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o
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ABSTRACT .

Much work hﬁs been done in the field of Oféer Statistics
concerning the calulation of their moments. ' Of special in-
terest are recurrence relations between the moments of order
Btatistics and certain general approaches giving bounds and
approximations to the moments of order statistics.

In this thesis, an extensive review of recurrence rela-
tions” involving moments of order statistics is given and dis~
cussed. These consisé of recurrence relations of moments of
order statistics and recurrence relations among product-
moments. Also discussed are recurrence relations among quasi-
ranges, other type of relations among moments of ofﬁgr statis-
tics and some bounds and approximations for moments of order

statistics.
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Dans le domaine de la statistique d'ordre beaucoup de
travail a éfé fait dans le calcul des moments. Plus spéci-
fiquement les relations de récurrences entre les moments de
la statistique d'ordre et certaines techniques gé&nérales don~
nent des limites et approximations des moments de la statis-
tiques d'ordre.

Ce mémoire fait une revue extensive des relations de
~récurrence 8 propos des moments de la.statistique d'ordre.
Cela consiste en relations de ré&currence dﬁgqﬁQégQPs de la
statistique d'ordre et les relations de récurrence parmi des
moments mixtes. On traite aussi les relations de récurrence
parmi les guasi &tendues, autres types de relations parmi les

moments des statistiques d'ordre et que lques limites et ap-"

proximations des moments de la statistique d'ordre. o
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INTRODUCTION

Within the past fifty yeais, a large number‘of papers
have been written on statistics based on ordered observations.
Systematic statéstics or orde; statistics are' now being in-
creasingly used in new statistical procedures,asince a con-
siderable'amount of new st;tisgicah inference theory can be

established assuming nothing strenger than continuity of the

cumulative distribution function of the population., Further-

more, statistica& inferen&e'theory based on order statistics,
generally, make the statistical procedures themselves very
simple and gLoadly applic;ble and also permit very simple
solutions of some of the more important parametric problems
of statistical estiﬁation and testing of hypothesis. Prob-
lems on ranges, quasi-ranges, tolerance limits, estimation
of location and scale-like parameters, censored samples, se-
lection and ranking, generally make extensive use of order
stqtiétics.

Many authors have studied recurrence gelationslbetween
the moments of order statistics, usually with the principal
aim of reducing the number of indgpendent calculations re-
quited for the evaluation of the moments. One of the ains
of this thesis is to atteﬁpt to provide an extensive review
of all the recurrence reldtions involving moments of order
statistics. The review shall basically consist of five sub-

sections: (1) Recurrence relations of moments of order
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( } statistics; (2) Recurrence relations among product moments;
(3) Recurrence relations among quasi-ranges; (4] other rela-
. " ‘
_ tions (recurrent or otherwise); (5) Some bounds ar}d approxi-~ )
_mations for moments of order statistics. - R I
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) ~ CHAPTER I

RELATIONS BETWEEN MOMENTS OF ORDER STATISTICS

In this chapter the relations between moments of order sta-

tistics, most of them ofk}he recurrence. type will be ﬁeviewed
and discussed. Many ofﬂthe derivations and proofs of the recur-
reﬁce relations to be discusééd’;n this chapter can be a}so
applied and sometimes derived from the relations of product
moments of order statistics. However, in an attempé to ;im-
plify and clarify this presentation, only‘those recurrence
relations between actual moments shall be discussed, with ap-

propriate reference to other chapters ‘when recurrence rela-:

tions can be applied to product moments and vice versa.

,
n For an arbitrary continuous distribution ‘
(k) n-1 , BT n-rd, . (k) n-j-1,
(1.1) Mptien = Blpsi-1) jzo (-1) (j) rin-j ./ (n=3) ( =1
~ . /
(k) n-i-1, P°F i (k) n-1
(1.2) Prin-i = (n'l)( r-1) j£0~(j) ur+j:n/h(r+j-1)
0 €i<n-r
i, _ . .
\ ‘ (j)\_ 04if j> i

k = 1,2,3,0-0; r = l,z,...,n-’l‘

Relations (1.1) and (1.2) were obtained by Cole, (1951)

by multiplying moments of order statistics by certain factors
t »
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case. David (1970) develops a pféof that holds for both‘the

relation (1.2.1) can be easii§\éstab}§fﬁed. Using (1.2.1)

by the simple operation of addition, the moments for

and putting them into matrix form. Furthermore by letting
{ =1 in (1.2) one gets

k (k). (x) ' !

i (k)
(1.2.1) ° (n-x)¥ 0+ U in = Pl

a3 —_

Relatiop (1.2.1) enables one to compute the expected values .
of all order statistics, their squares etc. from the expect-
ed values of the first order statistics, their squares etc.

Relation (1.2.1) wasbproved by Melnick (1964) for the discrete

discrete and continuous case. Let

) k) _ (" .k d _
(a) w. = f_m X ge Ip(x)(r,n r+l1)dx
and L
k) _ o ok ' )
(b) Bon = ~§\\§‘ AIp(x)(r,n-r+1) _
x=0
\\\

where AIP(X)(a,b? = Ip(x)(a,b) - Iﬁ(x—l) .b). Taking the re-

currence formula for the incomplete beta functio (a+l,b) !

+,ny(a,b+1) =u(a;b) Iy(gip) and letting a=r, b=n-r, y=P(x)3;

—

the moments for a sample of size n~1 can\Bé\ehggined by sum-

ming adjacént pairs of moments for a sample of size

ples of sizes less than n can be obtained from®" the moments
for a sample of size n. By reversing the process and knowi

ul-n'ul-n-l""’ul-l' the moments for all samples of sizes
. 3 . - é
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not §reéter than n can be determined by. successive differenc-
ing. This method, however, “is not very good for large n.
However, as Harter (1961) and Srikantan (1962) point out, if
(1.2.1‘) is written as w, . . = (i/n)y, % {(-d)/mhyy
(i=1,...,n-1). Then it can be used for wotrking “downwards*®,
i.e. going from a larger n to a smaller n, with no serious
accumulation of rounding errors. A relatéd relation, which
may be used as a check for accuracy (Govindarajulu, 1962) is

S Rl v T

—-—
-

(1.2.1a)

[ -1

Hy.
1l:n i=1

o]
Relation (1.2.1a) is derived by writing ul'n as an integral,

- L J5
expanding [1°- F(x)1" las a binomial series and integrating

term-wise. v
Taking (1.2.1) again, for even.n and letting r =%
one gets -

- ’ 9 (

) (k) (k) k)

1 _ i
(1.2.1.1) E‘"n/2+l:n + un/Z:n ) = un/Z:h-l“

\

|
F 1.2,p1/.1/o c see by letting k=1 that the expected
rom_/(// ) one can se vy g t ¥pecte

= (—f)k v, /2:'nfon'e/ge.ts - -

values of the median in samples of n (even) and n-1 are.equal.

If the parent distribution is symmetric about the origiﬂ.n and

(k)

n is even, directfy from {1.2.1.1), substituting u(n#l') /2:n

—

(k) _ (k) :
(1.2.1._2) ¥n/2:n = ¥n/2:n-1 k even

~
"

~

k odd o
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,(1.2.2)

beta function.

and
(1.2.1.3) Min T “Hp-i+1:n

This result for normal ordered statistics has been given
by Jpnes (1948)“ The general result follows from the defini-

tlon of u, and F(-x) =1 - f(x).

i:n
Another known and easily verified relationship (Hoeff-

ding, 1953).1is ;’

(k) =n E(xk)

1 1n

e

.
1
~
-~

-

‘Looking at the proof of relation (1.2.1) one sees that

©oit depends only on the recurrence property of the incomplete

Thus it is clear that the same recurrence re-

lation also llnks the p.d.f.'s, c.d.f.'s and (if they exist)

the expected values of a given function, say,J/jX ) (Sri-
p ]

kantqn, 1962),‘that is,

(1.2.1a) (n-r) Eg(X ) + r'%g(xr+l n) =n Eg(X_, )

Similar generalizations can be applied to any relation whose
- ‘ .

proof can be shown to be dependent on & property of the beta

function. ) .

I3

Recurrence relation (l.2.la) expresses the expected
o,
value of a glvan functk:n of,the (r+1)-storder Statlstlc in

i

a sample of size n in terms of the expected values of the ) .

* same function of the.r-th order statistic in samples Qf sizes

. ;
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n and n-1. By induction it follows that the expected value
of a given function of any order statistic in a sample of
size n can be expressed in terms of the expected values of
the same function of the first order statistics in samples
up to size‘n. A similar result in terms of the largest or-~
der statistics was obtained by Cole (1951) for "normalized"
moments of order statistics. By using (1.2.1) and induction
Srikantan (1962) got the following explicit solution for re-
.currence relation (1.2.1):

k) u (1—1)(?)(_1,i—n+r-1u(£¥

(x) _
r:n .- L n-r 1:i

i=n-r+l r\

Relation :(1.2.1.4) or (l.2.1la) enables one to compute the ex-

(1.2.1.4) u

pectealvalues‘of the first order statistics, their squares,
etc., as well as the tabulation of the c.d.f.”s of order sta-
tistics. Govindaraﬂulu (196i} has also mentiongd that mo-
ments’ of order statistics can be obtaimed from those of the
lowest Qider statistics. David (1970) gets a corresponding
result in terms. of the greatest order statistics in samples

up to size n, by using the incomplete beta function and ex-
fix)

]
{n!/(x-1) !(n-r) !} tr~1(l_t)p~r dt. The integrand on the RHS
! n-xr . . . ¢
becomes {n!/(r-1)!(n-r!)} &  (*I%) (-1 ¢F~1%3,
ﬁ‘f j=d. J i .
noi-1 on,, i i-r .. d
i = j+r, the RHS equals I ( _1)(.)(—1) ‘it
j=r T 1

n-r

panding (1l-t) in the equation Ip(x)(r,n—r+l) = f

Putting -
-3 .
and substi-

»

,tuting this expression in (a) or (b) (after equation (1.2.1)),

{

N,

)

Fowe r
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8
one gets )
(1.2.1.5) péf; _ 7 (i:i)(g)i-r uif; e

i=r

It can be seen that relation (1.2.1.5) is éimilar to the
result of Cole (1951), i.e. that "normalized" moments of or-
der stati;tics can be obtained by successive differencing of
those of the largest order statistics. By repeated applica-
tion of relation (1.2.1) (David, 1970), the. following recur-

rence relation holds for any arbitrary distribution:

m . .
- =0 ®

Y

i

If one substitutes m=n-r in (1.2.1.6) one gets relation

»

(1.2.1.5) as a special case.
Using as pivots the expected values of the function of
the median statistics in even saggles, i.e. E[g(grzzr)] and

Elg(xX .90 T = 1(1)[[(n+1/2]], Srikantan (19§2) gets

[t (s-2x+1) /2])

_ s
S _"1.2.3) E[g(xr:s)] = r(r) jEO

'('-l) j {(s-2r;j+l)

. 2r+23j . y
E 9(Xpyyiore2y) / Upey) (243

s-2r-j

0507 B9, 50042301/

2r+2j ‘s
[(r+j+l)(r+3+1)]},

[IA]] denotes greatest integer not
exceeding A

1
!
i
H
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s 2r) s

1<r<[[s/2]] and s =1,2,...,n

Letting Yieg = E[g(xi_n)], one gets the equality- (1.2.3) with '

moments. Using the similar procedure as above, défining for
(x) (k)

a symmetric population ¥ (i) = (g 7.,. - L 21)/( ) and set-
ting in relation (1.2.3),

(k) k) 1 (k) )
ui+1 :2i = " Mi:24 (7){ui+1:2i Mis 21}

= (3 G5 x) o

where moments are taken about the mean, one gets the same but

more general result derived by Godwin (1949), i.e.

°

i(n-2i) . . e . -
(1.2.42) g, =3 Lz 0 1) [ P grirmr™ g
s .=0 -0
J -
n-2i-j, _ ,n-2i-j-1
{2¢ 57 j )}

One can obtain various identities by means of expression
(1.2.4a). For example, the mean ranges for odd sample sizes
can be found from the mean ranges for even sample sizes. The
identity, X 5( ) (-DPHL APy _p (see Chapter III), sug-
gested by “student" and proved by E.S. Pearson (1926), con-
necting Hin w1th mean ranges, can also be obtained from the
last relation (1.2.4a). However, it is not very useful for

computétion, owing to the large number of additions and sub-

tractions involved.

j'y
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Another solution gor (1.2.3), with the’e*pected values
of the function g of order statistics in the largest sample
as pivots, and proved by induction, is, in terms of moments

(i.e. letting x; = g(x;, ));

i:n
ui:j = {l/(j+1)(j+2)...n}{(naj)(j—i+l)(j'i+2)...(n—i)ui:n

+ ("7 1(3-141) Gmi42) e (nmimD) gy

-

(1.2.5) + (33) 1(140) (G-141) (3-142) . (0-1-2) WL, o

+o.4 (:;:;:’ 1(i4+1) (142) oo o (Bnm3m1) g o)

(1<i<j<n) ‘ oo

Srikantan (1962) discusses relations (l1.2.3) and (1.2.5)
and their application to the preparation of tables of c.d.f.'s,

expected values, variances, etc.
Sillitto (1964) developed a relation whifh establishes
a connection between moments of- order statistics in samples

of different sizes from any continuous population.
)J,‘l

n-r .
_ n-m-i, r+i-l : h
(1.2.6) Hogs —'iio ( r-m ) ( i Y) um+i:n/(r)' (n>r)

-

By summation under the integral sign relation (1;2.6) is

proved as follows:

1

1 n-r :
_ (n-m-i) ! . fm+i-1)%
‘R.H.8. = !o R oy o vt o A L = )
i=0
n! ., rl(n=-x): Fm+i-l(1_F)n-m-idF

(m+i-1) I (n-m-1) ‘ n!
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r

1 r, m-1 r-m "y
B IO x miy) B (1-F) 150 n-r-1) 717

i

. pl-pnr-ige

1 = - ~
[ xmd) PR T+ (1-F) 1P TaR
0

1 .
m(;) [ x F“"l(l-r)r "4F = L.H.S.
0

Downton %1966) developed some relations* related to
(1.2.6), by noting that the first two moments of linear func-
tions are linear functionsof moments ui=.v‘and under certain
circumstances these linear functions of moments may be consi-

derably simplified; as for example
4

n ® n-e
. (k) . (e) _ 4 n'
iil (i-1) (n-i) My = f:m x i=£+1 T Trme=TyT
Pi-l) (1 - F(x)}“'idF(x)
(1:2.6a) ’

. (k¥e+d) !”

