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ABSTRACT

Human immunodeficiency virus (HIV) is an infectious disease that has led to terrible

losses since it was first identified over three decades ago. Although current therapies for HIV

are highly effective and have dramatically reduced mortality, HIV places an immense burden

on individuals as well as on society: annual costs of new HIV infections in the United States

were estimated at 36.4 billion (in 2002). First identified in men who have sex with men

(MSM), this population continues to be disproportionately affected by the disease.

Montreal is one of the main centres for HIV research activity in Canada. In particular, SPOT

is a key study, focusing on MSM. SPOT offers rapid, free and anonymous testing to the MSM

community. SPOT also collects data on socio-demographic and behavioural characteristics.

This thesis is based on analysis of the SPOT data supplemented with HIV RNA sequencing

information from the Quebec Genotyping Program Cohort and the Primary Infection Co-

hort, which provide information that informs the size of the phylogenetic cluster to which

HIV-positive individuals belong. Large clusters are indicative of rapid HIV transmission.

HIV researchers wish to determine the behavioural correlates of phylogenetic cluster size, as

understanding the determinants of larger clusters may suggest ways to target interventions to

break transmission chains. However, there is a significant number of people living with HIV

in Quebec whose HIV RNA has not been sequenced. As a result, measurement error occurs in

defining the cluster size in SPOT. Moreover, the measurement error in the cluster size is not

mean zero, but rather exhibits systematic under-counting of the true cluster size and it is not

possible to obtain a validation sample that would reveal the true cluster size for some SPOT

participants. An additional challenge faced in SPOT is that the recruitment method is not

based on a probability sampling technique, and as such, findings from the SPOT study may

suffer from lack of generalizability. Thus, to make valid statistical inference about correlates

of phylogenetic cluster size using the SPOT data, both measurement error and the sampling

scheme must be taken into consideration. In this thesis, I propose and validate statistical
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methods to address both of these issues.

There are several approaches to deal with measurement error, however most require valida-

tion or repeated sampling data. The SPOT study does not have a validation sample and

indeed such a validation study would not be feasible in the context of phylogenetic cluster

size. One measurement error approach, the simulation-extrapolation (SIMEX) method does

not require such validation data, and thus represents a promising avenue for correction of

the type of measurement error exhibited in the SPOT cluster size data. However, its devel-

opment to date has been limited to mean zero random errors.

In the first manuscript, I extend the SIMEX method to non-zero mean (NZM) measurement

error which better mimics the SPOT data for the HIV-infected participants. I provide a

theoretical justification for the extension of the SIMEX by modifying the measurement error

model in such a way that the observed cluster size will always be less than or equal to the true

cluster size. The simulation step of the SIMEX approach is also modified. Simulation studies

show that NZM-SIMEX considerably reduces the bias as compared to a näıve analysis that

ignores measurement error. I then apply the NZM-SIMEX to the HIV-positive participants

in SPOT to examine correlates of phylogenetic cluster size.

The proposed NZM-SIMEX is applicable only to the data from HIV-positive MSM whose

cluster size is undercounted. However, SPOT study collects data not only from HIV-positive

MSM but also from a large number of HIV-negative MSM. For HIV-negative MSM, the clus-

ter size is zero and is not subject to any measurement error. So, the measurement error in

phylogenetic cluster size depends on the HIV status. To include the data from both HIV-

positive and HIV-negative MSM in an analysis, in the second manuscript, I further extend the

NZM-SIMEX to the settings where the measurement error in a covariate of interest depends

on the value of another correctly specified covariate. This SIMEX conditional on covariates

(SIMEX-CC) performs well in simulation, typically exhibiting less biased and variability than

other measurement error approaches.
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Finally, in the third manuscript, I simultaneously adjust for both the non-probabilistic sam-

pling scheme in SPOT as well as the measurement error in cluster size. Using another sample

of MSM from Montreal that employed a probabilistic sampling scheme, a survey weighting

approach is employed in the SPOT analysis. This analysis suggests that accounting for the

recruitment (or sampling) scheme in SPOT has notable impact on the results.

Thus, in my thesis, I have developed a measurement error correction approach that can

accommodate systematic under-counting without validation data, where the measurement

error distribution may depend on another covariate measured in the sample. Further, I have

demonstrated how external data may be leveraged to improve generalizability in a study

whose sampling mechanism was not probabilistic.
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ABRÉGÉ

L’infection par le virus d’immunodéficience humaine (VIH) est une maladie infectieuse

qui a induit des pertes terribles depuis sa découverte, il y a un peu plus de trois décennies.

Bien que les traitements actuels sont très efficaces et ont drastiquement réduit la mortalité,

le VIH constitue un fardeau considérable pour les patients comme pour la société : la facture

annuelle liée aux nouvelles infections par le VIH aux États-Unis est estimée à 36.4 milliards

de dollars en 2002. Le virus a d’abord été identifié chez des hommes ayant des relations

sexuelles avec d’autres hommes (HSH), et cette population continue d’être affectée par la

maladie de manière disproportionnée.

Montréal est l’un des principaux centres pour la recherche portant sur le VIH au Canada.

En particulier, SPOT est une étude clef, qui se focalise sur les HSH. SPOT offre un dépistage

rapide, gratuit et anonyme à la communauté HSH. SPOT recueille également données so-

ciodémographiques et caractéristiques comportementales. Cette thèse est basée sur l’analyse

des données de SPOT, agrémentées de données de séquençge ARN du VIH provenant de

la cohorte du programme de génotypage du Québec et de la cohorte de primo-infection,

qui renseignent sur les tailles des groupes phylogénétiques auxquels appartiennent les sujets

séropositifs: large groupe signifie transmission rapide du VIH. Les chercheurs dans le do-

maine du VIH souhaitent déterminer les corrélats comportementaux de la taille du groupe

phylogénétique, puisque la compréhension des déterminants de certains groupes plus grands

pourrait suggérer des manières de cibler des interventions permettant de briser les châınes de

transmission. Cependant, il existe au Québec un nombre significatif de personnes qui vivent

avec un VIH dont l’ARN n’a pas été séquencé: par conséquent, des erreurs de mesures se

produisent lors de la définition de la taille du groupe dans SPOT. De plus, l’erreur de mesure

dans la taille du groupe n’est pas de moyenne zéro, mais démontre plutôt une sous-évaluation

de la taille réelle du groupe, et il n’est pas possible d’obtenir un échantillon de validation

permettant de révéler la taille réelle du groupe pour certains participants de SPOT. Un

vii



défi supplémentaire rencontré avec SPOT réside dans le fait que la méthode de recrutement

ne se base pas sur une technique d’échantillonnage probabiliste, et de ce fait, les résultats

provenant de l’étude SPOT pourraient pâtir d’un manque de généralisabilité. Par conséquent,

pour émettre une inférence statistique valide à propos des corrélats de la taille du groupe

phylogénétique en se basant sur les données de SPOT, aussi bien les erreurs de mesure que

la stratégie d’échantillonnage doivent être pris en considération. Dans cette thèse, je propose

et valide des méthodes statistiques pour gérer ces deux problématiques.

Il existe plusieurs approches pour traiter les erreurs de mesure, mais la plupart nécessitent

une validation des données ou l’échantillonnage répété. L’étude SPOT ne dispose pas d’un

échantillon de validation, et ce type de validation ne pourrait en effet pas être faisable dans

un contexte de taille de groupe phylogénétique. La méthode de simulation-extrapolation

(SIMEX), une autre approche pour la correction des erreurs de mesure, ne nécessite pas

de données de validation, et représente donc une voie prometteuse pour la correction du

type d’erreurs de mesure retrouvé dans les données de taille de SPOT. À ce jour, son

développement a cependant été restreint aux erreurs aléatoires de moyenne zéro.

Dans mon premier manuscrit, j’étends la méthode SIMEX à la mesure d’erreurs de moyenne

non-zéro (MNZ), qui reproduit mieux les données de SPOT pour les sujets séropositifs. Je

justifie cette extension de SIMEX par la modification du modèle de mesure d’erreurs de façon

à ce que la taille du groupe observé soit toujours inférieure ou égale à la taille réelle de ce

groupe. L’étape de simulation de l’approche SIMEX est également modifiée. Les études de

simulation démontrent que MZN-SIMEX réduit considérablement le biais, en comparaison

avec une analyse näıve ne tenant pas compte des erreurs de mesure. J’applique par la suite

MZN-SIMEX aux participants séropositifs de SPOT pour examiner les corrélats de la taille

de groupe phylogénétique.

La méthode MZN-SIMEX proposée n’est applicable qu’aux données provenant de séropositifs

HSH dont la taille de groupe est sous-évaluée. Cependant, les études SPOT répertorient des

données provenant non-seulement d’HSH séropositifs, mais aussi d’un grand nombre d’HSH
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séronégatifs. Pour ces derniers, la taille de groupe est zéro, et n’est sujette à aucune er-

reur de mesure : l’erreur de mesure dans la taille de groupe phylogénétique dépend donc

de la sérologie VIH. Dans le second manuscrit, et pour inclure dans l’analyse les données

provenant des HSH séropositifs et séronégatifs, j’étends l’approche MZN-SIMEX aux situ-

ations où l’erreur de mesure dans une covariable d’intérêt dépend de la valeur d’une autre

covariable correctement spécifiée. Cette approche SIMEX conditionnelle aux covariables

(SIMEX-CC) donne de bons résultats en simulation, montrant habituellement moins de biais

et de variabilité comparativement à d’autres approches de mesure d’erreurs.

Finalement, dans le troisième manuscrit, j’ajuste simultanément pour la stratégie d’échantillonnage

non-probabiliste dans SPOT, et pour la mesure d’erreurs dans la taille de groupe. En util-

isant un autre échantillon d’HSH (de Montréal) qui a utilisé une approche d’échantillonnage

probabiliste, une approche de pondération est employée dans l’analyse de SPOT. Cette anal-

yse suggère que la stratégie de comptabilisation pour le recrutement (ou échantillonnage)

dans SPOT a un impact notable sur les résultats.

En résumé, j’ai donc développé dans ma thèseune approche de correction des erreurs de

mesure qui peut s’adapter aux sous-évaluations systématiques sans validation de données,

quand la distribution des erreurs de mesure peut dépendre d’autres covariables mesurées

dans l’échantillon. Par ailleurs, j’ai aussi démontré comment les données externes peu-

vent être mises à profit pour améliorer la généralisabilité dans une étude où la stratégie

d’échantillonnage n’est pas probabiliste.
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PREFACE

Format of the thesis

This is a manuscript-based thesis that is formatted following the McGill University

Guidelines for the Thesis Preparation. It consists of a series of three research manuscripts

each of which corresponds to a chapter.

There are a total of seven chapters. The first chapter includes the introduction that

explains the rationale of the study. A comprehensive literature review has been carried out

in Chapter 2. All objectives are stated in Chapter 3. Chapters 4-6 contain three research

manuscripts that are linked, each building on the developments of the previous chapter with

the aim of addressing a specific gap in the literature motivated by a particular question and

applied to a single dataset. Combined these chapters form a consistent unit that addresses

the main objectives of this dissertation research. A preamble to each manuscript elucidates

its rationale and its connection to the other manuscripts as well as to the overall objectives

of the thesis. A summary of the contributions of this thesis and point to future directions

for research are presented in Chapter 7. Finally, all references included in different chapters

are combined into an overall ‘Bibliography’, at the end of the thesis.

Contribution of authors

This thesis is based on innovative ideas that were selected, developed and finalized in a

series of discussion with my supervisor Dr. Erica Moodie. Fully guided by Dr. Moodie, I

determined the overall scope of my thesis and selected the specific objectives and methods.

I conducted the literature review, developed analytical strategies in collaboration with

my supervisor, designed and carried out simulation studies. I also performed data analyses

and wrote all three manuscripts along with the other chapters of the thesis. Dr. Moodie

provided guidance and feedback on the methods, simulation studies, data analyses, interpre-

tation of results, and consecutive drafts of the manuscripts and other chapters. Dr. Bluma

Brenner provided the access to the SPOT data that are analyzed in all three manuscripts.

She also offered informative feedback on all three manuscripts. Dr. Joseph Cox provided
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access to the ARGUS data that are used in the third manuscript. Moreover, he provided

feedback on the third manuscript.

As a PhD candidate, I am fully responsible for the scientific quality of the research,

originality of the ideas and truthfulness of the results contained in this thesis.

Statement of originality

The research in this thesis constitutes original scholarship and advances knowledge in

the domain of statistical methodology for correcting measurement error in covariates and

adjusting for a non-probabilistic sampling scheme.

The simulation-extrapolation (SIMEX) method for measurement error correction is well

developed, but not for settings where measurement error occurs due to systematic under-

counting. In such cases measurement error distribution does not have mean zero. Moreover,

error distribution may depend on other correctly measured covariates. Further, improving

the generalizability of results from a study which has non-probabilistic sampling mechanism

is challenging, especially when no internal information is available.

This thesis addresses all of the issues outlined above. The main new contributions in

this thesis are contained in three manuscripts presented in Chapters 4, 5 and 6. In the first

manuscript (Chapter 4), I extended and validated the SIMEX to the non-zero mean measure-

ment errors and called this non-zero mean SIMEX (NZM-SIMEX). In the second manuscript

(Chapter 5), I further extended the NZM-SIMEX to the settings where measurement error

in a covariate of interest depends on the value of another correctly specified covariate, and

called this SIMEX conditional on covariates (SIMEX-CC).

In the third manuscript (Chapter 6), I proposed a novel approach that uses an external

source of information to predict sampling weights that can be used to improve the gener-

alizability of a study whose recruitment mechanism was non-probabilistic. The estimated

sampling weights were then used to fit weight adjustment model to improve the generaliz-

ability of the results.
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All the proposed methods were applied to the data from SPOT study (in each manuscript

separately) to reveal the (lack of) association of HIV phylogenetic cluster size with demo-

graphic and sexual behavioural characteristics of men who have sex with men in Montreal.

The developed methods provide new insight into correcting measurement error in covari-

ates, especially in HIV studies, where interest lies in correlating HIV phylogenetic clustering

data with epidemiological data. To the best of my knowledge, the ideas, methods, simulation

plans and data analysis strategies considered in this research were not adopted or published

in any previous publication.
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Chapter 1
Introduction

Human immunodeficiency virus (HIV) is an incurable infection which, if left untreated,

can lead to acquired immune immunodeficiency syndrome (AIDS), and a destruction of the

body’s immune defense system against all invading pathogens [1]. HIV is transmitted primar-

ily through unprotected sexual intercourse, contaminated blood transfusions and hypodermic

needles, as well as from mother to child during pregnancy, delivery, or breastfeeding [2]. HIV/

AIDS was first documented in 1981 among a cluster of injection drug users and homosex-

ual men [3–5]. While the illness is now observed in both homosexual and heterosexual men

and women, men who have sex with men (MSM) continue to be the most affected group in

Canada [6]. Of all new HIV infections in Canada, 57% are MSM and they are 131 times

more likely to get HIV than men who do not have sex with men [7]. While there is no

cure or vaccine for HIV, current therapies are highly effective and have dramatically reduced

mortality due to HIV. Nevertheless, HIV places an immense burden on individuals and on

society; annual costs of new HIV infections in the United States were estimated at 36.4 billion

(2002) [8].

Early in the HIV epidemic, research focused on identifying the cause of AIDS and devel-

oping treatments as well as strategies to prevent new infections. Treatments have improved

now to such a degree that HIV in the Western world is often viewed as a chronic condi-

tion requiring long-term management, similar to diabetes or hypertension. Nevertheless, the

infectious nature of the illness makes it unique from other chronic illnesses, and potentially

more easily preventable. In the last decade, with the advance of Ribonucleic Acid (RNA) and

Deoxyribonucleic Acid (DNA) sequencing technology, there is considerable research activity

centred on using molecular phylogenetics to understand the social and behavioural drivers

of HIV transmission. By comparing viral genomic sequences, relatedness of viruses can be
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determined, and from that, clusters of individuals with similar viruses may be inferred [9–17].

While transmission between specific individuals in these clusters cannot be determined, the

clustering provides evidence of common contacts among the members of the cluster (primar-

ily through sexual contact or shared needles). This has become the focus of much of the HIV

research activity in Montreal.

SPOT is a study of MSM which offers rapid, free, and anonymous HIV testing and

administers an anonymous questionnaire that elicits information on socio-demographic char-

acteristics, HIV testing behaviour, sex life, attitude towards HIV, and socio-sexual profile.

In addition to providing questionnaire data, all HIV-positive participants’ blood undergoes

HIV RNA sequencing so that phylogenetic clustering could be used to determine the size

of the cluster to which the HIV RNA sequence belongs [13, 18, 19]. This thesis is based on

the SPOT data supplemented with RNA and DNA sequencing information from the Quebec

Genotyping Program Cohort and the Primary Infection Cohort to determine the size of the

phylogenetic cluster to which HIV-positive individuals belong. Phylogenetic cluster size is

defined as the number of individuals falling into the same HIV phylogenetic grouping. For

example, if the HIV sequence of seven individuals fall into the same cluster, each will be be-

long to a cluster size seven. On the other hand, if there is an individual whose HIV genome

sequence does not cluster with the HIV genome of anyone else in the Quebec Genotyping

Program registry of sequences, this individual is said to belong to a cluster of size one.

The SPOT study does not include individuals who are HIV-positive but are unaware of

their status (i.e. have never been tested) or those who have not had their HIV genotyped

within the province of Quebec (e.g. those who are aware of their HIV status but may be

have recently moved from another province or country). Consequently, measurement error

occurs in defining the phylogenetic cluster size. This measurement error is characterized by

a systematic undercounting of the true cluster size due to the absence of the individuals who

have not been tested. Thus, to make valid statistical inference about correlates of sexual

network size, this measurement error must be taken into consideration.
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There are several methods, such as regression calibration, multiple imputation and

simulation-extrapolation (SIMEX) that have been proposed to deal with measurement er-

ror. Regression calibration is the most popular approach in practice because it is simple to

apply and generally performs well [20]. Multiple imputation is also an interesting approach

to adjustment for measurement errors, where measurement errors are treated as a missing

data problem (see, for example, Rubin [21], Cole et al. [22]; Padilla et al. [23]; Messer and

Natarajan [20]). Most of the methods, including regression calibration and multiple imputa-

tion, however, require validation or replicate data for some fraction of the observed sample.

In the context of undercounting of phylogenetic cluster size (due to unobserved/untested in-

dividuals) in the SPOT data, obtaining a validation sample is both ethically and practically

unfeasible as it would require the testing of all residents of the province of Quebec.

The SIMEX method of Cook and Stefanski [68] is a simulation based technique for esti-

mating and reducing bias due to additive measurement error. It does not require validation

data, but does require that the measurement error distribution is known or can be well-

estimated. SIMEX estimates are obtained by adding additional measurement error to the

mismeasured data in a resampling-like stage, computing estimates from the deliberately con-

taminated data, establishing a trend between these estimates and the variance of the added

measurement errors, and extrapolating this method back to the case of no measurement

error. SIMEX is becoming popular as a general and widely applicable functional method

because it does not require any assumptions about the distribution of the unobserved true

covariate [24]. However, to date, SIMEX has been limited to mean zero random errors, and

hence needs to be extended to alternative error distributions (in particular, one that has non

zero mean) to be used in the context of undercounted measures in the cluster size of the

SPOT data.

MSM populations have, historically, sometimes been viewed as “hidden” due to discrim-

ination against homosexuality. It can therefore be challenging to obtain a random sample

from this population, or indeed any population that has been stigmatized. Specifically, in
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the context of HIV, it is also very difficult to obtain a large sample where both epidemi-

ological and HIV RNA sequencing data are available. Traditional sampling methods may

not be suitable to obtain a random sample from MSM population. Special techniques such

as snow-ball sampling [25], targeted sampling [26], time-location sampling [27] and venue-

based sampling [28,29] are often used to sample from hidden/rare populations. Venue-based

sampling is the most commonly used method to recruit the MSM [30]. It is a probabilistic

method to sample members of a given population at particular times in fixed venues (e.g.,

clubs, bars and gyms) [29]. The SPOT study recruits MSM individuals without following

any structured sampling plan. Therefore, SPOT’s sampling design is not probabilistic, and

as such the generalizability of the findings from the data analysis are uncertain. To improve

the generalizability of the findings, the sampling scheme in the SPOT should be adjusted.

In this thesis I analyze SPOT data to study the correlates of the phylogenetic cluster

size by addressing both challenges: measurement error in cluster size and a non-probabilistic

sampling scheme. The proposed approach to address these issues consists of extending the

SIMEX method to correct for measurement error that is not mean zero and may depend on

other covariates in the data and using sampling weights to adjust for the non-probabilistic

sampling scheme, where weights are calculated using an external source of information.

I address the issues in three parts that are briefly described below. In the first manuscript,

I extend the SIMEX method to accommodate errors with non-zero means, and refer to it

as non-zero mean SIMEX (NZM-SIMEX). I provide theoretical justification for the gener-

alization to the non-zero mean measurement error case by proving the consistency of the

estimators in a linear regression setting, and demonstrating its performance in more general

settings by computer experiment. Performance of the NZM-SIMEX is empirically compared

to the näıve method via a simulation study under ideal and non-ideal conditions. I ap-

ply the NZM-SIMEX method to the SPOT data for HIV-positive participants to determine

behavioural correlates of cluster size.
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The second manuscript focuses on further extending the SIMEX to the settings where

the measurement error in a covariate of interest depends on the value of another correctly

measured variable. For the SPOT data analysis, the NZM-SIMEX is applicable only to the

data from HIV-positive MSM for whom there is measurement error in the cluster size. For

HIV-negative MSM, the cluster size is always zero and there is no measurement error. Thus,

the measurement error in the cluster size for MSM depends on a correctly measured variable:

HIV status. To be able to include the data from both HIV-positive and HIV-negative MSM

in the analysis, I extend and validate the SIMEX method to accommodate measurement

error distributions that (i) depend on other covariate and (ii) need not have mean zero. I

refer this to as SIMEX conditional on covariates (SIMEX-CC) method. I then compare the

performance of the SIMEX-CC to the other methods such as regression calibration, multiple

imputation for measurement error and näıve methods. I apply the proposed SIMEX-CC

method to the full SPOT data that include both HIV-positive and HIV-negative participants.

Finally, I propose solutions to simultaneously adjust for two challenges: measurement

error in cluster size, and non-probability sampling scheme. To adjust for the sampling de-

sign, I use weighted regression model, where sampling weights for SPOT participants were

calculated using data from another study of MSM in Montreal, whose sampling design was

known. To correct for measurement error, I use the SIMEX-CC method.

In this thesis, I extend SIMEX to account for measurement error that is structured in

this sense that it may have a mean or variance that depends on another variable. Further, I

provided a demonstration of how external data can be leveraged to improve the generalizabil-

ity of a study where participant recruitment was via a convenience sample. These statistical

developments were motivated by the SPOT study in Montreal. However, the methods have

much wider applicability. For instance, there are many laboratory assays that are subject

to measurement error. Further, many populations are difficult to sample. This has driven

developments in sampling and estimation such as respondent-driven sampling – however even

these methods can be biased. Even in a probabilistic sampling design, studies may suffer from
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lack of generalizability due to non-response. The use of data from a study with probabilistic

participant sampling can be used to improve generalizability of results in these settings.
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Chapter 2
Literature Review

2.1 Introduction

This chapter provides a review of the epidemiological literature on HIV, and the statisti-

cal literature on measurement errors and sampling from hard-to-reach populations. Starting

with current HIV research that focuses on the phylogenetic clustering, I then provide an

overview of important concepts of measurement error and the consequences of measurement

error in both exposure and outcome variables. I next discuss different methods for correct-

ing measurement errors. Finally, several sampling techniques for recruiting hard-to-reach

populations are considered.

2.2 HIV and AIDS

HIV causes a devastating infection that leads to AIDS, if left untreated [31]. HIV

destroys the body’s specific defense system against all infectious agents by infecting CD4

immune cells. HIV is transmitted primarily through unprotected sexual intercourse (includ-

ing anal and even oral sex, although with very low probability), infected blood transfusions

and contaminated hypodermic needles, and can also be transmitted from infected mother

to child through pregnancy, delivery, or breastfeeding [2]. There is no cure for or vaccine

against HIV and without treatment, the risk of death for people living with HIV is very high.

However, antiretroviral treatment (ART) can slow or halt the replication of the virus and

prevent infections and cancers that often develop in people with HIV. Where modern ART

is available, HIV is often seen as a manageable, chronic condition – albeit one that is costly

and incurable.
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There are two variants of the HIV virus, HIV-1 and HIV-2. From genetic research,

it is believed that both HIV-1 and HIV-2 are originated in non-human primates in West-

central Africa and were transferred to humans during the early twentieth century [32]. HIV-1

appears to have originated in southern Cameroon through the evolution of SIV(cpz), a simian

immunodeficiency virus (SIV) that infects wild chimpanzees [33, 34]. The closest neighbour

of HIV-2 is SIV(smm), a virus of the sooty mangabey, an old world monkey living in West

Africa, from southern Senegal to western Côte d’Ivoire [35].

AIDS was first clinically observed by the Centers for Disease Control and Prevention

(CDC), USA, in 1981 among a cluster of injection drug users and homosexual men [3–5].

Now, HIV is seen in both homosexual and heterosexual men and women, and HIV infection

is considered pandemic by the World Health Organization [36]. As of 2015, approximately

36.7 million people have contracted HIV globally [37].

2.3 Phylogenetic Clustering: Offering New Insights into Viral Epidemics

Initially AIDS research was focused on identifying its cause, correlates of infection such

as high-risk sexual behavior, developing treatments, and medical and social strategies to

prevent new infections. In the last decade, with the advance of RNA and DNA sequencing

technology, there is considerable research activity centered on using molecular phylogenetics.

By comparing viral genomic sequences, relatedness of viruses can be determined, and from

that, clusters may be inferred. This information can be used to study sexual networks on a

local level, and to trace the evolution of the infection at a wider level [32].

There is a growing body of work looking at the use of DNA phylogenetics in different

areas of research. Phylogenetics have been used in diverse scientific endeavours, from investi-

gating gene duplications shared by animals, fungi and plants [38] to investigating the spread

of Hepatitis C virus among European injection drug users with HIV [39]. Other studies

that use phylogenetic clustering include gene encoding (see, e.g., [40–44]), and the effect of

environmental severity on phylogenetic clustering (e.g., [45]).
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In the context of HIV, phylogenetics have been used, for example, to discover the animal

origin of AIDS [32]; construct the transmission history of a known HIV-1 [46]; identify the

direction of transmission of HIV in criminal cases [47,48]; and track clusters [49,50]. Chalmet

et al. [49] investigated whether phylogenetic data could supplement epidemiological data and

allow a more detailed description of local HIV epidemics. Using a combination of data

from phylogenetic analysis of HIV sequences, patient demographics, infection route, clinical

information and laboratory results, they found distinct differences between HIV-1 subtype

B and non-B infections. The authors concluded that phylogenetic analysis did complement

the epidemiological data and added value to the understanding of local HIV epidemics.

The use of phylogenetic clustering is clearly on the rise in HIV research. While the

validity of the clustering algorithms are not in dispute, the utility of cluster size itself as

a variable is not yet well understood. A key concern is that the primary variable (cluster

size itself, or its categorized version: unique/small/large cluster) is mis-measured. The mea-

surement error is not random, but almost surely underestimated due the absence of some

HIV-positive individuals. A key objective of this research will focus on understanding and

correcting biases in results that arise from this systematic error of the cluster size.

2.4 HIV Research in Montreal

Montreal, Canada, is one of the key centres for HIV research in Canada, and is home

to three major studies focused on men who have sex with men (MSM): ARGUS, SPOT, and

OMEGA. There are many challenges in studying individuals infected by a virus that has

significant cultural implications, including social stigma, or in recruiting from a population

of individuals who may not be eager to identify as part of that population. Each of these

studies has complementary strengths. Below, I provide details on SPOT and ARGUS, the

two sources of data used in the thesis chapters that follow.

9



2.4.1 The SPOT Study

In response to the alarming number of new HIV cases in Quebec among MSM and a

relatively low rate of awareness of HIV status, community workers, medical professionals, and

researches worked together to set up an innovative project called SPOT, an multidisciplinary

intervention research project in Montreal (www.spottestmontreal.com). The Montreal SPOT

point of care testing site was opened in Montreal’s Gay Village neighborhood in 2009. It

promoted and recruited participants through advertisements in gay magazines and web sites

as well as through outreach activities. The site offered rapid, free and anonymous testing

to the MSM community. Rapid testing was offered at flexible hours (day, evening, and

weekend) at the SPOT site with testing, questionnaire completion, and counselling performed

by nurse or other trained member of the SPOT team. The questionnaire elicited information

on socio-demographic characteristics, HIV testing behavior, sex life, attitude towards HIV,

socio-sexual profile, etc. It has been found that the most common way for participants to

have heard about SPOT is from their friends [51]. The most commonly reported reasons

for being tested at SPOT are consistent with the combination of benefits that SPOT offers:

short waiting times, convenient hours and location, and the availability of rapid testing that

is free of charge and anonymous [52–54].

