the optimized foreign data wrapper, we have seen the performance

improvement of only transferring the columns of the Python data that are needed in a

SQL query. Therefore, we can possibly apply a similar ad hoc data transfer strategy to

transfer only a subset of the rows by verifying query conditions inside the foreign data

wrapper. This approach reduces data transfer overheads by only sending the qualified

Python rows to PostgreSQL’s database engine. However, it would be necessary to

analyze the exact cost benefits of pushing down query conditions to the Python data set

versus leveraging PostgreSQL’s database engine to validate each individual row from

the transferred data.

At the most extreme, we can seek efficient Python relational operator

implementations for AIDA’s columnar data structure so that we do not need to expose

Python data to PostgreSQL at all and perform relational operations within Python. It is

also worth trying to only transfer Python data for complex queries, where PostgreSQL’s

SQL engine significantly outperforms the implementations that exist within Python,

making the data transfer worthwhile. In addition, we can track data lineage in AIDA to

71

avoid unnecessary data transfer. For any operation, if it requires a data set that can be

reassembled from other data sets in the working environment, we can try to form such a

new data set without loading the data from another environment.

72

Bibliography

[1] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan,

M. J. Franklin, A. Ghodsi, et al. Spark SQL: Relational data processing in Spark.

In Proceedings of the ACM SIGMOD International Conference on Management of Data,

pages 1383–1394, 2015.

[2] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. N. Gray, P. P.

Griffiths, W. F. King, R. A. Lorie, P. R. McJones, J. W. Mehl, et al. System R: Relational

approach to database management. ACM Transactions on Database Systems (TODS),

1(2):97–137, 1976.

[3] D. D. Chamberlin and R. F. Boyce. Sequel: A structured english query language.

In Proceedings of the ACM SIGFIDET (now SIGMOD) Workshop on Data Description,

Access and Control, pages 249–264, 1974.

[4] S. Chaudhuri. An overview of query optimization in relational systems. In

Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database

Systems, pages 34–43, 1998.

[5] Q. Chen, M. Hsu, and R. Liu. Extend UDF technology for integrated analytics. In T. B.

Pedersen, M. K. Mohania, and A. M. Tjoa, editors, Data Warehousing and Knowledge

Discovery, pages 256–270, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[6] E. F. Codd. A relational model of data for large shared data banks. Communications

of the ACM, 13(6):377–387, 1970.

73

[7] E. F. Codd. Relational completeness of data base sublanguages. IBM Corporation, 1972.

[8] M. Deng. Using foreign data wrapper in PostgreSQL to expose point clouds on file

system. Master’s thesis, Delft University of Technology, Delft, Netherlands, 2020.

[9] O. Dolmatova, N. Augsten, and M. H. Böhlen. A relational matrix algebra and its

implementation in a column store. In Proceedings of the ACM SIGMOD International

Conference on Management of Data, pages 2573–2587, 2020.

[10] J. D. Drake and J. C. Worsley. Practical PostgreSQL. O’Reilly Media, Inc., 2002.

[11] J. V. D’silva, F. De Moor, and B. Kemme. AIDA: Abstraction for advanced in-database

analytics. Proceedings of the VLDB Endowment, 11(11):1400–1413, 2018.

[12] J. V. D’silva, F. De Moor, and B. Kemme. Keep your host language object and

also query it: A case for SQL query support in RDBMS for host language objects.

In Proceedings of the 31st International Conference on Scientific and Statistical Database

Management, pages 133–144, 2019.

[13] A. Eisenberg. New standard for stored procedures in SQL. ACM SIGMOD Record,

25(4):81–88, 1996.

[14] Z. Fong. The design and implementation of the POSTGRES query optimizer. MS

Report, University of California, Berkeley, CA, 1986.

[15] S. Harizopoulos, V. Liang, D. J. Abadi, and S. Madden. Performance tradeoffs in

read-optimized databases. In Proceedings of the International Conference on Very Large

Data Bases, pages 487–498, 2006.

[16] J. M. Hellerstein, M. Stonebraker, and J. Hamilton. Architecture of a database system.

Now Publishers Inc, Hanover, MA, USA, 2007.

74

[17] S. Idreos, F. Groffen, N. Nes, S. Manegold, S. Mullender, and M. Kersten. MonetDB:

Two decades of research in column-oriented database. IEEE Data Engineering

Bulletin, 2012.

[18] M. Jarke and J. Koch. Query optimization in database systems. ACM Computing

surveys (CSUR), 16(2):111–152, 1984.

[19] D. Kossmann. The state of the art in distributed query processing. ACM Computing

Surveys (CSUR), 32(4):422–469, 2000.

