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ABSTRACT

Abstract

This thesis describes a new framework for parametric shape recognition. The keyresult

is ,L lI1ethod for generating c1assifiers in the form of conditional probability densities for

rccognizing an unknown from a ~et of,!"cfçrence models. Our procedure is automatic. ûff­

line, it invokes an autonomous process to estimatc reference model parameters and their

statistics. On-Iine, during measurement, it combines these with a priori context-dep'~udent

information, :li:, weil as the parameters and statistics estimated for an unknown obje~t, into
"a conditional probability density function, which represents the belief in the assertion that

t.he unknown is a particular reference mode!. Consequently, the method also permits the
:

assessment of the beliefs associated with a set of assertions based on data acquired from a

particularviewpoint. The importance of this result is that it provides a'basis by which an

external agent can assess the quality of the information from a particular viewpoint, and

make informed decisions as to what action to take using the data at hand.

The ihcSis also describes the implementation ofthis procedure in a system for auto­

matic,àlly generating and crecognizing :3D part.,q.riented models. We show that' recognition
:..:;.. - : : . _. .' ~

performancc is near perfect for cases' in which complete surfacc' information is accessible

to tÎf~-algorith-m, and thàt it falls' off'~;',cefully when only p~rtial inform'ation is available.

This Icads {o iL seq~ential recognition strategy in which evid~nce is accumulated over suc­

ccssive vie\~points?(at the level of th~belief distribft.ion) u~til " d~finitive~ertion can
- -

be made. Experimental results are presented showing how the resulting algorithms can be -
~ .;..:r. .

nsed to distinguish betwccn informative and uninformative viewpoints, rank a sequence of- ,.
images on the basis of thelrinformation (e.g. to generate a set of characte~isticviews), and

sequentially identify an nnknowi~ obj~ct. ~

:
:
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RésUlllé

Cette thèse décrit une nouvelle approche pour la représentat.ion para.llll:'t.rique de:' fOrlllt's.

Le resultat principal est une mêthodc pour géuérer des classes SOIIS la. forme de fondions

de densité de probabilité pour identifier un inconnu parmi un ensemble de modt'les de

référence. Notre procédure est automatique. Dans sa phase d'apprent.issage, dIe fa.it. appl'l

à un processus autonome pOlir estimer les paramètres des modèles de référence' et leurs

statistiques. Dans sa phase d~identification. elle combine les paralllètrl's des llludt'ies ([('

référence avec d'autre information contextuelle ainsi 'lu 'avec les paramt~tr~ d sl.a.t.isliques
~ .,,~ - -

d'un objet à identifi::!r J>~ur prod~,~e une foncUon de densité de proba.bili1.l~ qui reprl~seut.e

la confiance en ll.li~ hyp~~e d'idcntification de l'inconnu parmi les modèles de l'érl~l'ellCl~.

Conséquemment, la méthode permêt aUsSi~l'estimationde la confiancc as::ociéc :1 lin ellselll­

bIc d'hypothèses bas~s sur les données obtenue~,uncertain point de vlle. L'illlpol't.allcc de

cc rés~ltat est qu'il procure une base ?ar laquelle un agent externe peut. estimer la qualit.é de

1'infor~lation provenant d~un point de vue et en conséquencc prendre une d6cision-éciairée

quant à l'action à réaliser. ~

Cette thèse décrit aussi une réalisation ~oncrète de cette procédure dans 111·1 systèllll~

pour générer et reconnaltre des modèles aD représentés pSu' leurs pa.rties. Nom; 1I1011I.I'OIlS

que la performance de la procéd ure de recon naissance approche la perfection pou l' les ca.." olt

une description compl'ete de la surface est disponibJe et que les résultatsse dégr;tdenl. d'Ilnc_

manière prévisible et graduelle quand seulement une~inrormatioll part.ielle est. présentée.

Ceci débou~he sur une stratégie de rec?nnaissancc séquentielle par laquelle les évidences

sont accumulées sur plusieurs vues (aù niveau dcs distribut.ions de confiallcc) jUSqU':1 cc
'"qu'une hypothèse définitive puisse être établie. DcsJésultats eXI~<'J:!,mèllt.auxdémontrent

comment l'algorithme peut être utilisé pour: distinguer entre les vues informatives ct /1011-
~ .

informatives, classer tlne séquence d'images sur la base d~ leur information (i.e. pour générer

un ensemble de vues caractéristiques) et identifier séquentiellement un object i';COllllll .

III
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CHAPTER 1

Introduction

Object recognition represents the highcst Icvel of processing in a vis liaI systcm. synt.hesizillg

ail the information provided by the lowcr leve1 proccsses, and using the resllit t.o pl'rforlll

reasoning tasks. However, iutcrest in the problem of object recognition has gcncrally heen

restricted to _identifying and locating an object in a visllal scene (sec sllrvey pa.per hy

Arman & AggarwaI1993b). \Ve argue that absolutc identifications arc lilllitcd in t1la1 t.hey

are biased to a particular system's criteria as to \Vhat cOllstitlltes a "winllillg" hypot.hesis.

Furthermore, since no visual system works in complete isolation, externat proccsscs IIlUSt.

be completely informed about any ambiguit.ies in the resllits of recognition 1,0 he able 1.0

make kno\Vledgeable decisions.

In this thesis, we foc us our attention on modcl-based recognition. This implics ma,king

use of object môdels tlmt store a priori knowledge abOlit the l'l'attires esselltial for object.

characterization. Recognition cOllsists of matching an unknown object. \Vith a 1Il0dcl in a

predefined database. We broaden the scope of the conventional recognition proolclIl and
:'\, .

investigate the notion of the quality of the identification. ln our terms, t.his qualificat.ion

refers ta determining the degree ofconfidence in the classification. Ideally, rcprcscnt:Ltion

of this information takes the· form of a conditional probabili ty density fUlIctioll, which wc

will refer to as a belief distribution, describing the Iikelihood of corrcspolldcncc bct.\veell a.tI

unkno\Vn model and each of the reference models. Such a measlirc is csscntial to an active'

recognition process which can use it as fcedback in the collection of further da.ta ta r('~<;alve

ambiguity.

Our processworks as follow8. On-line, wecmake measurements of an ulIkllowtI abject,

the task being ta infer the model in the databasc which best rcprcscnts it. Problems of

this type faU under the ~ategory of inverse problems, and arc underdetermillcd. Rather

1
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1. OVERVlEW OF THE APPROACH

t.han cOlIst.r:iin t.he solution with prior assumptions about the world, wc seek a gencral so­

lution to the inverse problem that makes the sources of knowledge explicit. To this end, we

IIIust address the issue of how one systematically incorporates different sources of knowl­

edgc into the proccss of recognition, spccifically amhiguities that arise from mcasuremcnt

and representation. Wc seek a method that represents ail relevant contextuai information

hy informative rnodcls, and encompasses these descriptions into the solution. Ideally, we
:'

would like to represent these sources of knowledge as probability density functions, so as

to communicate ail the uncertainties to the recognition engine and, in this manner, make

well-inforrned decisions.

1. Overview of the Approach

The application ofthis work is three-dimensional object recognition in which objects are

represented by parametric shape descriptorscsuch as superellipsoids (Barr 1981, Bajcsy &.

Solina 198;, Raja &. Jain 1992, Ferrie, Lagarde &. Whaite 1993), deformable solids (Darrell,

Sclaroff &. Pentland 1990, Pentland &: Sclaroff 1991), and algebraic surfaces (Subrahmonia, .

Cooper &. Keren 1992). We introducc a new framework for parametric shape recognition

hased on a probabilisti~inverse theory first lntroduced by Tarantola (198;). Application of
/

this theory leads to a"Bâyesian recognition strategy similar to that used in other approaches

(Subrahmonia ct al. 1992). However, the important distinction of our methodology is that

it leads to a mechanism by which the belief distribution used to c1assify shape models can be

automatically generated. In doing so, important sources of contextual knowledge are taken

into account that are less obvious in traditional approaches. Such knowledge includes i) a

priori knowledge of the objects comprising the database, ii) information obtained from the

process of estimating mode! parameters for an unknown object, and iii) information from

the physical theories giving rise to the reference models themselves. We will show how the

theory systematically enumerates each of these sources of knowledge, and combines them

so as' to create the desired belief distribution.

ln our context, object models are constructed through a process of antonomons ex­

]Jlomtion (Whaite &. Ferrie 1991, Whait~ ~ Ferrie 1993b, Whaite & Ferrie 1994) in whièh

a part-orientcd, articulated description of an object is inferred throngh successive probes

with a laser rangc-finding system. Figure LIa shows the set-up used to perform experi­

ments - a: two-a.xis laser rangc-finder mounted on the end-effector of an inverted PUMA­

560 manipulator. Fo~~ny particular viewpoint, such as the on~ shown in Figure LIb,

a process of bottom-up shape analysis leads to an articulated model of the object's shape

2



•
l. OVERVIE\\, OF l'IlE ,II'I'HOACII

(a) (b) (e)

•

FIGURE 1.1. (a) Mobile laser range-findingsystem used to construet. object modek
(b) Laser range-finder image of a pencil sharpener rendered as a shaded image. (c)
An articulated, part-oriented modcl orthe sharpcncr using supcrcllipsoid primit.ives;
8 superellipsoids are used, one corresponding to each of the parts of the object..

(Figure 1.1c) in which each part is represented by a superellipsoid primitive (Ferrie, Lagarde

& Whaite 1993). Associated with each primitive is a covariance matrix C which ernbcds

the uncertainty of this represèntation and which ean be used to plan'subsequent galle posi­

tions where additional data can be acquired êto reduce this uncertainty further (Whaite &

Ferrie 1991, Whaite & Ferrie 1993b). A system which automatically builds object Illodcls

based on this princip!e is reported in (Whaite & Ferrie 1994, Lejeune & Ferrie 1993).

Applying the inverse theory to our context is straightforward. Off-line, a. datab"se

of object models is generated by presenting each object prototype to the modcl bnilding

system. Each object is in tum represented by severa! sets of parameters, one corrcsponding

to each part of the object. On-line, the recognition phase proceeds identically to modcl­

building except for one key difference. On each iteration (gallc-point calculation ~ dat.a

acquisition --t data merging (fusion) --t parameter estimation), the belief (in the form

of a conditiona! probability density function) for each reference object given the eurrent
" . 1:

parameter estimate of the unknownobject is calculated. If a c1ear winner stands out in

terms of maximum likelihood, the prcicess is terminated. Otherwise the proeess is allowed

to continue ~nd the beliefs in each reference mode! are updated on the 'basis ~f the newly

:~
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acqllircd data.. In this way~ evidencc can he increrncntally gathercd during the proccss of

exploration.

Because the inverse solution to the recognition problem is in the form of a belief dis­

t.ribul.ion, il. provides not only descriptions of the results, but of the ambiguities in them

as wd!. This qualification is important in that visual processes rarely work in complete

isolation, and external processes using the results of recognition should be fully informed

before rnaking decisions. For example, consider an external agent searching for a particu­

lar ohject. with limited resources. It must be able to assess what it sees from a particular

viewpoint and quickly determine if the extracted information describing the characteristics

of the ohjects in the scene is useful in identifying the target, so as to be able to evaluate

alternate strategies. These strategies may include making assessments based on the current

information, or using it to decide where to look next. It must do ail this while taking into
, ,

account prior knowledge about the environment. In this thesis, we will show how the rc-

snlting bclief distributions can be used to (il assess the quality of a viewpoint based on the

assertions it produces, and (iil sequentially recognize an object by accumulating evidence

at a probabilistic leve!.

Finally, wc note t.hat to be able to solve a large number of problems in vision, we need

to be able to modcl what Wc know about the world. The inverse theory, which tells us how

to represent prior knowledge, and how to combine the knowledge to obtain the solution, is

therefore an ideal candidate for the solution of a wide variety of vision problems. Although

in this thesis, Wc concentrate on the problem of object identification, the theory can easily

be applied to the problems of object classification or object representation. We will briefly

discnss <>ther possible applications of the theory in Chapter 8.

2. Overvi,ew and Organization of Thesis c

Very few recognition schemes have attempted recognition based on the parameters of

volumetric models. One reason for this has been due to the shortage of efficient bottom-up

systems capable of building stable representations for multi-part objects. In Chapter 2, we

present an overview of the many recognition strategies introduced over the past decade.

Wc will classify the different schemes in terms of the features used to describe the objects,

as weil as the matching schemès' used to compare the 'unknown object to the models in

the database. Wc will focus our attention on the recognition schemes that do attempt to

recognize parametric models (Pentland & Sclaroff 1991, Keren, Cooper & Subrahmonia, ~ .
r 4
!:
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1992, Raja &. ,Jain 1992), and iIIustrat.e t.he maiu differences bet.\\'cen t.hos<' approachL's and

ours.

The proposed recognition strategy rab:cs ~~ number of fundamcntal issue::.-. First.. how i:->

parametric uncertainty used and communicated beLween the procc:->scs of model hllildin~ and

recognition'? Clearly they are not independent. Furthermore, the recognit.ion proccss 1l111:->t.

take both the uncertainties in the database. as wcll as t.he mea..'·~llrement unccrtain1.ies or t.he

unknown object, into accol;lnt, In Chapter3, Wc present an o\'erview of t.he ill\'t.'rse t.lwory

(Tarantola 198ï), and in Chapter 4, we show how the appropriate bdier distribntions nsed

for recognition can be determined from such information by applying the inverse t.hl'ory t.n

th" problem of model recognition. This leads 1.0 a method of deriving, for each object modd

instance, the conditional probability of that modcl given the current. estimated paramet.ers

of the unknown and their covariances.

Second, which parametric model would provide the most useful descriptious for rl'cog­

nition? We have chosen 1.0 use the parameters ofsupercllipsoid modds as rea.t.ures for t.he

purposes of recognition. Representations bascd on supcrquadrics, howcver, pose a. llulIlber

of problems due 1.0 degeneraciesin shape and orient~tion. Other parametric forms, e.g.

algebraic surfaces (Keren et al. 1992), arc sometimes less problematic and l'an offer a more

stable basis for recognition purposes. Nonethcless, il. is still desirable t.o choose fortus iu

which physical attributes l'an be ascribed 1.0 model parameters in au intuitive manner. The

finite-element representations introduced by Pentland and his colleagnes are a c'lSe in point.

(Dar-'ell et al. 1990, Pentland & Sclaroff 1991). For our purposes, where shape is init.ially

partitioned into part-oriented segments, superellipsoids are attract.ive both in t.he ",nge of

shapes they l'an represent as weil as their computational simplicity. ln Chapter 5, wc dc~

scribe a method ofavoiding degeneracies in the case of the superellipsoid, which permit.s the

use of this convenient parametric form without incurring undue computational overl~:l.-.
Finally, what is the best manner in which 1.0 accumulate information'! The modd- ,

building process is expensive, the merging of data from different viewpoint.s in particular

(Soucy 1992). While this might be acceptable for database !,>:neration, recognition t'lSks

must often be performed rapidly. An alternative is 1.0 consider the use of partial infornml.ion

obtained independently from different viewpoints. Because recognition from one view is not

always reHable, key 1.0 this idea is the ability 1.0 assess the '1uality of the hypotheses from a

particular view. In Chapter 6, we iIIustrate how 1.0 use the belief distributions to distinguish

between informative and uninformative viewpoints byapplication of an external threshold.

Furthermore, we show how the resulting ambiguities c~n be resolved without the nœ~.for
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dat.a fusioll by accumulat.illg evidence in t.he form of the belief distributions from sequential

vic\.... points.

ln Chapt.er ï, we describe and compare the performance of the recognition procedure

using bdiefs computed from complete and partial surface information respectively. vVe show

th"t the beliefs generated from partial data retain their selectivity and result in a minimum

nllmber'of f"lse-positive indications. vVe illustrate this for single-part objects as weil as for

parts of complex, articulated models. We show that the majority of the incorrect states are

accompanied by very low beliefs, and can be removed by applying asimple threshold. 'Vesee

that the distributions of the beliefs from different viewpoints are bi-modal, indicating a clear

distinction between the informative and uninformative viewpoints. This justifies the use of

the threshold to distinguish between them. In addition, we perform a series of incremental

recognition experiments that illustrate that the ma:dmum likelihood hypothesis l prevails in

a largely view-invariant manner. Therefore, we show that, by tabulating the votes for each

hypothesis, after a sequence of trials, the correct winner emerges. Finally, we indicate how

the system 's success at recognizing primitives of articulated models, even with only partial

information available, paves the way for recognition of multiple-part objects.

We conclude in Chapter 8 with" sorne general observations on our current work and

points for future research.

3. Contributions

In this work, we claim the following contributions:

1. We present a clear and structured recipe for recognition of volumetric models based

on a generalized inverse theory.

2. The procedure for both database generation and identification is completely auto­

matie. "

3. The method explicitly enumerates its sources of contextual knowledge so it can easily

be modified to work elsewhere.

4. The result is in the form of a conditional probability density function so ambiguities

can be communicated to external processes to evaluate and base decisions upon.

5. The result is a basis by which an external agent can assess the quality of the in­

for~lation from' a particular viewpoint by distinguishing between informative and

uninfommtive viewpoints.' ""

6. An ineremental recognition scheme is presented.

'Thil'! rders to the hypothesi~ th3.t the correct answer is the one with the highest belief.

6
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7. The method is highly discriminant. capable of recognizin~ Ilwdel:-; dt'spit.t' widt' vari­

ations in thcir size and shape.

8. The system paves way for multiple-part recognition based 011 graph-mat.chinp;. hy

outlining a \Vay ta compare the nodcs.

9. Strategies f~r solving atlter problcms in vision Bueh a~ abject clas~i(ieation.a,lld ac/ÎI-,­

recognition arc outlincd.

7
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CHAPTER 2

Object Recognition Schemes

1. Introduction

Over the years, much research has been devoted 1.0 solving the problem of object recog­

lIition. In 'general, the connotations of the tet'minology in the field have been fairly wide­

spreacl. As a result, m":.ny classification and model-based representation methods have fallen

IIl1der the category oC'':;bject recognition. In this chapter, the first thing we wish ta do is

clarify the terminology and distinguish model-based object recognition schemes from the

others. In doing so, we will restrict ourselves to comparing our work 1.0 those methods

that extract a series of features from an nnknown model, and compare them 1.0 a series of

models stored a priori in a database. The result we require of the method is a hypothesis,

or a gronp of hypotheses, about the likelihood' of the unknown object matching each of the

1lI0dels ill the database.

We wish 1.0 distinguish recognition schemes from abject classification schemes, where

the goal is 1.0 classify the ullknowil object into one oC'a series of predetermined categories.

Examples of these schemes include work done by Raja & Jain (1992), where objects are

represellted by snperquadric models, and then placed into into one of twelve predetermined

categodes of 3D shapes (geons). In this case, classification is based on low level features

derived from the superquadric model, such as bent or straight a.xis, and straight or curved

, edges. Other classification schemes include (Hutchinson, Cromwell & Kak 1989).

Within these classification schemes are those methods that attempt 1.0 represent an
~

object by a descriptive model, while restricting the possible models 1.0 a finite group. These

schemes fall under the category of model-based representation schemes. Here, measurements

of an object are taken and tlt'en an att.empt is made 1.0 recover a higher level representation

from them. However, rather than adhere 1.0 a strict bottom-up strategy, these methods

constrain the search by only permitting. the representation 1.0 be one of a few possible types

8
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of models, stored in a database prior 1.0 the experiment. The goal b a mode! of the obj,'ct,

generated by using top-down information. This differs sn bstantially from the goals of lIlodd­

based recognition, where the descriptive modcl of the unknown objec.t has already b,'en

computed prior 1.0 the experiment without the use of top-down information. The goal here

is, therefore, not 1.0 compute an object modcl, but rather 1.0 hypothesize a match !letwe,'n

the computed mode! and each of a series of predefined modcls in a database. Ex,unpl,'s of

model-based representation methods inclnde tl...se that measnre the object. and attempt 1.0

fit the data 1.0 each of the model types stored in the database. The modcl chose" is the one

that fits'the data with the smallest overaIl error (Kriegman &. Ponce 1990. Newman. Flynn &.

Jain 1993, Wu &. Levine 1994). Other examples can be fonnd in (Pentlatid 1987. Dickinson.

Pentland & Rosenfeld 1992).

A wide varietyof model-based object recognition schemes have becn devcloped over the

past thirty years (Chin & Dyer 1986). In this chapter, we wish 1.0 review varions met,hods,

and distinguish them by the type of features they use 1.0 characterize the objects (Secti"n 2)

and the way in which they represent the objects in the database (i.e. in what fOrln shonld

the features be combined into object models), as weIl as the method nsed 1.0 match an

object 1.0 a model in the database (Secnon 3). These traits arc inherently linked ill t.Imt,--.
the type of representation chosen dictates' the ,featnres used for recognition, '18 weil as t.he

type of matching strategy chosen, its robustness, and the system's emciency.Thc sn rvey

will illustrate the problem that in many recognition strategies, implicit nssnmpti',ns abOlit

the nature of the world are applied. These assumptions may include cOllst.raint.s 011 t.he

kinds ofobjects that will be recognized (i.e. specialized methods that look for particnlar

features, such as the number of holes in a block), the kinds of features that arc intercst.ing

(i.e. methods that characterize objects by curvature or boundary featnres), or the valul'S

of the features themselves (i.e. methods that look for sizes within a particnlar range of

values). As a result, the methods may work weIl in a particular context but, becanse of t.he

hidden nature of the assumptions, cannot be easily modified 1.0 work elsewherc.

