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ABSTRACT

This thesis deals with the nonlinear dynamics of an articulated system of
cylinders in confined axial flow. The articulated cantilevered system is composed
of rigid cylindrical segments, interconnected by rotational springs, and is hanging
vertically in the centre of a cylindrical pipe, with fluid flowing downwards in the
narrow annular passage.

The equations of motion were obtained by application of Lagrange’s equations,
for a system with an a.rl)itr.ary number of articulations. The forces associated with
the structure itself, i.e. the inertial, restoring and gravity forces acting on the
structure, are Laken into account in the kinetic and potential energies of the system.
The hydrodynamic forces are incorporated partly in the kinetic energy and partly
as generalized forces.

As the articulated system interacts with the outer pipe, this interaction or
impact is modelled by a cubic or a trilinear spring, or by using the coefficient of
restitution method.

The critical flow velocity for the onset of fluidelastic instabilities, such as
divergence or flutter, is calculated by a linear eigenvalue analysis. Then, two models
for the equations of motion are investigated, both analytically and numerically.
Centre manifold and normal form theory are used to calculate the post-Hopf limit
cycle amplitude, which will be compared with that obtained numerically.

Phase portiraits, power spectral densities and bifurcation diagrams indicate in
some cases a clear period-doubling cascade leading to chaos, while in others chaos
arises via the quasiperiodic route or via type IIl intermittency. In addition, Poincaré
maps and Lyapunov exponent calculations confirm the existence of quasiperiodicity

or chaotic motion.



SOMMAIRE

Cette these traite de la dynamique nonlinéaire de evlindres articulés soumis
a un écoulement annulaire axial. Le systeme articulé encastré libre est composé de
segments rigides cvlindriques, reliés par des ressorts rotationnels, et est suspendu
verticalement au milicu d'un cylindre externe, I'écoulement coulant vers le bas dans
un espace annulaire restreint.

Les équations du mouvement ont été obtenus par les équations de Lagrange,
pour un nombre arbitraire d’articulations. Les forces assocides i la structure, c'est i
dire, les forces d’inertie, de raideur et de gravitation, sont incorporées dans I'énergie
cinétique et dans I'énergie potentielle du systéme. Les forces hydrodynamiques sont
incorporées en partie dans P’énergie cinétique et en partie dans les forces généralisces,

Lorsque le systéme arliculé entre en contact avec le cylindre externe, cette
interaction ou impact est modelisée par un ressort cubique ou un ressort trilincaire,
ou par la méthode du coefficient de restitution.

Les vitesses critiques de I'écoulement pour lesquelles des instabilités
fluidelastiques apparaissent, comme la divergence ou le flottement, ont ¢té caleulées
par 'analyse linéaire des valeurs propres. Ensuite, deux modéles d’équations de
mouvement ont été analysés, analytiquement et numériquement. La théorie de
la forme normale et celle des variétés centrales ont été utilisées pour le calenl de
I'amplitude du cycle limite qui existe apres la bifurcation de Hopf. Ces amplitudes
ont été comparées avec celles obtenues numériquement.

Les portraits de phase, les analyses spectrales et les diagrammes de hifurcations
indiquent que dans certains cas, le chaos provient d’un doublement de période, alors
que dans d’autres cas, le chaos survient par quasipériodicité ou par une intermitience
de troisieme type. Les cartes de Poincaré et le calcul des exposants de Lyapunov

confirment 'existence de mouvements quasiperiodiques ou chaotiques.

i



STATFMENT OF CONTRIBUTION TO ORIGINAL

KNOWLEDGE

The nonlinear dynainics of a system of articulated cylinders subjected to external

axial flow is the subject of this study. The contributions of this thesis to original

knowledge are the modelling of the nonlinear equations and the analysis of different

routes lcading Lo chaos for this new model.

To the best of the author's knowledge, this is the first time this nonlinear

model is constructed and its chaotic behaviour discussed. The contributions of this

work are summarized as follows:

1.

Two new and original models for this system are constructed, the first linear
and the second nonlincar. In both models, the impacting of the articulated
system with the external cylinder is modellad by a cubic or a trilinear spring,

or by the method of restitution coefficient.

. An important number of significant conclusions concerning the nonlinear

dynamical behaviour of the system are established in this thesis, for various

physical and geometrical parameters.

. Various dynamical tools, such as phase portraits, bifurcation diagrams, power

spectral densities, Lyapunov exponents and Poincaré maps, are constructed
and three routes leading to chaos are found: the classical period-doubling,
the quasiperiodic route, and the type III intermittency route; this last route
to chaos through intermittency is very original, and before to the author’s

knowledge this has not been encountered elsewhere.
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Chapter 1

INTRODUCTION

1.1 MOTIVATION

In many engineering applications, flow-induced structural vibrations may arise and
may cause problems. The subject of this Thesis is flow-induced vibration, including
chaotic vibrzijon, of cylindrical structures subjected to confined axial flow. The
structures considered model various industrial components, such as components of
valves, heat exchangers and nuclear reactor cores.

The vibration of the cylindrical structures subjected to external flow is a
complex phenomenon, in which difficulties arise due to complex flow geometries
and arbitrary, and changing, angles of incidence of the flow vis-¢-vis the cylindrical
structure. For this reason an idealization is often made that the flow is either purely
axial with respect to the long axes of the cylinders, or purely normal to the axis. In
this Thesis only the case of axial confined flow, i.e. annular flow, will be treated.

In most nuclear reactors, the nominal flow of the coolant past the fuel rods
in the core is indeed axial. The vibrations induced by this flow are very small,
but may still cause inter-cylinder impact, which in turn may produce wear and
fretting damage. On the other hand, confined axial flow (i.e., annular flow or, as it

is sometimes called, “leakage” flow) may induce instabilities, i.e., large amplitude



self-excited oscillations. Some case histories invelving external-axial-flow-induced
vibration problems in industry have been compiled by Paidoussis (1980); see also
Paidoussis (1987, 1993). These problems may cause the stopping of a nuclear reactor
operation for long periods of time, which is very costly, or equally serious problems
in other applications.

Hence, the study of the problem and an understanding of the phenomena
underlying annular flow problems are important. Such studies may lead, for
example, to a better design of the annular flow passage between the control rod
and the guide tube channel in certain reactors, thus minimizing the possibility of
severe vibration and vibration-related breakdowns.

All the theoretical work on the topic of systems subjected to external axial
flow has been done till now only with linear theory, and is thus applicable for
flow velocities smaller than the critical ones. This is the first time when a system
subjected to such flow is studied with nonlinear theory, which means that it can
also be studied for flow velocities higher than the critical flow velocities where the
system first loses stability.

Therefore, another motivation of this Thesis is the understanding of nonlinear
dynamics of the system analyzed, by the use of modern nonlinear dynamics theory,
currently being actively developed and used in applied mathematics, engineering

and science (including medicine).

1.2 FROM PREVIOUS INVESTIGATIONS
TO THE PRESENT ONE

In engineering, vibrations of cylindrical structures induced by unconfined or not
tightly confined axial flow involve maximum amplitudes much smaller than those

induced by cross flow: typically of the order of 10~ or 10~! c¢m. This is one



important reason why the study of axial-flow-induced vibrations began much later
(around 1958) than that of cross-flow (around 1878).

In the axial flow case, there is (usually) no flow separation, and the fluid flows
along the length of a given structure. The opposite is true in the cross-flow case,
where there exists flow separation and, in the case of multiple cylinders, the fluid
“encounters” structural elements sequentially. Therefore, the theoretical analysis
of the axial flow case is much easier than that for cross-flow, and it is possible to
develop analytical methods to a much higher level than those for the cross-flow case.

Three different classes of problems have been identified, depending on the
disposition of the flow with respect to the long axis of the cylindrical structures (and
will be discussed in the sections indicated): axial flow inside cylindrical structures
(Section 1.2.1), axial flow outside cylindrical structures (Section 1.2.2), and axial

flow in annular regions between coaxial cylinders (Section 1.2.3).

1.2.1 Axial flow inside cylindrical structures

Bourriéres (1939) was perhaps the first to study the oscillatory instabilities of flexible
pipes conveying fluid. Studies in the area of internal flow-induced vibrations were
continued in the early '50s by Ashley and Haviland (1950), in connection with the
study of vibration of the Trans-Arabian pipeline. Later, Feodos’ev (1951) and
Housner (1952) found that for sufficiently high flow velocities a pipe supported at
both ends may be subjected to divergence, i.e., it may buckle, essentially like a
column subjected to axial loading. A subsequent study by Niordson (1953) led
to the same equation of motion and to essentially the same conclusions regarding
stability of pipes with simply-supported ends. In all the above studies, excepting
Bourriéres’, the only form of instability discovered was divergence.

It was not until the ’60s that Benjamin (1961a,b) predicted analytically the

existence of oscillatory instability (of the single-mode flutter type) of articulated



cantilevered pipes conveying fluid. He found further that divergence was possible
only in the case of vertical cantilevered articulated pipes (where gravity is operative)
conveying a sufficiently heavy fluid (water, for example). If the fluid is air,
only oscillatory instability can be observed. The occurrence or non-occurrence of
divergence depending on the fluid conveyed was perplexing, and was clarified later
by Paidoussis and Deksnis (1970).

Benjamin (1961a) also derived the equation of motion of a continuously flexible
cantilever conveying fluid, by letting the number of degrees of freedom of the system
approach infinity. This problem was further studied by Gregory and Paidoussis
(1966a,b) for horizontal cantilevers. They have confirmed, by both theoretical and
experimental work, the existence of oscillatory instability of horizontal cantilevers
conveying fluid; divergence was found to be impossible. In this case, the behaviour
of a continuously flexible cantilever conveying fluid was qualitatively identical to
that of an articulated one; this is not surprising, considering that the articulated
cantilever may be regarded as a lumped-parameter model of a continuously flexible
one.

Later, Paidoussis (1970) found that vertical, continuously flexible pipes are
never subject to divergence, irrespective of the fluid conveyed; they are subject only
to oscillatory instability. It was assumed that a close analogy in the behaviour of
the two systems (articulated and continuous) would be obtained in case of vertical
cantilevers, as it was in the case of horizontal cantilevers. The transition from
discrete to continuous system was studied in detail by Paidoussis and Deksnis {1970),
who also clarified the aforementioned “anomaly” in dynamical behaviour concerning
divergence, referred to in the foregoing.

More complex problems have been studied, such as the dynamics of curved
pipes conveying fluid, the dynamics of straight pipes containing unsteady flow, and
the dynamics of thin shell-like cylindrical pipes conveying fluid. In the latter case,

it was found that the system is subject to shell-type instabilities due to the internal



axial flow; these have applications in the study of flutter and collapse of pulmonary
passages duc to high aspiration rates (Grotberg and Davis 1980; Webster et al.
1985).

The chaotic motions of a cantilevered pipe conveying fluid were observed for
high flow velocities (Paidoussis and Moon 1988), and these motions were analyzed
by Fast Fourier Transform, autocorrelation, Poincaré map and delay embedding
techniques. A fractal dimension of 3.2 of the system in the chaotic regime was
calculated, see also Paidoussis, Cusumano and Copeland (1992), suggesting that
four-dimensional modelling (two degrees of freedom, N = 2) may capture all
essential features of the dynamics of this system. These studies were continued
(Paidoussis, Li and Rand 1993) on higher-dimensional models (N > 2) and a
convergence of the results for N = 4 or N = 5 was shown in terms of the thresholds
of Hopf and period-doubling bifurcations, and for the onset of chaos. In this paper,
a quantitative comparison between theory and experiments was done, as well as
with an analytical study involving centre manifold computations. The dynamics of
a fluid-conveying cantilevered pipe with an intermediate spring support was further
numerically investigated (Paidoussis and Semler 1993). A review of the topic of

inlernal-flow-induced instabilities has recently appeared (Paidoussis and Li 1993).

1.2.2 Axial flow outside cylindrical structures

We shall now review some work related to the study of vibrations induced by
external axial flow over cylindrical structures. The research in this area began
almost twenty years later than the studies done on axial flow within cylindrical
structures. Generally, it was found that ihere are similarities in the dynamical and
stability behaviour of the two cases. For example, provided that the flow direction
coincides with the axis of the cylindrical structures at rest, then, for small motions

about the position of rest, the forces exerted by the fluid in the two cases of internal



and external flow are closely similar. This becomes evident on considering that
the forces exerted by the fluid, excepting those due to fluid friction, in both cases
arise from lateral acceleration of the flowing fluid, caused by lateral motion of the
cylinder. In external flow, this acceleration is associated with the virtual or ‘added’
mass of fluid (Munk 1924), which is dynamically equivalent to the contained mass
of fluid in internal flow.

Research into the vibration of cylindrical structures due to external axial flow
has been done since 1958, beginning in the USA with Burgreen et al. (1958).
Work was continued in the USA in this direction by Shields (1960), Quinn (1962,
1965) and Pavlica and Marshall (1966). Simultaneously, work was done in France
at SOGREAH (1962), in Sweden by Rostrom and Andersson (1964a,b,c) and in
Canada by Paidoussis (1965, 1966a). These studies, the first to appear in the
open literature, had the following aims: (a) to measure the amplitude of vibration
of particular cylindrical configurations which modelled nuclear reactor components
and flow conditions; (b) to understand the nature and causes of the vibration, and
(c) to develop means of predicting the vibration amplitudes in arbitrary cylindrical
configurations, which is very important for design.

Later, the instabilities of cylindrical structures in axial flow were first studied
theoretically and experimentally in the '60s by Paidoussis (1966a,b) for systems in
unconfined flow. (These instabilities occur at flow velocities much higher than those
in most applications; in the latter, only the low-amplitude vibration, studied as
per the foregoing paragraph, is of concern.) In the theory, the inviscid forces were
formulated by means of Lighthill’s (1960) slender-body theory and viscous forces
were adapted from formulations developed earlier for unconfined flows by Taylor
(1952). It was found, both theoretically and experimentally, that cylinders with both
ends supported lose stability by divergence, followed at higher flows by coupled-mode
flutter. In contrast, cantilevered cylinders lose stability by one-degree-of-freedom

flutter (Hopf bifurcation), and this only if the free end is streamlined (i.e., it is



terminated by an ogival end). Similar work was conducted for towed cylinders,
displaying a more intricate dynamical behaviour (Hawthorne 1961; Paidoussis 1968).
This theory was extended later (Paidoussis 1973), removing an inconsistency in the
formulation of the viscous forces (which did not change the predicted dynamical
behaviour substantially) and considering the effect of confinement of the flow by a
duct. Both inviscid and viscous forces were developed from the earlier formulations.
It was found that, as the flow becomes confined, the unsteady inviscid forces
associated with lateral motions of the system become larger (effectively, the virtual
mass of the fluid is increased) and the system loses stability much earlier.

In parallel to the foregoing, similar and notable research on the dynamics
and flow-induced vibration of cylinders in axial flow was conducted by Chen and
co-workers (Chen and Wambsganss 1971; Chen 1977; Yeh and Chen 1978) and by
Paidoussis (1979), where the references cited are examples of an extensive set of
publications.

Furthermore, Hannoyer and Paidoussis (1979) have studied the effect of
nonuniformity of cantilevered axisymmetric beams on their stability in internal
and external flows. Conical beams subjected to internal flow are less stable than
cylindrical ones. In the external flow case, the opposite effect was observed; fully
conical cantilevered beams do not become unstable, while for truncated conical
cantilevers, instabilities are possible at higher flow velocities than for the cylindrical

ones, if the free end is streamlined sufficiently.

1.2.3 Axial flow in annular' regions between coaxial

cylinders

Annular axial-flow over structures may be seen as an intermediate situation between
external and internal axial flow in or around structures. Paidoussis and Ostroja-

Starzewski (1981) studied the annular flow case and (i) derived the inviscid forces



for confined flow by the full (linear) potential-flow theory, rather than the slender-
body approximation, so that the analysis would also be applicable to non-slender
cylinders also, and (ii) considered compressibility effects. The inviscid forces in this
case were formulated by means of the generalized force Fourier-transform method.
It was found that the potential flow refinement effectively raised the critical flow
velocities for instability, especially for non-slender cases, since slender-body theory
overestimates the fluid-dynamic forces on cylinders. It was also shown that the
effect of compressibility on the dynamics of the system is weak for slender cylinders,
while being strong (significant) for non-slender ones.

Later, Hobson (1982) considered a rigid cylindrical body which was hinged
at a point and coaxially positioned in a flow-carrying duct of nonuniform cross-
sectional area. Again he showed that the confinement of the narrow annular passage
produced an increase in the negative fluid damping, which leads to oscillatory
instabilities. This mathematical model explains the destabilizing effect of an
upstream constriction and the stabilizing effect of a downstream end constriction
of the annulus, on the system. Mateescu and Paidoussis (1985) represented a more
rigorous, but more limited in its applicability, analytical inviscid model for the same
physical system, hinged at some point along its length. It was shown that there exists
a critical location of the hinge: if the hinge is situated upstream of that location, then
the system remains stable at all velocities; on the other hand, oscillatory instabilities
are possible if the hinge is moved downstream past that location. In addition, the
critical location of the hinge is influenced by axial variations of the annular gap.
Some improvement of the model was later made to account approximately for the
unsteady viscous effects which were found to have a stabilizing influence on the
system (Mateescu and Paidoussis 1987).

Experiments (Mateescu et al. 1988) validated the theory in these studies. For
example, for different positions of the hinge, the unsteady pressures, frequencies

of oscillation and flow velocities, were measured and then compared with the



corresponding theoretical ones. It was found that, except near the body extremities,
good agreement was obtained.
Several other papers by Mateescu and co-workers on the same topic followed;

sec, e.g., Paidoussis et al. (1990).

1.2.4 Articulated cylinders in axial flow
1.2.4.1 Articulated cylinders with internal flow

The first nonlincar study on an articulated system of two rigid pipes flexibly
interconnected, was done by Rousselet and Herrmann (1977). The equations of
motion were a modified form of Benjamin’s and Paidoussis and Deksnis’, in which
the flow velocity may vary with motions of the system through a frictional loss factor,
but the upstream pressure remains constant (Roth 1964). The nonlinear form of
the unstable-mode equation was then solved by the Krylov-Bogoliubov method.

Bajaj and Sethna (1982a,b) conducted an analysis of three-dimensional
motions of the articulated cantilevered system in the neighbourhood of the critical
flow velocity for Hopf bifurcation. The joints in this case do not have torsional
rigidity, and they permit both motions transverse to the long axis of symmetry and
rotary ones about it. Periodic solutions of the nonlinear equations are determined by
the Method of Alternate Problems (Hale 1969; Bajaj 1982), which transforms a set of
ordinary differential equations into a set of algebraic ones; then, two independent sets
of periodic solutions to the algebraic equations were found to exist, corresponding to:
clockwise or counterclockwise rotary motions, and planar transverse motions. Their
stability . as determined by the Floquet exponents of the corresponding variational
equavions,

The foregoing analysis was restricted to solutions in the neighbourhood of the
straight, vertical equilibrium. The situation when this restriction is removed has

been studied by Sethna and Gu (1985), where the ‘limiting configurations’ as u — o



are examined. The authors examined five such generic shapes (configurations), ali
of the type in which the equations are invariant under rotation about the vertical
axis. The stability of these generic shapes was studied either by a linear approach or
by centre-manifold theory. They have found a second bifurcation (Hopf bifurcation)
beyond the one that was found previously, for which some of the generic shapes
become unstable. The analytical results were complemented by simulations.
Finally, Sethna and Shaw (1987) have studied codimension-three bifurcations
of a two-segment articulated system vibrating in a plane, near a point of double
degeneracy. A double degeneracy refers to the situation where a pitchfork and a Hopf
bifurcation occur simultaneously for a special set of parameter values. Codimension-
three refers to three parameters being used to ‘unfold’ the bifurcations in the vicinity
of this double degeneracy — i.e., to develop gradually the evolution of the bifurcation
as one or more parameters are varied. This is normally a codimension-two problem
(Guckenheimer and Holmes 1983), but here a third parameter corresponding to

imperfection-related asymmetries was added.

1.2.4.2 Articulated cylinders in ezternal flow

Interest in the behaviour of articulated cylindrical systems in external axial flow is
more recent than that of the continuous (distributed parameter) systems in external
axial flow. Work was done (i) in conjunction with the dynamics of fue! “strings” or
“stringers” of certain types of nuclear reactors (Paidoussis 1976), and (ii) underwater
systems towed by a submarine (Hamy 1971; Paldoussis 1986). The fuel strings in
question consist of fuel bundles held together by a central support tube; the string
is mounted vertically within a pressure tube, and is held at the bottom end and
free on top, with the flow upwards. The theoretical study by Paidoussis (1976) is
of special interest here, since the physical system in that paper is quite similar to
that considered in the present study and, hence, so are the equations of motion —

although in the case of the fuel string they are considerably more complex.
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Another example, item (ii) in the previous paragraph, is the concept of a
“Sea Chain System”, which was put forward in the early '70s (Hamy 1971). The
“Sea Chain” is a submarine system consisting of a power module pulling a series of
quasi-cylindrical freight modules, all connected by flexible couplings. This system
is suited for operation in the Arctic as a transportation system for oil, gas and
bulk cargo, its advantages being that: (i) it avoids the difficulties associated with
surface transport in ice-infested waters; (ii) it is highly manoeuvrable; (iii) it is
adaptable to transporting different cargos by simply changing modules. This system
is similar to the Dracone, a semi-submerged, highly flexible, sausage-like container
towed behind a small craft (Hawthorne 1961; Dunlop Dracones 1969), which is used
for the transportation of oil and other lighter than sea-water cargo, including fresh
water, to arid lands (e.g., to some of the Aegean islands from the Greek mainland).

Also of interest to the present study is the work on “pendular oscillations®
of articulated systems modelling nuclear reactor reactivity-monitoring or -control
systems, e.g., by Hennig et al. (1980) and Peterka (1991), where the cylindrical
elements are hung in the form of simple or compound pendula within a tube and
are cooled by annular flow.

The chaotic motions of an articulated cylinder system subjected to external
axial flow have been studied by Paidoussis and Botez (1993); some of the results

obtained will be presented in the first part of this Thesis.

1.3 MOTIVATION FOR AND OUTLINE
OF THIS THESIS

It has been discovered quite recently that the motions of very simple dynamical
systems cannot always be predicted far into the future. Such motions have been

called chaotic and their study has prompted a discussion of some new mathematical
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ideas in dynamics. The nonscientific concept of chaos is very old and often associated
with a physical state or human behaviour without pattern and out of control. In the
current literature, “chaotic” is a term assigned to a class of motions in deterministic
physical and mathematical systems whose time history has a “sensitive dependence
on initial conditions”.

It is well known that an articulated system subjected to external axial flow
loses its stability at high flow velocities by flutter or by divergence. All the early
theoretical work on this topic has been done with linear theory. With the recent
interest in chaotic motions of non-linear systems (Guckenheimer and Holmes 1983;
Moon 1987), it seems appropriate to look into the possible existence of chaos in this
particular system.

This Thesis deals with the dynamics of a system of articulated cylinders which
are interconnected by rotational springs, within a pipe conveying fluid, with fluid
flowing downward in the relatively narrow annular space. Analytical models for
this system (of two, three and four degrees of freedom) are developed, and their
dynamics, taking into account possible impacting with the outer pipe, are explored
mainly numerically. It is shown, for the first time, that this system can develop
chaotic oscillations.

The two models differ in the way the set of equations of motion is considered: in
the first model, the dynamics of the system when no impact occurs with the confining
pipe is described by a set of equations which are linearized; in the second case, the
nenlinearities are taken into account approximately and are introduced mainly via
Taylor expansions of the trigonometric functions of state variables; nonlinear terms
are retained up to order three. In both models, impacting with the pipe is modelled
by a trilinear or a cubic spring, presumed to exist between the pipe and the element
of the articulated system contacting it.

This Thesis consists of eleven chapters. In Chapter 1 a brief review is given of

previous studies related to the research work of the Thesis. The goals undertaken
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by the Thesis have also been stated, and now the outline of the Thesis is being
presented.

In Chapter 2, the development of the first analytical model for a system of
cylinders subjected to a confined axial flow is given in detail. Presented are (a) the
description of the system and assumptions made, (b) the energies of the system, (c)
the fluid-dynamic forces, in which are included also the nonlinear forces due to the
cubic spring or to the trilinear spring. In Chapter 3, the following are presented: (a)
a theoretical stability analysis of the first model (no impacting with the channel},
and (b) the methods used in subsequent chapters to study the nonlinear behaviour of
this system, namely for bifurcation diagrams, phase-plane portraits, power spectra
and time traces, Poincaré maps and Lyapunov exponents.

In Chapter 4, the numerical results are presented for the first model, in which
the equations of motion are linearized, modelling impact with a cubic spring and for
N = 2 (two articulated cylinders), for four different cases. The analytical results,
including those of centre manifold theory are presented in Chapter 5, for the same
system (N = 2). In Chapter 6, the numerical results for N = 3 and 4 for the first
model are presented, for the same cases as those in Chapter 4.

In Chapter 7, the results obtained for two- and three- degree-of-freedom
systems are compared for different parameters, and additional results for the first
model with impacting modelled by a trilinear spring are further presented.

In Chapter 8, the second model of a system of cylinders subject to a confined
axial flow is described and the nonlinear equations of motion are derived. Chapter 9
gives the numerical results for the two-degree-of-freedom system, for the same four
cases as those considered in Chapter 4.

In Chapter 10, the results obtained for the two models with ¥ = 2 (in
Chapters 4 and 9) are compared to those obtained by restitution coefficient theory.
Finally, Chapter 11 wraps up the Thesis with a summary of general conclusions and

suggestions for future work.
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Chapter 2

THE FIRST THEORETICAL
MODEL

2.1 DESCRIPTION OF THE SYSTEM AND
ASSUMPTIONS MADE

The articulated system here under consideration consists of a number, N, of
rigid cylinders interconnected by rotational springs, with the lowest cylinder being
terminated by a more or less streamlined, ogival end. The system is hung vertically
in the centre of a pipe (Figure 2.1.(a)), and is supported at the upper end and free
at the lower one. Fluid flows downward in the relatively narrow annular space.

To simplify the analytical model and, thus, to be able to carry out the analysis
into the chaotic regime easily, a number of assumptions are made at the outset, as
follows:

(a) The fluid is incompressible and of uniform density, and it is flowing with a
uniform velocity U parallel to the z-axis, which coincides with the position of rest

of the articulated cylinder system.
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(b) The diameter of the cylindrical elements is small compared to the length
of the articulated system.

(c) Since the system under consideration does not model any particular
physical system, it may be considered to be so constructed that motions of the
articulated system are indeed planar.

(d) As the annular space — between the articulated cylinder system and the
external pipe — is narrow (despite the diagrammatic spaciousness of Figure 2.1.(a)),
the motions of the articulated system are considered to be of small amplitude, as
constrained (contained) by the presence of the external pipe; that means that the
dynamics of the system when no impact occurs with the confining pipe may be
described by a linearized set of equations.

(€) The presence of the external pipe (confining channel) becomes “felt” by the
system — quite apart from the effects on the fluid/flow-induced forces — via the
impact-related forces. A trilinear spring model for such impact is quite reasonable:
there is no spring (zero stiffness) while the system oscillates without touching the
wall; but once it does, then further movement is resisted by a very large stiffness
associated with local deformation of the articulated system and of the constraining
pipe wall. The cubic spring (to be discussed in Section 2.5) is a further idealization
of the situation (cf. Paidoussis and Moon 1988; Paidoussis et al. 1992), and is
introduced strictly for analytical convenience.

(f) Another assumption made implicitly is that, despite the articulations and
the rotational springs (which are presumed not to protrude into the fluid flow), there
is no local separation of the flow as the articulated system oscillates, by virtue of
the small angles of deflection involved. For the same reason, slender-body theory
will be presumed to be applicable for the determination of the inviscid fiuid forces.

(g) The essence of this “first” model is that, apart from impact-related forces,
the equations of motion will be linearized. Hence, the equations of motion will be

correct to O(e), where ¢; ~ O(e). Accordingly, second order terms will be neglected
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in the forces, and terms higher than second order will be neglected in the associated
energies (Section 2.2).

Concerning the fluid forces, they could in principle be determined by an
appropriate solution of the Navier-Stokes equations. This will not be attempted
here, and the fluid forces will be determined essentially by superposition: inviscid
and viscous forces will be determined separately. This has been shown to be quite
acceptable (Paidoussis 1966a,b, 1973) for the continuously flexible counterpart of
the present problem, as well as for more complex systems (Paidoussis 1979). Then,
the forces associated with the structure itself, i.e., the restoring, inertial and gravity
forces acting on the structure, are taken into account in the kinetic and potential
energies of the system. The hydrodynamic forces are incorporated partly in the
kinetic energy and partly as generalized forces.

The equations of motion will be obtained by application of Lagrange's
equations, for a system with an arbitrary number of articulated cylinders, N,
although the calculations to be presented will be confined to N = 2, N = 3 and
N = 4. The lengths of the cylinders in the system are l;, the interconnecting
rotational spring stiffnesses are k;, and the generalized coordinates chosen are the

angles of deformation ¢; , where j = 1,..., N, as shown in Figure 2.1.(b).

2.2 ENERGIES OF THE SYSTEM

As the equations of motion will be derived by the Lagrangian method, in this section
the kinetic and potential energies of the structure will be determined. The kinetic

energy of the system will have two components, one due to the structure, and the

other due to the fluid.
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2.2.1 Kinetic and potential energies of the structure,

T, and V,

In this section, the kinetic and potential energies of the structure, T, and V,, of the
articulated system itself, are determined in terms of generalized coordinates, which
are the angles of deformation, ¢; (Figure 2.1.(b)). Small deformations are assumed,
so that sin ¢; =~ ¢; and cos ¢; =~ 1.
The local coordinate £ is defined, along the length of each cylinder segment,
0 < ¢ £ I; (Figure 2.1); then, for small deflections, the velocity at point £ of the jth
cylinder is _
(=T L +€4;, 1)
=1
where the dot denotes differentiation with respect to time, {. Hence, the kinetic

energy of the jth cylinder is

1A i-t . . 2
T,; = ';' /0 m; (21 lq $e+ € ¢J) d¢, (2'2)
q:

where m; is the mass per unit length and the subscript s stands for “structural”. The
total kinetic energy of the structure, neglecting the ogival part of the last cylinder,
is
N i i=1 . . 2
T=33 [ mi (X b+ | . (23)
i=1 0 g=1
The potential energy of the structure V;, has two components, one due to
gravity and another due to the strain of the intercylinder connecting springs. The
potential energy of the jth cylinder due to gravity, V;;, is given by
b = 2 2
V=38 [ mg ([T Lot +edt) de, (2.4)
g=1
where, by Taylor series expansion, 1 —cos ¢; ~ %963 has been used, and the subscript
g stands for “gravity”, such that the potential energy is correct to O(e?) if ¢; ~ O(e¢),

as it should,
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The potential energy associated with the strain of the spring connecting the

jth and the (5 — 1)th cylinders is

Voj = L ki (85 — 85-1)° (2.5)

where the subscript s stands for strain.
Finally, for small displacements, the total potential energy of the structure
may easily be found to be
N

N i i=1
et S{[ s (S naea)ad st Sne-ar. eo
=1

g=1 j=1
2.2.2 Kinetic energy of the fluid, T}

We adapt to this problem Lighthill’s work (1960), which is essentially an application
of slender body theory. By this theory, we shall calculate the normal flow velocity
at any point £ of the jth cylinder; with this flow velocity, we shall then calculate
the kinetic energy of the fluid, T}.

We describe the articulated cylinder system subjected to external axial flow
as ‘straight’ when it is stationary in the vertical position (z direction), such that
no resultant normal force acts on its cross-section. Then, we suppose that the
articulated system has a displacement h(z,t) from the straight position in the y-
direction (Figure 2.2.(a)); the z and y directions are defined in Figure 2.1.

Furthermore, in Figure 2.2(a) we introduce the new system of unit vectors
(i1,J1) which corresponds to the (i,j) unit vector system rotated by an angle ¢ in
the counterclockwise direction.

We isolate an element of a cylinder as in Figure 2.2(b), and then, by slender
body theory, the flow may be regarded as composed of (a) the steady flow around
the straight body, in which case the flow velocity is v, = U cos ¢i; ~ Ui,, and (b)
the flow due to the displacement k(z,t). In the latter case, the relative fluid-body

velocity in the direction normal to the element, that means in the j, direction,
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is v, = (Oh/Ot)cosé + Using. For small displacements (Gh/dz), cos¢ = i,
sin ¢ =~ tan ¢ = Jh/Az; therefore, in the j; direction and for small displacements,
v(z,t) = [Oh(z,1)/8t) + U[Bh(z,1)/0x]. In our case,

_%  ,%
w(r,t) = 5 + Uz (2.7)

in the j, direction. Then, the total velocity of the fluid at point £ of the jth
cylinder, vy;(€), 15 composed of two components in the i; and j; directions, and it
can be written as follows:
=1 .
vy;(§) =Uh + (; lidg +Ed; + U¢:‘) - (2.8)
Therefore, the kinetic energy of the fluid at point £ of the jth cylinder is
i i N ?

Ty;8) = %_[)J M U?dg + %_/: My (qz‘_l’qrf’q +éd; + U¢j) d¢, (2.9)
where Mj, and Mj; are the corresponding virtual or added masses of fluid in the
1, and j; directions. The first integral gives rise to a constant, i.e. to a term
independent of ¢ or ¢. Hence, when it is eventually substituted in the Lagrange
equations, it will contribute nothing; it can therefore be neglected from here on.

Mj1 may be written as xpA for confined flow, where p is the fluid density,
and A is the cylinder constant cross-sectional area; thus, for unconfined flow we
have x = 1, and Mj; = pA, as is well known. Generally, x > 1 for confined
flow and it increases as the diameter of the confining flow-channel decreases. For
axisymmetrically confined flow (i.e., annular flow between coaxial cylinders, which

is our case), x is found by potential flow theory to be (Chen et al. 1976):
x = [(L+ A2 +1]/[(1 + &)* - 1], (2.10)

where h = D/ D, D being the cylinder diameter, and Dy, = D, — D is the hydraulic
diameter of the annular flow passage, D.; being the internal diameter of the external

pipe (Figure 2.1(a)). It is implicitly assumed in arriving at equation (2.10) that the
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displacement thickness of the boundary layer is small, as compared to the radius
of a cylinder in the system, and viscous forces are not too large (i.e., the annular
passage is not extremely narrow).

Then, the kinetic energy of the fluid associated with the inviscid component

of fluid-dynamic forces will be

g=1

2
T, = XPAEj (Zl¢q+§¢g+u¢1) dt. (2.11)

2.3 THE FLUID-DYNAMIC FORCES

As has already been mentioned, the fluid forces will be determined in several parts:
inviscid unsteady forces, hydrostatic forces and viscous forces. They will generally

be expressed as generalized forces for introduction into Lagrange’s equations.

2.3.1 Nonconservative inviscid force, F,.

If both ends of the articulated system were supported, expression (2.11) would
represent the whole of the inviscid component of the fluid-dynamic forces. However,
the cantilevered system is generally nonconservative, and hence there will generally
be work done at the free end of the system by a nonconservative lateral inviscid
force, Fy. (cf. Benjamin 1961a,b; Paidoussis 1966a). This force is associated with
the non-cylindrical, ogival end of the last cylinder.

