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• ABSTRACT

This thesis deals with the nonlinear dynamics of an articulated system of

cylinders in confined axial fiow. The articulated cantilevered system is composed

of rigid cylindrical segments, interconnected by rotational springs, and is hanging

vertically in the centre of a cylindrical pipe, with fluid flowing downwards in the

narrow annulaI' passage.

The eqnations of motion were obtained by application of Lagrange's equations,

for a system with an arbitrary number of articulations. The forces associ<:ted with

the structure itse!f, i.e. the inertial, restoring and gravity forces acting on the

structure, arc taken into account in the kinetic and potentia! energies of the system.

The hydrodynamic forces are incorporated partly in the kinetic energy and partly

.e' ge""raiized forces.

,\s the articulated system interacts with the outer pipe, this interaction or

impact is modelled by a cubic or a trilinear spring, or by using the coefficient of

restitution method.

The critical flow velocity for the onset of f1uidelastic instabilities, such as

divergence or flutter, is calculated by a linear eigenvalue analysis. Then, two models

for the equations of motion are investigated, both ana!ytically and numerically.

Centre manifold and normal fOrIn theory are used to calculate the post-Hopf limit

cycle amplitude, which will be compared with that obtained numerically.

Phase portraits, power spectral densities and bifurcation diagrams indicate in

some caSl'S a clear period-doubling cascade leading to chaos, while in others chaos

arises via the quasiperiodic route or via type III intermittency. In addition, Poincaré

maps and Lyapunov exponent calculations confirm the existence of quasiperiodicity

or chaotic motion.



SOMMAIRE

Cette thèse traite de la dynamique nonlin,;aifl' d" cyEndfl'" arti,-nlt·," SOUlms

à un écoulement annulaire axiaL Le système articul,; enca"tr" libre ,'"t. coml"lS" d,'

segments rigides cylindriques, reliés par des re"SI,rts rotationne1s, d. ""1. "1ISP"llllu

verticalement au milieu d'un cylindre externe, l'écoulement coulant ver" It, IIi," dan"

un espace annulaire restreint.

Les équations du mouvement ont. été obtenus par l,," i'quations d" Lagrilllg",

pour un nombre arbitraire d'articulations. Les forces iL,"ocii,'s i, la strud.ufl', C',,"t il

dire, les forces d'inertie, de raideur et de gravitation, sont incorporé"s dans l','nl'rgi,'

cinétique et dans l'énergie potentielle du système. Les forces hydrodyuamiqlll's sont

incorporées en partie dans l'énergie cinétique et en partie dans \"" forces g"n'·'ralis"l's.

Lorsque le système articulé entre en contact avec le cylindre "xtert1l', cd.tl'

interaction ou impact est modelisée par un ressort cubique ou un ressort trilin,',aifl',

ou par la méthode du coefficient de restitution.

Les vitesses critiques de l'écoulement pour lesquelles des iustabilit,;s

fluidelastiques apparaissent, comme la divergence ou le flottement, ont "té calcul,'·,,"

par l'analyse linéaire des valeurs propres. Ensuite, deux nlOlli,les d'"quations dl'

mouvement ont été analysés, analytiquement et numériquement. La th"ori" ,It,

la forme normale et celle des variétés centrales ont été utilisées pour 1" cakul d"

l'amplitude du cycle limite qui existe après la bifurcation de Hopf. Ces aJnplitud"s

ont été comparées avec celles obtenues numériquement.

Les portraits de phase, les analyses spectrales et les diagrammes de bifurcations

indiquent 'lue dans certains cas, le chaos provient d'un douhlement de p,)riod", aloI'"

'lue dans d'autres cas, le cbaos survient par quasipériodicit" ou par une interrnitt"nc.e

de troisième type. Les cartes de Poincaré et le calcul des exposants de LyaJlunov

confirment l'existence de mouvements quasiperiodiques ou chaotiques.
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• STATF\1ENT OF CONTRIBUTION TO ORIGINAL

KNOWLEDGE

The nonlinear dynalnits of a system of articulated cylinders subjecLcd to external

axial flow is the snbjecl of this stndy. The contributions of this thesis to original

knowblge arc the modclling of the nonlinear equations and the analysis of different

routes leading to chaos for this new mode!.

To the bcst of the author's knowledge, this is the first time this nonlinear

modd is constructed and its chaotic behaviour discussed. The contributions of this

work are sumlllarized as follows:

1. Two new and original models for this system are construcled, the first linear

and the second nonlinear. In both models, the impacting of the articulated

system with the external cylinder is modelhd by a cubic or a trilinear spring,

or by the method of restitution coefficient.

2. An important number of significant conclusions concernmg the nonlinear

dynamical behaviour of the system are established in this thesis, for various

physical and geometrical parameters.

:J. Various dynamical tools, such as phase portraits, bifurcation diagrams, power

spectral densities, Lyapunov exponents and Poincaré maps, are constructed

and tllTee TOutes leading to chaos are found: the classical period-doubling,

the qnasiperiodic route, and the type III intermittency route; this !ast route

to chaos through intermittency is very original, and before to the author's

knowledge this has not been encountered elsewhere.
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Chapter 1

INTRODUCTION

1.1 MOTIVATION

In many engineering applications, flow-induced structural vibrations may arise and

may cause problems. The subject of this Thesis is flow-induced vibration, including

chaotic vibr~tion, of cylindrical structures subjected to confined axial flow. The

structures considered model various industrial components, such as components of

valves, heat exchangers and nuclear reactor cores.

The vibration of the cylindrical structures subjected to external flow is a

complex phenomenon, in which difliculties arise due to complex flow geometries

and arbitrary, and changing, angles of incidence of the f10w vis-à-vis the cylindrical

structure. For this reason an idealization is often made that the flC'w is either purely

axial with respect to the long axes of the cylinders, or purely normal to the axis. In

this Thesis only the case of axial confined f1ow, i.e. annular flow, will be treated.

In most nuclear reactors, the nominal flow of the coolant past the fuel rods

in the core is indeed axial. The vibrations induced by this flow are very small,

but may still cause inter-cylinder impact, which in turn may produce wear and

fretting damage. On the other hand, confined axial f10w (Le., annular flow or, as it

is sometimes called, "leakage" f1ow) may induce instabilities, Le., large amplitude

1



seU-excited oscillations. Sorne case histories invclving external-axial-llow-induccd

vibration problems in industry have been compiled by Païdoussis (1980); sec also

Païdoussis (1987, 1993). These problems may cause the stopping of a nuc1ear reador

operation for long periods of time, which is very costly, or equally serious problems

in other applications.

Hence, the study of the problem and an understanding of the phenomena

underlying annular f10w problems are important. Such studies may lead, for

example, 1.0 a better design of the annular f10w passage between the control rod

and the guide tube channel in certain readors, t.hus minimizing the possibility of

severe vibration and vibration-related breakdowns.

All the theoretical work on the topic of systems subjected 1.0 externa1 axial

f10w has been done till now only with linear theory, and is thus applicable for

f10w velocities smaller than the critical ones. This is the first time when a system

subjected 1.0 such f10w is studied with nonlinear theory, which means that it can

also be ~tudied for f10w velocities higher than the critical f10w velocities where the

system first loses stability.

Therefore, another motivation of this Thesis is the understanding of nonlinear

dynamics of the system analyzed, by the use of modern nonlinear dynamics theory,

currently being actively developed and used in applied mathematics, engineering

and science (including medicine).

1.2 FROM PREVIOUS INVESTIGATIONS

TO THE PRESENT ONE

In engineering, vibrations of cylindrical structures induced by unconfined or not

tightly confined axial f10w involve maximum amplitudes much smaller than those

induced by cross f1ow: typically of the order of 10-3 or 10-1 cm. This is one

2



• important reason why the study ofaxial-f1ow-induced vibrations began much later

(around 1958) than that of cross·f1ow (around 1878).

In the axial f10w case, there is (usually) no f10w separation, and the f1uid f10ws

along the length of a given structure. The opposite is true in the cross·f1ow case,

where there exists f10w separation and, in the case of multiple cylinders, the fluid

"encounters" structural elements sequentially. Therefore, the theoretical analysis

of the axial f10w case is much casier than that for cross-flow, and it is possible to

develop analytical methods to a much higher level than those for the cross-flow case.

Three different classes of problems have been identified, depending on the

disposition of the f10w with respect to the long axis of the cylindrical structures (and

will be discussed in the sections indicated): axial flow inside cylindrical structures

(Section 1.2.1), axial flow outside cylindrical structures (Section 1.2.2), and axial

f10w in annular regions between coaxial cylinders (Section 1.2.3).

1.2.1 Axial flow inside cylindrical structures

Bourrières (1939) was perhaps the first to study the oscillatory instabilities of flexible

pipes conveying fluid. Studies in the area of internai f1ow-induced vibrations were

continued in the early '50s by Ashley and Haviland (1950), in connection with the

study of vibration of the Trans-Arabian pipeline. Later, Feodos'ev (1951) and

Housner (1952) found that for sufliciently high flow velocities a pipe supported at

both ends may be subjected to divergence, i.e., it may buckle, essentially like a

colurnn subjected to axial loading. A subsequent study by Niordson (1953) led

to the sarne equation of motion and to essentially the sarne conclusions regarding

stability of pipes with simply-supported ends. In ail the above studies, excepting

Bourrières', the only form of instability discovered was divergence.

It was not until the '60s that Benjamin (1961a,b) predicted analytically the

existence of oscillatory instability (of the single-mode flutter type) of articulated

3



• cantilevered pipes conveying fluid. He found further that divergence was possible

only in the case of vertical cantilevered articulated pipes (where gravity is operative)

conveying a sufficiently heavy fluid (water, for example). If the fluid is air,

only oscillatory instability can be observed. The occurrence or non-occurrence of

divergence depending on the fluid conveyed was perplexing, and was clarified later

by Paidoussis and Deksnis (1970).

Benjamin (196111.) also derived the equation of motion of a continuously flexible

cantilever conveying fluid, by letting the number of degrees of freedom of the system

approach infinity. This problem was further studied by Gregory and Paidoussis

(1966a,b) for horizontal cantilevers. They have confirmed, by both theoretical and

experimental work, the existence of oscillatory instability of horizontal cantilevers

conveying fluidj divergence was found to be impossible. In this case, the behaviour

of a continuously flexible cantilever conveying fluid was qualitativcly identical to

that of an articulated onej this is not surprising, considering that the articulated

cantilever may be regarded as a lumped-parameter model of a continuously flexible

one.

Later, Paidoussis (1970) found that vertical, continuously flexible pipes are

never subject to divergence, irrespective of the fluid conveyedj they are subjecl only

to oscillatory instability. It was assumed that a close analogy in the behaviour of

the two systems (articulated and continuous) would be obtained in case of vertical

cantilevers, as it was in the case of horizontal cantilevers. The transition from

discrete to continuous system was studied in detail by Paidoussis and Deksnis (1970),

who also c1arified the aforementioned "anomaly" in dynamical behaviour concerning

divergence, referred to in the foregoing.

More complex problems have been studied, such as the dynamics of curved

pipes conveying fluid, the dynamics of straight pipes containing unsteady flow, and

the dynamics of thin shell-like cylindrical pipes conveying f1uid. In the latter case,

it was found that the system is subject to shell-type instabilities due to the internai
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• axial f1ow; these have applications in the study of flutler and collapse of pulmonary

passages due to high aspiration rates (Grotberg and Davis 1980; Webster et al.

1985).

The chaotic motions of a cantilevered pipe conveying fluid were observed for

high f10w velocities (Paidoussis and Moon 1988), and these motions were analyzed

by Fast Fourier Transform, autocorrelation, Poincaré map and delay embedding

techniques. A fractal dimension of 3.2 of the system in the chaotic regime was

calculated, see also Paidoussis, Cusumano and Copeland (1992), suggesting that

four-dimensional modelling (two degrees of freedom, N = 2) may capture ail

essential fcatures of the dynarnics of this system. These studies were continued

(Paidoussis, Li and Rand 1993) on higher-dimensional models (N > 2) and a

convergence of the results for N =4 or N = 5 was shown in terms of the thresholds

of Hopf and period-doubling bifurcations, and for the onset of chaos. In this paper,

a quantitative comparison between theory and experiments was done, as weil as

with an analytical study involving centre manifold computations. The dynarnics of

a f1uid-conveying cantilevered pipe with an intermediate spring support was further

numerically investigated (Paidoussis and BernIer 1993). A review of the topic of

inlernal-f1ow-induced instabilities has recently appeared (Paidoussis and Li 1993).

1.2.2 Axial flow outside cylindrical structures

We shall now review sorne work related to the study of vibrations induced by

external axial flow over cylindrical structures. The research in this area began

almost twenty years later than the studies done on axial flow within cylindrical

structures. Generally, it was found that there are sirnilarities in the dynamical and

stability behaviour of the two cases. For example, provided that the flow direction

comcides with the axis of the cylindrical structures at rest, then, for small motions

about the position of rest, the forces exerted by the fluid in the two cases of internai
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• and external flow are close1y similar. This becomes evident on considering that

the forces exerted by the fluid, excepting those due to fluid friction, in both cases

arise from lateral acceleration of the flowing fluid, caused by lateral motion of the

cylinder. In external flow, this acceleration is associated with the virtual or 'added'

mass of fluid (Munk 1924), which is dynamically equivalent to the contained mass

of fluid in internai flow.

Research into the vibration of cylindrical structures due to external axiaillow

has been done since 1958, beginning in the USA with Burgreen et al. (1958).

Work was continued in the USA in this direction by Shields (1960), Quinn (1962,

1965) and Pavlica and Marshall (1966). Simultaneously, work was done in France

at SOGREAH (1962), in Sweden by Rostrom and Andersson (1964a,b,c) and in

Canada by Paidoussis (1965, 1966a). These studies, the first to appear in the

open literature, had the following aims: (a) ta measure the amplitude of vibration

of particular cylindrical configurations which modelled nuclear reactor components

and flow conditions; (b) to understand the nature and causes of the vibration, and

(c) to develop means of predicting the vibration amplitudes in arbitrary cylindrical

configurations, which is very important for design.

Later, the instabilities of cylindrical structures in axial flow were first studied

theoretically and experimentally in the '60s by Paidoussis (1966a,b) for systems in

unconfined flow. (These instabilities occur at flow velocities much higher than those

in most applications; in the latter, only the low-amplitude vibration, studied as

per the foregoing paragraph, is of concern.) In the theory, the inviscid forces were

formulated by means of Lighthill's (1960) slender-body theory and viscous forces

were adapted from formulations developed earlier for unconfined flows by Taylor

(1952). It was found, both theoretically and experimentally, that cylinders with both

ends supported lose stability by divergence, followed at higher flows by coupled-mode

flutter. In contrast, cantilevered cylinders lose stability by one-degree-of-freedom

flutter (Hopf bifurcation), and this only if the free end is streamlined (i.e., it is
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• terminated by an ogival end). Similar work was conducted for towed cylinders,

displaying a more intricate dynamical behaviour (Hawthorne 1961; Paidoussis 1968).

This thcory was extended Jater (Paidoussis 1973), removing an inconsistency in the

formulation of the viscous forces (which did not change the predicted dynamical

behaviour substantially) and considering the effect of confinement of the flow by a

duct. Both inviscid and viscous forces were developed from the earlier formulations.

It was found that, as the flow becomes confined, the unsteady inviscid forces

associated with lateral motions of the system become larger (effectively, the virtual

mass of the fluid is incrcased) and the system loses stability much earlier.

In parallel to the foregoing, similar and notable research on the dynamics

and flow-induced vibration of cylinders in axial flow was conducted by Chen and

co-workers (Chen and Wambsganss 1971; Chen 1977; Yeh and Chen 1978) and by

Paidoussis (1979), where the references cited are examples of an extensive set of

publications.

Furthermore, Hannoyer and Paidoussis (1979) have studied the effect of

nonuniformity of cantilevered axisymmetric bcams on their stability in internai

and external flows. Conical beams subjected to internai flow are less stable than

cylindrical ones. In the external flow case, the opposite effect was observedj fully

conical cantilevered beams do not become unstable, while for truncated conical

cantilevers, instabilities are possible at higher flow velocities than for the cylindrical

ones, if the free end is strcam1ined sufliciently.

1.2.3 Axial flow in annular' regions between coaxial

cylinders

Annular axial-flow over structures may be seen as an intermediate situation between

external and internal axial flow in or around structures. Paidoussis and Ostroja­

Starzewski (1981) studied the annular flow case and (i) derived the inviscid forces
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•

e

for confined f10w by the full (linear) potential-f1ow theory, rather than the slender­

body approximation, so that the analysis would also be applicable to non-slender

cylinders also, and (H) considered compressibility effects. The inviscid forces in this

case were formulated by means of the generalized force Fourier-transform method.

It was found that the potential f10w refinement effectively raised the critical f10w

velocities for instability, especially for non-slender cases, since slender-body theory

overestimates the f1uid-dynaITÙc forces on cylinders. It was also shown that the

effect of compressibility on the dynaITÙcs of the system is weak for slender cylinders,

while being strong (significant) for non-slender ones.

Later, Hobson (1982) considered a rigid cylindrical body which was hinged

at a point and coaxially positioned in a f1ow-carrying duct of nonuniform cross­

sectional area. Again he showed that the confinement of the narrow annular passage

produced an increase in the negative f1uid damping, which leads to oscillatory

instabilities. This mathematical model explains the destabilizing elfect of an

upstream constriction and the stabilizing effect of a downstream end constriction

of the annulus, on the system. Mateescu and Paidoussis (1985) represented a more

rigorous, but more limited in its applicability, analytical inviscid model for the same

physical system, hinged at sorne point along its length. It was shown that there exists

a criticallocation of the hinge: if the hinge is situated upstream of that locat.ion, then

the system remains stable at ail velocitiesj on the other hand, oscillatory instabilities

are possible if the hinge is moved downstream past that location. In addition, the

critical location of the hinge is influenced by axial variations of the annular gap.

Sorne improvement of the model was later made to account approximate1y for the

unsteady viscous effects which were found to have a stabilizing influence on the

system (Mateescu and Paidoussis 1987).

Experiments (Mateescu et al. 1988) validated the theory in these studies. For

example, for different positions of the hinge, the unsteady pressures, frequencies

of oscillation and How velocities, were measured and then compared with the
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• corresponding theoretical ones. It was found that, except near the body extremities,

good agreement was obtained.

Several other papers by Mateescu and co-workers on the same topic followed;

sec, e.g., Paidoussis et al. (1990).

1.2.4 Articulated cylinders in axial flow

1.!L/.l Articulated cylinders with internai flow

The first nonlinear study on an articulated system of two rigid pipes flexibly

interconnected, was done by Rousselet and Herrmann (1977). The equations of

motion were a modified form of Benjamin's and Paidoussis and Deksnis', in which

the flow velocity may vary with motions of the system through a frictionalloss factor,

but the upstream pressure remains constant (Roth 1964). The nonlinear form of

the unstable-mode equation was then solved by the Krylov-Bogoliubov method.

Bajaj and Sethna (1982a,b) conducted an analysis of three-dimensional

motions of the articulated cantilevered system in the neighbourhood of the critical

flow velocity for Hopf bifurcation. The joints in this case do not have torsional

rigidity, and they permit both motions transverse to the long axis of symmetry and

rotary ones about it. Periodic solutions of the nonlinear equations are determined by

the Method of Alternate Problems (Hale 1969; Bajaj 1982), which transforms a set of

ordinary differential equations into a set of algebraic ones; then, two independent sets

of periodic solutions to the algebraic equations were found to exist, corresponding to:

clockwise or counterclockwise rotary motions, and planar transverse motions. Their

stabilitj' ",' as determined by the Floquet exponents of the corresponding variational

equaL:onf,

The foregoing analysis was restricted to solutions in the neighbourhood of the

straight, vertical equilibrium. The situation when this restriction is removed has

been studied by Sethna and Gu (1985), where the 'limiting configurations' as u -+ 00
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• are examined. The authors examined live such generic shapes (configurations), all

of the type in which the equations are invariant. under rotation about the vertical

axis. The stability of these generic shapes was studied either by a linear approach or

by centre-manifold theory. They have found a second bifurcation (Hopf bifurcation)

beyond the one that was found previously, for which sorne of the generic shapes

become unstable. The analytical results were complemented by simulations.

Finally, Sethna and Shaw (1987) have studied codimension-three bifurcations

of a two-segment articulated system vibrating in a plane, near a point of double

degeneracy. A double degeneracy refers 1.0 the situation where a pitchfork and a Hopf

bifurcation occur simuitaneously for a special set of parameter values. Codimension­

three refers 1.0 three parameters being used 1.0 'unfold' the bifurcations in the vicinity

of this double degeneracy - i.e., 1.0 develop gradual1y the evolution of the bifurcation

as one or more parameters are varied. This is normal1y a codimension-two problem

(Guckenheimer and Holmes 1983), but here a third parameter corresponding 1.0

imperfection-related asymmetries was added.

ULf.2 Articulated cylinders in external fiow

Interest in the behaviour of articulated cylindrical systems in external axial flow is

more recent than that of the continuous (distributed parameter) systems in external

axial f1ow. Work was done (i) in conjunction with the dynamics of fuel "strings" or

"stringers" of certain types of nuc1ear reactors (Païdoussis 1976), and (H) underwater

systems towed by a submarine (Hamy 1971; Païdoussis 1986). The fuel strings in

question consist of fuel bundles held together by a central support tube; the string

is mounted vertically within a pressure tube, and is held al. the bottom end and

free on top, with the f10w upwards. The theoretical study by Païdoussis (1976) is

of special interest here, since the physical system in that paper is quite similar 1.0

that considered in the present study and, hence, so are the equations of motion ­

although in the case of the fuel string they are considerably more complex.
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• Another example, item (ii) in the previous paragraph, is the concept of a

"Sea Chain System", which was put forward in the early '70s (Hamy 1971). The

"Sea Chain" is a submarine system consisting of a power module pulling a series of

quasi-cylindrical freight modules, ail connected by flexible couplings. This system

is suited for operation in the Arctic as a transportation system for oil, gas and

bulk cargo, its advantages being that: (i) it avoids the difficulties associated with

surface transport in ice-infested waters; (H) it is highly manoeuvrable; (iii) it is

adaptable to transporting different cargos by simply changing modules. This system

is similar to the Dracone, a semi-submerged, highly flexible, sausage-Iike container

towed behind a small craft (Hawthorne 1961; Dunlop Dracones 1969), which is used

for the transportation of oil and other Iighter than sea-water cargo, including fresh

water, to arid lands (e.g., to sorne of the Aegean islands from the Greek mainland).

Also of interest to the present study is the work on "pendular oscillations"

of articulated systems modelling nuclear reactor reactivity-monitoring or -control

systems, e.g., by Hennig et al. (1980) and Peterka (1991), where the cylindrical

elements are hung in the form of simple or compound pendula within a tube and

are cooled by annular f1ow.

The chaotic motions of an articulated cylinder system subjected to external

axial f10w have been studied by Paidoussis and Botez (1993); sorne of the results

obtained will be presented in the first part of this Thesis.

1.3 MOTIVATION FOR AND OUTLINE

OF THIS THESIS

It has been discovered quite recently that the motions of very simple dynamical

systems cannot always be predicted far into the future. Such motions have been

called chaoUc and their study has prompted a discussion of sorne new mathematical

11



• ideas in dynamics. The nonscientific concept of chaos is very old and oCten associated

with"a physical state or human behaviour without pattern and out of controi. In the

current literature, uchaotic" is a term assigned to a c1ass of motions in deterministic

physical and mathematical systems whose time history has a usensitive dependence

on initial conditions".

It is well known that an articulated system subjected to external axial f10w

loses its stability at high flow velocities by flutter or by divergence. AlI the early

theoretical work on this topic has been done with linear theory. With the recent

interest in chaotic motions of non-linear systems (Guckenheimer and Holmes 1983;

Moon 1987), it seems appropriate to look into the possible existence of chaos in this

particular system.

This Thesis deals with the dynamics of a system of articulated cylinders which

are interconnected by rotational springs, within a pipe conveying fluid, with f1uid

f\owing downward in the relatively narrow annular space. Analytical models for

this system (of two, three and four degrees of freedom) are developed, and their

dynamics, taking into account possible impacting with the outer pipe, are explored

mainly numerically. It is shown, for the first time, that this system can develop

chaotic oscillations.

The two models differ in the way the set of equations of motion is considered: in

the first model, the dynamics of the system when no impact occurs with the confining

pipe is described by a set of equations which are linearizedj in the second case, the

nonlinearities are taken into account approximately and are introduced mainly via

Taylor expansions of the trigonometric functions of state variables; nonlinear terms

are retained up to order three. In both models, impacting with the pipe is modelled

by a trilinear or a cubic spring, presumed to exist between the pipe and the element

of the articulated system contacting it.

This Thesis consists of eleven chapters. In Chapter 1 a brieC review is given oC

previous studies related to the research work of the Thesis. The goals undertaken
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• by the Thesis have also been stated, and now the outline of the Thesis is being

presented.

In Chapter 2, the development of the first analytical model for a system of

cylinders subjected to a confined axial 1I0w is given in detai1. Presented are (a) the

description of the system and assumptions made, (b) the energies of the system, (c)

the lIuid-dynamic forces, in which are included also the nonlinear forces due to the

cubic spring or to the trilinear spring. In Chapter 3, the fol1owing are presented: (a)

a theoretical stability analysis of the first model (no impacting with the channel),

and (b) the methods used in subsequent chapters to study the nonlinear behaviour of

this system, namely for bifurcation diagrams, phase-plane portraits, power spectra

and time traces, Poincaré maps and Lyapunov exponents.

In Chapter 4, the numerical results are presented for the first model, in which

the equations of motion are linearized, modelling impact with a cubic spring and for

N = 2 (two articulated cylinders), for four different cases. The analytical results,

including those of centre manifold theory are presented in Chapter 5, for the same

system (N = 2). In Chapter 6, the numerical results for N = 3 and 4 for the first

model are presented, for the same cases as those in Chapter 4.

In Chapter 7, the results obtained for two- and three- degree-of-freedom

systems are compared for different parameters, and additional results for the first

model with impacting model1ed by a trilinear spring are further presented.

In Chapter 8, the second model of a system of cylinders subject to a confined

axial 1I0w is described and the nonlinear equations of motion are derived. Chapter 9

gives the numerical results for the two-degree-of-freedom system, for the same four

cases as those considered in Chapter 4.

In Chapter 10, the results obtained for the two models with N = 2 (in

Chapters 4 and 9) are compared to those obtained by restitution coefficient theory.

Final1y, Chapter 11 wraps up the Thesis with a summary of general conclusions and

suggestions for future work.
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•
Chapter 2

THE FIRST THEORETICAL

MODEL

2.1 DESCRIPTION OF THE SYSTEM AND

ASSUMPTIONS MADE

The articulated system here under consideration consists of a number, N, of

rigid cylinders interconnected by rotational springs, with the lowest cylinder being

terminated by a more or less streamlined, ogival end. The system is hung vertically

in the centre of a pipe (Figure 2.1.(a)), and is supported at the upper end and free

at the lower one. Fluid f10ws downward in the relatively narrow annular space.

To simplify the analytical model and, thus, to be able to carry out the analysis

into the chaotic regime easily, a number of assumptions are made at the outset, as

fo\lows:

(a) The f1uid is incompressible and of uniform density, and it is fiowing with a

uniform velocity U parallel to the x-axis, which coincides with the position of rest

of the articulated cylinder system.
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(h) The diameter of the cylindrical elements is small compared to the length

of the articulated system.

(c) Since the system under consideration does not model any particular

physical system, it may he considered to he so constructed that motions of the

articulated system are indeed planar.

(d) As the annular space - hetween the articulated cylinder system and the

external pipe - is narrow (despite the diagrammatic spaciousness of Figure 2.1.(a)),

the motions of the articulated system are considered to he of small amplitude, as

constrained (contained) hy the presence of the external pipe; that means that the

dynamics of the system when no impact occurs with the confining pipe may he

descrihed hy a Iinearized set of equations.

(e) The presence of the external pipe (confining channel) hecomes "felt" hy the

system - quite apart from the effects on the fiuid/fiow-induced forces - via the

impact-related forces. A trilinear spring model for such impact is quite reasonable:

there is no spring (zero stiffness) while the system oscillates without touching the

wall; hut once it does, then further movement is resisted by a very large stiffness

associated with local deformp,tion of the articulated system and of the constraining

pipe wall. The cuhic spring (to he discussed in Section 2.5) is a further idealization

of the situation (cf. Paidoussis and Moon 1988; Paidoussis et al. 1992), and is

introduced strictly for analytical convenience.

(f) Another assumption made implicitly is that, despite the articulations and

the rotational springs (which are presumed not to protrude into the fiuid fiow), there

is no local separation of the fiow as the articulated system oscillates, by virtue of

the small angles of defiection involved. For the same reason, slender-body theory

will be presumed to he applicable for the determination of the inviscid fiuid forces.

(g) The essence of this "first" model is that, apart from impact-related forc;es,

the equations of motion will he Iinearized. Hence, the equations of motion will he

correct to O(f), where ifJj ~ O(f). Accordingly, second order terms will he neglected
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• in the forces, and terms higher than second order will be neglected in the associated

energies (Section 2.2).

Concerning the f1uid forces, they could in principle be determined by an

appropriate solution of the Navier-Stokes equations. This will not be attempted

here, and the f1uid forces will be determined essentially by superposition: inviscid

and viscous forces will be determined separately. This has been shown to be quite

acceptable (Paidoussis 1966a,b, 1973) for the continuously flexible counterpart of

the present problem, as weil as for more complex systems (Païdoussis 1979). Then,

the forces associated with the structure itself, i.e., the restoring, inertial and gravity

forces acting on the structure, are taken into account in the kinetic and potential

energies of the system. The hydrodynamic forces are incorporated partly in the

kinetic energy and partly as generalized forces.

The equations of motion will be obtained by application of Lagrange's

equations, for a system with an arbitrary number of articulated cylinders, N,

a1though the calculations to be presented will be confined to N = 2, N = 3 and

N = 4. The lengths of the cylinders in the system are 1;, the interconnecting

rotational spring stiffnesses are kj , and the generalized coordinates chosen are the

angles of deformation tPj , where j =1, ... , N, as shown in Figure 2.1.(b).

2.2 ENERGIES OF THE SYSTEM

As the equations of motion will be derived by the Lagrangian method, in this section

the kinetic and potential energies of the structure will be determined. The kinetic

energy of the system will have two components, one due to the structure, and the

other due to the f1uid.
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(2.1)

• 2.2.1 Kinetic and potential energies of the structure,

TB and V.

In this section, the kinetic and potential energies of the structure, T. and v., of the

articuiated system itself, are determined in terms of generalized coordinates, which

are the angles of deformation, q,j (Figure 2.1.(b)). Small deformations are assumed,

so that sin q,j ~ q,j and cos q,j ~ 1.

The local coordinate eis defined, along the length of each cylinder segment,

o~ e~ lj (Figure 2.1); then, for small defiections, the velocity at point eof the jth

cylinder is
j-1

Vjte) =L: lq ~q H ~j ,
q=1

where the dot denotes differentiation with respect to time, t. Hence, the kinetic

energy of the j th cylinder is

(2.2)

where mj is the mass per unit length and the subscript s stands for "structural". The

total kinetic energy of the structure, neglecting the ogival part of the last cylinder,

is

(2.3)

The potential energy of the structure V. has two components, one due to

gravity and another due to the strain of the intercylinder connecting springs. The

potential energy of the jth cylinder due to gravity, Vg;, is given by

(2.4)

where, by Taylor series expansion, 1- cos q,j ~ ~q,J has been used, and the subscript

9 stands for "gravity" ,such that the potential energy is correct to O(E2) if q,j ~ OtE),

as it should.
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• The potentiai energy associated with the strain of the spring connecting the

jth and the (j - 1)th cylinders is

(2.5)

where the subscript s stands for strain.

FinaIly, for smaii displacements, the total potentiai energy of the structure

may easily be found to be

(2.6)

2.2.2 Kinetic energy of the fluid, Tf

We adapt to this problem Lighthill's work (1960), which is essential1y an application

of slender body theory. By this theory, we shaH calculate the normal llow velocity

at any point eof the jth cylinderj with this llow velocity, we shal1 then calculate

the kinetic energy of the fluid, TJ.

We describe the articulated cylinder system subjected to external axial f10w

as 'straight' when it is stationary in the vertical position (x direction), such that

no resultant normal force acts on its cross-section. Then, we suppose that the

articulated system has a displacement h(x, t) from the straight position in the y­

direction (Figure 2.2.(a))j the x and y directions are defined in Figure 2.1.

Furthermore, in Figure 2.2(a) we introduce the new system of unit vectors

(Ït,jl) which corresponds to the (ij) unit vector system rotated by an angle t/> in

the counterclockwise direction.

We isolate an element of a cylinder as in Figure 2.2(b), and then, by slender

body theory, the flow may be regarded as composed of (a) the steady f10w around

the straight body, in which case the flow velocity is v. = U cost/>i. ~ Ui ll and (b)

the flow due to the displacement h(x, t). In the latter case, the relative fluid-body

velocity in the direction normal to the element, that means in the j) direction,
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• is V6 = (ah/ât) cos ri> + U sin rI>. For small displacements (ah/ax), cos ri> ~ i,

sin ri> ~ tan ri> = ah/aXj therefore, in the jl direction and for small displacements,

V6(X, t) = [ah(x, t)/atl +U[ah(x, t)/axJ. In our case,

ay ay
V6(X,t) = at + Uax (2.7)

in the jl direction. Then, the total velocity of the fluid at point ç of the jth

cylinder, vfj(ç), IS composed of two components in the il and jl directions, and it

can be written as follows:

(2.8)

Therefore, the kinetic energy of the fluid at point ç of the jth cylinder is

(2.9)

where Mil and Mjl are the corresponding virtual or added mdSses of fluid in the

il and jl directions. The first integral gives rise to a constant, i.e. to a term

independent of ri> or~. Hence, when it is eventually substituted in the Lagrange

equations, it will contribute nothingj it can therefore be neglected from here on.

Mjl may be written as XpA for confined flow, where p is the fluid density,

and A is the cylinder constant cross-sectional areaj thus, for unconfined flow we

have X = 1, and Mjl = pA, as is weil known. Generally, X > 1 for confined

flow and it increases as the diameter of the confining flow-channel decreases. For

axisymmetrically confined flow (Le., annular flow between coaxial cylinders, which

is our case), X is found by potential flow theory to be (Chen et al. 1976):

X = [(1 +h)2 +1]/[(1 +h)2 - IJ, (2.10)

where h = Dh/D, D being the cylinder diameter, and Dh = Dch -D is the hydraulic

diameter of the annular flow passage, Dch being the internai diameter of the external

pipe (Figure 2.1(a)). It is implicit!y assumed in arriving at equation (2.10) that the
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displacement thickness of the boundary layer is small, as compared to the radius

of a cylinder in the system, and viscous forces are not too large (Le., the annular

passage is not extremely narrow).

Then, the kinetic energy of the Iluid associated with the inviscid component

of Iluid-dynamic forces will be

(2.11 )

2.3 THE FLUID-DYNAMIC FORCES

As has already been mentioned, the Iluid forces will be determined in several parts:

inviscid unsteady forces, hydrostatic forces and viscous forces. They will generally

be expressed as generaiized forces for introduction into Lagrange's equations.

2.3.1 Nonconservative inviscid force, Fne

If both ends of the articulated system were supported, expression (2.11) would

represent the whole of the inviscid component of the Iluid-dynamic forces. However,

the cantilevered system is generally nonconservative, and hence there will generally

be work done at the free end of the system by a nonconservative lateral inviscid

force, Fnc (cf. Benjamin 1961a,bj Paidoussis 1966a). This force is associated with

the non-cylindrical, ogival end of the last cylinder.

For a less than ideally streamlined end, this force will not develop fully because

(i) the laterai Ilow will not be truly two-dimensional, (ii) boundary layer effects. This

rnay be taken into account by introducing a parameter J, so that we obtain:

Fnc = (1- J)X f (:t +U:X) pS(x)vbdx

- X(I- J) f (:t +U:x) pS(x) (~~ +U:~) dx

~ X(I-J)P(~ +U:~)U f~:dx.
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• where w is the length of the noncylindrical part of the last cylinder and Vb is the

lateral velocity of the !luid, which is in fact the component in the j! direction of

vJj(e), as defined byequation (2.7).

Thus, we can write the final form of Fne, which is

(
ÔY ÔY)Fne = X(1 - f)MU ôt +Uôx ' (2.12)

in which f is a measure of departure from ideal slender body theory; as the end

becomes progressively blunter, f -> O.

For the articulated system, this expression may be written as follows:

(2.13)

2.3.2 The hydrostatic pressure forces, F px and F py

The static pressure distribution, p(x), in the external channel !low is determined by

the hydrostatic pressure distribution, modified by the skin-friction-related pressure

drop; since the latter is approximately linear, p(x) is taken to be linear. The

forces Fpz and Fl'lI acting on an element ée of one of the cylinders (Figure 2.3) are

determined by considering this element frozen and immersed in !luid on all sides.