In addition to providing a large number of rapid tests to the MSM community, SPOT

data have produced valuable research insights [52–55], using the socio-demographic and be-

havioral data to identify the motivation and barriers to seeking HIV testing among MSM.

For example, not having a doctor has been identified as the most important barrier that

prevented MSM born outside of Canada from being tested in the past [53].

The lab of Dr. Bluma Brenner at the McGill University AIDS Centre performs nucleic

acid amplification testing on dry blood spots of all samples from HIV-positive individuals

in SPOT [13]. HIV RNA cluster size is determined using phylogenetic linkage (sequence in-

terrelationships) which is established using neighbour-joining trees and maximum likelihood
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methods, using BioEdit and MEGA2 integrated software [9]. Transmission cluster member-

ship is based on the robust criterion of high bootstrap values (> 98%), short genetic distances

(< 0.01), and congruent polymorphisms and mutational motifs. Specifically, whenever a new

HIV-positive individual is identified in SPOT, members of the Brenner lab run that sequence

on a consensus tree that has one sequence from each small cluster and each large cluster. If

the SPOT sample does not associate with a cluster, the lab searches their database for any

virus that shares polymorphisms to assign new clusters which get added to the consensus

tree. Since primary infection is the driving force of the epidemic, the size of existing clusters

may change rapidly in time.

Some studies have made use of the phylogenetic data that has been collected on SPOT

participants’ viral RNA. Brenner et al. [56] described the phylogenetic expansion of the MSM

epidemic in Montreal during last 10 years. It was confirmed by the phylogenetic clustering

analyses that primary and recent stage infection plays an important role in transmission dy-

namics. Brenner et al. [57] investigated the underlying factors affecting the temporal growth

of HIV epidemic among MSM by combining viral phylogenetic and behavioural risk data.

The study found no behavioural correlates of cluster size, though there was an association

between participant’s age and cluster size. The study did not, however, account for poten-

tially important sources of bias in the data, including measurement error and non-random

sampling from the target population.

With a view to investigate the significance of cluster size to the spread of the HIV

epidemic among MSM, the Brenner lab, in previous work, stratified clusters into three sizes:

(i) “unique” infections; (ii) “small” clusters of two to four infected individuals; and (iii)

“large” clusters of five or more infected individuals [9]. The episodic durations of clustered

and non-clustered clustered transmissions are the basis for these selected cutoffs in the [9],

but more recently, “small” cluster have been redefined to contain two to nine individuals,

and “large” to contain 10 or more. Given the changing understanding of what constitutes

a large cluster, there is interest in assessing correlates of cluster size as measured on its
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natural (count) scale, and ensuring appropriate corrections are made for inaccuracies in the

‘measurement’ of the cluster size.

2.4.2 The ARGUS Study

ARGUS (www.argusquebec.ca) was a survey of MSM in Quebec that collected infor-

mation on HIV status, sexually transmitted infections, viral hepatitis and associated risk

behaviours, aimed at combining data on infection surveillance and behavioural monitoring.

ARGUS was executed under the direction of the Direction de santé publique de l’Agence

de la santé et des services sociaux de Montréal, the Public Health Agency of Canada and

the Institut national de santé publique du Québec and by a team of representatives from

the community, university and public health. ARGUS is one of the only studies of MSM

to employ a probabilistic recruitment scheme. Individuals were enlisted from a wide range

of locations such as saunas, bars, coffee shops, and sports and recreational groups where

gay men interact with each other. Individuals were recruited by the interviewers following

a sampling method that is adapted to the location visited. The recruited individuals are

considered to be a representative sample of all the MSM individuals who interact in the lo-

cations where recruitment took place. ARGUS was repeated in waves, tracking the changes

in risk behaviours and prevalence of infections over time. ARGUS recruits all MSM aged 18

and over irrespective of their HIV status.

The ARGUS questionnaire focused on participants’ socio-demographic characteristics,

health, drugs and alcohol use, the structure of their social network, and their attitudes

towards HIV. From the 42 locations in Quebec (37 in Montreal, 4 in Quebec and 1 in Laval),

1873 individuals were enlisted between May 2008 and March 2009.

2.5 Measurement Error

In modelling the association between a response and covariates, it is typical to assume

implicitly or explicitly that the response variable and the covariates are measured without

errors. However, this ideal situation is not always met in practice for several reasons including
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non-response errors, reporting errors, and computing errors. No matter what the reasons

are, measurement error is a difficult problem. Errors of measurement in covariate(s) cause

various problems including: biased parameter estimation in regression models; loss of power

in detecting association among variables; and concealing of features of the data [58]. The

impact of measurement error in a response is typically loss of efficiency. Thus to make valid

statistical inference, measurement error in variables must be taken into consideration. In this

section, I will review important concepts and consequences of measurement error.

Let Y denote a response variable and V is a correctly measured covariate. Moreover, we

have another covariate U whose imprecise measure is available to us which is X. Here, U is

often called the error-prone predictor or latent predictor whereas X is called the surrogate

variable [58]. Our intention is to relate the response Y with the true predictors U and V . If

X is being used instead of U for modelling purpose, then this is often called a näıve approach.

Adopting a näıve approach typically leads to biased parameter estimates and hence inferences

can be misleading.

For analyzing data in the presence of measurement error, it is crucial to understand

the measurement error process so as to decide on the most appropriate form of analytic

correction. There are two general types of error models: differential and non-differential

error. Within either type of error, further classifications and distinctions can be made. For

example, whether differential or not, error may be additive or multiplicative. Within the

class of additive, non-differential error, we may consider additional categories of error, such

as the classical additive measurement error model and the Berkson additive measurement

model. In this thesis, I will focus on non-differential, classical additive errors.

2.5.1 Differential Measurement Error

Differential measurement error occurs when the magnitude and/or direction of the error

is different for individuals who have and have not experienced the (binary) outcome. For

example, if individuals are being asked about their smoking habits after being diagnosed with
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lung cancer, it seems plausible that their answers may be affected by this knowledge. The

resulting error is then called differential measurement error.

Another example could be related to assessing food exposures in a case-control study

of Chron’s disease (or stomach cancer or some other gastric or colonic condition), where the

cases may well have different recall than the non-cases, making the error differential.

2.5.2 Non-differential Measurement Error

Non-differential measurement error is an error that is unrelated to the outcome status;

the magnitude and direction are equal for individuals who have the outcome compared to

those without the outcome.

2.5.2.1 Classical Additive Measurement Error

In the classical additive measurement error model, the conditional distribution of X

given U , in its simplest form, is as follows:

Xi = Ui + δi, (2.1)

where δi are independent and identically distributed (i.i.d.) with mean 0 and variance σ2
δ ,

and is independent of Ui. This model is suitable when it is desirable to determine Ui directly,

but one is unable to do so due to several errors in measurement. For example, consider a

study that investigates the effect of mean exposure to microwave radiation emitted from cell

phone towers on birth defects of babies born to women living near cell phone tower(s) during

a 15 year window. The birth defect is detected by diagnostic tests. Also, each woman has one

measurement of radiation level, taken at randomly selected time during the 15 year exposure

window. However, if we could make several replicate measurements (at randomly selected

different times), the mean radiation would be a better indicator of exposure during the 15

year window. This measurement error in the radiation exposure is therefore classical.

14



2.5.2.2 Berkson Measurement Error

In the Berkson measurement error model, the conditional distribution of U given X

takes the form:

Ui = Xi + δi, (2.2)

where the δi are defined as before, and are independent of Xi. This form of error often arises

in laboratory studies, where X can be measured directly but the ‘uptake’ of X cannot. For

instance, consider a study of multivitamin to maintain muscle strength, where an accurately

measured dose X of multivitamin was taken by an individual. However, the actual amount

of multivitamin absorbed by the body is the exposure of interest (U), which differs from

the amount taken (X), e.g., due to possible variation between individuals’ body ability to

absorb.

2.5.3 Effects of Measurement Error

Differential measurement error is particularly challenging, as its effects can be consider-

able and may lead to unpredictable biases.

In contrast, non-differential measurement error in the exposure is predictable: it leads

to bias the exposure-outcome association towards the null (attenuation bias) [58], and a

reduction in power. Non-differential classical error in (continuous) outcome variable does

not systematically bias an association estimator but does increase its standard error. The

consequences of non-differential measurement errors in the independent variable (covariate)

and dependent variable (outcome) appear below in further detail.

2.5.3.1 Measurement Error in a Predictor Variable

Let us consider the simple linear regression model

Yi = β0 + β1Ui + εi, (2.3)
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where the model error term εi
indep∼ N(0, σ2

ε ), and assume a classic additive measurement error

model where we have access to the observable variable X such that

Xi = Ui + δi, (2.4)

where δi
indep∼ N(0, σ2

δ ) and is independent of Ui and εi. Therefore, instead of estimating (2.3)

we estimate the model

Yi = β0 + β1(Xi − δi) + εi

= β0 + β1Xi + ε∗i , (2.5)

where ε∗i = εi − β1δi. While it is still the case that E(ε∗i ) = 0, E(ε∗i , ε
∗
j) = 0,∀ i 6= j and

E(ε∗i εi) = 0, it is not true that Cov(Xi, ε
∗
i ) = 0. Rather, we have that Cov(Xi, ε

∗
i ) = −β1σ

2
δ .

Thus , the covariate and error term in (2.5) are correlated, violating one of the fundamental

assumptions of the classical linear regression model. Consequently, ordinary least squares

(OLS) estimators thus obtained are biased, even asymptotically.

For the OLS estimator β̂1 from model (2.5), it can be shown that

β̂1
P−→ β1

[
σ2
U

σ2
U + σ2

δ

]
= β1γ,

where γ =
σ2
U

σ2
U+σ2

δ
which is expected to be less than 1, hence the bias towards zero. This type

of bias is commonly referred to as attenuation towards null. The attenuating factor, γ, is

called the reliability ratio and its inverse is called the linear correction for attenuation.

Fricsh (1934) [59] derived the bounds on the regression coefficients considering linear

regression in two directions: regressing Y on X and X on Y . For the näıve regression of Y

on X, the OLS estimator β̂1 has a probability limit given by equation (2.6). To perform a

reverse regression of X on Y , model (2.5) can be rewritten as

Xi = α0 + α1Yi + ε∗∗i , (2.6)
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where α0 = −β0/β1, α1 = 1/β1 and ε∗∗i = (εi − β1δi)/β1. Applying OLS to (2.6), we obtain

α̂1 =

n∑
i=1

(Xi − X̄)(Yi − Ȳ )

n∑
i=1

(Yi − Ȳ )2

so that

β̂1

Rev
=

1

α̂1

,

where β̂1

Rev
is the new estimator of β1 based on the slope coefficient from a regression of X

on Y . The probability limit of β̂1

Rev
is

β̂Rev1
P−→ β1 +

σ2
ε

β1σ2
U

. (2.7)

From (2.6) and (2.7), it is clear that when β1 > 0

plimβ̂1 < β1 < plimβ̂1

Rev

and inequalities reverse when β1 < 0.

Thus, measurement error in a single predictor variable can be bounded and, as seen

in the section 2.6, numerous analytic approaches have been developed. Measurement error

in multiple predictors, or in settings that are more complex than a straightforward linear

regression, may have unpredictable effects. For example, Regier et al. [60] show that classical

additive errors in confounders for inverse weighted estimators have completely unpredictable

effects – attenuation, reversal of the effect (protective instead of risk-inducing or vice versa),

augmentation of the effect, or no bias at all. Similarly, in non-linear regression models

(logistic models), when several risk factors are subject to measurement error, the odds ratio

estimates corresponding to any of these factors could be biased toward or away from the null

value [61].
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2.5.3.2 Measurement Error in the Outcome Variable

Let us again consider the simple linear regression model

Yi = β0 + β1Ui + εi, (2.8)

where Yi is the true response that is not directly measurable. Instead, we may observe Y ∗i

such that

Y ∗i = Yi + ωi,

where ωi denote measurement errors in Yi with Var(ωi) = σ2
ω. Therefore, rather than esti-

mating (2.8), we estimate

Y ∗i = β0 + β1Ui + εi + ωi

= β0 + β1Ui + vi, (2.9)

where vi = εi + ωi is a composite error term which contains the traditional random error

term as well as the measurement error term. To avoid complexity, we assume

E(εi) = E(δi) = 0, Cov(Xi, εi) = 0; a typical assumption of linear regression,

Cov(Xi, δi) = 0; implying the measurement errors in Yi are uncorrelated with Xi,

and Cov(εi, ωi) = 0; implying the model error and the measurement error are uncorrelated.

Under these assumptions, applying OLS to model (2.8) or (2.9) would yield an unbiased

estimator of β1. That is, the measurement errors in Yi do not affect the consistency of the

OLS estimator. However, the variance of β̂1 will be affected. Using the typical formulas, we
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obtain

V ar(β̂1) =
σ2
ε

n∑
i=1

(Xi − X̄)2

from model (2.8)

V ar(β̂1) =
σ2
ε + σ2

ω
n∑
i=1

(Xi − X̄)2

from model (2.9).

Certainly, the variance of the estimator from model (2.9) is larger than that of the estimator

from model (2.8). Thus, even though the measurement errors in the dependent variable

provide an unbiased estimator of the model parameter, the estimated variance would be

larger than that of having no such measurement errors which would consequently affect

power (negatively).

When the outcome variable is discrete, measurement error is often referred to as mis-

classification. Using misclassified responses in regression model can lead to inconsistent

coefficient estimates when typical estimation techniques (for example, logit or probit) are

used [62].

2.6 Measurement Error Correction Methods

This section describes the sources of data required for correcting measurement errors

and several commonly used measurement errors correction techniques.

2.6.1 Sources of Data

A measurement error analysis requires information about U given (X, V ) or about X

given (U, V ). These data sources can be broadly classified into two categories: internal and

external. Internal data are usually subsets of the primary data with additional information

whereas external data comes from independent studies of individuals not included in the

primary dataset. Within each of these two categories, there are three types of data, namely,

(i) validation data, (ii) replication data, and (iii) instrumental data. In validation data,

measurements are available on both X and U . Replicated, or repeated, measurements on X
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are available in replication data, whereas instrumental data contains measurements on X,

together with another variable T which is highly correlated with U .

An internal validation dataset is often considered as most desirable, because all rec-

ognized analytical techniques can be applied to such data. Further, an internal validation

dataset allows direct investigation of the error structure and tests of crucial model assump-

tions for measurement error, leading to relatively greater precision of estimation and infer-

ence [58].

Sometimes it is implausible to obtain exact measurement on U , as for example, when

the measurement of interest is the average of long-term systolic blood pressure. In such

situations, when there is a good reason to believe that mean of the replicated measurements

is a superior estimate of U than a single observation, replicate measurements are made.

With the classical measurement error model, replicated data also can be used to estimate

the variance of measurement error.

The instrumental variable T may or may not be an unbiased estimator for U (i.e.,

E(T ) = U). If T is internal, it is not necessary for it to be unbiased in order to be useful: it

can be included in a traditional instrumental variables analysis. However, if T is external, it

is typically useful only if it is unbiased for U . In such case T can be used in the regression

calibration (RC) analysis [58].

2.6.2 Functional and Structural Approaches to Measurement Error

Depending on how X is related to U , measurement error models (correction approaches)

can broadly be classified into two major classes: models that are functional or structural. In

functional modeling, no assumption is made about the true covariate U ; the values may be

either fixed constants or random variables. In contrast, structural modeling considers U to

be a random, and a parametric distribution of U is assumed.

In functional modeling, if U is regarded as random, only minimal, or no assumptions

are made about the distribution of the unobserved U and, as such, resulting estimators

and inference may be more robust. Some popular functional modeling approaches include
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regression calibration and simulation-extrapolation (which is the focus of the methodological

developments in this thesis).

Results from structural modeling depend on the assumed distributional form of U , lead-

ing to the potential for bias and lack of robustness (see, e.g., Fuller [63], Carroll et al. [58]).

Likelihood-based methods, and Bayesian modelling are examples of structural modeling ap-

proach.

There is no decisive preference between functional or structural modeling approaches.

Some researchers favour functional model arguing that one should consider as few model

assumptions as possible. Other researchers prefer structural modeling on the grounds that

one should try as best as possible to model every feature of the data to perform appropriate

statistical analysis. Below, details of several approaches from each approach are provided.

2.6.3 Regression Calibration

Regression calibration (RC) [58] is a simple and widely used approach for adjusting

measurement error in regression analysis [20, 61, 64–66]. The basic idea is to replace U

by the regression of U on X. After this approximation, a standard regression analysis is

performed. Regression calibration is effective and applicable to any regression model as long

as the approximation is reasonable [58]. The approximation can be poor for highly non-linear

models [58]. For a simple linear regression of the form

Yi = β0 + β1Ui + εi,

the regression calibration method can be better explained as follows:

1. At the first step Ui are regressed on Xi and parameter estimates are obtained. This

can be done using ‘validation data’ or ‘unbiased instrumental variable’ [61] or ‘replicate

data’ [67].

2. At the second step the resulting estimates are used to predict the unobserved Ui for

the original sample which we call Ûi. The standard regression of Yi on Ûi (for all
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individuals, even those included in the validation sample or replicate data) is then run

to obtain the parameter estimates (β̂0, β̂1).

3. Finally, the standard errors of (β̂0, β̂1) are adjusted (to account for the estimation of

U) by adopting either the sandwich or bootstrap method (see, [67] for details).

Note that the RC method is based on the assumptions that the errors are non-differential with

small variance. Further, the error model is required to be linear and nearly homoscedastic.

Violation of these assumptions may lead to ineffective bias reduction, especially in non-linear

outcome models [58].

2.6.4 Simulation-Extrapolation (SIMEX)

The simulation-extrapolation method developed by Cook and Stefanski [68] is a simu-

lation based-technique for estimating and reducing bias due to additive measurement error.

The method was further extended by Carrol et al. [69] and Stefanski and Cook [70]. SIMEX

is a two-step estimation procedure consisting of a simulation step and an extrapolation step.

Estimates are obtained by adding additional measurement error (in known increments) to

the mis-measured data in a resampling-like stage, computing estimates from the contam-

inated data, establishing a trend between these estimates and the variance of the added

measurement errors, and extrapolating this trend back to the case of no measurement error.

The main idea is to use the information from an incremental addition of measurement

error to the mis-measured data using computer-simulated random errors. Adding extra

measurement error to the data by simulation allows one to understand how the estimation

bias is affected by the increase of the measurement error variance. This is the so-called

simulation step. In the extrapolation step, the obtained parameter estimates are modelled

as a function of the magnitude of the variance of the measurement error and extrapolated to

the case of no measurement error. The algorithm is detailed in Chapter 4.

The SIMEX procedure for non-differential, mean-zero classical additive measurement

error has been implemented in most popular statistical software (e.g., the simex package in

R, and the simex function in Stata).
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Simulation Step

Suppose Ui, i = 1, . . . , n, is the true explanatory variable whose imperfect measurement is

available which is denoted by Xi. Let us define Xi as

Xi = Ui + δi,

where δi is an independent normal random variable with mean zero and variance σ2
δ , and is

independent of Ui and Yi. In the simulation step, additional measurement error is added to

the imperfectly measured covariate Xi, and B new covariates Xi,b(λk) are generated using

the rule:

Xi,b(λk) = Xi +
√
λk δib,

where b = 1, . . . , B; k = 1, . . . , K and i = 1, . . . , n. Also, λk ≥ 0 are assumed parameters

which control the variance of the measurement error, and {δi,b}Bb=1 are independent computer

simulated normal random numbers from N(0, σ2
δ ). Carroll et al. [58] recommended to choose

λk as 0 = λ0 ≤ λ1 ≤ · · · ≤ λK = 2. Note that the simulation step creates B additional

datasets (replication samples to remove simulation variability) with the same dependent

variable Yi and the explanatory variable Xi,b(λk) for each λk. The variance of Xi,b(λk) is

V [Xi,b(λk)] = V
[
Xi +

√
λk δib

]
= V

[
Ui + δi +

√
λk δib

]
= σ2

U + (1 + λk)σ
2
δ

which increases with the control parameter λk. For each λk, let β̂b(λk) denote the vector

of naive estimates obtained by regressing Y on Xi,b(λk). Using B estimates for each λk, an

average estimate can be obtained as

β̂(λk) =
1

B

B∑
b=1

β̂b(λk).

Extrapolation Step
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In the extrapolation step each component of vector β̂(λk) are plotted against λk for λk ≥ 0,

and regression techniques are used to fit an extrapolant function. The SIMEX estimator is

obtained as the extrapolation of β̂(λk) at λk = −1, which is the ideal case of no measurement

error.

The Literature on SIMEX

Since its original development by Cook and Stefanski [68] more than two decades ago,

SIMEX has seen numerous extensions [68,69,71–79]. For example, Wang et al. [80] extended

SIMEX to the correlated data setting for use in the generalized linear mixed models frame-

work, considering normal additive measurement error in a single covariate. The resulting

models were called generalized linear mixed measurement error models. Following this, Lin

and Carroll [77] developed a score test for testing if variance components across clusters are

zero. Yi et al. [81] employed SIMEX for marginal analysis of longitudinal data with covariate

measurement error and missing data. Hu et al. [82] used SIMEX to develop a nonparametric

procedure for analyzing survival and longitudinal outcomes measured with error.

In the last 15 years, a number of papers have appeared that use SIMEX method to sur-

vival analysis with covariates subject to measurement error. Mallick et al. [83] used SIMEX

to adjust for measurement error in the exposure included in the Cox proportional hazard

model and compared its performance to regression calibration. They used a version of RC

where the observed exposure was replaced by its expected value based on the measurement

error distribution. Overall, RC was found to perform better than SIMEX when measurement

error distribution was correctly specified, although RC was not robust against misspecifica-

tion of the error distribution. Greene and Cai [84] showed the asymptotic normality and

consistency of the SIMEX estimator for models with multivariate failure time data and mea-

surement error. Hu and Lin [85] proposed a modified score equation and established the

asymptotic properties of the estimators for multivariate failure time data. Li and Lin [79]

used SIMEX in frailty models with variables measured with error. He et al. [86] explored the

SIMEX method under the accelerated failure time model. He et al. [86] discussed accelerated
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failure time models with error-prone covariates and studied the bias induced by the näıve

approach of ignoring measurement error in covariates. He et al. [87] explored the SIMEX

method for survival data in the proportional odds model setting.

SIMEX has also been used for a variety of other settings. For example, it has been

extended to correct for bias correction when discrete data are misclassified, known as the

misclassified SIMEX (MC-SIMEX) [88]. Küchenhoff et al. [89] developed the asymptotic

variance for the MC-SIMEX. A double SIMEX approach for bivariate random effects meta

analysis of diagnostic accuracy studies where diagnostic accuracy measures were subject to

measurement error was proposed by Guolo [90]. Other research areas where SIMEX has been

developed to correct for measurement error include microarray data [91,92], semi-parametric

modeling [75], and studying space using artificial intelligence techniques [93].

2.6.5 Multiple Imputation

Multiple imputation (MI) [94] is a three-step technique which consists of imputation,

analysis and combination. Assuming the data are missing at random (MAR), the first step

of MI imputes the missing values based on the predictors which are assumed to be associated

with error prone variables. Each missing value is replaced with several (m > 1) plausible

values to take into account the uncertainty around the actual value to be imputed. There

are several imputation techniques such as joint modelling (typically assuming joint normality

of the data), or conditional modelling using a combination of approaches which may include

predictive mean matching [95] and regression techniques. At second MI step, all m imputed

data sets are analysed using the usual complete case method. Step 3 combines all the results

from step 2 by applying Rubins rules [21].

2.6.6 Likelihood Method

The likelihood method for correcting measurement error in exposure requires specifica-

tion of a parametric model for each component of the data, i.e. for the full joint likelihood of

the outcome, the exposure (both true and its mis-measured counterpart, and any covariates.
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This involves in specifying: (i) the likelihood model as if true exposure (U) were observed,

(ii) the error model (e.g, classical or Berkson), (iii) distribution for the unobserved U given

the other covariates V (if the classical error model is chosen). Subsequently, the likelihood

function is constructed by integrating the product of these densities over the latent true ex-

posure (U) [65]. Model parameters are then estimated by maximizing the likelihood function

adopting either analytical approximations or numerical methods [65].

To specify the distribution of true exposure, the likelihood method requires a validation

study with several replicates of the unbiased measurements or strong and untestable (data-

free) assumptions about the true covariate distribution. Further, the method is based on the

non-differential measurement error assumption [96]. If all components are correctly specified,

the likelihood method can be more efficient than other simpler approaches such as regression

calibration. Nevertheless, it is rarely used in practice because of its computational complexity

and difficulties in checking the parametric assumptions. Moreover, the robustness of the

likelihood method to the modelling assumptions is often poor and difficult to assess [58].

2.6.7 Bayesian Method

Bayesian methods have long been used for correcting measurement error in the covariates

(see, e.g., [97,98]). To correct for measurement error in an exposure, the Bayesian approach

involves several essential steps. First, as with likelihood method, a parametric model is spec-

ified for every component of the data, namely, the likelihood model treating U as observed,

the error model, and the model for U given V . Second, the Bayesian approach treats U as

missing data and imputes it several times by drawing samples from the posterior distribution

of U given other covariates. Thus, the likelihood function of all the data is constructed.

Third, all parameters are treated as random and appropriate prior distributions are assigned

to them. Finally, Bayesian quantities, that is, posterior summaries of the association param-

eters are computed with the mean (or mode) of the posterior distributions serving as point

estimates.
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Bayesian analyses can be implemented via a flexible sampling-based Markov chain Monte

Carlo (MCMC) algorithm [99] or with a computationally efficient non-sampling based inte-

grated nested Laplace approximation [100,101]. Although Bayesian MCMC method is flexi-

ble, it is computationally intensive. Moreover, as with the likelihood method, the Bayesian

approach requires validation data or knowledge of the full joint data density. This method

is appropriate for non-differential measurement errors.

2.6.8 Method of Moments

Method of moments is a commonly used method for eliminating bias. Considering the

simple linear regression model

Yi = β0 + β1Ui + εi,

where Ui
indep∼ N(µU , σ

2
U) and εi

indep∼ N(0, σ2
ε ). With classical additive error model Xi =

Ui + δi; it can be shown that plimβ̂1 = β1γ (see, Section (2.5.3.1) for details). If γ is known,

then an unbiased estimate of β1 can be obtained by simply dividing the OLS slope by γ.

However, γ is usually not known in practice and we of course need to estimate it. If σ̂2
δ

is an estimate of the variance of measurement error and σ̂2
U is the sample variance of U , a

consistent estimate of γ is γ̂ = (σ̂2
U − σ̂2

δ )/σ
2
U . Therefore, the estimate of β1 is β̂1/γ̂. The

sampling distribution of this estimator is highly skewed for small samples, and as such, a

modified version of this estimator is recommended by Fuller [63]. The method of moments

estimator is not limited to the simple linear regression model but can also be constructed for

general linear model [58].

2.7 Sampling Techniques for Recruiting Hard-to-Reach Populations

A number of sampling techniques have been proposed to gather information on hard-

to-reach populations, i.e. groups of people who may not wish to self-identify publicly, often

for fear of stigmatization. High-risk populations for HIV may include of sex workers, in-

jection drug users, men who have sex with men, and specific mobile or migrating groups.
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Such populations are often “hidden” or hard-to-reach. To obtain a sample of a suitable size

for research from such a population, conventional approaches such as a household survey

or national censuses are typically not appropriate as they often cannot obtain a sufficiently

large enough sample, or because individuals may be unwilling to report high risk behaviours

in such settings. For meaningful surveillance or surveying of such populations, a number of

sampling strategies have been developed that are feasible and capable of producing unbi-

ased estimates (or at least more realistic, less biased estimates) than traditional probabilistic

survey methods; these include snowball sampling, targeted sampling, respondent-driven sam-

pling, time-location sampling, and venue-based sampling. All but the last of these are based

on the principle that members of the hard-to-reach population know one another, and are

thus connected by a network.