~oa

xPX () {1-F (x) 1 °aF (x)

~P

- n
kel er1) Vkeliktetl

Identity (l.2.6a) also holds for ué?L, the second order mo-

ments.

Gupta (1960) -has considered ordered statistics from the

" -
See other chapters.
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standardized gamma distribution with the parameter t defined

~d

on the positive integers (i.e. from the chi-distribution with
even degrées of freedom) and has derived expressions for the
r-th moments of an order statistic* (about the origin). Let~-
ting the gamma p.d.f. be gt(x) =e X xthl/r(t), 0<x<w, (t,
positive integer). Then the cumulative distribution function
of x, Gt(x) can be w:itten as probabilities in a Poisson dis-
tribution, G (x) = iit e ¥ xi/i! and the k—th moment about
the origin of the r-th order statistic from a sample of size

n is given as

% = .
- r—1- ' n-r
t-1 -y gy 2 -y
k) _ _ B ey (
b = T f -5 = ’ j=0“““§#'"“

3
x {(e7Y y&*k-1)) ity )ay

{which reduces to)

r-1 ;
(k) n! 131 r-1 /
Hrn © TeeD Tn-T) T T(E) iio D70
(t-1) (n-r+i) : r(;+£+m)
. z a (t,n~r+i) t+k+m

n=0 ‘ (n-¥+i+1)

wh?;e ap(t,i) is the coefficient of s™ in the expansion of

t-1 _j i ,
(Z %T) . Thus the k-th moment of the r-th opde; statistic
j=o ) " ‘ ’
may be expressed in terms of the k-th moments of the 1l-st

o

s

*And also the covariance betweep two order\statistics; see
other chapter.

==
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() 1
(k) _ n! re i,r-1, (k)
V/ (1.2.9) v (r-1) { (n-x). 150 =070 ul:n—r+i+1/

(n-r+i+l1)}

PRSI ———

Letting vg:r{ (r—l)!(n—r)!l’(t)/n!}ugfi, then t~h'e follow,in§ recur-

sion formula is satisfied:

’ n-r .
/ (1.2.10) v{*) = I LT L
| i= '

A slightly more generalized form of (1.2.10) is
Y

g .
(k) _ _yi 8

(k)
r+i:n-g-1i

(B positive integer <n-r)

b ‘ By letting B=1 we get (1.2.1).

k Govindarajulu (1962) has investigated some relationships

between moments of order statistics from chi (1 d.f.) (vi¥£)

(k).
r:n

and the standard normal distributions {n

} i -When n is even,

!
\

i - oqn _ "% i oon-l-in
- -1- n(l)
? (1.3) Yn:n L (=172 (1) "pin-d

i=0

Relation (1.3) is proven by taking the expression, (A),
L ' n-1 )
~ 2% n [ ve(v)[6(v) - %l dv and letting 2 ¢§(v) - 1 = F(v).
0

* i -
(o See Chapter II for related work on mixed moments.

} ‘
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Then (A) becomes n [ v f(v)[l?‘(v)]w'1 av = v .- On the other
0 -

hand, if N is even, the integrand in (A) is an even function
and can be written as,
~1

p 271 [ wwtew) - gt av =

—~—a0

n— R . -]
2t 5 01 2t [ v oN11(y) av
J."'O -0

which simplifies to the form given in (1.3). If ntk is odd,
then symbolically letting v(k) = %(2 {%i - 1), and if powers

() i (k)
of Ny, Say (nl 1) are replaced by ny.; for i»1 (for i=0,
. .
define ué:z = () we get
(1.3.1) ¥ =1 "t iy )
i n:mn 2 i=0 i n-i:n-i"’

»

Jonés (1948), Godwin (1949), and Bose and Gupta (1949)
have expressed, for n<5, the moments (and product moments)
of. order staﬂégg;gs of the normal distribution in terms of

elementary functions. Following the last authors, let

oo _2 &
(A) I (aF = [ [e(an)]” e7F ax
-0 ’
where Io(a) = n}
w 2mtl .2
Now | [¢(ax) - x] eXdx =0, m=0,1,2,... since the
; —ce .

Po—————

—_—
-
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integrand is an odd fuﬂction of x. Therefore, ' N
2m+l
- _qy i+l 2m+l
Tom+1(3) 121 LT Ippegen (3
2i

. = 1 I
In particular Il(a) 5 Io(a) 5T and

1,(a) =§ I,(a) - % 1,(a) + %. I,(a)
=3 ) - § Iy(a)

Differentiéting (A) with respect to a, one obtains for n=2

©0

(2ﬂ)§12(a) =[ d(ax) - 2x e

-0

2,.2
—ix" (a"42) 4

1

and integration by parts gives Iz(a) = (n)"i a(a2+2) (a2+1)-}
8o that
L -i 2 !
Iz(a) = (m) x arctanl(a®+l) ]
and

‘ - L]
I3(a) = 1.5 7 L arctan[(a2+1) ] - % ué.

Vo
With the help of these results the ordinary moments of order

statistics can be evaluated. Furthermore, the authors in the
same paper have developed a more general relation for the mo-
ments of order statistics from'a normal distribution, in which

the k-th moment of Xon is expressed in terms of lower moments

PR T

3
¢
]
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of order k-2i (i = 1,2,...,%k or %(k-l) and the integral

1

o0

f Pk+l(x) e

~ e+ %2 : )

. :
k
. . ~ wqn o
where P, . (x) for k>0 is defined by_Pk+l(x) = r(r) X i
ad™ (x)
Ef-l(x)(l—¢(xf)n-r], i.e. Px(x) is a polynomial of degree
(n-k) in ®%(x), k<n and zero if k>n.

Hastings et al. (1947) developed certain relations by
working with a sp;ci.al distribution, which they called the
"representing function" r(u), a monotone function such that
Pr{r(ul) < x <r(u)}=u, - u, u>u,. Thus for egample if

\
u has a uniforfr (= rectangular on [0,1]) distribution. then

x = r{u) defines a variate with the given distribution. The

means*, then can be written as follows:

- E[r(un--i+l:n

. :
e M iiien R r ()" (1-u) " e

-

1l
letting E_ = [ r(u) uvdu one has :
® e

-

3 n _1ykn-i
(1.3.2) Mpgupen = 2 2 DU By

and similarly

b
=

r;
iy

- }
See chapter for variance and covariance.

\
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u(2) i ki, g B
(1.3.2a) Moy <40 B DO Biopaai-1ek
it .
where E f (u)u dﬁ.

Thus for the uniform distributlons the well known rela-

tions follow:

(1;3.3) Wi = (n-i+l) /nt+l

(1.3.3 w2} = i (n-i+1) /(n+1) 2 (n+2)

when the "representing function® is x = r(u) ='1/(1—uf
l/u (A>0) , one obtains a symmetrical distribution with long
tails. (For the normal distribution r(u) = 0(ln u) as u+0).

Thus the integrals wanted are

1
" E . =/ {(1-u) A~y Mefau
s 0
1 2
- " - -
E_, = ]o {(1-u)" " - u "}
which can be expressed as
Eg = AS(A) -,Bs(l)
Eg g = As's(k) - 2 Bs's(k) + cs’sm
where .o

1
A () = [ (1-w) ~*u®du = b(-},8)
(4] .




18 .
1 a2k
. BB(A) = [ u u du = l/(s+1—l)
' 0
- 1 -2\ 8,

A () = [ (1~u) = b(~2),8)
0 . .
1 A-\_S

B (}) = ] (1-u) "0 "u"du = b(-A,s-1)

P " 0 .
1 -2)\_8 -

css(xx‘='[ u “*u"du = 1/(s8+1-21)

.0 2
where .
b(p,q) = P!q!/(p+q+l) ! "

Using the precedxng formulae along with (l 3.2) makes the
means of this - spec1a1 distribution readily available. .

Weiss' (1962), Margolin and Winokur (1967) have presented
formulae for ‘the first two moments of the oréer stat:.st:.cs in
closed form, from a geometric distribution: p(x) = q -.1p1,
q; =} - Py X5 = 1,2,.... They developed first the follow-
ing recurrence relati:oh, for the discrete case, using proper-

ties of the incomplete beta function;

i, r-1,
(1.1a)  wX) = a7 TN i)

r:n 1) .Z (n-r+i+l) u‘.n-r+1+1

i=0

Result (l.la) has been presented in a slightly varied

. form for the, continuous distribution by Cole (relation (1.2)).

For the special case of the geometric distTibutioﬁ,

~
©
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(1) ~r+i+l
(1.3.42) Wy 0 reie = /0 - g ) *
: | g
and '
(L.3.50) Wi e AL g L2,

A

since Xy ., r+i+l1)

1- qn—r+1+1. Then, .

x

‘ r-1 (-0 fh

- i+l "L
(1.3.4) uél) = n(® l) n-r+i+l

m = M) w7 d ) A
i r-1
r-1 (-1}~ ¢( ) n-r+i+l
(1:3.5 w) =nQTh I o - R 7 '
: i=0 - (l_qn—r+i+1) ’

for the geometric distribution.
Young (1970) has developed some recurrence relations of

momefits of order statistics éf independent random variables.
\d | ‘ ) .

By u%ing the probability generating, function of Xpen and the

condition that X..

n is bounded; he obtained the follawing two

general recurrence equations.

f

-1 i .
x _F n, i jok) -
(1.4) poooo= & L ()= wur o
r:n i=0 =0 RS SR | l:n-i~j ‘* \ ‘
1.4 w® < 1 : ™ 4y (-1 3L LK)
s JTI o r 520 i j . L:n-i+j
j=0,1,2,...,4 (i<n) o
j = 1,2,...,i (i=n)
Equatiéns (1.4) is useful for lower values of n and. (1.4.1)

a

e
,{»‘fx'f,x

$

FER? ®

0

e

.

is geometrically -distributed with parameter
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" is useful for the high order statistics. Through the use of

these two fundamental equations Young has provided tables of

the expected values of ‘the order statistics of the negative
binomial distribution.

» In another paper Young (1973) has presented a general
recurrence relation for moments of order statistics of n+l
independent random variables when n of the variables are
identically distributed (i.e. a slippage configuration) and
‘then applied ituto the case when the random variables have

the negative binomial distribution. Letting X be

1,...,xn+l

the .n+l independent random variables and letting the first
n variables be identically distributed with G(x) = pr(Xi>x)

. 5 = .. .
{(i=1,...,n), G (x) pr(Xn+1>x), then when r>1;

2

(s) _ T4 n-i,. _ i
pr{Xr:n+l > x} = ;'i (i){G(x)} {1 - ¢(x)}

0 K

+ (P60 (60T - g Y

Expressing the sum of binomial probabilities in terms of the

incomplete beta function, we obtain

4

: G(x)
(s) - T(n+1) n-r+l,. . r~2
pr(Xr:n+l > x) = Th-x+2)T (r-1) IO u ) (1-u) du
‘“‘ .
n ( ) r_l r-q-l 3 n- +~
. + (20 ¢® e T (FTH D e )T iH
=0 ) :
o :
n, ¥olor-1 j n-r+j+l
g = (0) E (3D ) Met )

. j=0 °

e e ok
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c'%) (x) - — 1)

n-r+j+l

r-1

(a) = (2t Then e > x) '

3=0 l:n-r+j+2

L

T n-r+3j+i Pr(xl:n—r+j+1 > x)]

Thus if the variables are discrete and integer valued,

the relation for moments about the origin follow directly

f%;m {(a), i.e.
1

s (k) n, T or-1,, 4y 3.8 (k)
(1.5) *Ur:n+l - (r_l) jio( j )( 1) [ulzn_r+j+2
- us (k) ]
n-r+j+1 "lin-r+j+l

Relation (1.5) also holds for continuous variables.

)
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ﬂj/ CHAPTER I1

RECURRENCE RELATIONS AMONG PRODUCT MOMENTS

This dhapter shall attempt to outline all the recurrence
relations among products, and some of the importantrproofs,
and relevant derivations. Only those derivations and proofs
that are not already used and shown in Chapter I sha%% be out-
lined in this chapter to avoid repetitionmns. Appropria;e re-
ference shall be made where proofs or derivations for product
moment relations are similar to those relations which are al-
reay given, for simple moments.