Therefore, the resultant of the forces on the cylindrical surface of the jth

cylinder (in terms of Fpz and Fpu ) is equal to the total hydrostatic force on the

element, which is the buoyancy force, minus the forces pA acting on the two eut,

circular faces of the elementj i.e.,

F. <t' F. <t: dPA<t' (d(pA) .1. • d(pA)..I. ') <
- pzv~1 + l'lIv .... = - dx v~1 - -""""d;""" cos 'l'jl - """"d;""" sm 'l'jJ vX, (2.14)

where Aée is the elemental volume. Since, for the inclined cylinder, ôe/ôx = cos q,j,

the forces on the element ée of the j th cylinder are

(2.15)
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(2.16)

(2.17)

• for sma\l deformations (tan <Pj ~ <pj). These results could have bccn obtained

directly from adaptation of the equivalent results for a flexible cylinder (Paidoussis

1973): Fpz = 0, FI'lI = (8/8x)[PA(8y/8x)J. From the latter, it is seen that there is

also a change-Qf-angle (curvature term), which arises at the joints of the articu\ated

cylinders. This, for the jth cylinder, gives rise to a contribution in the generalizcd

force

-(dpidx )A/;/j sint<p; - <Pj).

It is evident from equation (2.15) that (FI'lI)j depends on the pressure drop

(dp/dx). This will therefore be estimated. Consider the simplified diagram of Figure

2.4, in which it is assumed that the steady static pressure is uniform in any cross

section. One can write
dp

Pl = P2 + dxAj,

where AJ is the annular f10w area.

A uniform frictional coefficient CJ is assumed to apply throughout, so that the

total frictional force is !p(D +Dch)U2Cj, where D and Dch were already defined in

Section 2.2. Hence, a force balance will give the fo\lowing equation:

AJd
dp =-!p(D +Dch)U2CJ+pgAJ.
x 2

By multiplication of the above equation by A/Aj, wc obtain

dp 1 'lrD2 /4 2
A dx = -2P(D +Dch) 'Ir(D~h _ D2)/4 U CJ+pgA. (2.18)

However, (D+Dch)D2/(D~h _D2) = D2/(Dch-D) = D2/Dh, where Dh = Dch - D

is the hydraulic diameter. Hence, one obtains

Adp = -!pDU2C/!.... + pgAj
dx 2 Dh

if Dh is very large (unconfined f1ow), then A(dp/dx) = pgA.

Hence, for small deformations, Le. tan <Pj ~ <Pj, one obtains
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• 2.3.3 Viscous Hydrodynamic Forces, FN and FL

The viscous forces acting on long inclined cylinders have been discussed by Taylor

(1952a). Taylor looked into cases where the boundary layer is either laminar

(Appendix A) or turbulent (Appendix B). One can write these forces, as follows:

where 9 = tan- I [(8y/8x)] + tan- I [(8y/8t)/U]. For small (8y/8x) and (8y/at)/U,

these equations reduce to

FN = î pDU C, (u ~~ + ~~) +î pD Cd ~~ ,

where the second term in FN represents a linearization of the quadratic viscous

force at zero flow velocity (Appendix Cl, îpDCdp 18y/atl(8y/at), in which the drag

coefficient represents Cd = Cdp(8y/ot). For a point in the jth cylinder for the

articulated system considered, these expressions may be written in the form

One could have used the more sophisticated but complex theory of Mateescu

and Paidoussis (1987) to obtain more accurate expressions for the unsteady

components of (FN)j and (FL)j - but, as shown by Paidoussis et al. (1990), the two

sets of expressions give very similar results insofar as stability of the continuously

flexible version of this system is concerned. Hence, the added complexity of that

theory is not warranted for the purposes of this Thesis.

2.4 LAGRANGIAN EQUATIONS

The Lagrangian method is useful for finding the equations of motion when the

number of degrees of freedom is large. Accordingly, if the generalized coordinates
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• are the angles of deformation </>;, then the equations of motion may be obtained by

application of Lagrange's equations

d(ÔL) ôL
dt 8[ - ô</>j = Qj. (2.24)

Here L = T - V, where T is the total kinetic energy of the system and is given by

T= T.+Tf , (2.25)

where T. and Tf are given by equations (2.3) and (2.11), respectively. The potential

energy is exclusively associated with the articulated system, and so it is given by

equation (2.6). Qj are the generalized forces, which will be dealt with next.

It is recalled that since a linearized set of equations is sought in this chapter,

whereas the energies are required to be correct to O(f2), the forces (and the

generalized forces) must be correct only to O(f), where </>j ~ O(f).

The generalized forces (actuaily moments) Qj, j = 1,2, ... N, will

be determined by considering the virtual work 5Wj associated with virtual

displacements 5</>j in the generalized coordinates </>j. Then the generalized force

Qj is defined via 5Wj = Qj 5</>j. We proceed to determine the component of the

generalized force Q1I associated with cylinder 1 and denoted by QI,I'

As shown in Figure 2.5(a), when the first cylinder is displaced by 5</>11 the

forces FN and Fpu do work, but FL and the base pressure PIAI do not. Hence, the

virtual work 5WI ,I is given by

(2.26)

then, QI,I = 5WI,I/5</>1'

Similarly, the virtual work associated with the forces acting on the second

cylinder, 5WI ,2' due to a virtual displacement associated with the generalized

coordinate </>11 may be evaluated with the aid of Figure 2.5(b). Thus, 5WI ,2 is

given by

5WI ,2 = -l' (FNh /1 5</>1 COS(</>2 - </>tl de +l' (Fpuh /1 5</>1 COS </>1 de
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• (2.27)

and so on for e5WI .k, k = 3, ... ,N-l, from which the QI.k may he determined. The

virtual work associated with the last cylinder, e5WI •N , will have the additional terms

(2.28)

The first of these two terms is associated with hase drag at the free end, involving a

hase drag coefficient Cb, and the second term is associated with the nunconservative

hydrodynamic forces Fne• as discussed in Section 2.3.1. The total generalized force

is simply given hy
N

QI = L: QIJ'
;=1

(2.29)

Proceeding in this manner and linearizing, the generalized force Q; associated

with the generalized coordinate .p; is

ri, ri, N { ri; ri;
Q; = - Jo (FN); e de + Jo (Fpu ); e de +i~l - Jo (FN)i 1; de + Jo (Fpu)i 1; de

+f (FL)i 1; (.pi - .p;)de - (8p/8x)i Ai li 1; (.pi - .p;)}

+~ pD2 u2 Cb IMN - .p;) - Fne 1; , (2.30)

where (FN); and (FL);, (Fw );. Fne are given hy linearized versions of equations

(2.23), (2.20) and (2.13), respectively, for small .p; (such that sin.p; ~ .p;,

cos.p; ~ 1).

2.5 TRILINEAR AND CUBIC SPRING

DESCRIPTION

Following the onset of Hutter instahility, the amplitude of oscillation will grow,

resulting in impacting with the outer cylinder. The interaction with the outer

cylinder is approximately trilinear, as shown in Figure 2.6. For contact at the
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• second articulation (lower end of the first cylinder)! and denoting the displacement

al. that point by '1 = id>! and the contact stiffness by kt! the force exerted by the

trilinear spring may be expressed as

where 'fJg = It'/>g is defined in Figure 2.6. Recalling that in the equations of motion

we are dealing with moments and angles, rather than forces and displacements, the

moment associated with the trilinear spring is

(2.31)

For analytical convenience, an alternative, cubic-spring approximation may be

utilized instead to model impacting with the outer cylinder. The force-displacement

relationship in this case is

and the moment-displacement relationship is

(2.32)

2.6 DERIVATION OF THE EQUATIONS

OF MOTION

Equations (2.3), (2.11), (2.6), (2.30), (2.31) or (2.32) depending of the nonlinearity

type, are substituted into Lagrange's equations,

i=I,2,oo.,N, (2.33)

for a system of N articulated cylinders, yielding N equations of motion.

'This, in fact, was later confirmed to represent the 'natural' actual motion.
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• We consider a "uniform" system, where all the cylinders have the Saffie mass

per unit length (mj =m, j = l, ... , N) and physical dimensions (A j = A, D j = D,

etc., j = l, ... , N), including length Ij = l, j =~ l, .. " N - l, except for the last

cylinder, which is IN long (see next paragraph). Similarly, the stiffnesses of all

intercylinder springs are equal, kj = k, j = l, ' .. , N.

The equations of motion may now be rendered non-dimensional with the aid

of the dimensionless parameters

P=pA/(pA +m),

f = L/D,

;=(m-pA)gL2N/k, u=(pALN/k)I/2U,

C = (4/7I")Cd[M L N/kP/2, CI = (4/7I")CI , (2.34)

[ ]
-1/2

h=Dh/D, 7'= (pA+m)L3 N/k t,

/te =(ke/k)L\ /te = (kelk)L2N 2,

where L = NI, and k is taken to be k = El/l, El being the flexural rigidity

of a fictitious, continuously-flexible system to which the present system would

converge as N -+ 00 (Paidoussis and Deksnis 1970). In a study of convergence

of an articulated system of pipes conveying fluid (discrete N) to the equivalent

continuously flexible one (N = 00) as N is increased, it was found (Paidoussis and

Deksnis 1970) that optimum convergence is achieved with the length of the last

cylinder IN =el, e = !j this value is arbitrarily adopted here also.

We have also introduced in our equations the nonlinear moments associated,

respectively, with the cubic spring, Me = /tet/>~, or with the trilinear spring,

Me = /te {t/>, - ! [lr,D, + r,Dgl-It/>, - t/>gB}, where /te and /tt have been already defined

in equations (2.34).

The nondimensional equations of motion have been obtained for a system of

N articulated cylinders, of coursej however, the results to be discussed in this Thesis

are confined to N = 2, N = 3 and N = 4.
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2.6.1 The equations of motion for N=2

The equations of motion for a two-degree-of-freedom articulated cylinder system

(N = 2) are the fol1owing:

[1+ (x - 1),8] [G + e)~1 + !e2ch] + l (3e + 1) U {Cf v'iJ;PI + t U (Cf v'iJ e2~

+l(3e + 1) (Cv'iJ;PI + t (cv'iJ e2~ + X(1- J) U N v'iJ;PI + X(2 - J) U N v'iJ e~

+t(1 + h-I)(2e + 1) u2 N (Cf 4>1 - Xu2 N 2 4>1 + X(1 - J) u2N 24>2

+! u2 N2 cb (4)1 - 4>2) +! (2e + 1) N.,4>1 - N4 (-24>1 + 4>2) + Mc(M,) = 0,

[1+ (X -1),8] [! e2~I + ~ e3 ch] + t U (Cf v'iJ e2
;PI + lu {Cf v'iJ e3 ;P2

+ t ( C v'iJ e2 ;PI + l{C v'iJ e3 ~ - xuN v'iJ e f ;PI + X(1 - J) u N v'iJ e2~

+t(1 + h-I) u2 N (Cf e2 4>2 - Xu2 N2e f 4>2 + ! N., e2 4>2

+N4 (4)2 - 4>il = o. (2.35)

In these and the equations that fol1ow, the dots denote differentiation with respect

to T. (It is noted that the definition of h in the equations (2.35), (2.36) and (2.37)

is the inverse of what it is in sorne previous work (e.g., Païdoussis 1973); hence, the

terrns 1 + h- I here, instead of 1 +h therein. The present definition is physically

more meaningful: a sma11 h represents a narrow annulus).

2.6.2 The equations of motion for N =3

Similarly, the equations of motion for a three-degree-of-freedom articulated cylindcr

system (N =3) are the fol1owing:

[1+ (X - 1),8] [(~ + e) ~I + <! + e) ch + ! e2~] + l(3e +4) u (Cf v'iJ;PI

+t(2e + 1) U {Cf v'iJ;Pd t U (Cf e2 v'iJ 4>a + l(3e + 4) (C v'iJ;PI

+!(2e + 1) (C v'iJ~ + i (C v'iJ e24>a + X(1- f) U N v'iJ;PI + X(2 - f) u N v'iJ~

+X (2 - J) u N v'iJ e 4>a + i(l + h-I )(2e + 3) u2 N ( cf 4>1 - Xu2 N2 4>1
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• +X (1- f) u2N 2 th + !u2N 2Ci (<PI - th) + !(2e + 3) N"( <PI + N4(2 <PI - <P2)

+Mc(Mt) = 0,

[1 + (X - 1)131 [(! + e)4>1 + (~+ e)~ +! e24>:J] + ~ (2e + 1) u(cJ Jïj ~I

+~(3e+ l)u€CJ Jïj~+ ~ U(cJ Jïje2~+~(2e+ l)(cJïj~1

+~ (3e+ l)€cJïj~ + ~ (cJïj e2~ - XuN Jïj f ~I + X(1- f) uN Jïj~

+X (2 - f) uN Jïj e if>.,d ~(1+ h-l )(2e + 1) u2N €CJ <1>2 - Xu2N 2 <1>2

+X (1- f) u2N2 th +! u2N 2Ci (<1>2 - th) + !(2e + 1) N"( <1>2

_N4(<pI - 2<1>2 + th) = 0,

[1+(X-1)13] [!e24>1 + !e2~+ ~e34>:J] + ~U(cJ Jïje2~1 + ~u(CJ Jïje2~

+~ u(cJ Jïj e3~ + ~ (C Jïj e2~I + ~ €c Jïj e2~ + k(C Jïj e3 ~

-xuN Jïjef~l-xuNJïjef~+x(l-f)uN Jïje2~

+~(h-l + 1) u2N €CJ e2th - Xu2N 2e f th + ! N "( e2th

+N4(th - <1>2) = o.

2.6.3 The equations of motion for N=4

(2.36)

Finally, the equations of motion for a four-degree-of-freedom articuiated cylinder

system (N = 4) are the following:

[1 + (X - 1)131 [( ~ + e) 4>1 + (~ + e)~ + (! + e) 4>:J + ! e24>4]

+ k(3e+7)u(CJJïj~d H2e+3)u(cJJïj~+ ~(2e+1)u(cJJïj~

+ ~ e2u (CJ Jïj~d k(3e + 7) (C Jïj~d H2e + 3) (C Jïj~

+ ~(2e+1)(cJïj~++ ~e2(cJïj~dX(1-f)uNJïj~1

+x(2 - f) u N Jïj~ +x(2 - f) uN Jïj~dX(2 - f) u N Jïj e~4

+ W+ h-l) (2e + 5) u2N (cJ <PI + xu2N2 [-<Pl + (1- J)<P4]
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•
[1 + (X -1).6] [(~ + e) ~I + (~+ e):h + (t + e):h + t e2~4]

+~ (2e + 3) U leJ ../P ~I + ~ (3e + 4) U (CJ../P <Ï>2 + H2e + 1) U (cJ../P 4>J

+~ U(cJ ../P e2~4 + ~ (2e + 3) (c../p ~I + t(3e + 4) le ../P <Ï>2

+~(2e + 1)( C../P 4>J + ~ (c ../P e2~4 - xuN ../P f ~I + X (1 - J)u N ../P <Ï>2

+X (2 - f) u N ../li ~3 + X (2 - f) u N ../li e ~4

+~ (1 + h-I )(2e + 3) u2N (cJ 'h - X u2N2 [th - (1 - J)4>4]

+~ u2N2Cb(th - 4>d + t(2e + 3) N ")' th + N4( -4>1 + 2 th - 4>3) = 0,

[1 + (X - l).6J [(t + e)J;1 + (t + e):h + (! + e)~ + t e2 ~4]

+!(2e + 1) u (cJ ../P ~I + !(2e + l)u (cJ ../li <Ï>2 + ~ (3e + 1) u (cJ ../P 4>J

+~ U(cJ ../lie2~4 + ~ (2e+ l)le../li~1 + ~(2e+ l)(c../li~

+~ (3e + 1) (c../li 4>J + ~ (c../li e2 ~4 - xuN ../li f ~I - xuN ../P f ~

+X (1- f) u N../li ~J+ X (2 - f) u N ../li e~d ~ (1+ h- I )(2e + 1)u2N (cJ q,.J

-X u2N2 4>3 + X(l- f) u2N2 4>4 + t u2 N2 cb(4)3 - 4>4) + t (2e + 1) N 'Y 4>3

_N4 (th - 24>3 + 4>4) = 0,

[1+ (X - 1).61 [te2J;1 + t e2 :h + t e2~ +! e3 ~4] + ~ u leJ ../pe2 ~I

+~ u (cJ../li e2~ + ~ u (CJ../li e24>J +! u (CJ../li e3 ~4 + ~ (c../li e2~I

+ ~ ( C../li e2~ + ~ ( C../li e2~J+ ! le ../li e3 ~4 - xuN ../li e f ~I

-x u N../P e f ~ - xuN../li e f 4>J + X(l- f) u N ../li e2~4

+Hh-t + 1) u2N (cJ e24>4 - X U2N 2 e f 4>4 + t N '( e24>4

+N4 (4)4 - 4>3) = O.
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Figure 2.1. (a) Diagram of the articulated cylindrical system in confining channel,

subjected to a mean annular f10w of velocity Uj (b) definition diagram for the

generalized coordinates "'j, j = l, ... ,N, showing the cylinder lengths lj and

interconnecting springs of stiffnesses kj •
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Figure 2.2. (a) Calculation of angle t/J =arctan(8h/8x) due to cylinder displacement

h(x, t) in the y direction; (h) calculation of the relative f1uid-body velocity in the jl

direction.
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Figure 2.3. Pressure forces acting on an element 5:z: of one of the rigid cylinders of

the aiticulated system.
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Figure 2.4. Calculation orthe steady-state A (dp/dx) rrom the momentum equation.



•

Figure 2.5. Diagrams for the calculation of the generalized forces for (a) the first

cylinder and (b) the second cylinder.
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Figure 2.6. Force-displacement curves for the realistic trilinear-spring model for

impacting of the articulated system on the confining channel, and the cubic-spring

idealization.



•
Chapter 3

THEORETICAL METHOnS

3.1 STABILITY OF THE LINEARIZED

SYSTEM

Before proceeding to nonlinear analysis, it is necessary to first understand the \inear

behaviour of the system.

Therefore, the dimensionless \inearized equations of motion are rewritten in

matrix form, such that

[MH~}+[CH~} + [KHt,b} ={Dl. (3.1)

where [M] is the mass, [Cl is the damping, and [K] the stiffness matrixj {t,b} is the

vector of the generalized coordinates.

Let the following square partitioned matrices be defined as

[B] = [[0] [M]] , [E] = [ - [M]
[M] [Cl [0]

each matrix being of order 2N, and the vedor {z} as

{z} ={ {~} } .
{t,b}
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[0] ] ,
[K]
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• It may now be verified that the linearized equations of motion (3.1) may be written

in the form

[B] {i} + [El {z} = {O}. (3.4)

Pre-multiplying the equation (3.4) by [B)-I and defining [Br l [El = - [YI, where

[Mr
l

] ,

[0]
(3.5)

equation (3.4) becomes

{i} - [Y] {z} = {O}.

Solutions of equation (3.6) are then sought of the form

{z} = {4i} exp(iwT) ,

and by replacing these solutions into the previous equation we obtain

(,\ [I) - [Y]){4ij } = {O},

(3.6)

(3.7)

(3.8)

in which ,\ = iWj non-trivial solutions are obtained when det (,\ [1]- [Y]) =0, which

gives 2N eigenvalues of the matrix [Y], '\j.

The eigenvalues '\j of the system, which are generally complex, permit the

assessment of (linear) stability for each set of system parameters. For a stable

system, the '\j are either real and negative or complex conjugate with negative real

parts. The corresponding eigenvectors are {4ij }.

Critical values of a parameter, in our case the flow veloci ty u, are needed in

order to determine where the eigenvalues of the linearized system contain a purely

imaginary pair (Hopf bifurcation) or a single zero value (pitchfork bifurcation).

In the following sections, the Argand diagrams are presented for the real and

imaginary parts of the eigenvalues of the system, Re('\j) and Im('\j), as functions

of the flow velocity u, for the corresponding modes of the articulated system

(N = 2,3,4). The Argand diagrarns will show the behaviour of the system from
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• the point of view of linear stability about the original (straight) configuration of the

system.

3.2 ROUTES TO CHAOS

Chaotic phenomena may be found in a wide c1ass of natural events in the physical

world. Chaos can be thought of as a new regime of nonlinear oscillations, as a

compromise between competing periodicities, as accumulation of many instabilities,

or (in f1uid mechanics) as the prelude to turbulence.

Sorne "routes" or "scenarios" towards chaos have been proposed which are,

in fact, series of a limited number of bifurcations. They are c1assified mainly into

three routes, according to the way in which the periodic regime loses its stability: (i)

the Period-doubling route, (H) the Quasi-periodic route and (iii) the Intermittency

route.

In analyzing one of these three routes to chaos, one should vary one or more of

the control parameters in the system. In our dynamical system case, we shall choose

the dimensionless f10w velocity u as the control parameter. Short descriptions of

these routes to chaos are given in the fol1owing subsections.

3.2.1 Period-doubling route to chaos

In the period-doubling phenomenon, one starts with a system which has a

fundamentally periodic motion. Then, as the control parameter u is varied, the

motion undergoes a bifurcation, or change in its periodic motion to twice the period

of the original oscillation. As u is changed further, the system bifurcates to periodic

motions with twice the period T or half the frequency f of the previous oscillation,

and this will entai!:

• multiplication by two of the number of points of a Poincaré map
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• • the appearal'ce in the Fourier spectrum of the frequency f 12 and its odd

subharmonics 3f12, 5f12, 7f 12, and so on.

The study of period-doubling bifurcations has revealed a new universal

constant, the "ideal" Feigenbaum number, Fei = 4.6692016, defined as the ratio

of successive differences in values of the control parameter between period-doubling

bifurcations. In our case, if up is the control parameter at which the pth bifurcation

occurs, then we may define its corresponding Feigenbaum number Feip as foHows:

(3.9)

•

•

In practice, as weil as for the articulated system considered in this Thesis, the limit

approaches Fei by the third or fourth bifurcation, i.e., when p = 3 or 4.

This period-doubling bifurcation process will start at a critical value of the

control parameter (identified in equation (3.9) as up-d, after which the motion

becomes chaotic, and remains so for a range of the control parameterj however,

it may happen that, as the control parameter is increased, periodic windows may

develop which, in turn, may undergo period-doubling bifurcations leading once more

to chaotic motions.

3.2.2 Quasiperiodic route to chaos

Before explaining this route to chaos, we shaH define the difference between a

periodic and a quasiperiodic motion, by taking our two-degrecMlf-freedom system

as an example. The state of the system may be characterized by the angular

displacements 1/11 and 1/12, and by their corresponding vc1ocitics, ~I and ~2' If

the system has two frequencies h and h, its displacements may be written as

1/11 = sin!Jt and 1/12 = sin f2 t , with 1~I 1= fi and 1~2 1= h. The ratio fd f2 will

represent the number of rotations in the 1/11 direction per rotation in the 1/12 direction.

If !JIh =nlln2 is rational, the motion of the system is periodic with period

n2 and completes ni cycles per period.
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•

•

If ft! f2 is irrational, the two frequencies are incommensurate, and the

motion is quasiperiodic-two (Sergé et al. 1984). Finally, a system containing r

incommensurate frequencies, is said to be quasiperiodic-r.

The route to chaos associated with quasiperiodicity has been proposed by

Newhouse et al. (1978). Suppose that when the control parameter is increased,

the system loses its stability (fixed point) and begins to oscHiate with frequency fi

which corresponds to the first Hopf bifurcation. Now suppose that the same process

is repeated two more times, so that a total of three successive Hopf bifurcations

have occurred, producing three frequencies li, 12 and h.

This can be explained as follows: The second Hopf bifurcation transforms

the periodic regime (frequency fi) into a quasiperiodic-two regime (frequencies

fi and 12). Furthermore, the third Hopf bifurcation causes the transition from

the quasiperiodic regime with two frequencies to a quasiperiodic one with three

frequencies (fil f2 and f3)'

As the control parameter is changed further, the time-<!ependent behaviour of

the system is no longer quasiperiodic with three frequencies, and it becomes chaotic.

Thus, the precursor to such chaotic motion is the presence of two simultaneous

periodic oscillations of incommensurate frequencies fi and f2' The winding number

(rotation number) has been defined as a measure of the quasiperiodic motion, and

represents in fact the ratio between li and 12, li1f2'

3.2.3 Intermittence route to chaos

In this last route to chaos, one observes long periods of periodic motion with bursts

of chaos. As one varies a parameter, the chaotic bursts become more frequent and

longer (Manneville and Pomeau 1980). Some models for intermittency predict that

the average time of the regular or "laminar" phase of the motion < T > will scale
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• in a precise way as sorne pararneter is varied; for exarnple, < T >~ (u - Uer )-1/2,

where Uer is always the critical f10w velocity.

Furthermore, the theory of intermittent transitions may be divided into two

parts [as explained by Bergé, Pomeau and Vidal (1984)J. The first part, associated

with Floquet theory, deals with the linear instability of a limit cycle, explaining the

"spontaneousn growth of fluctuations, starting from a regime close to the periodic

regime. Classification of intermittency into types l, II and III is based on the threc

types of lincar instabilities of periodic trajectories: crossing of the unit circle by

the Floquet multiplier at +1 (type 1), -1 (type III), or at two complex conjugate

eigenvalues (type II).

The second is the process of "relaminarizationn via which the intermittent

fluctuation ceases, to be replaced by another phase of regular oscillations (laminar

phase). The idca of laminar phase makes sense only if, while it lasts, we may observe

a large number of these oscillations. If these laminar phases are represented through

"regularn limit cycles, then the intermittency is of type l, as already observed

in the Lorenz mode\. The shapes and the slopes for the first return map 1k+1

versus h (in type 1 intermittency), or for the second return map h+2 versus h (in

type III intermittency), where Ik is the kth maximum value for the velocity or the

displacement of one articulated cylinder in time (for our system) are studied, and

then the type of intermittency which occurs in the system may be easily identified.

Furthermore, by drawing the distribution of the lengths of laminar phases P(T) in

time T, as weil as the number of laminar phases N(T > Ta) lasting longer than Ta

versus Ta, one may distinguish betwecn type 1 and type III intermittency.
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• 3.3 NONLINEAR BEHAVIOUR OF THE

SYSTEM

3.3.1 Bifurcation and Phase-Plane diagrams

In this system, the number of degrees of freedom has been defined as the number of

pairs of displacement-velocity which, more physically speaking, is in fact equal to

the number of articulated cylinders in the system.

Whenever the solution to an equation or system of equations changes

qualitatively at a given value - called a critical value - of a parameter, this will

be called a bifurcation. The point in parameter space where such an event occurs

is defined as a bifurcation point. From this bifurcation point emerge severa! (two

or more) solution branches, either stable or unstable. The representation of any

characteristic property of the solutions as a function of the bifurcation parameter

constitutes a bifurcation diagrarn.

In this Thesis, graphing a typical property of the solution, e.g. the maximum

displacement tPm,.." as a function of the flow ve!ocity u, we construct the bifurcation

diagram for flow velocities U higher than Uer; Uer being the critica! flow velocity for

which the system becomes unstable, either by flutter or by divergence, which in

nonlinear analysis correspond to a Hopf and a pitchfork bifurcation, respectively. In

the results to be shown 1 tPm.", corresponds to the maximum value of first cylinder

angular displacement tPI(t), which is tPlm.",(t), so that the bifurcation diagrarn

represents tPlm.",(t) versus u.

To c1arify the meaning of the dynamics depicted in a bifurcation diagram,

phase-plane portraits are a1so presented. The phase-plane portraits present in a

compact way the evolution of the system with time, for example showing the velocity

of the first cylinder ~I versus its displacement tPI'
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• In the end, it can be specified that if the system undergoes period-one motion,

which is equivalent to a limit cycle, this motion may be represented on a bifurcation,
diagram by one point; if the system undergoes period-two, -four, -eight motion,

these motions are represented in the bifurcation diagram by, respectiveiy, two, four

and eight points. Quasiperiodic and chaotic motions are represented by many points,

and this is why it is very hard to distinguish between these two motions in bifurcation

diagrams. In order to really differentiate these motions, we shall need more nonlinear

dynamics toois, which will be described in the following sections.

3.3.2 Time traces and power spectra

The results obtained couid be verified by plotting time traces, for example,

the displacement of the first cylinder, i.e., tPlm•., versus time T, and computing

their corresponding power spectra. These are very important for characterizing

quasiperiodie motion and the intermittence route to chaos. Usually, the power

spectrum gives the r.m.s. value of each frequency component, and the ordinate

scale is logarithmic.

The emergence in the power spectrum of the subharmonics 11/2, /1/4, fd8,

11/16, Id32 (and their odd subharmonics) is the signature of the period-doubling

route to chaos. From these results we can evaluate the convergence ratio of the

successive bifurcations which should be dose to the Feigenbaum number predicted

by theory.

One identifies a quasiperiodic-two motion by looking, generally, for the value

of the ratio of the two fundamental frequencies, Il and 12, that is, Idh.
If Id12 is irrational, then the frequencies of the high-amplitude peaks will be

simple combinations Jmtfl ± md21, with ml and m2 small integers: 0, ±1, ±2,...,

and the motion will be quasiperiodic-two of two incommensurate frequencies fi and
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• If Idh is rational, with Idh = ndn2 (ni and n2 integers), the

"quasiperiodicn motion is in fact periodic with period T = niTI = n2T2, and

the frequencies of the high-amplitude peaks are harmonies of the lowest frequency

1 =11-12: 1 = l/T = Idnl =12/n2' Then, consecutive peaks in the spectrum are

always separated by the same distance of l/T and one says that there is frequency

locking of Il with h. In the Section 3.3.3, we shall see the differences in Poincaré

maps, depending of the value of 11/12'

The time traces are also one of the most useful tools for recognizing the

intermittence route to chaos, for which the system changes its behaviour in time

from periodic or laminar phases to chaotic and back again.

Finally, one cannot distinguish between chaotic and random motion by looking

at power spectra. This limits the applicability of power spectra in this respect, and

leads us to choose other methods, notably Poincaré maps.

3.3.3 Poincaré maps

In an N -state-variable problem, one can obtain a Poincaré map by measuring the

N - 1 variables when the Nth variable reaches sorne particular value or when the

phase space trajectory crosses sorne arbitrary plane in phase space.

In the case of a two-degree-of-freedom articulated cylinders system, we shall

have four variables: the angular displacements of the first and second cylinders,

"'1 and "'2' and the angular velocities of the first and second cylinders, ~I and ~2'

Then, when one of these four variables, "'1> for example, reaches zero ("'1 = 'J), we

plot ~2 versus "'2, which pr€.sents the Poincaré map for our two-degree-of-·freedom

system. In the same way, we shall define the Poincaré map for a three-degree­

of-·freedo!I1 system, Le., for "'1 = 0 we shall obtain two Poincaré maps, ~2 versus

4>2 and ~3 versus "'3, which should have the same geometrical form; similarly for a

four-degree-of-freedom system.
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• The Poincaré map is very useful in differentiating the various types of motion

for the articulated system. Thus, when the system is periodic (period--<>nc), the

phase-plane portrait is a limit cycle and the Poincaré map, which is a section

through the limit cycle, is a single point. If the system undergoes a period-two,

-four and -eight motion (period-doubling route to chaos), then the Poincaré map

is represented through, respectiveiy, two, four and eight points.

It has already been mentioned that the quasiperiodic motion of a dynarnical

system takes place in the presence of two simultaneous periodic osci1lations of

frequencies fi and 12, which are incommensurate, and for which the Winding number

(= fd12) has been calculated. The exact form of the Poincaré map depends on the

ratio fd12· If fd f2 is irrational, the Poincaré map is a closed continuous curve. If

fdf2 is rational, the Poincaré map is composed of a finite set of points distributed

along a curve, which is no longer continuous. In this case, a frequency locking

between fi and f2 is found to exist, so that the ratio fd f2 is equal to that of two

integers ni and n2. After having accomplished ni "circuits" and n2 "rotations" per

circuit, the trajectory closes upon itseif, and (as remarked previously) we have in

fact a periodic solution of period T = (ndfI) = (n2/12), and the Poincaré map will

contain only nI points. This is a useful method in distinguishing the various types

of quasiperiodic motions and chaotic ones.

Finally, when the dynarnics of the system is chaotic, the Poincaré map becomcs

more complex, but nevertheless should retain sorne definite structure, in contrast to

that for a random process.

3.3.4 Lyapunov exponents

There are many tools in. nonlinear dynamics utilized in order to recognize if a system

is chaotic or not, and one of them, a quantitative one, is the Lyapunov exponents,

narned after the Russian mathematician Lyapunov (1857-1918).
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Chaotic motion in a dynamical system implies a sensitive dependence on initial

"onditions. This means that if two trajectories start close to each other in phase

space, they will move exponentially away from each other for small times on the

average. Thus, if do is a measure of the initial distance between the two starting

points, a brief time later the distance is

(3.10)

17 being the Lyapunov exponent. The choice of base 2 in equation (3.10) is convenient

but arbitrary. Good reviews of Lyapunov exponents and their use in experiments

to characterize chaotic motion are given by Benettin et al. (1980) and by Wolf et

al. (1985). The review by Wolf et al. contains also two computer programs for

ca1culating Lyapunov exponents.

The divergence of chaotic orbits can only be locally ex~ . "ential, since if the

system is bounded, as most physical experiments are, d(t) cannot go to infinity.

Thus, to define a measure of this divergence of orbits, we must average the

exponential growth at many points along the trajectory, as shown in Figure 3.1.

One begins with a reference trajectory and a point on a nearby trajectory

and measures d(t)fdo• When d(t) becomes too large (i.e., the growth departs from

exponential behaviour), one looks for a new "nearby" trajectory and defines a new

do. One can define the first Lyapunov exponent by

(3.11)

Then, 17 will be negative for stable systems w·.th fixed points, zero for periodic or

quasiperiodic motions, and Ilositive for chaotic motion.
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3.3.5 First and second return maps

Let h be the value of the kth maximum displacement of the first cylinder of the

articulated system. The first return map would be the graph of h+t = f(h), while

the second return map would be of the form h+~ = f(h), for a sequence l'f values

of k (Bergé ~t al. 1984).

The theory for type III int"rmittency predicts the fol1owing form for the second

return map function: h+2 = (1 +21l)h +aI~+bI~, where a and bare constants with

a << b, near the intermittency threshold. An infiection point in the neighbourhood

of the fixed point of f(h) is found to exist. This corresponds to the vanishing of the

quadratic term in the Taylor series of f(h). By expanding the time scale in case of

graph h versus time T, the growth of the subharmonic (increasing displacements)

and the correlated decay of the fundamental (decreasing displacements) might be

observed.

Furthermore, one may differentiate between the two types of intermittency,

type 1 and type III, by analyzing the :irst return map h+t = f(Ik). Classification of

intnmittency into types 1 and III is based on the crossing of the unit d,cie by the

Floquet multiplier at +1 (type 1), and at -1 (type III). This corresponds to the value

of the slope of 1<+1 = f(h) with the first diagonal, as fol1ows: (i) when tht. slope of

h+1 is equal to 1, and the graph h+t = f(h) is tangent to the first diagonal, the

intermittency is of type li (ii) if the slope of h+1 is equal to -1, the intermitteney

is of type III.

3.3.6 Numbe.r of laminar phases

Another interesting nonlinear dynallÛcs tool used in the study of the interllÛtteney

is the statistica1 distribution oftbl! duration T of the lallÛnar phases, that is P(T,Il),

where Il is the differencc between u and Uer. In a sample of N lallÛnar phases, one

expects Nf; P(T,Il)dT phases which last less than T.

42



•

•

The average duration of a laminar phase is roc P(T,Jl)dT ~ Jl-l/2. In type 1

intermittency, for Jl fixed, the Juration of laminar phases is bounded from above

by a quantity of order p-l/2, and the closer we get to the threshold, the less the

dllration f1uctuates. The exact form of P(T,p) depends upon the details of the

problem, as the fluctuations of T reflect the fluctuations of the process of reinjection

into the laminar channel. The distribution of laminar phase duration P(T, Jl) versus

T follows completely differed laws for type 1 and for type III intermittency.

ln the case of type III intermittency, the distribution law has a maximum

for short times and decreases exponentially at large times, while in type 1

intermittency this distribution follows a different law: it depends on the details

of the relaminarization process. The upper bound of order Jl-I/2 close to Jl = 0+ is

specific to type 1 intermittency, and corresponds to the maximum time for traversai

of the channel.

ln type III intermittency, if P(T )dT is the fraction of laminar phases which last

between T and T +dT (dT small), then

P( ) ~ exp(-2JlT) (3.12)
T - [1 _ exp(-4JlT)]3/2 •

For T » Jl-1 we have PtT) ~ e-2
1'T, while for 1 « T « Jl-1 , we obtain

PtT) ~ (4JlTt3
/

2
•

By counting the number of laminar phases N(T > TO) lasting longer than To,

one may obtain, for type III intermittency

•

00 [( 4 ) ] 1/2N(T > TO) ~ 1 P(T)dT ~ exp - JlTo
J... 1 - exp(-4JlTo)
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Figure 3.1. Change in distance between two nearby orbits used to define the largest

Lyapunov exponent.
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Chapter 4

NUMERICAL RESULTS FOR

THE FIRST MODEL WITH

N 2

The dynamical behaviour of the system of two articulated cylinders (N = 2) is

investigated for the following numerical values of dimensionless parameters given in

Chapter 2 by equations (2.34):

f =10, e =0.5, f =0.8, f3 =0.4, 'Y =10, f cf =0.25, Cb =0.1.