2.7.1 Snowball Sampling

Snowball sampling [25] has long been used by researchers for recruiting hidden popula-

tions for surveillance. To take a snowball sample, the researcher must identify a few members

of the target population (termed the “seeds”), then ask each of those individuals to identify

other members of that population ideally naming all the members that they know. Each new

participant in the sample is asked to identify additional members, until the desired sample

size is attained. Sampling bias is one of the major concern for this technique: the obtained

sample may not be representative of the target population as the composition of the sample

is greatly influenced by the initial seeds and by the “connectedness” of the social network

of the population. Moreover, the sample selection may favour the most cooperative or open

subjects (a trait which may be related to risk-taking or other behaviours relevant to the

question of interest) as well as those belonging to larger personal networks.

2.7.2 Targeted Sampling

Targeted sampling extends the ideas of snowball sampling to overcome some of its limi-

tations [27]. In this approach, an initial ethnographic assessment is performed with a view to
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identifying possible sub-groups or networks within the population. The identified subgroups

are then regarded as strata, and individuals are chosen from each stratum using systematic

sampling (if possible) [26]. The success of this sampling however depends heavily on validity

and completeness of the ethonographic assessment.

2.7.3 Respondent-Driven Sampling

Like snowball and targeted sampling, respondent-driven sampling (RDS) [102,103] also

relies on a chain referral sampling approach, but the selection process is implemented in such

a way that allows calculating selection probabilities, and hence it can be seen as a probability

sampling technique. Specifically, in RDS, the selection process starts with identifying initial

participants (again termed seeds) who are enlisted as both participants and recruiters. They

are provided an explanation of the study and fixed number of coupons (e.g. three or even ten)

that are to be given to recruited peers who are eligible for the study. Each new participant

(respondent) receives similar number of coupons, as do each their recruits, until the desired

sample size is attained. Further, the coupon approach allows the researchers to determine

the network structure in the population, and as participants recruit their peers directly (but

do not reveal peer information to researchers), the “masking effect”, whereby participants

may wish to protect their peers anonymity in a snowball sample, is reduced. Nevertheless,

challenges remain as the connectedness of the network and the response rate both influence

bias so that, as in snowball sampling, the ‘cooperative’ individuals may be more likely to be

part of a large personal network.

RDS differs from snowball sampling in that the seeds are limited to recruit only as many

participants as the number of coupons they receive, which in turn reduces the influence of

initial seeds on the final sample composition. Restricting the number of recruits may en-

courage longer recruitment chains, thus increasing the ‘reach’ of the sample into potentially

more hidden pockets of the population. Another distinguishing feature of RDS from snowball

sampling is that at each cycle the relationship between recruiters and the recruits is docu-

mented. This allows researchers to assess any recruitment biases and to account for these
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in the analysis. For instance, homophily (the tendency of individuals in a network to be

similar) is a key parameter in RDS estimation in techniques that can be incorporated into

the analyses.

2.7.4 Venue-Based Sampling

Venue-based sampling is one of the frequently used sampling techniques in recruiting

hard-to-reach population such as MSM. This probabilistic sampling scheme is used to recruit

MSM at particular times in set venues, for example, gay bars, parks, gyms, clubs [29]. The

sampling frame includes a list of all potential venue-day-time (VDT) units where the MSM

typically gathers. The example of a VDT unit could be a particular time of 3 hours on a

Sunday in a specific venue. For locating the members of the target population, a range of

VDT units is identified by interviewing the key informer, service providers, and members of

the target population. The data collection team then visits the different venues, checks the

presence of the specific individuals, prepare the list of possible VDT units, and estimate the

population size for every VDT unit. Once the sampling frame is constructed the sample is

then chosen in two stages. In the first stage venues are selected as primary sampling units

using simple or stratified sampling with probability proportional to the estimated size. In

the second stage, a sample of participants from the selected venues is drawn using systematic

sampling. Under the venue-based sampling, informal venues, such as private houses could

be included in the sampling frame that allows to reach least noticeable units of the target

population, or those who typically less frequent in public places [29]. Venue-based sampling

has several advantages, for example (i) it allows the calculation of the selection probability

for each individual in the sample; (ii) unlike convenience sampling, it greatly diminishes the

arbitrary selection of venues, subjects and provides a replicable sample selection method; and

(iii) it does not require the comprehensive list of target population so long as all members

of the population can be reached at fixed cites at different times. However, it requires

intensive fieldwork for visiting and mapping venues, day-time units. Additionally, potential
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bias arising from missing non-venue-based members of the target population/ MSM may

restrict the generalizibility of the results.

Time-location sampling (TLS) is an extension of the venue-based sampling [104]. It

relies on the assumptions that, while the sampling frame of the population of interest cannot

be constructed or directly enumerated, specific areas (locations/events) where the desired

population can be found are known and these can be enumerated. Thus, the sampling frame

of the events can be constructed, and then a random sample of time(s) at these locations is

selected (note that a particular location may be sampled at more than one time). If locations

vary in the frequency with which they have the necessary number of attendees, some care

is required in constructing the sampling frame or calendar of events, such as first choosing

sampling periods for locations with the fewest available periods. At each sampled event, a

sample of individuals at that location is chosen, randomly where possible. The investigators

must then calculate (or estimate) the sampling fraction by recording the total number of

persons at the location at that time who meet, or appear to meet, the eligibility criterion for

the study [102].

A TLS analysis proceeds using weighting to account for the sampling approach. The

sampling weight is defined as the reciprocal of the selection probability. Therefore, subjects

who are more likely to be selected in the sample receive less weight. Conversely, those who

are less likely to be included in the sample receive more weight.

Ideally, a selected sample should be representative of the population. That is, the

sample should mimic the population characteristics with respect to all variables measured

in the survey. Unfortunately, this may not be the case due to the several reasons. One of

the causes is non-response that may lead to some groups to be under- or over-represented.

Another problem is self-selecting sampling (typically in the online survey). This problem

of cooperativeness is not specific to TLS or indeed any of the aforementioned sampling

approaches, but rather can affect any survey in which participants must actively consent to

participate. When information on the representatitiveness of the sample is available (thanks
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to some external information on the non-participants), a commonly used correction method

is a further weighting adjustment to address selection bias [105]. It assigns a weight to each

member in the sample. Individuals in the under-represented groups are assigned a weight

that is greater than 1, whereas subjects in the over-represented groups are assigned a weight

smaller than 1. The sampling weights are then used to run weighted regression models,

or to compute weighted means, totals and percentages, rather than reporting unweighted

quantities.

2.8 Summary

In this chapter, I have provided a very brief overview of the epidemiology of HIV,

and given a more comprehensive overview of measurement error and recruitment (sampling)

strategies for hard-to-reach populations, with particularly focus on SIMEX and venue-based

sampling, which will be key to the developments in the coming chapters.
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Chapter 3
Objectives

The overarching aim of this thesis is to develop and validate methodological tools that

can be used for studying correlates of HIV phylogenetic cluster size in MSM by combining

phylogenetic and epidemiological data. Specifically, to propose new methods and address

two major challenges while dealing with the SPOT data: (i) systematic undercounting in the

cluster size, and (ii) the use of a non-probability sampling mechanism, which is common in

studies of hard-to-reach populations such as high-risk HIV populations and MSM.

There are many methods for dealing with measurement error including regression cal-

ibration, multiple imputation, and simulation-extrapolation. While most of these methods

require validation data or replicate data for some fraction of the observed sample, SIMEX

does not require such validation data. In the context of my motivating example, obtaining

a validation sample is both ethically and practically infeasible. Therefore, while SIMEX is

an appropriate choice for the SPOT data analysis, SIMEX is limited to mean zero random

errors, and hence further extensions are required to apply the approach in the settings where

error distribution has non-zero mean in order to be used in the context of undercounted

cluster size of SPOT data.

Further, the generalizability of results from a study with non-probability sampling

scheme may be improved by fitting a weighted adjusted model. For SPOT study, there

is no internal information that can help calculating sampling weights and hence an exter-

nal source of information is needed that can be used for estimating or predicting sampling

weights.

Therefore, the specific objectives of my doctoral thesis are to:
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1. Extend the simulation-extrapolation method to non-mean zero measurement error.

2(a). Extend the SIMEX method to the settings where the measurement error distribution

depends on a correctly measured covariate which may have non-zero mean.

2(b). Compare the performance of this extended SIMEX to other commonly used methods

such as regression calibration and multiple imputation.

3. Demonstrate an analysis which simultaneously implements adjustment for a non-probabilistic

sampling mechanism and measurement error in covariates.

4. Study the correlates of phylogenetic cluster size of MSM using the SPOT study data.
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Chapter 4
Manuscript I: The Non-Zero Mean SIMEX: Improving Estimation in the Face

of Measurement Error.

Preamble

This is the first manuscript in a series of three that collectively addresses the overall thesis

objective of addressing methodological issues that arise when studying correlates of phylo-

genetic cluster size in MSM. The research is based on data from SPOT, which is a study

of MSM in Montreal that offers free HIV testing and collects data on socio-demographic

and behavioural characteristics along with HIV phylogenetic cluster size, a measure which is

subject to systematically undercounting. That is, phylogenetic cluster size is measured with

error that does not have mean zero.

In this manuscript, I extend and validate the SIMEX to the non-zero mean measurement

errors that mimic the undercounted cluster size setting in the SPOT data. I investigate large

sample properties of the extended SIMEX estimators and compare its performance to the

näıve method that ignores the measurement error. The methods are then applied to the

SPOT data to reveal the association of HIV phylogenetic cluster size with demographic and

sexual behavioural characteristics of MSM.

This article was published in Observational Studies in 2015. The references for this

article have been combined with the overall thesis bibliography.
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in the Face of Measurement Error
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1McGill University, Department of Epidemiology, Biostatistics and Occupational Health

2Lady Davis Research Institute, Montreal, Quebec, Canada
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Abstract

The simulation-extrapolation method developed by Cook and Stefanski (1995) is a simula-

tion based technique for estimating and reducing bias due to additive measurement error

armed only with knowledge of the variance of the measurement error distribution. However

there are many instances in which validation data are not available, and measurement error

is known not to have mean zero. For example, in assessing phylogenetic cluster size of HIV

viruses, cluster size is systematically underestimated since clustering can only be performed

on the viruses of those individuals who have presented for testing. In this setting, it is not

possible to obtain validation data; however, using knowledge gleaned from the literature, the

distribution of the errors may be estimated. In this work, we extend the simulation- extrap-

olation procedure to accommodate errors with non-zero means, motivated by an interest in

determining behavioural correlates of HIV phylogenetic cluster size. We provide theoretical

justification for the generalization to the non-zero mean measurement error case, proving its

consistency and demonstrating its performance via simulation. We then apply the result to

a data from the province of Quebec in Canada to show that findings from a näıve analysis

are robust to a substantial range of possible measurement error distributions.

Keywords: SIMEX; non-zero mean measurement error; HIV.
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4.1 Introduction

Since the discovery of the human immunodeficiency virus (HIV) in 1981, HIV has caused

nearly 36 million deaths (as of 2012) [1]. While there is no cure or vaccine for HIV, current

therapies are highly effective and have dramatically reduced mortality due to HIV. Never-

theless, HIV places an immense burden on individuals and societies, with the annual costs

(medical and lost productivity) of new HIV infections in the United States estimated at $16

billion in 2010 [106]. There is considerable research activity on HIV in Montreal, Canada.

One such study is SPOT [107], which offers rapid, free and anonymous testing to the com-

munity of men who have sex with men (MSM), primarily targeting men who frequent gay

social venues. Individuals who are tested at SPOT provide questionnaire data, and for all

individuals found to be HIV-positive, their blood undergoes HIV sequencing. The HIV se-

quencing information is supplemented with HIV sequencing information from the Quebec

genotyping program [1] to determine the size of the sexual network to which the individual

belongs, i.e. the number of other HIV-positive individuals in the province of Quebec whose

HIV sequence fall into the cluster in a phylogenetic analysis. Researchers wish to combine

the phylogenetic and epidemiological data to learn about correlates of large phylogenetic

clusters [13,18,19]. Transmission cluster size (or simply cluster size) is defined as the number

of individuals falling into the same HIV phylogenetic grouping. For example, if the HIV

sequence of six individuals fall into the same cluster, each will be said to belong to a cluster

of size six; if there is an individual whose HIV genome sequence does not cluster with the

HIV genome of anyone else in the Quebec genotyping program registry of sequences, this in-

dividual is said to belong to a cluster of size one. However, the data available do not include

individuals who are HIV-positive but are unaware of their status (i.e. have never been tested)

nor those who have not had their HIV genotyped (viral load less than 400 copies per ml) [13];

there may also be a small number who have been tested outside of the province of Quebec

and not yet been seen by a physician in the province. Consequently, measurement error

occurs in defining the cluster size. This measurement error is characterized by a systematic
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undercounting of the true cluster size due to the absence of the individuals who have not

been tested. Thus, to make correct statistical inference about correlates of sexual network

size, this measurement error must be taken into consideration.

There are several approaches to handle measurement error: e.g., method of moments,

regression calibration [73, 108], multiple imputation [22, 94], and simulation-extrapolation

(SIMEX) [68]; most require validation data, which is infeasible to collect in the case of phy-

logenetic or transmission cluster size. Unlike regression calibration and multiple imputation,

SIMEX does not require validation data. The approach does, however, require that the

measurement error distribution is known or can be well-estimated. In some instances, such

as when data arise from a well-understood laboratory assay, the error distribution may be

known exactly. In other instances, the distribution may be estimated from validation data

if available, or posited based on information available in the literature, or simply assumed

(and varied) as in a sensitivity analysis. In the few existing applications of SIMEX in the

epidemiological literature, the error distribution has been determined or estimated using a

combination of expert judgement and data from the literature [79,87,109–114].

The simulation-extrapolation method developed by Cook and Stefanski [68–70] is a sim-

ulation based technique for estimating and reducing bias due to additive measurement error.

The SIMEX procedure does not require validation data, but does require the distribution

of the measurement error to be posited, which may be possible using known properties of a

measurement instrument such as a laboratory assay, or from existing literature. SIMEX is

a two-step estimation procedure in which additional measurement error is added (in known

increments) to the mis-measured data in a resampling-like stage, and a trend between the

resulting estimates and the variance of the added measurement errors is established. To date,

SIMEX has been limited to mean zero random errors, and will therefore need to be extended

to alternative error distributions to be used in the context of under-counted measures. We

shall extend the method to accommodate errors with non-zero means, so as to apply it to the
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SPOT data to determine behavioural correlates of cluster size. In Section 4.2, we develop

the theory, then demonstrate its performance in simulations in Section 4.3. Next, we apply

the method to SPOT. Section 4.5 discusses the findings.

4.2 The Simulation-Extrapolation (SIMEX) Method

In SIMEX, estimation proceeds in two steps: a simulation step and an extrapolation

step. Estimates are obtained by increasing the measurement error in the mis-measured data

in a resampling-like stage, computing estimates from the contaminated data, establishing a

trend between these estimates and the variance of the added measurement errors, and ex-

trapolating this trend back to the case of no measurement error. The main idea is to use

the information from an incremental addition of measurement error to the mis-measured

data using computer-simulated random errors. Adding extra measurement error to the data

by simulation allows the researcher to learn about how the estimator’s bias is affected by

the increase of the measurement error variance. This is the so-called simulation step. In

the extrapolation step, the obtained parameter estimates are modelled as a function of the

magnitude of the variance of the measurement error and extrapolated to the case of no mea-

surement error. We begin by briefly describing the simulation-extrapolation procedure for

zero mean measurement error and then present in detail the extension to non-zero mean

measurement error, which we call the non-zero mean SIMEX (NZM-SIMEX), then proceed

to derive its large sample properties.

A Short Description of SIMEX: Suppose Ui, i = 1, ....., n, is the unobserved true

explanatory variable and an error-prone version Xi is available, where Xi = Ui + δi, for

δi ∼ N(0, σ2
δ ) and it is independent of Ui and Yi. In the simulation step of SIMEX procedure,

artificial measurement error is added to Xi, and B new covariates Xi,b(λk) are generated via

Xi,b(λk) = Xi +
√
λkδib, where b = 1, ...., B; k = 1, ...., K and i = 1, ...., n for values of λk

are chosen by the analyst and {δi,b}Bb=1 are independent computer simulated normal random

numbers from N(0, σ2
δ ). It can be shown that the variance of Xi,b(λk) is σ2

U+(1+λk)σ
2
δ , which
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increases with λk. For each λk, let β̂b(λk) denote the vector of näıve estimates obtained by

regressing Y on Xi,b(λk). Using B estimates for each λk, an average estimate can be obtained

as B−1
B∑
b=1

β̂b(λk). By regressing β̂b(λk) on λk, and extrapolating back to λk = −1, we find the

estimate β̂(−1) corresponding to error σ2
U + (1 +λk)σ

2
δ = σ2

U , i.e., to the error free setting. A

prototypical example (based on simulated data) on the estimates β̂(λk) and the extrapolating

function that describes the regression of β̂(λk) on λk is given in Figure 4–1 for illustration.

Simulation Step

Let us consider the simple linear regression model

Yi = β0 + β1Ui + εi,

where the true predictor Ui follows a distribution with finite variance σ2
U and E[εi] = 0.

Suppose Xi is an imperfect measurement of Ui which is defined as

Xi = Ui − δ∗i ,

where δ∗i follows a distribution with E[δ∗i ] = µδ∗ and V ar[δ∗i ] = σ2
δ∗ . Also, δ∗i is independent

of Yi and Ui. For example, in the SPOT data, where Ui is the true value of the count variable

‘cluster size’, it may be reasonable to assume δ∗i ∼ Poisson(µ), so that E[δ∗i ] = V ar[δ∗i ] = µ.

In other instances we may wish to consider δ∗i = |δi|, where δi ∼ N(0, σ2
δ ), so that δ∗i follows

a folded Normal distribution with E[δ∗i ] = σδ

√
2
π

and V ar[δ∗i ] = σ2
δ (1− 2

π
). In the simulation

step, additional, simulated measurement error is added to the imperfectly measured covariate

Xi, and B new covariates Xi,b(λk) are generated using the rule:

Xi,b(λk) = Xi −
√
λkδ

∗
ib + (1 +

√
λk)E(δ∗ib)

= Xi −
√
λkδ

∗
ib + (1 +

√
λk)µδ∗ , (4.1)

where b = 1, . . . , B; k = 1, . . . , K and i = 1, . . . , n. The parameters λk ≥ 0 control the vari-

ance of the measurement error, and are chosen by the analyst, while
{
δ∗i,b
}B
b=1

are artificially

introduced random numbers from the distribution of δ∗i . Note that this is not identical to the
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simulation step in the traditional (mean zero error) SIMEX, but rather an additional term,

(1 +
√
λk)µδ∗ , has been included in the generation of Xi,b(λk) to account for the non-zero

mean of the errors. Carroll et al. [58] recommended taking λk as 0 = λ0 < λ1 < · · · < λK = 2.

Note that using (4.1) ensures that

E[Xi,b(λk)] = E(Ui).

The simulation step creates B additional datasets (replication samples to reduce sim-

ulation variability) with the same dependent variable Yi and covariate Xi,b(λk) for each λk.

The variance of Xi,b(λk) is

V [Xi,b(λk)] = V
[
Xi −

√
λkδ

∗
ib + (1 +

√
λk)µδ∗

]
= V

[
Ui − δ∗i −

√
λkδ

∗
ib + (1 +

√
λk)µδ∗

]
= σ2

U + (1 + λk)σ
2
δ∗

which increases with the control parameter λk. For each λk, let β̂b(λk) denote the vector

of näıve estimates obtained by regressing Y on Xi,b(λk). Using B estimates for each λk, an

average estimate can be obtained as

β̂NZM(λk) =
1

B

∑
β̂NZMb (λk). (4.2)

Extrapolation Step

In the extrapolation step, each component of the vector β̂(λk) is plotted against λk for

λk ≥ 0, and regression techniques are used to fit an extrapolant function. In particular,

β̂NZM(λk) is typically regressed on λk assuming either a quadratic or a non-linear relationship

(e.g., a lowess smoother). The NZM-SIMEX estimator, denoted β̂NZM , is obtained as the

extrapolation of β̂(λk) at λk = −1, which is the ideal case in which there is no measurement

error. See Figure 4–1 for a prototypical figure showing a plot of β̂(λk) against λk and the

resulting NZM-SIMEX estimate.

42



−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−
1

.9
4

−
1

.9
2

−
1

.9
0

−
1

.8
8

λ

C
o

e
ff

ic
ie

n
t

Naive Estimate
SIMEX Estimate

Figure 4–1: A generic plot of the effect of measurement error of size (1+λ)σ2
δ on the parameter

estimates. The SIMEX estimate is an extrapolation to λ = −1 whereas the näıve estimate
occurs at λ = 0.

Below, we state two key properties of the NZM-SIMEX estimator, β̂NZM ; proofs in

the linear regression setting are provided in the Appendix A. As in the zero-mean error

distribution setting [68], results hold for more general regression problems, including the

fitting of generalized linear models [79], non-linear regression models [69], quantile regression

models [113], accelerated failure time models [87], and even generalized linear mixed models

[80], but cannot be shown in closed form; results demonstrating the feasibility of the SIMEX

in these setting has relied on simulations. As in the previous literature, we provide theorems

for the linear regression setting, and demonstrate the performance of the method in the

generalized linear regression setting by simulation but not analytically. Both theorems rely

on the assumption that the variance of the measurement error is known and finite. The

proofs rely extrapolating to the no-error setting; while we can show this explicitly (i.e. in a

closed form solution) in a linear regression setting, the extrapolation does not rely on the

distribution of Y .

Theorem 1:
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The SIMEX estimator for non-zero mean measurement error, β̂NZM , converges in probability

to β.

Theorem 2:

β̂NZM is a non-linear function of λk.

4.3 Simulation Study

A simulation study was carried out to empirically evaluate the performance of the NZM-

SIMEX procedure under ideal and non-ideal conditions for a variety of outcome and covariate

distributions at different sample sizes. In particular, we consider both the case where the

error distribution is known exactly, and cases where it is not (e.g. it is known that the error

follows a Poisson distribution, but an incorrect mean is assumed). A large range of settings

were considered, including but not limited to the Poisson-distributed error setting which will

be used in the empirical analysis of Section 4.4, to showcase the versatility of the methodology

across a variety of possible scenarios.

4.3.1 Design of the Simulation Study

As the derivation of the NZM-SIMEX is general, we aimed to assess its performance

under a variety of conditions specified by the outcome and error distributions. Parameters

were chosen to follow those used by Cook and Stefanski (1995). In all instances, we report

the bias, standard error (SE) and mean squared error (MSE) of the näıve and NZM-SIMEX

estimators based on 1000 simulations. The sample sizes considered were n = 100, 500 and

1000. In our motivating data that has been analysed in Section 4.4.2, we have sample size

n = 33. Therefore, we considered some simulation situations for n = 33.

Three outcome distributions were considered: normal, Poisson and Bernoulli distribu-

tions. For normally distributed outcomes, data were generated from the model

E(Y |U, V ) = β0 + βUU + βV V + βUVUV.
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For the Poisson distributed outcomes, data were generated from a log linear regression model

log[E(Y |U, V )] = β0 + βUU + βV V + βUVUV.

For the binary response, data were generated from a logistic regression model

logit[P (Y = 1|U, V )] = β0 + βUU + βV V + βUVUV.

Details of the simulation settings for (U, V ), β = (β0, βU , βV , βUV )′, δ and δ∗ are given in Table

4–2 of Appendix B, with Scenarios 1-10 covering Normally-distributed outcomes; Scenarios

11-12 the Poisson-distributed outcomes, and Scenario 13 the binary outcome.

For NZM-SIMEX procedure, we considered λk ∈ {0, 1
8
, 2

8
, . . . , 15

8
, 16

8
}, b = 200, and

Xb = X −
√
λkδ

∗
b + (1 +

√
λk)E(δ∗b ),

where for the normally distributed outcome only, δ∗b = |δb|.

4.3.2 Results of the Simulation Study

The simulation results are shown in Figure 4–2, Figure 4–3 and Tables 4–3 to 4–6 in

Appendix B. It is evident from these results that the NZM-SIMEX procedure leads to a

considerable reduction of the bias compared to the näıve estimator.

When the error distribution is correctly specified by the analyst in the NZM-SIMEX

method, the bias of the NZM-SIMEX estimator is much less than the näıve estimator. Biases

depend on the magnitude of measurement error, whatever the distribution of the measure-

ment error (Tables 4–3, 4–5 and 4–6). However, we also see that the bias reduction in the

NZM-SIMEX estimators is less pronounced with increasing degrees of measurement error.

Irrespective of the parametric distribution of the errors (folded normal or Poisson), when

parameters of the measurement error distribution are incorrectly specified, it is observed

from Table 4–4 that the NZM-SIMEX estimator performs sub-optimally. However, while the

NZM-SIMEX estimator using an incorrect measurement error distribution to generate the

simulated errors performs worse than the NZM-SIMEX using the correct measurement error
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distribution, performance remains superior to that of the näıve estimator. Under-estimation

the variability of the measurement error leads to greater bias in the NZM-SIMEX than over-

estimation. It is also apparent from the results that, with the very few exceptions, the

non-linear fit in NZM-SIMEX procedure yields less biased estimates than quadratic fit.

For discrete Poisson and binary distributed outcomes, it is observed from Table 4–5 and

4–6 that for the correctly specified error distribution, the NZM-SIMEX yields a less biased

estimator than the näıve approach. In all cases, performance of NZM-SIMEX improves as

the sample size increases. Thus, when the distribution of the errors is known, NZM-SIMEX

performs well in recovering the true value of the parameter of interest. When the error

distribution is mis-specified, the NZM-SIMEX procedure exhibits some bias, but nevertheless

significantly outperforms the näıve estimator.

4.4 Analysis of the SPOT Data: Correlating Behaviour and Cluster Size

We now turn back to the motivating question in the analysis of the SPOT data. As noted

above, neither SPOT nor the Quebec HIV genotyping program includes HIV-positive people

who are unaware of their HIV status. We may also fail to capture individuals who underwent

testing outside the province of Quebec. This induces measurement error in defining cluster

size. In particular, it causes an underestimation of the true cluster size so that, clearly,

measurement error in cluster size is not mean zero.

We used data from the SPOT study up until April 2012. At that time, SPOT had tested

1803 MSM, 34 of whom were found to be HIV positive. For all participants, questionnaire

data includes several measurements on socio-demographic characteristics, HIV testing be-

haviour, sexual practices including risk behaviour, history of sexually transmitted infections,

and attitudes toward HIV. In this analysis, we focus on the HIV-positive individuals and

consider whether any of the following variables are correlates of cluster size: age, whether

or not a condom was used at last sexual intercourse, number of sex partners, and whether
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or not an HIV test was taken in the last 24 months. Except for cluster size, one individ-

ual’s questionnaire data was incomplete; we omit this individual from the analysis, instead

analyzing the 33 men with complete data.
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Figure 4–2: Bias and MSE of the parameter estimator associated with the error prone variable
for two different measurement error distributions.

With the goal of identifying the relationship between cluster size and age, number of

sex partners, not using a condom at last sexual intercourse, HIV testing status during last

24 months and number of one night partners we adopted seven distinct regression models.
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Figure 4–3: Bias and MSE of the parameter estimator associated with the error prone variable
for two different measurement error distributions.
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For each variable, both NZM-SIMEX (using quadratic and non-linear extrapolation) and a

näıve model were used to obtain estimates. We fit two linear regression models of age on

cluster size and number of sex partners on cluster size. We fit two logistic regression models,

where in the first model not using a condom at the last sexual intercourse was considered as

response variable and in the second model HIV testing status (during last 24 months) was

taken as the outcome. Also considering number of sex partners and number of one night

partners as count variables, we fit two log-linear models: number of sex partners on cluster

size, and number of one night partners on cluster size. Furthermore, considering number of

one night partners as a categorical variable (Category 1: < 2 partners, Category 2: 2 − 4

partners, and Category 3: ≥ 5 partners), we fit a multinomial regression model considering

Category 1 as the reference group. In all models, cluster size was the only covariate.

4.4.1 Measurement Error Cluster Size

Cluster size is an error-prone covariate; it is cardinal, and hence we assumed the error

followed a Poisson distribution. Unfortunately, for data such as SPOT, there is no means of

obtaining validation data to inform the distribution of the error short of testing all residents

of the province of Quebec, which is both unethical and infeasible. Thus, to specify the mean

of this Poisson distribution, we were required to estimate the cluster size distribution for

those HIV-positive individuals who were not in the Quebec genotyping program because

they had not received an HIV test or had been tested outside of Quebec. We now describe

the process by which we estimated the distribution of the error in cluster size.

