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ABSTRACT

To date, gene regulation is still one of the most studied processes in molecular biol-

ogy. Among its main actors, proteins called transcription factors, play an essential

role in controling the rate of expression of genes, by binding to specific sites on the

DNA sequence. These sites are short in lenght (5 to 15 basepairs) and are called

transcription factor binding sites (TFBSs). These interactions between proteins and

DNA have a fundamental role at several stages of cell development and in response

to stress conditions. Various computational methods that exploit specific character-

istic of TFBS have been developed and tested for the purpose of the identification of

TFBSs. Examples include, the identification of TFBSs via phylogenetic footprinting,

via cis-regulatory modules and via statistical over-representation.

In this thesis we present a new approach that uses elements of the three identifica-

tion methods to develop a large-scale approach that assesses the over-representation of

TFBS in DNA sequences. Results of application of this new method are presented for

five biological datasets: including a set of regions bound by estrogen receptor (ER).

We also present new results, yet to be validated experimentally, from two interesting

biological datasets. The first is a dataset containing coding regions under non-coding

selection (called CRUNCS). The other is a set of genes regulated by proteins called

angiopoietins.

Finally, a new public bioinformatic software, used to estimate the over-representation

of TFBSs in DNA sequences, that we call the Genome-Wide Analysis of TFBS Over-

Representation (GATOR), is introduced.
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RÉSUMÉ

À ce jour, la régulation des gènes est encore l’un des processus les plus étudiés

en biologie moléculaire. L’une de ses principales categories d’acteurs, des protéines

appelées facteurs de transcription, joue un rôle essentiel dans le contrôle du taux

d’expression des gènes, en se liant à des sites spécifiques sur la séquence d’ADN.

Ces sites sont des séquences courtes (de 5 à 15 paires de bases) et sont communé-

ment appelés sites de liaison pour les facteurs de transcription (TFBSs, en anglais).

Les interactions entre ces protéines et l’ADN jouent un rôle fondamental à plusieurs

stades du développement cellulaire et de la réponse à divers types de stress. Diverses

méthodes de calcul qui exploitent les caractéristiques spécifiques des TFBS ont été

développées et testées dans le but de l’identifier de tels sites de liaison. Citons par ex-

emple l’identification des TFBS à l’aide des empreintes phylogénétiques, des modules

de régulation cis et de la sur-représentation statistique.

Dans cette thèse nous présentons une nouvelle approche qui utilise des éléments des

trois méthodes d’identification susmentionnés pour développer une approche à grande

échelle qui évalue la sur-représentation des TFBS, dans les séquences d’ADN. Les

résultats de l’utilisation de cette nouvelle méthode sont présentés pour cinq ensembles

de données biologiques. Parmi eux, un ensemble des régions de sites de liaison liées

aux récepteurs d’œstrogène (ER), un ensemble de données qui contient des régions

codantes sous sélection non codante (appelé CRUNCS) et finalment, un ensemble de

génes régulés par des protéines appelées angiopoietines.

Finalement, nous présentons un nouveau logiciel bioinformatique public qui sert à

estimer la sur-représentation des TFBSs dans les séquences d’ADN et que nous avos

appelé le Genome-Wide Analysis of TFBS Over-Representation (GATOR).
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Chapter 1

Introduction and Thesis Outline

In this first chapter, concepts of molecular biology will be introduced briefly. An

special emphasis is placed on the process of DNA transcription in higher eukaryotes

(e.g. humans). Transcription factor binding sites computational representation and

discovery will be explained. The last part of this chapter is dedicated to describing the

existing limitations when searching for TFBS and lastly, the purpose of this project

will be described in details.

1.1 Molecular Biology as of Today

Although many new discoveries have been made in molecular biology since the pub-

lication of Crick’s seminal papers [25, 26] describing the Central Dogma of molecular

biology, the statement that DNA sequences can be copied to DNA, by means of DNA

replication, DNA information can be copied to mRNA, by means of transcription and

proteins can synthesized using the information in mRNA as a template, by means of

translation (as seen in Figure 1.1), remains valid. In general terms the central dogma

remains a very accurate attempt to describe the process by which the sequence infor-

1



2 Chapter 1. Introduction and Thesis Outline

mation is transferred from nucleic acids (DNA and RNA) into proteins.

Figure 1.1: Central Dogma of Molecular Biology as explained by Crick

Today, thanks to the complete sequencing of the human genome, we can say that

we understand the process of information transfer (from DNA to Proteins) a little

better. In fact, two major fields have been founded for the specific analysis and study

of all genes and all proteins of an organism, namely Genomics and Proteomics.

In the case of genomics, which is the main topic of this thesis, we have been able

to figure out that only a tiny fraction (around %2) of the DNA in the human genome

is functional (that is, it consist of protein coding exons) and that around 50% of the

human DNA consists of non protein coding repetitive sequences [88].

Despite all of our current knowledge about the molecular mechanisms of the cell,

the inner working of processes like gene expression regulation remains a big question to

be answered and DNA transcription remains one of the most widely studied processes

in molecular biology [85].

1.2 Gene Expression and Transcription Factors

In human cells, genes are divided in two portions: (1) coding sequences, called ex-

ons1, which carry the required information for protein synthesis, or in simpler terms,

1Exons are not necessarily coding sequences
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sequences that define what the gene produces; and (2) non-coding sequences, called

introns, which are in part responsible of determining if the gene is activated or not.

The process of gene expression can be defined as the process by which the complete

structure of a gene (DNA sequence) is transformed in a functional gene product (a

protein). This process of transformation of DNA sequences into proteins occurs in

three phases: a gene is first copied entirely (DNA Transcription), with its coding

and non-coding sequences, yielding to a primary transcript. The transcript is then

processed to remove the introns (Splicing), creating a mature transcript or messenger

RNA (mRNA). This mature transcript is translated into a sequence of amino acids,

which defines a protein (RNA Protein Synthesis or Translation).

Even though an essential characteristic of genes is the possibility of being ex-

pressed, not every gene is expressed at the same rate at the same time or under the

same conditions. On the one hand, some are expressed in every cell of the human

body all the time, these genes are called housekeeping genes, which are essential for

many basic cellular functions. On the other hand, other genes are expressed in a

particular type of cells or tissue or at particular stages of cell development [3].

Gene expression is a complex process which is controlled by proteins called Tran-

scription Factors (TFs). These proteins bind to the surrounding DNA sequences of

a gene and become responsible for the activation or repression of the gene.

1.2.1 DNA Binding of Transcription Factors

At the molecular level the main actor of the transcription is an enzyme called RNA

polymerase (or RNAP) that using the DNA sequence as a template is the responsible

of creating the RNA molecules. In detail, what happens is that the free RNAP

molecule binds strongly to a specific DNA sequence called promoter sequence, the

promoter is usually found upstream of a gene and contains the transcription start site
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for RNA synthesis or the site where RNA synthesis begins. The DNA double helix is

opened by the RNAP, which then progresses along the template strand in the 3’ to

5’ direction one nucleotide at the time2synthesizing a complementary RNA molecule,

this process is often called elongation. The synthesis ends at a termination signal

or stop signal where both the polymerase and the new created RNA molecule are

released. The typical RNA molecule is between 70 and 10,000 nucleotides long [3].

1.2.2 Impact of Transcription Factors on Gene Expression

Transcription factors and the specific DNA sequences they bind3are very important for

the gene expression machinery. They have been said to be two of the most important

functional elements in any genome [14]. It is very well documented that defects in the

process of transcription can lead to the occurence of various diseases, for example, a

variety of cancers result from chromosomal rearrangements (translocations) involving

either regulatory elements or transcription factors [55].

Transcription factors are protein themselves and must be regulated by other TFs.

All genes and proteins are part of a molecular regulatory machinery that starts with

the TFs present at the beginning of development (the early TFs present in embryonic

state of an organism).

A better understanding of the interaction between TFs and TFBSs will allow

a mapping of the regulatory pathways in cells which in turn will provide a clearer

interpretation of the role of individual genes in health and disease.

2Although RNA polymerase traverses the template strand from 3’ to 5’, the coding (non-template)

strand is usually used as the reference point, so transcription is said to go from 5’ to 3’.
3This DNA sequences are often called Transcription Factor Binding Sites or TFBS
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1.3 Identification of Transcription Factor Binding Sites

The functions of the transcriptional regulatory elements are determined in their ma-

jority by the protein/DNA interactions, thus, the identification of all protein binding

sites is a major and necesary step in the characterization of functional elements in

the human genome [22]. However, the task of identification of TFBSs is a non trivial

one and requires a synergistic collaboration between computational and experimental

methods [29].

Traditional Methods Traditionally, TFBS have been determined using experi-

mental methodologies such as: footprinting methods [33], gel-shifts [34] and South-

western blotting [10]. These methods are generally expensive, time consuming and

not scalable to genome-wide analysis [14]. In the last decade a number of high-

throughput technologies have been developed for the purpose of identifying TFBS in

vitro4and in vivo5.

One high-throughput technique for finding high-affinity binding sequences in vitro

is the Systematic Evolution of Ligands by Exponential Enrichment or SELEX. In

this technique, randomized single stranded DNA sequences (RNA sequences) are

generated and paired with a protein of interest. Those sequences that bind with

high affinity to the protein or compound of interest are selected and the rest of the

sequences are removed by using affinity chromatography 6.

Another very effective technique for measuring the interactions between DNA and

4Experiments performed in a controlled environment usually in a test tube, outside of a living

organism.
5Experiments performed inside an organism or a living tissue.
6Affinity chromatography can be defined as separation method applied to biochemical mixtures,

which is based in the biological interactions between the solution that is wanted to purify and the

molecule that is used to purify it.
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TFs in vivo is the genome-wide location analysis or ChIP-chip (also known as ChIP

on chip). This technique combines chromatin immunoprecipitation ChIP with DNA

microarray technology chip. The goal of a ChIP-chip experiment is to isolate and

identify the DNA sequence which are bound by TFs and one of its main advangates

over other methods is that it can be used to identify binding sites on a genome-wide

scale by using special microarrays called tiling-arrays, which are basically a way of

looking to specific regions of interest of the genome.

It is important to mention that in the last two years a newer technology called

ChIP-sequencing (or ChIP-seq, for short) which combines chromatin immunoprecipi-

tation (ChIP) with massively parallel DNA sequencing was introduced to the market

and it is slowly replacing ChIP-chip experiments. Contrary to ChIP-chip, in ChIP-

seq instead of needing thousands of runs to cover the complete genome, just a single

sequencing run can do genome-wide associations with higher resolution [53].

Computational Methods The rise in favor for more efficient and reliable in silico

or computational methods for detection of TFBS happens for three main reasons:

(1) because experimental methods are costly (still nowadays); (2) because while most

experimental methods just report a few number of binding sites per experiment, com-

putational methods can search for new putative motifs exhaustively and (3) because

the binding of a TF In vitro not always translate to a functional binding in vivo [14].

Stormo [80] wisely divides the computational prediction of DNA binding sites in

two subproblems: the representation problem and the prediction problem. These

problems, the solutions that have been found and their limitations will be explained

in the next two sections.
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1.4 Computational Representation of Transcription

Factor Binding Sites

Defined in a formal way, the problem of computational representation of TFBS can be

stated as follows: Given: A collection of known binding sites for a given TF. Find: A

representation of those sites that can be used to search for new sequences and predict

where additional sites occur.

One of the most important characteristics of TFs is that for regulatory purposes

they accept variations in the sites they bind. Therefore, the only way to describe a

binding site correctly and still be true to the real phenomenon is to create a repre-

sentation that maps more than one DNA sequence to a single TF.

