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ABSTRACT 

 

A training image (TI) is an important tool in the context of multiple-point (MPS) and high-

order (HOS) statistic spatial simulations. TIs represent the repository of patterns and 

spatial statistics required for drawing values at each grid node in a multiple-point spatial 

simulation. In turn, spatial simulations provide the framework for the construction of 

orebody and petroleum reservoir risk and characterization models. Methods of 

constructing 3D continuous data TIs from adversarial sampling schemes (i.e. non-

random) that respect the original sample statistics are important yet uncommon in the 

literature. Methods for image reconstruction, such as Multi-Stage Matrix Completion 

(MSMC), work on 2D and with randomly located samples. In the present thesis, drillhole 

samples of continuous porosity values representing 2% of the exhaustive dataset were 

used to reconstruct a 3D continuous TI directly from strings of non-randomly located 

samples using a new method called Multi-Stage Tensor Completion (MSTC). The 

methodology employs the Low-Rank Tensor Completion (LRTC) algorithm to help 

reconstruct missing values at the original resolution scale. The MSTC methodology is 

tested on two benchmark continuous porosity datasets obtained from an exhaustive TI 

of petroleum reservoir channels (sandstones and clays). The application of MSTC was 

also applied to an actual mining deposit. Due to confidentiality clauses, only the results 

obtained from the petroleum reservoir dataset will be discussed in this thesis. In all 

cases tested, the MSTC method has been found to be effective at reproducing the data 

statistics. In cases with a very low number of high grade samples, their proportion is not 

reconstructed as effectively when compared to results obtained using the benchmark 

cases. The results demonstrate that this method is able to generate continuous data TIs 

that respect the high order spatial cumulant statistics of the original samples, up to at 

least the 4th order, all the while maintaining visually reasonable results. The present 

findings contribute to the development of data-driven methods using MPS and HOS 

spatial simulation algorithms when modeling continuous attributes of deposits that have 

complex (nonlinear), non-Gaussian, spatial patterns that are sampled with mining-

specific (not random) drill patterns.  
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RÉSUMÉ 

 

Une image d’entraînement (TI) est un outil fondamental dans le domaine des 

simulations à points multiples (MPS) et des simulations statistiques spatiales d’ordre 

élevé (HOS). Les TI représentent une base de données statistiques et de configurations 

spatiales. Celles-ci sont requises pour réaliser la construction de distributions 

conditionnelles utilisées afin de générer un point simulé à chaque nœud sur une grille 

de simulation. À leur tour, les simulations spatiales créent l’architecture sur laquelle est 

basée la construction des modèles de caractérisation et de risque concernant les 

réservoirs de pétrole et les gisements de minerais. Cependant, les méthodes 3D 

utilisées pour construire des TI, basées d’une part sur des données continues et d’autre 

part sur des données qui n’ont pas été obtenues par des méthodes d’échantillonnage 

aléatoire, sont très rares dans la littérature. Les méthodes de reconstruction d'image, 

telles que la méthode de complétion 2D de matrices à multiples étapes (MSMC), 

s'appliquent à des échantillons situés de façon aléatoire. Ce mémoire propose une 

méthode de complétion de tenseurs à multiples étapes (MSTC). Cette méthode permet 

la reconstruction d'une TI en 3D provenant directement de chaines d'échantillons -

situées de façon non-aléatoire - et ne représentant que 2% de toute la TI. La méthode 

MSTC reconstruit des TI de la même résolution que celle des données originales en 

utilisant un algorithme de complétion de tenseur nommé LRTC. La fiabilité de la 

méthode MSTC est d’abord testée à partir de deux TI provenant d’un réservoir de 

pétrole artificiel (composé de grès et d'argile). Cette méthode a également été 

appliquée à un gisement de minerais réel. En raison de clauses de confidentialité, seul 

les résultats obtenus à partir de l’ensemble des données artificielles seront présentés 

dans le cadre de ce mémoire. Dans tous les cas testés, la méthode MSTC est capable 

de reconstruire les statistiques provenant d'échantillons. Quant aux cas composés d'un 

faible nombre d'échantillons de haute teneur, les proportions de ces échantillons ne 

semblent être reconstruites aussi efficacement lorsqu'on les compare avec les résultats 

obtenus avec les cas de références. Les résultats de cette analyse démontrent que 

d’une part, la méthode MSTC génère des TIs de données continues qui sont 

visuellement acceptables, et d’autre part, cette méthode est capable de reconstruire les 
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statistiques d’ordre élevé, jusqu’au 4ième ordre. Les résultats de ce mémoire contribuent 

au développement des algorithmes de simulations MPS et HOS qui permettent tous 

deux de reconstruire des configurations spatiales complexes (non-linéaires) avec des 

données continues échantillonnées de façon non-aléatoire, tout en utilisant des motifs 

de forage spécifiques.  
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CHAPTER 1     INTRODUCTION 

 

A ubiquitous problem encountered in the field of mining engineering is how to effectively 

use sparse geological datasets to construct orebody models that lead to accurate 

assessments of their potential to be mined. In reality, economical and physical 

constraints dictate the fact that an orebody cannot be sampled fully before making the 

decision to mine it. Mineable orebodies will typically be sampled by repeated 

exploration, evaluation, and production drilling campaigns that aim to map out its 

economic value based on local recoverable metal (or mineral) – these samples usually 

represent less than 1% of the entire orebody. From this data, mineral deposits are 

represented by “block models” that consist of equally sized volumetric units (blocks) in 

3D space. Traditional orebody modeling techniques use estimation methods to gather 

samples into a single “average type” block model that fails to account for geological 

uncertainty. It has been shown that ignoring this uncertainty in mining deposits is the 

major cause of failure or underperformance in mining ventures (Vallee, 2000). In light of 

this situation, the geostatistical community has developed stochastic spatial simulation 

methods over the last 40 years (for more information on these methods, see Journel, 

1974; Chilès & Delfiner, 1999; David, 1988; Goovaerts, 1997; Journel & Huijbregts, 

1978; Remy, Boucher, Wu, 2009; Remy, 2004). Stochastic simulation is the process of 

generating multiple realizations of the joint distribution of attribute values in space. 

Conditional spatial simulation methods aim to capture geological heterogeneity by 

reproducing the data statistics conditional to the observed values; geological 

heterogeneity is the term used to describe variations in geology, such as mineral 

grades, rock porosity, grain size, and lithologic texture. When multiple, equally probable 

spatial simulations are available, it becomes possible to quantify the spatial and rock 

property uncertainties that are inherent in orebody models. Through access to 

quantified geological uncertainty obtained using spatial simulation methods, decision-

makers are better equipped to avoid highly probable negative financial scenarios and to 

focus their attention in areas with a higher likelihood of success (Dimitrakopoulos, 

Farrelly, & Godoy, 2002; Godoy, 2003). In fact, robust stochastic optimization mine 

planning techniques are being developed to handle geological uncertainty and to 
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provide mine planners with more practical and profitable mine production schedules 

over the life of a mine (Benndorf & Dimitrakopoulos, 2013; Consuegra & 

Dimitrakopoulos, 2010; Dimitrakopoulos, 2011; Godoy, 2003; Goodfellow & 

Dimitrakopoulos, 2013; Menabde et al., 2004; Montiel & Dimitrakopoulos, 2013; 

Ramazan & Dimitrakopoulos, 2013). Yet these latest stochastic optimization techniques 

still depend on the quality of the input orebody models being considered. Traditionally in 

geostatistics, sequential Gaussian and indicator approaches have been the main 

simulation methods to generate models of continuous and categorical values, 

respectively (Deutsch, 2002; Deutsch & Journel, 1998). However, geological datasets 

do not generally conform well to parametric Gaussian distributions, as it has become 

apparent that these two-point-based simulation algorithms cannot reproduce the non-

linearities that are common to most geological structures (Guardiano & Srivastava, 

1993; Strebelle, 2000). Such models are based on the underlying assumption that the 

spatial variability of attribute values is fully characterized by a covariance function 

(Goovaerts, 1997). In addition, Gaussian models have a maximum entropy property, 

which breaks down the spatial continuity of extreme values (Journel & Deutsch, 1993). 

Indicator simulation approaches have commonly been used to generate class-specific 

patterns that maintain spatial continuity. However, these methods are also hindered by 

two-point covariance models that are time consuming, and generate unnatural “patch-

like” patterns (Machuca-Mory, Ortiz, Deutsch, 2008). 

A practical representation of the connectivity of values in space is critically important 

(Allard, 1993; Journel & Alabert, 1989). Connectivity is here loosely defined as the 

probability that two points that are separated by a lag along a certain direction will be 

connected by similar values (Renard & Allard, 2013). In a mining context, there is an 

important economic aspect associated with the spatial connectivity of grades, 

particularly high grade values driving the optimization process, that must be considered 

in order to derive feasible exploitation schedules under a set of technical constraints; 

this connectivity ultimately drives the optimization process and results in production 

schedules and a project’s net present value (NPV) (Dunham & Vann, 2007; Godoy & 

Dimitrakopoulos, 2011). 
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Since the development of the first sequential spatial simulation models (Journel, 1974; 

Journel & Alabert, 1989; Journel & Huijbregts, 1978), researchers beginning with 

Guardiano and Srivastava (1993), have contributed a range of advanced stochastic 

imaging methods known as multiple-point statistic (MPS) and high-order statistic (HOS)  

simulation algorithms. Examples of these algorithms include SNESIM (Strebelle, 2000; 

Strebelle, 2002), SIMPAT (Arpat, 2005), FILTERSIM (Wu, Zhang, & Journel, 2008; 

Zhang, 2006), DISPAT (Honarkhah & Caers, 2010; Honarkhah & Caers, 2012), IMPALA 

(Straubhaar, Renard, Mariethoz, Froidevaux, & Besson, 2011), Direct Sampling 

(Mariethoz, Renard, & Straubhaar, 2010; Mariethoz & Renard, 2010), HOSIM 

(Mustapha & Dimitrakopoulos, 2010) and WAVESIM (Chatterjee et al., 2012). These 

algorithms exist collectively within the field of multiple-point statistics, which is to say, 

statistics that are calculated from more than two points. MPS and HOS simulation 

algorithms aim to reproduce complex connectivity patterns. However, these algorithms 

cannot consistently calculate such multiple-point or high-order statistics without the 

additional data input from an auxiliary model known as a training image (TI). The focus 

of this thesis will be on the generation of such a TI. 

  

Recent advances in sparse signal reconstruction have opened the door to a new field 

known as compressed sensing (Candès & Wakin, 2008). The application of 

compressed sensing theory (Candès, Romberg, & Tao , 2006a; Candès, Romberg, & 

Tao , 2006b; Candès & Tao, 2006; Candès & Tao, 2010; Donoho, 2006) to 2D datasets 

has led to extremely useful reconstruction techniques known as matrix completion (Cai, 

Candès, & Shen, 2010; Keshavan, Montanari, Oh, 2010) and, by its extension to 3D 

datasets, tensor completion (Gandy, Recht, & Yamada, 2011; Liu, Musialski, Wonka, & 

Ye, 2009, 2013; Romera-Paredes & Pontil, 2013; Signoretto, Dinh, De Lathauwer, & 

Suykens, 2013; Signoretto, Van de Plas, De Moor, & Suykens, 2011). These tools are 

used to reconstruct sparse datasets by taking advantage of a signal’s compressibility 

(i.e. redundancy of structure).  

The scope of this thesis, as highlighted by Figure 1, is to present a method to build a 3D 

continuous TI (C) through the application of a tensor completion algorithm (B) using 

limited drilling information (A). The motivation for such work is to provide the continuous 
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data TI, required by MPS and HOS simulation algorithms (D), in such a way that the 

MPS simulations (E) generated become entirely data-driven. The reconstruction (i.e. the 

TI) at unobserved sample locations is guided by the 3D global structure of the original 

samples, up to the HOS; the specific meaning of “global structure” is explained in 

Section 3.1. Step B in Figure 1 is accomplished through a method, developed in this 

thesis, called Multi-Stage Tensor Completion (MSTC). In a related work (Yahya, 2011), 

a matrix completion algorithm was used to reconstruct 2D continuous TIs using a 

stepped approach called Multi-Stage Matrix Completion (MSMC). That work is reviewed 

in Section 3.1.4 to provide a basis for the development of MSTC in this thesis. 

 

Figure 1. Scope of this thesis: to build a 3D training image (C) from sparse 
continuous data drill samples (A) using MSTC (B). Training images are a 
necessary input into MPS algorithms (D), which are used to build spatial 
simulations (E) of the geological phenomena. 

1.1 Goal and Objectives 

The goal of this thesis is to introduce the development of an exhaustive (i.e. no missing 

values) 3D continuous data TI that is built using MSTC and a sparse reconstruction 

algorithm called LRTC (Liu et al., 2009) in such a way that it captures (to the extent 
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possible) the spatial HOS of the observed samples (or entries, both terms are used 

interchangeably in this thesis). 

The main objectives of this thesis are the following: 

1. Extend the 2D methodology of generating continuous TIs using MSMC (Yahya, 

2011; Yahya, Dimitrakopoulos, & Psaromiligkos, 2012) to 3D datasets, all the 

while respecting the original data and their spatial high-order relations. In this 

thesis, this objective is achieved through the application of the LRTC algorithm 

(Liu et al., 2009; Liu, Musialski, Wonka, & Ye, 2009, 2013) within a method 

defined as MSTC. Spatial HOS of the reconstructions are evaluated against 

those of the samples and the original TI, using spatial cumulants 

(Dimitrakopoulos, Mustapha, & Gloaguen, 2010; Mustapha, Dimitrakopoulos, & 

Chatterjee, 2011). 

2. Test variants of MSTC on continuous porosity samples from two synthetic 

benchmark examples of a petroleum reservoir model known as Stanford V (Mao 

& Journel, 1999). 

The remainder of this thesis is organized as follows: Chapter 2 begins with a literature 

review describing the MPS simulation framework, which uses TIs. Why and how MPS 

simulation algorithms use TIs is described through an example of a popular MPS 

algorithm called SNESIM (Strebelle, 2000). Chapter 2 also includes a review of various 

methods available to build TIs for MPS simulations. Chapter 3 specifically describes 

how matrix completion was used to construct 2D TIs via the MSMC method (Yahya, 

2011; Yahya et al., 2012). Chapter 4 introduces the notion of tensors and describes the 

LRTC algorithm (Liu et al., 2009; Liu et al., 2013) based on low-rank matrix completion. 

Chapter 4 presents the method of MSTC based on the LRTC algorithm, which is applied 

on two synthetic (benchmark) petroleum reservoir datasets. Results from each of the 

benchmark cases are presented and analysed in Chapter 5. The method was further 

tested on a confidential dataset of an orebody for which general results are discussed 

but details cannot be shown. The final chapter, Chapter 6, starts by summarizing the 

work presented in this thesis, reflects on the advantages and drawbacks of the MSTC 

methodology, and concludes with suggestions for further work. 
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CHAPTER 2     LITERATURE REVIEW 

 

This chapter reviews the method by which MPS algorithms use TIs to generate spatial 

simulations. A description of the classic MPS algorithm SNESIM (Strebelle, 2000) is 

included, together with a brief review of other well-known MPS algorithms. Commonly 

available methods for acquiring TIs are reviewed starting from section 2.2. 

Geostatistical datasets are often presented in one of two forms: categorical or 

continuous. Categorical data result from the grouping of individual point values into 

groups or categories according to a common attribute. For example, sandstone, 

limestone, and shale may all be placed under the category label “sedimentary” rocks. 

By contrast, continuous values are described along the real number line. Metal grades 

are usually reported in continuous terms, as for example 1.0% copper or 16.49g/ton of 

gold. Continuous values may be grouped into categories and thus redefined under 

categorical labels. Categorical values generally cannot be converted to continuous 

values.  

2.1 The Multiple-Point Simulation Paradigm 

The MPS simulation paradigm was introduced by Guardiano and Srivastava (1993). 

Strebelle (2000) implemented the SNESIM algorithm as the first computationally 

practical application of MPS simulation for the reproduction of complex categorical 

patterns through the sequential use of conditional distributions calculated from a TI. The 

application of MPS simulation to continuous variables was done later through the 

FILTERSIM (Zhang, 2006) and Direct Sampling algorithms (Mariethoz & Renard, 2010). 

A TI (discussed in Section 2.2) is the term given to a geological model of reality that 

contains, as far as possible, the spatial complexity that needs to be simulated. The MPS 

simulation approach was developed to address the shortcomings of two-point simulation 

methods (Journel, 1974; Chilès & Delfiner, 1999; David, 1988; Goovaerts, 1997; Journel 

& Huijbregts, 1978), which are not capable of reproducing curvilinear features (e.g. 

meandering river channels) and are prone to order relations problems. Order relations 

describe transition probabilities between categories, or between ranges of continuous 

values; problems in order relations may occur from insufficient data (Deutsch & Journel, 
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1992; Goovaerts, 1997). MPS and HOS simulations have the ability to capture high-

order spatial structures by reproducing the spatial connectivity of extreme values that is 

important in petroleum flow and mine scheduling problems. Figure 2 presents a binary 

example (Caers & Zhang, 2004) that clearly shows how variograms, which represent 

models of connectivity that measure the variance of the difference between attribute 

values at two different locations (Cressie, 1993), cannot distinguish between the 

relatively simple, yet obviously different, connectivity patterns exhibited by the three 

binary TIs because they all share similar two-point statistics (i.e. the statistical relation of 

two points). A similar comparison is made in Figure 3, in which the histogram and 

variogram show a close match between two different simulations based on two different 

algorithms, though their spatial structure is visibly different. The Direct Sampling 

simulation on the left (Mariethoz, Renard, & Straubhaar, 2010) is able to generate more 

realistic geological connectivity structures while the Sequential Gaussian Simulation on 

the right displays the typical Gaussian-type high entropy pattern (discussed in Section 

2.2). The importance of connectivity is well known in reservoir characterization and 

hydrogeology, as it impacts on reservoir flow and solvent transport (Renard and Allard, 

2013). In mining, spatial variability can have serious economic implications in the 

extraction of deposits (Dimitrakopoulos et al., 2002; Dunham & Vann, 2007; Godoy & 

Dimitrakopoulos, 2011; Vallee, 2000).  