Solutions of the equations of motion were obtained by using a fourth~rder

Runge-Kutta integration algorithm, with the time step DT of 0.01. If this time step

is changed to DT = 0.001, we have obtained the same results to the fourth significant

figure. As the external f10w velocity u increases (for u higher than the corresponding

u for Hopf bifurcation), the convergence of the solutions is faster: we need fewer

time steps for higher f10w velocities than for lower f10w velocities for the solution

to converge. Details regarding the convergence of the solutions, with corresponding

numerical examples, are given in Appendix D.

In the calculations of the bifurcation diagrams and phase-plane portraits, 100

time steps were used, while in the case of Poincaré maps and power spectra, between
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• 10,000 and 30,000 time steps were used.

Furthermore, for the purpose of checking the convergence of the solution, the

Runge-Kutta-Fehlberg algorithm was also used, but the same results were obtained.

We chose four cases by varying two parameters, h and J, h representing a

measure of the annular gap between the articulated cylinder system and the external

channel, and f the nondimensional parameter of the free-end shape. These cases

are the fol1owing:

Case 1 : h =0.5, c =0.38 (0 =0.30), f =0.8, Koc =5 X 103;

Case 2 : h =0.2, c =0.79 (0 =0.62), f =0.8, Koc =5 X 103;

Case 3 : h =0.5, c =0.38 (0 =0.30), f =0, Koc =5 X 105;

Case 4 : h =0.2, c =0.79 (0 =0.62), f =0.4, Koc =5 X 105•

4.1 CASE 1: h - 0.5, f = 0.8, Kc = 5 X 103

or Kt = 80

(i) Stability analysis of the Iinearized system

In concordance with Chapter 3.1, an eigenvalue analysis of the linearized equations

(2.35) without considering the impacting of the articulated system with the outer

channel (M, or Mc = 0) is first carried out. Figure 4.1 shows, in the form of Argand

diagralTlS, the real and imaginary parts of the eigenvalues of the system, Rc(À) and

Im(À), for (a) the first and (b) the second mode of the system, as functions of the

f10w velocity u.
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• As the f10w velocity is increased in Figure 4.1(a), both the real and imaginary

components of the first-mode eigenvalue approach zero; this corresponds to a

divergence instability (pitchfork bifurcation), which occurs at u = 1.695. As u

is increased further, the real part of the eigenvalues again becomes negative, 50 that

the system is restabilized, at u =2.53. Furthermore, at u =2.74, in the second mode

(Figure 4.1(b», purely imaginary eigenvalues arise, which corresponds to a flutter

instability (Hopf bifurcation). As u is increased beyond 2.74, the real part becomes

positive and this corresponds to a linearly unstable system (amplified oscillations).

(ii) Bifurcation and Phase Plane diagrams

Figure 4.2 shows the bifurcation diagram with the trilinear spring representation

(ICI = 80) for the system, and Figure 4.3 the bifurcation diagram with the cubic­

spring representation (lec = 5 X 103) for the same case. The range of u shown

covers the behaviour beyond the Hopf bifurcation. It is seen that, qualitatively, the

dynamical behaviour in the two cases is similar, and attention will henceforth be

diverted to the more idealized system involving the cubic spring. The reason for this

is that direct comparison with analytical work to be presented in Chapter 5 then

becomes possible, because Mc (the cubic spring representation) is an analytical

function whereas Mt (for the trilinear spring) is not. Thus, concentrating on the

cubic spring representation with lec =5 X 103, Figures 4.3 and 4.4 show bifurcation

diagrams and phase-plane portraits for the first cylinder in the system, for f10w

velocities above the critical flow velocity (for the occurrence of the Hopf bifurcation

(u > 2.74».

The route to chaos for the bifurcation diagram of Figure 4.3 is clarified via the

phase-plane portraits of Figure 4.4. For u ~ 2.74, there exists a stable, symmetric

limit cycle that develops aCter the Hopf bifurcation (not shown). The symmetry of

the limit cycle is lost by a symmetry-breaking pitchfork bifurcation at u =2.795,

the first bifurcation shown in Figure 4.3, where the two branches are obtained

with different-sign initial conditions. At higher u, a cascade of period-doubling
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bifurcations occurs, and Figure 4.4(a,b) shows period-2 and period-4 motions.

Figure 4.4(c) shows chaotic motion for U = 2.8295, corresponding to the first dense

cloud of points in the bifurcation diagram. Figure 4.4(d) shows a pcriodic (akin ta

period-5) motion for U =2.831, corresponding to the sparse patch (periodic window)

in the bifurcation diagram. At higher u, the motion becomes strongly chaotic again.

The period-doubling bifurcations have been pin-pointed to occur at Up_l =

2.8195 (period-2 motion), up =2.8234 (period-4 motion), U p+! =2.8243 (period-8

motion) etc., where the interval in U between bifurcations becomes progrcssively

smal1er. From these values, the Feigenbaum number, Feip = (Up+l - up)/(Up+2 ­

Up+l), may be computed, giving Feip = 4.33, which is reasonably close to the Uidcal"

Fei = 4.6692 (Moon 1987).

(Hi) Power Spectra and Time Traces

This case, involving a cascade of period-doubling bifurcations, is quite similar to that

studied by Paidoussis and Moon (1988) and Paidoussis et al. (1991), for a similar

problem. As it is the first case of period-doubling bifurcations route to chaos in this

Thesis, the frequencies and periods for different flow velocities U are ca1culated from

time traces and simultaneously from power spectra, and the results are presented

as fol1ows. For U = 2.80 (period-one motion), the nondimensional period from

the time traces is calculated to be T = 0.68, while its dominant frequency, Le.,

f = 1.47 = 1/0.68 with its related subharmonics 2f, 3f, 4f are found from the

power spectra. Furthermore, for U =2.82 (period-2 motion) and U =2.824 (pcriod­

4 motion), it is found that the dominant frequency for U =2.82 (f = 0.735) is haU

the frequency for U = 2.80, whilc the one for U = 2.824 (f = 0.367) is haU the

frequency ca1culated for U = 2.82. Their corresponding subharmonics are 2f, 3f.

4f. 5f and 50 on. These results are summarized as fU=2.8 (period-1 mution) =

2fu=2.82 (period-2 motion) = 4fu=2.824 (period-4 motion), 50 that they verify the

period-doubling nature of the motion.
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• The chaotic character of the motion at u = 2.8295 is self-evident in Figure

4.5(a), in both the time trace and the PSD. The motion depicted in Figure 4.5(b)

for u = 2.831 is periodic, with the dominant dimensionless frequency of f = 2.245,

modulated mainly by its fifth subharmonic of f =0.449; this gives rise to the period­

5-\ike phase portrait of Figure 4.4(d). The second peak in the PSD corresponds to

f = ~ x 2.245 and, indeed, Figure 4.4(d) could be considered as a "modified" form

of period-3 motion also!

(iv) Poincaré Maps and Lyapunov Exponents

Figure 4.6, for u = 2.84, shows a typical Poincaré map in the chaotic regime. A

very definite structure is seen to exist, the map showing sorne similarity (in this

cross-sectional form) to a Miibius strip (cf. Paidoussis et al. 1992).

The largest Lyapunov exponents shown in Figure 4.7 display basically similar

behaviour: beyond a certain threshold (conform Figure 4.3), the motion is cbaotic

and remains so (q > 0), apart from one region of periodic (Figure 4.7) motion

(q = 0), and for which the flow velocity u = 2.831 (periodicity seen also in Figure

4.4(d)).

4.2 CASE 2: h = 0.2, f = 0.8 and /'i,c = 5 X 103

This case corresponds to a narrower annulus than Case 1.

(i) Stability analysis of the linearized system

For the lower value of h (Figure 4.8(a)), the real and imaginary parts of the first­

mode eigenvalue vanish for u = 1.16; this value of u corresponds to the pitchfork

bifurcation. The system is restabilized between u = 1.71 and u = 1.95. Then,

flutter (Hopf bifurcation) occurs at u =1.95 in the first mode. In the second mode

(Figure 4.8(b)), the real part of the eigenvalues is always negative; so, from the

\inear stability point of view, only the first-mode behaviour is of interest.
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• From the results presented here, it can be seen that for the larger gap

(h = 0.5) larger critical f10w velocities are obtained than f(lr the smaller gap

(h = 0.2) : u = 1.695 and 2.74 versus u = 1.16 and 1.95. This can be further

verified by studying the behaviour of a system in unconfined f1ow; in that case,

much higher critical f10w velocities than those for confined f10w are obtained.

(ii) Bifurcation and Phase-Plane Diagrams

For the narrower annulus (h = 0.2), the dynamical behaviour is broadly similar, but

quite different in detail, as seen in the bifurcation diagram (Figure 4.9) and phase­

plane plots (Figure 4.10). The symmetry-breaking pitchfork bifurcation occurs at

u ~ 2.023 (Figure 4.9). This is followed by a "period-bubbling" event, where

a period-doubling bifurcation occurs but is then reversed to period-1 motion, in

the interval 2.0392 < u < 2.0498; period-2 and period-1 phase-plane portraits

shown in Figure 4.1O(a,b) for u = 2.045 and 2.050, respectively. At u = 2.05225

(Figure 4.9) the motion becomes quasiperiodic-2, but, if the calculation is carried

out for sufficient nondimensional time steps (> 100), it develops into chaotic motion.

This occurs in the neighbourhood of u =2.052; for larger u the transition to chaos

is much faster.

Although ail period-bubbling bifurcations necessary for the Feigenbaum

number calculation are not obtained (Le. period-8j period-4; period-2), for the

inverse cascade a number is calculated by the Feigenbaum theory, Fei2 , by taking

Ut = 2.0392 corresponding to the first period-2 motion; at U2 = 2.0498 a period-1

occurs, followed by a quasiperiodic motion for U3 = 2.0518 (cf. Figure 4.12 to be

discussed under (iv», which is very close to a chaotic motion. Then, Feb = 5.3,

which by definition is not the classical Feigenbaum number, is "reasonably close"

to the ideal Feigenbaum number Fei, and this value verifies the definition of inverse

cascade.

A typical chaotic phase portrait is shown in Figure 4.l0(c) for u = 2.0535.

The system will be shown to follow the quasiperiodic route 1.0 chaos (dee Section

49



•

•

•

(Hi)). Chaos persists to u = 2.058, with a quasiperiodic window at u = 2.0568

(Figure 4.1O(d)), which locks like period-3 motion.

(iii) Power Spectra and Time Traces

Figure 4.11 depicts quasiperiodic-2 motion, for u = 2.0568, where the power

spectrum was obtained from a 100 time-step trace. The two fundamental frequencies

are ft = 0.377 5748 and 13 = 1.150 704,1 and a.1l other peaks in t.he PSD ma.y

be confirmed to correspond to f = n ft ± m 13, with n and m integers. For

example, the third peak in the FFT is 2f2 - fI, while the fourth is 213 +ft. Thus,

despite Figure 4.10(d) looking like period-3 motion, it represents more complex

behaviour. The ratio ft!13, usually referred to as the winding (or rotation) number,

is W = 0.328 125 = 21/64, a rational number, as found by the continued fraction

method by using Malhemalica software. (Of course, whether ft!13 is truly rationa.1

and equal to 21/64, and hence the Poincaré map would have a finile number of

points, depends on the accuracy of determination of ft and 13 as given above.)

(iv) Poincaré Maps and Lyapunov Exponents

Figure 4.12, for u = 2.052525, close to the onset of chaos, corresponds to

quasiperiodic-2 motion that eventua.1ly becomes chaotic. In this figure, we see

the closed curves characteristic of quasiperiodic motion, but with the beginnings

of chaotic perturbations off the curves c1ear1y visible. It is this figure that gives

definite praof that chaos is obta.ined via the quasiperiodic route.

The largest Lyapunov exponents shown in Figure 4.13 display basica.1ly similar

behaviour: beyond a certain threshold (cf. Figure 4.9), the motion is chaotic and

remains so (0' > 0), apart from one region of quasiperiodic (Figure 4.12) motion

(0' = 0).

1Even if these frequencies are correct to 8 smaller number of significant figures than the one

given here, this will not change the general conclusion regarding the quasiperiodic nature of the

motion.
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4.3 CASE 3: h = 0.5, f = 0 and K.c = 5 X 105

Physicaily, the system is similar to that of Case 1, but the free end is blunt in this

case.

(j) Stability analysis of the linearized system

As the fiow velocity u is increased in Figure 4.14(a), the first-mode eigenvalues

become purely imaginary for Uer = 4.47, which corresponds to a flutter instability

(Hopf bifurcation). As u is increased beyond 4.47, the real part becomes positive

and the system becomes unstable. In the second mode (Figure 4.14(b)), the real

part of the eigenvalues is always negativej so, from the linear stability point of view,

only the first-mode behaviour is of interest.

(H) Bifurcation and Phase Plane diagrams

Figures 4.15 and 4.16-4.18 show bifurcation diagrams and phase-plane portraits for

the first cylinder in the system, for flow velocities above the critical flow velocity for

which a Hopf bifurcation occurs (uer = 4.47). The route to chaos for the bifurcation

diagram of Figure 4.15 is c1arified via the phase-plane portraits of Figures 4.16­

4.18. For u = 5 (Figure 4.16(a)) there exists a period-one motion that develops

after the Hopf bifurcation; its fundamental frequency is fI = 1.08, and it has odd

subharmonics (as ascertained from power spectral. For 7 < u < 8.2 approximately,

a period-two motion with two frequencies (with ratio 1/3) develops, which is shown

in Figure 4.16(b), and it looks as if it was developing around t'NO symmetrical

points with respect to the origin. This motion is called period-2, because its period

T2 =1.85 is twice the previous period (for u = 5), or, more mcactly, its fundamental

frequency 12 =0.54 is half the previous fundamental frequency (12 = fI/2). In the

power spectra, one may observe odd suhharmonics of the fundamental frequency.

For u = 8.4 and u = 8.6, in Figure 4.16(c,d), and in accordance with the bifurcation

diagram, a period-3 motion (of frequency fa = b/3) followed by a period··4 motion

(14 =b/4) may be ohserved around the two symmetrical points already mentioned.
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• The previous motions for (b) u = 7.25, (c) u =8,4 and (d) u =8.6 may be considered

to be periodic with two dominant frequencies, the ratio of which is rational and equal

to 1/3. As the periods are two, three or four times higher than the previous period­

one motion, they might also be considered period-two, period-three and period-four

motions.

Small-scale chaotic motion in Figure 4.17(a,b) is observed for (a) u = 9.075

and (b) u = 9.085. Figure 4.17(b) shows the chaotic motion of the system around

one of the two syrnrnetrical points, and Figure 4.18(c) gives the chaotic motion

of the system around the other point for the same f10w velocity u = 9.085, but

which is obtained with opposite-sign initial condition, ~I = -0.1. For higher f10w

velocities, a period-bubbling event takes place, for which a period-four motion may

be observed for u = 9.09 (not shown here, but for which fi = 0.39); a period-two

motion is presented in Figure 4.l7(c), for u = 9.1 (12 = 0.78), which is followed by

an inversion, back to period-1, as seen in Figure 4.17(d) for u = 9.25 (13 = 1.56),

and the motion reduces further to a fixed point, as illustrated in Figure 4.17(e) for

u = 9.30. In the period-bubbling case, ail the subharmonics of the predominant

frequencies fI> h or f3 are multiples of n, so that they are of the form nfI, nh or

nf3' with n as positive integer or natural number.

In the end, this case has a very rich dynarnical behaviour. Chaos arises through

period-n motions with n = 1 to n = 4; then a period-bubbling phenomenon takes

place, from period-four, to period-two and back to period-one motion, and then,

the motion finally reduces to a fixed point.

(iii) Power Spectra, Time Traces and Poinèaré maps

The power spectra and time traces were obtained for this case, for two f10w velocities,

for which we thought that we had chaotic behaviour of this system: (a) u = 9.075

and (b) u = 9.085. We can observe in Figure 4.19(a,b) that the time traces and the

power spectra are indeed characteristic of chaotic motion.
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• In addition, Figure 4.19(a), showing the displacement of the first cylindcr as

a function of time for u = 9.075, looks "strange" because of its sudden rcduction

at T ~ 108.5. This may be explained easily by the shape of phase-plane plots of

Figure 4.17(a) or 4.18(a).

For the same Dow velocities (u = 9.075 and 9.085), we have constructcd

Poincaré maps (Figure 4.20(a,b)) which, although uninteresting in shape, arc

characteristic of chaotic motion.

4.4 CASE 4: h = 0.2, f = 0.4 and l'i.c = 5 X 105

This system is sirnilar to Case 2, but with an intermediately blunt free end-blunter

than for Case 2, but not as blunt as Case 3.

(i) Stability analysis of the linearized system

As u is increased in Figure 4.21(a), the first mode eigenvalues become purely

imaginary for u =2.38, which corresponds to a flutter instability (Hopf bifurcation).

Then, as u is increased beyond 2.38, the real part becomes positive and the system

becomes unstable.

In the second mode, (Figure 4.21(b)), the real part of the eigenvalues is always

negativej so, from the !inear stability point of view, only the first mode behaviour

is of interest (the same as for Case 3).

(H) Bifurcation and Phase Plane diagrams

Figures 4.22 and 4.23 show the bifurcation diagram and the phase-plane plots for the

first c.ylinder in this system, for Dow velocities u higher than the critical f10w velocity

for which a Hopf bifurcation occurs (uer = 2.38). The route to chaos associatcd with

the bifurcation diagram of Figure 4.22 is c1arified via the phase-plane portraits of

Figure 4.23.

There exists a symmetric stable Iimit cycle which develops after the Hopf

bifurcation which occurred for Uer =2.38 (not shown). Then, the symmetry of the
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limit cycle is lost by a symmetry-breaking pitchfork bifurcation at U ~ 2.75, the lirst

bifurcation shown in Figure 4.22, where the two branches are obtained with different

sign initial conditions. At f10w velocit.:es u higher than 2.75, a cascade of period­

doubling bifurcation~ occurSj Figure': .23(b,c) shows period-two and period-f.mr

motions for (b) u == 2.965 and (c) u = 2.972. Figure 4.23(d) shows chaotic motion

for u = 2.975. The Feigenbaum number is calculated for the period-doubling

bifurcations shown h FigurC:3 4.23(a) to d.•23(d), with thresholds at UI = 2.952

(periùd-2 motion), U2 = 2.97 (period-4 motion) and Ua = 2.974 (period-8 motion).

They give Feb = 4.5, which is very close to the ideal Feigenbaum number.

Periodic windows appear for U = 2.9789 to u = 2.9812, as shown in Figure

4.23(e) for u = 2.98. By analyzing the time traces and the power spectra for

UI = 2.9789, the fundamental frequency f = 0.38 together with its subharmonics

nf (where n is a positive integer) may be calculated. For U2 =2.9807, the frequency

is half th" prcvious frequency for u = 2.9789 and is equal to 0.19, f = 0.19, so

that this motion is period-two with respect to the previous period--<>ne motion. For

Ua =2.9811 the motion becomes period-four and is followed by period--eight motion

for u. = 2.98121; for higher f10w velocities the motion of the system becomes chaotic.

The Feigenbaum number corresponding to these period-two motions is Feia ~ 3.64,

which is not too close to the ideal Feigenbaum number Fei =4.6692.

For u = 3, a periodic window appears. Then, for u > 3, a new cascade

(the third one) of period-two motions appears, whieh is qualitatively the same

as the second one (u = 2.979 to u = 2.981). Finally, it has been observed that

chaotic motions arise in this system through three period-doubling sequences as u

is increased (Figure 4.22).

(Hi) Power Spectra, Time Traces and Poincaré maps

The power spectra and time traces were obtained for this case, for two f10w velocities,

u = 2.975 and u = 3.2, for which we thought tbat we bad chaotic bebaviour of tbis

system. The power spectra in Figure 4.24 con5rm tbis facto
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• For the same values of u, we hav.. ,;onstructed the Poincaré map which has a

chaotic shape for (a) u = 2.975 (Figure 4.25(a)) and (b) u = 3.2 (Figure 4.25(b)).

4.5 SOME GENERAL REMARKS ON THE

N = 2 RESULTS

The four cases examined show a variety of interesting dynamical behaviour obtained

by varying just two parameters: the width of the annulus, characterized by h (and

cl, and the bluntness of the free end, involving the parameter f.

Cases 1 and 4 display a "c1assicaln period-doubling progression to chaos, while

Case 2 shows quasiperiodic motion, and chaos cornes about via the quasiperiodic

route. Case 3 is a more "special" case, for which chaos arises through period-n

motions, which develop around two symmetrical points, as shown in Figures 4.16­

4.18, and the motion eventually collapses to fixed points aCter a period-bubbling

sequence (shown in Figures 4.17(c,d)).

Further discussion will be postponed until after the results with N > 2 have

been presented.
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Figure 4.23. Phase-plane plots of Jl(r) versus q,1(r) at (a) u = 2.85, (b) u = 2.9GIj,

(c) u = 2.972, (d) u = 2.975, (e) u = 2.98 and (f) u = 3 for the system of Cilse ~:

h = 0.2, c = 0.79, f = 0.4 and K c =5 X 105•



• a0.04

0.02

0.00 -100

-Q.02 -1:\0 (a)
0

~ '-.....C Ü<lJ
~ -200E -<J.O< 100 102 10< 106 106 110 0.. 0 '- • 6 6 la

<lJ Ul
Ü

'-0 0.04 Q) 0

0.. ;:
Ul 0

0 0.02 CL -50

0.00 -100

-0.02 -150 (b)

-20°0-Q.M
102 104 106 106 I1D 2 • 6 6 IDlDO

Time Frequency

Figure 4.24. Time traces of <Pl (T) versus dimensionless time, T, and the associated

power spectra (dB) for the system of Case 4: h = 0.2, c = 0.79, f = DA, "'< = 5 X 105

for (a) Il = 2.975 and (b) u = 3.2, showing chaotic motions.



•
0.10 - (a) u = 2.975

0.05 -

-

-

-

1
-0.101- \

:è
g 0.001-

~
-0.05 1-

- O. 15 '-:-~-'-='-:!::'-'-""f-::'::-'-'-7~""""--::-,:-:,-'........~'~,,--::~
-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03

-

0.15 1

0.10 1- (b) u = 3.2

0.05 -
:è
'ü

0.00 -0
Qj
> . :"'. ~

-0.05 - .. ~~

1
1 • ,." ~. .- . -
, i

.' ... 1;'"
~. '~- / . :

1
~.

...-::- ....:'

-

-,,.'
.t "

-0.10 1-' /'
.. ' "............

1 •
-0.15 ..•' 1

-0.03 0.02

..,.

1 1 1

0.01 0.00 0.01
Displocement

1

0.02 0.03

Figure 4.25. Poincaré maps of ~2(T) versus ,p2(T) whcn ,p1(T) = 0 for Case 4: h = 0.2,

c = 0.79, f = 0.4, K c = 5 X 105 , far (a) u = 2.975 and (h) u = ~.2.



•

•

•

Chapter 5

ANALYTICAL RESULTS:

CENTRE MANIFOLD THEORY

Centre manifold thcory (Li and Paidoussis 1994) is a method which uses power

series expansions in the neighbourhood of an equilibrium point in order to reduee

the dimension of a system of ordinary differential equations, thereby helping to

IInderstand the dynamical behaviour of an otherwise complex system.

At a degenerate point, which has at least sorne eigenvalues with zero real

part, the spaee in which the system dynamics evolve can be divided into three

sllbspaces: the stable, unstable and centre eigenspaces, spanned by the eigenvectors

whose eigenvailles have negative, positive and zero real parts. At this degenerate

point, therc exist three invariant subspaces, similarly called stable, unstable and

centre manifolds, tangent to the corresponding linear counterparts at the fixed point.

Since the stability properties of the dynamical system along the stable and unstable

manifolds are known, the system dynamics in the vicinity of the degenerate point

is dctermined by the f10w restricted to the centre manifold.

In this chapter, we compare the analytical and the numerical results for the

system of Case 1: h = 0.5, f = 0.8, "c = 5 X 103•
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• 5.1 COMPUTATION OF THE UNFOLDING

PARAMETERS

Our system of equations is wrillen in the following fonn:

y = A(u)y +, f(y) , (5.1 )

where y = {<Ph <P2' ~h ~2}T. The coefficients in the nonlinear fu!\ction f(y), which

in our case is due to the cubic spring, are evaluated at critical values.

Considering u in an , neighbourhood of lIcr as Il = l'cr + 'l', by ,~,"ullliug tbat

the eigenvalues of A have the general form ÀI•2 = al ± iw, and À3•.\ = a2 ± iW2' one

can construct a modal matrix P consisting of the real and illlaginary parts of the

eigenvectors; then, the system equations may be brought into the stand<Lrd fonn

where

:ir. = A X +, p- I f(Px), ( r. '1)d ....

P - lx= y, A =p-I AP =
o
o

o
o

o
o

o
o

-W2

(5.:1)

The matrix A is evaluated al, the critical points, and [AI is the lTIodallllatrix

of the system.

5.1.1 Hoof Bifurcation

At U = Uer the first pair of eigenvalues becomes purely imaginary, À,,2 = ± i Wl),

with Wo > 0, while À3,4 = -a ± ib, a > 0, b > O. For, sufficiently slTlall, bath ai

and Wi in (5.3) can be expanded in terms of c:

al = 0 + '/1.1 +O((2),

a2 = -a + '/1.2 +0(,2),
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WI =Wo + '/1.3 +0(,2),

W2 = b+ '/1.4 +O( (2) .
(5.4)



• The coefficients l'j, i = 1,2,3,4, are the unfolding parameters, and they represent

the eITect of the deviation of the control parameter U from the critical value.

Let >'1.2 = 0'1 ± iWI be the first pair of eigenvalues of A, so that

then we obtain for U = Uer + fI' the fol!owing equation.;

Expanding Rel and Iml in terms of f, and noting that Rel(O, wo, uer),

Iml(O, Wo, Uer) = 0, results in

(5.7) .

•

where al! derivatives are evaluated at the critical values. It is seen that 1'1 and 1'3

may be solved in terms of the variation fI' of u.

The flow velocity for the system of Case l, for which we obtained a limit

cycle, which emergcs via a Hopf bifurcation, is U = Uer = 2.7396. Fol!owing the

above calculation procedure, we obtained 1'1 = 31.04651' and 1'3 = -19.39431'. The

details of this calculation are presented in Appendix E, Section E.1.

5.1.2 Pitchfork bifurcation

ln the case of pitchfork bifurcation, that means for a case of a single zero eigenvalue,

the calculation of the unfolding parameters may be carried out in a similar manner.

For a single zero eigenvalue, we let >'3 = 0'2 be the eigenvalue when U = Uer + fI',

and>' = 0 at U = Uer = 1.6946; we thus have

(5.8)

For f small, letting 0'2 = fl'2 at U = 1.6946 +fI', by expanding and evaluating

Re2(0'2, u) we obtain
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• (5.!l)

from which 112 = -4.919'1 (Appendix E, Section E.2).

5.2 CENTRE MANIFOLD CALCULATIONS

5.2.1 Hopf Bifurcation

The c!etails for these calculations may he found in Appendix E, Section E,3.

For the critical f10w velocity Uer = 2.7396, the eigenvailles are "1,2 = ± 9.017(;i

(hence, al = 0, WI = 9.0176) and "3,4 = -4.4646 ± 5.2242i (hencc, "2 =

4.4646, W2 = 5.2242). The second of equations (5.3) may therefore be writtell

as

0 -9.0176 0 0

9.0176 0 0 0
A= (5.10)

0 0 -4.4646 -5.2242

0 0 5.2242 -4.4646

The system of equations (5.2) can he reduced to a two-dimensional system

hy centre manifold theory, involving the "centre space" of (5.1 0), i.e., the part

associated with the purely imaginary eigenvalues; this leads to the redllccd two­

dimensional system

(5.11 )

By replacing Wo = Wl = 9.0176 and by substiluting III = 31.0465Ji, 113 =

-19.39431l, as determined in Section 5.1.1, equation (5.11) gives
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{

Xl} [31.0165 Il

X2 = 9.0176 - 19.3943 Il

where

-9.0176 + 19.3943 Il] { XI } + {J(Xb X2)} ,
31.0465 Il X2

(5.12)

} {

0.1968x~ - 1.2342x~X2 +2.5775xlx~ - l.7943x~ }

- 0.9246x~ - 5.7989x~X2 + 12.1102xlx~ - 8.4301x~ .
(5.13)

Either the method of normal forms or the method of averaging may be used

to solve these equations. We shaH use the latter and, accordingly, let

XI = rcosO, X2 = rsin O. (5.14)

Then, aCter substituting into (5.13) and applying the method, the averaged equations

are obtained, where

a =[!J.12 +3 !J~ +3 17.03 + f2.2d /8.

(5.15)

(5.16)

The terms fi.;k are the coefficients of fi(i = 1,2) in equation (5.13), in which jk is

associated with x{ x~ (Guckenheimer and Holmes 1983); for example, !J.12 = 2.5775.

In the case under consideration, it is found that a = -3.4902, i.e. a < 0,

signifying that the Hopf bifurcation is supercritical (Guckenheimer and Holmes

1983). Limit-cycle motions are obtained when r = 0, or from (5.15)

(5.17)

•
It is seen that a real limit-cycle amplitude, r, exists only for Il == IL - Uer > o. For

Il < 0, the origin (undeformed equilibrium) is stable, and a liITÙt cycle does not

exist.
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• We shall present the phase plots for our system in Figure 5.1 (a) for Il = 2.73 <

Uer, where Ucr = 2.7396, i.e., for /1 = -0.0096 < 0, where the origin is stable. If

U = 2.74 > Uer, then Il = 0.0004 > 0 and the origin becomcs unstable; wc then

obtain a limit cycle, as seen in the phase plot in Figure 5.1(b).

We have also compared the maximum amplitude of the system as a function of

/1, as obtained by (i) the centre manifold approximation and (ii) the Rungc--Kutta

numerical integration. Agreement between the two is very good for Il < 0.02, as

can be secn in Figure 5.2; in terrns of order of magnitude, it is quite acceptable UJl

to /1 ~ 0.08. This gives a taste for the power of the centre manifold method, on

the one hand, and gives confidence to the veracity of the numerical results, on the

other.

5.2.2 Pitchfork bifurcation

For the same system, but for U cr = 1.6946, the threshold 1I0w vc10city for the

pitchfork bifurcation, the matrix A is found to be

-1.8371

21.5414
A=

o
o

-21.5414

-1.8371

o
o

o
o
o
o

o
o
o

-2.4111

(5.18)

Application of centre manifold theory in this case (sec Section 5.1.2) reduccs

the full system into a one-dimensional sub-system,

X3 = /12 X3 - 11.5757 x~ = - (4.919/1 X3 + 11.5757 x~) , (5.19)

where /12 = -4.919/1, obtained in Section 5.1.2, has been utilized.

For U = 1.6 < Uer = 1.6946 (i.e., for /1 < 0), the origin is stable, as can bœn

seen in the phase plot in Figure 5.3(a)j but for /1 > 0, e.g. U = 1.7, the origin

becomes unstable, as can be seen in Figure 5.3(b), where the trajectory ends at one

of the new fixed points.
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h = 0.5, c = 0.38, f = 0.8, /te = 5 X 103, (a) just hefore and (h) just after the Hopf

bifurcation.
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•
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Chapter 6

NUMERICAL RESULTS FOR

THE FIRST MODEL WITH

N 3ANDN 4

In Chapter 4, the numerical results for the two-cylinder, two-degree-of-frœdolll

(N = 2) system were presented for Cases 1-4 (defined at the beginning of Chaptcr 4).

Then, sorne analytical results, obtained via centre-manifold theory, were presented

in Chapter 5 for Case l.

It is of interest to know how representative these results arc for N > 2. This

is the reason for undertaking numerical calculations for N = 3 and 4. These will

be presented in what follows for each of the same Cases 1-4, sequentially for N = :J

and N = 4 in each case; another system, Case 5, is also analyzed, in Section 6.5.
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• 6.1 CASE 1: h = 0.5, f = 0.8 and Kc = 5 X 103

6.1.1 Case 1 for the three-cylinder system, N = 3

As the flow velocity 11 is increased in Figure 6.1, both the real and imaginary

components of the first-mode eigenvalue approach zero; this corresponds to a

divergence instability (pitchfork bifurcation), which occurs at 11 = 1.711. As 11

is increased further, the real part of the eigenvalues becomes negative again, so that

the system is restabilized, at 11 = 2.887. Furthermore, at 11 = 3.167, in the second

mode, purely imaginary eigenvalues arise, which corresponds to a flutter instability

(Hopf bifurcation). For 11 = 3.8958, the real part of eigenvalues again becomes

negative, so that the system is restabilized.

For 11 = 3.9688, both the real and imaginary components of the first-mode

eigenvalue again approach zero; this corresponds to a second divergence instability

(pitchfork bifurcation). The system remains unstable for 11 > 3.9688, and another

flutter instability (Hopf bifurcation) occurs in the third mode for 11 = 4.058.

Figures 6.2 to 6.5 show bifurcation diagrarns and phase-plane portraits for the

first-cylinder displacement of the system, for flow velocities above the critical flow

ve10city for flutter.

The bifurcation diagram for flow velocities 11 between 3.1 and 3.7, is shown

in Figure 6.2(a)j there, 11 = 3.167 is the flow velocity for which flutter instability

occurs. A' stable, symmetric limit-cycle develops after the Hopf bifurcation, as

shown in Figure 6.3(a) for 11 = 3.35. Different shapes for the phase plane portraits

are shown for different flow velocities, as for example in Figure 6.3(b,c) for (b)

11 = 3.6 and (c) 11 = 3.7, respectively. These shapes remain always symmetrical

with respect to the origin (central symmetry). As the ratio of the two dominant

frequencies ft! f2 = 1/3 in ail these cases, then these motions are periodic with

period T = TI = 3T2• For (a) 11 = 3.4, then the period T = 0.59, for (b) 11 = 3.6,

63



•

•

then T = 0.49, and for (c) u = 3.;, then T = 0.·1·1.

As may be seen further in the bifurcation diagram of Figure 6.2(b), the syst"Ill

becomes chaotic at u ~ 4.09. The route to chaos is clarifi",1 via Figures 6.4 and (i.5.

The system is restabilized between u = 3.8958 and 3.9688 (not completely shown

in the two bifurcation diagrams, Figures 6.2(a,b)). At u = 3.9688, a pit.chfork

bifurcation occurs, and for u > 3.9688 (Figure 6.2(b)), the origin is no longer a

stable fixed point (S.F.P), but new stable fixed points on either side arc generat.ed.

The stability of these new fixed points was investigated by linearizing the

system in their vicinity. As seen in Figure 6.4(a), as u is increased (to Il = 4.05) the

eigenvalues become purely imaginary, at the extreme right of the figure, signifying

the occurrence of another Hopf bifurcation and the devc10pment of limit-cycle

motions for higher u, the onset of which is marked by the kink in the cnrves in

Figure 6.2(b). This is further clarified by the phase-plane plots of Figures 6.4(b,c).

For u = 4.052, the fixed point is still stable and the trajectory of Figure 6.4(b)

approaehes that point with time. For u = 4.053, however, which is beyond the

Hopf bifurcation, a limit-cycle develops, as seen in Figure 6.4(c). This limit-cyclc

is symmetric about the fixed point which gave it birth, but a.qymmetric lIis-à-lIis

the origin; only the upper (maximum) branch of the limit-cycle is shawn in the

bifurcation diagram of Figure 6.2(b) for each of the two limit-cycles, each arising

from one of the two fixed points.

Furthermore, for u > 4.053, phase-plane portraits were constructed in Figure

6.5 in order to clarify the bifurcation diagram (Figure 6.2(b)). One can see in

Figure 6.5(a) that a symmetric limit-cycle arises from a pitchfork bifurcation for

u = 4.06; the motion becomes quasiperiodic-two in Figure 6.5(b) for Il = 4.0885,

quasiperiodic-three in Figure 6.5(c) for u = 4.09, and chaotic in Figure 6..5(d) for

u = 4.0965.

Figure 6.6 again verifies these results for (a) Il = 4.0885, (b) Il = 4.0900, and

(c) Il = 4.0965: in the first column (panels (ad, (bd and (cd) are the Poincaré
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• maps, and in the second column the corrC'Sponding power spectra (panels (a2), (b2)

and (C2))' Before analysing the Poincaré maps depicted in Figure 6.6, it has to be

mentioned that these maps were constructed with 10,000 time steps, and they were

obtained by plotting ~2(T) versus .p2(r) for .pl ~ 0.1. As in the computer program

for Poincaré map calculations it was very difficult to obtain exactly .pl = 0.1, .pl

was taken in the interva! (0.1, 0.100001).

