i National Library
* E of Canada

Acquisitions and

Biblicthéque nationale
du Canada

Direction des acquisitions ¢

Bibliographic Services Branch  des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 ) KIAONS

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for  microfilming.
Every effort has been made to
ensure the highest. quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may:have indistinct
print especially if the original

pages were typed with a poor

- typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
RS.C. 1970, c. C-30, and
subsequent amendments.

Canada

395. rue Wellington
Ottawa (Ontano)

Youw file VOIne rdldrence

Owr e Notre selerenoe

AVIS

La qualité de cette microforme
dépend grandement de ia qualité
de Ila thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec ['université

. qui a conféré le grade.

La qualité dimpression:- de

certaines pages peut laisser a -

désirer, surtout si les pages
originales ont éte
dactylographiées a l'aide d'un
ruban usé ou si 'université nous
a fait parvenir une photocopie de
qualité inférieure.

-~
Ay

La reproduction, méme partielle,

i

; de cette microforme est soumise
. a la Loi canadienne sur le droit .
~d’auteur, SRC 1970, ¢c. C-30, et

‘ses amernidements subséquents.

f



RECOGNIZING VOLUMETRIC OBJECTS IN THE
PRESENCE OF UNCERTAINTY

Tal Arbel

Department of Electrical :Engineering
McGill University

. March 1995

A Thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfilment of the requirements of the degree of

Master of Erigineering

L)

© TaL ARBEL, MCMXCV

7=



National Library
of Canada

B

quuisitions_ and
Bibliographic Services Branch
395 Wellinglon Street

Ottawa, Ontario

K1A ON4 K1A ONa

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR .
FORMAT, MAKING THIS THESIS
AVAILABLE TO IN'I'ERESTED
PERSONS.

g
Py

THE AUTHOR RETAINS OWNERSHIP

OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
-SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

z /'

Bibliothéque nationale
du Canada

 Direction des acquisitions et
des services bibliographiques

© 395, rue Wellington
Cttawa (Gntario)

Your bie  Voire rfdeence .

Cur e Notre td ldrence

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
QU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE

DU DROIT D'AUTEUR QUI PROTEGE ©
SA THESE. NI LA THESE NI DES

EXTRAITS SUBSTANTIELS DE CELLE-.

CINE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

ISBN 0-612-05437-3

Canad"'

W

ya

[—



ABSTRACT

Abstract

This thesis describes a new [ramework for parametric shape recognition. The key result
is a method for generating classifiers in the form of conditional probability densities lor
recognizing an unknown from a set of rcference models. Qur procedure is automatic. Off-

line, it invokes an autonomous process to estimate reference model parameters and their
b

statistics. On-line, during measurement, it combines these with a priori context-dependent

information, a3 well as the parameters and statistics estimated for an unknown object, inio
L, ’

a conditional probability density function, which represents the belief in the assertion that

the unknown is a particular reference model. Consequently, the method also permits the

asscssment of the beliefs associated with a set of assertions based on data acqui“red from a

‘D'Lrt.lcuhr wcwpcnnt The importance of this result is that it provides a "basis by which an

external agent can assess the quality of the 1nformat10n from a part.lcula.r v:ewpomt and
make informed’decisions as to what action to take using the data at hand.

" The thesis also describes the implementation of 'tlﬁs‘pzﬁocedure in a system for auto-
nmtica:lly generating and recognizing 'SD part-oriented models. We show that recognition
perlornmncc is near perfcct for cases _m which complete surfacc mforma.tlon is accessible
to the algonth m, and that it falls off* gracefully when only partlal information is available.
This laads to a bcquentml recoghition strategy in which evidence is accumulated over suc-
cessive vmwpo.nt«:: at the level of the belief dlstrlbu‘rlon) until a definitive assertion can
be made. Etperimental results are-presented showing how the resulting a.lgonthms can be
used to distinguish bctween informative and uninformative {;{ewpomts, ranx a sequence of
images on the basis of their ml'ormat:on (e.g. to generate a'set of characteristic views), and

sequentially identify an unknowit obJect. 7 oo .

%)
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RESUME

Résumé

Cette these décrit une nouvelle approche pour la représentation paramdétrique des formes,
Le resultat principal est une méthode pour générer des classes sous'la forme de fonctions
de densité de probabilité pour identifier un inconnu parmi un ensemble de modtles de
référence. Notre pfocédure est automatique. Dans sa phase d'apprentissage. clle fait appel
i un processus autonome pour estimer les parametres des modeles de référence ot leurs
statistiques. Dans sa phase d’identification. elle combine les paramétres des modéles de
référence avec d’a.ut_;\rg information contextuelle ainsi qu'avee les paramaotres et statistiques
d’un objet 3 identifier pour prodnie une fonction de densité de probabilité qui représente
la confiance en uie hypm\féSe d’identification de l’inconnﬁ parmi les modcles de rélérence.

Conséquemment, fa méthode permet aussil’estimation de la confiance associée & un ensem-

ble d’hypothéses basés sur les données obtenues.d’un certain point de vue. L'importance de

ce résultat est qu’il procure une base par laquelle un agent externe peut estimer la qualité de
I’information prdvenant d’un point de vue et en conséquence prendre unce décision ‘éclzyi rée
quant a [’action a réaliser. - '

Cette thése décrit aussi une réalisation concrdte de cette procédure dans un systéme
pour générer et reconnaitre des modéles 3D représentés par leurs parties. Nous montrons
que la performance de la procédure de reconnaissance approche la pcrfcctiori pour les cas of
une description compl‘ete de la surface est disponible et que les résultats se dégradent d’une
mantére prévisible et graduelle quand seulement une_information particlle est présgnl.éc;
Ceci débouche sur une stratégie de rec_pnnaissancc séquentielle par laquelle les évidences
sont accumulées sur plusieurs vues (au niveau des distributions de confiance) jusqu'a ce
qu’une hypothése définitive puisse &tre établie. Des résultats cxﬁ%}\m&ntaux démontrent
comment l’algori}hme peut étre utilisé pour: distinguer entre les vues informatives et non-
informatives, classer une séquence d’images sur la base de leur information (i.e. pour générer

un ensemble de vues caractéristiques) et identifier séquenticllement un object inconnu.
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CHAPTER 1. INTRODUCTION

CHAPTER 1

Introduction

Object recogniticn represents the highest level of processing in a visual svstem, synthesizing
all the information provided by the lower level processes, and using the resuft to perform
reasoning tasks. However, interest in the problem of object recognition has generally been
restricted to identifying and locating an object in a visual scene (see survey paper by
Arman & Aggv;arwal 199356). We argue that absolute identifications are limited in that they
are biased to a particular system’s criteria as to what constitutes a “winning”™ hypothesis.
Furthermore, since no visual system works in complete isolation, external processes must,
be completely informed about any ambiguities in the results of recognition to be able to
make knmvlédgezi.ble decisions.

In this thesis, we focus our attention on model-based recognition. This implies nmking
use of object models that store a priori knowledge about the features essential for object
characterization. Recognition cousists of matching an unknown object with a model in a
predefined database;\ We broaden the scope of the conventional recognition problem and
investigate the notion of the quality of the identification. [n our terms, this qualification

refers to determining the degree of confidence in the classification. ldeally, representation

~of this information takes the form of a conditional probability density function, which we

will refer to as a belief distribution, describing the likelithood of correspondence between an
unknown model and each of the reference models. Such a measure is essential to an aclive
recognition process which can usc it as feedback in the collection of [urther data to resolve
ambiguity.

Our process works as follows. On-line, we make measurements of an unknown object,
the task being to infer the model in the database which best represents it. Problems of

this type fall under the category of inverse problems, and are underdetermined. Rather

A



1. OVERVIEW OF THE APPROACH

than constrain the solution with prior assumptions about the world, we seek a general so-
Iution to the inverse problem that makes the sources of knowledge explicit. To this end, we
must address the issue of how one systematically incorporates different sources of knowl-
edge into the process ol recognition, specifically ambiguities that arise from measurement
and representation. We seek a method that represents all relevant contextual information
by informative models, and encompasses these descriptions into the solution. Ideally, we
wounld like to represent these sources of knowledge as probability density ‘functions, SO as
to communicate all the uncertainties to the recognition engine and, in this manner, make

well-informed decisions.

1. Overview of the Approach

The application of this work is three-dimensional object recognition in which objects are
represented by parametric shape descriptors:such as superellipsoids (Barr 1981, Bajcsy &
Solina 1987, Raja & Jain 1992, Ferrie, Lagarde & Whaite 1993}, deformable solids (Darrell,
Sclaroff & Pentland 1990, Pentland & Sclaroff 1991), and algebraic surfaces {Subrahmonia, °
Cooper & Keren 1992). We introduce a new framework for parametric shape recognition
based on a probabilistii\:‘\)inverse theory ﬁrst.‘introduced by Tarantola (1987). Application of
this theory leads to a%%.yesian recognition strategy similar to that used in other approaches
(Subrahmonia et al. 1992). However, the important distinction of our methodology is that-
it leads to a mechanism by which the belief distribution used to classify shape models can be
automatically generated. In doing so, important sources of contextual knowledge are taken
into account that are less obvious in traditional approaches. Such knowledge includes i) a
priori knowledge of the objects comprising the database, ii) information obtained from the
process of estimating model parameters for an unknown object, and iii) information from
the physical theories giving rise to the reference models themselves. We will show how the
theory systematically enumerates each of these sources of knowledge, and combines them
s0 as Lo create the desired belief distribution.

In our context, object models are constructed through a process of autonomous ex-
ploration (Whaite & Ferrie 1991, Whaite & Ferrie 19935, Whaite & Ferrie 1994)_:in which
a part-oriented, articulated description of an object is inferred through 7successi.ve probes
with a laser range-finding system. Figure 1.1a shows the set-up used to perform experi-
ments — a two-axis laser range-finder mounted on the end-effector of an inverted PUMA-
560 manipulator. Fo:\éiny part'icula,r‘ viewpoint, such as the one shown in Figure 1.1b,
a process of bottom-up shape analysis leads to an articulated model of the object’s shape

2
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1. OVERVIEW OF

THE APPROACH

(a) e (e

FiGURE 1.1. (a) Mobile laser range-finding system used to construct object models.
(b) Laser range-finder image of a pencil sharpener rendered as a shaded image. (c)
An articulated, part-oriented model of the sharpener using superellipsoid primitives;
8 superellipsoids are used, one corresponding to each of the parts of the object.

(Figure 1.1c) in which each part is represented by a superellipsoid primitive (Ferrie, Lagarde:
& Whaite 1993). Associated with each primitive is a covariance matrix C which embeds
the uncertainty of this represéntation and which can be used to plan subsequent gaze posi- ";‘
tions where additional data can be acquired‘to reduce this uncertainty further (Whaite &
Ferrie 1991, Whaite & Ferrie 19935). A system which automatically builds object models
based on this principle is reported in (Whaite & Ferrie 1994, Lejeunc & Ferric 1993).
Applying the inverse theory to our context is straightforward. Off-line, a database
of object models is generafed by presenting each object prototype to the model building
system. Each object is in turn represented by several sets of parameters, one corresponding
to each part of the object. On-line, the recognition phase proceeds identically to maodel-
building except for one key difference. On each iteration (gaze-point calculation — data
acquisition — data merging (fusion) — parameter estimation), the belief (in L]II(.! form

of a conditional probability density fuqction) for each reference object given the current

parameter estimate of the unknown object is calculated. If a clear winner stands out in

terms of maximum likelihood, the process is terminated. Otherwise the process is allowed

"to continue and the behefs in each reference model are upda.ted on the basis of thc newly

3
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2. OVERVIEW AND ORGANIZATION OF THESIS

acquired data. In this way, evidence can be incrementally gathered during the process of
axploration.

Because the inverse solution to the recognition problem is in the form of a belief dis-
tribution, it provides not only descriptions of the results, but of the ambiguities in them
as well. This qualification is important in that visual processes rarely work in complete
isolation, and external processes using the results of.recognition should be fully informed
before making decisions. For example, consider an external agent searching for a particu-
far object. with limited resources. It must be able to assess what it sces from a particular
viewpoint and quickly determine if the extracted information describing the characteristics
of the objects in the scene is useful in identifying the target, so as to be able to evaluate
alternate sﬁratcgies. These strategies may include making assessments based on the current
informition, or using it to decide where to look next. It must do all this while taking into
account. prior knowledge about the environment. In this thesis, we will show how the re-
sulting belief distributions can be used to (i) assess the quality of a viewpoint based on the
assertions it produces, and (ii) sequentially recognize an object by accumulating evidence
al a prababilistic level.

Finally, we note that to be able to solve a large number of problems in vision, we need
to be able to model what we know about the world. The inverse theory, which tells us how
to represent prior knowledge, and how to combine the knowledge to obtain the solution, is
therefore an ideal candidate for the solution of a wide variety of vision problems. Although
in this thesis, we concentrate on the problem of object identification, the theory can easily
be applied to the problems of object classification or object representation. We will briefly

discuss other possible applications of the theory in Chapter 8.

2. Overview and Organization of Thesis -

Very few recognition sch;zmes have attempted recognition based on the parameters of
volumetric models. One reason for this has been due to the shortage of efficient bottom-up
systems capable of building stable representations for multi-part objects. In Chapter 2, we
present an overview of the many ri:cognition strategies introduced over the past decade.
We will classify the different schemes in terms of the features used to describe the objects,
as well as the matching schemes used to compare the unknown object to the models in
the database. We will focus our attention on the recognition schemes that do attempt to
recognize parametric models (Pentland & Sclaroff 1991, Keren, Cooper & Subrahmonia

: N ) : )
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2. OVERVIEW ANDE ORGANIZATION OF THESIS

1992, Raja & Jain 1992), and illustrate the main differences between those approaches and
ours.

The proposed recognition strategy raises & number of fundamental issues. First, how is
parametric uncertainty used and communicated between the processes of model building and
recognition? Clearly they are not independent. Furthermore. the recognition provess must
take both the uncertainties in the database. as well as the measurement uncertaintios of the

unknown object, into account. In Chapter 3, we present an overview ol the inverse theory

. (Tarantola 1987), and in Chapter 4, we show how the appropriate beliel distributions used

for recognition can be determined from such information by applying the inverse theory to
the problem of model recognition. This leads to a method of deriving, for each object model
instance, the conditional probability of that model given the current estimated parameters
of the unknown and their covariances. h

Second, which parametric model would provide the most useful clcscripﬁous for recog-
nition? We have chosen to use the parameters of superecllipsoid models as [eatures lor the
purposes of recognition. Representations based on superquadrics, howc\rcr, pose a number
of problems due to degeneracies in shape and orientation. Other parametric forms, c.s.
algebraic surfaces (Keren et al. 1992), are sometimes less problematic and can offer a more
stable basis for recognition purposes. Nonetheless, it is still desirable to choose forms in
which physical attributes can be ascribed to model parameters in an intuitive man ner. The
finite-element representations introduced by Pentland and his colleagues are a case in poiut,
(Darzell et al. 1990, Pentland & Sclaroff 1991). For our purposes, where shape is initially
partitioned into part-oriented segments, supere[li‘psoids arc attractive both in the range of
shapes they can represent as well as their computational simplicity. In Chapter 5, we de-
scribe a method of avoiding degeneracies in the case of the superellipsoid, which permits the
use of this convenient parametric form without incurring undue computational ovcr}@:i.

. Finally, what is the best manner in which to accumulate information? The model-
building process is expensive, the merging of data from different viewpoints in particular
(Soucy 1992). While this might be acceptable for database g neration, recognition tasks
must often be performed rapidly. An alternative is to consider the use of partial information
obtained independently from different viewpoints. Because recognition from one view is not,
always reliable, key to this idea is the ability to assess the quality of the hypotheses from a
particular view. In Chapter 6, we illustrate how to use the belief distributions to distinguish
between informative and uninformative viewpoints by application of an external threshold.

Furthermore, we show how the resulting ambiguities can be resolved without the need for

5



3. CONTRIBUTIONS

data fusion by accumulating evidence in the form of the belief distributions from sequential
viewpoints. _

In Chapter 7, we describe and compare the performance of the recognition procedure
using beliefs computed from complete and partial surface information respectively. We show
that the beliefs generated from partial data retain their selectivity and result in 2 minimum
numberiof lalse-positive indications. We illustrate this for singie-part objects as well as for’
parts of complex, articulated models. We show that the majority of the incorrect states are
accompanied by very low beliefs, and can be removed by applying a simple threshold. We see
that the distributions of the beliefs from different viewpoints are bi-modal, indicating a clear
distinction between the informative and uninformative viewpoints. This justifies the use of
the threshold to distinguish between them. In addition, we perform a series of incremental
recognition experiments that illustrate that the maximum likelihood hypothesis! prevails in
a largely view-invariant manner. Therefore, we show that, by tabulating the votes for each
hypothesis, alter a sequence of trials, the correct winner emerges. Finally, we indicate how
the system’s success at recognizing primitives of articulated models, even with oniy partial
information available, paves the way for recognition of rﬁultiple-part objects.

We conclude in Chapter 8 with some general observations on our current work and

points for future research. ;

3. Contributions

In this work, we claim the following contributions:

1. We present a clear and structured recipe for recognition of volumetric models based
ona gcnéralized inverse theory. _ '

2. The procedure for both database generation and identification is completely auto-
matic. . ‘ ’

3. The mé}:hod explicitly enumerates its sources of contextual knowledge so it can easily
be modified to work elsewhere.

4. The result is in the form of a conditional probability density function so ambiguities
can be communicated to external processes to evaluate and base decisions upon.

5. The result is a basis by which an external agent can assess the quality of the in-
formation from a particular viewpoint ‘by distinguishing between informative and
uninformative viewpoints. - '

6. An incremental recognition scheme is presented.

U'This refers Lo the hypothesis that the correct answer is the one with the highest belief.
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7. The method is highly discriminant, capable of recognizing models despite wide vari-
ations in their size and shape.

8. The system paves way for multiple-part recognition based on graph-matching, by
outlining a way to compare the nodes.

8. Strategies for solving other problems in vision such as object classification, and aciive

recognition are outlined.



1. INTRODUCTION

CHAPTER. 2

Object Recognition Schemes

1. Introduction

Over the years, much research has been devoted to solving the problem of object recog-
nition, In-general, the connotations of the terminology in the field have been fairly wide-
spread. As a result, many classification and model-based representation methods have fallen
under the category of “;bject recognition. In this chapter, the first thing we wish to do is
clarify the terminology and distinguish madel-bascd object recognition schemes from the
others. In doing so, we will restrict ourselves to comparing our work to those methods
that extract a series of features [rom an unknown model, and compare them to a series of
mnodels stored a priori in a database. The result we require of the method is a hypothesis,
or a group of hypotheses, about the likelihood of the unknown object matching each of the
models in the database. ) ' .