For a less than ideally streamlined end, this force will not develop fully because
(1) the lateral flow will not be truly two-dimensional, (ii) boundary layer effects. This
may be taken into account by introducing a parameter f, so that we obtain:

Fo = (1—/)x ]o N (g:' + U%) pS(z)vsdz

x(1—f)j0'"(gt+ua) pS(z )(g’:wgy)d

x(1=f)p (‘;’:+Ua”)uj —-—dz
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where w is the length of the noncylindrical part of the last cylinder and v, is the
lateral velocity of the fluid, which is in fact the component in the j; direction of
vy;(£), as defined by equation (2.7).

Thus, we can write the final form of F,., which is

dy .0y
Fo.=x(1—- MU (—a—t + UE::_:) ) (2.12)
in which f is a measure of departure from ideal slender body theory; as the end

becomes progressively blunter, f — 0.
For the articulated system, this expression may be written as follows:

Foe = x(1- f) MU (i l,-qu + UQSN) . (2.13)

i=1
2.3.2 The hydrostatic pressure forces, Fyx and Fpy

The static pressure distribution, p(z), in the external channel flow is determined by
the hydrostatic pressure distribution, modified by the skin—friction-related pressure
drop; since the latter is approximately linear, p(z) is taken to be linear. The
forces F,: and F,, acting on an element é¢ of one of the cylinders (Figure 2.3) are
determined by considering this element frozen and immersed in fluid on all sides.
Therefore, the resultant of the forces on the cylindrical surface of the jth
cylinder {in terms of F,; and F,,) is equal to the total hydrostatic force on the
element, which is the buoyancy force, minus the forces pA acting on the two cut,

circular faces of the element; i.e.,

— Fprbi + Fp 665 = —%A&Ei - (—% cos ¢;i — -‘i%’f—)- sin qS,-j) oz, (2.14)

where A6 is the elemental volume. Since, for the inclined cylinder, 86/0z = cos ¢;,

the forces on the element §¢ of the jth cylinder are

d d
(Foe)i =0, (Fy); = A tang; = aZLo, (2.15)
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for small deformations (tan¢; =~ ¢;). These results could have been obtained
directly from adaptation of the equivalent results for a flexible cylinder (Paidoussis
1973): Fpz =0, Fp, = (0/0z)[pA(Oy/0z)]. From the latter, it is seen that there is
also a change-of-angle (curvature term), which arises at the joints of the articulated
cylinders. This, for the jth cylinder, gives rise to a contribution in the generalized

force

—(dp/dz)All; sin{¢; — ;).

It is evident from equation (2.15) that (F},); depends on the pressure drop
(dp/dz). This will therefore be estimated. Consider the simplified diagram of Figure
2.4, in which it is assumed that the steady static pressure is uniform in any cross
section. One can write

p=pot L4y, (2.16)
where A; is the annular flow area.

A uniform frictional coefficient C; is assumed to apply throughout, so that the

total frictional force is p(D + Dcn)U*Cy, where D and Dy, were already defined in

Section 2.2. Hence, a force balance will give the following equation:

d 1
A,ﬁ = —2p(D + Da)U*Cy + pgAy. (2.17)
By multiplication of the above equation by A/A;, we obtain
dp 1 wD? /4 2
b A. 2.18

However, (D + D) D?/ (D% — D?) = D*/(De, — D) = D*| Dy, where Dy = Doy — D
is the hydraulic diameter. Hence, one obtains

dp 1 2oq D
— T —— — . olg
Ao = —5pDUCy N PIA; (2.19)

if Dy, is very large (unconfined flow), then A(dp/dz) = pgA.

Hence, for small deformations, i.e. tan ¢; =~ ¢;, one obtains

1 D
(Fui = (—5pDUCs5- + r9A) 4 (220)
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2.3.3 Viscous Hydrodynamic Forces, Fn and Fy

The viscous forces acting on long inclined cylinders have been discussed by Taylor
(1952a). Taylor looked into cases where the boundary layer is either laminar

(Appendix A) or turbulent (Appendix B). One can write these forces, as follows:
Fy =1 pDU? (Cupsin®8 + Cysinb), Fp =} pDU? Cycosh, (2.21)

where 8 = tan™? [(8y/8z)] + tan™! [(8y/8t)/U]. For small (8y/8z) and (8y/ét)/U,
these equations reduce to

dy 0 i)
FN=%pDUCf(UE%+§')+%pDCda_‘:1 FL':';'PDUzCIs (2.22)

where the second term in Fyy represents a linearization of the quadratic viscous
force at zero flow velocity (Appendix C), 1 pDCy, |0y /3t|(Gy/3t), in which the drag
coefficient represents Ca = Cy4,(0y/6t). For a point in the jth cylinder for the

articulated system considered, these expressions may be written in the form

j—l . - j-l . -
(Fn); = 3pDUCy (z lo g +{¢5+U ¢5) + 3 pDCy (Z o + €¢j) ;
, ) o \9=0 9=0 (2.23)
(FL)J‘ = -;-pDU Cf.

One could have used the more sophisticated but complex theory of Mateescu
and Paidoussis (1987) to obtain more accurate expressions for the unsteady
components of (Fy); and (F); — but, as shown by Paidoussis ef al. (1990), the two
sets of expressions give very similar results insofar as stability of the continuously
flexible version of this system is concerned. Hence, the added complexity of that

theory is not warranted for the purposes of this Thesis.

2.4 LAGRANGIAN EQUATIONS

The Lagrangian method is useful for finding the equations of motion when the

number of degrees of freedom is large. Accordingly, if the generalized coordinates
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are the angles of deformation ¢;, then the equations of motion may be obtained by

application of Lagrange's equations

d (L) L
- (a_qa‘:) - 55 =% (2.24)

Here L = T — V, where T is the total kinetic energy of the system and is given by
T=T,+Ty, (2.25)

where T, and T are given by equations (2.3) and (2.11), respectively. The potential
energy is exclusively associated with the articulated system, and so it is given by
equation (2.6). @; are the generalized forces, which will be dealt with next.

It is recalled that since a linearized set of equations is sought in this chapter,
whereas the energies are required to be correct to O(¢?), the forces (and the
generalized forces) must be correct only to O(e), where ¢; ~ O(e).

The generalized forces (actually moments) @;, 7 = 1,2,...N, will
be determined by considering the virtual work §W; associated with virtual
displacements é¢; in the generalized coordinates ¢;. Then the generalized force
Q; is defined via 6W; = Q; 6¢;. We proceed to determine the component of the
generalized force ¢, associated with cylinder 1 and denoted by Q1.

As shown in Figure 2.5(a), when the first cylinder is displaced by é¢,, the
forces Fy and F,, do work, but Fi, and the base pressure p; A, do not. Hence, the

virtual work 6W; is given by

h '1
oWia== [" (B eside+ [ (Fuhgbtrcostrde;  (226)

then, @;1 = 6W;,/64;.

Similarly, the virtual work associated with the forces acting on the second
cylinder, §W;,, due to a virtual displacement associated with the generalized
coordinate ¢,, may be evaluated with the aid of Figure 2.5(b). Thus, 6W;, is
given by

{2
0

Wi, = —f (Fn)z2 by by cos(¢z — ¢1) dE + ‘[:(pr)z h 8¢y cos grdE
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+ _/:(FL)Q 1168y sin(¢a — ¢1) d€ — ('S—Z)z Ay Iz 1 8¢y sin(d2 — 1), (2.27)

and so on for §W, x, k = 3,...,N —1, from which the ¢, «x may be determined. The

virtual work associated with the last cylinder, W) x, will have the additional terms
1pD* U Cy 1y 64, sin(dn — ¢1) + Fuc b 64, . (2.28)

The first of these two terms is associated with base drag at the free end, involving a
base drag coefficient C}, and the second term is associated with the nonconservative
hydrodynamic forces Fy,., as discussed in Section 2.3.1. The total generalized force
is simply given by v

Q=3 Q- (2.29)

=1
Proceeding in this manner and linearizing, the generalized force Q); associated

with the generalized coordinate ¢; is

Q; = —foh (Fn); € d€ +./°‘J (Fpy); € dE+ i {“f: (Fn)ilj d§+f (Fpy)i 1 d€

i=j+1
i
+_/0 (Fr)i ; (¢i — ¢;)dE — (Op/0z); Ai i l; (i ~ ¢j)}

+J2. PD2 U? Cy Ij(¢~ - ¢J) — Fye l_.,' ] (230)

where (Fiv); and (FL);, (Fpy)jy Fne are given by linearized versions of equations
(2.23), (2.20) and (2.13), respectively, for small ¢; (such that sin¢; =~ ¢,

cos ¢; =~ 1).

2.5 TRILINEAR AND CUBIC SPRING
DESCRIPTION

Following the onset of flutter instability, the amplitude of oscillation will grow,
resulting in impacting with the outer cylinder. The interaction with the outer

cylinder is approximately trilinear, as shown in Figure 2.6. For contact at the
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second articulation (lower end of the first cylinder)! and denoting the displacement
at that point by n = {,¢, and the contact stiffness by %, the force exerted by the

trilinear spring may be expressed as

F(n)=ke{n=L[In+ml—in—mll},

where 5, = l;¢, is defined in Figure 2.6. Recalling that in the equations of motion
we are dealing with moments and angles, rather than forces and displacements, the

moment associated with the trilinear spring is

M($1) = ke B {1 = 1161 + 85| — |61 — ]} - (2.31)

For analytical convenience, an alternative, cubic-spring approximation may be
utilized instead to model impacting with the outer cylinder. The force-displacement

relationship in this case is
Fe(n) = k.n*,

and the moment-displacement relationship is

Mc(¢l) = kc I? ¢:1’ . (232)

2.6 DERIVATION OF THE EQUATIONS
OF MOTION

Equations (2.3), (2.11), (2.6), (2.30), (2.31) or (2.32) depending of the nonlinearity

type, are substituted into Lagrange’s equations,
d {oT ar av

= =) -+ = =0, i=12,...,N, 2.33
di (aqs,-) og; tog; =W (233)

for a system of N articulated cylinders, yielding N equations of motion.

1This, in fact, was later confirmed to represent the ‘natural’ actual motion.
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We consider a “uniform” system, where all the cylinders have the same mass
per unit length (m; =m, j =1,...,N) and physical dimensions (4; = A, D; = D,
etc., j = 1,...,N), including length §; = I, 7 == 1,..., N — 1, except for the last
cylinder, which is Iy long (see next paragraph). Similarly, the stiffnesses of all
intercylinder springs are equal, k; =&, 7 =1,...,N.

The equations of motion may now be rendered non-dimensional with the aid

of the dimensionless parameters

B=pAl(pA+m), v=(m—pAWL’N/k, u=(pALN/k)'*U,
e=L/D, Iv=el, c=(4/m)CAM LN/K'?,  ¢;=(4/m)Cs, (2.34)

&= (4/m)Cs, h=DwD, 7=[(pA+m)* Nk,

ko= (kJR)EA,  xy = (/) L2N?,

where L = NI, and k is taken to be k = EI/l, EI being the flexural rigidity
of a fictitious, continuously-flexible system to which the present system would
converge as N — oo (Paidoussis and Deksnis 1970). In a study of convergence
of an articulated system of pipes conveying fluid (discrete N) to the equivalent
continuously flexible one (N = o0} as N is increased, it was found (Paidoussis and
Deksnis 1970) that optimum convergence is achieved with the length of the last
cylinder Iy = el, e = 1; this value is arbitrarily adopted here also.

We have also introduced in our equations the nonlinear moments associated,
respectively, with the cubic spring, M, = x.¢3, or with the trilinear spring,
M = & {él — g1 + ] — 11 — ¢g|]}, where . and &, have been already defined
in equations (2.34).

The nondimensional equations of motion have been obtained for a system of
N articulated cylinders, of course; however, the results to be discussed in this Thesis

are confined to N =2, N=3 and N =4.
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2.6.1 The equations of motion for N=2

The equations of motion for a two-degree-of-freedom articulated cylinder system

(N = 2) are the following:

l1+(x—1)ﬁl[(%+6)$1+%62$2]+%(3e+1)"f-‘-‘f\/l_3<i51+%uccx VB e
+l@e+Nee/Bdri+lec/Belda+x(1-NuNVBh +x(2-fH)uN VBed,
FLA+N2e+ NP Nees 1 —x v N2+ x(1 = flu’Nigy

+3 P N2 (61— ¢2) + § (26 + ) Ny b = N* (=2 ¢1 + 62) + Mc(M,) =0,

14+ (x - 1)8] [%€2$1+%83‘32] +luecy VBeldi+ivec; VBl
trecvBer it decVBerda—xuN VBefd+x(1-NuN VB ds
+H1+h e Neesel gy — x> Nlefda+INvel

+N* (62— 1) = . (2.35)

In these and the equations that follow, the dots denote differentiation with respect
to 7. (It is noted that the definition of & in the equations (2.35), (2.36) and (2.37)
is the inverse of what it is in some previous work (e.g., Paidoussis 1973); hence, the
terms 1 4+ h~! here, instead of 1 + h therein. The present definition is physically

more meaningful: a small & represents a narrow annulus).

2.6.2 The equations of motion for N=3

Similarly, the equations of motion for a three-degree-of-freedom articulated cylinder

system (N = 3) are the following:
L+(x-D[3+e) i+ +e)da+ ) da] + LBe+ ) uecs VA
+i2e+)uecy B+ luecse® B+ IBe+4)ecvB

+i@e+1)ecvBhrt+iecV/Beldatx(1-NuN VB +x(2-NuN VB
+x(2-fuNBeds+ 21 +r )2 +3)u® Necydy—~ xu? N ¢y
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+x (1= N g3+ 30" N2, (d1 ~d3) + 3(2e + ) Ny 61 + N4 (261 - ¢2)
+Mc(M!)=0:

N+ (x-DA[E+ebi+(+e)b+ el da] + 52+ uecs VB
+1@e+uecy VBda+uecs VBl st (2e+)ecVB oy
+i@Be+1l)ec/Bor+Llec/Bel da—xuNVBfh+x(1-fuN VB
+x(2~f)uNVBeds+31+a" )2+ 1)u? Neeydr— xu? N2 ¢

+x (1= N s+ 3 N2 oy (da—da) + 3(2e+ 1) Ny ¢y
—N4(¢1 — 262 + ¢3) = 0,

1+ (x~-DB) [l di+ 3+ 1eda| + Luecs VB dy+ Luecs VBel by
tiuecy VB da+iecVBeldi+iecVie bt fecVBelds
-xuNVBefd—xuNBefd+x(1-fluN /B ¢

+5(RTT+ D Necpe? ga—xu* N2e fda+ 1 Nvel ¢s

+N%(¢3 - ¢3) = 0. (2.36)

2.6.3 The equations of motion for N=4

Finally, the equations of motion for a four-degree-of-freedom articulated cylinder

system (N = 4) are the following:

1+ (x= 18 [G+e)dr+ (G +e)da+ (b +e) o+ he? ]
+3@e+Nueey VBoi+ L2 +3)uec; VBdh+ L2e+1)uecy VBéa
+ituec; VBda+ L(Be+TecVBhr+ L(2e+3)ecVi

+ 1@+ ecvidat++ LteteevVBdatx(1-fuN VB
+xX(2-)uN B+ x(2- fluNVBés+x(2- f)uN VBeds

+ 1+ k1) (2e+5)u? N ecy ¢y + xu2N? [=¢1 + (1 - f)da)
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+3 @ Ne (81— da) + 326 +5) Ny i + +N* (261 — ¢2) + M(M,) =0,

[1+(x - 1)8] [(%+e)$1+(§+e)$a+(%+e)$3+-‘fe’$4]
+i2e+ueey VB +i(Be+d)uecs/Bdr+ d(2e+ 1 uee; /B
+iuec; VB ¢y +1(2e+3)ecV/Bd + 33 +4)ec VB
+ie+ecVBdat jec VB di—xuNVBfdi+x(1-fluN VB
+xQ2-NuNBéds +x(2-f)uN /Bed,

+1 1+ 57 (2e+3)u’ Neegdo = x 2 N2 (b — (1 — f)g4]

+31¢ Ne(da = d1) + $(2e +3) Ny do + N (=g + 2 ¢2 — ) = 0,

[+ (= DB [(} + )1 + (3 +e)ba+ (3 + e)da + Je? &4

+i(2e+1) veey VB +1(2e+ Nuecy VBt §(3e+ Nueey VBés
+iuee \/582&4+%(26+1)€C\/5$1+:}(28+1)60\/5452
+i(Be+Vec/Bést+Lec/Be da—xuNVBfér—xuNVBfd

+X(1 = f)e N VBéa+x(2-fHuN VBeds+ i (L+h™1) 2+ 1)u? N ecs dy
~x W N+ x(1~ f)u N¥¢a+ Ju* N? e (¢s~ da) + 3 (26 + 1) N 1 ¢a
—N* (¢2 — 2¢a + b4} = 0,

14+(x- D8 [P+ b2 dat P dat @] + huees VB
+luccyVBetda+ fuecy VBl datluce; VBeSdittec Bt

t+tlec/Beldr+Lec /B dst+lec /Bl dy—xuN /Befd
—-xuNVBefdr—xuNVBefda+x(1-NuNVBe 4

+iA + 1) Necpe gy —xu? NPe fou+ S N ve

+N% (¢4 — ¢a) = 0. (2.37)
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Figure 2.1. (a) Diagram of the articulated cylindrical system in confining channel,
subjected to a mean annular flow of velocity U; (b) definition diagram for the
generalized coordinates ¢;, j = 1,...,N, showing the cylinder lengths ¢; and

interéonnecting springs of stiffnesses k;.
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Figure 2.2. (a) Calculation of angle ¢ = arctan(dh/dz) due to cylinder displacement

h(z,t) in the y direction; (b) calculation of the relative fluid~body velocity in the j;

. direction.



Figure 2.3. Pressure forces acting on an element éz of one of the rigid cylinders of

the articulated system.
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Figure 2.4. Calculation of the steady-state A(dp/dz) from the momentum equation.
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Figure 2.5. Diagrams for the calculation of the generalized forces for (a) the first

cylinder and (b) the second cylinder.
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Figure 2.6. Force-displacement curves for the realistic trilinear-spring model for
impacting of the articulated system on the confining channel, and the cubic-spring

idealization.



Chapter 3

THEORETICAL METHODS

3.1 STABILITY OF THE LINEARIZED
SYSTEM

Before proceeding to nonlinear analysis, it is necessary to first understand the linear
behaviour of the system.
Therefore, the dimensionless linearized equations of motion are rewritten in

matrix form, such that

[M1{¢} +[C){¢} + [K]{} = {0}, (3.1)

where [M] is the mass, [C] is the damping, and [K] the stiffness matrix; {¢} is the
vector of the generalized coordinates.

Let the following square partitioned matrices be defined as

5] = [ o) [M] ] . [ - o) 62)
[M] [C] [0] (K]
each matrix being of order 2N, and the vector {z} as
{z} ={ 2 } . (3.3)
{4}
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It may now be verified that the linearized equations of motion (3.1) may be written

in the form
[B]{z} + [E]{z} = {0}. (3.4)

Pre-multiplying the equation (3.4) by [B]~! and defining {B]™' [E] = —[Y], where

- [MI7 Cl(M] (M)

(B = , (3.5)
(M) (0]
equation (3.4) becomes
{2} = Y]{z} = {0}. (3.6)
Solutions of equation (3.6) are then sought of the form
{z} = {¢} exp(iwr), (3.7)

and by replacing these solutions into the previous equation we obtain

(A - [YD{g;} = {0}, (3.8)

in which A = iw; non-trivial solutions are obtained when det (X [/]—[Y]) = 0, which
gives 2N eigenvalues of the matrix [Y], A;.

The eigenvalues A; of the system, which are generally complex, permit the
assessment of (linear) stability for each set of system parameters. For a stable
system, the A; are either real and negative or complex conjugate with negative real
parts. The corresponding eigenvectors are {§,}.

Critical values of a parameter, in our case the flow velocity u, are needed in
order to determine where the eigenvalues of the linearized system contain a purely
imaginary pair (Hopf bifurcation) or a single zero value (pitchfork bifurcation).

In the following sections, the Argand diagrams are presented for the real and
imaginary parts of the eigenvalues of the system, Re(};) and Im();), as functions
of the flow velocity u, for the corresponding modes of the articulated system

(N = 2,3,4). The Argand diagrams will show the behaviour of the system from
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the point of view of linear stability about the original (straight) configuration of the

system.

3.2 ROUTES TO CHAOS

Chaotic phenomena may be found in a wide class of natural events in the physical
world. Chaos can be thought of as a new regime of nonlinear oscillations, as a
compromise between competing periodicities, as accumulation of many instabilities,
or (in fluid mechanics) as the prelude to turbulence.

Some “routes” or “scenarios” towards chaos have been proposed which are,
in fact, series of a limited number of bifurcations. They are classified mainly into
three routes, according to the way in which the periodic regime loses its stability: (i)
the Period-doubling route, (ii) the Quasi-periodic route and (iii) the Intermittency
route,

In analyzing one of these three routes to chaos, one should vary one or more of
the control parameters in the system. In our dynamical system case, we shall choose
the dimensionless flow velocity u as the control parameter. Short descriptions of

these routes to chaos are given in the following subsections.

3.2.1 Period—doubling route to chaos

In the period-doubling phenomenon, one starts with a system which has a
fundamentally periodic motion. Then, as the control parameter u is varied, the
motion undergoes a bifurcation, or change in its periodic motion to twice the period
of the original oscillation. As u is changed further, the system bifurcates to periodic
motions with twice the period T or half the frequency f of the previous oscillation,

and this will entail:

o multiplication by two of the number of points of a Poincaré map
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e the appeararce in the Fourier spectrum of the frequency f/2 and its odd
subharmonics 3f/2, 5f/2, 7f/2, and so on.

The study of period-doubling bifurcations has revealed a new universal
constant, the “ideal” Feigenbaum number, Fei = 4.6692016, defined as the ratio
of successive differences in values of the control parameter between period-doubling
bifurcations. In our case, if u, is the control parameter at which the pth bifurcation
occurs, then we may define its corresponding Feigenbaum number Fei, as follows:

R . Uy, — Uy
Fei, = lim b s 1o N
P=% Upp1 — Up

(3.9)
In practice, as well as for the articulated system considered in this Thesis, the limit
approaches Fei by the third or fourth bifurcation, i.e., when p =3 or 4.

This period-doubling bifurcation process will start at a critical value of the
control parameter (identified in equation (3.9} as u,_,), after which the motion
becomes chaotic, and remains so for a range of the control parameter; however,
it may happen that, as the control parameter is increased, periodic windows may

develop which, in turn, may undergo period-doubling bifurcations leading once more

to chaotic motions.

3.2.2 Quasiperiodic route to chaos

Before explaining this route to chaos, we shall define the difference between a
periodic and a quasiperiodic motion, by taking our two-degree—of-freedom system
as an example. The state of the system may be characterized by the angular
displacements ¢; and ¢, and by their corresponding velocities, qfu and 45'2. If
the system has two frequencies f; and f;, its displacements may be written as
¢y = sin fit and ¢, = sin fot, with | ¢, |= f, and | ¢; |= fz. The ratio fi/f; will
represent the number of rotations in the ¢; direction per rotation in the ¢; direction.

If f1/f2 = n1/ng is rational, the motion of the system is periodic with period

n, and completes n; cycles per period.
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If fi/fs is irrational, the two frequencies are incommensurate, and the
motion is quasiperiodic-two (Bergé et al. 1984). Finally, a system containing r
incommensurate frequencies, is said to be quasiperiodic-r.

The route to chaos associated with quasiperiodicity has been proposed by
Newhouse et al. (1978). Suppose that when the control parameter is increased,
the system loses its stability (fixed point) and begins to oscillate with frequency fi
which corresponds to the first Hopf bifurcation. Now suppose that the same process
is repeated two more times, so that a total of three successive Hopf bifurcations
have occurred, producing three frequencies fi, f2 and fs.

This can be explained as follows: The second Hopf bifurcation transforms
the periodic regime (frequency f,) into a quasiperiodic-two regime (frequencies
fi and f3). Furthermore, the third Hopf bifurcation causes the transition from
the quasiperiodic regime with two frequencies to a quasiperiodic one with three
frequencies (f;, f2 and f3).

As the control parameter is changed further, the time-dependent behaviour of
the system is no longer quasiperiodic with three frequencies, and it becomes chaotic.
Thus, the precursor to such chaotic motion is the presence of two simultaneous
periodic oscillations of incommensurate frequencies f; and f,. The winding number
(rotation number) has been defined as a measure of the quasiperiodic motion, and

represents in fact the ratio between f, and f3, fi/fa.

3.2.3 Intermittence route to chaos

In this last route to chaos, one observes long periods of periodic motion with bursts
of chaos. As one varies a parameter, the chaotic bursts become more frequent and
longer (Manneville and Pomeau 1980). Some models for intermittency predict that

the average time of the regular or “laminar” phase of the motion < 7 > will scale
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in a precise way as some parameter is varied; for example, < 7 > (u — ug )2,
where u,., is always the critical flow velocity.

Furthermore, the theory of intermittent transitions may be divided into two
parts [as explained by Bergé, Pomeau and Vidal {(1984)]. The first part, associated
with Floquet theory, deals with the linear instability of a limit cycle, explaining the
“spontaneous” growth of fluctuations, starting from a regime close to the periodic
regime. Classification of intermittency into types I, II and III is based on the three
types of linear instabilities of periodic trajectories: crossing of the unit circle by
the Floquet multiplier at +1 (type I), -1 (type III), or at two complex conjugate
eigenvalues (type II).

The second is the process of “relaminarization” via which the intermittent
fluctuation ceases, to be replaced by another phase of regular oscillations (laminar
phase). The idea of laminar phase makes sense only if, while it lasts, we may observe
a large number of these oscillations. If these laminar phases are represented through
“regular” limit cycles, then the intermittency is of type I, as already observed
in the Lorenz model. The shapes and the slopes for the first return map iy
versus [ (in type I intermittency), or for the second return map I;42 versus I; (in
type III intermittency), where I; is the kth maximum value for the velocity or the
displacement of one articulated cylinder in time (for our system) are studied, and
then the type of intermittency which occurs in the system may be easily identified.
Furthermore, by drawing the distribution of the lengths of laminar phases P(7) in
time T, as well as the number of laminar phases N(r > 7¢) lasting longer than o

versus 7o, one may distinguish between type I and type 111 intermittency.
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3.3 NONLINEAR BEHAVIOUR OF THE
SYSTEM

3.3.1 Bifurcation and Phase-Plane diagrams

In this system, the number of degrees of freedom has been defined as the number of
pairs of displacement-velocity which, more physically speaking, is in fact equal to
the number of articulated cylinders in the system.

Whenever the solution to an equation or system of equations changes
qualitatively at a given value - called a critical value - of a parameter, this will
be called a bifurcation. The point in parameter space where such an event occurs
is defined as a bifurcation point. From this bifurcation point emerge several (two
or more) solution branches, either stable or unstable. The representation of any
characteristic property of the solutions as a function of the bifurcation parameter
constitutes a bifurcation diagram.

In this Thesis, graphing a typical property of the solution, e.g. the maximum
displacement ¢nqz, as a function of the flow velocity u, we construct the bifurcation
diagram for flow velocities u higher than u.; u. being the critical flow velocity for
which the system becomes unstable, either by flutter or by divergence, which in
nonlinear analysis correspond to a Hopf and a pitchfork bifurcation, respectively. In
the results to be shown, ¢, corresponds to the maximum value of first cylinder
angular displacement ¢,(t), which is ¢imaz(2), so that the bifurcation diagram
represents ¢ymaz(t) versus u.

To clarify the meaning of the dynamics depicted in a bifurcation diagram,
phase-plane portraits are also presented. The phase-plane portraits present in a
compact way the evolution of the system with time, for example showing the velocity

of the first cylinder é, versus its displacement ¢.
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Ir the end, it can be specified that if the system undergoes pericd-one motion,
w'hich is equivalent to a limit cycle, this motion may be represented on a bifurcation
diagram by one point; if the system undergoes period-two, —four, —eight motion,
these motions are represented in the bifurcation diagram by, respectively, two, four
and eight points. Quasiperiodic and chaotic motions are represented by many points,
and this is why it is very hard to distinguish between these two motions in bifurcation
diagrams. In order to really differentiate these motions, we shall need more nonlinear

dynamics tools, which will be described in the following sections.

3.3.2 Time traces and power spectra

The results obtained could be verified by plotting time traces, for example,
the displacement of the first cylinder, i.e., ¢yma. versus time 7, and computing
their corresponding power spectra. These are very important for characterizing
quasiperiodic motion and the intermittence route to chaos. Usually, the power
spectrum gives the r.m.s. value of each frequency component, and the ordinate
scale is logarithmic.

The emergence in the power spectrum of the subharmonics f,/2, fi/4, f1/8,
£1/16, f1/32 (and their odd subharmonics) is the signature of the period-doubling
route to chaos. From these results we can evaluate the convergence ratio of the
successive bifurcations which should be close to the Feigenbaum number predicted
by theory.

One identifies a quasiperiodic~two motion by looking, generally, for the value
of the ratio of the two fundamental frequencies, f; and f,, that is, fi/ fa.

If f1/f, is irrational, then the frequencies of the high-amplitude peaks will be
simple combinations |m; fi & m, fa|, with m; and m; small integers: 0, £1, £2,...,

and the motion will be quasiperiodic-two of two incommensurate frequencies f; and

fa.
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If fi/f: is rational, with fi/fa = n;/n; (n; and n, integers), the
“quasiperiodic” motion is in fact periodic with period T' = n,T) = n,T5, and
the frequencies of the high-amplitude peaks are harmonics of the lowest frequency
f=fi=fa: f=1T = fi/ny = f2/ns. Then, consecutive peaks in the spectrum are
always separated by the same distance of 1/T and one says that there is frequency
locking of f; with fa. In the Section 3.3.3, we shall see the differences in Poincaré
maps, depending of the value of f1/ fa.

The time traces are also one of the most useful tools for recognizing the
intermittence route to chaos, for which the system changes its behaviour in time
from periodic or laminar phases to chaotic and back again.

Finally, one cannot distinguish between chaotic and random motion by looking
at power spectra. This limits the applicability of power spectra in this respect, and

leads us to choose other methods, notably Poincaré maps.

3.3.3 Poincaré maps

In an N-state-variable problem, one can obtain a Poincaré map by measuring the
N — 1 variables when the Nth variable reaches some particular value or when the
phase space trajectory crosses some arbitrary plane in phase space.

In the case of a two-degree—of-freedem articulated cylinders system, we shall
have four variables: the angular displacements of the first and second cylinders,
¢1 and ¢,, and the angular velocities of the first and secongl cylinders, q'51 and clﬁg.
Then, when one of these four variables, ¢,, for example, reaches zero (¢; = 9), we
plot ¢, versus @3, which presents the Poincaré map for our two-degree—of-freedom
system. In the same way, we shall define the Poincaré map for a three-degree-
of-freedom system, i.e., for ¢, = 0 we shall obtain two Poincaré maps, qﬁg versus
¢2 and ¢'»3 versus @3, which should have the same geometrical form; similarly for a

four-degree-of-freedom system.
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The Poincaré map is very useful in differentiating the various types of motion
for the articulated system. Thus, when the system is periodic (period—one), the
phase-plane portrait is a limit cycle and the Poincaré map, which is a section
through the limit cycle, is a single point. If the system undergoes a period-two,
—four and -eight motion (period-doubling route to chaos), then the Poincaré map
is represented through, respectively, two, four and eight points.

It has already been mentioned that the quasiperiodic motion of a dynamical
system takes place in the presence of two simultaneous periodic oscillations of
frequencies f, and f;, which are incommensurate, and for which the Winding number
(= f1/ f2) has been calculated. The exact form of the Poincaré map depends on the
ratio fi/fo. If fi/f2 is irrational, the Poincaré map is a closed continuous curve. If
f1/ f2 is rational, the Poincaré map is composed of a finite set of points distributed
along a curve, which is no longer continuous. In this case, a frequency locking
between f; and f; is found to exist, so that the ratio f;/f; is equal to that of two
integers n; and n,. After having accomplished n; “circuits” and ny “rotations™ per
circuit, the trajectory closes upon itseif, and (as remarked previously) we have in
fact a periodic solution of period T' = (n,/ f1) = (n2/ f2), and the Poincaré map will
contain only n; points. This is a useful method in distinguishing the various types
of quasiperiodic motions and chaotic ones.

Finally, when the dynamics of the system is chaotic, the Poincaré map becomes
more complex, but nevertheless should retain some definite structure, in contrast to

that for a random process.

3.3.4 Lyapunov exponents

There are many tools ir nonlinear dynamics utilized in order to recognize if a system
is chaotic or not, and one of them, a quantitative one, is the Lyapunov exponents,

named after the Russian mathematician Lyapunov (1857-1918).
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Chaotic motion in a dynamical system implies a sensitive dependence on initial
ronditions. This means that if two trajectories start close to each other in phase
space, they will move exponentially away from each other for small times on the
average. Thus, if dy is a measure of the initial distance between the two starting

points, a brief time later the distance is
d(t) = dy2°?, (3.10)

o being the Lyapunov exponent. The choice of base 2 in equation (3.10) is convenient
but arbitrary. Good reviews of Lyapunov exponents and their use in experiments
to characterize chaotic motion are given by Benettin et al. (1980) and by Wolf et
al. (1985). The review by Wolf et al. contains also two computer programs for
calculating Lyapunov exponents.

The divergence of chaotic orbits can only be locally ext - ~ential, since if the
system is bounded, as most physical experiments are, d(t) cannot go to infinity.
Thus, to define a measure of this divergence of orbits, we must average the
exponential growth at many points along the trajectory, as shown in Figure 3.1.

One begins with a reference trajectory and a point on a nearby trajectory
and measures d(t)/dy. When d(t) becomes too large (i.e., the growth departs from
exponential behaviour), one looks for a new “nearby” irajectory and defines a new

dy. One can define the first Lyapunov exponent by

Al _d(te)
iN -1 Z{ &2 do(ti1)’ (3.11)

Then, ¢ will be negative for stable systems w'th fixed points, zero for periodic or

quasiperiodic motions, and positive for chaotic motion.
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3.3.5 First and second return maps

Let I; be the value of the kth maximum displacement of the first cylinder of the
articulated system. The first return map would be the graph of Iy, = f(I;), while
the second return map would be of the form Ix,; = f(Ii), for a sequence of values
of k (Bergé =t al. 1984). .

The theory for type IIl intermittency predicts the following form for the second
return map function: Itya = (142p); +alf 4513, where a and b are constants with
a << b, near the intermittency threshold. An inflection point in the neighbourhood
of the fixed point of f(Ii) is found to exist. This corresponds to the vanishing of the
quadratic term in the Taylor series of f(Jx). By expanding the time scale in case of
graph I, versus time 7, the growth of the subharmonic (increasing displacements)
and the correlated decay of the fundamental (decreasing displacements) might be
observed.

Furthermore, one may differentiate between the two types of intermittency,
type I and type III, by analyzing the flirst return map Ii4r = f(Ii). Classification of
intermittency into types I and III is based on the crossing of the unit ciicle by the
Floquet multiplier at +1 (type I}, and at -1 (type IIf). This corresponds to the value
of the slope of I; ;1 = f{Ii) with the first diagonal, as follows: (i) when the slope of
It4+1 is equal to 1, and the graph Iz = f(Ii) is tangent to the first diagonal, the
intermittency is of type I; (ii) if the slope of Iy, is equal to -1, the intermittency

is of type Il

3.3.6 Number of laminar phases

Another interesting nonlinear dynamics tool used in the study of the intermittency
is the statistical distribution of the duration = of the laminar phases, that is P(r, u),
where u is the difference between u and u,. In a sample of N laminar phases, one

expects N [g P(r, p)dr phases which last less than 7.
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The average duration of a laminar phase is [§° P(7,p)dr ~ u~'/2. In type |
intermittency, for u fixed, the duration of laminar phases is bounded from above
by a quantity of order u='/2, and the closer we get to the threshold, the less the
duration fluctuates. The exact form of P(r,u) depends upon the details of the
problem, as the fluctuations of 7 reflect the fluctuations of the process of reinjection
into the laminar channel. The distribution of laminar phase duration P(r, ) versus
 follows completely differert laws for type I and for type III intermittency.