2. Features =

Most of the previous work in object recognition have used low-Ievel or intermediate levcl

features in order 1.0 characterize objects. Low-Ievel schemes look 1.0 match edgcs, corners,

curves, lines, silhouettes,. contours, boundarics, holes and other predetermined features in

their attempt 1.0 recognize objects. For example, linear edge fragments, and circular arcs

are used in (Grimson 1987, Grimson 1989, Grimson & Lozano-Perez 1987). Line segment.s,

9
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corners, zeros of curvature, other 2D perceptua! structures are used in (Lamdan, Schwartz

.1;: Wolfson In88, Thompson &. Mundy In8ï, Lowe 198,j, Huttenlocher &. Vllman 198ï).

lnterrnediate schernes extract features of surface patches. For example, Flynn &. Jain

(1 n91 (1) use surface area, surface type (cylindrical, spherical or planar), and other surface

attributes, as features for recognition. Other such schemes use surface normals, centroids,

directiou of axes of surfaces, centers of sphere (Kim &. Kak 1991), or edge adjacency types,

Le. convex, or concave (Fan, Medioni &. Nevatia 198ï, Fan, Medioni &. Nevatia 1989, Fan

1990)..Jain &. HoFrman (1988) describe modcls by the area and diameter of the surface

patches. They also incorporate the minimnm and ma.ximum distances 1.0 the adjacent

patches.

Sorne methods incorporate "global" features in their recognition schemes. To date, the

majority of the global features have referred to general descriptions such as the number of

parts of the object, or the number of local features the objects have (such as the number of

edges or corners). Methods that use these kinds of features exc1usively are quite inefficient

in that these descriptions are generally unstable. For example, the number of object parts

depends, qnite heavily, on the resolution of the segmenter, and is very sensitive 1.0 occlusion.

ror this reason, the majority of the schemes that use global features, use them in conjunction

with other types of features, and use them only 1.0 help prune the search space.

Chin &. Dyer (1986) state that in order 1.0 be able 1.0 recognize a wide variety of rigid

parts, independent of viewpoint, one needs 1.0 be able 1.0 extract view-invariant 3D features

and match them with features of 3D models. The problem with the majority of low,

intermediate, and global features is that they are often unstable, view-variant, and highly

susceptible 1.0 noise. The shortage of "high-Ievel" features (or stable, global descriptors)

features restricts the capabilities of most recognition schemes 1.0 a limited c1ass of objects,

secn from a few, fixed viewpoints. Examples of such high level features used in recognition

schemes are the intrinsic properties of parametric models such as algebraic surfaces (Keren

ct al. 1992), or superquadrics (Pentland &. SciaroFr 1991, Arbel, Whaite &. Ferrie 1994a).

Here, the intrinsic properties used are the parameters of the models themselves. These

descriptors will be discussed in more detail in the next 'section.

3. Matching Strategies

Many methods attempt 1.0 find ":. corresponding match between features of the object

modcls and features extracted from the unidentified object. The' matching scheme chosen by

a recognition system should be able to achieve i.his task while accounting for the possibility

10
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ofmissing information duc to partial occ1u~ion. meaSllrC'IIlCnt.~ from singlt~ \"il~wpoint .. et.c. III

many schemes~ the dirnensionality of the featurcs cxtractcd forces tl1l1C'h oft.ht' C'omptlt.at.ional

burden 1.0 be shifted 1.0 the matching procednre. As a resnlt.. l1luch oft.he focus of t.11l" cunpul

literaturc is to reduce the arduousness of t.his proC'('s...~. Schetllt's t.hat rl'pl't'Sl'lll. uhjl'C1.s hy

robust~ and stable models, and use rich. global fcat.llrcs implicit. t.a t.1lt'ir dt'script.iolls. l't'dUl"l'

the job of the matching proces:; and render il. more efficient.. ln t.his sect.ion. we will discuss

the various types of matching strategies that. have emerged over t.he past. decade.

3.1. Tree Seareh Approaeh. One general category of mat.ching schel1les has heell

the tree seareh approach. Here, after object featnres are extracted, a t.rce of possihle mode!­

to-objeet feature matches is built. Each path from 1'001. 1.0 leaf repl'esent.s one I","sihle

solution 1.0 the correspondence problem. The idea is t.o search for t.he pal,h t,hat. wou Id el"llI'e

a consistent matching between object and model. !vIany people have developed met.hods

1.0 prune the search tree in order 1.0 reduce the search t.ime. These iuc1ude coust.l·aining

the range of unary feature values (sueh as the lellgth of an edge), as weil as t.he l'ange

of binary feature values describing the interrelationships betwcen uua,ry feat.nres (such as

the angle between normal vectors) (Grimson 1987, Grimson 1989, Gril1lson &. Lo~:l.Ilo­

Perez 1987, Flynn & .Jain 1991a, Flynn &. Jain 1991b). Swain (1988) developed a tiec;";o,,

tree approach 1.0 object recognition, employing topologieal, relational and view-dependeut.

information in its decision ru les.

3.2. Relational Sehemes. Another category of mat.ching schel1les is t.he relation:d

approach. Relational matching schemes attempt 1.0 est.ablish correspondence by represent.­

ing both the sensory data and the model data as graphs, where the nodes represeut. featnl'es,

and the arcs l'l'present the geometrie relationship among the feat.ures. The l'ecogllition

problem is then a matter of establishing graph isomorphism. Once again, Illany PI'UII­

ing techniques have been introduced 1.0 reduce the search space (Kak, Vayada, Crolllwell,

Kim & Chen 1987, Faugeras & Hebert 1983, Bhanu 1982). ln (l'ail ct. al. 1987, l'ail

et al. 1989, Fan. 1990), objects are repl'esented as at.t.ributed graphs, and t.he approach
,~ .

is 1.0 look for the model gr"ph with the largest set of matched nodes. They use low, in-

termediate, and global level featurcs 1.0 prune the search space..Jain & Horfman (1988)

arranged. the featurcs dcscribed above into groups: shape features, object face feat.ures,

and boundary information. Range images are represented using these grou ps '1$ "evidence

conditions". The images, along with the weights indicating the uncertainty in t.he feat.u l'CS

eorresponding 1.0 the models, are stored in a database. Matchingîs performed by computing

11
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a similarity rnea~lIre describillg the degree of sllpport for a hypothesis. Bolles, Horaud s.:
]l;tII'IOLh (lfJ84) extended previolls work (Bolles &. Cain 1982) 1.0 develop a ~lD local-Jeat",.c­

Jorn" technique. The rnethod uses a graph-rnatchingtcchnique 1.0 identify the largest c1uster

ofi,m'ge features that matches a clusterof mode! features. II. works by selecting one feature

in the image around which il. trics 1.0 find a c1uster of consistent secondary features. After

creating a list of ail possible imagc-feature-to-model-feature assignrnents, il. creates a graph

of ail possible pairwise assignrnents. Connections between nodes are established if the two

a....:,..,·:,ignmcllts thcy rcprcscnt arc mutually consistent.

3.3. Pruning the Database by Model-Based Indexing. A major problem facing

object recognition schemes has been the enormous complexity involved in searching the

database to select the possible candidate models. Many methods have been introd uced 1.0

reduce the computational complexity. One such method has been the geomel.,-ic hashing

scheme (Lamdan &. Wolfson 1990, Grimsou s.: HuttenIocher 1990, Flynn &. .Jain 1992). ln

I.hese schemes, a hash table, containing surfacc-surface pairing constraints for all the mode!s

in the database, is constructed. Surface pairing measurements are derived l'rom the scene,

and the corresponding values arc !ocated in the appropriate entry in the table. This results

in many possible matches, which are resolved by using predefined sets of ru!es.

Flynn (1992) investigated the case of large databases. His approach was 1.0 reduce the

number of prototypes nccd~d 1.0 be considered by excludingall redundant feature groups

that result l'rom object symmetry. As well, a measure of saliency was assigned 1.0 each group

in the scene, so that "uninformative" groups are not considered. Other filtering schernes

were introduced in (Kim &. Kak 1991, Stein &. lVledioni 1992).

3.4. Automatic Schemes. Many of the schemes described involve a substantial

"mou nt of on-line model analysis duc, in part, 1.0 the additiona! constraints and conditions

compnted with the introduction of each new model 1.0 the database. In order 1.0 reduce

the expense of rnn-time calculations, interest has grown in automatic recognition schemes,

with much of the database processing performed off-line. New methods were introduced

that performed much of the "precompiling" prior 1.0 recognition, improving the efficiency of

the task al. run-time (Goad 1983). One such scheme uses a representation called an aspect.

gmpll. first.introduced in (Koenderink 19ï6, Koenderink 19i9). These are graphs where each

node represents a topologically distinct 2D viewpoint of a 3D object. The arcs, referred

1.0 as "visual events", describe transformations l'rom one viewpoint 1.0 another. Essentially,

the graph divides the view-sphere into stable regions defining "characteristic views", where

12
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small changes in viewing position do IlOt. alfl'l't (.IH.' topolo~il'al st l'urt,III'l' ~)r thl' .:-;\'1· lll' \'isihlt·

features. (Recent work on aspect. graphs rail h(' round in tSripl'adh-\,<lI'akul .\' .Iaill I!)~~l.

Eggert s.:. 80\\')"('1' 1989. Eggcrt. 13o\\'yt\l'. DYl'r. Christl'IlSl'lI S.: Guldgor lm):,!. Kl'h.'l.!;l1Jall .".

Ponce 1989, Bo\\'yer &. Dyer 1990),) Precomputing; au a~ll('ct g;raph for ,'ach IIIlHI,'1 iu 111l'

database can improve the efIicicncy or the recognition t.ask al. l'IIIl t,ÎIlH.'. hy pl'l'ddil\ill~ t.ht'

possible interprctations or the Illodels in the database. 'l'hl' major disad\'all\.a~t'l" or t.IIl'

representation arc the high storagc l'cquirclllC'lIts. and ia.rgl' ronstl'llc.tioll tillh'S.

Jnl.crprctaUoll I.rcc~ (Ikeuchi 198ïa, Ikeuchi Hl8ïb) 't1'e ~illlilar 1.0 a~p('cl. g;raphs, ill thal

the Gaussian sphere is tessellat.ed iuto possible' vicwing posit.iotl~. Thi~ t.t.'chniqut.' inrilldes

the additional step of computing a t,rec cont.aining t.he po:-'.sible illt.('t'pt'('\.:.ttinlls of (':tcll lllndpl

in the daiabasc. Ail possible shapes of the modcl, a.t the 1"00t.. are gelH.'I"a.t.l'd. and t.llt., silllilal'

shapes are grouped into clusters ai the leavcs of the tl'CC. Different. divi~ion~ nI' t.hl' :ISI>l'Cl.s

form different paths l'rom the raot of the tree ta the ieaves,

Another off-line scheme is the ],,'CdicUon hicIYLI'Chy method, lIere, the :!D al'p"arallc"

of sorne :3D abjects is predicted in advance, and merged into a t.reL~like stl'lIdlire whkh

is traversed during recognition (Burns &. Kitchen 1988). Simila.l'1y, Diekinson, l'elltla.lld

& Rosenfe!d (1990) introduced hierarchical aspect gmphs. The mel.liod enl.a.ils extI':H,tinf\

object features"such as the convcxity of the contours of the faces, frolll :.ID volulIletrie pl'illl­

itives. These fcatures, assesscd from many viewpoints, a.rc a.rranged in a. hiera.l"chiea.! gra.ph

that links facial featuresto faces ta face structures 1.0 primitives. In addit.ion, the sl.al.isl.ie,d

relations between the features are also storee!' Ou-line m'tlching incilldes gener:tl.illf\ hy­

potheses about the identity al. the lowest possible levcl of the tree. Ol.her :tlll.om:tl.ic sclie,"es

have been investigated by (Hansen & I-\enderson 1988, I-\:tllsen &. I-\elldel'son 10S!l, A1'1 Il '\.II

& Aggarwal 1993a),

3.5. Matching Parametric Models, The linal set of m:tl.ching schemes eX'l.1l1illed

includes those methods that lind correspondence by m:ttching I.he p:tr'"l1eters of pa1YL1l1d7'ic

models, A parametric modcl refers 1.0 a represenl.:ttion bllill. by takillg mcaSliremelll.s of :tll

abject, and fitting the data 1.0 a model represented by a mathematieal eqll;Ll.ioll, These

models l'an be volumetrie models, such as superellipsoids·~ and generali~ed cylinders, 01'

surface descriptors, such as splines, and l'ourth arder polynomials, The par:lIl1el.ers of I.hese

equations describe implicit, global characteristics of the object, and arc I.herefore sl.able

descriptions for recognition. I-\owever, very l'cil' schemes lind correspolldellce ba.,;ed 011

the high-Ievel descriptions themselves, Rather, the majority of the cllrrent work ill :lD

abject recognition consists of building the models and extractillg externally c1.osen fcatll l'CS

l "
"



•

•

3. ~IATCHI"G STRATEGIES

frolll tliern. An exarnple of tliis trend is Dickinson cl. aL's (1990) choice of convexity of

contours of volumetrie primitives (sec prcvious section) as featurcs for recognition. In

gellcral, cxtrinsic fcaturcs arc l1slIally mnch more sensitive to noise! occlusion and vicwpoiul

t.ha.n t.he intrinsic alles, such as the pararnctcrs thcmsclvcs (this includcs thcir associated

covaria"ces). They "sually consist of geometrical (Io\\' or intcrmediate) features. or rather

""stable global features (sec Section 2). By avoiding using the parameters tliemsclves

a.s fcaturcs for recognition, limitations on the robustncss of ~·::c recognition schcme are

i"troduced, especially \\'ith complex objects.

Thcrc arc many rcasons for the shortagc of recognition schemes bascd on the pararneters

of these modcls. One reason lias bccn the shortage of efficient bottom-up systems capable of

buildiug stable representations for multi-part objects. This is due, in part 1.0 the shortage of

effective segmentation schemes, as weil as methods that combine information from different

viewpoints. Because of this, il. has heen thought that recognition of these modelsis only

suitable for singlc-part objects tha!. arc simple in shape, measured from only one viewpoint

(sec survey paper by Arman &. Aggarwal 199:3b) .

. ln addition, because the uncertainties associated \\'ith the parameters are rare!y calcu­

lated, il. is uot not generally considered feasible 1.0 compare mode!s based on them alone.

Tliis is because when fitting a modcl 1.0 data that is noisy, there is an inherent lack of

uniqueness in the parameters that describe the modeL In these cases, itis impossible 1.0

make a definite statement as 1.0 which mode! fits the data best (Whaite &. Ferrie 1991).

Tlierefore, matching based on oue set of parameters alone wouId not give accu rate results.

For this reason, rather than choose external constraints that \\'ould force one model over the

other, il. wou Id be more instructive 1.0 embed the uncertainty in the chosen description into

the feature set. In Chapter 4/we will show that taking the uncertainties in the measurc­

ment parameters into account (as weIl as the uncertainties of the parameters of the models

i" the database) in the distance metric permits greater variations in the measured feature,

while 'still maintaining high selectiviti in the discrimination between models. We will also

show that matching without taking the uncertainties iuto consideration wou Id cause many

false identifications. An example of such a method is that proposed by Pentland &. Sclaroff

(1991). The authors introduce a method for the recognition of deformable superellipsoid

modcls based on thde parameters alone. Using their scheme, proximity is measured by

evaluating the normalized dot product of the parameter veetors of the unknown object and

ofeach of the models in turn. Thec model with the highest dot product value is considered
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1.0 be the one c10sest 1.0 the unknown, and is the mode! chosen. Wc will illnstr;\I" t.he w<'ak­

nesses of methods such as these later in Chapter.1. 1'.lethods t.hat. do inclnd,' nncertaillli,'s

in the features l'an be found in (Hutchinson et. al. 1989. Kwong &. Kim 19!):1. Snbrahmonia

et al. 1992).

Often il. is the case that problems associat.ed with the paramet.ric mode! are misnn<fer­

sta.od ta be insurmountable. For example~ ll:."iing the paramcters of sllperqlladrïcs for t.hp

purposes of recognition has becn avoidcd~ bccause t.he problem of non-uniquencss of parall1­

eters has never been addressed. As a result, the power of thes~ representat.ions. nallle!y t.hat

they can providc accurate~ global descriptions of abjects o\'er ~ widc varicty of ~ize~ aud

shapes with relatively few parameters, has not yet been fnlly exploited. This has limit.cd

their uses 1.0 modelling tasks (as in CAD design), and 1.0 the recognition of simple object.s

(sel' Boult &. Gross 1988).

As weil, few schemes use a probabilistic approach 1.0 the solution. Bayesian recognition

of algebraic surfaces has been examined by Subrahmonia et al. (1992). They represent

objects by fourth order polynomials (Keren ct al. 1992), and lIleasnre similarity bet,wecn

the unknown and the models in the database by employing a Mahalanobis distance mea­

sure between the coefficient vectors. This distance measure inclndes the nncertainties in

the lIleasured model as weil as in the stored models (sec (Subrahmonia et al. 1992), Ap­

pendix, 1'.39). Recognition is achieved by choosing the model that rcsnlts in the smallest

Mahalanobis distance. The key difference between their approach and onrs (Arbel, Whaite

&. Ferrie 1994a) lies in the techniqnes used to obtain the solution. They have used strict,

Bayesian techniques 1.0 derive the solution. We have strnctured the problem within the

framework of an inverse problem thcory, which offees a c1ear and structnred forlllnia for

representing ail prior knowledge, as weil as a global recipe for combining this knowledge

1.0 obtain the posterior information. The result is a genemi sointion, which, in onr specific

case, degenerates 1.0 a Bayesian solution similar totheirs. ln addition, this framework lends

itself 1.0 the problem of model-based object recognition, but l'an be applied to various ot.her

problems such as object classification and generic recognition (sec Chapter 8).

The other important difference in our schemes is that they, and most othees, (sec snrvey

papers by Arman &. Aggarwal1993b, Chin &. Dyer 1986) arc int.ercsted in the constructiug

a discriminant that makes an absolute identification of the measnred object. In accordance

with Marr's (1982) "Principle of Least Commitment", wc feel that it is more instructive

1.0 retain several possible explanations, rather than choose a single one. This is cspecially

truc when the hypotheses are comp"rable in accuracy. Wc will demonstrate tha!. rnaking
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3. MATCHING STRATEGIES

'"'iScssmcnts about idcntity from single measurements can be erroneous. especially when

made frolll vicwpoints that provide Iittle information about the characteristics of the object.

lb,ther t.han rnake daims about the objcct's absolute identity, our mcthod communicates

the belic! in the possible hypot.heses as feedback 1.0 the recognition procedure, in order 1.0

furt.her reduce the arnbiguity using an active st.rategy.

ln the nex! chapter, we will introduce the general inverse theoryfirst proposed by

Tarantola (198ï). We will explain the reasoning behind explicitly enumerating ail sources

of kn~wledge available. As weIl, we will show how, by representing this knowledge as

probabilit.y density functions, we can easHy combine the information 1.0 obtain a solution

to the inverse solution in the form of a conditional probability density function. Finally, we

will illustrate how the general solution reduces 1.0 the dassical Bayesian solution, providing

the desired posterior information. In Chapter 4, we will show how we use this framework

within the context of a model-based object recognition system that matches parametric

modcls.

16
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CHAPTER3

The Inverse Problem Theory

1. Introduction

The recognition problem requires us to infer from Uleasurements of an unkno",n objecL

that model which best represents it in a data base of known objects. Like ail inverse l'rob·

lems, the recognition problem is ill posed in that, i) several modcls can give rise to identical

rneasurernents and, ii) experirncntal uncertainty givcs risc to unccrtain measurcmcnt8. A8

a result itis not possible to identify the unknown object uniquely. There arc various ways

of conditioning ill posed problems, but these ail require strong, and often implicit, a priori

assumptions about the nature of the world. As a result a method may work weil oulyin

specific cases and, because of the hidden implicit nature of the conditioning :ls.'<umptions,

cannot be easily modified to work elsewhere.

For this reason.we have adopted the very general inverse problern theory of Tarantola

(Tarantola 1987). 't makes the sources of knowledge used 1.0 obtain inverse solutions explicit,

so if conditioning is required, the necessary assumptions about that knowledge arc apparent

and can be examined to see if they are realistic. Also, and importantly, the questiou of

whether a solution is ill·posed or not is shown correctly to be an operational issue. The

theory tells us how the knowledge we have can be combined to obtain a solution, but leaves

any decision about the its usefulness up to the tasks that require it. For example, when

attempting to recognize objects we would ideally want the unknown modcl be idel't:,fied

correctly ail the tÎme. Because of experimental uncertainties this can never happen, and

there is always the possibility that an object will be identified incorrect!y. Only the t'lSk

can know if the likelihood of errors is acceptable.