We wish to distinguish recognition schemes from object classification schemes, where
the poal is to classify the unknown object into one of a series of predetermined categories.
Examples of these schemes include work done by Raja & Jain (1992}, where objects are
represented by superquadric models, and then placed into into one of twelve predetermined
categories of 3D shapes (geons). In this case, classification is based on low level [eatures
derived from the superquadric model, such as bent or straight axis, and straight or curved
cdges. Other classification schemes include (Hutchinson, Cromwell & Kak 1989).

Within t/!)cse classification schemes are those methods that attempt to represent an
object by a d‘éscriptive model, while restricting the possible models to a finite group. These
schemes fall under the category of model-based representation schemes. Here, measurements
of an object are taken and then an attempt is made to recover a higher level representation
from them. However, rather than adhere to a strict bottom-up strategy, these methods
constrain the search by only permitting, the representation to be one of a few possible types
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20 FEATURES

of models, stored in a database prior to the experiment. The goal is 2 model of the object,
generated by using top-down information. This differs substantiaily from the goals of modcl-
based recognition, where the descriptive model of the unknown object has already been
computed prior to the experiment without the use of top-down information. The goal here
is, therefore, not to compute an object model, but rather to hypothesize a match between
the computed model and each of a series of predefined models in a database. Examples of
model-based representation methods include thicse that measure the object, and attempt to
fit the data to each of the model types stored in the database. The model chosen s the one
that fits the data with the smallest overall error (I{ricg}natl & Ponce 1990, Newman, Flynn &
Jain 1993, Wu & Levine 1994). Other examples can be found in (Pentland 1987, Dickinson,
Pentland & Rosenfeld 1992). :

A wide variety of model-based object recognition schemes have been developed over the

‘past thirty years (Chin & Dyer 1986). In this chapter, we wish to review various methods,

and distinguish them by the type of features they use to characterize the objects (Section 2) -

and the way in which they represent the objects in the database (i.e. in what form should
the features be combined into object models), as well as the method used to match an
object to a model in the database (Sectf;eg 3).. These traits are inherently linked in that
the type of representation chosen dictates the-features used for recognition, as well as the
type of matching strategy chosen, its robustness, and the system’s efficiency. “The survey
will illustrate the problem that in many recognition strategies, implicit assumptiims about
the nature of the world are applied. These assumptions tnay include constraints on the
kinds of objects that will be recognized (i.c. specialized methods that look lor particular
features, such as the numbér of holes in a block), the kinds of leatures that are interesting
(i.e. methods that characterize objects by curvature or boundary features), or the values
of the features themselves (i.e. methods that look [or sizes within a particular range of
values). As a result, the methods may work well in a particular context but, because of the

hidden nature of the assumptions, cannot be easily modified to work elsewhere.

2. Features

Most of the previous work in object recognition have used low-level or intermediate level
features in order to characterize objects. Low-level schemes look to match edges, corners,
curves, lines, silhouettes, contours, boundaries, holes and other prédetermined features in
their attempt to recognize cbjects. For example, linear edge fragments, and circular arcs

are used in (Grimson 1987, Grimson 1989, Grimson & Lozano-Perez 1987). Line segments,

- 9
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3. MATCHING STRATEGIES

corners, zeros of curvature, other 21) perceptual structures are used in (Lamdan, Schwartz
& Wolfson 1988, Thompson & Mundy 1987, Lowe 1985, Huttenlocher & Ullman 1987}.

| Intermediate schemes extract features of surface patches. For example, Flynn & Jain
(19914a) use surface area, surface type (cylindrical, spherical or planar), and other surface
attributes as features for recognition. Other such schemes use surface normals, centroids,
__direction of axes of surfaces, centers of sphere (Kim & Kak 1991), or edge adjacency types,
i:.c. convex, or concave (Fan, Medioni & Nevatia 1987, Fan, Medioni & Nevatia 1989, Fan
1990). Jain & Hoffman (1988) describe models by the area and diameter of the surface
patches. They also incorporate the minimum and maximum distances to the adjacent
patches. | ‘

Some methods incorporate “global” features in their recognition schemes. To date, the
majority of the global features have referred to general descriptions such as the number of
parts of the object, or the number of local features the objects have (such as the number of
edges or corners). Mcthods that use these kinds of features exclusively are quite inefficient
in that these descriptions are generally unstable. For example, the number of object parts
depends, quite heavily, on the resolution of the segmenter, and is very sensitive to occlusion.
For this reason, the majority of the schemes that use global features, use them in conjunction
with other types of features, and use them only to help prune the search space. ' _

Chin & Dyer (1986) state that in order to be able to recognize a wide variety of rigid
parts, independent of viewpoint, one needs to be able to extract view-invariant 3D features
and match them with features of 3D models. The problem with the majority of low,
intermediate, and global features is that they are often unstable, view-variant, and highly
susceptible to noise. The shortage of “high-level” features (or stable, global descriptoi:s)
features restricts the capabilities of most recognition schemes to a limited class of objects,
seen from a few, fixed viewpoints. Examples of such high level features used in recognition
schemes are the intrinsic properties of parametric models such as algebraic surfaces (I{eren
ct al. 1992), or superquadrics (Pentland & Sclaroff 1991, Arbel, Whaite & Ferric 1994a).
Here, the intrinsic properties used are the parameters of the models themselves. These

descriptors will be discussed in more detail in the next section.

3. Matching Strategies

Many methods attempt to find a corresponding match between features of the object
models and features extracted from the unidentified object. The matching scheme chosen by
a recognition system should be able to achieve this task while accounting for the possibility
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of missing information due to partial occlusion, measurements from single viewpoint., ete. In
many schemes, the dimensionality of the features extracted lorces much of the computationat
burden to be shifted to the matching procedure. As a result, much of the focus of the current.
literature is to reduce the arduousness ol this process. Schemes that represent objects by
robust, and stable models, and use rich, global features implicit to their deseriptions, reduce
the job of the matching process and render it more efficient. In this section, we will discuss

the various types of matching strategies that have emerged over the past decade.

3.1. Tree Search Approach. Onc general category of matching schemes has been
the tree search approach. Here, after object features are extracted, a tree of possible model-
to-object feature matches is built. Each path from root to leal represents one possible
solution to the correspondence problem. The idea is to search for the path that would ensure
a consistent matching between object and model. I\'Iaﬁy people have developed methaods
to prune the search tree in order to reduce the search time. These include coustraining
the range of unary feature values (such as the length of an odge), as well as the range
of binary feature values describing the interrelationships between unary features (such as
the angle between normal vectors) (Grimson 1987, Griinson 1989, Grimson & Lozano-
Perez 1987, Flynn & Jain 1991¢, Flynn & Jain 19914). Swain‘(1988) developed a decision
tree approach to object recognition, employing topological, relational and vic\.v-dupL;mIcuL

information in its decision rules.

3.2. Relational Schemes. Another cii.tegory of matching schemes is the relational
approach. Relational matching schemes attempt to establish correspondence by represent-
ing both the sensory data and the model data as graphs, where the nodes rcprésct:l: fe:Lth res,
and the arcs represe‘nt‘ the geometric relationship among the features. The recognition
problem is then a matter of establishing gra,pli isomorphism. Once again, many prun--
ing techniques have been introduced to reduce the search space (IKak, Vayada, Cramwell,
Kim & Chen 1987, Faugeras & Hebert 1983, Bhanu 1982). In (Fan et al, 1987, Fan
et al. 1989, Fan. 1990), objects‘\are represented as attributed graphs, and the appraach
is to look for the model graph with the largest set of matched nodes. They use low, in-
termediate, and global level features to prune the search space. Jain & Hoffman (1988)
arranged. the features described above into groups: shape features, object face features,
and boundary informé.tion. Range images are represented using these groups as “evidence
conditions”. The images, along with the weights indicating the uncertainty in the features
corresponding to the models, are ;s.tored in a database. Matching is performed by computing
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3. MATCHING STRATEGIES

a similarity measure describing the degree of support for a hypothesis. Bolles, Horaud &
Hannah (1984) extended previous work (Bolles & Cain 1982) to develop a 3D local-feature-
foeus technique. The method uses a graph-matching technique to identify the largest cluster
of image features that matches a cluster of model features. It works by sclecting one feature
in the image around which it tries to find a cluster of consistent secondary features. After
creating a list of all possible image-feature-to-model-feature assignments, it creates a graph
of all possible pairwise assignments. Connections between nodes are established if the two ‘

assighments they represent are mutually consistent.

3.3. Pruning the Database by Model-Based Indexing. A major pr:oblem facing
object recognition schemes has been the enormous complexity involved in searching the
database to select the possible candidate models. Many methods have been introduced to
reduce the computational complexity. One such method has been the geometric hashing
scheme (Lamdan & Wolfson 1990, Grimson\&: Huttenlocher 1990, Flynn & Jain 1992). In
these schemes, a hash table, containing surface-surface pairing constraints for all the models
in the database, is constructed. Surface pairing measurements are derived [rom the scene,
and the corresponding values are located in the appropriate entry in the table. This results
in many possible matches, which are resolved by using predefined sets of rules.

Flynn (1992) investigated the case of large databases. His approach was to reduce the
number of prototypes needed to be considered by exc[udin:g all redundant feature groups
that result from object symmetry. As well, 2 measure of salierl‘l.cy was assigned to each group
in the scene, so that *uninformative™ groups are not considered. Other filtering schemes
were introduced in (Kim & Kak 1991, Stein & Medioni 1992).

‘3.4. Automatic Schemes. Many of the schemes described involve a.subst;antial
amount of on-line model analysis due, in part, to the additional constraints and conditions
combutccl with the introduction of each new model to the database. In order to reduce
the expense of run-time calculations, interest has grown in automatic recognition schemes,
with much of the database processing performed off-line. New methods were introduced
that performed much of the “precompiling” prior to recognition, improving the efficiency of
the task at run-time (Goad 1983}. One such scheme uses a representation called an aspect
graph, 'ﬁrst;jntroduced in (I\'oenderink 1976, Koenderink 1979).. These are graphs where each
node represents a topologically distinct 2D vieivpoi'nt of a 3D object. The arcs, referred
to as “visual events”, describe transformations from one viewpoint to another. Essentially,
the graph divides the view-sphere into stable regions defining “characteristic views”, where
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stall changes in viewing position do not affect the topological structure of the set of visible
features. (Recont work on aspect graphs can be lound in (Sripradisvarakul & Jain 1989,
Eggert & Bowyer 1989, Eggert, Bowyer. Dyer, Christensen & Guoldgol” 1992, Krtegman &
Ponce 1989, Bowyer & Dyer 1990).) Precomputing an aspect graph for each model in the
" database can improve the efficiency of the recognition task at run tinie, by predefining the
possible interpretations of the models in the database. The major disadvantages of the
representation are the high storage requirements, and large construction times,

Interpretation trees (lkeuchi 1987a, lkeucht 1987H) are similar to aspect grapls, in that
the Gaussian sphere is tessellated into possible viewing positions. This technique includes
the additional step of computing a tree containing the possible interpretations of each model
in the database. All possible shapes of the model, at the root, are generated, and the similar
shapes are grouped into clusters at the leaves of the tree. Dillerent divisions of the aspects
form different paths [rom the root of the tree to the leaves.

Another off-line scheme is the prediction hicrarchy method. Here, the 2D appearance
of some 3D objects is predicted in advance, and merged into a tree-like structure whicl
is traversed during recognition (Burns & Kitchen 1988). Similarly, Dickinson, Pentland
& Rosenfeld (1990) introduced hierarchical aspect graphs. The method entails extracting
object features,such as the convexity of the contours of the faces, from 313 vohutuetric prim-
itives, Thesc features, assessed from many viewpoints, are arranged in a hierarchical geaph
that links facial features to faces to face structures to primitives. in addition, the statistical
‘relations between the features are also stored. On-line matching includes generating hy-
potheses about the identity at the lowest possible level of the tree. Qther antomitic schees
have been investigated by (Hansen & Henderson 1988, Hansen & Henderson 1989, Arman
& Aggarwal 1993a).

3.5. Matching Parametric Models. The final set of matching schemes examined
includes those methods that find correspondence by matching the parameters of paramelric
models. A parametric model refers to a representation built by taking measurements of an

: object, and fitting the data to a model represented by a mathematical equation. These
models can be volumetric models, such as superellipsoids- -z'irhad generalized cylinders, or
surface descriptors, such as splines, and fourth order polynorﬁiils. The parameters of these
equations describe implicit, global characteristics of the object, and are therefore stable
descriptions for recognition. However, very few schemes find correspondence based on
the high-level descriptions themselves. Rather, the majority of the current work in 3D
object recognrition consists of building the models and extracting externally chosen features
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from them. An example of this trend is Dickinson et al.’s {1990} choice of convexity of
contours of volumetric primitives (sce previous section) as features for recognition. In
general, extrinsic features are usually much more sensitive to noise, occlusion and viewpoint
than the intrinsic ones, such as the parameters themselves (this includes their associated
covariances). They usually consist of geometrical (low or intermediate) [eatures, or rather
unstiable global features (sce Scction 2). By avoiding using the parameters themselves
as features for recognition, limitations on the robustness of e recognition scheme are
introduced, especially with complex objects.

There are many reasons for the shortage of recognition schemes based on the parameters
of these models. One reason has been the shortage of efficient bottom-up systems capable of
building stable representations for multi-part objects. This is due, in part to the shortage of
effective segmentaiion schemes, as well as methods that combine information from different
viewpoints. Because of this, it has been thought that recognition of these models is only
snitable for single-part objects that arc simple in shape, measured from only ore viewpoint
- (sce survey paper by Arman & Aggarwal 1993)).

“In addition, because the uncertaintics associated with the parameters are rarely calcu-
lated, it is not not generally considered feasible to compare models based on them alone.
This is because when fitting a model to data that is noisy, there is an inherent lack of
uniqueness i the parameters that describe the model. In these cases, it is impossible to
~make a definite statement as to which model fits the data best {Whaite & Ferrie 1991).
Therefore, matching based on one set of parameters alone would not give accurate results.
For this reason, rather than choose external constraints that would force one model over the
other, it would be more instructive to embed the uncertainty in the chosen description into
the feature set. In Chapter 4,-we will show that taking the uncertainties in the measure-
ment parameters into account {as well as the uncertainties of the parameters of the models
in the database) in the distance metric permits greater variations in the measured feature,
while still maintaining high selectivity in the discrimination between models. We will also
show that matching without taking the uncertainties into consideration would cause many
false identifications. An example of such a methed is that proposed by Pentland & Sclaroff
(1991). The authors introduce a method for the recognition of deformable superellipsoid
models based on their parameters alone. Using their scheme, proximity is measured by
evaluating the normalized dot product of the parameter vectors of the unknown object and

of cach of the models in turn. The' model with the highest dot product value is considered

£



3. MATCHING STRATEGIES

_to be the one closest to the unknown, and is the model chosen. We will illustrate the weak-
nesses of methods such as these later in Chapter 1. Methods that do include uncertainties
in the features can be found in (Hutchinson et al. 1989, Kwong & Kim 1993, Subrahmonia
et al. 1992).

Often it is the case that problems associated with the parametric model are misunder-
stood to be insurmountable. For example. using the parameters of superquadrics for the
purposes of recognition has been avoided, because the problem of non-uniqueness of param-
eters has never been addressed. As a result, the power of these representations, namely that
they can provide accurate, global descriptions of objects over & wide variety ol sizes and
shapes with relatively few parameters, has not yvet been fully exploited. This has limited
their uses to modelling tasks {as in CAD design), and to the recognition of simple objects
(see Boult & Gross 1988).

As well, few schemes use a probabilistic approach to the solution. Bayesian recognition
of algebraic surfaces has beer examined by Subrahmonia et al. (1992). They reprosent
objects by fourth order polynomials (Keren et al. 1992), and measure similarity between
the unknown and the models in the database by employing a Mahalanobis distance mea-

sure between the coefficient vectors. This distance measure includes the uncertaintics in.

the measured model as well as in the stored models (see (Subrahmonia ct al. 1992), Ap-

pendix, p.39). Recognition is achieved by choosing the model that results in the smallest

Mabhalanobis distance. The key difference between their approach and ours (Arbel, Whaite
& Ferrie 1994a) lies in the iechniqucs used to obtain the solution. They have used strict
Bayesian techniques to derive the solution. We have structured the problem within the
framework of an inverse problem theory,' which offers a clear and structured formula lor
representing all prior knowledge, as well as a global recipe for combining this knowledge

to obtain the posterior information. The result is a generel solution, which, in our specific

case, degenerates to a Bayesian solution similar to theirs. In addition, this framework lends

itself to the problem of model-based object recognition, but can be applied to various other
problems such as object classification and generic recognition (see Chapter 8).

The other important difference in our schemes is that they, and most others, (sce survey
papers by Arman & Aggarwal 19935, Chin & Dyer 1986) are interested in the constructing
a discriminant that makes an absolute identification of the measured object. In accordance
with Marr’s (1982) “Principle of Least Commitment”, we fecl that it is more instructive

to retain several possible explanrations, rather than choose a single one. This is cspcciall:y

true when:the hypotheses are comparable in accuracy. We will demonstrate that making -
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assessinents about identity from single measurements can be erroneous, especially when
made from viewpoints that provide little information about the characteristics of the object.
Rither than make claims about the object’s absolute identity, our method communicates
the belicf in the possible hypotheses as feedback to the recognrition procedure, in order to
further reduce the ambfguity using an active strategy.

In the next chapter, we will introduce the general inverse theory first proposed by
Tarantola (1987). We will explain the reasoning behind explicitly enumerating all sources
of knowledge available. As well, we will show how, by representing this knowledge as
probability density functions, we can easily combine the information to obtain a solution
to the inverse solution in the form of a conditional probability density function. Finally, we
will illustrate how the general solution reduces to the classical Bayesian solution, providing
the desired posterior information. In Chapter 4, we will show how we use this framework
within the context of a model-based object recognition system that matches parametric

models.