Three distinct but related approaches have been successfully used to represent the

alignment of different sequences for a TF: consensus sequences (also called sequence

patterns or regular expressions), position weight matrices-PWM (also called position-

specific scoring matrices-PSSM, often pronounced as possums), and, more complex

higher order models [28].

1.4.1 Consensus Sequences

A consensus sequence is a way of representing the results of a multiple sequence

alignment. In the context of TF representation, these sequences usually come from

experimental results that represent the different DNA binding sites affinities shown

by a transcription factor. The consensus sequence shows which nucleotides are most

abundant in the alignment at each position.

When building a consensus sequence for a TF, all the experimentally found binding

sites DNA sequences for a certain factor are first aligned. Then, the number of
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occurrences of every nucleotide in every position of the DNA sequences is counted,

thus creating a profile. Once the profile is created, a decision about which nucleotide

should be the most representative for each position is made. One strategy to do this

is to assign each position to the nucleotide (A, C, G or T) that is observed the most

often at each position.

In many cases there are more than one nucleotide that are observed with a rea-

sonably high frequency at a given position, when this occurs the position is said to

be degenerated. For the purpose of allowing a better representation of degenerated

positions, the degenerate IUPAC nucleic codes [24] were created. They extend the

number of symbols used to represent a given position, therefore allowing for a greater

variations. The symbols present in the IUPAC nucleic codes are shown in Table 1.1.

Finally, when the most observed nucleotide or the degenerate symbol has been

defined for every position of the DNA sequence, then that string of symbols is said

to be a consensus sequence that represents a given TFBS.

A simple example that we will use for the remaining of this section are the binding

sequences for the LBP-1 transcription factor, described in the TRANSFAC database

as M00644. In Table 1.2, five DNA sequences which serve as binding sites for this

factor are shown.

Table 1.3 shows the profile for LBP-1, with the respective counts for every nu-

cleotide in every position. Also, the final consensus is shown in the bottom of the

table.

Conclusions about Consensus Sequences An advantage of using consensus se-

quences as a way to represent TFBS is that they are a simple representation that can

be understood by humans and by computer programs alike. Specifically, in the case



1.4. Computational Representation of Transcription Factor Binding Sites 9

Table 1.1: IUPAC code for representing degenerate nucleotide sequence patterns

Symbol Meaning Origin of Designation

G G Guanine

A A Adenine

T T Thymine

C C Cytosine

R G or A puRine

Y T or C pYrimidine

M A or C aMino

K G or T Keto

S G or C Strong interaction

W A or T Weak Interaction

H A or C or T not-G, follows G in the alphabet

B G or T or C not-A, follows A in the alphabet

V G or C or A not-T (not-U), follows U in the alphabet

D G or A or T not-C, follows C in the alphabet

N G or A or T or C aNy

Table 1.2: Binding sites (DNA sequences) for the LBP-1 transcription factor as described in TRANS-
FAC profile M00644

Site 1 C A G C T G C

Site 2 C G G C T T G

Site 3 C C G C T G G

Site 4 C A G C T G C

Site 5 C A G C T G C
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Table 1.3: Binding site profile and consensus sequences for the LBP-1 transcription factor

Position 1 2 3 4 5 6 7

A 0 3 0 0 0 0 0

C 5 1 0 5 0 0 3

G 0 1 5 0 0 4 2

T 0 0 0 0 5 1 0

Consensus C A G C T G S

of computer programs consensus sequences can be seen as regular expressions 7, and

as regular expressions are manipulated easily by computer programs, they facilate

the process of motif scanning (explained in detail in section 1.5).

Despite these facts, consensus sequences do not contain precise information about

the relative likelihood of observing the alternate nucleotides at every position of a

TFBS [14], thus failing to reflect the quantitative characteristics of TFBSs. For

example, in Table 1.3 the second position of the consensus was set to be an A, but

someone can argue that the V symbol would have been a better representation, one

that captures all the nucleotides in play at the moment of binding. A similar event

happens in the last position of the consensus, it is set to S, but someone can easily

argue that it should have been a C instead of a S. In general, the decisions about

each position of the consensus are subjectively made by the person who builds it.

The lack of objectivity and the fact that by using a consensus sequence as rep-

resentation for a binding site, information about the original DNA sequences is lost,

has motivated the creation of more accurate methods for binding sites representation,

for instance the position weight matrices.

7Regular expressions provide a flexible way to identifying strings of characters (particular char-

acters, words, or patterns of characters) of text of interest
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1.4.2 Position Weight Matrices

When building a Position Weight Matrix (PWM) the same process used to build a

consensus is followed, however, it differs in that the profile, with its counts for every

nucleotide in every position, is normalized, or in other terms, every position of every

column is divided by the total count for that column (see formula 1.1), thus converting

the profile into a position frequency matrix (PFM).

PFMb,i =
Pb,i

N
(1.1)

, where Pb,i represents position b, i of the binding site profile and N is the number of

sequences available.

The normalized profile or PFM is just a table in which each cell contains the

probability of observing a given nucleotide at a given position of the motif and in

which every column sums to a total of one.

Following our example of the LBP-1 transcription factor we can easily convert

Table 1.3 into a PFM, as it is shown in Table 1.4.

Table 1.4: Position frequency matrix (PFM) for the LBP-1 transcription factor

Position 1 2 3 4 5 6 7

A 0.0 0.6 0.0 0.0 0.0 0.0 0.0

C 1.0 0.2 0.0 1.0 0.0 0.0 0.6

G 0.0 0.2 1.0 0.0 0.0 0.8 0.4

T 0.0 0.0 0.0 0.0 1.0 0.2 0.0

Σ 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Usually, to avoid zero valued probabilities, small amounts called pseudocounts are

added to the counts in the PFM before normalizing. This has a twofold benefit: first,
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to avoid problems while computing a motif score (for this task the PFM is converted

to a log-scale, therefore the PFM values must be non-zero values) and second, is a

way to account for unobserved nucleotides (given the characteristics of TFBSs one

cannot be certain that a particular nucleotide never occurs in a real binding site [45]).

While there is not a specific formula for the calculation of pseudocounts, Wasser-

man and Sandelin [85], give a very generic formula (seen in Formula 1.2) to calculate

the values of a pseudocount corrected PFM or (CPFM).

CPFMb,i =
Pb,i + s(b) ∗ Pr(b)

N + s(b)
(1.2)

, where Pb,i represent the counts of base b in position i, N is the number of sequences

from where the profile was build, s(b) is the pseudocount function (usually set to 1)

and Pr(b) is the background model, or the probability of seeing a nucleotide b in the

aligned sequences.

The background model can be set to give equal probability of seeing a nucleotide

in the sequences as: Pr(A)=Pr(C)=Pr(G)=Pr(T)=0.25. Specifically, in the case

of studying the human genome, we can use as probabilities the DNA composition

values discovered by Erwin Chargaff’s [18]. In his findings he discovered that the

four basic nucelotides (A, C, G and T) are present in the human genome in the

following percentages: A=30.9% and T=29.4%; G=19.9% and C=19.8%. These and

the discoveries made for other organisms were later used to formulate what we know

now as the Chargaff’s rules8.

As our PFM for LBP-1 transcription factor (Table 1.4) have a couple of po-

sitions with probability of zero, we can use Formula 1.2 to calculate the pseudo-

counts. If we use s(b)=1 and background probabilities as Pr(A)=Pr(T)=0.32 and

8The first rule of Chargaff’s states that in DNA the number of guanine bases equals the number

of cytosine bases and the number of adenine bases equals the number of thymine bases
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Pr(C)=Pr(G)=0.18 we get the values shown in Table 1.5.

Table 1.5: Corrected position frequency matrix (CPFM) for the LBP-1 transcription factor

Position 1 2 3 4 5 6 7

A 0.05 0.55 0.05 0.05 0.05 0.05 0.05

C 0.86 0.20 0.03 0.86 0.03 0.03 0.53

G 0.03 0.20 0.86 0.03 0.03 0.70 0.36

T 0.05 0.05 0.05 0.05 0.89 0.22 0.05

A CPFM can be converted into PWM by determining the weight of each nucleotide

at each position. For this task many valid approaches exists. The most commonly

used approach is to set every weight to the log-likelihood ratio of the nucleotide with

respect to the background frequency of the nucleotide in the aligned sequences or in

the entire genome (as seen on Formula 1.3).

PWMb,i = −log2(
CPFMb,i

Pr(b)
) (1.3)

, where Pr(b) is the background probability of base b and CPFMb,i is the corrected

probability of base b in position i.

If we have the background distribution of nucleotides in the aligned sequences or in

the genome we are studying, for example, Pr(A)=Pr(T)=0.32 and Pr(C)=Pr(G)=0.18,

we can convert our CPFM for LBP-1 (Table 1.5) to a PWM using Formula 1.3. Re-

sults of the conversion are shown in Table 1.6.

Other approaches to convert a CPFM to a PWM are: (1) setting every weight

to the negative logarithm of the frequencies of each base at each position [80] (see

formula 1.4). (2) setting every weight to the expected (average) self-information (see

formula 1.5).
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Table 1.6: Position weight matrix (PWM) for the LBP-1 transcription factor

Position 1 2 3 4 5 6 7

A -2.58 0.79 -2.58 -2.58 -2.58 -2.58 -2.58

C 2.26 0.13 -2.58 2.26 -2.58 -2.58 1.56

G -2.58 0.13 2.26 -2.58 -2.58 1.95 1.01

T -2.58 -2.58 -2.58 -2.58 1.47 -0.54 -2.58

PWMb,i = −log(PFMb,i) (1.4)

PWMb,i = −PFMb,i ∗ log(PFMb,i) (1.5)

The information content (IC) of a PWM as a whole can be calculated as the sum

of the expected self-information of every element by using formula 1.6. In general

terms a lower IC indicates higher variability (lower specificity) in the sites.

IC(PFM) =
T

∑

b=A

l
∑

i=1

PFMb,i ∗ log2(
PFMb,i

Pr(b)
) (1.6)

Sequence logo When weights of a CPFM are calculated via their self-information

(by using Formula 1.5), it is most likely that their final representation is not the

PWM, but instead a sequence logo [76]. A sequence logo is a graphical representation

used to display patterns in a set of aligned sequences. Sequence logos are very useful

as they show how well nucleotides are conserved at each position and also show the

relative frequency of bases and the information content (measured in bits) at every

position of a site or sequence.

A sequence logo for the LBP-1 transcription factor was made using the WEBL-

OGO [27] tool (as seen in Figure 1.2) using as reference the binding sites shown in
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Table 1.2.
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Figure 1.2: Sequence Logo from five DNA sequences that represent binding sites for LBP-1 tran-
scription factor

Conclusions about PWMs PWMs represent a great advance from consensus

sequences. They are a more informative way of representing binding sites, however,

there are a number of considerations about PWMs that are worthy of mention:

1. Since PWMs are based on observed data, the greater number of DNA sequences

that are observed, the better the matrix representation reflects the real binding

preference. Hence, those TFs that are very short in length and non commonly

observed will have weak PWM representations.

2. PWMs are somewhat accurate in identifying in vitro target sequences but are

insufficiently specific in the identification of sites with in vivo function to provide

a meaningful predictions [14].

3. PWMs, because of their expressiveness, are more suitable for motif scanning

than consensus sequences (this will be this discussed in next section).

1.4.3 Higher Order Models

Although both methods, consensus sequences and PWMs, offer a fairly clear and

straightforward representation of biologically interesting candidates, they both as-
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sume that every nucleotide of the motif is independent from the others, ignoring the

inter-nucleotide dependencies.

For example, suppose there are two candidate sequences: S1 = AGTTG and

S2 = CGAAG, and PWM representation P under an independent nucleotide model.