For an arbitrary continuous distribution Govindarajulu
(1962) developed the following product-moment relation:

+ (n-3j+1)u,

v G-y i-1,j-1:n

(2.1) (l—l)ui,j:n i-1,j:n

= NHj1,5-1:n-1
(1<i<j<n)

Relation (2.1) is derived by taking the integral defini
' ~aley

. ) " A
ui—l,j-l:n—l' and splitting up the integral as the sum of
three -similar jntegrals according to the partition 1 = F(x)

+ [F(y) - F(x)] + [1 - F(y)]. Relation (2.1) holds also for
the discrete case and can be proved by using a similar ap-

v
proach. However as pointed out in the first chapter for re-

lation (1.2.1), relation (2.l) has some problems as far as

- 227 ' .
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accuracy is concerned, ﬁamely that reported applications for
working "upwards" causes a loss of accuracy of 1 to 3 units-
in the last decimal plgpe. If, however, as Harter (1961)

/
and Srikanﬁpn (1962) point out, relation (2.1) is rewritten
|

as (
. i
_,i-1 1
(2.1a) “i—l,j—l:n—l = {~H—}ui,j:n + { o }ui_l,j:n
n-j+1
. + { n }ui—l,j-l:n
LY v

Then, they can be used for working "downwards" with no seri-
ous accumulation of rounding errors. However, for this pro-
cedurg one has to evaluate all the first, second and mixed
moments of order statistics in an arbitrary large sample size
n, which may not always be possible. Srikantan (1962} gives
an explicit solution of (2.1) in terms of the expected values
of the function of the first order statistics paired with all
other order statistics in each sample size:
v . .

b a = (DALT (-1’)t<gr T kit

i,j:k £=0 t a=t s-t

j=2-5
i-1-8'%1,j-5:k-t

(1<i<j<k<n)

This relation enables one to compute the n(nz-l)/G expected

values |, (1<i<j<k<n) in terms of the n(n-1) /2 expected

i,j:n
values ui jik (1<i<j<k<n). If one lets i=1l, and j=i+l we
' »

- et i, &
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get as a special c;se, relation (1.2.1). Therefore for any
arbitrary distribution symmetric about zero, the number of
distinct and independent constraints among the distinct
Uy 5en (i=1) imposed by (2.1) is {(n-12 - 1}}/4 if n is even
and (n-1)2/4 if n is odd.

Downton (1966) by using the definitions of ur,s:n and
followiﬂé similar arguments that he used fori(l.Z.Ga) devel-

oped the following two relations, which hold for any contin- \

uwous distribution.

‘

n
(K)o () n
(2.2) 2 D) (=) My gy = R ) Fiern ke Laker 41

. (k) o (2) T n
(2.3) T & (-1 n=3) Ty g = R Gan i k2 ekeie2

i<j
(a) .
Then using the relations (a+b)(m) = 1 (?) a(r)b(m-r)
m ' r=0
and ra—b)(m) = I (_1)r($)(a_r)(m-r)b(r) together with (2.2)
3 =0
r\_ -’
(b)

and (2.3) Downton got
Mo+l sk+2+1Mptls pgtl

{ g % (p)(q)k(p-r)(q-Sf
r=0 s=0 - r s

n
X (k+r) PO48) 1y yragad) Pobr s kTt Lek+firtstl

= 1/(,041) "1/ Lyqen) " 1/R1GIKIL SR

v
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e
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2 P - -
+ 12 (DT B) nk-r-1) BT (nogea-1) P (kar) (g !

r=0 s=0
P 1
k+tgq+r+s+2’ "k+r+l ,k+r+2:k+g+r+s+2
qg k - -
+ I I (—1)r+s(‘1§)(’;)(n-p—r-1)‘q ) (n-2-5-1) K78) (per) 1 (24s)!
r=0 s=0

(ortiepo) B }
p+l+r+s+2’ "ptr+l,ptr+2:p+l+r+s+2”°

[\

This relation, becauge of its generality, is rather com-

plicated, however, in many applications considerable simpli- :
fication is possible. It may be noted that with (2 4), there
is no need to compute the complete variance matrlx a55001ated

with the random wvariable xl cm 28 the covariance of xk+1:k+£+l

and xp+g:p+q+l defined on the terms of the form u1 i:m and

u for m < k+2+p+g+2, of relatively small variance ma-

i,i+l:m
trices. \ . !
Again using identities (a) and (b) and relations (2.2)

and (2.3) Downton (1966) gets

. K+
n n . . n . .
(1) (3) - (1) (3)
r L (-1 -1y = - (- WV
r=] g=1 r,s:n ..y r,r:n .

+ 1 -0 P eI 4 ey B -y Py
r<s '

s:n

-y

- (i-t)
= tfo( )3 (3+t)° (3+t+1)“3+t+1 JHE+ljHt+l
’
#

i . i
t,i (i-t) n '
+ B DT me ) TR (e iy e sgees2
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i !

+ I

-1 ¥ () (n-e-1) 3783
t=0 #

n
] ]

a2 Via1, 142 000020

Because of symmetry the first sum in this expressioﬁ could have
been written with i in place j and vice versa. It may also

be noted that the sample size n enters into these sums only

in terms of factorial powers. Downton alsoc expresses (2.4.1)

in a form using factorial powers: i.e.

n n . ' i+5+2

243 ¢ 2 (P e-p¥y =% a . nl®
r=1 s:l \ r,s8:n ; t=j+1 1] . ;
“ i
where . {
]
85 9:i+542 ”i+1:i+1”j+1:j+l’“1+l)(J+l)) '
and for ' ‘
j+1 < 8 < i+j+1 T
i

— 2 3 3 - - - - - ?
3 4.5 i!j!us'szs/{(1+3+l s)!(s-i-1)!(s~-j=1) !} 2
. ¥
N . . - ’_2
- vyse papay (L+3+2-8) 5=J X s il z
+ 1130 (3+1) E (=D U5 je2:gaer(ii-2-8)! :
r=0 & ;
(2.4.1b) (j+r+2) 1 (8~j-2-r)!} %
- argraey RIS E )T v/
~iede =0 Hgai-1,s8-isg~itr
-

(i+542-8) ! (i-r) ! (s~i+r) !}
+ 11300 g e io1rgogen/ T (143¥2-8) E(s=3=1) t (s=3-1) !}

The second term vanishes when s=j+l1, while the third and fonrth

terms vanish when i=j and s=j+l.

Govindarajulu (1963) dgveloped some recurrent relations

3
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for an arbitrary distribution:

n-1 n r
(2.5) - I D Wy, Mg = (QMM1i0Ma.0 (r,s20)

The proof of (2.5) follows by letting %

n-1 n .
n.

LES. = B L TDIG--D T

[ 1 Xyl F ) -F (o) 311y p(y) ) ™
~oX<y<o

dr (x) drF(y)

¥
n-1 .
n: r s, i-1 n-i-1
= I DT [ ] =y [1-F(x)]

a(rx) dr(y)

= n(n-1) J*f x*y® @F(x) dF(y) = R.H.S.
x<y

2
By noting that ui.z “2-2 = (4F) and using (2.5) and (1.2.2)

one gets

-

n-1 n’ 2
2.5 £ 1 wFho= Qb
i=1 g=i+l

i,j:n

with r=1 (2.5.1) becomes

A2

n-1 n n. 2
5.2) E L W oy
2:5-2) ) gein i3 20 ) ’

»
For an arbitrary distribution and even n,

i
|
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(n-2) /2 i 1,n
(2.6) Y1,n:n izl (-1 ( ) My :iPn-i:n-i ‘

1,4, (n- 2)/2 n 2
.+ (7)‘ b n/2) “n/2:n/2

Govindarajulu (1963) proves it by considering the symmetrical

integral

M pp = B0m1) [ [ xy (F(y)-F(x) 1" 2aF (x) aF (y)
T = 00X <y <oo

o©

= -1 [ [ xy[F(y)-F(x)]1" 2ar(x) ar (y)

-0

Ly

Expanding [13‘(y)-1"'(x)]n—'2 in powers of F(y) and F(x), and in-

tegrating on x and y one obtains

AN
1,nsn T 7 2 (7D (1410 ¥541:542¥n-1-1:n-i-1
(n-4) /2 ] j n
B AR FS U TS ISR LSS B PR
‘%l‘_}

1, _4y(n-2)/2, n
+ z(-1) ‘n/z’“n/z in/2 -

a

R.H.S. of (2.6)
» ¢

Ruben (1956) uses a similar proof for normal order statistics.
gglation (2.6) is also very similar to on; used by Teichroew
(1956) for normal order statistics. Govindarajulu (1963) also
developed a recurrence relation for any arbitrary continuous

distribution for which £ (x) = x£(x):

5
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(2) _ n-i 1 n-i
(2.7 Mi.n = 1% 735 I)'(n-i)' z -1 =0

Hi+m-1,i+m:i+m

if i=n, then

(2) _ 9
(2.7.1)  w, =14 n-1,n:n '

Using (1.2.1.2) and (1.2.1.3) with (2.7.1) one obtains

(2) _
(2-7-2) u :n haad 1 + ul,z:n

1
J
Setting i=n-1, one gets ‘*&\
(2) _ “ -
(2.7.3) Ya-1:n 1+ MUp-2,n-1:n-1 (n- l)un l,n:n
Also setting i=1, one gets
v
. (2) _ n-1 -1 -1,n-1
Mi:n © 1 +N ZO( )™ (k1) T m )um,m+1:m+1
m==
n~1
=1+ mfo( 1) (m+1) um m+l m+l

n
= 1+ I ("1) ( )u - . ’
m=2 m’ "m-1l,m:m

Using (2.7.3) and (2.7.4) Govindarajulu (1963) gets

-~

N n
(2.7.5) My g = L DTNQ

u
n 1, 2xm

[E———

|
!
|
%
!
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With these formulaeﬁané now has a systematic procedure
for evaluating the first, éecond, and mixed (linear) moments
of the normal order statistics for any given n given these
moments of order statisti?s for all sample sizes up to and
including n-1. First evaluate Him and solve for the rest
of Bin using the “i:n—l and the recurrence formulae (1.2.;)
with k=1 (assume n is even). Then relation (1.2.1) gives us

(2) _ ,(2) (2)

M is known and the rest

and therefore u

Yn/2:n = Mn/2:n-1 n/2:n
of u‘z) will be known. Now u is available from relation
i:n l,n:n
(2) _
(2.6). From relation (2.1) one gets Hi'in =1 + ul,2:n and

M1 2:n is known. Then evaluate any (n-4)/2 of the rest of

the distinct u, .
1,31:n

(2.1) with i=1, and j = 2,3,...,n~1, i=2 and j = 3,4,...,n-2

(i#j) and use the recurrence relation

and i=3 and j = 4,5,...,n-3 etc. until the total number of

these relationships is n(n~2)/4 and one then solves for the

4

i,j:n° If n is odd, then u(n+1)/2 = 0.

Usind (1.2.1) the rest of W, ., are known. Then evaluate one

u{%; and then using (1.2.1) with k=2, the rest of the u{%%

can be solved. From (2.1) My 2:n is known. Then one must
(i#3),

evaluate (n-3)/2 of the rest of the distinct ¥y j:n
® rJ-

using recurrence relation (2.1), which should total (n-l)2/4.
- *
(i#j).

Then one solves for the rest of the distinct ¥y jin
I .

This type of computational scheme is useful especially if it

is possible to evaluate exactly the lower moments of some

order statistics for each n. However, for some distributions,

especially the normal distribution, it will be difficult to

*

4
i
!
}



evaluate these exactly for small samples.
Govindarajulu (1962) has derived some relationships
among moments of order statistics in samples drawn from chi-~

population (1 d.f.)‘(vi j-n)' and also some relationships be-
, .

tween the moments of order statistics from the chi~distribu~

tion (1 d4.£.) and the standard normal distribution.

1
t

Letting ® #

-2
v .. = n(n-1) xy£(x) £{y) [F(x))" “axdy
n-1,n:n 0<£<£<m | 1

Ly
~

and integrating with respect to y one gets
' t

Va-1,n:n = n{n~1) fo xfz(x)[F(x)In_zdx.

Then writing

EUHTOUL D, OGN 1 N, S e,
, -

£(x) (F(x)]1772 = a/ax (F""1(x) /(n-1)]

-

and integrating by parts Govindarajulu gets

J/ (2) _ :
(2.8) Yn:n ~ 1+ Yn-1,n:n *

In a similar manner one gets the following relationship:

¥

v . : (2.9) v{?; =1 +'v1'2=n - n(2/u)ivl=n_1
Letting
E . g ,
g (H) Vi nm = n(n-1) I xyf(x)f(y)[F(y)-F(x)]n;zdxdy ¢
‘ ’ e ) 0<x<y <

(for even n)
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=nn-1)/2 [ [ xyf£(x)£(y) [‘(y)-F(x)]n-zdxdy
0 0 .

and ex?anding [F(y)-r‘(x)]n"2 and integrating term-wise one

gets (n even) . -
. 4
‘ (n-2) /2 : — :
: - _qyi-1.n
; (2.10) vl,n:n iil (-1 '(i) Vi:iVn-i:n-i

(n~2)/2 1
+ (-1 (3 (V2 s, n/2

——

. When n is od&, following the proof. of (2.8):

bR T
-

Ypersnen = ROFD [ x£2 (x)F° 2 (x) ax : ‘i
‘fl R <00 n“z
(: < = 2%n(n-1) [ = ¢2(x)[¢(x)’— %] dx &
~ 0 R o
- o n-z 3
, = -l [ oxe?x) 0 -3 ax,

. n-2 .
and expanding (¢{x) - %] and integrating term by term, one

gets the following relationship:

n-2 ; :
= _qyi,n~1l-1.n
(2.11) Yn-1,n:n ~ iio( 1)72 (i)un—i-l,n—i:p-i (n odd).
, . A

with formulae (2.8), (2.9), (2.10), (2.11) one can now

evaluaté the first, second and mixed moments of oxrder statis—

u ‘ tics in a sample of size n, given these moments in samples to .
N

i (h) : size n-1, and a table of thege moments of normal order
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G statistics to size n.'.

=nn-1) [ [ xy£(x)£(y) 1 - F(x)]" 2axdy

v -
1,2:n 0<x<y<o

and integrating with respect to y one gets

. V1,2:n = - Rin-1) !o x£2(x) [1 - P(x)17 %ax

\

+nn-1)2/mnf [ x£(x0 1 - F01" %ax;
3 0

then expanding [1 - li'(x)]n_2 and integrating term-wise Govin-

darajulu (1962) gets

4

o

n . . .
- _1yi-1n 3
(2.12) 9y 9:0 = I CDT TGV 5y + R/
] ) y
n-1 .
) r (-3 1My, | (n, odd)
j=1 M :
" " For the case of even n,
n ' ; n-2~f
Vipm = 20m1) [ [ xye(x)é(y) [ely)-e(x)] “dxdy
3 r 0<x<y<m . B

+

-y

|

Note ‘that the integrand is symmetrical with respect to the

origin and 1nﬂ;u§0@nc}} Y- iTéklng the ’rflation

o d,)v -t *
.