The adult (age > 15) population of Quebec in 2012 was 6, 802, 700 [115] with HIV

incidence rate 7 per 100, 000 [116]. Thus, the total number of newly HIV-positive individuals

in Quebec can be estimated as 6, 802, 700 × 0.00007 ≈ 476. In Canada, approximately 25%

of people who are living with HIV do not know that they are infected [117]. Therefore, the

estimated number of people who are HIV-positive but not in the Quebec genotyping cohort

in Quebec can be estimated as (476/0.75)− 476 ≈ 159. These 159 subjects are not included

in determining the cluster size. Experts believe that among the MSM community, 15% do
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not know their status [118], so our estimate of 25% may be conservative. Also, because

clusters typically persist [119] for one or at most two years (i.e. after 12-24 months, few or

no new infections are observed with a viral sequence that is genetically very similar), we use

the annual HIV incidence rate rather than the prevalence rate to estimate the number of

HIV-positive individuals in Quebec who are “missing” from our clustering cohort.

We then looked at the cluster size distribution of the 34 HIV-positive individuals from

the SPOT data (see, Table 4–1) to estimate the cluster size for 159 unseen HIV-positive

individuals. In the SPOT study 36% are linked to clusters that are at least of size 2-9, 29%

are linked to clusters of size 1 and 35% are linked to clusters of size ≥ 10. Brown et al. [10]

estimated cluster size for MSM from HIV sequences in the United Kingdom. They reported

29% belonged to cluster size 1, 41% are linked to 2−9 individuals and 29% are part of cluster

size of more than 10 people. [11] studied the short term dynamics of the episode among MSM

in the United Kingdom. In their analysis they found that 15% belonged to cluster size 1,

60% are linked to 2− 9 and 25% belonged to cluster size ≥ 10. Based on these studies and

the SPOT cluster size distribution, we propose a Poisson distribution for the error whose

mean, on average, is big enough, to give us a distribution of cluster sizes that is similar to

the percentages listed above (i.e. 25-30 % of people in clusters ≥ 10, 40 % in clusters of 2−9

people). A reasonable Poisson distribution to achieve this would be Poisson(3). Poisson

distributions with mean 1, 5, and 10 were also considered to evaluate the sensitivity of the

results to the observed measurement error distribution.

4.4.2 Results

Table 4–1 shows the summaries of selected characteristics for 33 HIV-positive MSM. The

mean age of the HIV-positive MSM in SPOT is 33. The average number of sex partners is 5.8.

About 85% of individuals reported not using a condom on their last sexual intercourse and

the majority (88.2%) reported having been tested for HIV in the last two years. Moreover,

most (about 62%) belonged to clusters of size 3.
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Results from all analyses, whether fit ignoring measurement error or accounting for the

error using the NZM-SIMEX, were not significantly different from 0. The lack of significant

findings does not appear to be driven by the small sample size leading to highly variable

estimators: the estimates themselves were near the null values. For example, log-linear

models examining the association between cluster size and number of sex partners (one night

or total), point estimates indicate that a one-person increase in the cluster size is associated

with a 0.3 - 0.5% increase in the number of sex partners. Considering that the average number

of one night partners reported in the SPOT sample is (approximately) 4, one would need

to compare groups of men whose cluster size differed by at least 40 people for the expected

number of one night partners to increase by one individual to 5.

See Tables 4–7 to Table 4–10 in Appendix C for full results. A graphical representation

of the SIMEX estimate has also been presented in Figure 4–4. To obtain standard errors

(and p-values for the tests of association) for the NZM-SIMEX estimates, we used a bootstrap

procedure with 1000 resamples. That is, both the näıve and NZM-SIMEX (both quadratic

and non-linear) approaches yielded the same conclusions (cluster effect is not significant);

the estimated parameter were different, but in most cases, not dramatically so. Moreover,

different error distributions in all the models produce the similar results ensuring that results

are robust to the assumption regarding the mean of measurement error distribution. We

therefore conclude that the point estimates appear to be robust to the presence of measure-

ment error. We observe that cluster size is not statistically significantly associated with the

demographic and behavioural covariates of interest, suggesting that these individual level

characteristics are unlikely to be helpful in identifying – and potentially breaking the cycle

of HIV transmission within – large clusters.

4.4.3 Limitations and Discussion of the Analysis

This ongoing study primarily targets participants who frequent gay social venues and

therefore may not be representative of the Montreal MSM population. Therefore, the results
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Table 4–1: Characteristics of 33 HIV-positive MSM. For quantitative variables, mean (SD)
are provided; for factor variables, counts (percentage) are reported

Characteristic Summary Measure

Age 33 (9.5)
No.of Sex Partners 5.8 (4.7)
No condom use 29 (85.3%)
(in last sexual intercourse)
HIV tested 30 (88.2%)
(during last 24 months)
Cluster Size

1 10 (29.4%)
2− 3 3 (8.8%)
> 3 21 (61.7%)

Number of one night partners 4.27 (4.7)
< 2 14 (42.4%)
2− 4 4 (12.1%)
> 4 15 (45.5%)
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Figure 4–4: SIMEX estimate (using quadratic extrapolation) at λ = −1 from the SPOT
analysis relating number of sex partner to cluster size. The näıve estimate occurs at λ = 0.
The 95% pointwise confidence intervals are indicated by dotted (-) lines.
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from this study may not be generalized to all MSM. More importantly, our conclusions are

likely affected by limited power.

It is reasonable to speculate that the data in SPOT may be correlated: it is plausible

that the individuals in the study may know one another, and have similar demographic or

behavioural characteristics. While the available data provide no means of assessing any cor-

relation beyond the phylogenetic clustering, and approximately half of the individuals in the

SPOT study do not share HIV phylogenetic clusters with other SPOT participants, a simple

approach did not reveal significant within-cluster pairwise correlation. For example, fitting

(näıve) models of the association between each of age and number of one night partners

as a function of cluster size via generalized estimating equations positing an exchangeable

working covariance reveals a non-significant estimate of the within-cluster correlation of ap-

proximately -0.2. The very small size of the SPOT sample creates two challenges in this

regard: lack of significance in the correlation could be driven by lack of power. On the

other hand, a larger sample permit the inclusion of more covariates in the mean model, thus

affording better assessment of the residual within-cluster correlation. While membership in

the same HIV phylogenetic cluster can suggest direct sexual partnership, it is by no means

strong evidence of it. Routinely collected sequencing data is not well suited to investigating

transmission sources, as an individual whose HIV has not been sequenced may be a com-

mon source of infection or missing link in a transmission chain between two individuals in

the same cluster with genetically similar viruses, thus creating challenges in identifying the

likelihood that two individuals are indeed clustered in some sense beyond that suggested

by the phylogeny of the virus which infects them [120]. Estimators based on analysis that

acknowledge the impact of clustering in data tend to be more efficient for factors that vary

within cluster, thus it is possible that our analyses missed a significant finding through sta-

tistical inefficiency. Given the very small point estimates, however, it seems implausible that

any relationship that would be pertinent to public health planning or policy exists in the

relationships examined here.

53



In estimating the error variance of cluster size from the existing literature, it should

be noted that measurement error in cluster size was not taken into account in the cited

studies [10, 11]. It is possible that our estimates of the error variance are thus too low; for

this reason, we considered a range of plausible error distributions, however these did not

serve to change the conclusions of our analyses.

All samples in the SPOT study were sequenced on the same platform: ABIPrism 3130xl

genetic Analyser; this platform was also used in the Quebec genotyping program for the

majority of the cohort’s history from 2002 onwards, however the TrueGene/Bayer HIV plat-

form was used from April 2004 to August 2006. Genome sequence interrelationships were

determined using maximum likelihood phylogenies estimated using BioEdit and MEGA2 in-

tegrated software and PAUP (version 4, Sinauer Associates). Clusters were then assigned

based on high bootstrap values (>98%), short genetic lengths (<1%), and congruent polymor-

phisms and mutational motifs [12]. To assess stability of the estimated cluster membership,

phylogeny and estimate genetic distance was also estimated using a Bayesian approach via

the BEAST (version 1.6.1) software; cluster size and membership estimated this way were

similar to the maximum likelihood phylogenies. They were not, however, identical. Thus,

both the sequencing platform and the clustering approach are additional sources of error

introduced to the variable ‘observed cluster size’. The distributional parameters of this error

(mean, variance) are unknown, and were not taken into account in our analyses. As noted

above, conclusions were unchanged under a range of plausible error distributions, suggesting

that taking into account additional sources of error is unlikely to alter the conclusions of the

analyses.

Finally, we wish to make two points regarding the interpretation of the our analyses.

First, we remind the reader that a cluster is not representative of a sexual or social network.

Rather, these are clusterings of the HIV genome taken from an individuals’ serum sample at

a fixed point in time (fixed for each individual, but varying across individuals). Individuals

are then said to cluster if the sequenced HIV genomes are determined to be ‘close’, in terms
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of phylogenetic distance. Second, we note that the analyses were undertaken only in an

attempt to uncover whether there exists a significant correlation between various individual

characteristics and cluster size. Cluster size evolves over time in a highly dynamic fashion,

and thus the cluster size used in the analysis may not be reflective of the size of the cluster

at the time when an individual was infected with HIV. We do not attempt to attribute any

causal interpretation to the associations under investigation. The plausible directionality

of the relationship is that individual characteristics could lead to bigger or faster-growing

clusters, however as correlation (our estimand of interest) is a symmetric measure, we may

‘reverse’ the regressor and regressand without compromising its estimation.

4.5 Discussion

The simulation-extrapolation procedure is useful and easily implemented technique to

deal with measurement error (Cook and Stefanski 1995), however its development was until

now limited to mean zero random errors. In this work, we have extended SIMEX to the

case where errors can have non-zero mean errors that can follow any known parametric

distribution. This was developed with the goal of analyzing data of HIV infected MSM from

the SPOT study, where measurement error occurs in defining the transmission cluster size

because of not including people who were unaware of their status or who had been tested

outside the province of Quebec.

In this work, we focused on the relatively simple setting of additive error that is in-

dependent of both measured covariates and the true, unobserved value of the mismeasured

covariate. There are many settings in which this may not be realistic. For example, in the

case of the variable cluster size, it is plausible to posit that the error is related to the size of

the cluster so that bigger clusters have a greater error variance than smaller clusters. This

situation is considerably more challenging, since the error variance is then completely unob-

servable. We are currently working on extending the NZM-SIMEX to the setting where the

error variance depends on observed covariates; extensions to the latent variable setting will

follow.
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Through a number of simulation studies we evaluated the performance of NZM-SIMEX

under ideal and non-ideal conditions for a variety of outcomes and covariate distributions at

different sample sizes. Simulation studies showed that NZM-SIMEX performed reasonably

well in reducing biases as compared to näıve approach in all cases. The method performs

well in recovering the true value of the parameter when the distribution of the measurement

errors are known, and offers improvements (reduced bias) over the näıve estimator even when

the distribution of errors is known only approximately.

We then applied the method to the SPOT study data, in a first attempt to elucidate

correlates of HIV phylogenetic cluster size. However this method is applicable in a number

of other settings. For example, in studying the association between mother’s age and child

mortality using data from Demographic and Health Survey (DHS) of Bangladesh, researchers

are faced with the challenge that women in the DHS frequently understate their age. The

NZM-SIMEX could be applied to model the relationship between child mortality and mother’s

age, estimating the distribution of the reporting error through hospital records or other official

registries. In other populations, the impact of illicit drug use on a variety of health and quality

of life outcomes is of interest. Illicit drug use may be under-reported, and the magnitude of

the error could be assessed via hair or urine samples.

The main limitation of the NZM-SIMEX is that it requires knowledge of the measurement

error distribution. In case of mis-specified (or, if validation data were available, poorly

estimated) error distribution, it may be safer to overestimate variability of measurement

error. In such cases, the NZM-SIMEX estimators perform significantly better than the näıve

estimators. Thus, to reduce the measurement error bias in a variety of problems, NZM-

SIMEX may be considered as a useful and easily implementable approach.
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4.6 Appendix for Manuscript I

4.6.1 Appendix A: Proofs

4.6.1.1 Proof of Theorem 1

Proof. Let us again consider the following simple linear regression model

Yi = β0 + β1Ui + εi, (4.3)

where true predictor Ui follows N(µU , σ
2
U) and εi has mean 0. Suppose Xi is an imperfect

measurement of Ui which is defined as

Xi = Ui − δ∗i , (4.4)

where δ∗i follows a distribution with mean µδ∗ and variance σ2
δ∗ , independent of Ui and Yi.

Note that under this measurement error specification, P (Xi < Ui) may be at or near 1,

depending on the distribution of Ui and δ∗i .

As noted above, B new covariates Xi,b(λk) are generated according to equation 4.1 so

that the total measurement error variance is then the variance of Xi,b(λk), i.e. σ2
δ∗(1 + λk).

For the bth data set, regressing Y on Xb(λk) gives the vector of näıve estimates β̂NZMb (λk) =

(β̂0,b(λk), β̂1,b(λk))
′ of βb(λk) found via ordinary least squares (OLS), with the average esti-

mate at each λk computed according to equation 4.2.

To study the asymptotic mean of the average estimate of slope and intercept, we sub-

stitute (4.4) into (4.3), which gives

Yi = β0 + β1(Xi + δ∗i ) + εi

= β0 + β1[Xi,b(λk) +
√
λkδ

∗
ib − (1 +

√
λk)µδ∗ + δi] + εi

= β0 + β1Xi,b(λk) + ε∗i ,
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where ε∗i = β1{
√
λkδ

∗
ib − (1 +

√
λk)µδ∗ + δi} + εi. For the bth data set, the näıve estimate of

the slope β1 can be obtained by OLS, which yields

β̂NZM1b (λk) =

n∑
i=1

(Xi,b − X̄b)(Yi − Ȳ )

n∑
i=1

(Xi,b − X̄b)2

=
SXY −

√
λkSY δ∗b

SXX + λkSδ∗b δ∗b − 2
√
λkSXδ∗b

. (4.5)

The näıve estimate of the intercept is

β̂NZM0b (λk) = Ȳ − β̂1b(λk)Ū . (4.6)

At each λk, the expected value of the estimator is

β̂1

NZM
(λk) = E

[
β̂NZM1,b (λk)|{Yi, Xi}ni=1

]
and

β̂0

NZM
(λk) = E

[
Ȳ − β̂NZM1b (λk)(X̄ +

√
λkδ̄∗)|{Yi, Xi}ni=1

]
,

where the expectation is in terms of the distribution of {δi,b} only.

It then follows that

E
[
β̂1

NZM
(λk)

]
= E

[
β̂NZM1,b (λk)

]
and

E
[
β̂0

NZM
(λk)

]
= E

[
β̂NZM0,b (λk)

]
.

Using the fact that
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SXY
P−→ σXY ,

SXX
P−→ σXX ,

SY δb
P−→ σY δ∗b ,

Sδbδb
P−→ σδ∗b δ∗b

and SXδ∗b
P−→ σXδ∗b ,

we obtain

β̂NZM1,b (λk)
P−→

σXY −
√
λkσ

∗
Y δb

σXX + λkσδ∗b δ∗b − 2
√
λkσXδ∗b

and hence

β̂NZM1 (λk)
P−→

σXY −
√
λσY δ∗b

σXX + λkσδ∗b δ∗b − 2
√
λkσXδ∗b

.

Here,

σXY = Cov(X, Y ) = Cov(U, Y ),

σY δ∗b = Cov(Y, δ∗b ) = 0,

σXX = V ar(X) = V ar(U + δ∗) = σ2
U + σ2

δ∗ ,

σδb∗δb∗ = V ar(δ∗b ) = σ2
δ∗

and σXδ∗b = Cov(X, δ∗b ) = Cov(U + δ∗, δ∗b ) = 0.

By substitution into (4.5), we obtain

β̂NZM1 (λk)
P−→ Cov(U, Y )

σ2
U + (1 + λk)σ2

δ∗

=
Cov(U, Y )

V ar(U)

V ar(U)

σ2
U + (1 + λk)σ2

δ∗

= β1

[
σ2
U

σ2
U + (1 + λk)σ2

δ∗

]
.
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Hence,

lim
λk→−1

plim ˆβNZM1 (λk) = β1.

Similarly, considering (4.6), it can be shown that

lim
λk→−1

plimβ̂NZM0 (λk) = β0.

In the SIMEX extrapolation step, each component of the vector β̂(λk) is modelled as

a function of λk for λk ≥ 0. For example, for the slope parameter, this modelling can

be considered as a non-linear regression problem, with dependent variable β̂NZM1 (λk) and

independent variable λk having a mean function of the form

g(λk) = β1

[
σ2
U

σ2
U + (1 + λk)σ2

δ∗

]
.

The parameter of interest, β1, can be obtained from g(λk) by extrapolation to λk = −1,

yielding SIMEX estimate of β. We now demonstrate that the dependence of β̂NZM on λk is

a complex, non-linear form.

4.6.1.2 Proof of Theorem 2

Proof. For the purposes of the proof, we will consider the slightly more complex and more

realistic setting of multiple linear regression:

Yi = β0 + βZZi + βUUi + εi

= βtV Vi + βUUi + εi, (4.7)

where now βV = (β0, βZ), Vi = (1, Zi), and εi has mean 0. Here Y , V and U denote the

response variable, and two covariates measured without error, respectively. As before, instead

of the true predictor, Ui, an imperfect measurement Xi is available.
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In the multiple linear regression setting, for the bth data set, the regression model (4.7)

can be expressed as

Yi = βtV Vi + βUXbi + εi

= βtV Vi + βU{Xi −
√
λkδ

∗
bi + (1 +

√
λk)µδ∗}+ εi

= βtV Vi + βU{Xi −
√
λkδ

∗
bi + a}+ εi,

=

(
Vi, Xi −

√
λkδ

∗
bi + a

)βV
βU

+ εi, (4.8)

where a = (1 +
√
λk)µδ∗ . Using OLS to estimate the parameter in (4.8), we obtain

β̂NZMb (λk) =


A B∗T

B∗ C∗



−1 (

k1

k∗2

)
,

where

A =
∑

V
′

i Vi,

B∗ =
∑

V
′

iXi −
√
λk
∑

V
′

i δ
∗
bi + a

∑
V
′

i ,

C∗ = λk
∑

δ∗2bi + na2 − 2
√
λk
∑

X
′

iδbi + 2a
∑

Xi

− 2a
√
λk
∑

δbi,

K1 =
∑

V
′

i Yi,

K∗2 =
∑

X
′

iYi −
√
λkδ

∗
biYi + a

∑
Yi.
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Equation (4.8) can be expressed asA B∗T

B∗ C∗


β̂V (λk)

β̂U(λk)

 =

k1

k∗2


or, Aβ̂V (λk) +B∗T β̂U(λk) = k1

B∗β̂V (λk) +C∗β̂U(λk) = k∗2.

Solving this system of equations, we obtain the following parameters estimates:

β̂NZMV (λk) = A−1k1 −
A−1B∗k∗2 −A−1B∗B∗

′
A−1k1

C∗ −B∗′A−1B∗

and

β̂NZMU (λk) =
k∗2 −B∗

′
A−1k1

C∗ −B∗′A−1B∗

=
g1(
√
λk)− g2(

√
λk)

g3(λk)− g4(
√
λk)

.

Thus, we see that the components of β̂NZM(λk) are non-linear functions of λk.

The complex dependence of the NZM-SIMEX estimator on λk suggests that the estimator

may be sensitive to the choice of extrapolating function. We explore this in a comprehensive

series of simulations in the section that follows.
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4.6.2 Appendix B: Details of Simulation Study

4.6.2.1 Design of the Simulation Study

Table 4–2: Simulation scenarios

Scenario Distribution of (U,V) True δ∗ Y Assumed δ∗b

1 N


0

0

 ,

 1 0.447

0.447 1

 δ∗ = |δ| and δ ∼ N(0, 0.25) N(ηa1 , 1) δ∗b = |δb| and δb ∼ N(0, 0.25)

2 N


0

0

 ,

 1 0.447

0.447 1

 δ∗ = |δ| and δ ∼ N(0, 0.5) N(ηa1 , 1) δ∗b = |δb| and δb ∼ N(0, 0.5)

3 N


0

0

 ,

 1 0.447

0.447 1

 δ∗ = |δ| and δ ∼ N(0, 1) N(ηa1 , 1) δ∗b = |δb| and δb ∼ N(0, 1)

4 N


0

0

 ,

 1 0.447

0.447 1

 δ∗ = |δ| and δ ∼ N(0, 2) N(ηa1 , 1) δ∗b = |δb| and δb ∼ N(0, 2)

5 U ∼ P (12), V ∼ N(0, 1) δ∗ ∼ P (1.5) N(ηb2, 1) δ∗b ∼ P (1.5)

6 U ∼ P (12), V ∼ N(0, 1) δ∗ ∼ P (3) N(ηb2, 1) δ∗b ∼ P (3)

7 N


0

0

 ,

 1 0.447

0.447 1

 δ ∼ N(0, 0.5) N(ηa1 , 1) δb ∼ N(0, 0.25)

8 N


0

0

 ,

 1 0.447

0.447 1

 δ ∼ N(0, 0.5) N(ηa1 , 1) δb ∼ N(0, 0.75)

9 U ∼ P (12), V ∼ N(0, 1) δ∗ ∼ P (1.5) N(ηb2, 1) δ∗b ∼ P (0.75)

10 U ∼ P (12), V ∼ N(0, 1) δ∗ ∼ P (1.5) N(ηb2, 1) δ∗b ∼ P (2.25)

11 U ∼ P (12), V ∼ N(0, 1) δ∗ ∼ P (1.5) P (exp(ηc3)) δ∗b ∼ P (1.5)

12 U ∼ P (12), V ∼ N(0, 1) δ∗ ∼ P (3) P (exp(ηc3)) δ∗b ∼ P (3)

13 U ∼ P (12), V ∼ N(0, 1) δ∗ ∼ P (3) Bernoulli(pd, 1) δ∗b ∼ P (3)

ηa1 = −2 + 1 ∗ U + 0.25 ∗ V + 0.25 ∗ UV

ηb2 = 1 + 1 ∗ U + 1 ∗ V + 0.5 ∗ UV

ηc3 = 0.25 + 0.5 ∗ U + 0.05 ∗ V + 0.05 ∗ UV

pd = exp(η4)
1+exp(η4) , where η4 = −2 + 0.25 ∗ U − 1 ∗ V + 0.25 ∗ UV

4.6.2.2 Simulation Results
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Table 4–3: Simulation results for a continuous outcome and a correctly specified error dis-
tribution. SIMEX-Q is the NZM SIMEX with a quadratic fit in the extrapolation step;
SIMEX-NL is the NZM SIMEX with a non-linear fit in the extrapolation step.

Näıve SIMEX-Q SIMEX-NL

β̂OLS Bias SE MSE β̂NZM Bias SE MSE β̂NZM Bias SE MSE

Scenario 1: Y ∼ N(η1, 1) and δ ∼ N(0, 0.25).

True values of the parameters are β0 = −2, βU = 1, βV = 0.25 and βUV = 0.25

n = 100

β0 -1.631 0.369 0.123 0.151 -1.997 0.003 0.119 0.014 -1.998 0.002 0.119 0.014

βU 0.900 -0.099 0.121 0.025 0.998 -0.002 0.136 0.018 1.000 0.000 0.136 0.019

βV 0.389 0.139 0.124 0.035 0.255 0.005 0.121 0.015 0.254 0.004 0.122 0.015

βUV 0.225 -0.025 0.101 0.011 0.243 -0.008 0.110 0.012 0.242 -0.008 0.111 0.012

n = 500

β0 -1.634 0.366 0.054 0.137 -2.000 -0.000 0.053 0.003 -2.001 -0.001 0.053 0.003

βU 0.899 -0.101 0.048 0.013 0.996 -0.004 0.054 0.003 0.998 -0.002 0.054 0.003

βV 0.388 0.138 0.055 0.022 0.252 0.002 0.055 0.003 0.251 0.001 0.055 0.003

βUV 0.232 -0.018 0.041 0.002 0.249 -0.001 0.045 0.002 0.249 -0.001 0.045 0.002

n = 1000

β0 -1.634 0.366 0.037 0.135 -1.999 0.000 0.037 0.001 -1.999 0.000 0.037 0.001

βU 0.897 -0.103 0.034 0.012 0.994 -0.006 0.038 0.002 0.997 -0.003 0.039 0.002

βV 0.389 0.139 0.039 0.021 0.253 0.003 0.038 0.001 0.257 0.002 0.038 0.001

βUV 0.232 -0.018 0.031 0.001 0.249 -0.001 0.033 0.001 0.249 -0.001 0.033 0.001

Scenario 2: Y ∼ N(η1, 1) and δ ∼ N(0, 0.5).

True values of the parameters are β0 = −2, βU = 1, βV = 0.25 and βUV = 0.25

n = 100

β0 -1.523 0.477 0.132 0.245 -1.997 0.003 0.125 0.016 -1.998 0.002 0.125 0.016

βU 0.817 -0.183 0.119 0.048 0.979 -0.021 0.147 0.022 0.990 -0.009 0.149 0.023

βV 0.454 0.204 0.133 0.059 0.264 0.014 0.129 0.017 0.259 0.009 0.131 0.017

βUV 0.209 -0.041 0.101 0.012 0.239 -0.011 0.119 0.014 0.239 -0.010 0.121 0.015

n = 500

β0 -1.526 0.474 0.058 0.228 -1.999 0.000 0.056 0.003 2.001 -0.001 0.056 0.003

βU 0.816 -0.184 0.048 0.036 0.976 -0.024 0.058 0.004 0.987 -0.013 0.059 0.004

βV 0.455 0.205 0.059 0.045 0.261 0.011 0.058 0.004 0.256 0.006 0.058 0.003

βUV 0.217 -0.033 0.042 0.003 0.247 -0.003 0.048 0.002 0.248 -0.002 0.049 0.002

n = 1000

β0 -1.526 0.474 0.039 0.226 -1.999 0.001 0.039 0.001 -1.999 0.001 0.039 0.002

βU 0.814 -0.186 0.034 0.036 0.974 -0.026 0.041 0.002 0.985 -0.015 0.042 0.002

βV 0.456 0.206 0.041 0.044 0.262 0.012 0.039 0.002 0.257 0.007 0.040 0.002

βUV 0.217 -0.033 0.031 0.002 0.247 -0.003 0.036 0.001 0.248 -0.002 0.036 0.001

continued
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Table 4–3: (cont.) Simulation results for a continuous outcome and a correctly specified
measurement error distribution. SIMEX-Q is the NZM SIMEX with a quadratic fit in the
extrapolation step; SIMEX-NL is the NZM SIMEX with a non-linear fit in the extrapolation
step.

Näıve SIMEX-Q SIMEX-NL

β̂OLS Bias SE MSE β̂NZM Bias SE MSE β̂NZM Bias SE MSE

Scenario 3: Y ∼ N(η1, 1) and δ ∼ N(0, 1).

True values of the parameters are β0 = −2, βU = 1, βV = 0.25 and βUV = 0.25

n = 100

β0 -1.424 0.576 0.146 0.353 -1.994 0.006 0.134 0.018 -1.997 0.003 0.136 0.019

βU 0.690 -0.309 0.115 0.109 0.914 -0.087 0.158 0.033 0.947 -0.053 0.168 0.031

βV 0.539 0.289 0.147 0.105 0.293 0.043 0.139 0.021 0.278 0.028 0.144 0.022

βUV 0.183 -0.067 0.101 0.015 0.229 -0.021 0.132 0.018 0.232 -0.018 0.137 0.019

n = 500

β0 -1.425 0.575 0.063 0.334 -1.996 0.004 0.060 0.0034 -1.999 0.001 0.061 0.004

βU 0.689 -0.311 0.047 0.099 0.911 -0.089 0.064 0.012 0.943 -0.0567 0.067 0.008

βV 0.542 0.292 0.064 0.089 0.289 0.039 0.063 0.006 0.275 0.025 0.064 0.005

βUV 0.191 -0.059 0.042 0.005 0.239 -0.011 0.053 0.011 0.243 -0.007 0.055 0.003

n = 1000

β0 -1.426 0.574 0.043 0.331 -1.995 0.005 0.042 0.002 -1.997 0.003 0.042 0.002

βU 0.687 -0.313 0.033 0.099 0.907 -0.093 0.044 0.011 0.939 -0.061 0.047 0.006

βV 0.544 0.294 0.045 0.089 0.292 0.042 0.043 0.004 0.277 0.027 0.044 0.003

βUV 0.192 -0.058 0.030 0.004 0.292 0.042 0.043 0.004 0.243 -0.007 0.039 0.003

Scenario 4: Y ∼ N(η1, 1) and δ ∼ N(0, 2).