Then, the background probability of seeing G as the second nucleotide is the same

on both sequences. On contrary, under the higher order model, the background

probability of seeing G as the second nucleotide in the sequence also depends on

the nucleotide in the first position (AG or CG), thus giving different background

probabilities for S1 and S2.

Clever models that account for all the interactions left out in the independent

nucleotide models have been developed and implemented. For instance di-nucleotide

matrix models has been suggested [81], in which the alphabet has been extended to

16 letters, as {AA, AC, AG...TG, TC, TT} in order to represent interaction between

nucleotides. Also, models in which the background is represented as a (j -th order

Markov model) in which the probability of finding a nucleotide in a given position of

a motif depends on the j nucleotides that are preceding that position, has been also

proposed [82]. However, the reality is that these models have achieved modest speci-

ficity, when compared to the basic position-independent models [49]. For instance,

Marstrand et al. [54] present a zero-order PWM outperforming a third-order model

both on artificial and experimental data.

1.5 PWM Databases

A great number of experimentally and computationally defined TFBSs have been

already assembled in databases for various organisms as: yeast (SCPD) [92], bacteria

(DBTBS) [79] and even for human (TRANSFAC) [87] and (JASPAR) [74].
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Even though, both, JASPAR and TRANSFAC databases contain PWMs for hu-

man TFBS, they have been assembled for different purposes. JASPAR is an open

database and contains a non-redundant set of 436 matrices9, while TRANSFAC is a

commercial database10 and contains a redundant set of 892 matrices11.

1.5.1 Motif Scanning

Once having TFBSs represented as consensus sequences or PWMs, the next logical

step is to scan selected DNA sequences (or even complete genomes) to discover possi-

ble TFBSs locations. This problem is often called motif scanning and can be defined

in a formal way as: Given: A DNA sequence S and a PWM M of length l. Find:

Binding sites present in S that match M.

For motif scanning we can use as template any of the TFBSs representations that

were described in the previous section. However, as consensus sequence are a limited

description of binding sites that can only tell us if the scanned sequences match or

not the consensus, their predictive power is low. In other hand, a DNA sequence

can be compated to a PWM and a score for every position of the sequence can be

calculated by adding the scores of every column of the PWM (see formula 1.712)

9At the moment of writing this thesis JASPAR release 3.0 included the JASPAR CORE, which

consists of 138 matrices and the JASPAR Collections: JASPAR PHYLOFACTS, JASPAR FAM,

JASPAR CNE, JASPAR POLII and JASPAR SPLICE, which contains 174, 11, 233, 13 and 5

matrices respectively
10There is a part of TRANSFAC database that is public for Academic and Non-profit Organiza-

tions, It can be accessed in http://www.gene-regulation.com/pub/databases.html
11At the moment of writing this thesis TRANSFAC 2009.2 contains 892 matrices
12It is needed to explain that formula 1.7 represents a sum of the values at each position of PWM

assuming that they represent the logarithm of base 2 of the likelihood ratio, ratio that describes

the nucleotide with respect to the background frequency of the nucleotide in the aligned sequences

calculated. However, this score can also be computed by using multiplying each individual likelihood,

that is, the raw ratio without the logarithm calculation.
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and only those segments whose score reaches some predetermined threshold or cut-off

value are reported as matches or interesting candidates.

ScoreS =
l

∑

i=1

PWMSi,i (1.7)

where ScoreS is the score of aligning a DNA sequence S to a PWM of length l.

Si represents the nucleotide in position i in an input sequence S.

As example, if we want to score a given DNA sequence S = {CCAATTG} against

the PWM representation of LBP-1 that we have in Table 1.6, we will just sum the

values (weights) that appears in every position of the PWM for every nucleotide of

the string. For easier reading these positions have been shaded in Table 1.7.

Table 1.7: Position weight matrix (PWM) for the LBP-1 transcription factor

Position 1 2 3 4 5 6 7

A -2.58 0.79 -2.58 -2.58 -2.58 -2.58 -2.58

C 2.26 0.13 -2.58 2.26 -2.58 -2.58 1.56

G -2.58 0.13 2.26 -2.58 -2.58 1.95 1.01

T -2.58 -2.58 -2.58 -2.58 1.47 -0.54 -2.58

ScoreS = PWM(C, 1)+PWM(C, 2)+PWM(A, 3)+PWM(A, 4)+PWM(T, 5)+

PWM(T, 6) + PWM(G, 7)

= 2.26 + 0.13 + (−2.58) + (−2.58) + 1.47 + (−0.54) + 1.01 = −0.86

By using Formula 1.7 it is also possible to scan strings S that are longer than the

number of columns in our PWM, l. However, a sliding window approach is needed to

make substrings of S of length l, to be fed to the equation asynchronously.
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1.6 Reducing False Positive Rate of Predictions in

Motif Scanning

A lot of progress has been achieved by using Motif Scanning. However, the problem

remains a non-trivial one, because long DNA sequences (like the human genome)

report a large number of sites that are predicted to be binding sites. Specifically,

some motifs with weak representations (very short sequences) will yield too many

predicted sites, which will be mostly uninteresting.

Three characteristics of the gene regulation process are frequently used as extra

information in predictive models in order to reduce the number of false predictions:

1. Functional regions, like TFBSs, tend to be conserved through evolution of

species. Phylogenetic footprinting is a method that takes advantage of this

fact to improve the TFBS prediction (see section 1.6.1).

2. TFs tend to act in groups or clusters when regulating the expression of a gene.

Methods looking for TFBS clusters are described in section 1.6.2.

3. Functional TFBSs will be over-represented in the regulatory regions of co-

regulated genes when compared to a background set of genes. Over-representation

approaches are discussed in section 1.6.3.

From these three characteristics, three different approaches for the prediction of

TFBS have been proposed: phylogenetic footprinting, or the problem of predicting one

TFBS given many orthologous sequences 13 and clustering of TFBSs, or the problem

of predicting many TFBSs given one sequence and Over-represented TFBSs.

13Two sequences are orthologous if they share a common ancestor and are separated by speciation.
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1.6.1 Prediction of Transcription Factor Binding Sites by us-

ing Phylogenetic footprinting

There are two common ways to discover regulatory elements in genomic sequences:

(1) to try do discover these elements by using sequences from coregulated genes and

searching for similar matches in a single genome and (2) to try to discover regulatory

regions by using sequences from a single gene and searching for similar matches in

multiple genomic sequences. Over-representation and clustered CRM modules meth-

ods falls in the first category, while phylogenetic footprinting falls in the second.

With the completion of the sequencing of genomes for different species, the idea of

looking for similar DNA regulatory elements among different species has given birth

to phylogenetic footprinting, which studies the structural relationship of functional

elements between different genomes by comparing orthologous gene sequences 14 [49].

Phylogenetic footprinting approaches are often used to understand the mecha-

nisms of genomic evolution that occurs in different species or simply to find similari-

ties and differences between regulatory regions. Phylogenetic footprinting is based on

two basic assumptions. The first is that mutations will be less frequent in functional

regions of the genome, than in regions without specific functions. The second is that

orthologus genes are usually regulated by the same mechanism in different species.

A phylogenetic footprinting approach will typically follow the following steps [85]:

1. Selection of orthologous sequences: The sequences to be aligned need to be of an

appropriate evolutionary distance, in order to show conservation of functional

elements.

On the one hand, aligning sequences from closely related species will align very

14Two sequences or genes are orthologous if they share a common ancestor and are separated by

speciation events and paralogous if their divergence is caused by duplication events.
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well, almost without gaps, which will make very hard to distinguish conserved

functional elements from non-functional elements. On the other hand, aligning

sequences from very divergent species will be difficult and most likely will show

no conservation of functional elements between the two sequences [36].

2. Alignment of the promoter sequences for comparison: Methods for sequence

alignments can be divided into three groups: local, global and hybrid (also

called glocal). They are considered local, if they align short similar fragments

of the input sequences, global if they align entire sequences given as inputs into

a single alignment and hybrid if they use a combination of local and global

alignment to produce the final result [6]. Also, according to the number of

sequences they align they can be divided in pairwise sequence alignment (due

to their nature, the pairwise multiple sequence alignment methods also fall in

this category) and multiple sequence alignments.

Examples of implementations that are used for pairwise sequence alignment of

promoters regions are: BLASTZ [77], for local alignments and LAGAN [13]

and AVID [11] for global alignments. In the case of global multiple sequence

alignments, we find the multiple sequence versions of LAGAN and AVID called

MLAGAN [13] and MAVID [12], respectively. Also, TBA/MULTIZ [8] and

many members of the CLUSTAL family [21] [83]. It is worth mentioning hybrid

approaches which are not used for purely phylogenetic purposes as T-Coffee [59]

and the DIALIGN [58] family of methods.

3. Visualize identified segments of conservation: as multiple sequence alignment

is done in the previous step, what is left to do, is just to find a way to visu-

alize and finally interpret the results. Two known multiple sequence alignment

visualization packages are: rVista [51] and PipMaker [78].

Phylogenetic approaches have succesfully clarified conserved regulatory regions

between the human genome and genomes several vertebrates [67] and between the
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human genomes and several mammals [90]. For instance, two well known implementa-

tion of phylogenetic footprinting approaches are: ConSite [75], that use a profile-based

phylogenetic footprinting approach to detect conserved regions in mouse and human

and FootPrinter [9], in which the phylogenetic footprinting is approached not only

from as a mere multiple sequence alignment problem, but also with an evolutionary

point of view by using the notion of parsimony between sequences.

1.6.2 Prediction of Cis-Regulatory modules

When regulating the expression of a gene, several TFs can bind to DNA sequences in

segments that can cover a few hundreds of base-pair long, forming what is often called

a Cis-regulatory module (CRM). Genes can have multiple CRMs in their flanking

non-coding sequence. These modules are believed to control transcription regulatory

processes in space and time [36].

The methods for prediction of CRM are usually classified in two groups: super-

vised and unsupervised. In the first group fall all the methods that employ machine

learning techniques that use the characteristics of known regulatory modules in order

to discover sequences with similar characteristics. For this task, probabilistic models

such as HMMs are used to represent the CRMs. For instance, Frith et al. [32] created

an HMM model for intra and inter CRM regions from a single sequence, by using two

major states: modules and background sequences, as well as transition and emission

probabilities among them.

In the second group fall all the ab initio approaches that try to predict the op-

timal subset of DNA motifs that will be present in a given CRM, without prior

information. Ab initio discovery implementations have given good results for yeast

and drosophila [37]. Also, an interesting method is presented by Blanchette et al. [7],

in which a phylogenetic based CRM discovery approach led to the prediction of more
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than 118,000 CRMs in the human genome.

1.6.3 Prediction of Statistically Over-Represented Transcrip-

tion Factor Binding Sites

One solution found to overcome the great number of false positives predictions that

result from motif scanning, is by adding information from the sequences scanned.

For instance, scanning the promoter regions of genes that are known (or believed) to

be co-regulated by the same TF and then look for the over-represented TF motifs

present in those sequences.

Over-represented TFBS prediction works under the assumption that if a functional

motif is present in co-regulated sequences, then the number of matches will be greater

that will be expected by chance in a similar, but random generated set.

This problem can be defined in a formal way as. Given: The promoter sequences

S of n co-expressed genes and a set of PWMs M1, M2, . . . , Mn of length l1, l2, . . . , ln.

Find: PWMs whose number of predicted sites is surprisingly large15.

A typical approach of this type will involve the following steps [66]:

1. Score the set of sequences of co-expressed genes against the set of PWMs using

the formula described in Equation 1.7.

2. Define a threshold T to discriminate interesting scores from uninteresting ones.

3. Keep the PWMs that report a score greater or equal to the threshold T.

15Surprisingly large means that the number of occurrences is statistically larger than what will be

expected by chance
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4. Generate set of random DNA sequences and score them against the PWMs

selected in step 2.