N
Nt
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1. INTRODUCTION

CHAPTER. 3

The Inverse Problem Theory

1. Introduction

The recognition problem requires us to infer from measurements ol an unknown object
that model which best represents it in a data base of known objects. Like all inverse prob-
lems, the recognition problem is ill posed in that, i) several models can give rise to identical
measurements and, ii) experimental uncertainty gives rise to uncertain measurements. As
a result it is not possible to identify the unknown object uniquely. There are various ways
of conditioning ill posed problems, but these all require strong, and often implicit, a priori
assumptions about the nature of the world. As a result a method may work well only in
specific cases and, because of the hidden implicit nature of the conditioning assumptions,
cannot be easily modified to work elsewhere. 7

For this reason we have adopted the very general inverse problem theory of Tarantola
(Tarantola 1987). Tt makes the sources of knowledge used to obtain inverse solutions explicit,
so if conditioning is required, the necessary assumptiori's about that knowledge are apparent
and can be examined to see if they are realistic. Also, and importantly, the question of
whether a solution is ill-posed or not is shown correctly to be an operational issue. The
theory tells us how the knowledge we have can be combined to obtain a solution, but lcaves
any decision about the its usefulness up to the tasks that require it. For example, when
attempting to recognize objects we would ideally want the unknown model be identified
correctly all the time. Because of experimental uncertainties this can never happen, and
there is always the possibility that an object will be identified incorrectly. Only the task
can know if the likelihood of errors is acceptable. )

This ra.isesr the interesting question of what we should do if the level of errors is not
acceptable. Because the sources of knowledge are explicit they are not only visible to the

operational tasks, but are also potentially open to mwa.nipula.tion' by them. In principal
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it should be possible for the task to condition or actively acquire the a prieri knowledge
required to make the solution acceptable. We have already demonstrated that what we
call ault.onomous exploration functions well at the model building level (Whaite & Ferrie
1993a, Whaite & Ferrie 1994) and we now intend, with the aid of this theory, to incorporate
feedback from the recognition task as well.

We begin in Section 2 with the introduction of the concept of formal knowledge repre-
sentation. Section 3 will go on to explicitly enumerate the sources of a priori information
used to constrain the inverse problem. Finally in Section 4, we discuss the way the sources

are combined to obtain the solution to the inverse problem.

2. States of Information

In a physical system inverse problems are conveniently visualized as a mapping between
two different spaces: the model space M and the data space D. We will assume throughout
that M and D ére vector spaces with a finite number of real valued parameters. "We will
define M as an abstract space of points, each representing a conceivable model of the
system, and D will refer to the space of all possibly “observable” instrumental responses.
A model in M is represented by m = {(my, mo, ..., my), and a measurement iz D by
d=(dy,da, o0 dn). : - | |

The view taken by Tarantola is that our knowledge of a physical parameter (model or
measurement) is subjective in that it varies from observer to observer depending upon the
data in their possession. We can quantify this subjective knowledge by a rule, called the
state of information, which assigns a positive number reﬂecting our belief that the true value
~ of the parameter lies within some given range. Mathematically such a rule is a probability’
(Pfci‘f[’ér 1978). For a vector space the rule is represented by a probability density function.

Thus the first postulate of the theory is that our knowledge about 2 set of para.:meters
is described by a probability density function over the parameter space. This requires us to
devise ;Lppropriate density functions in order to represent what we know about the world.
However, pyrobability theory tells us nbthing about the way in which to choose the rule that
assigns probabilities. In general the form of these distributions depends on the the interpre-

tation one wishes to place on mathematical probability in the context of a physical system.

In some cases, for example a measuring instrument, we can histogram the measurements of -

a known input and arrive at a rule based on the relative frequencies of measurements oc-

curring;— within different ranges. In others, for example theoretical knowledge, we must rely -

'Really a measure — a probability iz a normalizable measure.
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on our intuition, imagination, and expericnce to formulate a rule that assigns probabilities,
and then verify it through experimental procedure. There are two special and tmportant
cases which reflect the fact that our knowledge falls between two extremes: i) the state of
perfect knowledge and ii) the state of null information.

The state of perfect knowledge is appropriately represented by the Dirac delta function
§(x—xq), and shows we believe totally that x = xp, but not at all that it is any other value.
It is the state of information we aspirc to but can never attain. In practice we can use it
when sources of error are negligible in comparison with others.

The state of null information p(x) on the other hand is used to represent the [act
that we have absolutely no knowledge about the parameters at all. 1t plays the role of
the reference state in the theory, in much the same way that noise is used when measuring
information in terms of signal to noise ratios. An obvious choice for p(x) is a nniform
distribution which, because all parameter values are equally liEcly, implies no particular
belief in any of them.

A uniform pg(x) is not necessarily correct, especially when dcaling with different
parametrizations of the same physical system. For example if we are interested in finding
the location of some feature in 3D space a uniform distribution over the space ol Cartesian
coordinates seems a reasonable choice. However a uniform distribution over the space of
polar coordinates will result in higher belief values for those features closer to the origin.
For our purposes, we will usually assume that z(x) is uniform. We claim that this is a
reasonable approximation of the true form as we are only dealing with a single class of

models, and the same parametrization.

3. Sources of A Priori Information

The second part of Tarantola’s theory is a division of the sources of a priori knowledge
into two specific categories: the knowledge given by a theory which describes the physical
interaction between models and measureménts, and knowledge obtained independently of
that theory. ‘For our purposes the latter can be broken down into two more independent
categories: information we have about the model from measurements, and information from
unspecified sources about the kinds of models which exist in the world.

Note that although the theory assumes this information can be represented by prob-
ability density functions, it does not tell us their form. Choosing an appropriate form for
the a priori distributions can only be done in the context of the problem we are attempting

to solve and-is largely an intuitive matter. As to whether the form of the distribution is
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appropriate once chosen, this can only be verified in a scientific manner by experimentally

confirming predictions. We are bound by the nature of the scientific method.

3.1. Information Obtained from Physical Theories. A physical theory is a so-
lution to the forward problem. It tells us how to predict the error-free values of the observed

data d obtained when observing a given model m,
(1) - d=g(m).

However, no theory is ever exact and there are always “modelization” uncertainties. In the
theory these shall be represented by the conditional probability density 8(d|m) of observing
d given a model m. When the modelization uncertainties are insigniﬁcé,nt we may be able to
assume an exact theory, 8(djm) = §{d — g(m)). Otherwise §{d|m) effectively places “error
bars” on the theorctical relation. Figure 3.1 illustrates these differences in the forward

modelization.

a A b

FiGuRE 3.1. Forward modelization. (a) If the uncertainties in the forward mod-
clization are neglected, d = g(m) gives the predicted data values, d for each model
m. (b} If we cannot neglect the uncertainties in the forward-modelling, they can
be described by the conditional probability density function, 8(d|m), which gives
for cach model m, a probability density for d. This corresponds to placing “error
b-u-» on the t.heoretrcal rclatlon d = g(m).

Because we are using information in both the data and model spaces we require an ex-
pression of the tl@éoretical knowledge in the joint space M x D. Because the non-informative
density in the data space pp(d) is independent of the models and by definition contains no
information about the data, the joint distribution 8(d, m) = #(d|m) pas(m) must contain
exactly the same information that #(d|m) does, and can therefore be used to represent the
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theoretical information over the joint model and data space. Figure 3.2(Db) illustrates the

joint distribution 8(d, m).

3.2. Information Obtained from Measurements and A Priori Information en
Model Parameters. Much of the knowledge we have about a problem comes in the {orm
of experimental measurements of observable parameters. All instruments are subject to
varying degrees of uncertainty so our knowledge of the observable parameters is imperfect.
The probability density function representing the information obtained from measurements
will be designated by pp(d). Let doue denote the value delivered by the instrument at cach
measurement of a given value of d. The most useful and general way of conveying the resuits
of the statistical analysis of the instrument errors is by defining a probability density Mnction ‘
for ‘i;he value of the output, d,ye, When the actual input is d. The conditional probability
density function conveying this information is denoted v{d,,|d). If the actual result of the
measurement dey: = dops (What we have observed is actually the data outputted by the
instrument), then we can use Bayesian reasoning and conclude: |

. s v(deps|d) pp(d)
@ pp(d) = Tp(dup]d) p(d) dd

In specific situations it is often the case that we know something else about the models

which can be usefully applied. For example in some industrial applicationf:s there may only
be a finite number of known objects, and these might always be supported by a conveyer
belt. Knowledge like this is a powerlul constraint and can be used to climinate many ol
the unconstrained solutions. The problem is that this kind of knowledge often appears in
the form of ad-hoc selection criteria applied at a late stage of processing, or as conditioning
constraints embedded in the formulation of the model. Here it is made cxplicit as another
source of knowledge and represented by the probability distribution pas(m).

For our purposes we will assume that the measurements and the a priori model con-
straints are obtained independently. In that case the knowledge they represent can be

combined to give a probability density function

(3) | * p(d, m) = pp(d) pas(m)

over the joint space M x D.

Figure 3.2(a) illustrates the two 2 priori sources of information represented by their
probability density functions: pp(d) and pps(m). Here, they are seen projected onto data
and model space. The combination of these sources of information s represented by the
" probability function p(d, m) lying in joint M x D space. '
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4. SOLUTION TO THE INVERSE PROBLEM

4. Solution to the Inverse Problem

The solution to the inverse problem is in principal quite straight forward — it is simply
a malter of combining the sources of information, i.e. the theory, the measurements, and
the a priori constraints. The complication is the manner in which they are to be combined.

This is the third part of Tarantola’s theory. He takes the approach that the classical
theory of logic gives rules by which humans handle information. In particular the logical
operation of conjunction is appropriate, i.e. the solution to the inverse problem is given
by the thecory AND the measurements AND any a priori information about the models.
The notion of logical conjunction is extended to define the conjunction of two states of

information (Tarantola 1987, pages 29-31).

DEFINITION 1 (conjunction of states of information). Let fi(x), fa(x) be probability
i:lensif.y functions representing the states of information Py and Py respeciively, and p(x)
be the probability densily function representing the state of null information. Then

) o o(x) = L (’;)( ;ge (x)

where o(x) is the a posteriori probability density function representing the conjunction of

states of information (Py AND Pg).

With this definition we can combine the information from the joint prior probability
density function p(d, m) and the theoretical probability density function #{d, m) to get the

a posteriori state of information

p(d, m) 6(d, m)
#(d, m)

) | o(d,m) =

where u(d, m) is the joint non-informative probability density function (the reference state
of information}. According to Tarantola, this equation is more general that those obtained
through traditional approaches, but degenerates to them in specific cases. Under the con-
ditions mentioned, the solution is identical to the Bayesian solution (Tarantola 1987, page
61). .
7 Figure 3.2(c) illustrates the combination of the prior information:p(d, m) and #(d, m)
displayed in (a) and (b) respectively. One can see that the conjunction of information,
represented by the jbint post.efior distribu_fiori o(d, m), localizes the knowledge provided by
the each of the distributions sepa,ra,telyl.ﬂ - K
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What we require however is the a posteriori information about the model parameters,

and this is simply given by the marginal probability density function
e(m) = f c{d.m) dd
D

[ p(d,m) f(d, m)
(©) - fp p(d, m) dd

When it is assumed that the model and data non-informative densities are independent., i,

that p(d, m) = pp(d)par(m), the equation for the marginal a posteriori density fuuction
becomes

_ _ [ 2o(d) par(m) 6(d|m) pias(m)
@ o(m) = ./;) rp(d) par(m) -
This reduces to:

(8) o(m) = par( m)[wm dd.

Equation (8) is the solution to the general inverse problem. From a(m) it is possible to
obtain any sort of information we wish about the model parameters: mean values, mcdi:m-n
val;fés,_. maximum likelihood values, errors, covarianceé, confidence intervals, etc.

Figure 3.2(d) illustrates the solution to the inverse problem. The resulting distributions
representing the posterior model information, o(1m}), as well as the posterior data informa-
tion, o{d), are seen projected onto the model and data spaces rcspccl;ivcly. By comparing
the posterior density function, a{m), to the prior one, pps(m) (d:bpla.yccl in (a)}, one can sce
that some information on the model parameters has been gmned. Ptior to the conjunction
of information, there was only vague information about the kinds of models that exist in
the world. After, one can see that a (icgree of certainty abic:-ul; the model parameters has
been gained. This is due to the addition of the prior data information, pp(d), and the
theoretical information 8(d, m).

While the probability density o(m) allows us to estimate the posterior values of the
model parameters, the density function o(d) is also useful in that is permits thie estimation -
of the posterior values of data parameters (i.e. “recomputed data”). The posterior data
information is computed as follows:
©) o) =poe) [ LU 4,

M po(d)

By comparing pp(d) and o(d) in Figures 3.2(a) and (d) resp'ect.ivély, one can see that

knowledge has also been gained about the data. parameters.,

= 23
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4, SOLUTION TO THE INVERSE PROBLEM

The eristence of the solution to the inverse problem simply means that o{m) is not
identically null. If it were ther this would indicate incompatibility between the theory, the
experimental results, and what is assumed a priori about the model parameters.

The uniqueness of the solution refers to the fact that there is one and only one solution.
This is evident when, by the solution, we mean the probability density o{m]} itself. ¢(m)
could be pathological (non-normalizable, multi-mddel, etc.) but that only indicates the
nature of the information possessed on the model parameters. The information itself is
uniquely defined as a consequence of the the uniqueness of the conjunction of states of
information. ' _

" In this chapter, we have introduced the general inverse theory as a framework for
solving the recognition problem. We have illustrated how to obtain the solution to the
inverse problem in the form of a conditional probability density function, by explicitly -
naming all sources of knowledge and representing each by a probability density function.
We have also shown how the posterior information is obtained under conditions that reduce

the gencral solution to the classical Bayesian solution. In the next chapter, we will show

. how to apply the theory to the recognition of parts of articulated, parametric models.

a2
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4. SOLUTION TO THE INVERSE PROBLEM

pald)
pld. m)

pulm)
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o (d, m)
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c v d

FiGure 3.2. The probability densities in combined model and daia
space (Tarantola 1987, page 54). . (a) The probabilities pp(d) and par(m)
represent the a priori information on the observable parameters (data) and the a
priori information on model parameters respectively. p(d, m) represents the joint
a priori information in the D x M space. Since the a priori data information is
independent of the a priori model information, we have p{d,m) = gp(d) par ().
(b) 8(d, m) represents the information on the physical corrclations between d and
m, as predicted by a physical theory. (¢) o(d,m) represents the joint pesierior
information, which is the conjunction of the two states of information p{d, m) and
6(d, m), such that: o(d,m) = (p(d, m) #{d, m))/u{d,m). (d) From o(d, m), we
can obtain the marginal probability density functions o(m) = [,e(d, m) dd and
o(d) = [ o(d,m) dm. By comparing the the posterior probability density, a(m),
to the prior one, ppr(m), we can see that some information on the model parameters
has been gained. This is due to the addition of the prior data information, pp(d),
and the theoretical information, #{d, m).
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1. INTRODUCTION

CHAPTER 4

The Part Recognition Problem

1. Introduction

In the previous chapter, we have presented the general inverse theory as a framework
for solving the part recognition problem. In this chapter, we will illustrate how to apply
the theory to the recognition of parts of articulated models obtained through a classical
bottom-up system. We will show how to use the i)ara,meters of the models as descriptors
for recognition.

In the system we have constructed, articulated object models are created by succes-
sive probes of a laser-rangefinder through a process of autonomous exploration (Whaite &
Ferric 1991, Whaite & Ferrie 19936, Whaite & Ferrie 1994). For any particular viewpoint,
range measurements are taken, surfaces are reconstructed then segmented into parts, and
individual models are fit to each part. Each part is represented by a superellipsoid primitive,

where points on the surface (z,y, ) satisfy the following implicit equation:

2/ea e2fa .
Y ) + ‘;
a

ty

2/ez
+

2fe;
=1

x

-~
P

(10) f(x,a) = (

Ay

where az, ay, a; indicate extent in the z, y, and z directions respectively, ¢; and ¢; are the
shape descriptors, and ¢, ty,t: and 6,,6y, and 6. indicate the translation and rotation in
the x,y, and = directions. Assoctated with each primitive is a covariance matrix C which
embeds the uncertainty of this representation which can be used to plan subsequent gaze
* positions where additional data can be acquired to reduce this uncertainty further (Whaite
& Ferrie 1991, Whaite & Ferrie 1993&). Currently, the first five superellipsoid parameters,
Gz, @y, Az, €y, €2, and their associated covariances, are used as part descriptors for object

rccognition. ‘
" Usually, the model fitting process is treated as the solution to an inverse problem where
the forward pﬁ-ablem is the prediction of the range data that will be gathered from some
26



20 INFORMATION OBTAINED FROM PHYSICAL THEORIES

known volumetric model. However, we will take a larger view and treat the whole system
as a measuring instrument.

We will let M be the space of volumetric models to be recognized. Given some model
m in the scene, range measurements are taken and from these an estimate of the model is
obtained, d, which we call a measurement of the model in the scene. We denote the space
of possible model estimates D.

Given this scenario, we solve the inverse problem (Section 3) by examining the sources
of information: the information obtained from physical theories {Section 2), information
available through measurement (Section 3), and the a priort information on models (See-
tion 4).

2. Information Obtained from Physical Theories

We first formulate an appropriate distribution to represent what is known about the
forward problem. If the entire system were treated as a perfect measuring instrument {free of
all uncertainties), the vector function g{(m) introduced in (1) would be the identity function.
This would mean that measuring the model would always gencrate its true parameters:
d = m. However, measuring instruments are never perlect. Formulﬁl;ing a physical theory
that enables us to predict estimates of the model parameters given a model in the scence
is too difficult given the complications of the system. We therefore collect these estimates
empirically through a process' called the training or learning stage ol the recognition process,
Here, measures of a known model, m, are collected N times. The measures, dy,da, ..., dpy,
are used to calculate the conditional probability density function 8(d|m) lor cach model by
assuming a multivariate normal distribution. These Monte Carlo experiments are exactly
like those found in traditional statistical pattern classification methods (Nilsson 1965, Mood

& Graybill 1963). A mean, 1, is computed for each known model:

1N
(11) = ; d;
The covariance matrix, Cr, describing estimated modelling errors for a model m, is calcu-
lated as follows:
‘ L X S
(12) Cr= g7 2_(d; —mm)(d; - @)"

=1

Therefore, the final equation for 8(d|m;) is:
(13) #(d|m) = N{d — m, CT)
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3. INFORMATION OBTAINED FROM MEASUREMENTS

where & is the multivariate normal distribution:

(14} N{d-m,Cr) = exp (—é(d - ﬁl)TC}l(d - rh)) .

(27)" |Cr

n being the dimension of the data space.

Iixperimental training is not an casy job. A representative sample of models in different,
poses, and of different scanner positions. must be taken. Otherwise, #(d|m) may either
underestimate the errors in the estimation process and give high levels of false positive
identifications, or conversely overestimate them and give low levels of true positive matches.