The closed nature of the curves depicted in the Poincaré map of Figure

6.6(al> bd suggests the quasiperiodic motion of the system for the flow velocities

(ad li = 4.0885, and (b l ) li = 4.0900. The Poincaré map shown in Figure 6.6(cd

for li = 4.0965, on the other hand, suggests that the system is chaotic at that stage.

The nature of the dynamical states depicted in Figure 6.6 may best be

assessed by the power spectra, which are presented in the second column of that

figure. In Figure 6.6(a2), for li = 4.0885, two fundamental frequencies are found:

fi = 0.934 4006 and 17 = 6.612 681, from which ail other frequency peaks may be

constructed, occurring at nfl ± m17, where n and mare integers. Thus, these peaks

occur at fn = nfl for n = 2,3, ... ,9, flO = 3fl+17.Jll = 4ft+17, ft2 = 12f1l fl3 =

6f1+17, fl4 = 14f1l fiS = 217, fl6 = 15f1l fl7 = 9fl +17, fl8 = 10fl +17. Whether

the ratio fd17 is rational or irrational depends on the accuracy of the determination

of the freqllencies fi and 17. If one presumes that the values given here are absolutely

precise, then by the continued fraction technique and Matllematica, one finds a

rational ratio fl/17 = 0.1413044 = 13/92. As the motion of the system involves two

fundamental frequencies, and the Poincaré mal' is represented by a closed curve,

that means, finally that the motion is indeed quasiperiodic-two.

The power spectrum for li = 4.0900 in Figure 6.6(b2) is found to involve

three fundamental frequencies, fi = 0.862 5236, f2 = ~ fi and fs = ~ fi' Ali

other freqllencies may be constructed by nfl ± mf2 ± pfs, with n, m, and p being

integers. Thus, for example, f3 = 2fl> /4 = fi + /2' f6 = fi + fs, /7 = 2/1+ /5'

/8 = fi + /2 + /5, /9 = 2/1+h + fs, flo = 3fl + f2 + fs, fll = 12fl - fs, and so
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• on. In this case, the ratios of the fundamental frequeucies are defiuitdy rat.ional 0)
and (t~). As the motion of the system involvcs three fundamental [r"quenci,'s, and

the Poincaré mai> is again reprcsented by c10sed curvcs, the motion of t.he sys!cm

at this value of li also is quasiperiodic-three.

The system at li = 4.0965 is c1early chaotic, as evidenced a!ready hy the

Poincaré mal' shown in Figure 6.6(cd, as weil as by the phase plot of Figure

6.5(d) and the power spectrum of Figure 6.6(C2)' In the latter, although th"

principal frequencies (twin peak) and their harmonics are still very promillent., (,he

subharmonic content is fundamentally flat.

This route to chaos may be explained by means of the Ruclk~Takens­

Newhouse theory (Ruelle and Takens 1971; Bergé ct al. 1!)84), the overall process

involving three successive Hopf bifurcations. The first leads from illl initial statie

steady state (fixed point, dimension zero) to a periodic one (limit cycle, dimension

one). The second transforms the periodic regime into a quasiperiodic-·t.wo rcgimc

(Figure 6.6(a)). The third gives a transition to quasiperiodic-three motiom: (Figure

6.6(b)), which finally gives rise to chaos (Figure 6.6(c)).

6.1.2 Case 1 for the four-cylinder system, N = 4

As the flow velocity li is increased in Figure 6.7, both the real and imaginMY

components of the first-mode eigenvalue approach zero; this corresponds to a

divergence instability (pitchfork bifurcation), which occurs at li = 1.71. As Il is

increased further, the real part of the eigenvalues again becomes Ilegative, so that

the system is restabilizcd, at li = 3.01.

Furthermore, at li = 3.42, in the second mode, purely imaginary eigenvalues

arise, which corresponds to flut.t.er instability (Hopf bifurcation). For li = 4.465, the

system is restabilized.
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For u = ~.65, a second divergence instability (pitchfork bifurcation) in the first

mode is obtained. The system remains unstable for Il > 4.65, and another flutter

instability (Hopf bifurcation) occurs in the third mode for u = 4.78.

In the fourth mode, the real part of the eigenvalues is always negative; so,

from the linear stability point of view, only the other three modes are of interest.

For this case, we have obtained the bifurcation diagram and the corresponding

phase-plane portraits for f10w velocities u between 3.35 (which is the critical flow

velocity for flutter), and 3.70. They were shown in Figures 6.8 and 6.9, respectively.

The phase-plane portraits obtained for (a) u = 3.35, (b) u = 3.60 and (c) u = 3.70

are symmctric about the origin. These motions were already described in the

previous chapter as periodic motions with two frequencies, which ratios were equal

to 1/3. The periods of motion for these cases are the following: T = 0.71 for (a)

u = 3.35; T = 0.58 for (b) u = 3.6; and T = 0.53 for u = 3.7, so that for a higher

number of articulated cylinders N = 4, higher values for the periods of oscillations

are obtained.

The system is restabilized for higher flow velocities, between u ~~ 3.70 and

4.55 (not shown in the bifurcation diagrarns of Figures 6.8 and 6.10), and becomes

unstable through a flutter instability (Hopf bifurcation) for u ~ 4.56. For flow

vc10cities higher than u =4.56, as may be seen further in the bifurcation diagram of

Figure 6.10, the system probably becomes chaotic for u between 4.595 and 4.61 j the

doubt exists because it is difficult to distinguish between quasiperiodic and chaotic

motion in this case. To clarify this question, it will be necessary to construct the

phase-plane portraits and their corresponding power spectra for the system.

The phase-plane portraits for (a) u = 4.59, (b) u = 4.60, (c) u = 4.6095,

and (d) u = 4.6098 are shown in Figure 6.11. The closed two-segment curves

of the Poincaré maps of Figure 6.12(at'.Il establish the quasiperiodic nature of

the motion of the system for (aIl u = 4.6 and (bd u = 4.6095, while the closed

four-segment curves of Figure 6.12(ct) show that the motion is quasiperiodic for
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• (cd u = 4.6098. In addition, power spectra for the same fiow vclocitics are presented

in the second column of Figure 6.12, which reinforce the same conclnsions, as will

further be discussed in the fol1owing paragraphs.

In Figure 6.l2(a,), for u = 4.6, two fundamental frequencies are found:

fI = 1.074 220 and h = 1.660 158, from which ail the other frcquency peaks arc

calculatedj they occur at mfl ±nh, where m and n arc integers. Thus, h = fi +2h,

f4 = 2fl + 3h, fs = 4ft +2h, f6 = 6fl + 2h, h = 5fl + 3f" f8 = 7fl +3h,

fe = 6fl +4h and flO = 5fl +5f,·

For u = 4.6095, in Figure 6.l2(b,), the same two fundamental frequencies were

found, fI and h. Different values for the other frequencies fn (where 11 > :1) were

found, as follows: fa = -fI +2h, f4 = -fI +3f" f5 = fI +2h, f6 = :If" h = 4h,

fa = 2fl +3h, fe = 4fl +2h and flO = 3fl +3f,·

For (c,) u = 4.6098, again the same two fundamental frequencics as in the ot.her

two cases were found, the other frequencies being linear combinations of fi and f,.

Finally, it may be concluded that the Winding number (W = fl/J, = 0.(471) is the

same for (a,) u = 4.60, (b,) u = 4.6095 and (c,) u = 4.6098, and that the motion

of the system for these fiow velocities is quasiperiodic.

For u > 4.6098, the amplitudes of motion become too large, while the basic

analytical model has been constructed for smail amplitude motions; so, this may

explain why no convergent solutions were obtained. No chaotic motion was obtained

for this case; the motion remains quasiperiodic.

Last, a comparison between the behaviour of a three- and the four-articulated-­

cylinder systems will be done. For fiow vclocities u between 3.:1.5 and 3.70, the

bifurcation diagram and the corresponding phase plots of Fignres 6.8 and 6.9

obtained here for N = 4 were compared to those for the N = 3 system discussed

before (Figures 6.2(a) and 6.3). It may be seen that the two sets of diagrams arc

similar, and hence the dynamical behaviour of the system is qualitatively similar in

this range of u.
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The amplitudes in the two cases are compared next. It is noted that the

maximum displaccment for the first cylinder in the system, r/>lmor' for the system

with N = 4, is 1.3 to 1.35 times higher than r/>lmax for the N = 3 system for flow

velocities u between 3.31; and 3.7; (for this range of flow velocities u, the system is

not chaotic)

For flow ve10cities u > 3.70, the route to chaos for the N = 3 system presented

by the bifurcation diagram and the corresponding phase-plots of Figures 6.2(b) to

6.5 is compared with the dynamical behaviour of the N = 4 system presented by

the bifurcation diagram, the phase-plane plots and the corresponding Poincaré maps

and power spedra of Figures 6.10 to 6.12. For the N = 3 fystem, a symmetric limit

cycle arises from a pitchfork bifurcation and it will be symmetrical about the fixed

point which gave it birth, but asymmetric vis-à-vis the origin, and chaotic motion

c~curs. FOI the N = 4 system, the limit cycle arises from a Hopf bifurcation and is

symmetric about the origin and no chaotic motion will occur.

6.2 CASE 2: h = 0.2, f = 0.8 and K,c = 5 X 103

This case corresponds to a system with a narrower annulus than Case 1.

6.2.1 Case 2 for the three-cylinder system, N = 3

As u is increased, it is seen in Figure 6.13(a) that the first mode undergoes a pitchfork

bifurcation at u = 1.1733. As u is increased further, the system is restabilized in

this mode at u = 1.9544.

For u = 2.287, purely imaginary eigenvalues arise in the second mode (Figure

6.13(b)), signalling a Hopf bifurcation (flutter). This dynamical state persists up

to u = 2.6568, at which point the system regains stability and remains stable in

that mode thereafter. Then, for u = 2.7, the system undergoes a second pitchfork

bifurcation and remains unstable in that mode to at least u = 5. At a slightly
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• higher flow velocity (u = 2.995), the system 11.150 loses stability in its thinI-mode,

by another Hopf bifurcation, as secn in Figure 6.13(c). Thus, for u > 2.995, up to

at least u = 5, the system is subject concurrently to divergence in its first mode and

flutter in its third.

Figure 6.14 gives the bifurcation diagram in the range 2.25 < u < 2.85 with

impacting modelled by a cubic-spring; the evolution of the limit-cycle amplitnde

beyond the first Hopf bifurcation is clearly secn in the phase-plalll' plots in Figure

6.15 for 2.30 < u < 2.658. In Figure 6.15(a,b), the limit cycle is symmetric about

the origin for (a) u = 2.3 and (b) u = 2.55; there is a unique value for the maximum

amplitude for these two cases. In Figure 6.14, for 2.60 < u < 2.66, approximatc1y,

three values of amplitude are shown, corresponding to local maxima of <Plm... as

clarified by the phase-plane diagram of Figure 6.15(c,d) for (c) u = 2.(;25 and (d)

u = 2.658, respectively: by taking a line close to ~ = 0, three local maxima are

counted for t/J, as weil as three local minima. These phase-plane portraits remain

symmetric about the origin and the motion of the system is periodic for 11.11 the cases

mentioned in Figure 6.15. For u = 2.55, the frequency of the system is f = 1.52;

for u = 2.625 the frequency of the system increases and is f = 1. 7!J; while for

u = 2.658 then f = 2.04. In the power spectra 11.11 these frequencies will have

odd subharmonics; it means that the motions of the system are periodic with two

dominant frequencies, which ratio is fi /12 = 1/3.

At u = 2.6568 the origin regains its stability and is a simple fixed point, np

to u ~ 2.70, the threshold of the second divergence (pitchfork bifurcation), in the

first mode of our system, which has been observed already in Figure 6.14. The

two branches of the pitchfork were determined via opposite-sign initial conditions.

Thus, for u > 2.7, the origin is no longer a stable fixed point, but new stable fixed

points (S.F.P.s) on either side are generated.

The stability of these new fixed points was investigated by linearizing the

system in their vicinity. As seen in Figure 6.16(11.), as u is increased (to u = 2.722.5)
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• the eigenvalues become purely imaginary, at the extreme right of the figure,

signifying the onset of another Hopf bifurcation and the development of limit-cycle

motions (L.C.) for higher u, the onset of which is marked by the kink in the curves

in Figure 6.14. This is further clarified by the phase-plane plots of Figure 6.16(b,c).

For u = 2.7225 the fixed point is still stable and the trajectory of Figure 6.16(b)

approaches that point with time. For u = 2.725, however, which is beyond the Hopf

bifurcation, a lirnit cycle develops, as seen in Figure 6.16(c). This lirnit cycle is

symmetric about the fixed point which gave it birth, but asymmetric vis-à-vis the

origin of course; only the upper (maximum) branch of the lirnit cycle is shown in

the bifurcation diagram of Figure 6.14 for each of the two limit cycles - arising

from one or the other of the two fixed points.

For u > 2.74, a cascade of period-doubling bifurcations is seen in Figure 6.17,

leading to chaos. Period-1, period-2 and period-4 motions are displayed in the

corresponding phase portraits of Figure 6.17(a,b,c), for (a) u = 2.74, (b) u = 2.77,

and (c) u = 2.778, respeetively. The thresholds for period-2 to period-16 motion

were pin-pointed as follows: u = 2.765, 2.7769, 2.782 and 2.7831, from which a

Feigenbaum number based on the last three is Fei = 4.64, close to the "ideal".

Figure 6.17(d), for u = 2.79, shows chaotic motion.

As shown in Figure 6.18, for higher flow velocities, the motion of the system

becomes period-two for (a) u = 2.80 of period T = 1.42, (b) period-four for

u = 2.8011 (its period is T = 2.82 twke previous period) and finally the motion

becomes chaotic through these period-doubling bifurcations for u = 2.8012 to (c)

u =2.8018. The chaotic motions of the system for u = 2.8018 depends of the sign of

the initial condition: the phase-plane portrait for (c) u = 2.8018 was obtained with

~1 = 0.1, while the one for (d) u = 2.8018 with ~1 = -0.1. By merging these two

phase-plane portraits, one may obtain for a higher flow velocity, i.e., (e) u = 2.82

a chaotic motion of the system which visits both positive and negative parts of the

phase-plane, and hence is independent of the sign of the initial conditions.
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• The corresponding Poincaré map, shown in Figure 6.19 for II = 2.835, displays

an interesting "nebula" shape, characteristic of chaotic motion; it was obtained by

plotting ~2(T) versus <P2(T) when <PI(T) = O.

As discussed in conjunction with the eigenvalue analysis, interesting dynamical

behaviour was expected to arise for li > 2.995, when the system should be subject

concurrently to (i) Hutter associated with the third mode (via a Hopf bifurcation

of the origin) and (ii) Hutter associated with the first mode (via Hopf bifurcations

of the new stable points emanating from the second pitchfork bifurcation shown in

Figure 6.14). Unfortunately, no convergent solutions could be obtained for II > 2.84

approximatelYi this was confirmed not to be a fault of the solution algorithm. The

most likely cause is that the amplitudes of motion become too large, while the basic

analytical model is for small amplitude motions.

6.2.2 Case 2 for the four-cylinder system, N = 4

As the How velocity li is increased in Figure 6.20, it is seen that the system is first

subjected to a divergence instability (pitchfork bifurcation), at li = 1.17. As Il is

increased further, the system is restabilized, at 11 =2.036. Furthermore, at 11 = 2.4,

always in the first mode, the system becomes unstable by f1utter (Hopf bifurcation),

and for li = 3.03, the system is restabilized.

For li = 3.16, a divergence instability (pitchfork bifurcation) occurs, associated

with the second mode. For li = 3.488, the real part of the eigenvalues again becomes

negative, so that the system is restabilized in the second mode.

At li = 3.52, purely irnaginary eigenvalues arise, in the third mode, which

correspond to another Hutter instability. Furthermore, at li = 3.56, in its second

mode, another pair of purely imaginary eigenvalues arise, which correspond to yet

another Hutter instability. For li = 3.86, however, the system is restabilized in its

third mode, although it continues to be unstable in its second mode.
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• A second (third) f1utter instability reappears in the third mode for u = 4.36,

so that the system remains uns table in the second and third modes for u > 4.36.

In the fourth mode, the real part of the eigenvalues is always negativej so,

from the linear stability point of view, only the other three modes are of interest.

We have obtained the bifurcation diagram for u = 2.2 - 2.7, which is shown

in Figure 6.21, and corresponding phase-plane plots in Figure 6.22, for (a) u = 2.3,

(b) u = 2.55, (c) u = 2.625 and (d) u = 2.658, which are always symmetric about

the origin and periodic with odd subharmonics, as are the ones mentioned in the

previous subsedion 6.2.1, for N = 3. For N = 4, there are obtained the following

frequencies for different f10w ve1ocities: for u = 2.55, the frequency of the system is

J = 1.11; for u =2.625, the frequency of the system increases to J = 1.20, while for

u = 2.658, it is J = 1.3. It rnight be concluded from the last two subsections that

the frequency of the system increases with u, as weil as with the number of degrees

of freedom.

For higher f10w velocities, i.e., u > 2.7, the amplitudes of motion become

too large, which is inconsistent with this analytical model which is valid for small

amplitude motions. This may be the reason why for u > 2.7, no convergent solutions

could be obtained. No chaotic motion could be found for this system.

Finally, the phase-plane plots in Figure 6.22 can be compared to the phase­

plane plots for N = 3 (already shown in Figure 6.15) for the same flow velocities u.

We can see that we have obtained almost the same qualitative behaviour. From the

quantitative point of view, for f10w velocities 2.2 < u < 2.7, tPlmor for the N = 3

system is between 1.1 and 1.3 times higher than tPlmar for the N = 4 system; but

this agreement does not extend to other values of u. For u > 2.7 the N =3 system

becomes chaotic for u :::: 2.8 (Figure 6.14), while the N = 4 system does not become

chaotic.
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• 6.3 CASE 3: h = 0.5, f = 0 and "'c = 5 X 105

Physically, the system in this case is similar to that of Casc l, bu t the frcc eud is

blunt in this case.

6.3.1 Case 3 for the three-cylinder system, N = 3

For this case, the system becomes unstable through a fiutter instability (Hopf

bifurcation) for a f10w velocity li ~ 4.9.

By comparing the bifurcation diagram presented in Figure 6.23, t.ogether with

the corresponding phase-plane portraits for (a) li = 6.15, (b) li = 6.235, (c) 11 =6.25

and (d) li = 6.4, shown in Figure 6.24, il. is seen that the quasiperiodic route to

chaos (Ruelle-Takens-Newhouse theory) is followed in this case.

Poincaré maps shown in Figure 6.25 for (a) li = 6.235, (b) li = 6.25 and (c)

li = 6.265 are represented by closed curves, which verifies the quasiperiodic motion

of the system, while the Poincaré mal' for (d) li = 6.2695 shows its chaotic behaviour

al. that f10w velocity.

6.3.2 Case 3 for the four-cylinder system, N = 4

By comparing the bifurcation diagram (Figure 6.26) with the corresponding phase­

plane portraits obtained in Figure 6.27, the route to chaos is seen to arise through

period-odd motions (period-three, -six, etc.).

Poincaré maps are shown in Figure 6.28 for (a) li = 6.235 and (b) li = 6.365,

respectively, and they verify (a) the period-three motion for our system for 11 = 6.2:l5

and (b) its period-six motion for li = 6.365. Furthermore, Poincaré maps shown in

Figure 6.28(c,d) show the period-twelve motion for (c) li = 6.37, and chaotic motion

for (d) li = 6.4.
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From a quantitative point of view, the maximum displaccment for the first

cylinder in the system, rPlma.. for the system with N = 4 was found to be 1.1 to 1.3

times higher than rPlmar for the three-degrec-of-freedom system for f10w velocitics

U betwccn 5 and 6.4; but the dynamics of the two systems are quite different, the

routes to chaos being completely different.

6.4 CASE 4: h = 0.2, f = 0.4 and K c = 5 X 105

This system is similar to Case 2, but with an intermediately blunt free end - blunter

than for Case 2.

6.4.1 Case 4 for the three-cylinder system, N = 3

For this system, we shaH study its behaviour for f10w velocities u higher than the

critical f10w vclocity for pitchfork bifurcation upJ ~ 2.7.

The route to chaos for the bifurcation diagram of Figure 6.29 is c1arified via the

phase-plane portraits of Figure 6.30. For u = 2.7, a pitchfork bifurcation occurs.

The two branches of the pitchfork bifurcation were determined via opposite-sign

initial conditions. Thus, for 2.7 < u < 3.4, the origin is no longer a stable fixed point,

but new stable fixed points (S.F.P.s) on either side are generated. By analysing the

stability of these new fixed points by linearizing the system in their vicinity (in the

same way as in Figures 6.4 and 6.16), Iimit-cyc1e motions are seen to develop for

u > 3.4, the onset of which is marked by the kink in the curves in Figure 6.29.

The phase-plane portraits presented in Figure 6.30 for only one initial

condition ~1 = 0.1 and for different f10w velocities (a) u = 3.5, (b) u = 3.525,

(c) u = 3.54, (d) u = 3.57 and (e) u = 3.58 show the period-doubling of the

motions leading to chaos.

As the motion of the system becomes period-two for u =3.5155 (with period

T = 2.04 compared to the previous period for u = 3.5 which was T = 1.02), period-
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• four for !l = 3.5375 and period-eight for u = 3.542, the Feigellbaum number may

be calculated and is found to be equal to 4.89, which is very close to the ideal

Feigenbaum number.

The chaotic motion of the system for u = 3.57 and u = 3.58 may also be verified

by constructing their corresponding Poincaré maps in Figures 6.32(a,b). For longer

time steps, for T > 500, at u = 3.58 the motion of the system is trallsforme<1 from

chaotic into a Iimit cycle, 50 that for this flow velocity u =3.58 we have a "trallsiellt"

chaos.

In Figure 6.31, the motion of the system becomes agaill a symmetric limit

cycle (period-one) for (a) u =3.59, quasiperiodic for (b) u = 3.595 and (c) li = :1.6,

which may be verified by constructing the Poincaré maps in Figure 6.32(d,e), which

have the form of closed curves. The Poincaré map for u = 3.61 presented in Figure

6.32(f) is characteristic of chaotic motion.

In order to verify tb quasiperiodic nature of the motion of the system for

(b) u = 3.595 and (c) u = 3.6, the power spectra were ca1culated from whieh two

fundamental frequencies were found: fI = 0.431 483 and 12 = 2.445 070, ail the

other frequencies being linear combinations of fI and 12, as fn = mfl ± nh with

n > 3. For li = 3.595, !J = 3fl> f4 = 10fl> f5 = 5fl + f2' k = -3f. + :112,

h = 141i +212, f8 = 241i +12, f9 = 171i +3f2 and flO = 281i +3f2' For u = :1.6,

!J = -4fl +12, f4 = -31i +12, f5 = -4fl +2f2' fo = -7fl +312, h = 6fl +12,

f8 = -3fl +3f2' f9 = 4fl +2f2 and flO = -fI +3f2'

6.4.2 Case 4 for the four-cylinder system, N = 4

The period-doubling route to chaos for the bifurcation diagram of Figure 6.33

is clarified via the phase-plane portraits of Figure 6.34. For li = 3.65, a Hopf

bifurcation occurs, which corresponds to a symmetric limit cycle. For higher flow

velocities, the motion of the system looks as if it is developing around two fixed
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• points: (4), = -0.045; ~, = 0) and (4), = 0.03; ~, = 0); as seen in the phase-plane

plots and in the Poincaré maps presented in Figures 6.34 and 6.35, resp~ct;vely, the

system executes (a) period-one motion for u = 3.961, for which the period T = 1.02;

(b) period-two motion for u = 3.963, its period being T = 2.04; (c) period-three

motion for u = 3.97, in which the reriod is three times higher than in the previous

motion; (d) slightly chaotic motion for u = 3.9953.

The sliZhtly chaotic character of the motion for u = 3.9953 has been verified

through the time traces, power spectra and the Poincaré maps in Figure 6.36(a,b,c).

As secn in Sections 6.4.1 and 6.4.2, the system in this case displays a completely

different behaviour for N = 3 and for N = 4.

6.5 CASE 5: h = 0.5, f = 0.4, /\'c = 5 X 105

and for N = 3

This system is similar to Case 1, but with an intermediately blunt free end-which

is the same as for Case 4, but in this case the annulus is wider.

In this case, as the f10w velocity u is increased, both the real and imaginary

components of the second-mode eigenvalue approach zero, leading to a pitchfork

bifurcation (divergence) at u = 4.15. The system remains unstable for u > 4.15.

Furthermore, a Hopf bifurcation occurs at u = 4.7, in the third mode. The first

mode remains stable throughout this range of u.

Figure 6.37 shows the bifurcation diagram with the cubic-spring representation

("c =105
) for the range of u beyond the pitchfork bifurcation. Figure 6.37(b) covers

the range of u where chaos apparently arises in Figure 6.37(a), i.e., 4.91 < u <

4.925. The two stable branches after the pitchfork bifurcation were determined via

opposite-sign initial conditions (Figure 6.37(a)). Thus, for 4.15 < u < 4.90941, the

origin is no longer a stable fixed point, but new stable fixed points (S.F.P.s) on

77



• either side are generated. The stability of these new fixed points was inVl'stigat('e!

by linearizing the system in their vicinity. As U is incrcasee! (from U,'f = ·1.15

to U = 4.90942) the eigenvalues become purely imaginary, signifying the onset

of another Hopf bifurcation and the development of limit-cycle motions (L.C.)

for higher u. This was further clarified by phase-plane plots (not shown). For

U = 4.90941, the fixed point is still stable and the trajectories approach that

point with time, while the first chaotic motion through intermittency develops for

U ~ 4.90942. As the interva! in Il between fixed point and chaotic behavionr of

the system is too small (it is equa! to 0.00001), then the exact value of the critical

f10w velocity Uer at which a stable limit cycle occurs could not be piu-pointed;

furthermore, because of the small interval in u, Uer is assumed to he equal to

Uer = 4.90942.

The chaotic motion of the system through intermittency is further verifiee!

by the phase-plane plots and time traces shown in Figures 6.38 and 6.39 for the

same f10w velocity Il =4.91 but for different ranges of time T, as follows: ln Figure

6.38(a,c), for 0 < T < 4, after the initia! transient has died out, for 0 < T < 2,

an unstable limit cycle develops; the instability is weak and, although trajectories

are attracted to the vicinity of the limit cycle, the limit cycle amplitude increascs

gradually but continuously with time T, for 2 < T < 4. At a higher time intcrval,

152 < T < 162 (Figure 6.38(b,d)), one of the bursts of "turbulence" is capturcd,

which are characteristic of this type of chaos; the associated phase-plane diagram

(Figure 6.38(b)) reinforces the view that, in that time period, the oscillation is

chaotic.

Similar behaviour is seen in Figure 6.39(a,c), showing a quiesccnt, nearly

steady oscillation for 700 < T < 705, and in Figure 6.39(b,d), showing chaotic

oscillations at higher T with several unsteady bursts.

In Figures 6.40 and 6.41 bifurcation diagrams are presented for this system,

showing the maximum displacement of the first cylinder of the articulated system,
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rPlmar or h (in the intcrmittency notation), as a function of the nondimensional

time T; for 0 < T < 5,000 in Figures 6.40(a,b), and for a larger range of T,

5,000 < T < 10,000 in Figure 6.4I(a,b), as follows:

• in Figure 6.40(a) for 0 < T < 2,500;

• in Figure 6.40(b) for 2,500 < T < 5,000;

• in Figure 6.4I(a) for 5,000 < T < 7,500;

• in Figure 6.41 (b) for 7,500 < T < 10,000.

In thcse figures one may see the turbulent fluctuations represented through vertical1y

clustered points in the diagrams, which are interrupted by laminar fluctuations, or

laminar phases.

It has already been discussed, in Figure 6.39, that the laminar phases are in

fact associated with "growing" limit cycles, and these limit cycles ~re presented in

the four bifurcation diagrams (Figures 6.40 and 6.41) through one single point.

Another signature of the intermittency is the statistical distribution of the

lengths P(T) of the Iaminar phases versus T and it is is presented in Figure 6.42.

The distribution in this case has a maximum for short times (T = 20) and decreases

exponential1y at large times, which is characteristic for type III intermittency. The

most significant feature for this figure is the long tail for T large; in Figure 6.42 the

long T interval is 190 < T < 300 in which only one laminar phase exists.

Furthermore, one may observe a very large number of laminar phases in Figures

6.40 and 6.41, and the number of laminar phases N(T > To) lasting longer than TO

are counted versus To, and an exponential function is obtained in Figure 6.43; it is

a function of TO and p. It is difficult to find out the exact value of Uer at which a

Hopf bifurcation occurSj we know already from the previous page that Uer is between

4.90941 and 4.90942; as this interval is very small, Uer will be taken as Uer = 4.90942.

It is concluded that, even if a formula is considered for N(T > To), in this case it is
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not the classical one. as Uer is not the real f1utter vclocity. The eritieal Ilow '"('Ioeity

at which a divergence instability occurs might also be considered as 11 er = ·1.15.

Once more. this Uer is again not the classical one used in intermitteney calculation

(Bergé et al. 1984). in which Uer has iJways becn eonsidered as Il at whieh il lIopf

bifurcation occurs.

Ail calculations for Figures 6.42 and 6.43 arc donc for a total nondimensional

time T = 10,000 (as shawn in Figures 6.40 and 6.41). As in the bifurcation diagrallls

of Figures 6.40 and 6.41, it is very difficult ta sec the beginning and the end of

a laminar phase. One may sec the behaviour of the system. and espedally its

laminar phase. in a smaller range of T, as for example, for 9(;0 < T < lORD,

in which two laminar phases arc shawn in Figure 6.44(a). In Figure fiA-I(a) for

960 < T < 970 turbulent fluctuations appear (many points) which arc followed hy

period-two motions for 970 < T < 974 (two points), then by a growing limit cycle

motion (one point) for 974 < T < 1058, a very small intermittent region followed

for T > 1060 by the second laminar phase (presented again through two and on"

points).

Then the same bifurcation diagram. but for a smaller range of T, is prescnkd

in Figure 6.44(b) in order to sec clearly only the first laminar ph'L,e hehavionr for

966 < T < 978, so we already know that a period-two motion precedes a dlilotic

motion, in case of intermittency type III. In our example, chaotic motion is followed

by period-two motion. and again by period-one motion (or laminar phases).

Furthermore, h, h+h h+2 arc defined in Figure 6.45 as corresponding to t11"

kth, (k + l)th and (k +2)th maximum displacement of the (jrst cylinder in time T.

These quantities are used in graphing the first and the second returu maps presented

further in Figures 6.46 and 6.47.

Figure 6.46 shows the first retum mal' h+l versus h. in which h+l is the

new maximum displacement of the first cylinder and h is its previous maximnm

displacement. In this figure, a curve tangent to an inverse diagonal is obtained, its
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• slapc bcing cqual ta -1. Thc second return map h+2 versus h is shown in Figure

GA 7 and it is seen that this curve is a graph of a function

h+2 = (1 +2p.)h +al; +bI;, (6.1)

•

with a and b constants and a << b. As p. is very small, and is equal to 0.00058,

thcn a and b arc furthcr calculatcdj they are round to be a ~ -12, b ~ 451.
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Figure 6.17. Phase-plane plots of ~l(r) versus rPl(r) at (a) u = 2.74, (b) u = 2.77,

(c) u = 2.778 and (d) u = 2.835 for the system of Case 2: h = 0.2, C = 0.79, f = 0.8

and Koc =5 X 103
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Chapter 7

GLOBAL COMPARISON OF

THE RESULTS OBTAINED

WITH THE FIRST MODEL

WITH N=2 AND N=3

In this chapter, bifurcation diagrams, phase plane portraits and tables are

cOllstructed for the first model wH h the cubic spring representation, for N = 2 and

N = 3, and compared. Also, .'ome results are presented in the form of bifurcation

diagrams and phase plane portraits for the first model with the trilinear spring

reprcJentation for N = 2, in order to compare these two types of impact modelling.

The dynamical behaviour is analyzed by varying the flow velocity u, for

u > uc" where Uer is the flow velocity for whi<:h a Hopf or a pitchfork bifurcation

occurs; two other parameters, h and J, are also varied, where h corresponds to the

dimensionless hydraulic diameter, and f to the form-coefficient of the downstream

end of the articulated system. Specifically, for h = 0.2 and h = 0.5 and for five end­

form coe~cients, f = 0, f = 0.2, f = 004. f = 0.6 and f = 0.8, the behaviour
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• of the first mode! with the cubic spring 15 analyzed for II' = 2 and IV = :1

(Sections 7.1-7.4).

After discussing m sorne detail the behaviour of tht' modcl for di!f<'rt'nt

parameters, the final results will be summarized in Tables 7.1 to 7.:1 on pp. 99­

101, where Table 7.1 explains the symbols used in Tables 7.2 and 7.3.

Then, in Section 7.5, the first model with the trilinear spring is analyzed for

h = 0.5 and .IV = 2, and f = 0, f = 0.4 and f = 0.8; the rcsn\ts obtain<'d art'

compared to those for the first model with a cubic spring.

7.1 N=2, FIRST MODEL WITH

CUBIC SPRING; h=0.2

7.1.1 N = 2, h = 0.2 and f = 0

From linear analysis, il flutter instability occurs for Ilfl ~ 3. The bifnrcation

diagram corresponding to this case is shown in Figure 7.I(a) for Il > 11ft. At

Il = 3, a symmetric stable limit cycle about the origin develops afler the Hopf

bifurcation. For higher flow velocities, 4.6 < Il < 5.881, the perfect shape of

this limit cycle is modified into another type of periodic motion, which femains

always symmetric about the origin but also develops around two symml'trical points,

as shown in the phase plane portraits constructed in Figure 7.2(a) for Il = fI.G.

For 5.882 < Il < 5.885, weakly chaotic motion develops around one pair of two

symmetrica! points, while period-two motion develops around anothcr point (Figure

7.2(b) for Il = 5.885); for 5.886 < Il < 6.05, chaotic motion develors again aronnd

one pair of two symmetrical points, while period-one motion develops around

another point (Figure 7.2(c) for Il = 5.887). For 6.052 < Il < ".0538, a periocl­

two motion develops around one pair of two points, while around the other pair of

points the motion will remain period-one, as shown in Figure 7.2(d) for Il = 6.0535.
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Furthermore, for higher u, the motion of the system develops around one or

the otller point, Jepending on iniLial condition chosen. The motion of the system

is chaotic for 6.U5385 < u < 6.064, and is followed by period-bubbling motions as

follows: period-eight for 6.0645 < u < 6.0649, period-four for 6.065 < u < 6.067,

period-two for 6.0671 < u < 6.0771, and period-one for 6.0772 < u < 6.189, and

finally the motion reduces to fixed points, for u > 6.19. The phase-plane portraits

corresponding to the chaotic, period-two, period-one motion and fixed point of this

system for u > 6.05385, are the same from a qualitative point of view as those

presented in Figure 4.17(b,c,d,e).

The behaviour of the model may be summarized in the fol1owing words:

period-l,2; chaos; period-bubbling or period-8,4,2; period-l; fixed points (Tables

7.2 and 7.3).

7.1.2 N = 2, h = 0.2 and f = 0.2

From linear analysis, a lIutter instability is found to occur for U/I ~ 2.5.

The bifurcation diagram correspcnding to this case has been shown in Figure

7.I(b) for u > u//. For u = 2.5, a symmetric stable limit cycle about the origin

develops after the Hopf bifurcat;'lll, and remains symmetric for li < 4. Phase-plane

portraits were 5hov;n in Figure 7.3 for li > 4. For 4.05 < li < 4.75, a periodic motion

around one pair of two symmetrical points develops as in Figure 7.J(a) for li = 4.7;

for 4.8 < li < 5.2, periodic motions develop around two or three pairs of symmetrical

points as in FigUle 7.3(b) for li = 5 and in Figure 7.3(c) for li = 5.2. Byanalyzing

the time traces correspondi ng to these periodic motions, the dominant periods of

motion are found to he: T '" 1.41 for (a) li = 4.7; T = 1.7 for (b) li = 5, and

T = 2.4 for (c) li = 5.2. As these period, <tre not related between them. that means

no period-two, -thrce, -four,... -n motions exist for successive periodic motions for

dilferent li .
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• Finally, the motion of this system never becomes chaotic; it n'mains pl'riodic.

The behaviour of the model is summarized in Tables 7.2 and 7.:1 as: periodic;

no chaos.

7.1.3 N = 2, h = 0.2 and f = 0.4

From a linear analysis, the !lutter instability was found to occur in this case at

U/l ~ 2.38.

The bifurcation diagram corresponding to this case is shown in Figure 7.1 (c)

for U > u/l' This case has already br.cn discussed in detail in Chapter '1, Sl'ction

4.4. For U = 2.38 a symmetric stable limit cycle develops after the Hopf bifurcation.

For higher u, i.e. for U = 2.75, a symmetry-breaking pitchfork bifurcation occurs,

through which the limit cycle loses its symmetry and becollles lL'YIllllletric. At.

U > 2.75, a cascade of period-doubling bifurcations OCClUS: at IL = 2.!l52 (,,,,rie)(I··

two), U = 2.9703 (period-four), and so oni this cascade eventually leads to chaotic

motions at u > 2.975. In this range of u, periodic windows appear, such lL' Jlerioe!­

three and period-five motions for u = 2.98 and 1L = 3, respectivcly.