U
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N

= n(n-1) [ Xy (x) 6 () [0 (y) -8 ()1 ™ 2axdy

H :
l,n:n <K<y <

e 0 = :
(=1}, 1) [ e (x)dly)

= 2
1, x=-o y=0

[0 (y) -2 (x)1 " 2axdy,

and expanding [<I>(y)—<l>(x)]n”2 and changing x to -z, one gets

n-2 .
- 2-(n-l) + T (—l)l+ln(n-1)(n;2)

ul,n:n Vl,n:n i=0

[jo z6(2) {1 - o (z) 1"271az) [ye (y) ¢t (v) ayl

y n-2
=gl + X

i+l ,n-2
1m0t (-1) ( i )n(n-1)

27 zf(=z){1 - F(Z)}n—z—idz][f yf(y){l+F(y)}idyl
0 0

Then. if one expands [l:tFl0 in powers of F and integrates term-

wise one gets the following relationship (Govindarajulu, 1962) :

-
.

n-1 .. i .7
i = 20 + I ™MD+t 1z Gyve .

Let
"

. n n '

= n.
) IR B E L T TR
{‘:
) [ xy£ () £(y) [Ey)-F(x)1 772

0<x<y<ee
[1-F (y* " Jaxdy

e Bt
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n(n-1) [ [ xyE(0£(y) [1-F(x)] " 2axdy
¥ 0<x<y <0

t

n(n-1) | x£2 (x) [1-F(x)] " 2ax.
0 .

Integrating by parts Govindarajulu (1962) gets:

\Y =1 - v{?g ’ g

2.14 .
( ) 2 1,j:n

Jm 3

3

. PR PRI~ e 1 S L iy
oo FRP T T < T T A £

Using the same method as for (2.13), one gets

-

el .
| - Dov. o=amel) [ [ xyEEy) F]” %axdy f
j=1 Jms 0<x<y<e 3

n-1 © o -2 ;

! + . = - f F !

! ( Yn-1,n:n 'il Vy,n:n n(n-1) IO fo xyf(x) £{y) [F(x)] dxdy :
P = L H
L - n(2/m) VYh-1:n-1 {

]

!

4

Then by {2.8)

AR WS ST Y T

(2.15) "y P VP CO |
y , : =1 j,n:n m n-1l:n-1 n:n

S Again using similar methodology;

n
z v
=i+l

_n(n-1)...(n-i) [

.. = : £(x)£(y)
i,j:n* (i-1)! 0<x<y <o Xy JEly

b Fi—l(x)ll—F(x)ln—i—ldxdy

(’x - n!
(0 = o= (-1 ¢

[ x£2(0F 0 -r(0 1 e,
0
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Then letting (n-i)£(x) [1-F(x)]1" 171 = a[1-F(x)1™ 1 and inte-

grating by parts Govindarajulu (1962) gets:

n
(2.16) Eov, L. -
j=i+l eIy

=1-v?  (1<icn-1)

v, . .
i-1,j:n i:n

M

1

Another formulae developed by Govindarajulu (1962), a
bit more complicated than the preceding ones, expresses the

relationship between Vv, and v

i,j:n given a table
[4 . [

n-j+l,n-i+l:n

of values of the u's up to n and the v's up to n-1:

_ o0 T, . M,-mn
i,jin 2 E (-1)72 (m)ui—m,j—m:n—m (n>0)
m=0
f+#1n, I24 . . -1, n-i ,
+ =1 (3) mﬁl 1(3-m) (j—i-m) j-m:j~m m:n-j+m |
(2.17) L
.1 n-j+l _ .
sentor o (n™hg ) O ]
n=1 n=1 J :
v
A Yn,j-i+n:j~i+m+n-1
Using relation (2.1) recurrently, one can generate the

(k)

i:n-1

(k)

i:n (i = 112r-°-0n"‘1) and any

(i=1,2,...,n) if the v

one of the v{E; are available. Similarly using formulae (4.1)-

\Y

recurrently one can generate the vy (i<j, 1,3 = 1,2,...,n)

+Jjen

if the v, . (i<j; i,3 = 1,2,...,n-1) and any n-1 of the
i,j:n-1 :

i,j:n 3T available. Formulae (4.1) and (4.3) can be used
’ .

for checking the computations.

v
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CHAPTER IT1

RELATIONS BETWEEN QUASI-RANGES

{

™
Certain linear systematic statistics such as the range

which measures dispersion have expectations which are inde-
pendent of the size of the sample from which thty are calcu-
lated. These statistics may be used as indices of skewness
and kurtosis for samples from any continuous population, and
have the advantages, for instance, when estimates from samples
of different sizes are to be combined.

This chapter shall attempt to summarize all the work
that has been done in this area to date. One statistic in
measuring dispersions is the range, whose probability inte-
gral in samples from a normal populdtion was tabulated b; E.S.
Pearson (1942) and Hartley (1942). Tippet (1925) tabulated
its mean value for sample sizes 2-1000, and gave formulae
for higher moments, an S. Pearson (1926} has calculated
second, third, and fouj;iD;oments for several 'sample sizes.
Other measures which involve the difference of observations
have been proposed, such as the in@erduartﬁle range, dis-
cussed by Hojo (1931) and the differences of quindeciles,
suggested by K. Pearson (1920). Mosteller (1946) discussed
these and other differences of symmetrically placed ranks
which he calls quasi~-ranges. Nair has considered the mean

deviation from the median and proposes several questions as
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to the usefulness of this statistic, and Godwin (1949) fur-
ther discussed this statistic and tabulated the mean, vari-
ances and covariances of ranks.

Kendall and Stuart (1969) has shown that the expectation of
the range Gﬁ, in a sample of n from any continuous population of

)

?
variate-values z, which has distribution function F, is

= - P - (1 - F(0 ) ax.

-—00

€
i

K. Pearson (1902) has shown that if Xn p represents the

'
expectation of the difference between the (p+1)-th and the
p~th value of 2z when the sample members are arranged in as-
cending order of magnitude. Then Xn,p = (g) [ P P(x)

(1-F(x))Pdz, (a). Letting wo_q = J{1 - (l--F)n-l —?fn—l}dz,
the integrals being taken over the whole range of z. There-

fore, .

[ 11-n™F + PR daz 4w

e
]

= (X 1)/n + wn_l

+
n,l xn,n-

and

W may also be expressed in terms of X _, ;.
’

n~-1 xn-l,n-—Z

w_ . and so on.
n-2 .

From K. Pearson's equality (a), Sillitto (1951) shows

that

= (D n-p,,_P
Xn,p = ) [ FP(1-p)Paz

I
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(3-2) =/ (@) FPa-nPT - P -m P s

n .. - Bzptl
p n-1,p-1 P n,p-1

By repeatedly using the right-hand side of relation (3.2),
Sillitto (1951) found that .

(n-p+i) .

\V
_ v _ A AY) 1
(3.3) Xn,p = ), iiO( 1) (i) Tﬁ:v;ITI xn_v+i,p—v (v<p-1)

By using a similar method of summation under the integral sign,
as was used for relation (1.2.6) Sillitto (1964) gets another

relation:

N i A b g S L AR I A SO S i - _

n-m

.3. X =M™ 1 ("M
(3.3.1) np = g r=o( r 1%, q4r

[

n L3
/(q+r) (n>m)
The difference between the p-th and the (n-p)-th differ-
ence,_in a sample of n, or more generally a linear combination
of such differences, may be considered as a linear measure

of skewness. The more familiar measure due to K. Pearson;

skewness; = (mean-mode) /o is subject to the inconvenience of
determining the mode and therefore is not independent of the
population. Sillitto (1951) found that it is possible to
choose a linear combination which has aﬁ expectation value
independent of the size of the saméle, that is suitable as a
measure of dispersion:

First, an expression
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X -
+ na, ( n,2" n n- 2) +...4 na (X X )

n,1 %0, n-1 n,p  n,n-p

p = 1121~--12(n‘1) p, odd

P = 1121--01(%n-1) P, even

is needed whose value is independent of sample size. Then

this expression must equal 3a, (X — ). Then for all per~%
13,1 3,2 J

. sy 0 x - X
missible values ?f ) n,p n,n-p is expressed in terms of&/

first differences (byusing relation (3.3) and taking note that

xz,l §m3 §(X3 1~ 3,2), the resulting equations can §g
solved for X3'l - X3,2,1.e. N
L4
= (X - = - ‘
(3.3.1) 8§ = (3(X3,1 X3,2)) - g [‘Xn,p Xn'n-P)
) (072 22/
p-1" n-2

Thus the statistic SL is a linear systematic statistic which

measures skewness in samples of n from any continuous popula-

tion, and its expectation %(X3 l—X3 2) is the expectation of
r '

the difference (median-mode) in samples of three from the

population.

When v = p~1, relation (3.3) becomes

P- X .
= (N p -1 “‘E+1+1;1
'Xn,p (p) 150( l) ( ) n-p+l+i

\

By using relation (3.2) in the right-hand side of relation
(3.1) , other expressions for W, in terms of mean differences

in samples of size n and smaller can be obtained and from
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such expressions one can also express X + X in terms
n,p n,n-p

of mean ranges in samples of size n and less. Sillitto (1951)

obtained such a relation:

P
- I (-1FP = [ —12-DEP®) - $(-1) T () (1-p)PPHT
RGBT ZEDTE - -0 @ a-n

|
b

2(-1 TR PP )z

(3.4) = I {ﬂ-l)p - (l—F)n-pr

F* P (1-F)P}az

§~(p!(n'P)!/n:)(xn,p+xn.n'P)

E.S. Pearson (1926) proved (3.4) for a symmetrical popu-
lation, in which X = X .
n,p n,n-p

If one gives p the values 1,2,...,n-1, (n-1) expressions
from relation (3.4) are obtained and (n-1) independent equa-~

. ® w .
tions relating w2, P TARE A and xn,l'xn,Z""xn,n-l arise.
These equations are then solved by Sillitto (1951) to derive

explicit expressions for w (2<m<n) in terms of mean differ-

ences in a sample of size n:

n-1 n-m
_ _ (n-m)! (n-p) . X
(3.4.1) W il Xn,p n! pil (n-m-p) . ( n,p+xn,n-P)
* :
(2<m<n) .

Relation (3.4.1) was first obtained and proved in another way

by E.S. Pearson (1926). This general expression can also be

¢

directly verified from the integral expressions for w, and

[}
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When m=2, Sillitto (1951), after some reduction obtains

- 2 - - -
(3.4.2) (1)2 = ﬁ—(n—_ry- {(n l)Xn’l + 2(n 2)Xn'2+---+p(n P)Xn'p

}

+...+(n—1)Xn’n'_l

The right-hand side can be recognized as the form taken by
the expectation of g, Gini's coefficient of mean difference
(Kendel & Stuart, 1969), when it is expressed in terms of
successive differences of éﬁe ranked variate-values.

It is sometimes necessary to estimate the mean range in
a sample of m from a sample of n (>m) observations; for in-
stance in quality control work or when it is proposed to use
w_ as an index of dispersion. Relation (3.4.1) could be used
for this purpose, if the values xn,p of the p-th successive
difference (p = 1,2,...,n-1) between the ranked members of a
samplf of n observatiqns are inserted on the right-hand side
of this equation instead of theiy expectations. The quanti-
ties obtained from (3.4.1) are generalizations of Gini's co-
efficient of mean difference and their expectations are inde-
pendent of the number of observations in tﬁe sampie from which
they are calculated. Sillitto (1951) compares their effi-
ciency as estimates of ©n in the'case 6f a normal population,
with some other methods.

To define kurtosis one needs to have some standard pop-
ulation as a reference. The virtue of the normal population

for this purpose is not involved except when one uses measures

iy Miﬁbﬁ:
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derived from moments, and in considering continuous popula-
tions in general, the most natural one to take as a standard
appears to be the rectangular, which is flat throughout its
range. The‘g%allest sample which could give an indication
of the kurtosis is that of four values. In such a sample,
an index of kurtosis relative to the rectangular population
would be %(X4'l—2x4,2+x4’3),,which has expected value zero
in the rectangular population. Sillitto (1951) suggests that
one could take as a measure of Eurtosis a linear combination
of the differences between the values in the sample, which
has the same expectation as this expression, independently

of the size of the sample. Since %(x4’1+2x4,2+x4,3) = 5w4 -
9w2 and ,the mean difference in any sample of more than four
can be expressed using relation (3.4.1) in terms of Wy and

Woi @ linear systematic statistic suggested for measuring

kiertosis is

£

If one wi#i;s to restrict oneself to linear statistics one
would ﬁaJﬁ to bring them 40 the same scale by dividing them
by a measure of the dispedsion such as the standard deviation,
or w,.

In relation (3.4), if one takes p=l1l, and then p=n-l1l, n

odd, Sillitto (1951) gets

W, =W _q = (ll(n-l)!/n!)(Xn'1+Xn'n_l)

7 PR S S L
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"

n-1 _ (n-1 n-1
T L L P R L SR d e L)

it N ST

_ (n-1)!1!
' ' B n! (xn,n-l+xn,l)

which leads to

»
n-2

_1 _qyi+l n-1
(3.5) w, = 5l _; + izl( 1) 5w, s}

g
¥
%
i
e
b
.g;‘
%
It

Other relations between.mean ranges can be obtained by

giving other values to P.

‘Romanovsky (1933) developed the relation which involved

S g AT e DO

mean ranges in samples taken from a normal population:

P W
1 _1yE,py_2p*l-r _
(3.6) 7 IV = O

P Wy g, T8 T g

TR

Relation (3.6), as Sillitto (1951) pointed out, by means of

relation (3.4) actually holds for any continuous population.