In the case of type III intermittency, the distribution law has a maximum
for short times and decreases exponentially at large times, while in type I
intermittency this distribution follows a different law: it depends on the details
of the relaminarization process. The upper bound of order p=1/2 close to u =0, is
specific to type I intermittency, and corresponds to the maximum time for traversal
of the channel.

In type III intermittency, if P(7)dr is the fraction of laminar phases which last

between 7 and 7 4 dr (dr small), then

(=2p71)
P(r) ~ 7 __e:fp - fmns = (3.12)

For 7 >> u~! we have P(r) ~ ™7, while for 1 << 7 << u~!, we obtain
P(r) o (4pr)3/3,
By counting the number of laminar phases N(r > 7o) lasting longer than 7,

one may obtain, for type IIl intermittency

e expl—2uT 12
N> )= [ Plr)ir [1 _":x(p(“_’;;_)ro) . (3.13)
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Chapter 4

NUMERICAL RESULTS FOR
THE FIRST MODEL WITH
N =2

The dynamical behaviour of the system of two articulated cylinders (N = 2) is
investigated for the following numerical values of dimensionless parameters given in
Chapter 2 by equations (2.34):
e=10, e=05 f=08 pf=04, =10, e€c;=025 ¢ =0.1.

Solutions of the equations of motion were obtained by using a fourth-order
Runge-Kutta integration algorithm, with the time step é7 of 0.01. If this time step
is changed to §7 = 0.001, we have obtained the same results to the fourth significant
figure. As the external flow velocity u increases (for u higher than the corresponding
u for Hopf bifurcation), the convergence of the solutions is faster: we need fewer
time steps for higher flow velocities than for lower flow velocities for the solution
to converge. Details regarding the convergence of the solutions, with corresponding
numerical examples, are given in Appendix D.

In the calculations of the bifurcation diagrams and phase-plane portraits, 100

time steps were used, while in the case of Poincaré maps and power spectra, between
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10,000 and 30,000 time steps were used.

Furthermore, for the purpose of checking the convergence of the solution, the
Runge-Kutta-Fehiberg algorithm was also used, but the same results were obtained.
We chose four cases by varying two parameters, h and f, h representing a
measure of the annular gap between the articulated cylinder system and the external

channel, and f the nondimensional parameter of the free—end shape. These cases

are the following;

Casel: h =0.5,
Case2: h=0.2,
Case 3: h=10.5,
Cased : h=0.2,

4.1 CASE 1:

or Ky = 80

c=0.38(C=40.30), f=08, &.=25x10%
c=079(C=062), =08, &.=5x10%
c=038(C=030), f=0, &.=5x 105

c=079(C=062), f=04, x.=5x10%

h=0.5,f=0.8, k=5 x 103

(i) Stability analysis of the linearized system

In concordance with Chapter 3.1, an eigenvalue analysis of the linearized equations
(2.35) without considering the impacting of the articulated system with the outer
channel (M, or M. = 0) is first carried out. Figure 4.1 shows, in the form of Argand
diagrams, the real and imaginary parts of the eigenvalues of the system, Re(A) and

Im(), for (a) the first and (b) the second mode of the system, as functions of the

flow velocity wu.
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As the flow velocity is increased in Figure 4.1(a), both the real and imaginary
components of the first-mode eigenvalue approach zero; this corresponds to a
divergence instability (pitchfork bifurcation), which occurs at u = 1.695. As u
is increased further, the real part of the eigenvalues again becomes negative, so that
the system is restabilized, at u = 2.53. Furthermore, at 4 = 2.74, in the second mode
(Figure 4.1(b)), purely imaginary eigenvalues arise, which corresponds to a flutter
instability (Hopf bifurcation). As u is increased beyond 2.74, the real part becomes
positive and this corresponds to a linearly unstable system (amplified oscillations).
(ii) Bifurcation and Phase Plane diagrams
Figure 4.2 shows the bifurcation diagram with the trilinear spring representation
(x; = 80) for the system, and Figure 4.3 the bifurcation diagram with the cubic-
spring representation (k. = 5 x 10%) for the same case. The range of u shown
covers the behaviour beyond the Hopf bifurcation. It is seen that, qualitatively, the
dynamical behaviour in the two cases is similar, and attention will henceforth be
diverted to the more idealized system involving the cubic spring. The reason for this
is that direct comparison with analytical work to be presented in Chapter 5 then
becomes possible, because M, (the cubic spring representation) is an analytical
function whereas M, (for the trilinear spring) is not. Thus, concentrating on the
cubic spring representation with x. = 5 x 10, Figures 4.3 and 4.4 show bifurcation
diagrams and phase-plane portraits for the first cylinder in the system, for flow
velocities above the critical flow velocity (for the occurrence of the Hopf bifurcation
(u > 2.74)).

The route to chaos for the bifurcation diagram of Figure 4.3 is clarified via the
phase-plane portraits of Figure 4.4. For u ~ 2.74, there exists a stable, symmetric
limit cycle that develops after the Hopf bifurcation (not shown). The symmetry of
the limit cycle is lost by a symmetry-breaking pitchfork bifurcation at u = 2.795,
the first bifurcation shown in Figure 4.3, where the two branches are obtained

with different-sign initial conditions, At higher u, a cascade of period—doubling
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bifurcations occurs, and Figure 4.4(a,b) shows period~2 and period—-4 motions.
Figure 4.4(c) shows chaotic motion for u = 2.8295, corresponding to the first dense
cloud of points in the bifurcation diagram. Figure 4.4(d) shows a periodic (akin to
period-5) motion for u = 2.831, corresponding to the sparse patch (periodic window)
in the bifurcation diagram. At higher u, the motion becomes strongly chaotic again.
The period-doubling bifurcations have been pin-pointed to occur at u,_, =
2.8195 (period-2 motion), u, = 2.8234 (period-4 motion), u,4 = 2.8243 (period-8
motion) etc., where the interval in u between bifurcations becomes progressively
smaller. From these values, the Feigenbaum number, Fei, = (up41 — up)/(upsa —
%p41), may be computed, giving Feip = 4.33, which is reasonably close to the “ideal”
Fei = 4.6692 (Moon 1987).
(ili) Power Spectra and Time Traces
This case, involving a cascade of period-doubling bifurcations, is quite similar to that
studied by Paidoussis and Moon (1988) and Paidoussis et al. (1991), for a similar
problem. As it is the first case of period-doubling bifurcations route to chaos in this
Thesis, the frequencies and periods for different flow velocities u are calculated from
time traces and simultaneously from power spectra, and the results are presented
as follows. For u = 2.80 (period-one motion), the nondimensional period from
the time traces is calculated to be T = 0.68, while its dominant frequency, i.e.,
f = 1.47 = 1/0.68 with its related subharmonics 2f, 3f, 4f are found from the
power spectra. Furthermore, for u = 2.82 (period-2 motion) and u = 2.824 (period-
4 motion), it is found that the dominant frequency for u = 2.82 (f = 0.735) is half
the frequency for u = 2.80, while the one for u = 2.824 (f = 0.367) is half the
frequency calculated for u = 2.82. Their corresponding subharmonics are 2f, 3f,
4f, 5f and so on. These results are summarized as f,_3s (period-1 motion) =
2fu=252 (period-2 motion) = 4f,=2824 (period-4 motion), so that they verify the

period-doubling nature of the motion.
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The chaotic character of the motion at u = 2.8295 is self-evident in Figure
4.5(a), in both the time trace and the PSD. The motion depicted in Figure 4.5(b)
for u = 2.831 is periodic, with the dominant dimensionless frequency of f = 2.245,
modulated mainly by its fifth subharmonic of f = 0.449; this gives rise to the period—
5-like phase portrait of Figure 4.4(d). The second peak in the PSD corresponds to
f = 2 % 2.245 and, indeed, Figure 4.4(d) could be considered as a “modified” form
of period-3 motion also!

(iv) Poincaré Maps and Lyapunov Exponents

Figure 4.6, for u = 2.84, shows a typical Poincaré map in the chaotic regime. A
very definite structure is seen to exist, the map showing some similarity (in this
cross-sectional form) to a Mobius strip (cf. Paidoussis et al. 1992).

The largest Lyapunov exponents shown in Figure 4.7 display basically similar
behaviour: beyond a certain threshold (conform Figure 4.3), the motion is chaotic
and remains so (¢ > 0), apart from one region of periodic (Figure 4.7) motion
(o = 0), and for which the flow velocity u = 2.831 (periodicity seen also in Figure
4.4(d)).

4.2 CASE 2: h=0.2,f = 0.8 and k. =5 x 10®

This case corresponds to a narrower annulus than Case 1.

(i) Stability analysis of the linearized system

For the lower value of k& (Figure 4.8(a)), the real and imaginary parts of the first-
mode eigenvalue vanish for u = 1.16; this value of u corresponds to the pitchfork
bifurcation. The system is restabilized between u = 1.71 and u = 1.95. Then,
flutter (Hopf bifurcation) occurs at u = 1.95 in the first mode. In the second mode
(Figure 4.8(b)), the real part of the eigenvalues is always negative; so, from the

linear stability point of view, only the first—-mode behaviour is of interest.
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From the results presented here, it can be seen that for the larger gap
(h = 0.5) larger critical flow velocities are obtained than for the smaller gap
(h =0.2): u = 1.695 and 2.74 versus u = 1.16 and 1.95. This can be further
verified by studying the behaviour of a system in unconfined flow; in that case,
much higher critical flow velocities than those for confined flow are obtained.

(ii) Bifurcation and Phase—Plane Diagrams

For the narrower annulus (A = 0.2), the dynamical behaviour is broadly similar, but
quite different in detail, as seen in the bifurcation diagram (Figure 4.9) and phase-
plane plots (Figure 4.10). The symmetry-breaking pitchfork bifurcation occurs at
u =~ 2.023 (Figure 4.9). This is followed by a “period-bubbling” event, where
a period-doubling bifurcation occurs but is then reversed to period-1 motion, in
the interval 2.0392 < u <« 2.0498; period-2 and period-1 phase-plane portraits
shown in Figure 4.10(a,b) for u = 2.045 and 2.050, respectively. At u = 2.05225
(Figure 4.9) the motion becomes quasiperiodic-2, but, if the calculation is carried
out for sufficient nondimensional time steps (> 100), it develops into chaotic motion.
This occurs in the neighbourhood of u = 2.052; for larger u the transition to chaos
is much faster.

Although all period-bubbling bifurcations necessary for the Feigenbaum
number calculation are not obtained (i.e. period-8; period-4; period-2), for the
inverse cascade a number is calculated by the Feigenbaum theory, Fei;, by taking
u; = 2.0392 corresponding to the first period-2 motion; at u; = 2.0498 a period-1
occurs, followed by a quasiperiodic motion for uz = 2.0518 (cf. Figure 4.12 to be
discussed under (iv)), which is very close to a chaotic motion. Then, Fei; = 5.3,
which by definition is not the classical Feigenbaum number, is “reasonably close”
to the ideal Feigenbaum number Fei, and this value verifies the definition of inverse
cascade.

A typical chaotic phase portrait is shown in Figure 4.10(c) for © = 2.0535.

The system will be shown to follow the quasiperiodic route to chaos (see Section
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(iii)). Chaos persists to u = 2.058, with a quasiperiodic window at u = 2.0568
(Figure 4.10(d)), which locks like period-3 motion.
(iii) Power Spectra and Time Traces
Figure 4.11 depicts quasipertodic-2 motion, for © = 2.0568, where the power
spectrum was obtained from a 100 time-step trace. The two fundamental frequencies
are f; = 0.377 5748 and f; = 1.150 704,! and all other peaks in the PSD may
be confirmed to correspond to f = n f; £ m f, with n and m integers. For
example, the third peak in the FFT is 2f, — f;, while the fourth is 2f, + f;. Thus,
despite Figure 4.10(d) looking like period-3 motion, it represents more complex
behaviour. The ratio f/ fz, usually referred to as the winding (or rotation) number,
is W = 0.328 125 = 21/64, a rational number, as found by the continued fraction
method by using Mathematica software. (Of course, whether f;/f; is truly rational
and equal to 21/64, and hence the Poincaré map would have a finite number of
points, depends on the accuracy of determination of f; and f as given above.)
(iv) Poincaré Maps and Lyapunov Exponents
Figure 4.12, for u = 2.052523, close to the onset of chaos, corresponds to
quasiperiodic-2 motion that eventually becomes chaotic. In this figure, we see
the closed curves characteristic of quasiperiodic motion, but with the beginnings
of chaotic perturbations off the curves clearly visible. It is this figure that gives
definite proof that chaos is obtained via the quasiperiodic route.

The largest Lyapunov exponents shown in Figure 4.13 display basically similar
behaviour: beyond a certain threshold (cf. Figure 4.9), the motion is chaotic and
remains so (¢ > 0), apart from one region of quasiperiodic (Figure 4.12) motion

(e =0).

Even if these frequencies are correct to a smaller number of significant figures than the one
given here, this will not change the general conclusion regarding the quasiperiodic nature of the

motion.
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4.3 CASE 3: h=05,f=0and k. =5 x 10°

Physically, the system is similar to that of Case 1, but the free end is blunt in this

case,

(i) Stability analysis of the linearized system

As the flow velocity u is increased in Figure 4.14(a), the first~mode eigenvalues
become purely imaginary for u. = 4.47, which corresponds to a flutter instability
(Hopf bifurcation). As u is increased beyond 4.47, the real part becomes positive
and the system becomes unstable. In the second mode (Figure 4.14(b)), the real
part of the eigenvalues is always negative; so, from the linear stability point of view,
only the first-mode behaviour is of interest.

(i1) Bifurcation and Phase Plane diagrams

Figures 4.15 and 4.16-4.18 show bifurcation diagrams and phase-plane portraits for
the first cylinder in the system, for flow velocities above the critical flow velocity for
which a Hopf bifurcation occurs (., = 4.47). The route to chaos for the bifurcation
diagram of Figure 4.15 is clarified via the phase-plane portraits of Figures 4.16-
4.18. For u = 5 (Figure 4.16(a)) there exists a period-one motion that develops
after the Hopf bifurcation; its fundamental frequency is f; = 1.08, and it has odd
subharmonics (as ascertained from power spectra). For 7 < u < 8.2 approximately,
a period—-two motion with two frequencies (with ratio 1/3) develops, which is shown
in Figure 4.16(b), and it looks as if it was developing around two symmetrical
points with respect to the origin. This motion is called period-2, because its period
T, = 1.85 is twice the previous period (for u = 5), or, more cxactly, its fundamental
frequency f; = 0.54 is half the previous fundamental frequency (f2 = f1/2). ‘In the
power spectra, one may observe odd subharmonics of the fundamental frequency.
For u = 8.4 and u = 8.6, in Figure 4.16(c,d), and in accordance with the bifurcation
diagram, a period—3 motion (of frequency f3 = f;/3) followed by a period--4 motion
(fs = f1/4) may be observed around the two symmetrical points already mentioned.
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The previous motions for {b) u = 7.25, (c) u = 8.4 and (d) u = 8.6 may be considered
to be periodic with two dominant frequencies, the ratio of which is rational and equal
to 1/3. As the periods are two, three or four times higher than the previous period-
one motion, they might also be considered period-two, period—three and period-four
motions.

Small-scale chaotic motion in Figure 4.17(a,b) is observed for (a) u = 9.075
and (b) u = 9.085. Figure 4.17(b) shows the chaotic motion of the system around
one of the two symmetrical points, and Figure 4.18(c) gives the chaotic motion
of the system around the other point for the same flow velocity u = 9.085, but
which is obtained with opposite-sign initial condition, ¢ = —0.1. For higher flow
velocities, a period-bubbling event takes place, for which a period-four motion may
be observed for u = 9.09 (not shown here, but for which f; = 0.39); a period-two
motion is presented in Figure 4.17(c), for u = 9.1 (f2 = 0.78), which is followed by
an inversion, back to period-1, as seen in Figure 4.17(d) for u = 9.25 (f3 = 1.56),
and the motion reduces further to a fixed point, as illustrated in Figure 4.17(e) for
u = 9.30. In the period-bubbling case, all the subharmonics of the predominant
frequencies f;, f2 or f; are multiples of n, so that they are of the form nf;, nf; or
nfs, with n as positive integer or natural number.

In the end, this case has a very rich dynamical behaviour. Chaos arises through
period-n motions with n = 1 to n = 4; then a period-bubbling phenomenon takes
place, from period-four, to period-two and back to period-one motion, and then,
the motion finally reduces to a fixed point.

(iii) Power Spectra, Time Traces and Poincaré maps

The power spectra and time traces were obtained for this case, for two flow velocities,
for which we thought that we had chaotic behaviour of this system: (a) u = 9.075
and (b) u = 9.085. We can observe in Figure 4.19(a,b) that the time traces and the

power spectra are indeed characteristic of chaotic motion.
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In addition, Figure 4.19(a), showing the displacement of the first cylinder as
a function of time for u = 9.075, looks “strange” because of its sudden reduction
at 7 ~ 108.5. This may be explained easily by the shape of phase-plane plots of
Figure 4.17(a) or 4.18(a}.

For the same flow velocities (u = 9.075 and 9.085), we have constructed
Poincaré maps (Figure 4.20(a,b)) which, although uninteresting in shape, are

characteristic of chaotic motion.

4.4 CASE 4: h = 0.2, f = 0.4 and . =5 x 10°

This system is similar to Case 2, but with an intermediately blunt free end—blunter
than for Case 2, but not as blunt as Case 3.

(i) Stability analysis of the linearized system

As u is increased in Figure 4.21(a), the first mode eigenvalues become purely
imaginary for u = 2.38, which corresponds to a flutter instability ( Hopf bifurcation).
Then, as u is increased beyond 2.38, the real part becomes positive and the system
becomes unstable.

In the second mode, (Figure 4.21(b}), the real part of the eigenvalues is always
negative; so, from the linear stability point of view, only the first mode behaviour
is of interest (the same as for Case 3).
(ii) Bifurcation and Phase Plane diagrams
Figures 4.22 and 4.23 show the bifurcation diagram and the phase—plane plots for the
first cylinder in this system, for flow velocities u higher than the critical flow velocity
for which a Hopf bifurcation occurs (u. = 2.38). The route to chaos associated with
the bifurcation diagram of Figure 4.22 is clarified via the phase-plane portraits of
Figure 4.23.

There exists a symmetric stable limit cycle which develops after the Hopf

bifurcation which occurred for u., = 2.38 (not shown). Then, the symmetry of the
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limit cycle is lost by a symmetry-breaking pitchfork bifurcation at u ~ 2.75, the first
bifurcation shown in Figure 4.22, where the two branches are obtained with different
sign initial conditions. At flow velocities u higher than 2.75, a cascade of period—
doubling bifurcations occurs; Figure 2.23(b,c) shows period-two and period-four
motions for (b) u = 2.965 and (¢} u = 2.972. Figure 4.23(d) shows chaotic motion
for u = 2.975. The Feigenbaum number is calculated for the period-doubling
bifurcations shown in Figures 4.23(a) to 4.23(d), with thresholds at u; = 2.952
(period-2 motion), u; = 2.97 (period-4 motion) and u3 = 2.974 (period-8 motion).
They give Fei; = 4.5, which is very close to the ideal Feigenbaum number.

Periodic windows appear for u = 2.9789 to u = 2.9812, as shown in Figure
4.23(e) for u = 2.98. By analyzing the time traces and the power spectra for
u; = 2.9789, the fundamental frequency f = 0.38 together with its subharmonics
nf (where n is a positive integer) may be calculated. For u; = 2.9807, the frequency
is half the previous frequency for u = 29789 and is equal to 0.19, f = 0.19, so
that this motion is period-two with respect to the previous period-one motion. For
u3 = 2.9811 the motion becomes period—four and is followed by period—eight motion
for u, = 2.98121; for higher flow velocities the motion of the system becomes chaotic.
The Feigenbaum number corresponding to these period-two motions is Feiy = 3.64,
which is not too close to the ideal Feigenbaum number Fei = 4.6692.

For u = 3, a periodic window appears. Then, for u > 3, a new cascade
(the third one) of period-two motions appears, which is qualitatively the same
as the second one (u = 2.979 to u = 2.981). Finally, it has been observed that
chaotic motions arise in this system through three period-doubling sequences as u
is increased (Figure 4.22).
(iii) Power Spectra, Time Traces and Poincaré maps
The power spectra and time traces were obtained for this case, for two flow velocities,
u = 2.975 and u = 3.2, for which we thought that we had chaotic behaviour of this

system. The power spectra in Figure 4.24 confirm this fact.
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For the same values of u, we have constructed the Poincaré map which has a

chaotic shape for (a) u = 2.975 (Figure 4.25(a)) and (b) u = 3.2 (Figure 4.25(b)).

4.5 SOME GENERAL REMARKS ON THE
N = 2 RESULTS

The four cases examined show a variety of interesting dynamical behaviour obtained
by varying just two parameters: the width of the annulus, characterized by A (and
c), and the bluntness of the free end, involving the parameter f.

Cases 1 and 4 display a “classical” period-doubling progression to chaos, while
Case 2 shows quasiperiodic motion, and chaos comes about via the quasiperiodic
route. Case 3 is 2 more “special” case, for which chaos arises through period-n
motions, which develop around two symmetrical points, as shown in Figures 4.16-
4.18, and the motion eventually collapses to fixed points after a period-bubbling
sequence (shown in Figures 4.17(c,d)).

Further discussion will be postponed until after the results with N > 2 have

been presented.
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Chapter 5

ANALYTICAL RESULTS:
CENTRE MANIFOLD THEORY

Centre manifold theory (Li and Paidoussis 1994) is a method which uses power
series expansions in the neighbourhood of an equilibrium point in order to reduce
the dimension of a system of ordinary differential equations, thereby helping to
understand the dynamical behaviour of an otherwise complex system.

At a degenerate point, which has at least some eigenvalues with zero real
part, the space in which the system dynamics evolve can be divided into three
subspaces: the stable, unstable and centre eigenspaces, spanned by the eigenvectors
whose eigenvalues have negative, positive and zero real parts. At this degenerate
point, there exist three invariant subspaces, similarly called stable, unstable and
centre manifolds, tangent to the corresponding linear counterparts at the fixed point.
Since the stability properties of the dynamical system along the stable and unstable
manifolds are known, the system dynamics in the vicinily of the degenerate point
is determined by the flow restricted to the centre manifold.

In this chapter, we compare the analytical and the numerical results for the

system of Case 1: h=0.5, f = 0.8, x, =5 x 10%.
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5.1 COMPUTATION OF THE UNFOLDING
PARAMETERS

Our system of equations is written in the following form:

y = A(u)y +cf(y), (5.1)

where y = {¢;, ¢2, é1, tﬁg}T. The coeflicients in the nonlinear function f(y), which
in our case is due to the cubic spring, are evaluated at critical values.

Considering u in an € neighbourhood of u,, as u = 1, + ¢ g1, by assuming that
the eigenvalues of A have the general form Ay ; = o) £ iw, and A3, = 0y £ iw,, one
can construct a modal matrix P consisting of the real and imaginary parts of the

eigenvectors; then, the system equations may be brought into the standard form

x=Ax+e¢P ' f(Px), (5.2)
where
a, —uh 0 0 .I
w oy 0 0
x=Ply, A=PTAP= (5.3)
0 0 (o 1 —y
I 0 0 W 7y

The matrix A is evaluated at the critical points, and [A] is the modal matrix

of the system.

5.1.1 Hoof Bifurcation

At u = u, the first pair of cigenvalues becomes purely imaginary, A, = % iwy,
with wy > 0, while X34 = —a £ b, @ > 0, b > 0. For ¢ sufficiently small, both o;

and w; in (5.3) can be expanded in terms of ¢
o1 =0+ epy + O(c?), wy = wp + e + O,

(5.4)
09 = —a + €y + O€?), wy = b+ euq + O(?).
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The coefficients j;, ¢ = 1,2,3,4, are the unfolding parameters, and they represent
the eflect of the deviation of the control parameter u from the critical value.

Let Ay 2 = o) & iw; be the first pair of eigenvalues of A, so that
det [A — (o7 £ iw))I] = Re|{oy, wy, u) + i Imy(oy, wy, u) =0; (5.5)
then we obtain for u = u., + eu the following equations:
Rey(epty, wo + cptay e + €p) =0,  Imy(epy, wo + €pta, e +€p) =0. (5.6)

Expanding Re; and Im; in terms of €, and noting that Re;(0, wp, u.),

Im, (0, wp, ue) = 0, results in

JRe, dRe, ORe; dlm, Olm, Olm, .
R y— +epe " 0, 6#1_6;1—+E”3%1—+6ﬂ_au_- =0, (5.7)

where all derivatives are evaluated at the critical values. It is seen that g, and pa
may be solved in terms of the variation ey of u.

The flow velocity for the system of Case 1, for which we obtained a limit
cycle, which emerges via a Hop{ bifurcation, is v = u, = 2.7396. Following the
above calculation procedure, we obtained gy = 31.0465y¢ and p3 = —19.3943u. The

details of this calculation are presented in Appendix E, Section E.1.

5.1.2 Pitchfork bifurcation

In the case of pitchfork bifurcation, that means for a case of a single zero eigenvalue,
the calculation of the unfolding parameters may be carried out in a similar manner.
For a single zero eigenvalue, we let A3 = o, be the eigenvalue when u = u., + e,

and A =0 at u = u., = 1.6946; we thus have

det(A — 0, I) = Rey(0q, u) =0, (5.8)

For € small, letting 3 = eyp at u = 1.6946 + €, by expanding and evaluating

Rey(o,, u) we obtain
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(0, uer) + et %Rl—fg (0, u,) =0, (5.9)

61102
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from which g, = —4.919x (Appendix E, Section E.2).

5.2 CENTRE MANIFOLD CALCULATIONS

5.2.1 Hopf Bifurcation

The details for these calculations may be found in Appendix E, Section E.3.

For the critical flow velocity u. = 2.7396, the eigenvalues are A2 = £9.0176:
(hence, o; = 0, w; = 9.0176) and A34 = —4.4646 % 5.2242; (hence, o =
4.4646, w, = 5.2242). The second of cquations (5.3) may therefore be writlen

as -
0 —9.0176 0 0
9.0176 0 0 0
A= . (5.10)
0 0 —4.4646 —5.2242
0 0 5.2242 —4.4646 |

The system of equations (5.2) can be reduced to a two-dimensional sysiem
by centre manifold theory, involving the “centre space” of (5.10), i.e., the part

associated with the purely imaginary eigenvalues; this leads to the reduced two-

dimensional system

Ty _ € —(wo + €113) } { 7 }+{I(Ila )} . (5.11)
T2 wo + €pt3 €ft1 2

By replacing wp = wy = 9.0176 and by substituting 1, = 31.0465u, py =
—19.3943 4, as determined in Section 5.1.1, equation (5.11) gives
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I 31.0465 p —9.0176 + 19.3943 4« x,
‘= + {f(z1, z2)} ,
L2 9.0176 — 19.3943 u 31.0465 ¢ 2N

(5.12)

where

e 2} { f,} {0.1968m:,’-1.2342:5?:1:;;-%—2.5775:,:3—1.7943m§‘ }
Iy, Ig = = .

2 0.9246z3 — 5.7989:1:23:2 +12.1 102x1:c§ ~ 8.430123
1 1 2
(5.13)

Either the method of normal forms or the method of averaging may be used

to solve these equations. We shall use the latter and, accordingly, let
zy =rcosf, z; =rsinf. (5.14)
Then, after substituting into (5.13) and applying the method, the averaged equations
F=e(p +ar?) +O(), 0=w+ ey +ebr?+O(?) (5.15)
are obtained, where
a=[fiiz+3 fiz0+3 faes + f2u1] /8. (5.16)

The terms f; ;i are the coefficients of fi(i = 1,2) in equation (5.13), in which jk is
associated with zJ z& (Guckenheimer and Holmes 1983); for example, f1 12 = 2.5775.

In the case under consideration, it is found that a = --3.4902, i.e. a < 0,
signifying that the Hopf bifurcation is supercritical (Guckenheimer and Holmes

1983). Limit-cycle motions are obtained when # = 0, or from (5.15)
rP=—u/a=8.8954 . (5.17)

It is seen that a real limit-cycle amplitude, r, exists only for g = u — u,, > 0. For
g < 0, the origin (undeformed equilibrium) is stable, and a limit cycle does not

exist.
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We shall present the phase plots for our system in Figure 3.1(a) foru = 2,73 <
U, where u.,, = 2.7396, i.e., for u = ~0.0096 < 0, where the origin is stable, If
u = 2.74 > u, then g = 0.0004 > 0 and the origin becomes unstable; we then
obtain a limit cycle, as seen in the phase plot in Figure 5.1{b).

We have also compared the maximum amplitude of the system as a function of
4, as obtained by (i) the centre manifold approximation and (ii) the Runge-Kutta
numerical integration. Agreement between the two is very good for p < 0.02, as
can be seen in Figure 5.2; in terms of order of magnitude, it is quite acceptable up
to u ~ 0.08. This gives a taste for the power of the centre manifold method, on
the one hand, and gives confidence to the veracity of the numerical results, on the

other,

5.2.2 Pitchfork bifurcation

For the same system, but for u, = 1.6946, the threshold flow vclocity for the

pitchfork bifurcation, the matrix A is found to be

[ _1.8371 _21.5414 0 0
915414 ~1.8371 0 0
A= (5.18)
0 0 0 0
0 0 0 —2.4111 |

Application of centre manifold theory in this case (see Section 5.1.2) reduces

the full system into a one-dimensional sub-system,
&3 = pta oy — 11.5757 2§ = — (4.919 p 25 + 11.575723) (5.19)

where p, = —4.919 g, obtained in Section 5.1.2, has been utilized.

For u = 1.6 < u, = 1.6946 (i.e., for g < 0), the origin is stable, as can heen
seen in the phase plot in Figure 5.3(a); but for ¢ > 0, e.g. v = L.7, the origin
becomes unstable, as can be seen in Figure 5.3(b), where the trajectory ends at one

of the new fixed points.
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Chapter 6

NUMERICAL RESULTS FOR
THE FIRST MODEL WITH
N=3AND N =4

In Chapter 4, the numerical results for the two-cylinder, two-degree-of-freedom
(N = 2) system were presented for Cases 1-4 (defined at the beginning of Chapter 4).
Then, some analytical results, obtained via centre-manifold theory, were presented
in Chapter 5 for Case 1.

It is of interest to know how representative these results are for N > 2. This
is the reason for undertaking numerical calculations for N = 3 and 4. These will
be presented in what follows for each of the same Cases 1-4, sequentially for N =3

and N = 4 in each case; another system, Case 5, is also analyzed, in Section 6.5.
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6.1 CASE 1: h =0.5,f = 0.8 and x. =5 x 103

6.1.1 Case 1 for the three—cylinder systemm, N = 3

As the flow velocity u is increased in Figure 6.1, both the real and imaginary
components of the first-mode eigenvalue approach zero; this corresponds to a
divergence instability (pitchfork bifurcation), which occurs at u = 1.711. As u
is increased further, the real part of the eigenvalues becomes negative again, so that
the system is restabilized, at u = 2.887. Furthermore, at u = 3.167, in the second
mode, purely imaginary eigenvalues arise, which corresponds to a flutter instability
(Hopf bifurcation). For u = 3.8958, the real part of eigenvalues again becomes
negative, so that the system is restabilized.

For u = 3.9688, both the real and imaginary components of the first-mode
cigenvalue again approach zero; this corresponds to a second divergence instability
(pitchfork bifurcation). The system remains unstable for u > 3.9688, and another
flutter instability (Hopf bifurcation) occurs in the third mode for u = 4.058.

Figures 6.2 to 6.5 show bifurcation diagrams and phase-plane portraits for the
first-cylinder displacement of the system, for flow velocities above the critical flow
velocity for flutter.

The bifurcation diagram for flow velocities u between 3.1 and 3.7, is shown
in Figure 6.2(a); there, u = 3.167 is the flow velocity for which flutter instability
occurs. A stable, symmetric limit-cycle develops after the Hopf bifurcation, as
shown in Figure 6.3(a) for v = 3.35. Different shapes for the phase plane portraits
are shown for different flow velocities, as for example in Figure 6.3(b,c) for (b)
1@ = 3.6 and {(c) v = 3.7, respectively. These shapes remain always symmetrical
with respect to the origin (central symmetry). As the ratio of the two dominant
frequencies fi/f: = 1/3 in all these cases, then these motions are periodic with

period T = T} = 37T,. For (a) u = 3.4, then the period T = 0.59, for (b) u = 3.6,
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then T = 0.49, and for (¢) u = 3.7, then T = 0.44.

As may be seen further in the bifurcation diagram of Figure 6.2(b), the system
becomes chaotic at u ~ 4.09. The route to chaos is clarified via Figures 6.4 and 6.5.
The system is restabilized between u = 3.8958 and 3.9688 (not completely shown
in the two bifurcation diagrams, Figures 6.2(a,b)). At u = 3.9688, a pitchfork
bifurcation occurs, and for u > 3.9688 (Figure 6.2(b)), the origin is no longer a
stable fixed point (S.F.P), but new stable fixed points on either side are generated.

The stability of these new fixed points was investigated by linearizing the
system in their vicinity. As seen in Figure 6.4(a), as u is increased (to u = 4.05) the
eigenvalues become purely imaginary, at the extreme right of the figure, signifying
the occurrence of another Hopl bifurcation and the development of limit-cycle
motions for higher u, the onset of which is marked by the kink in the curves in
Figure 6.2(b). This is further clarified by the phase-plane plots of Figures 6.4(b,c).
For u = 4.052, the fixed point is still stable and the trajectory of Figure 6.4(b)
approaches that point with time. For u = 4.053, however, which is beyond the
Hopf bifurcation, a limit~cycle develops, as seen in Figure 6.4(c). This limit-cycle
is symmetric about the fixed point which gave it birth, but asymmetric vis-d-vis
the origin; only the upper (maximum) branch of the limit-cycle is shown in the
bifurcation diagram of Figure 6.2(b) for each of the two limit-cycles, cach arising
from one of the two fixed points.

Furthermore, for u > 4.053, phase-plane portraits were constructed in Figure
6.5 in order to clarify the bifurcation diagram (Figure 6.2(b)). One can see in
Figure 6.5(a) that a symmetric limit-cycle arises from a pitchfork bifurcation for
u = 4.06; the motion becomes quasiperiodic-two in Figure 6.5(b) for u = 4.0885,
quasiperiodic-three in Figure 6.5(c) for u = 4.09, and chaotic in Figure 6.5(d) for
u = 4.0965.

Figure 6.6 again verifies these results for (a) u = 4.0885, (b) u = 4.0900, and
(c) u = 4.0965: in the first column (panels (a,), (b;) and (c,)) are the Poincaré
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maps, and in the second column the corresponding power spectra (panels (ay}), (b;)
and (cz)). Before analysing the Poincaré maps depicted in Figure 6.6, it has to be
mentioned that these maps were constructed with 10,000 time steps, and they were
obtained by plotting é,(7) versus ¢;(r) for ¢; =~ 0.1. As in the computer program
for Poincaré map calculations it was very difficult to obtain exactly ¢, = 0.1, ¢,
was taken in the interval (0.1, 0.100001).