The dynamical behaviour of this system is summarized in Tables 7.'2 ane! 7.:1

as: period-2,4,8, i.e. period-doubling followed by chaos.

7.1.4 N = 2, h = 0.2 and f = 0.6

The !lutter instability in this case occurs at 1L/1 ~ 2.14. The corresponding

bifurcation diagram is shown in Figure 7.1 (d) for 1L > 1L/1, For 1L = 2.14, a

symmetric stable limit cycle about the origin develops after the Hopf bifurcation

for 2.14 < 1L < 2.31. For u ~ 2.31 a symmetry-breaking pitchfork bifurcation

occurs, and the limit cycle becomes asymmetric for 2.31 < 1L < 2.:14!J. Then,

period-doubling bifurcations occur for 1L = 2.35 - 2.3.59 (period-two motion),

u = 2.36 - 2.361) (period-four motion), 1L = 2.3616 - 2.:362 (period-eight motion),
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which lead to chaotic motions for 2.3621 < U < 2.48 for this system. The behaviour

of this system may be summarized in Tables 7.2 and 7.3 as: Period-2,4,8 or period­

doubling followed by chaos.

7.1.5 N = 2, h = 0.2 and f = 0.8

From a linear analysis it is found that a divergencc instability occurs at Udiv ~ 1.16,

the system is restabiliz~d at U ~ 1.71, and a flutter instability occurs at U/I ~ 1.95.

The bifurcation diagram corrcsponding to this case is shown in Figure 7.l(e)

for U > U/I. This case has already been discussed in detail in Chapter 4, Section

4.2 A stable symmetric Iimit cycle devclops after the Hopf bifurcation (u = 1.95),

and becomes asymmetric through a symmetry-breaking pitchfork bifurcation at

U ~ 2.023. Then, period-twC' motions occur for 2.04 ~ U ~ 2.049, followed by

period-one motion for 2.05 ~ U ~ 2.0525. The motion finally becomcs quasiperiodic

and leads to chaos for U > 2.0526.

This dynamical behaviour is also summarized in Tables 7.2 and 7.3 as: period­

1,2,1 i quasiperiodicj chaos.

7.2 N=2, FIRST MODEL WITH

CUBIC SPRINGj h=O.S

7.2.1 N = 2, h = 0.5 and f = 0

From a linear analysis, a flutter instability occurs at U/I = 4.47, and it stabilizes for

Il = 4.965.

The bifurcation diagram corresponding to this case is shown in Figure 7.4(a)

for U > U/l. The bifurcation diagram and the phase-pliine portraits corresponding

to this case have already been explained in Chapter 4, Section 4.3 and in Figures

4.15 to 4.17.
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• For 1/ ~ 4.47 a stable synunetric limlt (yde develops after the Hopf bifurcatiou.

For higher 1/, i.e. for 7 < 11 < 8.2365 approximatcly, a periodic motion d""dops

around a pair of syrnmetrical points. For 8.2366 < 11 < 8..198, another JH'riodic

motion develops around two pairs of symmetrical points, while for 8..Hl9 < Il < 8.%2

th:, periodic motion develops around thrce pairs of symmetrical points. In Figurt,

4.16 the phase-plane portraits were constructed for (a) Il = 5, (b) Il = 7.2!i,

(c) 1/ = 8.4 and (d) 1/ = 8.6.

For 8.983 < 1/ < 9.0275 a chaotic motion followed by a period-four motion

develops for 9.028 < 1/ < 9.06 around four pairs oi syml1l<'lrical l'oints. Again,

a chaotic motie:: dcvelops for 9.062 < 11 < 9.076 around one l'air of symmdrkal

points.

For higher flow le1ocities, the motion of the system will devclop around only

one of the two symmetrical points, depending on the initial conditions chosen, as

follows: chaotic for 9.077 < 1/ < 9.089, period-follr for 9.ml < Il < !l.O!):I, period­

two for 9.0931 < 1/ < 9.109, period-one for 9.11 < 1/ < 9.285 motion. Finally,

for 1/ > 9.286, the motion is reduced to fixed points. The phase-plane portmits

showing the chaotic motion of the system followed by period--bubbling bifurcations

were already explained in Chapter 4, Section 4.3, Figure 4.17 for (a) Il = \J.07!i,

(b) 1/ =9.085, (c) 1/ = 9.1, (d) 1/ = 9.25 and (e) 1/ = !1.30.

The dynamics of this system may be summarized in Tables 7.2 and 7.:1 as

follows: period-1,2; chaos; period-8,4,2 or period-bubbling; period-I; fixed points.

7.2.2 N = 2, h = 0.5 and f = 0.2

The bifurcation diagram corresponding to this case is shown in Figure 7.4(1.) for

1/ > 1/fi = 3.82. For 1/ ~ 3.82 a symmetric stable limit cycle devc10ps after the

Hopf bifurcation. For higher 1/, i.e. for 1/ ~ 5, a symmetry-breaking pitchfork

bifurcation occurs, the limit cycle remains asymmetric for 1) < 1/ < 1).342G, then
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chaos devclops through pcriod-doubling; 50 that for 5.3427 < Il < 5.3869 the motion

of the system is period-two, for 5.387 < Il < 5.39649 its motion is period-four, for

5.:J965 < Il < 5.3972 it is period-eight, and for higher Il (for 5.4 < Il < 7) the

motion of the system becomes chaotic, except for a small range of f10w ve!ocities,

5.8 < Il < 5.86, whcre periodic motion develops around two symmetrical points.

The behaviour of this model is summarized in Tables 7.2 and 7.3 as: Period-2,4,8

(period-doubling), followed by chaos.

7.2.3 N = 2, h = 0.5 and f = 0.4

The bifurcation diagram corresponding to this c~.se is shown in Figure 7.4(c) for

li > "fl = 3.3. For Il > 3.3, i.e. Il ~ 3.75, a symmetry-breaking pitchfork

bifurcation destroys the symmetry of the original limit cycle, and the limit cycle

remains asymmetric for 3.75 < Il < 3.9019. A period-two motion oceurs for

:J.902 < Il < 3.9296, a !"~riod-four motion for 3.9297 < Il < 3.9359, a period­

eight motion for 3.936 < Il < 3.937, followed by chaotic motions for higher Il,

3.!J375 < Il < 4.15. A periodic window (period-five motion) rnay be observed in this

range of Il, i.e., for Il = 4. For Il = 4.2 to Il = 4.242 a period-one motion develops

around one pair of two symmetrical points. For higher Il, i.e., 4.243 < Il < 4.247,

period-two motion occurs, which is followed by a period-four motion for Il = 4.248

and, once again, by chaotic motion for Il > 4.249.

The behaviour of this system is summarized in Tables 7.2 and 7.3 as: period­

2,'1,8 (period-doubling) followed b) chaos, and again period-2,4,8 (period-doubling)

followed by chaos.

7.2.4 N = 2, h = 0.5 and f = 0.6

The bifurcation diagram corresponding to this case is shown in Figure 7.4(d) for

li :> Ilf" For Il 2: Ilfl ~ 2.97, a symmetric stable limit cycle develops after the Hopf
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• bifurcation. For lugher Il, i.e. Il:e 3.13, a symmetry bn'aking pitchfork bifurcation

occurs, and the limit cycle is asymmetric for 3.1:1 < Il < :1.2032. Chaos ari,,'s

through period-doubling as follows: period-two for 3.20:1:1 < Il < :1.2170. period

four for 3.2lï1 < Il < 3.2201, period-eight for 3.2202 < 11 < :1.2208. chaotic for

3.221 < Il < 3.31. The behaviour of this system is summarized in Tahl,·s 7.2 and

7.3 as: period-2,4,8 (period-doubling), followed b)' chaos.

7.2.5 N = 2, h = 0.5 and f = 0.8

This c",se Las already bœn discussed in Chapter 4, Section .1.1. 1"1'0111 a lilwar

analysis it is found that a divergence instability occurs at 11,/,,, = I.G!); the syst.elll is

then stabilized at 11 = 2.53, and a f1utter instability occurs at lIJ/ = 2.74.

The bifurcation diagram corrcsponding to this case is shown in Figure 7.·I(e)

for 11 > lIJI. For 11 :e 2.74, there is a stable symmetric: lilllit. cyc'" after

the Hopf bifurcation. The symmetry of the limit cycle is lost. by a symlllet.ry

breaking pitchfork bifurcation, which occurs at 11 = 2.795. Il cascade of periOlI

doubling bifurcations occurs: lL = 2.8195 (period-two), 11 = 2.82:15 (periodfour),

11 = 2.8243 (period-eight). Finally, chaotic motions develop for this syst.elll fol'

2.8244 < 11 < 2.849.

The behaviour of this model may be summarized ill Tahles 7.2 and 7.:1 as

follows: period-2,4,8 (period-doubling), followed by chaos.

7.3 N=3, FIRST MODEL WITH

CUBIC SPRINGj h=O.2

7.3.1 N = 3, h = 0.2 and f = 0

The bifurcation diagram co! l',,sponding to this ca~e is shown III Figure 7.5(1\) for

11 > 3.2. For u ~ U JI ~ 3.33, a symmetric limit cycle around the origifl devclops

89



• after the Hopf bifurcation. Furthermore, the limit cyc!l' chan~es its shape and

develops around one pair of two symmetrical points for 4.21 < Il < L167!1, 11.' shown

in Figure 7.6(a) for Il = 4.3 (period T = 1.(1), while for higher Il, ·1.36S < li < .1.:1ï.\

(period T = 1), another periodic motion develops around two pairs of symmdrica!

points, and the phase plane portraits corresponding to li = 4.:1ï are presented in

Figure 7.6(h).

The behaviour of this system is summarized in Tahles 7.2 and 7 .~l (pp. 9ll-1O 1)

as l'l'riodie motion with two dominant frequencies (odd subharmonics), thcir ratio

being 1/3.

7.3.2 N = 3, h = 0.2 and f = 0.2

From a linear analysis, it is found that a divergence instability occurs at Il<l,v = 2.95,

followed by a flutter instability for IlJ/ = 3.77.

The bifurcation diagram corresponding to this case is shown in Figure 7.5(b)

for Il > 3.8. A pitchfork bifurcation occurs for Il = 2.95, so that for 2.95 < Il < a.86

the origin is no longer a stable fixed point, but new stable fixed points on cithcr

side are generated. For Il = 3.87, by linearizing the system in its vicinity, a fluttrr

instability occurs, which gives birth to a limit cycle or to a period-one motiou

around the new fixed point; period-one motions persist for 3.87 < Il < 3.!J26. For

higher f10w velocities, as for 3.927 < Il < 3.931, another period-onc motion dcvelops

(Figure 7.7(a) for Il = 3.93, period T = 0.5), followed for 3.932 < Il < 3.!J3fi by a

period-two motion, as shown in Figure 7.7(b) for Il = 3.934, and for which l' = l,

so that this period is twiœ that of the previous one, and bya period-one motion for

3.936 < Il < 3.9405 (not shown); the system finally develops quasiperiodic motions

for 3.941 < Il < 3.945 (Figure 7.7(c) for Il =3.944), which lead to chaotic motions

for Il > 3.95, as shown in Figure 7.7(d) for Il = 3.95.
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The dynamics of this system may be summarized in Tables 7.2 and 7.3 as

follows: period-l,2,1, followed by quasiperiodic and chaotic motions.

7.3.3 N = 3, h = 0.2 and f = 0.4

This case has already been discussed in Chapter 6, Section 6.4.1. From a linear

analysis, a divergence instability occurs at Udiv = 2.82, followed by a flutter

instability for UJI = 3.51.

The bifurcation diagram corresponding to this case is shown in Figure 7.5(c)

for IL > ILdiv' The pitchfork bifurcation occurs at IL ~ 2.8. Thus, for 2.8 < IL < 3.4,

the origin is no longer a stable fixed point, but new stable fixed points on either

side are generated. Then, for IL = 3.4 to IL = 3.5162, through a Hopf bifurcation,

limit cycle motions develop around the new fixed points (found by linearizing the

system in its vicinity), and for higher IL, i.e., for 3.5163 < IL < 3.5372, period-two

motions occur, followed by period-four motions for 3.5373 < IL < 3.5414 and by

period-eight motions for 3.5415 < IL < 3.5422. These period-two motions lead to

chaotic motions for 3.5423 < U < 3.578. Then, a period-one motion symmetric

about the origin occurs for 3.579 < IL < 3.591, followed by quasiperiodic motions

for 3.592 < IL < 3.608 and then, again, chaotic motions for 3.609 < IL < 3.66. The

behaviour of this mode! may be summarized in Tables 7.2 and 7.3 as follows: fixed

points; period-1; period-2,4,S, followed by chaotic motions.

7.3.4 N = 3, h = 0.2 and f = 0.6

The bifurcation diagram corresponding to this case has been shawn in Figure 7.5(d)

for IL > ILdiv = 2.75. For U ~ 2.75 a pitchfork bifurcation occurs, and new stable

fixed points on either side are generated. By linearizing the system in its vicinity

for U = 3.02, it is found that there exists a flutter instability, which gives rise

ta a symmetric limit cycle around one or the other fixed point. A cascade of
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• period-doubling bifurcations occurs for higher Il, i.e. a period-two motion for

3.14 < Il < 3.1632, followed by a period-four motion for 3.1633 < Il < :1.1686,

period-eight motion for 3.1687 < Il < 3.1697, and by a period-sixteen motion for

3.1698 < Il < 3.17. This cascade of period-doubling bifurcations finally leads (0

chaos for higher Il, i.e., 3.18 < Il < 3.29.

The behaviour of this system is summarized in Tables 7.2 and 7.3 as follows:

fixed points; period-1; period-2,4,8 (period-doubling motions), followed hy chaotil'

motions.

7.3.5 N = 3, h = 0.2 and f = 0.8

This case has already been analyzed in Chapter 6, Section 6.2.1. Linear analysis

shows that a f1utter instability occurs at IlJI = 2.29, followed by a divergence

instability for Ildiv = 2.7.

The bifurcation diagram corresponding to this case is shown in Figure 7.5(e)

for Il > Ildiv. For Il ~ 2.7, a pitchfork bifurcation occurs, and for Il > 2.7, the

origin is no longer a stable fixed point, but new stable fixed points on dther side

are generated. By linearizing the system in the vicinity of the new stahle fixed

points, we find a f1utter instability via a Hopf bifurcation for Il = 2.725. The limit

cycle at Il = 2.725 is symmetric about the fixed point which gave it birth. For

Il > 2.74, a cascade of period-doubling bifurcations occurs: period-two, pcriod­

four and period-eight motion for Il = 2.7641, 2.7760 and 2.782, rcspcctivcly. Thcsc

period-two motions finally lead to chaotic motions for higher Il.

The behaviour of this system is summarized in Tables 7.2 and 7.3 as follows:

fixed pointsj period-1j period-2,4,8 or period-doubling motions followed by chaotic

ones.
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•

7.4 N=3, FIRST MODEL WITH

CUBIC SPRING; h=O.5

7.4.1 N = 3, h = 0.5 and f = 0

This case has already been analyzed in Chapter 6, Section 6.3.1. From a linear

analysis, a f1utter instability is found to occur at uJ/ ~ 4.9.

The bifurcation diagram corresponding to this case is shown in Figure 7.8(a)

for U > uJ/. For U = 4.9, a stable symmetric limit cycle around the origin develops

aCter the Hopf bifurcation. The motion of the system becomes quasiperiodic for

U = 6.231 to U = 6.2681 and chaotic for U > 6.2682.

The behaviour of this model is summarized in Tables 7.2 and 7.3 as follows:

Period-one; quasiperiodic and chaotic motions.

7.4.2 N = 3, h = 0.5 and f = 0.2

From a linear analysis, a divergence instability occurs at U = 4.335, followed by a

f1utter instability at U = 5.193.

The bifurcation diagram corresponding to this case is shown in Figure 7.8(b).

For Il ~ 4.34, a pitchfork bifurcation occurs, and then new stable fixed points on

either side develop for U = 5.69. By linearizing the system around these fixed

points, purely imaginary eigenvalues then arise for U ~ 5.695, which correspond to

the occurrence of a f1utter instability in the linear analysis, or to a Hopf bifurcation

in the nonlinear analysis. Chaotic motion occurs for 5.7 < u < 5.73 through type

III intermittency, this route to chaos being the same as the one already discussed in

Chapter 6, Section 6.5, for other parameters (those for Section 7.4.3).

The behaviour of this system is surnmarized in Tables 7.2 and 7.3 as: fixed

points, followed by chaotic motions.
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• 7.4.3 N = 3, h = 0.5 and f = 0.4

This route to chaos has already been discussed in Chapter 6, Section 6.5. Lill<'ar

analysis predicts a divergence instability at li = 4.15, and the" nutter at tl = ,1.71.

The bifurcation diagram for this case is shown in Figure 7.S(c). For tl ~ 4.15 a

pitchfork bifurcation occurs, and new stable fixed points on either side develop as tl

is increased to li = 4.909. Chaotic motion occurs for li = 4.!J1 to tl = '1.H25 through

type III intermittency.

The behaviour of this system is surnmarized in Tables 7.2 and 7.3 as: fixed

points, followed by chaotic motions.

7.4.4 N = 3, h = 0.5 and f = 0.6

Linear analysis shows that a divergence instability occurs at li =4.0'1, and is rollowed

by a flutter instability at li = 4.31. The bifurcation diagram is shown in Figure

7.S(dl. For li = 4.04, a pitchfork bifurcation occurs, and new stable fixed points

on either side develop as li is increased to li = 4.4. No chaotic motion occurs, and

evcntually the amplitudes of motion become too large for the mode! to remain valid

(no convergence in the solutions).

The behaviour in this case is surnmarized in Tables 7.2 and 7.3 as: fixed points;

no chaotic motion.

7.4.5 N = 3, h = 0.5 and f = 0.8

This case has already been discussed in Chapter 6, Section 6.1.1. The bifurcation

diagram for this case is shown in Figure 7.S(e). From a linear analysis, a divergence

instability occurs at li = 1.71, followed by a nutter instability at li = 3.166, the

system is restabilized at li = 3.896, and another divergence instability occurs at

li = 3.97, followed again by a second nutter instability at li =4.06.
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• For u ~ 3.9688 a pitchfork bifurcation occurs, and for u > 3.9688, the origin

is no longer a stable fixed point, but new stable fixed points on either side arc

generated. By linearizing the system in the vicinity of these new stable fixed

points for incrcasing u, a flutter instability appears for u ~ 4.052, t;;... ·~gh a Hopf

bifurcation, giving rise to a symmetric limit cycle around the fixed point concerned.

For 4.052 < u < 4.0882 the motion of the system remains always period-one. Chaos

eventually arises, and the route to chaos in this case is through quasiperiodicity; the

motion of the system is quasiperiodic for 4.0883 < u < 4.094 and final1y chaotic for

4.095 < u < 4.0965.

The behaviour of this system is summarizcd in Tables 7.2 and 7.3 as: fixed

points; quasiperiodic; fol1owed by chaotic motions.

7.5 N=2, FIR8T MODEL WITH

TRILINEAR 8PRINGj h=O.5

7.5.1 N = 2, h = 0.5 and f = 0

The bifurcation diagram and the corresponding phase-plane portraits for this model

arc presentcd in Figure 7.9(a) and in Figure 7.10. A periodic motion of period

T = 2.5 develops for 4.47 < u < 4.69, which is shown in Figure 7.10(a) for u = 4.5;

then, for 4.7 < u < 4.86 another periodic motion develops around two symmetrical

points, as shown in the phase plane portraits constructed in Figure 7.10(b) for

u = 4.8, for which the period T = 3.15; and final1y, a periodic motion develops

around two or three pairs of symmetrical points, as shown in the phase-plane

portraits in Figure 7.l0(c,d) for (c) u = 4.9 (of period T = 3.95) and (d) u = 4.96

(of period T = 6.06), respectively. Al1 the motions mentioned above are periodic

with odd subharmonics. For u > 4.97 the motion of the system is reduced to fixed

points.
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• By comparing this mode! \Vith the one \Vith cubic spring rcprcsentation, il may

be cone!uded that the motions of both models deve!op around synlllletrical points

(\Vith respect to the origin), and reduce finally to fixed l,..::ints.

7.5.2 N = 2, h = 0.5 and f = 0.4

The hifurcation diagram for this model is presentcd in Figure 7.9(b), and the rout"

to chaos is presented through period-doubling bifurcations. For 3.33 < Il < :1.:1;1,

a limit cycle appears after the Hopf bifurcation, \Vhich occurs at Il = 3.33.

For li ~ 3.34 the iimit cycle becomes asymmetric through a symmetry-hreaking

pitchfork bifurcation. For higher li, a cascade of period-doubling motions occurs:

period-t\Vo for 3.36 < li < 3.369, period-four for 3.37 < Il < 3.3711, and period­

eight motions for 3.3712 < Il < 3.3714, \Vhich lead tO chaotic motions for li> :1.3715.

For this model, as for the one \Vith cubic spring reprcsentation (Section 7.2.3),

period-doubling bifurcations are follo\Ved by chaotic motions.

7.5.3 N = 2, h = 0.5 and f = 0.8

Chaotic motions occur in this model through period-doubling bifurcations, as sœn

in Figure 7.9(c). For Il ;::: Il!/ ~ 2.74, a symmetric stable limit cycle develops after

the Hopf bifurcation. For higher li, Le,. li ~ 2.744 a symmetry-breaking pitchfork

bifurcation occurs, and the iimit cycle is asymmetric for 2.744 < li < 2.747.

For higher li, a cascade of period-doubling motions occurs: for 2.748 < li <

2.7501 period-two, for 2.7502 < li < 2.7503 period-four, and for 2.7504 < Il <

2.7507 period-eight motions, followed for li > 2.751 by chaotic motions.

Again for this mode!, as for the one with cubic spring representation, the route

to chaos is through period-doubling bifurcations.
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• 7.6 COMMENTS

•

The behaviour for the N = 2 and N = 3 systems according to the first model, with

a cubic or a trilinear spring reprcsentation, has been studied in this chapter.

Considering first the case of N = 2, as seen in the bifurcation diai;rams shown

in Figures 7.1 and 7.4, when the end-form coefficient f increascs, U/l decreases,

which eventually rcsults in chaotic motions occurring at lower U as f increases. It is

also sccn that, as h increases, the critical f10w velocity at which f1utter occurs, U/l,

increascs; this results in chaotic motions occurring at higher f10w velocities as the

diameter of the external cylinder increases. By varying f, the behaviour of the first

model with N = 2 but for two different h was found to be qualitativ~ly the same

for f = 0, f = 0.4 and f = 0.6, while for f = 0.2 and f = 0.8 it was found different.

As it has already been concludcd in Section 7.5, the behaviour for the N = 2

first model with trilinear spring representation (Figure 7.9) is qualitatively the same

as for the model with cubic spring reprcsentation (Figure 7.4). Three values for

f were considered: for f = 0, the motion of the both models develops around

symmetrical points, while for f = 0.4 and f = 0.8, chaotic motions arise through

period-donbling bifurcations.

The bifurcation diagrams in Figures 7.5 and 7.8 obtained for the N = 3

first modcl, for two different values of h, display considerably different behaviour

(as compared to the N = 2 model) for the same end-form coefficients f.

Nevertheless, th" observcd behaviour in most cases has been observed for the N = 2

system, but with different system parameters. One main difference (see Table 7.2)

is that, for N = 3, a divergence (and hence the existence of fixed points) precedes

flutter (emanating from instability of these fixed points). Unfortunately, the critical

flow velocity Uer for flutter could not he pin-pointed, because the interval in U

betwcen fixed point and chaotic behaviour is too small.
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• For higher u, however, in the case of h = 0.2 and for f 2: DA, the dynamics for

N = 2 and 3 is not too different. Another ditTerence overal1, !n this case for h ~ 0.5.

is thp. preponderance of period-doubling leading to chaos for N = 2, whilc this is

associated with intermittence for N = 3.
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Table 7.1: Exp!anation of symbols

]Explanation

FP Fixed points

P Periodic motions

P-1 Period-one motion

P-2 Period-two motion

P-1,2 Period-one and -two motion

P-2,4,S Period-doubling motions

P-S,4,2 Period-bubbling motions

PB Period-bubbling motions

PD Period-doubling motions

QP Quasiperiodic motions

CH Chaotic motions

NOCH No chaotic motion

~ Symbols ~
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•
Table 7.2: Routes to chaos for N = 2 and N = :l systems

0 Period-I,2 Periodic Period-l,2 l'eriod-I

Chaos No chaos Chaos Quasilwriociic

Period-8,4,2 Period-8,4,2 Chaos

Fixed points Fixed points

0.2 Periodic Period-I,2,1 Period-2,4,8 Fixed point.s

No chaos Quasiperiodic Chaos Chaos

Chaos

0.4 Period-2,4,8 Fixed points Period-2,4,8 Fixed poi nt.s

Chaos Period-I Chaos Chaos

Period-2,4,8 Period-2,4,8

Chaos Chaos

0.6 Period-2,4,8 Fixed points Period-2,4,8 Fixed point.s

Chaos Period-I Chaos No ch;ws

Period-2,4,8

Chaos

0.8 Period-I,2,1 Fixed points Period-2,4,8 Fixed points

Quasiperiodic Period-l Chaos Qllasiperiodic

Chaos Period-2,4,8 Chaos

Chaos

DI===h0-=;=-0=.2==~P====" =r==0=.5==~~
[Z] N=2 N=3 ~ N=2 N=:l ~
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Table 7.3: Comparison between N = 2 and N = 3 systems

° P-1,2jCH P P-1,2jCH P-1jQP

PBjP-1jFP NOCH PBjP-1jFP CH

0.2 P P-1,2,1 PD FP

NOCH QPjCH CH CH

0.4 PD FPjP-1 PDjCH FP

CH PDjCH PDjCH CH

0.6 PD FPjP-l PD FP

CH PDjCH CH NOCH

0.8 P-1,2,1 FPjP-1 PD FPjQP

QPjCH PDjCH CH CH

DF===h===r
0
.
2
===lIIi===h===;=0.5=J=

[Z] N=2 1 N=3 ~ N=2 1 N=3 ~

•
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Chapter 8

THE SECOND THEORETICAL

MODEL

8.1 ASSUMPTIONS MADE

As it has a!ready becn mentioned in Chapter 1, Section 1.3, a second model of

the system of cylinders subject to a confined axial Dow has bL'Cn developcd; it is

described in this chapter. The mode! is essential1y the same as that described in

Section 2.1, with sorne differences in the assumptions; however, sorne of the system

non!inearities have becn taken into account.

While the dynamics of the system when no impact occurs with the confining

pipe were described by a linearized set of equations in the first model (Section

2.1, assumption (d)), in the second mode!, the nonlinearities in the e'luations of

motion are taken into account approximately, mainly via Taylor expansions of the

trigonometric functions of the state variables; nonlincar terms are retained np to

0(2). Assumptions (a), (b) and (c) of Section 2.1 remain essential1y the same.

In both models, impacting with the externai pipe is model1ed by a trilinear or a

cubic spring, presumed to exist between the pipe and the clement of the articnlated

system contacting it; most of the ca1cuiations will be donc with a cubic-spring at
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• the end of the first articulation, for analytical convenience.

We now procced to the calculation of the same terms as those considered in

Chapter 2 that enter in Lagrange's equations.

8.2 ENERGIES OF THE SYSTEM

8.2.1 Kinetic and potential energies of the structure,

TB and V.

In this section, the kinetic and potential energies of the structure, of the articulated

system itself, are determined in terms of generalized coordinates, which are the

angles of deformation, <Pj (Figure 2.1(b)).

The system of coordinates (x, y) and the corresponding system of unit vectors

(i,j) have already bcen defined in Figure 2.1.

The local coordinate ç is defined along the length of each cylinder segment,

o~ ç ~ lj (Figure 2.1). In order to calculate the velocity vector at point ç of the jth

cylinder, Vj(Ç), the displacement vectors in the x and y directions are calculated,

as shown in Figure 2.1. The displacement vectors Xj(ç) and Yj(ç) at point ç of the

jth cylinder are

(8.1)

(8.2)

•

Thus, Vj(ç) is given by

V;(ç) = ;t [-(~ lq cos <Pq +ç cos <pj)i +(~lq sin <Pq +ç sin <pj)j] , (8.3)
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• which, after differentiation, may he written as

j-t j-l

Vj(ç) = CL: lqsinq,q ~q +ç sinq,j~j)i+ CL:lqcosq,q~q+çcosq,j~j)j. (SA)
q=l q=l

Hence, the kinetic energy of the jth cylinder is

where mj is the mass per unit length of the jth cylinder. The total kinetic ('nergy

of the structure, T.. neglecting the small ogival part of the last cylinder, is

The potential energy is composed of a gravity component and a component due

to strain of the intercylinder connccting springs. It may he written in the following

form:

(8.7)

8.2.2 Kinetic energy of the fluid, Tf

In order to calculate the normal flow velocity at a point ç of the jth cylinder, we

shall consider again Figures 2.1 and 2.2 with their corresponding systems of unit

vectors (i,j) and (h,h), where h has the same direction as the structure and the

h th direction is normal to it.
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• The flow vc10city of the jth cylinder is clue ~o motion of the structure and to

the f10w in the confining pipe, and its components in the il and jl directions will

be calculated next.

The relative fluid-body velocity component in a direction normal to the

clement (i.e., in the jl direction) at a point ç of the jth cylinder, is defined as

vJjl(ç) and is given by

dXj(ç) . dYj(ç) .
dt sm 4>j + dt cos 4>j +U sm 4>j , (8.8)

where the displaccments of the jth cylinder in the system, Xj(ç) and Yj(ç), are

Xj(Ç) = - (I: 1. cos 4>. +ç cos 4>j) ,
.=1

(8.9)

Yj(ç) = (I: 1. sin 4>. +ç sin 4>j) . (8.10)
.=1

The derivatives dXj(ç)jdt and dYj(ç)jdt have already been calculated to obtain

equation (8.4); by replacing these results into equation (8.8), one obtains

j-I

vJjl(Ç) = LI. cos(4>. - 4>j )~. +ç~j +U sin 4>j .
.=1

(8.11)

The fluid velocity component in the same direction as the clement, that is in the

il th direction, is

VJil(Ç) = Ucos 4>j. (8.12)

Bence, the total vc10city of the f1uid at point ç of the jth cylinder, v /j(ç), is

composed of two components in the h and jl directions and may be written as

•
(8.13)
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• Therefore, the kinetic energy of the fluid at point ç of the jth cylinder, Tfj, is

(8.1·1)

where Mil and Mjl are the corresponding virtual or added Illasses of the fluid in LI\<'

h and h directions. As Mil is much smaller than Mjl' usually of O((2), then even

if vI in direction h is greater than vI in direction h, i.e., vIiI > lIJjl' sincc they

are usually of the same order, !MilV;il still remains much smaller than ~Mjlll;jl'

possibly of order O(c2 ) or smaller. Clear1y, for very slender cylinders it can he

of much smaller order. Hence, although the first term in (8.H) could have "œn

retained, for convenience here it will be neglected. Mjl is equal to X l'A for confined

flow, where p is the fluid density, A the cylinder cross-sectional area, and X is given

by

(8.15)

in which h = Dh / D; Dis the cy!inder diameter, and Dh = Del. - Dis the hydraulic

diameter, Dch being the internai diameter of the externa! pipe (Figure 2.1).

Therefore, the total fluid kinetic energy becomes

(8.16)

•

8.3 THE FLUID-DYNAMIC FORCES

Similarly ta Chapter 2, the fluid forces will be determined in several parts: inviscid

unsteady forces, hydrostatic forces and viscous forces. The formulation of thcsc

forces will be presented in the following subsections.
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•

•

8.3.1 Nonconservative inviscid force, Fnc

If both ends of the articulated system were supporte<!, expression (8.16) would

represent the whole of the inviscid component of the lluid-dynamic forces. However,

as discussed in Section 2.3, the cantilevered system is generally nonconservative,

and hencc there will generally be work done at the frce end of the system by a

nonconservative inviscid force, Fne (cf. Benjamin, 1961; Paidoussis, 1966b). This

force is associated with the noncylindrical, ogival end of the last cylinder, which

may be approximated by a paraboloid of the form y2 = 4aw. In our system, a is

the focal distance of the downstream end and w is its total length. For an ideally

streamlined end, f --> l, and for a blunt end, f --> 0, so that different values for a,

w and f can be obtained as function of the frce end shape. These values with the

corresponding free-end shapes are presented in Appendix F.

Fnco acting at the end of the jth last cylinder, will be

Fne = p(l-J)X f [:t +U:x] [~lq cos(,pq - ,pj )~q +Ij~j +U Sin,pj] 4,,-a(w-{)dç

(8.17)

As x = çcos ,pj, then, in equation (8.17) we replace (alax) by (ala{)(11 cos ,pj).

( )
-1 ~,

By Taylor series, (cos ,pjt1 ~ 1 - ~,p~ ~ 1 +::;. Thus, the final expression

for Fne has been obtained by integrating with respect to ç and by Taylor series

expansion, namely

Fne = X(I- f)M~I<$1 (1- (4)2 ~ 4>d
2
) - XMU(I- f)1~1 (1+ 4>14>2 - ~~)

X( 1 - f)M ; 1<$1 (4)1 ~I ~2 - 4>2~1 ~2 - 4>1 ~12+4>2~12) +

X(l- f)M ;lil~h+X(l - f)M~I';;lU~ (1- ~2) -
+XMU(I - f)~ (~+ ~~~) +xMU2(l- f) ( 4>2 + ~~) . (8.18)
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• 8.3.2 The hydrostatic pressure forces, F px and F py

The hydrostatic pressure forces, Fpr and Fpy , were already dcterlllined in chapt.er

2.3.2 for the first mode\. For the second modcl, we may use the sallie fornllliae as in

Chapter 2.3.2, so that (Fpr)j and (Fpy)j will be the same as those given hyeqllat.ion

(2.15), Chapter 2.3.2:

dp
(Fpy)j = A dx tan,pj . (tU 9)

A(dp/dx) was determined in Chapter 2.3.2, eqllation (2.19) 50 t.hat.

Therefore, one obtains

8.3.3 Viscous hydrodynamic forces FN and FL

(8.20)

(8.21 )

The viscous mean-f1ow-related forces acting on long inclined cylindcrs as forllllliated

by Taylor (1952) have been discussed in Chapter 2. They are given hy eqllation

(2.21) of Section 2.3.3:

(8.22)

as discussed also in Appendix B, where it is also shown that thcsc formlll,,,, agrœ

with the empirical results gathcrcd by Hoerner (1958).

However, for the purposes of this model, things are modificd, e.g., hy the fact

that the instantaneous normal velocity is not U sin,pj but v Jjl(Ç), where v Jjl (Ç) is

the relative f1uid-body vclocity in the direction h, normal to the element, which it

has already been calculated and is given by equation (8.11). Then, the foregoing

expressions become
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•
(8.23)

and

(8.24)

for the jth cylinder of the articulated system. Comments on th" signs of the various

terrns appearing in FN and FL are discussed in Appendix G.

8.4 THE EQUATIONS OF MOTION

8.4.1 The total kinetic and potential energies ofthe system

The total kinetic energy of the system, T, is given by

T = T. +Tf, (8.25)

where T. and Tf are given by equations (8.6) and (8.16), respectively. The potential

energy is associated only with the articulated system, so with equation (8.7).

8.4.2 The generalized forces

The generalized forces Qil j = 1,2, ... N, may be determined by considering the

virtual work 6Wj associated with virtual displacements 6rPj in the generalized co­

ordinates rPj. Then the generalized force Qj is defined via 6Wj = Qj6rPj. We proceed

to determine the generalized force QI, associated with the generalized coordinate

rPl and cylinder 1, which is denoted by 6WI ,I and is given by
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• (8.26)

Similarly, the virtua! work associated with the forces acting on the secone! cyline!cr,

éWI ,2 due to a virtual displacement associated with érPh is given by

+1" (FLh II érPl sin(rP2 - rPdd{

-(8pj8xh A2 12 II érPl sin(rP2 - rPd; (8.27)

and so on. The virtual work associated with the last cylinder will have the additional

terrIlS

where C~ is the base drag coefficient (Appendix II), and Fnr. has been discnssee! in

Section 8.3.1.

Hence, the generalized forces associated with the generalized coordinate rPj arc

f" f"+Jo (FPlI ); lj cosrPjd{ + Jo (FL ); lj sin(rPi - rPj)d{ - Fnr.lj COS(rPN - <Pj)

-(8pj8X)i A; 1; lj sin( rP; - rPj) + pD
2

~2 Cb lj sin( rPN - rPj) , (8.29)

where (FN)j, (FL );, (Fp.)j, and Fnc are given by the equations (8.23), (8.24), (8.21)

and (8.18), respectively.
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• 8.4.3 P"rivation of the equations of motion

Equations (8.16), (8.6), (8.7) and (8.29) are substituted into Lagrange's equations

which take the form

j = 1,2, ...,N, (8.30)

for a system of N articulated cylinders, where the dots denote differentiation with

respect to time t.