True values of the parameters are β0 = −2, βU = 1, βV = 0.25 and βUV = 0.25.

n = 100

β0 -1.367 0.633 0.163 0.428 -1.986 0.014 0.145 0.021 -1.993 0.008 0.151 0.023

βU 0.527 -0.473 0.105 0.235 0.769 -0.230 0.161 0.079 0.833 -0.167 0.181 0.061

βV 0.631 0.381 0.167 0.173 0.357 0.107 0.150 0.034 0.328 0.078 0.159 0.031

βUV 0.147 -0.103 0.097 0.020 0.203 -0.047 0.142 0.022 0.212 -0.038 0.155 0.026

n = 500

β0 -1.366 0.634 0.0699 0.407 -1.986 0.014 0.065 0.004 -1.992 0.008 0.067 0.005

βU 0.526 -0.474 0.044 0.227 0.768 -0.232 0.066 0.058 0.829 -0.170 0.074 0.035

βV 0.637 0.387 0.072 0.155 0.353 0.103 0.067 0.015 0.325 0.075 0.071 0.011

βUV 0.155 -0.095 0.040 0.010 0.215 -0.035 0.057 0.005 0.226 -0.024 0.062 0.004

n = 1000

β0 -1.427 0.5763 0.1458 0.353 -1.994 0.006 0.134 0.018 -1.997 0.003 0.136 0.019

βU 0.690 -0.309 0.115 0.109 0.914 -0.087 0.158 0.033 0.947 -0.053 0.168 0.031

βV 0.539 0.289 0.147 0.105 0.293 0.043 0.139 0.021 0.278 0.028 0.144 0.022

βUV 0.183 -0.067 0.101 0.015 0.229 -0.021 0.132 0.018 0.232 -0.018 0.137 0.019

continued
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Table 4–3: (cont.) Simulation results for a continuous outcome and a correctly specified
measurement error distribution. SIMEX-Q is the NZM SIMEX with a quadratic fit in the
extrapolation step; SIMEX-NL is the NZM SIMEX with a non-linear fit in the extrapolation
step.

Näıve SIMEX-Q SIMEX-NL

β̂OLS Bias SE MSE β̂NZM Bias SE MSE β̂NZM Bias SE MSE

Scenario 5: Y ∼ N(η2, 1) and δ∗ ∼ P (1.5).

True values of the parameters are β0 = 1, βU = 1, βV = 1 and βUV = 0.5.

n = 100

β0 3.672 2.672 0.510 7.402 1.076 0.076 0.696 0.489 1.035 0.035 0.712 0.509

βU 0.889 -0.111 0.045 0.014 0.994 -0.006 0.055 0.003 0.998 -0.002 0.056 0.003

βV 2.300 1.300 0.628 2.085 0.995 -0.005 0.856 0.733 0.982 -0.018 0.872 0.761

βUV 0.447 -0.053 0.054 0.006 0.500 0.000 0.066 0.004 0.501 0.001 0.067 0.005

n = 500

β0 3.667 2.667 0.238 7.169 1.076 0.076 0.308 0.101 1.038 0.038 0.310 0.098

βU 0.889 -0.111 0.021 0.013 0.994 -0.006 0.024 0.001 0.997 -0.003 0.024 0.001

βV 2.337 1.337 0.273 1.862 1.049 0.048 0.366 0.136 1.029 0.029 0.373 0.139

βUV 0.444 -0.056 0.024 0.004 0.496 -0.004 0.029 0.002 0.487 -0.002 0.029 0.001

n = 1000

β0 3.658 2.658 0.166 7.093 1.067 0.067 0.220 0.053 1.028 0.028 0.224 0.051

βU 0.889 -0.111 0.015 0.012 0.994 -0.006 0.017 0.000 0.998 -0.003 0.017 0.000

βV 2.333 1.334 0.183 1.812 1.038 0.038 0.244 0.061 1.017 0.017 0.249 0.063

βUV 0.444 -0.056 0.016 0.003 0.497 -0.003 0.019 0.000 0.499 -0.002 0.019 0.000

Scenario 6: Y ∼ N(η2, 1) and δ∗ ∼ P (3).

True values of the parameters are β0 = 1, βU = 1, βV = 1 and βUV = 0.5.

n = 33

β0 5.767 4.767 1.088 23.914 1.324 0.324 1.850 3.531 1.144 0.144 1.971 3.908

βU 0.801 -0.198 0.108 0.051 0.972 -0.027 0.145 0.021 0.987 -0.012 0.155 0.024

βV 3.307 2.307 1.246 6.879 1.030 0.030 2.165 4.689 0.923 -0.076 2.341 5.490

βUV 0.406 -0.093 0.122 0.023 0.495 -0.004 0.168 0.028 0.503 0.003 0.183 0.033

n = 100

β0 5.764 4.764 0.518 22.968 1.287 0.287 0.880 0.858 1.119 0.119 0.934 0.887

βU 0.804 -0.197 0.052 0.041 0.976 -0.024 0.069 0.005 0.989 -0.010 0.074 0.006

βV 3.344 2.344 0.643 5.908 1.088 0.088 1.108 1.236 1.015 0.015 1.167 1.362

βUV 0.405 -0.095 0.063 0.013 0.492 -0.008 0.086 0.007 0.498 -0.002 0.091 0.008

n = 500

β0 5.762 4.762 0.241 22.732 1.286 0.286 0.389 0.233 1.125 0.125 0.402 0.178

βU 0.804 -0.196 0.024 0.039 0.976 -0.024 0.030 0.002 0.989 -0.010 0.031 0.001

βV 3.383 2.383 0.282 5.756 1.156 0.156 0.477 0.252 1.076 0.076 0.503 0.259

βUV 0.402 -0.098 0.028 0.010 0.487 -0.013 0.037 0.002 0.494 -0.007 0.039 0.002

n = 1000

β0 5.749 4.749 0.168 22.579 1.269 0.269 0.276 0.149 1.106 0.106 0.288 0.094

βU 0.805 -0.195 0.017 0.038 0.977 -0.023 0.022 0.001 0.990 -0.009 0.023 0.001

βV 3.379 2.379 0.193 5.701 1.143 0.143 0.321 0.123 1.061 0.061 0.334 0.116

βUV 0.402 -0.098 0.019 0.010 0.488 -0.012 0.025 0.001 0.495 -0.006 0.026 0.001
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Table 4–4: Simulation results for a continuous outcome and a mis-specified measurement
error distribution. SIMEX-Q is the NZM SIMEX with a quadratic fit in the extrapolation
step; SIMEX-NL is the NZM SIMEX with a non-linear fit in the extrapolation step.

Näıve SIMEX-Q SIMEX-NL

β̂OLS Bias SE MSE β̂NZM Bias SE MSE β̂NZM Bias SE MSE

Scenario 7: Y ∼ N(η1, 1), δ ∼ N(0, 0.5) and δb ∼ N(0, 0.25).

True values of the parameters are β0 = −2, βU = 1, βV = 0.25 and βUV = 0.25.

n = 100

β0 -1.523 0.476 0.132 0.245 -1.842 0.157 0.121 0.039 -1.842 0.157 0.121 0.039

βU 0.817 -0.182 0.119 0.047 0.897 -0.102 0.132 0.028 0.899 -0.100 0.133 0.027

βV 0.454 0.204 0.132 0.059 0.337 0.087 0.124 0.023 0.336 0.086 0.125 0.023

βUV 0.209 -0.040 0.101 0.011 0.224 -0.025 0.109 0.012 0.223 -0.026 0.109 0.012

n = 500

β0 -1.525 0.474 0.057 0.228 -1.844 0.155 0.054 0.027 -1.844 0.155 0.054 0.027

βU 0.816 -0.183 0.047 0.036 0.895 -0.104 0.052 0.013 0.897 -0.102 0.052 0.013

βV 0.454 0.204 0.058 0.045 0.334 0.084 0.056 0.010 0.334 0.084 0.056 0.010

βUV 0.216 -0.033 0.041 0.002 0.231 -0.018 0.044 0.002 0.231 -0.018 0.044 0.002

n = 1000

β0 -1.526 0.473 0.039 0.226 -1.844 0.155 0.037 0.025 -1.844 0.155 0.037 0.025

βU 0.814 -0.185 0.033 0.035 0.893 -0.106 0.037 0.012 0.895 -0.104 0.037 0.012

βV 0.456 0.206 0.041 0.044 0.336 0.086 0.038 0.008 0.335 0.085 0.038 0.008

βUV 0.216 -0.033 0.030 0.002 0.231 -0.018 0.032 0.001 0.231 -0.018 0.032 0.001

Scenario 8: Y ∼ N(η1, 1), δ ∼ N(0, 0.5) and δb ∼ N(0, 0.75).

True values of the parameters are β0 = −2, βU = 1, βV = 0.25 and βUV = 0.25.

n = 100

β0 -2.136 -0.136 0.131 0.036 -2.143 -0.143 0.133 0.038

βU 1.054 0.054 0.160 0.028 1.084 0.084 0.168 0.035

βV 0.198 -0.051 0.135 0.021 0.184 -0.065 0.139 0.023

βUV 0.254 0.004 0.128 0.016 0.256 0.006 0.133 0.017

n = 500

β0 -2.139 -0.139 0.059 0.023 -2.145 -0.145 0.059 0.024

βU 1.051 0.051 0.063 0.006 1.081 0.081 0.066 0.010

βV 0.193 -0.056 0.061 0.006 0.179 -0.070 0.062 0.008

βUV 0.262 0.012 0.051 0.002 0.265 0.015 0.053 0.003

n = 1000

β0 -2.138 -0.138 0.040 0.020 -2.143 -0.143 0.041 0.022

βU 1.048 0.048 0.044 0.004 1.078 0.078 0.046 0.008

βV 0.194 -0.055 0.041 0.004 0.181 -0.068 0.042 0.006

βUV 0.261 0.011 0.038 0.001 0.264 0.014 0.039 0.001

continued
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Table 4–4: (cont.) Simulation results: Simulation results for a continuous outcome and a mis-
specified measurement error distribution. SIMEX-Q is the NZM SIMEX with a quadratic
fit in the extrapolation step; SIMEX-NL is the NZM SIMEX with a non-linear fit in the
extrapolation step.

Näıve SIMEX-Q SIMEX-NL

β̂OLS Bias SE MSE β̂NZM Bias SE MSE β̂NZM Bias SE MSE

Scenario 9: Y ∼ N(η2, 1), δ∗ ∼ P (1.5) and δ∗b ∼ P (0.75).

True values of the parameters are β0 = 1, βU = 1, βV = 1 and βUV = 0.5.

n = 100

β0 3.672 2.672 0.510 7.401 2.423 1.423 0.590 2.374 2.417 1.417 0.596 2.363

βU 0.888 -0.111 0.045 0.014 0.940 -0.059 0.049 0.006 0.941 -0.058 0.049 0.006

βV 2.300 1.300 0.628 2.085 1.670 0.670 0.729 0.981 1.673 0.673 0.729 0.985

βUV 0.447 -0.052 0.054 0.006 0.473 -0.026 0.059 0.004 0.473 -0.026 0.059 0.004

n = 500

β0 3.666 2.666 0.237 7.168 2.420 1.420 0.268 2.089 2.415 1.415 0.268 2.076

βU 0.889 -0.110 0.020 0.012 0.940 -0.059 0.021 0.003 0.941 -0.058 0.021 0.004

βV 2.336 1.336 0.273 1.861 1.717 0.717 0.313 0.612 1.713 0.713 0.316 0.609

βUV 0.444 -0.055 0.023 0.003 0.469 -0.030 0.025 0.001 0.470 -0.029 0.026 0.001

n = 1000

β0 3.658 2.658 0.166 7.093 2.411 1.411 0.189 2.028 2.405 1.405 0.190 2.010

βU 0.889 -0.110 0.014 0.012 0.940 -0.059 0.015 0.003 0.941 -0.058 0.015 0.003

βV 2.333 1.333 0.183 1.811 1.710 0.710 0.209 0.548 1.705 0.705 0.211 0.542

βUV 0.444 -0.055 0.015 0.003 0.470 -0.029 0.016 0.001 0.470 -0.029 0.017 0.001

Scenario 10: Y ∼ N(η2, 1), δ∗ ∼ P (1.5) and δ∗b ∼ P (2.25).

True values of the parameters are β0 = 1, βU = 1, βV = 1 and βUV = 0.5.

n = 100

β0 -0.343 -1.343 0.817 2.472 -0.464 -1.464 0.859 2.884

βU 1.047 0.047 0.061 0.005 1.056 0.056 0.064 0.007

βV 0.283 -0.716 1.001 1.516 0.232 -0.767 1.048 1.687

βUV 0.526 0.026 0.073 0.006 0.530 0.030 0.077 0.006

n = 500

β0 -0.341 -1.341 0.354 1.925 -0.458 -1.458 0.364 2.260

βU 1.046 0.046 0.025 0.002 1.055 0.055 0.026 0.003

βV 0.343 -0.656 0.424 0.611 0.285 -0.714 0.444 0.708

βUV 0.522 0.022 0.031 0.001 0.526 0.026 0.033 0.001

n = 1000

β0 -0.351 -1.351 0.255 1.892 -0.470 -1.470 0.265 2.232

βU 1.047 0.047 0.018 0.002 1.056 0.056 0.019 0.003

βV 0.328 -0.671 0.284 0.531 0.267 -0.732 0.297 0.625

βUV 0.523 0.023 0.020 0.001 0.528 0.021 0.028 0.001
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Table 4–5: Simulation results for a Poisson outcome and a correctly specified measurement
error distribution. SIMEX-Q is the NZM SIMEX with a quadratic fit in the extrapolation
step; SIMEX-NL is the NZM SIMEX with a non-linear fit in the extrapolation step.

Näıve SIMEX-Q SIMEX-NL

β̂OLS Bias SE MSE β̂NZM Bias SE MSE β̂NZM Bias SE MSE

Scenario 11: Y ∼ P (exp(η3)) and δ∗ ∼ P (1.5).

True values of the parameters are β0 = 0.25, βU = 0.5, βV = 0.05 and βUV = 0.05.

n = 100

β0 1.258 1.008 0.136 1.036 0.302 0.052 0.247 0.064 0.231 -0.018 0.275 0.076

βU 0.379 -0.120 0.045 0.016 0.483 -0.016 0.056 0.003 0.501 0.001 0.063 0.004

βV 0.163 0.113 0.136 0.031 0.060 0.010 0.271 0.073 0.054 0.004 0.306 0.094

βUV 0.036 -0.013 0.047 0.002 0.047 -0.002 0.065 0.004 0.047 -0.002 0.074 0.005

n = 500

β0 1.240 0.990 0.071 0.985 0.268 0.018 0.125 0.016 0.194 -0.055 0.138 0.022

βU 0.390 -0.109 0.024 0.012 0.491 -0.008 0.028 0.000 0.510 0.010 0.031 0.001

βV 0.150 0.100 0.072 0.015 0.040 -0.009 0.138 0.019 0.030 -0.019 0.155 0.024

βUV 0.042 -0.007 0.025 0.000 0.052 0.002 0.032 0.001 0.054 0.004 0.036 0.001

n = 1000

β0 1.241 0.991 0.050 0.985 0.270 0.020 0.084 0.007 0.198 -0.051 0.094 0.011

βU 0.390 -0.109 0.017 0.012 0.491 -0.008 0.019 0.000 0.510 0.010 0.021 0.000

βV 0.153 0.103 0.053 0.013 0.051 0.001 0.101 0.010 0.042 -0.007 0.115 0.013

βUV 0.041 -0.008 0.019 0.000 0.049 -0.000 0.023 0.000 0.051 0.001 0.027 0.000

Scenario 12: Y ∼ P (exp(η3)) and δ∗ ∼ P (3).

True values of the parameters are β0 = 0.25, βU = 0.5, βV = 0.05 and βUV = 0.05.

n = 33

β0 2.695 2.445 1.232 7.502 0.415 0.165 2.369 5.642 0.304 0.054 2.970 8.827

βU 0.411 -0.088 0.100 0.017 0.487 -0.012 0.154 0.024 0.495 -0.004 0.193 0.037

βV 0.320 0.270 1.238 1.607 0.059 0.009 1.540 1.454 0.075 0.025 1.3011 1.898

βUV 0.039 -0.010 0.104 0.010 0.048 -0.001 0.169 0.028 0.047 -0.002 0.219 0.048

n = 100

β0 1.888 1.638 0.105 2.694 0.490 0.240 0.320 0.160 0.351 0.101 0.370 0.147

βU 0.301 -0.198 0.053 0.042 0.430 -0.069 0.071 0.009 0.466 -0.033 0.082 0.007

βV 0.229 0.179 0.106 0.043 0.090 0.040 0.351 0.124 0.078 0.028 0.425 0.181

βUV 0.027 -0.022 0.054 0.003 0.040 -0.009 0.082 0.006 0.042 -0.007 0.100 0.010

n = 500

β0 1.889 1.639 0.051 2.691 0.433 0.183 0.173 0.063 0.288 0.038 0.195 0.039

βU 0.313 -0.186 0.029 0.035 0.445 -0.054 0.038 0.004 0.483 -0.016 0.043 0.002

βV 0.226 0.176 0.054 0.034 0.053 0.003 0.177 0.031 0.033 -0.016 0.208 0.043

βUV 0.035 -0.014 0.028 0.001 0.049 -0.001 0.040 0.001 0.053 0.003 0.047 0.002

n = 1000

β0 1.892 1.642 0.035 2.699 0.435 0.185 0.113 0.047 0.292 0.042 0.123 0.017

βU 0.313 -0.186 0.020 0.035 0.446 -0.053 0.025 0.003 0.482 -0.017 0.027 0.001

βV 0.226 0.176 0.039 0.032 0.064 0.014 0.128 0.016 0.049 -0.001 0.148 0.022

βUV 0.034 -0.015 0.022 0.001 0.046 -0.003 0.029 0.001 0.049 -0.001 0.034 0.001
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Table 4–6: Simulation results for a Bernoulli outcome and a correctly specified measurement
error distribution. SIMEX-Q is the NZM SIMEX with a quadratic fit in the extrapolation
step; SIMEX-NL is the NZM SIMEX with a non-linear fit in the extrapolation step.

Näıve SIMEX-Q SIMEX-NL

β̂OLS Bias SE MSE β̂NZM Bias SE MSE β̂NZM Bias SE MSE

Scenario 13: Y ∼ Bernoulli(p) and δ∗ ∼ P (3).

True values of the parameters are β0 = −2, βU = 0.25, βV = −1 and βUV = 0.25.

n = 100

β0 -0.836 1.164 0.769 1.946 -2.033 -0.033 1.379 1.905 -2.083 -0.083 1.439 2.079

βU 0.204 -0.045 0.097 0.011 0.259 0.009 0.131 0.017 0.263 0.013 0.137 0.019

βV 0.236 1.236 0.929 2.391 -0.953 0.048 1.657 2.748 -0.991 0.009 1.724 2.974

βUV 0.204 -0.046 0.122 0.017 0.260 0.010 0.165 0.027 0.264 0.014 0.171 0.029

n = 500

β0 -0.767 1.233 0.279 1.599 -1.872 0.128 0.483 0.249 -1.916 0.084 0.499 0.256

βU 0.189 -0.061 0.034 0.005 0.239 -0.011 0.045 0.002 0.243 -0.007 0.046 0.002

βV 0.224 1.224 0.349 1.621 -0.864 0.136 0.607 0.386 -0.904 0.096 0.625 0.400

βUV 0.187 -0.063 0.045 0.006 0.238 -0.012 0.059 0.004 0.242 -0.008 0.060 0.004

n = 1000

β0 -0.777 1.223 0.195 1.533 -1.886 0.114 0.337 0.126 -1.930 0.069 0.345 0.124

βU 0.189 -0.060 0.024 0.004 0.239 -0.010 0.031 0.001 0.244 -0.006 0.032 0.001

βV 0.228 1.228 0.253 1.571 -0.858 0.142 0.439 0.213 -0.898 0.102 0.448 0.211

βUV 0.186 -0.064 0.031 0.005 0.238 -0.012 0.042 0.002 0.242 -0.008 0.043 0.002
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4.6.3 Appendix C: Additional Results

Table 4–7: Results from simple linear regression model. SIMEX-Q is the NZM SIMEX with a
quadratic fit in the extrapolation step; SIMEX-NL is the NZM SIMEX with a non-linear fit in
the extrapolation step. In the first panel, β1 indicates the expected difference in age between
two groups of men whose cluster size differs by one individual, whereas in the second panel,
β1 expected difference in the number of sex partners associated with a one-person difference
in cluster size.

Näıve SIMEX-Q SIMEX-NL

Parameter µ∗ β̂OLS SE p-value β̂NZM SE p-value β̂NZM SE p-value

Model: Relating age to cluster size

β0 3 34.283 2.207 0.000 34.607 2.801 0.000 34.733 2.801 0.000

β1 3 -0.123 0.141 0.388 -0.119 0.149 0.421 -0.131 0.149 0.381

β0 1 34.441 2.633 0.000 34.374 2.635 0.000

β1 1 -0.126 0.153 0.409 -0.120 0.154 0.434

β0 5 34.979 3.142 0.000 34.905 3.143 0.000

β1 5 -0.129 0.158 0.415 -0.123 0.158 0.438

β0 10 5.279 1.645 0.001 5.239 1.659 0.002

β1 10 0.025 0.077 0.746 0.027 0.078 0.729

Model: Relating number of sex partners to cluster size

β0 3 5.552 1.119 0.000 5.524 1.064 0.000 5.505 1.064 0.000

β1 3 0.023 0.071 0.753 0.023 0.065 0.720 0.025 0.065 0.702

β0 1 5.449 1.164 0.000 5.466 1.167 0.000

β1 1 0.025 0.067 0.705 0.024 0.067 0.724

β0 5 5.349 1.321 0.000 5.415 1.320 0.000

β1 5 0.028 0.069 0.678 0.024 0.069 0.725

β0 10 1.673 0.299 0.000 1.673 0.299 0.000

β1 10 0.004 0.013 0.755 0.004 0.013 0.759

* mean of the measurement error distribution, Poisson(µ)
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Table 4–8: Results from simple logistic regression model. SIMEX-Q is the NZM SIMEX with
a quadratic fit in the extrapolation step; SIMEX-NL is the NZM SIMEX with a non-linear fit
in the extrapolation step. In the top and bottom panels, β1 represents the difference in the
log odds ratio for, respectively, the use of a condom at the last sexual intercourse and having
had an HIV last in the last 24 months associated with a one-person difference in cluster size

Näıve SIMEX-Q SIMEX-NL

Parameter µ∗ β̂OLS SE p-value β̂NZM SE p-value β̂NZM SE p-value

Model: Relating condom use to cluster size

β0 3 2.619 0.772 0.001 2.198 1.104 0.012 2.197 1.105 0.012

β1 3 -0.047 0.036 0.195 -0.013 0.083 0.567 -0.013 0.083 0.559

β0 1 2.151 0.946 0.005 2.151 0.945 0.005

β1 1 -0.010 0.083 0.569 -0.010 0.083 0.572

β0 5 2.229 1.289 0.025 2.229 1.291 0.027

β1 5 -0.013 0.085 0.564 -0.013 0.085 0.581

β0 10 2.289 1.739 0.076 2.288 1.746 0.069

β1 10 -0.014 0.088 0.591 -0.013 0.088 0.565

Model: Relating HIV tests in the last 24 months to cluster size

β0 3 1.686 0.732 0.021 1.226 0.654 0.015 1.228 0.655 0.018

β1 3 0.038 0.067 0.573 0.044 0.054 0.515 0.044 0.054 0.482

β0 1 1.311 0.564 0.004 1.311 0.564 0.003

β1 1 0.046 0.057 0.499 0.046 0.057 0.535

β0 5 1.126 0.781 0.055 1.130 0.781 0.071

β1 5 0.045 0.058 0.527 0.044 0.058 0.448

β0 10 0.955 1.082 0.255 0.964 1.095 0.219

β1 10 0.042 0.058 0.486 0.041 0.059 0.559

* mean of the measurement error distribution, Poisson(µ)
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Table 4–9: Results from log-linear model of number of sex partners on cluster size. SIMEX-Q
is the NZM SIMEX with a quadratic fit in the extrapolation step; SIMEX-NL is the NZM
SIMEX with a non-linear fit in the extrapolation step. β1 indicates the expected difference
the number of sex partners (top panel) and one night sex partners (bottom panel), on the
log scale, between two groups of men whose cluster size differs by one individual.

Näıve SIMEX-Q SIMEX-NL

Parameter µ∗ β̂OLS SE p-value β̂NZM SE p-value β̂NZM SE p-value

Model: Relating number of sex partners on cluster size

β0 3 1.716 0.097 0.000 1.709 0.202 0.000 1.700 0.201 0.000

β1 3 0.004 0.006 0.526 0.003 0.011 0.752 0.004 0.011 0.702

β0 1 1.714 0.184 0.000 1.709 0.184 0.000

β1 1 0.004 0.011 0.737 0.004 0.011 0.711

β0 5 1.692 0.224 0.000 1.705 0.224 0.000

β1 5 0.004 0.011 0.707 0.003 0.011 0.762

β0 10 1.659 0.275 0.000 1.659 0.278 0.000

β1 10 0.005 0.012 0.704 0.005 0.013 0.706

Model: Relating number of one night partners on cluster size

β0 3 1.411 0.112 0.000 1.399 0.296 0.000 1.389 0.296 0.000

β1 3 0.004 0.006 0.568 0.004 0.015 0.797 0.004 0.015 0.761

β0 1 1.407 0.267 0.000 1.403 0.267 0.000

β1 1 0.004 0.014 0.787 0.004 0.014 0.767

β0 5 1.390 0.314 0.000 1.391 0.313 0.000

β1 5 0.004 0.016 0.801 0.003 0.016 0.803

β0 10 1.354 0.408 0.001 1.345 0.414 0.001

β1 10 0.005 0.018 0.789 0.005 0.018 0.778

* mean of the measurement error distribution, Poisson(µ)
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Table 4–10: Results from multinomial model of number of one night partners on cluster size.
SIMEX-Q is the NZM SIMEX with a quadratic fit in the extrapolation step; SIMEX-NL
is the NZM SIMEX with a non-linear fit in the extrapolation step. β1(2−4) indicates the
expected difference in the log odds of having 2-4 one night partners between two groups of
men whose cluster size differs by one individual; β1(5+) is the expected difference in the log
odds of having at least 5 one night partners between two groups of men whose cluster size
differs by one individual.

Näıve SIMEX-Q SIMEX-NL

Parameter µ∗ β̂OLS SE p-value β̂NZM SE p-value β̂NZM SE p-value

Model: Relating number of one night partners on cluster size

β0(2−4) 3 -1.605 0.780 0.039 -1.727 15.143 0.909 -1.740 31.497 0.955

β1(2−4) 3 0.036 0.051 0.474 0.037 0.573 0.948 0.038 1.179 0.974

β0(5+) 3 -0.302 0.522 0.562 -0.427 0.760 0.574 -0.441 0.762 0.562

β1(5+) 3 0.038 0.039 0.331 0.039 0.058 0.499 0.039 0.057 0.488

β0(2−4) 1 -1.660 12.812 0.897 -1.630 22.317 0.942

β1(2−4) 1 0.038 0.524 0.942 0.036 0.903 0.968

β0(5+) 1 -0.347 0.660 0.599 -0.354 0.660 0.591

β1(5+) 1 0.038 0.055 0.483 0.039 0.055 0.477

β0(2−4) 5 -1.792 16.775 0.915 -1.817 38.775 0.963

β1(2−4) 5 0.036 0.591 0.950 0.039 1.351 0.977

β0(5+) 5 -0.499 0.879 0.569 -0.501 0.881 0.569

β1(5+) 5 0.038 0.060 0.524 0.038 0.060 0.518

β0(2−4) 10 -2.012 14.199 0.887 -2.01 34.997 0.954

β1(2−4) 10 0.039 0.428 0.927 0.038 1.045 0.970

β0(5+) 10 -0.767 1.182 0.516 -0.746 1.214 0.538

β1(5+) 10 0.042 0.064 0.511 0.041 0.067 0.544

* mean of the measurement error distribution, Poisson(µ)
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Chapter 5
Manuscript II: Correcting Covariate-Dependent Measurement Error with

Non-Zero Mean.

Preamble

The first manuscript extended the SIMEX method to accommodate errors with non-zero

means. While NZM-SIMEX performs very well in reducing the measurement error bias,

the analysis of the SPOT performed in the first manuscript suffered from low power due to

analyzing data only from the small number of HIV-positive MSM. For HIV-negative MSM,

the cluster size is zero and there is no measurement error herein (as their blood does not

undergo HIV sequencing). Thus, the measurement error in phylogenetic cluster size clearly

depends on the HIV status.