The closed nature of the curves depicted in the Poincaré map of Figure
6.6{a;, b;) suggests the quasiperiodic motion of the system for the flow velocities
(a;) u = 4.0885, and (b;) u = 4.0900. The Poincaré map shown in Figure 6.6(c;)
for u = 4.0965, on the other hand, suggests that the system is chaotic at that stage.

The nature of the dynamical states depicted in Figure 6.6 may best be
assessed by the power spectra, which are presented in the second column of that
figure. In Figure 6.6(ay), for u = 4.0885, two fundamental frequencies are found:
Ji =0.934 4006 and f; = 6.612 681, from which all other frequency peaks may be
constructed, occurring at n f; & mfy, where n and m are integers. Thus, these peaks
occurat fy = nfiforn =2,3,...,9, fiu=3N+f, fu=4fi+f7, fiz=12f1, fia=
6N+ fr, fu=14h, fis =22, fie =18/, fir = 9f1+ fr, fis = 10f1+ f. Whether
the ratio f;/ f is rational or irrational depends on the accuracy of the determination
of the frequencics fy and f;7. If one presumes that the values given here are absolutely
precise, then by the continued fraction technique and Mathematice, one finds a
rational ratio f,/ f7 = 0.1413044 = 13/92. As the motion of the system involves two
fundamental [requencies, and the Poincaré map is represented by a closed curve,
that means, finally that the motion is indeed quasiperiodic~two.

The power spectrum for u = 4.0900 in Figure 6.6(b;) is found to involve
three fundamental frequencies, f; = 0.862 5236, f> = £ f; and f; = ¥ f;. All
other frequencies may be constructed by nfy + mf, & pfs, with n, m, and p being
integers. Thus, for example, f =2f1, fa= fi+ fo, o= N1+ 5, f2 = 2f1 + fs,
fo=ht+hfatfs fo=20+fat S5, o=3fi+ fa+ fs, fu=12f1 = f5, and so
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on. In this case, the ratios of the fundamental frequencics are definitely rational (Eu)
and ('—:?-) As the motion of the system involves three fundamental {requencies, and
the Poincaré map is again represented by closed curves, the motion of the system
at this value of u also is quasiperiodic-three.

The system at u = 4.0965 is clearly chaotic, as evidenced already by the
Poincaré map shown in Figure 6.6(c;), as well as by the phase plot of Figure
6.5(d) and the power spectrum of Figure 6.6{c;). In the latter, although the
principal frequencies {twin peak) and their harmonics are still very prominent, the
subharmonic content is fundamentally flat.

This route to chaos may be explained by means of the Ruelle-Takens-
Newhouse theory (Ruelle and Takens 1971; Bergé et al. 1984), the overall process
involving three successive Hopf bifurcations. The first leads from an initial static
steady state {fixed point, dimension zero) to a periodic one (limit cycle, dimension
one). The second transforms the periodic regime into a quasiperiodic-two regime
(Figure 6.6(2)). The third gives a transition to quasiperiodic-three motions (Figure

6.6(b)), which finally gives rise to chaos (Figure 6.6(c)).

6.1.2 Case 1 for the four—cylinder system, N = 4

As the flow velocity u is increased in Figure 6.7, both the real and imaginary
components of the first-mode eigenvalue approach zero; this corresponds to a
divergence instability (pitchfork bifurcation), which occurs at u = 1.71. As u is
increased further, the real part of the eigenvalues again becomes negalive, so that
the system is restabilized, at u = 3.01.

Furthermore, at u = 3.42, in the second mode, purely imaginary eigenvalues
arise, which corresponds to flutter instability (Hopf bifurcation). For u = 4.165, the

system is restabilized.
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For u = 4.65, a second divergence instability (pitchfork bifurcation) in the first
mode is obtained. The system remains unstable for v > 4.65, and another flutter
instability (Hopf bifurcation) occurs in the third mode for u = 4.78.

In the fourth mode, the real part of the eigenvalues is always negative; so,
from the lincar stability point of view, only the other three modes are of interest.

For this case, we have obtained the bifurcation diagram and the corresponding
phase-plane portraits for flow velocities u between 3.35 (which is the critical flow
velocity for flutter), and 3.70. They were shown in Figures 6.8 and 6.9, respectively.
The phase—plane portraits obtained for (a) u = 3.35, (b) © = 3.60 and {c) u = 3.70
arec symmetric about the origin. These motions were already described in the
previous chapter as periodic motions with two frequencies, which ratios were equal
to 1/3. The periods of motion for these cases are the following: T = 0.71 for (a)
u = 3.35; T = 0.58 for (b) u = 3.6; and T = 0.53 for u = 3.7, so that for a higher
number of articulated cylinders NV = 4, higher values for the periods of oscillations
are obtained.

The system is restabilized for higher flow velocities, between u 22 3.70 and
4.55 (not shown in the bifurcation diagrams of Figures 6.8 and 6.10), and becomes
unstable through a flutter instability (Hopf bifurcation) for u ~ 4.56. For flow
velocities higher than u = 4.56, as may be seen further in the bifurcation diagram of
Figure 6.10, the system probably becomes chaotic for u between 4.595 and 4.61; the
doubt exists because it is difficult to distinguish between quasiperiodic and chaotic
motion in this case. To clarify this question, it will be necessary to construct the
phase—plane portraits and their corresponding power spectra for the system.

The phase-plane portraits for (a) u = 4.59, (b) u = 4.60, (¢} u = 4.6095,
and (d) v = 4.6098 are shown in Figure 6.11. The closed two-segment curves
of the Poincaré maps of Figure 6.12(a; ',) establish the quasiperiodic nature of
the motion of the system for (a;} u = 4.6 and (b;) u = 4.6095, while the closed

four-segment curves of Figure 6.12(c,) show that the motion is quasiperiodic for
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(c1) u = 4.6098. In addition, power spectra for the same flow velocities are presented
in the second column of Figure 6.12, which reinforce the same conclusions, as will
further be discussed in the following paragraphs.

In Figure 6.12(a;), for u = 4.6, two fundamental frequencies are found:
f1 = 1.074 220 and f, = 1.660 158, from which all the other frequency peaks are
calculated; they occur at m fy £nfa, where m and n are integers. Thus, f3 = fi 42/,
fa=2fi+3f, fs=4fi +2fo, s =61 +2f2, fr =5/ +3f2 fa = TH + 3/,
fo=6fi+4f; and fro=5f1 +5f2

For u = 4.6095, in Figure 6.12(b;), the same two fundamental frequencies were
found, f; and f,. Different values for the other frequencies f,, (where n > 3) were
found, as follows: f3==fi+2fs, fa=—fi+3fa, fs= N1 +2/2, s =3fa, [ =4/,
fo=2f+3f, fo=4fi +2f; and f1o =3/ +3/>.

For (c2) u = 4.6098, again the same two fundamental frequencies as in the other
two cases were found, the other frequencies being linear combinations of fy and f,.
Finally, it may be concluded that the Winding number (W = f,/f; = 0.6471) is the
same for (a;) u = 4.60, (b;) u = 4.6095 and (c2) u = 4.6098, and that the motion
of the system for these flow velocities is quasiperiodic.

For u > 4.6098, the amplitudes of motion become too large, while the basic
analytical model has been constructed for small amplitude motions; so, this may
explain why no convergent solutions were obtained. No chaotic motion was obtained
for this case; the motion remains quasiperiodic.

Last, a comparison between the behaviour of a three- and the four-articulated--
cylinder systems will be done. For flow velocities u between 3.35 and 3.70, the
bifurcation diagram and the corresponding phase plots of Figures 6.8 and 6.9
obtained here for N = 4 were compared to those for the N = 3 system discussed
before (Figures 6.2(a) and 6.3). It may be seen that the two sets of diagrams are
similar, and hence the dynamical behaviour of the system is qualitatively similar in

this range of u.
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The amplitudes in the two cases are compared next. It is noted that the
maximum displacement for the first cylinder in the system, @ymqz, for the system
with ¥ =4, is 1.3 to 1.35 times higher than ¢;ma- for the N = 3 system for flow
velocities u between 3.35 and 3.7; (for this range of flow velocities u, the system is
not chaotic)

For flow velocities u > 3.70, the route to chaos for the N = 3 system presented
by the bifurcation diagram and the corresponding phase-plots of Figures 6.2(b) to
6.5 is compared with the dynamical behaviour of the N = 4 system presented by
the bifurcation diagram, the phase-plane plots and the corresponding Poincaré maps
and power spectra of Figures 6.10 to 6.12. For the N = 3 system, a symmetric limit
cycle arises from a pitchfork bifurcation and it will be symmetrical about the fixed
point which gave it birth, but asymmetric vis-a-vis the origin, and chaotic motion
cicurs., For the N = 4 system, the limit cycle arises from a Hopf bifurcation and is

symmetric about the origin and no chaotic motion will occur.

6.2 CASE 2: h = 0.2,f= 0.8 and s, = 5 x 103

This case corresponds to a system with a narrower annulus than Case 1.

6.2.1 Case 2 for the three—cylinder system, N = 3

As u is increased, it is seen in Figure 6.13(a) that the first mode undergoes a pitchfork
bifurcation at u = 1.1733. As u is increased further, the system is restabilized in
this mode at u = 1.9544,

For u = 2.287, purely imaginary eigenvalues arise in the second mode (Figure
6.13(b)), signalling a Hopf bifurcation (flutter). This dynamical state persists up
to u = 2.6568, at which point the system regains stability and remains stable in
that mode thereafter. Then, for u = 2.7, the system undergoes a second pitchfork

bifurcation and remains unstable in that mode to at least u = 5. At a slightly
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higher flow velocity (u = 2.995), the system also loses stability in its third-mode,
by another Hopf bifurcation, as secn in Figure 6.13(c). Thus, for u > 2.995, up to
at least u = 5, the system is subject concurrently to divergence in its first mode and
flutter in its third.

Figure 6.14 gives the bifurcation diagram in the range 2.25 < u < 2.85 with
impacting modelled by a cubic-spring; the evolution of the limit-cycle amplitude
beyond the first Hopf bifurcation is clearly seen in the phase-plane plots in Figure
6.15 for 2.30 < u < 2.658. In Figure 6.15(a,b), the limit cycle is symmetric about
the origin for (a) u = 2.3 and (b) u = 2.55; there is & unique value for the maximum
amplitude for these two cases. In Figure 6.14, for 2.60 < u < 2.66, approximately,
three values of amplitude are shown, corresponding to local mazimae of @ymax, as
clarified by the phase-plane diagram of Figure 6.15(c,d) for (¢) u = 2.625 and (d)
u = 2.658, respectively: by taking a line close to ¢ = 0, three local maxima are
counted for ¢, as well as three local minima. These phase-plane poriraits remain
symmetric about the origin and the motion of the system is periodic for all the cases
mentioned in Figure 6.15. For u = 2.55, the frequency of the system is [ = 1.52;
for u = 2.625 the frequency of the system increases and is f = 1.79; while for
u = 2.658 then f = 2.04. In the power spectra all these frequencies will have
odd subharmonics; it means that the motions of the system are periodic with two
dominant frequencies, which ratio is fi/f2 = 1/3.

At u = 2.6568 the origin regains its stability and is a simple fixed point, up
to u &~ 2.70, the threshold of the second divergence (pitchfork bifurcation), in the
first mode of our system, which has been observed already in Figure 6.14. The
two branches of the pitchfork were determined via opposite-sign initial conditions.
Thus, for u > 2.7, the origin is no longer a stable fixed point, but new stable fixed
points (S.F.P.s) on either side are generated.

The stability of these new fixed points was investigated by linearizing the

system in their vicinity. As seen in Figure 6.16(a), as u is increased (to u = 2.7225)
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the cigenvalues become purely imaginary, at the extreme right of the figure,
signifying the onset of another Hopf bifurcation and the development of limit-cycle
motions (L.C.) for higher u, the onset of which is marked by the kink in the curves
in Figure 6.14, This is further clarified by the phase-plane plots of Figure 6.16(b,c).
For u = 2.7225 the fixed point is still stable and the trajectory of Figure 6.16(b)
approaches that point with time. For u = 2.725, however, which is beyond the Hopf
bifurcation, a limit cycle develops, as seen in Figure 6.16(c). This limit cycle is
symmetric about the fixed point which gave it birth, but asymmetric vis-d-vis the
origin of course; only the upper (maximum) branch of the limit cycle is shown in
the bifurcation diagram of Figure 6.14 for each of the two limit cycles — arising
from one or the other of the two fixed points.

For u > 2.74, a cascade of period-doubling bifurcations is seen in Figure 6.17,
leading to chaos. Period-1, period-2 and period-4 motions are displayed in the
corresponding phase portraits of Figure 6.17(a,b,c), for (a) u = 2.74, (b) u = 2.77,
and (c¢) u = 2.778, respectively. The thresholds for period-2 to period-16 motion
were pin—pointed as follows: u = 2.765, 2.7769, 2.782 and 2.7831, from which a
Feigenbaum number based on the last three is Fei = 4.64, close to the “ideal”.
Figure 6.17(d), for u = 2.79, shows chaotic motion.

As shown in Figure 6.18, for higher flow velocities, the motion of the system
becomes period-two for (a) u = 2.80 of period T = 1.42, (b) period—four for
u = 2.8011 (its period is T = 2.82 twice previous period) and finally the motion
becomes chaotic through these period-doubling bifurcations for u = 2.8012 to (c)
u = 2.8018. The chaotic motions of the system for u = 2.8018 depends of the sign of
the initial condition: the phase-plane portrait for (c) u = 2.8018 was obtained with
é, = 0.1, while the one for (d) u = 2.8018 with ¢ = —0.1. By merging these two
phasc-plane portraits, one may obtain for a higher flow velocity, i.e., (e) u = 2.82
a chaotic motion of the system which visits both positive and negative parts of the

phase-plane, and hence is independent of the sign of the initial conditions.

71



The corresponding Poincaré map, shown in Figure 6.19 for u = 2.835, displays
an interesting “nebula” shape, characteristic of chaotic motion; it was obtained by
plotting ¢,(7) versus ¢;(7) when ¢ (7} = 0.

As discussed in conjunction with the eigenvalue analysis, interesting dynamical
behaviour was expected to arise for u > 2.995, when the system should be subject
concurrently to (i) flutter associated with the third mode (via a Hopf bifurcation
of the origin) and (ii) flutter associated with the first mode (via Hopf bifurcations
of the new stable points emanating from the second pitchfork bifurcation shown in
Figure 6.14). Unfortunately, no convergent solutions could be obtained for u > 2.84
approximately; this was confirmed not to be a fault of the solution algorithm, The
most likely cause is that the amplitudes of motion become too large, while the basic

analytical mode! is for small amplitude motions.

6.2.2 Case 2 for the four—cylinder system, N = 4

As the flow velocity u is increased in Figure 6.20, it is seen that the system is first
subjected to a divergence instability (pitchfork bifurcation), at v = 1.17. As u is
increased further, the system is restabilized, at u = 2.036. Furthermore, at u = 2.4,
always in the first mode, the system becomes unstable by flutter (Hopf bifurcation),
and for u = 3.03, the system is restabilized.

For u = 3.16, a divergence instability (pitchfork bifurcation) occurs, associated
with the second mode. For u = 3.488, the real part of the cigenvalues again becomes
negative, so that the system is restabilized in the second mode.

At u = 3.52, purely imaginary eigenvalues arise, in the third mode, which
correspond to another flutter instability. Furthermore, at © = 3.56, in its second
mode, another pair of purely imaginary eigenvalues arise, which correspond to yet
another flutter instability. For u = 3.86, however, the system is restabilized in its

third mode, although it continues to be unstable in its second mode.
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A second (third) flutter instability reappears in the third mode for u = 4.36,
so that the system remains unstable in the second and third modes for u > 4.36.

In the fourth mode, the real part of the eigenvalues is always negative; so,
from the lincar stability point of view, only the other three modes are of interest.

We have obtained the bifurcation diagram for u = 2.2 — 2.7, which is shown
in Figure 6.21, and corresponding phase-plane plots in Figure 6.22, for (a) u = 2.3,
(b) u = 2.55, (c) u = 2.625 and (d) u = 2.658, which are always symmetric about
the origin and periodic with odd subharmonics, as are the ones mentioned in the
previous subsection 6.2.1, for N = 3. For N = 4, there are obtained the following
frequencies for different flow velocities: for u = 2.55, the frequency of the system is
J = L.11; for u = 2.625, the frequency of the system increases to f = 1.20, while for
u = 2.658, it is f = 1.3. It might be concluded from the last two subsections that
the frequency of the system increases with u, as well as with the number of degrees
of freedom.

For higher flow velocities, i.e., u > 2.7, the amplitudes of motion become
too large, which is inconsistent with this analytical model which is valid for small
amplitude motions. This may be the reason why for u > 2.7, no convergent solutions
could be obtained. No chaotic motion could be found for this system.

Finally, the phase-plane plots in Figure 6.22 can be compared to the phase-
plane plots for N = 3 (already shown in Figure 6.15) for the same fiow velocities u.
We can see that we have obtained almost the same qualitative behaviour. From the
quantitative point of view, for flow velocities 2.2 < u < 2.7, ¢1jnar for the N = 3
system is between 1.1 and 1.3 times higher than ¢;;.. for the N = 4 system; but
this agreement does not extend to other values of u. For u > 2.7 the N = 3 system
becomes chaotic for u ~ 2.8 (Figure 6.14), while the N = 4 system does not become

chaotic.
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6.3 CASE 3: h = 0.5, f =0 and s, =5 x 10°

Physically, the system in this case is similar to that of Case 1, but the free end is

blunt in this case.

6.3.1 Case 3 for the three-cylinder system, N = 3

For this case, the system becomes unstable through a flutter instability (Hopf
bifurcation) for a flow velocity u & 4.9.

By comparing the bifurcation diagram presented in Figure 6.23, together with
the corresponding phase-plane portraits for (a) u = 6.15, (b) u = 6.235, (c) u = 6.25
and (d) u = 6.4, shown in Figure 6.24, it is seen that the quasiperiodic route to
chaos (Ruelle-Takens-Newhouse theory) is followed in this case.

Poincaré maps shown in Figure 6.25 for (a) u = 6.235, (b) u = 6.25 and (c)
u = 6.265 are represented by closed curves, which verifies the quasiperiodic motion
of the system, while the Poincaié map for (d) u = 6.2695 shows ils chaotic behaviour

at that flow velocity.

6.3.2 Case 3 for the four—cylinder system, N = 4

By comparing the bifurcation diagram (Figure 6.26) with the corresponding phase-
plane portraits obtained in Figure 6.27, the route to chaos is seen to arise through
period-odd motions (period-three, -six, etc.),

Poincaré maps are shown in Figure 6.28 for (a) u = 6.235 and (b) u = 6.365,
respectively, and they verify (a) the period-three motion for our system for u = 6.235
and (b) its period-six motion for u = 6.365. Furthermore, Poincaré maps shown in
Figure 6.28(c,d) show the period-twelve motion for (¢} u = 6.37, and chaotic motion

for (d) u = 6.4.
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From a quantitative point of view, the maximum displacement for the first
cylinder in the system, ¢ymqz, for the system with N = 4 was found to be 1.1 to 1.3
times higher than ¢;m.: for the three-degrec-of-freedom system for flow velocities
u between 5 and 6.4; but the dynamics of the two systems are quite different, the

routes to chaos being completely different.

6.4 CASE 4: h =0.2,f = 0.4 and k. =5 x 10°

This system is similar to Case 2, but with an intermediately blunt free end — blunter

than for Case 2.

6.4.1 Case 4 for the three-cylinder system, N = 3

For this system, we shall study its behaviour for flow velocities u higher than the
critical flow velocity for pitchfork bifurcation upy = 2.7.

The route to chaos for the bifurcation diagram of Figure 6.29 is clarified via the
phase-plane portraits of Figure 6.30. For u = 2.7, a pitchfork bifurcation occurs,
The two branches of the pitchfork bifurcation were determined via opposite-sign
initial conditions. Thus, for 2.7 < u < 3.4, the origin is no longer a stable fixed point,
but new stable fixed points (S.F.P.s) on either side are generated. By analysing the
stability of these new fixed points by linearizing the system in their vicinity (in the
same way as in Figures 6.4 and 6.16), limit-cycle motions are seen to develop for
u > 3.4, the onset of which is marked by the kink in the curves in Figure 6.29.

The phase-plane portraits presented in Figure 6.30 for only one initial
condition ¢; = 0.1 and for different flow velocities (a) u = 3.5, (b) u = 3.525,
(c) u = 3.54, (d) u = 3.57 and (e) v = 3.58 show the period-doubling of the
motions leading to chaos.

As the motion of the system becomes period-two for u = 3.5155 (with period

T = 2.04 compared to the previous period for u = 3.5 which was T' = 1.02), period-
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four for 4 = 3.5375 and period-eight for u = 3.542, the Feigenbaum number may
be calculated and is found to be equal to 4.89, which is very close to the ideal
Feigenbaum number.

The chaotic motion of the system for u = 3.57 and u = 3.58 may also be verified
by constructing their corresponding Poincaré maps in Figures 6.32(a,b). For longer
time steps, for 7 > 500, at u = 3.58 the motion of the system is transformed from
chaotic into a limit cycle, so that for this flow velocity u = 3.58 we have a “transient”
chaos.

In Figure 6.31, the motion of the system becomes again a symmetric limit
cycle (period-one) for (a) u = 3.59, quasiperiodic for (b) u = 3.595 and {(¢) v = 3.6,
which may be verified by constructing the Poincaré maps in Figure 6.32(d,e), which
have the form of closed curves. The Poincaré map for u = 3.61 presented in Figure
6.32(f) is characteristic of chaotic motion.

In order to verify the quasiperiodic nature of the motion of the system for
(b) u = 3.595 and (c) u = 3.6, the power spectra were calculated from which two
fundamental frequencies were found: fi, = 0.431 483 and f; = 2.445 070, all the
other frequencies being linear combinations of f and f,, as f, = mf, £ nfy with
n >3 Foru=3595, f3=3f, fa=10f, o =5+ fo, o = -3/i + 3]s
fr=1fi+2f, fa=24fi+ f2, fo=17fi+3f2 and fio = 28/ + 3 f2. For u = 3.6,
fa=—dfit fo, fa==8f+fo, s =—4fi +2f2, fo==T[ +3fo, i=6fi + [,
fo==3f1+3f2 fo=4/i+2f2and fio=-fi +3fa.

6.4.2 Case 4 for the four—cylinder system, N = 4

The period-doubling route to chaos for the bifurcation diagram of Figure 6.33
is clarified via the phase-plane portraits of Figure 6.34. For u = 3.65, a Hopf
bifurcation occurs, which corresponds to a symmetric limit cycle. For higher flow

velocities, the motion of the system looks as if it is developing around two fixed
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points: (¢ = —0.045; ¢, = 0) and (¢, = 0.03; ¢; = 0); as seen in the phase—plane
plots and in the Poincaré maps presented in Figures 6.34 and 6.35, respeciively, the
system executes (a) period—one motion for u = 3.961, for which the period T = 1.02;
(b) period-two motion for u = 3.963, its period being T = 2.04; (¢) period-three
motion for u = 3.97, in which the period is three times higher than in the previous
motion; (d) slightly chaotic motion for u = 3.9953.

The slightly chaotic character of the motion for u = 3.9953 has been verified
through the time traces, power spectra and the Poincaré maps in Figure 6.36(a,b,c).
As seen in Sections 6.4.1 and 6.4.2, the system in this case displays a completely

different hehaviour for N =3 and for N = 4.

6.5 CASE 5: h=0.5,f=0.4, k. =5 x 105
and for N = 3

This system is similar to Case 1, but with an intermediately blunt free end-which
is the same as for Case 4, but in this case the annulus is wider.

In this case, as the flow velocity u is increased, both the real and imaginary
components of the second-mode eigenvalue approach zero, leading to a pitchfork
bifurcation (divergence) at u = 4.15. The system remains unstable for u > 4.15.
Furthermore, a Hopf bifurcation occurs at u = 4.7, in the third mode. The first
mode remains stable throughout this range of u.

Figure 6.37 shows the bifurcation diagram with the cubic-spring representation
(re = 10°) for the range of u beyond the pitchfork bifurcation. Figure 6.37(b) covers
the range of u where chaos apparently arises in Figure 6.37(a), i.e., 491 < u <
4.925. The two stable branches after the pitchfork bifurcation were determined via
opposite-sign initial conditions (Figure 6.37(a)}). Thus, for 4.15 < u < 4.90941, the

origin is no longer a stable fixed point, but new stable fixed points (S.F.P.s) on
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either side are generated. The stability of these new fixed points was investigated
by linearizing the system in their vicinity. As u is increased (from w,; = 4.15
to u = 4.90942) the eigenvalues become purely imaginary, signifying the onsect
of another Hopf bifurcation and the development of limit-cycle motions (L.C.)
for higher u. This was further clarified by phase-plane plots (not shown). For
u = 4.90941, the fixed point is still stable and the trajectories approach that
point with time, while the first chactic motion through intermittency develops for
u =~ 4.90942. As the interval in u between fixed point and chaotic behaviour of
the system is too small (it is equal to 0.00001), then the exact value of the critical
flow velocity u, at which a stable limit cycle occurs could not be pin-pointed;
furthermore, because of the small interval in u, u. is assumed to be cqual to
Uge = 4.90942.

The chaotic motion of the system through intermittency is further verified
by the phase-plane plots and time traces shown in Figures 6.38 and 6.39 for the
same flow velocity u = 4.91 but for different ranges of time 7, as follows: In Figure
6.38(a,c), for 0 < 7 < 4, after the initial transient has died out, for 0 < r < 2,
an unstable limit cycle develops; the instability is weak and, although trajectories
are attracted to the vicinity of the limit cycle, the limit cycle amplitude increases
gradually but continuously with time 7, for 2 < 7 < 4. Al a higher time interval,
152 < 7 < 162 (Figure 6.38(b,d)), one of the bursts of “turbulence” is captured,
which are characteristic of this type of chaos; the associated phase-plane diagram
(Figure 6.38(b)) reinforces the view that, in that time period, the oscillation is
chaotic.

Similar behaviour is seen in Figure 6.39(a,c), showing a quicscent, ncarly
steady oscillation for 700 < 7 < 705, and in Figure 6.39(b,d), showing chaotic
oscillations at higher 7 with several unsteady bursts.

In Figures 6.40 and 6.41 bifurcation diagrams are presented for this system,

showing the maximum displacement of the first cylinder of the articulated system,
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b1maz Of Ir (in the intermittency notation), as a function of the nondimensional
time 7; for 0 < 7 < 5,000 in Figures 6.40(a,b), and for a larger range of 7,
5,000 < 7 < 10,000 in Figure 6.41(a,b), as follows:

¢ in Figure 6.40(a) for 0 < 7 < 2, 500;
¢ in Figure 6.40(b) for 2,500 < 7 < 5,000;
e in Figure 6.41(a) for 5,000 < v < 7,500;

e in Figure 6.41 (b) for 7,500 < 7 < 10,000.

In these figures one may see the turbulent fluctuations represented through vertically
clustered points in the diagrams, which are interrupted by laminar fluctuations, or
laminar phases.

It has already been discussed, in Figure 6.39, that the laminar phases are in
fact associated with “growing” limit cycles, and these limit cycles are presented in
the four bifurcation diagrams (Figures 6.40 and 6.41) through one single point.

Another signature of the intermittency is the statistical distribution of the
lengths P(r) of the laminar phases versus 7 and it is is presented in Figure 6.42.
The distribution in this case has a maximum for short times (r = 20) and decreases
exponentially at large times, which is characteristic for type III intermittency. The
most significant feature for this figure is the long tail for 7 large; in Figure 6.42 the
long 7 interval is 190 < 7 < 300 in which only one laminar phase exists.

Furthermore, one may observe a very large number of laminar phases in Figures
6.40 and 6.41, and the number of laminar phases N(r > 7,) lasting longer than 7o
are counted versus 7o, and an exponential function is obtained in Figure 6.43; it is
a function of 7y and g. It is difficult to find out the exact value of u., at which a
Hopf bifurcation occurs; we know already from the previous page that u,, is between
4.90941 and 4.90942; as this interval is very small, u., will be taken as u, = 4.90942.

It is concluded that, even if a formula is considered for N(r > ), in this case it is
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not the classical one, as u,., is not the real flutter velocity. The critical low velocity
at which a divergence instability occurs might also be considered as u, = 4.15.
Once more, this u. is again not the classical one used in intermittency calculation
(Bergé et al. 1984), in which u., has always been considered as u at which a Hopf
bifurcation occurs.

All calculations for Figures 6.42 and 6.43 are done for a total nondimensional
time 7 = 10,000 (as shown in Figures 6.40 and 6.41). As in the bifurcation diagrams
of Figures 6.40 and 6.41, it is very difficult to see the beginning and the end of
a laminar phase. One may see the behaviour of the system, and especially its
laminar phase, in a smaller range of 7, as for example, for 960 < 7 < 1080,
in which two laminar phases are shown in Figure 6.44(a). In Figure 6.44(a) for
960 < 7 < 970 turbulent fluctuations appear (many points) which are followed by
period-two motions for 970 < 7 < 974 (two points), then by a growing limit cycle
motion (one point) for 974 < 7 < 1058, a very small intermittent region followed
for 7 > 1060 by the second laminar phase (presented again through two and one
points).

Then the same bifurcation diagram, but for a smaller range of 7, is presented
in Figure 6.44(b) in order to see clearly only the first laminar phase behaviour for
966 < T < 978, so we already know that a period-lwo motion precedes a chaotic
motion, in case of intermittency type III. In our example, chaotic motion is followed
by period-two motion, and again by period-one motion (or laminar phases).

Furthermore, I}, It41, Ir42 are defined in Figure 6.45 as corresponding to the
kth, (k + 1)th and (k -+ 2)th maximum displacement of the first cylinder in time 7.
These quantities are used in graphing the first and the second return maps presented
further in Figures 6.46 and 6.47.

Figure 6.46 shows the first return map Iy versus fi, in which [y, is the
new maximum displacement of the first cylinder and /i is its previous maximum

displacement. In this figure, a curve tangent to an inverse diagonal is obtained, its
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slope being equal to ~1. The second return map .7 versus I is shown in Figure

6.47 and it is seen that this curve is a graph of a function

Ik+2 = (1 + 2#)]]: + GI‘E + b]f, (6.1)

with a and b constants and 2 << b. As u is very small, and is equal to 0.00058,

then a and b are further calculated; they are found to be a ~ <12, b ~ 451.
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f=0.8and x. =5 x 103
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Chapter 7

GLOBAL COMPARISON OF
THE RESULTS OBTAINED
WITH THE FIRS5T MODEL
WITH N=2 AND N=3

In this chapter, bifurcation diagrams, phase plane portraits and tables are
constructed for the first model with the cubic spring representation, for N = 2 and
N =3, and compared. Also, rome results are presented in the form of bifurcation
diagrams and phase plane portraits for the first model with the trilinear spring
representation for N = 2, in order to compare these two types of inpact modelling. .
The dynamical behaviour is analyzed by varying the flow velocity u, for
u > U, where u. is the flow velocity for which a Hopf or a pitchfork bifurcation
occurs; two other parameters, h and f, are also varied, where & corresponds to the
dimensionless hydraulic diameter, and f to the form-coefficient of the downstream
end of the articulated system. Specifically, for h = 0.2 and h = 0.5 and for five end-
form coefficients, f =0, f = 0.2, f = 04, f = 0.6 and f = 0.8, the behaviour
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of the first model with the cubic spring is analyzed for N = 2 and N = 3
(Sections 7.1—7.4).

After discussing in some detail the behaviour of the model {or different
parameters, the final results will be summarized in Tables 7.1 to 7.3 on pp. 99-
101, where Table 7.1 explains the symbols used in Tables 7.2 and 7.3.

Then, in Section 7.5, the first model with the trilinear spring is analyzed for
h=05and N=2 and f =0, f = 0.4 and f = 0.8; the results obtained are

compared to those for the first model with a cubic spring.

7.1 N=2, FIRST MODEL WITH
CUBIC SPRING; L=0.2

71.1 N=2,h=02andf=0

From linear analysis, a flutter instability occurs for uy ~ 3. The bifurcation
diagram corresponding to this case is shown in Figure 7.1(a) for u > uy. At
u = 3, a symmetric stable limit cycle about the origin develops after the [lopf
bifurcation. For higher flow velocities, 4.6 < u < 5.881, the perfect shape of
this limit cycle is modified into another type of periodic motion, which remaing
always symmetric about the origin but also develops around two symmetrical points,
as shown in the phase plane portraits constructed in Figure 7.2(a) for u = 5.6.
For 5.882 < u < 5.885, weakly chaotic motion develops around one pair of two
symmetrical points, while period-two motion develops around another point {Figure
7.2(b) for u = 5.885); for 5.886 < u < 6.05, chaotic motion develops again around
one pair of two symmetrical points, while period-one motion develops around
another point (Figure 7.2(c) for u = 5.887). For 6.052 <u< .0538, a period-
two motion develops around one pair of two points, while around the other pair of

points the motion will remain period-one, as shown in Figure 7.2(d) for u = 6.0535.
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Furtbermore, for higher u, the motion of the system develops around one or
the other point, lepending on iniual condition chosen. The motion of the system
is chaotic for 6.05385 < u < 6.064, and is followed by period-bubbling motions as
follows: period-eight for 6.0645 < u < 6.0649, period—-four for 6.065 < u < 6.067,
period-two for 6.0671 < u < 6.0771, and period-one for 6.0772 < u < 6.189, and
finally the motion reduces to fixed points, for u > 6.19, The phase-plane portraits
corresponding to the chaotic, period-two, pertod-one motion and fixed point of this
system for u > 6.05385, are the same from a qualitative point of view as those
presented in Figure 4.17(b,c,d,e).

The behaviour of the model may be summarized in the following words:
period-1,2; chaos; period-bubbling or period-8,4,2; period-1; fixed points (Tables
7.2 and 7.3).

71.2 N=2,h=0.2andf= 0.2

From linear analysis, a flutter instability is found to occur for uy ~ 2.5.

The bifurcation diagram corresponding to this case has been shown in Figure
7.1(b) for u > upy. For u = 2.5, a symmetric stable limit eycle about the origin
develops after the Hopf bifurcation, and remains symmetric for u < 4. Phase-plane
portraits were shown in Figure 7.3 for u > 4. For 4.05 < u < 4.75, a periodic motion
around one pair of two symmetrical points develops as in Figure 7.3(a) for u = 4.7;
for 4.8 < u < 5.2, periodic motions develop around two or three pairs of symmetrical
points as in Figure 7.3(b) for u = 5 and in Figure 7.3(c) for u = 5.2. By analyzing
the time traces corresponding to these periodic motions, the dominant periods of
motion arc found to be: T = 1.41 for (a) u = 4.7; T = 1.7 for (b) u = 5, and
T = 24 for (c) u = 5.2. As these periods are not related between them. that means
no period-two, -three, —four,... -n motions exist for successive periodic motions for

different u.
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Finally, the motion of this system never becomes chaotic; it remains periodic,

The behaviour of the model is summmarized in Tables 7.2 and 7.3 as: periodic;

no chaos.