This raises the interesting question of what we should do if the levcl of errors is not

acceptable. Because the sources of knowledge are expli.cit they are not only visible to the

operational tasks, but are also potentiàlly open to manipulation by them. ln principal

17
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it should be possible for the task to condition or actively acquire the a priori knowledge

rcquircd to make the solution acceptable. VVe have already demonstrated that what we

cali autonomous exploration functions weil at the model building level (Whaite & Ferrie

J993", WI,aite & Ferrie 1994) and we now intend, with the aid ofthis theory, to incorporate

fœdback from the recognition task as weil.

Wc begin in Section 2 with the introduction of the concept of formaI knowledge repre­

sentation. Section 3 will go on to explicitly enumerate the sources of a priori information

used to constrain the inverse problem. Finally in Section 4, we discuss the way the sources

arc combined to obtain the solution to the inverse problem.

2. States of Information

ln a physical system inverse problems are conveniently visualized as a mapping between

two different spaces: the mode! space lvl and the data space D. We will assume throughout

that l'Il and D arc vector spaces with a finite number of real valued parameters. 'We will

define lvl as an abstract space of points, each representing a conceivable model of the

system, and D will refer to the space of ail possibly "observable" instrumental responses.

A modcl in fvf is represented by m = (mb m2,"" mm), and a measurement in D by

cl = (dl ,d2, ... ,dn ).

The view taken by Tarantola is that our knowledge of a physical parameter (model or

measurement) is subjective in that it varies from observer to observer depending upon the

data in their possession. We can quantify this subjective knowledge by a rule, called the

sta!e of infonnation, which assigns a positive number reflecting our belief that the true value

of the parameter lies within sorne given range. Mathematically such a rule is a probabilityl

(Pfeiffer 19ï8). For a vector space the rule is represented by a probability density function.

Thus the first postulate of the theory is that our knowledge about a set of parameters

is describcd by a probability density function over the parameter space. This requires us to

devise appropriate density functions in order to represent what we know about the world.

However, probability theory tells us nothing about the way in which to choose the rule that

assigns probabilities. In general the form of these distributions depends on the the interpre­

tation one wishes to place on mathematical probability in the context of a physical system.

ln sorne cases," for example a measuring instrument, we can ~istogram the measurements of·

a known input and arrive at a rule bascd on the relative frequencies of measurements oc-.. .
curring within different ranges. In others, for example theoretical knowledge, we must rely

1RCI\lly a meWlure - a probability is a normalizable measure.

18
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3. SOURCES OF A PH10Rl INFOHMATION

on our intuition~ imagination, and cxpcricnce to formulatc a rule that a...--.signs probabilit.il':'.

and then verify il. through experimental procedure. There arc two special and import.ant

cases which refiect the fact that our knowledge falls betwccn two ext.rel~les: i) the sta.!.e of

perfect know!edge and ii) the state of nnll iuformation.

The state of perfeet know/edge is appropriatcly reprcsented by the Dirac dclt.a funct.ion

6(x-xo), and shows wc believe totally that x =xo, but not, al. aIl that. il. is any other vainc.

It is the state of information wc aspire to but can ncver attain. In pract.ice wc can tise il.

when 'sources of error are negligible in comparison with others.

The state of null information !,(xl on the other hand is used 1.0 represent' t.he faet.

that we have absolute!y no knowledge about the parameters al. aIl. Il. plays the role of

the reference state in the theory, in much the same way that noise is used when lIIea>'uring

information in terms of signal 1.0 noise ratios. An obvious choice for 'l(X) is a uniforlll

distribution which, because ail parameter valucs arc equally Iikcly, illlplies no particular

belief in any of them.

A uniform !,(x) is not necessarily correct, especially when dealing with different

parametrizations of the same physical system. For example if wc arc intercsted in ftnding

the location of sorne feature in 3D space a uniform distribution over the space of Cart.esian

coordinates seems a reasonable choice. However a uniform distribution over the space or

polar coordinates will rcsu!t in higher bclief values for those features c10ser 1.0 the origin.

For our purposes, we will usually assume that 'l(xl is uniform. Wc c1aim that this is a

reasonable approximation of the truc form as wc are only dealing with a single c1a..", of

models, and the same parametrization.

3. Sources of A Priori Information

The second part of Tarantola's theory is a division of the sources of a priori knowledge

into two specifie categories: the knowledge given by a theory which describes t.he physical

interaction between models and measurements, and knowledge obtained independent.ly of

that theory. For our purposes the latter can be broken down into two more independent

categories: information wc have about the model from measurements, and information from

unspecified sources about the kinds of models which exist in the world.

Note that although the theory assumes this information can be represent.ed by l'rob­

ability density functions, il. does not tell us their form. Choosing an appropriate forrn for

the a priori distributions can only be done in the context of the problem,we arc attempting

1.0 solve and' is largely an intuitive matter. As 1.0 whether the form of the distribution is

Hl



3. SOURCES OF A PRIORI INFORMATION

appropriate once chosen, this can only be verificd in a scientific manner by experimentally

cOllfirrning predictions. We arc bound by the ~ature of the scientific method.

3.1. Information Obtainecl from Physical Theories. A physica! theory is a so­

lution to the forwartl problem. It tells us how to predict the error-free values of the observed

data cl obtaincd whell observing a given mode! ID,

(1) . cl= g(m).

•

However, no thcoryis ever exact and there are always '"modelization" uncertainties. ln the

theory these shall be represented by the conditional probability density O(cllm) of observing

cl given a modcl m. When the modelization uncertainties are insignificant we may be able to

<L..%ume an exact theory, O(dlm) =8(d- g(m)). Otherwise O(dlm) effectively places "error

bars" 011 the theoretic.t1 relation. Figure 3.1 illustrates thesc differences in the forward

modclization.

d

d = g(ml

a

m

b

m

•

FIGURE 3.1. Forward modelization. (a) If the uncertainties in the forward mod­
elization arc neglected, d = g(m) gives the predicted data values, cl for each model
m. (b) If wc cannot neglect the uncertainties in the rorward-modelling, they can
be dcscribed by the conditional probability density function, O{dlm), which gives,
for each model m, a probability density for d. This corresponds ta placîng "error
bars" on the thcoretical relation d = g(m). .

Bccause wc are using information in both the data and model spaces we require an ex­

pression of the tl!eoretical knowledge in the joint space Mx D. Because the non-informative

density in the data space JLD(d) is independeniof the models and by definition contains no

information about the data, the joint distribution O(d, m) =8(d]m) JLM(m) must contain

exactly the same information that O(dlm) does, and can therefore be used to represent the
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theoretical information over the joint modcl and data "pace. Figure 3.:!(b) ilIust.rat.es t.1lt'

joint distribution O(d, ml.

3.2. Information Obtained from Measurements and A Priori Information N1

Model Parameters. Much of the knowledge we have about. a problem cames iu l.he fortn

of experimental measurcments of obscryablc pararnctcrs. AlI instruments a.re subjl'l't. t.o

varying degrees of uncertainty sa our knowledge of the observable paramet.e"" is imperfect..

The probability density function representing the iuformat.iou obtaiued l'rom me"surement.s

will be designated by PD(d). Let dout denote the value delivered by the instrument at. each

measurement of a given value of d. The most useful and general way of conveying t.he result.s

of t~e statistical analysis of the instrument errors is by defining a probability density funct.ion

for t;he value of the output, d out , when the actual input is d. The conditional probability

density function conveying this information is denoted v(doutld). If the actnal result of t.he

measurement d out = dobs (what we have observed is actually the data out.put.ted by the

instrument), then we can use Bayesian reasoning and conclude:

(2)

ln specific situations it is often the case that wc know something cise abou t. t.he modcb

which can be usefully applied. For example in sorne industria! applicatiou~ there may only

be a finite number of known objects, and these might always be supported by a couveyel'

belt. Knowledge Iike this is a powerful constraint and can be used to eliminal;e many of

the unconstrained solutions. The problem is that this kind of knowledge often appears in

the form of ad-hoc selection criteria applied at a late stage of processing, or as conditioning

constraints embedded in the formulation of the mode!. Here it is made explicit 'lS another

source of knowledge and represented by the probability distribution PM(m).

For our purposes,we will assume that the measurements and the a priori modcl con­

straints are obtained independent1y. ln that case the knowledge they represent can be

combined to give a probability density function

(3) p(d, m) =PD(d) PM(m)

•

over the joint space M X D.

Figure 3.2(a) illustrates the two a' priori sources of information representcd by thdr

probability density functions: PD(d) and PM(m). Here, they arc seen projected onto dat.a

and mode\ space. The combination of these sources of information is reprcsented by t.he

probability function p(d, m) lying in joint M.x D space.
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4. Solution to the Inverse Problem

The solution to the inverse problem is in principal quite straight forward - it is simply

a matter of combining the sources of information, Le. the theory, the measurements, and

the a priori constraints. The complication is the manner in which they are to be combined.

This is the third part of Tarantola's tlteory. He takes the approach that the c1assical

theory of logic givcs ru les by which humans handle information. In particular the logical

operation of conjunction is appropriate, i.e. the solution to the inverse problem is given

by the theory AND the measurements AND any a priori information about the models.

The notion of logical conjunction is extended to define the conjunction of two states of

information (Tarantola 1987, pages 29-31).

DEFINITION 1 (conjunction of states of information). Let fr(x), h(x) be probability

édensity functions representing the states of information Pl and P2 respective/y, and l'(x)

be the probability density function representing the slate of null information. Then

( )
_ fr(x) h(x)

u x - l'(x)

where u(x) is the a posteriori probability density function representing the conjunction of

states of information (Pl AND P2).

With this definition wc can combine the information from the joint prior probability

density function p(d, m) and the theoretical probability density function Ii(d, m) to get the

a posteriori state of information

(5) (d )
_ p(d, m) Ii(d, m)

u ,m - l'(d,m)

•

where l'(d, m) is the joint non-informative probability density function (the reference state

of information). According to Tarantola, this equation is more general that those obtained

through traditional approaches, but degenerates to them in specific cases. Under the con­

ditions'mentioned, the solution is identical to the Bayesian solution (Tarantola 1987, page

61).

:~ Figure 3:2(c) illustrates the combination of the prior information:p(d, m) and Ii(d, m)

displayed in (a) and (b) respectively. One can see that the conjunction of information,

reprcsellted by the joint posterior distribution u(d, ml, localizes the knowledge provided by

the each of the distributions separately.
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\Vhat \\'c require however is the a posteriori informat.ion about. t.he modd par::ul1c1.pr:-;•

and this is simply given by the margina! probability density fnnction

(6)

er(m) = fv er(d. m) dd

= r p(d, m) O(d, m) dd
Jo II(d. m)

When il. is assumed that the model and data non-informative densities are independent.. i.e.

that l'(d, m) = l'o(d)I'M(m), the equation for the marginal a post.eriori densit.y fnnct,ion

becomes

(ï)

This reduces 1.0:

(8)

er(m) = r po(d) PM(m) O(dlm) IIM(m) dd
Jo Ilo(d) IIM(m) _

() () rpo(d) O(dJm) ld
er m = PM m Jo l'o(d) ,.

Equation (8) is the solution 1.0 the general inverse problem. From er(m) il. is possible 1.0

obtain any sort of information we wish about the model parameters: mean vaines, median

val~i;s" maximum likelihood values, errors, covariance~, confidence intervals, etc.

Figure 3.2(d) illustrates the solution 1.0 the inverse problem. The resnlting dist.ribnt.ions

representing the posterior model information, er(m), as weil as the post.erior dat.a informa­

tion, er(d), are seen projected onto the mode! and data spaces respectively. By comparing

the posterior density function, er(m), 1.0 the prior one, PM(m) (displayed in (a)), one can sec

that some information on the model parameters has been gained. Prior 1.0 the conjnnction

of information, there was only vague information about th~ kinds of models t.hat. exist in

the world. AI'ter, one can see that a degree of certainty about the model paramet.el's has

been gained. This is due 1.0 the addition of the prior data informat.ion, po(d), and the

theoretical information O(d, ml.
While the probability density er(m) allows us 1.0 estimate the posterior values of t.he

model parameters, the density function er(d) is also useful in that is permit.s tlle estimation·

of the posterior values of data parameters (i.e. "recomputed data"). The posterior dat.a

information is computed as follows:

(9) (d) = (d)1PM(m) O(d[m) d
er PO M l'o(d) m.

~

By comparing po(d) and er(d) in Figures 3.2(a) and (d) respectively, one can sec that

knowledge has also been gained about" t,he data. parameters.• ~
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The existence of the solution to the inverse problem simply means that ,,(ml is not

identically nul!. If it \Vere ther. this would indicate incompatibility between the theory, the

experimental results, and what is assumed a priori about the model parameters.

The uniqueness of the solution refers to the fact that there is one and only one solution.

This is evident when, by the solution, we mean the probability density ,,(ml itself. ,,(ml
cOl/Id be pathological (non-normalizable, multi-model, etc.) but that only indicates the

nature of the information possessed on the model parameters. The information itself is

uniquciy defined as a consequence of the the uniqueness of the conjunction of states of

information.

ln this chapter, we have introduced the general inverse theory as a framework for

solving the recognition problem. We have illustrated how to obtain the solution to the

inverse problem in the form of a conditional probability density function, by explicitly

naming ail sources of knowledge and representing each by a probability density funetion.

We have also shown how the posterior information is obtained under conditions that reduce

the general solution to the classical Bayesian solution. In the next chapter, we will show

how to apply the theory to the recognition of parts of articulated, parametric models.

"
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FIGURE 3.2. The probability densitics III eombincd mode! and d:t1.a
space (Tarantola 198;, page 54).. (a) The probabilities po(d) and fJM(m)
represent the a priori information 011 the observable parameter::> (data) alld the a
priori information on model parameters respcctively. fJ(d, m) reprcsents the joint
a priori information in the D xM space. 5ince the a priori data information is
independent of the a priori model information, we have p(d,m) = PD(d) PM(m).
(b) D(d, m) represents the information on the physical correlations bctwcen d and
m, as predicted by a physical theory. (c) u(d,m) reprcsents the joint posterior
information, which is the conjunction of the two states of information p(d, m) and
D(d,m), sueh that: O'(d,m) = (p(d,m) O(d, m))/Jl(d, m). (d) From O'(d,m), we
can obtain the marginal probability density funetions u(m) = fDO'(d, m) dd alld
O'(d) = l u(d,m) dm. By comparing the the posterior probability density, u(m),
to the prior one, PM(m), we can sec that sorne information on the model pararneters
has been gained. This is due to the addition of the prior data information, PD (d),
and the theoretical information, O(d,m).
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CHAPTER 4

The Part Recognition Problem

1. Introduction

ln the previous chapter, we have presented the general inverse theory as a framework

for solving the part recognition problem. ln this chapter, we will illustrate how to apply

the theol'y to the recognition of parts of articulated models obtained through a classical

bottom-up system. We will show how to use the parameters of the models as descriptors

for recognition.

ln the system we have constructed, articulated object models are created by succes­

sive probes of a laser-rangefinder through a process of autonomous exploration (Whaite &

Ferrie 1991, Whaite & Ferrie 1993b, Whaite.& Ferrie 1994). For any particular viewpoint,

range measurements are taken, surfaces are reconstructed then segmented into parts, and

individual modcls are fit to each part. Each part is represented by a superellipsoid primitive,

where points on the surface (x, y, =) satisfy the following implicit equation:

(10)
(1

X 1
2
/" 1 y 1

2
/") "/" 1 =1

2
/<1f(x, a) = - + - + - = 1

ax ay az

•

where ax , ay,.a: indicate e.\:tent in the x, y, and =directions respectively, €I and €2 are the

shape descriptors, and tx, t y , t: and (Jx, (Jy, and (J: indicate the translation and rotation in

the x, y, and =directions. Associated with eadl primitive is a covariance matrix C which

embeds the uncertainty of this representation which can be used to plan subsequent gaze

positions where additional data can be acquired to reduce this uncertainty further (Whaite

&. Ferrie 1991, Whaite &. Ferric 1993b). Currently, the first five superellipsoid parameters,

ax• av, a., €l> €2, and their associated covariances, are .used as part descriptors for object

recognition .

. Usually, the model fitting process is treated as the solution to an inversc problem where

thc forward problem is the prediction of the. range data that will be gathered from sorne
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known volumetrie model. Howcycr, wc will t,alc a. larger YÎl'\\" a.nd t.I'(-'at. thf WllO/l' .~!I.~/('1Jl

as a. mea.sllring instrument.

We ",ilI let kf be the space of volumet.rie modcls t,o be recognized. Ci""n som,' nIlHI,'1

m in the scene, range measuremcnts arc taken and from thcse an f.-:timatc of t.ht' llllld"'1 is

obtained, d, which wc cali a measurem,cnt of the modcl in t.he scene. \Vc dl'lIot.l' t.h .., spart'

of possible model estimates D.

Given this scenario, we solve the inverse problcm (Sect.ion 5) by exa.lllilling tlll' SOIlI"t.'t'S

of information: t.he information obtained from physieal \,heol"Ïes (Sect,ion 2), inl(lI'IlIat.illn

available through measurement. (Section ;l). and t.he a priori informat.ion on modeJ,; (S..c.

tion 4).

2. Information Obtained from Physical Theories

VVe first formulate an appropriate distribution 1.0 represent ",Imt, is known about. t.h..

forward problem. If the entire system were treated as a perfect measuring iustrumeut (f"L'" of

ail unccrtainties), the vector function g(m) introduced in (1) would be the identit.y fuuctio ...

This would mean that measuring the modcl won!d always genemte Ïts t,nIe par:l.\uetel''':

d = m. However, measuring instruments are never perfecto Formulat.ing a phy"ie:d t.h"ol'y

that enables us 1.0 prediet estimates of the model parametel''' given a modcl in the scen..

is 1.00 difficult given the complications of the system. Wc therefore collect. thesc estimat.es

empirically through a process called the training or learning stage of the .'ecognition proccss.

Here, measures of a known model, m, arc collected N times. The measures, d" d 2 , ••• , dN,
are used 1.0 calculate the conditional probability density function O(dlm) for each mode! hy

assuming a multivariate normal distribution. These Monte Carlo expel'imenl.s arc exacl.1y

like those found in traditional statistieal pattern classification methods (Nilsson 1%5, Mood

& Graybill 1963). A inean, m, is computed for each known modcl:

1 N
m= N Ldj

j=1

The covariance matrix, CT, describing estimated modelling errors for a rnodcl m, is calen·

lated as follows:

Therefore, the final equation for O(dlmi) is:

•

(12)

(13)

. N .

CT = N ~ 1~)dj -m)(dj - m)T
;=1

O(dlm) = N(d - m, CT)
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where .N is the rnultivariate normal distribution:

(H)

'II. beillg the dimension of the data space.

Experimental training is not an easy job. :\ representative sampIe of models in different

poses, and of different scanner positions. must be taken. Otherwise, O(dlm) may either

llTulr:rc,,,U1Ilal.c the errors in the estimation proccss and give high levels of false positive

ideIlt.i~cations, or convcrsely overeslimatc thcm and give low lcvels of truc positive matches.

Later, we will show that, when we have a database of known models in the scene, .we

need only perform training on these mode!s. The distribution representing the theoretical

information, O(dlm), is created by simply summing the individual distributions for each of

the known models in the following fashion:

(1.5)
M

O(dlm) =L O(dlmi)

=

•

where M is the number of mode!s in the scene. This means that it is not necessary to saml'le

ail of M, but only the models known to exist a priori. The training process is therefore

considerably less éomplex than it first appears.

The result of training is a database of predefined model classes. Each class can be

: reprcseuted by an ellipsoidal cluster in multi-dimensional parameter space. Figure 4.1(a)

iIIustrntes the mode! classes resulting from training in a scene of four known models. The

distributions of e"ach class become elliptical in shape when seen projected onto 2D ar/ay

parameterspacc. In (b), one can see how each individual class is created during the training

p~oces.~..

3. Information Obtained from Measnrements

The measurement experiment gives a certain amount ,of information about the true

values of the observable parameters. However, often measurement errors are not taken into

account, and the estimated "mode! parameters are assumed to be exact. This wculd imply

that the probability density PD(d) would be represented by the Dirac delta function. This

is usually an overly optimistic view of the state of information of the measurement, and

mayend up giving a very positive, but totally unjustifiable,:identification of the object.