The equations of motion obtained may be rendered non7 dimensional with the

aid of the same dimeusionless parameters as those used for the first model (sec

Chapter 2.6, equation (2.34)); however, the additional nondimensional parameter

À for the free end of the last cylinder will be required. Ali these nondimensional

parameters are given here below:

f3 = pA/(pA +ml, "'( = (m - pA)gL2N/k, u = (pALN/ k)I/2U,

c=L/D, lN=el, À=w/l, c= (4/1r)Cd[pALN/kP/2,

CI = 4CJ!1r, Cb = 4Cb/1r h = Dh/D, T = [(pA +m)L3 N/ktl/2t. (8.31)

Details of the derivation of the equations of motion, the nondimensional

parameters and the nonlinear moments, are the same as those in Chapter 2.6. The

equations of motion for a system of two articulated cylinders (N = 2) in their final

form are the following:

[1 +(X - 1)1ll [~+ c] ~I +x/3 (-e t/>~ + t/>1t/>2 - e t/>n J;. + ~ [1 + (X - 1)/3) e2J;2

1 [1221222]" 12 '2+ëil1+(X - 1)/3] - 'ie t/>I - 'iC t/>d e t/>I tf>2 t/>d 'i e [1+ (X - 1)/3](</>1 - tf>2) t/>2

(.. l' 1')' (12) 22( 22)-X /3 tf>2t/>2 - tf>2t/>1 - 'it/>Itf>2 + 'i</>It/>I </>1 +N"'( 1- 6t/>1 t/>I - XU N 1- "3t/>1 t/>I

+N4 (2t/>1- t/>2)+ XU N .jp[e- </>~ HI tf>2 - ~t/>~] ch - 1 !2/3 N'Y O</>~- ~</>It/>n

+u2N (CI h- I (~</>I - i2</>~ + k</>~ - kt/>I</>~) +u
2N2

Cb (t</>I - ~tf>2 + 112</>~ - ~</>It/>~)

+u2 N2
Cb Ot/>~tf>2 - 112</>~) + ~ À(l - f)x u N.jp (1- t/>~ - ~t/>~ +</>1 tf>2) ~I

( 1 2 )" ( 1 2 1 2) r;; ( 2)+(1 - f) X/3 6À - 1 t/>I 1- 'i</>l - 'it/>2 + t/>1tf>2 - (1 - f)x uNV/3 3 - t/>I
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• +(1 - J)X u N.,(ij (~</>. </>~ - 3</>1 ch) 4>t - (1 - f) X U2N 2 (1 - ~</>; - !</>~ + </>'</>1) </>.
1 2 3 (3 . . 1 175 ( • • )+ 4 u N lei </>1 1 <Pt + il le NI</>I 1 </>d il u Cf y (3 1 </>1 1 </>1 + </>, 1 </>. 1

+~~f(3ce3thlthl+u2NfC~chlchl+fC(3e2 ~t[q;.lthl+Iq;IIq;.l]

+t e2u f C.,(ij [1 th 1ch + th 1ch 1] + ! e Uf C.,(ij [1 q;1 1ch + q;1 1ch 1]

+u2 N f cJ [! </>1 - 112 </>f] + Mc(Mt) = 0,

13 - 12 [1 2]··:1 e [1+ (X - 1)(3] ch + 2 e [1+ (X - 1)(3J 1- 2(</>1 - ch) </>,

+~ e2 [1+ (X - 1)(3] 4>t 2( <1>2 - </>d- X (3 e(</>1 - </>2) q;/ - X u2N2C(1 - ~</>n ch

+N4(</>2 - </>d- xuN .,(ijeq;1 (1-2</>~ - Hi +2</>'</>2) + Ni! c2 (</>2 - ~ </>~)

+f C(3 e2 frt q;1 1q;. 1+f C(3 e4 frk q;2 1th 1+( C(3 c3 fr~ (1 q;, 1q;d q;. 1q;21)

+u2 f CN e2t</>2/ </>2 1+U f c.,(ij e3~ [1 th 1</>d q;2 1ch 1]

+UfC.,(ij c2 t [1 q;1 1<1>2 + q;1 1</>21] + t u2 N (cJe2(1 +"-') (</>2 - h</>~)

1 .. [1 2] 1 .2 .2+4X (3 (1- f)(A - 1)</>1 1 - 2(</>2 - </>d +:j'X (3 (A - 1)(1 - f)(</>. </>2 - </>,</>. )

+h(3 (A -1)(1- f)(-q;1q;2</>2 + </>1q;lth)+(I-f)x(3(.t2 A2 - k) ~

1175 .( 12) 1 175·+4(1- f)xuN y(3(A-l)</>2 1- 2</>2 + 2(1- f)xuNy(3</>dl +</>.</>2)

1 175· 2 1 175· ( (2)' 2 2+4(1- f) xuNy (3</>'</>1 - 2(1 - J) xuN y f3ch 1+ 2</>2 - 2(1 - f) X Il N </>2

-~(1 - f) X u2N 2 </>~ = o. (8.:12)
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Chapter 9

NUMERICAL RESULTS FOR

THE SECOND MODEL WITH

N=2

In this chapter, the same four cases as in Chapter 4 are presented, with the only

differencc that in Chapter 9 these results are obtained with the second model, while

in Chapter 4 the results were obtained with the first mode!.

9.1 CASE 1: h = 0.5, f = 0.8 and /'\,c = 5 X 103

From a lincar, eigenvalue analysis, a divergence instability occurs for u = 1.67 and

the system is unstable for 1.67 < u < 2.6925; then it stabilizes for u = 2.693 and is

stable for 2.693 < u < 2.795; and finally, a flutter instability occurs for u = 2.8 and

the system remains unstable for u > 2.8.

Figure 9.1 shows the bifurcation diagram with the cubic spring representation

for this case, i.e., the maximum displacement of the first cylinder t/>l(r) versus u,

and the dynamic behaviour of the system may be described as follows.
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• For Il = 1.67, a pitchfork bifurcation occurs, 50 that the motion of the tirs!

cylinder will reduce ta a fixed point; for higher Il, as for 1.67 < Il < 2.6925, 111'\\'

fixed points occur as the flow ve!ocity increases: for 1.67 < Il < 2.1, the !ixl'd

points increase with Il; for 2.1 < Il < 2.4, the fixcd points decrease with Il; and

for 2.4 < Il < 2.6925, they increase again with Il. Then the system is stable

for flow velocities Il betwecn 2.693 and 2.795. And finally, for Il = 2.80, then'

exists a stable, syrnrnetric limit cycle that develops after a Hopf bifurcation. Th"

symmetry of the limit cycle is lost by a symmetry-breaking pitchfork bifnrcation at

Il = 2.832, the first bifurcation shawn in Figure 9.1 - where the two branches arc

obtained with different-sign initial conditions; the limit cycle remains aSYlllmetric

for 2.832 < Il < 2.8677. For higher Il, i.e. Il > 2.867705, the limit cycle collapses

ta fixed points; in the bifurcation diagram two fixed points exist because of the two

opposite sign-initia! conditions. This transition of the motion of the system from a

limit cycle ta a fixed point happens suddenly, and it is impossible to deterllline what

happens between these two motions, and is characteristic ta ail four cases considered

in this Chapter, that means ta the second mode!.

In accordance with the bifurcation diagram, two phase-plane portraits wcre

constructed in Figure 9.2(a,b). For Il = 2.83, there exists a stable symllletric limit

cycle, which has becn represented in Figure 9.2(a); an unstable asymllletric limit

cycle has been represented in Figure 9.2(b) for Il = 2.855.

By comparing the bifurcation diagram for this system (Figure 9.1) with those

for the first mode! (Figure 4.3), it may be sccn that the route to chaos for the !irst

model is through period-doubling bifurcations (2.74 < Il < 2.85), while t1w second

model never becomes chaotic; its motion is either period-one, with symmetric lirnit

cycles for 2.79 < Il < 2.83 and asymmetric limit cycles for 2.83 < Il < 2.86,

or (for Il > 2.86) it is associated with fixed points, while for the !irst model the

amplitudes become tao large for higher Il (for Il > 2.85), and convergence of solutions

will not be possible.
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• 9.2 CASE 2: h = 0.2, f = 0.8 and Kc = 5 X 103

•

This case corresponds to a narrower annulus than Case 1.

From the linear or eigenvalues analysis, a divergence instability occurs for

u = 1.16 and the system is unstable for 1.16 < u < 1.75; then it stabilizes for

u = 1.75 and is stable for 1.75 < u < 1.945; and final1y, a flutter instability occurs

for u = 1.95 and the system remains unstable for u > 1.95.

Figure 9.3 shows the bifurcation diagram for this case, I.e., the maximum

displacement of the first cylinder ,pl (T) versus u, and the dynamic behaviour of the

system may be described as follows:

For u = 1.16 a pitchfork bifurcation occurs, so that the motion of the first

cylinder will reduce to a fixed point; for higher u, as for 1.16 < u < 1.75, new

fixed points occur as the flow velocity increases: for 1.16 < u < 1.45 the fixed

points increase with u, for 1.5 < u < 1.72 the fixed points decrease with u, and for

1.72 < u < 1.745 they increase again with u. Then the system is stable for flow

velocities u betwecn 1.75 and 1.945. And finally for u > 1.95, the route to chaos

for the bifurcation diagram of Figure 9.3 is clarified via the phase-plane portraits

of Figure 9.4.

For u = 1.95, there exists a stable, symmetric limit cycle that develops aCter

the Hopf bifurcation (not shown). The syrnmetry of the limit-cycle is lost by a

symmetry-breaking pitchfork bifurcation at u = 2.0275, the first bifurcation shown

in Figure 9.3. An asymmetric limit cycle is obtained for 2.0275 < u < 2.08, as for

example the one shown for u = 2.05 in Figure 9.4(a). At higher u (u > 2.08), a

cascade of period-doubling bifurcations occurs, and Figure 9.4(b,c) shows period-2

and period-4 motions, for (b) u = 2.09, and (c) u = 2.095, respectively. Figure

9.4(d) shows chaotic motion for u = 2.096, corresponding to the first dense cloud of

points in the bifurcation diagram. For higher u, as Le., u > 2.097, the limit cycle

reduces suddenly to one of two fixed points.
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• By comparing the bifurcation diagrams for this system, with the first mode!

(Figure 4.9) and with the second model (Figure 9.3), it may be sccn that the route

to chaos for the first model is via quasiperiodicity (for 2.02 < Il < 2.06), whil(' th..

route to chaos for the second model is via period-doubling (2.02 < Il < 2.10); then,

both models will become chaotic, but their routes to chaos will be very different. For

higher Il, the motion for the second model reduces finally to a fixcd point (Il > 2.10),

while for the first model the amplitudes become too large, and the convergencc of

solutions will not be possible.

9.3 CASE 3: h = 0.5, f = 0 and "'c = 5 X 105

From the linear analysis, a flutter instability occurs for Il = 4047. Physically, tlw

system in this case is similar to that of Case l, but the free end is blunt in this case.

Figures 9.5 show the bifurcation diagrams for motions of the first cylinder in the

system, for flow velocities above the critical flow velocity for which a Hopf bifurcation

occurs (Il ~ 4.47). The route to chaos is clarified via the phase-plane portraits of

Figures 9.6. Figure 9.5(a) represents the bifurcation diagram for 5 < Il < 8.5, while

Figure 9.5(b) represents the detailed bifurcation diagram for a smaller range of now

velocities, 8 < Il < 8.20. On the phase-plane portraits, the behaviour of the system

is seen much better, e.g., in Figure 9.6(a): at Il = 5 an asymmetric limit cycle

develops after the Hopf bifurcation. For 6.90 < Il < 8.05 approximate1y, a periodk

asymmetrical motion develops, which is shown in Figure 9.6(b) for Il = 7.5, and it

looks as if it was developping around two symmetrical points; for ~I = 0, </>1 ~ 0.02

or </>1 ~ -0.02, depending on the initial conditions. For Il = 8.10 and Il = 8.15, a

periodic motion develops around two pairs of symmetrical points mentioned above;

the odd subharmonics of the dominant frequency may be ca1culated from the power

spectrum. The phase-plane plot for Il = 8.15, Figure 9.6(c), shows the chaotic

motion of the system. Furthermore, chaotic motion around one of the symmetrical
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•

points (1/>. ~ -0.02 and ~1 = 0) is observed in Figure 9.6(d) for u = 8.18. The

chaotic motion of the system may he verified by constructing the time traces and

their corresponding power speclra in Figure 9.7(a,b), for u = 8.175. For the same

flow vc1ocity, u = 8.175, a Poincaré map was construcled, as shown in Figure 9.7(c),

and the chaotic characler of the motion of the system may be verified.

For higher flow velocities, a period-bubbiing event takes piace, for which a

period-four motion may be observed for u = 8.1825 (not shown). A period-two

motion has been presented in Figure 9.6(e), for u = 8.19, whicb is followed by an

inversion, back to period-l, as seen in Figure 9.6(f) for u = 8.20, and the motion

will reduce further to a fixed point, as seen aiso in the bifurcation diagram of Figure

9.5.

Thus, this case dispiays a very rich dynamicai behaviour. Chaos arises around

two stable fixed points, through period-odd bifurcations, then a period-bubbling

phenomenon takes piace, from period-four, to period-two and back to period-one

motion, and finally the motion will reduce to fixed points.

By comparing the bifurcation diagrams for this system, with the first modei

(Figure 4.15) and with the second modei (Figure 9.5), it may be conc1uded that

the route to chaos is the same, but differences in the quantitative sense do exist, as

expecled. For higher u, the motion of the system, for both modeis, will reduce to a

fixed point.

9.4 CASE 4: h = 0.2, f = 0.4 and "'c = 5 X 105

From the linear analysis, a flutter instability occurs for u = 2.38. This system is

simiiar to Case 2, but with an intermediateiy blunt free end-biunter than for Case

2. Figures 9.8 and 9.9 show the bifurcation diagram and the phase-piane piots

for the first cylinder in this system, for flow veiocities u higher than the critical

flow veiocity for which a Hopf bifurcation occurs (u = 2.38). As before, the route
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• to chaos for the bifurcation diagram of Figure 9.8 is clarified via the phasl~planl'

portraits of Figure 9.9.

There exists a symmetric stable 1imit cycle after the Hopf bifnrcation al.

11 = 2.38 (not shown). The symmetry of the 1imit cycle is lost by a symmetry­

breaking pitchfork bifurcation at 11 ~ 2.8, the first bifurcation shown in Figure 9.8.

An asymmetric limit cycle motion is represented in Figure 9.9(a) for 11 = 2.85.

At f10w velocities 11 > 2.85, a cascade of period-doubling bifurcations occurs.

Figure 9.9(b,c) shows period-two and period-four motions for (b) 11 = 2.95 and

(c) 11 = 2.96. Figure 9.9(d) shows chaotic motion for 11 = 3, which is followcd by

period-odd motions which will lead again to chaos. The motion of the system will

reduce finally to fixed points for 11 > 3.35.

In this case, chaos arises first1y through period-doubling (period -2, -4, -8),

and then the motion reduces finally to fixed points as in all cases studied till now

wi th the second mode!.

Finally, by comparing the bifurcation diagrams for models one and two

(Figures 4.22 and 9.8), the routes ta chaos for the two models are found to he

the same for 2.4 < 11 < 3.4. For higher 11, the motion of the system for the second

model reduces to fixed point, while for the first mode1 the amplitudes become large,

and the convergence of solutions will not be possible.
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Chapter 10

COMPARISON BETWEEN

MODELS 1 AND 2

In order to compare the nonlinear behaviour for the first and the seconù model,

other than f10w velocity u, two parameters J and 11 arc varied. By taking iuto

consideration that 11 corresponds to the hydraulic diameter, while J to the end­

form coefficient, as before (Chapter 7) two values for 11 and five values for J were

chosen: 11 = 0.2 and 11 = 0.5, while J = 0, J = 0.2, J = DA, J = 0.6 and J = 0.8.

We shall compare the results for a two degree of frecdom (N = 2) system as obtaincd

by the first model (in Chapter 7) and by the second model (herein). Also, in Section

IDA the dynamics of the second model with impacting modelled by a restitution

coefficient is investigated.

The dynamical behaviour of the second model will be summarized in Tablcs

10.1 and 10.2 (pp. 131 and 132) .
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• 10.1 N=2, SECOND MODEL WITH

CUBIC SPRING; h = 0.2

10.1.1 N = 2, h = 0.2 and f = 0

The bifurcation diagram corresponding to this case is shown in Figure 1D.1(a) for

u> U/I. At U ~ 3.1, a symmetric stable limit cycle about the origin develops after

the Hopf bifurcation. For 4.98 < U < 5.2916, a periodic motion develops around two

symmetrical points and it has the same qualitative shape as the phase-plane portraits

shown in Figure 7.2(a). For 5.34031 < U < 5.3405, another periodic motion develops

around two pairs of symmetrical points. For 5.3406 < U < 5.342, a chaotic motion

occurs around one point, while a period-four motion occurs around the other point,

and a period-one motion develops around the other pair of symmetrical points. For

U = 5.343, a period-four motion develops around one point, a period-two motion

develops around the other point, while a period-one motion develops around the

other pair of points. For 5.344 < U < 5.355, a period-one motion develops around

one pair of symmetrical points, while a period-two motion develops around the other

pair of symmetrica! points.

For U = 5.356, chaotic motions arise around one pair of symmetrical points,

while around the other pair of points only a period-one motion exists. For

5.357 < U < 5.3605, chaotic motions occur around only one point. The shapes of

the corresponding phase-plane portraits are similar from a qualitative point of view

to those presented in Chapter 7, Figures 7.2 and 7.3. For higher f10w velocities u, a

period-bubbling phenomenon takes place around one of the four points (depending

of the initial condition chosen), as for example, for U = 5.3606 a period-sixteen, for

U = 5.3607 a period-eight, for 5.3608 < U < 5.3615 a period-four motion occurs,

followed by a period-two motion for 5.3616 < u < 5.3659 and by a period-one

120



• motion for 5.366 < U < 5.4240. Finally, for U > 5.4241 the motion collapsl's to fix<'d

points.

The behaviour of this model may be summarized in the following words:

period-2,4,8 or period-doubling motions leading to chaos; period-bubbling or

period-8,4,2j period-one motions followed by fixed points (Tables 10.1 and 10.2).

10.1.2 N = 2, h = 0.2 and f = 0.2

The bifurcation diagram corresponding to this case is shown in Figure 10.1 (b) for

U > uJ/. For uJ/ = 2.8, a syrnrnetrie stable limit cycle about the origin devclops

after the Hopf bifurcation, and remains syrnrnetric for U < 4.316.

For 4.317 < U < 5.221, a periodic motion around one pair of two symmetrim)

points develops; for 5.222 < U < 5.797, periodic motions devclop around two or

three pairs of syrnrnetrical points, and for U > 5.798, the motion of the system will

reduce to fixed points. The phase-plane portraits corrcsponding to the motions of

this system for U > 4.317 are similar from a qualitative point of view to the ones

presented in Figure 7.3, Chapter 7. Finally, the motion of this system is always

periodic or, for higher flow velocities, reduces to fixed points. This system lIever

becomes chaotic.

The behaviour of this model is summarized in Tables 10.1 and 10.2 as: periodic:

followed by fixed points; no chaotic motions.

10.1.3 N = 2, h = 0.2 and f = 0.4

The bifurcation diagram corresponding to this case is shown in Figure 10.1 (c:) for

U > uJ/. This case has already been discussed in detail in Chapter 9, Sectioll 9.4.

For U = 2.38, a symmetric stable limit cycle develops after the lIopf bifurcation.

For higher u, Le. for U = 2.75, a symmetry-breaking pitchfork bifurcation occurs,

through which the limit cycle loses its symmetry and becomes asyrnrnetrie. At

121



• u > 2.99, a cascade of period-doubling bifurcations occurs: period-two for 3 < u <

3.026, period-four for 3.027 < u < 3.032 and period-eight for 3.033 < u < 3.034,

respectively. This cascade eventually leads to chaotic motions at u > 3.035. Finally,

the motion of the system will reduce to fixed points for u > 3.44.

The dynamical behaviour of this system is summarized in Tables 10.1 and 10.2

as: period-2,4,8 or period-doubling followed by chaos; fixed points.

10.1.4 N = 2, h = 0.2 and f = 0.6

The corresponding bifurcation diagram is shown in Figure 1O.1(d) for u > u//.

For u = 2.18, a symmetric stable limit cycle about the origin develops after

the Hopf bifurcation and persists for 2.18 < u < 2.345. For u ~ 2.345, a symmetry­

breaking pitchfork bifurcation occurs, and the limit cycle becomes asymmetric for

2.346 < u < 2.40. Then, period-doubling bifurcations occur: for u = 2.4051 - 2.416

(period-two motion), and for u = 2.4161- 2.4162 (period-four motion), which lead

to chaotic motions for u > 2.4163. Again, a period-one motion develops around

a pair of two symmetrical points for 2.498 < u < 2.5289, followed by a period­

two motion around the same points for 2.529 < u < 2.5297, period-four motion

for 2.5298 < u < 2.5299, then the motion of the system will become chaotic for

2.53 < tl < 2.536, and its motion reduces further to fixed points for u > 2.537.

The behaviour of this system may be summarized in Tables 10.1 and 10.2 as:

Periocl-2,4,8 or period-doubling bifurcations followed by chaotic motions; another

set of period-doubling bifurcations or period-2,4,8 motions followed again by chaotic

motions; fixed points.

10.1.5 N = 2, h = 0.2 and f = 0.8

The bifurcation diagram corresponding to this case is shown in Figure 10.1(e) for

tl > tl/I. This case has already been discussed in detail in Chapter 9, Section 9.2.
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• A stable, symmetric limit cycle devclops after the Hopf bifurcation (u = l.!l;;) ,

and becomes asymmetric through a symmetry-breaking pitchfork bifureation al.

u = 2.0275. Then, period-doubling bifurcations occur for II > 2.08, as for example

period-two motion for u = 2.0S01, period-four motion for II = 2.0!l26, period-cight

motion for u = 2.0953, followed by chaotic motions for II > 2.0!l55. The motion of

the system reduces to fixed points for u > 2.096S.

This dynamical behaviour is also summarized III Tables 10.\ and 10.2 as

period-doubling bifurcations or period-2,4,S motions \eading to chaotic motions;

fixed points.

10.2 N =2, SECOND MODEL WITH

CUBIC SPRING; h = 0.5

10.2.1 N = 2, h = 0.5 and f = 0

The bifurcation diagram corresponding to this case has been shown in Figure \0.2(a)

for u > Uf/.

This case has a\ready been discussed in Chapter 9, Section 9.3. For 11fi ~ 4A7,

there exists a symmetric limit cycle which deve\ops after the Hopf bifurcation. For

6.771 < u < 6.915 approximately, a period-one motion around two sYlllmetrical

points develops, followed by a period-two motion around the saml' points for

6.916 < U < 7.071, a period-four motion around one point and a period--two

motion around its symmetrical point for u = 7.072, by a period-eight around one

point, while around its symmetrical point a period-two motion always devclops for

7.073 < u < 7.074, and a period-cight motion develops around the saille pair of

points for u = 7.075.

For u = 7.076, a global period-sixteen motion develops around the same

points, and for 7.077 < u < 7.391 a chaotic motion around these points finally
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• occurs. For higher 11, as for 7.392 < 11 < 7.4 a period-one motion develops around

one of the two points, depending on the initial condition chosen. Finally, fixed points

develop for 11 > 7.45. Again, for these parameters, the shapes of the phase-plane

portraits are qualitatively the same as the ones in Figures 9.6, Chapter 9, obtained

by the first mode!.

10.2.2 N = 2, h = 0.5 and f = 0.2

The bifurcation diagram corresponding to this case is shown in Figure 10.2(b) for

11 > 11// = 4. For 11// ~ 4, a symmetric stable limit cycle develops after the

Hopf bifurcation. For higher 11, i.e. for 11 ~ 5.62, a symmetry-breaking pitchfork

bifurcation occurs, the limit cycle remains asymmetric for 5.62 < 11 < 6.237,

then chaos develops through the period-doubling route as follows: period-2 for

6.238 < 11 < 6.3, period-4 for 6.31 < 11 < 6.328; for 6.329 < 11 < 6.33 the

motion of the system is slightly chaotic, and for 6.331 < 11 < 6.5863 its motion

becomes strongly chaotic. A periodic window (period-four motion) occurs for

6.5856 < 11 < 6.586. For 6.5864 < 11 < 6.989, a period-one motion develops around

two symmetrical points, and is followed by period-two motions for 6.99 < 11 < 7.034,

and by period-four motions for 7.035 < 11 < 7.045; the final motion of the

system becomes chaotic for 7.046 < 11 < 7.3. A periodic window occurs for

7.31 < 11 < 7.47 (which is, in fact, an asymmetric Iimit cycle), and chaos arises

again for 7.471 < 11 < 8. The motion of the system is reduced to fixed point.s for

11 > 8.

The behaviour of this model is summarized in the following words: period­

2,4,8 or period-doubling bifurcations; chaos; period-2,4,8 or period-doubling

bifurcations; chaos and fixed points.
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• 10.2.3 N = 2, h = 0.5 and f = 0.4

The bifurcation diagram corresponding to this case is shown in Figure lll.::!( r) for

U > U/I = 3.5. For U > 3.5, Le. U ~ 4.0715, a syulllletry-brcaking pit..hfork

bifurcation destroys the symmetry of the original limit cycle, and the limit cycle

is asymmetric for 4 < U < 4.353. For higher u, i.e. 4.35·1 < II < 4.4. p,'riod-two

motion occurs, which is followed by a period-four motion for II > ·1..101, periOl!­

eight motion for 4.412 < u < 4.413, and leads to strong!y chaoti.. motion for flow

velocities u higher than 4.414, and smaller than u = 5. Finally, for II > 5.1, th"

global motion of the system is reduccd to fixed points.

The behaviour of this model is summarized in Tables 10.1 and 10.2 iL': pcriod­

2,4,8 (period-doubling) followed by chaos; fixed points.

10.2.4 N = 2, h = 0.5 and f = 0.6

The bifurcation diagram corresponding to this case is shown in Fignre 10.2(d)

for u > U/l. For U ;::: 3, a symmetric stable limit cycle deve!ops after the I\opf

bifurcation. For higher u, i.e. u ~ 3.4, a symmetry-breaking pitchfork bifurcation

occurs, the limit cycle is asymmetric for 3.4 < u < 3.782. For u = :1.78:1, the motioll

of the system is quasiperiodic, the Poincaré mal' being presented in the form of

closed curves. For 3.784 < u < 3.7999, the motion of the system is chaotic. For a

very small range of u, 3.756 < u < 3.761, the motion of the system is period-five.

Finally, for u > 3.8, the motion recluces to fixed points.

The behaviour of this system is summarized in Tables 10.1 and 10.2 as fo\lows:

periodicj quasiperiodicj chaotic; fixed points.

10.2.5 N = 2, h = 0.5 and f = 0.8

This case has already been discussed in Chapter 9, Section 9.1. The bifurcation

diagram is shown in Figure 10.2(e) for u > U/I. For u ~ 2.80, there is a stable
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• symrnetric iimit cycle after the Hopf bifurcation. The symmetry of the iimit cycle

is )ost by a symmetry-breaking pitchfork bifurcation, which occurs at u = 2.832.

The )imit cycle rernains asymmetric for 2.832 < u < 2.8677. For higher u, i.e. for

u > 2.8678, the motion of the system reduces to fixed points.

The behaviour of this mode) may be summarized in Tables 10.1 and 10.2 as:

periodic motion and fixed points; no chaos.

10.3 COMPARISON BETWEEN MODELS 1

AND 2 FOR TWO DIFFERENT h

(a) Case h = 0.2 and J = 0

In this case, the routes to chaos for the two models are the same: chaos is

obtained following period-doubling motions; then by period-bubbling the motion

of the system reduces finally to a fixed point.

(b) Case h = 0.2 and J = 0.2

In this case, we obtained the same bifurcation diagrarns: the motion of the

system is never chaotic. The motion remains periodic, but for large enough u it

collapses to fixed points.

(c) Case h = 0.2 and J = 0.4

The routes to chaos are the same for the two models, through period-doubling

bifurcations. For the second model, its motion finally is reduced to fixed points.

(d) Case h = 0.2 and J = 0.6

In this case, the routes to chaos are almost the same, through period-doubling

bifurcations. For the second model, the motion of the system reduces finally to fixed

points.
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• (e) Case h = 0.2 and J = O.S

As has already becn described in Chapter 9, Section 9.2, the route to chaos for

the first model is via quasiperiodicity, while the route to chaos for the s"cond modd

is via period-doubling bifurcations. Thus, although both rnodcIs berome rhaotic,

their routes to chaos are different.

(f) Case h = 0.5 and J = 0

As already described in Section 9.3, the route to chaos for the two modds is

the same, although differences exist from a quantitative point of view.

(g) Case h = 0.5 and J = 0.2

The route to chaos is the same, the motion of the system becomiug chaotir

through two series of period-doubling bifurcations; the first series cornes from a

symmctric limit cycle around the origin which becomes asymmetric through a

symmetry-breaking pitchfork bifurcation, while the second series comps frorn a

periodic motion around two symmetrical points. The behaviour for the second

model reduces finally to fixcd points for higher u.

(h) Case h = 0.5 and J = 0.4

The route to ch?,oS is the same for this case: through periocl-cloubling

bifurcations. The motion of the system of the second mocle! reduces to fixecl points.

(i) Case h = 0.5 and J = 0.6

In this case, the routes to chaos for the two moclels are very c1ifferent. For

the first model, the route to chaos is through period-cloubling bifurcations, while

that of the second model is through quasiperiodicity, ancl of course for higher u, LI",
motion of the second model reduces to fixed points.

(j) Case h = 0.5 and J = O.S

As has already been explained in Chapter 9, Section 9.1, the route to chaos

for the first model is through period-doubling bifurcations, while the second model

never becomes chaotic; it only displays period-one motions.
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• 10.4 MODEL 2 WITH RESTITUTION

COEFFICIENT AND h = 0.5

As a final modification to the models for the system under study, the impacting

of the system with the external cylinder is modelled by the restitution coefficient

theory, in conjunction with model2. In this theory, when the system (in our case, the

first cylinder of the articulated system) impacts any of the two sides of the external

cylinder (left or right), its velocity after impact changes its sign and its value is

smaller than the one before impact. Another important detail in the computer

programming is the reduction of the time step near the wall; 8t may become very

small. If we introduce the three following notations:

Velocity before impact: Vi.;

Velocity after impact: Va;

Coefficient of restitution: Cr

then, we shall have: Va; = - Vi.; Cr

10.4.1 f = 0

In the bifurcation diagram, Figure 10.3(a), a period-one motion develops for

U > uf/ ~ 4.7. This period-one motion remains symmetric around the origin for

flow velocities 4.7 < U < 5.1. For higher f10w velocities, as for U > 5.1, the motion

of the system reduces to fixed points.

In this model, the system develops a period-one motion followed by fixed points

and no chaotic motion has occurred, while in the mode1 with a cubic spring model

for impacting, the system becomes chaotic through period-doubling bifurcations.
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• 10.4.2 f = 0.4

The bifurcation diagram for this case is presented in Figure IO.:I( h). A Hopf

bifurcation appears in this system for Il ~ 3.5. This gives risc to a period-onl'

motion for Il > 3.5, which is symmetric around the origin, and remain5 50, for

3.5 < Il < 3.7955.

For Il ~ 3.8, the system develops a period-two motion and impacts only on

one side of the external cylinder; the side is determined as function of the sign of

the initial condition. In this case, for Il = 3.8, the initial condition is the positive

velocity of the first cylinder and the system will impact the left side of the external

cylinder, while for an opposite sign-initial condition, as for a negative vclocit.y of the

first cylinder, we obtain the impact of the system on the right side of the external

cylinder. This period-two motion develops, in fact, only for a very small range of

f10w velocities, for 3.7965 < Il < 3.8. The phase-plane portrait corresponding to the

period-two motion of the system for Il = 3.8 is shown in Figure 10.4(a).

For higher Il, as for 3.801 < Il < 3.832, periodic motion develops for our

system which is impacting on both sides of the external cylinder. This periodic

motion is followed for 3.833 < Il < 3.835 by another period-8 motion for this

system which again impacts both sides of the external cylinder. The phase-plane

portraits corresponding to the periodic motion are prcsented in Figure 1O.4(b) for

Il = 3.83, while the one for period-8 motion in Figure 10.4(c) for Il = 3.835. For

Il = 3.836 and Il = 3.837 a chaotic motion occurs which is weil prcsented in the

phase-plane portrait in Figure 10.4(d) for Il = 3.836.

For higher f10w ve!ocitics, for Il > 3.838 a period-bubbling phenomenon takes

place: for Il = 3.838 and Il = 3.839 the system develops a period-four motion which

impacts only one side of the ext.ernal cylinder, a period-two motion develops for

3.84 < Il < 3.844 and is followed by a period-one motion for 3.845 < Il < 3.855.
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•

Th" pha~"-plane corresponding to these f10w velocities are presented in Figure

1O..5(a,b,c) for (a) u = 3.838, (b) u = 3.84 and (c) u = 3.85.

This period-one motion modifies its shape for 3.856 < u < 3.86 and starts

to develop around one fixed point, as presented in Figure 10.5(d) for u = 3.86,

while chaotic motion further develops for 3.861 < u < 3.865 (Figure 10.5(e) for

u = 3.865). Furthermore, this motion develops with impacting on both sides of the

external cylinder, while period-one motion around two symmetrical points p.xists

for u = 3.875; fixed points develop for 3.876 < u < 3.9.

In this c~e, the system develops chaotic motion through period-two and

period-eight motions, while for higher f10w velocities the system develops a period­

bubbling phenomenon, and its motion will finally reduce to fixed points.

Il might be said that there are similarities between the model with the impact

modelled by the restitution coefficient and the one modelled by a cubic spring; in

both cases chaos arises through period-two motions.

10.4.3 f = 0.8

The bifurc.'l.tion diagram for this case is presented in Figure 10.3(c). For 2.79 <

u < 2.85, a limit cycle develops after the Hopf bifurcation which occurs for

u = UJ/ ~ 2.79. Dy comparing Figures 10.6 and 10.7 for (a) u = 2.85, (b) u = 2.855

and (c) u = 2.86 the motion of the system is found to be period-one for (a) and

chaotic for (b) and (c). The motion of the system will finally reduce to fixed points

for u > 2.86.

The model with cubic spring as impact modelling never becomes chaotic, its

motion being presented by period-one motion and by fixed points, while the model

with restitution coefficient as model of impact becomes chaotic for a very smal1

range of f10w velocities (Su = 0.01), except for this range, the motion of the system

is always period-one or reduces to fixed poiuls.
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Table 10.1: Routes to chaos for Model 1 and Model 2

0 Period-2,4,8 motions above 2 symmetrical fixed points; Chaos

Period-bubbling motions; Period-one; Fixed points

0.2 Periodic Periodic Period-2,4,8 Pcriod-2,4,8

No chaos Fixed points Chaos Chaos

No chaos Fixed points

0.4 Period-2,4,8 motions abovc 2 symmetrica! fixed points; Chaos

Fixed points Fixed points

0.6 Period-2,4,8 Period-2,4,8 Period-2,4,8 Periodic

Chaos Chaos Chaos Quasipcriodic

Fixed points Chaos

Fixed points

0.8 Period-1,2,1 Period-2,4,8 Period-2,4,8 Periodic

Quasiperiodic Chaos Chaos Fixcd points

No chaos Fixed points No chaos

D h = 0.2 ~ h = 0.5 ~
0:==M=O=D=E=L=1==;I;==M=O=D=E=L=2==i~:==M=O=D=E=L=1=;=1 =M=O=D=E=L=2==~
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Table 10.2: Comparison between Model 1 and Model 2

D h=0.2

101 MODEL 1 1MODEL 2

~==h=r===0.5====l~
~ MODEL 1 1 MODEL 2 ~

0 P-2,4,SjCH P-2,4,SjCH P-2,4,SjCH P-2,4,S

PB;P-1jFP PB;P-1jFP PB;P-1jFP CHjPBjFP

0.2 P P P-2,4,SjCH P-2,4,SjCH

NOCH FPjNOCH P-2,4,SjCH P-2,4,S;CHjFP

004 P-2,4,S;CH P-2,4,SjCH P-2,4,SjCH P-2,4,SjCH

P-2,4,S;CH FP P-2,4,SjCH FP

0.6 P-2,4,S; P-2,4,SjCH P-2,4,Sj P'QP'1 ,

CH P-2,4,SjCH;FP CH CH;FP

O.S P-1,2,1;QP P-2,4,S;CH; P-2,4,Sj Pj

Nocn FP CH FP
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Chapter 11

CONCLUSIONS

11.1 SUMMARY OF THIS THESIS WORK

•

•

[n this thesis, the nonlinear dynamics of a system of rigid articulated cylinders

subjected to external confined f\ow, has beeh 3tudied for the first time. For this

study, two original analytical models are used.