71.3 N=2,h=02and f=104

From a linear analysis, the flutter instability was found to occur in this case at
uy o~ 2,38,

The bifurcation diagram corresponding to this case is shown in Figure 7.1(c)
for u > uy. This case has already been discussed in detail in Chapter 4, Section
4.4. For u = 2.38 a symmetric stable limit cycle develops after the Hopf bifurcation.
For higher u, i.e. for u = 2.75, a symmetry-breaking pitchfork bifurcation occurs,
through which the limit cycle loses its symmetry and becomes asymmetric. At
u > 2.75, a cascade of period-doubling bifurcations occurs: at u = 2.952 (period--
two), u = 2.9703 (period-four), and so on; this cascade eventually leads to chaotic
motions at u > 2.975. In this range of u, periodic windows appear, such as period-
three and period-five motions for u = 2.98 and u = 3, respeclively.

The dynamical behaviour of this system is summarized in Tables 7.2 and 7.3

as: period-2,4,8, i.e. period-doubling followed by chaos.

714 N =2,h=10.2and f= 0.6

The flutter instability in this case occurs at uy =~ 2.14. The corresponding
bifurcation diagram is shown in Figure 7.1(d) for u > uy. For u = 2.14, a
symmetric stable limit cycle about the origin develops after the Hopf bifurcation
for 2.14 < u < 2.31. For u ~ 2.31 a symmetry-breaking pitchfork bifurcation
occurs, and the limit cycle becomes asymmetric for 2.31 < u < 2.349. Then,
period-doubling bifurcations occur for u = 2.35 — 2.359 (period-two motion),

u = 2.36 — 2.3615 (period—four motion), u = 2.3616 — 2.362 (period-cight motion),

85



which lead to chaotic motions for 2.3621 < u < 2.48 for this system. The behaviour
of this systern may be summarized in Tables 7.2 and 7.3 as: Period-2,4,8 or period-

doubling followed by chaos.

71.5 N =2,h=0.2and f=10.8

From a linear analysis it is found that a divergence instability occurs at ug;, =~ 1.16,
the system is restabiliz2d at u >~ 1.71, and a flutter instability occurs at uy ~ 1.95.

The bifurcation diagram corresponding to this case is shown in Figure 7.1(e)
for u > uy. This case has already been discussed in detail in Chapter 4, Section
4.2 A stable symmetric limit cycle develops after the Hopf bifurcation (u = 1.95),
and becomes asymmetric through a symmetry-breaking pitchfork bifurcation at
u 2~ 2.023. Then, period-twe motions occur for 2.04 < u £ 2.049, followed by
period-one motion for 2.05 € u < 2.0525. The motion finally becomes quasiperiodic
and leads to chaos for u > 2.0526.

This dynamical behaviour is also summarized in Tables 7.2 and 7.3 as: period-

1,2,1; quasiperiodic; chaos.

7.2 N=2, FIRST MODEL WITH
CUBIC SPRING; h=0.5

721 N=2,h=05andf=0

From a linear analysis, a flutter instability occurs at uy = 4.47, and it stabilizes for
u = 4.965.

The bifurcation diagram corresponding to this case is shown in Figure 7.4(a)
for u > uy. The bifurcation diagram and the phase-plane portraits corresponding
to this case have already been explained in Chapter 4, Section 4.3 and in Figures

4.15 to 4.17.
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For u . 4.47 a stable symmetric limut cycle develops afier the Hopf bifurcation.
For higher u, i.e. for 7 < u < 8.2365 approximately, a periodic motion develops
around a pair of symmetrical points. For 8.2366 < u < 8.498, another periodic
motion develops around two pairs of symmetrical points, while for 8.499 < u < 8.982
thi: periodic motion develops around three pairs of symmetrical points. In Figure
4.16 the phase-plane portraits were constructed for (a) u = 5, (b) © = 7.25,
(c) u=8.4 and (d) u = 8.6.

For 8.983 < u < 9.0275 a chaotic motion followed by a period-four motion
develops for 9.028 < u < 9.06 around four pairs of symmetrical points. Again,
a chaotic moticn develops for 9.062 < u < 9.076 around one pair of symmetrical
points.

For higher flow velocities, the motion of the system will develop around only
one of the two symmetrical points, depending on the initial conditions chaosen, as
follows: chaotic for 9.077 < u < 9.089, period-four for 9.09 < u < 9.093, period-
two for 9.0031 < u < 9.109, period-one for 9.11 < u < 9.285 motion. Finally,
for u > 9.286, the motion is reduced to fixed points. The phase-plane portraits
showing the chaotic motion of the system followed by period-bubbling bifurcations
were already explained in Chapter 4, Section 4.3, Figure 4.17 for (a) u = 9.075,
(b) u =9.083, (¢) v = 9.1, (d) u = 9.25 and (e} v = 9.30.

The dynamics of this system may be summarized in Tables 7.2 and 7.3 as

follows: period-1,2; chaos; period-8,4,2 or period-bubbling; period-1; fixed points.

722 N =2 h=0.5andf=0.2

The bifurcation diagram corresponding to this case is shown in Figure 7.4(h) for
u > uy = 3.82. For u ~ 3.82 a symmetric stable limit cycle develops after the
Hopf bifurcation. For higher u, i.e. for u ~ 5, a symmetry-breaking pitchfork

bifurcation occurs, the limit cycle remains asymmetric for 5 < u < 5.3426, then
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chaos develops through period-doubling; so that for 5.3427 < u < 5.3869 the motion
of the system is period-two, for 5.387 < u < 5.39649 its motion is period-four, for
5.3965 < u < 5.3972 il is period-eight, and for higher u (for 3.4 < u < 7) the
motion of the system becomes chaotic, except for a small range of flow velocities,
58 < u < 5.86, where periodic motion develops around two symmetrical points.
The behaviour of this model is summarized in Tables 7.2 and 7.3 as: Period-2,4,8

(period-doubling), followed by chaos.

723 N=2 h=0.5and f= 04

The bifurcation diagram corresponding to this case is shown in Figure 7.4(c) for
u > uy = 33. Foru > 3.3, i.e. u =~ 3.75, a symmetry-breaking pitchfork
bifurcation destroys the symmetry of the original limit cycle, and the limit cycle
remains asymmetric for 3.76 < u < 3.9019. A period-two motion occurs for
3.902 < u < 3.9296, a period-four motion for 3.9297 < u < 3.9359, a period-
cight motion for 3.936 < u < 3.937, followed by chaotic motions for higher u,
3.5375 < u < 4.15. A periodic window (period-five motion) may be observed in this
range of u, i.e., for u = 4. For v = 4.2 to u = 4.242 a period-one motion develops
around one pair of two symmetrical points. For higher u, i.e., 4.243 < u < 4,247,
period-two motion occurs, which is followed by a period—four motion for u = 4.248
and, once again, by chaotic motion for u > 4.249.

The behaviour of this system is summarized in Tables 7.2 and 7.3 as: period-
2,4,8 (period-doubling) followed by chaos, and again period-2,4,8 (period-doubling)

followed by chaos.

724 N=2,h=05and f=0.6

The bifurcation diagram corresponding to this case is shown in Figure 7.4(d) for

u > up. Foru 2 upy ~ 2.97, a symmetric stable limit cycle develops after the Hopf
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bifurcation. For higher u, i.e. u =~ 3.13, a symmetry breaking pitchfork bifurcation
occurs, and the limit cycle is asymmetric for 3.13 < u < 3.2032. Chaos arises
through period-doubling as follows: period-two for 3.2033 < u < 3.2170, period
four for 3.2171 < u < 3.2201, period-eight for 3.2202 < u < 3.2208, chaotic for
3.221 < u < 3.31. The behaviour of this system is summarized in Tables 7.2 and

7.3 as: period-2,4,8 (period-doubling), followed by chaos.

725 N=2,h=05and f= 0.8

This case has already been discussed in Chapter 4, Section 4.1, From a linear
analysis it is found that a divergence instability occurs at g, = 1.69; the system is
then stabilized at u = 2.53, and a flutter instability occurs at uy = 2,74,

The bifurcation diagram corresponding to this case is shown in Migure 7.4(¢)
for v > uy. For u =~ 2.74, there is a stable symmetric limit cycle after
the Hopf bifurcation. The symmetry of the limit cycle is lost by a symmetry-
breaking pitchfork bifurcation, which occurs at u = 2.795. A cascade of period-
doubling bifurcations occurs: u = 2.8195 (period-iwo), u = 2.8235 (period -four),
u = 2.8243 (period-cight). Finally, chaotic motions develop for this system for
2.8244 < u < 2.849,

The behaviour of this model may be summarized in Tables 7.2 and 7.3 as

follows: period-2,4,8 (period-doubling), followed by chaos.

7.3 N=3, FIRST MODEL WITH
CUBIC SPRING; h=0.2

731 N=3,h=02andf=0

The bifurcation diagram co:responding to this case is shown in Figure 7.5{x) for

u > 3.2. For u > upy ~ 3.33, a symmetric limit cycle around the origin develops
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after the Hopf bifurcation. Furthermore, the limit cycle changes its shape and
develops around one pair of two symmetrical points for 4.21 < u < 4.3679, as shown
in Figure 7.6(a) for u = 4.3 (period T = 1.61), while for higher u, 1.368 < u < 4.374
(period T = 1), another periodic motion develops around two pairs of symmetrical
points, and the phase plane portraits corresponding to u = 4.37 are presented in
Figure 7.6(b).

The behaviour of this system is summarized in Tables 7.2 and 7.3 (pp. 99-101)

as periodic motion with two dominant frequencies (odd subharmonics), their ratio

being 1/3.

732 N=3,h=0.2and f= 0.2

From a linear analysis, it is found that a divergence instability occurs at uy, = 2.95,
followed by a flutter instability for ugy = 3.77.

The bifurcation diagram corresponding to this case is Sho‘;'u'll in Figure 7.5(b)
for u > 3.8. A pitchfork bifurcation occurs for u = 2.95, so that for 2.95 < u < 3.86
the origin is no longer a stable fixed point, but new stable fixed points on either
side are generated. For u = 3.87, by linearizing the system in its vicinity, a flutter
instability occurs, which gives birth to a limit cycle or to a period-one motion
around the new fixed point; period-one motions persist for 3.87 < u < 3.926. For
higher flow velocities, as for 3.927 < u < 3.931, another period-one motion develops
(Figure 7.7(a) for u = 3.93, period T = 0.5), followed for 3.932 < u < 3.935 by a
period-two motion, as shown in Figure 7.7(b) for u = 3.934, and for which 7' =1,
so that this period is twice that of the previous one, and by a period-one motion for
3.936 < u < 3.9405 (not shown); the system finally develops quasiperiodic motions
for 3.941 < u < 3.945 (Figure 7.7(c) for u = 3.944), which lcad to chaotic motions
for u > 3.95, as shown in Figure 7.7(d) for u = 3.95.
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The dynamics of this system may be summarized in Tables 7.2 and 7.3 as

follows: period-1,2,1, followed by quasiperiodic and chaotic motions.

733 N=3,h=0.2and f=0.4

This case has already been discussed in Chapter 6, Section 6.4.1. From a linear
analysis, a divergence instability occurs at ug, = 2.82, followed by a flutter
instability for ug = 3.51.

The bifurcation diagram corresponding to this case is shown in Figure 7.5(c)
for u > ug;,. The pitchfork bifurcation occurs at u ~ 2.8, Thus, for 2.8 < u < 3.4,
the origin is no longer a stable fixed point, but new stable fixed points on either
side are generated. Then, for v = 3.4 to u = 3.5162, through a Hopf bifurcation,
limit cycle motions develop around the new fixed points (found by linearizing the
system in its vicinity), and for higher u, i.e., for 3.5163 < u < 3.5372, period-two
motions occur, followed by period-four motions for 3.5373 < u < 3.5414 and by
period-eight motions for 3.5415 < u < 3.5422. These period-two motions lead to
chaotic motions for 3.5423 < u < 3.578. Then, a period—one motion symmetric
about the origin occurs for 3.579 < u < 3.591, followed by quasiperiodic motions
for 3.592 < u < 3.608 and then, again, chaotic motions for 3.609 < u < 3.66. The
behaviour of this mode! may be summarized in Tables 7.2 and 7.3 as follows: fixed

points; period-1; period-2,4,8, followed by chaotic motions.

734 N =3,h=0.2andf=0.6

The bifurcation diagram corresponding to this case has been shown in Figure 7.5(d)
for u > ugy, = 2.75. For u ~ 2,75 a pitchfork bifurcation occurs, and new stable
fixed points on either side are generated. By linearizing the system in its vicinity
for u = 3.02, it is found that there exists a flutter instability, which gives rise

to a symmetric limit cycle around one or the other fixed point. A cascade of
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period-doubling bifurcations occurs for higher u, i.e. a period-two motion for
3.14 < u < 3.1632, followed by a period-four motion for 3.1633 < u < 3.1686,
period—eight motion for 3.1687 < u < 3.1697, and by a period-sixteen motion for
3.1698 < u < 3.17. This cascade of period-doubling bifurcations finally leads to
chaos for higher u, i.e., 3.18 < u < 3.20.

The behaviour of this system is summarized in Tables 7.2 and 7.3 as follows:
fixed points; period-1; period-2,4,8 (period-doubling motions), followed by chaotic

motions.

735 N=3,h=0.2and f= 0.8

This case has already been analyzed in Chapter 6, Section 6.2.1. Lincar analysis
shows that a flutter instability occurs at uy = 2.29, followed by a divergence
instability for ugq, = 2.7.

The bifurcation diagram corresponding to this case is shown in Figure 7.5(¢)
for u > uy;,. For u ~ 2.7, a pitchfork bifurcation occurs, and for u > 2.7, the
origin is no longer a stable fixed point, but new stable fixed points on either side
are generated. By linearizing the system in the vicinity of the new stable fixed
points, we find a flutter instability via a Hopf bifurcation for u = 2.725. The limit
cycle at v = 2.725 is symmetric about the fixed point which gave it birth. For
u > 2.74, a cascade of period-doubling bifurcations occurs: period-two, period-
four and period-eight motion for u = 2.7641, 2.7760 and 2.782, respectively. These
period-two motions finally lead to chaotic motions for higher u.

The behaviour of this system is summarized in Tables 7.2 and 7.3 as follows:
fixed points; period-1; period-2,4,8 or period-doubling motions followed by chaotic

ones.
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7.4 N=3, FIRST MODEL WITH
CUBIC SPRING; h=0.5

741 N=3,h=05andf=0

This case has already been analyzed in Chapter 6, Section 6.3.1. From a linear
analysis, a flutter instability is found to occur at uy ~ 4.9.

The bifurcation diagram corresponding to this case is shown in Figure 7.8(2)
for u > uy. For u = 4.9, a stable symmetric limit cycle around the origin develops
after the Hopf bifurcation. The motion of the system becomes quasipericdic for
u = 6.231 to u = 6.2681 and chaotic for u > 6.2682.

The behaviour of this model is summarized in Tables 7.2 and 7.3 as follows:

Period-one; quasiperiodic and chaotic motions.

742 N =3,h=0.5and f= 0.2

From a linear analysis, a divergence instability occurs at u = 4.335, followed by a
flutter instability at « = 5.193.

The bifurcation diagram corresponding to this case is shown in Figure 7.8(b).
For u ~ 4.34, a pitchfork bifurcation occurs, and then new stable fixed points on
cither side develop for © = 5.69. By linearizing the system around these fixed
points, purely imaginary eigenvalues then arise for u =~ 5,695, which correspond to
the occurrence of a flutter instability in the linear analysis, or to a Hopf bifurcation
in the nonlinear analysis. Chaotic motion occurs for 5.7 < u < 5.73 through type
[1] intermittency, this route to chaos being the same as the one already discussed in
Chapter 6, Section 6.5, for other parameters (those for Section 7.4.3).

The behaviour of this system is summarized in Tables 7.2 and 7.3 as: fixed

points, followed by chaotic motions.
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743 N=3,h=05andf=04

This route to chaos has already been discussed in Chapter 6, Section 6.5. Lincar
analysis predicts a divergence instability at u = 4.15, and then flutter at u = 4.71.
The bifurcation diagram for this case is shown in Figure 7.8(c). Foru ~4.15a
pitchfork bifurcation occurs, and new stable fixed points on either side develop as u
is increased to u = 4.909. Chaotic motion occurs for u = 4.91 to u = 4.925 through
type III intermittency.
The behaviour of this system is summarized in Tables 7.2 and 7.3 as: fixed

points, followed by chaotic motions.

744 N =3,h=0.5andf=0.6

Linear analysis shows that a divergence instability occurs at u = 4.04, and is followed
by a flutter instability at u = 4.31. The bifurcation diagram is shown in Figure
7.8(d). For u = 4.04, a pitchfork bifurcation occurs, and new stable fixed points
on either side develop as u is increased to u = 4.4. No chaotic motion occurs, and
eventually the amplitudes of motion become too large for the model to remain valid
(no convergence in the solutions).

The behaviour in this case is summmarized in Tables 7.2 and 7.3 as: fixed points;

no chaotic motion.

745 N =3,h=0.5and f=0.8

This case has already been discussed in Chapter 6, Section 6.1.1. The bifurcation
diagram for this case is shown in Figure 7.8(e). From a linear analysis, a divergence
instability occurs at u = 1.71, followed by a flutter instability at u = 3.166, the
system is restabilized at u = 3.896, and another divergence instability occurs at

u = 3.97, followed again by a second flutter instability at u = 4.06.
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For u ~ 3.9688 a pitchfork bifurcation occurs, and for u > 3.9688, the origin
is no longer a stable fixed point, but new stable fixed points on either side are
generated. By linearizing the system in the vicinity of these new stable fixed
points for increasing u, a flutter instability appears for u ~ 4.052, wi:ugh a Hopf
bifurcation, giving rise to a symmetric limit cycle around the fixed point concerned.
For 4.052 < u < 4.0882 the motion of the system remains always period-one. Chaos
eventually arises, and the route to chaos in this case is through quasiperiodicity; the
motion of the system is quasiperiodic for 4.0883 < u < 4.094 and finally chaotic for
4.095 < u < 4.0965.

The behaviour of this system is summarized in Tables 7.2 and 7.3 as: fixed

points; quasiperiodic; followed by chaotic motions.

7.5 N=2, FIRST MODEL WITH
TRILINEAR SPRING; h=0.5

751 N=2,h=05and f=20

The bifurcation diagram and the corresponding phase-plane portraits for this model
are presented in Figure 7.9(a) and in Figure 7.10. A periodic motion of period
T = 2.5 develops for 4.47 < u < 4.69, which is shown in Figure 7.10(a) for u = 4.5;
then, for 4.7 < u < 4.86 another periodic motion develops around two symmetrical
points, as shown in the phase plane portraits constructed in Figure 7.10(b) for
u = 4.8, for which the period ' = 3.15; and finally, a periodic motion develops
around two or three pairs of symmetrical points, as shown in the phase-plane
portraits in Figure 7.10(c,d) for (c) u = 4.9 (of period T = 3.95) and (d) u = 4.96
(of period T' = 6.06), respectively. All the motions mentioned above are periodic
with odd subharmonics. For u > 4.97 the motion of the system is reduced to fixed

points.
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By comparing this model with the one with cubic spring representation, it may
be concluded that the motions of both models develop around symmetrical points

(with respect to the origin), and reduce finally to fixed ,cints.

75.2 N=2,h=05and f= 0.4

The bhifurcation diagram for this model is presented in Figure 7.9(b), and the route
to chaos is presented through period-doubling bifurcations. For 3.33 < u < 3.34,
a limit cycle appears after the Hopf bifurcation, which occurs at « = 3.33.
For u ~ 3.34 the limit cycle becomes asymmetric through a symmetry-breaking
pitchfork bifurcation. For higher u, a cascade of period-doubling motions occurs:
period-two for 3.36 < u < 3.369, period-{our for 3.37 < u < 3.3711, and period-
eight motions for 3.3712 < u < 3.3714, which lead to chaotic motions for u > 3.3715.

For this model, as for the one with cubic spring representation (Section 7.2.3),

period-doubling bifurcations are followed by chaotic motions.

75.3 N =2,h=0.5and f= 0.8

Chaotic motions occur in this model through period-doubling bifurcations, as seen
in Figure 7.9(c). For u > uy ~ 2.74, a symmetric stable limit cycle develops after
the Hopf bifurcation. For higher u, i.e. u =~ 2.744 a symmetry-breaking pitchfork
bifurcation occurs, and the limit cycle is asymmetric for 2.744 < u < 2.747.

For higher u, a cascade of period-doubling motions occurs: for 2.748 < u <
2.7501 period-two, for 2.7502 < u < 2.7503 period—four, and for 2.7504 < u <
2.7507 period-eight motions, followed for u > 2.751 by chaotic motions.

Again for this model, as for the one with cubic spring representation, the route

to chaos is through period-doubling bifurcations.
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7.6 COMMENTS

The behaviour for the N = 2 and N = 3 systems according to the first model, with
a cubic or a trilinear spring representation, has been studied in this chapter.

Considering first the case of N = 2, as seen in the bifurcation diagrams shown
in Figures 7.1 and 7.4, when the end-form coefficient f increases, uy decreases,
which eventually results in chaotic motions occurring at lower u as f increases. It is
also secn that, as k increases, the critical flow velocity at which flutter occurs, uy,
increases; this results in chaotic motions occurring at higher flow velocities as the
diameler of the external cylinder increases. By varying f, the behaviour of the first
model with V = 2 but for two different h was found to be qualitatively the same
for f =0, f=04 and f = 0.6, while for f =0.2 and f = 0.8 it was found different.

As it has already been concluded in Section 7.5, the behaviour for the N = 2
first model with trilinear spring representation (Figure 7.9) is qualitatively the same
as for the model with cubic spring representation (Figure 7.4). Three values for
f were considered: for f = 0, the motion of the both models develops around
symmetrical points, while for f = 0.4 and f = 0.8, chaotic motions arise through
period-doubling bifurcations.

The bifurcation diagrams in Figures 7.5 and 7.8 obtained for the N = 3
first model, for two different values of k, display considerably different behaviour
(as compared to the N = 2 model) for the same end-form coefficients f.
Nevertheless, the observed behaviour in most cases has been observed for the N =2
system, but with different system parameters. One main difference {see Table 7.2)
is that, for N = 3, a divergence (and hence the existence of fixed points) precedes
flutter (emanating from instability of these fixed points). Unfortunately, the critical
flow velocity u., for flutter could not be pin-pointed, because the interval in u

between fixed point and chaotic behaviour is too small.
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For higher u, however, in the case of h = 0.2 and for f > 0.4, the dynamics for
N =2 and 3 is not too different. Another difference overall, in this case for b = 0.5,
is the preponderance of period-doubling leading to chaos for N = 2, while this is

associated with intermittence for N = 3.
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Table 7.1: Explanation of symbols

" Symbols Explanation
FP Fixed points
P Periodic motions
P-1 Period-one motion
P-2 Period-two motion
P-1,2 || Period-one and ~two motion
P-2,4.8 Period-doubling motions
P-8,4,2 Period-bubbling motions
PB Period-bubbling motions -
PD Period-doubling motions
QP Quasiperiodic motions
CH Chaotic motions
NOCH No chaotic motion
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Table 7.2: Routes to chaos for N = 2 and N = J systems

h=02 h =05
f N=2 N=3 N=2 N=3
0 Period-1,2 Periodic Period-1,2 Period-1
Chaos No chaos Chaos Quasiperiodic
Period-8,4,2 Period-8,4,2 Chaos
Fixed points Fixed points
0.2 Periodic Period-1,2,1 || Period-2,4,8 | Fixed points
No chaos Quasiperiodic Chaos Chaos
Chaos
0.4 | Period-2,4,8 | Fixed points || Period-2,4,8 | Fixed points
Chaos Period-1 f haos Chaos
Period-2,4,8 || Period-2,4,8
Chaos Chaos
0.6 | Period-2,4,8 | Fixed points || Period-2,4,8 | Fixed points
Chaos Period-1 Chaos No chaos
Period-2,4,8
Chaos
0.8 | Period-1,2,1 | Fixed points | Period-2,4,8 | Fixed points

Quasiperiodic

Chaos

Period-1
Period-2,4,8
Chaos

Chaos

Quasiperiodic

Chaos
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Table 7.3: Comparison between N = 2 and N = 3 systems

h=02 h=05
S| N=2 |N=3|] N=2 |N=
o | P12,cH | P P-1,2;CH | P-1;QP
PB;P-1;FP | NOCH || PB;P-1;FP | CH
0.2 P P-12] PD FP
NOCH |QP;CH CH CH
0.4 PD | FP;P-1| PD;CH FP
CH |PDCH| PD;CH CH
0.6 PD | FP;P-1 PD FP
CH |PD;CH CH NOCH
0.8 P-121 [FPpPp-1 PD FP;QP
QPiCH_| PD;CH CH CH
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Chapter 8

THE SECOND THEORETICAL
MODEL

8.1 ASSUMPTIONS MADE

As it has already been mentioned in Chapter 1, Section 1.3, a second model of
the system of cylinders subject to a confined axial flow has been developed; it is
described in this chapter. The model is essentially the same as that described in
Section 2.1, with some differences in the assumptions; however, some of the system
nonlinearities have been taken into account.

While the dynamics of the system when no impact occurs with the confining
pipe were described by a linearized set of equations in the first mode] (Section
2.1, assumption (d)), in the second model, the nonlincarities in the equations of
motion are taken into account approximately, mainly via Taylor expansions of the
trigonometric functions of the state variables; nonlinear terms are retained up to
O(€®). Assumptions (a), (b) and (c) of Section 2.1 remain essentially the same,
In both models, impacting with the external pipe is modelled by a trilincar or a
cubic spring, presumed to exist between the pipe and the clement of the articulated

system contacting it; most of the calculations will be done with a cubic-spring at
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the end of the first articulation, for analytical convenience.
We now proceed to the calculation of the same terms as those considered in

Chapter 2 that enter in Lagrange’s equations.

8.2 ENERGIES OF THE SYSTEM

8.2.1 Kinetic and potential energies of the structure,

T, and V,

In this section, the kinetic and potential energies of the structure, of the articulated
system itsell, are determined in terms of generalized coordinates, which are the
angles of deformation, ¢; (Figure 2.1(b)).

The system of coordinates (x,y) and the corresponding system of unit vectors
(1,j) bave already been defined in Figure 2.1.

The local coordinate £ is defined along the length of each cylinder segment,
0 < £ £ ; (Figure 2.1). In order to calculate the velocity vector at point £ of the jth
cylinder, v;(£), the displacement vectors in the x and y directions are calculated,
as shown in Figure 2.1. The displacement vectors x;(£) and y;(£) at point £ of the

jth cylinder are

=1

x;(£) = - (Z l cosq5q+£cos¢_,-) i, (8.1)
-1

yi(£) = (E I, sin ¢y + € sin ¢j) j. (8.2)
g=1

Thus, v;(£) is given by

Jj=1 i-1
vi(e) =5 [—(zl lycos ¢y + £ c0s ¢;)i + (3 lysin @, + Esin @-)j] ., (83)
q:

9=1
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which, after differentiation, may be written as

j=1

- . j-l . .
v;(€) = (Z I,sin ¢y ¢, + £ sin@;¢;)i + (Z lycos @ g+ Ecos d;8,)) . (8.4)
g=1 q=1

Hence, the kinetic energy of the jth cylinder is

T,; = j m; [(EI sin d)quq + £sin qS,cﬁ_, ZI cos qbquq + € cos d),e;b_,) ] d€,
q=t
(8.5)

where m; is the mass per unit length of the jth cylinder. The total kinetic encrgy

of the structure, T,, neglecting the small ogival part of the last cylinder, is

N
T, = % z;/ m; [(le sm¢q¢q+fsm ¢_,¢J ZI c05¢q¢q+6coq¢_,¢ ) ] l€.
=
(8.6)

The potential energy is composed of a gravity component and a component due
to strain of the intercylinder connecting springs. It may be written in the following

form:

N J—l 1 N
V,= Z/ mjg (Z’ (1 —cos¢g) +&(1 C°S¢j)) d6+§):kj(¢j"¢j—n)2- (8.7)
i=1

8.2.2 Kinetic energy of the fluid, T}

In order to calculate the normal flow velocity at a point € of the jth cylinder, we
shall consider again Figures 2.1 and 2.2 with their corresponding systems of unit
vectors (i,j) and (iy,Jj1), where iy has the same direction as the structurc and the

Jath direction is normal to it.
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The flow velocity of the jth cylinder is due ‘o motion of the structure and to
the flow in the confining pipe, and its components in the i; and j; directions will
be calculated next.

The relative fluid-body velocity component in a direction normal to the
clement (i.e., in the j; direction) at a point £ of the jth cylinder, is defined as

vyja(€) and is given by

dz;(§) ..

vysa(6) = -8 g g, 4 CE)

——~cos ¢; + Usin ¢; , (8.8)

where the displacements of the jth cylinder in the system, z;(£) and y;(£), are

z;(€) = (Z l; cos ¢y + £ cos 43,) , (8.9)
g=1
j-1

= (2 [, sin ¢, + € sin ¢,-) . (8.10)
¢=1

The derivatives dz;(€)/dt and dy;(£)/dt have already been calculated to obtain

equation (8.4); by replacing these results into equation (8.8), one obtains
i=1 ) )
vin(€) = D lycos(dy — ¢;)¢g + €65 + Usin g . (8.11)
g=1

The fluid velocity component in the same direction as the element, that is in the
iith direction, is

v4i1(€) = U cos ¢; . (8.12)

Hence, the total velocity of the fluid at point £ of the jth cylinder, vy;(£), is

composed of two components in the i; and j; directions and may be written as

v;i(€) = U cos ¢;iy + ZI cos(¢ ¢_,)q5., -+ .fqb, + Using;| j1- (8.13)

q=1
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Therefore, the kinetic energy of the fluid at point £ of the jth cylinder, T;, is

il

J=1 .

Ty = 2] (U cos ¢;)* My d€ + 2_/ !Zf cos(@, — q&J,-)éq +¢‘¢'5J- + Using;| Mjd¢
(8.14)

where Mi; and Mj;; are the corresponding virtual or added muasses of the fluid in the
i1 and j1 directions. As Mj; is much smaller than Mj;, usually of O(€?), then even
if vy in direction iy is greater than vy in direction jy, i.c., vyi1 > vy, since they
are usually of the same order, 1 Mi1v%;; still remains much smaller than {Mjv3;,,
possibly of order O(e?} or smaller. Clearly, for very slender cylinders it can be
of much smaller order. Hence, although the first term in (8.14) could have been
retained, for convenience here it will be neglected. Mj; is equal to x pA for confined
flow, where p is the fluid density, A the cylinder cross-sectional arca, and y is given
by

= +r2+1)/ [0 +h)2-1], (8.15)

in which h = Dy/D; D is the cylinder diameter, and Dy, = D, — D is the hydraulic
diameter, D, being the internal diameter of the external pipe (Figure 2.1).

Therefore, the total fluid kinetic energy becomes

2

I = —pr/ [ZI cos(@y — ;g + Ed; + Using;| de. (8.16)

8.3 THE FLUID-DYNAMIC FORCES

Similarly to Chapter 2, the fluid forces will be determined in several parts: inviscid
unsteady forces, hydrostatic forces and viscous forces. The formulation of these

forces will be presented in the following subscctions.
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8.3.1 Nonconservative inviscid force, F),,

If both ends of the articulated systern were supported, expression (8.16) would
represent the whole of the inviscid component of the fluid-dynamic forces. However,
as discussed in Section 2.3, the cantilevered system is generally nonconservative,
and hence there will generally be work done at the free end of the system by a
nonconservative inviscid force, Fn. (cf. Benjamin, 1961; Paidoussis, 1966b). This
force is associated with the noncylindrical, ogival end of the last cylinder, which
may be approximated by a paraboloid of the form y? = 4aw. In our system, a is
the focal distance of the downstrecam end and w is its total length. For an ideally
strcamlined end, f — 1, and for a blunt end, f — 0, so that different values for a,
w and f can be obtained as function of the free end shape. These values with the
corresponding frec-end shapes are presented in Appendix F.

F., acting at the end of the jth last cylinder, will be

wld d
Fre = p(l—f)x‘L [a +U5;] [Z! cos(¢y — &;)d, + l;; + U sin q&,] 4ra(w—E)dE
(8.17)
As z = £ cos ¢;, then, in equation (8.17) we replace (8/0z) by (8/3€)(1/ cos ;).
By Taylor series, (cos@;)™! = (1 - %qbg)-l ~ 14 %3__ Thus, the final expression
for F,,. has been obtained by integrating with respect to £ and by Taylor series
expansion, namely
- - 2 . 2
Fac = x(1- f)M%!fﬁl (1 - (_¢3__2_¢5_1)_) - xMU(1 - flig, ( + ¢1¢2 ¢—)
x(1 - f)M§f¢;1 (¢1¢'1¢;2 - $1b1dr -t + ¢’2¢;12) +
‘ E R - W . . ¢22
x(1 - f)MQf‘ﬁzaﬁbz +x(1 - f)M§l¢1U¢2 (1 - T) -

! & 2 %
AXMU(L = )5 (b + 652 ) +xMUP - (6 + 2] (8.18)
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8.3.2 The hydrostatic pressure forces, F,x and F,,

The hydrostatic pressure forces, Fp; and F,,, were already determined in chapter
2.3.2 for the first model. For the second model, we may use the same formulae as in
Chapter 2.3.2, so that (F,;); and (F,,); will be the same as those given by equation
(2.15), Chapter 2.3.2:

d
(Fpc)i =0, (Fy); = Aﬁtan é; . (8.19)

A(dp/dz) was determined in Chapter 2.3.2, equation (2.19) so that

dp 1 9 D )
E = —EPDU CID_}, + pgA. (8.20}
Therefore, one obtains
(Foy); = (-—--pDU Cr— + pg/l) tan ¢;. (8.21)
2 Dy

8.3.3 Viscous hydrodynamic forces Fy and Fy,

The viscous mean-flow-related forces acting on long inclined cylinders as formulated
by Taylor {1952) have been discussed in Chapter 2. They are given by equation
(2.21) of Section 2.3.3:

Fy= %pD(ﬁ (Cppsin® ¢+ Cysing), Fy = %pDU"'C, cos ¢, (8.22)
as discussed also in Appendix B, where it is also shown that these formulac agree
with the empirical results gathered by Hoerner (1958).

However, for the purposes of this model, things are modified, e.g., by the fact
that the instantaneous normal velocity is not U sin ¢; but v51(£), where vg1(€) is
the relative fluid-body velocity in the direction j;, normal to the element, which it
has already been calculated and is given by equation (8.11). Then, the foregoing

expressions become
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! .
- (Fy); = %pDCdp lU sin ¢; + Z I, cos(dy — &;)d, +5¢j]
g=1

j_l . .
5#DUC; [U sing;+ Xl oos(dy — d)do + €05 (8:23)
=1
and
j=1 _
(Fr); = %pDUC‘; [U cos ¢; — Z lgsin(¢, — qb,-)¢.,:| (8.24)
o=l

for the jth cylinder of the articulated system. Comments on the signs of the various

terms appearing in Fy and Fj, are discussed in Appendix G.

8.4 THE EQUATIONS OF MOTION

8.4.1 The total kinetic and potential energies of the system

The total kinetic energy of the system, T, is given by
T=T,4+Ty, (8.25)

where T, and T} are given by equations (8.6) and (8.16), respectively. The potential

energy is associated only with the articulated system, so with equation (8.7).