-

Robbins (1944) using elementary probability theory showed i

that the expected value of the range for n=3 is always three- :

/Jhalves that for n=2, i.e.
- 3 .
(3-6-1) . (ﬂ3 - "2-0)2

Relation (3.6.1) is only a special case of relation (3.6).
It is often possible, in certain types of mass produc-
tion, to use a large sample of articles for simple routine

(ﬂ) —- inspectich &nd to find with ease the articles with more
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extreme values of the characteristics measured. In these
cases, a great deal of labour can be saved, if the dispersion
is estimated from these extreme values, which may comprise
only about 5% of the total. Such an estiﬁate of dispersion
may be used in controlling variability by(specifying limits
for this estimate. One method of specifying the variability,
which avoids the complication of subdividing the sample, is
to lay down limits for the difference between the sum of the
r highest and r lowest values observed in the sample of n

(1<r<%n or %(n-l) according as n is even or odd. Nair (1950)

has proposed the symbol Y (r) for the above mentioned differ-

ence, suggested by Jones (1946) as a measure of dispersion

in large samples. Sillitto (1951) uses J(r) to denote this

statistic in a sample of n, so that

¢ - ' g
nJ (ry) = (z +z . +...+z . ..4) (z 42 _,+...+24) :

rand therefore

E(nJ w o+ (w =X

(r)! = “n n n(n-l-xn,l)+"'+{mn - X

n,n-l+xn,1)

“ees™ (X 1)}

- (X n, n-r+1* n r-

n,n—g+xn,2)

By means of relation (3.4) the right-hand side can be ex-
pressed as a series of mean ranges and the coefficients of

each of the & __ (0<s<r-1) can then be summed, giving
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r-1
= _7yr-s-1 n-s-2
(r)) = I 1) (r-s-1

n
(3.7) E(nJ )(s)wn—s

The mean deviation from the median in the sample of n,
given that Xn,p is the p-th difference between the ranked

individuals, if n is odd, is:

T § Lin-
m, = n{)(n’1+2)(n'2 to.ot 2(n l)kn,i(n—l)
1
+ 5(n—l)xnri(§'ii+ 2xn'n_2+xn'n_l},

-and if n is even:

Co_ 1 » 1
w = n{xn 1+2x +...+ (in 1)Xx

1
n , n,2 + FnxX

n,in-1 h,n/z

1
+ (in—l)xn,§n+1 toot 2Xn,n-2+xn,n4l}

By taking expectations and using relation (3.2) Sillitto gets

- ’ b ’ l
(3.8) E(mye 1) = By ) + (opzieoty) Xk, x

and

»

(3.8.1) E(m. = Elmy),

)
2k+1 .

-

(the latter also having been proved by Godwin (1949)), and
thus gets the following result, which can also be expressed

in terms of mean ranges by use of relation (3.2):

Lok ‘
r J 1 1 -
(3.8.2)  Elmiy,;) = Bluy) =3 I 507 Xop,x -

b -




Letting F represent the c.d.f. of 2_ . Then (Kendal
n,p n,p .

’

& Stuart, 1969)

- p-1 ., _,n-p
(a) aF, . P(g)F (1-F) gF

Integrating by parts one gets the two following alternative

expressions (Sillitto, 1964)

+r m-p+r
b F = 3 FP T (1-F
(b) np r-O(p+r) (1-7) TP )
(c) F =1 - g ( .)fp—r(l-F)n—p+r
n,p I""l p r _

Therefore by means of thése ekpressions, certain properties

of g-th members of samples of size m can be expressed in

terms of order statistics of samples of 51ze n(m>m) - Taking
= m I

note that Fm’maF by (b) and (1 Fm,m) = rzl( )F (l F)

by (c), one finds that by using expression (3.0), that the

expectation of the difference between powers of largest-

members-of~-m is (Kendall & Stuart, 1969)

w f{1 - (-F_ )° - F - nd2

m,m

2(zm,n)

2 / Fm'm(l—Fm’m)dz

#

m
(3.9) 2 [ 1 (MF™F(-rTaz
—_— o r=1 ) .

2m, -

=2 rzl( D Xom ame/CD

3

% \ . o
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b

i.e., the expectation of the difference between pairs of
largest-members-in-samples-of-m may be expressed in terms of
the expectations of differences between successive members

in samples of 2m and therefore by using relation (3.3.1), in

e
terms of expectations’ of differences between successive mem-

2

bers of samples of size greater than 2m.

In a similar manner

2
7%

m
_ m
(3.9.1)  wy(z, ) =2 E (DX /(7

r=1

t
L4

Using similar methods, though with more algebraic labour,
Sillitto (1964) finds the expectation of the difference be-

tween pairs of medians-of-samples-of-(2t-1) to be:

3 \
t-2 X .
t+r, 3t-2-r
(3.10) wo{2,, 5 ) '=2{ L DI G N Goulibalied V4
2'%2¢-1,t re0 uop U 2t-l-u
1:"\\,
4t-2 .
- Qe-11 Xgez, t0r * Xge-2,36-2-0)

1
* Xge-2,2e-1

The expectation of the differente between pairs, i.e.
the expectation of the range in samples of two is a measure
.. of the dispergion of a variate, being the expectation of
6ini's coefficient of mean difference.. By using rifation
(3.9.1) and relation (3.4.2), Sillitto (1964) points out that
it is'ﬁ%égkble to déggrmine whether a population is sgch?~ .

that 'thé distribution of the medians of samples of 2t-1 has

? ¢ N -
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a smaller dispersion than the population dispersion; and
that the expectation of the range in samples of two observa-

tions is related to the successive differences in an ordered

sample of 4t-2 by

2 4t-3

©y(z) = TIESIT(AEST) Sil s(4t-2-s)Xp 5 o

Pearson (1931). developed a general formulae for moments
~of the distribution of the distance from origin to the g-th
rank of the rectangular distribution:

' b(g+5"l) ’

(3.11) Hs = Tats)  Hs-1
where b equals the "length” of the distribution. Also, the
s-th moment of the range between the g-th and q~th ranks was
developed:

(3.12) u; = blgg-lts) where ub=l

{n+s) us-—l
~

>
Pearson (1931) also developed a formulae for the s-th
moment coefficient of the centre of the range, where the mo-

ment-coefficient is taken about the start of the rectangle:

5 8 Vot
z sin.
£=0 {n+s) (s~t) ! (n+t-1)

(3.13) W = (zp)

and then transferring to the mean Sillitto gets the following

relation:
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i; 2i ni(2i)!

- 1 == =
Myy = P e (ng=0=n_=...=15; )

¥
In random samples of n from a population with density

z, <SG LS T

function p(x) and distribution function P(x), the probability

density of the range fn(w) is given by

o

£ =n(m-1) [ plx)pGetu) [Blxtw) - P(x)] " 2ax.

For the exponential population p(x) = e ¥ (x>0,p(x)=0,x<0),
; the preceding equation (Maguire et al., 1952) thus becomes

: n-2

£ (w) = (n-1) (1~ ¥) ¥

¥
with the moment generating function of the range being

' ot
M_(t) IO e £ (0)duw

if

T'(n) T{t+l) /T (n+t)

TS Ao AT by e T -

Cox (1954) then obtains the cumulants of the range by taking
logs and expanding in powers of T, and, utilizing certain
properties of the digamma and trigamma functions, then gets
the mean and variance of the range:

' n-1

medr Qﬁ range = I 1l/r

‘ Cor=l

.

_— n"l 2
O *  variance of range = I 1/r“.
r=1
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The range is a useful tool in estimating rapidly a pop-
ulation standard deviation if the sample size is not too much
greater EPan 20. Above 20 the efficiency of such an estimate,
when compared with one based on sample deviation falls off
rapidly. For larger samples the ratio of mean sample range
to population standard deviation depends rather critically
on the form of the tails of the point distribution. A large
sample also increases the probability of "esoteric" observa-
tions, thus giving an unusual large value for the ranée. It
is” because of these disadvantages that lead to the idea of
possible use of o, (= Xn-r-xr+1) calling these statistics,
guasi-ranges. For example since Wy does not depend on the
values of the extreme observations, it is likely to be less
affected by departures from normality or by possible presence
of an occasional "esoteric" observatign. Thus 0y should be
preferable to the range beyond a certain sample size.

| ’Quasi-ranges may also be used for the estimation of
standard deviation. For example, Godwin (1949) determined
the optimum linear combination of TRy, using all

the possible quasi—ranggs and for n=10 gives an efficiency

of 99%. Mostellex (1946{‘considers certain unweighted sums .,
of two values, in ordef to make the estimate of the standard
deviation quicker. His investigation is restricted to large
samfles, where the wr are replaced by interquantile dis%%nces.
Nair (1950) considers the sum of the first k quasi-ranges for

sample sizes up to 10, while Jones (1946) investigated it in

s Mol et atede s SRR w3 o 40,
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ns ks

the large sample case.
Godwin (1949, 1949) includes in his papers, the first

two moments of w_, for values of n up to 10. His method de-

pends on a series of double quadratures and this method be-
comes very laborious as n increases. Cadwell (1953) devel-
oped a method of evaluating the proﬁability dengitﬁ\function
of the i~th guasi-range in a sample from a normal poﬁulation.

Rubin (1956) expressed the odd moments of the normal sample

range when N is 0dd and its even moments when N is even, as
linear functions of the expectations of the extreme order
statistics. Chu and Hotelling (1955) and Chu (1957) gave
some uses of quasi-ranges. Harter (1959) has discussed esti-
mates in terms of sample quasi-ranges, of the standard devia- .
tion in rectangular, exponental and normal populations and
has also tabulated the expected values and variances of sam-~
ple quasi-ranges for i=0(1)8 and N=(2i+2) (1)100, accurate to
5 and 6 decimal places. Leon et al. (1961) has used sample
quasi-ranges in setting up confidence intervals gﬁthhe pop-
ulation standard deviation. Govindarajulu (1963) has ex-
pressed the expected values, variances and covariances gf
quasi-ranges in samples from any population symmetric about
zero, in terms of expected values, variances, and covariances
of order statistics in. the sample. Furthermore simple recur-
rence for;;lae among the expected values of sample quasi-

ranges from an arbitrary population were obtained. Follow-

ing up in more detail; notation-wise, letting

h
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Ween = Xnoiin ~ X4l (1=0,1,...,(n-2)/2)
Wi =EO ) = 1.0 " Biepan (850.1,...,(n=2)/2)
i,5im = B0 W5 0<i<3< (n-2) /2
di%r)l = di,i:n i=0,l,...,(‘n‘2)/2
pi,j:n =, correlation between xi:n and Xj:n 1<i<9<n

Govindarajulu (1963) gets the following results.

~

(3.14)‘ (n-i)mi_l:n + imi:n = nwi-l:n—l i=0,1,...,(n-2)/2

Equation (3.}4 is obtained by using relation (1.2.1) and

letting k=1. Changing i to {(n-i) one obtains (n-l)un_i+l=n

1 _ s - : nin
+ M, 5. = Nun—i:n—l (i =1,2,...,n~1). Using the "i"™ and

n-i" equations one gets (nri)4u, ;... "Wi.) +i(u .. -

Using the definition of w,

i:n’

i+1:n) TP iV an)

relation (3.14) follows. By dividing both sides of the re-

u

currence formula (3.14) by n, one can then use it for working
"downwards" in numerical evaluation of the expected values of
the simple quasi-ranges, without serious accumulation of
rounding errors.

Govindarajulu gets also the fol;owing’easily proven re-

¢
sults, for distributions symmetric about zero and 0<i<j<(n-2)/

2:

.
(3.15) di,57% = 204 541:n 7 Misl,n-jen)

(3.16) Vgr(wi:n) =2 var(xn—i:n)(l-pi+l,n-i=n)

O, bt . n
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Also letting

Cov(wi:n,wj:n) = COV(xn-i:n-xi+1:n’xn-j:n—xj+l:n)

= Cov(X

n—i:n'x i:n!

n-j:n

- Cov{xn-i:n’xj-%l:n

- Cov (X, )

1+1:n’xn-j:n

+ Cov (X, )

1+l:n’xj+1:n
and because of symmetry one gets

) = 2[Cov(X, )

(3.17)  Cov(W, i+1:n"%5+1en

W,
i:n, j:n

- Cov(X, )] 0<i<j<(n-2) /2

1+l:n'xh-j:n

Using relations (3.15) and (3.16) Govindarajulu (1963)

obtains 3
o (W W. ) = Cov(xi+1:n'xj+1:n)"Cc’v(x:Hl:n'xn-—j:n)
i’ jn' ; - 3 ﬂ
[Var(xn_i :n)Var(Xn_j:n) (1 pi+l'n—j :n)] ]
LN
X 1 i
[(l‘pj+l,n—j:n))
. ) Pis+l,j+ln ~ Pi+l,n-j:n
i [(l—pi+l,n—i:n)(lmpj+l,n—j=ﬁ)]

~

The preceding. three equations enable one to prepare
tables of the expected valties, variances and covariances of

quasi-ranges in samples drawn from pOpulaﬁions symmetric

—
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about zero, provided tables of these for the corresponding

order statistics are available.
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N SPECIAL T|YPES OF ELATIO§7

There are some in;erestl g relations that do not fall
under the headings of the previous| three chapters, but are
nevertheless of some interest.

The following four basic foymulae are true for an arbi-

trary distribution, for which th: corresponding integrals

converge:
n
(4.1) I w;_ = nE(x)
i=1
n
(2) 2 .
(4.2) I . =nE(x“)
i=1 i:n
’ n-1 n
1.3 I L uy .. =3 nm-1)Ex]
i=1 y=i+1 tr3°
n n 2
(4.4) iil jil Cov(xi:n ’ xj:n) = nE[X-E(x)]

Formulae (4.1)-(4.4) can be derived by writing every
term on the left side of each formula as an integral énd

summing underneath the integral sign. Formulae (4.4) follows

by considering the variance of\gxl:n +, ..t xn:n)/n.