Later, we will show that, when we have a database of known models in the scene, we
need only perform training on these models. The distribution representing the theoretical
information, 6(djm), is created by simply summing the individual distributions for each of
Lthe known models in the following fashion:

A

(15) 6(djm) = Z 6(d|m;)

where M is the number of models in the scene. This means that it is not necessary 1o sample
all of M, but only the models known to exist a priori. The training process is therefore
considerably less complex than it first appears. |

‘The result of training is 2 database of predefined model classes. Each class can be
rcpresented‘ by an ellipsoidal cluster in multi-dimensional parameter space. Figure él;l(a_)
illustrates the model classes resulting from training in a scene of four known modeis. The
distributions of each class become elliptical. in shape when seen projected onto 2D a:/a,
parameter space. In (b), one can see how each individual class is created during the training

process.

3. Information Obtained from Measurements

The measurement experiment gives a certain amount of information about the true
values of the observable parameters. However, often measurement errors are not taken into
account, and the estimated model! parameters are assumed to be exact. This weuld imply
that the probability density pp(d) would be represented by the Dirac delta function. This
is usually an overly optimistic view of the state of information of the measurement, and
may end up giving a very positive, but totally unjustifiable,-identification of thé object.

We do not accicpt. this, however, and have gone to great ;;a.ins in our system to charac-
terize the ambiguities that exist in the parameters (Whaite & Ferrie 1992). As a result, we
obtain not only an estimate of the ob'}served model parameters dgss, but also an estimate
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class 1 S class 4

class 2

class 3

a b

FIGURE 4.1. Results of training. (a) Model classes resulting from traiuing are ellip-
soidal clusters in multi-dimensional parameter space. Here, the projection onto the
2D a,/ay, parameter space is shown. (b) Each model class is created by measuring
the known model m N times. From these measures, dy,da,...,dy, the mean m,
and associated covariances, Cr, are calculated by assuming a multivariate normal
distribution.

of their uncertainty in the covariance operator Cy4. The assumption wamake is that the
multivariate normal distribution N{d —d,ss, Cy4) represents our belief in the measurements.

The probability density function representing this information is the conditional probability

density function v(dgss|d) , such that:

(16) v(doss|d) = N{(d - dops, Cu).
Therefore, we have:
pp(d) = v{dobs|d)
ﬂD(d) fD”(dobsid) 1D (d) dd
1
(17) =z (d — dops, Cut)

- where & is the normalization constant:
(18) - I k= ] N{(d —dgs, Cy) pp(d) dd.
D

We have restricted D to the subspace of possible model estimates. We have assumed

that uzp(d) is a constant uniform distribution, entirely contained within that space, such
that:

(19) ]D up(d) dd = 1

29



5, SOLUTION TO THE INVERSE PROBLEM

Therefore, the normalization constant reduces to:

(20)

7).
v = -'v(d - dabsx Cd) ddv
fD dd Jp

where fD dd refers to the volume of data space. We assume that the measurement

distributions are relatively sharp in that they lie entirely within L. In this case,
L rd . P 1

JpN(d—des, Cg) dd= 1, and k= T

The issue of how to define fD dd is a difficult one to address. In order to define such a

a predefined constant.

space, a commitment to a permissible region of observed parameters must be established.
As this is very difficult to define prior to measurement, the current framework leaves the
measurcment knowledge non-normalized. Under the assumption made that the measure-
mens distributions are mostly contained within the data space, we can justify ignoring the
normalization constant as it is equal for all measurements. here, different measurements
can be compared.

However, for flatter measurement distributions, the assumption that D defines the space
of all possible estimates is no longer valid. The normal distribution [, N{d — dops, Cg) dd <
1, and actually k < p#p(d). In these cases, the measurement knowledge should actually
be much larger than it is, to compensate for the spread out distribution. Because of these
cases, independent measurements differ by an uncomputed factor, and can no longer be

compared.

4. Information Obtained from A Priori Information on Model Parameters

In the current context, there are a finite number of reference models, m;, i =1...M,
which are uniformly distributed. The probability density function used to convey this

knowledge is

d(m — my),

21 | ;
(21) pr(m ZP (m:\
where the P(xh;) are the a priori model probablhties or weights reflecting the likelihood

that the #** model, m;, occurs.

5. Solution to the Inverse Problem

Substituting the probability density functions in (17 7), (21) into the marginal a posteriori:

density function in (8) yields
(22) o(m) = ZP ) (m — m;) f N(d~ duss, C.) O(djm) dd
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5. SOLUTION TO THE INVERSE PROBLEM

Now, because §(m—ir;) = 0 for all m # m;. and provided that #(d|m) is {finite for m # m,.
we may replace it with 8(d|m;). After doing this and regrouping, we get the inverse solution

to the part recognition probilem to be:

M
o{m) = % Z (P(ﬁ‘l;) L:\’(d — dops. Cyg) (d]mn;) dd) §(m — my}

M

(23) ZQ §(m — ;).

.

As we would expect, this tells us that the model must be one of the the models given a priori
{21), but with a redistribution of the a priori model probabilities P(m;). For convenictice,

we will call:
(24) Q: = P{m;) f N(d = o, Co) O(dpri) dd

the a posteriori model probabilities or weights.

In order that we make a strong positive identification of the part, the @Q; should hc
concentrated in one model over all the others. If' this is not the case, the information
we have is inadequate to identify the modecl, either because the data set is insullicient, or
because the émpirical distribution, 8(d|m), describing the measurement is inadequate.

Now that we have the form of the part recognition solution, we can re-examine in its
light the ways in which we might obtain and represent the em pirical distribution representing

the measurement process. The crucial observation [ that‘.:
(25) : 8(d|m) = Ze d|m;).

This means, as we would intuitively expect, that the Monte Carlo estimates need not samiple
all of model space, but onIy the space of discrete models known 1o exist a priori, in this
case, m;. ]

Urnider the normality assumption made in (13) with reference to the conditional proba-

-bility density function 6(d}m), the solution for the 2 posteriori mode! probabilities becomes:
(26) Q; = P(my;) / N(d — dogs, Cq) N(d ~ 1y, Cy) dd.

The convolution of two normal distributions is a normal distribution (secc Appcndl\ A
for details), therefore

Qi = P(m) [ N(d = dow, Cu) N(d i, Cr) dd,
i .

(27) = P(th;) N(dops —~ 1, Cp), o ;
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5. SOLUTION TO THE INVERSE PROBLEM

where Cp = Cr + Cgq. This result is important because it shows that, under the Gaussian
assumption, observational errors and modelization errors simply combine by addition of the
respective covariance operators (evcﬁ when the forward problem is non-linear) (Tarantola
1987, page 58}. ‘
Convolving the measurement distribution against each of the reference model distribu-
tions has the effect of causing them to be more spread out. Therefore, the contribution of
the a priori measurement information is to incorporate its uncertainties into the distribu-
tions of the model classes. Figure 4.2(a)-(c) illustrates this concept. In (a), the multivariate
normal distributions of the reference models are seen projected onto the 2D az/a, space.
The black dot indicates the position of the measured model, doss in this space. Here, one
can see that the measured model does not fall onto any of the distributions of the reference
models. Strict distance metrics such as the one proposed by Pentland & Sclaroff (1991),
~ do not take the uncertainties in the model, defined by the covariances, into account. These
methods would find the measured model to be a member of class 3 since it lies closest to
it. This identification would be incorrect. To see this, the 2D projection of the measured
model distribution, pp(d), is displayed in (b). In (c), one can see the resulting distributions
after convolving the measured model with each of the reference models. These distributions
are much more spread out than those in (a). The covariances of the measured model define
the degree and direction of the spread. Combining the prior information in this manner -
has lcad to the identification of the measured model as being a member of reference class

4. Thus, the combination of the a priori information has improved the solution, in cases
where recognition systems that use distance metrics that do not consider the measurement
uncertainty would have generated a false identification.

The final equation for the a posteriori probability density function is

M
(28) o(m) = % S~ Plamg) N(duss = 16, Cp) 8(am — o).

This density function is comprised of one delta function for each model in the database.
Each delta function is weighted by the belief P(m;) N (dqs—1i;, Cp)in ‘the model m;. The
final distribution represents the “state of knowledge” of the parameters of m;. Figure 4.2(d)
illustrates this distribution. The beliefs in each of the reference models, m;, are computed
by evaluating each of the convolved distributions at d.s;. _

Because the normalization constant in (3) is not calculated in the current scheme,
the resulting belief distributions are non-normalized. The result is that their values ffbm

h
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Cra \ .
a, a,
class 1 S class 4 moasured model
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FIGURE 4.2. Creating the belief distribution. (a) Here, the reference model distri-
butions, #(d}m;), are seen projected onto 2D, a;/a, parameter space. The black dot
represents the position of the measured model, dgps in 2D parameter space. We citn
see that it doesn’t fall on any of the reference model distributions, and lies “closest”,
by a strict distance metric, to class 3. (b) The measured model distribution, pp(d),
projected onto 2D parameter space. (c) The result, of convolvmg the dxsl.nbunon in
(b) with each of those in (a) is a version of (a} spread out in parameter space. We
can see that now the measured model actually falls within the distribution of the
fourth reference model class. (d) The resulting beliel distribution. Notice that the
system has the highest belief in model class 4, and a small belief in model class 3.
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independent. measurements cannot be compared. However, our current interest lies in the
examining the relative beliefs resulting from each measurement. _

The advantage of the method is that rather than establish a final decision as to the exact
identity of the unidentified object, it communicates the degree of confidence in assigning
the object 10 cach of the model classes. It is then up to the interpreter to decide what may
be inferred from the resulting distribution.

Figure 4.3 illustrates the kinds of results we get by applying the theory to a typical
recognition problem. Here, the reference models were produced by training on models
created with data acquired by scanning the objects all around their surfaces (i.e. complete
3D data). The reference modecls, consisting of a smaller sphere, a large sphere, and a lemon,
can be seen in Figure 4.3a. The larger sphere was then measured from a single viewpoint,
and the resulting model is shown in Figure 4.3b. The system’s ability to distinguish the
larger sphere from both the smaller sphere and the lemon was then tested. The result is
the belicl distribution found in Figure 4.3c. One can see that the system has a significantly

higher degree of conlidence in the hypothesis that the measured model was a large sphere.

a) Reference Models

|
i
!
|

b) Measured Model c) Beliefs in Reference Models

6.12x10~13 0.00273 0

- FIGURE 4.3. Recognizing a sphere. (a) The reference models are: a smaller sphere,
a larger sphere, and a lemon. (b) The measured unknown model. (c) The belief

distribution.

In this chapter, we have presented a method for the recognition of volumetric models
based on the general inverse theory (presented in Chapter 3). We have specified the prob-
ability density functions represehting each sources of knowledge involved in the solution.
We have also shown how to comibine the information to obtain a solution in the form of

= ) - 34



5. SOLUTION "TO THE INVERSE PROBLEM

a conditional probability density function, which we refer to as a belief distribution. In
Chapter 7, we will illustrate a system that successfully recognizes real objects based on the
methodology presented. We choose to represent objects by superellipsoid models, due 1o
their computational simplicitv. In order recognize based on the parameters of these volu-
metric models, the next chapter will specify how to avoid the degeneracies in shape and

orientation associated with them.



1. INTRODUCTION

CHAPTER 5

Degeneracies in the Superellipsoid Representation

1. Introduction

In the previous chapter, we have shown how to apply the inverse solution to a bottom-
up system that produces volumetric models used for recognition. Although the recognition
strategy described can be-applied to any parametric model of an object, we have decided
on the superellipsoid model as an object descriptor, due to the wide range of shapes in. can
represent as well as its computational simplicity. This type of model is also attractive in

that the parameters describe physical attributes of the objects in an intuitive manner (see

_Chapter 1).

However, repreéentations based on superquadrics pose a number of difficulties due to
degeneracies in shape and orientation. By fitting data to superellipsoid models, the resulting
covariance matrix defines a local region of parameter space (the ellipsoid of confidence) in
which models are non-unique or ambiguous (Whaite & Ferric 1991). The problem is that

the cllipsoid of confidence represents the non-uniqueness at a single minima in parameter

space. There might be other parameters at several disjoint minima that fit the data equally

well. The problem of detecting all the possible local minima is a difficuit one to address.
For one thing, many of the minima may be geometrically equivalent. Rotating a model by
90° about an axis of symmetry will result in different rotational parameters, and re-ordered
size parameters, without changes in appearance. In addition to these problems, other less
obvious equivalence classes occur for superellibsoids. For:example, in the z—y plane, squares
have shape parameters 2 = 0.1, and diamonds 1.9. However, a diamond with equal size
parameters is simply a square rotated by 45° . Detécting all possible equivalence classes,
compouhded with the uncertainty of the param'e—ter set, is a difficult problem that must be

addressed if one is to compare parameters for the purposes of recognition.
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We will begin this chapter by enumerating the possible equivalence classes for the
superellipsoid (Section 2). We will then show how to avoid these degencracies without undue
computational overhead, by representing a model by all of its possible equivalent forms.
-Consequently, models are described by multi-modal distributions {Section 3). Finally, we
will show how to encompass multi-modal superellipsoid models into the recognition strategy

described earlier (Section 4).

2. Equivalence Classes for the Superellipsoid Parameters

It was determined empirically that there are, in fact, only a finite number of possible
equ.ivalence classes for superellipsoids. Here, we will enumerate the most common degen-
eracies that occur in practice when using superellipsoids to madel objects.

Using the superellipsoid description, two identical models may be deseribed differently
because of different labelling of the axes of symmetry. This is the most common type
of equivalence class for superellipsoids, which we will refer to as rotational cquivalences,
Within this class, the highest number of equivalent states occurs when objects have the
same shape in all planes. In superellipsoid terms, this meaus that the shape paruneters,
¢ and ¢, are equal. Here, one can describe the same surface in any one of six differcut
ways, by different aséignments of the z,y, z axes. Therelore the size of the model can be A
appropriately described by any onc of six permutations of the cxtcﬁt parameters, while
the description of shape of the object remains unaltered. Figure 5.1 shows the six possible
rotational equivalences of a model with equal shape parameters: ¢ = €.

It is important to note that this type. of rotational equivalence class is only stricily
true when the shape of the model is identical along all three axes of symmetry. We deline
strict equivalence to mean that the surfaces are identical in size and shape. It is in this

-situation only that the model can be described by any of the six permutations of the extent,
parameters. This is due to the limited r'escfipt;ivc powers of the superellipsoid model where
shape is described by only two parameters: €z and ¢;. ¢z controls the shape in the z- Y Cross-
sectional plane along the = —axis, while ¢ describes the shape in two ])I'IJI(!b i mult,.uu.ous[y,
z-z, and:y-z. When the model has different shape parameters, or ¢; # ¢z, the superellipsoid
description forces the unique shape to be along the z— axis in all cases. l-iencc,‘_thc number
of strict rotational equivalences in this case are limited to two, generated by the permuting
the labelling of the = and y axes. In fact, regardless of their shape parameters, two models

are rotationally equivalent if they only. differ b by having opposite la.bmlmg of their @ and y-
axes. ) : - - =



2. EQUIVALENCE CLASSES FOR THE SUPERELLIPSCOID PARAMETERS

FiGURE 5.1. Rotational equivalences when the shape parameters are equal. Here,
¢ =0.1 and e» =0.1.

Figure 5.2 illustrates the case of a superellipsoid model of a cylinder with shape param-
aters: €) = 0.1, and ¢ = 1.0. In this case, the modgl is roﬁnd in one cross-sectional plane,
and rectangular in the other two. The superellipsoid description of the model forces the axis
with the unique cross-sectional shape to be the = — azis. Figure 5.2(a) shows the original
cylinder, and (b);(r ) shows the result of permuting the size parameters of the cylinder in
(a). The fact that only (b) is identical to (a) illustrates that, for models with different shape
parameters, the only strict rotational equivalence occurs in reversing the z and y axes.
 Another type of equivalence class occurs when a superellipsoid model has a cross-
sectional shape of a square in the z-y plane: ez = 0.1 and ¢, = a,. In this case, the model
can also be described as a diamond: € = 1.9, with the extent parameters: af, = ag, scaled
such that ¢; = +/2 X a;. The size parameters must be scaled becauge, with a square, the
extent parameters are measured from one face to the opposite one. However, for a diamond,
they are meaStred-ffom corner to corner (see Figure 5.3). This equivalence is only stricily
true in the limit when the shapes are purely square (¢2 = 0.1) or diamond-like (¢ = 1.9).
{n the range in between, 0.1 < ¢z < 1.9, the shape of the model becomes more rounded.
In this case, one can say.that the equivalence between square-like models (¢2 < 1) and
diamond-like models (¢4 > 1) is only approzimately true, especially with the added effect of

uncertainty. There is an"approximate match between models such that €5 = 2.0 — e with
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d te f

FiGURE 5.2. Permutations of the size parameters of model (a) when the shape
parameters are not equal. Here, ¢; = 0.1 and ¢» = 1.0. Notice that (b) is the only
model identical to (a).

the scaling of the extent parameters mentioned above. Figure 5.3 illustrates an example of
this type of square/diamond equivalence class.

Notice that € is not involved in this type of equivalence class. The reason for this
being that €, controls the shape in two cross-sectional planes simultancously: z-z and y-=z.
Using the supercllipsbid description, one could never have a simultancous square in botli
the z—z and the y—z planes being equivalent te a diamond in the z-= and the y-= planes,
This is because cubes join at corners comprised of three edges, and diamonds are made up

of corners that join four edges.
3. Multi-Modal Representation of Suﬁerellipsoid Models

Because more than one set of parameters could be used to describe the same superellip-
soid model, it is best to represent each model by all of its possible equivalent. forms. For this
reason, we no longer limit our representation of a model to a single distribution, centered
on the first minimum state settled into by the fitting procedure. We now represent, cach
model by a multi-modal distribution, where each mode is centered on a possible canonical

form.
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3. MULTI-MODAL REPRESENTATION OF SUPERELLIPSOID MODELS

“a b

FIGURE 5.3. Squarc/diamond cquivnlenccs {a) Block with parameters: a. = 20,
ay = 20, a; = 20, ¢ = 0.5, ¢ = 0.1. (b) Block with parameters az = 28.28,
a, = 28.28,a. = 20,¢; = 0.5, 2 = 1.9.

Since the most common degeneracies occur due to rotations, the primary focus is to
ensure object representations free of rotational biases. This is ensured by enumerating, for
cach unidentified model, the six members of its rotational equivalence class. The first step is
to fit the data to a superellipsoid model. Then, all six permutations of the extent parameters
are found, resulting in six possible descriptions of the object. However, even if each of thesc
" parameter sets lies close to its appropriate minimum, we wish to find the czact minima
correbponclmg to the possible rotational canonical forms. This includes accurate parameter
sets as well as their corresponding covariances. Fine-tuning in this fashion is crucial in

situations where discrimination betwecen two objects is delicate. In order to attain this

Jlevel of accuracy, the model is refit with each of the permuted parameters used as initial

- conditions. The results are six representations for the model based on all possible rotations.