8.4.2 The generalized forces

The generalized forces @;, j = 1,2,... N, may be determined by considering the
virtual work §W; associated with virtual displacements é¢; in the generalized co-
ordinates ¢;. Then the generalized force @; is defined via §W; = Q;6¢;. We proceed
to determine the generalized force @), associated with the generalized coordinate

¢, and cylinder 1, which is denoted by éW;,; and is given by
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h h
Wy = - fo (Fn) € 8¢y dE + /0 (Fp)1 £ 8¢y cos ¢, dE . (8.26)

Similarly, the virtual work associated with the forces acting on the second cylinder,

§W, 5 due to a virtual displacement associated with 8¢,, is given by
2 I
6W1I2 = *L (FN)Q 116¢1 COS(¢2 bl Qsl)df + A (Fw)i’ 116¢1 COs Q&lﬂ'f

+ [ (Fu)e b 84y sin(ds — b1)dg
]
—(0p/0z)2 Ay 12 |y 8¢ sin(dy — ¢1); (8.27)

and so on. The virtual work associated with the last cylinder will have the additional

terms
LpD* U2 Cyly 66y sin(¢n ~ 1) + Fe 1y 664 cos(dn — 1), (8.28)

where C), is the base drag coeflicient (Appendix H), and F,. has been discussed in

Section 8.3.1.

Hence, the generalized forces associated with the generalized coordinate ¢; are

= _/ PN)J§d§+j (Ipy); € cos @;dE — E / Fn)ily cos(di — ¢;)dE

i=j+1

+f l Ccos ¢Jd£ +j FL l Sln( f;b_,)df Pnc l_p COS(¢N - ¢'J)

pD* U C

—(8p/0z); A; i I; sin(d; — ¢;) + 3 > 1;sin(én — 45) (8.29)

where (Fn);, (FL);, (Fyy);, and Fy. are given by the equations (8.23), (8.24}, (8.21)
and (8.18), respectively.
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8.4.3 DI~rivation of the equations of motion

Equations (8.16), (8.6), (8.7) and (8.29) are substituted into Lagrange’s equations
which take the form
d;‘i (aﬁg) _ g%_ + % =Q; j=1,2,..N, (8.30)
for a system of N articulated cylinders, where the dots denote differentiation with
respect Lo time L.
The equations of motion obtained may be rendered non-dimensional with the
aid of the same dimensionless parameters as those used for the first model (see
Chapter 2.6, equation (2.34)); however, the additional nondimensional parameter

A for the free end of the last cylinder will be required. All these nondimensional

parameters are given herc below:

B =pAl(pA+m), 7=(m—pA)gL’N[k, u=(pALN[K)/*U,
e=L/D, Iy=el, A=w/l, c= (4/7)CylpALN/K]/?,
¢y =4Cs/r, & =4Cy/x h=Dy/D, 7=[(pA+m)L> NJk]""%t. (831)

Details of the derivation of the equations of motion, the nondimensional
parameters and the nonlinear moments, are the same as those in Chapter 2.6. The
equations of motion for a system of two articulated cylinders (¥ = 2) in their final

form are the following:

[+ (x= DB [ +¢| d1 + xB (—e 8 + digo — e 63) b1 + L [1 + (x - 1)B) e’

+3 11+ (x = D8] [-3e26] - §e26% + €2dida| o + F €2 (14 (x = DB (61 — $2) o
—X B ($262 = a1 — S + L1} 61+ Ny (1- 362) 1 — 22 (1- 2682)
+NY 21— 62+ xu N VB [e= 8+ 1 62 = 3] o = 2 Wy (01 Sne)
+u? Neeg b (31— 5o + 163 - 1103) + 02 N2 o, (L1 ~ 3oz + 503 - 1nd})
+02 N2 e (3632 - 540) + $ M1 - Nxu NVB (1- 61 - 303 + 41 62) 61

+H1= N xB (332 -1) 6 (1- 16} - 1ed + 1) - (1 - Nxu NVE (3 - 62)
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+(1- xuNVB(3 ¢.¢2—3¢;¢2) $- (1= f)xu? N (1 162 - 162+ 6162) &
+§u’N66|¢1|¢1+gchI¢:I¢1+-uce\/_(!¢:|¢q+¢51|¢| )
HgeBeld bt Necs sl lteefe -1 [d 1l +161 14
+ietuec VB[l b ldtdaldnl|+heuce VB [ 1+ 1]

+u? N eey [% ¢ — 1'—296?] + M (M:) =0,

11+ (x- 18l da+ e (14 (x - DB [1 - 4(o1 - 32)7] b1

+3€[1+(x - 1)8) b1’ (d2 = d1) ~ xBe(d1 — 1) "~ xu* N e (1 - 363)
+N4 g2 = )= xuN VBedr (1-265 - L o3 +20102) + N7} (62— & 83)
tecfet il il +eche! Fidaldal+ecB Jh (161124 i1 1)
+utec N eidz | dr | +uceVBe [ 1 da+ ) dn |
+‘"fc\/_f-’2%[1¢;1|¢2+¢51|¢2l]+%32N€C162(1+h")(¢2—aa‘)z)
+xB (1= N =D [1- Hdz - )] + Ix B = 1)1 - )1 °62 = hrh”)
+1xB (A= 1)1 = f)(=$1d2t2 + trdrde) + (1= ) x B(HN - §) b

+(1= ) xu N VB =12 (1= 363) + 31 - ) xu NVBA (1 + 1)
+4(1= /) xu N/Bdid} - 1 - fyxu N VB (1+ 5¢3) = §01 - ) xu? N? ¢
-31-N)xuv* N* ¢} =0, (8.32)
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Chapter 9

NUMERICAL RESULTS FOR
THE SECOND MODEL WITH
N=2

In this chapter, the same four cases as in Chapter 4 are presented, with the only
difference that in Chapter 9 these results are obtained with the second model, while

in Chapter 4 the results were obtained with the first model.

9.1 CASE 1: h = 0.5, f = 0.8 and &, =5 x 103

From a linear, eigenvalue analysis, a divergence instability occurs for u = 1.67 and
the system is unstable for 1.67 < u < 2.6925; then it stabilizes for u = 2.693 and is _
stable for 2.693 < u < 2.795; and finally, a flutter instability occurs for u = 2.8 and
the system remains unstable for u > 2.8.

Figure 9.1 shows the bifurcation diagram with the cubic spring representation
for this case, i.e., the maximum displacement of the first cylinder ¢,(7) versus u,

and the dynamic behaviour of the system may be described as follows.
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For u = 1.67, a pitchfork bifurcation occurs, so that the motion of the first
cylinder will reduce to a fixed point; for higher u, as for 1.67 < u < 2.6925, new
fixed points occur as the flow velocity increases: for 1.67 < u < 2.1, the fixed
points increase with u; for 2.1 < u < 2.4, the fixed points decrease with u; and
for 24 < u < 2.6925, they increase again with u. Then the system is stable
for flow velocities u between 2.693 and 2.795. And finally, for u = 2.80, there
exists a stable, symmetric limit cycle that develops after a Hopf bifurcation. The
symmetry of the limit cycle is lost by a symmetry-breaking pitchiork bifurcation at
u = 2.832, the first bifurcation shown in Figure 9.1 — where the iwo branches are
obtained with different-sign initial conditions; the limit cycle remains asymmetric
for 2.832 < u < 2.8677. For higher u, i.e. u > 2.867705, the limit cycle collapses
to fixed points; in the bifurcation diagram two fixed points exist because of the two
opposite sign-initial conditions. This transition of the motion of the system from a
limit cycle to a fixed point happens suddenly, and it is impossible Lo determine what
happens between these two motions, and is characteristic to all four cases considered
in this Chapter, that means to the second model.

In accordance with the bifurcation diagram, two phase-plane portrails were
constructed in Figure 9.2(a,b). For u = 2.83, there exists a stable symmetric limit
cycle, which has been represented in Figure 9.2(a); an unstable asymmetric limit
cycle has been represented in Figure 9.2(b) for v = 2.855.

By comparing the bifurcation diagram for this system (Figure 9.1} with those
for the first model (Figure 4.3), it may be seen that the route to chaos for the first
model is through period-doubling bifurcations (2.74 < u < 2.85), while the second
model never becomes chaotic; its motion is either period-one, with symmetric limit
cycles for 2.79 < u < 2.8% and asymmetric limit cycles for 2.83 < u < 2.86,
or (for u > 2.86) it is associated with fixed points, while for the first model the
amplitudes become too large for higher v (for u > 2.85), and convergence of solutions

will not be possible.
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9.2 CASE 2: h=0.2,f=0.8 and k. =5 x 103

This case corresponds to a narrower annulus than Case 1.

From the linear or eigenvalues analysis, a divergence instability occurs for
u = 1.16 and the system is unstable for 1.16 < u < 1.75; then it stabilizes for
u = 1.75 and is stable for 1.75 < u < 1.945; and finally, a flutter instability occurs
for u = 1.95 and the system remains unstable for u > 1.95.

Figure 9.3 shows the bifurcation diagram for this case, i.e., the maximum
displacement of the first cylinder ¢,(r) versus u, and the dynamic behaviour of the
systemn may be described as follows:

For u = 1.16 a pitchfork bifurcation occurs, so that the motion of the first
cylinder will reduce to a fixed point; for higher u, as for 1.16 < u < 1.75, new
fixed points occur as the flow velocity increases: for 1.16 < u < 1.45 the fixed
points increase with u, for 1.5 < u < 1.72 the fixed points decrease with u, and for
1.72 < u < 1.745 they increase again with u. Then the system is stable for flow
velocities u between 1.75 and 1.945. And finally for v > 1.95, the route to chaos
for the bifurcation diagram of Figure 9.3 is clarified via the phase-plane portraits
of Figure 9.4.

For u = 1.95, there exists a stable, symmetric limit cycle that develops after
the Hopf bifurcation (not shown). The symmetry of the limit—cycle is lost by a
symmetry-breaking pitchfork bifurcation at u = 2.0275, the first bifurcation shown
in Figure 9.3. An asymmetric limit cycle is obtained for 2.0275 < u < 2.08, as for
example the one shown for u = 2.05 in Figure 9.4(a). At higher u (v > 2.08), a
cascade of period-doubling bifurcations occurs, and Figure 9.4(b,c) shows period-2
and period-4 motions, for (b) u = 2.09, and (¢) u = 2.095, respectively. Figure
9.4(d) shows chaotic motion for u = 2.096, corresponding to the first dense cloud of
points in the bifurcation diagram. For higher u, as i.e., u > 2.097, the limit cycle

reduces suddenly to one of two fixed points.
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By comparing the bifurcation diagrams for this system, with the first model
(Figure 4.9) and with the second model (Figure 9.3), it may be seen that the route
to chaos for the first model is via quasiperiodicity (for 2.02 < u < 2.06), while the
route to chaos for the second model is via period-doubling (2.02 < u < 2.10); then,
both models will become chaotic, but their routes to chaos will be very different. For
higher u, the motion for the second model reduces finally to a fixed point (u > 2.10),
while for the first model the amplitudes become too large, and the convergence of

solutions will not be possible.

9.3 CASE3: h=10.5,f=0and k. =5 x 10°

From the linear analysis, a flutter instability occurs for 1 = 4.47. Physically, the
system in this case is similar to that of Case 1, but the free end is blunt in this case.
Figures 9.5 show the bifurcation diagrams for motions of the first cylinder in the
system, for flow velocities above the critical flow velocity for which a Hopf bifurcation
occurs {u = 4.47). The route to chaos is clarified via the phase-plane portraits of
Figures 9.6. Figure 9.5(a) represents the bifurcation diagram for 5 < u < 8.5, while
Figure 9.5(b) represents the detailed bifurcation diagram for a smaller range of flow
velocities, 8 < u < 8.20. On the phase-plane portraits, the behaviour of the system
is seen much better, e.g., in Figure 9.6(a): at u = 5 an asymmetric limit cycle
develops after the Hopf bifurcation. For 6.90 < u < 8.05 approximately, a periodic
asymmetrical motion develops, which is shown in Figure 9.6(b) for u = 7.5, and it
looks as if it was developping around two symmetrical points; for :,5, =0, ¢, ~0.02
or ¢; =~ —0.02, depending on the initial conditions. For u = 8.10 and u = 8.15, a
periodic motion develops around two pairs of symmetrical points mentioned abhove;
the odd subharmonics of the dominant frequency may be calculated from the power
spectrum. The phase—plane plot for u = 8.15, Figure 9.6(c), shows the chaotic

motion of the system. Furthermore, chaotic motion around one of the symmetrical
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points (¢; ~ —0.02 and ¢; = 0) is observed in Figure 9.6(d) for u = 8.18. The
chaotic motion of the system may be verified by constructing the time traces and
their corresponding power spectra in Figure 9.7(a,b), for u = 8.175. For the same
flow velocity, u = 8.175, a Poincaré map was constructed, as shown in Figure 9.7(c),
and the chaotic character of the motion of the system may be verified.

For higher flow velocities, a period-bubbling event takes place, for which a
period-four motion may be observed for u = 8.1825 (not shown). A period-two
motion has been presented in Figure 9.6(e), for u = 8.19, which is followed by an
inversion, back to period-1, as seen in Figure 9.6(f) for v = 8.20, and the motion
will reduce further to a fixed point, as seen also in the bifurcation diagram of Figure
9.5.

Thus, this case displays a very rich dynamical behaviour. Chaos arises around
two stable fixed points, through period—odd bifurcations, then a period-bubbling
phenomenon takes place, from period-four, to period-two and back to period-one
motion, and finally the motion will reduce to fixed points.

By comparing the bifurcation diagrams for this system, with the first model
(Figure 4.15) and with the second model (Figure 9.5), it may be concluded that
the route to chaos is the same, but differences in the quantitative sense do exist, as
expected. For higher u, the motion of the system, for both models, will reduce to a

fixed point.

9.4 CASE 4: h=0.2,f = 0.4 and k. =5 x 10°

From the linear analysis, a flutter instability occurs for u = 2.38. This system is
similar to Case 2, but with an intermediately blunt free end—blunter than for Case
2. Figures 9.8 and 9.9 show the bifurcation diagram and the phase-plane plots
for the first cylinder in this system, for flow velocities u higher than the critical

flow velocity for which a Hopf bifurcation occurs (u = 2.38). As before, the route
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to chaos for the bifurcation diagram of Figure 9.8 is clarificd via the phase-plane
portraits of Figure 9.9.

There exists a symmetric stable limit cycle after the Hopf bifurcation at
u = 2.38 (not shown). The symmetry of the limit cycle is lost by a symmetry-
breaking pitchfork bifurcation at u =~ 2.8, the first bifurcation shown in Figure 9.8.
An asymmetric limit cycle motion is represented in Figure 9.9(a) for u = 2.85.

At flow velocities u > 2.85, a cascade of period-doubling bifurcations occurs.
Figure 9.9(b,c) shows period-two and period-four motions for (b) u = 2.95 and
(c) u = 2.96. Figure 9.9(d) shows chaotic motion for u = 3, which is followed by
period-odd motions which will lead again to chaos. The motion of the system will
reduce finally to fixed points for u > 3.35.

In this case, chaos arises firstly through period-doubling (period -2, -4, -8),
and then the motion reduces finally to fixed points as in all cases studied till now
with the second model.

Finally, by comparing the bifurcation diagrams for models one and two
(Figures 4.22 and 9.8), the routes to chaos for the two models are found to be
the same for 2.4 < u < 3.4. For higher u, the motion of the system for the second
model reduces to fixed point, while for the first model the amplitudes become large,

and the convergence of solutions will not be possible.
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dimensionless flow velocity, u.
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Chapter 10

COMPARISON BETWEEN
MODELS 1 AND 2

In order to compare the nonlinear behaviour for the first and the second model,
other than flow velocity u, two parameters f and A are varied. By taking into
consideration that h corresponds to the hydraulic diameter, while f to the end-
form coefficient, as before (Chapter 7) two values for % and five values for [ were
chosen: h = 0.2 and h = 0.5, while f =0, f =02, f =04, f =06 and f = 0.8.
We shall compare the results for a two degree of freedom (N = 2) system as obtained
by the first model (in Chapter 7) and by the second model (herein). Also, in Section
10.4 the dynamics of the second model with impacting modelled by a restitution
coefficient is investigated.

The dynamical behaviour of the second model will be summarized in Tables

10.1 and 10.2 (pp. 131 and 132).
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10.1 N=2, SECOND MODEL WITH
CUBIC SPRING; h = 0.2

10.1.1 N =2,h=0.2andf=0

The bifurcation diagram corresponding to this case is shown in Figure 10.1(a) for
u > uy. At u o~ 3.1, a symmetric stable limit cycle about the origin develops after
the Hopf bifurcation. For 4.98 < u < 5.2916, a periodic motion develops around two
symmetrical points and it has the same qualitative shape as the phase-plane portraits
shown in Figure 7.2(a). For 5.34031 < u < 5.3405, another periodic motion develops
around two pairs of symmetrical points. For 5.3406 < u < 5.342, a chaotic motion
occurs around one peint, while a period-four motion occurs around the other point,
and a period-one motion develops around the other pair of symmetrical points. For
u = 5.343, a period-four motion develops around one point, a period-two motion
develops around the other point, while a period—one motion develops around the
other pair of points. For 5.344 < u < 5.355, a period-one motion develops around
one pair of symmetrical points, while a period~two motion develops around the other
pair of symmetrical points.

For u = 5.356, chaotic motions arise around one pair of symmetrical points,
while around the other pair of points only a period-one motion exists. For
5.357 < u < 5.3605, chaotic motions occur around only one point. The shapes of
the corresponding phase-plane portraits are similar from a qualitative point of view
to those presented in Chapter 7, Figures 7.2 and 7.3. For higher flow velocities u, a
period-bubbling phenomenon takes place around one of the four points (depending
of the initial condition chosen), as for example, for u = 5.3606 a period-sixteen, for
v = 5.3607 a period-eight, for 5.3608 < u < 5.3615 a period-four motion occurs,
followed by a period-two motion for 5.3616 < u < 5.3659 and by a period-one
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motion for 5.366 < u < 5.4240. Finally, for u > 5.4241 the motion collapses to fixed
points.

The behaviour of this model may be summarized in the following words:
period-2,4,8 or period-doubling motions leading to chaos; period-bubbling or

period-8,4,2; period-one motions followed by fixed points (Tables 10.1 and 10.2).

10.1.2 N =2,h = 0.2 and f = 0.2

The bifurcation diagram corresponding to this case is shown in Figure 10.1(b) for
u > uy. For uy = 2.8, a symmetric stable limit cycle about the origin develops
after the Hopf bifurcation, and remains symmetric for u < 4.316.

For 4.317 < u < 5.221, a periodic motion around one pair of two symmetrical
points develops; for 5.222 < u < 5.797, periodic motions develop around two or
three pairs of symmetrical points, and for u > 5.798, the motion of the system will
reduce to fixed points. The phase-plane portraits corresponding to the molions of
this system for u > 4.317 are similar from a qualitative point of view to the ones
presented in Figure 7.3, Chapter 7. Finally, the motion of this system is always
periodic or, for higher flow velocities, reduces to fixed points. This system never
becomes chaotic.

The behaviour of this model is summarized in Tables 10.1 and 10.2 as: periodic

{ollowed by fixed points; no chaotic motions.

10.1.3 N=2,h=02andf=04

The bifurcation diagram corresponding to this case is shown in Figure 10.1(c) for
u > uyg. This case has already been discussed in detail in Chapter 9, Section 9.4.
For u = 2.38, a symmetric stable limit cycle develops after the Hopf bifurcation.
For higher u, i.e. for u = 2.75, a symmetry-breaking pitchfork bifurcation occurs,

through which the limit cycle loses its symmetry and becomes asymmetric. At
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u > 2.99, a cascade of period-doubling bifurcations occurs: period-two for 3 < u <
3.026, period-four for 3.027 < u < 3.032 and period-eight for 3.033 < u < 3.034,
respectively. This cascade eventually leads to chaotic motions at u > 3.035. Finally,
the motion of the system will reduce to fixed points for u > 3.44.

The dynamical behaviour of this system is summarized in Tables 10.1 and 1.2

as: period-2,4,8 or period-doubling followed by chaos; fixed points.

10.14 N=2,h=0.2andf=0.6

The corresponding bifurcation diagram is shown in Figure 10.1(d) for u > uy,.

For u = 2,18, a symmelric stable limit cycle about the origin develops after
the Hopf bifurcation and persists for 2.18 < u < 2.345. For u ~ 2.345, a symmetry-
breaking pitchfork bifurcation occurs, and the limit cycle becomes asymmetric for
2.346 < u < 2.40. Then, period-doubling bifurcations occur: for v = 2.4051 — 2.416
(period-two motion), and for u = 2.4161 — 2.4162 (period—four motion), which lead
to chaotic motions for u > 2.4163. Again, a period—one motion develops around
a pair of two symmetrical points for 2.498 < u < 2.5289, followed by a period-
two motion around the same points for 2.529 < u < 2.5297, period-four motion
for 2.5298 < u < 2.5299, then the motion of the system will become chaotic for
2.53 < u < 2.536, and its motion reduces further to fixed points for u > 2.537.

The behaviour of this system may be summarized in Tables 10.1 and 10.2 as:
Period-2,4,8 or period-doubling bifurcations followed by chaotic motions; another
set of period-doubling bifurcations or period-2,4,8 motions followed again by chaotic

motions; fixed points,

10.1.5 N =2, h=0.2and f= 0.8

The bifurcation diagram corresponding to this case is shown in Figure 10.1(e) for

u > uy. This case has already been discussed in detail in Chapter 9, Section 9.2.

122



A stable, symmetric limit cycle develops after the Hopf bifurcation (u = 1.95),
and becomes asymmetric through a symmetry-breaking pitchfork bifurcation at
u = 2.0275. Then, period-doubling bifurcations occur for « > 2.08, as for example
period-two motion for u = 2.0801, period-four motion for u = 2.0926, period- eight
motion for u = 2.0953, followed by chaotic motions for « > 2.0955. The motion of
the system reduces to fixed points for u > 2.0968.

This dynamical behaviour is also summarized in Tables 10.1 and 10.2 as
period-doubling bifurcations or period-2,4,8 motions leading to chaotic motions;

fixed points.

10.2 N=2, SECOND MODEL WITH
CUBIC SPRING; h = 0.5

10.21 N=2,h=05and f=20

The bifurcation diagram corresponding to this case has been shown in Figure 10.2(a)
for u > ug.

This case has already been discussed in Chapter 9, Section 9.3. For uy ~ 1.47,
there exists a symmetric limit cycle which develops after the Hopf bilurcation. IFor
6.771 < u < 6.915 approximately, a period-one motion around two symmetrical
points develops, followed by a period-two motion around the same points for
6.916 < u < 7.071, a period-four motion around one point and a period-two
motion around its symmetrical point for u = 7.072, by a period-cight around one
point, while around its symmetrical point a period-two motion always develops for
7.073 < u < 7.074, and a period—-eight motion develops around the same pair of
points for u = 7.075.

For u = 7.076, a global period-sixteen motion develops around the same

points, and for 7.077 < u < 7.391 a chaotic motion around these points finally
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occurs. For higher u, as for 7.392 < u < 7.4 a period-one motion develops around
one of the two points, depending on the initial condition chosen. Finally, fixed points
develop for u > 7.45. Again, for these parameters, the shapes of the phase-plane
portrails arc qualitatively the same as the ones in Figures 9.6, Chapter 9, obtained

by the first model.

10.2.2 N =2,h = 0.5 and f = 0.2

The bifurcation diagram corresponding to this case is shown in Figure 10.2(b) for
u > upy = 4. For uy =~ 4, a symmetric stable limit cycle develops after the
Hopf bifurcation. For higher u, i.e. for u ~ 5.62, a symmetry-breaking pitchfork
bifurcation occurs, the limit cycle remains asymmetric for 5.62 < u < 6.237,
then chaos develops through the period-doubling route as follows: period-2 for
6.238 < u < 6.3, period-4 for 6.31 < u < 6.328; for 6.329 < u < 6.33 the
motion of the system is slightly chaotic, and for 6.331 < u < 6.5863 its motion
becomes strongly chaotic. A periodic window (period-four motion) occurs for
6.5856 < u < 6.586. For 6.5864 < u < 6.989, a period~one motion develops around
two symmetrical points, and is followed by period-two motions for 6.99 < u < 7.034,
and by period-four motions for 7.035 < u < 7.045; the final motion of the
system becomes chaotic for 7.046 < u < 7.3. A periodic window occurs for
731 < u < 747 (which is, in fact, an asymmetric limit cycle), and chaos arises
again for 7.471 < u < 8. The motion of the system is reduced to fixed points for
u > 8.

The behaviour of this model is summarized in the following words: period-
2,4,8 or period-doubling bifurcations; chaos; period-2,4,8 or period-doubling

bifurcations; chaos and fixed points.
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10,23 N =2,h=0.5and f= 0.4

The bifurcation diagram corresponding to this case is shown in Figure 10.2(¢) for
u > ung = 3.5. Foru > 3.5, i.e. u ~ 4.0715, a symmetry-breaking pitchiork
bifurcation destroys the symmetry of the original limit eycle, and the limit cycle
is asymmetric for 4 < u < 4.353. For higher u, i.e. 4.351 < u < 4.4, period two
motion occurs, which is followed by a period-four motion for u > 4.101, period-
eight motion for 4,412 < u < 4.413, and leads to strongly chaotic motion for flow
velocities u higher than 4.414, and smaller than u = 5. Finally, for © > 5.1, the
global motion of the system is reduced to fixed points.

The behaviour of this model is sumnmarized in Tables 10.1 and 10.2 as: period-

2,4,8 (period-doubling) followed by chaos; fixed points.

10,24 N =2,h=0.5and f= 0.6

The bifurcation diagram corresponding to this case is shown in IMigure 10.2(d)
for u > uy. For u > 3, a symmetric stable limit cycle develops after the Hopf
bifurcation. For higher u, i.e. u =~ 3.4, a2 symmetry-breaking pitchfork bifurcation
occurs, the limit cycle is asymmetric for 3.4 < u < 3.782. For u = 3.783, the motion
of the system is quasiperiodic, the Poincaré map being presented in the form of
closed curves. TFor 3.784 < u < 3.7999, the motion of the system is chaotic. For a
very small range of u, 3.756 < u < 3.761, the motion of the system is period-five.
Finally, for u > 3.8, the motion reduces to fixed points.

The behaviour of this system is summarized in Tables 10.1 and 10.2 as follows:

periodic; quasiperiodic; chaotic; fixed points.

10.2.5 N =2,h=0.5and f=10.8

This case has already been discussed in Chapter 9, Section 9.1. The bifurcation

diagram is shown in Figure 10.2(e) for u > uy. For u =~ 2.80, there is a stable

125



symmetric limit cycle after the Hopf bifurcation. The symmetry of the limit cycle
is Jost by a symmetry-breaking pitchfork bifurcation, which occurs at u = 2.832.
The limit cycle remains asymmetric for 2.832 < u < 2.8677. For higher u, i.e. for
u > 2.8678, the motion of the system reduces to fixed points.

The behaviour of this model may be summarized in Tables 10.1 and 10.2 as:

periodic motion and fixed points; no chaos.

10.3 COMPARISON BETWEEN MODELS 1
AND 2 FOR TWO DIFFERENT h

(a) Case h=0.2and [ =0

In this case, the routes to chaos for the two models are the same: chaos is
obtained following period-doubling motions; then by period-bubbling the motion
of the system reduces finally to a fixed point.
(b) Case h = 0.2 and f =0.2

In this case, we obtained the same bifurcation diagrams: the motion of the
system is never chaotic. The motion remains periodic, but for large enough wu it
collapses to fixed points.
(c) Cese h=0.2 and f =04

The routes to chaos are the same for the two models, through period-doubling
bifurcations. For the second model, its motion finally is reduced to fixed points.
(d) Case h = 0.2 and f = 0.6

In this case, the routes to chaos are almost the same, through period—doubling
bifurcations. For the second model, the motion of the system reduces finally to fixed

points.
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(e) Case h =02 and f = 0.8

As has already been described in Chapter 9, Section 9.2, the route to chaos for
the first model is via quasiperiodicity, while the route to chaos for the second model
is via period-doubling bifurcations. Thus, although both models become chaotic,
their routes to chaos are different.
(f) Case h=0.5and f =0

As already described in Section 9.3, the route to chaos for the two models is
the same, although differences exist from a quantitative point of view.
(g) Case h=10.5 and f = 0.2

The route to chaos is the same, the motion of the system becoming chaotic
through two series of period-doubling bifurcations; the first series comes from a
symmetric limit cycle around the origin which becomes asymmetric through a
symmetry-breaking pitchfork bifurcation, while the second series comes from a
periodic motion around two symmetrical points. The behaviour for the second
model reduces finally to fixed points for higher u.
(h) Case h =0.5and f =04

The route to chaos is the same for this case: through period-doubling
bifurcations. The motion of the system of the second model reduces to fixed points.
(i) Case h=10.5 and f = 0.6

In this case, the routes to chaos for the two models are very different. For
the first model, the route to chaos is through period-doubling bifurcations, while
that of the second model is through quasiperiodicity, and of course for higher u, the
motion of the second model reduces to fixed points.
(j) Case h =0.5 and f = 0.8

As has already been explained in Chapter 9, Section 9.1, the route to chaos
for the first model is through period-doubling bifurcations, while the second model

never becomes chaotic; it only displays period-one motions.
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10.4 MODEL 2 WITH RESTITUTION
COEFFICIENT AND h = 0.5

As a final modification to the models for the system under study, the impacting
of the system with the external cylinder is modelled by the restitution coefficient
theory, in conjunction with model 2. In this theory, when the system (in our case, the
first cylinder of the articulated system) impacts any of the two sides of the external
cylinder (left or right), its velocity after impact changes its sign and its value is
smaller than the one before impact. Another important detail in the computer
programming is the reduction of the time step near the wall; 6 may become very
small. If we introduce the three following notations:

Velocily before impact: V;

Velocity after impact: V,;

Coeflicient of restitution: c,

then, we shall have: V,; = -V ¢

104.1 f=0

In the bifurcation diagram, Figure 10.3(a), a period-one motion develops for
u > uy =~ 4.7. This period-one motion remains symmetric around the origin for
flow velocities 4.7 < u < 5.1. For higher flow velocities, as for u > 5.1, the motion
of the system reduces to fixed points.

In this model, the system develops a period-one motion followed by fixed points
and no chaotic motion has occurred, while in the model with a cubic spring model

for impacting, the system becomes chaotic through period-doubling bifurcations.
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104.2 f=10.4

The bifurcation diagram for this case is presented in Figure 10.3(b). A Hopf
bifurcation appears in this system for v ~ 3.5, This gives rise to a period-one
motion for u > 3.5, which is symmetric around the origin, and remains so, for
3.5 < u < 3.7955.

For u =~ 3.8, the system develops a period-two motion and impacts only on
one side of the external cylinder; the side is determined as function of the sign of
the initial condition. In this case, for u = 3.8, the initial condition is the positive
velocity of the first cylinder and the system will impact the left side of the external
cylinder, while for an opposite sign-initial condition, as for a negative velocity of the
first cylinder, we obtain the impact of the system on the right side of the external
cylinder. This period-two motion develops, in fact, only for a very small range of
flow velocities, for 3.7965 < u < 3.8. The phase-plane portrait corresponding to the
period-two motion of the system for u = 3.8 is shown in Figure 10.4(a).

For higher u, as for 3.801 < u < 3.832, periodic motlion develops for our
system which is impacting on both sides of the external cylinder. This periodic
motion is followed for 3.833 < u < 3.835 by another period-8 motion for this
system which again impacts both sides of the external cylinder. The phase-plane
portraits corresponding to the periodic motion are presented in Figure 10.4(b) for
u = 3.83, while the one for period-8 motion in Figure 10.4(c) for u = 3.835. Ior
u = 3.836 and u = 3.837 a chaotic motion occurs which is well presented in the
phase-plane portrait in Figure 10.4(d) for u = 3.836.

For higher flow velocities, for u > 3.838 a period-bubbling phenomenon takes
place: for u = 3.838 and u = 3.839 the system develops a period-four motion which
impacts only one side of the external cylinder, a period-two motion develops for

3.84 < u < 3.844 and is followed by a period-one motion for 3.845 < u < 3.855.
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The phase-plane corresponding to these flow velocities are presented in Figure
10.5(a,b,c) for (2) u = 3.838, (b) u = 3.84 and (c) u = 3.85.

This period-one motion modifies its shape for 3.856 < u < 3.86 and starts
to develop around one fixed point, as presented in Figure 10.5(d) for u = 3.86,
while chaotic motion further develops for 3.861 < u < 3.865 (Figure 10.5(e) for
u = 3.865). Furthermore, this motion develops with impacting on both sides of the
external cylinder, while period-one motion around two symmetrical points exists
for u = 3.875; fixed points develop for 3.876 < u < 3.9.

In this case, the system develops chaotic motion through period-two and
period—-eight motions, while for higher flow velocities the system develops a period-
bubbling phenomenon, and its motion will finally reduce to fixed points.

It might be said that there are similarities between the model with the impact
modelled by the restitution coefficient and the one modelled by a cubic spring; in

both cases chaos arises through period-two motions.

10.4.3 f= 0.8

The bifurcation diagram for this case is presented in Figure 10.3(c). For 2.79 <
u < 2.85, a limit cycle develops after the Hopf bifurcation which occurs for
u = uy =~ 2.79. By comparing Figures 10.6 and 10.7 for (a) u = 2.85, (b) u = 2.855
and (c) u = 2.86 the motion of the system is found to be period-one for (a) and
chaotic for (b) and (c). The motion of the system will finally reduce to fixed points
for u > 2.86.

The model with cubic spring as impact modelling never becomes chaotic, its
motion being presented by period-one motion and by fixed points, while the model
with restitution coeflicient as model of impact becomes chaotic for a very small
range of flow velocities (6u = 0.01), except for this range, the motion of the system

is always period-one or reduces to fixed points.
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Table 10.1: Routes to chaos for Model 1 and Model 2

h =

0.2

h=05

MODEL 1

MODEL 2

MODEL 1

MODEL 2

T

Period-2,4,8 motions above 2 symmetrical fixed points; Chaos

Period-bubbling motions; Period-one; Fixed points

Quasiperiodic

No chaos

Chaos

Fixed points

Chaos

0.2 Periodic Periodic Period-24,8 [ Period-2,4,8
No chaos Fixed points Chaos Chaos
No chaos Fixed points
0.4 || Period-2,4,8 motions above 2 symmetrical fixed points; Chaos
Fixed points Fixed points
0.6 | Period-2,4,8 | Period-2,4,8 || Period-2,4,8 Periodic
Chaos Chaos Chaos Quasiperiodic
Fixed points Chaos
Fixed points
0.8 | Period-1,2,1 | Period-2,4,8 {| Period-2,4,8 Periodic

Fixed points

No chaos
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Table 10.2: Comparison between Model 1 and Model 2

h=02 h=0.5
f || MODEL 1 MODEL 2 MODEL—I— MODEL 2
0 || P-24,8,CH{ P-24,8,CH I:-_2—,Z,8;CH P-24.8
PB;P-1;FP | PB;P-1;FP | PB;P-1;FP { CH;PB;FP
0.2 P p P-24,8,CH| P-24,8,CH
NOCH FP;NOCH P-2,4,8;CH | P-2,4,8;CH;FP
04 || P-24,8,CH | P-248,CH | P-24,8,CH} P-24,8,CH
P-24,8;,CH FP P-2,4,8,CH FP
06 P-24,8; P-2,4,8;CH P-2,4,8; P;QP;
CH P-2,4,8;CH;FP CH CH;FP
08 | P-1,2,1:QP | P-24,8;CH; P-2.4.8; P;
NOCH FP CH FP
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Chapter 11

CONCLUSIONS

11.1 SUMMARY OF THIS THESIS WORK

In this thesis, the nonlinear dynamics of a svstem of rigid articulated cylinders
subjected to external confined flow, has been studied for the first time. For this
study, two original analytical models are used.