We do not acccpt this, however, and have gone to great pains in our system to charac­

terize the ambiguities that exist in the parameters (Whaite & Ferrie 1992). As a result, we

obtain not only an estimate of the ob~erved model parameters dob.. but also an estimate
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FIGURE 4.1. Results of training. (a) i\'1odd classes r~ï.l1ting from training are e1lip­
soidal clusters in multi-dimcnsional paramct.cr spacc. Berc. the projection on\,o the
2D az/ay parameter spacc is shown. (b) Each mode! c1a.~ is created by lIIca."mring
the known modcl m N times. From these measures, dl. d:!•...• d,,', the mean lla,
and associated covariances, CT. arc calculatcd by a.~uming a llIultivarial.e normal
distribution.

of their uncertainty in the covariance opcrator Cd. The a..,*,llmptioll\~·':lpakeis t.hal. t.he

multivariate normal distribution .IV(d - dobs, Cd) represcnts our bclief in t.he measllrclIlcnt.s.,

The probability density function reprcsenting this information is the conditiona! probabilit:y

density function v(dobsld) , such that:

(16)

Therefore, we have:

(li)

PD(d) _ V{dobsld )
IlD(d)- JDv(dob.~ld) IlIJ(d) dd

1=k N(d - dob.'l' C rl)

. where k is the normalization constant:

(18) k= kN(d - dobs, Cd) IlD(d) dd.

Wc have restricted D 1.0 the subspace of possible model cstimatcs. Wc have assumcd

that IlD(d) is a constant uniform distribution, entirely containcd withill t.hat. space; silch

that:

•
(19) !nIlD(d) dd =1
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Therefore, the normalization constant reduces to:• (20) k =~ rN(d - dob" Cd) dd,
JD dd JD

(22)

•

•

where JD dd refers to the volume of data space. Wc assume that the measurement

distributions arc rclativcly sharp in that they lie entirely within D. In this case,

JDN(d - do,,, Cd) dd;;:; 1, and k;;:; ID 'dd' a predefined constant.

The issue of how to define JD dd is a difficult one to address. In order to define such a

space, a commitment to a permissible region of observed parameters must be established.

As this is very difficult to define prior to measurement, the current framework leaves the

measllrement knowledge non-normalized. Vnder the as5l1mption made that the measure­

ment distributions are mostly contained within the data space, we can justify ignoring the

normalization constant as it is equal for ail measurements. here, different measurements

can be compared.

However, for flatter measurement distributions, the as5umption that D defines the space

ofall possible estimates is no longer valid. The normal distribution JDN(d - dob" Cd) dd ~

1, and actually k ~ l'D (d). In these cases, the measurement knowledge should actually

be much larger than it is, to compensate for the spread out distribution. Because of these

cases, independent measurements differ by an uncomputed factor, and can no longer be

compared.

4. Information Obtained from A Priori Information on Madel Parameters

ln the current context, there are afinite number of reference models, mi, i = 1'... !vI,

which are uniformly distributed. The probability density function used ta convey this

knowledge is "
::

M !i

(21) PM(m) =L P(mil 6(m - mi),
i l,::

where the P(mi) are the a priori model probabilities or weights reflecting the likelihood

that the i th model, mi, occurs.

5. Solution ta the Inverse Problem

Substituting the probability density functions in (li), (21) into the marginal a posteriori'

densityJunction in (8) yields

1 At .. r
u(m) = k ~P(mi) 6(m-m;) JnN(d-dobSlCd) lI(dlm) dd.

•
30
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Now, because 6(m-m,) = 0 for ail m # m,. and provided that O(dlm) b finite for m # m,.

we may replace it with O(dlmi). After doing this and regrouping. wc gel. tIlt.. in\'er~l' ~o~lIt.i(ln

to the part recognition problem 1,0 be:

(23)

1 M ( r )ulm) = k L P(m,) JD N(d - dob... Cd) 0(dI111,) dd
,

1 M
= k LQ, 6(m-m,).

8(m - ,11,)

(26)

•

•

As we 'vou Id expect, this tells us that the mode! mllst be one of the the modeb g;iven a priori

(21), but with a redistribution of the a priori mode! probabilities P(,n,). For conveuie"ce.

we will cali:

(24) Q,;"P(m;) LN(d-dob"Cd)_0(d1m,) dd

the a posteriori model probabilities or weights.

In order that we make a strong positive identification of the part, the Qi should be

concentrated in one model over ail the others. If this is not the case, the iuforlllat.ion

we have is inadequate to identify the mode!, either because the data set. is insufncient., or

because the èmpirical distribution, 8(dlm), describing the me2snrelllent is inadequat.e.

Now that we have the form of the part recognition solntion, we can re-exallline in it.s

Iight the ways in which we might obtain and represent the empirical distribution represent.ing

the measurement process. Thé crucial observation is that.:

M

(25) 8(dlm) = L 8(d[mi).

This means, as we would intuitively expect, that the Monte Carlo estimates need nol. sam l'le

ail of model space, but only the space of discrete mode!s known to exist a priori, in this

case, mi.
Dnder the normality assumption made in (13) with reference to the condition,Li proba­

.bility density function 8(dlm), the solution for the a posteriori model probabilities becollles:

Qi = P(mi) LN(d - dob" Cd) N(d - m" CT) dd.

The convolution of two normal distributions is a normal distribut.ion (sel' Appendix A

for details), therefore

Qi = P(mi) rN(d - dob." ~d) N(d - mi, CT) dd,JD .
(2i) = P(mi) N(dob. - mi, CD),

:n .
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where CD = CT +Cd. This result is important because it shows that. under the Gaussian

;l5S11mption, obscrvational crrors and modclization crrors sim ply combine by addition of the

rc,pcct.ive covariancc operators (even when the' forward problem is non-linear) (Tarantola

1987, page 58).

Convolving the measurement distribution against each of the rcrerence mode! distribu­

tions has the effect of causing them to be more spread out. Therefore, the contribution of

the a priori measurement information is to incorporate its uncertainties into the distribu­

t.ions of the modcl classes. Figure 4.2(01)-(c) iIIustrates this concept. In (a), the multivariate

uormal distributions of the referencc modcls arc seen projected onto the 2D ar/av space.

The black dot indicates the position of the measured mode!, dobs in this space. Here, one

can sec that the measured model does not fall onto any of the distributions of the reference

modcls. Strict distance metrics such as the one proposed by Pentland &. Sclaroff (1991),

do not take the unccrtainties in the modcl, defined by the covariances, into account. These

lIlethods would find the measured model to be a member of class 3 since it lies closest to

it. This identification would be incorrect. '1'0 see this, the 2D projection of the measured

modcl distribution, PD(d), is displayed in (b). In (c), one can see the resulting distributions

after convolving the measured model with each of the reference mode!s. These distributions

arc much more spread out than those in (a). The covariances of the measured model define

the degrec and direction of the spread. Combining the prior information in this manner

h.1S lead to the identification of the measured model as being a member of reference class

-1. Thus, ,the combination of the a priori information has improved the solution, in cases

where recognition systems that use distance metries that do not consider the measurement

unccrtainty wouId have generated a false identification.

The final equation for the a posteriori probability density function is

(28)
1 AI

CT(m) = k L P(mi) N(dobs - nli, CD) a(m - mi).
i

•

This density function is comprised of one delta function for each mode! in the database.

Bach delta function is weighted by the be/ie! P(mi) N(dobs-nli' CD) in the model mi, The

final distribution represents the "state of knowledge" of theparameters of mi. Figure 4.2(d)

iIIustrates this distribution. The beJiefs in èach of the reference models, mi, are computed

by evalnating each of the convolved distributions Olt dobs.

Because the normalization constant.in (3) is not calculated in the current scheme,

the resulting belief distributions arc non-normaJized. The result is that their values from
. ~
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FIGURE 4.2. Creating the belief distribution. (a) Here, the referencc model dist.ri­
butions, O(d!mi), arc seen projccted onto 20, a~1av paramcter space. The black dot
represents the position of the measured modcl, dub. in 20 parameter spar:e. Wc can
see that it doesn't fall on any of the rcfcrence modcl distributions, and lies "closes!." 1

by a strict distance metric, to dass 3. (b) The measured modcl distribution, PD (d),
projected onto 2D paramctcr space. (c) The result of convolving the distribul.ion in
(b) with each of those in (a) is a version of (a) spread out in parameter space. Wc
can see that now the measured model actually falls within the distribution of the
fourth reference model dass. (d) The resulting bclief distribution. Notice that. I.he
system has the highest belicf in model class 4, and a small belief in mode! cl;u;s :t
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illdepcndent measurements cannat be comparcd. However, our current interest lies in the

exa.mining the relative bcliefs resulting from each measllrement.

The adv<lnlage of the method is that rather than establish a final decision as to the exact

id(!lltity of the llnidcnlified abject, it communicatcs the degrec of confidence in assigning

the abject 1,0 each of the model classes. Il is then up to the interpreter to decide \Vhat may

he i/lferrcd from lhe resulting distribution.

Figure 4.:~ illustrates the kinds of results we gel, by applying the theory to a typical

recognit.ion problem. Here, the reference models were produced by training on models

crealcd with data acquired by scanning the objects al! around their surfaces (Le. complete

:{J) data). The reference modcls, consisting of a sma.ller sphere, a large sphere, and a lemon,

can he seen in Figure 4.3a. The larger sphere was then measured from a single vicwpoint,

and the resulting mode! is shawn in Figure 4.3b. The systcm's ability to distinguish the

larger sphere from both the smaller sphercand the lemon \Vas then tested. The result is

the bclicf distribution round in Figure 4.3e. One can sec that the system has a significantly

higher degrœ of confidence in the hypothesis that the measured model was a large sphere.
'~'

a) Reference Models

c) Beliefs in Reference Models

6.12xl0-·13 O.002i3 o

•

FIGURE 4.3. RC'Cognizing a sphcre. (a) The refcrence models arc: a smaller sphere,
a [argcr sphcrc, and a lemon. (b) The mcasurcd unknown mode!. (c) The belief

cl istribution.

ln this chapter, we have presented a method for the recognition of volumetrie models

bascd on the gcneral inverse thC<?ry (preSented in Chapt.er 3). We have specified the proh­

ability density functions representing eaeh sources of knowledge involved in the solution.

Wc have also shown ho\\' to combine the information to obtain a solution in the form of
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a conditional probability density function, which wc refcr ta as a bdief dbtrihntion. In

Chapter j~ we will illustratc a system that succcssfully recognizes real ohjeet.s hased Oll t.llt,

methodology presentee!. \Ve choose 1.0 rcpresent objects by superellipsoid Illod,'ls, dn,' la

thcir computational simplicity. ln order recognize ba"..:;ed on t.he paramptC'rs of tilt'St' \'olu­

metrie modcls, the next chapter will spccify how t.o <l.\"oid t.he degen<'racies iu Sha\ll' and

orientation associated \Vith thcm .
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CHAPTER 5

Degeneracies in the Superellipsoid Representation

1. Introduction

ln the previous chapter, wc have shown how to apply the inverse solution to a bottom­

np system that produces volumetrie models used for recognition. Although the recognition

strategy described can be""pplied to any parametric model of an object, we have decided

on the supcrellipsoid model as an object descriptor, due to the wide range of shapes in can

represent as weil as its computational simplicity. This type of model is also attractive in

that the parameters describe physical attributes of the objects in an intuitive manner (see

Chapter 1).

However, representations based on superquadrics pose a numberof difficulties due to

degeneracies in shape and orientation. By fitting data to superellipsoid models, the resulting

coval'Ïancc matrix defines a local region of parameter space (the ellipsoid of confidence) in

which modcls are non-unique or ambiguous (Whaite & Ferrie 1991). The problem is that

the ellipsoid of confidence represents the "non-uniqueness at a single minima in parameter

space. There might be other parameters at several disjoint minima that fit the data equally

weil. The problem of detecting ail the possible local minima is a difficult one to address.

For one thing, many of the minima may be geometrically equivalent. Rotating a model by

90° about an axis of symmetry will result in difl'erent rotational parameters, and re-ordered

size parameters, without changes in appearance. In addition to these problems, other less

obvions equivalence classes occur forsuperellipsoids. For example, in the x-y plane, squares

have shape parameters f2 = 0.1, and diamonds 1.9. However, a" diamond with equal size

parameters is simply a square rotated by 45° . petecting ail possible equivaience classes,

compounded with the uncertainty of the parameter set, is a difficult problem that must be

addrcssed if one is to compare parameters for the purposes of recognition.
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We will begin this chapter by ennmerating the po,"ible equiva.1rncl' cla~"e" for the

snperellipsoid (Section 2). We will then show how 1.0 avoid these degeneracie~ without uudue

computational overhead, by representing a modc1 by ail of its po,"ible equi\'alent form~.

Consequently, models arc described by mnlti-modal distributions (Section :1). Finally. wc

will show how to encompass multi-modalsupcrcllipsoid models int.o t.he l'ecognit.ion st.ra.t.t'gy

described earlier (Section 4).

2. Equivalence Classes for the Superellipsoid Parameters

Il. was determined empirically that there are, in fact, only a finite nnmber of possible

equivalence classes for snperellipsoids. Here, we will enumerate the mos1, corn mon degen.

eracies that occur in practice when using superellipsoids 1.0 modc1 objects.

Using the superellipsoid description, two identical modc1s may be described dilferen\.ly

because of different labelling of the axes of symmet,ry. This is the most common type

of equivalence c1ass for superellipsoids, which we will refer to as 7'01"/io,,,,/ c'l"ù"t./,,",xs.

Within this c1ass, the highest number of equivalent staf~.s oceurs when object.s have t.he

same shape in ail planes. ln superellipsoid terms, this means that the shape paramet.ers,

(1 and (2, are l'quai. Here, one can describe the same surface in any one of six diffel·ent.

ways, by different assignments of the x, y, z a,"\:es. Therefore the size of t.he modc1 ca.n be

appropriately describcd by any one of six permntat.ions of the extent. pM;unet.ers, while

the descr\ption of shape of the abject remains nnalt.ered. Fignre 5.1 shows t.he six possible

rotatior;al equivalences of a model with l'quai shape paramet.ers: (1 =(2.-.
lt'is important ta note that this typ" of rotat.ional equivalence c1;.,;s is only s/,,·;d./y

lrue when the shape of the model is identical along ail t.hree axes of symll1etry. We dcline

strict equivalence ta mean that the surfaces are identical in size and shape: It. is in t.his

situation only that the model can be described by any of the six permntations of the ext.ent.

parameters. This is due ta the Iimited <!cscriptive powers of t.he superellipsoid mode! wherc

shape is described by only two parameters: (2 and (1' (2 contrais the shape in t.he x-y cross­

sectional plane along the'z-axis, while (1 describes the shape in two planes silllnltaneolJsly,

x-z, andy-z. When the model has different shape parameters, or (1 # (2, t.he superc1lipsoid

description forces the unique shape ta be along the z- axis in ail cases. Hence,the number

of strict rotational equivalences in this case are Iimited ta tw(), generated by the perrnlJt.ing

the labelling of the x and y axes. ln fact, regardless of their shape parameters, two mode!s
---' -.-

are rotationally equivalent if they only differby having opposite labellillg of their x and y

a,"\:es.

:17
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x

•

FIGURE 5.1. Rotational cquivalcnccs whcn the shape paramctcrs are equal. Here,
(1 = 0.1 nnd (, = 0.1.

Figure 5.2 iIIustrates the case of a superellipsoid model of a cylinder with shape param­

cters: <1 = 0.1, aud <2 = 1.0. lu this case, the model is round in one cross-sectiona! plaue,

and rectangular in the other two. The superellipsoid description of the model forces the axis

with the uuique cross-sectioual shape to be the;; - axis. Figure 5.2(a) shows the original

cyliuder, and (b)-(f) shows the result of permuting the size parameters of the cylinder iu

(a). The ract that only (b) is identical to (a) iIIustrates that, for models with different shape

parameters, the only strict rotationa! equiva!ence occurs in reversing the x and y a.xes.

Auother type of equivalencc class occurs when a superellipsoid mode! has a cross­

sectioual shape of a square in the x-y plane:' <2 ~ 0.1 and ax = ay. In this case, the model

can also be described as a diamoud: <2 ~ 1.9, with the extent parameters: a~ = a~, scaled

such that a~ =12 X ax • The size parameters must be scaled becau~e, with a square, the

exteut parameters are measured from one face to the opposite one. However, for a diamond,
--:::=:::-

they are mea..ÇnredJrom corner to corner (see Figure 5.3). This equivalence is only strietly

truc in the Iimit when the shapes are purely square «2 = 0.1) or diamond-Iike «2 = 1.9).

ln the range in between, 0.1 < <2 < 1.9, the shape of the model beeomes more rounded.

ln this case, one can say.,that the equivalenee between square-Iike models «2 < 1) and

diamond-Iike models «2 > 1) is only approximatcly troc, especially with the added effect of

nneertainty. There is an approximate match between models sneh that <2 = 2.0 - <2 \Vith
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a b

tl

c

y

FIGURE 5.2. Permutations of the sizc paramctcrs or modcl (a) when the :\Impc
parametcrs are not equal. Berc, (t = 0.1 and (2 = 1.0. Not.ice thnt. (b) is the only
model identical 1.0 (a).

the scaling of the extent parameters mentioned above. Figure 5.3 i1\lIstmtes an cx:unple or
this type of square/diamond equivalenceclass.., '

Notice that El is not involved in this type of equivalcncc classa The r~asoll [01' this. - '

being that (1 control~ the shape in two cross~sectional planes simultaneollsly: x-:; and y-:;.

Using the superellipsoid description, one could never have a simultaneous square in bol.h

the x-z and the y-z planesbeing equivalent to a diamond i/thc x-z and the y-:; planes.

This is because cubes join at corners comprised of thrce edgcs, and diarnonds arc Illadl.l 11[>

of corners that join four edges.

•
cl : C [

)(

•

3. Multi-Modal Representatit?n of Superellipsoid Models

Because more than Olle set of parameters could be uscd to describe the sarne sllpercllip­

soid rnodêl, it is best to represent each model by ail ofits possible equivalclIt forros, For thi:,;

reason, we no longer limit our representation of a model to a single distribution, ccnl.ered

on the first minimum state settled into by the fitting procedure. Wc now reprcscnl. cach

model by a multi-modal distribution, ,.jherc each mode iscentcrcd on a possible canonical

form.
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a

z

b

z

•

F'IGURI~ 5.3. Squarc/diarnond cquivalcnccs (a) Black with paramctcrs: Ur = 20,
(lu = 20, Gz = 20, (1 = 0.5, (~ = 0.1. (b) Black with paramctcrs Gr = 28.28,
(ly =28.28, Qz =20, (1 = 0.5, (2 = 1.9,

Since the most common degeneracies occur due to rotations, the primary focus is to

ensnre object representations free of rotational biases. This is ensured by enumerating, for

each unidentified model, the six members ofits rotational equivalence class. The first step is

to fit the data to a superellipsoid model. Then, ail six permutations of the extent parameters

are found, resnlting in six possible descriptions of the object. I-Iowever, even if each of these

parameter sets ties close to its appropriate minimum, we wish to find the e>:acl minima

corresponding to the possible rotational canonical forms. This includes accu rate parameter

sets as weil as their corresponding covariances. Fine-tuning in this fashion is crucial in

situations where discrimination between t\Vo objects is deticate. In order to attain this

Jevcl of accuracy, the model is refit \Vith each of the permuted parameters used as initial. -
conditions. The results are six representations for the model based on ail possible rotations.

Ho\Vever, the six representations do not necessarily produce identical model surfaces. As

illustrated eartier, only modcls,\Vith equal shape parameters have six rotational equivalenccs

(see Figure 5.2). I-Iere, the results of fittiug are models that strongly resemble the origiual,

\Vith dirrerent labelliug of their a.'l:es. When the shape parameters are very different, the

only surfaces that are identical are the two produced from rotations in the cross-sectional

>: - y plane. The other four canonical models that result from fitting are different from the

original. This is caused by attempting to force the fitting procedure to settle in minima that

are uot members of the rotational equivalence class. This leads to models that do not fit the.

data very weil, and do not resemble the original. Figure 5.4 shows the six canonical forms

of a cytinder. One can see that the only representation that is identical to the original is the

one that has permuted the x and y a.'l:es. The other models are the results of permuting the

axes \Vhen the shape parameters are not the equal. These no longer resemble the original.
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Displaycd nbo...·c arc the ~ix cnnonicnl forllls of a c)'linder. The originalmodd (al is Sl~':ll I:lldUSI·d hy n !lux. (h) i:-.
the modcl rcsulting from permuting the x and y a..'œs and rdlLLing. (c)-(r) ;ln~ tlll! rt~sllils of l'ditliliK l.lll~ lIloltld.
\Vith the other extent pnrnmeters permuted. Abo\'c each mode! il" the rc:o;idual I!rl"Ur l'I~sullillJ:; fl'lIlll tlll: lil.
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FIGURE: 5.4. The six canonicat fornls of a cylilldcr.

Since other equivalences exist for the superellipsoid, fnture work will concent.rat.e on

enumeration of ail possible equivalences, each represent.ed by a new mode in t.he norrnalized

distribution of the mode\. Since these other equivalences occnr les.~ freqnent.ly, t.hey are not.

included for now. As a result, recognition att.empt.s still enconnt.er sonle diflicnlt.ies ,",her"

these equivalences need to be taken into accouut.