The next section reviews the sequential simulation framework that MPS simulations are 

based on. The MPS simulation paradigm was developed to reproduce complex features 

by detecting differences in geological heterogeneity, such as shown in the images of 

Figure 2.  

 

Figure 2. Comparison of variograms for different TIs (Caers & Zhang, 2004). 
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Figure 3. Two different images, based on the Direct Sampling MPS algorithm and 
the Sequential Gaussian Simulation algorithm, have the same two-point statistics 
(histogram, variogram) (Renard & Allard, 2013). 

2.1.1 The Sequential Simulation Framework 

The sequential simulation method (Journel 1989; Deutsch and Journel, 1998; 

Goovaerts, 1997) is used to generate multiple realizations, each having the spatial 

statistics of interest (mean and variance only). Consider a set of N random variables 

𝑍(𝒖𝛼), 𝛼 = 1, …, N defined at N different locations 𝒖𝛼. In a conditional sequential 

simulation, a joint realization 𝑧(𝒖𝛼) of the N random variables is generated such that the 

properties of a given multivariate conditional cumulative distribution function (CCDF) 

2.1, conditional to n available data, are reproduced.  

𝐹(𝒖1, … , 𝒖𝑁; 𝑧1, … , 𝑧𝑁|(𝑛)) = 𝑃{𝑍(𝒖1) ≤ 𝑧1, 𝑍(𝒖2) ≤ 𝑧2, … , 𝑍(𝒖𝑁) ≤ 𝑧𝑁|(𝑛)}, (2.1). 

Through a recursive application of Bayes’ Law, the CCDF in 2.1 may be decomposed 

into the product of N univariate CCDFs (Ripley, 2009; Rosenblatt, 1985), given the initial 

𝑛 conditioning data Λ0 = {𝑧(𝒖𝛼),𝛼 = 1,… 𝑛}: 

𝐹(𝒖1, … ,𝒖𝑁; 𝑧1 ,… , 𝑧𝑁|Λ0)                                                          

= 𝐹{𝒖𝑁; 𝑧𝑁|Λ𝑁−1} 

             ∙ 𝐹{𝒖𝑁−1; 𝑧𝑁−1|Λ𝑁−2} 

                                 ∙ … ∙ 𝐹{𝒖2; 𝑧2|Λ1} ∙ 𝐹{𝒖1; 𝑧1 |Λ0}. 

(2.2). 



 

9 
 

In words, 2.2 states that the CCDF of the random function 𝑍(𝒖) is the product of N 

random variable CCDFs. Each successive simulated location becomes part of the 

conditioning dataset. For example, Λ1 represents the original sample data Λ0 plus the 

first simulated point and Λ𝑁−1 is comprised of the original samples and the (N − 1) 

previously simulated nodes. A realization of the CCDF in 2.1 is generated through N 

sequential steps, summarized by: 

1. Model the CCDF at an unsampled location based on the available data, i.e., 

samples plus any previously simulated nodes. The first CCDF is given by  

𝐹(𝒖1; 𝑧1|Λ0) = 𝑃{𝑍(𝒖1) < 𝑧1|Λ0}. (2.3). 

Note that the specific uncertainty model used is dependent on the simulation 

method adopted. For example, under the traditional multiGaussian hypothesis 

the sequential CCDFs in 2.2 are obtained from a normal distribution whose 

parameters (mean and variance) are derived from kriging (Deutsch & Journel, 

1998; Goovaerts, 1997; Journel, 2005). In a sequential indicator simulation, the 

CCDF is built from solving a number of indicator kriging systems (Goovaerts, 

1997). The MPS uncertainty model is inferred from the TI (discussed in section 

2.1.2.) 

2. Draw at random from 2.3 the first realization 𝑧(𝒖1). Add this value to the set of 

conditioning data. 

3. Randomly move to another unsampled grid node, visiting each unsampled node 

only once. 

4. Repeat Steps 1-3 until all nodes are simulated. 

2.1.2 Measuring Multiple-Point Statistics from a TI 

Consider an attribute 𝑍 with 𝐾 categories 𝑧𝑘, for 𝑘 = 1, …, 𝐾, or if 𝑍 is continuous 

(𝐾 − 1) thresholds 𝑧𝑘, for 𝑘 = 1,… , (𝐾 − 1). A multiple-point event is represented in 

Figure 4, where it is defined by 𝑛 values 𝑧(𝒖 +𝒉𝛼) separated from 𝑧(𝒖) by lag vectors 

𝒉𝛼, 𝛼 = 1, …𝑛 . For simplicity, let 𝑧(𝒖𝛼) ≡ 𝑧(𝒖 + 𝒉𝛼). The multiple-point event is 

decomposed into a data event 𝑑𝑛 and the value to be simulated 𝑧(𝒖). Under the 
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decision of model stationarity, and given the scarcity of available samples in real 

datasets (<2%), a multiple-point spatial inference CCDF is developed by directly 

scanning an exhaustive TI that represents the geological features of the physical 

phenomena (Guardiano & Srivastava, 1993; Journel, 1993; Strebelle, 2000). This 

framework is exemplified using the SNESIM algorithm in the section that follows. 

 

Figure 4. Decomposition of an arbitrary multiple-point event into a data event 𝑑𝑛 
and 𝑧(𝒖), the value to be simulated based on 𝑑𝑛.  

2.1.3 An Example: The SNESIM Algorithm 

The SNESIM algorithm (Strebelle, 2000, 2002) was the first computationally practical 

MPS simulation algorithm after the initial work by (Guardiano & Srivastava, 1993). It is a 

pixel-based algorithm designed for categorical data with the ability to condition to data. 

The algorithm requires a TI to build the CCDF. A description of the methodology 

(Strebelle, 2002) follows. As shown in Figure 5, a data template 𝜏𝑛 consists of a 

predefined geometry of (𝑛 + 1) nodes, centered at location 𝒖, with the ability to capture 

any (1,… , 𝑛)-point data event. Data events 𝑑𝜏𝑛  are associated with the data template 

selected. That is, a data event cannot include a value outside the boundary of the data 

template – see right side of Figure 5. Pattern frequencies captured by the data template 

as it scans the image are stored in 𝑐(𝑑𝑛). The number of times the location 𝒖 belongs to 

class 𝑘 is stored in 𝑐𝑘(𝑑𝑛). The general steps of the SNESIM algorithm are based on 

sequential simulation. Figure 6 is a useful reference to follow each step. 
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Figure 5. Simulation grid of N=40 nodes (left). A predefined template 𝜏𝑛 is used 

to scan the TI. A data event 𝑑𝜏𝑛 represents any conditioning data (red/grey 

circles) screened by the template for a point to be simulated 𝒖. Points outside of 

the template are omitted from the calculation. 

A. Scan the TI in (1) using the 𝑛-point data template 𝜏𝑛 in (2). Store the patterns 

captured by 𝜏𝑛 along with their counts 𝑐(𝑑𝜏𝑛) into a search tree. During the scan, 

the simulation point must lie within the dashed boundary shown over the TI in (1) 

in Figure 6, otherwise the search template will have search nodes outside the TI. 

B. Store the number of times a data event 𝑑𝜏𝑛 has a central value (at 𝒖) belonging 

to class 𝑘 as 𝑐𝑘(𝑑𝜏𝑛) into a search tree (3) and calculate the respective multiple-

point histograms (4). 

C. Infer the CDF 𝐹(𝒖;𝑧𝑘|𝑑𝜏𝑛) conditioned on the different data events by 

substituting the values from Steps A and B into Bayes relationship in 2.4: 

𝐹(𝒖;𝑧𝑘|𝑑𝜏𝑛) = 𝑃{𝑍(𝒖) = 𝑧𝑘|𝑍(𝒖𝑎) = 𝑧𝑘𝑎} ≅
𝑐𝑘(𝑑𝜏𝑛)

𝑐(𝑑𝜏𝑛)
=

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝒖 
𝑖𝑠 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑘 𝑓𝑜𝑟
𝑎 𝑔𝑖𝑣𝑒𝑛 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑑𝜏𝑛
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 

𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑑𝜏𝑛  𝑖𝑠 𝑓𝑜𝑢𝑛𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑇𝐼

, (2.4) 

D. Define a random path on the simulation grid and simulate each node along the 

path as follows: 

i. Obtain all data events comprised of the surrounding data and any 

previously simulated nodes, 

ii. Derive the conditional density function using Step C. 

iii. Generate a simulated value by drawing a random value from the CCDF in 

2.4 and adding it to the grid. 

E. Repeat steps A-D to generate a new realization. 
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Figure 6. Basic steps in a SNESIM simulation. To simplify the schematic, the 
simulation point 𝒖 is chosen off-centre in the template. In the search tree, active 

nodes from the search template are outlined in red. 
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2.1.4 Other MPS-Type Approaches 

A number of multiple-point statistics (MPS) algorithms have been developed since 

SNESIM. The IMPALA algorithm (Straubhaar et al., 2011) is based on mapping the 

conditional distributions into a list structure rather than a search tree. It gains a big 

computational advantage by parallelizing the computation of the CCDF in each level of 

the search tree shown in Figure 6. Many MPS algorithms, such as FILTERSIM (Zhang,  

2006), SIMPAT (Arpat, 2005), DISPAT (Honarkhah & Caers, 2010), Direct Sampling 

(Mariethoz et al., 2010), and WAVESIM (Chatterjee, Dimitrakopoulos, & Mustapha, 

2012) use scores to help categorize data events captured by the search template as it 

scans the TI. A distance measure is defined to calculate score differences and thereby 

select the most appropriate pattern or pixel to paste into the simulation grid based on a 

minimum value. An example of a distance measure is given by the Manhattan distance 

between a data event 𝑑𝜏𝑛  centered at (𝐮) and a pattern 𝑝𝑎𝑡𝜏𝑛
𝑘  for a given template 

geometry 𝜏𝑛  (Arpat, 2005): 

𝑑𝑖𝑠𝑡(𝑑𝜏𝑛(𝐮),𝑝𝑎𝑡𝜏𝑛
𝑘 ) = ∑|𝑑𝜏𝑛(𝐮k) − 𝑝𝑎𝑡𝜏𝑛

𝑘 |

𝑛

𝑘=1

 (2.5) 

In 2.5, the score values are defined by the absolute value difference between collocated 

points of 𝑑𝜏𝑛(𝐮) and a pattern 𝑝𝑎𝑡𝜏𝑛
𝑘 , taken one at a time, across an 𝑛-point data 

template event 𝜏𝑛 for a set of 𝐾 patterns. The set 𝐾 may be defined by grouping 

patterns into clusters, or categories. A common way of grouping these patterns is 

through K-means clustering (Ding & He, 2004; Hartigan & Wong, 1979; MacQueen, 

1967). Distance-based MPS simulation algorithms select a cluster class, or a single 

prototype pattern, to represent the class that leads to the smallest distance. They are 

generally fast due to the dimensional reduction achieved by working in the score-space, 

in some cases up to 10 times faster for simulations of 3D datasets (Wu et al., 2008). 

Most distance-based MPS algorithms generate a simulated point, or pattern, by 

randomly drawing from the minimum-distance class rather than by sampling a CCDF 

built from patterns in the class. This distinction is addressed by the WAVESIM algorithm 

(Chatterjee et al., 2012) which applies a wavelet decomposition to template patterns 
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and uses the K-means clustering algorithm to group the resulting approximate sub-

bands (i.e. wavelet coefficient scores) for measuring distances. Recently, an application 

of distance measures was used to quantify the worthiness of different MPS simulation 

algorithms by jointly capturing (and maximizing) the variability between multiple 

realizations together with the variability inherent within each realization (Xiaojin, 

Tahmasebi, Caers, 2014). 

The High-Order SIMulation algorithm HOSIM (Mustapha & Dimitrakopoulos, 2010; 

Mustapha & Dimitrakopoulos, 2011) constitutes a different approach to MPS simulation 

by generating the conditional cumulative distribution function from spatial HOS, namely 

moments or cumulants. An intrinsic property of spatial HOS is their ability to capture 

directional multiple-point connectivity - including the connectivity and periodicity of 

extreme values - to define geometric characteristics in 2D and 3D datasets. In HOSIM, 

the CCDF is approximated using Legendre polynomials, whose coefficients are 

calculated as combinations of high-order moments. HOS are calculated from the 

template using a TI and all available data. Hence, the need for a TI free of data conflicts  

at the sample locations that accurately reflects the spatial HOS of the data. 

In any application, the specific MPS simulation algorithm used will induce the 

assumption of a stationary random function (RF) model, where stationarity implies that 

the RF has equivalent statistical properties throughout. For example, the SNESIM 

algorithm samples the CCDFs built during the TI scan (Figure 6) assuming that patterns 

detected in one or more parts of the TI are applicable at any other location on the 

simulation grid. Natural systems are often best represented by non-stationary RFs that 

cannot be reproduced accurately with MPS simulation algorithms that assume a 

stationary model – see Figure 7. This issue has been successively addressed in various 

ways since the initial MPS algorithms were introduced (Strebelle, 2000). The concepts 

of data event rotations and pattern-scaling (affinity) to find a matching pattern in the TI 

were introduced into algorithms (Caers & Zhang, 2004; Wu, 2007; Zhang, Bombarde, 

Strebelle, & Oatney, 2006) to transform parts of the TI depending on the simulation 

node location. Honarkhah and Caers (2012) have incorporated location information into 

their Spatial Similarity Method (SSM) by weighing patterns according to their Euclidean 

distance from the location of the simulation node. This algorithm is suitable for 
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categorical and continuous data but it remains arbitrary with respect to the definition of 

suitable weights (i.e. the algorithm uses pattern weights and location weights that are 

user-defined parameters which may be difficult to decide on).  

 

Figure 7. Simulation of a fluvial fan deposit using three different MPS simulation 
algorithms that assume a stationary model. In this example, only the last one 
accounts for a location-dependent pattern database. (Summary of results from 

Caers and Zhang, 2004; Honarkhah and Caers, 2012; Michael et al., 2010).  

The requirement for relevant TIs to simulate the desired geological heterogeneity is well 

known (Arpat, 2005; Boucher, Gupta, Caers, & Satija, 2010; Chatterjee et al., 2012; 

Deutsch & Journel, 1992; Hu & Chugunova, 2008; Maharaja, 2008; Mustapha & 

Dimitrakopoulos, 2010; Pyrcz, Boisvert, & Deutsch, 2008; Strebelle, 2002). All MPS and 

HOS simulation algorithms rely on a TI to access and reproduce the MPS or HOS. 

However, as a recent paper explains, TIs used in MPS simulation algorithms are not 

substitutes for a geological random field model (Emery & Lantuejoul, 2014) since they 

face limitations related to a) the size of the TI available with respect to the template size 

used to scan for patterns (e.g. smaller templates provide less accuracy) and b) the 

spatial distribution of the random field (i.e. whether there is a sufficiently high template 

probability of occurrence in order to reproduce the desired complexities in the simulation 

grid). From this perspective, MPS simulations deviate from a geostatistical reproduction 

of the input statistics when they rely on a TI that does not respect the same statistics. In 

contrast, the method used to generate TIs in this thesis promotes the reproduction of 

the original data statistics. 

Methods presented in the literature for building TIs are discussed next. 
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2.2 Training Images 

In this section, a number of methods that have been used to build TIs are reviewed. A 

training image is the term used to describe an exhaustive (no missing entries, or 

samples) model of reality. In geostatistics, this ‘image’ is generally represented by a 

uniform grid spanned by a matrix in two dimensions, or a third order tensor in three 

dimensions. The image can also be multi-dimensional (Mariethoz et al., 2010). A TI is 

important as it represents a necessary repository of statistically relevant spatial 

structures (i.e. repeatability of patterns), used by MPS simulation algorithms, to impart 

on a realization (Guardiano & Srivastava, 1993; Strebelle, 2000; Zhang, 2006). 

Structural features at various scales need to represent the geological heterogeneities 

that may exist. Compared to a variogram, it is easier to visually inspect, accept, or 

reject, a TI based on its resemblance to a geological reality – see Figure 2 and text in 

Section 2.1.  