5. Compare the scores obtained by the sequences co-expressed genes to the scores

obtained by random sequences by using a test of statistical significance. A test

of statistical significance is just a procedure used to evaluate if the differences

between counts is either statistically significant, meaning that the difference is

large enough to conclude that the corresponding population values are different

or not statistically significant, meaning that the difference between a sample

value and another value should be attributed to random error or chance [61].

For the purpose of quantifying the statistical significance the standard score or

Z-Score (seen in Formula 1.8) is often used. It is necessary to mention that

there are many others test that can also be used, among them the Chi-square

test, F-test, Wilcoxon signed-rank test and T-test.

Z =
MatchCor − µ(MatchRand)

σ(MatchRand)
(1.8)

where MatchCor, represents the number of matches found in the sequences

investigated, µ(MatchRand), represents the mean number of matches found in

random sequences and σ(MatchRand) represent the standard deviation of the

number of matches found in random sequences16.

6. Statistical measurements (Z-scores) for each PWM is transformed into P-values

and finally each motif is reported as under-represented or over-represented.

On the one hand, a motif with low p-value suggest that the motif is significantly

over-represented in the DNA sequences under investigation, implying that they

are present for a real biological reason. On the other hand, a high p-value sug-

16The contents of motifs in random sequences are supposed to be normal distributed, hence the

use of the mean and standard deviation
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gest that the motif is significantly over-represented in random DNA sequences

and under-represented in the sequences under investigation.

The limitations of this approach are twofold: the difficulty of selecting a unique

threshold to quantify PWMs that are heterogeneous in nature (each one have a dif-

ferent Information Content) and finding an unbiased way to model the background

or generating the random sequence. Also another limitation of this type of meth-

ods is that even if a TFBS results to be significantly over-represented it does not

imply a direct biological function [54], this in part due to the fact of existence of

post-transcriptional events such as: alternative splicing, nuclear export, stability, lo-

calization and translation [44].

One particular implementation which uses the over-represented statistics and a

phylogenetic footprinting is oPOSSUM [41], which uses conserved promoters be-

tween human and mouse with statistical significance methods to identify over/under-

represented sites in co-expressed genes. Another implementation of this methods is

Cis-eLement OVer-representation (CLOVER) [31], which uses PWMs from TRANS-

FAC and JASPAR database profiles and used different genomes (from mammals,

birds and drosophila) as background correction.

1.7 Ab Initio Transcription Factor Binding Sites Mo-

tif Discovery

Motif Scanning in its different flavors serves as a good way to understand the gene

regulation process. However, it relies on the assumption that we have a representation

such as a PWM or a consensus sequence. The question is, what happens if we do not

have a representation of binding sites for a given transcription factor?
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Defined in a formal way the computational prediction of TFBS problem can be

stated as follows: Given: A set of sequences known to contain binding sites for a

common factor (but not knowing where the sites are and what the TF is). Find: The

location of the sites in each sequence and a representation for the specificity of the

protein.

Searching for recognizable patterns in DNA sequences from scratch (ab initio),

without any other information than the target sequence, is a problem that has been

addressed since the beginning of computational biology [36]. In essence ab initio

prediction of TFBS is a very challenging problem because:

1. We do not know the motif sequence

2. We do not know where it is located relative to the genes start sites

3. Motifs can differ slightly from one gene to another

4. We do not know how to distinguish real from non-real (random) motifs

The methods that have been developed for this task fall in two categories: enumer-

ative or exhaustive methods commonly called Pattern Driven and alignment-based

methods commonly called Sequence Driven.

1.7.1 Pattern Driven Methods

In these type of methods significant patterns of length l are identified from a given

set of DNA sequences. In essence the problem is solved by first generating all possible

patterns of a given length l, then searching for the occurrences of the pattern, counting

and scoring them according to a statistical significance method and finally reporting

the patterns that achieve the higher scores.
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Approximate sequence patterns or degenerate patterns can be identified in the

sequences and their similarity can be assessed using the Hamming distance (number

of positions in which the two patterns differ) or the Levinstein distance (number of

substitutions, insertions or deletions needed to transform one string into another),

when multiple of these patterns are close enough (according to their distance) they

can be merged into one single approximate pattern.

Pattern driven methods are enumerative in nature and are guaranteed to find

optimal solution in a restricted search space, however searching for long patterns is

computationally expensive. To circumvent this problem, preprocessing techniques

have been used to reduce the search space, thus reducing the cost of searching for

patterns. A particularly interesting enhancement has been the use of suffix trees [38],

which accelerates the search by organizing the input sequence in an indexing struc-

ture [65] and by that allowing to search for longer patterns since the search time is

linear in the length of the patterns, but exponential in the number of mutations to

be tolerated in the sites [36].

1.7.2 Sequence Driven Methods

The main goal of sequence driven methods is to predict the location of sites and their

PWM representation using the raw sequence data. If the location of sites is known,

then building a PWM is trivial. However in the ab initio motif discovery problem

this information is missing, thus it has to be learned from the data, usually using

machine learning techniques. While pattern driven methods yield optimal results, by

enumerating exhaustively all possible patterns, in sequence driven methods obtaining

globally optimal results is not guaranteed, because they are based on heuristics.

The three main techniques that have been commonly used for ab initio motif dis-

covery are: greedy algorithms, expectation-maximization (EM) and Gibbs sampling.
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Greedy Algorithms This type of algorithms were the first methods to be used

for motif discovery, introduced by Hertz et al. [39] and implemented in the software

package Consensus [40]. In essence, given a set of sequences and motif length l to be

searched, the algorithm will build a set of matrices by comparing all pairs of sequences

and progressively including the sequences of the sites which maximize the information

content (IC) of the matrix.

One of the flaws of this method is that there is no way to discern which matri-

ces are interesting and which not, causing the risk of storing unnecessary matrices

that correspond to random patterns (uninteresting patterns) in the initial steps and

discarding the matrices that correspond to occurrences of a real motif [64].

Expectation Maximization (EM) EM simplifies the problem of searching with

missing information by iteratively looking for the parameters that maximize the like-

lihood of the data. In detail this type of algorithms iterate between two steps the E

step (expectation) and M-step (maximization).

Initially the algorithm generates an initial PWM (which is either made at random

or via prior knowledge of the binding sites), then in the E-step this initial PWM is

used to estimate the probability of each subsequence being a bindings site. In the

M-step based on these probabilities a new PWM is generated. The two steps are

repeated until the method converges to a PWM representation.

One very well known implementation of this approach is Multiple Expectation

Maximisation for Motif Elicitation (MEME) [5], which allows for the identification of

multiple motifs in the same set of sequences in a single run [65].
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Gibbs Sampling This is the most widely used motif discovery method [64] [36].

One of the reasons is that, unlike EM algorithm, being probabilistic 17in nature avoids

local minima easier. As it is common with stochastic methods, this algorithm has to

be run many times, in other words, multiple searches starting from different random

positions have to be done to confirm that the a motif is really present in the sequences.

Two well known implementation of this method are: AlignACE [42], that is suited

to work on DNA regulatory sequences and ANN-Spec [89], which combines Gibbs

sampling with neural networks by training a neural network to identify the binding

sites, instead of using a PWM to represent and scores subsequences.

1.8 Can We Do Better?

After analyzing the actual situation regarding the prediction of TFBS, three main

factors has lead us to think that the current methods for the computational prediction

of TFBSs are falling short in predicting bona fide sites and that a different method

can be useful:

1. The Futility Theorem as defined by Wasserman and Sandelin [85], tells us

thatessentially all predicted TFBSs will have no functional role.

2. Tompa et al. [84] reviewed thirteen different motif discovety tools and as conclu-

sion they write that no prediction method should be used alone and usually pre-

dictions from different algorithms and approaches result to be complementary.

Therefore, another tool which uses a different approach for TFBS prediction

evaluation will be more beneficial than hurtful for the scientific community.

17Gibbs Sampling is a type of Markov Chain Monte Carlo (MCMC) algorithm, in essence is just

a probabilistic variation of the EM algorithm
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3. Computation prediction of TFBS and its consequent statistical evaluation is a

very important task that will help us understand gene regulation: knowing more

about how TF interact with the DNA will help us elucidate the complicated

mechanism of gene regulation and protein production, which will open the new

frontiers in many fields of medicine, giving us a better understanding of health

and diseases.

In the lights of this reality, a new approach which statistically quantifies and eval-

uates genome-wide predicted TFBS seems to be an interesting addition. This thesis

presents a new way to evaluate the genome-wide over-representation in TFBS predic-

tions, using as working dataset the predictions previously published in Blanchette et

al. [7].

1.9 Thesis Outline

Chapter 2 will introduce the theoretical foundations of two new methods to discover

over-represented TFBSs. Chapter 3 discusses the inner details of the implementation

of the approaches presented in Chapter 2. Chapter 4 presents the application of

these approaches on various biological datasets, with their corresponding discussion.

Finally, in Chapter 5 conclusions and future directions of the presented work are

given.



Chapter 2

Quantifying Over-Representation of

Transcription Factor Binding Sites

Predictions

In the previous chapter, the importance of TFBS and TFBS predictions was in-

troduced. In this chapter, two approaches to identify over-representated TFBS are

discussed. Finally, results from the application of these approaches to two biological

dataset are analyzed.

2.1 Problem Formulation

Defined in a formal way, the problem of quantifying the number of predicted TFBS

in a set of regions of the human genome can be stated as follows: Given: A set of

regions of the human genome. Find : The total number of TFBS that are predicted

to be bound in these regions and say if the number of predicted TFBS differs from

the number of predictions expected by chance in regions of the same size.

31
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In simpler words the approach hereafter formulated gives answers to the following

questions: How to know which and how many TFBS are in a given region of the

human genome? Is a given TF bound to this specific set of regions of the human

genome? How sure can we be that the observed results are not due to the effect of

randomness?

The solution proposed to address these questions is an algorithm that determines

the over-representation or under-representation of TFBS in a set of DNA sequences

(regions of the genome), by comparing the number of predicted occurrences of a motif

described by PWMs from TRANSFAC and JASPAR databases [7], to the number of

occurrences that will be expected to be found by chance in random DNA sequences.

The proposed solution is partly based on the over-representation statistics defined

in subsection 1.6.3 and works under the following considerations:

• Most of TFBS predictions we work with are false positives (previously expressed

in the definition of the futility theorem in chapter 1).

• False positive predictions are distributed randomly in the genome.

• The user provides regions of human genome to explore:

– If the motif is not present in the investigated regions, then the number of

binding sites predicted for that TF follows the background probability.

– If the motif is present in the the investigated regions, then the number

of binding sites predicted will be larger than expected by chance, because

there will be more real binding sites in these regions and as many false

positives.
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2.2 Binomial Over-Representation (BOR) Approach

The first way to approach our problem is a statistically simple one, where the proba-

bility of having a predicted TFBS can be described as a binomial variable Xi = 0, if

there is no prediction at position i and Xi = 1, if there is a prediction at position i.

The total count N of predicted TFBSs in the genome can be described as:

N =
GenomeSize

∑

i=1

Xi (2.1)

where N include the overlaps of different TFBS and GenomeSize is the total human

genome size or 2.98X109 basepairs.