Govindarajulu (1968) obtains some interesting relations

that he subsequently uses to obtain bounds for variance of

estimators of location and scale parameters based on censored

56
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samples. Letting S8* = zF(Zi-n)' where the summation is from
l+r, to n-r, and where Zl+r1:n<22+r1=n <...< zn-rzzn denotes

the available portion of a random sample of 'size n drawn from

the population having F(z) for its cumulative distribution

function, then

(4.5) E(S*) = (n-rl—iz)(n-r2+rl+1)/2(n+1)

\

Relation (4.5) follows from the fact that F(Zi:n)' ¥P=1,2,

,n, constitute order statistics in a random sample of size

LI
’

n drawn from the uniform distribution on (0,1) and EF(Zi°n)

-

= i/(n+l): Letting

Var S* = I Var F(Z;») + 2 Ik Cov{F(Z, ),
=l+r1 ) i+rl<i<j<n--r2 )

i
F(?j:n)}'

Therefore

-

I i(n-i+l) + 2 I I i(n-j+1)

(n+1)2(n+2) Var S*

i<y
= (n+l) Li-Zi? -2 Fij+2(n+l) Lt
S i<y i<j
n~r2-l
. 2 .
= (n+l) £ i - (E i)¥ + 2(n+l) z (n—rz-i)l
i=l+rl

(n+1) (1+2n-2r,) T i - (Z )2 - 2(n+1) 1 32

*

where the summation on i i ‘from 1+r2 to n-r,. Substituting

g wat)
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TETSIRYY s

et <L
L eRRT

=

R i NS g o




i - L. ——- .

3

; 59 k ‘f

' J [F(y)-F(x)lj"i’lll-r(y)ln'j+ldr(y) :
x g

1 ;
= [1-F(x)]07i+1 f un_j+l(l-u)j-i~ldu
0

-

and hence
; L E{Zizn(l-F(Zj:n))} = (n+l-3)uy 44/ (0FD)
i
; and "”K
{ (4.9) E{Zi:nF(Zj:n)} = Uy, - (n+1-3) “i:n+1/(n+1" i<j
g
; Taking the identity
; - - E[{aizi:n} {ZF(Zi:n)}] =LI ajE{zj:nF(zi:n)
:,_( 1<)
¢ o~ . d
+ %L a,BE 2. F(Z.
i<j i ‘1:n ( ]:n)} 2
i where the summations are from 1l+r, to n-r, and the ai are ‘i
some constants,and using relations (4.8) and (4.9), Govindara- f?
julu (1968) obtains 3
sl e 1 (3
(n+1) {L.H.8.} = I a.Miiy.n i) + (n+l)
1l 1
n—rz-l . n-r, n-rz—l { n-x,
I oagu,,. (I 1)~ I  a; Wk I (ntl-3)} :
j=ltr, T HR jale g=4p, b AL 4opay N |
1 - 1 -
i} 1y (e
= Eagkygma t7 ) O (34x)+1) A58 541041 o
+ (n+l) Z(n-rz-—i);i ¥y .
. . - ‘ 0
:-E(n i rz)(n 1*r2+1’ai“i:ﬁ+1 . %




e

\

After expansion of the product under the second and fourth

summations in powers of i and combining similar terms, one

obtains

-

4

-1 .2
E[{zaizi:n}{XF(zi'-n)}] = {2(n+l)} [El (ui+1=n+1—ui:n+l)ai

toHajkiamn

+ (2n+l) Zlai“i:n+1 - 2(n+l) zlai“i:n

= £ (£]+1) Zaguy .0,y 2(041) (mTy) Taghy .,

= (n-r,) (n+r,+1) Zajiy, gl

Lieblein (1953), and further discussed by Downton (1966)

have developed explicit closed formulas for moments of order

statistics in samples from the extreme-value distribution;

F(x) =

exp(-eny). y = E%E, ~0<x&», which involves only tabu-~

lated functions. For this distribution, the first moments

for the “"reduced” distribution are given by

(4.2.7)

Y

) n-r
! ' o - .
n xe ¥ e [1~e e ] dx

T =D - f_w

n-r © s - 00 ’ ' -x
= n! - i,n-r - (r.‘.i) e
= wn T L, (D0 | xe dx

n-x —
- n.. _qyin-x . .
—,(r—l)E(n-r)f'iio (-1 ( i')[Y + log(r+i)] /(x+i)

is Euler's constant

= -I’ (1) = .5772156649 ‘ — \
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Therefore the equation for the first moments reduces to

(4.2.7.1) Mo T Y + logn

Similarly the second moment is given by

bin = DT :E:( -0t "7 !: wexm e gy
' n—\
(4.2.8) = im0V LO7) i
+ (Y + log(r+i))21/(r+i) .
In particular when i=n
(4.2.8.1) .= 1?4 (Y+log n)?

Liblein (1955) also developed an expression for the first two

moments of £he order statistics in samples from the Weibull

disirihption:

0 *x<0 -
H(x) = {
1 -~ exp(-xm) x>0
wo
_Example, )
= ’ . i-1
(4.2.8.1) u}_"’ Ti’-‘frﬁ'lﬂf"”“‘“’ z (- 1)( )
~ . h ) (nty-i+1) ~1K/R

(w0, i =1,2,...n0 k =0,1,2, e




6]
Liblein (1955) also found the following expression for
the product moment of the ngbull distfibutioh;

4

i-1 j-i-1

(k) 2 n: . r4s i-1
Yien = EEDT G0 (m=) ¢ rio sio (-7 ()
-2 - (x+1)
m “[(j-i+r-s) (n-j+s+l)] . v _
rezasd s, (e, 1d .
n~-1+r+1l \\ \

~

(m>0; i<j; is,3 = 1‘121---131) -

The Weibull distribution can be used in appliéations to break-
ing strength and fatigue problems. An important application
of the moments of order statistics of this distribution is in

finding minimum-variance unbiased estimators by means of linear

functions of these statistics.

Gupta (1960) developed the product moment between thé&
‘ T
m-th”and n-th order statistics from the gamma distribution

(see Chapter I (1.2.9)); firs£ let

e

Yrs:n <r71):(s;231>:€;-s>: f:f: xy 6 T [, (y) - Gt‘x’IS*rfl
[ - G, (11" %g, (Mg, (y)axdy , ‘ ’
“B'(r*l);(s*ﬁizl}(n-s)! ;;‘;1’°+B‘r;1"s-§—l’
‘ = -1 3 97 “k\}[t;l"iklbt

t-1 t )
. . - .
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K,' where q = a+s-r-B and k = n-s+B8+1 and the first summation on
— pa the riéht side is pver the positive integers a,B (0<a<t-1;,
o 0<g<s-r-1. Letting (t p) denote the coeff1c1ent of u® in
t-
the expan51on for (L T;) ' then !
! j=0
E b
. . ® -2
‘ n:(r(t)) _yyat8 r-1, s-r-1
Yrsg:n © (x-1) ! (s-r-1) T (n-5) ! uZB('l) Ca ) ( B )
? (1) (k=1) &y (£, k-1)T (b+e+1)
. ~
— ‘ t=0 kb+t+l
S b+t ,j (t-1)Yqg-1) T (j+t+p+l)a_(t,q-1)
f -x ‘z (5—'.) l+£+ +1 ' T
[ 0 a,8 I° p= (k+q) I7+7P &
_ n!(r(t)) =2 g (<18 (-1, (5mx-1) g
(: ‘ . (r=1)!(s=xr-1) ! (n-s)? . ‘o B
3 G'Blbljlp o p
j
W -
T . : ab(t k- l)a (t,q-l)r(b+t+l) ’
x T (3+t+p+l)] l

E#t j+l(k+ ,]+t+p+1

» The covariance (eré) caﬁ be obtained by gubtracting from
E(xrxs) the product E(xr)E(xs). )
Recurrence'formulae (1.2.7) and (1.2.8) foiﬂthe first 3
and second moments for the extreme: value distribution were¥
‘briefly mentioned in Chapter I. The covarxance teéps M,
i,j:n’
are\;IIEHfly more complicated, but expansion of the integral N

—

in@ similar way yields for i<j (Downton, 1966)

3 N
' ' ’ -i\"'l n-j
. — Ne r+s
(4.8) i,5:n T @EEDTGAD) T(n-9) ! rio" ZO( ne
3721y (@=3) ¢y (i4r, j-i-r+s) a

‘ ?~ r s
- i \ 1 ™~ [y
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where
(-] y e —x__ —y
$p,a) =f [ xye X-Pe ¢"Y"9® " gygy
(4.8a) = { 1yl 2, [y +1 + 12
. = lopqprg 13 9" (g-p) og (ptq))

*

+ (pra) [Y + log pl > - 2(pta)k(a/p)}

where k(x) is the dilogarith, (or Spere's function) of x de-

fined by
] ’ 1+x log t dt ’S
. ko) = —T
Y T ' 1’\“
! In computing ‘the coefficients bij's as defined by W
* B
(\ Qh (2.4.1c) only special cases of the moments uij'n appear, .
'{“ namely when j = i+l. 1In this case (4.8) reduces to’s v
n-i-1 R
y = n _4y8, i1 ‘
/ (4.8.1) ¥y y4. = @D T 5 P s )¢ (1,s+1)
The structure (2.47lc7 that involves the coefficients
(; 3 . [3 ~ -
{ | bij:s may also be simplified: :
P For example,
L s-1 r . :
t . — [} ' - -
by rio( D 541, o2 geaer/ L (34240 21 r)
r
’ s-1 w0 y ——— X _.a"Y e Y
(4.8.2) = I (-DF [ [ xye X AIRHE TeTY€ T (1.7 7)) axay
< ’ . r=o 00 - ‘&L .
{ R

; ’ \ ) x 1/{j!r! (s-1-x) !}




6k

/7 © vy -X =Y
¢ (4.8.2) [ [ xye X 3%le " -y-se T g av /4! (s-1) 1}

]

¢ (3+1,8) /{3 (s-1)!}

o o

Similarly,

r s e .
rﬁo(—l) Mgaj-i,s+j-i+lrstj-i+1+y/ [ (8+3-i+14r) Hi-r) 1}

= ¢(s+j-i,i+l) /{s+j-i-1)!il}.

, The expression (2.4.1c), in the case of the extreme

valug distribution is.

b = i!j: - {l"“l" u
ij:s (i+l-s8) I (s+j-i) is! "s+j+1 "s+j+1,s+j+l:s+j+1

-~

LTS FEVS L LFRE TS PYRVIN I S PUIEY

A

+ s(j+1) ¢ (§+1,8) - (i+l) (s+j-i)¢(s+j-1i,i+1)}

n .
Using equation (1.2.7.1), (1.2.8.1) and (4.8a) the above

expression reduces to,

1 i+l
{'2'[1°g(]+1)] @
+ N s ’
%[1°9(s:311)] + k(iéi) (s#0, i#j)
q //
that is, e

7y

R BTSRRIV oy A ESRes et Yo, o s 8
o
o
.
(1]
0
-
[
-+
[
~lp
tufom
~Rde
Nisa
+
I
=
!
m

_ _ 2, ,,.;
= il {“1+1 i41:i4+1 ~ Wy41.442] 737D

@ = iin?/6(i+1) . (s=0, i=j)

4
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€ CHAPTER V

SOME BOUNDS AND APPROXIMATIONS FOR MOMENTS
OF ORDER STATISTICS

The previous four chapters have dealt with calculations
that involved the precise or exact values of moments of order

statistics. However, in many cases, only approximations are

available and many techniques exist, that greatly simplify

- ng%f:’f \ 2

solutions to moments of order statistics. In many of these

approaches bounds and error terms are also included, so that

P
‘1%{3{{“3;1\ N

where approximations are sufficient, these approaches may pro-

Lo,

vide for easier "solutions™ than thse that calculate the mo-

ments exactly. 4

~

Bounds on these moments are available with the help of

the Schwartz inequality and some of its generalizations.

fer Lbe
SISEER % SN

The expected values of the extremes X,:n 2nd X for exam-

l:n’
ple, cannot be arbitgarily large, if variate X has a finite‘

tn

variance even if the range of X is unbounded. A bound can

usually be found which in the case of the gxtremes, is at-
tainable for a certain class of cdf's. Symmetrical cdf's
usually lend themsélves to attaining better bounds. In the
case of order statistics other than extremes, bound§ obtained
in this manner are not attainable in general, but can be im-

proved by the use of a generalized Schwartz inequality. Some

(T) ﬂ other approaches give approximptions with known error bounds

1

}

» ’ ? ‘ 65
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i
for the expected values of all order statistics. These will

be discussed in this chapter.

Another approach, based on the Taylor expansion in powers
of 1/n, which frequently provides reasonable approximations
to the means, variance§: and covariances of order statistics
will also be discussed. The asymptotic result would be the
first term of such a series. In the case of E szn, this is
simply the quantile approximation; when n is finite and con-

ditions are suitable, later terms may provide successive im-

provements. However, these later terms are less easier con-

S

e Py
~A SN V¥ F e
ws PR

trolled, and modifications of the guantile approximation for

Pl

P Sgmle B

use in finite samples are also briefly discussed.

£ R

(b*J

J——

Van Zwet (1964) has considered conditions under which

approximations of expected values of order statistics by ap-'

e e ] s

3propriate population quantiles, are over-estimates or under-
estimates, thereby allowing large sample approximations to i
be }eplaced by inequalities which are valid for all‘sample v
sizes. Barlow (1965) and Barlow et al. (1963) have also done
work in this one. Ali and Chan (1965) shows that if F(x) is
a continuous symmetric distribution, and X(i) represents the

-

i~th order statistics from a sample of size n, then for

i » (n+l)/2

E(X(i)) » G(i/(n+l)) if F is unimodal.

and '
E(X(i)) < G(i/(n+l1)) if ~ F is U-shaped
i’ -




JURIR .

B R T,

61
AN

where x = G(u) is the inverse function of F(x)=U. These in-
equalities are of interest since Blom (1958) has shown that
fbr sufficiently large n the bound G{i/(u+l)) approaches
E(X(i)). See also Ali (1976) for a geometrical proof of the
preceding inequalities.