In ore mining as in reservoir characterization, the spatial variability of values is an 

important property. In mining the spatial connectivity of extreme grade values ultimately 

defines an ore extraction schedule and its associated Net Present Value 

(Dimitrakopoulos, 2011; Godoy & Dimitrakopoulos, 2011). In reservoir models, the 

spatial connectivity of porous media (i.e. permeability) is crucial to flow simulation 

studies. In both cases, the spatial connectivity of values, particularly that of extreme 

values, that is generated by a two-point simulation method such as the sequential 

Gaussian simulation, does not reflect the true connectivity of grades since this method 

is known to produce maximum entropy connectivity patterns (Journel, 2005; Journel & 

Alabert, 1988; Journel & Deutsch, 1993). Conceptually, this means that the image 

contains the minimal amount of structure that is necessary to fit the data (see SGS 

simulation in Figure 3) since high and low values are spread out as uniformly as 

possible over the simulation grid (Gull & Skilling, 1984; Jaynes, 1989). In practice, such 

high entropy structures can lead to restricted flow scenarios in reservoir characterization 

models (dell’Arciprete et al., 2012; Gómez-Hernández & Wen, 1998; Journel & Alabert, 

1988) and suboptimal ore extraction schedules in mining sequences (Dimitrakopoulos, 

2011; Dimitrakopoulos et al., 2002; Dunham & Vann, 2007). MPS and HOS simulations, 

which rely on TIs to capture multiple-point spatial connectivity, seek to avoid this. In 
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MPS simulation algorithms, the relevance of multiple-point structures is defined by their 

repetitive character or by measures of distance to account for similarity (Boucher et al., 

2010; Hu & Chugunova, 2008; Strebelle, 2002). Based on this, the TI should not 

introduce patterns that are unlikely to pertain to the phenomena in question (Maharaja, 

2008). The local accuracy of the TI used is increasingly more important, given new 

simulation algorithms that keep track of pattern locations (Honarkhah & Caers, 2012, 

Mariethoz & Kelly, 2011). 

The requirement for suitable TIs has grown with the success of TI-based algorithms 

used in modeling applications; as aforesaid, these methods rely on a TI to extract some 

or all of the spatial complexity. However, as will be discussed in the following sections, 

the methods used to obtain TIs, particularly continuous TIs, have a limited range in the 

literature (Boisvert, Pyrcz, & Deutsch, 2007; Boucher et al., 2010; Chugunova & Hu, 

2008; Hu & Chugunova, 2008; Maharaja, 2008). According to Boucher et al. (2010), 

algorithms used to generate TIs are still incomplete and unsatisfactory in terms of their 

applications to the mining industry (Lantuéjoul, 2002). Most of them are aimed to 

represent fluvial environments. In the mining industry, methods for building TIs have 

been addressed most often by “borrowing” information from more exhaustive datasets 

originating from a nearby source (Goodfellow et al., 2012; Osterholt & Dimitrakopoulos, 

2007) or by spatially-domained Gaussian simulations (Machuca-Mory & 

Dimitrakopoulos, 2011). In the former case, an assumption is made about the statistics 

of the data. In the latter case, second-order spatial restrictions are placed on the 

connectivity structure of the data.   

The main methodologies for generating TIs are object-based, process-based, and 

expertly-derived or previously mined geological analogs. Examples of each type are 

presented in Figure 9 on page 22, and reviewed in the subsections that follow. 

However, object- and process-based models have limited use for generating TIs in a 

mining context. An extensive review by Koltermann and Gorelick (1996) presented 

various methodologies for generating TIs. However, these methods were limited to 

generating models of aquifer heterogeneity in sedimentary environments.  

The methodology for constructing 2D continuous TIs via matrix completion and MSMC 

(Yahya, 2011; Yahya et al., 2012) is thoroughly reviewed in Chapter 3.  
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2.2.1 Current Training Image Generation Approaches 

2.2.1.1 Object-based Methods 

Object-based methods are intended to model simple categorical geometries and as 

such cannot be used to model the spatial continuity of continuous grade values. The 

method is reviewed briefly for completeness.  

Object-based methods are sometimes called marked point or Boolean techniques. The 

literature on marked point process models for geometric objects is covered by (Stoyan, 

1987). The method was first applied to simulate shales (Haldorsen & Lake, 1984) using 

a simulation algorithm developed earlier (Hastings, 1970). A marked point process is a 

collection of randomly placed points in space with additional information available at 

each point (e.g. grade, or porosity). Boolean techniques refer to models created through 

interactions of specified geometries sampled from simulated distributions. These 

categorical methods are normally used when the geological heterogeneity is controlled 

by relatively simple parameterizable geometries (Haldorsen & Chang, 1986; Shmaryan 

& Deutsch, 1999) that are specific to a geological environment (Tetzlaff, 1989) (e.g. a 

sinusoidal fluvial channel). Object-based TIs are primarily built via unconditional 

realizations – that is, simulations that sample the correct data distribution but are not 

constrained to the location of known values. Object-based modelling entails two steps: 

1) the assignment of geometric parameters by randomly sampling a distribution, for 

example a distribution of sphere diameters observed in the field, and 2) the random 

placement of each geometry (including its orientation) within the model. The inference 

of these parameters and the conditioning of models to data remain a challenge for this 

method (Boucher et al., 2010; Maharaja, 2008; Ortiz & Deutsch, 2004). Unconditional 

simulations are fast, however conditioning these models to local data is best when the 

data are sparse and no trends exist. Otherwise, the model building is slow as geological 

bodies are built through trial-and-error leading to higher CPU times (Allard et al., 2005; 

Michael, Boucher, Sun, Caers, & Gorelick, 2010).  

Object-based models are not common in the mining literature as they are generally 

aimed at fluvial systems. Example simulators include FLUVSIM (Deutsch & Tran, 2002; 

Deutsch & Wang, 1996), LOBESIM (Pyrcz & Deutsch, 2004), and ELLIPSIM (Deutsch & 

Journel, 1992). More recent object-based TI generators include TiGenerator (Maharaja, 
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2008) and Tetris (Boucher et al., 2010). Tetris is useful to construct complex categorical 

shapes.  

Reservoir modeling applications with very sparse data (wells every few hundred metres) 

are better suited to conditional object-based simulation techniques (Strebelle, 2005) 

compared to the dense drill datasets available in ore mining. In a mining scenario, it is 

not possible to use a categorical object-based TI to capture the spatial variability of 

continuous grades in an ore deposit. As stated in the beginning of this section, the 

application of object-based methods is ill suited for generating TIs that capture the 

connectivity of values of a continuous variable (e.g. grade). The method is likely to 

generate models that conflict with data and fails to reproduce the high-order spatial 

relations required in the TI. 

2.2.1.2 Process-based Methods 

A forward model is the term given to an outcome generated through the application of 

theoretical principles of physics using mathematical equations. In this sense, process-

based methods may be used to generate continuous TIs of geological heterogeneity by 

forward simulations. These techniques are generally restricted to either subsurface fluid 

flow and transport, or the geologic processes governing sedimentary basin formation 

and filling (Koltermann & Gorelick, 1996). A process-based method for generating vein 

formations was presented by Boisvert et al. (2008). The method mimics the flow of ore-

bearing fluids to build a TI. The motivation originated in the fact that MPS algorithms in 

the mining industry are often limited to using TIs based on more densely sampled, or 

mined, areas. However, finding such datasets with statistics similar to the deposit of 

interest is difficult in most cases. Briefly stated, the methodology used consists in the 

application of a flow simulator to a fracture model. TIs are subsequently generated by 

linking high flow zones with the location of veins and mineral deposition. Four main 

steps are used: 1) a fracture model is built or otherwise acquired, 2) the permeability 

across the model is calculated, 3) a flow simulation is initiated, constrained by 

permeability values, and 4) high flow threshold values are used to mark the location of 

veins. One drawback of this method is its reliance on a fracture model. However, 
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depending on the nature of the deposit it may be possible to obtain this information 

indirectly (e.g. geophysical surveys). 

Process-based methods may produce more realistic TIs compared to object-based 

simulations (Cojan, Fouché, Lopéz, & Rivoirard, 2005; Maharaja, 2008; Pyrcz & 

Strebelle, 2006). However, these methods are generally used to build reservoir models, 

including deep water fans, deltas, large scale landscapes, fluvial meandering channels, 

and deep water meandering channels (Michael et al., 2010; Miller et al., 2008) – see 

Figure 9-2. In drilling-constrained environments, or even where soft data are available 

(e.g. seismic), it remains difficult to restrict the process-based models at the 

conditioning data locations (Hu & Chugunova, 2008). Stochastic approaches to 

process-based models are possible by changing the initial model parameters. However, 

the different model outcomes may not be statistically representative of the phenomena 

to be simulated. 

Through forward modeling programs, process-based models use laws of physics to 

describe fluid flow velocity and particle movement in addition to tracking model 

topography, suspended sediment composition, and grain size distributions to calculate 

and store the erosional and depositional characteristics of a physical model in time. 

Actual physical models (Paola et al., 2001), as well as numerical models, are built to 

obtain boundary parameters such as turbulence velocity and spatial variability. 

Empirical equations are developed from such models to describe the erosional and 

depositional processes (Michael et al., 2010). Process-based models are initiated at a 

source and rely on rules to form a path through the model that naturally respects 

source, topographic, and erodability constraints. Many depositional environment 

architectures are possible through multiple paths, for example, braided fluvial channels 

or distributary lobes and splays. A process-based model is created by sequentially 

positioning source control nodes from source to terminus along a desired path. A 

continuous spline function is fitted to these nodes. Flow energy rules are used to dictate 

the transition from erosional channels to deposition lobes. Model construction ends 

when specific user-defined thresholds are met. Process-based models preserve the 

information generated throughout the construction process. This information enables 

the measurement of detailed facies proportions over time. Process-based models are 
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not guaranteed to reproduce the input statistics, as they tend to produce emergent 

features resulting from the interaction between rules and between rules and model 

constraints. An example is shown in Figure 8, where a model is built on a grid with 

regular X-Y cell size spacing but varying vertical cell dimensions. A simulation is 

developed from initial conditions by creating and removing cells as deposition and 

erosion occur. Each cell maintains a history log as the model proceeds forward in time 

(Miller et al., 2008). A very recent review and application of a process-based method for 

generating TIs was coupled with the Direct Sampling algorithm (Mariethoz et al., 2010) 

to better understand the hydrogeological connectivity of an aquifer (Comunian, Jha, 

Giambastiani, Mariethoz, Kelly, 2014). Despite their ability to construct continuous data 

models, process-based models have limited application in the modeling of mineral 

deposits. They do not condition well to dense datasets and cannot consistently 

reproduce the sample statistics.  

 

Figure 8. Process based model of a set of deepwater channels. Top view (a) and 
cross-section (b) showing variable size gridding. Colors indicate grain size: cool = 

fine, warm = large (Miller et al., 2008). 

2.2.1.3 Geological Analogs and Other Methods of Building a TI 

Expert-derived geological analogs are tacit models constructed by or with the aid of 

expert geologists. They may also be geophysical analogs (Gloaguen & Dimitrakopoulos, 

2009; Mao & Journel, 1999), or excerpts from adjacent or similar deposits or reservoirs 

(Goodfellow et al., 2012; Osterholt & Dimitrakopoulos, 2007) – see Figures 9-4 and 9-5. 

It is often easier to use another part of the deposit as a TI to model connectivity and 

volumetric uncertainty assuming that the same geological units, with the same statistics, 

are captured. 
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Figure 9. Example of TIs from the MPS literature: -1 is an object-based TI for a 

series of turbidite flows (Strebelle, 2002), -2 is a process-based TI of a delta 
channel (Pyrcz et al., 2009); -3 is complex TI from (Honarkhah and Caers, 2012); 
-4 and -5 are orebody analogs used to model the geometry of an iron ore deposit 
(Goodfellow et al., 2012; Osterholt et al., 2007), -6 categorical TI of the Apensu 

deposit built using drillhole information (Jones et al., 2013), 9-7 continuous TI of 
the Apensu deposit built using sequential Gaussian simulations (Machuca-Mory, 
et al., 2011). 

A categorical TI for the Apensu deposit exists (Jones, Douglas, Jewbali, 2013). Such a 

TI image was put together using the available drillhole data and identifying three main 

structures within the data: 1) the main mineralization domain within a 50m wide shear 

zone, 2) 12-15m curvilinear structures splaying off of the main shear zone and 3) 3-5m 

extensional fractures primarily located between the second order structures. A fourth 

category is used to mark whatever remains - see Figure 9-6. It is unclear how the 

authors connected the data to make one exhaustive TI, however it is reasonable to 

assume that some expert judgement was required. 
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A continuous TI for the Apensu deposit was built by Machuca-Mory et al. (2011). That 

image, shown in Figure 9-7, was built by simulating continuous gold values from 

drillhole data within each of the categories in the TI of Figure 9-6. While this image is 

initially appealing, second-order spatial restrictions are placed on the connectivity 

structure of the data due to the nature of the sequential Gaussian simulation algorithm 

used, which is the issue to be resolved. Another drawback of this technique is that it 

generates unnatural discontinuities at the category boundaries since each category 

domain is simulated separately from the others. 

Mariethoz & Kelly (2011) developed a novel multiple-point simulation algorithm in which 

they use small and simple 3D elemental TI units instead of a global conceptual 

geological model. Complex simulated structures are possible by applying (locally) 

random rotations and/or affinity to the units while transform-invariant distances are used 

to control the reproduction of specific characteristics of the data.  
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CHAPTER 3     TRAINING IMAGES BUILT WITH MATRIX COMPLETION 

 

This chapter introduces the theory behind low-rank matrix completion. Sections 3.1.3 

and 3.1.4 briefly present the Singular Value Thresholding algorithm (SVT) used by 

Yahya (2011) and by Yahya et al. (2012) to generate 2D TIs using the methodology of 

MSMC. MSTC is based on the approach of MSMC.  

3.1 Low-Rank Matrix Completion 

The matrix completion problem is one in which a matrix 𝐌 ∈ ℝ𝑛1×𝑛2 is only partially 

complete; i.e., a percentage of the entries are missing. Matrix completion generates 

values for missing entries based on information from all available entries. Many 

methods to solve problems with missing values exist. They generally differ in the 

assumptions made about the missing entries. For example, interpolation methods 

(reviewed by Yahya, 2011) will use surrounding data to infer the value of a missing 

entry while spatial simulation methods (Journel, 1974; Chilès & Delfiner, 1999; David, 

1988; Goovaerts, 1997; Journel & Huijbregts, 1978; Remy, 2009) generate the value of 

a missing entry by sampling from a distribution. In the present thesis, matrix and tensor 

completion refer specifically to low-rank solution methods.  

Low-rank matrix completion is based on the assumption of an underlying global data 

structure captured from a set Ω of observed entry locations, i.e., location (𝑖, 𝑗) ∈ Ω if the 

entry 𝐌𝑖𝑗 is observed, which can be leveraged to infer the missing information. This 

structure is assumed to be of low rank, meaning that there exists a linear dependence 

between columns/rows that enables the reconstruction of missing entries of the matrix. 

From this standpoint, the low-rank matrix completion problem statement is to find a 

unique matrix 𝐗 ∈ ℝ𝑛1×𝑛2 with minimum rank satisfying the condition that randomly 

observed values 𝐌Ω are consistent with 𝐗Ω. That is,  

minimize   𝑟𝑎𝑛𝑘 (𝐗) 

subject to    𝐗Ω = 𝐌Ω 

(3.1) 
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However, the rank minimization 3.1 is an NP-hard problem for which the only available 

algorithms require doubly exponential time in the dimension (Cai et al., 2010; Candès & 

Recht, 2008). To address the non-convexity of the matrix rank function, the optimization 

problem 3.1 is approximated by the minimization of the nuclear norm ‖𝐗‖∗ of the matrix 

𝐗 with rank 𝑟 given in 3.2 (Candès and Recht, 2009). That is,  

‖𝐗‖∗ =∑ 𝜎𝑛(𝐗)

𝑟

𝑛=1

 (3.2) 

where 𝜎𝑛(𝐗) is the 𝑛th singular value of 𝐗 (i.e. the root of the 𝑛th eigenvalue of 𝐗T𝐗). 

The matrix nuclear norm is the nearest convex relaxation of the matrix rank function 

(Fazel et al., 2001). Using this approximation, 3.1 becomes 

minimize   ‖𝐗‖∗ 

subject to    𝐗Ω = 𝐌Ω 

(3.3) 

A number of algorithms exist for solving 3.3, Michenková (2011) reviews a number of 

solvers based on two main categories: 1) constrained convex solvers based on 

Lagrangian, penalty, and the augmented Lagrangian method such as CVX (Grant & 

Boyd, 2011), SVT: Singular Value Thresholding (Cai, Candès, & Shen, 2010), APGL: 

Accelerated Proximal Gradient with Line Search (Toh & Yun, 2010), and ALM: 

Augmented Langrangian Method (Lin, Chen, & Ma, 2010), and 2) algorithms based on 

the minimization of a function on a Grassmanian manifold such as OptSpace (Keshavan 

& Oh, 2009), SET: Subspace Evolution and Transfer (Dai, Milenkovic, & Kerman, 2011), 

and GROUSE: Grassman Rank-One Update Subspace Estimation (Balzano, Nowak, & 

Recht, 2010). In particular, the SVT algorithm is reviewed in Section 3.1.3 because it 

has been used to construct 2D TIs from sparse samples (Yahya, 2011; Yahya et al. 

2012).  

Compressed sensing theory describes how sparse vector signals may be recovered 

accurately from fewer measurements than necessary by traditional methods (Candès et 

al., 2006a; Candès et al., 2006b; Candès & Tao, 2006; Candès & Tao, 2010; Candès & 

Wakin, 2008; Donoho, 2006); traditional methods are based on the Nyquist frequency, 
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which states that in order to perfectly reconstruct a signal from its samples, the 

sampling rate must be at least twice the maximum frequency present in the signal. 