If the site density is assumed to be independent of the position i, under our

background model we get that the probability of having a prediction on position i is

given by:

P [Xi = 1] = ρ =
N

GenomeSize
(2.2)

Now consider a set of genomic regions of total length RegSize. Under the back-

ground model the total number of predictions is a random variable that we will call

S, that follows a binomial distribution as:

P [S = s] =





RegSize

s



 ρs(1− ρ)RegSize−s (2.3)

The expected number of predictions and variance of that number S, are obtained

as follows:
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Exp[S] = RegSize ∗ ρ (2.4)

V ar[S] = RegSize ∗ ρ ∗ (1− ρ) (2.5)

As the Binomial distribution is gaussian-like in shape, but discrete instead of con-

tinuous, when the expected number of predictions is large enough1 then the binomial

distribution approaches a normal distribution with: mean µ = RegSize ∗ ρ and vari-

ance σ = RegSize∗ρ∗ (1−ρ). This approximation is better explained by the Central

Limit Theorem, which states that: the sum of a sufficiently large number of inde-

pendent random variables, each with finite mean and variance, will be approximately

normally distributed [61].

Given that the process of counting the number of predicted TFBSs in a genomic

region becomes a normally distributed process we can make use of a statistical signif-

icance measurement, in this case the Z-score, to determine if the number of predicted

sites are over-represented or under-represented given the background model.

As example, if we observe n0 predicted sites, the Z-scores is given by:

Z =
n0 − Exp[S]
√

V ar[S]
(2.6)

2.2.1 Results of the Binomial Over-Representation Approach

Genomic regions obtained by Carroll et al. [16] for estrogen receptors (ERs) were used

to test the effectivity of the binomial over-representation (BOR) approach. In their

study 5,782 regions containing bona fide estrogen receptor and RNA polymerase II

binding sites were located on a genome-wide scale via ChIP-chip experiments.

1Large enough is usually defined by the parameters of the model being build.
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Methods and Motivation Estrogen receptors have an important function as reg-

ulators of gene expression2. In nature there exist two different forms of the estrogen

receptor, usually referred to as α and β, each encoded by a different gene (ESR1 and

ESR2 respectively). Each ER form is expressed in a different tissue type. For instance,

ER-α is found in breast cancer cells [72], ovarian cells [68] and the hypothalamus [48]

and ER-β has been found in the brain [63], heart [4] and lungs [57].

The binding specificity of ER is not very clear since they can interact with DNA

directly via genomic sequences encoded by estrogen response elements (EREs) with

motif GGTCAnnnTGACC or indirectly by attaching itself to nuclear proteins, such

as AP-1 and Sp1 transcription factors [50].

As our binomial approach was formulated to specifically to find over-representation

of TFBS in genomic regions and as we knew that the expected results (profile for ER

factors, or ER like factors were going to have good Z-scores), this dataset showed

to be a suitable candidate for using as a control dataset to test the efficiency of our

method.

Results The Z-scores of each TF in TRANSFAC was evaluated for the regions

described in Carroll et al. paper. These Z-scores had an unexpectedly wide range of

-100 to 100 (see the histogram in Figure 2.1). Interestingly GC rich motifs obtained

better Z-scores than their AT rich counterparts. Example of the Z-scores obtained for

over-represented and under-represented motifs can be seen in Table 2.1 and Table 2.2,

respectively.

Analysis of the Results After analyzing the results on the Carroll dataset doubts

about the validity of the method were raised. Although the ER matrix was among

2ER-α has been identificated as a cause of breast cancer and as marker and therapeutic target

for many other diseases



36
Chapter 2. Quantifying Over-Representation of Transcription Factor Binding Sites

Predictions

Table 2.1: Z-scores (greater or equal to 80.00) obtained by the binomial representation approach
using the Carroll dataset over TRANSFAC profiles

Matrix ID Factor Z-score

M00470 AP-2gamma 111.53

M00469 AP-2alpha 107.45

M00649 MAZ 94.18

M01045 AP-2alphaA 88.73

M00959 ER 85.22

M00932 Sp-1 84.84

M00933 Sp-1 84.14

M00698 HEB 84.11

M01033 HNF4 82.43

M00915 AP-2 81.67

Table 2.2: Z-scores (less or equal to -80.00) obtained by the binomial representation approach using
the Carroll dataset over TRANSFAC profiles

Matrix ID Factor Z-score

M00138 Oct1 -113.66

M00091 BR-C Z1 -95.82

M00012 CF2-II -93.67

M00013 CF2-II -93.31

M00094 BR-C Z4 -85.71

M00092 BR-C Z2 -85.44

M00713 TBP -80.63

M00081 Evi-1 -80.20
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Z−scores for Carroll Dataset on Transfac Profiles (BOR)
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Figure 2.1: Histogram of Z-scores of the Carroll dataset over TRANSFAC predictions using the
binomial approach

the top-scoring matrices, our method was giving better scores to matrices having GC

rich motifs (a.e. GCCYNNGGS for the AP-2gamma factor) and poorer scores for AT

rich and undetermined (N) motifs (a.e. NNNNNNNWATGCAAATNNNWNNA for

the Oct1 factor).

Some reasoning about characteristics the human genome helped us realized that

our method was being affected by an AT/GC bias. In part because the numerical

difference between AT and GC bases in the human genome (41% GC bases and the

rest 59% made of AT bases [23]) and in part because GC content of the regions in

the dataset analyzed can be different from the GC content used as our background

model, which is, the distribution of the GC content of the whole human genome. This

later phenomenon can be explained better by using Figure 2.2. The red distribution

represents the actual distribution of GC content in the human genome (centered

around 41%), the blue distribution represents the distribution of GC content in a

given dataset (centered around 60%). By simple inspection it becomes clear that the
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two distributions are very different, hence using the whole genome as a background

model is just as good as comparing apples and oranges.
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Figure 2.2: GC Content Distribution

Even though the first results obtained were not the expected, they shed light into a

second approach that does not use the whole genome as a background model, instead,

it tries to make the background model more accurate by comparing the user given

dataset to the regions of the human genome which contains the same amount of GC

content.
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2.3 GC Content Stratified Binomial Over-Representation

Approach

2.3.1 GC Content Calculation

The second approach here described is theoretically similar to the first one, however,

it differs drastically in the way it creates the background model. As the GC Content

of the genome varies considerably chromosome to chromosome, the only way to create

a fair background model is to stratify (classify) the genome in groups according to

their GC Content for each chromosome and then sample from each of these stratums

independently.

In general to calculate the GC Content of a given region the following procedure

is used.

1. Define non-overlapping substrings of the genome of size k (which in our approach

we call GC Windows).

2. For every GC Window the number of G’s and C’s in them are quantified

3. Use the counts for every GC window and convert them into a single percentage

that will represents the total GC content for that GC Window.

For example, suppose we want to quantify the GC content of a string S =

{ACGGTNNGNNAATTN} of length 15 and we let the GC window size be of

k = 5. The GC content will be calculated by: First, creating three GC windows of

size k=5 (as seen in the second column of Table 2.3). Then the number of G’s or

C’s in each window is counted, multiplied by 100 and divided by the window length,

resulting in the percentage3 seen in the third column of Table 2.3.

3As there are many undetermined bases (N-bases) in the human genome and we are only control-
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Table 2.3: GC Window Calculation - Substring Creation

Window Substring GC Content (%)

Window #1 ACGGT (3*100)/5 = 60%

Window #2 NNGNN (1*100)/1 = 100%

Window #3 AATNN (0*100)/3 = 0%

Finally, the calculated GC content for string S is :

GCS = [60, 60, 60, 60, 60, 100, 100, 100, 100, 100, 0, 0, 0, 0, 0]

It is important to mention that the window size of 100 was selected because of

two main factors:

1. It was selected as a tradeoff between computation and practicality. By having

windows of 100 the GC content of the regions can be somehow less representative

that if we used a bigger window size, however we realized that the performance

of the implementation (see Chapter 3) was similar to the BOR approach with

this window size.

2. It was selected taking in account the size of TFBSs. As TFBSs are usually of

a lenght between 5 and 20 basepairs, then we descarted the use of windows of

small size like 10 or 50 basepairs.

2.3.2 Problem Re-formulation

This second approach takes in account the GC content of region analyzed, therefore,

conceptually it answers a different question. This new question can be defined in

ling for GC content, then the length of Window #2, becomes 1 and length of Window #3, becomes

3. We can not penalize undetermined bases as having no GC content.
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a formal way as: Given: A set of regions of the human genome. Find : The total

number of TFBS that are predicted to be bound in these regions and whether the

number of predicted TFBS differs from the number of predictions expected by chance

in random regions with the same GC Content.

As in our first approach, the presence of a predicted binding site at position i can

be described as a bernoulli variable Xi = 0, if there is no prediction at position i and

Xi = 1, if there is a prediction at position i. Contrary to before, thought, we will not

assume that the probability P [Xi = 1] is independent of i, but rather it depends on

the GC content of the region centered at i.

Let gc(i) be the GC percentage rounded to the nearest percentage point, of the

k basepairs window centered at i, let GenomeSize(g) be the total number of bases

of the human genome with GC content g, and let Ng be the total count of predicted

TFBS in all regions of the human genome with GC Content g, then:

Ng =
GenomeSize

∑

i=1, gc(i)=g

Xi (for 0 ≤ g ≤ 100) (2.7)

The background probability is given by the following formula:

P [Xi = 1|gc(i) = g] = ρg =
Ng

GenomeSize(g)
(for 0 ≤ g ≤ 100) (2.8)

Under the background model sg, the number of predictions in regions with GC

content g follows a binomial process with sample size RegSize(g) and probability ρg

is given by:
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P [Sg = s] =





RegSize(g)

s



 ρs
g ∗ (1− ρg)

RegSize(g)−s (2.9)

where RegSize(g) is the number of bases that have GC content g in the regions under

consideration.

We then obtain the total expected number of predictions and total variance as

follows:

Exp[S] =
100
∑

g=0

Exp[Sg] =
100
∑

g=0

RegSize(g) ∗ ρg (2.10)

V ar[S] =

100
∑

g=0

V ar[Sg] =

100
∑

g=0

RegSize(g) ∗ ρg ∗ (1− ρg) (2.11)

Finally the Z-score is then assigned as described in equation 2.6.

2.3.3 Results of the GC Content Stratified Binomial Over-

Representation Approach

As with the first method the Z-scores for each TF profile in TRANSFAC were obtained

and evaluated for the regions described in Carroll et al. paper. The newer Z-scores

show a narrower range of -40 to 40 (see the histogram in Figure 2.3). GC rich matrices

obtained positive scores, but their scores are not as positives as the ones from the

first approach. The same happened to AT profiles, they obtained negative scores,

but not as big as the ones from first approach. The Z-scores for over-represented and

under-represented matrices can be seen in Table 2.4 and Table 2.5, respectively.
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Table 2.4: Z-scores (greater or equal to 25.00) obtained by the GC content stratified approach using
the Carroll dataset over TRANSFAC profiles

Matrix ID Factor Z-score

M00959 ER 43.89

M00926 AP-1 42.18

M00925 AP-1 40.45

M00174 AP-1 39.56

M00515 PPARG 38.04

M00470 AP-2gamma 37.06

M00469 AP-2alpha 34.72

M01045 AP-2alphaA 33.23

M00724 HNF-3alpha 32.74

M01033 HNF4 32.61

M00292 Freac-4 32.40

M00517 AP-1 32.26

M00191 ER 32.11

M00199 AP-1 31.11

M00289 HFH-3 31.05

M00156 RORalpha1 30.66

M00924 AP-1 30.17

M00727 SF-1 28.26

M00765 COUP direct repeat 1 26.65

M00035 v-Maf 25.27
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Z−scores for Carroll Dataset on Transfac Profiles (GC Stratified)

Z−scores

Z
−

sc
or

e 
D

en
si

ty

−20 0 20 40

0
50

10
0

15
0

20
0

Figure 2.3: Histogram of Z-scores of the Carroll dataset over TRANSFAC predictions using the GC
stratified approach

Analysis of the Results The results obtained look like what was initially expected.