Therefore, to include both HIV-positive and HIV-negative MSM in the analysis, in the

second manuscript, I further extend the NZM-SIMEX to the cases where measurement er-

ror in a covariate of interest depends on the value of another correctly specified covariate,

and call this SIMEX conditional on covariates. I prove the validity of SIMEX-CC approach

theoretically and compare it to two other measurement error correction techniques in simu-

lation studies. The SIMEX-CC is then applied to the all MSM in the SPOT data to further

study the relationship between phylogenetic cluster size and demographic and behavioural

characteristics of MSM.

This article was published in Statistics in Medicine in 2017. The references for this

article have been merged with the overall thesis bibliography.
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Abstract

There are many settings in which the distribution of error in a mis-measured covariate varies

with the value of another covariate. Take, for example, the case of HIV phylogenetic cluster

size, large values of which are an indication of rapid HIV transmission. Researchers wish

to find behavioral correlates of HIV phylogenetic cluster size, however the distribution of

its measurement error depends on the correctly measured variable, HIV status, and does

not have a mean of zero. Further, it is not feasible to obtain validation data or repeated

measurements. We propose an extension of simulation-extrapolation, an estimation technique

for bias reduction in the presence of measurement error that does not require validation data

and can accommodate errors whose distribution depends on other, error-free covariates. The

proposed extension performs well in simulation, typically exhibiting less bias and variability

than either regression calibration or multiple imputation for measurement error. We apply the

proposed method to data from the province of Quebec in Canada to examine the association

between HIV phylogenetic cluster size and the number of reported sex partners.

Keywords : bias; measurement error; simulation-extrapolation; HIV
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5.1 Introduction

It is sometimes the case that the distribution of measurement error in a covariate of

interest depends on the value of another variable. For instance, there is evidence that some lab

assays exhibit different variability between men and women [121]. Our work is motivated by

a setting in which the measurement error distribution depends on an error-free covariate and,

in one subpopulation defined by that error-free covariate, the distribution of the measurement

error does not have mean zero.

With the increasing availability of genetic sequencing, HIV researchers have made signifi-

cant progress in discovering clusters (networks) that are defined by the phylogenetic similarity

of the HIV RNA of infected members of a population. The SPOT study

(http://www.spotmontreal.com/?lang=en), based in Montreal, Canada, offers HIV testing

to the community of men who have sex with men, and also collects data on socio-demographic

and behavioral characteristics through questionnaires. Attention has now turned to the

epidemiological data; the hope is that the data may reveal correlates of large cluster size

[9,13,18]. Large clusters are indicative of rapid HIV transmission; understanding their corre-

lates may help to construct targeted interventions to interrupt the HIV transmissions. Many

SPOT participants are HIV-negative; these participants’ cluster size is said to be 0, and this

is measured without error. However among the HIV-positive participants, the phylogenetic

cluster size is systematically undercounted since only those individuals who have been tested

within the province of Quebec are used to determine (measure) cluster size.

Several methods have been proposed to deal with measurement error, including re-

gression calibration [108, 122], multiple imputation [21, 22], and simulation-extrapolation

(SIMEX) [68]. All but the last of these require either a validation sample or replicate data for

some fraction of the observed sample. In the context of undercounting of phylogenetic cluster

size due to unobserved (untested) individuals, obtaining a validation sample is both ethically

and practically unfeasible as it would require the testing of all members of the population

of interest (in our case, all residents of the province of Quebec). In this paper, we extend
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the SIMEX procedure to accommodate measurement error distributions that (i) depend on

other covariates and (ii) need not have mean zero. In Section 5.2 we briefly review two com-

mon measurement errors procedures regression calibration (RC) and multiple imputation for

measurement error (MIME), and introduce our extension to the SIMEX, which we call the

SIMEX conditional on covariates (SIMEX-CC). The performance of the three approaches is

compared in a simulation study in Section 5.3, and SIMEX-CC is applied to the SPOT data

in Section 5.4.

5.2 Measurement Error Correction

In modeling the association between a response and covariates, it is typically assumed

that covariates are measured without error. However, this is often not the case in practice,

due, for example, to reporting errors, inaccurate recall, or a noisy instrument. Whatever the

reason, measurement error in covariates is a potentially troublesome problem [123,124]. Let Y

denote the response variable and V and Z are perfectly measured covariates. Moreover, there

exists another covariate U whose true value in unavailable; instead, an imprecise measure is

available to us, which we shall denote X. Here, U is often called the latent predictor and

X is called the surrogate variable. Our intention is to relate the response Y with the true

predictors U and V , using realizations of X and V . If X is being used instead of U for

modelling purposes, this is often called a näıve method. Adopting this approach typically

leads to bias parameter estimates and hence inferences can be misleading.

In this work, we are concerned with differential error in the classical error model. The

classical additive measurement error model describes the situation in which X = U + δ,

where the stochastic error, δ, is assumed to have zero mean and constant variance, and δ

is independent of U , V and Y . Note that a multiplicative version of these two models are

also occasionally used. An important characteristic of measurement error is whether it is

differential or not. Non-differential measurement error occurs when the distribution of the

surrogate variable (X) depends only on the true predictor (U) and not on the response

variable, whereas in differential measurement error this condition is not satisfied. In our
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setting, the distribution of the errors δ will depend on the value of some other covariate, say

Z.

To begin, let us consider a simple linear regression model

Yi = β0 + β1Ui + β2Vi + εi, (5.1)

where Ui is the correctly measured variable whose imperfect measure Xi is available. To

begin, we can suppose that there are subjects for whom validation data exists, indexed by

i ∈ I ⊂ {1, ..., n}; thus, for these individuals, we can obtain both Ui and Xi. Our goal is to

estimate the regression model parameters, β0, β1, and β2, without bias.

5.2.1 Two Common Approaches: Regression Calibration and Multiple Imputa-
tion for Measurement Error

Regression calibration [122] is a simple and widely used two-step method for adjusting

for measurement error in regression analyses, but is only applicable when a validation sample

or repeated measures in the main study are available. In the first step of RC, a regression of

Ui on Xi is performed only on those individuals i ∈ I. Using estimates from the regression

of Ui on Xi, Ûi is computed for all subjects. Then at the second step, Yi is regressed on Ûi

to obtain estimates of β0 and β1. Note that Ûi is used for all subjects, even those individuals

i ∈ I for whom the true value of U is available. Standard errors are typically obtained

by bootstrap to account for the estimation of parameters in the first step of the procedure,

although analytic variance calculations can also be used.

Multiple imputation was originally proposed to address missing data [21]. It is an

attractive technique in which each missing value is replaced by a set of (m > 1) plausible

values, creating m completed datasets. Each imputed dataset is analyzed and results from

these analyses are combined to produce a final result (point estimate). Measurement error

can, of course, be viewed as a missing data problem: the true, error-free value of U is missing,

and multiple imputation for measurement error (MIME) [20,22,23,125] can be applied. Like

RC, validation data are needed to predict U for all i /∈ I. Unlike in RC, predicted values
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for U are not used for individuals who make up the validation sample. Thus, in MIME,

m completed datasets are obtained, each is analysed and the results averaged to obtain a

single point estimate. Measures of variability can be computed using Rubin’s rules [21] by

combining the between- and within-imputation variability or using bootstrap.

RC and MIME provide unbiased estimators provided the validation sample is randomly

drawn to ensure that the missing data are missing at random, i.e. the probability of a data

point being missing (not in the validation sample) is independent of the (unmeasured) true

value of U but may depend on measured characteristics.

5.2.2 Proposed Approach: SIMEX Conditional on Covariates

Consider again the simple linear regression model given in equation (5.1), and suppose

that the true predictor Ui has mean µU and variance σ2
U . Suppose further that Xi, the

imperfect measurement of Ui, can be written as

Xi = Ui − δi,

where the conditional distribution of the measurement error δi given a correctly measured

variable Zi is P (δi|Zi = zi) = fz with finite mean and variance µδ and σ2
δ , respectively. We

have chosen to represent the error in this fashion (subtracting δi) to mimic our motivating

example, in which Xi ≤ Ui, however our proposed approach could equally have been devel-

oped for error of the form Xi = Ui + δi. Further suppose that δi is independent of Yi and Ui.

For example, in the SPOT data, Ui is the true value of the count variable cluster size and Zi

is binary indicator of HIV status of the SPOT participants, taking value 1 if an individual

is HIV-positive. Then we can write P (δi|Zi = z) = fz for z ∈ {0, 1}. In the SPOT data, all

HIV-negative patients have cluster size 0, and there is no measurement error in their cluster

size. Therefore, for HIV-negative individuals we have f0 is the density function putting all

mass at the value 0 so that δi = 0 if Zi = 0. For HIV infected participants, i.e. those with

Zi = 1, however, it may be reasonable to assume that f1 follows a Poisson distribution, since

counts are discrete and the error is such that Xi ≤ Ui. Note that these examples of f0 and
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f1 are specific to the SPOT example, but that the theory extends to settings where f0 is not

a point mass but rather some other distribution (e.g. one with the same mean as f1 but a

larger variance).

The standard SIMEX procedure, appropriate when measurement error is independent

of covariates and had mean zero, proceeds by generating new datasets in which additional,

simulated measurement error is added to the imperfectly measured covariate Xi. This allows

the researcher to examine the impact of increasing measurement error on näıve estimates, and

to estimate the functional relationship between the estimates and the degree of measurement

error (controlled by a parameter λ). The analyst then extrapolates the estimated function

back to the unobservable setting in which there is no measurement error. We now detail how

to perform SIMEX when measurement error is conditional on error-free covariates, and the

mean of conditional error distribution may not be zero.

The SIMEX-CC Algorithm

Simulation Step: In the simulation step of SIMEX-CC, both additional, simulated measure-

ment error and a fixed constant are added to the imperfectly measured covariate Xi, to

produce simulated covariates Xib(λk):

Xib(λk) = Xi −
√
λk × δib + (1 +

√
λk)× µδ, (5.2)

where µδ = E[δi|Zi = zi]; b = 1, . . . , B; k = 1, . . . , K and i = 1, . . . , n. The random variables

{δib}Bb=1 are drawn from the distribution of δi|Zi = zi, while the parameter λk ≥ 0 control

the variance of measurement error which is added to Xi, typically chosen by the analyst to

be in the range 0 = λ0 ≤ λ1 ≤ · · · ≤ λK = 2 [58]. Note that extending the largest value, λK ,

to be greater than 2 may not offer significant improvements in the estimation of the extrap-

olant function, and that computational resources may be better deployed by increasing the

number, K, of variance multipliers chosen since extrapolation occurs in the negative range

of the real line.
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The simulation step creates B datasets, each consisting of the original dependent variable

Yi, all correctly measured covariates, and the ‘new’ covariate Xib(λk) for each λk. Note that

in a typical SIMEX setting where measurement error has mean zero, the artificial covariates

are constructed simply as Xib(λk) = Xi−
√
λk× δib. When measurement error does not have

mean zero for at least some values of Z, using equation (5.2) ensures that E[Xib(λk)] = E[Ui].

The variance of Xib(λk) is

V [Xib(λk)] = V
[
Xi −

√
λk × δib + (1 +

√
λk)× µδ

]
= V

[
Ui − δib −

√
λk × δib

]
= σ2

U + (1 + λk)
2σ2

δ

which increases with the control parameter λk. For each λk, let β̂b(λk) denote the vector

of näıve estimates obtained by regressing Y on Xib(λk). Using B estimates for each λk, an

average estimate can be obtained as

β̂(λk) =
1

B

B∑
b=1

β̂b(λk). (5.3)

Extrapolation Step: In the extrapolation step, the vector β̂(λk) is plotted against λk for

λk ≥ 0, and regression techniques are used to fit an extrapolant function. The SIMEX-CC

estimator is obtained as the extrapolation of β̂(λk) to the value λk = −1, a setting which

would lead to no measurement error and yield V [Xib(λk)] = σ2
U . We denote this estimator,

β̂(λ = −1), by β̂S−CC .

Note that the procedure has been specifically adapted to the SPOT setting, where be-

cause the covariate is known to be undercounted, we have focused on the setting where

Xi = Ui − δi. The setting where Xi = Ui + δi can easily be accommodated with a small

change in the simulation step of the SIMEX-CC by taking the simulated covariates to be

Xib(λk) = Xi −
√
λk × δib + (1−

√
λk)× µδ,

in place of equation (5.1). It then follows that E[Xib(λk)] = E[Ui] and V [Xib(λk)] = σ2
U +

(1 + λk)
2σ2

δ , as desired.
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As for the original SIMEX [68], results hold for more general regression problems such

as fitting of non-linear regression models [69], generalized linear models [79], generalized

linear mixed models [80], quantile regression models [113], and accelerated failure time mod-

els [87], but unbiasedness cannot be shown in closed form as estimators for such models are

computed via iterative methods. In these settings, the unbiasedness and feasibility of the

SIMEX were demonstrated by simulations. Following these authors, we provide a theorem

and proof of unbiasedness in the linear regression setting, and demonstrate the performance

of the SIMEX-CC in the generalized linear model setting via simulation rather than analyti-

cally. The theorem relies on the assumption that the mean and variance of the measurement

error are finite and known. No further distributional assumptions on the mis-measured co-

variates, on the outcome, or on the measurement error beyond its first moments are required.

Theorem

Unbiasedness of the SIMEX-CC estimator

The estimator obtained via the SIMEX conditional on covariates procedure, β̂S−CC , con-

verges in probability to the true β regression parameter in a linear regression.

Proof of the theorem in the linear regression setting relies on the observation that

β̂1(λk)
P−→ Cov(U, Y )

σ2
U + (1 + λk)σ2

δ

β1 =

[
σ2
U

σ2
U + (1 + λk)σ2

δ

]
β1,

which equals β1 when λk is taken to be −1; see Appendix D for details. In more general

settings, solutions are not available in closed form and demonstration of the validity of the

method relies on simulations as well as the heuristic observation at λk = −1, estimates that

would correspond to covariates Xib(λ = −1) with E[Xib(λ = −1)] = E[Ui] and V[Xib(λ =

−1)] = V[Ui]. See, for example, [79,113] and [87].
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Standard errors of the SIMEX estimators can be obtained either via a sandwich estima-

tor derivation [68] or using a bootstrap procedure [126]. While the latter is more computa-

tionally expensive, it may be more accurate in finite samples than the sandwich calculation

which relies on asymptotic derivations. We, therefore, adopt a bootstrap procedure to obtain

standard errors for the SIMEX-CC as well as the RC and MIME so that all estimators and

inference is considered on a equal footing.

5.3 Simulation Study

In order to evaluate the SIMEX-CC and compare its performance to a näıve approach

ignoring measurement error, regression calibration, and multiple imputation for measurement

error, we carried out a simulation study.

5.3.1 Design of the Simulation Study

Our simulations were broadly designed to mimic the SPOT setting, with a single binary

error-free covariate, Z, as the variable on which the error distribution depends. We considered

two outcome distributions (Gaussian and Poisson) and two covariates at different sample

sizes. A validation sample was selected to perform RC and MIME; a range of measurement

error distributions was assumed for SIMEX-CC.

The “conditioning variable” Z was drawn from a Bernoulli with either probability 0.5

or 0.05, the latter being similar to the observed prevalence of HIV in the SPOT data. For

Gaussian distributed outcomes, the outcome data were generated according to the mean

model

E(Y |U, V ) = β0 + βUU + βV V + βUVUV,

where V is the error free covariate, and the error-prone covariate is X = U − δ where δ is

the measurement error whose distribution depends on Z. The simulation settings for (U, V ),

β = (β0, βU , βV , βUV ) and δ|Z are given in Table 5–1, Scenarios (a) to (d).
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Table 5–1: Simulation study design: assumed distributions for data generation and analysis.
Outcomes were generated using η1 = 1 + 1 × U + 1 × V + 0.5 × UV (Scenarios (a)-(b)) or
η2 = exp(0.25 + 0.1× U + 0.1× V + 0.01× UV ) (Scenarios (c)-(d)).

Scenario (U, V ) P (Z = 1) True f1 Y Assumed f1

(a) U ∼ P (12), V ∼ N(0, 1) 0.5 δ|Z = 1 ∼ P (1.5) N(η1, 1) P (0.75), P (1.5), or P (3)

(b) U ∼ P (12), V ∼ N(0, 1) 0.05 δ|Z = 1 ∼ P (1.5) N(η1, 1) P (0.75), P (1.5), or P (3)

(c) U ∼ P (25), V ∼ N(0, 1) 0.5 δ|Z = 1 ∼ P (5) P (η2) P (3.5), P (5), or P (7)

(d) U ∼ P (25), V ∼ N(0, 1) 0.05 δ|Z = 1 ∼ P (5) P (η2) P (3.5), P (5), or P (7)

For the Poisson distributed outcomes, data were generated according to a log-linear

model

log[E(Y |U, V )] = β0 + βUU + βV V + βUVUV.

The details of the data-generation for (U, V ), β and δ|Z are given in Table 5–1, Scenarios

(c) and (d).

5.3.2 Analysis of the Simulated Data

For each setting, 1000 simulated datasets were generated. Each dataset was analyzed

with no error correction (näıve), as well as error correction by RC, MIME, and SIMEX-CC.

Ten percent [127] of each simulated dataset was randomly chosen to serve as the validation

sample for RC and MIME.

For each of the three measurement error corrections, analytic choices were required.

We explored different modelling options for both RC and MIME. For MIME, we initially

considered multivariate imputation by chained equations, an iterative imputation approach

in which a series of conditional regression models are fit to each variable with missing data

given the other variables in the dataset. We attempted first to use MIME using the package

mice in R with default settings, however performance was unacceptably poor (results not

shown). While bias was much lower than that of the näıve estimator, it was still considerable:

in some cases, relative bias exceeded 25%. We hypothesize that this was a result of the use
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of predictive mean matching as the imputation method. Thus, we settled on a simple linear

regression of U on X for both RC and MIME. For RC, Û was taken to be the predicted

value. For MIME, Û was taken to be the predicted value plus a random noise draw from

a Gaussian distribution with variance given by the residual variance in the regression of U

on X. Five imputations were used in MIME; a small number appeared adequate for the

simple simulation setting (very few covariates) and thus was chosen to reduce computational

burden. Note that in more complex real data settings, a larger number of simulations may

be preferred if there is significant between-imputation variability.

For SIMEX-CC, we took λk ∈ {0, 1
8
, 2

8
, . . . , 15

8
, 16

8
}, set the number of repetitions to

B = 200, and took Xb(λk) as in equation (6.1).

For Gaussian and Poisson distributed outcomes, the assumed distribution of the conditional

measurement errors are given in the last column of Table 1. For each data generation scenario,

we considered SIMEX-CC with the correct measurement error distribution, as well as a case

where the error variance (and mean) in the subgroup for whom Z = 1 was either too large

or too small. We explored the use of both a quadratic and non-linear extrapolant function,

and found very little difference between the resulting estimators (differing by at most 0.001;

results not shown), and so present results for the quadratic extrapolant function only.

It should be noted that RC and MIME are supplied with different information from

SIMEX-CC. In particular, our analyses have not directly incorporated the information that

measurement error is known not to have zero-mean in RC and MIME; however, the direct

modelling of the true covariate value takes this into account directly. In effect, we wanted to

“level the playing field” by allowing each analytic method to have access to some information

beyond the analytic sample (either a validation sample or information on the error distribu-

tion). Thus, SIMEX-CC was “permitted” to use the distribution of the error distribution,

while RC and MIME were “permitted” to use validation data. Further, while the validation

sample was relatively small, viewing the measurement error as a missing data problem, the

fraction of missing data was not unreasonable; for example, for Scenario (a), the average
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percentage of missing information (as calculated using the mitools package in R) ranged

from 25-32% for each of the four parameters in the outcome model when n = 100. Sample

R code for the Guassian outcome setting is provided online as supporting information.

5.3.3 Results of the Simulation Study

Results of the simulation study are shown in Figure 5–1 for the Gaussian outcome (Sce-

nario (a) in Table 5–1) and for the Poisson outcome (Scenario (c) in Table 5–1); full results

are given in Appendix E. Performance was measured by bias, empirical mean squared error

(MSE) and coverage percentage (CP), where CP was calculated using bootstrap standard

errors. For the Gaussian outcome settings, it is evident from the results that the näıve es-

timator is seriously biased. The SIMEX-CC estimator performs similarly to RC and better

than MIME when the measurement error is correctly specified. When the measurement error

distribution is misspecified, SIMEX-CC yields bias that is comparable to MIME, perform-

ing worse than RC but still superior to the näıve estimator. For Poisson outcome settings,

SIMEX-CC performs considerably better than both RC and MIME, even when the measure-

ment error distribution is misspecified. The coverage of the SIMEX-CC was at the nominal

level (e.g., CP ranged from 92.3 to 96.9 in Tables 5–4 and 5–5 in Appendix E). Finally, we

observe – unsurprisingly – that the impact of measurement error is considerably greater when

the prevalence of the variable Z is greater, that is when more individuals have an error-prone

measurement of U . We considered additional values for P (Z = 1) in Scenario (a) for n = 100;

we observed that the impact of this probability on the amount of bias due to measurement

error in the näıve estimates varied across parameters (see Figure 5–2 in Appendix E). These

results would suggest that the impact of measurement error is likely to be small in the SPOT

data, where fewer than 5% of individuals in the sample are HIV-positive.
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Figure 5–1: Comparison of measurement error correction methods in terms of the bias (top
row) and rMSE (bottom row) of a regression parameter estimate as a function of sample size.
Panels on the left-hand side provide results for a Gaussian outcome (Scenario (b) in Table
5–1) and panels on the right-hand side for a Poisson outcome (Scenario (d) in Table 5–1).
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5.4 Analysis of the SPOT Data

The Montreal SPOT point of care testing site was opened in Montreal’s “gay village”

neighborhood in 2009. It promotes HIV testing and recruits participants through advertise-

ments in gay magazines and web sites as well as through outreach activities. The site offers

rapid, free, and anonymous HIV testing to the community of men who have sex with men,

and administers an anonymous questionnaire that elicits information on socio-demographic

characteristics, HIV testing behavior, sex life, attitude towards HIV, and socio-sexual profile.

Up to April 2012, SPOT had tested and recruited 1803 men. In addition to providing ques-

tionnaire data, and all HIV-positive participants’ blood underwent HIV RNA sequencing so

that phylogenetic clustering could be used to determine the size of the cluster to which the

HIV RNA sequence belongs [119]. Selected characteristics for 1803 men who have sex with

men participating the SPOT study are given in Table 5–2. Characteristics are fairly similar

between the HIV- positive and negative participants. Most HIV-positive participants have

HIV RNA that is characterized as belonging to a larger cluster (indicating that at least 3

other individuals in the province of Quebec have an HIV RNA sequence that is in the same

phylogenetic cluster).

We applied näıve regression and SIMEX-CC to determine whether there is any associa-

tion between cluster size and number of sex partners in the SPOT data, as evidenced by a non-

zero regression coefficient in a log-linear regression model. (A number of other variables were

also explored; results were similar and thus not shown.) Since it is not possible to obtain a val-

idation sample for the SPOT data, RC and MIME could not be applied. For SIMEX-CC, HIV

status was taken to be the conditioning variable upon which the measurement error distribu-

tion depends. More specifically, a participant who is HIV-negative has cluster size of zero and

there is no measurement error in this value. On the other hand, an HIV-positive participant’s

cluster size is subject to measurement error that is characterized by an undercounting of the

truth. To apply SIMEX-CC, we must supply a distribution for the measurement error in the

cluster size of HIV-positive participants. In 2012, the population over age 15 in the province
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Table 5–2: Characteristics of the SPOT participants. Statistics shown are mean (standard
deviation) for continuous or count variables and number (percentage) for categorical variables.

Variable HIV-positive HIV-negative All

(n = 34) (n = 1769) (n = 1803)

Age 33 (9.5) 32.6 (10.5) 32.6 (10.5)

Ethnic origin

Anglo-Quebec 3 (8.8%) 213 (12.0%) 216 (12%)

Other 31 (91.2%) 1556 (88.0%) 1587 (88.0%)

Cluster size

0 0 1767 (100%)

1 10 (29.4%) 0

2-3 3 (8.8%) 0

> 3 21 (61.8%) 0

Income

< 30000 12 (35.3%) 712 (40.3%) 725 (40.2%)

≥ 30000 17 (50%) 932 (52.7%) 949 (52.6%)

Unwilling to report 5 (14.7%) 124 (7.0%) 129 (7.2%)

Education

No degree 1 (2.9%) 19 (1.1%) 20 (1.1%)

High school or college 11 (32.4%) 649 (36.7%) 660 (36.6%)

University 18 (52.9%) 1052 (59.5%) 1070 (59.4%)

Other training 4 (11.8%) 49 (2.8%) 52 (2.9%)

No. of sex partner 5.8 (4.7) 5.9 (9.2) 5.9 (9.1)

No. of one night sex partners 4.3 (4.7) 3.8 (8.1) 3.8 (8.1)
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of Quebec was 6, 802, 700 (www.stat.gouv.qc.ca/statistiques/population-demograph

ie/structure/104.htm), and the incidence of HIV was 7 per 100, 000 (www.inspq.qc.ca/

publications/notice.asp?E=p\&NumPubli cation=1706); for additional details, see Ap-

pendix E. Thus, the total number of new cases of HIV in Quebec in 2012 is approximately

476. Allowing for 25% of individuals to be unaware of their status, and thus not included

in the cluster size measurement suggests that measurement error that follows a distribution

with mean 3 would yield an appropriate distribution of values to bring up the total of the

cluster measurement values to include those ≈ 159 individuals who may be unaware of their

HIV-positive status and thus not represented in the current cluster size measures. As the

error is discrete, we make the simplifying assumption that the distribution is Poisson, so that

a mean of 3 also informs us of the variance of the error.

Cluster size appears to have no significant association with number of sex partners (Table

5–3), whether accounting for measurement error or not. The similarity in the estimates from

the näıve and SIMEX analysis is not surprising given the small proportion of the sample

affected by measurement error. As a sensitivity analysis, we also considered measurement

error distributions for the HIV- positive participants of Poisson(5) and Poisson(10) and found

no meaningful change in the resulting estimates.

5.5 Discussion

In this paper, we have proposed an extension of the SIMEX which can accommodate

measurement error that is covariate-dependent and may not have mean zero. While a num-

ber of methods are available for correcting measurement error, this approach can be used in

settings where it is infeasible to collect validation or replicate data, a feature that is unique

amongst frequentist methods, though a similar approach has been considered in a Bayesian

framework [128]. Furthermore, SIMEX has other attractive properties: for example, unlike

likelihood based approaches, SIMEX does not require any distributional assumptions regard-

ing the mis-measured covariate or the outcome. This functional approach to measurement

error offers considerable robustness.
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Table 5–3: Näıve regression and SIMEX-CC (using quadratic or non-linear extrapolant func-
tion) to assess whether there is any relationship between phylogenetic cluster size and number
of sex partners. See Table 5–2 for definitions of categorical variables.

Näıve SIMEX-CC SIMEX-CC

quadratic non-linear

β̂ SE p-value β̂ SE p-value β̂ SE p-value

Outcome: number of sex partners

Cluster size 0.001 0.004 0.778 <0.001 0.007 0.999 <0.001 0.006 0.969

Age 0.018 0.001 <0.001 0.018 0.003 <0.001 0.018 0.003 <0.001

Not Anglo-Quebec 0.193 0.034 <0.001 0.193 0.102 0.050 0.193 0.102 0.050

Educ: HS/college -0.015 0.101 0.879 -0.016 0.227 0.942 -0.016 0.227 0.943

Educ: university -0.020 0.101 0.843 -0.020 0.222 0.924 -0.021 0.222 0.925

Educ: other training 0.127 0.116 0.272 0.128 0.379 0.784 0.128 0.379 0.734

Income ≥ 30000 -0.108 0.023 <0.001 -0.108 0.100 0.280 -0.108 0.100 0.280

Income not reported 0.013 0.042 0.752 0.013 0.134 0.919 0.013 0.134 0.920

Outcome: number of one night sex partners

Cluster size 0.007 0.005 0.126 0.007 0.010 0.473 0.006 0.010 0.508

Age 0.023 0.001 <0.001 0.023 0.004 <0.001 0.023 0.004 <0.001

Not Anglo-Quebec 0.280 0.043 <0.001 0.280 0.140 0.046 0.280 0.140 0.046

Educ: HS/college 0.081 0.131 0.533 0.082 0.412 0.841 0.082 0.412 0.841

Educ: university 0.069 0.130 0.593 0.070 0.408 0.863 0.070 0.408 0.863

Educ: other training 0.193 0.146 0.186 0.193 0.561 0.729 0.194 0.561 0.728

Income ≥ 30000 -0.169 0.027 <0.001 -0.169 0.130 0.194 -0.169 0.130 0.194

Income not reported -0.006 0.049 0.903 -0.006 0.182 0.972 -0.005 0.182 0.972

94



Our simulation studies suggest that SIMEX-CC performs at least as well as competing

approaches when the measurement error distribution is correctly specified, and can even

perform well in some instances with a mis-specified error distribution. However, in our

simulations we made a deliberate choice to compare competing methods that, by the nature

of the approaches, made use of different external information. Specifically, in our simulations,

RC and MIME were supplied with validation data which SIMEX-CC did not use; in contrast,

SIMEX-CC was supplied with information (sometimes imperfect) about the measurement

error distribution. Whether these two different forms of information were in some sense

equivalent or equally informative may be debated, and we would welcome further research into

a metric for comparing the degrees of information provided by different forms of knowledge.