Two key concepts form the backbone of the compressed sensing framework, which 

extends to matrix and tensor completion: sparsity and incoherence. In compressed 

sensing and matrix completion, these concepts lead to provable guarantees of signal 

reconstruction under certain conditions discussed next. To the best of the author’s 

knowledge, no reconstruction guarantees have been extended to the tensor case. 

3.1.1 Sparsity 

A vector 𝒙 is called 𝑟-sparse if at most 𝑟 of its entries are non-zero. The term sparsity is 

used to capture the notion of a signal’s compressibility over a concise vector basis. This 

notion extends similarly to matrices through the number of degrees of freedom, which is 

given by 𝑓 = 𝑛1𝑟 + (𝑛2 − 𝑟)𝑟 for a matrix 𝐌 ∈ ℝ𝑛1×𝑛2 of rank 𝑟. A matrix is low-rank 

when 𝑟 < min(𝑛1, 𝑛2). For a low-rank matrix, 𝑓 is considerably lower than 𝑛1𝑛2. Given a 

square matrix (i.e., 𝑛 = 𝑛1 = 𝑛2), the degrees of freedom approximate to 2𝑛𝑟 ≪ 𝑛2.  In 

other words, it is said that when 𝑛 is large compared to 𝑟 the signal information rate is 

much smaller than the ambient dimension of the matrix (Candès & Recht, 2009; Candès 

& Wakin, 2008). It is this compressibility property which enables the matrix’s recovery 

from 𝑚 ≪ 𝑛1𝑛2 entries.  

The concept of sparsity may also be expressed through the singular values of a matrix. 

Consider the singular value decomposition theorem (Golub & Van Loan, 1996) which 

states that a matrix 𝐌 ∈ ℝ𝑛1×𝑛2 can be decomposed into three component matrices as  

𝐌 = 𝐔 𝚺 𝐕T. (3.4) 

The middle factor 𝚺 is a diagonal matrix of singular values given by 𝜎(𝐌) = 𝑑𝑖𝑎𝑔(𝚺) =

[𝜎1 , 𝜎2,… , 𝜎min(𝑛1,𝑛2)], where   𝜎1 ≥ 𝜎2 ≥ … ≥ 𝜎min (𝑛1,𝑛2). Matrices 𝐔 and 𝐕 are composed 

of orthogonal left and right singular vectors 𝐔 = [𝐮1, … ,𝐮r]  ∈ ℝ
𝑛1×𝑟 and 𝐕 = [𝐯1 , … , 𝐯r]  ∈

ℝ𝑛2×𝑟, respectively, arranged into the same order as the singular values in 𝚺. With the 
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SVD, 𝐔 and 𝐕 form vector bases for the row and column spaces of 𝐌, respectively, 

which act together through the singular values to represent the matrix using 𝑟 ≤

min(𝑛1, 𝑛2) basis vectors, where 𝑟 is the rank of the matrix. Since each column vector in 

𝐔 and 𝐕 is orthogonal to all other vectors in the set (𝐔 and 𝐕 form a set of basis 

vectors), the interaction of their respective 𝑖th row vectors generates a different structure 

in the image whose intensity is controlled by the singular values. Figure 10 illustrates 

this point. 

 

Figure 10. Schematization of the singular value decomposition of a sparse 
matrix. A point value in image 𝐀 is constructed from the interaction of row vectors 

from 𝐔 and 𝐕 with the set of singular values. 

The relative magnitude of the singular values may be used to further compress the 

signal by truncating the values that do not significantly contribute to signal strength, 

albeit with some loss of information (i.e. setting their value to zero does not significantly 

affect the reconstruction of the original matrix). Figure 11 illustrates the spectrum of 

singular values of three (60x60) images and the utility of the rank as a measure of their 

complexity. The sparsity of each image is captured by the number of non-zero singular 

values. The decay profiles in Figure 11 indicate that both the chessboard (rank 2) and 

categorical (rank 38) images are low rank while the continuous image is very nearly full 

rank. Low-rank matrix and tensor completion algorithms reconstruct missing values 

based on the assumption that the singular values vector is 𝑟-sparse or compressible 

(Candès & Recht, 2009). An image is qualified as compressible when a large number of 

its singular values may be zeroed, or truncated, with little information loss. 
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Figure 11. The three singular value profiles capture the sparsity of three 
successively more complex images. The SVT algorithm (discussed in Section 
3.1.3) applies a 𝜏-thresholding operator that reconstructs images based on a 

reduced rank. 

3.1.2 Incoherence 

An incoherence property 𝜇 describes how difficult it may be to accurately recover a 

matrix 𝐌 ∈ ℝ𝑛1×𝑛2, from 𝑚 entries that have been drawn uniformly at random from 𝐌, 

by measuring the correlation between its singular vectors 𝐔, 𝐕 and the standard basis 

vectors 𝐞𝑖 ∈ ℝ
𝑛, for 𝑖 = 1, …, 𝑛. The standard basis vector 𝐞𝑖 is a vector of zeroes except 

for a 1 at the index location 𝑖, e.g. 𝐞3 = [0 0 1 0]
T for 𝑛 = 4. Consider the brief 

comparative example below of rank 2 matrices 𝐀, 𝐁, for any arbitrary positive singular 

values 𝑑𝑖𝑎𝑔(𝚺) (e.g. 𝜎1 = 𝜎2 = 1) where 𝑛 = 4: 

𝐀 = 𝐔𝐀𝚺𝐀𝐕𝐀
T = ∑ 𝜎𝑘𝐴𝒖𝑘𝐴𝒗𝑘𝐴

T

2

𝑘𝐴=1

 𝐁 = 𝐔𝐁𝚺𝐁𝐕𝐁
T = ∑ 𝜎𝑘𝐵𝒖𝑘𝐵𝒗𝑘𝐵

T

2

𝑘𝐵=1
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𝒖1A = 𝒗1𝐴 =
𝐞1
√𝑛
⁄  

𝒖2A = 𝒗2𝐴 =
𝐞2
√𝑛
⁄  

𝒖1B = 𝒗1B = [
1

√𝑛
,
1

√𝑛
,
1

√𝑛
,
1

√𝑛
] 

𝒖2B = 𝒗2B = [
1

√𝑛
,
−1

√𝑛
,
1

√𝑛
,
−1

√𝑛
] 

𝐀 =

[
 
 
 
1
𝑛⁄ 0

0 1
𝑛⁄

   0     0
   0     0

0     0
0     0

    
0     0
0     0]

 
 
 

. 𝐁 =

[
 
 
 
 
2
𝑛⁄ 0

0 2
𝑛⁄

2
𝑛⁄ 0

0 2
𝑛⁄

2
𝑛⁄ 0

0 2
𝑛⁄

2
𝑛⁄ 0

0 2
𝑛⁄ ]
 
 
 
 

. 

 

Unless most of the values from 𝐀 are sampled, such matrices as constructed from 

sparse singular vectors, such as 𝒖1A and 𝒖2A in the previous example, are difficult to 

recover accurately in spite of being very low-rank. By contrast, low-rank matrices such 

as 𝐁, constructed from singular vectors that have a more uniform distribution of values 

(e.g. 𝒖1B and 𝒖2B), can be reconstructed from fewer observations. 

An incoherence property with parameter 𝜇 ∈ [1,
𝑛

𝑟
] is said to exists if  

‖𝐔T𝒆𝑖‖
2 =

𝜇𝑟

𝑛1
, ∀ 𝑖, 

‖𝐕T𝒆𝑖‖
2 =

𝜇𝑟

𝑛2
, ∀ 𝑖. 

(3.5) 

It has been shown that matrices of rank 𝑟 sampled uniformly at random that obey the 

incoherence property may be reconstructed exactly with O(𝑛𝑟 log 𝑛) entries. 

3.1.3 An Example: The Singular Value Thresholding Algorithm 

The SVT algorithm is a simple two-step iterative algorithm used to reconstruct missing 

values of a low-rank matrix (Cai et al., 2010). This algorithm was used previously to 

build 2D TIs (Yahya, 2011; Yahya, et. al., 2012). It is described here to facilitate the 

exposition of the LRTC algorithm presented in Chapter 4, which is closely related in its 

approach.   
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Both the SVT and LRTC algorithms rely on a soft thresholding, or singular value 

shrinkage, operator 𝒟(∙) that acts directly on the singular values of 𝐌. For the case of 

the SVT algorithm, consider 𝒟𝜏(𝐌) = 𝐔𝒟𝜏(𝚺)𝐕
T, where 𝒟𝜏(𝚺) = {(𝜎𝑖(𝐌)− 𝜏)+}𝑖=1

𝑟  and 

τ > 0 is called the thresholding parameter. The operator (∙)+ is used to keep the positive 

part of (∙). Note that 𝒟𝜏(∙) is simply a set of values. When 𝐌 has singular values below 

τ, the rank of 𝒟𝜏(𝐌) will be lower than that of 𝐌 (see Figure 11). For all 𝜏 > 0 it has 

been shown (Cai et al., 2010) that the thresholding operator applied on 𝐌 is the solution 

to the dual of the nuclear norm minimization problem shown in 3.3. That is, 

𝒟𝜏(𝐌)= arg min𝐗 {𝜏‖𝐗‖∗ +
1

2
‖𝐗 −𝐌‖F

2  }. (3.6) 

This leads to the iterative SVT algorithm, which is used to recover a low-rank matrix 

from a subsample of entries. The SVT algorithm, shown next, has two main steps: a 

thresholding operation (2.i.) and an update step (2.iii). 

Algorithm 1: SVT  

Input: Data matrix 𝐌 ∈ ℝ𝑛1×𝑛2, auxiliary matrix 𝐘 ∈ ℝ𝑛1×𝑛2, sample location indices Ω, 

step size δ, tolerance ϵ, singular value thresholding parameter τ, maximum number of 

iterations 𝑘𝑚𝑎𝑥. 

Output: Reconstructed matrix 𝐗(𝑘) ∈ ℝ𝑛1×𝑛2 at the 𝑘th iteration. 

1. Set 𝐘(0) : = 𝟎. 

2. While ϵ(𝑘) is greater than ϵ and 𝑘 < 𝑘𝒎𝒂𝒙, repeat: 

i. Threshold the singular value decomposition of 𝐘(𝑘) into the low-

rank approximation 𝐗(𝑘):  

𝐗(𝑘) = 𝒟𝜏(𝐘
(𝑘)) = 𝐔(𝑘)𝒟𝜏(𝚺

(𝑘))𝐕(𝑘)
T
 

ii. Calculate the tolerance error ϵ(𝑘): 

ϵ(𝑘) =
‖(𝐗𝛀

(𝑘)
−𝐌𝛀)‖

F

‖𝐌𝛀‖F
 

iii. Update 𝐘(𝑘+1): 

    𝐘(𝑘+1) = 𝐘(𝑘) + δ𝑘(𝐌Ω− 𝐗Ω
(𝑘)
)  
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3.1.4 Training Images Built with Low-Rank Matrix Completion 

In the work by Yahya (2011) and Yahya et al. (2012), a data-driven HOS simulation 

method (Mustapha & Dimitrakopoulos, 2010) was combined with the soft thresholding 

algorithm SVT (Cai et al., 2010), reviewed in Section 3.1.3, to build a 2D TI using very 

sparse data (<5%). Compared to other matrix completion algorithms, such as SET (Dai 

et al., 2011) and OptSpace (Keshavan & Oh, 2009), SVT is a powerful and fast solver 

that can handle datasets with dimensions larger than 100 x 100. In order for the SVT 

algorithm to work, sparsity and incoherence conditions must be met (Sections 3.1.1 and 

3.1.2). Additionally, the sparse matrix cannot have empty rows or columns and must 

have a minimum number of entries sampled uniformly at random relative to the 

dimensions of the matrix. The work by Yahya (2011) and Yahya et al. (2012) 

implemented the SVT algorithm in an approach known as MSMC, which reconstructs 

sparse matrices in which there are empty rows and columns placed at regular intervals. 

The main steps of MSMC are outlined below with a schematic example shown in Figure 

12: 

1. Downscale a sparse matrix by removing empty rows and columns and thereby 

“compressing” the size of the matrix into a smaller but higher sample density 

matrix; 

2. Apply matrix completion using the SVT algorithm on the downscaled matrix; 

3. Re-grid the matrix by reinserting missing rows and columns removed in Step 1; 

4. Randomly shift a subset of the reconstructed and original entries into adjacent 

empty positions according to a uniform distribution. Note that a value need not 

necessarily shift since there is an equal probability of remaining in the same 

position; 

5. Apply matrix completion using the SVT algorithm on the re-gridded matrix from 

Step 4; 

6. Repeat Steps 3-5 for the number of consecutive empty rows and columns 

removed in Step 1. 

The example in Figure 12 only has one stage since there is only one empty row and 

one empty column between original entries. A two-stage problem would imply two 

empty rows and two empty columns between original entries. 
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Figure 12. Main steps in MSMC using a 1-stage MSMC example. 
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MSMC was previously tested (Yahya, 2011; Yahya et al., 2012) on several images of 

varying rank: a) a chessboard, b) a woman’s face (Lenna), c) a brain MRI, d) a building 

and e) a 2D slice taken from a 3D synthetic porosity model of reservoir channels (Mao & 

Journel, 1999). Images b) to d), shown in Figure 13, were compressed to a rank of 20 

before testing. MSMC was able to reconstruct each of these images from 1% to 5% 

sample densities with very low reconstruction error when compared to a single 

application of matrix completion using the SVT algorithm. Table 1 lists the average root 

mean square error (RMSE) obtained from these experiments. 

Figure 14 depicts the MSMC reconstruction of the “channels” TI using 2%, 3%, and 4% 

random sampling schemes. Compared to the high quality reconstructions seen in Figure 

13, the lower quality reconstruction of the channels image is explained by the lower 

sampling density but also, and more importantly, by examining the cumulative singular 

values of each image. Figure 15 shows the cumulative singular values for each of the 

images in Figure 13, each normalized by their maximum value. The graph shows that 

the cumulative singular value profile gradients are steeper for ‘Lenna’ and ‘building’ than 

for “channels”, which means that they are more compressible since they require fewer 

singular values to reconstruct the images. In other words, in the “channels” image the 

total weight of the information is spread out more evenly across singular values and 

thresholding these values results in greater information loss. 

 

Figure 13. MSMC reconstruction of several images from 5% uniform sampling at 

random (Yahya, 2011). 
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Table 1. RMSE measured for MSMC and SSMC. 

Image Original 

dims. 

Down-

scaled 

dims. 

Rank Number of 

entries 

Original 

image 

sample 

density 

Down-

scaled 

image 

sample 

density 

SSMC 

error 

MSMC 

error 

Lenna, 

MRI, 

Building 

240x240 60x60 20 576 – 2880 1 - 5% 16 – 80% 0.96 0.23 

Channels 100x100 25x25 100 200 - 400 2 - 4% 32 – 64% Not available 

 

 

 

Figure 14. MSMC reconstruction of a continuous TI of reservoir channels from 
2%, 3%, and 4% uniform sampling at random (Yahya, 2011). 
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Figure 15. Normalized cumulative ratio of total singular values for three images: 
Lenna, buildings, and channels. 

The sparse entries used in MSMC are obtained by uniform random sampling a 

downscaled version of the benchmark image - see Steps 1 to 3 in Figure 16. This 

sparse image is subsequently re-gridded by regularly inserting two empty columns and 

two empty rows between each column and row of the downscaled image. Table 2 

summarizes the sample densities used in Yahya (2011) to reconstruct the channels TI. 

Figure 17 shows what a 5% randomly sampled image looks like on a downscaled 

version of itself. In MSMC (Yahya, 2011), the sample densities reported are based on 

the re-gridded image versions that include empty columns/rows. This approach works 

well when, in addition to the assumption that the difference between entries is small (i.e. 

spatial connectivity), there is an additional assumption that the number of consecutive 

missing entries is also small (at most 2 in Yahya (2011)).  

In the current work, the idea of MSMC is modified for 3D using a tensor completion 

algorithm known as LRTC (Liu et al., 2013). As will be shown in Chapter 4, the MSMC 

approach is adapted to situations where the sampling density is less than 2%, the 

distances between entries are irregular, large sections of information are missing, and 

the TIs are both three dimensional, continuous and heterogeneously complex. 
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Table 2. The sampling scheme used in MSMC. 

 Original TI Downscaled TI 

Dimensions 100 x 100 25 x 25 

Total number of entries 10000 625 

200 entries represents: 2% 32% 

300 entries represents: 3% 48% 

400 entries represents: 4% 64% 

 

 

 

Figure 16. Schematization of the subsampling scheme devised by Yahya (2011). 
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Figure 17. Random sampling of downscaled images as per the scheme used in 
Yahya (2011). 
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CHAPTER 4     TRAINING IMAGES BUILT WITH TENSOR COMPLETION 

 

Tensor objects, tensor notation, and relevant tensor operations and properties are 

described at the beginning of this chapter. Section 4.2 describes the LRTC algorithm 

(Liu et al., 2009) used in this thesis to build 3D TIs via a method, described in Section 

4.3, known as MSTC. 

4.1 Tensors 

Tensors are used to denote the generalization of scalars, vectors, and matrices to 

higher dimensions. A scalar is a zero-order tensor. Vectors and matrices are first- and 

second-order tensors, respectively. Volumes or “boxes” are represented by third order 

tensors and so on, see Figure 18.  