By changing the background model and correcting the GC Content ER matrices

(M00959 and M00191) are present among the top scores. It is relevant to mention

that AT/GC bias was successfully corrected and a non GC rich motif resulted as the

top score (NAGGTCANNNY for factor ER) and a non AT rich motif resulted as a

minimum score (WNTAATCCCAR for factor PITX2).

It is interesting to notice the fact that the results also give good scores to members

of the Activator Protein transcription factor family (AP) and the Hepatocyte Nuclear

Factors/Forkhead transcription factor family (HNF/Fox). AP-1 is known to interact

with ER to promote transcription [16] and FoxA1/HNF-3Alpha plays a central role

in ER signaling [52]. Even more important is to notice that other factors among the

top scores are COUP, RoRAlpha1, Freac-4, HNF4 and PPARG, which are nuclear

factors with similar binding affinity as ER.
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Table 2.5: Z-scores (less or equal to -25.00) obtained by the GC content stratified approach using
the Carroll dataset over TRANSFAC profiles

Matrix ID Factor Z-score

M00482 PITX2 -32.73

M00012 CF2-II -29.89

M00092 BR-C Z2 -29.79

M00013 CF2-II -29.32

M01048 Tra-1 -27.01

M00022 Hb -26.67

M00305 HAP1 -25.80

M00706 TFII-I -25.79

2.3.4 Analysis of Another Estrogen Receptor Dataset

Following the successful results on the Carroll et al. dataset, a side test was done on

another ER dataset with the hopes of recovering the same ER factors resulted with

top scores with the Carroll dataset or finding new results which showed other factors

related to the ER factor.

Lin et al. [50] mapped Estrogen receptor alpha binding sites in MCF-7 breast

cancer cells by using a ChIP-PET technique4 and were able to identify 1,234 novel

regions that contain ER-α binding sites.

This paper shed light into some important features of ER, for instance, that ER-α

can influence the expression of a gene in distances of up to 100 kilobases or more.

4ChIP-PET is a combination of Chromatin immunoprecipitation (ChIP) and a newer specialized

cloning techniques and vectors, called paired-end diTags (PETs)
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Analysis of the Results for the ER on MCF-7 Dataset The Z-scores for

over-represented (positive Z-scores over 12.00) of the Lin dataset on TRANSFAC

predictions can be seen in Table 2.6.

Table 2.6: Z-scores (greater or equal to 12.00) obtained by the GC content stratified approach using
the Lin dataset over TRANSFAC profiles

Matrix ID Factor Z-score

M00515 PPARG 39.31

M00191 ER 30.41

M00959 ER 26.79

M00926 AP-1 19.63

M00925 AP-1 19.14

M00174 AP-1 18.84

M01045 AP-2alphaA 18.27

M00469 AP-2alpha 18.02

M00156 RORalpha1 17.31

M01032 HNF4 14.00

M00204 GCN4 13.84

M00727 SF-1 13.50

M00199 AP-1 13.18

M00517 AP-1 13.03

M00292 AP-1 12.92

M00511 ERR alpha 12.57

M00724 HNF-3alpha 12.00

The results obtained were as expected, ER matrices (M00959 and M00191) are

present among the top 3 scores. Also, similar to the Carroll results, the Activator Pro-

tein transcription and the Hepatocyte Nuclear Factors/Forkhead transcription factor

families are recovered (HNF/FoxA), as well as some nuclear receptors as RAR-related

orphan receptor alpha (ROR-Alpha), PPARG (peroxisome proliferator-activated re-
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ceptor gamma) and Estrogren related receptor (ERR).

2.4 Summary of the Chapter

The decision of using the Carroll et al. dataset as a control dataset to test the

efficiency of our method was crucial. A GC/AT bias was discovered and forced us to

correct the method. The second approach (GC stratified approach) gave the expected

results, recovering profiles related to ER with high Z-scores on two different datasets.

In the next Chapter details of the implementation of this method in the C lan-

guage are presented and various other datasets analyzed using the implementation

are discussed in chapter 4.



Chapter 3

Computational Challenges and

Method Implementation

In the previous chapter, two approaches to identify over-represented TFBS were pre-

sented and results when applied to two sets of genomic regions were shown. In this

chapter, inner details of the implementation of these methods are given.

3.1 Computational Challenges

Implementing the Binomial Over-Representation approach and the GC Stratified ap-

proach were challenging tasks because there is a large amount of data that has to be

processed by the program in order to compute a Z-score. The program has to read

the set of genomic regions to be analyzed and the compare to the set of genome-wide

predicted TFBS selected by the user. The set of genomic regions can be read and

validated easily, but, reading and processing the genome-wide TFBS predictions is

non-trivial.

48
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Predictions for every single TFBS in TRANSFAC and JASPAR (around 1000

TFBS) exist as 48 textfiles (for every chromosome there exist predictions on each

DNA strand: forward and backward) of more then 80,000 lines. In the worst case (if

the user decides to investigate all TFBS in TRANSFAC and JASPAR) the program

has to be able to read 24 × 2 × 80, 000 × 1, 000 = 3, 840, 000, 000 lines and then

calculate the Z-score in the fastest possible way, that is, trying to have a processing

time of less than a minute.

3.2 Method Implementation

As in any computer system, the implementation was divided logically in three main

parts: the program inputs (described in Section 3.2), the processing of the inputs

(described in Section 3.3) and the outputs (described in Section 3.3). Figure 3.1

give a complete view of the system clearly identifying the three principal parts of

the implementation: the inputs (in green), the Z-score calculations (in yellow), the

resulting outputs (cyan) and the supporting data structures that were created to

make the process fast (in red and orange).

3.2.1 Program Inputs

The program receives as input paths to three directories. The first one is a path to the

directory where the file containing the regions of the human genome to be analyzed

is located. The second is a list of paths to TFBS predictions for every TF the user

decides to investigate in the genomic regions to be analyzed. The third is a path to

the GC files, which are the files that contain the GC Content for every chromosome

of the human genome calculated via the GC Window calculation method introduced

in section 2.3 in windows of size 100 basepairs.
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Figure 3.1: Diagram of the main parts of the implementation (functions, variables and files)

File containing genomic regions The file containing the regions to be inves-

tigated should be formated in bedfile format (with extension .bed), in order to be

processed. A bedfile is just a tab separated text file formatted in three colums, in

which the first column defines the chromosome to which the regions to be analyzed

belongs, the second and third define the position where this region start and ends,

respectively. Hereafter bedfile and set of genomic regions will be used indistinctively.

As the number of regions specified in the bedfile that can vary from dataset to

dataset and this number can be sometimes very big, a pre-processing program was

implemented in order to save the time. This program is called Read.c, it reads the

befile once and divides it in 24 smaller files (one for every chromosome), which are

read individually in the main program. In this way, the time consumed in opening

and reading a large file line by line for each chromosome, is transformed in the task

of reading 24 smaller files, thus avoiding a linear search. This process is depicted in

the top left corner of Figure 3.1.
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Path to predicted TFBS As explained in section 3.1, there exist 48 prediction

files for every TFBS, therfore, for every TF that the user wants to investigate the

presence in the genomic regions for interest, it is necesary to read each file once for

every, this process is detailed later in section 3.2.2.3. The number of profiles to be

compared can also vary from dataset to dataset. To solve this, each profile is passed to

the main program as a different argument. More about this solution will be explained

in next section Running the Implementation in Parallel.

Path to GC Content files The files containing the GC content of the human

genome were calculated for every chromosome in windows of 100 bases. These files

are just text files with one column representing the percentage of GC content in a

size 100 basepairs region. More on how this files are used to calculate the background

model is discussed in section 3.2.2.1.

3.2.2 Z-Score Calculation (Processing of the Inputs)

The processing of the inputs is the central part of the implementation. It is where

the set of genomic regions is processed and Z-scores are calculated. This process

can be divided in four subtasks (or procedures if we want to refer to the program

organization):

1. Loading the GC Content file for every chromosome into memory to be able to

calculate the background model.

2. Reading the regions described in the bedfile and loading them into memory.

3. Counting the number of predicted TFBS that are in the regions provided by in

the bedfile.
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4. Statistically assess the counts obtained from reading the predictions files and

calculating the Z-Score.

3.2.2.1 Loading the GC Content

As the background model is essential for the calculation of the expected value and

variance, in our approach, the GC content of every chromosome was precomputed

(following the formulas specified in section 2.3) in windows of size k=100 and saved

to files that we call GC files.

To speed up the calculations these GC files are loaded into memory to an array we

call the GC content array. The GC content array is a data structure in which every

position represent a nucleotide of a chromosome, thus, a data structure large enough

to accommodate the GC content of every nucleotide of the largerst chromosome,

namely, chromosome 1 with its 247 million nucleotide base pairs (this translate to

have in memory an array of 250mb). When loading the GC content to the GC

content array, every position of the array is assigned the calculated GC content in a

similar procedure to the one shown in Algorithm 1.

3.2.2.2 Loading the Bedfile Into Memory

Each one of the genomic regions specified in the bedfile (which are separated for each

chromosome created by the Read.c program) is read and marked into an array similar

in size and purpose to the GC Content array, that we call Chromosome Array (See

Algorithm 2).

In detail, when loading the regions to the Chromosome Array each region is first

given an integer identifier (as seen in Algorithm 2 line 5). This region identifier is

used to distinguish nucleotides belonging to different regions. Secondly each region is
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Algorithm 1 Load the GC Content to the GC content array
Require: chr, GC_file

Output: an array containing the GC content for chromosome chr

1: GC_Content_Array[max_chr_size]← 0 /*clears the contents of the array*/

2: start← 0

3: end← 100

4: for line = 1 to EOF (for every line in the GC_file) do

5: content← GC_chr[line]

6: Genome_GC ← content /*Genome_GC is a counter that contains the total

number of positions of the genome with GC content g, where g can be 0-100*/

7: for position = start to end do

8: GC_Content_Array[position]← content

9: end for

10: start← end

11: end← end + 100

12: end for

13: return GC_Content_Array, Genome_GC
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loaded into the chromosome array. In other words, every base in the regions described

in the bedfile are marked in the Chromosome Array by its region identifier (as seen

in Algorithm 2 line 10).

Algorithm 2 Load the regions specified on the bedfile to the Chromosome array
Require: bedfile

Output: an array containing the regions of chromosome chr to be explored

Output: total number of regions to be explored

1: Chromosome_Array[max_chr_size]← 0 /*clears the contents of the array*/

2: for line = 1 to EOF (every line in bedfile) do

3: if valid(bed[line]) then

4: /*every line of the file is validated to be correctly formated, which means that

it has three columns and that the region_end is bigger than region_start*/

5: region_counter ← region_counter + 1

6: region_start← bed[line][2]

7: region_end← bed[line][3]

8: content← line

9: for position = region_start to region_end do

10: Chromosome_Array[position]← region_counter

11: content← GC_Content_Array[position]

12: Region_Size_GC[content] ← Region_Size_GC[content] + 1 /*Re-

gion_Size_GC is a counter that contains the total number of positions

of the genome with GC content g, where g can be 0-100*/

13: end for

14: end if

15: end for

16: return Region_Size_GC, Chromosome_Array, region_counter
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3.2.2.3 Counting the Number of Predicted TFBS

Once the genomic regions to be investigated have been marked into the Chromosome

Array, the program proceeds to read the TFBS predictions for the selected profile(s)

from TRANSFAC or JASPAR. If a predicted binding sites is found in one of the

regions specified in the bedfile, a counter that contains the total number of observed

hits for that region is increased by one (see Algorithm 3).

3.2.2.4 Calculation of the Expected Number of Hits, Variance and Z-

score

One way to estimate the significance (over/under-representation) of the number of

observed hits in the genomic regions being investigated is to compare it to a similar

-but theoretical- model using the formulas described throughly in Sections 2.2 and

2.3.2.