Indeed, even when seeking guidance on an appropriate size of validation sample, we found

the literature to be quite sparse.

It could be argued that knowledge of the measurement error mean and variance is often

difficult or even infeasible to obtain. While such information is likely to be available for,

say, well studied laboratory assays, it may be less readily available for a variety of other

measurements – indeed, this was the case in the SPOT analysis. In some instances, external

data may be used to inform the choice of mean and variance; we attempted to do so in the

SPOT analysis. Because of this concern, we did not insist on perfect knowledge of the error

distribution parameters, but rather evaluated the performance of SIMEX-CC under ideal

and non-ideal conditions and compared it with the näıve approach, regression calibration,

and multiple imputation for measurement error through simulations. Applying SIMEX-CC

to the SPOT data, we did not detect any association between phylogenetic cluster size and

the number of sex partners, however the number of HIV-positive men in the sample was

small indicating that measurement error is unlikely to strongly affect results. The proposed

method may nevertheless prove useful in other settings where measurement error is more

pronounced, such as in laboratory assays.
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5.6 Appendix for Manuscript II

5.6.1 Appendix D: Proof of Theorem

Let us consider the following simple linear regression model

Yi = β0 + β1Ui + εi, (5.4)

where true predictor Ui follows N(µU , σ
2
U). We have another variable Zi which is correctly

measured. Suppose Xi is an imperfect measurement of Ui which is defined as

Xi = Ui − δi = Ui − δi(Zi), (5.5)

where δi depends on the error-free covariate Zi and δi follows any distribution with mean µδ

and variance σ2
δ . Also, δi is assumed to be independent of Ui and Yi. Note that under this

measurement error specification, Xi is always less than or equal to Ui.

As noted above, B new covariates Xib(λk) are generated according to equation 5.2 so

that the total measurement error variance is then the variance of Xib(λk), i.e. σ2
U+σ2

δ (1+λk)
2.

For the bth data set, regressing Y on Xb(λk) gives the vector of näıve estimates β̂S−CCb (λk) =

(β̂0,b(λk), β̂1,b(λk))
T of βb(λk) found via ordinary least squares (OLS), with the average es-

timate at each λk computed according to equation 5.3. Note that here OLS is used as Y is

assumed to be continuous. Other forms of regression can be used for other outcome types.

To study the asymptotic mean of the average estimate of slope and intercept, we sub-

stitute (5.5) into (5.4), which gives

Yi = β0 + β1(Xi + δi) + εi

= β0 + β1{Xib(λk) +
√
λkδib − (1 +

√
λk)µδ + δi}+ εi

= β0 + β1Xib(λk) + ε∗i ,
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where ε∗i = β1{
√
λkδib − (1 +

√
λk)µδ + δi} + εi. For the bth dataset, the näıve estimator of

slope β1 can be obtained by OLS, which yields

β̂S−CC1b (λk) =

n∑
i=1

(Xib − X̄b)(Yi − Ȳ )

n∑
i=1

(Xib − X̄b)2

=

n∑
i=1

{
(Xi − X̄)−

√
λk(δib −

n∑
i=1

δib
n

)

}
(Yi − Ȳ )

n∑
i=1

{
(Xi − X̄)−

√
λk(δib −

n∑
i=1

δib
n

)

}2

=
SXY −

√
λkSY δb

SXX + λkSδbδb − 2
√
λkSXδb

. (5.6)

The näıve estimator of the intercept is

β̂S−CC0b (λk) = Ȳ − β̂S−CC1b (λk)X̄b. (5.7)

At each λk, the estimators are defined as

β̂1

S−CC
(λk) = E

[
β̂S−CC1b (λk)|{Yi, Xi}ni=1

]
and

β̂0

S−CC
(λk) = E

[
β̂S−CC0b (λk)|{Yi, Xi}ni=1

]
,

where the expectation is in terms of the distribution of {δib} only.

It then follows that

E
[
β̂1

S−CC
(λk)

]
= E

[
β̂S−CC1b (λk)

]
and E

[
β̂0

S−CC
(λk)

]
= E

[
β̂S−CC0b (λk)

]
.

Using the fact that SXY
P−→ σXY , SXX

P−→ σXX , SY δb
P−→ σY δb , Sδbδb

P−→ σδbδb , and

SXδb
P−→ σXδb , we obtain

β̂S−CC1b (λk)
P−→ σXY −

√
λkσY δb

σXX + λkσδbδb − 2
√
λkσXδb
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and hence

β̂S−CC1 (λk)
P−→ σXY −

√
λkσY δb

σXX + λkσδbδb − 2
√
λkσXδb

. (5.8)

Here,

σXY = Cov(X, Y ) = Cov(U, Y ),

σY δb = Cov(Y, δb) = 0, (as Y and δb are independent)

σXX = V ar(X) = V ar(U + δ) = σ2
U + σ2

δ , (as U and δb are independent)

σδbδb = V ar(δb) = σ2
δ

and σXδb = Cov(X, δb) = Cov(U + δ, δb) = 0 (as U and δb are independent).

By substitution into (5.6), we obtain

β̂S−CC1 (λk)
P−→ Cov(U, Y )

σ2
U + (1 + λk)σ2

δ

=
Cov(U, Y )

V ar(U)

V ar(U)

σ2
U + (1 + λk)σ2

δ

= β1

[
σ2
U

σ2
U + (1 + λk)σ2

δ

]
.

Hence,

lim
λk→−1

plimβ̂S−CC1 (λk) = β1.

Similarly, considering (5.7), it can be shown that

lim
λk→−1

plimβ̂S−CC0 (λk) = β0.
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5.6.2 Appendix E: Additional Results

5.6.2.1 Additional Numerical Results
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Figure 5–2: Bias in the näıve estimates as the proportion of the covariate subject to mea-
surement error increases (Scenario (a), n=100).
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5.6.2.2 Additional Details on the SPOT Analysis

The adult (age > 15) population of Quebec in 2012 was 6, 802, 700 with an HIV inci-

dence rate 7 per 100, 000 so that the total number of new cases of HIV in Quebec can be

estimated as 6,802,700×0.00007, or approximately 476 people. It has been suggested that in

Canada, approximately one quarter of people who are living with HIV are not aware of their

seropositive status. Thus we estimate that there are 476×0.25 = 159 who are not included

in the QC genotyping program and therefore contribute to the undercounting of cluster size.

Based on previous studies of cluster size distributions and the sizes of clusters in SPOT, we

found that a Poisson(3) distribution would be sufficient to yield a distribution of cluster sizes

that is similar those found in the literature and would account for the approximately 159

individuals who are estimated to be “missing” from the Quebec genotyping program.
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Chapter 6
Manuscript III: New Challenges in HIV Research: Combining Phylogenetic

Cluster Size and Epidemiologic Data.

Preamble

In this final manuscript (in a sequence of three), I focus on demonstrating methods

that can be applied to improve the generalizability of results from a study that is subject to

non-probabilistic sampling scheme.

In the first two manuscripts, as the methodological component of the research, I extended

the SIMEX method to accommodate errors with non-zero means, in order to apply it to

the SPOT data to determine behavioural correlates of cluster size. Unfortunately, results

from the SPOT study are limited because SPOT employed a “by convenience” sampling

(recruitment) approach. I improve the generalizability of these results by adjusting for the

sampling mechanism in SPOT using external information from another study of MSM in

Quebec that used a probabilistic venue-based sampling method to recruit participants, the

ARGUS study. Thus, in the third manuscript, I apply SIMEX-CC to the SPOT data while

adjusting for the SPOT sampling scheme by calculating sampling weights based on common

covariates and the venue-based sampling weights for comparable MSM in the ARGUS study.

This manuscript has been submitted for publication. The references for this article have

been merged with the overall thesis bibliography.
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Abstract

An exciting new direction in HIV research is centered on using molecular phylogenetics to

understand the social and behavioural drivers of HIV transmission. SPOT was a study eval-

uating the acceptability of HIV point of care testing offered to men who have sex with men

(MSM) at a community-based site in Montreal that also collected data on socio-demographic

and behavioural characteristics along with HIV transmission/phylogenetic cluster size. Par-

ticipant recruitment in SPOT is by convenience sample. Moreover, the phylogenetic cluster

size in SPOT is determined through incomplete information due to the absence of a sizable

fraction of HIV-infected individuals in the population. Consequently, measurement error oc-

curs in defining the transmission cluster size. In this paper, we use SPOT data to evaluate

the association between HIV transmission cluster size and the number of sex partners for

MSM, after adjusting for SPOT sampling scheme and correcting for measurement error in

cluster size. The sampling weights for SPOT participants were calculated from an external

source to fit a weight adjusted model, whereas measurement error was corrected using the

simulation-extrapolation conditional on covariates method.

Keywords : HIV transmission cluster; probability sampling; sampling weights; measure-

ment error; SIMEX method.
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6.1 Introduction

The HIV pandemic is composed of complex sub-epidemics, each influenced by many

biological, behavioral and cultural factors in susceptible populations. The concentrated epi-

demics in North America have been localized to specific at-risk populations such as men

who have sex with men (MSM) and intravenous drug users. While antiretroviral therapy

has increased the quality and length of life of individuals infected with HIV, and decreased

transmissions [129], MSM remain disproportionately affected in Canada [56, 130–132]: 57%

of incident cases of HIV are among MSM [7].

Early stage infection, often defined as within six months of infection, is thought to be a

key window for HIV transmission [9,56,133–135], likely due to high concentrations of viremia

in bodily fluids. While direct evidence on transmission chains is not measured, phylogenetic

analyses have been used to provide insights into transmission networks by clustering indi-

viduals based on similarities of the HIV RNA with which they are infected [11–17, 56, 136].

Coupled with epidemiological data, a phylogenetic strategy may provide a unique window

to discern HIV transmission, and to attempt to correlate personal characteristics (demo-

graphic, behavioral) with large transmission clusters, which are thought indicative of rapid

HIV transmission [56, 136]. Our analysis focuses on investigating the behavioural correlates

of phylogenetic cluster size using SPOT data. Given the complex and dynamic nature of

rapid transmission events, our analysis does not aim to be causal in any sense as we are

unable to ensure temporal ordering of some of the epidemiological variables that we consider

and infection.

In this paper, we outline some methodological challenges that have arisen in attempting

to combine phylogenetic and epidemiologic data, and demonstrate solutions to address these

challenges. The first challenge is one of information. HIV-positive tests have been notifiable

in Canada since 2004, however reporting is anonymous. Epidemiological data is available

through a research questionnaire completed by patients participating in SPOT, a free and

anonymous HIV testing service offered to MSM in Montreal, and HIV genotyping is performed
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on blood samples of those found to be positive. Thus, the phylogenetic sequences from SPOT

participants may be correlated with all sequences from the Quebec HIV Genotyping Cohort

to determine the size of the phylogenetic network with which the individual’s HIV clusters.

The HIV Genotyping Cohort is part of a drug resistance programme, operational since 2002,

that includes HIV pol sequences. However, as detailed below, the resulting clusters are known

to be too small, and so measurement error in the cluster size must be taken into account.

Further, while SPOT has a significant research component, the study recruited often by

social networks and with the aim of providing HIV testing to sexually active MSM, so that

the generalizability of findings from the analysis are uncertain. We will therefore supplement

these data with another study of MSM in Montreal whose sampling design was venue-based.

6.2 Methods

We use SPOT data to evaluate the association between HIV transmission cluster size

and the number of sex partners for MSM, after adjusting for SPOT sampling scheme and

correcting for measurement error in cluster size. Below, we describe in detail our primary

data sources, and the methods that we propose to overcome the two major challenges that

we encountered in analysing the SPOT data: non-random sampling and measurement error.

6.2.1 Data Sources

6.2.1.1 The SPOT Study

SPOT is an HIV-testing program with a research component targeting MSM in Mon-

treal, Quebec. Beginning in July 2009, SPOT offered free, anonymous, HIV point of care

rapid tests to men who have sex with men at a community-based testing site close to Mon-

treal’s gay village. Participants were recruited provided they met the inclusion criteria:

self-identification as male; at least 18 years of age; resident of Quebec, speaking and under-

standing French or English; anal sex with another man in the past 12 months; and unknown

HIV status at the time of testing. SPOT promotion was also undertaken through outreach
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activities organized by the RÉZO community organization in a range of community and so-

cial venues. Previously, it has been reported that a large number of participants learned of

SPOT from friends [51].

In addition to free rapid tests, the SPOT project administered an anonymous question-

naire eliciting information on socio-demographic characteristics, HIV testing behaviour, and

behavorial/lifestyle information; phylogenetic analyses are undertaken on anyone found to

be HIV-positive. We analyze the data from 1803 men recruited up until 2013, 36 of whom

were found to have HIV.

Two inferential challenges are encountered in SPOT. The first is one of sampling: A

sampling frame is of course not available for the target population. The second challenge

faced is one of measurement error. The Genotyping Cohort does not contain all phylogenetic

information for all individuals with HIV in the province of Quebec. Individuals may not

be included for a variety of reasons including not having been tested (either at all, or only

outside of the province) or having viral load less than 400 copies per ml [119]. Consequently,

measurement error occurs in defining the transmission cluster size and this measurement error

is characterized by a systematic under-counting of the true cluster size due to the absence

of the phylogenetic information on the HIV status or phylogenetic cluster of the individuals

in the province [137]. However the under-counting exists only for those men who are HIV-

positive; anyone free of HIV has a cluster size of 0. Thus, to obtain the valid inferences

in investigating correlates of large phylogenetic clusters, it is necessary to account for the

non-probabilistic sampling scheme employed by SPOT, and measurement error in cluster

size. We propose doing so through venue-based sampling-type weighting using an external

source of data in combination with a new method of measurement error correction designed

specifically for settings in which validation data are unavailable and measurement error may

depend on another covariate, namely HIV status: simulation-extrapolation conditional on

covariates (SIMEX-CC) [138].
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6.2.1.2 The ARGUS Study

The data used in this study were collected from the second wave of ARGUS [139], a sec-

ond generation surveillance study designed to monitor trends in HIV, sexually transmitted

infections, and risk behaviors among MSM living in the province of Quebec that occurred

in 2008-2009. Participants were recruited using time-location sampling, or venue-based sam-

pling, from venues including saunas, bars, coffee shops, sports and recreational groups where

gay men interact, as well as a fixed study site. That is, at each venue (except for the fixed

site), individuals were randomly sampled from among those present. Information was col-

lected on the frequency with which such a venue was attended so that individuals could be

reweighted according to the inverse of the likelihood of having been sampled. From the 42

sampling locations in the province of Quebec (37 of which were located in Montreal), 1873

individuals were recruited in the period around when the individuals in SPOT were recruited.

A self-administered questionnaire was given, and a blood sample was also collected to per-

form screening tests for HIV, syphilis and Hepatitis C virus. The ARGUS questionnaire

focused on a participant’s socio-demographic characteristics, structure of his social network,

sexual and other lifestyle activities. As ARGUS employed venue-based sampling, the data

from ARGUS respondents, when appropriately reweighted, may better capture the target

population of MSM in an urban Quebec setting.

6.2.2 Statistical Methods

6.2.2.1 Venue-Based Sampling

Venue-based sampling is one of the commonly used sampling techniques to recruit hard-

to-reach populations, including MSM. It is a probabilistic method in which individuals are

sampled probabilistically at particular times in fixed venues (e.g., clubs, bars and gyms) [29].

The sampling framework contains venue-day-time (VDT) units that represent the potential

totality of venues, days, and times. For instance, a VDT unit may be a specified time period

of five hours on a Friday in a particular venue.
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Venue-based sampling typically begins with an on-field team interviewing key service

providers and members of the target population to identify a range of VDT units in which

to locate the members of the target population. The research team then visits the venues,

counting the number of individuals present, prepares a list of potentially eligible VDT units,

and estimating the population size for each VDT unit. Upon building the sampling frame,

the sample is selected in two stages. In the first stage, venues are selected as primary

sampling units using simple or stratified sampling with probabilities proportional to the

estimated size of the population captured in each venue. In the second stage, a sample

of participants from the selected venues is drawn using systematic (random) sampling [27].

There are many advantages to venue-based sampling, such as (i) it allows the calculation of

a selection probability for each individual in the sample; (ii) unlike convenience sampling, it

greatly diminishes the arbitrary selection of venues or individuals, and provides a replicable

sampling selection method; and (iii) it does not require a comprehensive enumeration of

individual members of the target population so long as all members of the population can

be assumed to be reached at the sampled venues at different times. Venue-based sampling is

not without costs: it requires intensive fieldwork to visit and map VDTs. Moreover, bias or

low generalizability can occur if key venues are missed, or members of the target population

do not (as assumed) frequent the venues included in the sampling frame.

Venue-based Sampling Weights in the ARGUS Study:

We calculated sampling weights in ARGUS based on the reported frequency of attending the

venue from which a man was sampled. E.g., men who were sampled from a café received a

weight 60, 15 or 3.75 if they reported visiting cafés where MSM socialize less than 1 time

per month, 1-3 times per month, or 1-3 times per week, respectively. These weights were

obtained as the inverse of the frequency per day with which the venues were attended, as

follows:

• Attending the café <once/month, we took this to be attendance of once every two

months, and gave a weight of [1/(60 days)]−1 = 60.
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• Attending the café 1-3 times/month, we took this to be an attendance of twice per

month, and gave a weight of [2/(30 days)]−1 = 15.

• Attending the café 1-3 times/week, we took this to be an attendance of 8 times/month,

and gave a weight of [8/(30 days)]−1 = 3.75.

Weights were calculated similarly for men recruited from each of the social sites included in

the VDT sample (bars, saunas, etc.). For the fixed study site, all participants were recruited,

and hence the sampling weight for these individuals was 1. Therefore, each participants in

the ARGUS study received a weights of 1, 3.75, 15 or 60.

Weight Adjustment in the SPOT Study:

As ARGUS and SPOT recruit from the sample population, we leveraged the information in

the venue-based sampling weights from ARGUS to create venue-based sampling weights for

SPOT. Specifically, we built a model to estimate venue-based weights for SPOT using the

weight from ARGUS study as dependent variable in a regression model which took all com-

mon covariates in the SPOT and ARGUS studies as predictors (see Table 6–1). Then, using

the covariates in SPOT, we predicted the most probable weight for each SPOT participant.

In our primary analysis, we used a multinomial logistic regression; a sensitivity analysis using

linear regression to model the venue-based weights. Note that the number of sex partners in

ARGUS was counted for the last 6 months whereas it was counted in SPOT for the last 3

months. We, therefore, multiplied the number of sex partners in SPOT by 2.

6.2.2.2 Simulation-Extrapolation Conditional on Covariates

Over the last three decades, several measurement error correction methods including

as regression calibration [58,108], multiple imputation [21,22], and simulation-extrapolation

[58, 68] have been proposed. Each of these approaches, with the exception of simulation-

extrapolation, requires either a validation sample or replicate data for some fraction of the

observed sample. In the SPOT study, phylogenetic cluster size is under-counted due to

unobserved (untested) individuals. Therefore, obtaining a validation sample is both ethically
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and practically infeasible as it would require the testing of all members of the population of

interest (in our case, all MSM resident in the province of Quebec). Under this circumstance,

that is in the absence of validation or replicated data, simulation-extrapolation is the most

avenue for correcting the undercounting of the cluster size data.

The simulation-extrapolation method developed by Cook and Stefanski [68] is a simula-

tion based technique for estimating and reducing bias due to additive measurement error. The

method was further generalized/extended by Carroll et al. [58] and Stefanski and Cook [70].

Simulation-extrapolation is a two-step estimation procedure consisting of a simulation step

and an extrapolation step. Estimates are obtained by adding additional measurement error

(in known increments) to the mis-measured data in a resampling-like stage, computing es-

timates from the contaminated data, establishing a trend between these estimates and the

variance of the added measurement errors, and extrapolating this trend back to the case of

no measurement error. This method requires the knowledge of the distribution of the mea-

surement error (which may be known in cases such as a laboratory assay, or estimated using

external or validation data).

Let Ui, i = 1, . . . , n is the unobserved true explanatory variable; an error-prone version

Xi is available. Consider Xi = Ui + δi, where δi ∼ N(0, σ2
δ ) and δi is independent of Ui, Yi.

SIMEX proceeds in two steps. In the first simulation step, artificial measurement error is

added to Xi and B new covariates Xi,b(λk) are generated through Xi,b(λk) = Xi +
√
λkδib,

where b = 1, . . . , B; k = 1, . . . , K and i = 1, . . . , n for values of λk chosen by the analyst

and {δi,b}Bb=1 are independent computer simulated random numbers from N(0, σ2
δ ). It can be

shown that the variance of Xi,b(λk) is σ2
U + (1 + λk)σ

2
δ , which increases with λk. For each λk,

let β̂b(λk) denote the vector of näıve estimates obtained by regressing Y on Xi,b(λk). Using B

estimates for each λk, an average estimate can be obtained as B−1
∑B

b=1 β̂b(λk). By regressing

β̂b(λk) on λk, and extrapolating back to λk = 1, we find the estimate β̂(−1) corresponding to

the error σ2
U + (1 + λk)σ

2
δ = σ2

U (i.e., the error free setting). Typically, β̂b(λk) is regressed on

λk assuming either a quadratic or a non-linear relationship (e.g., a lowess smoother [140]).
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Parveen et al. [138] extended SIMEX to accommodate measurement error distributions

that (i) depend on other covariate and (ii) need not to have mean zero, called simulation-

extrapolation conditional on covariates (SIMEX-CC). They expressed the imperfect mea-

surement of Ui as Xi = Ui − δi, where the conditional distribution of the error δi given a

correctly measured variable Zi was P (δi|Zi = zi) = fz with a finite mean (µδ) and variance

(σ2
δ ). In SIMEX-CC, the simulated covariate Xi,b(λk) was taken to be

Xib(λk) = Xi −
√
λk × δib + (1 +

√
λk)× µδ, (6.1)

where µδ = E(δi|Zi); b = 1, . . . , B; k = 1, . . . , K and i = 1, . . . , n. Note that under this

measurement error specification, Xi is always less than or equal to Ui.

In the SPOT data setting, we consider Ui to be the (unobserved) true cluster size and Zi

to be the HIV status of the participants. All HIV-negative participants belong to a cluster

size zero, and there is no measurement error in this cluster size. Measurement error was only

present in the cluster size of HIV-positive participants. Thus measurement error in cluster

size depends on another covariate: the HIV status of the participants and, as such, we applied

the SIMEX-CC method.

Thus, to undertake our analysis of the epidemiological correlates of phylogenetic cluster

size in the SPOT data, we considered a weighted regression of Y on Xi,b(λk) in the simulation

step of SIMEX-CC method, where weights were the estimated venue-based sampling weights

estimated with the external information provided from ARGUS, as described above.

6.3 The SPOT Analysis

Methods

In this analysis, our main focus was on the association between the phylogenetic cluster

size and the number of sex partners in the SPOT data. We adopted log-linear models to

assess whether there was any evidence of a relationship between cluster size on number of sex

partners, when adjusting for age, ethnicity, education, and income as potential confounders.

Selected characteristics of the study samples from SPOT and ARGUS subjects are presented

113



in Table 6–1; for a detailed breakdown of key covariates in the SPOT study by HIV status,

please see Table 6–3 in Appendix F, where similar distributions of characteristics are observed

between the HIV-positive and negative participants. As noted in the previous section, to

adjust for the SPOT sampling scheme in the analysis stage, we used external information

from the ARGUS study. The distribution of covariates varies between the SPOT and ARGUS

studies, with ARGUS participants being more commonly of French-Canadian origin, less

likely to hold a university degree, and more likely to have snorted or smoked cocaine.

The sampling weight for ARGUS participants were directly calculated using the fre-

quency of venue attendance. We then use multinomial logistic regression to predict the

sampling weights in ARGUS using the variables listed in Table 6–1, which the variables com-

mon to both the SPOT and ARGUS studies. The fitted model was then used to estimate

sampling weights for the SPOT study participants. In the SPOT study, there were some

missing data. For the variables age, ethnicity, cluster size, number of sex partners and num-

ber of one night sex partners the number of missing data points were 6, 3, 2, 137 and 50

respectively. The missing (predicted) sampling weights were resulted from the missing data

for the predictors (all common variables in the SPOT and ARGUS data) in the prediction

model. Since fewer than 8% of data were missing, our primary analysis used complete cases

only. We, however, checked the sensitivity of results to this choice by re-analyzing the data

following imputation.

To apply SIMEX-CC, we must supply the method with the mean and variance of the

measurement error distribution of cluster size of the HIV-positive individuals. We estimate

this distribution using the following external data: The adult population of Quebec in the

year from which the SPOT data were taken was 6,802,700 [115] with an HIV incidence rate

of 7/100,000 [116] so that the total number of incident cases of HIV in Quebec can be esti-

mated as 6, 802, 700× 0.00007 ≈ 476. It has been suggested that in Canada, approximately

25% of people who are living with HIV do not know their infection status [117]. In fact, the

proportion of MSM in Montreal who are unaware of their HIV status is likely lower (13%
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Table 6–1: Characteristics of the ARGUS and SPOT participants. Statistics shown are
mean (standard deviation) for continuous or count variables, and number (percentage) for
categorical variables.

Variables ARGUS SPOT

(n = 1873) (n = 1803)

Age 40.45 (12.4) 32.6 (10.5)

Ethnic origin

French-Canadian 1390 (74%) 883 (49%)

English-Canadian 133 (7%) 216 (12%)

Other origin 350 (19%) 704 (39%)

Education

Completed college or below 968 (52.1%) 680 (37.7%)

Completed university 848 (45.6%) 1070 (59.4%)

Other training 42 (2.3%) 53 (2.9%)

Income in the previous year (before taxes)

< 30, 000 CAD 722 (38.9%) 725 (40.2%)

≥ 30, 000 CAD 1107 (59.6%) 949 (52.6%)

Unwilling to report 29 (1.6%) 129 (7.2%)

Gay or homosexual 1633 (87.9%) 1498 (83.5%)

No. of sex partner† median = 8 (IQR =18) median = 3 (IQR = 4)

No. of one night sex partners† median = 4 (IQR =16) median = 1 (IQR = 4)

Used condom at last intercourse 1332 (71.7%) 1343 (74.6%)

Current no. of gay or homosexual friends

None 50 (2.7%) 53 (3%)

Less than half 545 (29.6%) 667 (37.2%)

Half 478 (25.9%) 591 (33%)

Most 771 (41.8%) 480 (26.8%)

Any previous HIV tests 1667 (89.7%) 1596 (89.1%)

Drugs use‡

Snorted or smoked cocaine

Never 1418 (76.3%) 1552 (93.4%)

Occasionally 440 (23.7%) 110 (6.6%)

Snorted or smoked heroin

Never 1839 (99%) 1662 (99.9%)

Occasionally 19 (1.1%) 2 (0.1%)

Snorted ketamine

Never 1700 (91.5%) 1617 (97.2%)

Occasionally 158 (8.5%) 46 (2.7%)

Snorted crystal meth

Never 1813 (97.6%) 1637 (98.4%)

Occasionally 45 (2.5%) 26 (1.5%)

†In the last 3 months for SPOT, the last 6 for ARGUS

‡In the last 6 months for SPOT
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in ARGUS), however we opt for the higher bound as previous work has suggested that it is

better to overestimate rather than underestimate measurement error variance [138]. Thus,

we estimate that there are 476×0.25 ≈ 159 who are “missing” from the genotyping program

database, and thus contributing to the under-counting of cluster size. Based on previous

studies of cluster size distributions (see, for example, [10, 11]) and the sizes of clusters in

SPOT, we found through trial and error that a Poisson(3) distribution was appropriate to

yield a distribution of cluster sizes that was similar those found in the literature and would

account for the approximately 160 individuals who are estimated to be missing from the

Quebec genotyping program.