4.1.1 Notation 

A tensor with 𝑁 dimensions is called an 𝑁th-order tensor and is henceforth denoted by 

script notation 𝓣 ∈ ℝ𝐼1×𝐼2×…×𝐼𝑁 , with capitalized superscript indices 𝐼1 × 𝐼2 ×… 𝐼𝑛 ×…× 𝐼𝑁 

to indicate the extent 𝐼𝑛 of the tensor along each dimension 𝑛 from 1, … ,𝑁. Tensors of 

order 3 or higher are called higher order tensors. An element of 𝓣 is denoted by 𝑡𝑖1,𝑖2,…,𝑖𝑁 

where each subscript index 𝑖𝑛 varies from 1 to 𝐼𝑛. Each dimension of a tensor is known 

as a mode. A mode-𝑛 slice is generated by taking all elements along all other modes 

while keeping mode-𝑛 fixed. For example, there are 𝐼3 mode-3 slices in 𝓐 ∈ ℝ𝐼1×𝐼2×𝐼3, 

each of which is an 𝐼1 × 𝐼2 matrix. The notation ‖𝓣‖𝐹≔ √(∑ |𝑡𝑖1,𝑖2,…,𝑖𝑁 |
2

𝑖1,𝑖2,…,𝑖𝑁 ) defines 

the Frobenius norm of tensor 𝓣, which is used in Chapter 5 to measure the accuracy of 

the TI reconstructions. This thesis only deals with 2nd and 3rd order tensors of real 

valued numbers. 
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Figure 18. a) Schematic representation of tensors of different orders, b) Index 
representation for a third order tensor. 

4.1.2 Tensor Unfolding and Folding Operations 

Tensor unfolding, or matricization, is a common operation used to convert a higher 

order tensor into a matrix. The mode-𝑛 matricization transforms the 𝑁th order tensor 

𝓣 ∈ ℝ𝐼1×𝐼2×…×𝐼𝑁  into a matrix 𝐓(𝑛) ∈ ℝ
𝐼𝑛×𝐽 where 𝐽 =  ∏ 𝐼𝑖

𝑖=𝑁
𝑖=1
𝑖≠𝑛

. This operation has an 

element-wise expression given by (𝐓(𝑛))𝑖𝑛𝑗 = 𝑡𝑖1𝑖2…𝑖𝑁 where 𝑗 = 1 +∑ [(𝑖𝑚 −
𝑁
𝑚=1
𝑚≠𝑛

1)∏ 𝐼𝑚′
𝑚
𝑚′=1
𝑚′≠𝑛

] indicates the column index of the matrix 𝐓(𝑛) (Kolda and Bader, 2009). 

Figure 19 illustrates this point with a 3rd order tensor. For each of the three unfoldings 

(mode-𝐼, mode-𝐾, mode-𝐽) the two red cells in tensor 𝓣 map to different locations in 

each of the matrices depending on the unfolding direction. Alternate definitions for the 

mode-𝑛 matricization are possible (De Lathauwer et al., 2000; Kiers, 2000). However, 

the concept of changing a tensor into a matrix remains the same and tensor-matrix 

operations remain unaffected within a choice of convention (Kolda and Bader, 2009; 

Tomioka et al., 2011).  

The crucial point to retain is that an 𝑁th order tensor will have 𝑁 different ways of 

unfolding it, each of which results in a matrix with a different arrangement of the data. 
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Figure 19. Matricizations of a 3rd order tensor into its three mode-𝑛 unfoldings 

(mode- 𝐼, mode- 𝐽, mode- 𝐾): Tensor slices are “pulled” ( ) next to each other as 

per the colored slices. 

The advantage of a matricization is that linear algebraic methods used to define 

structural properties of the data, such as the singular value decomposition (see 3.4 in 

Section 3.1.1), may be applied to unfolded tensors. However, it is well known that 

unfolding a tensor breaks the inherent structure and correlation of the original data, 

removing redundancies and higher order structures and leading to a misinterpretation of 

the component matrices (Kolda & Bader, 2009). For this reason, it would be useful to 

build a TI directly from the original dimensions of the data.  

The opposite operation to matricization involves folding a matrix into a tensor structure. 

If the matrix originated from a tensor, care is required to fold the matrix using the same 

convention, but in reverse, as was used to unfold the tensor. 

4.1.3 Ranks of a Tensor 

The notion of matrix rank (i.e. the number of linearly independent column/row vectors) 

does not uniquely extend to tensors. Several definitions exist (Kolda & Bader, 2009) for 

which two relevant ones are reviewed here: the 𝑟𝑎𝑛𝑘(𝓣) and the 𝑛-𝑟𝑎𝑛𝑘𝑠(𝓣) of tensor 

𝓣 ∈ ℝ𝐼1×𝐼2×…×𝐼𝑁 .  
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The strictest analogy to the matrix rank is obtained by the minimum sum of 𝑟 rank-one 

tensors that add to 𝓣, where a rank-one tensor consists of the outer product ∘ of 𝑟 

vectors  𝒖1, 𝒖2,… , 𝒖𝑅 taken form 𝑁 factor matrices. That is, 

𝓣 =∑𝒖𝑖
(1) ∘ 𝒖𝑖

(2) ∘ … ∘ 𝒖𝑖
(𝑁)

𝑟

𝑖=1

. (4.1) 

where the subscript indicates the 𝑖th column vector from each of the 𝑁 matrices 

𝐔(𝑛) = [𝒖1
(𝑛)
, 𝒖2
(𝑛)
,… , 𝒖𝑁

(𝑛)
]. In this case, 𝑟𝑎𝑛𝑘(𝓣) = 𝑟. This sum is easy to see for a third 

order tensor as shown in Figure 20. However finding 𝑟𝑎𝑛𝑘(𝓣) = 𝑟 is NP-hard as there is 

no known algorithm to compute the decomposition in 4.1 for higher order tensors 

(Håstad, 1990; Kolda & Bader, 2009; Kruskal, 1989); for second-order tensors that 

decomposition is akin to the SVD where 𝐔(𝑛) = {𝐔(1) = 𝐔, 𝐔(2) = 𝐕} for 𝑁 = 2, such that 

𝐔(1) is the left singular matrix and 𝐔(2) is the right singular matrix. 

 

Figure 20. Decomposition of a tensor into a linear sum of rank-1 tensors. The 

outer product of vectors 𝒖1
(𝑛)
,𝒖2
(𝑛)
, 𝒖3
(𝑛)

is the 𝑛th rank-1 tensor. The minimum 

number of rank-1 tensors that can produce 𝓣 defines 𝑟𝑎𝑛𝑘(𝓣). 

A much simpler rank to calculate is obtained by the mode-𝑛 unfoldings of tensor 𝓣. That 

is, 𝑛-𝑟𝑎𝑛𝑘(𝓣) = [𝑟𝑎𝑛𝑘(𝐓(1)),… , 𝑟𝑎𝑛𝑘(𝐓(𝑛)), … , 𝑟𝑎𝑛𝑘(𝐓(𝑁))] where  𝑟𝑎𝑛𝑘(𝐓(𝑛)) is simply 

the number of linearly independent columns of the mode-𝑛 unfolded tensor 𝐓(𝑛) – see 

Figure 19. This second notion of rank is used in the LRTC algorithm (Liu et al., 2013). 

4.2 The LRTC Algorithm 

Tensor completion has evolved from the matrix completion literature (Candès & Recht, 

2009). LRTC attempts to recover an 𝑁-dimensional tensor 𝓧 ∈ ℝ𝑛1 × 𝑛2 × … × 𝑛𝑁  from 
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𝑚 < 𝑛1𝑛2…𝑛𝑁 random entries, by nuclear norm minimization (see 3.3). The algorithm is 

developed over three successive steps, following the work of Liu et al. (2013):  

step 1:  A definition of the nuclear norm for a tensor 𝓧,  

step 2:  The disambiguation of inter-connected mode-𝑛 matrices of the tensor 𝓧, and  

step 3:  The formulation of the global optimal problem based on nuclear norm 

minimization of all mode-𝑛 matrices of 𝓧.  

Similarly to the matrix completion problem 3.1, it is reasonable to consider low-rank 

tensor completion as the problem:  

minimize   ‖𝓧‖∗ 

subject to    𝓧Ω = 𝓣Ω 

(4.2) 

Liu et al. (2009) define the nuclear norm of a tensor ‖𝓧‖∗ based on the 𝑛-ranks of the 

mode-𝑛 unfoldings of 𝓧 (see Sections 4.1.2 and 4.1.3). That is, 

‖𝓧‖∗ =∑𝛼𝑖‖𝐗(𝑖)‖∗

𝑁

𝑖=1

 

‖𝓧‖∗ = ∑𝛼𝑖∑𝜎𝑘(𝑖) (‖𝐗(𝑖)‖∗)

𝑟

𝑘=1

𝑁

𝑖=1

 

(4.3) 

where 𝜎𝑘(𝑖) (‖𝐗(𝑖)‖∗) is the 𝑘th singular value of the mode-𝑖 unfolded matrix 𝐗(𝑖) with rank 

𝑟 and 𝛼𝑖 are constant weights that satisfy 𝛼𝑖 ≥ 0 and ∑ 𝛼𝑖
𝑁
𝑖=1 = 1, for 𝑖 = 1, … , 𝑁. Note 

that the tensor nuclear norm definition 4.3 encompasses the nuclear norm of a matrix 

given by 3.2, i.e. ‖𝓧‖∗ = ‖𝐗‖∗ when 𝑁 = 2 because the nuclear norm of a matrix is the 

same as that of its transpose. Thus, 4.2 becomes: 

minimize  ∑𝛼𝑖‖𝐗(𝑖)‖∗

𝑁

𝑖=1

 

subject to    𝓧Ω = 𝓣Ω 

(4.4) 
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Unlike the matrix case, in which the nuclear norm is proved to be the closest convex 

envelop to the matrix rank (Fazel et al., 2001), LRTC does not strictly define the tensor 

nuclear norm as the nearest convex envelope to the tensor rank (Romera-Paredes & 

Pontil, 2013). Furthermore, finding the rank of any higher order tensor remains an NP-

hard problem, as there is no explicit expression for it (see Section 4.1.3) and direct 

minimization of the tensor rank is not possible. 

Recall from Section 3.1.3 that the matrix nuclear norm minimization is solved by tackling 

its dual form in 3.6. However, in the tensor case, the difficulty in optimizing problem 4.4 

directly through its proximity operator (i.e. the thresholding operator) stems from the 

inter-dependency of the 𝑁 matrix nuclear norms. That is, each mode-𝑛 unfolded matrix 

of 𝓣 cannot be minimized independently of the others since they all share the same 

tensor elements (see Figure 19). To address this interdependency, consider 4.5 which 

is based on a new set of matrices 𝐌𝑖 ≅ 𝓧(𝑖) such that ‖𝓧(𝑖) −𝐌𝑖‖F
2
≤ d𝑖: 

minimize
 𝓧, 𝐌𝑖

∑𝛼𝑖‖𝐌𝑖‖∗

𝑛

𝑖=1

 

subject to   ‖𝓧(𝑖) −𝐌𝑖‖F
2
≤ d𝑖  

d𝑖 ≥ 0 

(4.5) 

The convex dual formulation to 4.5 is given by 

minimize
 𝓧, 𝐌𝑖

∑𝛼𝑖‖𝐌𝑖‖∗

𝑛

𝑖=1

+
𝛽𝑖
2
‖𝓧(𝑖) −𝐌𝑖‖F

2
 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    𝓧Ω = 𝓣Ω 

(4.6) 

In order to obtain a globally optimal solution, the formulation 4.6 is addressed via a 

block coordinate descent (BCD) optimization algorithm (Hildreth, 2006); BCD is a 

method that iteratively optimizes a block (a group) of variables while keeping the 

remaining blocks of variables fixed (Polak, 1971; Warga, 1963). In this case, the tensor 
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𝓧 and 𝑛 𝐌𝑖 matrices constitute (𝑛 + 1) optimization blocks, which are solved through 

the following two sub-problems:  

Optimization of 𝓧  Optimization of 𝐌𝑖 ’s  

minimize
 𝓧

∑
𝛽𝑖
2
‖𝓧(𝑖)− 𝐌𝒊‖F

2
𝑛

𝑖=1

 

subject to    𝓧Ω = 𝓣Ω 

(4.7) 

minimize
 𝐌𝑖

∑
𝛽𝑖
2
‖𝓧(𝑖) −𝐌𝑖‖F

2
+‖𝐌𝑖‖∗

𝑛

𝑖=1

 

≡ ‖𝓧(𝑖) − 𝐌𝑖‖F
2
+
𝛼𝑖
𝛽𝑖
‖𝐌𝑖‖∗ 

(4.8) 

Whereby the solution to (4.7) at the unobserved entry locations Ω̅ is given by  

𝓧Ω̅ =
∑ 𝛽𝑖𝑓𝑜𝑙𝑑(𝐌𝒊)
𝑵
𝑖=1

∑ 𝛽𝑖
𝑵
𝑖=1

 (4.9) 

It has been shown (Cai et al., 2010) that the optimal solution to 4.8 is given by 𝐷𝜏(𝓧(𝑖)), 

where 𝜏 =
𝛼𝑖

𝛽𝑖
, which is the thresholding operator reviewed in Section 3.1.3 and the dual 

to the nuclear norm minimization problem 3.6 used to solve low-rank matrix completion 

using the SVT algorithm. The LRTC algorithm is summarized next. 

Algorithm 2: LRTC 

Input: Data tensor 𝓣 ∈ ℝ𝐼1×𝐼2×…×𝐼𝑁 , singular value thresholding parameter τ, maximum 

number of iterations 𝑘𝑚𝑎𝑥. 

Output: Reconstructed tensor 𝓧(𝑘) ∈ ℝ𝐼1×𝐼2×…×𝐼𝑁  at the 𝑘th iteration. 

While 𝑘 < 𝑘𝒎𝒂𝒙, repeat: 

1. For each mode 𝑖 = 1,… , 𝑁: 

a. Calculate the mode-𝑖 unfolded matrix 𝐌𝑖
(𝑘)

 as 𝐌𝑖
(𝑘)
= 𝐷𝜏 (𝓧(𝑖)

(𝑘)
) where 𝐌𝑖

(𝑘)
 

is thresholded into the low-rank approximation 𝓧(𝑖)
(𝑘)

:  

𝐌𝑖
(𝑘)
= 𝐷𝜏 (𝓧(𝑖)

(𝑘)
)= 𝐔𝑖

(𝑘)
𝒟𝜏(𝚺𝑖

(𝑘)
)𝐕𝑖
(𝑘)T

 

2. Update 𝓧(𝑘) at all unobserved entry locations 

a. For each mode 𝑖 = 1, … , 𝑁: 

    𝓧
Ω̅

(𝑘)
=
∑ 𝛽𝑖𝑓𝑜𝑙𝑑(𝐌𝑖

(𝑘)
)𝑵

𝑖=1

∑ 𝛽𝑖
𝑵
𝑖=1
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4.3 The Method of MSTC Using LRTC 

This section presents the method of MSTC, which is used to reconstruct 3D continuous 

TIs of entries from a drill pattern that is non-uniform and non-random. The method relies 

on the LRTC algorithm (Liu et al., 2009) for tensor reconstruction at each stage. 

Naturally, physical limitations in geological drilling make it impossible to sample the 

earth at depth uniformly and at random. A drill hole from surface, or underground, will 

be a contiguous series of entries in a straight line. From the Earth’s surface this will be 

represented as a vertical or angled hole, while from an underground position (e.g. in an 

underground mine setting) it may also be horizontally directed. As a result, a drilling 

campaign over a deposit will exhibit many large gaps between sample points in some 

areas as well as highly concentrated sampling in other areas. Figure 21 presents a 

simplified example. 

The MSTC method presents a solution for the reconstruction of 3D continuous TIs with 

very low and adversarial (i.e. non-random) sampling schemes where large sections of 

the tensor are not represented. MSTC begins with the same premise as MSMC (Yahya, 

2011). That is, the reconstructed tensor is assumed to be spatially connected and initial 

entries are used to build the final connectivity map. MSMC removes empty columns and 

rows to generate less sparse matrices of varying sizes at different stages - first by 

removing all empty rows and columns to produce a highly sampled matrix at the first 

stage, and then re-introducing columns and rows previously removed to build the “multi-

stage” matrices until the original matrix resolution is reached (Figure 12 on page 32). 

However, in that work, the sparse matrices used to test the MSMC methodology are 

synthetically built with exactly two empty columns and two empty rows between each 

represented rows and columns. That is, the number of empty rows and columns located 

between adjacent, represented rows and columns is always the same. In the current 

work, MSTC is applied to a real drilling pattern to generate the entries used for 

reconstruction. In real drilling patterns, it is not feasible to remove two empty slices at 

“every other” slice, mode-by-mode. Rotating and back rotating the dataset to remove 

unsampled rows and columns prior to reconstruction is prone to “edge” effects at corner 

locations, where no entries are present (Figure 21). 
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Figure 21. In MSMC (left) large gaps exist as columns and rows that can be 
removed. In MSTC (middle), the drilling pattern precludes the possibility of 
removing slices from the data as easily as in MSMC, despite large gaps. Rotating 

the dataset (right) to remove empty columns/rows would be prone to edge effects 
at corner locations. 