Plackett (1947) has shown that for certain populations
Wn/c is arbitrarily near zero, while for no population will

the ratio exceed a certain value, namely

(5.1) 0 < %n < (2T (20-2)! 5 [(e-1) T "

This ratio of mean range Wn in samples of n to population

standard deviation 0, is often used in control chart work

(when the population is assumed normal) to estimate o from '

the ranges of a set of smgll samples. More recently it has

also received some attention in techniéues of short-cut anal-

ysis of variance. ) ) ¥
Moriguti (1951), on the other hand, derived the maximum y

for the mean largest value under the assumption that the dis-

tribution from which the maximum is taken is symmetrical:

-

2
n [(n-1):)
(3:2) Mg S == (U Tanmn T

*

His mean value turns out to be one-half of the value given
by Plackett.
Gumbel (1954) has shown that Plackett's maximum holds
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for any continuous variate possessing the first two moments.
Hartely and David (1954), by using prgcedures of the

calculus of variation on lines similar to those used by

Plackett (1947) and Moriguti (1951) derive the maximum of

§
u in the "unrestrained case", i.e. the abandoning of the

r:n
condition of symmetry in the pareﬁtial population imposed by

Moriguti (1951). Their maximum turns out to be:

(5.3) o < (n-1) /(2n-1) }

n:

If the mean and variance of the parent distribution are yu and

02 (rather than 0 and 1), inequality (5.3) simply becomes

(5.3.1) u_ . <u+ (n-1)o

: (2n~1)
and likewise ) ?
(5.3.2) uy, > - {87l

: (2n-1)

(David, 1970). Using the same procedure, Hartely and David

(1954) and Suguira (1962) also show that

[~

(5.3.3) ' |E(x(m)| < (B{Zm=1,2n-2mtl)

I8 (m,n-m+1)] 2

3
- ;_)- (m=l'2'--o'n)
This upper bound can be obtained by a probability distribution
only ' if m=n (or m=1), as the stationary solution is .

L]
»
-

>t

n
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X « L P lp) ™ L
B (m,n-m+1)
and this expression for x is monotonic only if m=n or m=l.
Hartley and David (1954) show also that Moriguti's maxi-
mum (5.2) applies generally. The same authors give an upper

bound of E(Wn) for -X<x<X:

= _ 2 . o yh-1 __n-1
(5.4) Wn = n(l ZPlx ) (1 Pl) - Pl /X
n
+ 2X(1 - (l—Pl) - Pl) —
where Pl is the root of
x2 2n-1  _2n-1
{(1-p,) - P
[(2n-1) (1-P )n‘l-p“'ll2 ! !
1 1 bl
2n 2 2 1

No equally general results are possible for lower bounds

since lower bounds may be made arbitrarily close to zero by

‘'choice of a parent cdf.,, P(x) with sufflciently large o.

However more” worthwhile lower bounds can be obtalned by im-
b -
p031ng suitable condltlons on P(x) such as, for example,

11m1t1ng the range of X, say a<i<b (a, b, finite). Hartely
and Dav1d (1954) have investigated the preceding restriction
and have found that the minimizing distribution is a two-

— <
parent distribution. With a=-¢, b=c they obtained and
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provided a shorttable of the lower bound:

[ | ( )n—h
2[1 -

E(-(—:l) > min{ z 3
* ‘ (1 - p" - & /(pa)

where ,

p = ¢2/(1+c?) and q = l-p.

)

Rustagi (1957) discusses the case of upper and lower bounds

in the case of -c<X<c further.

Moriguti (1951, 1954) considers the extreme, and range,

for a symmetrical parent and derives, in both cases, the up- ,

213

[
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\ per bound for the expectation, and lower bounds for the vari-
i ance and coefficient of variation for extreme order statis-

Yo
e REYIN
2 BEm

(j tics:

B e

2n-2r) 2r-2
) . “.7
(5.§) [E(X(x)]| < [ (Zn—

1)

,
SN

-

Ludwig' (1960) developed an inequality for the case of r<s:

ot

= -xce) < ot 13D A ¢ (D I
n

'3
- 27573 2V

. of which Plackett's inequality (5.1) is a special case.

Another special case of (5.7) is




e G

7

- n-1, n-1
5.7.1) E(x(r+l) x(r)) < nt 1 (r-l) ( r )
-7. g (Zn-1) (Zn=37 — 25-14
\ (22-2)

}

Furthermore,

s

E(X -X,..)
2) ¥ (1) (n-1)
5 < nlpsyanen?!

Y

3

(5.7.2)

Another approach in "approximating” moments, due essen-
tially to K. and M.V. Pearson (1931) is on inverse expansion
@ Y
of X in terms of F. If X(r) is the parent value such that

F(X(x)) = r/n+l, one can expand x(r) about X(r) in a'Taylor

r 2! "r'r

S ~ 1. 2. o _
series x(r) = X, + hri + h’x" +... where hr = F(x(y)

F(Xr) = Fr - r/(n+l) and

Xn — dxr = _d_}_{. Xu - dzx
r dF ar|._ . ' “r dFE
=2 x=X_ , etc.

From ‘this series one can express powers of x in series of
powers of h; and the expectation of any power of h is easily
derived. Provided, then, that the series converde in a suit-

able manner (or, more generally, give good approximations of

*an asymptotic kind), one may derive approximations to as many

moments as one wishes of any order-statistic. David and
Johnson (1954) have pursued this subject systematically and
give expansions for cumulants and product-cumulants of order-
statistics up to and including the fourth-~order cumulants and

degree three in 1/(n+l). They chose expansions in terms of

JRS S
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(n+l)“l rather than n—1 because of the natural appearance of
the former quantity in elementary cases. For example, for

- <
the median X +1:n in samples of n=2r+l1 observations, to order

(n+2)'-2 the authors show that

g
- x 1 e, 1 yliv)

. -
r+l . 8(n+2) “r+l 128(n+2)2 r+l

(5.8)  Elx(,q)

S
4(n+2)

1

(5-9) vVar X(r+1) = m—z—)—

2
(x'r+1) +

n ’ 2
(26, %0+ (X )%

— 1T 2(n+2) Xr+1
(X3 r 2
Xer1 . 3(Xp4q)

-~ 6}
X 2
r+l (x;+l) '

- 1
r ¥R reny) = 553

Chu (1955) shows that for a continuous symmetrical distribu~-

tion with freguency function f(x) which possesses an absolute

maximum at its median £ that the variance of the sample hedian
) o

in samples of n=2r+l satisfies’ the inequality

- b 2 -1
{(5.10) var X y41) @ [4{£(E)} " (n+2)] .
The expansions used by David and Johnsop need not necessarily
be in inverse powers n+2 (see Clark and Williams, 1958). Saw
(1960) has obtained bounds for the remainder term when the

expansion of E(x(r)) is terminated after an even number of

-
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S
( ! terms. However, it must be noteéd from a practical point of

é view, that the most important feature of the expansion is
} that convergence may be slow or even nonexistent if rx/n is

close to 0 or 1. A d;fferent approach based on the logistic

rather than the uniform distribution has been developed by

Plackett (1958). See also Chan (1967). Although a bit more
complicated in its approach, Saw (1960) indicates that in

Y the rormal case for the same number of terms Plachett's se-

T e oot e

ries for E(x(r)) is somewhat more accurate than that of David
and Johnson.

Formulae like (5.8) and (5.9) along with Pearson's Taylor
, series are sometimes rather tedious to apply., especially for
" (:} distributions that, unlike the normal, do not allow dx/dF to

i

be simply expressed. From mean-value theorem considerations
Blom (1958) has suggested semi-empirical "a,B-corrections”

} .
and writes hd

EX(r) = Q(n) + R,

where LI (r—ar)/(n+l—ar-8r), and R is of order 1/n. By a
\ .
suitable choice of a_ and Br (which generally also depends

r
on n), the remainder R may be made sufficiently small, sq
that'Q(ﬂr) may be used as an approximation to Ex(r). This
\approach simplifies considerably when the present distribu-

tion is symmetric. In the normal case Blom finds a to be

remarkably stable for n<20, and all r wh’en.ar takes on values

) :




7h

between 0.33 and 0.39. Harter (1961) shows that for larger
n (< 400), o = 0.4 is better in the range 50<n<400.

Sugiura (1962, 1964) uses an orthogonal inverse expan-
sion procedure to provide both bounds and approximations for
the means, variances, and covariuahces of order statistics.

He shows that if u=F(x) is absolutely continuous with respect

to the Lebesque measure with mean p and variance 02 and let-

ting ‘1‘0 = l,‘i’l,...\l'm be any orthonormal system over (0,1)
with.

ek

1
[ x(u)¥ (u)du -
0

P

. 1
_ 1 r-1,,_.yn=r
) b, = IV !o u- T (l-u) ¥, (v)du

f" It St - " 'm 2 l
3 |EX(x) - u - Z a b, |<(o - I a)
k=1 .7 , k=1
(5.11)~: , m 3 o
- B(2r-1,2n-2x+1) 2
{ 5 = 1 P bk}
— ' [B(r,n-x+1)] k=1

if the distribution is known to be symmetric, then correspond-

ing to (5;11) one obtains

2 i

- 2
(5.11.1)  [BX (1) = I 3y 1Ppyyql < 107 - T o 2k+1)
k=0 k=0
» ; m
- B(2r-1,2n-2r+1) - B(n,n) _ 2
i X [ * L boksil

2 [B(r;n-£+1)} 2 k=0
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()
Furthermore Sugiura (1962) obtains for distribution functions
which are symmetric and absolutely continuous with respect to

the Lebesque measure with variance 1 the result:

1
[28(r,n—r+1)]§ ' )

(5.12) IE(X(r))I <

{B(2r-1,2n-r+1) - B(n,nf}i

Inequality (5.12) coincides with the results of Moriguti
(1951), though he deals only with thg casé r=n.

In another paper Sugiura (1964) treats the bivariate césev
and finds the universal upper bounds and approximation for J
E(Xi:nxg:n) (i,j = 1,2). Using the same procedures as he uééa
to de&ive (5.11) Sugiura obtains the following result:

Let X, . be the i-th (smallest) o;der statistic in a ran-
dom sample of size n with distribution function F(x) absolutely
continuous with respect to the Lebesque measure having mean u

afid finite variance o%. Iet {¥,(uw)} _ . (¥, (a)=1) be any
!o R:“‘o,l'ouo 0

complete orthonormal system over (0,1) and let for an%pair

r,s (1<r<s<n) N
‘ t - -u§
1 -
° a, = x(u) ¥, (u)du
Ml k IO k . J )
b 1 f ur-—l‘(v_u)s--r-l

X,% = B(r,s-r,n-s+l) 0<£<v<1

(1-v) “'svk (w) ¥, (v)-dudv %

e

then B .
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N ,
(5.13)  |E(X, ) us(x )+l
AT -a Xg:n :n*¥s:n X
~ T !'
. . "i B
. ‘ .- a (b ) ‘
.. S ,kz"kz %,2'P1,k
r N ,. !
' 3 4 ﬁr i B(2r-1,2s-2r-1,2n-2s+1)
- '“k =1 2 [B(r,s-r,n-s+1] .
- _ B(2r-1, 2n-2r+l)‘ _ B(r+s-1,2n-r-s+l) ’
: » 2{t(r,n"‘r"“l)] B(r n—r+l)B(S,n—S+ﬁy
3 _ m ’ i
- B(2s-1,2n Zs+1;+lb§ I (hkz zk)z} |
2 [B(s,n~-s+1)] *,8 ’
vhere . ‘ b : '
~ _T(P)T(QIT(x) . \
S e = SFgg | ‘
4 ’ / s

I3

| Por any dlstrlbut:.on absoLutely continuous with respect to

K

~ the I.ebekue measure with mgan zero and variance’one and for

8
-any ;r,s (1<r<s<nj Sug:.ur;‘(l%u also gets the ‘{:llowing ine

' equalxty* »f ’ . ) i TR

4

o . \.»
? . ) -
. ’ b .