In order to calculate the expected value and variance of the theoretical model is

necessary to have an estimate of size, GC Content and number of hits of the genomic

regions investigated. In order to have this estimates we make use of three data

structures of size 101 (0 to 100) which we call GC arrays, namely they are the they

are the Genome_GC, the Region_Size_GC and the Total_Sites_GC arrays which

introduced earlier in sections 3.2.2.1, 3.2.2.2 and 3.2.2.3 respectively.

Expected Number of Hits and Variance After the predicted TFBS are read

and all the GC Arrays contains the total counts for a given chromosome, the expected

value and variance are calculated by summing over the different GC contents (0-100)

using the formulas described in Equations 2.10 and 2.11 (see Algorithm 4).
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Algorithm 3 Count the number of predictions found in regions specified by the user
Require: list of matrix files to read, chromosome

Require: total number of regions for chromosome chr

Output: the number of predicted sites in regions specified in the bedfile

1: while M ≤ total number of matrix to read do

2: /*this while cycle is executed twice, one for predictions in the forward strand

and one for predictions on the backward strand*/

3: for line = 1 to EOF (every line in the prediction file) do

4: site = mat[line]

5: position← Chromosome_Array[site]

6: content← GC_Content_Array[site]

7: Total_Sites_GC[content] ← Total_Sites_GC[content] + 1 /* The To-

tal_Sites_GC array is a counter that contains the the total number of pre-

dicted sites in the genome with GC content g, where g can be 0-100*/

8: if (position 6= 0) and (position ≤ region_counter) then

9: hits_for_region[position]← hits_for_region[position] + 1

10: total_hits_GC[content]← total_hits_GC[content] + 1

11: end if

12: end for

13: M = M + 1

14: end while

15: for x = 1 to region_counter[chr] do

16: hits_counter ← hits_counter + hits_for_region[x]

17: end for

18: total_hits_for_chr[chr]← hit_counter

19: return total_hits_for_chr[chr], T otal_Sites_GC
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Z-score After all chromosomes have been read and every expected value and vari-

ance have been computed, they are added in to one global expected value and variance

value, which is used along with the total number of hits for the bedfile to calculate

the final Z-score of the whole set of genomic regions investigated.

Algorithm 4 Calculate the expected value, variance and Z-score
Require: chromosome, windowsizek

Output: Z-score, expected value and variance for chromosome chr

1: for g = 0 to 100 do

2: exp_GC ← total_sites_GC[g]
genome_GC[g]

∗ region_Size_GC[g]

3: var_GC ← exp_GC ∗ (1−
total_sites_GC[g]

genome_GC[g]∗k
)

4: exp_GC_chr[chr]← exp_GC_chr[chr] + exp_GC

5: var_GC_chr[chr]← var_GC_chr[chr] + var_GC

6: end for

7: Z[chr]← total_hits_for_chr[chr]−exp_GC_chr[chr]
var_GC_chr[chr]

8: return exp_GC_chr[chr], var_GC_chr[chr], Z[chr]

3.2.3 Main Program

All the four procedures above described are connected via a main program. In this

program all the global variables (for instance, the GC Arrays and the GC Content

and Chromosome arrays) are declared and instructions for the input and output are

processed. The Algorithm 5 shows a high level structure of the main program which

is depicted in Figure 3.1 as a yellow rectangle (counter.c).
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Algorithm 5 Main Program
Require: bedfile, prediction_file, GC_files

1: max_chr_size← 250, 000, 000

2: Genome_GC[100], Region_Size_GC[100], T otal_Sites_GC[100]

3: Chromosome_Array[max_chr_size], GC_Content_Array[max_chr_size]

4: GC_window_size← 100

5: for chr = 1 to 24 do

6: load_GC(chr)

7: load_Bedfile(bedfile_chr)

8: count_Predictions(prediction_file)

9: write_Hits_file()

10: write_Results_file()

11: calculate_Z−score(total_hits_for_chr[chr], total_exp_GC[chr], total_var_GC[chr])

12: total_hits← total_hits + total_hits_for_chr[chr]

13: total_exp← total_exp + total_exp_GC[chr]

14: total_var ← total_var + total_var_GC[chr]

15: end for

16: total_Z-score = total_hits−total_exp

sqrt(total_var)

17: write_Summary_file()
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3.3 Program Output

Three files contain the results computed at various step of the Z-score calculation

described in the previous section. First, a file called Results file contains the total

number of hits for each region of the bedfile for a given TFBS. Secondly, a com-

plementary file to the Results file is the Hits file, which contains in which position

and strand every hit is found. The third file, that we call the Summary file contains

a summary of the statistical significance calculation (calculation of expected values,

variance and Z-score) chromosome by chromosome and globally for the entire genome.

Once the results files are created, a set of scripts are executed in order to post-

process the output files into a human readable file that is easier to open as a spread-

sheet or matrix in any technical computing software. For instance, the result file is

formated into a tab separated file, a (.res) file, which contains regions as rows, selected

matrices as columns and number of hits as the intersections. Also, the summary file

is formated into a tab separated file, a (.sum) file, in which the information of the

summary file (observed hits, expected number of hits, variance and Z-score) appear

as columns, the selected matrices appear as rows and the intersection of both shows

the consequent information for each TRANSFAC or JASPAR profile specified for

comparison.

3.4 Running the Implementation in Parallel

As explained in section 3.2.1, the program receives as input a list of paths to TFBS

predictions for every TF the user decides to investigate in the genomic regions to be

analyzed, therefore the program have to be executed as many times as selected TFBS

are in the list of paths. In order to speed up these calculations, we decided to make

use of a simple parallelization technique by using a computer cluster, passing every
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path to the TFBS predictions as an argument the counter.c program, thus making

each run an independent job (one job do not interact with the others) and queueing

them to the cluster as jobs.

The cluster is in charge of queuing, distributing the task among its nodes, pro-

cessing and then collecting all the resulted files (described in the previous section)

without human intervention and transparently to the execution of the main program.

3.4.1 Running Time

For calculating an estimate of the running time of our implementation a simple script

which counts the number of jobs in queue in the cluster at given intervals was de-

veloped. A data set containing 41,582 regions of interest identified by Robertson et

al. [70] for the STAT1 TF using ChIP-sequencing (ChIP-seq) and massively parallel

sequencing was used for this calculation. Using these regions and comparing them to

predicted binding sites for 60 Factors from TRANSFAC took about 3 minutes, which

is considerably fast considering the quantity of regions of this data set.

It is important to mention that the performance of our implementation varies

greatly with the number of genomic regions being investigated, the number of TFs

to be compared and with the number of jobs already in the cluster at the moment

of queuing the jobs, so for some data sets it is no wonder to have results under 45

seconds.

3.5 The Web Based Front End

Since the start of the project one of its goals was to make the implementation available

for public use. Once the implementation was completed and preliminary results



3.5. The Web Based Front End 61

showed that the tool was working correctly, the next step was to make the tool

available to the rest of the scientific community. Given that the tool was implemented

in C language, which is not a portable language, we decided to make a web based

front end written in the PHP language and called it GATOR, which is an acronym

for: Genome-wide Analysis of TFBS Over-Representation.

3.5.1 Architecture of the Front End

Even though at first the implementation of the front end seemed pretty trivial, the

fact that the whole implementation relied on the cluster architecture to produce faster

results made the development of the front end difficult. Part of the problem is that

the webserver (where the front end runs) and the cluster main node (were the program

runs) are different computers, therefore, to be able to activate the execution in the

master node, a network connection (secure shell) had to be made from the PHP script

(the front end) to the master node.

Figure 3.2 give a complete view of the system, including both actors, the Webserver

(front end) and the master node of the cluster. In this picture the four main parts of

the front end are identified, including the connection to the cluster and the creation

of results.

The architecture of the front end is quite simple. It consist of the four main parts

(scripts):

1. Homepage (home.php): the homepage is the first page the user see when he

enters the GATOR website. It has important information about the tool, how

to use it and how to contact the webmaster for references and help. More

important, it has a fillable form 1 that the user has to fill in order to use the

1Validations of this fillable form are made in the javascript language
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Figure 3.2: Diagram of the main parts (programs, functions, variables and files) of the web imple-
mentation

tool. This form consist in the following fields: the upload of genomic regions or

genes to be analyzed, matrix selection (where the user chooses which profiles

he wants its dataset to be compared to) and identification field (where the user

gives a name to the task and leaves a valid email address to which the results

will be send). Once the fields are validated the data is sent to the next script.

2. Validation (check.php): In this step the bedfile is validated, it is checked to be

in the correct format. If the file is invalid a message will appear on the screen

advising the user to upload a valid file formated in the three column format. If

the file is valid the data is sent to the next script.

3. Process the input (process.php): in this step the user input from home.php is
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used to create the job scripts which contains the instructions to be executed in

the main node. For instance they have information about the job, which TFBS

are to be compared and where the uploaded bedfiles resides.

Once the scripts files are produced a SSH call is made by the process.php script

to connect to the master node of the cluster in order to execute the activator

scripts. In this moment the webserver give the control to the cluster, which

takes as much time as needed to process the data. Once the cluster is finished

a flag is set and the .sum and .res files (which where introduced in Section 3.4)

are created.

4. Results (results.php): this is the final step of the process in which the user is

notified via email that his bedfile has been analyzed and his results are ready

to be downloaded in a specific URL location.

3.6 Summary of the Chapter

The decision of implementing this tool in the C language was in part forced by the

fact that other languages, such as Python and Java, were not as flexible in terms of

memory management as C is. The memory issue became critical with the introduction

of the GC Arrays, which, combined with the Genome Wide arrays, give the program

a memory footprint of more than 1Gb of memory.

The access to the cluster has been an important element of the implementation,

giving the flexibility to have results in minutes for simple datasets and moreover,

extending the capacity of the tool to be shared with the scientific community via a

webserver.

In Chapter 4, three datasets are presented and the results of their execution in

our C implementation are described and analyzed in detail.



Chapter 4

Analysis of Over-Represented TFBS

in Different Biological Contexts

The previous chapter presented details how the methods described in chapter 2 were

implemented. In this chapter, results of the application of the approach to three

different datasets are discussed in details. In detail, we discuss results from tests of

applying our method to one validation set, which is a randomly generated dataset and

to two biological relevant sets of genomic regions, the Ang-1 and CRUNCS datasets.

4.1 Analysis of the CRUNCS Dataset

Approaches that use comparative genomics are frequently used to identify conserved

regions among different species, these methods can be extended to identify conserved

regulatory regions on non-coding regions (introns) and on coding regions (exons).

Interestingly enough, there are functional elements as transcription factor bindings

sites, that can be located within exons, for instance: some transcription factor bind-

ing sites, exonic splicing enhancers and RNA secondary structure elements affecting

64
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mRNA stability, localization, or translation [20]. Chen and Blanchette [20] identi-

fied 8785 of these regions within coding regions (exons) in the human genome and

named them Coding Regions Under Non-Coding Selection or CRUNCS for short.

Table 4.1 describe the number of CRUNCS regions found by Chen and Blanchette

for each chromosome.

Table 4.1: Number of Regions per Chromosome for the CRUNCS Dataset

Chromosome Number of Regions Chromosome Number of Regions

1 937 13 149

2 851 14 389

3 546 15 324

4 438 16 251

5 470 17 569

6 493 18 169

7 333 19 82

8 333 20 143

9 297 21 60

10 511 22 124

11 385 X 439

12 489 Y 3

4.1.1 Motivation

Little is known about CRUNCS but work from Mayhew and Blanchette [56] suggest

important characteristics of these regions for instance: that CRUNCS bases are more

often found near coding exon edges than in middle coding exons; that CRUNCS-

containing genes are significantly enriched for regulation of transcription and transla-

tion, protein ubiquitination, mRNA processing and gene splicing regulation and that

CRUNCS are significantly enriched for RNA secondary structure elements.
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As the previous results above mentioned suggested that TFBSs can be found in

CRUNCS regions and because our approach was formulated specifically to find over-

representation TFBS in genomic regions, we decided to test the CRUNCS dataset in

order to find interesting TF over-represented in these regions.