The main steps used in MSTC are outlined next. In each step, the notation 𝓧
𝑓
→𝓨 

indicates the function 𝑓 is used to map 𝓧 to 𝓨. This concise notation is used in Chapter 

5 to describe the different variants of MSTC implemented. 

For simplicity of notation, also let 

𝐼′ =
𝐼

2𝑆−𝑙
, 𝐽′ =

𝐽

2𝑆−𝑙
, 𝐾′ =

𝐾

2𝑆−𝑙
 (4.10) 

and 

𝐼′′ =
𝐼

2𝑆−(𝑙+1)
, 𝐽′′ =

𝐽

2𝑆−(𝑙+1)
, 𝐾′′ =

𝐾

2𝑆−(𝑙+1)
 (4.11) 

4.10 and 4.11 are used to define scale transformations between tensors. Figure 22 

presents a pictorial summary of MSTC. A sparse tensor 𝓣 is regridded to different 

tensors 𝓖0, 𝓖1, 𝓖2,…, each representing a different level 𝑙 = 0,1,2, … of resolution. The 

regridding process is based on a random selection of subset values linked to the 𝓖𝑙 

tensor. One option for a reconstruction is as follows, at 𝑙 = 1 the tensor 𝓖1 is 

reconstructed as 𝓡1  using the LRTC algorithm. It is subsequently upsized to the next 

level as 𝓡𝟐
𝑢𝑝

, where it samples 𝓖2 to fill in as many of its vacant entries as possible 

(without overwriting existing entries) to become 𝓡𝟐
𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒

. Another LRTC reconstruction 
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is applied to 𝓡𝟐
𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒

 to generate 𝓡2. This sequence continues until the desired 

resolution is reached. Examples of each function used are given in the Appendix. For 

reference, see summary in Table 3. 
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Table 3. Summary of MSTC functions. 

Function Purpose 

𝓧
DOWNGRID
→        𝓨 Regrid 𝓧 to the (lower) resolution of 𝓨. 

𝓧
LRTC
→    𝓨 𝓨 is the LRTC reconstruction of 𝓧. 

𝓧
UPSIZE
→     𝓨 

Regrid 𝓧 to the (higher) resolution of 𝓨 by inserting empty 

slices along each mode. 

𝓧
RANDUP
→       𝓨 

Regrid 𝓧 to the (higher) resolution of 𝓨 by inserting empty 

slices along each mode and randomly shifting values. 

𝓧
CORRELUP
→        𝓨 

Regrid 𝓧 to the (higher) resolution of 𝓨 by inserting empty 

slices along each mode and shifting values towards other 

similar values. 

𝓧
UPSAMPLE 𝓖𝑙
→          𝓨 Infill empty locations in 𝓧 by sampling values from 𝓖𝑙. 

MSTC steps: 

1. Map the original sample data 𝓣 into the lower resolution tensors 𝓖𝑙, 𝑙 = 0, …, 𝑆, 

where 𝑆 defines the number of multi-stages in the reconstruction and  𝓖𝑆 = 𝓣. 

𝓣 ∈ ℝ𝐼 × 𝐽 × 𝐾
DOWNGRID
→        𝓖𝑙 ∈ ℝ

𝐼′ × 𝐽′ × 𝐾′ 
(4.12) 

2. Stage reconstruction using the LRTC algorithm to reconstruct 𝓖𝑙 as  𝓡𝑙 for 𝑙 > 0 

(there is no stage-0 reconstruction): 

𝓖𝑙 ∈ ℝ
𝐼′  × 𝐽′  × 𝐾′

LRTC
→     𝓡𝑙 ∈ ℝ

𝐼′ × 𝐽′ × 𝐾′ 
(4.13) 

3. Upsize  𝓡𝑙 to the next stage (𝑙 + 1) by increasing its resolution in one of three 

ways: 

a. Insert one empty slice next to each mode-𝑚 slice, where 𝑚 ∈ {1,2,3}: 
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𝓡𝑙 ∈ ℝ
𝐼′  × 𝐽′  × 𝐾′

UPSIZE
→    𝓡𝒍+1

𝑢𝑝
∈ ℝ𝐼

′′ × 𝐽′′  × 𝐾′′ (4.14) 

b. Insert one empty slice next to each mode-𝑚 slice and randomly shift the 

values. This step ensures the representation of all slices (i.e. no slices are 

left empty) along all modes of the tensor.  

𝓡𝑙 ∈ ℝ
𝐼′  × 𝐽′ × 𝐾′

RANDUP
→      𝓡𝑙+1

𝑟𝑎𝑛𝑑𝑢𝑝
∈ ℝ𝐼

′′ × 𝐽′′ × 𝐾′′ 
(4.15) 

c. Insert one empty slice next to each mode-𝑚 slice and shift the values in a 

direction that correlates with values from a previous stage that has been 

𝑟𝑒𝑔𝑟𝑖𝑑𝑑𝑒𝑑  to the same resolution - see Step 4.  

𝓡𝑙 ∈ ℝ
𝐼′  × 𝐽′ × 𝐾′

CORRELUP
→       𝓡𝑙+1

𝑐𝑜𝑟𝑟𝑒𝑙𝑢𝑝
∈ ℝ𝐼

′′ × 𝐽′′ × 𝐾′′ 
(4.16) 

4. For a given stage 𝑙 > 0, sample the 𝑑𝑜𝑤𝑛𝑔𝑟𝑖𝑑𝑑𝑒𝑑 tensor 𝓖𝑙 at locations of 

𝓡𝑙
𝑢𝑝
,𝓡𝑙
𝑟𝑎𝑛𝑑𝑢𝑝

,𝓡𝑙
𝑐𝑜𝑟𝑟𝑒𝑙𝑢𝑝

 with missing entries. Any number of tensors 𝓖𝑙 may be 

sampled as long as they have been 𝑟𝑒𝑔𝑟𝑖𝑑𝑑𝑒𝑑  to the dimensions of the current 

stage: 

𝓡𝑙
𝑢𝑝
∈ ℝ𝐼

′ × 𝐽′ × 𝐾′
UPSAMPLE 𝓖𝑙
→         𝓡𝑙

𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒
∈ ℝ𝐼

′  × 𝐽′ × 𝐾′ 

𝓡𝑙
𝑟𝑎𝑛𝑑𝑢𝑝

∈ ℝ𝐼
′ × 𝐽′ × 𝐾′

UPSAMPLE 𝓖𝑙
→         𝓡𝑙

𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒
∈ ℝ𝐼

′  × 𝐽′ × 𝐾′ 

𝓡𝑙
𝑐𝑜𝑟𝑟𝑒𝑙𝑢𝑝

∈ ℝ𝐼
′ × 𝐽′ × 𝐾′

UPSAMPLE 𝓖𝑙
→         𝓡𝑙

𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒
∈ ℝ𝐼

′  × 𝐽′  × 𝐾′ 

(4.17) 

(4.18) 

(4.19) 

5. Repeat steps 3 to 5 up to 𝑙 ≤ 𝑆. 
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Figure 22. Method of MSTC showing the progressive reconstruction of a sparse 
tensor 𝓣 up to multi-stage 𝑙 ≤ 𝑆. 
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4.3.1 Number of Stages 

Similarly to MSMC (Yahya, 2011), the number of stages 𝑆 is defined by the number of 

times a reconstruction occurs. While the number of stages in MSMC is defined by the 

number of consecutive empty rows/columns between represented rows/columns, the 

number of stages in MSTC is a user-defined parameter based on the desired 

“coarseness” and accuracy of the reconstruction.  

4.3.2 The MSTC Algorithm 

The previous section provided the building blocks for the MSTC algorithm. The 

pseudocode for MSTC is shown in Algorithm 3.   

Algorithm 3: MSTC 

Input: Sparse tensor 𝓣 ∈ ℝ𝐼1×𝐼2×𝐼3 , number of multi-stages 𝑆, 𝑟𝑒𝑔𝑟𝑖𝑑𝑑𝑖𝑛𝑔 parameter 

vector 𝑢𝑠𝑐𝑎𝑙𝑒𝑉𝑒𝑐 (refer to Appendix), LRTC parameters 𝜏 and 𝑘𝑚𝑎𝑥. 

Output: Multi-stage reconstruction 𝓡≤𝑆 ∈ ℝ
𝐼1×𝐼2×𝐼3 at original resolution, or lower. 

1. For 𝑙 = 0 𝑡𝑜 𝑆 

a. Build low resolution tensors: 𝓣
DOWNGRID
→        𝓖𝑙 

2. For 𝑙 = 1 𝑡𝑜 𝑆 

a. Do a reconstruction: 𝓖𝑙
LRTC(𝜏, 𝑘𝑚𝑎𝑥)
→             𝓡𝑙 using Algorithm 2 

b. Upsize the reconstruction by one of three methods: 

i.  𝓡𝑙
UPSIZE(𝑢𝑠𝑐𝑎𝑙𝑒𝑉𝑒𝑐)
→               𝓡𝑙=𝑙+1

𝑢𝑝
  

ii. 𝓡𝑙
RANDUP(𝑢𝑠𝑐𝑎𝑙𝑒𝑉𝑒𝑐)
→                𝓡𝑙=𝑙+1

𝑢𝑝
 

iii. 𝓡𝑙
CORRELUP(𝑢𝑠𝑐𝑎𝑙𝑒𝑉𝑒𝑐)
→                  𝓡𝑙=𝑙+1

𝑢𝑝
 

c. Sample information from another tensor (optional) 

𝓡𝑙
(𝑚𝑒𝑡ℎ𝑜𝑑 𝑢𝑠𝑒𝑑 𝑖𝑛 𝑆𝑡𝑒𝑝 2) UPSAMPLE 𝓖𝑙

→         𝓡𝑙
𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒
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By only allowing certain modes to 𝑢𝑝𝑠𝑖𝑧𝑒 or by introducing an arbitrary number of empty 

slices per mode during the 𝑢𝑝𝑠𝑖𝑧𝑖𝑛𝑔 (Step 3), a different MSTC strategy is possible. 

Variants of the MSTC method based on combinations of functions listed in Steps 3 and 

4 (Section 4.3) are presented in Chapter 5 using Algorithm 3 and two benchmark TIs. 
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CHAPTER 5     MSTC IMPLEMENTATION, RESULTS AND ANALYSIS 

 

Implementation details and results obtained from the application of MSTC on two 

benchmark sets are presented and discussed in this section. The benchmark TIs 

pertain to a 3D dataset known as Stanford V. The Stanford V reservoir model is an 

exhaustive synthetic dataset for general purpose testing of various aspects pertaining to 

petroleum reservoir modeling and characterization (Mao and Journel, 1999), including 

the application of MPS and HOS simulation algorithms. The model is populated with 

various co-located continuous petrophysical properties, including porosity. A 

reconstruction relative standard error 𝑅𝑆𝐸 =
‖𝓡≤𝑆−𝓑‖𝐹

‖𝓑‖𝐹
, where 𝓡≤𝑆 is the reconstructed TI 

and 𝓑 is the exhaustive benchmark TI is used to measure the quality of the TI 

reconstructions. Low 𝑅𝑆𝐸 results from the application of MSTC on the two benchmark 

models could be used to choose the most suitable MSTC method to apply on the 

reconstruction of a TI for a real mining dataset. A description of the benchmark models 

follows, before specifying the particulars of the MSTC implementation. 

5.1 Benchmark Model Testing 

5.1.1 Description of Continuous Benchmark Models 

The 3D benchmark data used are continuous porosity values arranged in sets of 

sinusoidal channels. The dataset has been separated into two main categories to reflect 

the complexity of the channels and to test the MSTC methodology against that 

complexity: one set for simple geometries and a second for complicated arrangements 

of sinusoidal channels. Each set has channels running mostly orthogonally to the other 

set. Figures 23 and 24 present these two porosity datasets. Both figures have been 

arranged into five panels (A, B, C, D, E) that contain the following information: 

1. Each of the insets A, B, and C contain eight X-Y slices of a 3D TI, with XYZ 

dimensions given by 56 x 112 x 8, constructed from the Stanford V model. The 

stacking order of the slices within a given inset should be read left-to-right first, 

then top-to-bottom. 
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i. A is a model in which each slice is identical – this is the simplest of all 

models. 

ii. B is a model in which every other slice is different, with the remaining in-

between slices simply a copy of the previous slice. 

iii. C is a model in which each slice is different. 

2. Inset D contains the de-clustered drill pattern (slice-by-slice pierce-points) 

pertaining to a real deposit; this pattern is used to sample each model (A, B, C). 

The drilling pattern consists of angled holes dipping approximately 50 degrees on 

a 270o azimuth. The entries shown represent approximately 2% of any 3D TI 

shown. 

3. Inset E contains the distribution of porosities from the data in insets A and D (i.e. 

where D represents entries from A). By visual inspection of both benchmark sets, 

the sample distribution curve is a close match to the TI distribution curve, despite 

the relatively low number of entries. Although not shown, a similar match was 

noticed for models B and C. 

A brief summary of the aforementioned description is listed in Table 4. 

Table 4. Description of benchmark 3D TIs in each of two sets. 

3D TI Benchmark Sets Model A Model B Model C 

Set 1: Simple geometries All layers in 

the model are 

the same. 

Intra-pair layers are 

the same; Inter-pair 

layers are different. 

All layers in the 

model are 

different. 
Set 2: Complex geometries 
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Figure 23. Benchmark 3D TIs in set 1: simple geometries. See Section 5.1.1 for 

figure description. 
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Figure 24. Benchmark 3D TIs in set 2: complex geometries. See Section 5.1.1 for 

figure description. 

5.1.2 Description of the Sampling Pattern Used 

From the insets D in Figures 23 and 24, it is clear that large data gaps exist and that 

sample points are not distributed uniformly throughout the slices; the density of entries 

is sparser along the bottom left of each slice. By comparison, recall that the MSMC 

(Yahya, 2011) method relies on a uniformly random pattern with constant empty 
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rows/columns between entries – see Figure 14. Furthermore, the samples are 

connected from slice to slice in a drilling pattern to form strings of points. 

5.1.3 Implementation of MSTC on Continuous Benchmark Models 

In Section 4.3, the basic steps for carrying out MSTC were presented. MSTC may be 

implemented along different sequences depending on the method used to increase the 

size of a reconstructed tensor (e.g. 𝑟𝑎𝑛𝑑𝑢𝑝) and the number of tensors 𝓖𝑙 to reference 

when sampling for additional information (i.e. 𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔). Five main variants of MSTC 

were implemented as per descriptions 1) to 5) below and the notation developed in 

Section 4.3 (a functional notation is summarized in Table 3 while detailed examples are 

included in the Appendix). Each variant was run using four stages, i.e. 𝑆 = 4. In each 

case, the LRTC algorithm parameters were set to 𝑘𝑚𝑎𝑥 = 5000  and τ = 0.1. These 

parameters were chosen based on a sensitivity analysis performed over several 

reconstructions of a sub-tensor of the Stanford V porosity dataset. Results from the 

sensitivity analysis are shown in Figure 25. The dimensions of the initial sparse tensor 𝓣 

and its final reconstruction 𝓡4 are the same, given by 56 x 112 x 8. 

 

Figure 25. Parameter sensitivity analysis used to choose an appropriate τ value. 
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The first variant tested, MSTC-1, simply reconstructs tensors which have been upsized. 

The entire MSTC sequence is captured by 5.1. The notation used is that which was 

described in Section 4.3 and through equations 4.12 to 4.19:  

𝓣 ∈ ℝ56 × 112× 8
DOWNGRID
→        𝓖𝑙=1 ∈ ℝ

7 × 14× 1
LRTC
→   𝓡1 ∈ ℝ

7 × 14× 1

UPSIZE
→     𝓡𝟐

𝑢𝑝 ∈ ℝ14 × 28× 2
LRTC
→   𝓡2 ∈ ℝ

14 × 28× 2

UPSIZE
→     𝓡𝟑

𝑢𝑝 ∈ ℝ28 × 56× 4
LRTC
→   𝓡3 ∈ ℝ

28 × 56× 4

UPSIZE
→     𝓡

𝟒
𝑢𝑝
∈ ℝ56 × 112× 8

LRTC
→   𝓡4 ∈ ℝ

56 × 112× 8

 ( 5 . 1 ) 

The second variant (MSTC-2) reconstructs tensors that have been upsized and had 

their values randomly shifted, towards an adjacent node. 5.2 summarizes the MSTC 

sequence: 

𝓣 ∈ ℝ56 × 112× 8
DOWNGRID
→        𝓖𝑙=0,1,2 ∈ ℝ

7 × 14× 1
LRTC
→   𝓡1 ∈ ℝ

7 × 14× 1

RANDUP
→      𝓡𝟐

𝑢𝑝 ∈ ℝ14 × 28× 2
LRTC
→   𝓡2 ∈ ℝ

14 × 28× 2

RANDUP
→      𝓡𝟑

𝑢𝑝
∈ ℝ28 × 56× 4

LRTC
→   𝓡3 ∈ ℝ

28 × 56× 4

RANDUP
→      𝓡𝟒

𝑢𝑝 ∈ ℝ56 × 112× 8
LRTC
→   𝓡4 ∈ ℝ

56 × 112× 8

 ( 5 . 2 ) 

MSTC-3 represents a combination, whereby tensors are first upsized, followed by a 

sampling of values from another tensor in the multi-stage sequence. These steps are 

summarized in 5.3: 

𝓣 ∈ ℝ56 × 112× 8
DOWNGRID
→        𝓖𝑙=0,1,2 ∈ ℝ

7 × 14× 1
LRTC
→   𝓡1 ∈ ℝ

7 × 14× 1

UPSIZE
→     𝓡𝟐

𝑢𝑝
∈ ℝ14 × 28× 2

UPSAMPLE 𝓖1
→          𝓡𝟐

𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒
∈ ℝ14 × 28× 2

LRTC
→   𝓡2 ∈ ℝ

14 × 28× 2

UPSIZE
→     𝓡𝟑

𝑢𝑝
∈ ℝ28 × 56× 4

UPSAMPLE 𝓖2
→          𝓡𝟑

𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒
∈ ℝ28 × 56× 4

LRTC
→   𝓡3 ∈ ℝ

28 × 56× 4

UPSIZE
→     𝓡𝟒

𝑢𝑝
∈ ℝ56 × 112× 8

UPSAMPLE 𝓖4=𝓣
→             𝓡𝟒

𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒
∈ ℝ56 × 112× 8

LRTC
→   𝓡4 ∈ ℝ

56 × 112× 8

 ( 5 . 3 ) 
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MSTC-4, summarized by 5.4, is based on MSTC-3 with the exception that an additional 

tensor is sampled in order to help reduce the number of missing entries prior to LRTC 

reconstruction. A hidden function 𝑟𝑒𝑔𝑟𝑖𝑑  (see Appendix) is used to upsize the second 

tensor to the correct resolution. 