4. Recognition of Multi·Modal Superellipsoid Models

Recognition of an unknown model reprcsented by a mult.i-modal dist.ribut.ion is now

performed. liere, a belief vector in a reference model is calculated by p'JSSing it.s single·mode

distribution over the six-modal distribution of the unident.ified object, and det.ermining t.he

belief in each mode. This is performed for each reference mode\. The "nident.ified object.

assumes the canonical form with the highest belief in one of t.he referencc dist.ribnt.ions.

For the majority of the cases, this system would work wei\. This section will illust.rat.e t.hl'

~I
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problern, that can arise with this ,trategy and will propose sorne practical ,olutions to these

pmblern,.

4.1. Red ucing Misfit Problems. When calculating the canonical forrns of a mode!'

wc permute the cxtcnt paramctcrs. and scnd thesc as initial conditions t.a the fitting pro­

cedure. Howcvcr~ in cases whcrc the shape pararnctcrs arc Ilot cqual ta each other. wc are

forcing inappropriate initial pararneter' onlo the fitting procedure. This leads to higher de­

grcc, of misfits in sorne canonical forms. From Figure .5.4, one can sec that those canonical

forms that arc not members of the rotational cquivalencc c1ass do, in fact, produce much

higher residual errors of ht. In these. cases, there is a rhk that the resulting distributions

would fall c10ser to the wrong reference moders distribution than to any others. The results

, arc false-poeitive identifications.

ln order to reducc the number of incorrect identifications, we assign \Veights to the

bcliefs generaied by each model based on the amount of misfit detected. These \Veights

arc inverscly proportional to the residual error returned by the fitting process: Large errors

producc small wcights, decreasing ail the beliefs produced by that mode. Small errors

enhancc the beliefs. The weight function decided on is:

(29), 1r . ('1 .,),1 =exp -2 cr-

•

whcre [;2 represents an unbiased estimate of the sensor noise variance given by the current

residual errors. ln this fashion, Iittle credibility is given to representations associated \Vith

large misfits.

As weil, there a~e other ways in which misfit problems can be avoided. When fitting

the data to a model, the fitting process can settle into different: minima, depending on

its starting point. This is especially true when collecting data from one viewing position,
~ .

because the level of misfit is increaséd, by the lack of constraint on the fitting. In order

to ensure sorne level of consistency 'in the initial model representations, appropriate initial

conditions are given to the fitting process. These starting points give the process a rough
~ _. ',-''- ~ :.

e,timate of the shape of the object, as weil as an acceptable' pose '(see (Ferrie, Lagarde &

W!laite 1993)). This was done .tp,.reduce the level of misfit, and to lCi'd the process towards
~,'" ... '~ ..

a member of an appropriate rotati~nalcquivalence c1ass. It is necessary to perfèrm this step
. . , .-,

on, the models used in training because these do not inèlude ail possible canonical forms.

: , -~\ .-. : ..
4.2. Representation of the Reference Models. In the <,urrent scheme: each ref-

érencc model is representedby a singl~mode normalized distributi~~. The fttting procedure
• 0
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is given an appropriatc starting point ta cn~urc uniform canonical fonn~ for t.h .., modd~ ill­

volvcd in the training proccss. The fitting process crcat,c:-, a single distribution n~nt.f·rt.~d lln

the parameters at the closest minimum. Since the reference models are Cfpatpd from data

collected from three views, the fitting procednre is well-constrained.

However. one the problems a...%ociated with IIsing only a single Illod<.' distrihution for

the reference model is that. due to uncertainty during tra.ining. t.he ~ystem may choo~l'

a canoniea! form for an instanec of that modcl dilfering from t.hat of tht' nwan. 'l'hi"

ontlier would bias t.he dist.ribution of the modc1 c1a&<. This would result. in au inaccnrat.e

representation of the object, false!y diminishing it.s cert.aint.y in its paramet.ers.

Ideally. one would want 1.0 represent the referenec models by a six-modal uormali'''ll

distribution, permitting the representation of ail possible canonical forms. lu thi" fashiou.

the recognition procedure would attempt 1.0 find the greatest overial' in multi-modal normal

distributions. Multi-modal representation of the referenec modcl is not employ"d due t.o

the fact thal. training models, each represented by mult.i-modal dist.ributions. i" a dillicult.

c1ustering problem not yet solved.

In this chapter, we have shown how 1.0 avoid the degeneracies associat.ed wit.h t.he

superellipsoid model, by explicitly enumeratiug ail equivaleuce classes for each model, and

encompassing them into the model description. This leadtoamulti-moda.l distribut.ion l'or

each mode\. We have also indicated how the recognition strategy described in Chapter·1 l'an

be exteuded 1.0 include multi-modal superellipsoid modcls. In Chapter 7, wc will iIInst.rat.e

that recognition experiments based On these representations prove snccessfnl.,
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2. DETERMINING WHICH VIEWPOINTS ARE INFORMATIVE

CHAPTER 6

Informative Views and Active Recognition

1. Introduction

III earlier chapters (Chapters :3,4), we have described how olle cali cast the recogllition

problem illto a probabilistie framework. Vve have shown how we can describe what we

kllow about the world by representing aIl prior kllowledge as probability density functions.

As wcll, wc have iIlustrated the way in which we can combine the informô,tion to obtain

the solution in the form of a conditional probability density function, by application 'of a

gelleralized inverse theory.

Now, consider an active agent charged with the task ofroaming the environment in

search of some partieular object. It has an' idea of what it is looking for, at least at some

generic levcl, but resources arc limited 50 it must act purposefully when carrying out its

task (Aloimonos 1992). In partieular, the agent needs to asscss what it sees and quickly

determille whether or IlOt the information is useful so that it can evolve alternate,strategies,

the next place to look for example. Key to this requirement is the ability to make and

qualltify assertiolls while taking into account prior expectations about the environment. In

this, chapter wc will show how the resulting belief distributions can be used to (i) assess

the quality of a viewpoint 011 the basisof the assertions it generates and (ii) sequentially

recogllize all'unknowlI object by accumulating evidencc at the probabil!stie leve!.

2. Determin!D'6':Which Viewpoints are Informative

ln Chapter ï" wc will show that recognition based on complete information produces

perfect results ill aIl cases. Silice complete information is not always available, and poten­

t.ially expensive to acquire, recognition schemes based on single siewpoints are required.

However, recognitioll bascd on one view ,vill not prove to be crmsistently reliable. In fact,

the degree of reliability depends upon the amount of information available. For example,

some viewpoints capture ellough of the unique characteristics of the object ,to sufficiently
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distinguish it from the others in the database. \Ve will refer t.o t,!lest' \·iewpoint.~ a~ iufm'll111­

tÏl:e 'vielCpoints. Other viewing positions. wherc it isimpossible 1.0 say which object. in lllt~

database the unknown is closcst to. arc called uninJoïmalh:c l~icll'poinl .... By det.ermining if

a viewpoint is informative or not. we can establish if furthcr samplillg il" nect..'~~a.ry t.o Il('

able to recognize the object, wcll.

The question becomcs: how can wc lise the inverse solution t.a dil"lingtli~h bet,w4..'ell

informative and uninformative viewpoints"? We have shown au import.ant. result.. Rat.hel·

than establish an absolute identity for the unknown object, t.he method communÏcat.es the

belief in each of the nlOdels in the database. Furthermore, unccrtainty serves t.o condit.ion

prior expectations such that the shape of the resulting belief distribut.ion can vary gl·catly.

The results will indicate (Chapter 7) that the dist.ribution bccomes vcry delt.a-Iike as thl'

interpretation tends towards certainty. In contrast, ambiguous or poor inlcrprctat.ions con·

sistently tend towards very broad or fiat distributious. Wc will exploit this characl.l'ristic

to define the notion of an informatit1c vicwpoint, Le. a view \Vith aclcar willllcr, in t.enus

of a significantly higher belief in one model than the others. From these positiollS, the

system is able to capture the attributes of the model that distiuguish il, from the others.

The important contribution of this work is to be able 1.0 recognize these viewpoints, and

use them in the determination of object identity.

We would also Iike to use the beliefs for the converse, i.e. to label a viewpoint as

uninformative. This indicates that results from the current viewing position do not t.ell

us much about the object's identity.· This situation occurs when the nnnormalized belief

in each of the models is very low (or zero). Here, il. is impossible to say which referencc

model the unknown might correspond to. This situation occurs when the distribntion of

the unknown model does not significantly overlap with any of the reference distribut.ions.

There are two possible reasons for this to occur. The first is the case where the distribut.ion
:,..

of the measured model is very wide due to large uncertainties in its parameters. The resull,

is low beliefs in ail the reference models in the database. This case occurs wh en scanning

has occurred from a viewpoint where insufficient data w"",, collected. The second case occu rs

when there is a breakdown in 'sorne of the .prior assumptions. In this case, t.he issue is not

one of insufficient data. Here, the parameters determined from that particular viewpoint.

differ significantly from any of the models in the database.The resulting distribution

could actually be quite sharp, but simply does not overlap with any of the referencc modcl

distributions. In this case, itcould be that the Iinearity assumption' breaks down, irnplying

that perhaps the assumption of a normal distribution is not valid. Zero belief cases exist
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wlicli the values of the ëI. posteriori probahility density runctions a.re cxtremely low. Due 1.0

lIulllerical underrlow, t.he procedure prodllecs bcliefs of zero for caeh of the refercnce models.

Figll rc 6.1 iIlusl.ratcs the dirrerellce bet\\'cell informative a.nd uni nformative vicwpoints

for the case ofa.cylilldcr. Here, Olle cali see that the system is able ta distinguish the cylinder

from a black with great case, if tlle cylinder is rneasured from an informative viewpoint.

Howcvcr; ifrne<l."ured from ail ullinformative viC'wpoint, there is Iittle confidence in either

mode!. III t.his case, the bcliefs are in faet below the numerical precision of the system, and

therefore become zeros.

Database Models

MeaslIred Madel

Belier in cylinder

Belief in bloek

View 1

2.237

0.0

Vicw 2

0.009181

0.0

View 3

0.0

0.0

View 4

\
0.0

0.0

a) Informative b) Uninformative

•
i\t the tnp of this figure are the,l.wo referenc~ modcls in the data base: the cylinder and the square blocK. Beneath
these iLre I\\ei\.~\lred llIodekof the eylinder obtained after !lcan~ing its surface from 4 ditrerent viewing positions.
Bclowe:Lch model olle can.'find the unnormalized helief distributions obtained when attempting to recognize each
of the ll1ei\.~llred modcl...

FICURE 6.1. (a) Informative and (b) uninformative views of a ~ylinder .
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The problem of distinguishing bet\\"een t.he t.\\"o kinds of ~l,a.t.('f, lll'etlll\PS OIIl' or dt.'l,t'I'lIlill­

ing the threshold bdow which one can safely state that the beliefs art' in fart in~i!,:niliranl,.

ft is obvious that cases \\"here t.he bdiefs in ail the l11odel~ are z('ro arp lIt1illformati\'t', lin\\"­

ever, thi::. thrcshold depends on the nUl11erical precision of t.he sy~tpm. In thi~ Sl'Ill"l', il. il"

chosen externally (and is, therefore, a random cntorf point). We th",ei'>!'l' 1"l,1 jnstitied in

raising this threshold ta one that exclndes other low conlidence statl'S. The l'XIl<'rtatiun

is that this will eliminate faIse positive st.ates, as t.hey are t.hought. to OCClll' wit.h low ill'­

lier. (We will establish l.his empirically in Chapter ï.) One can determine this cntol!" point

empirically, by observing the belief distributions from dir!"erent vil'wpoints, and notin!,: if

there is a c1ear division between the c1ear winner states and the low conlidence st:ttes. :\

bi-modal distribution wouId indicate that an application of a predelined threshold can easily

distinguish between these states. In Chapter ï, we will illustrate the results of plotting the

belief distributions resulting from recognizing six abjects from dir!"erent viewing positions.

There are at least two applications for a method that can a:;sess the qna.lity of the

information from a particular viewpoint. First, in the case of ail act.ive obscrvcr, vicwpoillt.s

can be chosen sa as ta maximize the distribution associated with an object. of int.",es!..

This does not specify ham ta choose an informative viewpointl , but. can be nSl'd as a lignre

of merit fora l'articulaI' choice. Second, in the case of an orr-Iine planner, it. is oft.en

advantageous ta be able ta pre-compute a set of charactcdstic views t.o aid in recognit.ion

(Koenderink 19;6, Koeuderink 19ï9, Sripradisvarakul & .Jain 1989, Eggert & Bowyci' I!lS!l,

Eggert et al. 1992, Kriegman & Ponce 1989, Bowyer & Dyer 1990). A p;ood st,ral,egy hel'c

would be ta select the n best views of an abject ranked according t.o its belicf dist.ribnt.ion.

3. Incrementai Recognition

Provided that the low belief states have becn identilied, we wish ta make a stal,e.nent,

about the remaining beliefs. Even though the majority of t.he cases can beclearly divided

into informative and uninformative states, them are still ambiguous c'lSes where a "signili­

cant" belief in more than one model exists: Because of these situations, it becomes apparent.

thatevidence from more than one viewpoint is needed. But. at, what. level of represent.at.ion

should this evidence be accumulated? The autonomous exploration pro~edure that. we lise'

ta generate the set of database models, for example, sequentially constructs a complet.e :lD

l'l'presentation at the level of surface geometry (Whaite & l'Crrie 1994). One cOllld follow a

1Strategies for gaze planning are usually operationally defined (Whaite & Ferri,~ 1901, Whaite &. F~rrir, J~94),
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similar approach at the recognition phase, i.e. recalculate each belief distribution as the ex­

plorer adds new data to its representation of the unknown object. Unfortunately this would

be computationaIly prohibitive, largely duc to the expense of data fusion (Soucy 1992). A

beùer approach would be to process each view independently and avoid the fusion problem

at the data level by seeking instead to combine information at the level of the belief distri­

bution. In Chapter 3, the inverse theory outlined how to do this by defining the operation

of conjunction of states of information, i.e. the belief distributions. That is, we denote be­

licf distributions corresponding to each model hypothesis, 1l;, given the parameters of the

unknown model, M, computed from the measurement, Dj, by P(1l;IJ\-tD,). Then, given

two data sets Dj and Dj+! corresponding to different viewpoints we seek a conjunction

of P(1ldM D,) and P(1l;IMD'+I) that is equivalent to P(1ldMD,+D,+,), An active agent

would then gather sufficient evidence in this fashion until the composite belief distribution

'lSsociated with a particular hypothesis exceeds a predefined levei of acceptability....

Although the theory formally defines conjunction, such an operation requires knowing

how a change in viewpoint conditions the respective belief distributions, as they are not

normalized with respect to a global frame of reference. (As we have seen in Chapter 5,

the normalizing factor is sorne unknown function of viewpoint, and is difficult to obtain

analytically.) As a result, relative values between the views are meaningless. Hence, it

becomes dimcult to match a belief of 500, for example, from one view, with a value of

50 from another. Each of these values may ref1ect the strongest possible belief from their

respective views, however it is difficult to compare them in a sensible fashion. As weil, in

sitnations where there is a belief of 50 in one model and 40 in another, it becomes impossible

to establish a dear winner.

For this reason, wc have chosen not to choose a "winner" in ambiguous situations,

and state that' ail positive beliefs indicate equally Iikely hypotheses. We illustrate this

philosophy by binarizing the conditional probability density function values at each view,

such:that ail beliefs above the threshold become ones. In this fashion, we have divided the

possible results to indude:

(i) Informative states: states with one dear winner (a single positive value).

(ii) (fninformative states: states without a dear winner. This indudes:
-

a) Ambiguous states: states with more than one' possible winner (more than one

single positive value).

b) Undet.ermined states: states with no winners (ail zero values).

• "
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ft is important to note that ambiguous states are. in faet. undetermined ~tOl.t.p~ t.ha.t.lip abo\'('

the chosen th reshold. ln theory. carefu! choice of cu toff Il'vel should di mi u:\.t.l' t hl'sl' sta h'S

as weil (without. elimiuating a large uumber of iufornmt.ivl' statl.'s). Figurl' (i.:! illustrall"

t.hese differeut states itl't.he case of a square block. 1I1.'1'l'. the system is a"k<'d h> id(·ut.i1Y

a square block from different vie\\'s, and corrcctly.distingllish il, from a. silllila.r rOlludl'1'

one. This example indicates that the rcslIlts match human intuition. Tht' rit.'a.r Willlll'l':-;.

or informative states, in Figure 6.2a indicate that the system is able 1.0 idclltil'y t.ht' hlock

despite \Vide variations in its three dimensions. The alllbiguolis cases (Figure (j.2h) OCCIII'

when the resulting models are rounder in shape. lIere, the syst.em has trouble difl·l'rl'ut.iat.illg

between the models. ln fact, these models l'l'semble the roullded block more t.hau t.hl' squa,'l'

one. In the third case (Figure 6.2c), the system does uot have sigllificaut. l",lil'f ill allY of

the models. Intuitively, oue l'an sel' that these models are uot simil;u' t.o l'it.hl'r rl'fl'r<'uCl'

mode!.

Using this method of represeutatiou, rather than base conclusions ou maximum likL~

Iihood methods from iudependeut viewpoiuts, methods that combiue evidence from sillgll'

viewpoints would consider ail models whose beliefs are above a t.hreshold t.o hl' equally

significant. In accordance with Marr's "Priucip!e of Le"st Commitmeut" (Mari' 1~)82), ail

possible hypotheses, rather tlJan just oue are communicated to t.he external processe·;.

By normalizing our confidence values in this mauul'r, comhiuing them from difl"t·l'Ilt.

viewpo;:tts becomes straightforward. Should the ma.ximum Iikelihood hypot,hesis prl'vail

in a large!y view-invariant manuel', theu after a sequeuce of trials, a robust int.erprl't.atioll

cau be made by tabulating the votes for each one, represented by the binari~ed helicl:"

and picking the' hypothesis with the highest score. ln this fashion, a clear win 11er should

emerge. As weil, the confidènce in the incorrect modelsshculd hecome insignilicant.. III

Chapter ï, we will verify this empirically by attempting to recoglli~e a series of l'l'al ohjects

from sequential viewpoints. We will also show that. t.he view-invariance is nHLximi~ed hy

applying the threshold to filter out the uninformative hypotheses.

Figure 6.3 iIIustrates an attempt at sequentially recogni~ing .the square block at; ~Oo

Increments. As in the previous example, the square and round blocks are'used ;lS referl'Ilce

models. The raw beliefs are binari~ed hy imposing a threshold 0[10-'3. Notice 'that the. " .

ambiguous case quickly becomes insignificant' with the increase of evidence in the correct

mode!. After only 9 Iterations, the clear winner emerges, casting alldoubt ;lSide.

In the next chapter, we will test the recognition procedure on l'l'al single-part ohjects,

for models creat.ed from complete (3D) data and from partial (20) data. The possihili 1.Y. ,
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of applyillg a threshold 1.0 distillguish between informative and uninformative viewpoints

will be tested, by observing the belier distributions resulting from recognition from different

viewpoillts. Also, Sequelltial recognition experiments will be performed. Finally, the ability

of the system 1.0 recognize parts ofarticulated models from single viewpoints will be assessed.

Erfects of applying ail external t.hreshold 1.0 eliminate uninformative viewpoint hypotheses

willbe seen as weil.

o·
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Measured Madel Belief in Black Bdicf in Round Black

Unnormalized Binarized Unllormalizcd Bilt:l.rizcd

0.:2 1 0 0

O.OOï 1 0 0

2.0xl0-13 1 .5.8x 10-ll l

• 3.4xl0-13 1 0.002 l

o 0 0 0

o o o o

•

Above are the two rcference models: " block and a rounded block. In the Idt colullm of the ll<ble IU"~ the
models of the block measured from informative (first pair), ambiguous (middle pair) 'and undeterlllin.:d
(Iast pair) viewpoints. To their right, one can find the unnormalized, and bjnariz,~d (thn.'1ihold of 10-13 )

belief distributions obtained when attempting to recognizc each of the mea....urcd models.

FIGURE 6.2. Informative, ambiguous, and undetcrmined States for the Block.
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Vie\\' Angle lvIe"stlred Madel Belier in Black' Belier in Round Black

Unnormalized Binarized Un normalized Binarized

1

00 2.0xlO-13 1 5.SxlO-6 1

'100 ôl 0 0 0 0

SO° , 0.2 1 0 0

1200 • 0.03 1 0 0

1600 \ 0 0 0 0

.

'2000

"
0.1 1 0 0

2400 \ 0 0 , 0 0

0

,

•
,

2800 0.03 1 0 0

:3200 # '0.001 1 0 0

,
Final Score L._6__~I.- 1__

Displnycd nbo.\·c are the 9 models resulting from sequential1y mcasuring the square:bloek nt 40° increments. From
Icft to l'ight, one C:111 see the \'iewingangle. the mea,'mred model, the unnormalized and binarized (thrCl'ihold of 10- 13 )

hdief distribution i-esulting from attempting to recognize eaeh of the measured models. The final distribution is
the histogr~m oi' the binarized distributions.