However, the six representations do not necessarily produce identical model surfaces. As
illustrated carlier, only models with equal shape parameters have six rotational equivalences
(sce Figure 5.2). Here, the results of fitting are models that strongly resemble the original,
with different labelling of their axes. When the shape parameters are very different, the
only surfaces that are identical are the two produced from rotations in the cross-sectional
z — y planc. The other four canonical models that result from fitting are different from the

original. This is caused by attempting to force the fitting procedure to settle in minima that

arc not members of the rotational equivalence class. This leads to models that do not fit the.

data very well, and do not resemble the original. Figure 5.4 shows the six canonical forms
of a cylinder. One can see that the only representation that is identical to the original is the
one that has permuted the z and y axes. The other models are the results of permuting the
axes when the shape parameters are not the equal. These no longer resemble the original.
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4. RECOGNITION OF MULTEMODAL SUPERUELLIPSOIDY MODELS

0.93 0.93 G.12

a b ¢
6.12 H.32 H.82

d ‘ e f
Displayed above are the six canonical forms of a exvlinder. The original madel (i} is seen enclosed by nbax, (b) i
the model resulting [rom permuting the x and y axes and refitting, (¢)~(I} are the results of relitting the nudel,
with the other extent parameters permuted. Above cach model is the residual error resulting from the G,

FIGURE 5.4. The six canonical lorms of a cylinder.

Since other equivalences exist for the superellipsoid, future work will concentrate on
enumeration of all possible equivalences, cach represented by a new mode in the normalized
distribution of the model. Since these other equivalences occur less frequently, they are not,
included for now. As a result, recognition attempts still encounter some difliculties where

these equivalences need to be taken into account.

4. Recognition of Multi-Modal Superellipsoid Models

Recognition of an unknown model represented by a multi-modal d‘ist.ribul.ion is now
performed. Here, a belief vectorin a reference model is calculated by passing ips si nglc-mbr_lc
distribution over the six-modal distribution of the unidentified object, and determining the
belief in each mode. This is performed for cach reference model. The unidentified object.
assumes the canonical form with the highest belief in one of the reference distributions.

For the majority of the cases, this system would work well. This section will illustrate the
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1. RECOGNITION OF MULTI-MODAL SUPERELLIPSOID MODELE

problerns that can arise with this strategy and will propose some practical solutions to these

problems.

4.1. Reducing Misfit Problems. When calculating the canonical forms of a model,
we permute the extent parameters, and send these as initial conditions to the fitting pro-
cedure. However, in cases where the shape parameters are not equal to each other. we are
forcing inappropriate initial parameters onto the fitting procedure. This leads to higher de-
grees of misfits in some canonical forms. From Figure 5.4, one can see that those canonical
forms that are not members of the rotational equivalence class do, in fact, produce much
higher residual errors of fit. In these cases, there is a risk that the resulting distributions
would [all closer to the wrong reference model’s distribution than to any others. The results

“are [alse-positive identifications.

"I order to reduce the number of incorrect identifications, we assign weights to the
beliefs generated by each model based on the amount of misfit detected. These weights
are inversely proportional to the residual error returned by the fitting process: Large errors
produce small weights, decreasing all the beliefs produced by that mode. Small errors
enhance the beliefs. The weight function decided on is:

. 1 _a
(290 W = exp (—_—)- r‘r")

-

where &° represents an unbiased estimate of the sensor noise variance given by the curreat
residual errors. In this fashion, little credibility is given to representations associated with

large misfits.

As well, there are other ways in which mlsﬁt problems can be a.monded When ﬁttmg

Lhc data to a model, the fitting process can settle into different- minima, depending on

its starting point. This is especially true when collecting data from one viewing position,
because the level of misfit is mcreased by the lack of constraint on the fitting. In order
to ensure some level of consistency in the initial model representations, appropna.te initial
conditions are ﬂwen to the ﬁttmg process These starting points give the process a rough
cstimate of the bhape of the obJect as well as an acceptable pose (see (Ferrle, Lagarde &
Wh'utc 1993)). Th:s was done to. reduce the level of misfit, and to lead the process towards
a mcmbcr of an approprlate rotatmnal equivalence class. It is necessary to perform this step

on.the models used in training because these do not include all possible canonical forms.

T 4.2, Representatlon of the Re.erence Models. In the current scheme.‘ each ref-

érence model is rcpresented bya smg;e—mode normalized dxstrlbutton The fitting procedure
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4. RECOGNITION OF MULTEI-MODAL SUPERELLIPSOID MODELS

is given an appropriate starting point to ensure uniform canonical forms for the models in-
voived in the training process. The fitting process creates a single distribution centered on
the parameters at the closest minimum. Since the reference models are created lrom data
collected from three views, the fitting procedure s well-constrained.

However, one the problems associated with using onlyv a single mode distribution for
the reference model is that, due to uncertainty during training. the system may choose
a canonical form for an instance of that model differing from that of the mean. This
outlier would bias the distribution of the model class. This would result in an inacenrate
representation of the object, falsely diminishing its certainty in its parameters.

Ideally. one would want to represent the reference models by a six-medal normalized
distribution, permitting the representation of all possible canonical forms. In this {ashion,
the recognition procedure would attempt to find the greatest overlap in multi-modal normal
distributions. Multi-modal representation of the reference model is not emploved due to
the fact that training models, each represented by multi-modal distributions, is a difficnlt
clustering problem not vet solved.

In this chapter, we have shown how to avoid the degeneracies associated with the
superellipsoid model, by explicitly enumerating all equivalence classes for each model, and
encompassing them into the model description. This lead to a tulti-modal distribution lor
each model. We have also indicated how the recognition. stratcg;jr‘c'lcscri bed in Chapter 1 can
be extended to include multi-modal superellipsoid models. In Chapter T, we will illustrate

that recognition experiments based on these representations prove successlul.

3

R
dgr

i3

LY

(b4
]

in

h

¢
¢

-8
LY



i

2. DETERMINING WHICH VIEWPOINTS ARE INFORMATIVE

CHAPTER 6

Informative Views and Active Recognition

1. introduction

lu carlier chapters (Chapters 3,4), we have described how one can cast the recognition
problem into a probabilistic framework. We have shown how we can describe what we
know about the world by representing all prior knowlédge as probability density functions.
As well, we have illustrated the way in which we can combine the information to obtain
the solution in the form of a conditional probability density function, by application of a
generalized inverse theory. .

- Now, consider an active agent charged with the task of roaming the environment in
scarch of some particular object. It has an’'idea of what it is looking for, at least at some
generic level, but resources are limited so it must act purposefully when carrying out its
task (Aloimonos 1992). In particular, the agent needs to assess what it sees and quickly
determine whether or not the information is useful so that it can evolve alternate strategies,
the next place to look for exa}nple. Key to this requirement is the ability to make and
quantify assertions while taking into account prior expectations about the environment. In
this chapter we will show how the fesulting belief distributions can be used to (i) assess
the quality of a viewpoint on the basis of the assertions it generates and (ii) sequentially
recognize an-unkrown object by accumulating evidence at the prbbabﬂjstic level.

—~

2. Determining?Which Viewpoints are Informative

In Chapter 7, we will show that recognition based on complete information produces .

perfect results in all cases. Since complete information is not always available, and poten-

t.'ially expensive to acquire, recognitioh schemes based on single viewpoints are required.
However, recognition based on one view will not prove to be consistently reliable. In fact,
the degree of reliability depends upon the amount of information available. For examplé,
some viewpoints capture enough of the unique characteristics of the object to sufﬁci.ently
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2. DETERMINING WHICH VIEWPOINTS ARE INFORMATIVE

distinguish it from the others in the database. We will refer to these viewpoints as informa-
tive viewpoints. Other viewing posiiions, where it is impossible to say which object in the
database the unknown is closest to. are called uninformative vicwpoints. By determining if
a viewpoint is informative or not, we can establish if further sampling is necessary to be
able to recognize the object well.

The question becomes: how can we use the inverse solution to distinguish between
informative and uninformative viewpoints? We have shown an important result, Rather
than establish an absolute identity for the unknown object, the method communicates the
belief in each of the niodels in the database. Furthermore, uncertainty serves to condition
prior expectations such that the shape of the resulting belicl distribution can vary greatly.
The results will indicate (Chapter 7) that the distribution becomes very delta-like as the
interpretation tends towards certainty. In contrast, ambiguous or poor interpretations con-
sistently tend towards very broad or flat distributions. We will exploit this characteristic
to define the notion of an iﬁfomative viewpeoint, i.c. a view with a clear winner, in terms
of a significantly higher belief in one model than the others. From these positions, the
system is able to capture the attributes of the model that distinguish it from the others.
The important contribution of this work is to be able to recognize these viewpoints, and
use them in the determination of object identity.

We would also like to use the beliefs for the converse, t.e. Lo label a viewpoint as -
uninformative. This indicates that results from the current viewing position do not tell
us much about the object’s identit}.’ This situation occurs when the unnormalized belief
in each of the models is very low {(or zero). Here, it is impossible to say which reference
model the unknown might correspond to. This situation occurs when the distribution of
the unknown model does not significantly overlap with any of the reference distributions.
There are two possible reasons for this to occur, The first is the case where the distribution
of the measured model is very wide due to large uncertainties in its par:imctcrs. The result,
is low beliefs in all the reference models in the database. This case oceurs when scanning
has occurred from a viewpoint where insufficient data was collected. The second case occurs
when there is a breakdowt in some of the prior assumptions. In this case, the issue is not
one of insufficient data. Here, the parameters determined from that particular viewpoint
differ significantly from any of the models in the database. ‘The resulting distribution
could actually be quite sharp, but simply does not overlap with any of the reference model
distributions. In this case, it-could be that the linearity assumption_breal_cs down, implying

that perhaps the assumption of a normal distribution is not valid. Zero belief cases exist

'
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2. DETERMINING WHICH VIEWPOINTS ARE INFORMATIVE

when the values of the a posteriori probability density functions are extremely low. Due to
numerical underflow, the procedure produces beliels of zero for each of the reference models.

Figure 6.1 illustrates the difference between informative and uninformative viewpoints
for the case of acylinder. Here, one can sce that the system is able to distinguish the eylinder
from a block with great case, if the cylinder is measured from an informative viewpoint.
Howover, il measured from an uninforinative viewpoint, there is little confidence in ecither
tnodel. In this case, the beliefs are in fact below the numerical precision of the system, and

therelore become zeros.

Database Models

Acasured Model View 1 View 3 View 4
Belief in cylinder 2.237 0.009181 0.0 : 0.0
Belief in block 0.0 0.0 1 0.0 0.0

a) Informative b} Uninformative

At the top of this figure are the two reference models in the data base: the cylinder and the square block. Beneath
these are measured models of the eylinder obtained after scanning its surface from 4 different viewing positions.
Below each model one can-find the unnormalized belief distributions obtained when attempting to recognize each
of the measured models. ‘ :

FIGURE 6.1. (a) Informative and (b) uninformative views of a cylinder.
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30 INCREMENTAL RECOQGNITION

The problem of distinguishing between the two kinds of states becomes one ol determin-
ing the threshold below which one can salely state that the beliefs are in fact insignilicant.
It is obvious that cases where the beliefs in all the models are zere are uninformative, How-
ever, this threshold depends on the numerical precision of the system. In thiz sense, it is
chosen externally (and is, therefore, a random cutoff point). We thierefore foel justitied in
raising this threshold to one that excludes other low confidence states. The expectation
is that this will eliminate false positive states, as they are thought to oceur with low be-
lief. (We will establish this empirically in Chapter 7.) One can determine this cutotf point
etnpiricali}', by observing the beliel distributions from dilferent viewpoints, and noting if
there is a clear division between the clear winner states and the low confidence states. A
bi-modal distribution would indicate that an application ol a predefined threshold can casily
distinguish between thesc states. In Chapter 7, we will illustrate the results of plotting the
belief distributions resulting from recognizing six objects from different viewing positions.

There are at least two applications for a method that can assess the quality ol the
information from a particular viewpoint. First, in the case of an active observer, viewpoinls
can be chosen so as to maximize the distribution associated with an object of interest.
This does not specify how to choose an informative viewpoint', but can be used as a figure
of merit for-a particular choice. Second, in the casc of an off-line planner, it is often
advantageous to be able to pre-compute a set of characteristic views to aid in recognition
(Koenderink 1976, Koenderink 1979, Sripradisvarakul & Jain 1989, Eggert & Bowyer 1989,
Eggert et al. 1992, Kriegman & Ponce 1989, Bowyer & Dyer 1990}. A good strategy here

would be to select the n best views of an object ranked according to its beliel distribution.

3. Incremental Recognition

Provided that the low belief statés have been identified, we wish to make a statement,
about the remaining beliefs. Even though the majority of the cases can be clearly divided
into informative and uninformative states, there are still ambiguous cases where a “signifi-
cant” belief in more than one model exists. Because of these situations, it becomes apparent
that evidence from more than onc viewpoint is needed. But at what level of representation
should this evidence be accumulated? The autonomous exploration procedu re that we use’
to generate the set of database models, for example, sequentially constructs a complete 31D

representation at the level of surface geometry (Whaite & Ferrie 1994). One could follow &

-~
~

}Strategies for gaze planning are usually operationally defined (Whaite & Ferrie 1991, Whaite & Ferrie 1994),
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similar approach at the recognition phase, i.e. recalculate each belief distribution as the ex-
plorer adds new data to its representation of the unknown object. Unfortunately this would
be computationally prohibitive, largely due to the expense of data fusion (Soucy 1992). A
better approach would be to process cach view independently and avoid the fusion problem
at the data level by seeking instead to combine information at the level of the belief distri-
bution. In Chapter 3, the inverse theory outlined how to do this by defining the operation
of conjunction of states of information, i.e. the belief distributions. That is, we denote be-
liel distributions corresponding to each model hypothesis, H;, given the parameters of the
unknown model, M, computed [rom the measurement, D;, by P(#H;|Mp,). Then, given
two data sets [; and D;y corresponding to different viewpoints we seek a conjunction
of P(H:|IMp,) and P(H;|Mp,,,) that is equivalent to P(#;|Mp,+D,.,). An active agent
would then gather sufficient evidence in this fashion until the composite belief distribution
associated with a particular hypothesis exceeds a predefined level of acceptability. .

Although the theory formally defines conjunction, such an operation requires knowing
how a change in viewpoint conditions the respective belief distributions, as they are not
normalized with respect to a global frame of reference. (As we have seen in Chapter 5,
the normalizing factor is some unknown function of viewpoint, and is difficult to obtain
analytically.) As a result, relative values between the views are meaningless. Hence, it
becomes difficult to match a belief of 500, for example, {rom one view, with a value of
50 from another. Each of these values may reflect the strongest possible belief from their
respective views, however it is difficult to compare them in a sensible fashion. As well, in
situations where there is a belief of 530 in one model and 40 in another, it becomes impossible
1o establish a clear winner. ' |

For this reason, we have chosen not to choose a “winner” in ambiguous situations,
and state that all positive beliefs indicate equally likely hypotheses. We illustrate this
philosophy by binarizing the conditional probability density function values at each view,
such-that all beliefs above the threshold become ones. In this fashion, we have divided the
possible results to include:

(i) Informative states: states with one clear winner (a single positive value).

(i) Uninformative states: states without a clear winner. This includes:
a) Ambiguous states: states with more than one:poéﬁible winner {more than one
single positive value).

b) Undetermined states: states with no winners (all zero values).
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[t is important to note that ambiguous states are, in fact, undetermined states that lie above
the chosen threshold. In theary, carelul choice of cutoll level should eliminate these states

as well (without eliminating a large number of informative states). Figure 6.2 illustrates

‘these different states in-the case of a square block. Here. the system is asked to identily

a square block from different views, and correctly. distinguish it from a similar rounder
one. This example indicates that the results match human intuition. The clear winners,
or informative states, in Figure 6.2a indicate that the system is able to identily the block
despite wide variations in its three dimensions. The ambiguous cases (Figure 6.2b) occur

when the resulting models are rounder in shape. Here, the system has trouble differentiating

" between the models. In fact, thesc models resemble the rounded block more than the square

one. In the thi;‘d case (Figure 6.2¢}), the system does not have significant beliel in any of
the models. Intuitively, one can see that these models are not similar to cither reference
model.

Using this method of representation, rather than base conclusions on maximum like-
lihood methods [rom independent viewpoints, methods that combine evidence from single
viewpoints would consider all models whose beliefs are above a threshold to be cqun.:lly
significant. In accordance with Marr’s “Principle of Least Commitment” (Marr 1982), all
possible hypotheses, rather than just one are communicated to the external processes.

By normalizing our confidence values in this manner, combining them from different
viewpoints becomes straightforward. Should the maximum likelihood hypothesis prevail
in a largely view-invariant manner, then after a sequence of trials, a robust interpretation
can be made by tabulating the votes for cach one, represented by the binarized beliels,
and picking the hypothesis with the highest score. In this fashion, a clear winner should
emerge. As well, the confidence in the incorrect models sheuld become insignificant. In
Chapter 7, we will verify this empirically by attempting to recognize a scries of real objects
from sequential viewpoints. We will also show that the view-invariance is maximized by
applying the threshold to filter out the uninformative hypotheses.

Figure 6.3 illustrates an attempt at sequentially recognizing the square block at 40°
increments. As in the previous example, the square and rouna blocks are used as reference
models. The raw beliefs are binarized by imposing a threshold of 1073, Notice that the
dmbiguous case quickly becomes insignificant with the increase of evidence in the correct
model. After only 9 iterations, the clear winner emerges, casting all doubt aside.

In the next chapter, we will test the recognition procedure on real single-part objects,

for models created from complete (3D) data and from partial (2D) data. The possibility '

St e : 19



3. INCREMENTAL RECOGNITION

of applying a threshold to distinguish between informative and uninformative viewpoints
will be tested, by observing the beliel distributions resulting from recognition from different
viewpoints. Also, Sequential recognition experiments will be performed: Finally, the ability
of the system Lo recognize parts of articulated models from single viewpoints will be assessed.
Effects of applying an external threshold to eliminate uninformative viewpoint hypotheses

will ‘be seen as well.

-
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i

Measured Model Belief in Block Beliel in Round Block
Unnormalized Binarized || Unnormalized Binarized
0.2 1 0 0
0.007 1 0 0
2.0x10713 1 5.8%10™° 1
3.4%10-13 1 0.002 1
0 0 0 0
0 0 0 0 .