𝓣 ∈ ℝ56 × 112× 8
DOWNGRID
→        𝓖𝑙=0,1,2 ∈ ℝ

7 × 14× 1
LRTC
→   𝓡1 ∈ ℝ

7 × 14× 1

UPSIZE
→     𝓡𝟐

𝑢𝑝
∈ ℝ14 × 28× 2

UPSAMPLE 𝓖1,𝓖0
→            𝓡𝟐

𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒
∈ ℝ14 × 28× 2

LRTC
→   𝓡2 ∈ ℝ

14 × 28× 2

UPSIZE
→     𝓡𝟑

𝑢𝑝 ∈ ℝ28 × 56× 4
UPSAMPLE 𝓖2,𝓖1
→            𝓡𝟑

𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒 ∈ ℝ28 × 56× 4
LRTC
→   𝓡3 ∈ ℝ

28 × 56× 4

UPSIZE
→     𝓡𝟒

𝑢𝑝 ∈ ℝ56 × 112× 8
UPSAMPLE 𝓖4=𝓣,𝓖3
→               𝓡𝟒

𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒 ∈ ℝ56 × 112× 8
LRTC
→   𝓡4 ∈ ℝ

56 × 112× 8

 ( 5 . 4 ) 

MSTC-5 represents the last variant tried, summarized in 5.5, which is based on shifting 

values, towards an adjacent node which is in a direction of maximum correlation with 

adjacent entries from a previous stage tensor. 

𝓣 ∈ ℝ56 × 112× 8
DOWNGRID
→        𝓖𝑙=0,1,2 ∈ ℝ

7 × 14× 1
LRTC
→   𝓡1 ∈ ℝ

7 × 14× 1

CORRUP
→     𝓡𝟐

𝑢𝑝
∈ ℝ14 × 28× 2

UPSAMPLE 𝓖1,
→          𝓡𝟐

𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒
∈ ℝ14 × 28× 2

LRTC
→   𝓡2 ∈ ℝ

14 × 28× 2

CORRUP
→     𝓡

𝟑
𝑢𝑝 ∈ ℝ28 × 56× 4

UPSAMPLE 𝓖2
→          𝓡

𝟑
𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒 ∈ ℝ28 × 56× 4

LRTC
→   𝓡3 ∈ ℝ

28 × 56× 4

CORRUP
→     𝓡𝟒

𝑢𝑝 ∈ ℝ56 × 112× 8
UPSAMPLE 𝓖4=𝓣
→             𝓡𝟒

𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒 ∈ ℝ56 × 112× 8
LRTC
→   𝓡4 ∈ ℝ

56 × 112× 8

 ( 5 . 5 ) 

5.1.4 MSTC Reconstruction Results 

Reconstruction error (RSE) results obtained for each MSTC variant applied over all 

models are summarized in Figure 26. The performance of the MSTC variants applied to 

the first benchmark set compare similarly to the results obtained in the second set. This 

is encouraging, as it may suggest that the better MSTC methods are so regardless of 

model complexity. For models in benchmark set 1 it is easy to see that the 

reconstruction error is lower for model A and highest for model C, which corresponds 

with the complexity of each model (Table 4). For the second benchmark set, it’s difficult 
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to see why the reconstruction of model B outperforms that of model A when using 

MSTC-1, MSTC-2, and MSTC-3; this is unexpected since model A is a simpler model.  

 

Figure 26. RSE results using benchmark datasets. 

The lowest error performance, as measured by RSE and visually, comes from MSTC-4. 

Step-by-step reconstruction results of model C and A in benchmark sets 1 and 2, using 

MSTC-4 are shown in Figures 27 and 28, respectively. In each of the two figures, row 1 

is the benchmark TI re-gridded to different stage resolutions, row 2 represents the same 

re-gridding but done on the sampled entries, and in row 3 are the reconstruction results 

for each stage in the multi-stage sequence. The histograms in row 4 compare the 

distributions of the data in each of the first three rows (i.e. benchmark model, entries, 

and reconstruction), while row 5 is a direct representation of the 𝑢𝑝𝑠𝑖𝑧𝑒 function, before 

any shifting (random or correlated) or sampling of values. The sampling of values along 

unobserved entries of images in row 5 is shown in row 6. The data in row 6 represent 

the input for an LRTC reconstruction, after which the process begins again at the next 

column to the right. The final reconstruction at the original scale resolution is located at 

the far right along the third row. Immediately above it are the original entries and the 

benchmark model.  
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Figures 29 and 30 present reconstructions for MSTC variants 1-5 (rows a-e) applied to 

each of the three models (A, B, C) for simple and complex cases, respectively. For 

simplification, the same slice using the same colour table is always shown in all models. 

It is interesting to see that the third best reconstruction occurs for MSTC-5, which is 

generated by shifting values in a direction of maximum correlation with a tensor from a 

previous stage. The worst reconstruction occurs when simply upsizing and attempting a 

reconstruction using LRTC. This occurs because the upsizing action introduces too 

many missing entries, some of which form entire empty slices; over a successive 

number of multi-stages the effect grows worse. Random shifting of values (MSTC-2) 

does not work very well in MSTC with a number of stages 𝑆 > 2. That is, the combined 

effect of upsizing and randomizing values effectively breaks down structural features 

when performed over several stages. 

The noticeable “blockiness” of the reconstruction when using MSTC-4 presents a 

negative side-effect of sampling a tensor that originates from a lower stage; this effect is 

not as present in the reconstructions from MSTC-3 and MSTC-5, but these in turn do 

not respect the data statistics as well as MSTC-4.  
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Figure 27. Step-by-step 4-stage MSTC of benchmark set 1, model C using MSTC-4 (only one slice shown). 
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Figure 28. Step-by-step 4-stage MSTC of benchmark set 2, model A, using MSTC-4 (only one slice shown). 
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Figure 29. Summary of reconstructions using benchmark set 1. 
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Figure 30. Summary of reconstructions using benchmark set 2. 
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5.1.5 Comparison of High-Order Statistics 

A statistical test for multiple-point connectivity is performed using HOS given by 4th 

order spatial cumulants (Dimitrakopoulos et al., 2010).  

Briefly stated, higher-order cumulants depend on combinations of lower-order moments, 

such that their reproduction implicitly contains the lower-order statistics. The 𝑘th order 

spatial cumulant of a random function 𝑍(𝒖) is stated as: 

𝑐𝑘
𝑍(𝐡1, 𝐡2, … , 𝐡k−1) = 𝐶𝑢𝑚{𝑍(𝒖),𝑍(𝒖 + 𝐡1),𝑍(𝒖 + 𝐡2), … ,𝑍(𝒖 +𝐡k−1)}, (5.1) 

where lag separations 𝐡α, α = 1,… , (k − 1) are used, as in Figure 31, to define a 

particular spatial architecture used to measure the cumulants statistics. The relationship 

between cumulants and moments is given by: 

𝑐𝑘
𝑍(𝐡1, 𝐡2, … ,𝐡k−1) =∑(−1)𝑝−1(𝑝− 1)! 𝐸 {∏𝐸(∏𝑍𝑖

𝑖∈𝑠

)

𝑠∈𝑝

} , (5.2) 

where 𝑝 runs through the list of all partitions of {1, … ,k − 1}, and 𝑠 runs through the list 

of all blocks of the partition 𝑝. A step-by-step example calculation is included in the 

Appendix. 

For the 4th order spatial cumulants, consider 5.3, which is the fourth order moment 

minus combinations of lower order cumulants: 
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𝑐4
𝑍(𝐡1, 𝐡2, 𝐡3) = 𝐸{𝑍(𝒖) ∙ 𝑍(𝒖 + 𝐡1) ∙ 𝑍(𝒖 + 𝐡2) ∙ 𝑍(𝒖 + 𝐡3)}                                  

− 𝐸{𝑍(𝒖) ∙ 𝑍(𝒖 + 𝐡1)} ∙ 𝐸{𝑍(𝒖 +𝐡2) ∙ 𝑍(𝒖 + 𝐡3)}

− 𝐸{𝑍(𝒖) ∙ 𝑍(𝒖 + 𝐡2)} ∙ 𝐸{𝑍(𝒖 +𝐡1) ∙ 𝑍(𝒖 + 𝐡3)}

− 𝐸{𝑍(𝒖) ∙ 𝑍(𝒖 + 𝐡3)} ∙ 𝐸{𝑍(𝒖 +𝐡1) ∙ 𝑍(𝒖 + 𝐡2)}

− 𝐸{𝑍(𝒖)} ∙ 𝐸{𝑍(𝒖 + 𝐡1) ∙ 𝑍(𝒖 + 𝐡2) ∙ 𝑍(𝒖 + 𝐡3)}

− 𝐸{𝑍(𝒖)} ∙ 𝐸{𝑍(𝒖) ∙ 𝑍(𝒖 + 𝐡2) ∙ 𝑍(𝒖 +𝐡3)}          

− 𝐸{𝑍(𝒖)} ∙ 𝐸{𝑍(𝒖) ∙ 𝑍(𝒖 +𝐡1) ∙ 𝑍(𝒖 +𝐡3)}          

− 𝐸{𝑍(𝒖)} ∙ 𝐸{𝑍(𝒖) ∙ 𝑍(𝒖 + 𝐡1) ∙ 𝑍(𝒖 + 𝐡2)}         

+ 2𝐸{𝑍(𝒖) ∙ 𝑍(𝒖 +𝐡1)} ∙ 𝐸{𝑍(𝒖)}
2                           

+ 2𝐸{𝑍(𝒖) ∙ 𝑍(𝒖 + 𝐡3)} ∙ 𝐸{𝑍(𝒖)}
2                           

+ 2𝐸{𝑍(𝒖 +𝐡1) ∙ 𝑍(𝒖 +𝐡3)} ∙ 𝐸{𝑍(𝒖)}
2                 

+ 2𝐸{𝑍(𝒖 + 𝐡2) ∙ 𝑍(𝒖 +𝐡3)} ∙ 𝐸{𝑍(𝒖)}
2                 

+ 2𝐸{𝑍(𝒖 +𝐡1) ∙ 𝑍(𝒖 +𝐡2)} ∙ 𝐸{𝑍(𝒖)}
2                 

−6𝐸{𝑍(𝑢)}4                                                                      

 (5.3) 

When 𝑍(𝒖) is a zero-mean random function, 5.3 reduces to:  

𝑐4
𝑍(𝐡1, 𝐡2, 𝐡3) = 𝐸{𝑍(𝒖) ∙ 𝑍(𝒖 + 𝐡1) ∙ 𝑍(𝒖 + 𝐡2) ∙ 𝑍(𝒖 + 𝐡3)}                                  

− 𝐸{𝑍(𝒖) ∙ 𝑍(𝒖 + 𝐡1)} ∙ 𝐸{𝑍(𝒖 +𝐡2) ∙ 𝑍(𝒖 + 𝐡3)}

− 𝐸{𝑍(𝒖) ∙ 𝑍(𝒖 + 𝐡2)} ∙ 𝐸{𝑍(𝒖 +𝐡1) ∙ 𝑍(𝒖 + 𝐡3)}

− 𝐸{𝑍(𝒖) ∙ 𝑍(𝒖 + 𝐡3)} ∙ 𝐸{𝑍(𝒖 +𝐡1) ∙ 𝑍(𝒖 + 𝐡2)}

 (5.4) 

From which it is possible to see the implicit two-point covariances 𝐸{𝑍(𝒖) ∙ 𝑍(𝒖 +𝐡𝑖)}, 

and 𝐸{𝑍(𝒖 + 𝐡𝑖) ∙ 𝑍 (𝒖 +𝐡𝑗≠𝑖
𝑗>𝑖

)} for 𝑖 = 1,2,3, 𝑗 = 1,2,3. 

A useful property of cumulants is that they are shift-invariant. That is, for orders 2 and 

greater, the cumulants of a non-centered random function are the same as for a zero-

mean random function. 

Experimental 4th order cumulants were calculated using 5.5 based on the orthogonal 

template 𝑇4
𝐡1,𝐡2,𝐡3  defined in Figure 31, where 𝑥, 𝑦, and 𝑧 are replaced by 1, 2, and 3, 

respectively. 
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𝑐𝑇4
𝐡1,𝐡2,𝐡3

=
1

𝑁𝐡1,𝐡2,𝐡3
∑ 𝑍(𝒖𝒊) ∙ 𝑍(𝒖𝒊 +𝐡1) ∙ 𝑍(𝒖𝒊 +𝐡2) ∙ 𝑍(𝒖𝒊 +𝐡3)

𝑁𝐡1,𝐡2,𝐡3

𝑖=1

                                  

− 
1

𝑁𝐡1 ,𝐡2,𝐡3
[ ∑ 𝑍(𝒖𝒊) ∙ 𝑍(𝒖𝒊 +𝐡1)

𝑁𝐡1,𝐡2,𝐡3

𝑖=1

][ ∑ 𝑍(𝒖𝒊 + 𝐡2) ∙ 𝑍(𝒖𝒊 +𝐡3)

𝑁𝐡1,𝐡2,𝐡3

𝑖=1

]

− 
1

𝑁𝐡1 ,𝐡2,𝐡3
[ ∑ 𝑍(𝒖𝒊) ∙ 𝑍(𝒖𝒊 +𝐡2)

𝑁𝐡1,𝐡2,𝐡3

𝑖=1

][ ∑ 𝑍(𝒖𝒊 +𝐡1) ∙ 𝑍(𝒖𝒊 +𝐡3)

𝑁𝐡1,𝐡2,𝐡3

𝑖=1

]

− 
1

𝑁𝐡1 ,𝐡2,𝐡3
[ ∑ 𝑍(𝒖𝒊) ∙ 𝑍(𝒖𝒊 +𝐡3)

𝑁𝐡1,𝐡2,𝐡3

𝑖=1

][ ∑ 𝑍(𝒖𝒊 +𝐡1) ∙ 𝑍(𝒖𝒊 +𝐡2)

𝑁𝐡1,𝐡2,𝐡3

𝑖=1

]

 (5.5) 

 

 

Figure 31. Fourth (left) and third order (right) orthogonal cumulant templates. 

Figures 32 and 33 show the 4th order spatial cumulant maps for the benchmark models 

(A, B, C) presented in section 5.1.1, sparse entries, and their respective MSTC-4 

reconstructions. The cumulants maps reflect the subtle differences in channels that 

exist between each benchmark model. It is expected that the cumulants map for a set of 

entries and that of its TI should be relatively close. This is confirmed by visual 

inspection. It is encouraging to see that the cumulants maps from the reconstructions 

are similar to their benchmark counterparts (i.e. the third row is similar to the first row). 

This reflects the reconstruction of the spatial architectures inherent to the original TIs, at 

least up to 4th order spatial statistics. Between reconstructions (i.e. along the third row), 

it is also possible to see the subtle differences that exist between models, more so than 

in the cumulants maps for sampled entries. This further suggests that the reconstruction 
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of entries occurs in agreement with the particular structure of each model, as defined by 

the original cumulants maps in row 1. 

 

Figure 32. Fourth order cumulant map reproductions for benchmark set 1 models. 

 

Figure 33. Fourth order cumulant map reproductions for benchmark set 2 models. 
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CHAPTER 6     CONCLUSIONS AND FUTURE RESEARCH 

 

This thesis presents a method called MSTC, which is used to construct continuous, 3D 

TIs that are conditioned to sparse entries (<2%) and obtained from a real drilling 

scheme. TIs are pattern databases used by MPS and HOS simulation algorithms to 

build a simulated value by drawing  a sample from a CCDF. A MPS or HOS algorithm 

that uses a TI built directly from data becomes a fully data-driven algorithm, with the 

ability to reproduce its own data statistics rather than those from an external TI. 

The MSTC methodology extends on the earlier 2D reconstruction method called MSMC 

(Yahya, 2011; Yahya et al., 2012). Unlike MSMC, the MSTC reconstruction method is 

not limited to uniform random sampling schemes and may be applied to real-world drill-

sampling schemes. MSTC uses the LRTC algorithm (Liu et al., 2009; Liu et al., 2013). 