The cquations of motion for both theoretical models were obtained by
application of Lagrange’s equations, in which the restoring, inertial and gravitational
forces acting on the structure were taken into account in the kinetic and potential
energies of the system. The hydrodynamic forces were incorporated partly in the
kinetic energy and partly as generalized forces.

These two models, and hence the equations of motion, differ as follows: in the
first model, the dynamics ot the system when no impact occurs with the confining
pipe is described by a set of linearized equations; in the second model, the motior-
rclated nonlinearities are taken into account approximately and they are introduced
mainly via Taylor expansions of .he trigonometric functions of state variables; these
nonlinear terras are retained up to order three. The first model was conceived
for two, three or four articulated cylinders, while the. second model only for two

articulated cylinders.
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In both models, impacting with the external channel is modelled by either a
trilinear or a cubic spring, presumed to exist between the external cylinder and the
articulated system contacting it. The impacting between the articulated system and
the external channel has also been modelled in terms of a restitution coeflicient.

An eigenvalue analysis was applied to the linearized model in order to find
the values of the critical parameter (in our system, the critical flow velocity u., ), at
which divergence or flutter instability occurs; u., was found to be the same for both
aforementioned models.

The nonlinear dynamics was found to be very varied, and many different routes
to chaos for these models were discovered by varying only three parameters, not
including the external flow velocity u, which is the main control parameter. The
three nondimensional parameters correspond to : (a) the number of articulated
cylinders, &V, (b) the nondimensional annnlar gap, &, and (c) the paraboloid for:a
of the end of the last cylinder, f. These routes to chaos were confirmed by various
nonlinear dynamics tuols, such as phase plane portraits, bifurcalion diagrams, time
viace and power spectrum plots, and by calculating the corresponding Lyapunov
exponents.

An analytical study was further done by using centre manmifold theory, in which
the dimension of the system at the degenerate fixed point (for which one type of
instability occurs) was reduced, in order to obtain a simplified subsystem, Using
the method of averaging, supercritical Hopf bifurcations were obtained, and the
approximation of the simplified subsystem on the cenire manifold was compared
with the actual flow computed numerically. Good agreement was found between
these analytical and numerical results.

As many interesting cases from the nonlinear dynamics point of view were

obtained, some of them will be described briefly in the following section.
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11.2 DESCRIPTION OF THE MOST
INTERESTING CASES

One type of interesting nonlinear behaviour was obtained for the first model with two
and three articulated cylinders (N = 2 and N = 3), for the same & and f (k = 0.2
and f = 0.4) and the same other system parameters. In these cases, the route
to chaos is through period-doubling bifurcations. This route takes place following a
flutter instability (for N = 2 model) or a divergence leading to flutter (for the N = 3
model). As the route for the N = 3 model is richer from the nonlinear dynamics
point of view, this route will be that outlined here, as follows. For u = uy,, a
divergence instability occurs, which in nonlinear dynamics corresponds to a pitchfork
bifurcation. Thus, for u > ug,, the origin is no longer a stable fixed point, but
new stable fixed points on either side are generated. By linearizing the system
in the vicinity of these new fixed points, purely imaginary eigenvalues appear for
u = uic, and limit cycles (period—one motions) develop for this flow velocity. 1hisis
followed by a cascade of period~doubling bifurcations, eventually leading to chaotic
motions. The Feigenbaum number was found to be in fairly good agreement to the
ideal Feigenbaum number. Then, for a higher flow velocity, the chaotic motion of
the system reduces suddenly to a period-one motion. Subsequently, for higher u,
chaos occurs once more, but following another route: through quasiperiodicity. The
motion becomes quasiperiodic, the quasiperiodicity being verified by constructing the
corresponding Poincaré maps which have the form of closed curves and for which the
ratios of fundamental frequencies are calculated. This is an interesting case, which
displays sequentially two routes to chaos, the period-doubling and the quasiperiodic
route; chaos occurs after an initial loss of stability via a pitchfork bifurcation which
later gives rise to flutter; in most of the other cases, either the period-doubling or

the quasiperiodic route occurs following directly a Hop{ bifurcation.
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Another interesting case is the one for which chaos arises through
intermittency, which occurred only for the first model with N = 3, # = 0.5 and
for two different f: f = 0.2 and f = 0.4. In this case, for u = g, a pitchfork
bifurcation occurs and, as in the preceding example, new stable fixed points arise
with increasing u. By linearizing the system around these points, the occurrence
of unstable limit cycles could be explained by the purely imaginary eigenvalues
which arise for a flow velocity upc which is impossible to detect in a bifurcation
diagram, as the difference between v at which chaos through intermiticncy appears
and u for which the motion of the system reduces to fixed points is loo small,
as already explained in previous chapters. Then, for a flow velocity very close to
urc an unstable limit cycle develops and for large enough time 7 for this u, chaos
through intermittency is obtained. The behaviour of the system with increasing r
is explained in the next paragraph.

The instability is weak and, although trajectories are attracted to the vicinity
of the limit cycle, the limit cycle amplitude increases gradually but continuously
with time. For a longer time interval, one of the bursts of “turbulence” is caplured,
which are characteristic of this type of chaos; the corresponding phase—plane plots
reinforce the view that, in this time period, the oscillation is chaotic. For higher
T, a quiescent, nearly steady oscillation followed by chaotic oscillations with several
unsteady bursts is noticed. As shown through the construction of first and second
return maps, as well as from the distribution of the lengths of laminar phases P(7)
versus 7, or from the number of laminar phases lasting longer than w, N(7 > 7)
versus Tg, the intermittency is of type IIL

The third interesting case to be discussed here is the one corresponding to
the first model with N = 2, h = 0.5 and [ = 0 (which corresponds to a blunt
end). A limit cycle develops after a Hopf bifurcation and is followed by a period-
one symmetric motion around fwo symmetric poinls with respect to the origin.

Furthermore, period-two, period-three and period-four motions, followed by chaotic
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motions may be observed around the same two points. For higher flow velocities
u depending on the initial conditions chosen, a reverse period doubling sequence
around one of the two symmetric points takes place; that means period-four, period-
two, and finally period-one motion. Finally the motion reduces further from a
period-one oscillation to a fixed point. Thus, this case has an interesting dynamical
behaviour, as u increases: chaotic motions arise around two symmetric points with
respect to the origin, through period-n motions, followed bty a period-bubbling
phenomenon, and finally the motion reduces to fixed points.

It is impossible to determine the behaviour of the first model with N = 2 for
flow velocities u between ug;, and uy, i.e. ugy, < u < uy, because of the fact that
its amplitudes become too large and this model is no longer valid for this range of
u. With the second model, however, no such difficulty exists, The dynamics will be
discussed in the following paragraph, for the second model with N =2, h = 0.2 and
S =08.

For u = ug, a pitchfork bifurcation occurs, so that the motion of the first
cylinder reduces to a fixed point; for higher u, as for v > ug4,, new fixed points
occur as the flow velocity u increases: the distance away from the origin for these
fixed points increases with u for a certain range of u, while it decreases with u for a
sccond range of u, and fi~ally increases again for a third range of 4. Then, the system
is stable about the origin for the fourth range of u. And finally, through a period-
doubling cascade, the motion of the system becomes chaotic and for higher flow
velocities reduces suddenly to a fized point as in all cases considered when analyzed
by the second model, while {or the first model the amplitudes of the system become
too large and solutions fail to converge.

In the cases considered until now impacting was modelled by a cubic spring.
One interesting case was found with the restitution coefficient method and it is
discussed next. For h = 0.5, f = 0.4 and ¢, = 0.75, for u = u;; a Hopf bifurcation

appears in the system. This gives rise to a symmetric period—one motion. For higher
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u, the system develops a period-two motion and impacts only on one side of the
external cylinder, the side being determined from the sign of the initial conditions.
This period-two motion develops in fact only for a very small range of flow velocities.
As u increases, a periodic motion followed by a period-eight and by chaotic motion
develops, while the system then impacts on both sides of the external cylinder. For
higher flow velocities, a reverse period-doubling sequence takes place: period-four,
period-two and period-one motion which impacts only on one side of the external
cylinder. This period-one motion modifies its shape and develops around one fixed
point; it is followed at higher u by chaotic motions again. In the end, period-one
motion aronnd two symmetrical points exists and reduces to fixed point.

It should be mentioned that chaos does not always develop. In some cases the

motion of the system remains periodic.

11.3 SUMMARY OF CONCLUSIONS

Two new models were constructed for the articulated cylinder system subjected
to external axial flow confined by an external channel; the so-called first model
was described by a linearized set of equations, apart from terms associated with
impacting. In the so-called second model geometric nonlinearities, again other than
those associated with impacting, were introduced mainly via Taylor expansions of
the trigonometric functions of the state variables. The nonlinear behaviour of this
system was studied for the first time in this thesis.

Three different models for simulating the impact of the articulated cylinder
system with the external channel were considered: a cubic spring (for both the
first and the second model), a trilinear spring (for the first model), and through
a restitution coefficient (for the second model). The qualitative behaviour of the
system (first or second model) with different impact models was found to be the

same.
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11.3.1 Dynamics of the N = 2 and N = 3 systems via the

first model

For N = 2, all motions leading to chaotic motions develop following a flutter
instability, while for N = 3 most of these motions (except the ones for f = 0,
i.e. a blunt end) occur following a divergence instability, giving birth to flutter; in
this case, the new stable fixed points become unstable at higher u, and this results in
a flutter instability according to linear analysis, or more precisely in the nonlinear
analysis to a Hopf bifurcation, so that limit cycles develop around the new fixed
points.

After performing the eigenvalue analysis of the system, the nonlinear equations
were solved numerically-except for an analytical study, as summarized in section
11.3.4 here. The numerical integration was performed generally by the Runge-Kutta
algorithm; some results were checked via the Runge-Kutta~Fehlberg algorithm and
were found to be the same. Various sets of initial conditions were used, to check
whether there are coexisting attractors, but in fact the solutions always converged
to the same set.

For N =2 and h = 0.2 and k = 0.5 and for most values of f, the nonlinear
behaviour of the system is qualitatively the same: chaos develops via the classical
period-doubling route; except for f = 0.8, in which case the route to chaos is
through quasiperiodicity.

For N = 3 and for different h, the routes to chaos are different, as follows:
for h = 0.2, a period-doubling cascade leads to chaos, while for A = 0.5 chaotic
motions occur through intermittency. There are some exceptions to this generic
behaviour: (i) for f = 0.8, and for f = 0, A = 0.5, chaotic motion is preceded
by quasiperiodicity; (ii) for f = 0, h = 0.2, no chaotic motions at all develop, in
contrast to what was obtained for the N = 2 system.

In fact the dissimilarity in the results for N = 2 and N = 3 is not surprising
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if one compares with the work of Paidoussis and Dcksnis (1970) for the analogous
system involving an articulated system with internal flow; in that case also, where
calculations for all N from 2 to 8 as well as for the continuously flexible system
(N — o0) were conducted, the dynamics for N = 2 were particular; N = 3,

however, began to display generic behaviour, typical of higher values of N.

11.3.2 Comparison of the dynamics of N = 2 system as

predicted by the first and second models

It is impossible to determine the dynamics of the system with the first model for
flow velocities u between the values for divergence and flutter, as predicted by linear
theory, i.e. ug, < u < uy, because of the fact that its amplitudes become too large
and the model is no longer valid for this range of u. In contrast, according to the
second model, motion reduces to fixed points in the same range of u. The sume
applies for the range of flow velocities u higher than those for which the motion of
the system is and remains chaotic u.s, i.e. u© > u.: the first model cannot converge,
while the second one gives results.

It is of interest, however, that in the ranges of u where both models give results,
notably for uy < u < uc, the dynamical behaviour of the system is qualitatively
similar. This gives us confidence in the predictive ability of both modecls, at lcast
in this crucial range of u, and suggests that the dynamics is reasonably robust and

the behaviour may be structurally stable.

11.3.3 The effect of varying f and h

As the free-end form coefficient f increases, the flow velocity at which the first
critical flow velocity u. occurs, decreases; or, as the end of the last cylinder has a
more streamlined end, the system becomes unstable for a lower u., than for a blunt

end.
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As the hydraulic diameter h increases, the critical flow velocity at which the
first instability u., occurs, increases. This is also known, as the diameter of the
external cylinder D, or the hydraulic diameter D, = D, — D increases, the
system becomes unstable at higher flows; for unconfined flow D), — oo, the critical

flow velocity u., should be higher than in confined flow.

11.3.4 Analytical dynamics

The analytical part of the nonlinear study is confined to N = 2, according to the first
model (as described in Chapter 5). In this analytical study, centre manifold theory
is used, whereby the fourth order system is reduced to one of second order (for the
Hopf bifurcation). The analytical results obtained fully support the numerical ones

and demonstrate the usefulness and power of centre manifoid theory.

11.3.5 On the variety of nonlinear dynamical behaviour

obtained

The most interesting aspect of the research described in this thesis is that it
uncovered an immense richness in the dynamics of this system, surpassing that
for the pipe conveying fluid.

For example for the N = 3 system, as analyzed by the first model, in which
only two parameters were varied k and f, three different routes to chaos were found:
by a period-doubling cascade, by quasiperiodicity and via intermittency. This may
not be unique, but if it is not, it is certainly rare.

In the case of type Il intermittency, the critical flow velocity at which a stable
limit cycle occurs cannot be pin-pointed, because of the fact that the difference
between the flow velocity at which the motion of the system reduces to fixed point
and the flow velocity at which the motion of the system becomes chaotic through

intermittency is very small. For this reason, the intermittency phenomenon that
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has been found in some of the cases considered in this thesis is quite original; to the
author’s knowledge this has not been encountered elsewhere.
These were the most salient conclusions reached in the work presented in this

thesis. Some suggestions for extending this work follow.

11.4 SUGGESTIONS FOR FUTURE WORK

In this thesis, an original theoretical study has been made of the nonlincar dynamics
of an articulated cylinder system subjected to confined axial flow. The purpose was
to demonstrate that this system is capable of displaying an extremely rich behaviour,
and hence — especially as it corresponds to an interesting and practically important
physical system —that is deserving of further study.

The work and especially the results presented in this thesis represent a sample
of a larger set. In effect, the only parameters that were varied here, other than the
flow velocity u, which is the control parameter, and the number of articulations N,
was the narrowness of the annulus, &, and the end-form cnefficient, f; however, there
are three other important parameters which might be varied in the future. These
are: f3, which is the nondimensional mass parameter, which is dependent on the
mass of the cylinders and the mass of the displaced fluid; ¢, which is the slenderness
parameter (¢ = L/D); and «, which is the gravitational parameter, which is related
to gravity and buoyancy forces, and to the stiffnesses of the rotational springs at the
articulations, As three routes to chaos were found, it would be interesting to trace
how these routes transition from one to another for different ranges of parameters.

It is known that when a pitchfork and a Hopf bifurcation occur simultancously
for some parameters, a double degeneracy occurs. By using centre manifold theory
and normal forms, it has been shown in some other cases that heteroclinic cycles exist
in the reduced subsystem, suggesting the possibl~ ~istence of chaotic behaviour (Li

and Paidoussis (1994)). Unfortunately, for the ranges of parameters considered
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in this thesis, no double degeneracy was found, so that no further work in this
dircction was done, However, the scarch for doubly degencrate conditions was not
truly exhaustive. As another possible further work, it would be interesting to search
further in the parameter space, with the aim of finding double degeneracy.

In this, the first nonlinear study of the system, several aspects of the physical
system were idealized and simplified. It is clear now, after discovering the richness
in the dynamical behaviour of the system, that it is definitely worth to spend the
cffort and time which would improve the model by bringing it closer to physical
rcality. One such item would be the proper, position-dependent modelling of the
added mass and fluid viscous coefficients. Another is the modelling of the flow
close to the articulation as it approaches the outer confining cylinder. Yet another
would extend the model to cover three-dimensional motions, in which case the
modelling of the impact would be much more complex-but not impossibly so (see,
for example, the work of Mureithi (1993) for a different problem)). In all this, since
there is a considerable range of possibilities, the choices should be guided by a real
(experimental) system, which should be investigated concurrently, as discussed in
the next paragraph.

An experimental investigation is recommended, in order to verify the
theoretical results presented here and before further analytical work is done. A
demonstration was already completed in the laboratory, for which a system of two
articulated cylinders made of alderin was subjected to confined axial flow, By
varying only two parameters: the external flow velocity, u, and the form coefficient
of the downstream end of the last cylinder, f, one obtains critical flow velocities
ue very close to those found by the theory; more exactly, the same instabilities, i.e,
divergence or flutter for flow velocities relatively close to the ones predicted by linear
theory. These experiments should be taken further to verify that chaotic motions
of the system arise for u > u.,, and that they are (or are not) obtained through the

different routes mentioned previously.
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Concerning bifurcation theory, the usc of some existing software, such as
the AUTO packages (Docdel 1981) would allow systematic construction of the
bifurcation diagrams, and would provide more information concerning the system
behaviour. A bifurcation diagram was constructed by AUTO for Case 4.1, for which
the route to chaos is through period-doubling of the motions. In this case, one may
find the following, in the notation of AUTO: HB (Hopf bifurcation), BP (Bifurcation
point), PD (Period-doubling); as well as MP {end of branch; no convergence). The
flow velocities u for HB, BP and PD were confirmed to correspond to those obtained
by Runge-Kutta integration, corresponding to the Hopf, pitchfork and period-
doubling bifurcations. Further work would be useful, perhaps revealing solution

branches not found by our methods.
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Appendix A

Viscous Forces — Laminar

Boundary Layer

Relf and Powell (1917) gave measurements of the force on a smooth 3/8 in. diameter
cylinder sct at angles varying by 10° intervals from 0° to 90° to the wind direction.
It was pointed out by them that Fjy is nearly proportional to sin?#, where 8 is
the angle between the axis of the cylinder and the wind direction. If U is the wind
velocity, U sin 0 is the component of velocity at right angles to the cylinder, and since
the drag on a cylinder placed at right augles to the wind is very nearly proportional
to U2, Relf and Powell considered that the normal component of velocity determines
the normal force, independently of the longitudinal component U cos@. This result
was to be expected on theoretical grounds, because at the Reynolds number of
the Rell and Powell experiments (7.9 x 10%) the boundary layer is laminar. Relf
and Powell’s measurements were successfully used by icLeod (1918} to calculate
the shape of a flexible cable used for towing weights under an airplane. For this
purpose McLeod found that sufficiently accurate results could be obtained if F,
were negiected altogether. It is not possible to apply Relf and Powell’s data directly
to cases in which the Reynolds number on the force acting on a cylinder placed

sbliquely in a stream of fluid is needed.
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The component of force acting per unit length of a cyvlinder at right angles
to its axis when placed obliquely in a fluid stream will be denoted by Fy, and Fy
depends only on U sind, so far as variations in {7 and @ are concerned.

The experimental results on smooth cylinders set at right angles to a fHuid
stream of velocity V are represented in Figure A.1 (Goldstein 1938). In this Agure

the drag coefficient Cy is plotted against Re = pV D/yu; Cy4 is defined by
1 2
Fy = 5pV*DC,, (A.1)

where D is the diameter of the cylinder, p is the density of fluid and g the viscosity.
Curve a, Figure A.1, represents Cy. Curve b represents Cy,, the part of Cy which
is due to tlie component of form drag normal to the surface of the cylinder and in

curve ¢ the part Cy due to the tangential component. Evidently
Cy = Cyp + Cy. (A.2)

It is seen in Figure A.1 that in the range 20 < Re < 10%, Cy, varies only between 0.9
and 1.1. On the other hand, Cy is found to be nearly equal to 4Re~"/? in this range
(Thom 1928). This applies to “smooth” surfaces, and to flows with Re < 3 x 103,
approximately. Frc:n the above equations, Taylor (1952b) obtained the empirical

expression

1
Fy = ~pDV? (Cd,,+ \/—':t_;) : (A.3)

In the case of flow with velocity U and angle of incidence 0,

[s)

V =Usin®, Re= Reysind, (A.4)

where Rey is the Reynolds number based on U.
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Then, the component of the fluid force per unit length, acting in the direction

normal to the cylinder i=

1 4
F=—DU'02(C ——), AS
N 2{) (Usin) 4t vRepsind (A.5)
or
1 2 . 2 4sin®? ¢
N = = 0 . .
Fy 2,r)l.’)U (Cd,, sin® @ + e (A.6)
For relatively large Reyy,
i
FN = §pDU20dp Sin2 0. (A.?)
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Figure A.1. Drag coefficients for lateral flow past smooth circular cylinders
(Goldstein 1938): (a) Cy, the total drag coefiicient; (1) the form drag coeflicient,

Cup; (c) the friction drag coefficient, Cy.



Appendix B

Viscous Forces — Turbulent

Boundary Layer

If the cylinder is so rough or the flow velocity high enough that the boundary layer is
not laminar, the force cannot be analyzed by the method used for smooth cylinders.
In general, it is not possible to make any theory of the aecrodynamics of rough
cylinders because the force would depend on the exaci nature of roughness.

If the roughness consists of a number of long projections pointing equally in
all directions, it is likely that the force on them would be in the direction opposite
to that of their motion. The normal component of force Fy might be divided into
portions due to the pressure and to skin friction, the friction being the resultant force

on the projections. In that case, the force component formulae might be (Taylor

1952b)
1
iy = §,¢JDU2 (C’d,,sin20+ C}sin 0) , Iy = %pDUQCf cos@. (B.1)

This case is illusirated as a in Figare B.1. In the limiting case when the diameter
of the cylinder is so small that Cy is negligible compared with Cy, te “cylinder”

would look like a hairy string. The force components might then be taken as

FM%MWQm&Fh%wWQm& (B.2)
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These formulae might also be expected to apply te a body in the form of a fine
thread on which a number of equally spaced spherical beads were threaded. This
case is illustrated as in the lower part of Figure B.i(c).

Another possible form of roughness might consist of thin disks or plaies set at
right angles to a cylinder. In this case, the roughness would make a much greater

contribution to Fy, than to Fy, and the appropriate formulac might be
1 2 =2 A ] 2 ’
Fy = EPDU Capsin“d, Iy, = Gpl)U‘C'; cosfl. (13.3)

This case is illustrated in Figure B.1{(d). All these formulac are entirely speculative,
Finally, the overall normal force per unit length for an “arbitrary rough
surface” is taken as a linear combination of (B.2) and (B.3), and we shall obtain the

same formulae as in equation (B.1)
1
Fy = 5pDU* (Capsin® 0 + Cysin) . (13.4)

The overall longitudinal force per unit length is assumed to be also of the form of

(B.1), applying to both cases (B.2) and (B.3), i.e.

F, = %pDU%‘, cos . {B.5)

Additional experimental data on forces on inclined cylinders in flow, compiled by

Hoerner (1958), supports equations (B.4) and (3.5). The drag and lift coeflicients

are given as
Cy=1.1sin®¢ +0.02, and C;= 1.1sin?$cos . (B.G)

The normal and longitudinal forces (per unit length), Fy and Fy,, respectively, may

be obtained from the following equations:

. ; ; F o
Fyz%sian)-i-%coscﬁ and szﬁcosé——-{smd;, (3.7)
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where Fy and [ are the forees in the drag and lift directions, respectively, namely

Fy = %pDLU’*cd, F = 2pDLUC; . (B.8)

From these equations, for small ¢,
1
Fy o %pDUz(l.l sin? 6 +0.025in6), Fy =~ 5pDU0.02¢054).  (B.I)

By inspection, equations (B.9) are of the same form as equations (B.4) and (B.5),

with

Cspp =11, and C;=0.02. (B.10)

For a point in the jth cylinder in the system here under consideration, these

expressions may be written in the form

_ 1 . . 1
(Fn)j =~ EpDU”(l.l sin ¢; + 0.02sin ¢;) and (Fr); =~ §pDU2(0.02 cos ¢;) .
(B.11)
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Figure B.1. Different types of roughness on the cylinders (Taylor 1952).



Appendix C

Linearization of Viscous Forces

In order to obtain the simplified lincarized expressions for Fy and £y, let us consider
a (z,y)-plane cross-section of an element of cylinder (Figure C.1), where @ is the
angle of incidence of the cylinder in the y-direction. By inspection of the above

diagram, we can write
0 =040, (C.1)

where

6, = tan~}[dy/dz]; 0, = tan'[(1/U)(dy/dL)]. (C.2)

Then, for small deformations 8, =~ tan#, = dy/dz and 0; ~ tan8, = (dy/di)/U.
Therefore, § = dy/dz + (dy/dt)/U and the normal viscous force per unit length
Fyn = 3pDU?*[Cy,sin® 0 4 Cysin 0] =

1pDU? [Cupsin? (dy/dz + (dy/d1)/U) + Cy sin (dy/dz + (dy/dt) V).

For small deformations, sin8 ~ 8, so that the above equation reduces to:

a1 2 dy 1dy\* dy 1dy .
Fy=3eDU [Cd”(dz+Udt) e\ tua)l (C.3)

To avoid powers of derivatives in the final equations of motion of the cylinders,

which would make it nonlinear, the quadratic normal viscous forces have heen

. linearized at U/ = 0.
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The linearization procedure, involving the first term of equation (C.§) is

lustrated here. As U — 0,

d
Fx pDCdp ( af:) ,

ur
FN dy
%pD = (4 (dt) . (C.4)
This expression is lincarized by using the approximation
FN _ dy
10D~ Ca (dt) : (C:5)

illustrated graphically in Figure C.2, where Cy is the drag coefficient in still fluid,

has dimensions L/T and is given by

Ca = Cup (C.6)

dy
dt

In conclusion, utilizing also the results of Appendix B, we can write equation

(C.3) as follows:

. 1 0y dy
Fy = 2pDUC'f( 7t ax) +2 pDCy (at) (C.7)
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Relative
velocity

Figure C.1. Calculation of the angle of incidence 6 of the cylinder, 0 = 0, + 0.



Figure C.2. Linearization procedure of normal viscous force Fy at U — 0, involving

the drag coefficient Cy = Cy, (dy/dt).



Appendix D

Convergence of the Solutions of

the Equations of Motion

Results for Case 1 (k = 0.5, f = 0.8, k. = 5 x 10%) and N = 2 will be analyzed in
this Appendix, in order to discuss the convergence of the solutions for this system.

For any flow velocities u between 2.739 and 2.790, by taking three diflerent
time steps ém; = 0.01, &r2 = 0.001 and 673 = 0.0001, we have obtained essentially
the same final values for velocities and displacements of the system ¢, ¢a, ¢, and
¢.. For example, for u = 2.739, 2.7397, 2.73975, 2.74 and 2.79, it was found that the
velocities and displacements of the system were the same up to the fourth decimal
(in Genplot, the final results on the computer screen are given to the fourth decimal).

To see more precisely the difference between the numerical results obtained
with two different time steps (ér; = 0.01 and ém = 0.001), we have taken the
same system, for which the external flow veclocity s u = 2.77, the number of
time steps being N = 500 to 502. Then, for §7, = 0.01, we obtained ¢y =
0.0374 6992 6807 4892, while for ér; = 0.001, ¢,,,,. = 0.0374 7012 7821 6894. This
means that the results are the same up to the fifth significant figure. More precisely,
the displacement of the first cylinder ¢ymq- Obtained with the time step ér, = 0.001
is 0.0005 % higher than the one obtained with é7; = 0.01.
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Furthermore, with the same aim, we shall calculate the critical flow velocity
corresponding to the symmetry-breaking pitchfork bifurcation (the first nonlincar
bifurcation after the classical Hopf bifurcation), for two different time steps. Taking
again as numerical example the system of Case 1, the critical flow velocities
for the symmetry-breaking pitchiork bifurcation (which corresponds to the first
asymmetric limit cycle), was found to be the same (u, = 2.7944) for both time
steps, (611 = 0.001 and ér; = 0.01), so that in this case the results are the same up
to five significant figures,

For flow velocities u smaller than the one corresponding to the Hopf
bifurcation, as for example, © = 2.73, fewer time steps will be needed (N = 400
to 410) than for u = 2.7395 (N = 1400 to 1410) for the system to converge to a
stable solution. For u higher than the flow velocity u corresponding to the Hopf
bifurcation, by taking the time step 7 = 0.01, for flow velocities 2.74 < u < 2.77,
fewer time steps (=~ 50 for v = 2.77) will be needed than for lower flow velocities

{~ 80 for u = 2.74) for the solution to converge to a symmetric limit cycle.
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Appendix E

Details for the Centre Manifoid

Calculations

E.1. Calculation of y; and ps
In order to calculate the unfolding parameters y; and 3, in this Appendix will be
presented the steps in the corresponding numerical calculations. In the equations of

motion (5.1) for the system of Case 1, and for u = U = 2.7396, their corresponding

terms may be written as:

é1
és ]
y= (L.1)
Tl
| é2 |
and
[ _17.65 —5.39 —38.68 —45.46 |
103.08 8.72 350.18 312.26 .
Aluer) = . (£.2)
1 0 0 0
0 1 0 0o |
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Then, by MACSYMA, the values for the coefficients ag(u), a,{u), az(u) and

as(n) were calculated from the equation
[A{u) = AL = 2 4 a3(u)X® + a2(u)A? + a;(u)A + ag(u). (E.3)

The flow velocity u will be taken as parameter, so that, after replacing the
numerical values for our system in [A — A}, the coefficients will be determined as

functions of u:

ap(u) = 748.11u* — 6934.64u?,

ay(u) = —40.36u® — 94.47u® + 641.50u + 507.56 ,
az(u) = 2u — 75.50u® + 689.68 ,

aa(u) = 2.72u + 1.47.

(E.4)

For A;2 = oy £ iw, (Chapter 5), and by taking into consideration equations
(E.3) and (E.4), [A(u) — M] may be written as function of its real (Re;) and

imaginary (Im;) parts as follows:
[A(u) — M] = Rey (o1, w1, u) + 2 Imy (o1, wy, u) . (E.5)

For wy = 0 in the case of a Hopf bifurcation (purely imaginary eigenvalues),
the real and the imaginary parts will be functions only of o;, and u, respectively.

Then, one may write:

Re,(wy, u) = w} — az(u)wi + aglu),

Imy (wy,u) = —aa(u)wf + ay(u),
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the partial derivatives of which wiil be

ORe, _ olmy _ ~3azw?t + ay,
doy Oy l
agzl _ —%wH %%hh- (1.7)

By replacing the corresponding values for the system considered in Section
8.1.1, wy = 9.0176 and u = u,, = 2.7396, which is the critical flow velocity for the

first Hopf bifurcation in the above equations, we shall obtain

BF‘{:, — 31:2; = —1452.14 , %_Iiﬁl = —Qalo_m‘l = 614.88 N

Im, _ JRe, _
—BE]- = —9073.39, WL = 57008.98 .

(13.8)

Q

By replacing these values into the equations

Rei(epy, wo + €3, uer + ) =0,  Imy(epr, wo + epta, uer +ep) =0.  (E.9)

py and ps will be obtained as functions of p only. These values will be  p; =

31.046517p and p3 = —19.3942644.

E.2. Calculation of us
In this case, A3 = eu, is the eigenvalue for the pitchfork bifurcation, which occurs
for u = 1.694644 + ey, where u., = 1.694644.

As the system is the same as in the foregoing section, the coefficients agy(u),
ay(u), az(u) and az(u) will have the same form as in Section E.1 (equations (E.4)),

but their numerical values will be different, because of the fact that u., is different.
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By replacing X and u from the first paragraph into equation (E.3), and by
neglecting the terms in p2, p and pd, the final equation g, = —4.919u will be

obtained.
E.3. Centre manifold calculation for Hopf bifurcation
If the system of nonlinear equations is

mll‘lgl + m12¢52 - mll‘f;l - m12¢52 =0,

m21¢51 + m22<£2 - mzlﬁf;l - m22¢.2 =40,

- - . . (E.10)
my ¢ + Myade + endy + 22 + kg + kiode = —K.¢7,
T”-2l¢;1 + m22¢;2 + C21¢-1 + 622¢.2 + kayy + kg2 =0,
it may be written in compact form as
By+Ey=F, (E.11)
where i -
0 0 my mya
0 0 m m
B— 21 22 , (E.12)
my my2 C11 C12
| Mgy Maz C21 C22 i
= —mmy2 0 0
—m —m 0 0
E— 21 22 ‘ (E.13)
0 0 ki ky2
] 0 0 ka k32 ]
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: (13.14)

and y has been defined ir equaiion (E.1).
Finally, equation (E.11) will be multiplied by B!, and may be written also

in the form

y +B Ey = B7'F, (15.15)

where A = —B~1E, and the value of A has already been calculated for the Hopf
bifurcation in equation (E.2).
The transformation of coordinates y = Px will be used.  With this

transformation, the following equation in x is obtained:
Px = APx+B~'F. (I.16)
We multiply this equation by P-1 and we obtain
x =P 'APx +P-1B-!F, (15.17)

where P is the modal matrix, as already discussed in Chapter 5,

By replacing the corresponding numerical values for the system studied,

equations (5.12) and (5.13) will be obtained.

E-5



Appendix F

Estimation of the End—Form

Coefficient f

'The downstream end is approximated by a paraboloid of the form y? = 4aw, where
y is the radius of the cylinder system, w is the length of the paraboloid and a its
focal distance.

Consider a specific case, in which the diameter of the cylinders is O = 1.55 cm;
hence, ¥ is equal to r = 1.55/2 = 0.775 cm. It is recalled that f = 0 corresponds
to a blunt end and f = 1 to a streamlined end. Intermediate values of f are
cstimated empirically by sketching the corresponding paraboloids and drawing on

the experience of Paidoussis (1973) as follows:

.lU=0.19;ﬂ=0-78 ~—— :f"_‘_-'O

o W= 0.39; a=0.39 v : f ~ 0.2

o w=078 a=0.19 U : f~04



o w=1.16;a=0.13 U : f~06

e w=1.55;a=0.10 : =08

Dimensional quantities (w and a) are in cm.
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Appendix G

Comments on the Signs of the
Various Terms appearing in (Fy);

and (FL)]

In Section 8.3.3, the viscous hydrodynamic forces (Fy); and (FL); for a point in the
jth cylinder for the N = 2 second model were already calculated in Chapter §, and
they were given by equations (8.23) and (8.24).