Above are the two reference models: a block and a rounded block. In the left column of the table are the
models of the block measured from informative (first pair), ambiguous (middle pair) and undetermined
(last pair) viewpaints. To their right, one can find the unnormalized, and binarized (threshold of 10=12)
belief distributions obtained when attempting to recognize each of the measured models. ‘

FIGURE 6.2. Informative, ambiguous, and undetermined States for the Block.
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3. INCREMENTAL RECOGNITION

View Angle | Measured Meodel Belief in Block’ Belief in Round Block

Unnormalized Binarized || Unnormalized Binarized
0° 2.0x10°B |1 5.8% 1076 1
40° 0 0 0 0
80° 0.2 1 0 0
120° 0.03 1 0 0
S1e0® | 0 0 . 0 0
200° 0.1 1 : 0 0
240° 0 0 4 0 0
230° 0.03 1 0 0
320° 0,001 1 0 0
Final Score 6 ' : 1

Displayed above are the 9 models resulting from sequentially measuring the square:block at 40° increments, From
left to right, one can see the viewing angle, the measured model, the unnormalized and binarized (threshold of 10=13)
belief distribution resulting from attempting to rccognm: each of the measured models. The final distribution is
the lmtogmm nl the binarized distributions.

FlGURé 6.3. Incremental recognition of a block. : -
z _ . 52
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CHAPTER 7

Experimentation and Results

1. Introduction

In the previous.chapters, we have introduced the inverse theory, and indicated how it
can be used within the context of a part recognition problem. As well, we have illustrated
how the results can be used to assess the quality of the information from a particular
viewpoint, and an incremental recognitioﬁ scheme was proposed. Solutions to problems
with the superellipsoid model were presented in order to be able to use this volumetric
model as an object descriptor for recognition. ‘

In order to test the proposed methodology on real objects, several experiments are
performed. Section 2 begins with the description of the system used to acquire the object
descriptions, Section 3 describes the first set of experiments which Lcs(ecj the algorithm on
several single part objects. Maximum likelihood (or Winner-takes-all) schemes were tested
on models fit to data-acquired all around the object (complete or 3D data). In addition,
the tests were performed on models gencrated by data acquired from one VichOilrlL only
(partial or 2D data). The results of these tests indicated the >possibili'ty'0f distinguishing
between informative and uninformative viewpoints by application of an external threshold,
E:kperimehts using an incr_eaifental recogﬁition scheme were performed, whereby evidence
in the form ol beliel distributions was accumulated from different viewpoinls sequentially.
Finally, in Section 4, both single-view and incremental recogn'n.'ion of parts of articulated

models was tested. This provided the basis for a multiple-part object recognition strategy.

2. System Overview

Throughout the experiments, object representatiors were created through the boltom-
up system developed by the 3D Vision Group at CIM. In the system we have constructed, ar-
ticulated, volumetric models are created by successive probes of a laser-rangefinder 1;!1r0:‘?gh
a process of autonomous ezploration (Whaite & Ferrie 1991, Whaite & Ferrie 19935, Whaite

T o | “\\\7. R 53

A



[}

2. SYSTEM OVERVIEW

& Ferrie 1994). The flowchart for the bottom-up stages for the pencil sharpener can be found
in Figure 7.1. It corresponds to the classical model of bottom-up vision in which sensor
data are transformed into various levels of representation though successive stages of pro-
cessing (Ferrie & Lagarde 1989). The additional feature is the inclusion of feedback from
Lhe‘lil,ting procedure, which is used to determine the new gaze position that will reduce
model uncertainty. Because object recognition represents the highest level of processing, it
relics not only on its discriminating power, but on all the lower level processes that con-
tribute to the stability and accuracy of the object representation needed for recognition.
This scction will describe the system that generated the volumetric models used by the

recognition scheme.

2.1. Data Acquisition. Objects are scanned using a 2-axis laser rangefinder
mounted on the end of an inverted PUMA robot arm. The scanner is capable of scan-
ning. at a range of 1 meter (Soucy & Ferrie 1992). Its field of view is approximately 40°
in the x direction, and 28° in the y direction. Each of these spans can be divided into at
mosl 256 positions. The precision of the scanner is approximately 1 mm at a distance of 1
meter, and improves non-linearly as the distance decreases. In the experiments described,
the density of scanning is such that each pixel of an 85 x 85 pizel® image represents 3mm®.

In order to obtain calibrated data, i.e. real z, y, and z coordinates in the camera frame
(in 7am), a calibration procedure is applied. Here, look-up tables are created, providing the
translation from points in the image to the z and y coordinates in the camera frame.

In addition, a set of precision stages, controlled by stepper motors, is used to expose
different faces of the object to the laser rangefinder. The rotary table permits four degrees
of freedom (two rotations, and two tfa,nslatibns) The theoretical precisioﬁ obtained is
approximately 79 steps per mm in dlf-zplacement in z and in y, 100 steps per degree for the
rotation about the z.— azis and 0.56° step per degree for the rotation about the z — azis.

However in reality, the precision is slightly lower if one .were to take into account the

mechanical play of the gears (i.e. backlash). )

“Using this set-up, different views of an object are obtained by Reepmg the scanner ﬁ\ed
and by moving the stages to which the object is attached. The data. acqunsmon set-up can
be seen in Figure 7.2. An example illustrating the data lines resultmg from using the set-up

to scan the pencil sharpener can be seen in Figure 7.1a.

- 2.2, Surface Reconstructlon. ~ The purpose of this stage is to transform the discrete
range da!.a, into piecewise smooth representations of the surface (Ferrie, Mathur & Soucy
L. _ : 54
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Here we see the classical bottom-up strategy used to obtain a parametric model of an object in the scene.
Notice that the loop is closed with the addition of feedback which uses the parunetric uncertainty to
choose a new gaze pasition that will reduce model ambiguity. The process is referred to as antononona

exploration. See text for details,

Ficurg 7.1. Flowchart of the bottom-up system.

o
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2. SYSTEM OVERVIEW

The set-up includes 2 laser rangefinder mounted on the end-cifector of an inverted PUMA manipulator.
The object itselfl is placed on a rotary table, pertnitting four DOFs.

_ FIGURE T.2. Set-up used to scan objects.

A

e

1993). It consists of a diffusion algorithm based on surface curvature properties. The
effect of the opcrator is to remove noise and to smooth out convex surface regions. Points
along a boundary, marked ‘by negative local minima and concave discontinuities are left
undisturbed. The diffusion algorithm results in bringing out the convex surface patches in
the image (Ferrie, Lagarde & Whaite 1993, Lagarde 1989, Lejeune & Ferrie 1993).

2.3. Part Decomposition. The reconstricted surface is segmented into regions cor-

responding to object parts. This is done by grO\ving the labelled surface regions until they -

reach the previously labelled boundary points. Regions are merged using a relaxation la- -

belling network that ensures resulting bovndary contours that are consistent with predefined

. boundary points (Ferrie, Lagarde & Whaite 1993, Lagarde 1989, Lejeune & Ferrie 1993).
Figure 7.1b illustrates the surface patches resulting from reconstructing ard segmenting
the surface of the sharpener. The different colors refer to different part regions.
z H - 56
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2, SYSTEM OVERVIEW

. 2.4. Data Fusion. If data are acquired from various viewing positions, they are
. merged using a scheme which calculates the correspondencé hetween surfaces from neigh-

bouring views. The motion parameters between views are calculated under the assumption

that curvature is preserved. In this fashion, local motion cstimates map data points [rom

one frame to another. In order to constrain the local match, global motion consistency is

enforced, where variations in velocity between frames are assumed to be piccewise-smooth.

Therefore, choosing the motion parameters becomes a minimization problem, where the dil-

ferences in relative position and orientation between points are minimized, In this fashion,

the algorithm is tolerant of local errors in correspondence. In addition, it serves Lo smooth

out local noise. and blend neighbouring surface patches (Soucy & Ferrie 1992, Soucy 1992).

2.5. Volumetric Modelling. At the highest ievel of abstraction, a volumetric model
is fit to each part region. Descriptors of this nature provide the basis for the characterization
of uncertainty. As well they maintain correspondence at the part level. Most importantly,
they. describe general shape properties, which is useful for the recognition task. &

: For the purposes of this thesis, the model chosen was the supcrcliipsnid model. (Solina
& Bajesy 1990). Calculating the parameters a is performed using an iterative, least squares
minimization technique, the Levcnburg-Ma.rqdardt algorithm (Luenberger 1984, Press, 7

. Flahnery, Teukolsky & Vetterling 198%: Whaite & Ferrie 1991). Here, a metric D(x,a)

is defined that measures the distance between each data point x-and the superellipsoid
surface described by the parameters a.- From an initial guess, the parameters are changed
incrementally in a steepest descent manner to minimize the ::quarod sum

N

' o D*(x;,a . oo
(30) . c XPay=)" "'_(a"_) ) _ .
- : : . =1 1 : -

of the metric over all da.t.a. points. Each distance is weighted by its’ error, @, a?, in order to
increase the importance of the low error terms. The proccdure iterates until there is z
negligeable improvement in the squa.red error. Currently, ‘the five su pcrelhpso:d parmmctcr-.
descrlbmg object size and: shape, as well as their associated covariances, are used as parl, -
descnptors for object recognition. . .

Figure 7.1c lllustrates the results of fitting supercl[:psmd modcls to each of the part,
regions in Figure 7. lb

-2.6. Feedback. Beca,use of the noisé in. thc, model, and bccauac’-t.hc data are “often
incompletely sampled, e.g. only one side of the model is v:sxble from a smglcvu,wpomt. the .

. parameters will often be under-constrained and exhibit large estimation errors. In order to -

e



3. SINGLE-PART OBJECT RECOGNITION

reduce the error, the system calculates a new gaze position. where additional data can be
collected. This is accomplished by using the estimated model as a predictor of the surfaces in
the scene. The error is quantified in terms of an interval around each point on the predicted
surface. We refer to this interval as the surface prediction error interval, which refers to
an “error bar® protruding from .a point on the estimated model’s surface. The interval is
coded such that “hotter” colors (such as yellow, or red} represent higher uncertainty in
surface positions as predicted by the model. Figure 7.1d illustrates this color coding for the
sharpener. The resulting prediction can extend beyond the visible surfaces and can thus
serve as a basis for planning the next gaze direction. This is accomplished by directing the
scanner to the viewpoint corresponding to the highest _ﬁncertainty of prediction. This can
be seen in Figure 7.1e, where the scanner is moved to the back of the sharpener where the
uncertainty is greatest. it has been shown that updating the model parameters with the
additional data obtained {rom the new view will minimize the determinant of the parameter
covariances. This process is referred to as autonomous exploration (Whaite & Ferrie 1991,
Whaite & Ferrie 19934, Whaite & Ferrie 1993¢, Whaite & Ferrie 1994).

3. Single-Part Object Recognition

‘Having established the means to thain'object descriptions, the purpose of the ﬁrst; set
of experiments was to test the recognition procedure on a series of real objects. In order
to focus on this task, and to ensure results that were free of errors from the segmentation.
process, these experiments included ouly single-part objects!. Several experiments were
pcr!‘ormed. The first tested the ability of the system to récbg;nize based on complete,
:Sljzhinl'ogma.tion. The second set tested the more practical problem ¢ recognition from -
single viewpoints. Here, the system’s a.bility to distinguish informa.tiv;a.from uninformative
viewpoints was assessed, by application of an external threshold. Fmally, an mcremental
recognition scheme was invoked. _

With this in mlnd, six objects :were chosen for these experiments: two spheres
(rad = 20mm, rad = ‘25mn£) a block, a cylinder, a lemon, and a block with rounded edges.

The objects- -were selected becausc they con51stcd of smgle pa.rts that conformed well to

" su [)Ql‘cnlpb()l(lb They varied in size a.nd shape, 50 as not to be clustered together too tightly

in five-dimensional feature space. However their dlstrlbutlons overlapped suﬁimently in .

\e\«(_r'Ll dlmcnbtons S0 tha,t the recogmtlon procedure. was challenged in its dlSCI‘lmIl'la.thll

task. :

Hn Section 4, we will- examine the eapabilities of the system in recognizing parts of articulated models. -

40
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3. SINGLE-PART OBJECT RECOGNITION

BS B C L - SS RB

Displayed above are the reference objects that result from training on complete surfice diatas i big sphere (BS),
block (B), a eylinder (C), a lemon (L), a smaller sphere ($S), and a rounded block (RB). Below, the siune models
are shaded according to the projection of parameter uncertaintics into 3D space, White rellects large uncertaintios,
and black indicates parameters that are tightly constrained. For example, the light fuce of the block shows thit thae
¥ size parameter is more uncertain than the x.

[u

FIGURE 7.3. Six representatives that result from training.

‘

)
U

Training (see Section 2) aut';‘mat'lcally produced object Ef:ms representatives, by mea-
suring the object numerous times. Lach individual model was created by scanning the
object from several views using a laser range-finder, then.a superellipsoid model was fit, to
the data, and the resulting parameters stored (see previous socl.ion’)’;' For the purposes of
creating a stable database for rccognition", it was cstablished that thiee views of each ohject,
120° apart were sufficient to constrain the fitting procedure. Bach sample was scanned from
a random scaﬁning position, producing 24 s:;fhplcs of each object. Figure 7.3 illustrates
the six representative models of each object that result from training.

For all the experiments, the model of the unidentified object was created using: the

" bottom-up system described in the previous section. Whether data were collected [rom

one view or from several views, in order to use the resulting superellipsoid model as a

descriptor for recognition, the system had to calculate the six possible equivalence classes

" corresponding to it (as discussed in Chapter.5). These parameter sets were incorporated

into the overall model by representing the object witliv a multi-modal distribution. During

the matching stage,.the system then chose the representation from the equivalence class ‘

that had the highest belief in one of the reference models.

3.1. Matching Using Complete Information. In the first experiment, recogni-
tion was performed using an unknown model computed from a sequence of views covering
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the visible surfaces of an unknown object. The intent of this experiment was to validate the

recognition procedure against models produced by the autonomous exploration process on

Hruuning to completion (Whaite & Ferric 1991). Twenty-four samples of each object, each

scanned from three different viewpoints, were presented to test the invariance of recognition
against variations in sampling and viewpoint. Using maximum likelihood as the basis for
recognition, i.c. choosing the model with the highest confidence value, the results shown in

Figure 7.4 were obtained.

20} Number of Trials
15F N corect
* N incorrect
10 - TEES Undetermined
BS 8 c L SS RB

FIGURE 7.4. Matching samples taken from multiple viewpoints.

w

[5,]

The results indicate that the system can successfully recognize an instance of any object
in the database with perfect results, provided that its surfaces are accessible, independently
of . viewpoint and sampling order. In addition, the identifications are made with 2 high

degree of certainty. This is to be expected given that the probability density functions

: of cach of the unidentified objects exhibit small variations in parameter space due to the

relatively complete information available. Training produces reference models that are also
“delta-like”and well separated from each other. The distribution of the unidentified obj ject
would necessarily overlap that of the correct reference model mut;}:-fmore than the others.
Examples of the non-normalized belief distributions of the lemon and block can be found:

w

Examination of the resultant beliefs shows that complete information allows the system

to correctly identify objects with a high degree of certainty. The high beliefs reﬂecf.:the fact -

that both the measurement distributions and the reference model distributions- are “delta-

like” and close together. . e

3.2. Matching Using Partial Information. Since complete information is not

always available (and\“"potentié‘mlly expensive to acquire), a more realistic test would be'to

determine the parameters of an unknown model from partial information. In the:limit this

would consist of attempting to base recognition on data acquired from a single viewpoint /2
- l‘

60=~_

and would clearly violate the multiple-view assumptions implicit in the training process.
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3. SINGLE-PART OBIJECT RECOGNITION

Trial BS B C L S5 RB
1 0 0 O 511 0 0
2 0 0 0 653 0 0
3 0 0 0 1266 0 O
4 0 0 0 TG0 0 0

5 0 0 0 232 0 0.
¢ 0 0 2713 0 O

a) Belief distributions of the lemon

Trial BS B C L S§ RB
1 0 6090 0 0 0
5 0 6200 0 0 0
3 0 98 0 0 0 O
4 0 1580 0 0 0

0 1521 0 0 0 O

0 1167 0 0 0 0

b) Belief distributions of the block

TABLE 1. Results of several iterations of recognition of ajlemon and b)block viewed
from multiple viewpoints.

N
;\_
Furthermore, it li‘és\_lﬂ)‘een shown elsewhere that the resulting model parameters wonld be
inherently less stable E‘Whaite,}:& Ferrie 1993). However, should the procedure still retain
some of its earlier selecic}gt:.y‘;‘— as evidenced By a low degree of false positive matches
— then an incremental recognition: procedure becomes a possibility. This would involve
accumulating evidence from the belief distributions of sequential viewpoints until a clear

winner emerges.

In tl;{is second set of experiments, recognition was performed on thirty-six single-view
samples of each object. Here, data were collected at 40° intervals along 4 dilferent great
circle routes. The same methodology as in the first experiment was applied in the recognﬁ.ion
of the unknown model parameters. The results obtained are shown in Figure 7.5.

As expected, recognition based on partial information is less certain than in the previous
case where the complete surfaces of the unknown object were accessible. Here, undetermined

states exist in situations where the unnormalized values of the posterior probability density

61
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3. SINGLE-PART OBJECT RECOGNITION

Number of Trials

B correct

Bs

FIGURE 7.5. Matching samples taken {rom single viewpoints.

functions are extremely low (on the order of 107%). Due to numerical underflow, the

procedure produces beliels of zero for each of the reference models. We refer to viewpoints

such as these, that do not tell us much about the object’s identity, as uninformative (see

Chapter 6).

.F”T'l” T_ " T"T L

-~

In the top boxes are the square block and rounded block reference models. Below these are four dlﬂ'erent attempts
at recognizing the square block from different viewing positions. In each case the model is compared to the each
of the six references in turn, and beliels in each are computed. Above each model one can see the result of running
a maximum likelihood algorithm on the results. C indicates a correct recognition, 7Y indicates an undetermined
state, and XXX refers to a false recognition. Here, the systemn identifies the square block as being the rounded one.
The objects are shaded according to their uncertainties (see figure 7.3).

FI(‘URD .6. E'camplea of recognition of the block from single views.

Figure 7.6 shows some specific examples of recognition attempts on the block from dlf-

ferent viewing positions. In the first two cases, t.he procedure correctly 1dent1ﬁed the obj Jects

as corresponding to the block despite wide ﬂuctuatlons in their size parameters. This is due .

to the fact that the models encompass the uncertainties corrésponding to these parameters

62
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3. SINGLE-PART OBJECT RECOGNITION

in their representations. The reference model also learned of these possible variations during
training, incorporating them into its representation. Therefore. the distributions were close
enough to that of the reference block to make a correct identification. This reinforees the
hypothesis that objects need not be represented by extremely aceurate descriptions. Rough
size and shape representations are sufficient as long as the reference object has learned
about these possible fluctuations in the training stage.