•
FIGURE 6.3. IncrementaI recognition of a black.
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CHAPTER 7

Experilnelltatioll and Results

1. Introduction

ln the previouschapters, wc have introduccd the inverse t.hcory, and indica.l.cd ho\\' il.

can be used within the context of a part recognition problcll1. As weil, wc have i1lnst.r:lted

how the results can be used ta assess the quality of t.he information from a p:lrtÏl.:nlar

viewpoint, and an incrementa! recognition scheme \Vas proposee!. Solutions t,o pl'oblellls

\Vith the superellipsoid mode! \Vere presented in order to be able to use t.his volulllct.rie

mode! as an abject descriptor for recognition.

ln arder 1,0 test the proposed methodoJogy on l'ca! objects, several experil1lcnl.s arc

performed. Section 2 begins \Vith the descl'iptioll of the sys1.C\ll llsed 1,0 acqnil'c the ahject.

descr.iptions. Section 3 dcscribes the first set of experimcnts which tcsted t.he ;l.Igol'il.hlll nll

severa! single part abjects. Ma.ximum !ikelihood (or Wiuner-takcs.all) schemes were tcstcd

on mode!s fit ta data-acquircd ail aroulld the object(co1n]Jlc/.c or aD dat.a). III addition,

the tests \Vere performed on models generated by data acquired from olle viewpoillt oilly

(partial or 2D data). The results of these tests indicated the possibility' of disl.itlguishillg

between informative and uninformative viewpoints by applica.tiofl of ail external t.h rcshold.

Experiments using an increlEental recog~ition scheme were pcrforrned, wllcrchy evidcnce
-'in the form of belief distribùtions was accumulated from diffcrent. vicwpoillt.S scqnelll.i;tlly..--' ,. .

Finally, in Section 4, both sing!e-view and incremental recognit.ion of parts of a.rtkllla.l,l~d

models was tested. This provided the basis for a multiple-part object recognit.ioll sl.rat.cgy.

2. System Overview

Throughout the experiments, object representations were creatcd thrOligh the bottoOl­

up system developed by the 3D Vision Group at CIM. In thé system wc have COllstl'tlcted, a.r­

ticula.ted, volumetrie models are crea.ted by suc~essive probes of a laser-rangcfi nJer throlfgh

a process of autonomous exploration (Whaite & 1-èrrie 1991, Whaite &~ Ferl'ie 199:j!J, Whait.c
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2. SYSTE:-"·1 OVERVIEW

&. Ferrie J!)9~). The Oowchart for the bottom-up stages for the pencil sharpener can be found

in Figure ï.1. It corresponds to the classieal model of bottom-up vision in which sensor

data arc transformed into various I,evels of representation though successive stages of pro­

cessing (Ferrie & Lagarde 1989). The additional feature is the inclusion of feedback from

the '/itting procedure, which is used to determine the new gaze position that will reduce

1II0del uncertainty. Because object recognition represents the highest level of processing, it

relies not only on its discriminating power, but on ail the lower level processes that cone

tribute to the stability and accuracy of the object representation needed for recognition. '

This section will describe the system that generated the volumetrie models used by the

recognition scheme.

2.1. Data Acquisition. übjects are scanned using a 2-a.xis laser rangefinder

mounted on the end of an inverted PUMA robot arm. The scanner is capable of scan­

ning, at a range of 1 meter (Soucy & Ferrie 1992). Its field of view is approximately 40°

in the x direction, and 28° in the y direction. Each of these spans can be divided into at

1II0st 256 positions. The precision of the scanner is approximately ,1 mm at a distance of 1

mel.er, and improves non-linearly as the distance decreases. In the experiments described,

thc dcnsity of scanning is such that each pixel of an 85 x 85 pixel2 image rcpresents 3mm2•

ln order to obtain calibrated data, i.e. real x, y, and;; coordinates in the camera frame

(in mm), a calibration procedure is applied. Here, look-up tables are created, providing the

translation from points in the image to the x and y coordinates in the camera frame.

ln addition, a set of precision stages, controlled by stepper ,motors, is used to expose

diffcrcnt faces of the object to 'the laser rangefinder. The rotary table permits four degrees

of frecdolll (two rotations, and two translations). The theoretical precision obtained is

approximately ï9 steps per mm in displacement in x and in y, 100 steps per degree for the

rotation about thc ;; - axis and 0.56/step per degree for the rotation about 'the x - axis.

Howcvcr inrcality, thc precision is slightly lower if one ,were to take into account the

Illcchanieal play of the gears (Le. backlash).

'Using this set-up, different views of an object are obtained by keeping the scanner fixed
'"and by moving the stages to whieh the object is attached. The data acquisition set-up can

bc secn in Figure ï.2. An example illustrating the data lines resulting from using the set-up

1.0 scan the pencH sharpener can be seen in Figure ï.la.

2.2. Surface Reconstruction. , The purpose ofthis stage is to transform the discrete

range data into piecewise smooth representations of the surface (Ferrie, Mathur & Soucy
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Acquire range

1a data

l Autonomous

Exploration

Reconstruct and

b segment into

parts •l e

Fit volumetrie
c models to parts

~. l
Compute new

gaze position

jCompute
.--'.. d
-~.,..r uncertainties

Here we sec the c1assical bottom-up strategy used ta abtaiu :. par:unetric thodd of lUI o[,jecL in Liu: SC'!tw.
Notice that the loap is c10sed with the addition of feedblu;k which uses th.: pammcLric uuc.!rtainLy to
choose a new gaze po:>sition that will rccluce model ambiguity. The proccss il! rcf.~rr,:cl Ln :LS 'm/alla",,,u_
crplomtion. See text for cletails.

FIGUR.E 7.1. Flowchart of the bot.lom-up system.
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The set.-up indudes n. Ia...er rangefinder mounted on the end-tirector of an inverted PUMA manipulator.
The abject itself is placed on a rotaI")' table. permitting four OOFs.

FIGURE ;.2. Set-up use<! to scan objects.

1993). 1t consists of a diffusion algorithm based on surface curvature properties. The

effecfof the operator is to remove noise and to smooth out convex surface regions. Points

along a boundary, marked 'by negative local minima and concave discontinuities are left

uudisturbed. The diffusion algorithm results in bringing out the convex surface patches in

the image (FerI:ie, Lagarde & Whaite 1993, Lagarde 1989, Lejeun~ & Ferrie 1993).

2.3. Part'Decomposition. Th€reconstr~ctedsurface is segmented into regi~ns cor­

responding to object parts. This is done by growing the labelle<! surface regions until they

reach the previously labelled boundary. points. Regions are mergêd using a rela.xation la-
, =

belling network that ensu:es resulting. bot(ndary contours that are consistent with predefined

, boundary' l'oints (Ferrie, Lagarde & ;Vhalte 1993, Lagarde 1989, Lejeune & Ferrie 1993).

Figu~i7.1b illu~tratei the surface patc!les resulting from reconstructing ar.d segmenting- '-'
the surface of the sharpener. The different colori;- refer to different part regions.,
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2. ~Y~TE:\t OYEIWIE\\'

2.4. Data Fusion. If data arc acquired from \-ariou~ Y~ewing position~. thcy art'

merged using a scheme which calculates the correspondcnce betwccn surfaces from 1H..'i~h­

bouring views. The motion parametcrs bctwecn Yicws are calculatcd undcr the a.s."HlInptioil

that curvature is preserved. In this fashion, local motion estimatcs mal' data points from

one frame to another. In order to constrain the local match. global motion consistency is

enforced, where variations in \'clocity bctwcen framc~ arc a..~umcd to be pieccwisc-smoot.h.

Therefore, choosing the motion parameters becomes a minimization problem. where the dif·

ferences in relative position and orientation between points arc minimized. ln this I:"hion.

the algorithm is tolerant of local errors in correspondencc. In addition. il. serves 1.0 smooth

out local noise. and blend neighbouring surface patches (Soucy. &. Ferrie 1992, Soncy 1992).

2.5. Volumetrie Modelling. At the highest level of abstraction , a volnmetric modl'1

is fit to each part region. Descriptors of this nature provide the basis for the charact.erizat,ion

of uncertainty. As weil they maintain correspondencc at the part level. Most importanl,ly.

they describe general shape properties, which is useful for the recognition task.

For the purposes of this thesis, the model chosen was the snperellipsoid model (Solina

&. Bajcsy 1990). Calculating the parameters a is performed Ilsing an iterative, leastsqllares

minimization technique, the Levenburg·Marquardt algorithm (Lnenbergcr 1984, Press,
~

Flannery, Teukolsky &. Vetterling 1988; Whaite &. Ferrie 1991). Here, a metric D(x, a)

is defined that measures the distance between each data point x and the snperellipsoid

surface described by the parameters a.· From an initial guess, the parameters arc chan!,:ed

incrementally in a steepest descent manner to minimize the sqnared snm

(30)

•

ohhe metric over ail data points. Each distance';s weighted by it.serror, ur, in order to,. '

increase the importance of the low errCie terms. The proced ure iteratc'J; unti! there is';'

negligeable improvement in the squared error. Currently, the five superellipsoid parameters

"desc~ibing object size and'shap:, as weil as their associat~â covariances, '"re used as parI.

descriptors for object recognition.

Figure ï.1c illustrates the results of fitting superellipsoid models to each of 1.1", pari.

regions in Figure ï.1b.

2.6. Feedback. Because of the noise in" th" model, and becausé;the,data are"often

incompletely sampied, e.g. only one side of the moâel is visible from a single"ie,i!ioint, the,

parameters will often be under-constrained and exhibit large estimation errors. In order io '
.5ï
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3. SINGLE-PART ûBJECT RECOGNITION

reducc the error, the system calculates a new gaze position where additional data can bé

collected. This is accomplished by using the estime.ted model as a predictor of the surfaces in

t.he scelle. The crror is qu.ntified in terms of an int.erval around each point on the predicted

""facc. Wc refer to t.his interva! as the surface prediction error interval, which refers to

ail "error bar" protrudillg from a point on the estimated mode!'s surface. The interval is

coded such t.hat "hotter" colors (such as yellow, or red) represent higher uncertainty in

sllrface positions as predicted by the mode!. Figure ï.1d illustrates this color coding for the

sharpener. The resulting prediction can extend beyond the visible surfaces and can thus

serve as a basis for planning the next gaze dirEction. This is accomplished by directing the

scanner to the viewpoint corresponding to the highest uncertainty of prediction. This can

be secn in Figure ï.1e, where the scanner is moved to the back of the sharpener where the

ullcertainty is greatest. It has been shown that updating the model parameters with the

additiollal data obtained from the lIew view will minimize the determinant of the parameter

covariances. This process is referred to as autonomous exploration (Whaite & Ferrie 1991,

Whaite & Ferrie 1993b, Wlmite & Ferrie 1993c, Whaite & Ferrie 1994).

3. Single-Part 0 bject Recognition

Having established the means to obtain object descriptions, the purpose of the first set

of experiments was to test the recognition procedure on a series of real objects. In or~er

t.o focus 011 this task, and to ensure rc§ults that were free of errors from the segmentation.

process, these experiments included only single-part objects! .. Several experiments were

performed.The first tested the ability of. the system to rècognize based on complete,

:36:\nfo~mation. 'The second set tested the more practical problem. <. 'recognition from .

si ligie viewpoints. Here, the system's ability to distinguish informative from uninformative

viewpoints \Vas asséssed, by application of an external threshold. Finally, an incremental

recognition scheme \vas. invoked.

With this in mind, six objects :\Vere chosen for these experiments: two spheres

(rad =20mm, rad =25mm), a block, a cylirider, a lemon, ând a block with rounded edges.

The objects ,were selected becanse. they co~sisted of single parts that conformed weil to

. snpereÙips!'ids. They varied in size .and shape, so as not to be ~Iustered together too tightly
. \' --

in fivc-dimensional feature space. However, their distributions overlapped:sufficienFly in

severaldimensions so that the ""cognition procedure. was challenged in its disc!imination

.task.

lIn Section·', wc will examine the capabilities of the system in recognizing parts of articulated models.

.. 58



•
:l, SI!l:CLE.PAHT üBJECT HECO(,:,,\ITIO!l:

y'l
. i

BS B c L 5S RB

•

•
1.

Displa)'.:d above are the reference objects that resull from tminin~ on complete surface (l;,u\: :, bi~ sl'here (AS). a
black (B). IL c)'lindel" (e). IL temon (L). a smal1el" sphere (SS). and :~ rounded block (RB). Bd""" tlll~ SlLllW Ill".\ds
are shaded according to the projection of paramet.~l"uncertaiLlties inta 3D space. White rdlects 1:11'"" lll\l~el'tail\ties,

and black indicates parameters that Me tightl~· constrained. For '~:ml1lr>le. the light face .)f the blnck st",,,,,, that th.:
~. size parnmetel" is more uncerlain than tl~e x.

FIGURE 7.3, Sb: rcprescntativcs that.. result. from t.raining.

,;

Training (see Section 2) auttiinatîcally produccd abject S'I:lSS reprcscntativcs, by Illca-

suring the abject numerous times. Bach individual modcl was crcatcd by sc'1..lllling t.he

abject from several views using a laser range-finder, then.a supereltipsoid model was lit 1.0

the data, and the resulting parameters stored (sec prcviolls section)~' For the purposcs or

creating'a stable database for recognition, it was cstablishcd that l.h{.~e views or cach object,

1200 apart \Vere sufficient ta constrain the fitting procedure. Bach sam pie was scallllcd rrom

a r~ndom scanning position, producing 24 s<iinplcs of each object. Figure i.:l iIIw;l.ra.1.cs

the six representative models or each object that result from training.

For ail the experiments, the model of the unidentified abject was creal.ed usiuK t.he

bottom-up system described in" the previous section. Whcther data \Vere collected rroll\

one view or from several views, in arder to use tlle rcsulting snperellipsoid modd as a

descriptor for recognition, the system had to ca1culate t.he six possible crJllivalellce c1a&;()s

~ corresponding to:Ît (as discussed in Chapter.5). J'hese pararneter sets were incorpora.1.ed

into the overail model by representing the object with a rnulti-modal distrilJuti.on. Durillg

the matching stage,-;the system then chose the reprcsentation from the eqnivalclI<:C das::;

that had the highcst belief in one of the referenèe modcls~

3.1. Matching Using Complete Information. In the first experiment, recogni­

tion was performed using an unknown model computed from a sequence of vicws covcring

.59
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the visible surfaces of an unknown object. The intent of this expcriment was to validate the

recognition procedure against mod'11s produced by the autonomous exploration process on

rllllnillg to completion (Whaite & Ferrie 1991). Twenty-four sarnples of each object. each

scauned from th ree different viewpoints, were presented to test the invariance of recognition

against variations in sampling and viewpoint. Using maximum likelihood as the basis for

recognition, i.e. choosing the model with the highest confidence value, the results shown in

Figure ïA Were obtained.

20
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FIGURE: i.4. Matching samplcs taken from multiple viewpoints.

The. results indicate that the system can successfully recognize an instance of any object

in the databasc with perfect results, provided that its surfaces are accessible, independently

of. viewpoint and sampling order. In addition, the identificatiotlS are made with a high

degrec of ccrtaillty. This is to be expcctcd given that the probability density functions
.,,",

: of each of the unidcntified objects exhibit small variations in parameter space due to the

rclativdy complete information available. Training produces reference models that a~e also

"(Iclta-like"and weIl separated from cach other. The distribution of the unidentified object

would necessarily overlap that of the correct reference model mU<7!l~re than the others.

Examples of the non-normalized belief distributions of the lemon and block can be found~

::, in Table 1. ,-.
-.... .....10..

Examination orthe resultant beliefs sh~th~t complete information allows the system

to correctly identify objects with a high dcgree of certainty. The high beliefs reflect;~the fact
\...-

that both the measurement distributions and the reference model distributions are "delta-

likc~~ and close togetlu:r.

3.2. Matching Using Partial Information. Since complete information is not

always availablc (alld'::·potentially expensive to acquire), a more realistic test would be~to
. -,'

detcrminc the parametcrs of an unknown model from partial information. In the:limit this

woulcl consist of attempting to base recognition on data acquired from a single viewpoint,,~.
, - i

and would clcarly violate the multiple-view assumptions implicit in the training process. :/,j
6Q:,~_-/~·
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Trial BS B C L SS RB
1 a a a 5.11 a a
2 a a a 6.53 a a
3 a a a 12.66 a a
4 a a a 70.70 a a
5 a a a ·12.32 a o.
6 a a a 27.13 a a

a) Belief distributions of the lemon

Trial BS B C L SS RB

1 a 6.09 a a a 0

2 a 6.24 a a a a
3 a 9.87 a a a a
4 a 1.58 a a a a
5 a 15.21 a a a a
6 a 11.67 a a a a

b) Belief distributions of the black

TABLE 1. Results ofseveral iterations ofrccognitiou ofll)lcmolllllld b)block vicwcd
from multiple vicwpoints.

Furthermore, il. lins been shown elsewhere that the resulting model paramet.ers wOllld be
~" F

inherently less stable ('Whaite,;& Ferrie 199:::). However, should the procedure still retaiu
"

sorne of its earlier seleci\vity'- aS evidenced by a low degree of false posit.ive mat.ches
~.

- then an incremental recognitioll procedure becomes a' possibilit.y. This wOllld involve

accumulating evidence from the belief distributions of sequential viewpoillts ulltil a c1ear

61
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;
winner emerges.

li _
In tfiis second set of experiments, recognition was performed 011 thirty-six sillgle-view

samples of each object. Here, data were collected al. 40· .intervals alollg 4 differellvgreat.

drcle routes. The same methodology as ill the first experiment was applied illc~he recogllï1.ioll
- . ~

of the unknown model parameters. The results obtained are shown in Figure 7.5.

As expected, recognition bascd on partial information is less certai~ than in the previolls

case where the complete surfaces of the unknown object were accessible. Here, lllldeterrnilled

states exist in situations where the unnormalized values of the posterior probability density

•
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FIGURE 7.5. Matching samples takcn from single vicwpoints.

fu llct.ions are cxtrcrncly low (on the order of 10-6°). Due 1.0 numerical underflow, the

procedure produccs ,bcliefs of zero for eaeh of the reference modds. We refer 1.0 viewpoints

sllch aS thesc, that do Ilot tell us much about the object's identity, as un informative (see

Chapter 6).

•
·····.1··;.:·········..····;······.····.········

)( ...

.:--.. y

"'.' :.\."

-.r.::-,' ..
. -.", -, .- ..

ln the top boxes are the l'quare block 'and rou~ded black rcference models. Below th~e are fourdirrerent attempts
:,t recogni'ting the square block from dirrerent viewing positions. In each case the mode! is compared to the each
of the six references in turn, and beliefs in each are computed. Above each model one can sec the rcsult of running
a 1H:,ximumlikelihaod algorithm on the results. C indicatcs a correct recognition, ~~~ indicatcs an undetermined
"tiLLe. and XXX refCl'l< ta a fall'e recognition. Here. the sYl'tem identifies the square black as being the rounded one.
The abjectl' are shOOed according ta their unccrtaintics (sec figure i.3).

FIGURE 7.6. Examplesof recognition of the block from single views.

..,.

•
Figure 7.6 shows sorne specifie examples of recognition attempts on th7.block from .~i~­

fcrent' vic\\'ing positions. ln the first two cases, the procedure correctly idenÙfied the obj~cts

as corresponding 1.0 the black despite wide fluctuations in their size parameters. This is due.

to the fact that the models encompass the uncertainties corresponding to these parameters
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in their representations. The reference modcl also learned of t,hese possibl<· \'ariat.ions ""ri"g

training, incorporating tllPm into it8- repre$cntation. Therefore. t.he dist.ribution~ w('rt' dO~l'

enough ta that of the reference block t.o make a correct, identificat.ion. This r<'Ïnforn's t.he

hypot.hesis that abjects need not be represented by extremcly accnrat.e desrript,ions. llulIgh

size and shape representat.ions are snfficient. as long as t.he reference object. has learlle'.!

about t.hese possible fluct.nations in t.he training stage.

In t.he t.hird case, t.he system could not. ident.ify the object as being ;\.lIy of t.he known

models. In this case, t.his model docs not. visnally resemble any of t.he references in siz" or

shape. This is a situat.ion where t.here is insufficient. data from t.hat. viewpoillt. t.o prodnCl' a

good modeI of the abject. Further sampling of the abject shanId provide bet.t.er resnlt.s.

In the final case, the system incorrectly identified the black as being the rOllnded block.

(As weil, the model is visually closer ta the ronnded black.) The reason for t.he mat.ch is

that, although the referenGe block ii> not very certain about ail or it.s size pammeters, as

indicated by the white shading on its sides, il. is quite certain abont. its shape paramet.ers.

This is indicated by the black shading around the black reference mode!'s edges. Therefore,

measurements that are rounded in shape do not sufficiently overlap in it.s distribution. III

this case, despite the high uncertainty in the parameters of the nnknowll modcl (causing it.s

distribution ta be quite flat), there was sufficient overlap in the distribntioll of t.he l'ererellce

rounded black ta cause a false identification.