Therefore, these forces may be determined for the first cylinder (7 = 1), and

for the second cylinder (7 = 2), as follows:

(Fh = gpDCuplUsin gy + €4 + 3pDUCUsin s + €611, (G)



1 - - UL
(Fx): = 5pDCa, [161cos(d2 — 81) + £d2 + Ussin 6]’

+-;—pDUCf 161 cos(d2 — é1) + €62 + U sin o], (G.2)
1
(FLh = EpDUC_( {U cos é], (G.3)
(Fe)a = 5pDUC; [U cos b = 1y sin(; — )] (G4)

We shall next calculate the Taylor expansions for the trigonometric functions

appearing, in the foregoing:

sing = 4y - <8, sings = by 8, (G5)
1 2 1 2 +

Cos qb; =1- ’2-¢1, COSd)g =1]- -2-¢2, (Cl.())
cos(ds = 1) =1 = 562 = Y, (G7)
sin{gs — #1) = (6= b)) = 22 = )" (:8)

By replacing these Taylor approximations in equations (G.1)~(G.4), the following

expressions are obtained:

1 . 1 .
(F) = 5pDUCyy (8~ 561) + pDUCutd (40 - 5#1)

1 ’ 1 1 [ 4
+§pDC¢p£2¢12 +5pDUC, [U (¢, - geﬂ?) + £¢z] »  (G.9)



(Fule = 5pDCuld’ (1= (62~ )] + pDUCHIG: [62— 568 — 5622 — Y]
1 1 . 1
+§pDU2C74,, (?53 - 5‘15;) + pDUCy € ¢z (¢2 - €¢g)
. i 2 1 252
+pDCupledid [1 = 5(62— 7| + 50DCuts

+5oDUC, [eha+U (6= 38) +14 (1- 5 -0F)],  (©10)

1 1
(Fuh = 300U (1 362) (G.11)

(FL); = %pouc, [U (1 - %@53) — Iy (éz — ¢~ %(d’z — ¢1)3)] . (G12)

In equations (G.9)-(G.12), one may see that there are basically two kinds
of terms: those related directly to lateral velocities, for instance £¢; (for ¢, > 0
and ¢; < 0 we should get Fy with opposite signs; i.e., always opposing motion);
and those related to the approximating angles, such as sin® ¢;, the sign of which is
positive or negative, as ¢; is positive or negative. Therefore, the signs of the terms
of the viscous forces formulation, or equations (G.1) to (G.4), need to be further

analyzed.

In (Fy)1, i.e., in equation (G.9), we have the following terms:

(i) ¢} — 141, which will be rewritten as |¢1| (1 - %qﬁf), and we see that this

changes sign as ¢, does and has the desired property, as discussed above;
(ii) E’élz, which will be rewritten as £2 |¢1| ¢1 for the same reason as for (i);

(iti) ¢1 — L¢3, which may be written as ¢; (1 — 1¢2);
6 671
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(iv) 451 (qbl - éq.’)?), which has the same sign as ¢51¢>;, which requires further

discussion,

In the type of term as in (iv) above, the fluid force is a composite of two effects: (a)
the flow due to inclination of the pipe, and (b) the flow due to the velocity of the
pipe, which, in this case, is in the opposite direction. Then, the sign of the normal

viscous force (Fy); is analyzed, with respect to the sign of ¢, and by:

e if , > 0 and (51 > 0, the corresponding term in (Fy); will be positive;
o if ¢; > 0 and q,';l < 0, the corresponding term in (Fy); will be negative;
o if ¢, < 0 and :;51 < 0, the corresponding term in (Fy); will be negative;

e if ¢; <0 and ¢; > 0, the corresponding term in (Fy); will be zero.
Then, the term in (iv) may be written as % “4;51‘ 61 + ¢, |¢31|] (1 - %qﬁf)
In the same way, the different terms of (Fy)2 will be further rewritten as
follows:
(v) ql;,z[l — (@2 — $1)?] will be rewritten as b1 |<;6,| 1= (¢ — #1)%;
(vi) U?¢2 [1 - %tﬁg] will be rewritten as U2¢; | ¢ [l - §¢§];
(vii) 216616, [1 — 1(d2 — ¢1)?] will be rewritten as

I¢ [¢1 I¢2| + |¢1| 4”2] [1 — 3(¢2 - ¢1)2];

(viii) 26U a2 (1 — 142) will be rewritten as €U |d2| é2 + 6 Ial] (1 = L43);
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(ix) 2U1dy ¢ (l - %d;g) [1 — 142 — & )2] will be rewritten in the form
Ul[|é| 82 + 1 16l] (1 = 363) [1 — (2 — 80)7);
(F1)1 and (FL); remain unchanged.

Triantafyllou and Chryssostomidis (1988) have shown that the term of the
form [U sin ¢; + f*‘;tr! which is found in equation {G.1) for (Fn),, could be written
as [U sin ¢ + E¢51] |U sin ¢; + £¢';|; in their formulation, the sign of forces changed

with the model variation in time.

So that two formulations were presented for the viscous forces: the first one,
which uses (i) to (ix), and the second is the one presented in the previous paragraph.
These two formulations will lead to the same final viscous forces, as it will be shown

in the following paragraphs, for (Fnxh.

In the first formulation, by replacing (i) to (iv) into equation (G.9), one obtains

for (Fn )i the following equation:

(Fy) = %pDUszlelél (1 - fqubf)
+%pDUCdp€ (161161 + 61 (1) (1 - %ﬁ)

+%pDCap€2d;1 |6:] + %PDUC! [U (451 - édf;‘) + 5951] - (G.13)



Based on the second formulation, from equation (G.1), one may write {Fy),

as follows:

(Fy) = 1

, N S _ .
1= EpDCdp[U sin @1 +&¢) |Usm o1 + fé,l +;pDUC‘;[U sin gy + &), (G.14)

Then, by Taylor approximations, one may write equation {G.141) as:
1 1, . 1 4 .
(Fuh = 5pDCer [U (1= c8) + 6] |U (61— 1) + 4

+%pDUC; [U (m - %qsi‘) + Edh] , (G.15)

Then,

(Fh = 5oDUCor (62— 58) |61 — 268
+5pDUCkED 1] (1~ 567)
+3pDUCHE || 61 (1 362)

+%ppcd,,gﬂ¢', 6] + %pouc, [U (qbl - éqﬁ?) + 5&.] . (G.16)

After many calculations, and retaining only terms up to third order, one may
obtain the equivalence of equations (G.16), which were obtained through the second
formulation, with equations (G.13), which correspond to the first formulation.

In the same way, the other viscous forces acting on the first and second cylinder
for the N = 2 second model, i.e., (Fy)2, (£1); and (F}); were found to be the same

for both, first and second formulation.
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Appendix H

Calculation of Base Drag

Coefficient,

The pressure in the wake of a blunt-based body is reduced as a result of the
tubular jet around it. Hoerner (1958) described the insulating effect of the separated
boundary layer, which tends to diminish the jet-pump effect. |
In our articulated cylinder system, there will be a force due to the base drag
acting on the last cylinder. We already know that the last cylinder of the system has
a free end, the form of which depends on the nondimensional parameter f; following
Hoerner, the base drag force may be expressed as D, = 1pU?5,C;, from which the

base drag coefficient will be given by
Cs = Do/ (30U7S,). (H.1)

From (H.1), it may be concluded that Cj is inversely proportional to some measure
of the boundary layer thickness at the base, which may be characterized by the drag
on the forebody (Dyore). Then,

Cb = 0.029(%pU255/D10,-¢)1n, (H.Z)

where Dy, is the total drag acting over the entire forebody. As Dy, = 3pU2S:Chp,
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where Cy; is the skin friction drag on the forcbody, C; will be:
Cy = 0.029/(Cj)'>. (H.3)

This formula is applicable to cases where the base area is essentially equal to the
maximurn cross-sectional area, which is the case for the system studied.
Hoerner proposed Cjp = C; = 0.02 as the skin friction drag coeflicient on the

forebody; then, by replacing its value into equation (H.3), we obtain
Cy = 0.029/(0.02)"/2 = 0.2. (11.4)

The virtual work associated with the last cylinder (the second for a two-degree-of-
freedom system) due to a virtual displacement associated with ¢,, and due to the

base drag force only, is given by
Q1 = 1pD*UCyly sin(d2 — ¢1) = LpD*UCyl [(d)g — 1) — (d2 — )“/(s] ., (IL5)
where sin(¢; — é,) = [(¢2 — ¢1) — (#2 — ¢1)*/6] by Taylor series expansion.
It is recognized that, despite (1.5) being a nonlinear expression, it is very
approximate, since the whole reasoning leading to equation (H.3) was obtained in

terms of linear concepts; thus, for example, the contributions of angular deflections

of upstream cylinders to D, were not taken into account.
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Appendix I

Computer Program

In this Appendix, the main computer programs for calculating the phase-plane
portraits, bifurcation diagrams and Poincaré maps for two and three articulated
cylinder systems are presented, with the cubic spring modelling the impact between
these systems and the external cylinder. The Runge-Kutta fourth-order numerical
method is used in all these programs. As this is a very well known and classical
method, it needs not to be explained.

The nondimensional equations of motion for a two-degree—of-freedom (N = 2)
and for a three-degree—of-freedom cylinder system (N = 3) using the so—called “first
model” (i.e., basically linear, apart from impact-related forces) were presented in
Chapter 2, in equations (2.35) and (2.36), respectively. These equations will be
rewritten in the next paragraphs in a shorter form, by using the following notation:
$ =, 2 = y; 3 = z; ¢§1 =z ¢;2 = vy ¢;3 = zz (51 = IT; 4.5'2 = yy and ‘53 = zz,
the dots denoting differentiation with respect to the nondimensional time, 7.

For N = 2, the equations of motion (2.35) are written as follows:

A7z 4+ Bizz + Ciz 4+ Diyyv + Eryy + Fiy = Ke2®,

Ae2z + Baxz + Coz + Doyy + Epyy + Foy =0, (1.1)



while for N = 3, the equations of motion (2.36) become:

ATz 4+ Bizz + Ciz + Dyyy+ Eyvyy + Fly+ S152 + Tyzz + 21z = wex®,
Axzz + Bazz + Coz + Dayy + Eqyy + Foy + Spsz + Tozz + Z22 = 0,

A3xz + Bazz 4+ Caz + Dayy + Eayy + Fay + 5322 + Thazz + 732 = 0, (1.2)

in which the coefficients of z, y, z, zz, yy, 2z, Tz, ¥y and == are dependent on the
nondimensional parameters already defined in Chapter 2, equations {2.34). These
coefficients, i.e. A;, By, Cy, D1, Ey, F1, S1, 11, 2y Aq, By, Ca, Dy, Eq, F3, S5, T,
Zy, Az, Ba, C3, D, E3, F3, 83, T3 and Z3 are found in the computer programs under
their “similar” form, for the sake of simplicity, as A1, B1, CI, D1, El, F1, §1, T,
Z1, A2, B2, C2, D2, E2, F2, S2, T2, Z2, A3, B3, C3, D3, E3, F3, S3, T3 and 413,
respectively.

In Table 1.1, a description of the notation in the computer programs is given
mainly for the parameters defined in equations (2.34), while in Table 1.2, the notation
for the results is given; furthermore, the notation for other parameters is given in
Table L.3.

Mainly two writing commands exist in these computer programs. Taking, for
example, the first computer program (for N = 2), two sets of results are obtained, as
follows. The first set gives T, ¢1(7), d2(7), ¢1(7) and ¢o(r), which in the computer
program are defined as T'1, Z1, ZZ1, X1 and Y1; these are the outputs for the
phase plane plots and Poincaré map construction. The second set gives %, dimazs
which in the computer program are defined as U and X2; These are the outputs for
the constructjon of the bifurcation diagram. These two sets of results appear at the
end of the first computer program.

The graphs are constructed with Genplot software, while the programs are

written, as may be seen, in Fortran.

I-2



Table 1.1: Notation in computer programs for parameters defined in eqgs. (2.34)

Notations in Symbols from n
computer program theory "
BB B
RB VB
BET1 kefk
CB s
CC ¢
ECF €cy
EE €
EPS €
GA ¥
HN1
PI T




Table 1.2: Notation in computer programs for the results

Notations in " Symbols from
computer program " theory
Z1 é1; Eqs. (L.1)
771 é2; Eqs. (L1)
X1 é1; Eqgs. (I.1)
Y1 $2; Eqgs. (1.1)
X1 é1; Eqs. (1.2)
Y1 ¢2; Eqgs. (1.2)
Z1 ¢a; EBgs. (1.2)
XX1 é1; Eqgs. (1.2)
YY1 ¢2; Eqs. (1.2)
721 é3; Egs. (1.2)

Table 1.3: Notation in computer programs for other parameters

Notations in Symbols from
computer program theory
DT ot
EPP Maximum time
EPP1 Minimum time
FF f
HI X
HIT 1+ (x-1)8
LL L
NN N B




IMPLICIT REAL*8 (A-H,O-2)
REAL LL

REAL K1,K1P,K1S,K1T

REAL K2,K2P,K2S,K2T

REAL K3,K3P,K3S,K3T

REAL K4,K4P,K4S,K4T

REAL MM1,MM2,MM3, MM4
REAL NN1,NN2,NN3,NN4

Y 22222222222 223 22222222223 22222212;
* RUNGE-KUTTA METHOD FOR SOLVING A TWO *
* ARTICULATED CYLINDERS SYSTEM SUBJECTED *
* TO CONFINED AXIAL FLOW WITH IMPACTING *
* MODELLED BY A CUBIC OR A TRILINEAR *
* *
* *

SPRING
dkhkhhkkkhhkddkkkhkhkkkdk ok kb rkkkkrhkkhk

OPEN (2,FILE='0QUT’,STATUS='UNKNOWN')

NUMBER PI DEFINITION
Tokkkhkkkkkhkhhhxkhdk

PI = 3.14155%927

TIME STEP DT
khkkkkkhkkkhkk

DT = 0.01

CUBIC SPRING STIFFNESS
Khkkhkkhkhdkkkhhkhbkkdhd

BET1 = 8662572

NUMERICAL VALUES OF PARAMETERS
Ahkkkhk ke kkkhhkkhkkkhkhhkhkhtk

BB = 0.4

CB = 0.1

ECF = 0.25

EE = 0.5

EPS = 10

FF = 0.

GA = 10.

LL = 0.155

NN = 2. .
RB = SQRT(0.4)
HN1l = 0.5

cC = 0.3

HHE = 1/HN1



DEFINITION OF MASS APPARENT COEFFICIENTS
2222222 2223222223222 22222222222;

HI
HII

((L+HN1) * (1+HN1)+1)/ ({1+HN1) * {1+HN1)-1)

1+(HI-1)*BB

WRITING INPUT
Kkkkhkkrktkkrd

DO 50 M = 0,200
4.45 + 0.02775*M

U =

DEFINITION OF COEFFICIENTS
Ahkkkkkkkkkkrhhhhhhrkkrhkdx

Bl

E1

B2

E2

Al

Dl

D2

C1

Fl

c2
F2

N nn 1]

o

U* ((3*EE+1) *RB* (ECF/6) + {1- FF) *HI*RB*NN)

+ (3*EE+1) *RB*EPS*CC*4/6/PI

U* ((2-FF) *HI*EE*NN*RB+0 . 25 *ECF*EE+*EE+RB)
+RB*EPS*CC*EE*EE/PI

U* (- FF*NN*HI*EE*RB+0 .25 *EE*EE*RB*ECF)

+ (EE**2) *RB¥*EPS*CC/PI

U* ( (1-FF) *HI*RB*NN*EE*EE+ (EE**3) *RB*ECF/6)
+ (EE**3) *RB*EPS*CC*4/6/PI

(1/3+4EE) *HII
(EE*EE/2) *HII

(EE*EE/2) *HII
(EEXEE*EE/3) *HII

-HI*U*U*NN*NN+NN*GA* (0 .5+EE) +2* (NN**4)
+(0.25+HH/4) * (2*¥EE+1) *U*U*ECF*NN
+0.5*U*U*NN*NN*CB

- (NN**4} -0, S*U*U*NN*NN*CB

+(1-FF) *HI*U*U*NN*NN

-NN**4
-FF*HI*U*U*NN*NN*EE+0, 5*EE*EE*NN*GA
+NN**4 4+ (EE**2) * (HH+1) *U*U*ECF*NN/4

MINIMUM TIME STEP
o o sk e e e e ok ok ek ok ke ok ok

EPP

30

MAXIMUM TIME STEP
kkkkkkhkhkkhkhhkhk

EPP1

40



SET INITIAL CONDITIONS

khkdkkkdkhkdkhhkdkdddddkdkhk

T1 = 0
Z1 = 0.1
Zz21 =0
X1 =0
Y1l = 0
Z = 21
ZZ = ZZ1
X = X1
Y = Y1
T = T1

TERM FOR CUBIC SPRING
2222222222 22T LR TY

Gl = (LL¥**4) *BET1*X*X*X

FIRST STEP

kkhdkkkdkkkt

FF1 = (D2* (B1*Z+C1*X+E1*ZZ+F1*Y+G1)
-D1* (B2*Z+C2*X+E2*ZZ+F2*Y) )

/ {B2*D1-A1+*D2)

GGl = {((A1*B2-A2*Bl)*Zi (A1*C2-A2%C1l}*X
+(A1*E2-A2*E1l) *ZZ+ (A1*F2-A2%F1) *Y
+A1*G2) / (A2*D1-A1*D2)

MM1 = Z

NN1 = Z2

K1 = DT*FF1

KiP = DT*GG1

K1S = DT*MM1

K1T = DT*NN1

SECOND STEP
*kkkhk kR Rk

G1ll = (LL**4)*BET1* (X+K1S/2)* (X+K1S/2) * (X+K15/2)

FF2

It

((D2*B1-D1*B2)* (2+K1/2)+ (D2*C1-D1*C2)

* (X+K1S/2) + (D2*E1-D1*E2) * (ZZ+K1P/2)
+{D2*F1-D1*F2)* (Y+K1T/2) + (D2*G11-D1*G21) )
/ (R2*D1-A1*D2)

GG2 = ({(A1*B2-A2*Bl)*(Z+¥./2)+ (A1*C2-A2*C1)

* (X+K1S/2) + (A1*E2-A2*E1) * (2Z+K1P/2)
+(A1*F2-A2+F1) * (Y+K1T/2) + (A1*G21-A2*G1l1) )
/ (R2*¥D1-A1*D2)

Z+K1/2

2Z2+K1p/2

2

NN2



K2 = DT*FF2
K2P = DT*GG2
K2S = DT*MM2
K2T = DT*NN2
THIRD STEP
T 22222222

G12 = (LL**4)*BET1* (X+K2S/2)* (X+K28/2) * (X+K2S/2)

FF3 = ((D2*B1-D1*B2)*(Z+K2/2)+(D2*C1-D1*C2)
* (X+K2S8/2) + (D2*EL-D1*E2) * (22+K2P/2)
+(D2*F1-D1*F2) * (Y+K2T/2) +D2*G12)

/ (A2*D1-A1*D2)

GG3 = {(A1*B2-A2*Bl)*(Z+K2/2)+(A1*C2-A2*C1)
* (X+K2S8/2) + (AL*¥E2-A2*E1) * (22+K2P/2)
+(A1*F2-A2%F1) * (Y+K2T/2) -A2+G12)

/ (A2%D1-A1*D2)

MM3 = Z+K2/2
NN3 = ZZ+K2P/2
K3 = DT*FF3
K3P = DT*GG3
K38 = DT*MM3
K3T = DT*NN3
FOURTH STEP
*hkhkkkkkkhk

G13 = (LL**4)*BET1* (X+K38)* (X+K3S)*(X+K3S)

FF4 = ((D2*B1-D1%B2)*(Z+K3)+(D2*C1-D1*C2)
* (X+K38) + (D2*E1-D1*E2) * (ZZ+K3P)
+(D2*F1-D1*F2) * (Y+K3T) +D2*G13)

/ (A2*D1-A1%D2)

GG4 = ((A1*B2-A2*Bl1)*(Z+K3)+(A1*C2-A2+%C1)
* (X+K38) + (A1¥E2-A2+E1) * (ZZ+K3P)

+ (R1%F2-A2%F1) * (Y+K3T) -A2*G13)
/ (A2%D1-A1*D2)

MMa4 = Z+K3

NN4 = ZZ+K3P
X4 = DT*FF4
KaP = DT*GG4
K45 = DT*MM4
K4T = DT*NN4



BIFURCATION DIAGRAMS

dkkkkdkkkdkkkkhkhkkkhkd

X2
X1

X3
X2

FINAL VALUES CALCULATED
kb khhkhbrhrddhhbrdtrdid

21 = 2 + (Kl+2*K2+2*K3+K4)/6

ZZ1 = ZZ + (K1P+2*K2P+2*K3lP+K4P) /6
X1 = X + (K1S+2*K28+2*K38+K48)/6
Yl = Y + (K1T+2*K2T+2*K3T+K4T) /6

STOP CONDITION AT THE WALL
Fhk ok kdk ok ko ok ko ddk ok kok ok ok kokok

RIPI1 = (HHl1+1)/EPS
RIPI = X1+Y1/2
IF (RIPI.GT.RIPI1l) STOP

NEW TIME
3322222

Tl = T+DT

POINCARE MAPS

kkhkkkkhkdhkhdkid

XA ABS (X1)
EPS1 0.00001
IF (XA.LT.EPS1) THEN

[

IF ({T1.GT.EPP).AND. (T1.LT.EPP1)) THEN

WRITING FOR BIFURCATION DIAGRAMS STUDY
L T T T ey

IF((X2.GT.X3) .AND. (X2.GT.X1}) THEN

WRITE (2,12) U,X2
WRITE (*,12) U,X2

ENDIF

WRITING FOR THE PHASE PLOTS AND POINCARE MAP
R R T T T T AT T T R T LR

WRITE (*,12) T1,21,2Z1,%1,Y1
WRITE (2,12) T1,21,221,X1,Y1
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50

FORMAT (10X,4(F10.4,2X))

ENDIF
ENDIF

IF (T1.LT.EPP1) THEN
GO TO 11
ENDIF

CONTINUE

STO2
END



IMPLICIT REAL*8 (A-H,0-Z)
REAL LL

REAL IT1,LL1,MM1,IIZ,LL2,6MM2
REAL IT3,LL3,MM3,II4,LL4,MM4
REAL X1P,K1S,K1,XK1T,K1F, K1V
REAL K2P,K2S,K2,K2T,K2F, K2V
REAL K3P,K3S,K3,K3T,K3F, K3V
REAL K4P,K4S,K4,K4T,K4F, K4V

I ZEESZE RS SRS SR TR S SIS ALS S A AR AR RS RS E XX

* RUNGE-KUTTA METHOD FOR SOLVING A THREE *
* ARTICULATED CYLINDERS SYSTEM SUBJECTED *
* TO CONFINED AXIAL FLOW WITH IMPACTING +*
* MODELLED BY A CUBIC OR A TRILINEAR *
*
*

SPRING *
T I 222232022232 22 222 22 R PR

OPEN {2,FILE='OUT’,6 STATUS='UNKNOWN')

NUMBER PI DEFINITION
dhkdkhhkkkkkddkhkdkhhdkkd

PI = 3,1415927

TIME STEP DT
Akt kb hh kN h*KN

DT = 0.01

CUBIC SPRING STIFFNESS
222 T T TR T e 2

BET1 = 5775000

NUMERICAL VALUES OF PARAMETERS
kkkkdkhkhkhkkkkhhrkdkdk kb hkkk bk ks

BB
CB
ECF
EE
EPS
FF
GA
LL
NN
RB
HN1
cC
HH

=
s N H
)]

[
(F31
5]

Q

~

T(0.4)

| SO | VY (A Y| N | A O Y

HOoOOHWOoOKHKORHROOOO
.o . O . .

\(.UU'I
2



DEFINITION OF MASS APPARENT COEFFICIENTS
T T T T

HI
HII

((1+HN1)* (1+HN1) +1) / ({1+HN1)* (1+HN1) -1)
1+(HI-1)*BB

i

WRITING INPUT
Fohkkohdkkkhok ok kok

DO 50 M = 0,200
U= 4.45 + 0.02775*M

DEFINITION OF COEFFICIENTS

kdkkdkkhhhkhkkddbhkhttbhhkhkrhrkdk

Bl = (RB*(3*EE+4)*ECF/6+(1.-FF)+*HI*NN*RB)*U
+{3*EE+4) *RBR*EPS*CC*4/6/PI

El = (1+2*EE)*RB* (0.25*U*ECF+EPS*CC/PI)
+(2-FF) *HI*U*NN*RB

Tl = 0.25*EE*EE*RB* (U*ECF+EPS*CC*4/PI)
+U*NN*RB*HI*EE* (2-FF)

B2 = (1+2*EE)*0.25*RB* (U*ECF+EPS*CC*4/PI)
-FF*HI*U*NN*RB

E2 = 0.5%*RB*{1/3+EE)* (U*ECF+EPS*CC*4/PTI)
+(1-FF) *HI*U*NN*RB

T2 = 0.25*EE*EE*RB* (U*ECF+EPS*CC*4/PI)

+(2-FF) *EE*HI*U*NN*RB

B3 = EE*EE*(0.25%RB¥* (U*ECF+EPS*CC*4/PI)

-HI*U*NN*EE*FF*RB

E3 = 0.25%EE*EE*RB* (U*ECF+EPS*CC*4/PI)
-HI*U*NN*EE*FF*RB

T3 = (EE**3)*RB* (U*ECF+EPS*CC*4/PI) /6
+(1-FF) *HI*RB*U*NN*EE*EE

Al = (4+3*EE)*HII/3

D1 = (2*EE+1)*HII/2

S1 = EE*EE*HII/2

A2 = (2*EE+1)*HII/2

D2 = (1+3*EE)+*HII/3

S2 = EE*EE*HII/2

A3 = EE*EE*HII/2

D3 = EE*EE*HII/2

S3 = EE*EE*EE*HII/3

Cl = (3+2*EE)* (0.5*NN*GA+U*U*(,25*NN*ECF* (HH+1))
+2% (NN**4) -HI* (U*U) * (NN*NN) + (U*U) * (NN*NN) *CB/2

F1 = -NN**4

Ul = -U*U*NN*NN*CB/2+ (1-FF) *HI*U*U*NN*NN
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c2
F2

uz

C3
F3
u3

]

nonon

~NN**4
-HI*U*U*NN*NN+NN*GA/2+NN*GA*EE+2* (NN**4)
+ECF*NN* (U*U) * (HH+1) * (2*EE+1) /4

+ (U**2) * (NN**2) *CB/2

-NN**4 . - (U*U) * (NN*NN) *CB/2+HI* (U*U)} * (NN*NN)
-FF+* HI*(U**Z)*(NN**z)

0

-NN**4

NN+**4+ (EE**2) *ECF* (U*U) *NN* (HH+1) /4

-HT* (U*+*2) * (NN**2) *EE*FF+NN*GA* (EE**2) /2

SET INITIAL CONDITIONS
Khhkkdkdkkhhhkkhkhhhhhdd

TEL
X1
Y1
Zl
XX
YY1l
Z71

X
Y
z
XX
YY
2z
TE

hw nw e wn

TERM

tnnn wonon

OCOO0OO0O0O00

FOR CUBIC SPRING

% % g g de de ok de g o o e o ek ok o ke R ok

Gl = (LL**4)*BET1*X*X*X

FIRST STEP

*hkkkhkhkk

FL1 = Gl+Bl*XX+Cl*X+EL1*YY+F1*Y+T1*2Z+U1*Z
FL2 = B2*XX+C2*X+E2*YY+F2*Y+T2*ZZ2+U2*2Z
FL3 = B3*XX+C3*X+E3*YY+F3*Y+T3*2Z2+U3*32
FF1 = ((A2*FL1-Al*FL2)*(A3*S2-A2*S3)

+(A2*FL3-A3*FL2) * (A2*S1-A1*S2))
/{(A1*D2-A2+D1)* (A3*S2-A2%S3)
+{A3*D2-A2*D3) * (A2*S1:A1*S2)}



GGl =

((A2*FL1-A1*FL2) * (A3*D2-A2*D3)
+{A2*FL3-A3*FL2) * (A2*D1-A1*D2) )
/ ({A1*S2-A2%S1) * (A3*D2-A2*D3)
+(A3*S2-A2%S3) * (A2*D1-A1+*D2) )

HH1 = - (FL1+D1*FF1+S1*GG1) /A1
IT1 = XX
LL1 = YY
MM1 = Z2Z
K1 = DT*FF1
KiP = DT*GG1
K18 = DT*HH1
K1T = DT*II1
K1F = DT*LL1 .
K1V = DT*MM1
SECOND STEP
*hkkkrkkdkkkd
SIA = X+K1T/2
Gl1l = (LL**4) *BET1* (X+K1T/2)* (X+K1T/2)* (X+K1T/2)
FL11 = G1ll1+B1l* {XX+K1S/2) +C1i* (X+K1T/2}
+E1% (YY+K1/2) +F1* (Y+K1F/2) +T1* (ZZ+K1P/2)
+ULl* (Z+K1V/2)
FL21 = B2* (XX+K1S/2)+C2* {(X+K1T/2)
+E2% (YY+K1/2) +F2* (Y+K1F/2) +T2* (ZZ+K1P/2)
+U2*% (Z2+K1V/2)
FL31 = B3* (XX+K1S/2)+C3* (X+K1T/2)
+E3% (YY+K1/2) +F3* (Y+K1F/2) +T3* (22+K1P/2)
+U3* (Z+K1V/2)
FF2 = ((A2%FL11-A1*FL21)* (A3*S2-A2+%S3)
4+ (A2*FL31-A3*FL21) * (A2*S1-A1%*S2))
/ ((A1*D2-A2*D1)* (A3+S2-A2+*S3)
+(A3*D2-A2*D3) * (A2*S1-A1*S2) )
GG2 = ({A2*FL11-A1*FL21)* (A3*D2-A2%D3)
4+ (AZ*FL31-A3*FL21) * (A2*D1-A1*D2) )}
/ {{A1*S2-A2+*S1) * (A3*D2-A2+*D3)
+(A3%8S2-A2+83) * (A2*D1-A1*D2))
HH2 = - (FL11+D1*FF2+S1*GG2) /a1
II2 = XX+K1S/2
LL2 = YY+Ki/2
MM2 = ZZ+K1P/2



K2 = DT+FF2

K2P = DT*GG2

K2S = DT*HH2

K2T = DT*II2

K2F = DT*LL2

K2V = DT+*MM2

THIRD STEP

Tk kv kik

SIB = X+K2T/2

G12 = (LL**4)*BET1* (X+K2T/2)* (X+K2T/2) * (X+K2T/2)

FL12 = G12+B1* (XX+K28/2)+C1* (X+K2T/2)
+EL* (YY+K2/2) +F1* (Y+K2F/2) +T1* (ZZ+K2P/2)
+Ul* (Z+K2V/2)

FL22 = B2*% (XX+K2S/2)+C2* (X+K2T/2)
+E2% (YY+K2/2) +F2% (Y+K2F/2) +T2* (ZZ+K2P/2)
+U2* {Z4+K2V/2)

FL32 = B3* (XX+K28/2)+C3* (X+K2T/2)
+E3% (YY+K2/2) +F3* (Y+K2F/2) +T3* (ZZ+K2P/2)
+U3* (Z+K2V/2)

FF3 = ({A2*FL12-Al1%FL22)* (A3*S2-A2*S3)
+ (A2*FL32-A3*FL22) * (A2*%S1-A1*S2))
/ ({A1*D2-A2%D1) * (A3*S2-A2%S3) + (A3*D2-A2*D3)
* (B2*S1-A1*S2})

GG3 = ((A2*FL12-A1*FL22)* (A3*D2-A2*D3)
+ (A2+*FL32-A3*FL22) * (A2¥D1-A1+*D2) )
/ ((A1*S2-A2*S1)* (A3*D2-A2*D3)} + (A3*S2-A2+33)
* (R2*D1-A1*D2)})

HH3 = - (FL12+D1*FF3+S1*GG3) /Al

TI3 = XX+K28/2

LL3 = YY+K2/2

MM3 = ZZ+K2P/2

K3 = DT*FF3

K3P = DT*GG3

K3S = DT+*HH3

K3T = DT*II3

K3F = DT*LL3

K3V = DT*MM3



FOURTH STEP

dhkkhkkkdkhkkdi

SID = X+K3T

G13 = (LL**4)*BETL* (X+K3T) * (X+K3T) * (X+K3T)

FL13 = G13+Bl* {XX+K38) +C1* (X+K3T)

+B1* (YY+K3) +F1* (Y+K3F) +T1* (Z2+K3P)
+UL* (Z+K3V)

FL23 = B2+% (XX+K38) +C2* (X+K3T)

+E2% (YY+K3) +F2* (Y+K3F) +T2* (2Z+K3P)
+U2* (Z+K3V)

FL33 = B3* (XX+K38)+C3* (X+KaT)

+E3% (YY+K3) +F3* (Y+K3F) +T3* (2Z+K3P)
+U3* (Z+K3V)

FF4 = ((A2*FL13-A1*FL23)* (A3*S2-A2+%S3)
+(A2+*FL33-A3*FL23) * (A2*S1-A1*S2))

/ ((A1+D2-A2*D1) * (A3*S2-A2*S3) + (A3I*D2-A2*D3)
* (A2*S1-A1%S2))

GG4 = ((A2*FL13-A1*FL23)* (A3*D2-A2*D3)
+(A2*FL33-A3*FL23) * (A2*D1-A1*D2))
/((AL*S2-A2+%S1) * (A3I*D2-A2*D3) + (A3I*S2-A2*S3)
* (A2*D1-A1*D2) )

HH4 = - (FL13+D1*FF4+S1*GG4) /Al

II4 = XX+K38

LL4 = YY+K3

MM4 = ZZ+K3P

K4 = DT*FF4

K4P = DT*GG4

K4S = DT*HH4

KAT = DT*II4

K4F = DT*LL4

K4V = DT*MM4

MINIMUM TIME

hkhkkkkdhhkkhkd ¥

EPP = 30

MAXIMUM TIME
*dkk sk ok k ok ok ok k

EPP1 = 40



POINCARE MAP
$2222222322"

EPL = 0.001
EPL1 0.0301
EPL2 0.03015

It

BIFURCATION DIAGRAM
kkkk ko kokokkdokkokk ko k

X2
X1

X3
X2

STOP CONDITION AT THE WALL
e R I R Y R R I Yy

RIPI EPS* (X1+Y1+EE*Z1)
RIPI1 3.%(HN1+1) /2
IF (RIPI.GT.RIPI1) STOP

FINAL VALUES CALCULATED BY R-K METHOD
R Ty e T T TS

X1 = X + (K1T+2*K2T+2*K3T+K4AT)/6
Y1 =Y + (K1F+2*K2F+2*K3F+K4F)/6
Z1 = Z + (K1V+2*K2V+2*K3V+KaV)/6
XX1 = XX + (K1S+2*K2S+2*K3S+KaS)/6
YY1 = YY + (K1+2*K24+2*K3+K4)/6

ZZ1 = ZZ + (K1P+2*K2P+2*K3P{K4P)/6
TE1 = TE + DT

XA = ABS (XX1)

WRITING CONDITIONS
dkkkdkkhkkkkhhokokdkkk

FOR PHASE PLANE PORTRAITS
2 AT R Y T T TS T e

IF (TE1.GT.EPP.AND.TE1.LT.EPP1) THEN

FOR POINCARE MAPS
kkkkkkkhhhkhhkhhd

IF (XA.LT.EPL) THEN

WRITE (2,17) YY1,Y1

WRITE (*,17) YY1, Y1l
17 FORMAT (2(F20.10,3X})



12

50

WRITE (2,12) TE1,XX1,YY1l,X1,Y1
WRITE (*,12) TE1l,XX1,YY1l,X1,Y1

ENDIF
ENDIF

WRITING CONDITION FOR BIFURCATION DIAGRAM
I 1222 02222222322 YN R R R AR R R

IF ((X2.GT.X3).AND.(X2.GT.X1)) THEN

WRITE (*,12) U,X2
WRITE (2,12) U,X2

ENDIF
FORMAT (10X,4(F10.4,2X))}

STOP CONDITION
kkkkrkkkkdkkhkhx

IF (TE1.LT.EPP1) THEN
GO TO 11
ENDTIF

CONTINUE

STOP
END
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