The equations of motion for both theoretical models were obtained by

application of Lagrange's equations, in which the restoring, inertial and gravitational

forces acting on the structure were taken into account in the kinetic and potential

energies of the system. The hydrodynamic forces were incorporated partly in the

kinetic energy and partly as generalized forces.

Thcse two modds, and hence the equations of motion, differ as follows: in the

first mode!, the dynarrJcs of the system when no impact occurs with the confining

pipe is described by a set of linearized equationsj in the second model, the motio~.­

rclated nonlinearities are taken into account approximate1y and they are int.roduced

mainly via Taylor expansions of ,he trigonomctric functions of state variables; these

nonlincar terras are retained up to order three. The first mode[ was conceived

for two, three or four articulated cylinders, while th,. second model only for two

articulated cylinders.
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• ln both models, impacting with the external channel is moddled by either a

trilinear or a cubic spring, prcsumed ta exist betwccn the external cylindl'r and tll<'

articulated system contacting it. The impacting between the articulated system and

the external channel has also becn modelled in terrns of a restitution coellkienL

An eigenvalue analysis was applied to the linearized mode! in arder to lind

the values of the critical parameter (in our system, the critical now velocity Il,,), at

which divergence or flutter instability occurs; U cr was found to oe the same for bath

aforementioned models.

The nonlinear dynamics was found to be very varied, and many different wutes

to chaos for these models were discovered by varying only three parameters, not

including the uterna! now velocity u, which is the main control parameter. The

three nondimensional parameters correspond to: (a) the number of articulated

cylinders, N, (b) the nondimensional annl~!:.r gap, h, and (c) the paraboloid fOFll

of the end of the last cylinder, f. These routes to chaos were confirmed hy various

nonlinear dynamics t"ols, such as phase plane portraits, bifur~ation diagrams, time

t,ace and power spectrum plots, and by calculating the wrrcsponding Lyapunov

('):ponents.

An analytical study was further done by using centre malllfold theory, in which

the dimension of the system at the degenerate fixed point (for which o'le type of

instability occurs) was !'educed, in order to obtain a simplified subsystem, Using

the method of averaging, supercritica! Hopf bifurcations were obtained, and the

approximation of the simplified subsystem on the cehtre manifold WIlS compared

with the actual flow computed numerically. Good agreement was found betwccn

(hese analytical and numerical results.

As many interesting cases from the nonlinear dynamics point of view were

obtained, sorne of them will be described brieny in the following section.
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• 11.2 DESCRIPTION OF THE MOST

INTERESTING CASES

•

•

One type of interesting /lonlinear behaviour was obtained for the first model with two

and three articu!aled cylinders (N = 2 and N = 3), for the same h and f (h = 0.2

and f = 0.4) and the same other system parameters. In these cases, the route

to chaos is through period-doubling bifurcations. This route takes place following a

nuller instability (for N = 2 modcl) or a divergence leading to nutter (for the N = 3

modcl). As the route for the N = 3 mode! is ri cher from the nonlinear dynamics

point of view, this route will be that outlined here, as follows. For U = Udiv, a

divergence instability occurs, which in nonlinear dynamics corresponds to a pitchfork

bifurcation. Thus, for U > Udiv, the origin is no longer a stable fixed point, but

/lew stable fixed points on cithcr side arc generated. By linearizing the system

in the vicinity of thcse new fixed points, purcly imaginary eigenvalues appear for

U = uw, and limit cycles (period-one motions) develop for this f10w vclocity. 'ihis is

followed by a cascade of period-doubling bifurcations, eventually leading to chaotic

motions. The Feigenbaum number was found to be in fairly good agreement to the

ideal Feigenbaum number. Then, for a higher f10w velocity, the chaotic motion of

the system reduces suddenly to a period-one motion. Subsequently, for higher u,

chaos occurs once more, but following another route: through quasiperiodicity. The

motion becomcs quasiperiodic, the quasiperiodicity being verified by constructing the

corresponding Poincaré maps which have the form of closed curves and for which the

ratios of fundamental frequencies are calculated. This is an interesting case, which

displays scquentially two routes to chaos, the period-doubling and the quasiperiodic

route; chaos occurs after an initialloss of stability via a pitchfork bifurcation which

later gives rise to nuller; in most of the other cases, either the period-doubling or

the quasiperiodic route occurs following directly a Hopf bifurcation.
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• Another interesting case is the one for which chaos arises thronp;h

intermittency, which occurred only for the first modc1 with N = :1, il = 0.5 and

for two different f: f = 0.2 and f = 0.4. In this ",se, for tl = tldù' a pitchfork

bifurcation occurs and, as in the preceding example, new stable fixed points arise

with increasing u. By linearizing the system around thcse points, the occurrence

of unstable limit cYc!'lS could be explained by the purc1y imaginary eigen\'alnes

which arise for a flow velocity ULC which is impossible to detect in a bifnrcation

diagram, as the difference betwecn U al. which chaos through intermiEcncy appears

and U for which the motion of the system reduccs 1.0 fixed points is too small,

as already explained in previous chapters. Then, for a flow velocity very close to

ULC an unstable limit cycle develops and for large enough time T for this tl, chaos

through intermittency is obtained. The behaviour of the system with increasing T

is explained in the next paragraph.

The instability is weak and, although trajectories are attracted to the vicinity

of the limit cycle, the limit cycle amplitude increases gradually but continnonsly

with time. For a longer time interval, one of the bursts of "turbulence" is captured,

which are characteristic of this type of chaos; the corresponding phase-plane plots

reinforce the view that, in this time period, the oscillation is chaotic. For higher

T, a quiescent, nearly steady oscillation followed by chaotic oscillations with severai

unsteady bursts is noticed. As shown through the construction of first and second

return maps, as weil as from the distribution of the lengths of laminar phIL"'" PtT)

versus T, or from the number of laminar phases lasting longer than TO, N(T > To)

versus To, the intermittency is of type III.

The third intercsting case 1.0 be discussed here is the one corresponding to

the first model with N = 2, h = 0.5 and f = 0 (which corresponds to a blllnt

end). A limit cycle develops after a Hopf bifurcation and is followcd by a [leriod­

one symmetric motion around two symmetric points with respect 1.0 the origin.

Furthermore, period-two, period-three and period-four motions, followed hy chaotic
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•

motions may be observed around the same two points. For higher f10w velocities

Il depenrling on the initial conditions chosen, a reverse period doubling sequence

around one of the two symmetric points takes place; that means period-four, period­

two, and finally period-one motion. Finally the motion reduces further from a

period-one oscillation to a fixed point. Thus, this case has an interesting dynamical

hehaviour, as Il increases: chaotic motions arise around two symmetric points with

respect to the origin, through period-n motions, followed by a period-bubbling.

phenomenon, and finally the motion reduces to fixed points.

It is impossible to determine the behaviour of the first model with N = 2 for

f10w velocities U between Ud;v and U/l, i.e. Ud;v < U < U/l, because of the fact that

its amplitudes become too large and this model is no longer valid for this range of

u. With the second model, however, no such difficulty exists. The dynamics will be

discussed in the following paragraph, for the second model with N = 2, h = 0.2 and

J =0.8.

For U = Ud;v a pitchfork bifurcation occurs, 50 that the motion of the first

cylinder reduces to a fixed point; for higher u, as for U > Ud;v, new fixed points

occur as the f10w velocity U increases: the distance away from the origin for these

fixed points increases with U for a certain range of u, while it decreases with U for a

second range of u, and fi~ally increases again for a third range of u. Then, the system

is stable about the origin for the fourth range of u. And finally, through a period­

doubling cascade, the motion of the system becomes chaotic and for higher f10w

vclocilies reduces suddenly to a fixed point as in ail cases considered when analyzed

by the second model, while for the first model the amplitudes of the system become

too large and solutions fail to converge.

In the cases considered until now impacting was modelled by a cubic spring.

One interesting case was found with the restitution coefficient method and it is

discussed next. For h = 0.5, J = 0.4 and Cr = 0.75, for U = U /1 a Hopf bifurcation

appears in the system. This gives rise to a symmetric period--Qne motion. For higher
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u, the system develops a period-two motion and impacts only on olle "ide of the

external cylinder, the side being determined from tl'e sign of the initial conditions.

This period-two motion devclops in fact only for a very small range of f10w vclocities.

As u increases, a periodic motion followed by a period-eight and by chaotic motion

develops, while the system then impacts on bath sides of the external cylinder. For

higher f10w velocities, a reverse period-doubling sequence takes place: period-four,

period-two and period--{)ne motion which impacts only on one side of the external

cylinder. This period--{)ne motion modifies its shape and devclops around one fixed

point; it is followed at higher u by chaotic motions again. In the end, period-one

motion aronnù two symmetrical points exists and reduces to fixed point.

It should be mentioned that chaos does not always devclop. In some cases the

motion of the system remains periodic.

•

• 11.3 SUMMARY OF CONCLUSIONS

•

Two new models were constructed for the articulated cylinder system subjected

to externa! axial f10w confined by an external channel; the so-called fiTs! modcl

was described by a linearized set of equations, apart from terms associated with

impacting. In the so-called second modcl geometric nonlinearities, again other than

those associated with impacting, were introduced mainly via Taylor expansions of

the trigonometric functions of the state variables. The nonlinear behaviour of this

system was studied for the first time in this thesis.

Three different models for simulating the impact of the articulated cylinder

system with the external channel were considered: a cubic spring (for both the

first and the second model), a trilinear spring (for the first model), and through

a restitution coefficient (for the second model). The qualitative behaviour of the

system (first or second model) with different impact modcls was found to be the

same.
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• 11.3.1 Dynamics of the N

first model

2 and N - 3 systems via the

•

For N = 2, ail motions leading to chaotic motions develop following a f1utter

instability, while for N = 3 most of these motions (except the ones for 1 = 0,

i.e. a blunt end) occur following a divergence instability, giving birth to f1utterj in

this case, the new stable fixed points become unstable at higher u, and this results in

a flutter instability according to linear analysis, or more precisely in the nonlinear

analysis to .. Hopf bifurcation, so that limit cycles develop around the new fixed

points.

After performing the eigenvalue analysis of the system, the nonlinear equations

were solved numerically-except for an analytical study, as summarized in section

11.3.4 here. The numerical integration was performed generally by the Runge-Kutta

algorithmj sorne rcsults were checked via the Runge-Kutta-Fehlberg algorithm and

were found to be the same. Various sets of initial conditions were used, to check

whether there are coexisting attractors, but in fact the solutions always converged

to the same set.

For N = 2 and h = 0.2 and h = 0.5 and for most values of l, the nonlinear

behaviour of the system is qualitatively the same: chaos develops via the classical

period-doubling routej except for 1 = 0.8, in which case the route to chaos is

through quasiperiodicity.

For N = 3 and for different h, the routes to chaos are different, as follows:

for h = 0.2, a period-doubling cascade leads to chaos, while for h = 0.5 chaotic

motions occur through intermittency. There are sorne exceptions to this generic

behaviour: (i) for 1 = 0.8, and for 1 = 0, h = 0.5, chaotic motion is preœded

by quasiperiodicity; (ii) for 1 = 0, h = 0.2, no chaotic motions at ail develop, in

contrast to what was obtained for the N = 2 system.

In fact the dissimilari l.y in the resuIts for N = 2 and N = 3 is not surprising
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•

if one compares with the work of Paidoussis and Deksnis (1970) for the analogons

system involving an articulated system with internai lIow; in that case also, where

calculations for all N from 2 to 8 as well as for the continnonsly lIexible system

(N -+ (Xl) were conduded, the dynamics for N = 2 were particnlar; N = 3,

however, began to display generic behaviour, typical of higher values of N.

11.3.2 Comparison of the dynamics of N = 2 system as

predicted by the first and second models

It is impossible to determine the dynamics of the system with the first mode! for

flow velocities U between the values for divergence and lIutter, as predided by linear

theory, Le. Ud;u < U < uf" because of the fad that its amplitudes become too large

and the mode! is no longer valid for this range of u. In contrast, according to the

second model, motion reduces to fixed points in the same range of u. Th... ,"me

applies for the range of flow velocities U higher than those for which the motion of

the system is and remains chaotic Ueh, Le. U > Ueh: the first model cannat converge,

while the second one gives results.

It is of interest, however, that in the ranges of U where both mode1s give rcsults,

notably for Uft < U < Ueh, the dynamical behaviour of the system is qualitative1y

similar. This gives us confidence in the predidive ability of both modcls, "t least

in this crucial range of u, and suggests that the dynamics is reasonably robust and

the behaviour may be strudurally stable.

11.3.3 The effect of varying f and h

As the free-end form coefficient f increases, the lIow velocity at which the first

critical flow velocity Uer occurs, decreasesj or, as the end of the last cylinder has a

more streamlined end, the system becomes unstable for a lower Uer than for a blunt

end.
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As the hydraulic diameter h increases, the critical flow velocity at which the

first instability Uer occurs, increases. This is also known, as the diameter of the

external cylinder DClJ/, or the hydraulic diameter Dh = De"' - D increases, the

system becomcs unstabIe at higher flows; for unconfined flow Dh -+ 00, the critical

flow veIocity Uer should be higher than in confined flow.

11.3.4 Analytical dynamics

The analytical part of the nonlinear study is confined to N = 2, according to the first

modeI (as dcscribed in Chapter 5). In this analytical study, centre manifold theory

is used, whereby the fourth order system is reduced to one of second order (for the

Hopf bifurcation). The analytical rcsults obtained fully support the numerical ones

and demonstrate the usefulness and power of centre manifoid theory.

11.3.5 On the variety of nonlinear dynamical behaviour

obtained

The most interesting aspect of the rcsearch described in this thesis is that it

uncovered an immense richness in the dynamics of this system, surpassing that

for the pipe conveying fluid.

For exampIe for the N = 3 system, as analyzed by the first model, in which

only two parameters were varied h and f, three different routes to chaos were found:

by a period-doubling cascade, by quasiperiodicity and via intermittency. This may

not be unique, but if it is not, it is certainly rare.

In the case of type III intermittency, the critical f10w velocity at which a stable

limit cycle occurs cannot be pin-pointed, because of the fact that the difference

betwccn the flow velocity at which the motion of the system reduces to fixed point

and the flow vclocity at which the motion of the system becomes chaotic through

intermittency is very smal!. For this reason, the intermittency phenomenon that
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• has been found in some of the cases considered in this thesis is quitc original; to the

author's knowledge this has not been encountcred elsewhere.

These were the most salient conclusions reached in the work prcsentcd in this

thesis. Sorne suggestions for extending this work follow.

11.4 SUGGESTIONS FOR FUTURE WORK

•

•

In this thesis, an original theoretical study has bcen made of the nonlincar dynllmics

of an articulated cylinder system subjected to confined axial Oow. The purposc was

to demonstrate that this system is capable of displaying an cxtrcmely rich bchaviour,

and hence - especially as it corresponds to an interesting and practically important

physical system -that is deserving of further study.

The work and eSFecially the results prcsented in this thesis represcnt a sample

of a larger set. In effect, the only parametcrs that were varied here, olller than the

f10w velocity u, which is the control parameter, and the number of articulations N,

was the narrowness of the annulus, h, and the end-form c'lefficient, fi however, there

are three other important parameters which might be varied in the future. These

are: (3, which is the nondimensional mass parameter, which is dependent on the

mass of the cylinders and the mass of the displaced Ouidi c, which is the slenderness

parameter (f = LID); and 1, which is the gravitational parameter, which is related

to gravity and buoyancy forces, and to the stilfncsscs of the rotational springs at the

articulations. As three routes to chaos were found, it wouId be interesting ta trace

how these routes transition from one to another for different ranges of parameters.

It is known that when a pitchfork and a Hopf bifurcation occur simultaneously

for sorne parameters, a double degeneracy occurs. By using centre manifold theory

and normal forms, it has been shown in sorne other cases that heteroclinic cycles exist

in the reduced subsystem, suggesting the possibl· ~yistenceof chaotic behaviour (Li

and Paidoussis (1994)). Unfortunately, for the ranges of pararneters considered
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•

•

•

III this thesis, 110 douhle degeneracy was found, so that no further work in this

direction was donc. However, the search for doubly degenerate conditions was Dot

trulyexhaustive. As another possible further work, it would be interesting to search

further in the parameter space, with the aim of finding double degeneracy.

ln this, the first nonlinear study of the system, several aspects of the physical

system were idealizcd and simplified. Il is clear now, after discovering the richness

in the dynamical behaviour of the system, that it is definitely worth to spend the

effort and lime which would improve the model by bringing it closer to physical

reality. One such item would be the proper, position-dependent modelling of the

added mass and f1uid viscous coefficients. Another is the modelling of the f10w

close to the articulation as it approaches the outer confining cylinder. Yet another

would extend the model to coYer three-dimensional motions, in which case the

modelling of the impact would be much more complex-but not impossibly so (sec,

for example, the work of Mureithi (1993) for a different problem)). In an this, since

there is a considerable range of possibilities, the choices should be guided by a real

(experimental) system, which should be investigated concurrent1y, as discussed in

the next paragraph.

An experimental investigation is rccommended, in order to verify the

theoretical results presented here and before further analytical work is done. A

demonstration was already completed in the laboratory, for which a system of two

articulated cylinders made of alderin was subjected to confined axial f1ow. By

varying only two parameters: the external f10w velocity, Il, and the form coefficient

of the downstream end of the last cylinder, l, one obtains critica1 f10w velocities

11er very close to those found by the theorYi more exactly, the same instabilities, i.e.

divergence or f1utter for f10w velocities relativcly close to the ones predicted by linear

thcory. These experiments should be taken further to verify 'hat chaotic motions

of the system arise for 11 > 11er , and that they are (or are not) obtained through the

different routes mentioned previously.
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•

•

Concerning bifurcation thcory, the use of some existing software, such as

the AUTO packages (Doedel 1981) would allow systematic construction of the

bifurcation diagrams, and would l'l'ovide more information concerning the system

behaviour. A bifurcation diagram was construclcd by AUTO for Case·l.1, for which

the route to chaos is through period-doubling of the motions. In this case, one lIlay

find the following, in the notation of AUTO: liB (Hopf bifurcation), 131' (Bifurcation

point), PD (Period-doubling); as weil as MP (end of brandI; no convergence). The

flow velocities li for lIB, BP and PD were confirmed to correspond to those obtained

by Rungc-Kutta integration, corresponding to the Hopf, pitchfork and pl'riod­

doubling bifurcations. Further work would be uscrul, pcrhaps rcvcaling solution

branches not found by our methods.
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•
Appendix A

Viscous Forces - Laminar

Boundary Layer

Relf and Powell (1917) gave measnrements of the force on a smooth 3/8 in. diameter

cylinder set at angles varying by 10° intervals from 0° to 90° to the wind direction.

It was pointed out by them that FN is nearly proportional to sin2 0, where 0 is

the angle between the axis of the cylinder and the wind direction. If U is the wind

velocity, U sin 0 is the component of velocity at right, angles to the cylinder, and since

the drag on a cylinder placed at right augles to the wind is very nearly proportional

tû U2, Relf and Powell considered that the normal component of velocity determines

the normal force, Înd"pendently oi the longitudinal component U cos O. This result

was to he expected on theoretical grounds, because at the Reynolds number of

the Relf and Powell experiments (7.9 x 103
) the boundary layer is laminar. Relf

and Powell's measurements were successfully used by IvlcLeod (1918) to ca1culate

the shape of a fiexible cable used for towing weights under an airplane. For this

purpose McLeod found that sufficientiy accurate results couId be obtained if FL

were negiected altogether, It is not possible to apply Relf and Powell's data directly

to cases in which the Reynolds number on the force acting on a cylinder placed

,;oiiquely in a stream of fiuid is needed.
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• The component of force acting pcr unit length of a cylind"r al righl ilngl"s

to its axis when placed obliqucly in a fiuid stream will b" d"noted by l'No and FI\'

depends only on U sin 0, 50 far as variations in 1T and 0 are concerned.

The experimenta! results on smooth cylinders set at right angles t.o a lIuid

stream of velocity V arc rcpresented in Figure A.I (Goldst"in !!l:18). In t.his figur<'

the drag coefficient Cd is plotted against Re = pVDilI; Cd is defin"d by

(A.l )

where D is the diameter of the cylinder, p is the density of lIuid and l' the viscosity.

Curve a, Figure A.I, represents Cd' Curve b represcnts Cdp , the part. of Cd which

is due to t·:,e component of form drag normal to t1'e surface of the cylinder and in

curve c the part Cdf duc to the tangential component. Evidently

(A.2)

Tt is seen in Figure A.1 that in the range 20 < Re < J05, Cdp varies only betwœn o.n

and 1.1. On the other hand, Cdf is (,>und to be nearly equal to 4Re- ' /
2 in t.his mng"

(Thom 1928). This applies to "smooth" surfaces, and to fiows with R" < :1 x 10",

approximately. Frmn the above equations, Taylor (1952b) obtain"d t.h" "mpirical

expression

FN ~ ~pDV2 (Cd + _4_) .
2 P..jRë

In the case of flow with velocity U and angle of incidence 0,

V=UsinO, Re=RevsinO,

where Rev is the Reynolds number based on U.

A·2

(A.:I)

(A.4 )



• Tll"n, the compclIlent of the fiuid force per unit length, acting in the direction

normal to the cylinder is

•

FN=~PD(UsiIlO)2(CdP+ Jile4. ),
2 Reu sm 0

or

For rdatively large Rcu,

A-3

(A.5)

(A.6)

(A.7)
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Figure A.l.
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Drag coefficients for lateral f10w past smooth circuiar cylind"rs

•
(Goldstein 1938): (a) Cd, the total drag coefficient.; (b) t.h" foml drag coef[ici(:IIt.,

Cdpi (c) the friction drag coefficient, Gd]'
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Appendix B

Viscous Forces - Turbulent

Boundary Layer

If the cylinder is so rough or the f10w velocity high enough that the boundary layer is

not laminar, the force cannot be analyzed by the method used for smooth cylinders.

III general, it is not possible to make any theory of the aerodynamics of rough

cylinders because the force wOllld depend on the exact nature of roughness.

If the roughness consists of a number of long projections pointing equally in

ail directions, it is likely that the force on them would be in the direction opposite

to thal. of their motion. The normal component of force FN might be divided into

portions duc to the prœsure and to skin friction, the friction being the resultant force

on the projections. In that case, the force component formulae might be (Taylor

1952b)

1 2FL = -pDU CfcosO.
2

(B.l)

This Cilse is illnstrated as a in Fieüre B.l. In the limiting case when the diameter

of the cylinder is so small that Cd is negligible compared with Cf> t'le "cylinder"

wonld look like a hairy string. The force components might then be taken as

(B.2)

B-l



• These formulae might also be expected to apply te a hody ill the fonll of a filll'

thread on which a number of equally spaced spherical heads were thl'l·,,,lPd. This

case is ilIustrated as in the lower part of Figure B.I(e).

Another possible fonn of roughness might cOllsist of thill disks 01' platl's sd al.

right angles to a cylinder. In this case, the roughlless would lIlake a much ~I'l·,lter

contribution to FL than t0 FN , and the appropriate formulaI' lIli~ht IH'

( Il.:1)

This case is ilIustrated in Figure B.! (d). Ali these formulae are entil'<'1y speculative.

Finally, the overall normal force per unit length for an "arhitcary rough

surface" is taken as a linear combination of (B.2) and (Il:I), and we shall ohtain the

same formulae as in equation (B.!)

(liA)

The overall longitudinal force per nnit length is assumed to he also of the fonn of

(B.I), applying to both cases (B.2) and (B.3), i.e.

Additional experimental data on forces on inc1incd cylinders in f1ow, cornpiled hy

Hoerner (1958), supports equations (BA) and (13.5). The drag and lift coefficients

are given as

The normal and longitudinal forces (per unit length), FN and FI., respeetivcly, rnay

be obtained from the following equations:

•

Cd = 1.1 sin3 <p +0.02, and C, = 1.1 sin2 <pcos <p.

Fd F,
FN = Tsin <p +L cos <p and

B-2

(lU;)

(B.7)



• where Fd and Fi are the forces in the drag and lift directions, rcspcctivcly, namely

(B.8)

From these c"uations, for small tP,

(B.9)

By inspection, e"nations (B.9) are of the same form as equations (B.4) and (B.5),

with

Cdp = 1.1, and Cf = 0.02. (B.IO)

For a point in the jth cylinder in the system here Ilnder consideration, these

expressions may he wrillen in the form

•

1
(h)j ~ ~?DU2(0.02costPj).

(B.11)

B-3
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•

(a)

(b)

(c)

(cS)

Figure B.l. Different types of roughness on the cylinders (Taylor 1952) .
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Appendix C

Linearization of Viscous Forces

ln order to obtain the simplified linearized expressions for FN and FI" let Ils consider

a (x, y)-plane cross-section of an element of cylinder (Figure C.I), where 0 is tll<'

angle of incidence of the cylinder in the y·direction. By inspection of the above

diagram, we can write

(C.I)

where

(C.2)

Then, for small deformations 01 ~ tan 01 = dy/dx and O2 ~ tan 0, = (ely/elt)/U.

Therefore, 0 = ely/dx + (dy/dt)/U and the normal viscous force per unit length

FN = ~pDU2[Cdp sin2 0+Cf sin 0] =

~pDU2 [CdP sin2 (dy/dx + (dy/elt)/U) +Cf sin (ely/dx + (dy/dt)/U)].

For small deformations, sin 0 ~ 0, so that the above eqnation reduces tü:

1 2 [ (dY 1 dy )2 (dY 1 dY)]FN="2PDU Cdp dx+udi +Cf dx+udi . (C.:!)

To avoid powers of derivatives in the final equations of motion of the cylinders,

which would make it nonlinear, the quadratic normal viscous forces have becn

linearized at U = O.
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• The linear;zation procedure, involving the first term of equation (C.:» 1S

illustrated here. As U -> 0,

1 (d )2FN ~ -pDCd -.JI..- 2 p dt '

tir

FN (dy )2
tpD = Cdp dt

This expression is linearized by using the approximation

(CA)

(C.5)

illustrated graphically in Figure C.2, where Cd is the drag coefficient in still f1uid,

has dimensions LIT and is given by

(C.G)

ln conclusion, utilizing also the results of Appendix B, we can write equation

(C.3) as follows:

1 (ay ay) 1 (ay)FN = -pDUCf U- +- + -pDCd - .
2 ax at 2 at

C-2

(C.7)
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Figure C.l. Calculation of the angle of incidence 0 of the cylinder, 0 = 0, + O2 ,
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Cd (~f) -----

Cd p (~d--

o dy
dt

Figure C.2. Linearizl-tion procedure of normal viscous force FN at U --+ 0, involving

the drag coefficient Cd = Cdp (dy/dt).
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Appendix D

Convergence of the Solutions of

the Equations of Motion

Results for Case 1 (h = 0.5, f = 0.8, K c = 5 X 10') and N = 2 will he analyzed in

this Appendix, in order to discuss the convergence of the solutions for this systelll.

For any f10w velocities li between 2.739 and 2.790, by taking three difrerent

time steps liT] = 0.01, liT2 = 0.001 and liT, = 0.0001, we have obtained essentially

the same final values for velocities and displacements of the system if;1l ~2' if" and

<P2. For example, for li = 2.739, 2.7397, 2.73975, 2.74 and 2.79, it W1L~ found that the

velocities and displacements of the system were the same up to the fourth decirnal

(in Genplot, the final results on the computer screen are given to the fourth decirnal).

To see more precisely the difference bctween the numerical results ohtained

with two different time steps (liTI = 0.01 and liT2 = 0.001), wc have taken the

same system, for which the external f10w velocity is Il = 2.77, the numher of

time steps being N = 500 to 502. Then, for liT! = 0.01, wc obtained <Plm.r =
0.0374699268074892, while for liT2 = 0.001, <Plm.r = 0.0374 70127821 fJ8!H. This

means that the results are the same up to the fifth significant figure. More precise!y,

the displacement of the first cylinder <Plmaz obtained with the time "tep liT2 = 0.001

is 0.0005 % higher than the one obtained with liT! = 0.01.
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• Furthermore, with the same aim, we shaH calculate the critical flow velocity

corresponding to the symmetry-breaking pitchfork bifurcation (the lirst nonlinear

bifurcation after the classical Hopf bifurcation), for two different time steps. Taking

again as numerical example the system of Case l, the critica! flow velocities

for the symmetry-brcaking pitchfork bifurcation (whieh corresponds ta the lirst

asymmetric limit cycle), was found to be the same (uer = 2.7944) for bath time

steps, (OTI =0.001 and OT2 = 0.01), so that in this case the results ace the same up

to live signilicant ligures.

For flow velocities u smaHer than the one corresponding to the Hopf

bifurcation, as for example, u = 2.73, fewer time steps will be needed (N = 400

to 410) than for u = 2.7395 (N = 1400 to 1410) for the system to converge to a

stable solution. For u higher than the flow velocity u corresponding to the Hopf

bifurcation, by taking the time step OT = 0.01, for flow velocities 2.74 < u < 2.77,

fcwcr time steps (~ 50 for u = 2.77) will be needed than for lower flow velocities

(~80 for u = 2.74) for the solution to converge ta a symmetric limit cycle.
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•
Appendix E

Details for the Centre Manifold

Calculations

E.l. Calculation of /lI and /la

In order to calculate the unfolding parameters III and Ila, in this Appcndix will he

presented the steps in the corresponding numerical calculations. In the cquations of

motion (5.1) for the system of Case l, and for U = Uer = 2.7396, thcir corrcsponding

(E.l)

(E.2)

E-l



• Then, hy MACSYMA, the values for the coefficients ao(u), a((u), a2(u) and

a3(u) were calculated from the equation

The flow velocity u will be taken as parameter, so that, after replacing the

numerical values for our system in (A - Hl, the coefficients will be determined as

functions of u:

ao(u) = 748.11u4 - 6934.64u2 ,

a,(u) = -40.36u3 - 94.47u2+641.50u + 507.56,

a2(u) = 2u - 75.50u2+689.68,

a3(u) = 2.72u + 1.47 .

(EA)

For À1,2 = 0', ± i Wl (Chapter 5), and by taking into consideration equations

(E.3) and (EA), (A(u) - ÀI] may be written as function of its real (Red and

imaginary (Iml) parts as follows:

(E.5)

For Wl = 0 in the case of a Hopf bifurcation (purely imaginary eigenvalues),

the real and the imaginary parts will be functions only of 0'1> and u, respectively.

Then, one may write:

•

Re,(wl> u) = wt - a2(u)w~ +ao(u) ,

Im,(wl>u) = -a3(u)w~ +a1(u) ,

E-2
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• the partial derivatives of which wiil be

BRz1

BWI

BRel
Bu

8Iml
Bu

8Iml 3
= - BUt = 4u...·l - 2a2u...·' ,

8a2 2 Bao
= - Bu W 1 + Bu '

Ba3 3 Bal
= - Bu WI + Bu WI • (E-7)

By replacing the corresponding values for the system cOllsidered 111 Sect.ioll

5.1.1, WI = 9.0lï6 and U = Uer = 2.ï396, which is the critical now velocity for lhe

first Hopf bifurcation in the above equations, wc shaH obtain

BaRe! = BJm1 = -1452.14,
0'1 WI

B1~! =-90ï3.39 ,

BaRe! = _BJm, = 614.88,
WI lT1

BJJ::! = 57008.98 .

(E-8)

By replacing these values into the equations

/lI and /l3 will be obtained as functions of /l only. These values will be III =

31.046517/l and /l3 = -19.394264/l.

E.2. Calculation of J.L2

In this case, >'3 = f/l2 is the eigenvalue for the pitchfork bifurcation, which occllrs

for U = 1.694644 +fil, where Uer = 1.694644.

As the system is the same as in the foregoing section, the coefficients uo(u),

al(u), a2(u) and a3(u) will have the same form as in Section E.l (equations (BA)),

but their numerical values will be different, because of the fact that Uer is different.
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• Ily rcp'acing >. and u from thc first paragraph into equation (E.3), and by

ncglecting the terms in Il~, Il~ and Il~, the final equation P.2 = -4.919p. will be

ohtaincd.

E.3. Centre manifold calculation for Hopf bifurcation

If the system of nonlinear equations is

mll~l +m12~2 - mll~1 - m12~2 = a,
m21 ~1 + m22~2 - m21 ~1 - m22~2 = a,
ml1~1 +m12~2 + Cll~1 + C12~2 + kU<Pl + k 12 <P2 = -Kc<P~ 1

m21 ~l +m22~2 +C21 ~1 + C22~2 + k 21 <PI + k 22 <P2 = a,

it may he written in compact form as

By+Ey = F,

where

a a mu m12

a a m21 m22
B=

mu m12 Cu C12

m21 m22 <"21 C22

(E.1a)

(E.11)

(E.12)

-mu -m12 a a
-m21 -m22 a a

E= (E.13)
a a ku k l2

a a k 21 k 22
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• 0 l
0

F=
_1< </>3

c 1

0

(Kt·l)

and y has been defined il'. equaLion (E.I).

Finally, equation (E.Il) will be multiplied by B-l, and lIIay hl' writ.t.l'n ais"

in the form

(KI5)

where A = _B-l E, and the value of A has already been calculated for the Hopf

bifurcation in equation (E.2).

The transformation of coorc!inates y = Px will be used. With this

transformation, the following equation in x is obtained:

Px = APx +B-1l!'.

Wc multiply this equation by p-1 and we obtain

(Klfi)

(K17)

where P is the modal matrix, as already discussed in Chapter 5.

By replacing the corresponding numerical values for the system studied,

equations (5.12) and (5.13) will be obtained.
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•
Appendix F

Estimation of the End-Form

Coefficient. f

The downstream end is approximated by a paraboloid of the form y2 = 4a1O, where

y is the radius of the cylinder system, 10 is the length of the paraboloid and a its

focal distancc.

Consider a specifie case, in which the diameter of the cylinders is 1) = 1.55 cmj

hencc, y is equal to r = 1.55/2 = 0.775 cm. It is recalled that f = 0 corresponès

to a blunt end and f = 1 to a streamlined end. intermediate values of f are

estimated empirical1y by sketching the corresponding paraboloids and drawing on

the experience of Paidoussis (1973) as follows:

• 10 = 0.19; a = 0.78

• 10 = 0.39; a = 0.39

.1O=0.78ja=O.l9

F-l
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• • w = 1.16; a = 0.13

• w = 1.55; a = 0.10

\J

V

f '" 0.6

f '" 0.8

Dimensional quantities (w and al are in cm.
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•
Appendix G

Comments on the Signs of the

Various Terms appearing in (FN)j

and (FL)j

In Section 8.3.3, the viscous hydrodynamic forces (FN)j and (FLlj for a point in the

jth cylinder for the N = 2 second model were already calculated in Chapter 8, and

they were given hy equations (8.23) and (8.24).

Therefore, these forces may he determined for the first cylinder (j = l), and

for the second cylinder (j = 2), as follows:
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•
(G.:!)

(G.:I)

(GA)

We shal1 next calculate the Taylor expansions for the trigonometric funclions

appearing, in the foregoing:

(G.5)

(G.G)

(G.7)

(C.8)

By replacing these Taylor approximations in equations (G.l )-(GA), the fol1owing

expressions are obtained:

• (G.g)
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•

(G.10)

(G.l1)

•

•

(G.12)

In cquations (G.9)-(G.12), one may sce that there are basically two kinds

of terms: those rclated directly to lateral velocities, for instance ~~I (for ~I > 0

and ~I < 0 we should get FN with opposite signsj i.e., always opposing motion)j

and those re1ated to the approximating angles, such as sin2 tPi> the sign of which is

positive or negative, as tPi is positive or negative. Therefore, the signs of the terms

of the viscous forces formulation, or equations (G.1) to (GA), need to be further

analyzed.

In (FNh, i.e., in equation (G.9), we have the following terms:

(i) tP~ - ~tP1, which will be rewritten as ItPd tPI (1- ~4>n, and we see that this

changes sign as 4>1 does and has the desired property, as discussed abovej

(ii) e~12, which will be rewritten as eI~II ~I for the same reason as for (i);

(iii) tPI - ~4>~, which may be written as 4>1 (1 - ~4>n;
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• (iv) ~I (<PI - ~<pn, which has the same sign as <PI<PI> which reqlures further

discussion.

In the type of term as in (iv) above, the f1uid force is a composite of two effeds: (a)

the f10w due to inclination of the pipe, and (b) the flow duc to the velocity of the

pipe, which, in this case, is in the opposite diredion. Then, the sign of the norlllai

viscous force (FNh is analyzed, with respect to the sign of <Pl and ~I:

• if <PI > 0 and ~I > 0, the corresponding term in (FN h will he positive;

• if <PI > 0 and ~I < 0, the corresponding term in (FN)I will he negative;

• if <PI < 0 and ~I < 0, the corresponding term in (FN)I will he negative;

• if <PI < 0 and ~I > 0, the corresponding term in (FN h will he zero.

Then, the term in (iv) may be written as t [I~II<p1 + ~11<pdl (1 - ~<Pi).

In the same way, the different terms of (FNh will be further rewritten as

follows:

(v) ~12[1_ (<P2 - .pl?] will be rewritten as ~II~II [1- (<P2 - <Ptl2];
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•

•

(ix) 2Ul~Irj:, (1- krPn [1- ~(rP' - rPd'] will be rewritten in the form

(FL)I and (FLh remain unchanged.