Five different variants of the MSTC methodology were tested on various 3D benchmark 

porosity models. An error measure (RSE) was used to quantify the quality of the 

reconstructions. MSTC-4 provided the best reconstructions based on low RSE error 

measures, good visual representations - particularly for less complex datasets (e.g. 

benchmark set 1) and reasonable corroboration of spatial high-order statistics by 4th 

order spatial cumulants. MSTC-4 is based on rebuilding a downscaled tensor (i.e. a low 

resolution version of the original sparse tensor) up to the original tensor resolution by 

upsizing the downscaled tensor through successive stages of LRTC reconstructions. At 

each stage, missing entries of the tensor are in-filled with available values from other 

tensors prior to the reconstruction. If the problem to be solved involves a not-too-

complex reconstruction, MSTC may be a good TI generator to try. For more complex 

cases, it may be that increasing the number of multi-stages would help to capture higher 

resolution features (e.g. benchmark set 2). However, TIs with trends (e.g. Figure 7) may 

be too difficult to reconstruct given that they do not conform to repetitive, stationary 

models – this would need to be tested. 

Future work could test other tensor completion algorithms that may prove to be more 

accurate. In this regard, a recent algorithm (Romera-Paredes & Pontil, 2013) showed 

that the nuclear norm, which is the tightest convex relaxation of the matrix rank function, 

does not equate to the tightest convex relaxation of the tensor rank function. In other 
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words, the nuclear norm metric is suboptimal given that it is not invariant under different 

mode-𝑛 matricizations of a tensor. Romera-Paredes & Pontil (2013) developed an 

algorithm based on the Euclidean ball as a convex approximation to the tensor rank. 

The Euclidean ball metric is advantageous since it is invariant under mode-𝑛 

matricizations (the tensor nuclear norm is not) - thus avoiding the issue of trying to 

optimize multiple matrices simultaneously (refer to Section 4.2). They showed that this 

method improves on the reconstruction of tensors in terms of estimation error. The 

application of their algorithm, instead of LRTC, could further improve the quality of the 

reconstructions. 

Graph theory as it relates to matrix completion may present further solutions to solve 

sparse matrix/tensor reconstruction problems. Recent research (Bhojanapalli & Jain, 

2014) on this topic claims to provide recovery guarantees for matrix completion under 

adversarial sampling conditions.  

An important point to consider with respect to the “blockiness” of the reconstructions in 

Chapter 5 is that TIs used in orebody models need not necessarily exist at point-support 

scale, given that mining extraction schedules are developed at block-support scales. If 

these side effects of the reconstruction are kept below the threshold of the orebody 

block dimensions, and are accurate enough to aid the simulation, such TIs may be 

useful for orebody modeling. Lastly, more testing on additional deposits, together with 

the application of different cumulants templates, would be useful to help refine the 

methodology. In this regard, the methodology from MSTC-4 was applied to a 

confidential mining dataset with generally positive results. While an exhaustive version 

of the mining dataset was not available to confirm the reproduction of HOS using 4th 

order spatial cumulants, visual inspection of the reconstructed TI indicated a 

geologically reasonable reconstruction of continuity along high and low grade values of 

the mineral deposit. In cases having very few samples within a specified range of the 

distribution, it is not possible to reconstruct a sufficient number of entries in the TI in 

order to satisfy the original data distribution. This point is important when trying to model 

orebodies with limited but very high grade values. 
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APPENDIX 

 

A.1  MSTC Functions 

The MSTC method runs on six functions not including the LRTC algorithm. Each of 

these is described next using brief examples.  

The 𝒅𝒐𝒘𝒏𝒈𝒓𝒊𝒅 function: The 𝑑𝑜𝑤𝑛𝑔𝑟𝑖𝑑 function 𝓖𝑙 = 𝑑𝑜𝑤𝑛𝑔𝑟𝑖𝑑(𝓣) is used to map the 

original sample data from tensor 𝓣 ∈ ℝ𝐼 × 𝐽 × 𝐾 to lower resolution tensors 𝓖𝑙 ,… , 𝓖𝑆 ∈

ℝ𝐼
′  × 𝐽′  × 𝐾′. Consider the simple arbitrary example in Figure 34 where 𝓣 ∈ ℝ4 × 4 × 4, 

𝑆 = 1, and 𝑙 = 0,1 results in 𝓖0 ∈ ℝ
2 × 2 × 2. A simplified methodology is achieved when 

the dimensions of the lower resolution tensors are chosen as a multiple of the original 

tensor dimensions. The mapping of values to 𝓖0 is achieved by drawing uniformly at 

random from those elements that are represented in each sub-tensor of 𝓣 (outlined in 

red in Figure 34). For example 

𝓖1(1,1,1) =  {
2  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

1

2

3  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
1

2

. 𝓖0(1,1,1)=  

{
 
 
 
 
 
 

 
 
 
 
 
 1  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

4

14

2  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
3

14

3  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
2

14

5  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
1

14

6  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
1

14

8  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
1

14

 (A2.1) 
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Figure 34. Example showing the usage of the 𝑑𝑜𝑤𝑛𝑔𝑟𝑖𝑑()function. 

The 𝒓𝒆𝒈𝒓𝒊𝒅 function: This function 𝑟𝑒𝑔𝑟𝑖𝑑𝑠 the tensor 𝓖𝑙 to the resolution scale of a 

given stage level,  𝓖𝑙
𝑟𝑒𝑔𝑟𝑖𝑑

= 𝑟𝑒𝑔𝑟𝑖𝑑(𝓖𝑙 , 𝑢𝑠𝑐𝑎𝑙𝑒𝑉𝑒𝑐). Refer to Figures 35 and 36 for 

illustrative examples. Mode-by-mode expansion is achieved by copying mode slices and 

inserting them next to the original slice. The parameter vector 𝑢𝑠𝑐𝑎𝑙𝑒𝑉𝑒𝑐 is used to 

define how often this occurs along each mode. For example, tensor 𝓖0 ∈ ℝ
𝑋 × 𝑌 × 𝑍 

𝑟𝑒𝑔𝑟𝑖𝑑𝑠 to 𝓖𝑙 ∈ ℝ
2𝑙𝑋 × 2𝑙𝑌 × 2𝑙𝑍 where 𝑢𝑠𝑐𝑎𝑙𝑒𝑉𝑒𝑐 = [2𝑙 , 2𝑙 , 2𝑙]. This function allows later 

multi-stages to access values from 𝑑𝑜𝑤𝑛𝑔𝑟𝑖𝑑𝑑𝑒𝑑 tensors. For example, in order for 

 𝓡1
𝑢𝑝

 to access values from 𝓖0, 𝓖0 must first be 𝑟𝑒𝑔𝑟𝑖𝑑𝑑𝑒𝑑  to the same resolution as 

 𝓡1
𝑢𝑝

. The simplest case implies a doubling of each mode-size as the multi-stage 

number increases – see Step 3a in Section 3.3. 
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Figure 35. Example 1 showing the usage of the 𝑟𝑒𝑔𝑟𝑖𝑑()function. 

The 𝒖𝒑𝒔𝒊𝒛𝒆 function: The 𝑢𝑝𝑠𝑖𝑧𝑒 function 𝓡𝑙+1
𝑢𝑝
= 𝑢𝑝𝑠𝑖𝑧𝑒(𝓡𝑙 , 𝑢𝑠𝑐𝑎𝑙𝑒𝑉𝑒𝑐), where 𝓡𝑙 is the 

outcome of an LRTC reconstruction, increases the dimension of each mode of the 

tensor by inserting empty slices between each reconstructed slice. An example is 

shown in Figure 36 (see Step 2 in Section 4.3.2 and refer to Figure 22).  

 

Figure 36. Example showing the usage of the 𝑢𝑝𝑠𝑖𝑧𝑒() function. 

The 𝒓𝒂𝒏𝒅𝒖𝒑 function: As per the method used in MSMC (Yahya, 2011) - see Step 4 in 

Figure 12, the 𝑟𝑎𝑛𝑑𝑢𝑝  function 𝑢𝑝𝑠𝑖𝑧𝑒𝑠 a tensor and then randomly interchanges 

entries that are adjacent to unrepresented slices – see Figure 37. This is done to avoid 
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having un-sampled slices prior to the reconstruction step (LRTC). Let 𝑏𝑥 ,𝑏𝑦 , and 𝑏𝑧 

represent three independent realizations of a Bernoulli random variable R with a 

probability mass function defined by  

𝑓(R,𝑝) = {

𝑝,                𝑖𝑓 R = 1,

1 − 𝑝, 𝑖𝑓 R = 0,

     0,                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .

 (A2.2) 

The following randomization step enacts three random draws with probability 𝑝 = 0.5 at 

each location within the tensor: 

𝓡1
𝑟𝑎𝑛𝑑𝑢𝑝

(𝑥 + 𝑟𝑥, 𝑦 + 𝑟𝑦 ,𝑧 + 𝑟𝑧) = 𝓡1(𝑥, 𝑦, 𝑧) (A2.3) 

If 𝑟𝑥 = 𝑟𝑦 = 𝑟𝑧 = 0 the value at (𝑥, 𝑦, 𝑧) does not shift its position. There is no need to call 

the 𝑢𝑝𝑠𝑖𝑧𝑒 function first as it is incorporated into 𝑟𝑎𝑛𝑑𝑢𝑝𝑠𝑖𝑧𝑒. The structure of the 

function call is 𝓡1
𝑟𝑎𝑛𝑑𝑢𝑝𝑠𝑖𝑧𝑒

= 𝑟𝑎𝑛𝑑𝑢𝑝𝑠𝑖𝑧𝑒(𝓡1 , 𝑠𝑐𝑎𝑙𝑒𝑉𝑒𝑐 ). 

 

Figure 37. Example showing the usage of the 𝑟𝑎𝑛𝑑𝑢𝑝() function. 

The 𝒄𝒐𝒓𝒓𝒆𝒍𝒖𝒑 function: The 𝑐𝑜𝑟𝑟𝑒𝑙𝑢𝑝 function behaves similarly to the 𝑟𝑎𝑛𝑑𝑢𝑝𝑠𝑖𝑧𝑒 

function except that entries are shifted towards other similar entries (with reference to a 

different grid), rather than randomly. The intended action for this function is to preserve 

the continuity of structures rather than to break spatial continuity through a randomized 

process. 𝐶𝑜𝑟𝑟𝑒𝑙𝑢𝑝 refers to a lower resolution (i.e. lower stage-level) tensor that has 

been 𝑟𝑒𝑔𝑟𝑖𝑑𝑑𝑒𝑑  to the current resolution. For each location of an 𝑢𝑝𝑠𝑖𝑧𝑒𝑑  tensor 
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(e.g. 𝓡1
𝑢𝑝𝑠𝑖𝑧𝑒

) the function scans the surrounding entries within the corresponding image 

(i.e. blue cube of 𝓖2
𝑟𝑒𝑔𝑟𝑖𝑑

 in Figure 38) and calculates an error difference given by  

𝑑 =
|𝓡1
𝑢𝑝
(𝒖) −𝓖2(𝒖 + 𝒉)|

𝓡1
𝑢𝑝
(𝒖)

⁄ , (A2.4) 

where 𝒖 = [𝑥, 𝑦, 𝑧] and 𝒉 = [ℎ𝑥 ,ℎ𝑦 , ℎ𝑧] for ℎ𝑥 = ℎ𝑦 = ℎ𝑧 = 0,1. A value at 𝓡1
𝑢𝑝𝑠𝑖𝑧𝑒

(𝒖) is 

shifted in the direction of minimum difference. A random shift only occurs if no values 

from 𝓖2 are available for comparison with a given 𝓡1
𝑢𝑝𝑠𝑖𝑧𝑒

(𝒖) a random shift.  

 

Figure 38. Example of the usage of the 𝑐𝑜𝑟𝑟𝑒𝑙𝑢𝑝() function. 

The 𝒖𝒑𝒔𝒂𝒎𝒑𝒍𝒆 function: The 𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒 function, illustrated in Figure 39, 𝓡𝑖
𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒

=

𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝓡𝑖
𝑢𝑝
,  𝓖𝑖+1, 𝓖𝑖−1,… ) samples entries from a 𝑑𝑜𝑤𝑛𝑔𝑟𝑖𝑑𝑑𝑒𝑑 tensor to infill 

missing values in the 𝑢𝑝𝑠𝑖𝑧𝑒𝑑  tensor. Only the first two function parameters are required 

and any number of lookup tensors 𝓖 may be used. Sampling only occurs for empty 

values of  𝓡𝑖
𝑢𝑝

 (i.e. values are never replaced). 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 can be extended to include 
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𝑢𝑝𝑠𝑖𝑧𝑒𝑑  lower level grids if more entries are required however this has a tendency to 

make the final output tensor more “blocky.” Consider the function call 

𝓡1
𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒

= 𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝓡1
𝑢𝑝
,  𝓖2,  𝓖0), 

(A2.5) 

where  

𝓡1
𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝒖) =

{
 
 

 
                  𝓖0

𝑟𝑒𝑔𝑟𝑖𝑑(𝒖),             𝑖𝑓  𝓖0
𝑟𝑒𝑔𝑟𝑖𝑑(𝒖) 𝑒𝑥𝑖𝑠𝑡𝑠

       𝓖2(𝒖), 𝑖𝑓 𝓖2(𝒖) 𝑒𝑥𝑖𝑠𝑡𝑠

                𝓡1
𝑢𝑝(𝒖),

∅,

          𝑖𝑓  𝓡1
𝑢𝑝(𝒖) 𝑒𝑥𝑖𝑠𝑡𝑠

    𝑖𝑓 𝓡1
𝑢𝑝(𝒖) = ∅

. (A2.6) 

 

Figure 39. Example of the usage of the 𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒() function. 
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A.2  Example calculation of a 3rd order cumulant 

The step-by-step calculation of the third order cumulant using the expression in (A3.1) 

and the third order template in Figure 40 is explicitly presented next. 

𝑐𝑘
𝑍(𝐡1, 𝐡2,… , 𝐡k−1) =∑(−1)𝑝−1(𝑝 − 1)!𝐸{∏𝐸(∏𝑍𝑖

𝑖∈𝑠

)

𝑠∈𝑝

} (A3.1) 

Let 𝑐3
𝑍(𝐡x , 𝐡y) represent the third order cumulant with random variables 𝑍(𝒖),𝑍(𝒖 +𝐡x), 

and 𝑍(𝒖 + 𝐡y) with lag separations 𝐡x and 𝐡y. For simplicity, restate the RVs as  

𝑋 =  𝑍(𝒖),     𝑌 = 𝑍(𝒖 + 𝐡x),     𝑍 = 𝑍(𝒖+ 𝐡y). (A3.2) 

Table 5 lists the RV partitions 𝑝 and blocks 𝑠 corresponding to lags 𝐡x , and 𝐡y:  

Table 5. Partitions of 3rd order spatial cumulant. 

Partitions of the RVs defined by the 

template in Figure 40 Number of blocks per partition 

{{𝑋}, {𝑌}, {𝑍}}, 3 

{{𝑋𝑌}, {𝑍}}, 2 

{{𝑋𝑍}, {𝑌}}, 2 

{{𝑋}, {𝑌𝑍}}, 2 

{{𝑋, 𝑌, 𝑍}} 1 

 

Figure 35. Example of a third order spatial cumulant template. 
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The third order cumulant, using (A3.1), is given by 

𝑐3
𝑍(𝐡x ,𝐡y) = (3 − 1)!(−1)

3−1𝐸{𝑋}𝐸{𝑌}𝐸{𝑍} + (2 − 1)! (−1)2−1𝐸{𝑋𝑌}𝐸{𝑍} 

                                  + (2 − 1)! (−1)2−1𝐸{𝑋𝑍}𝐸{𝑌} + (2 − 1)! (−1)2−1𝐸{𝑌𝑍}𝐸{𝑋} 

                                        +(1 − 1)! (−1)1−1𝐸{𝑋𝑌𝑍}

= 2𝐸{𝑋}{𝑌}{𝑍} − 𝐸{𝑋𝑌}𝐸{𝑍} − 𝐸{𝑋𝑍}𝐸{𝑌} − 𝐸{𝑌𝑍}𝐸{𝑋} + 𝐸{𝑋𝑌𝑍}. 

Substituting back into (A3.2) gives 

𝑐3
𝑍(𝐡x,𝐡y) = 2𝐸{𝑍(𝒖)}{𝑍(𝒖 +𝒉𝒙)}{𝑍(𝒖+ 𝒉𝒚)}                        

−𝐸{𝑍(𝒖)𝑍(𝒖 + 𝒉𝒙)}𝐸{𝑍(𝒖 +𝒉𝒚)} 

− 𝐸{𝑍(𝒖)𝑍(𝒖 +𝒉𝒚)}𝐸{𝑍(𝒖 + 𝒉𝒙)} 

−𝐸{𝑍(𝒖 + 𝒉𝒙)𝑍(𝒖 + 𝒉𝒚)}𝐸{𝑍(𝒖)} 

+𝐸{𝑍(𝒖)𝑍(𝒖 + 𝒉𝒙)𝑍(𝒖 +𝒉𝒚)}.       

For zero-mean RF 𝑍(𝒖) the above expression simplifies to a third order moment. That 

is, 

𝑐3
𝑍(𝐡x ,𝐡y)= 𝐸{𝑍(𝒖)𝑍(𝒖 + 𝒉𝒙)𝑍(𝒖 + 𝒉𝒚)}. 
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