Table 2 shows the belief distributions resulting from incremental at.tempts at recogniz.

ing the lemon and the black. The data were collected from single views at. 40· intel'vals ill

an equatorial plane. One l'an see that the beliefs àre considerably weaker th;t!I in Table 1

where complete information was used. The first iteration in the recognition of t.he black

produced a false-positive identification. In this case, the system identified· the black as

being the rounded black, despite the fact that the resulting distribution overlapped with

the distribution of the reference black as weil. The belief in bath models was qnit.c low,
. ~.

indlcating that~te"system is quite uncertain about the identification, ln fact, in n"LlIY

cases, a false-positive identification is associated with low beliefs. This sllggests that if the

threshold for undetermined states were raised, the,incorrect identifications wOllld become

undetermined states.

In arder ta justify raising this threshold, the beliefs resulting from the experiment

described above were plotted on a logarithmic scale graph. The expectation in observing ~:

these results was that the scatter of the beliefs was bi-modal. This would imply that )!

a distinct separation between informative and uninformative cases exists, permitting t1~::::""
~
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Viewpoint as B c L 55 RB
00 0 0 0 2.9ïx 10-21 0 0

'10 0 0 0 0 6.93xlO- 15 0 0

800 0 0 0 0.18 0 0

1200 0 0 0 2A4xlO-5 0 0

1600 0 0 0 8.0ïxlO-3 0 0

2000 0 0 0 3.:38xlO-·] 0 0

2400 0 0 0 1.10x .10- 113 0 0

2800 0 0 0 0.31 0 0

a) Belier distributions of the lemon

Viewpoint BS ,"-.. B C L S5 RB-,
00 0 4.00x 10-13 0 0 0 1.16xlO-5

40 0 0 0: 0 0 0 0

SOo 0 0.33 0 0 0 0

1200 0 0.05 0 0 0 0 ...
1600 0 0 0 0 0 0

• 2000 0 0.21 0 0 0 0

2400 O, 0 0 0 0 0

2800 0 0.05 0 0 0 0

b) Belier distributions of the block

,~~)!
. \, ~",~

, ~~.':--"

Disphl)'cd above arc the fil'llt six attempts at succcSIlively rceognizing thc block at 400 Increments. Shading is in
(\ccordaucc with parameter uncertaiuties (sec figure ;.3). The results or mnuiug a maximum Iikclihood algorithm
(\n' round l\bm'c el\ch box (see figure ;.6).

TABLE 2. Rcsults of incremental f~ognition of a)lemon and b)block viewed from
400 single viewpoints. .
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application of a threshold ta distinguish betwcC'1l the t"'o. Thc f('sults C;U\ Lw round in t.ht'

plot in Figure ï.ï.

Log Beliol

0 - ~ 1 .t!I ~ r%j Truo Pmts

·10 8
G§

GCi;;§
0 Big Sphoro

GG lf'8 8 0 Bloc"

·20 8 0

~
0 Cylindur

lB 0 Lomon
0 0 Small Sphoro

·30 8 0 r# 0 Round Block...
<i;» 0

-40

~ (;)

BIg Sphere Block Cylinder Lemon Small Sphere Round Block

U '~ • • ~ m •
Above are the rl."Sults fr~m attempting to recogllizl: 36 dirrercnt singk--..·it:w Slullples of cacia of the lll\ulds in tlll~

database. The beliefs in the dirrerent models are reprcsented by dirfcrcnt s:onbuls, cach s)'mhol indkal.in~ thl~

truc model used during that trial. .
The level of numerieal underAow of the system is represented b)' a "V" 011 the Il - !lxi.Of. BI:ClUlSI: S.l IlIlUir

trials fall into this category they are markecl with l~ simple point, except whtn the bdief is for the trll~ mncld
used in the trial.

By observing the log of the belicfs. one can see the bi-modality in the rt..'Sults.

FIGURE ï.ï. Log of beliefs in the Big Sphere, Black, Cylinder, Leman, SlIIali
Spherc, and Round Black.

The results iIIustrate a ciustering efrect in the beliefs. The first. large ciust.el· indïcat.es

t.hat. the highest degree of confidence lies in t.he correct model hypot.heses. Benea!.h t.his

group,. is a scatter of beliefs in the incorrect mode!. The degrec of evidence of t.hese hy­

potheses varies from model 1.0 mode!. This second large ciuster oceurs for beliefs in rnodels

that lie below the numerical precision of the system (denoted the "U" level). The distinct

bi-modality of the resuits justifies the application of an external threshold dirrerent.ial.ing

between the high confidence informative views and the low confidencc uninforlllative views.

In addition, they indicate that the .value of this threshold is not critical. For exalll l'le, for

the Big Sphere model, the cutoff point can lie anywhere from 10-5 1.0 1O-GO (above the "U"

level). However, the desire is 1.0 choose this thresholdso as 1.0 eliminate th!, majority of

false positive cases. Although the plot does not iIIustrate the maximum Iikelihood reslllts,

making il. impossible 1.0 tellwhere false positive indications occur, one can see that by plac­

ing thè cutoff above the scatter of incorrect hypotheses,:one can ensure a mi.nimal amolln1.

of incorrect maximum likelihood indications. Furthermore, one can sec from the rcsults
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Ùlat Olle does not necessarily nccd to choose a universal thrcshold levei for ail the models.

By ~xarnillillg the ijiffcrence in the Big Spherc and the Rounded Black distributions, one

cali sco:- that choosing individual cutoff levcls would rendcr the results more accu rate. For

maximal cfficicncy, these Icv<~ls can he computcd off-linc prior to experimentation, and then

lIscd ill the recognition stage.

For the purposcs of testing the hypothesis that an external cutoff would divide the re­

suit::; into informative and uninformative cases (and climinate the majority of false-positive

cases), the threshold for undetc;rrnined states was uniformly raised to 0.00001. Figure Î.8

shows the results of im posing this threshold on the belief distri butions. One can see that aIl

but one incorrect state (8) has become undetermined. I-lowever, several correct identifica­

tions have bc(omc undctermined as weil. This is to be cxpected since setting this threshold

causes al! uncertain identifications ta be removed. We therefore make the empirical obser­

vation that, by raisingthe threshold, states that are not undetermined arc accompanied by

. a high accuracy in recognition.

•
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FIGURE i .S: .Matching samplcs taken from a single viewpoint while imposing a
thrcshold of 0.00001. ..

3.3. Incre'mental Recognition. The described experiments suggest the possibility

of ail incremcntal recognition procedure. It is based on the following observations obtained

empirically over successive trials:

i) Viewpoints that provirle very Iittle information, or uninformntive views, gerierally
:>

cali be detected by thèir low confidence levels (beliefs). Because of the bi-modality

of th«)~.~liefspread, these can be discovererl by application of a threshold. Detection

of such events is a clear indicator that further sampling is required.

ii) Informative views are generally accompanied by high beliefs, but with th.i~:bi1ity

of a false-positive indication. These can also be detect~d by thresholdapplication.

iii) The Iikelihood of successive false-positive indications is very small. Fi~st;-::t~is is a

consequence of the high selectivity of the reference distributions which result in low

f~equencies ofJalse-positive indications in the first place (e.g. Figure 7.8). Second,
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it is IItlUSllal for obscrvcr motion t.o rc~:;ult in similar viewpoillt~ in Iwo ~lIcCl'~~iYl'

vicws (gcneral position assnmpt.ion).

To iIlustrate thesc observation:=. by examplC'. Ta.ble 2 Hhow5 a. 5t'<]II(,II(,l' of :-;ill~ll'-\'il'\\"

recognition attcmpts. corresponding t.o the first 6 clltricH in the st'rond hall' nI' t.11l' t.ahll',

Iteration 1 is inconclusivc~ the object. is cit.hcr a. squa,re or rOllllded hkwk (Ho\\'t'ver t.ht'

results of running a maximum Iikelihood algorithm indicate that. the object b a rouuded

block). In Iterations 2 and 5the object is undetermined. Iterations :1, ·1. aud G. ou Ut<' nth,',.

hand, consistently support the correct classification of the unknown object as th" 'quan'

black.

To explore the possibility of an incremcntal schcme, an cxperimcllt. was Pl','!'o"IIIt'd

whereby evidence l'rom single-views was accumulated. The method described iu Chapl.l'l' li

was employed, whereby the system binarized the beliefs above the predefill..d I.hr",hold al.

each view. Evidence al. each stage \Vas computed by histogmlllmillg the billarized "e1ief,

accumulated thus far. Table 3'-displays the result of accumulat.illg~·~videllceart...r :Ili ,illgl,'­

view Iterations. Table 3a iIIustrates the results whell the zero 'states were established !»;

the numerieal limitations of the system, whereas ill b, a thresholdof 0.00001 was imposed

externally. One can sec from these results thaL, ~ter several iterations, choosing a. wiIl 1I1!I'

based on a ma.ximum Iikelihood scheme on the accumulated .b..liefs gave the cOl'rect allsi~er ill

ail cases. The false-positive cases !>ecame insignificant due 1.0 insnfnciellt l'vid""",,. Ill'fact,

Table 3b iIIustrates that hardly any evidence in illcorrect models l'l'mai lied aft.er a.pplyillg

the threshold of 0.00001. l'lowever, in t.he case of t.he l'Ollllded !>iock, t.he majorit.y of t.h..

evidence in the correct model wasalso eliminated, indicat.illg t.hat. perhaps t.his choiee of

threshold was 1.00 high in this case. !ts belief values were, ill fact., sigllific't11l.ly lowe.· t.h:t11

the l'est of the objects. In these cases, this choiee of t.hreshold Sl'ems t.o be approp,·iat.') ill

that il. removes the fa!se-positive cases, while maintaining a Irigh degree of cOllfidence ill t.lre

correct hypotheses. This justifies using illdependent threshold levels for ead. of t.he .nodels

in' the database.

4. Multiple-Part Object Recognition

We have shown that recognition of single-part objects based 011 part.ial illformal,ioll

l'l'tains some of the se!ectivity of systems based on complete information. However, t.IJese

objects are less complex than most found in t.he real world, so we are illt.ercst.ed ill t.lre Ilal. Il ml

extension 1.0 recognizing objects that consist of several articulat.ed part.s. Our r.llrrent. foclls

is "recognition by parts", whereby measured objects are segmented int.o I.heir cOllsl.it.llelll.
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.,. :\IULTiPLE·PART OBJECT RECOG"iTiO"

B5 B C L 55 RB

B5 :16 0 0 0 13 0

B 0 28 0 0 0 3

C 1 1 3:1 1 1 0

L 0 0 0 36 0 0

55 0 0 0 0 36 0

RB 0 0 0 0 0 18

al Threshold =computational undcrnow

B5 B C L 55 RB

B5 36 0 0 0 0 0

B 0 21 0 0 0 1

C 0 0 26 0 0 0

L 0 0 0 20 0 0

S5 0 0 0 0 21 0

RB 0 0 0 0 0 1

bl Threshold =0.00001

Displ:\Yt~d abO\'I~ nre the tables dcscribing the nccumulation of c... idence from 36 single-.... iew experiments. Eadt row
d':scrib,:s the histogrnm of the binarized belief distributions for a particular measurcd mode!. The columns refcr ta
the refcrence modcls. Zero '-'nilles are 'ddined byal numcricnl underBow of s~'stem and h) a thrcshold of 0.00001.

TAHI~E 3. Histog~am of binarizcd belief distributions aftcr single-vie\\' iterations.

parts, each of which is compared to the parts in the database. The task of recognizing

these parts is mnch more challenging than recognizing single-part objects due to problems

of self-occlusion and segmentation. Objedts are seen as collections of independent parts,

where topological relationships are not yet considered in this thesis2 •

A toy potato-head consisting of two ears, two eycs,'a nose and a head was chosen for the

pnrposes of testing the part recognition algorithm on complex objects. In order to scan the

object from ail possible viewing positions, the head was scanned as described in Section 2.

A picture of the set-up used to scan the head is found in Figure ï.2.

Figure ï.9a displays the actual potato-head' toy use<! in the experiment. Most of con­

sl,itue;lt parts coiliormed.weil to non-deformable superèllipsoid models, with tlle exception of

the head whose shape w';;' tapered. The potato-head toy Was chosen because its parts were

ZHecognition strt\tegiCl'l that Lake topolog~ .. inta accou_"t arc curre!1tl.)' being im·estigated.
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4. ~IlILTII'LE-I':\HTOP;.IEÇT HE('O(;;>;lTlO:"

a) Origina.l pota.to-hcad toy.

b) Reference potato-head model created by training;.

FIGURE 7.9. Potato-head: a) reul object and b) rdercllcr: mode!.

similar to cach other as weil as to the rcfercnce sphcres making discrimination a challclIging

t.ask.

Ten samples of the potato-head were used in the t.raining pt'occd lire. l~ach sam pte W;l~
"-

produced by scanning the object fibm severa! viewpoints in an cxptorat.ioll seqllence. The

rcfercnce model resulting from training can De round in Figure 7.9b.

4.1. Matching Using Partial Information. Silice ).lIê~.JIlt.cresting t.a.sk is
-.' "'-

to recognize an object with only partial information available, an experimcllt. was deviscd

whereby the potato-head was rneasured from 32 independent viewing positiolls. Rccogllit.ion

\Vas performed on cach of t.hese samptes in turn, using a dat.a.ba..'>e cOllsistillg of t.hc parts of

the potato-head as well as thesingle-part rcfcrencc models used cartier a.s distractors. 'l'lin
~.

results of the using maximum IikeHh-ood on the bclicfs can be secIl , in Fignre 701 O.,\
The results indicate that the systcm w~:~;~e to succcssfully rccogni~c illlil.;tIICCs of

. :, \,. ""'--'--
. 1 d f 1 b' . h ,. '.. l' .. . '1 II '1"}--";;::::~artlcu ate parts 0 a comp ex 0 Jcct \VIt on.y partla llliormation aVal a) e. ' IC SY~Ul

\Vas able to maintain its selectivity ey<:n with\,,-,~~ little information avaiJable from sir:;

viewpoints, compounded by the added ~ffects of self-occlusion. In fact., evell with c:omrJlë{c;

GD
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Number 01 Trials

_COrrect
_Incorrect

Undelerrnine<l

•

\-

[)i~pli,).~l "bov" :.r" th" ~.bles oL"scribing the bdief distributions of the potato-head mea,.ured from single ~'iew­

p:oi"t~. The part~ or the pot"to-head are: " head (H), a nose (N), a [eft ear (ERL), :. right ear (ERR). a [eft e~'e

(EY!.), and a ri~ht e~"e (EYR). Here, identifyinl;one l'YI' ~_.. the other, or one ear a... the olher wa... considered to be
a correct identification. Zero ..-:.Iues are defined by the numerical underflow of system.

FIGURoE i.10. l\latching ~amplcs of the potato-head taken from single viewpoints.

data gathcred from ail around the object surface, most parts were cmbedded within oth­

ers and thus part of their surfaces were notvisible. The results \Vere models that \Vere

unconstraincd in several directions. This caused the reference parts to be created without

complete information. Therefore training no longer ensured models with parameters that

were dose to the true values. This added to the difficulty of the recognition task.

For th(; purposes of the maximum Iikelihood experiments, the left and right eyes \Vere

considered to be two instances of the sâ'ine object. The same applied to the cars. This

is because a "recognitionby parts" strategy considers objects that are identical in size

and shape to be the same model, as is the case \Vith the eyes and ears of the potata­

head. III futureresearch, when topological relationships will be induded into a solution for

recognition of complex objects, different instances of the same part will be distinguished by

position and orientation.

The rcsults show a high number of undetermined states for the head. This is because

the hcad is tapered, breaking the assumption that the objects can in fact be accurately

modc1ed by non-dcformable superellipsoids. Different sir.-gle-view samples of the head pro­

duce vcry_dHfcrent superellipsoids depending on where the data were eollected from. Similar

to the problcm causcd by self-occlusion, the reference head was deseribed by one partic­

ular superellipSoid, whose paramcters \Vere tightly constrained (due to the faet that data

\Verc gathered aU around the object to create each sampIe used in training). In the eur­

rent scheme, the refcrence description did not encompass aH possible superellipsoid- models

describing the tapcred part. Therefore other equaUy viable descriptions that result from

single vic,," measurcmcnts \Vere not recognized-correctly. This lead to undetermined states. -

Other potential problems occur beeause the recognition process relies heavily on the

accuracy of the segment<ition process. Becaüse of this, errors in .the segmentation of the
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range data can lrad te errors in recognition. ln thesc cxpcrimcnts. there \\'t.'fe St'veral ra:"l'S

where the head was divided into t\\"o distinct parts: a "hcad" and a ··cap". Bl'C:lUSl' tht'

database allowed for only one part for the head. the system ident.ifi,'d the l'al' part. as I",in~

as lemon or sorne other reference mode!. This \\.~ undC'rstandable as t.llt, cap W;\S similar

in size and shape to these models.

Howcver. mcst of the incorrect states arase due to the similarity of t.1ll' refcrcnn' lllOdt'1s.

For example, the eyes resembled the smaller sphere. the nose and th,' l'ars. Similarly.

the cars \Vere extreme1y close te the bigger sphcrc in SlZC a.nd shape. As a rl'~.;nlt. t.1ll'ir

distributions overlapped significantly. making it dimcult to distingllish between them. l'et..

in the majority of cases, these incorrect identificatious occurred with 10\V beliefs. This

lead to the hypothesis that that most of these states actually arose l'rom uninformative

viewpoints, and couId be eliminated by raising the threshold for undetermined states.

In order to justify application of an externar threshold to distingllish bet.\Veen unin­

formative and informative viewpoints, the beliefs in t.he potato-he~d parts as \Vell as t.he

beliefs in the single-part objects were plotted on a logarithmic scale graph. Once agaiu,

a bi-modal distribution was anticipated, whereby a clear division bet.wccn t.he informat.ive

and uninformative states: would permit the use of a threshold to dist.inguish bet.w""n t.he

two. The results l'an be found in Figure i.11 .

As hypothesized, the results indicate a bi-modal distributiou for the beliefs in the

potato-head parts. For each of these parts, there laya top cluster, represent.ing rclat.ivcly

high beliefs in the correct models. Beneath this, a thin scatter of beliefsin ot.her models C;tIl

be seen. Finally, the bottorn cluster occurred for those beliefs t.hat were below t.he nnmerical

precision of the system (producing zero beliefs). However, the majority of t.he beliefs were

concentrated in the the top cluster illustrating that, most of the time, the syst.em had high

confidence in the correct par,t. However, some scattered beliefs in t.he single-part dist.ract.ol'S

occurred as weil. It is important to note that the majority of these cases lay below t.he t.op

cluster of correct identifications, indicating that by application of a threshold ;uijwhere

l'rom 10-10 to 10-5 shonld eliminate the majority of the false-positive c;!Ses. Once again,

the exact value of the cutoff level is not critica!. Figure i.l t iIIustrates the rcsults th"t.

l'an be achieved by applying a threshold of 10-.5. This would lead to millirnal false-posit.ive

indications accompanying a high number of correct votes. The case of t'~~e"d, however,;

emphasizes the possibility of individual threshold levels for maximal efficiellcy. Herc, a.

much lower threshold would ensure the highest lIumber of correct matches.
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4.~mLTIPLE-PART OBJECT RECOGNITIOi-:

Log Belier

True Parts

v Cap

o Earlo EarA

o EyeL

o EyeR

o Head

o Nose

B Bs C L earl EarR EyeL EyeR He'jd Nose Rb Ss

•

Al>ove are the results from attempting to·rccognize 32 different single-\'iew S:lmples of each of the parts of the
potato-he:.d: the Left Ear (EarL), Right E:... (EarR). Left E~'e (E~'eL), Right Eye (EyeR), Head (Head). and
Nose (Nase). The single-part reference models were aIse included as distrncton< for the recognition process.
These induded the Block (8), Big Sphere (8s), C)'linder (C), Lemon (L), Round Block (Rb), and Smalt Sphere
(Ss). (For an eleph.nation of the plot, Sei: Figure 7.i).

One can see the bi-modality in the log of the beliefs in the potato-head models. The beliefs in the distractors
:~ppe:.r Illuch more sc:.ttercd, the majorit~, Iyin;; beneath the top cluster of the potato-head parts. The top
horizontal linll indicates the results achie\'ed by applying a threshold of 10-5. This would lead to minimal
false-positive indications accompan)'ing li high number of correct votes.

FIGURE ï.ll. Log of belicfs in the Potato-Hcad parts, as weil as the Big Sphcre,
Block, Cylinder, Lcmon, Small Sphere, and Round Block.

'1'0 investigatc that the hypothesis that an external cutoff can divide the results into

informative and uninformative states, and remove the majority of incorrect identifications,

the cutoff point \Vas raised to 0.00001. The results are shown in Figure 7.12. On can

scç~that, in the most of cases; the external threshold retained most of the correct states,

co~~~~~ystemhad high confidence in the correct identifications. The exception

W<lS the case of the head, whcre low beliefs caused almost ail of the correct identifications

to bccomc lIndctermined states.