Triantafyllou and Chryssostomidis (1988) have shown that the term of the

form [U sin <PI +~~1]" which is found in equation (G.I) for (FNh, could be written

as [U sin rPl +~~tlIU sin rPl + ~~llj in their formulation, the sign of forces changed

wi th the modcl variation in time.

50 thaL two formulations were presented for the viscous forces: the first one,

which uses (i) to (ix), and the second is the one presented in the previous paragraph.

These two formulations willlcad to the same final viscous forces, as it will be shown

in the following paragraphs, for (FNh.

In the first formulation, by replacing (i) to (iv) into equation (G.9), one obtains

for (FN h the following equation:
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• Based on the second formulation, from eqllation (G.I), on.. ma)" writ.. (l':\") ,

as follows:

Then, by Taylor approximations, one may write eqllation (G.I·I) as:

(FNlt = ~PDCdP [U (qll - ~qI~) H~l] lU (qI, - ~qI~) H~,I

+~pDUCJ [U (qll - ~qI~) H~l]' (G.15)

Then,

After many calclllations, and retaining only terms up to third order, one may

obtain the equivalence of equations (0.16), which were obtained through the second

formulation, with eqllations (0.13), which correspond to the first formulation.

In the same way, the other viscous forces acting on the first and second cylinder

for the N = 2 second model, Le., (FNh, (FLlt and (FLh were found to he the same

for both, first and second formulation.
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Appendix H

Calculation of Base Drag

Coefficient, Cb

The pressure in the wake of a blunt-based body is reduced as a result of the

tubular jet around it. Hoerner (1958) described the insulating effect of the separated

boundary layer, which tends to diminish the jet-pump effect.

In our articulated cylinder system, there will be a force due to the hase drag

acting on the last cylinder. We already know that the last cylinder of the system has

a free end, the form of which depends on the nondimensional parameter fi following

Hoerner, the base drag force may be expressed as Db = ~pU2SbCb, from which the

base drag coefficient will he given by

(H.1)

•

From (lU), it may he concluded that Cb is inversely proportional to sorne measure

of the boundary layer thickness at the base, which may be characterized hy the drag

on the forebody (Dlore)' Then,

(H.2)

where Dlore is the totai drag acting over the entire forebody. As Dlore = ~pU2SbClb,
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• where CJb is the skin friction drag on the forebody, Cb will be:

(11.3)

This formula is applicable to cases where the base area is csscntially equal to the

maximum cross-sectional arca, which is the case for the system studicd.

Hoerner pl'Oposed CJb = CJ = 0.02 as the skin friction drag coefficient on the

forebody; then, by replacing its value into equation (11.3), we obtain

Cb = 0.029/(0.02j1/2 = 0.2. (11.4 )

The virtual work associated with the last cylinder (the second for a two-degrœ-of-­

freedom system) due to a virtclal displaccment associated with <Ph and duc to the

base drag force only, is given by

QI = ~pD2U2Cbll sin(<p2 - <Pd = ~pD2U2Cbl [(<P2 - <Pd - (<P2 - <ptl3/fi], (11.5)

where sin(<p2 - <Pd = [(<P2 - <Pd - (<P2 - <P1}3/6J by Taylor series expansion.

It is recognized that, despite (l-1.5) being a nonlinear expression, it is very

approximate, since the whole reasoning leading to equation (11.3) 'l'as obtained in

terms of Hnear concepts; thus, for example, the contributions of angular deflections

of upstream cylinders to DJor. were not taken into account.
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Appendix 1

Computer Program

ln this Appendix, the main computer programs for calculating the phase-plane

portraits, bifurcation diagrams and Poincaré maps for two and three articulated

cylinder systems arc presented, with the cubic spring modelling the impact betwecn

these systems and the external cylinder. The Runge-Kutta fourth-order numerical

method is used in ail these programs. As this is a very weil known and classical

mcthod, it needs not to be explained.

The nondimensional equations of motion for a two-degree-of-freedom (N = 2)

and for a thrce-degree-of-freedom cylinder system (N = 3) using the so-called "first

model" (Le., basically linear, apart from impact-related forces) were presented in

Chapter 2, in equations (2.35) and (2.36), respectively. These equations will be

rewritLen in the next paragraphs in a shorter form, by using the following notation:

rPl = x; rP2 = Yi rP3 = z; JI = XXi J2 = YYi J3 = zZi ~l = X'Xi ~2 = y'y and ~3 = z'z,

the dots denoting differentiation with respect to the nondimensional time, T.

For N = 2, the equations of motion (2.35) are written as follows:

•
Alx'x +Blxx +CIX +Ddy +EIYY +FlY = K,X3,

A2x'x +B2XX +C2x +D2Y'y +E2YY +F2y = 0,

1-1
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• while for N = 3, the equations of motion (2.36) become:

Alx'x + Blxx + Clx + Dl1iy + EIyy + FlY + SI='= +T1== + ZI= = "<x:"

A2x"x + B2xx + C2x + D2!Îy + E2yy + F2y + S2== + T2== + Z2= =0,

A3x"x + B3xx + C3x + D3yy + E3yy + F3y + S3Z= +T3== + Z3= = 0, (1.2)

in which the coefficients of x, y, Z, xx, yy, Z=, x'x, yy and ='= are dependent on the

nondimensional parameters already defined in Chapter 2, equations (2.34). Thes"

coefficients, Le. AI> BI> CI> DI> El> FI> SI> TI> ZI A2, B2, C2, D2, E2, F2, 82 , 12,

Z2' A3, B3, C3, D3, E3, F3, S3' T3 and Z3 are found in the computer programs under

their "similar" form, for the sake of simplicity, as Al, BI, Cl, DI, El, FI, SI, Tl,

Zl, A2, B2, C2, D2, E2, F2, 82, T2, Z2, A3, B3, C3, D3, E3, F3, 83, 1':1 and Z:I,

respectively.

ln Table 1.1, a description of the notation in the computer programs is given

mainly for the parameters defined in equations (2.34), while in Table 1.2, the notation

for the results is given; furthermore, the notation for other parameters is given in

Table 1.3.

Mainly two writing commands exist in these computer programs. Taking, for

example, the first computer program (for N = 2), two sets of results are obtained, as

follows. The first set gives T, ~I(T), ~2(T), 4>1(T) and 4>2(T), which in the computer

program are defined as Tl, Zl, ZZI, Xl and YI; these are the outputs for the

phase plane plots and Poincaré mal' construction. The second set gives u, 4>lmar'

which in the computer program are defined as U and X2j These arc the outputs for

the construction of the bifurcation diagram. These two sets of results appear at the

end of the first computer program.

The graphs are constructed with Genplot software, while the prograrns arc

written, as may be secn, in Fortran.
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Table I.1: Notation in computer programs for parameters defined in eqs. (2.34)

Notations in Symbols from

computer program theory

BB {3

RB ,(fJ

BETI kc/k

CB Cb

CC C

ECF fCJ

EE e

EPS f

GA 'Y

HNI h

PI 7l"
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Table 1.2: Notation in computer programs for the resu\ts

Notations in Symbols from

computer program theory

Zl ~1; Eqs. (I.1)

ZZI ~2; Eqs. (I.1)

Xl tP1; Eqs. (I.1)

YI tP2; Eqs. (1.1)

Xl tP1; Eqs. (1.2)

YI tP2; Eqs. (1.2)

Zl tP3; Eqs. (1.2)

XXI ~1; Eqs. (1.2)

YYI ~2; Eqs. (1.2)

ZZI ~3; Eqs. (1.2)

Table 1.3: Notation in computer programs for other parameters

Notations in Symbols from

computer program thcory

DT 6t

EPP Maximum time

EPPI Minimum time

FF J
HI X

RII 1+ (X ·-1)/3

LL L

NN N
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• IMPLICIT REAL*8 (A-H,O-Z)
REAL LL
REAL Kl,K1P,K1S,K1T
REAL K2,K2P,K2S,K2T
REAL K3,K3P,K3S,K3T
REAL K4,K4P,K4S,K4T
REAL MMl,MM2,MM3,MM4
REAL NNl,NN2,NN3,NN4

******************************************
* RUNGE-KUTTA METHOD FOR SOLVING A TWO *
* ARTICULATED CYLINDERS SYSTEM SUBJECTED *
* TO CONFINED AXIAL FLOW WITH IMPACTING *
* MODELLED BY A CUBIC OR A TRILINEAR *
* SPRING *
******************************************

OPEN (2,FILE='OUT' ,STATUS='UNKNOWN')

NUMBER PI DEFINITION
********************

PI = 3.1415927

TlME STEP DT
************

DT = 0.01

CUBIC SPRING STIFFNESS
**********************

BETl = 8662572

NUMERICAL VALUES OF PARAMETERS
******************************

BB = 0.4
CB = 0.1
ECF = 0.25
EE = 0.5
EPS = 10.
FF = O.
GA = 10.
LL = 0.155
NN = 2.
RB = SQRT(0.4)
HNl = 0.5
CC = 0.3
HH = l/HNl



• DEFINITION OF MASS APPARENT COEFFICIENTS
****************************************

HI = «1+HN1)*(1+HN1)+1)/(1+HN1)*(1+HN1)-1)
HII = l+(HI-l)*BB

WRITING INPUT
*************

DO 50 M = 0,200
U = 4.45 + 0.02775*M

DEFINITION OF COEFFICIENTS
**************************

Bl = U*«3*EE+l)*RB*(ECF/G)+{l-FF)*HI*RB*NN)
+ (3*EE+l)*RB*EPS*CC*4/G/PI

El = U*«2-FF)*HI*EE*NN*RB+0.25*ECF*EE*EE*RB)
+RB*EPS*CC*EE*EE/PI

B2 = U*{-FF*NN*HI*EE*RB+0.25*EE*EE*RB*ECF)
+(EE**2)*RB*EPS*CC/PI

E2 = U*«1-FF)*HI*RB*NN*EE*EE+{EE**3)*RB*ECF/G)
+(EE**3)*RB*EPS*CC*4/G/PI

Al = (1/3+EE)*HII
Dl = (EE*EE/2) *HII

A2 = (EE*EE/2)*HII
D2 = (EE*EE*EE/3)*HII

Cl = -HI*U*U*NN*NN+NN*GA*(0.5+EE)+2*(NN**4)
+(0.25+HH/4)*{2*EE+l)*U*U*ECF*NN
+0.5*U*U*NN*NN*CB

Fl = -{NN**4)-0.5*U*U*NN*NN*CB
+(l-FF)*HI*U*U*NN*NN

C2 = -NN**4
F2 = -FF*HI*U*U*NN*NN*EE+0.5*EE*EE*NN*GA

+NN**4+{EE**2)*(HH+l)*U*U*ECF*NN/4

MINIMUM TlME STEP
*****************

EPP = 30

MAXIMUM TlME STEP
*****************

EPPl = 40



• SET INITIAL CONDITIONS
**********************

Tl = 0
Zl = 0.1
ZZl = 0
Xl = 0
Y1 = 0

Z Zl
ZZ = ZZl
X = Xl
Y = Y1
T = Tl

TERM FOR CUBIC SPRING
*********************

G1 = (LL**4)*BET1*X*X*X

FIRST STEP
**********

FF1 = (D2*(Bl*Z+C1*X+E1*ZZ+F1*Y+Gl)
-D1*(B2*Z+C2*X+E2*ZZ+F2*Y»)
/(A2*Dl-Al*D2)

GGl = «(Al*B2-A2*B1) *Z, (A1*C2-A2*C1) *X
+(Al*E2-A2*E1)*ZZ+(Al*F2-A2*F1)*Y
+A1*G2)/(A2*D1-A1*D2)

MMl = Z
NNl = ZZ

K1 = DT*FF1
K1P = DT*GG1
K1S = DT*MM1
K1T = DT*NNl

SECOND STEP
***********

G11 = (LL**4) *BET1* (X+K1S/2) * (X+K1S/2) * (X+K1S/2)

FF2 = ((D2*Bl-Dl*B2)*(Z+K1/2)+(D2*Cl-D1*C2)
* (X+K1S/2) + (D2*El-D1*E2) * (ZZ+K1P/2)
+(D2*Fl-Dl*F2)*(Y+K1T/2)+(D2*Gll-Dl*G21»
Î(A2*Dl-Al*D2)

GG2 = «Al*B2-A2*Bl) * (Z+l'c/2) + (Al*C2-A2*C1)
* (X+K1S/2) + (Al*E2-A2*E1) * (ZZ+K1P/2)
+(Al*F2-A2*Fl)*(Y+K1T/2)+{Al*G21-A2*Gl1»
/(A2*Dl-Al*D2)

MM2 = Z+Kl/2
NN2 = ZZ+K1P/2



• K2
K2P
K2S
K2T

DT*FF2
= DT*GG2
= DT*MM2
= DT*NN2

THIRD STEP
**********

G12 = (LL**4)*BET1*(X+K2S/2)*(X+K2S/2)*(X+K2S/2)

FF3 = «D2*Bl-Dl*B2)*(Z+K2/2)+(D2*Cl-Dl*C2)
*(X+K2S/2)+(D2*El-Dl*E2)*(ZZ+K2P/2)
+(D2*Fl-Dl*F2)*(Y+K2T/2)+D2*G12)
/ (A2*Dl-Al*D2l

GG3 = «Al*B2-A2*Bl) * (Z+K2/2) + (Al*C2-A2*Cl)
* (X+K2S/2)+ (Al*E2-A2*El)* (ZZ+K2P/2)
+(Al*F2-A2*Fl)*(Y+K2T/2l-A2*G12)
/(A2*Dl-Al*D2)

MM3 = Z+K2/2
NN3 = ZZ+K2P/2

K3 = DT*FF3
K3P = DT*GG3
K3S = DT*MM3
K3T = DT*NN3

FOURTH STEP
***********

G13 = (LL**4l*BET1*(X+K3S)*(X+K3S)*(XrK3S)

FF4 = «D2*Bl-Dl*B2)*(Z+K3)+(D2*Cl-Dl*C2)
* (X+K3Sl + (D2*El-Dl*E2) * (ZZ+K3P)
+(D2*Fl-Dl*F2)*(Y+K3T)+D2*G13)
/ (A2*Dl-Al*D2)

GG4 = «Al*B2-A2*Bl)*(Z+K3)+(Al*C2-A2*Cl)
*{X+K3S)+(Al*E2-A2*El)*(ZZ+K3Pl
+(Al*F2-A2*Fll*(Y+K3T)-A2*G13)
/(A2*Dl-Al*D2)

MM4 = Z+K3
NN4 = ZZ+K3P

K4 = DT*FF4
K4P = DT*GG4
K4S = DT*MM4
K4T = DT*NN4



• BIFURCATION DIAGRAMS
********************

X3 = X2
X2 = Xl

FINAL VALUES CALCULATED
***********************

Zl
ZZl
Xl
Yl

= Z +
= ZZ +
= X +
= y +

(K1+2*K2+2*K3+K4)/6
(K1P+2*K2P+2*K3P+K4P)/6
(K1S+2*K2S+2*K3S+K4S)/6
(K1T+2*K2T+2*K3T+K4T)/6

STOP CONDITION AT THE WALL
**************************

RIPI1 = (HH1+1)/EPS
RIPI = X1+Yl/2
IF (RIPI.GT.RIPI1) STOP

NEW TIME
********
Tl = T+DT

POINCARE MAPS
*************

XA = ABS (Xl)
EPS1 = 0.00001
IF (XA.LT.EPS1) THEN

IF ((Tl.GT.EPP) .AND. (Tl.LT.EPP1») THEN

WRITING FOR BIFURCATION DIAGRAMS STUDY
**************************************

IF ((X2 .GT.X3) .AND. (X2 .GT.X1») THEN

WRITE (2,12) U,X2
WRITE (*,12) U,X2

ENDIF

WRITING FOR THE PHASE PLOTS AND POINCARE MAP
********************************************

WRITE (*,12) T1,Zl,ZZl,X1,Y1
WRITE (2,12) T1,Zl,ZZl,X1,Y1



• 12 FORMAT (10X,4(F10.4,2X))

ENDIF
ENDIF

IF (T1.LT.EPP1) THEN
GO Ta 11
ENDIF

50 CONTINUE

STO:">
END



•
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IMPLICIT REAL*8 (A-H,O-Z)
REAL LL
REAL II1,LL1,MM1,II2,LL2,MM2
REAL II3,LL3,MM3,II4,LL4,MM4
REAL K1P,K1S,K1,K1T,K1F,K1V
REAL K2P,K2S,K2,K2T,K2F,K2V
REAL K3P,K3S,K3,K3T,K3F,K3V
REAL K4P,K4S,K4,K4T,K4F,K4V

******************************************
* RUNGE-KUTTA METHOD FOR SOLVING A THREE *
* ARTICULATED CYLINDERS SYSTEM SUBJECTED *
* TO CONFINED AXIAL FLOW WITH IMPACTING *
* MODELLED BY A CUBIC OR A TRILINEAR *
* SPRING *
************************************-*****

OPEN (2,FILE~'OUT' ,STATUS~'UNKNOWN')

NUMBER PI DEFINITION
********************

PI ~ 3.1415927

TlME STEP DT
************

DT ~ 0.01

CUBIC SPRING STIFFNESS
**********************

BET1 = 5775000

NUMERlCAL VALUES OF PARAMETERS
******************************

BB = 0.4
CB = 0.1
ECF = 0.25
EE = 0.5
EPS = 10.
FF = O.
GA = 10.
LL = 0.155
NN = 3.
RB = ·SQRT (0.4)
HN1 = 0.5
CC = 0.3
HH = 1/HN1



• DEFINITION OF MASS APPARENT COEFFICIENTS
****************************************

HI = «(1+HN1)*(1+HN1)+1)/«1+HN1)*(1+HN1)-1)
HII = 1+ (HI-l) *BB

WRITING INPUT
*************

DO 50 M = 0,200
U = 4.45 + 0.0277S*M

DEFINITION OF COEFFICIENTS
**************************

Bl = (RB* (3*EE+4)*ECF/6+ (l.-FF) *HI*NN*RB)*U
+ (3*EE+4)*RB*EPS*CC*4/6/PI

El = (1+2*EE) *RB* (0.2S*U*ECF+EPS*CC/PI)
+(2-FF)*HI*U*NN*RB

Tl = O.2S*EE*EE*RB*(U*ECF+EPS*CC*4/PI)
+U*NN*RB*HI*EE*(2-FF)

B2 = (1+2*EE)*0.2S*RB*(U*ECF+EPS*CC*4/PI)
-FF*HI*U*NN*RB

E2 = 0.S*RB*(1/3+EE)*(U*ECF+EPS*CC*4/PI)
+(l-FF)*HI*U*NN*RB

T2 = 0.2S*EE*EE*RB*(U*ECF+EPS*CC*4/PI)
+(2-FF)*EE*HI*U*NN*RB

B3 = EE*EE*0.2S*RB*(U*ECF+EPS*CC*4/PI)
-HI*U*NN*EE*FF*RB

E3 = O.2S*EE*EE*RB*(U*ECF+EPS*CC*4/PI)
-HI*U*NN*EE*FF*RB

T3 = (EE**3) *RB* (U*ECF+EPS*CC*4/PI)/6
+(l-FF)*HI*RB*U*NN*EE*E~

Al = (4+3*EE) *HII/3
Dl = (2*EE+l) *HII/2
Sl = EE*EE*HII/2

A2 = (2*EE+l)*HII/2
D2 = (1+3*EE)*HII/3
S2 = EE*EE*HII/2

A3 = EE*EE*HII/2
D3 = EE*EE*HII/2
S3 = EE*EE*EE*HII/3

Cl = (3+2*EE)*(0.S*NN*GA+U*U*0.2S*NN*ECF*(HH+l))
+2*(NN**4)-HI*(U*U)*(NN*NN)+(U*U)*(NN*NN)*CB/2

e Fl = -NN**4
Ul = -U*U*NN*NN*CB/2+(1-FF)*HI*U*U*NN*NN



•
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C2 = -NN**4.
F2 = -HI*U*U*NN*NN+NN*GA/2+NN*GA*EE+2*(NN**4)

+ECF*NN*(U*U)*(HH+1)*{2*EE+1)/4
+(U**2)*(NN**2)*CB/2

U2 = -NN**4.-(U*U)*(NN*NN)*CB/2+HI*(U*U)*(NN*NN)
-FF* HI*(U**2)*(NN**2)

C3 = 0
F3 = -NN**4
U3 = NN**4+ (EE**2) *ECF* (U*U) *NN* (HH+1}/4

-HI* (U**2) * (NN**2) *EE*FF+NN*GA* (EE**2}/2

SET INITIAL CONDITIONS
**********************

TEl = 0
Xl = 0
Y1 = 0
Zl = 0
XX1 = 0.1
YY1 = 0
ZZl = 0

X = Xl
Y = Y1
Z = Zl
XX = XX1
YY = YY1
ZZ = ZZl
TE = TEl

TERM FOR CUBIC SPRING
*********************

G1 = (LL**4)*BET1*X*X*X

FIRST STEP
**********

FL1 = G1+B1*XX+C1*X+E1*YY+F1*Y+Tl*ZZ+U1*Z
FL2 = B2*XX+C2*X+E2*YY+F2*Y+T2*ZZ+U2*Z
FL3 = B3*XX+C3*X+E3*YY+F3*Y+T3*ZZ+U3*Z

FF1 = ({A2*FL1-A1*FL2)*{A3*S2-A2*S3)
+(A2*FL3-A3*FL2)*(A2*Sl-A1*S2)}
/{{A1*02-A2*Ol}*{A3*S2-A2*S3}
+(A3*02-A2*03}*(A2*Sl~A1*S2)}



• GGl = ((A2*FLl-Al*FL2)*(A3*D2-A2*D3)
+(A2*FL3-A3*FL2)*(A2*Dl-Al*D2))
/((Al*S2-A2*Sl)*(A3*D2-A2*D3)
+(A3*S2-A2*S3)*(A2*Dl-Al*D2))

HHl = -(FLl+Dl*FFl+Sl*GGl)/Al

III = XX
LLl = TI
MMl = ZZ

Kl = DT*FFl
KlP = DT*GGl
KlS = DT*HHl
KlT = DT*IIl
KlF = DT*LLl
KlV = DT*MMl

SECOND STEP
***********

SIA = X+KlT/2

Gll = (LL**4) *BETl* (X+KlT/2) * (X+KlT/2) * (X+KlT/2)

FLll = Gll+Bl*(XX+KlS/2)+Cl*(X+KlT/2)
+El* (YY+Kl/2) +Fl* (Y+KlF/2)+Tl* (ZZ+KlP/2)
+Ul*(Z+KlV/2)

FL2l = B2*(XX+KlS/2)+C2*(X+KlT/2)
+E2* (YY+Kl/2) +F2* (Y+KlF/2) +T2* (ZZ+KlP/2)
+U2*(Z+KlV/2)

FL3l = B3*(XX+KlS/2) +C3* (X+KlT/2)
+E3*(YY+Kl/2)+F3*(Y+KlF/2)+T3*(ZZ+KlP/2)
+U3*(Z+KlV/2)

FF2 = «A2*FLll-Al*FL2l)* (A3*S2-A2*S3)
+(A2*FL3l-A3*FL2l)*(A2*Sl-Al*S2)
/((Al*D2-A2*Dl)*(A3*S2-A2*S3)
+(A3*D2-A2*D3)*(A2*Sl-Al*S2))

GG2 = ((A2*FLll-Al*FL2l)*(A3*D2-A2*D3)
+(A2*FL3l-A3*FL2l)*(A2*Dl-Al*D2))
/(Al*S2-A2*Sl)*(A3*D2-A2*D3)
+(A3*S2-A2*S3)*(A2*Dl-Al*D2)

HH2 = -(FLll+Dl*FF2+Sl*GG2)/Al

II2 = XX+KlS/2
LL2 = TI+Kl/2
MM2 = ZZ+KlP/2



• K2 = DT*FF2
K2P DT*GG2
K2S = DT*HH2
K2T = DT*II2
K2F = DT*LL2
K2V = DT*MM2

THIRD STEP
**********

SIB = X+K2T/2

G12 = (LL**4) *BET1* (X+K2T/2) * (X+K2T/2) * (X+K2T/2)

FL12 = G12+Bl* (XX+K2S/2) +Cl* (X+K2T/2)
+El* (YY+K2/2) +Fl* (Y+K2F/2) +Tl* (ZZ+K2P/2)
+Ul*(Z+K2V/2)

FL22 = B2* (XX+K2S/2)+C2* (X+K2T/2)
+E2* (YY+K2/2) +F2* (Y+K2F/2)+T2* (ZZ+K2P/2)
+U2*(Z+K2V/2)

FL32 = B3*(XX+K2S/2)+C3*(X+K2T/2)
+E3* (YY+K2/2) +F3* (Y+K2F/2) +T3* (ZZ+K2P/2)
+U3*(Z+K2V/2)

FF3 = «A2*FL12-Al*FL22)*(A3*S2-A2*S3)
+(A2*FL32-A3*FL22)*(A2*Sl-Al*S2»
/«Al*D2-A2*Dl)*(A3*S2-A2*S3)+(A3*D2-A2*D3)
* (A2*Sl-Al*S2»

GG3 = «A2*FL12-Al*FL22)*(A3*D2-A2*D3)
+(A2*FL32-A3*FL22)*(A2*Dl-Al*D2»
/«Al*S2-A2*Sl)*(A3*D2-A2*D3)+(A3*S2-A2*S3)
* (A2*Dl-Al*D2)

HH3 = -(FL12+Dl*FF3+S1*GG3)/Al

1I3 = XX+K2S/2
LL3 = YY+K2/2
MM3 = ZZ+K2P/2

K3 = DT*FF3
K3P = DT*GG3
K3S = DT*HH3
K3T = DT*II3
K3F = DT*LL3
K3V = DT*MM3
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FOURTH STEP
***********

SID = X+K3T

G13 = (LL**4)*BET1*(X+K3T)* (X+K3T)* (X+K3T)

FL13 = G13+Bl* (XX+K3S) +Cl* (X+K3T)
+El*(YY+K3)+Fl*(Y+K3F)+Tl*(ZZ+K3P)
+Ul*(Z+K3V)

FL23 = B2* (XX+K3S) +C2* (X+K3T)
+E2* (YY+K3) +F2* (Y+K3F) +T2* (ZZ+K3P)
+U2*(Z+K3V)

FL33 = B3* (XX+K3S)+C3* (X+K3T)
+E3* (YY+K3) +F3* (Y+K3F) +T3* (ZZ+K3P)
+U3*(Z+K3V)

FF4 = «A2*FL13-Al*FL23)*(A3*S2-A2*S3)
+(A2*FL33-A3*FL23)*(A2*Sl-Al*S2»
/«Al*D2-A2*Dl)*(A3*S2-A2*S3)+(A3*D2-A2*D3)
* (A2*Sl-Al*S2»

GG4 = «A2*FL13-Al*FL23)*(A3*D2-A2*D3)
+(A2*FL33-A3*FL23)*(A2*Dl-Al*D2»
/«Al*S2-A2*Sl) * (A3*D2-A2*D3) + (A3*S2-A2*S3)
* (A2*Dl-Al*D2) )

HH4 = -(FL13+Dl*FF4+S1*GG4)/Al

114 = XX+K3S
LL4 = YY+K3
MM4 = ZZ+K3P

K4 = DT*FF4
K4P = DT*GG4
K4S = DT*HH4
K4T = DT*II4
K4F = DT*LL4
K4V = DT*MM4

MINIMUM TIME
************

EPP = 30

MAXIMUM TIME
************

EPPl = 40
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POINCARE MAP
************

EPL = 0.001
EPL1 = 0.0301
EPL2 = 0.03015

BIFURCATION DIAGRAM
*******************

X3 = X2
X2 = Xl

STOP CONDITION AT THE WALL
**************************

RIPI = EPS*(X1+Y1+EE*Zl)
RIPI1 = 3.*(HN1+1)/2
IF (RIPI.GT.RIPI1) STOP

FINAL VALUES CALCULATED BY R-K METHOD
*************************************

Xl = X + (K1T+2*K2T+2*K3T+K4T)/6
Y1 = Y + (K1F+2*K2F+2*K3F+K4F)/6
Zl = Z + (K1V+2*K2V+2*K3V+K4V)/6
XX1 = XX + (K1S+2*K2S+2*K3S+K4S)/6
YY1 = YY + (K1+2*K2+2*K3+K4)/6
ZZl = ZZ + (K1P+2*K2P+2*K3P+K4P)/6

TEl = TE + DT

XA = ABS (XX1)

WRITING CONDITIONS
******************

FOR PHASE PLANE PORTRAITS
*************************

IF (TE1.GT.EPP.AND.TE1.LT.EPP1) THEN

FOR POINCARE MAPS
*****************

IF (XA.LT.EPL) THEN
WRITE (2,17) YY1,Y1
WRITE (*,17) YY1,Y1

17 FORMAT (2(F20.10,3X)



• WRITE (2,12) TE1,XX1,YY1,X1,Y1
WRITE (*,12) TE1,XX1,YY1,X1,Y1

ENDIF
ENDIF

WRITING CONDITION FOR BIFURCATION DIAGRAM
*****************************************

IF ((X2.GT.X3) .AND. (X2 .GT.X1)) THEN

WRITE (*,12) U,X2
WRITE (2,12) U,X2

ENDIF

12 FORMAT (10X,4(F10.4,2X)

STOP CONDITION
**************

IF (TE1.LT.EPP1) THEN
GO TO 11
ENDIF

50 CONTINUE

STOP
END



• T 1), q,2 ,pl 1)2

30.0100 0.0031 0.0010 -0.0015 -0.0015
30.0200 0.0032 0.001l -0.0014 -0.0015
30.0300 0.0033 0.0012 -0.0014 -0.0015
30.0400 0.0033 0.0013 -0.0014 -0.0014
30.0500 0.0034 0.0014 -0.0013 -0.0014
30.0600 0.0035 0.0015 -0.0013 -0.0014
30.0700 0.0035 0.0015 -0.0013 -0.0014
30.0800 0.0036 0.0016 -0.0012 -0.0014
30.0900 0.0037 0.0017 -0.0012 -0.0014
30.1000 0.0037 0.0018 -0.0012 -0.0014
30.ll00 0.0038 0.0018 -0.001l -0.0013
30.1200 0.0038 0.0019 -0.001l -0.0013
30.1300 0.0039 0.0020 -0.0010 -0.0013
30.1400 0.0040 0.0021 -0.0010 -0.0013
30.1500 0.0040 0.0021 -0.0010 -0.0013
30.1600 0.0041 0.0022 -0.0009 -0.0012
30.1700 0.0041 0.0023 -0.0009 -0.0012
30.1800 0.0041 0.0023 -0.0008 -0.0012
30.1900 0.0042 0.0024 -0.0008 -0.0012
30.2000 0.0042 .0.0024 -0.0008 -0.0011
30.2100 0.0043 0.0025 -0.0007 -0.0011
30.2200 0.0043 0.0026 -0.0007 -0.0011
30.2300 0.0043 0.0026 -0.0006 -0.0011
30.2400 0.0044 0.0027 -0.0006 -0.0010
30.2500 0.0044 0.0027 -0.0005 -0.0010
30.2600 0.0044 0.0028 -0.0005 -0.0010
30.2700 0.0044 0.0028 -0.0004 -0.0010
30.2800 0.0045 0.0029 -0.0004 -0.0009
30.2900 0.0045 0.0029 -0.0004 -0.0009
30.3000 0.0045 0.0030 -0.0003 -0.0009
30.3100 0.0045 0.0030 -0.0003 -0.0008
30.3200 0.0045 0.0031 -0.0002 -0.0008
30.3300 0.0045 0.0031 -0.0002 -0.0008
30.3400 0.0045 0.0032 -0.0001 -0.0007
30.3500 0.0045 0.0032 -0.0001 -0.0007
30.3600 0.0045 0.0032 0.0000 -0.0007
30.3700 0.0045 0.0033 0.0000 -0.0006
30.3800 0.0045 0.0033 0.0000 -0.0006
30.3900 0.0045 0.0033 0.0001 -0.0006
30.4000 0.0045 0.0034 0.0001 -0.0005
30.4100 0.0045 0.0034 0.0002 -0.0005
30.4200 0.0044 0.0034 0.0002 -0.0005
30.4300 0.0044 0.0034 0.0003 -0.0004
30.4400 0.0044 0.0034 0.0003 -0.0004
30.4500 0.0044 0.0035 0.0004 -0.0004
30.4600 0.0044 0.0035 0.0004 -0.0003
30.4700 0.0043 0.0035 0.0004 -0.0003
30.4800 0.0043 0.0035 0.0005 -0.0003, 30.4900 0.0043 0.0035 0.0005 -0.0002
30.5000 0.0042 0.0035 0.0006 -0.0002
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30.5~00 0.0042 0.0035 0.0006 -0.0002
30.5200 0.004~ 0.0035 0.0007 -O.OOO~
30.5300 0.0041 0.0035 0.0007 -O.OOO~
30.5400 0.004~ 0.0035 0.0007 -0.0001
30.5500 0.0040 0.0035 0.0008 0.0000
30.5600 0.0040 0.0035 0.0008 0.0000
30.5700 0.0039 0.0035 0.0009 0.0000
30.5800 0.0039 0.0035 0.0009 0.0001
30.5900 0.0038 0.0035 0.0009 0.0001
30.6000 0.0037 0.0035 0.0010 0.0002
30.6~00 0.0037 0.0035 0.0010 0.0002
30.6200 0.0036 0.0035 0.0010 0.0002
30.6300 0.0035 0.0035 0.0011 0.0003
30.6400 0.0035 0.0034 0.0011 0.0003
30.6500 0.0034 0.0034 0.00~2 0.0003
30.6600 0.0033 0.0034 0.0012 0.0004
30.6700 0.0033 0.0034 0.0012 0.0004
30.6800 0.0032 0.0033 0.00~3 0.0004
30.6900 0.0031 0.0033 0.00~3 0.0005
30.7000 0.0030 0.0033 0.00~3 0.0005
30.7100 0.0030 0.0032 0.0013 0.0005
30.7200 0.0029 0.0032 0.0014 0.0006
30.7300 0.0028 0.0032 0.0014 0.0006
30.7400 0.0027 0.003~ 0.0014 0.0006
30.7500 0.0026 0.003~ 0.0015 0.0007
30.7600 0.0025 0.003~ 0.0015 0.0007
30.7700 0.0025 0.0030 0.00~5 0.0007
30.7800 0.0024 0.0030 0.00~5 0.0007
30.7900 0.0023 0.0029 0.00~6 0.0008
30.8000 0.0022 0.0029 0.00~6 0.0008
30.8100 0.0021 0.0028 0.00~6 0.0008
30.8200 0.0020 0.0028 0.00~6 0.0009
30.8300 0.00~9 0.0027 0.00~6 0.0009
30.8400 0.00~8 0.0027 0.0017 0.0009
30.8500 0.00~7 0.0026 0.00~7 0.0009
30.8600 0.0016 0.0025 0.00~7 0.0010
30.8700 0.00~5 0.0025 0.00~7 0.0010
30.8800 0.00~4 0.0024 0.00~7 0.0010
30.8900 0.0013 0.0024 0.00~7 0.0010
30.9000 0.00~2 0.0023 0.00~7 0.0011
30.9~00 O.OO~~ 0.0022 0.0018 0.0011
30.9200 0.0010 0.0022 0.00~8 0.0011
30.9300 0.0009 0.0021 0.00~8 0.0011
30.9400 0.0008 0.0020 0.00~8 0.0011
30.9500 0.0007 0.0020 0.00~8 0.00~2
30.9600 0.0006 0.00~9 0.00~8 0.0012
30.9700 0.0005 0.00~8 0.0018 0.00~2
30.9800 0.0004 0.00~8 0.00~8 0.0012
30.9900 0.0003 0.0017 0.00~8 0.0012
31. 0000 0.0002 0.00~6 0.0018 0.0013
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4.4500 0.0018
4.4500 0.0016
4.4500 0.0013
4.4500 0.0011
4.4777 0.0185
4.4777 0.0187
4.4777 0.0189
4.4777 0.0190
4.5055 0.0366
4.5055 0.0367
4.5055 0.0367
4.5055 0.0367
4.5055 0.0367
4.5332 0.0479
4.5332 0.0479
4.5332 0.0479
4.5332 0.0479
4.5332 0.0479
4.5610 0.0569
4.5610 0.0!.J9
4.5610 0.0569
4.5610 0.0569
4.5610 0.0569
4.5887 0.0647
4.5887 0.0647
4.5887 0.0646
4.5887 0.0647
4.5887 0.0647
4.5887 0.0646
4.6165 0.0716
4.6165 0.0716
4.6165 0.0716
4.6165 0.0716
4.6165 0.0716
4.6165 0.0716
4.6442 0.0780
4.6442 0.0780
4.6442 0.0779
4.6442 0.0780
4.6442 0.0780
4.6442 0.0780
4.6720 0.0839
4.6720 0.0839
4.6720 0.0839
4.6720 0.0839
4.6720 0.0839
4.6720 0.0839
4.6720 0.0839