’ / {B(Zr-l,28~2r1231—23+1)‘ »
xr :tn“s:n l < TN .
il o 2[B(x,s-r,n-s+l)]

\ .\\ A e "
‘ - : B(2r-1,2n<2r+l) .
,/‘ - ( - [ A _._T . ) )

N ' .. 2{B(r,n-r+l)]
) o :
- . . B(r+s-1,2n-r-s+l ,
. . B(r n=r+1)B(S, n-s+I$ L
] » .. _"B(2s-1,2n-2s41) 1}3
Q A ! N 4 % 2 [Bks,n'8+1)] 2

. Iy
{ i ' p -
. ) . .

i

Cresa14) ¢ |E(

In particular, when r=n-1 and s=n one gets
oA \ . . %

.,
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(5.14.1) E(X_ . X ) < n-2 n-l )5 ‘
e -l:n"n:n 2 2n-1
If‘ﬁi,n is the i-th (smallest) order statistic in a ran-

dom sample of size n with symmetric distribution F(x), abso-

lutely continuous with respect to the Lebesque measure with

finite varianace 02, and we let {Yz(u)Yzho 1 (Wo(ﬁ)=l) be
- ’ AL R

any complete orthonormal system over (0,1) satisfying ¥, (u)

= (-1*¥,(1-w) pr 2 = 1,2,... while putting a

X and bk,z as V
n "(5.13)", Sugiura gets for any r,s (l<r<s<n) the inequal- k
s
ity - &
m
(5.15)  [B(x, X ) -3 g1 3041 Paxe1, 2041 .
k, ¥
¥ : : , :
’ ‘ * h2z+1,zk+1’|
¢ .
n a2
<{o"- I 32k+1 2z+1} {n,-B,- Z T (b2k+1,2£+1
k' Rv"o B
. . 2 i
+b )
™ .t 24+1,2k+1’ }
where " . ' L" ’ ’ ’
- B(2r-1,2s-2x-1, 2n-25+1) + B(n+r—s,n+r—s 28-2r-1)

8[B(x, zsr.--r,n-s+l)]z‘P

t L]

Bl = [I(2r-1 ,n-s+l n-s+1 s-r,s‘r) + 2I(n+r-s, r,n-s+l,s-r,s-r)

/ . -,‘" ‘i°(2n‘28fl,r,s—1|',s—r)] /% [B (‘I',S"r;!l"S'l"l)] 2A

\ i &

where - . | . e. R T 4
‘ b-1 i-1 , - | Lo
, -E(a,b < d e) = Z Z b 1)(c J‘) * = R

n toe
.
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x B(d%,e+],atbc-inj-2)2” (atbFc-i-3-2)

R

It follows quite readily that for any symmetric distribution
absolutely continuous with respect to the Lebesque measure

with mean zero and variance one that

+
4

(5.16) E(X_. X . ) < (2V2 B(x,s-r,n-s+1))"

1

{B(2r-1,2s-2r~1,2n-2s+1) '
+ B(n+r-s,n+r-s,2s-2r-1) - I(2r-1,n-s+l,n-s+l,s-r,s~r)

- 2I(n+r-s,r,n-s+l,s~r,s-r) - I(2n—25+l,r,r,s—r,s—r)}§
A

where I(a,b,c,d,e)\ is defined as above. Therefore, for example,
, »

the upper bound corresponding to (5.14) for

n-1 (n-1) Z, .

|B(X,. X )| < n{ e - .
4(2n-3) ;1 2(5p-1)

l:n"n:n

..."1/}4l ;
o (2n-1) (4272 i

and when the distrib%ion }ljrec';uired to be symmetric with
mean zero and variance onej; th:}%quality becomeﬁ

o - i . —
Sy ; n, n-l _ 1 &
Y ll'?'(xl:r!xn:n)I < ’i{ﬂin-ﬁ (zn-f)} - L’

n-1

b

If,E(x") < », then under the same assumptions (and notation)

preceding_iil}e_\igualj.ty (5.12) Sugiura gets

Y, . . . \ .
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| 2 .2 2,2 2 2
(5.17) IE(xr:nxsm) -0 r.-:(xrm+xsm) +0
-k ; al_a (b, .4b )| < {(Exh -'*3))2
* Z | gap 2k%20°72k,22720,2K g
’ \
\ : N »
2, 2 1 2
- L a {a,+B,-C,+1- T (b +b )4}
"k, 2=l a7x22y 272 Ik'z__,l 2k,207 22,2k
a
where ¥
’ 1 ’ 2 - . + -
La, = x(a)] ‘Y, (a)d .
ay ‘Iolb( )1 ¥, (a)du
« - g
A, = A |
B2 =B )
s B(2r=1,2n*2x+1) -+ B(n,n)
Cy = ~ )
' f . 4[B{r,n—-xr+l)]
+ B(28-=1,2n-2s+1) + B(n,n)
. 4[B(s,n-s+1)]1° -
B(r+s—1 2n—-xr-s+1) + Bi{n+r-s, n-r+s)
- 2B(r n—r-FT) “B(s, n-s+1)

L ' m
Also under the same assumptions (and notatiaon) as holding for

* (5.17).the following two:inequalities hold for any r,s (I<r
) Vd

\

<s<n) . i

L 2 - ' '
(5.18a) " lE( o s,n) - oB(X, . ) k, i 0“2k+2 2z+1"2k+2 2L+lld

" 2 4 B 2 ’ m '2 N 2 !. -
. < {o“B(x") ~¢* - I be e
. | % K, =0 B2k+2%2241
e R N k.'z o 2k+2,2241
' (\ .

,
:

o
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(5.15b) IE.;X ) -o?B(x_ ) - 1 ’ a. . b
. r:n“s:n ren’ T 0 22k+1%2042 2k+1,28+2]
N r ®
-\‘ N .
2,4 2 m 2 2 B
< {0°E(x") - 0“ - }
k,2=0 Bk+1%22+2
& m 2 i
{pA, -B, - "I Db } .
4 47 o 2K+l 284277
where
\ v » -
A = B(2r-1,2s-2r-1,2n-2s+1) _ B(2s-1,2n-2s+1)-B(n,n) 4
3 4[B(r,s-r,n—s+1)k§ 2[B(s,n-s+l)]2 %
E] ,
B. = I(2r-1,n-s+1,n-s+l,8~r,s-r) - I(2n—2s+l r,r, s—;Ls r) ?;
3 4 [B(r, s r,n-s+1)] > a
A, = hgzr-l,zs-Zr-l,Zn-zgu) _ B(2r-1,2n-2r+1) ~ B(n,n)
40B(x,5cx,n-5+1)] __2dB(r,n-r+1y1?
e %
By = 1%

)]

,. Joghi (1969) discusses further the problem.of-obtaining
approximations and bounds for the moments of order statistics
from a contlnuous parent distribution, and shows that these
boinds and approximations depend on the dlstributlon funq$1on’
only through certain moments of ordex statistics in small sam-
ples. For example, he shows that if Ydil,Wl,Wz is any ortho-
normal system in [0,1] and if E(x

2p+l 2p+2qg4
integral p,q»0, then for r = 1,2,...,n

l)'< » for some

t
)

‘s | (B (p+r ,q+n~r+1) -
(5'19), l . E(xp+r:p+q+n k~0 akb l

B(r,n-r+l)




8|
< ;a2
[B(2p+1, 2‘=‘+1)E(x2p+1 2pr2grr) T X ay]
B(2r-1,2n-2rt1) £ .2}
x | 7= - L bk] )
B(r,n-r+l) k=0 w
wheré \ -
1 - L.
- a = [ JfY (Wau ;. £ = x(w)uP(1-w)P
.y |
1 ) r-1 n-xr
_ . _u (1-u)
b b !0 g(U)‘l’k(u!du ’ g(u) - B(r n—r+1)

Another result $hat Joshi (1969) proves is the following: if

a distribution X is continuous and symmetric about x=0 and let-

ting ‘Fo 1 ‘l‘l,‘l’z,... be any corﬁplete orthonormal system in

[0,1] satisfying ‘l’ {u) = (-l)k‘i’ (1-u), k = 1,2,... with the

 further condition tkat E(x « for some integral

2m+1: 4m+l) <
m>»0, then for r = l;‘?,...,n; , 4
v \

——

t
(5.20) lB(m;f}T;?;ﬂ% ) Eer:omen’ = F 22k41 Bok+1!
_el 5 % ] t S
[B(2m+1,2m 1)E(x2m+l 4m+1) - kzo a2k+l] .
’ ' ’ ‘
N [B(2r -1,2n- 2r+1)—B(n:rn%( - § b§k+1li‘ '
¢ 2[B(r,n-x+1)] k=0

- . [
‘-

where a, and bk are. the same as .in (5.19) ' with ;§=q=m. If

further, E(x l)< o , m»0,-then for T = 4,2,...,n;

2m+l4+ ! .
~m Ly -

ES

oA -~ v e
- gl _ LT
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B
1]
t
B (m+r,min-r+l) 2 _ '
(5.21) | =5 ar E%neromen) o ay Py |
' i
< [B(2m+l,2m+1)E(x? . ) : 'éli
’ amtl:dmel’ T 7o %2k ?
t £ 3
B(2r-1,2n-2r+1) +B(n,n) 2
L | > 1 z b2k] 3
2[B(r,n-r+l1)] ' nk=l

1
where &) = [ x(uw)-u™(2-w)™, (u)du.
: 0

Mathai (1975, 1976) obtained bounds for the product mo-
mants of an arbitrary fin}te number of ordered random vari-
ables, in both asymmetric and symmetrié cases, with,the help

of a representation of an arbitrary function in terms of a
4 .
complete orthonormal system in a pre-Hilbert space of square '’
¢ .
integrable functions defined in a k-dimensional unit cube. l

He shows, for example that if X,

i:n is the i-th sma}lest order

E:g -
- ]
statistic in a random sample of size n with distribution

function F(x) absolutely continuous with respect to the. Le-

\
besq¥e measure having mean p and finite variance o2 apd 18-
/

ting {Wl(u)} (Wo(ﬁ)=l) be any complete orthonormal

'£=0,1,.o-

system in Lz(o,lg, and for 1l<€r.<r.<...<r.<n. Letting

3 1772 k
— 1
8, = Io x(u) ¥, (u) du
’ k]
; ¥ )
_ r.-1 r,-r,~1
b, - = p"1 [ o ul1 (u,~u,) 21
: l'( rec k 4 0<u1<.6": -<‘Jk<}-
¥ C | |
-rzvl n-r.

r i .
3 - k L
X (uy-u,) T (lmyy) Wll(ulj.j.wkkfuk{dgl...duk

»

&




e

8'3 hY o
o
@, one gets the following inequality:

!
lB(x_ X .L..oX_ )+ (- nkk 4 (k1oL £y

k ,A\ l—l r. :n

(5.22) _d.l<iz<. . ¢<ik_l

for

t . '
-z ~1"' k’l A --‘akk[(l z . )b}\:L Y /kt] |
) A 3 1 k

} N . . i
. 4

—21? "'1’

2 1

___lai ...ai }i{B(Zrl-l,Zr
k 1 k

k

) : B 1,2n—2rk+1)/k132 + -0X 4 (-0n* 1

k-1

Jk .

X ZK B(r, +r. -1,2n-r, +1) /B(r. ,n-r. +1)

e P Ml P L% T
k k k

© o Blry e 4114 [(21)¥ /k(k-l)lzkl_l § 75 T B

i1<iz'31<52 ‘
'ri ry

' + rj -l,,ri -ry +r, ~r, -1, 2n-r 2--r:.'2+:|.)/l.=,(ri

. i 2 1732 h 1 1

S n-r
o : ‘ : iz

Lo k X . ko ka1

z s e » . : ‘l ~. : ‘
N - 11 1 i’&l‘l jl'l jk- X : ’

) ' ' et
+.'!.)B[rjl,r‘jz:-r:l ,rw;t:j #1) f..‘-—ll../k.l

1 2

s




8k

[B(ri,+r/, -1,r, -r, +r, -r —l,...,2n-r.‘ -r. +1)/
173y Ty T4y I gy R e |

B(r., ,r. ,+...,n-r. +1
~(r:’1 r]2, ,n er—l ) R
%
t t 2

: ) P oo ey
1 k (11,...,1k) i1 ik

where z denotes the'sum of all permutations of the
(ij...ik) ’

integers 1,2,...,k, and B(rl,rz—rl,...;rk—rk_l,n-rk+1) =

F(rl)T(rz-rl);-.P(n—rn+1)/P(n+l). When k=1, and~rl=r the \gg
preceding inequality reduces to inequality (5.11) and when . ﬂé
- o, e

k=2, and r,=r one gets inequakity (5.13) as special cases. ‘ﬂ
Furthermore, letting X:.n be the i-th smallest order ;

statistic ina random sample of size n from a population with

2

symmetric distributioﬁ:F(x) absolutely continuous with,re-
- ‘ ’ :

.ppect to the Lebesgue meadsure with finite variance 0% and

i""" 38 ol

~

letting {Ti(ﬁ)} Wo(u)=l, be any complete orthonor-

2=0,1,...,
mal system in LZ(D,l) satisfying the condition Wk(u) = (—1)2

Y. {l1-u) for & =1,2,... with a, and b defined as, in
) S T ,

the preéeding reéult (5.22), then for l<r1<r2<.:.<;k<n,

N F
Mathai (1976) "gets the following result:

5 )

§
t t .
’ IE(X .'o.ox « ) - z — ...’z - a esed )
. 'ryin r, ‘Al~0 Ak—o 2§1+l 2Ak+l E
‘(5023) e . ' —e K
‘ ) b G 2k
o x [ . X 2A; +1,...,22. +1/k!1 | € {o ,
(ll,-..'ik) _‘11 ,' lk' . ) —— k

-
e
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t t 2 2 3 e © 2 )
-z —_ oo‘z _a sead } {E — o.oz _b*
Al-—O )\k—o 2X1+l Zkk'i'l 11—0 )\k—o 2Al+l'.""2Ak+l
t t 2 i
- z — se o 2 - b*' } 14
Al“o Ak_o 2)\1+1, LI N Y ,2>\k+1

where the closed form expression:

3

pX (ul"°"uk).?1ul"'d‘]:

_ 2
+1,000, 20,1 [-..]n

[ ]
A,=0 X & -

1

1

with h being defined-as:

5

\

-k .
h(ul,...,uk) = 2 {g(ul,...,uk) - E(l—gl,uz,.f.,uk) - eee

.o = E(ul,.-.,l"‘uk) 4+ E(l"'ul,l—u2,113,...,uk) . “'5‘,:

+ooot E(ul”'f'l-uk-l'l_uk) T...+ (—l)kg}l;ul,...,l—uk) '

. . .
and £.418 defined as
S

e TS

Y

: ~ - r,-1 r,~r.-1 . 7
: = -1 1 - 271 ¥
2 %(Q%,---,uk) = IZ(FZ)B] [uil (ui2 uil) | % ‘@

- n-r r.-1 r.-r.~-1l
o eee (1-ug ) ko, (--'1)"(1-ui ) L g ~y 20t
X K k k-1 ‘
n-r ’ .
' es s ui k] ? . .
1 v

’

S b

for 0<u, <;..< u, <1 and 0 elsewhere. -
i, i, _ )
Inequalities \{5.22) and (5.23) can easily be generalized
for the case of product moments of higher orderé. See Mathai
(1975, 1976) for further details and explanations on ‘evaluat-

- ting the éxpressions contained in (5.22) ?nd (5.23).

> I ~ PR r
2o sl b
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¥, TR - 4 R 4 ) -



J

8l

INDEX OF SYMBOLS AND NOTATIONS

!

1
4.

X

xl'XZ"" Xn

xl,x2. e -lxn

X(l) < X(z) <. X(n)

< x(z) <...< x(n)

<.'.< x
n

l:n 2:n n

P(x) = Pr{x<x}

p(x)

f \ ~ N

Fr(x)’ Fr:nlxa

o
a

£.(2), £y (0

’
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