30

,25

20

15

10

5

H

Number ot Trials

_COrrect
_lncolTect

~ Undelermined

::• --

FIGURE ï.12. l\latching samplcs of the potato-head model while imposing a thresh-.
old of 0.00001.
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.1. '-t1.1LTIPI.E·PAHT OR.IECT HECO(;~ITI0i':

• H N ERL ERR l'YI. EYR BS B (' L s~ lm.... '

H li 0 1 0 0 0 0 0 0 0 0 0

N 0 20 20 15 20 20 2 2 2 2 10

ERL 1 15 25 2·1 25 15 12 2 2 i l~

ERR 1 1.5 21 21 21 1:3 16 :1 S 1:3 20 ·1

EYL 1 16 li 12 li li 0 1 1 2 ,1 0

EYR 1 15 15 14 15 15 5 :1 :; il 0

a) Threshold = comput.atic;lal undcrllo\\'
"

H N ERL ERR E'YL EYR HS B C L SS RB
H 1 0 0 0 0 0 0 0 0 0 0 0

Ni:::::~ 0 16 2 0 12 ] 0 0 0 0 0 0

ERL 0 1 14 ]2 0 0 0 0 0 0 0 0

ERR 0 1 9 12 0 1 2 0 0 0 :3 0

EYl. 0 3 0 0 ]4 S 0 0 0 0 0 0
..----'

EYR 0 3 0 0 1:1 11 0 0 0 0 0 ()

',,':

• bl Threshold = 0.00001

TABLE 4. Histogram of binarizccl belief distributions for t.he potat.o-head aft.cr :~~

single-view itcrations (For explanation , sec Table :~j.

•

dl /,'
/'. :' _•. -:;::::::./ ;'.

4~2. Incrementai Recognit,;ilii':-\t'-or,le~.. t.o explor~' t.he possibilit,y of an incremen-
v :"==;:"'" "

tal recognition strategy fo~~uniplexobjects, an ';~perimentwas devised whereby evidelle<>

from single-views of the potato-head toy was accumul"ted. Simïlar to t.he sillgk~part..ob­

ject case, the belief distributions were binarized at a predeflned t,hresho!d at. each viewillg

position. At each stage, a histogram of the binarized distributiolls produced t.he evidellce
\\

accumulated thus far. The results of accumulating evidellce after :12 single-views C;'~ll he

seen in Table 4. In Table 4a, the cutoff point was determined by t.he nnmerica! p,'ecision of

the system. In Table 4b, a threshold of 0.00001 was imposed exterrmlly. .
~

Table 4a ilIustrates that the distributions' from single-views were relat.ive!y "wide" in

that a measured model praduced a degree of belief in several reference models at. once. The

result is that, in' most cases, the accumulated binarized evidence points to several models

al. once. Attempting 1.0 choose a single winner after several iterations would therefore b() a

difficult task. The choiee wou Id however be Iimited 1.0 a few candidat.es as sorne false-posit.ive .
_.,
/.,

1
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4. MULTIPCE·PART OBJECT FECOGNITION

illdic:at.ions hav~ become insignificant due to insufficient evidence. For example, in the case

of t.he Nose, lack of evidence in the Big Sphere, Block, Cylinder, Lemon and Rounded Block

has causcd the be!ief ;., these models to become unsubstantiated. The hypothcsis was that

t.lJe cvidence in the truc mode! \vas 50 much strongcr than the evidence in the other models

. that, by raising the threshold to an appropriate value, one couId eliminate the majority of

. '-tho:- false indications. The result would be an accumulation of evidence in the true models.

. ' T.üJ!c 4b validates the hypothesis by illustrating that the majority of the evidence in

the incorrect models were removed after application of the external threshold. In faet, if

olle were to choose a winner based on a maximum likelihood scheme of the accumulated

evidence, the results would be correct for ail models3 . In the case of the head, however, the

majority of the evidencc in the correct model was eliminated as weIl. This indicates th~

possibility that the choice of threshold was not ,appropriate for the head.

The problern of mergL~g the belief distributions from different viewpoints of complex

abjects is quite difficult .....The difficulty lies in establishing correspondence between parts

from different. views. The problem is much more difficult than in the single-part object

case which encompassed the strong prior assumption that th.c object measured does not
,,,,,,",, . \.

change from view to view. This assumption no longer holds,}~,nd a theory:·'providing the

! correspolldcncc is needed. Methods that provide p~rt correspolldence based on geome­

,{ tl'y (Soucy & Ferrie 1992, Soucy 1992) were used for these experiments, however they are
'~ :-,
~~lCtive in that the different viewpoints must he ("lose enough to contain overlapping data.

,), '.

As weil, merging data on the levcl of geometry ~computationally e>2pensive. ::Th~j:efore, .
\\

a new scl,~~me\ror merging the beli.:~~utions, based on the m~:?els themselves, their

<lssocial.':lZ!' beliéfs, and the relationships bet\t:~en them will be the focus r of future research.

We havedemonstrated that system is abl~to recognize parts of arti~ula~edobjects with
- .

ollly partial information available. Extensionto~recognition of multiple-part objects will

involvc incorporating topological informatio;into th~sol~iion. The rotation and translation

paramcters of the superellipsoid models provide this information as they can be useù to infer

t.he distance and angle betwccn the pa;rts. Once belief in each of the parts is established,

graph matching techniq~es can be employed to calculate the belief in the entire abject.-,~. .:;

enrrent work in our lab;is concentrated on the solution to tllis problem.

,.....
\ ­.', "

,.
3We Ill"'e treatt.-d the l~rt.and right eyes l1S hein!; the instances of the IWl.me object (similarly for the ears).

'v-•
'""": ,\.

'.
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CHAPTER 8

Conclusions

:-rn this thesis, wc have presented a new framcwork for parametric sha.pe recognit.ion based on

a probabilistic model of inverse theory first introduced by Tarantola (1987). Wc ha.ve shown

how a Bayesian recognition strategy can be derived automatically by applying the theory

and have demonstrated its implementatior: in a system~ljr recognizillg :30 object.s based~~

on superellipsoid parameters (As weil, sec Arbel, Whaite \~Ferrie 1994b, Arhcl, Whait.e &.
1

Ferrie 1994a). i /
. ' :.;"

Casting the problem into a general inverse theory fram'cwork introduc,cs several impor-

fant contributions to the field, of object recognition. The first is t!lat thp. rncthod expliciLly

enumerates ail sources of prior knowledge. This way, if conditiolling is necessary, the sources

of knowledge are apparent, and can therefore'bc cxamined. This is important in that many

recognition systems include implicit, hidden assumptions about thc mLture orthe world. As

a result, these met~~ds may work weil in specifie situations, but cannot. he casily 'Illodified
~.~ '.

1.0 work elsewhere. 'By representing knowl~dge as a probability' dcnsity function, bol,h the

information and the ambiguities assochted with them arc incorporatcd illto the solution.
\\

This permits the recognition engine to m~.ke well-informed decisions. As weil, the method is
-'\

~. ., . .

n"ot dependent on the exact nature of thè-information, but rathcr providcs a gencral recipc

for merging any group of contextual priors. Finally, the solution to the inverse problem is

presented in the form of a conditional probability density function. The importa.nce of this
Je

result is that it provides a qualification of the as.~e&')ments made by the recognition proce-

dure. ~his is vital in that no problem in visi~n work~n complete i,soIation, but rather r:nusl.

commu-nicate descriptions of results to external processes. In order to do so, it is imporÎ;:Lllt

to inform these processes of the uncertainties in the descriptions as weIl. M.ost rccognition

schemes do not provide this information. Instead, they make absolute assessmcnts about

75

'~

.
r ­..>



•

•

•

CHAPTER 8. CONCLUSIO"S

the identil.y of the unknown object. This providcs the externa! processes with only partial

information, biased ta thcir notion of ,\Thal. constitutes a c1ear "\\iinner~~.

We have developed a method of avoiding degeneracics in the superellipsoid represen­

t.a.tion, which pcrmits the use of this convcnicnt pararnctric farm without incurring unduc

compul.ational overhead. Wc have del.ermined empirically that there arc only a finite num­

I,er of possible equivalence classes for the superellipsoid. and rather than restrict ourselves

1.0 oue parl.icular model description, wc proposed a method that represents each model bya

lIIull.i·modal description encornpassing ail possible degeneracies. Our current representation

only include~.the rotatiorial equivalent forms, but future work will include ail possible forms

III the rcprcs~ntations.

The experilllentai rcsults indicate that the strategy is 'luite robust, not on!y in situ­

ations where complete surface information is available but also in those cases where. il. is

only parl.ially accessible. In this and othei'~'nrks (Arbcl, Ferrie & Whaite 1994), we have

demonst.rated that il. is indeed possib1e'to.diflèrentiate between inJonnalive an'~"" uninJor.
"-.._.,-......." ,

Hwlive viewpoints, and have showr, how the resulting belief distributions can be used 1.0

assess the quality of the Interpretation, by assessing the beliefs associated with a particular

set of assertions based on this data. The importance of this result is that il. l'l'ovides a

basis by which an externr.1 agent can assess the quality of the information from a particular
~ "

viewpoint, and make infol'med decisions as 1.0 what action 1.0 take using the data al. hand..; -

The bi-modal natnre of the resulting" belief distributions have indicated that this can be

easily ac,!omplished by application of an externat thrcshold.
'-...:.- !.
7::'-We have also dernonstrated that some viewpoints can give rise 1.0 ambiguous informa-

/. - ,

tion, whcre the system has cOl;fidence in more than one hypothesis. Similar 1.0 the motiva-

tion behind aulonomous exploration in the model-building phase (Whaite& Ferrie 1994),

am bigllolls views have spawned the development of a;1 incremental recognition scheme,
- "

where wc seek information from a new viewpoint 1.0 rlduce the overall ambiguity. Wc

have shown how evidence, in the form of the belief distributions, can be accumulated from

a seqlIence of views. The experiments have demonstrated that tl}e maximlIm likelihood

hypothesis is largely viewpoint-invariant, implying that merging v~~es for the different hy-
,',

potheses over a sequence of views should lead 1.0 a c1ear winner. Because the beliefs are not
!

noi:tnalized, we have given equa! weighting 1.0 ail hypotheses by binarizing the values above

a t~eshold. We have iIlustrated that by histogramming the binarized beliefs and picking

the highest score of the rcsult, we choose the correct winner in ail cases.

ï6
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By qualifyil1g the recognit.ion results. the met.hod provides potl'ut.ial ftlr a wide varit't.y

of applications. For example. an active recognition agent can choo~e vip\\'point~ t.hat will

maximize the belief distribution associated with an object ofintl,rest. We have not specili,'d

how to choose this viewpoint. but the method can be nsed to determine if the particular

choice leads to a suflicieut levcl of informatiou. Another important applicat.ion of 1.11<'

methodology is a straL0gy for off~line computation of a pre-computed sel of charact.eristk

views. One can rank th~se views according to the belief distributions. and thl'll store the /1

best vicws. Predcfining these vic\vs speeds up on-Iine computations by direct.ing t.he act.ivl'

agent's attention to int:,rmativc \'icwpoints, thcrcby rcducing t.he scarch spart..' of viable

hypotheses. These and othe,: topies are currently under investigation in our lal>oratory.

Sorne observations are in order regarding the alltonomous explorer, the system used 1.0

automatically generate the database modcls used for recoguition. In the numerous trials

performed during the course ofthis research we wère able 1.0 consistently obtaiu stable para­

metric descriptions of the model database. These were largcly iudependent of viewpoint,

variations in sampling, and the trajectory chosen by the mobile laser scanner. The genera­

tion of stable, salient object modcls is clearly an essential ingredient. in the implementatiou

of a successfufobject recognition system. Future work will involve exploration guided by

feedbackfrom '~he recognition system. This is possible becau;e ail sources of kuowledge arc

made explicit\vithin the framework described. Therefore, thesystcm could activcly acquire

information needed to correctly classify the objects.

The system described exhibits a high degree ofselectivity in matching object primitives,

paving the way for recognition of articulated objects. eurrent work includes a schemè for

multiple-part object recognition involving a graph-matching procedure. II. is b,,,;ed ou the

the work presented in this thesis, whieh outlines a sound, statistieal method for comparing

the nodes. Given its success in discriminating based on partial information, the search-spaœ

for the graph-matching probleni shou!d be'considerably reduced.=",'
. ,

Fi:l.ally, we conclude by noting that although, in this thesi;' \ve have conccnt.rat.ed
...... ;

on the problem of recognizing l'articulaI' parametric models, the general inverse t.heory

can be used to solve many problems in vision. One such application is the problelll of

object classification. Here, rather than l'l'present the database knowledge ,,,; a series of

delta functions, one for each prototype in the database, one might repres~nl; a datab;L,e of
,~ -...

classes by a series of nor')'al distributions. The efrect wou Id be'to spread out. the data",..,;e

prototypes from points ,in parameter space to clouds of points. Another option rnighl. be 1.0
"

represent each class b~i·a su~f:delta functions. An example of which may "e 1.0 indude
);
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thrcc possible sizes for each reference mode!. It is important to note that although these

applications dirrer from cla:;sical object recognition, they do not involve a change in the

methodology, but rather a modification in the shape of the distributions representing the

sources of kiiowledge. This type of nexibiIity, made possible because ail of the sources of

kllowledge arc made explicit, is one of the prime advalltages of usillg the general inverse

theory to solve problems in vision.

.;

~.
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1. Tl! E CONVOLllT10i" OF (; ,,11SSI:\i'\S

APPENDIX A

COlnbining Nornlal Distributions

This appendix chapter will present the mathematical dctails involvcd in t.he proof t.ha.t.

the convolution of normal distributions'is itsclf a normal di::;triblltion (as W<l~ l'eqlli\"(.'d in

, Chapter 4). Section 1 will provide the proof that the convolu tion or 1lI11!LiV4u'iatc G41us..",i:~n

distributions is itself a multivariatc Gaussian distribution. Section 2 will lise this l'l'suit. t.o

show thatthe integral of the product or two normal distributions (the convolut.ion) is a.lso

a normal distribution.

1. The Convolution of Gaussians
',,-

In this section, we \Vish to illustrate the usefuL.rcsult that the convolutiori or a 1II111ti-
- ~;~ ,:

variate Gaussian fun_ction (or a normal density function) \Vith another is il.sclf Gallssi:l.1I.

We will denote a Gaussian function over the space X êtS

(31) G(x,C)= exp (_~xTC-IX))

= exp (xTHx)

•

where where x is a vector in the n-dimensional vector spacl' X, and C is,·a li:--car cov:Lria!ICC
, ~ -d'-"

operator on the space X (an n X n matrix) . The covariance operata~fi!les the spl'cad

or dispersion of the function on the different parameter directions. In llIatrix forlll il. is

symmetric (CT =C) 1 and positive definite. Where convcnicnt wc will also lise the alt.crllal.c

farm with C-1 = 2H where H is the I-1essian of the: quadratic rorm x'l'H x. H is al~~";'

symmetric and positive definite (xTH x > 0 for ~ -# 0). Let

Ga(xf= exp ( _~xTC;;lX) = cxp (-xTHax)

and
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1. THE CONVOLt.·TION OF GAUSSIANS

dpIIote 1.\....0 such Gaus.c;;ian functions. The convolution of thesc is defined as

(G" * Gb)(Xc) = rG,,(xc - x) Gb(X) rlxlx
(:1:1) = Lexp ( - ((~c -x)TH" (xc - x) + xTHbX)) dx

= r exp (-Q(x)) dxlx
Whell expanded, the quadratic exponellt is

T TQ(x)=(xc-x) H,,(xc-x)+x HbX

T .) T T=x (Ha + Hb)X - _(Haxc) X + Xc Haxc

=x T A x - 2bT x +c;

where A = Ha + Hb, b = Haxc, and c = xrHaxc. Note that because Ha and Hb are

symmetric posit.ive definite thell'their sum A its inverse A -1 are as weil .

. Because A is symmetric, the terms in x can be collected by rewriting the quadratic

rorm about the location or its minimum x =A -1 b, such that

(x '2A-lbfA(x - A-lb) = x TAx - 2(A-lbfAx+ (A-lb)TA(A-lb)

=x TAx - 2bT(A-l )TAx+ bT(A-lfAA-lb

=xT Ax - 2bT x+ bTA-lb

or that

Arter slIbstituting this into (33), wc gel. that ,o.
v

(35)

~

Q(x) =xT Ax - 2bTx:-;' c :::~-

'= (x - A-IbfA(x - A-lb) + c - bTA-lb

= (x-A-1bfA(x-A-lb) + Qmin'

Expauding the value al. the minimum

• ~
"

Il

Qmin = c - bTA -1 b

=x~Haxc - (Haxcf(Ha + Hb)-I(Haxc) ,

= x~Haxc - x~ (Ha (Ha +Hb)-IHa) Xc

= x~ (Ha - Ha(Ha + Hb)-IHa) xc.:

,/
;

80



• This can be simplified further by fact.orizing out. Hu 011 t.llt' lert. and (H,t + H/,)-lH'1 nn Ih\'

right

Qmit! = x~Hu (H;I (H'l + Hb) - 1) (H,t + H&)-IHllx,.

=X~E'1 (H;IHb) (H'l + Hd-IH'lx"

=X~Hb(H<l + Hb)-IHaxc

= x~ (H;I(Hrl + Hb)H;;-I)-1 X,"

T (H-1 + H-1 )-1=Xc a b Xc

\Vith this, the convolution (32) is separable into two Gaussialls, ollly one of whkhl~ a

function of X, that ts

•

(Ga *Gb)(Xc) = rexp(-Q(x)) lixlx
= rexp( - ((x - A-lb)?'A(x - A-lb) +Qmin)) fixlx

(37) =cxp(-QmiTI) rcxp(-(x - A -1 bfA(x - A -1 b)) dx.lx
The intcgral of the Gaussian over thè space X has a kno\\'ll solution - (,hat nscd t.o t10nllallze

the multivariate normal probability distribution. Let liS first ch.tIlgc variables 1.0 y =
x::;:- A-lb, then dx = dy, sa

1.exp(-(x - A~lb)TA (x - A -lb)) ..dx =1. exp ( -~y1'(2A)Y)rlY
)i.-;::. )\

" 1-..,= (2it):r 1(2A)-II::f
'c~

'.-" 1 1. = (2it);; (!2AI- ) ï

" 1=(2it) ï" 12H" +2H/)I-~

1= (27r)~ le;' + Cï11-;ï ..'\i
\:
III,

When it and (36) are substituted into (37),i~ve gel, that the cOllvolutioll of t.wo Itlult.ivariaLe
• 1: _

Gaussians Il .,'
1
l'

• 81
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2. J:"TECHAL OF 'l'ilE PRODUCT OF :-:OR:-'IAL DISTRIBUTIO:-:S

2. Integral of the Product of Normal Distributions

Whell ill1.egra.ted the product oftwo normal distributions is a normal distribution. This

is to be expecl.cd a.s the illtegral is really the convolution of normalized Gaussians, and as

w!.~ have shown ill Section l, this is itself a Gaussian. Because the Gaussia:ls have becn

llormalizcd we would expect the convolution to be normalized as weil.

As was sta1.cd in Chapter.1, a multiva.riate normal probability density functioll over

th(~ space X is a norJi1ali:'.Cd Gaussian

N(x-x,,,C) = J(2r.~n 'C1cXP(-~(X-XIl)TC(X-XIl))
G(x - XI" C)

= -";~(2=:::;r.)==n=:=:,e#1

cClltered on the meal! value of the distribution X Il , and with a dispersion in the various

parallle1.er directions given by the covariances C.

Tite integrat of tlte product of two normal distributions can be written as the convolu­

tion oftwo Gaussians. 1'0 show this we first note from (39) that G(x-xll, C) = G(xl,-x, C).

This is sim ply a consequence of the symmetry of the distribution. Thus we have that

After a chitilge of variable y = X-Xb, it follows that dy = dx and that this is the convolution

of Lwo Gaussians

From (38) \Vith Xc = (xa - Xb)

.-
(40)

;.

(2rr)n G(xa - Xb, Ca + Cb)

le;l + Cb"ll (2r.)nJICal ICbl

G(Xa - Xb, Ca +Cb)
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~. I:\TEGHAL OF THE PHODUCT OF ~OH~l:\L 111:,THlHllT10Î":'

Using the weil known property of drterminants that IC"j IC,I = IC"Ci,1 \l't' ,'an 1"<'''1'.1,-1'

and write that

IC,,1 ICIoI IC;;-I + Cb"11 = IC,,(C;;-I + Cb"I)CI,1

= IC,,+ Cvl,

After substituting this into (·10), we see that that the integraI of th,- pl'Oduct or th,' t\\'"

normal distributions (really the convolution of t,\\'o nornlaI distl'ibutions) is

1'"(- C ) ," ( • - C) l' - _C"",{X,='";=-""X=,'l,,,,,'Cc='='+===C""Io)~\ X x a • tt i\ X .Xh, b (X-
X V{27:')" IC" + Cioi

= N(x" - xv, c" +CI')

= N(xlo - x"' C" + CI,)

which is aiso a normal distribution, but wherc the covariances a.re SIIIIlIllCd .

,-,
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