In the third case, the system could not identify the object as being any of the known
models. In this case, this model does not visually resemble any ol the references in size or
shape. This is a situation where there is insufficient data from that viewpoint to produce a
good model of the object. Further sampling of the object should provide better results,

In the final case, the system incorrectly identified the block as being the rounded block,
(As well, the model! is visually closer to the rounded block.) The reason lor the match is
that, although the reference block i5 not very certain about all of its size parameters, as
indicated by the white shading on its sides, it is quite certain about its shape parameters.
This is indicated by the black shading around the block reference model’s edges. Therelore,
measurements that are rounded in sﬁape do not sufficiently overlap in its distribution. lu
this case, despite the high uncertainty in the parameters of the unknown model (causing |l~.
distribution to be quite flat), there was sufficient overlap in the distribution of the reference
rounded block to cause a false identification.

Table 2 shows the belief distributions resulting from incremental attempts at recogniz-
ing the lemon and the block. The data were collected from single views at 40° intervals in
an equatorial plane. One can see that the beliefs are considerably weaker thay in Table |
where complete information was used. The first iteration in the recognition of the block
produced a false-positive identification. In this case, the system identified: the block as
being the rounded block, despite the fact that the resulting distribution overlapped with
the distribution of the reference block as well. The belief in both models was quite low,
indica,ting that‘»“uh/e/system is quite uncertain about the identification. In fact, in many
cases, a false-positive identification is associated with low beliefs. This suggests that if the
threshold for undetermined states were raised, the.incorrect identifications would become
undetermined states. ' )

In order to justify raising this threshold, the beliefs resulting from the experiment

- described above were plotted on a logarithmic scale graph. The expectation in observing

these results was that the scatter of the beliefs was bi-modal. This would imply that g]' ,
a distinct sepqra.tion between informative and upinformativa cases exists, permitting tlwf
63
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3. SINGLE-PART OBJECT RECOGNITION

Viewpoint BS B C L SS RB
0° 0 0 0 297x107% 0 0
40° 0 0 0 6.93x107° 0 ©
80° 0 0 0 0.18 0 0
120° 0 0 0 244x10™° 0 O
160° ¢ 0 0 8.07x1073 0 O
200° 0 0 0 3.38x10°" 0 O
240° 0 0 0 1.10x10°'¢ 0 O
280° 0 0 0 031 0 0

a) Belief distributions of the lemon

Viewpoint BS ~ B C L 5§ RB
0° 0 4.00x107¥ ¢ 0 0 1.16x10°°
40° 0 0 00 0 0
S0°. 0 0.33 00 0 0
120° 0 0.05 00 0 0
160° 0 0 0 0 0 0
200° 0 0.21 00 0 0
240° 0.0 00 o0 0
280° 0 0.05 00 0 0

b) Belief distﬁbutions of the block

Displayed above arc the first six attempts at successively recognizing the block at 40° increments. Shading is in
accordance with parameter uncertainties (see figure 7.3}, The results of running a maximum likelihood algorithm
are found above each box (see figure 7.6).

TaBLE 2. Results of incremental i:f;cognition of a)lemon and b)block viewed from
40° single viewpoints.

i
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application of a threshold to distinguish between the two. The results can be found in the

plot in Figure 7.7.

Log Baliat
I S
R ‘@ ._ True Parts
K133 gl . - ) Big Sphore
%% O @—e) O Block
20k (o] @@ O Cylinder
8 % & Lemon
© ©  Smoll Sphore
) O — © Gj@ () Round Block
2 _ @ o
40} 20
@
Big Spheie Block Cylinder Lamon Small Sphere  Round Block
- =5 * 3 War
3 J *

Above are the results from attempting to recognize 36 dilferent single-view samples of encly of the maodels in thie
database. The beliefs in the different models are represented by different symbols, ench symbol indicating the
true model used during that trial, ’ ]
The level of numerical underflow of the system is represented by o "U” on the g = aris. Breause so inany
trials fall into this category they are marked with a simple point, ercept when the belief is for the true nndel
used in the trial. -
By observing the log of the beliefs, one can see the bi-modality in the results.
FIGURE 7.7. Log of beliels in the Big Sphere, Block, Cylinder, Lemmon, Smiall
Sphere, and Round Block.

The results illustrate a clustering effect in the beliefs. The first large cluster indicates
that the !1ighest_ degree of confidence lies in the correct model hypotheses. Beneatlh this
group, is a scatter of beliefs in the incorrect model. The degree of evidence of these hy-
potileses varies from model to model. This second large clusier occurs for belicfs in models

that lie below the numerical precision of the system (denoled the “U” level). The distincet,

" bi-modality of the results justifies the application of an external threshold differentiating

between the high confidence informative views and the low conlidence uninformative views.
In addition, they indicate that the value of this threshold is not critical. For example, for
the Big Sphere model, the cutoff point can lic anywhere from 10~% to 107% (above the “U”
level). However, the desire is to choose this threshold so as to climinate the majority of
false positive cases. Although the plot does not Hlustrate the maximum likelithood results,
making it impossible to tell where false positive indications occur, one can see that by plac-
ing the cutoff above the scatter of incorrect hypotheses,-one can ensure a minimal amount
of incorrect maximum likelihood indications. Furthermore, one can sce from the resulis

- =
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3. SINGLE-PART OBJECT RECOGNITION

that one does not necessarily need to choose a universal threshold levei for all the models.
By examining the difference in the Big Sphere and the Rounded Block distributions, one
can see that choosing individual cutoll levels would render the results more accurate. For
maximal efficiency, these levels can be computed off-line prior to experimentation, and then
used in the recognitioﬁ stage.

For the purposes of testing the hypothesis that an external cutoff would divide the re-
sults into informative and uninformative cases (and eliminate the majority of false-positive
cases), the threshold for undetermined states was uniformly raised to 0.00001. Figure 7.8
shows the results of imposing this threshold on the belief distributions. One can see that all
but one incorrect state (B) has become undetermined. However, several correct identifica-
tions have become undetermined as well. This is to be exbected since setting this threshold
causcs all uncertain identifications to be removed. We therefore make the empiricdl obser-

vation that, by raising the threshol'd; states that are not undetermined are accompanied by

-a high accuracy in recognition. -

a5t

ot ? Number of Trials
il
20F & - Comect
i

s 5 I oo
10} nf T Undatermined

Nt . i

8s B c L $§ - RB
FIGURE 7.8. Matching samples taken from a single viewpoint while imposing a >

threshold of 0.00001. , =

3.3. Incremental Recognition. The described experiments suggest the possibility"
of an incremental recognition précedure. It is based on the following observations obtained
empirically over successive trials: . :

i) Viewpoints that provi{ze very little information, or uninformative views, gexferally-
can be detected by their low confidence levels (beliefs). Because of the bi-modality
of the helief spread, these can be discovered by application of a threshold. Detection
of such cvents is a clear indicator that further sampling is requiréd. :

it) Informative views are generally accompanied by high beliefs, but with the';'d—é\sivbility
of a false-positive indication. These can also be detectéd by threshdld“‘applicatior_l.

iii) The likelihood of successive false-positive indications is very small. Fi\r\st;:t_his isa
consequence of the high selectivity of the reference distributions which result in low
frequencies of false-positive indications in the first place (e.g. Figure 7.8). Second,

o 66
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it is unusual for observer motion to result in similar viewpoints it two successive
views (general position assumption).

“To illustrate these obscrvations by example, Table 2 shows a éoqucnco of single-view
recognition attempts. corresponding to the fiest 6 entries in the sccond hall of the table.
Tteration 1 is inconclusive, the object is cither a square or rounded block (However the
results of running a maximum likelilood algorithm indicate that the object is a rounded
block). In iterations 2 and 5 the object is undetermined. lterations 3, -1, and 6, on the other
hand, consistently support the correct classification of the unknown object as the square
block. .

To explore the possibility of an incremental scheme, an experiment was performed
whereby evidence {rom single-views was accumulated. The method described in Chapter 6
was employed, whereby the system binarized the beliefs above the predefined threshold at
cach view. Evidence at each stage was computed by histogramming the binarized belicls
accumulated thus far. Table 3 displays the result of accumulating: tvidence alter 36 single-
view iterations. Table 3a illustrates the results when the zero states were established by
the numerical limitations of the system, whereas in b, a threshold of 0.00001 was imposed
externally. One can see from these results that, alter several iterations, choosing a winuer
based on 2 maximum likelihood scheme on the accumulated beliefs gave the correct answer in
all cases. The false-positive cases became insignificant due to insuflicient evidence. lir\‘['::.ct.,
Table 3b illustrates that hardly any evidence in incorrect models remained after applying
the threshold of 0.00001. However, in the case of the rounded biock, the majority of the
evidence in the correct model was also climinated, indicaling that perhaps this choice of -
threshold was too high in this case. Its beliel values were, in fact, significantly lower than
the rest of the objects. In these cases, this choice of threshold seems Lo be appropriate in
that it removes the faIse-ﬁositive cases, while maintaining a high degree of confidence in the
correct hypotheses. This justifies using independent threshold levels for cach of the models

in the database.

o~
I
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4. Multiple-Part Object Recognition

We have shown that recognition of single-part objects based on pa"rl.ia‘l information
retains some of the selectivity of systems based on complete information. However, these
objects are less complex than most found in the real world, so we are interested in the natural
extension to recognizing objects that consist of several articulated parts. Our current focus
is “recognition by parts”, whereby measured objects are segmented into their constituent,
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4. MULTIPLE-PART OBJECT RECOGNITION

3S B C L SS RB

BS 3 0 0 0 13 0
B3 0 28 0 0 3
C 1 1 33 1 1 0
L 0 0 0 3 0 0
S 0 0 36 0
RB 0 0 0 0 18

a) Threshold = computational underflow

BS B C L S5 RB
BS 36 0 0 0 0 0
B 0 200 0 0 1
C 0 .0 2 0 0 0
L 0 0 0 200 0
SS 0 0 0 0 21 0°
RBE 0 0 0 0 0 1

b) Threshold = 0.00001

Displayed above are the tables deseribing the aceumulation of evidence from 36 single-view experiments. Each row
describes the histogram of the binarized belicf distributions for a particular measured model. The columns refer to
the reference models. Zero values are defined by a) numerical underfiow of system and b) a threshold of 0.00001.

TABLE 3. Histogram of binarized beliel distributions after single-view iterations.
parts, cach ol which is compared to the parts in the database. The task of récognizing
these parts is much more challenging than recognizing single-part objects due to problems
of self-occlusion and segmentation. Objects are seen as collections of independent parts,
where topological relationships are not yet considered in this thesis®. ‘

A toy potato-head consisting of two ears, two eyes,’a nose and a head was chosen for the
purposes of testing the part recognition algorithm on complex objects. In order to scan the
object from all possible viewing positions, the head was scanned as described in Section 2.
A picture of the set-up used to scan the head is found in Fi'gure 7.2

Figure 7.9a displays the actual potato-head: toy used in the experiment. Most of con-
stituent parts coﬁt‘or\medqwcll to non-deformable superellipsoid models, with the exception of

the head whose shape was tapered. The potato-head toy was cliosen because its parts were

Recognition strategics that take topology into account are currently being investigated.
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b) Relerence potato-head model created by training.

FIGURE 7.9. Potato-head: a) real object and b} reference model.

similar to each other as well as to the reference spheres making discrimination a challenging
task. )

Ten samples of the péiato—head were used in the training procedure. Each sanmple was
prod'uced by scanning the object f;\c}m several viewpoints in an exploration sequence. The

reference model resulting from training can be found in Figure 7.9b.

4.1. Matching Using Partial Information. Since ﬂt_lu/ém_bitltcr(:s.tillg lask is
to recognize an object with only partial information available, an experiment was devised
whereby the potato-head was measured from 32 independent viewing positions. Recognition
was performed on each of these samples in turn, using a database consisting of the parts of
the potato-head as well as the single-part reference models used carlier as distractors. The |
results of the using maximum likelikood on the ])Cllcf‘s can be seen in Figure 7.10.

The results indicate that the systein was 2:!:-10 to successlully recognize instances of
articulated parts of a complex object with on! y pa.rual information available. The systew
was able to maintain its selectivity even with' e 451 little information available from single
viewpoints, compounded by the added effects of self-occlusion. In fact, even with compicr.c
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4. MULTIPLE-PART OBJECT RECOGNITION

15 _ Number of Trials
12.5¢ '
wt R corec
75t Incorrect .
5 . . Undetermined
25F -

H N ERL ERR EYL EYR

Displayed above are the tables describing the belief distributinns of the potato-head measured from single view-
points. The parts of the potato-head are: a head (H), a nose (N}, a left ear (ERL). a right ear (ERR), a left eye
(IEYL), and a right eye (EYR). Here, identifying one eye s the other, or one ear as the other was considered to be
1 eorrect identification. Zero values are defined by the numerical underflow of system.

FrcusE 7.10. Matching samples of the potato-head taken from single viewpoints.

data gathered from all around the object surface, most parts were embedded within oth-
ers and thus part of their surfaces were not visible. The results were models that were
unconstrained in sceveral directions. This caused the reference parts to be created without
complete information. Therefore training no longer ensured models with pa:ra.meters that
were close to the true values. This added to the difficulty of the recognition task.

For the purposes of the maximum likelihood experiments, the left and right eyes were
considered to be two instances of the suine object. The same applied to the ears. This

is because a “recognition by parts™ strategy considers objects that are identical in size

~and shape to be the same model, as is the case with the eyes and ears of the potato-

head. In future research, when topological relationships will be included into a solution for
recognition of complex objects, different instances of the same part will be distinguished by
position and orientation. ‘

The results show a high number of undetermined states for the head. This is because
the head is tapered, breaking the assumption that the objects can in fact be accurately
modcled by non-deformable superellipsoids. Different sirgle-view samples of the head pro-
duce very different ;s;:upcrellipsoids depending on where the data were collected from. Similar
to the prbb]cm caused by self-occlusion, the reference head was described by one partic-
ular superellipsoid, whose parameters were tightly constrained (due to the fact that data
were gathered all around the object to create each sample used in training). In the cur-
rent scheme, the reference description did not encompass all pbssible superellipsoid models
describing the tapered part. Therefore other equally viable descriptions that result from
single view measurements were not recognized correctly. This lead to undetermined states.

Other potential problems occur because the recognition process relies heavily on the
accuracy of the scgmentation process. Because of this, errors in the segmentation of the
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range data can lead to errors in recognition. ln these experiments, there were several caxes
where the head was divided into two distinct parts: a “head”™ and a “cap™. Becanse the
database allowed for only one part for the head. the syvstem identified the cap part as being
as lemon or some other reference model. This was understandable as the cap was similar
in size and shape to these models. "

However, most of the Incorrect states arose due to the stmilarity of the reference models,
For example, the eves resembled the smaller sphere. the nose and the cars. Similarly,
the ears were extremely close to the bigger sphere in size and shape. As o resnlt, their
distributions overlapped significantly. making it difficult to distinguish between them. Yet,
in the majority of cases, these incorrect identifications occurred with low beliefs. This
lead to the hypothesis that that most of these states actually arose from uninformative
viewpoints, and could be eliminated by raising the threshold for undetermined states. |

In order to justify application of an external threshold to distinguish between uniu-
formative and informative viewpoints, the beliefs in the poLaLo-thxcl parts as well as the
beliefs in the single-part objects were plotted on a logarithmic scale graph. Once apain,
a bi-modal distribution was anticipated, whereby a clear division between the inlformative
and uninformative states- would permit the use of a threshold to distinguish between the
two. The results can be found iu Figure 7.11.

As hypothesized, the results indicate a bi-modal distribution for the belicls in the
potato-head parts. For each of these parts, there lay a top cluster, representing relatively
high beliefs in the correct models. Beneath this, a thin scatter of beliefs in other models cin
be seen. Finally, the bottom cluster occurred for those beliefs that were below the numerieal
precision of the system {producing zero beliefs). FHowever, the majority of the beliels were
concentrated in the the top cluster illustrating that, most of the time, the system had .high
confidence in the correct part. However, some scattered beliefs in the single-part distractors
occurred as well. It is important to note that the majority of these cases lay below the top
cluster of correct identifications, indicating that by application of a threshold anywhere
from 10719 to 10~° should eliminate the majority of the false-positive cases. Once again,
the exact value of the cutoff level is not critical. Figure 7.11, illustrates the resuits that
can be achieved by applying a threshold of 10~5. Tiﬁs would lead to minimal I: :Llse-pos;it.ivc
indications accompanying a high number of correct votes. ‘The case of L-‘Sig_l\m:zd, however,
emphasizes the possibility of individual threshold levels for maximal cfﬁcigrlcy. Here, a

much lower threshold would ensure the highest number of correct matclies.
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4. MULTIPLE-PART OBJECT RECOGNITION

Log Belie!
-] < True Parns
10t ® p  Cap
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Above ire the results from attempting to-recognize 32 different single-view sumples of cach of the parts of the
potato-head: the Left Ear (EarL), Right Ear (EarR), Left Eye (Eyel)), Right Eye (EyeR), Head {Head), and
Nose (Nose). The single-part reference models were also included as distractors for the recognition process.
These included the Block (B), Big Sphere (Bs}, Cylinder (C}, Lemon (L), Round Block (Rb}, and Small Sphere
(Ss). (For an explanation of the plot, sec Figure 7.7).

One can sec the bi-modality in the log of the beliefs in the potato-head models. The beliefs in the distractors
appeas much more xcattered, the majority lying beneath the top cluster of the potato-head parts. The top
horizontal line indicates the results achieved by applying a threshold of 10—5. This would lead to minimal
fulse-positive indications accompanying a high number of correct votes.

FIGURE T7.11. Log of belicfs in the Potato-Head parts, as well as the Big Sphere,
Block, Cylinder; Lemon, Small Sphere, and Round Block.

To investigate that tlre hypothesis that an external cutoff can divide the results into
informative and uninformative states, and remove the majority of incorrect identifications,
the cutoff point was raised to 0.00001. The results are shown in Figure 7.12. On can
see_that, in the most of cases, the external threshold retained most of the correct states,

\"\.:;4:%—} .
confirming that the system had high confidence in the correct identifications. The exception
was the case of the head, where low beliefs caused almost all of the correct identifications

Lo become undetermined states.