[20] Kozea. Multicorn, 2014. https://multicorn.readthedocs.io/, accessed December 11,

2020.

[21] J. Lajus and H. Mühleisen. Efficient data management and statistics with zero-copy

integration. In Proceedings of the 26th International Conference on Scientific and Statistical

Database Management, pages 1–10, 2014.

[22] M.-A. Lemburg. Python Database API Specification v2.0, 2001.

[23] V. Linnemann, K. Küspert, P. Dadam, P. Pistor, R. Erbe, A. Kemper, N. Südkamp,

G. Walch, and M. Wallrath. Design and implementation of an extensible database

management system supporting user defined data types and functions. In

Proceedings of the International Conference on Very Large Data Bases, pages 294–305,

1988.

[24] W. McKinney et al. pandas: a foundational Python library for data analysis and

statistics. Python for High Performance and Scientific Computing, 14(9):1–9, 2011.

[25] S. Melnik, A. Adya, and P. A. Bernstein. Compiling mappings to bridge applications

and databases. ACM Transactions on Database Systems (TODS), 33(4):1–50, 2008.

[26] J. Melton, J.-E. Michels, V. Josifovski, K. Kulkarni, P. Schwarz, and K. Zeidenstein.

SQL and management of external data. ACM SIGMOD Record, 30(1):70–77, 2001.

75

[27] C. Ordonez and J. Garcı́a-Garcı́a. Vector and matrix operations programmed with

UDFs in a relational DBMS. In Proceedings of the ACM International Conference on

Information and Knowledge Management, pages 503–512, 2006.

[28] H. Pirahesh, J. M. Hellerstein, and W. Hasan. Extensible/rule based query rewrite

optimization in Starburst. ACM Sigmod Record, 21(2):39–48, 1992.

[29] M. Raasveldt. Vectorized UDFs in Column-Stores. Master’s thesis, Utrecht

University, Utrecht, Netherlands, 2015.

[30] J. Roijackers. Bridging SQL and noSQL. Master’s thesis, Eindhoven University of

Technology, Eindhoven, Netherlands, 2012.

[31] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau,

A. Lin, S. Madden, E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and S. Zdonik. C-store:

A column-oriented DBMS. In Proceedings of the International Conference on Very Large

Data Bases, pages 553–564, 2005.

[32] The PostgreSQL Global Development Group. Postgresql 12.3 documentation, 2020.

[33] Transaction Processing Performance Council. TPC Benchmark H, 2017.

[34] S. Van Der Walt, S. C. Colbert, and G. Varoquaux. The NumPy array: a structure

for efficient numerical computation. Computing in Science & Engineering, 13(2):22–30,

2011.

[35] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica, et al. Spark: Cluster

computing with working sets. HotCloud, 10(10-10):95, 2010.

[36] Y. Zhang, M. Kersten, M. Ivanova, and N. Nes. SciQL: bridging the gap between

science and relational DBMS. In Proceedings of the 15th Symposium on International

Database Engineering & Applications, pages 124–133, 2011.

76

Acronyms

AIDA Abstraction for Advanced In-Database Analytics.

API Application Programming Interface.

CSV comma-separated values.

HLL high-level language.

LAN Local Area Network.

OLAP Online Analytical Processing.

OLTP Online Transaction Processing.

ORM Object-Relational Mappings.

RDBMS Relational Database Management System.

RMI Remote Method Invocation.

SF Scale Factor.

SQL Structured Query Language.

SQL/MED SQL Management of External Data.

UDF User Defined Function.

77

	Abstract
	Abrégé
	Acknowledgements
	List of Figures
	List of Listings
	Introduction
	Background & Related Work
	Relational Database Management Systems
	Data Querying of Relational Databases
	PostgreSQL - A Row-Oriented RDBMS

	Data Analytics
	Database-external Analytics Solutions
	hll udfs for In-database Analytics
	The aida Framework

	Exposing hll Data to the rdbms
	Table-UDFs
	Virtual Tables
	sqlmed & Foreign Data Wrapper
	Multicorn

	An AIDA Implementation for PostgreSQL
	The Database Adapter Interface for PostgreSQL
	AIDA Server Management
	SQL Result Set Data Structure Conversion
	Relational Operations on TabularData Objects

	Evaluation
	Test Setup
	Making SQL Result Set Computational
	Relational Joins

	Exposing Python Data to PostgreSQL
	Virtual Table Designs for PostgreSQL
	The Foreign Table Approach
	The Temporary Table Approach

	Evaluation
	Test Setup
	TPC-H Queries
	Data Science Workflows

	Conclusions & Future Work
	Conclusions
	Future Work

	Bibliography
	Acronyms