Results

In Table 6–2, we compare the results of four different models: (i) a näıve unweighted model

(neither adjusted for the sampling scheme nor corrected for measurement error); (ii) a näıve

weighted model (not corrected for measurement error, but adjusted for the sampling scheme);

(iii) an unweighted SIMEX-CC analysis (not adjusted for sampling scheme but corrected for

measurement error); and (iv) a weighted SIMEX-CC (adjusted for both the sampling scheme

and measurement error). It is evident that cluster size has no association with the total

number of sex partners across all models. However, notable differences appear in the analysis

of the number of one-night sex partners: cluster size appears to be associated with the number

of one night partners when adjusting for sampling weights, however the association is very

weak in magnitude across all models and not significant when measurement error is taken into

account. In this analysis, adjusting for the sampling confers greater changes in the estimates

than correcting for measurement error – perhaps unsurprisingly as there are relatively few

individuals living with HIV and hence whose cluster size is subject to measurement error.

To assess the sensitivity of the results to the measurement error distribution, missing

data, and the estimation of the sampling weight, we re-analyzed the SPOT data (i) assuming

measurement error was distributed with a mean and variance of 5; (ii) considering all missing
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variables as the modal (most common) values for binary variables, and median for continuous

and count variables; and (iii) modelling the distribution of sampling weights as via linear

regression. We found no meaningful changes in the resulting estimates (see Tables 6–4 to

6–6 in Appendix F).

6.4 Discussion

In this paper, we have demonstrated how phylogenetic and epidemiological data may

be combined in an effort to leverage new insights into the correlates of HIV phylogenetic

cluster size in MSM using two high quality data sources: a rich dataset offering information

on both phylogenetic clustering and epidemiological covariates, and another offering similar

epidemiological data and yet is one of the few studies in the Canadian MSM population

to have used a probabilistic recruitment approach (time-location sampling). To leverage the

complementary strengths of these two datasets, we used of considerable external information,

adjusting SPOT by assuming it could be viewed through the lens of venue-based sampling and

addressing measurement error in cluster size using the SIMEX-CC, which can accommodate

measurement error that is covariate-dependent and may not have mean zero. In this case

study, we have thus demonstrated important methodological tools that can be employed in a

wide array of settings, most particularly in studies of hard-to-reach populations and studies

where measurement error can be well-characterized.

Our analysis is subject to several limitations. First, while we have drawn on two large

studies of urban MSM in Canada, power is limited due to the small number of people who

were HIV-positive and for whom both phylogenetic cluster size and epidemiological data

were available. More importantly, “cluster size” is not a static measure, but rather one that

evolves with new transmissions and the dynamics that drive large clusters are highly complex

and may vary from cluster to cluster. For instance, cluster size may be driven in one cluster

by a large number of individuals engaging with a small number of sexual partners within

the period of high infectivity shortly after seroconversion, and in driven in another by a

small number of individuals with many sexual partners and transmission events. As time
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progresses, the measurement error in cluster size may decrease: with each new HIV-infected

person being tested in the province, cluster size may be updated. However, simply adding

precision to some final measure of a cluster size may not provide the relevant information:

ideally, we want to correlate an individual’s socio-demographic and lifestyle characteristics

at the time of infection with the size of the cluster at that same point in time. Phylogenetics

offer some insights into when an individual was infected, but not with enough precision to

accurately determine the size of a cluster at the point at which an particular member of

that cluster was infected. Finally, our analysis implicitly assumed that ARGUS had recruit

from the same MSM population as SPOT. While demographics are broadly similar in the

two populations, ethnic origin did vary, with more SPOT participants being of non-Canadian

origin and cocaine use differed, likely due to recruitment from saunas, bars, and sex clubs.

ARGUS sought to recruit lifetime MSM, not only those who were currently sexually active.

If this is the case that the venues from which ARGUS sampled did not cover the entire

MSM community then the weighting scheme used will have adjusted SPOT to look more

like ARGUS participants, but neither study sample will represent, or generalize to, the entire

MSM community in Montreal or the province of Quebec. However, while it is possible

that some social venues may not have been identified, the extensive formative research and

environmental scan used to map the MSM community is a strength of the ARGUS study

that minimizes this as a potential concern.

As in previous work [57], large cluster size has not been found to correlate with sexual

risk behavior. This underscores the importance of finding other indicators such as, perhaps,

real-time phylogenetic monitoring are needed to identify early stage infection and better

understand transmission dynamics among MSM. Clearly, our work only scratches the very

surface of the potential links between rapid transmission as hinted at by larger cluster size

and individual-level characteristics, but is an important first step in posing the question and

offering solutions to some of the methodological hurdles that may be faced.
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6.5 Appendix for Manuscript III

Appendix F: Additional Results from the Data Analysis

Table 6–3: SPOT participant characteristics. Statistics shown are mean (standard deviation)
for continuous and count variables, and number (percentage) for categorical variables.

Variable HIV-positive HIV-negative All

(n = 34) (n = 1769) (n = 1803)

Age 33 (9.5) 32.6 (10.5) 32.6 (10.5)

Ethnic origin

English-Canadian 3 (8.8%) 213 (12.0%) 216 (12.0%)

Other 31 (91.2%) 1556 (88.0%) 1587 (88.0%)

Cluster size

0 0 1767 (100%)

1 10 (29.4%) 0

2-3 3 (8.8%) 0

> 3 21 (61.8%) 0

Income

< 30000 12 (35.3%) 712 (40.3%) 725 (40.2%)

≥ 30000 17 (50%) 932 (52.7%) 949 (52.6%)

unwilling to report 5 (14.7%) 124 (7.0%) 129 (7.2%)

Education

No degree 1 (2.9%) 19 (1.1%) 20 (1.1%)

High school or college 11 (32.4%) 649 (36.7%) 660 (36.6%)

University 18 (52.9%) 1052 (59.5%) 1070 (59.4%)

Other training 4 (11.8%) 49 (2.8%) 52 (2.9%)

No. of Sex Partner 5.8 (4.7) 5.9 (9.2) 5.9 (9.1)

No. of One night Sex Partners 4.3 (4.7) 3.8 (8.1) 3.8 (8.1)
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äı

ve
re

gr
es

si
on

an
d

u
n
w

ei
gh

te
d

an
d

w
ei

gh
te

d
S
IM

E
X

-C
C

to
as

se
ss

th
e

re
la

ti
on

sh
ip

b
et

w
ee

n
p
h
y
lo

ge
n
et

ic
cl

u
st

er
si

ze
an

d
n
u
m

b
er

of
se

x
p
ar

tn
er

s.
S
ee

T
ab

le
6–

3
in

A
p
p

en
d
ix

F
fo

r
d
efi

n
it

io
n
s

of
ca

te
go

ri
ca

l
va

ri
ab

le
s.

N
äı
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Chapter 7
Discussion

This doctoral research is based on the data from SPOT, a study in Montreal that of-

fers HIV testing to MSM who show no signs of HIV or AIDS, and collects data on socio-

demographic and behavioural characteristics. The main focus of my research was to address

some of the methodological challenges that arise when studying correlates of HIV phylogenetic

cluster size in MSM by combining phylogenetic and epidemiological data. The two major

challenges that my research dealt with within the SPOT data were (1) measurement error

in the cluster size, and (2) the use of a non-probability sampling scheme. The measurement

error in forming the sexual cluster size arises due to not being able to obtain blood samples

from all HIV-positive MSM in Quebec. The sampling scheme in SPOT was a convenience

approach, relying heavily on personal contacts between members of the MSM community.

Because the sampling frame is unknown and the sampling mechanism is non-probabilistic,

findings from the study may suffer from a lack of generalizability.

While several competing approaches are available for correcting measurement error, the

most suitable method in the SPOT data setting is the SIMEX method of Cook and Stefan-

ski [68] because it does not require validation or repeat measurement data. However, the

direct application of SIMEX method is not possible because the standard SIMEX develop-

ment was limited to mean zero random errors. In the context of under-counted measures

in the cluster size of SPOT data, SIMEX would need to be extended to alternative error

distributions that has non zero mean. Further, there exists little literature on adjusting for

convenience sampling approaches, but a significant literature on survey sampling methods

which, with adequate external information, could prove helpful in analyzing the SPOT data.

Below, I briefly revisit the objectives and findings of my doctoral research and highlight the
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contributions to the field. I then outline limitations of my work and directions for further

research before concluding.

Objectives and Findings

In the first manuscript, I extended and validated the SIMEX method to the case where errors

can have any known parametric distribution with non-zero mean which better mimics the

undercounting cluster size in the SPOT data. The non-zero mean SIMEX (NZM-SIMEX)

estimators were theoretically proven to be consistent in continuous outcome, linear model

settings. To empirically evaluate the performance of the NZM-SIMEX procedure, a number of

simulation studies were carried out by varying: outcome distribution, covariate distribution,

specification of error distribution (correctly-, over- and under- specified), and sample size.

Simulation results suggested that the NZM-SIMEX performed very well in reducing bias

as compared to the näıve method that ignores measurement error. The NZM-SIMEX was

found to perform best when the measurement error distribution was correctly specified. It

performed better than the näıve method even when the measurement error distribution was

mis-specified, although exhibits some bias in those cases. These results were in line with

the findings in Cook and Stefanski [68]: there is some evidence that SIMEX is robust to

the specification of error distribution. The NZM-SIMEX was applied to the SPOT data to

examine correlates of HIV phylogenetic cluster size. No statistically significant association

was observed between the cluster size and the demographic and behavioural covariates of

interest, indicating that these characteristics have not been shown to help identify and,

subsequently, break the link of HIV transmissions within large clusters.

In the second manuscript, I further extended the NZM-SIMEX to the case where mea-

surement error in a target variable depends on other error free covariates. This extension was

undertaken so as to make use of the whole of the SPOT data such that both HIV-positive

and HIV-negative MSM can be included in the analysis. In the SPOT study, measurement
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error in the phylogenetic cluster size depends on a correctly measured covariate: HIV sta-

tus. For HIV-negative MSM there is no measurement error in their cluster size: the size

is known to be 0. Measurement error occurs only in the measurement of the phylogenetic

cluster size ofthe HIV-positive MSM. I compared the performance of SIMEX conditional

on covariates (SIMEX-CC) to other well known methods such as regression calibration and

multiple imputation for measurement error. Simulation results suggested that for correctly

specified measurement error distribution, SIMEX-CC performed at least as well as compet-

ing approaches. Even in mis-specified cases, SIMEX-CC can sometimes perform better than

other methods. Applying SIMEX-CC to the SPOT data, no association was detected between

phylogenetic cluster size and the sexual behavioural characteristics. Overall conclusions from

the SIMEX-CC and näıve methods were similar. This may be due to the small number of

HIV-positive MSM in the sample (who contributes to forming cluster size); measurement

error is thus unlikely to strongly affect the results.

Finally, in the third manuscript, I demonstrated methods that can be used to improve

the generalizability of results from a study whose sampling scheme is non-probabilistic, where

the covariate of interest is prone to systematic undercounting. In the SPOT study, partici-

pants were recruited often by word of mouth, using a convenience sampling approach aimed

at MSM often not reached by traditional HIV testing services. As such, the study cannot be

said to have employed any specific probabilistic sampling scheme. Thus, in this manuscript, I

again adopted SIMEX-CC for correcting measurement error and considered sampling weights

derived from an external data source to adjust for sampling scheme. Specifically, the sam-

pling weights for the SPOT study were obtained from a prediction model constructed by

utilizing another HIV study of MSM in Montreal (the ARGUS study) for which the sampling

mechanism was known by design. While adjustment for sampling design did provide some

notable changes in estimates, the analysis still unable to reveal any important correlation

between the phylogenetic cluster size and the number of sexual partners of a MSM.
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Contribution

This dissertation research contributes to the realm of biostatistics both theoretically and

practically. I developed a measurement error correction technique that can deal with the cases

where measurement error distribution (i) can have non-zero mean; and (ii) may depend on

another correctly measured covariate in the sample. Further, I demonstrated how an external

source of information can be used to improve the generalizability of the results in a study

whose sampling scheme is not probabilistic. I validated the methods via a series of simulation

studies and compared the performance with other popular methods. The main advantage of

the proposed method is that unlike most other methods, it does not require a validation or

replicated sample, provided that reasonable knowledge of the measurements error distribution

is available to the analyst. The methods that I developed were applied to study the correlates

of phylogenetic clusters in the SPOT data. Although the methods that I developed were

motivated by the analysis of SPOT data, they can also be used in situations whenever

measurement error occurs due to systematic undercounting or overcounting, or when measures

are known to vary by, say, sex or other easy to measure variables. Further, the approach

to adjusting for the sampling distribution may also be widely applicable provided external

data are available. In some cases, such as studies of vulnerable or hard-to-reach populations,

it may be unreaslistic to obtain data from another study that used a probabilistic-based

sampling and recruitment scheme. However, this approach could be used in a variety of

settings – even where the sampling scheme was well-understood but there were many non-

responders – if, for instance, population census data could be used to re-weight the observed

sample.

Limitations

This research has several limitations. While detailed limitations were discussed in each

manuscript separately, here I briefly outline the overall limitations common to the three

manuscripts.
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The major drawback of the NZM-SIMEX and SIMEX-CC is that both require “rea-

sonable” knowledge of the measurement error distribution. In the case of mis-specified error

distribution, my simulation results suggested that it may be safer to overestimate the variabil-

ity of the measurement error for NZM-SIMEX. On the other hand, the simulation studies

for SIMEX-CC were designed to mimic the SPOT setting. As such, a significant limita-

tion is that the performance of the SIMEX-CC has not been fully explored under a wide

range of settings. I considered only the case where one sub-population’s measures were sub-

ject to error. However, as in laboratory measurements, there may be cases where men and

women’s measurements have different error distributions. In such situations, the performance

of SIMEX-CC under the mis-specified error distribution has not yet been examined.

The overall results from the SPOT study may not be generalizable to the entire popu-

lation of MSM in Montreal, but only to those MSM who frequent gay social venues. In the

first manuscript, I included only HIV-positive MSM, thereby reducing the sample size to a

greater extent (from n = 1803 to n = 34). Therefore, conclusion from the first manuscript is

likely to be affected by limited power as well as lack of generalizability. The lack of a larger

sample also prevented inclusion of more covariates in the mean model.

I assumed that error in cluster size is due to primarily missing of HIV-positive individuals,

but I have ignored errors due to the phylogenetic clustering itself, which may be subject

to uncertainty too. However, for the data analysis, I considered a range of plausible error

distributions, and conclusions were unchanged. This suggested that taking additional sources

of error into account may not distort the overall conclusion of the analysis.

In the theoretical development of NZM-SIMEX and SIMEX-CC, I considered the simple

settings: (i) including only one independent variable; (ii) additive error was independent

of the value of both mis-measured observed covariate and the unobserved (true) covariate.

While the extension to the multiple covariates would be quite straightforward, it is however

more challenging to incorporate the situation where measurement error depends on both the
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observed and unobserved (true) values of the mis-measured covariate. To do so would require

strong, untestable assumptions similar to the “missing not at random assumption” [21].

To improving the generalizability of results, I made use of data from two studies of MSM

in Canada. While both studies are large, there is limited power because of the small number

of HIV-positive MSM in SPOT.

In the third manuscript, the analysis implicitly assumed that ARGUS had recruit from

the same population as SPOT. However, there is evidence to suggest that ARGUS may have

recruited from a different subset of the MSM community, as 81% of ARGUS participants

reported being Franco- or Anglo-Quebecois with only 19% from other countries, where as

in SPOT, 39% were of non-Canadian origin. This suggests that SPOT may have reached

a different members of the MSM community such as new immigrants. If this is the case

– that the venues from which ARGUS sampled did not adequately cover the entire MSM

community – then the weighting scheme that I used will simply have adjusted SPOT to look

more like ARGUS participants, but neither study sample will represent, or generalize to, the

entire MSM community in Montreal. Being aware of this difference in the country of origin

of the two studies’ participants and not having any further information to suggest which

distribution might better characterize the target population with respect to background, I

chose a very rough dichotomization of the ethnic background variable to minimize the impact

of this variable on the venue-based sampling weights.

An additional limitation is that the SPOT data cannot be assumed to be independent

and identically distributed. A large number (26.6%) of SPOT participants were referred

by friends. Therefore, they may have similar demographic and behavioural characteristics.

Note that due to the anonymous nature of the SPOT study, it is not possible to build

contact network information among study participants, and thus measures of between-person

correlation are not available within the study.
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An important, and significant, limitation of this work is that cluster size was treated as

a static measure. However, its very nature, cluster size would be expected to grow as time

progresses. Thus, a cluster could be “large” simply because it is an older, more established

cluster and this cluster may contain a mix of newly infected individuals as well as individuals

infected many years prior. In my analyses, I used cluster measurement data from the time

of analysis, not the time of infection and, as such, may unable to observe any relationships

that might exist between epidemiologic covariates and rapidly-expanding clusters. Ideally,

we would want to be able to measure, and then correlate, (i) the size of the cluster and (ii)

socio-demographic and lifestyle data (from questionnaires) immediately prior to the at the

point at which a person becomes infected with HIV, along with the same socio-demographic

and lifestyle information from individuals who are not infected as some ‘comparable’ point in

time (e.g. for a MSM who does not acquire HIV, matched for age and calendar year). Having

access to those data would ensure temporal ordering of the lifestyle variables prior to HIV

infection, and provide a more comparison group of HIV-negative individuals who are more

similar at a clinically relevant time-point.

Future Research

While this thesis develops a measurement error (in the covariate) correction technique by

extending the SIMEX method to the cases where measurement errors are not necessarily

mean zero, users of SIMEX may, however, benefit from further work in the areas described

below.

Measurement error in discrete variables invokes a misclassification problem. Use of

misclassified covariates and responses in regression model will lead to inconsistent estima-

tors of covariate effects [141, 142]. Although various techniques, including methods based

on maximum likelihood or quasi-likelihhod, pseudo-likelihoods [143–145], estimating func-

tions [146, 147] and Bayesian methods [148] are available, SIMEX can also be used for this

purpose. As discussed previously, unlike many other methods, SIMEX does not require either
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internal or external validation samples or replication studies for estimating the parameters

of the misclassification matrix [58]. The SIMEX method either assumes the misclassifica-

tion matrix is known or uses an estimated misclassification matrix. The development of

SIMEX method in misclassification of covariates has been limited to binary covariates [88].

Therefore, from the SPOT data perspective, it might be of interest to develop misclassifica-

tion SIMEX (MC-SIMEX) when the predictor has multiple categories or follows some other

discrete distribution, which may alternatively be viewed as a situation in which there are

multiple, correlated binary predictors (the category indicators). The resulting methods can

then be applied to analyze SPOT data focusing on a typically used categorized version of

cluster size, labelling clusters as “unique”, “small”, and “large”.

Measurement error in SPOT, as discussed previously, actually occurs due to missing data

(from the untested/unknown-status individuals). Further research can also be conducted to

build a model of an MSM community to test what parameters might realistically correspond

to the data observed in SPOT by generating a population of all HIV-positive MSM in Mon-

treal. One can begin with a simplest possible model which requires: (i) the population size;

(ii) the number and size of the sexual clusters in Montreal; (iii) the probability of being

tested; and (iv) the distribution of covariates. With plausible ranges for these parameters,

it would be possible to create a population of HIV-positive MSM, generate their covariate

information, and know whether or not each man is tested. Based on those who were tested,

it would be possible to know how many people in their cluster have also been tested and

use this as a measure of the observed (mis-measured) cluster size. Knowing also how many

in the cluster have not been tested gives knowledge of the true cluster size. One can then

compute the bias in the associations between covariates and cluster size based on using the

true and the mis-measured cluster size. The literature [149–152] and the SPOT data can be

used to help inform reasonable ranges for each of the parameters.
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The SIMEX to accommodate systematic undercounting or overcounting can also be

developed for the correlated data situation in the generalized linear mixed effects models

(GLMMs) setting. Further extension of SIMEX to the non-zero mean error distribution

can be made in the time-to-event data situation under the Cox proportional hazard model

framework.

As noted in the limitations, all analyses were undertaken at a fixed point in time. How-

ever, phylogenetic cluster size is a measure that is dynamic in time. To truly harness the

information available in the phylogenetic data, dynamic models will need to be employed to

understand what factors contribute to (i) risk of infection, (ii) the growth of a cluster, and

(iii) the interplay of individual-level social networks, as the data available are almost surely

not independent.

Final Comments

There is growing interest in correlating HIV phylogenetic clustering data with epidemiologi-

cal data. However, such analyses face several methodological challenges, one of which is the

systematic undercounting of the true sexual network cluster size. This measurement error

causes bias and can thus lead to incorrect inferences. Overall, my dissertation research con-

tributes to the biostatistical literature by developing a general measurement error correction

technique that can deal with systematic errors that need not have mean zero, where measure-

ment error distribution may depend on another correctly measured covariate. My work has

also demonstrated how external data may be used to improve the generalizability of results

from a study whose sampling scheme was not probabilistic. The methods were applied to

the SPOT data to study to correlates of the phylogenetic cluster size.

It is hoped that the developed methods will ultimately enhance the existing methodology

to analyze with phylogenetic or related data in order to make valid inferences.
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[114] Allodji RS, Thiúbaut ACM, Leuraud K, Rage E, Henry S, Laurier D, Bénichou J.
The performance of functional methods for correcting non-Gaussian measurement error
within Poisson regression: corrected excess risk of lung cancer mortality in relation to
radon exposure among French uranium miners. Statistics in Medicine 2012; 31:4428–
4443.

[115] http://www.stat.gouv.qc.ca/statistiques/population-demographie/

structure/104.htm.

[116] Global HIV and AIDS statistics. http://www.avert.org/global-hiv-and-aids
-statistics 2016.

[117] http://www.catie.ca/en/fact-sheets/epidemiology/epidemiology-hiv-canada.

[118] http://www.inspq.qc.ca/publications/notice.asp?E=p&NumPublication=1706.

[119] Brenner BG, Moodie EM. HIV sexual networks: the Montreal experience. Statistical
Communications in Infectious Diseases 2012; 4(1).

[120] Volz EM, Frost SDW. Inferring the source of transmission with phylogenetic data. PLoS
Computational Biology 2013; 9(12):e1003 397.

[121] Pagani F, Panteghini M. Biological variation in serum activities of three hepatic en-
zymes. Clinical Chemistry 2001; 47(2):355–356.

[122] Carrol RJ, Stefanski LA. Approximate quasilikelihood estimation in models with sur-
rogate predictors. Journal of the American Statistical Association 1990; 85:652–663.

[123] Buonaccorsi J. Measurement Error: Models, Methods and Applications. Chapman and
Hall, CRC Press: Boca Raton, FL, 2010.



142

[124] Carroll R, Ruppert D, Stefanski L, Crainiceanu C. Measurement Error in Nonlinear
Models: A Modern Perspective. Chapman and Hall, CRC Press: Boca Raton, FL, 2006.

[125] Blackwell M, Honaker J, King J. A unified approach to measurement error and missing
data: overview and applications. Sociological Methods and Research 2015; 1:1–39.

[126] Efron B, Tibshirani R. An Introduction to the Bootstrap. Chapman and Hall, CRC
Press: Boca Raton, FL, 1993.

[127] Trezo EP. Bayesian hierarchical model for the study of clustered data with cluster level
sources of measurement. PhD Thesis, McGill University, QC, Canada 2015.

[128] Hong H, Rudolph KE, Stuart EA. Bayesian approach for addressing differential covari-
ate measurement error in propensity score methods. Psychometrika 2016; 4(1):1–19.

[129] Granich R, Crowley S, Vitoria M, Lo YR, Souteyrand Y, Dye C, Gilks C, Guerma T,
et al. Highly active antiretroviral treatment for the prevention of HIV transmission.
Journal of the International AIDS Society 2010; 13:1.

[130] Remis RS, Alary M, Liu J, Kaul R, Palmer RWH. HIV transmission among men who
have sex with men due to condom failure. Journal of the International AIDS Society
2014; 9(9):e107 540.

[131] Remis RS, Palmer RW. Testing bias in calculating HIV incidence from the serologic
testing algorithm for recent HIV seroconversion. AIDS 2009; 23(4):493–503.

[132] Cain R, Collins E, Bereket T, George C, Jackson R, Li A, Prentice T, Travers R. Chal-
lenges to the involvement of people living with HIV in community-based HIV/AIDS
organizations in Ontario, Canada. AIDS Care 2014; 26:263–266.

[133] Cohen MS, Chen YQ, , McCauley M, Gamble T, Hosseinipour MC, Kumarasamy N,
Hakim JG, Kumwenda J, et al. Prevention of HIV-1 infection with early antiretroviral
therapy. New England Journal of Medicine 2011; 365:493–505.

[134] Powers KA, Ghani AC, Miller WC, Hoffman IF, Pettifor AE, Kamanga G, Martinson
FEA, Cohen MS. The role of acute and early HIV infection in the spread of HIV-1 in
Lilongwe, Malawi: Implications for Test and Treat and other transmission prevention
strategies. The Lancet 2011; 378(9787):256–268.

[135] Wainberg MA, Brenner BG. The impact of HIV genetic polymorphisms and subtype
differences on the occurrence of resistance to antiretroviral drugs. Molecular Biology
International 2012; :Article ID 256 982.

[136] Brenner BG, Wainberg MA. Future of phylogeny in prevention. Journal of Acquired
Immune Deficiency Syndrome 2013; 2:S248–54.

[137] Parveen N, Moodie EEM, Brenner BG. The non-zero mean SIMEX: improving estima-
tion in the face of measurement error. Observational Studies 2015; 1:91–123.



143

[138] Parveen N, Moodie EEM, Brenner BG. Correcting covariate-dependent measurement
error with non-zero mean. Statistics in Medicine 2017; NA:NA.

[139] Lambert G, Cox J, Hottes TS, Tremblay C, Frigault LR, Alary M, Otis J, Remis
RS, et al. Correlates of unprotected anal sex at last sexual episode: analysis from a
surveillance study of men who have sex with men in Montreal. AIDS and Behavior
2011; 15:584–595.

[140] Cleveland WS. Robust locally weighted regression and smoothing scatterplots. Journal
of the American Statistical Association 1979; 74(368):829–836.

[141] Yi G, Cook R. Errors in the measurement of covariates. Encyclopedia of Biostatistics
1998; 3:1741–1748.

[142] Carroll R. Measurement error in epidemiological studies. Encyclopedia of Biostatistics
1998; 3:2491–2519.

[143] Carroll R, Gail M, Lubin J. Measurement error in epidemiological studies. Journal of
the American Statistical Association 1993; 88:185–199.

[144] Lawless J, Kalbfleisch JD, Wild C. Semiparametric methods for response-selective and
missing data problems in regression. Journal of the Royal Statistical Society: Series B
1999; 61:413–438.

[145] Hanfelt J, Liang KY. Approximate likelihood for generalized linear errors-in-variables
models. Journal of the Royal Statistical Society: Series B 1999; 59:627–637.

[146] Nakamura T. Corrected score functions for errors-in-variables models: methodology
and application to generalized linear models. Biometrika 1990; 77:127–137.

[147] Pepe M, Fleming T. A nonparametric method for dealing with mismeasured covariate
data. Journal of the American Statistical Association 1991; 86:108–113.

[148] Mwalili S, Lesaffre E, Declerck D. A Bayesian ordinal logistic regression model to correct
for interobserver measurement error in a geographical oral health study. Journal of
Royal Statistical Society, Series C 2005; 54:77–93.

[149] Parsons JT, Severino J, Nanin J, Punzalan JC, Von Sternberg K, Missildine W, Frost
D. Positive, negative, unknown: assumptions of HIV status among HIV-positive men
who have sex with men. AIDS education and prevention : official publication of the
International Society for AIDS Education 2006; 18(2):139–49.

[150] Jin FY, Prestage G, Law MG, Kippax S, Van de Ven S, Rawsthorne P, Kaldor JM,
Grulich AE. Predictors of recent HIV testing in homosexual men in Australia. HIV
Medicine 2002; 3(4):271–276.

[151] MacKellar DA, Valleroy LA, Secura GM, Bartholow BN, McFarland W, Shehan D,
Ford W, LaLota M, et al. Repeat HIV testing, risk behaviors, and HIV seroconversion



144

among young men who have sex with men: a call to monitor and improve the practice
of prevention. Journal of Acquired Immune Deficiency Syndromes 2002; 29(1):76–85.

[152] Shira M, Armistead LP, Kalichman S. Predictors of HIV antibody testing among gay,
lesbian, and bisexual youth. Journal of Adolescent Health 2000; 26(4):252–257.


	1 FRONT
	2 Abbreviation
	3 BODY