30 L

25F Number of Trials

o A correct

15 R nconect
10k FERNY Undetermined
5k

F1GURE 7.12. Matching samples of the potato-head model while imposing a thresh- = -
old of 0.00001.
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4. MULTIPLE-PART ORIECT RECOGNITION

H N ERL ERR EYL EYR BS B C L. S8 RB

H 7 0 1 0 0 0 0 0 00 0 o
N 0 20 2 13 2 20 2 22 2 10 |
ERL 1 15 25 20 25 15 12 2 2 7 18 |
ERR 1 15 21 21 20 13 16 3 8 13 20
EYL 1 16 17 122 17 IT 0 1 1 2 4 0
EYR 1 13 15 4 15 15 1 5 3 3 5 0
a) Threshold = compul,aticiml underflow

H N ERL ERR EYL EYR BS B C L S§ RB
H 1 0 0 0 0 0 0 0 00 0 0
Nz 0 16 2 0 12 1 0 0 0 0°0 o0
ERL 0 1 14 12 0 0O 06 000 0 O
ERR 0 1 9 12 0 1 2 000 3 0
EY.I; 0 3 0 c 14 8§ 0 000 0 O
EYR 0 3 0 0 13 11 0 0 0 0 0 O

b) Threshold = 0.00001

TaBLE 4. Histogram of binarized belief distributions for the potato-head alter 32
single-view iterations {For explanation, sce Table ).
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4.2. Incremental Recogng;::}f_\. In_erder to explore the possibility of an incremen-

—

-

tal recognition strategy foi‘:‘\cuﬂ/plex objects, an c‘.'-‘\.:(periment-was devised whereby evidence
from single-views of the potato-head toy was accumulated. Similar to the single-part..ob-
ject case, the belief distributions were binarized at a predefined threshold at each viewing
position. At each stage, a histogram of the binarized distributions produced the e.\i'{flencc
accumulated thus far. The results of accumulating evidence after 32 single-views cau be
seen in Table 4. In Table 4a, the cutoff point was determined by the numerical precision of
the system. In Table 4b, a threshold of 0.00001 was imposed externally. o

Table 4a illustrates that the distributions {rom single-views were rcl:u.i'\lf;.;l—;r “wide” n
that a2 measured model produced a degree of belief in several reference models at once. The
result is that, in most cases, the accumulated binarized evidence points to several models
at once. Attempting to choose a single winner after several iterations would therefore he a
difficult task. The choice would however be limited to a few candidates as some false-positive. ‘

- e
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4. MULTIPLE-PART OBJECT RECOGNITION

indications have become insignificant due to insufficient evidence. For example, in the case
of the Nose, lack of evidence in the Big Sphere, Block, Cylinder, Lemon and Rounded Block
has caused the belief in these models to become unsubstantiated. The hypothesis was that

the evidence in the true model was so much stronger than the evidence in the other models

" that, by raising the threshold to an appropriate value, one could eliminate the majority of

“the false indications. The result would be an accumulation of evidence in the truc models.

/
/

" Table 4b validates the hypothesis by illustrating that the majority of the evidence in
the incorrect models were removed after application of the external threshold. In fact, if
6nc were to choose a winﬁcr based on a maximum likelihood scheme of the accumulated
evidence, the results would be correct for all models®. In the case of the head, however, the
majority of the evidence in the correct model was eliminated as well. This indicates the
possibility that the choice of threshold was not \appropria;te for the head.

The problemn of mergi\pg the belief distributions from different viewpoints of complex
objects is quite difficult. “The difficulty lies in establishing correspondence between parts
from different views. The problem is much more difficult than in the single-part object
case which encompassed the strong prior assumption that the object measured does not
chd.ngc from view to view. This assumption no longer holds,_and a theory providing the
correspondence is needed. Methods that provide part correspondence based on geome-

try (Soucy & Ferrie 1992, Soucy 1992) were used for these experiments, however they are

“Iradtrictive in that the different viewpoints must be close enough to contain overlapping data.

As well, merging data on the level of geometry i5°computationally e}fbensive. "‘Tﬁ@'efore. .

a new bdn'\mcll'or merging the belief distributions, based on the mgdels themselves, their

associaled beliefs, and the relatlonsnu;; bet\;=en them will be the focus of future research.
We have demonstrated that system is a.bIe\to recognize parts of artlculated objects with
only partial information available. Extension to- recogmtlon of multiple-part objects will
involve incorporating topological information into the solutlon The rotation and translation
parameters of the superellipsoid models provide this information as they can be used to infer
the distance and angle between the parts. Once belief in each of the parts is established,
graph matching techniql;l_‘es can be employed to calculate the belief in the entire object.

Current work in our lab/is concentrated on the solution to this problem.

v

~

IWe have treated the left and right eyes as being the instances of the same object (similarly for the ears).
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CHAPTER 8. CONCLUSIONS

CHAPTER 8

Conclusions

“In this thesis, we have presented a new framework for parametric shape recognition based on

a probabilistic model of inverse theory first introduced by Tarantola (1987). We have shown

how a Bayesian recognition strategy can be derived automatically by applying the theory

and have demonstrated its implementatior in a system [or recognizing 3D objects based *

on superellipsoid parameters (As well, see Arbel, Whaite (*, Terrie 19944, Arbel, Whaite &
Ferrie 1994a). o I ,;'

Castmg the problem into a general inverse l.heory l'ramcwork introduces several impor-
{fant contributions to the field of object recognition. The first is that the method explicitly
enumerates all sources of priof’ knowledge. This way, if conditioning is necessary, the sources
of knowledge are apparent, and can therefore be examined. This is important in that many
recognition systems include implicit, hidden assumptions about the nature of the world. As
a result, these metbods may work well in specific situations, but cannot be casily modified
to work eIsewhere By representing knowlc.dge as a probability density functlon, both the
information and the ambiguities associated with them are incerporated into the solution.
This permits the recognition engine to rr;.;\ke well-informed decisions. As well, the method is

not dependent on the exact nature of :hé‘information, but rather provides a general recipe

for merging any group of contextual priors. Finally, the solution to the inverse problem is

presented in the form of a conditional probability density function. The importance of this
. . . 7 .
result is that it provides a qualification of the assessments made by the recognition proce-

dure. ThlS is vital in that no problem in vision worksﬁn complete isolation, but rather must

communicate descriptions of results to external processes. In order to do s0, it is important -

to inform these processes of the uncertainties in the descriptions as well. Most recognition

schemes do not provide this information. Instead, they make absolute assessments about

-
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CHAPTER 8. CONCLUSIONS

the identity of the unknown object. This provides the external processes with only partial
information, biased to their notion of what constitutes a clear “winner”.

We have developed a method of avoiding degeneracies in the superellipsoid represen-
tation, which permits the use of this convenient parametric form without incurring undue
computational overhead. We have determined empirically that there are only a finite num-
ber of possible equivalence classes for the superellipsoid, and rather than restrict ourselves
10 one particular model description, we proposed a method that represents each model by a
multi~-modal description encompassing all possible degeneracies. Qur current representation
only includes the rotational equivalent forms, but future work will include all possible forms
in the rcprcsv::'nt.a.t.ions. ‘

The experimental results indicate that the strategy is quite robust, not only in situ-
ations where complete surface int‘ormation is available but also in those cases where it is
only partially accessible. In this and other W)rks (Arbcl, Ferrie & Whaite 1994}. we have
demonstrated that it is indeed possible=to. dlﬁerentxate between informative an- uninfor-
malive viewpoints, and have shown how the resulting belief distributions can be used to
assess the quality of the interpretation, by assessing the beliefs associated with a particular
sct of assertions based on this data. The importance of this result is that it provides a
b“lblb by which an external agent can assess the quality of the information from a particular
wewpomt and make infor med decisions as to what action to take using the data at hand.

The bi-modal nature of the resultmg belief distributions have indicated that this can be

.
casily accomplished by application of an external threshold.
e L
/:’7'—'"\7\’0 have also demonstrated that some viewpoints can give rise to ambiguous informa-

tion, where the system has cotifidence in more than one hypothesis. Similar to the motiva-

tion behind aulonomous ezploration in the model-building phase (Whaite & Ferrie 1994),

‘ambiguous views have spawned the development of an incremental recognition scheme,

where we seek information from a new viewpoint to reduce the overall ambiguity. We
have shown how evidence, in the form of the belief distributions, can be accumulated from
a sequence of views. The experiments have demonstrated that the maximum likelihood
hypothesis is largely viewpoint-invariant, implying that merging Vutes for the different hy-
pot“heseq over a sequence of views should lead to a clear winner. Because the beliefs are not
nornmlucd we have given equal weighting to all hypotheses by binarizing the values above
a t\TCbhOld We have illustrated that by histogramming the binarized beliefs and picking

the highest score of the result, we choose the correct winner in all cases.
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CHAPTER 8. CONCLUSIONS

By qualifving the recognition results, the method provides potential Tor a wide variety
of applications. For example. an active recognition agent can choose viewpoints that will
maximize the belief distribution associated with an object of interest. We have not specilied
how to choose this viewpoint. but the method can be used to determine if the particular
choice leads to a sufficient level of information. Another important application of the
methodology is a straizgy for off-line computation of a pre-computed set of characteristic
views. One can rank these views according to the belief distributions. and then store the »
best views, Predefining these views speeds up on-line computations by directing the active
agent’s attention to iniormative viewpoints, thereby reducing the scarch space of viable
hypotheses. These and other "t'opics are currently under investigation in our laboratory.

Some observations are in order regarding the autonomous explorer, the system used to
automatically generate the database models uaccl for recognition. In the numerous trials
performed during the course of this research we were able to consistently obtain stable para-
metric descriptions of the model database. These were largely independent of viewpoint,
variations in sampling, and the trajectory chosen by the mobile laser scanner. The genera-
tion of ﬂtable salient object models is clearly an essential ingredient in the implementation
of a successfui ob_]ect recognition system. Future work will mvolvc exploration gnided by
fecdbacl\ from the recognition system. This is possible because : 1 sources of knowledge are
made explicit. wlthm the framework debcrlbcd Therefore, thc systcm could actively acquire
information’ needed to correctly classify the objects.

The system described exhibits a high degree of selectivity in matching object primitives,
paving the way for recognition of articulated objects. Current work includes a scheme for
multiple-part object recognition invelving a graph-matching procedure. It is based on the
~ the work presented in this thesis, which outlines a sound, statistical method for comparing
the nodes. Given its success in dlscnmmat,mg based on partial mf'ormal.lon, the -.ca.rch S
for the graph-matching problen: should be COtlbldQI‘any reduced.-

F‘mg.\lly, we conclude by noting that although, in this l.hcs:s, ive have concentrated
on the pi'oblem of recognizing particular parametric models, the general inverse theory
can be used to solve many problems in vision. One such application is the problem of
object classification. Here, rather than represent the databasc knowledge as a series of
delta functions, one for each prototype in the database, one might i‘cpresem; a database of
classes by a series of normal distributions. The effect wou]d be to spread out Lhe database
prototypes from pomts m parametcr space to clouds of pomts. Another option might be Lo
represent each class by a sum offdelta functions. An example of which may be to mcludc
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CHAFPTER 8. CONCLUSIONS

three possible sizes for cach reference model. It is important to note that although these
applications differ from classical object recognition, they do not involve a change in the
methodology, but rather 2 modification in the shape of the distributions representing the
sources of khowledge. This type of flexibility, made possible because all of the sources of
knowledge are made explicit, is one of the prime advantages of using the general fnverse

theory to solve problems in vision.
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1. THE CONVOLUTION OF GaUSSIANS

APPENDIX A

Combining Normal Distributions

This appendix chapter will present the mathematical details involved in the prool that

_the convolution of normal distributions’is itsell a normal distribution (as was required in

. Chapter 4). Section 1 will provide the prool that the convolution of multivariate Gaussian

distributions is itself a multivariate Gaussian distribution. Section 2 will use this result to

show that the integral of the product of two normal distributions (the conuvolution) is also

a normal distribution.
1. The Convolution of Gaussians

N
In this section, we wish to illustrate the useful.result that the convolution of a multi-
- \\,_ oz -
variate Gaussian function {or a normal density function) with another is lisell Gaussian,

We will denote a Gaussian function over the space X as
(31) G(x,C) = exp (—%XTC_] x))
=exp (xTH x)

where where x is a vector in the n-dimensional vector space X, and C isfa‘m/li}:_gur covitriance
operator on the space X (an n x n matrix) . The covariance oper:Lt‘,of‘;’\_‘.’gﬁnes the spread
or dispersion of the function on the different parameter dircctions. In matrix lorm it is
symmetric (CT = C), and positive definite. Where convenient we will also usc the alterpate
form with G = 2H where H is the Hessian of l’.he:qu’adra.l;ic form x"H x. H is :L]S‘.Ei

symmetric and positive definite (x7H x > 0 for x # 0). Let
- 1 .
Go(x) = exp (-—-2-xTC; lx) = oxp (=x H,x)

and

1 : ]
Gy (x) = exp (—ExTC;‘x) = exp (=xTH,x)
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1. THE CONVOLUTION OF GAUSSIANS

denote two such Gaussian functions. The convolution of these is defined as
(G v Gh)(xe) = / Gale — %) Gi(x) dx
X
(32) = f cxp(— ((xc = x)TH, (x. — %) + xTbe)) dx
X

= [ e (-Qe0) dx
When expanded, the quadratic exponent is

Qx) = (x. — x) THa (% — X) + xTH,x
= XT(Ha + Hb)x - '?.(Haxc)Tx + xZ‘Haxc
(33) ‘ : =xTAx—2bTx+¢

where A = H, + Hy, b = H,x., and ¢ = xIH,x.. Note that because H, and H; are
symmetric positive definite then their sum A its inverse A7t are as well.
- Because A is symmetric, the terms in x can be collected by rewriting the quadratic

form about the location of its minimum x = A™'b, such that

(x— A7B)TA(x - A7) = x"Ax - 2(A7'b)TAx + (A'b)TA(A D)

=x"Ax- 2T (AT Ax + bT(£A)TAA D
=xTAx - 2bTx+ bT__A"lb

or that
(34) xTAx-2bTx = (x - A7'b)TA(x - A7'b) —b7A™b.
After sibstituting this into (33), we get that -

2 =

Qx)=xTAx~ 2bTx% ¢
‘= (x—-A7b)TA(x—A™b) +c—bTA™ b -
(33) = (x-A"D)TAX-ATD) + Qmin- -

)

Expanding the value at the minimum

Omin=c—bTA™'b
= xTH,x, ~ (Haxo)T (H, + Hp) ™ (Hax.) -
= x Hyx, - x7 (H,(H, + H)) TH,) x,
=x! (Ha ~ Ho(H, + H)) " H,) x..*

7\' 80
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1. THE CONVOLUTION OF (GAUSSIANS

This can be simplified further by factorizing out H, on the left and {H, + H) 7 H, on the

right
Qmin = xTH, (H7' (Hy + Hy) — T) (He + He) ™ Hox,
= x E, (H'Hy) (H, + Hy) ™ Hox,
= xTHy(H, + Hp) " Hax,
= xT (H7' (8, + H)H;) ™ x,
(36) =xT(H'+ H) ™ x,

With this, the convolution (32) is separable into two Gausstans, only one of which is o
function of x, that is

(Ga ¥ Gi)(xd) = [ exp(~Q(x) dx

<

_ / exp(= ({x = A7B)TA(x = A~™b) + Qin)) dx
X
(37) = exp(=Qumin) j exp(—~(x— A7'b)TA(x ~ A7'b)) dx.
l\’

The integral of the Gaussian over the space X has a known solution — that nsed to normalize

the multivariate normal probability distribution. Let us first change variables o y =

x~— A7lb, then dx = dy, so

‘ i L
] exp(—(x — A7'b)TA (x - A7'b)) dx = f exp (—;y’ (QA)y) dy
X - X =

i

= 2m)E()2A])?
= (2m)% 2H, + 2H,|"?

=
H _-'-
N = (2n)7 |C;' + C;' |77
' When it and (36) are substituted into (37),%@0 get, that the convolution of two multivariale
g Gaussians - !' g
:
(2m)n/ 1 r -,
'J (Gn * Gb) (X‘-) = -I—C;l—.*./c;)’_l exp —Tz‘xc (Cu + C{,) p.
\:,
\\“ ; (2'{)” -
\ 38 =4 = G(%Xe, Cu+ Cp) :
\\\ : ‘ ( )/ ) |C;[ + Cb_l | ( (4] h [/} b)
\ i p74
e I . ) .
is itself 2 Gaussian yv/)zere;tl:;e cgvariances are summed.
. - -_,_—-—-’/
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2. INTEGRAL OF THE PRODUCT OF NORMAL DISTRIBUTIONS

2. ‘Integra] of the Product of Normal Distributions

When integrated the product of two normal distributions is a normal distribution. This
is Lo be expected as the integral is really the convolution of normalized Gaussians, and as
we have shown in Section 1, this is itsell a Gaussian. Because the Gaussians have been
normalized we would expect the convolution to be normalized as well.

As was stated in Chapter 4, a multivariate normal probability density function over

the space X is a normalized Gaussian

1 1
N(x-x,,C)= _(-T—IE‘_I X (-§(x -x,)7Cx - x“))
(39) _ G(x=x,,C)
- ~ Ve €

centered on the mean value of the distribution x,, and with a dispersion in the various
parameter directions given by the covariances C.

The integral of the product of two normal distributions can be written as the convolu- -
tion of two Gaussians. To show this we first note from (39) that G(x—-x,, C) = G(x,-x, C).

This is simply a consequence of the symmetry of the distribution. Thus we have that

G(x —%,C,) G(x~x%,Cs) d
G Gl /@G
/G(xa %,Ca) GX =%, Cy)
(27)"/1Cq| |Gy

Aftera cltiﬁlé;c of variable y = x—=x;, it lollows that dy = dx and that this is the convolution

) /N(x Xay Ca) N(x —x3,Cp) dx =
X

N

of Lwo G aussians

= G ((xﬂ- — xb) - Y, Ca) G(yv Cb)
/A (27)/ICal- 1G] e dy.
- (Ga * Gp) (%o — X5)

T )G G

Frotn (38) with x. = (xq — X3)

[ 8300, €} N30, €)= [0 = G (% = 3, Ca + Ci)
X . Ic +C ()7-)71. /[C | chl ]

— G (x4 = X3, C, + Cs)
JemrICdl (G €2 + G5

(-10)
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2. INTEGRAL OF THE PRODUCT OF NORMAL DISTRIBUTIONS

Using the well known property of determinants that |C,| |Cil = |C,Cul we can reorder
and write that

ICal ICel |CF' + €| = |Ca(CF + CFIC|
(41) ={Cy + Csl.
After substituting this into (40), we sce that that the integral of the product of the two
normal distributions (really the convolution of two normal distributions) is
G(Xa — X3, Cy + Cy)

vV (27)"|C, + Cu
=N (X:: — Xps Crl + Cb)

(42) . . = N(xp — x,. C. + Ci)

f N{x—=x%,.C.) N(x - x,Cp) dIx =

which is also a normal distribution, but where the covariances are summeod.
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