4.1.2 Methods

Results of scoring the CRUNCS dataset against predicted TFBS from TRANSFAC

using our implementation can be seen in the form of an histogram in Figure 4.1.

Z−scores for CRUNCS Dataset over TRANSFAC Profiles (GC Stratified)
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Figure 4.1: Histogram of Z-scores of the CRUNCS dataset over TRANSFAC predictions using the
GC stratified approach

Some TFs as LBP-1, Adf-1, MATa1 and HEB, showed an interesting positive

enrichment, the complete list of over-represented factors (Z-scores for factors that ob-

tained a score above 15.00) can be seen in Table 4.2. Also, a list of under-represented

factors can be seen in Table 4.3.
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Table 4.2: Z-scores (greater or equal to 15.00) obtained by the GC content stratified binomial
over-representation approach using the CRUNCS dataset over TRANSFAC profiles

Matrix ID Factor Z-score

M00644 LBP-1 26.84

M00171 Adf-1 26.33

M00923 Adf-1 26.15

M00030 MATa1 24.36

M00698 HEB 22.02

M00927 AP-4 19.85

M01057 ERF2 19.29

M00801 CREB 17.63

M00374 D-Type LTRs 17.10

M00226 P 16.95

M00106 CDP CR3+HD 16.51

M00993 TAL1 16.44

M00017 ATF 15.69

M00683 XBP1 15.26
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Table 4.3: Z-scores (less or equal to -30.00) obtained by the GC content stratified binomial over-
representation approach using the CRUNCS dataset over TRANSFAC profiles

Matrix ID Factor Z-score

M00130 FOXD3 -48.77

M00022 Hb -48.19

M00091 BR-C Z1 -48.16

M00791 HNF-3 -43.30

M00092 BR-C Z2 -40.72

M00081 Evi-1 -38.98

M00972 IRF -36.93

M00456 FAC1 -36.90

M01021 ID1 -36.18

M01010 HMGIY -35.28

M01012 HNF3 -35.24

M00094 BR-C Z4 -32.82

M00422 FOXJ2 -31.90

M00809 FOX -30.35
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Analysis of the Preliminary Results Preliminary results showed significant

over-representation of four transcription factors: Lipid Binding Protein (LBP-1), Adh

transcription factor 1 (Adf-1), methionine adenosyltransferase I, alpha (MATa1) and

transcription factor 12 (HEB). A closer look at the factors revealed interesting char-

acteristics. For instance, other than the two Adf-1 factors, no factors have common

motifs (as seen Table 4.4). Also a search in literature did not showed any significant

relationship between the factors.

Table 4.4: Top five over-represented TF found in CRUNCS regions (preliminary results)

Transcription factor Consensus sequence Organism Z-score

LBP-1 CAGCTGS Human 26.84

Adf-1 VCGCYGCMGYCGCTGMCNGCG Drosophila 26.33

Adf-1 CCGCYGC Drosophila 26.15

MATa1 TGATGTANNT Human 24.36

HEB RCCWGCTG Human 22.02

4.1.3 GC Window Correction for CRUNCS Dataset

As the preliminary results of applying our methods to CRUNCS regions were in-

conclusive and as we were motivated to find interesting results which gave us inside

knowledge of the nature of CRUNCS, a variation of our method done specially to

analyze CRUNCS regions was conceived.

The main idea behind this new approach is to take in account an essential char-

acteristic about the CRUNCS, they are found in coding regions. With this fact in

mind, a variation in the background calculation was introduced. Instead of taking

the GC content of the whole genome (stratified in windows of 100 bp) to calculated

our background model, we only take in account the GC content of regions that are

known as coding regions. To this end, a file containing the coding regions of the
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human genome was downloaded from the UCSC Genome Browser [46] and a program

was implemented to write the GC content of coding regions.

Calculating the GC Content of Coding Regions The procedure to create the

background model for coding region is similar to the one described in Section 2.3.

In fact, as we had calculated the genome-wide GC Content on increments of k =

100 bases and saved them to the GC files (Section 3.3.1 ), we thought that it was

just a matter of deciding to which regions we assigning the previously calculated GC

content and to which regions we set to a content of 0.00. However, since the regions

specified in the coding regions file does not follow the same 100 bases incremental

structure and instead followed a different pattern, a new GC Content calculation had

to be formulated.

For instance, assume that a coding region starts in position 175 and spans for 400

bases until position 575, then there are five GC Content windows that are covered by

this region: 100 to 200, 200 to 300, 300 to 400, 400 to 500 and 500 to 600; then the

question becomes how to define which regions should be in the background without

losing precision? We tried two ways:

1. To keep only the GC Content of coding regions which were completely covered

by a window, which in our example will be the following windows: 200 to 300,

300 to 400 and 400 to 500. However, this resulted in a poor background model

in which most the windows had content of 0.00.

2. To consider all the windows that had at least 1 base of coding region, which

in our example will be all the windows between 100 and 600 bases. In other

words, we mapped the coding region start to the start of the window it falls in

and the end of the coding region to the end of the window it falls in and created

what we define as mapped coding region start and mapped coding region end.
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These two calculations can be done mathematically by the use of the ceiling

and flooring functions as shown in Equations 4.1 and 4.2.

Mapped_Region_Start = ⌊
Coding_Region_Start

k
⌋ ∗ k (4.1)

Mapped_Region_End = ⌈
Coding_Region_End

k
⌉ ∗ k (4.2)

Analysis of the GC Content Corrected Results for CRUNCS Regions In-

terestingly, if we compare the preliminary results (seen in Figure 4.1) with the results

obtained with the newer background model (seen in Figure 4.2), it is easy to see that

the majority of the Z-scores are between -10 to 10 or basically became more centered

around zero. Another interesting difference found in the results with the newer back-

ground model is that the magnitude of Z-scores is smaller, with a range of -30 to 20,

instead of -60 to 20. A list of over-represented Z-scores over 8.00 can be seen can

be seen on Table 4.5 and a list of under-represented factors with Z-scores less than

-20.00 can be seen in Table 4.6.
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Z−scores for CRUNCS Dataset over TRANSFAC Profiles (new Background)
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Figure 4.2: Histogram of Z-scores of the CRUNCS dataset over TRANSFAC predictions using the
GC stratified approach with a corrected background (only coding regions)

Table 4.5: Z-scores (greater or equal to 8.00) obtained by the GC stratified approach with a corrected
background using the CRUNCS dataset over TRANSFAC profiles

Matrix ID Factor Z-score

M00171 Adf-1 15.62

M00923 Adf-1 12.45

M00698 HEB 11.43

M00030 MATa1 10.75

M00644 LBP-1 10.72

M00374 D-Type LTRs 9.84

M00106 CDP CR3+HD 9.03

M00683 XBP1 8.73

M00927 AP-4 8.69

M01017 PBX1 8.55

M00993 TAL1 8.47
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Table 4.6: Z-scores (below or equal to -20.00) obtained by the GC stratified approach with a corrected
background using the CRUNCS dataset over TRANSFAC profiles

Matrix ID Factor Z-score

M00091 BR-C Z1 -31.43

M00094 BR-C Z4 -30.68

M00022 Hb -30.24

M00972 IRF -28.09

M00081 Evi-1 -28.04

M00791 HNF-3 -26.26

M01021 ID1 -23.91

M00092 BR-C Z2 -23.62

M00422 FOXJ2 -23.51

M01010 HMGIY -22.93

M01012 HNF3 -22.06

M00268 XFD-2 -21.88

M00713 TBP -21.75

M00809 FOX -21.73

M00131 HNF-3beta -21.52

M00456 FAC1 -21.17

M00138 Oct-1 -20.89

M01011 HNF1 -20.59



74 Chapter 4. Analysis of Over-Represented TFBS in Different Biological Contexts

4.1.4 Analysis of Results for the CRUNCS Dataset

Even after changing the background, the factors for Lipid Binding Protein (LBP-1),

Adf-1, MATa1 and HEB, obtained the top scores for over-represented factors. As for

under-represented factors, there is also a correspondence between the newer and older

results. There is a noticeable trend as the same factors (or factor families) appear

as top score. For instance, Broad complex factors (Z1, Z2 and Z4), the Hepatocyte

Nuclear Factors/Forkhead transcription (HNF/FoxA), Evi-1, Hb and IRF appear to

be under-represented in both cases.

In conclusion, there is not a clear relation between the resulting over-represented

and under-represented factors and with properties of CRUNCS. Therefore, a deeper

biological investigation of these factors is suggested.

4.2 Randomly Generated Dataset

A set of 8785 randomly generated regions were created to test the theoretical validity

of the approach. These 8785 random regions use the CRUNCS regions as model in

the sense that they have the same distribution of per chromosome as the CRUNCS

(this distribution is shown in Table 4.1) and their average region size was calculated

using the CRUNCS as model.

4.2.1 Motivation

Regardless of the number or the average regions size, one thing is theoretically ex-

pected if one pick random regions of the genome as regions of study. Theoretically,

the Z-scores of this dataset scored against TFBS predictions will follow a Normal

(0,1) distribution.
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4.2.2 Methods

To generate the regions of the random dataset a C program was developed. This

program takes as arguments the desired number of regions to be generated, the size

of the chromosome that we are generating regions from and the desired average region

size.

Is it important to explain that as our implementation does not generate DNA

strings, it only generates random positions on the chromosome, that become the

region start. The region end is calculated by adding the desired region size to the

regions start.

4.2.3 Analysis of the Results for the Randomly Generated

Dataset

As it can be seen in Figure 4.3 the Z-scores obtained by the randomly generated

regions against the TFBS predictions found in TRANSFAC are quasi normally dis-

tributed 1 with a little skew to the negative side of the axis, if compared to a gaussian

distribution.

A Q-Q plot or a Quantile-Quantile plots which is a probability plot used for

comparing two probability distributions, by plotting their quantiles against each other

was used to compare the results obtained with our dataset to what was expected from

a normal distribution.

The theory behind a Q-Q plot explains that when comparing two distributions

or comparing an observed distribution to a theoretical distribution (usually normal

distribution). If the observed distribution matches the theoretical, the plot will appear

1The mean of this data is -0.45 and its variance 1.23
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Z−scores for Random Dataset on TRANSFAC Profiles (GC STratified)
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Figure 4.3: Distribution of Z-scores for Random Dataset over TRANSFAC Predictions

as a straight line. If the distribution does not agree then it will appear as a non linear

function and the model is said to be a poor fit.

As it can be seen in Figure 4.4, the Q-Q plot comparing the observed Z-scores to

those expected from a normal distribution reveal a good correlation (almost a straight

line) with a little variation in the values between 0 and -1, which seems to be due to

the fact that the 0 to -1 range, is the one that holds most of the values.

There is no accurate explanation for the greater number of Z-scores in the 0 to

-1 range. Even after trying with different random datasets (varying in number of

regions and different average region sizes) and checking for overlaps in the generated

regions, there was no clear answer.

One of the answers that may be given to explain this phenomenon is that there
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Figure 4.4: Q-Q Plot of distribution of Z-scores for the Random Dataset over TRANSFAC Predic-
tions

are more AT rich factors than their GC counterparts in the TRANSFAC database.

Fogel et al. [30] studied 292 of this matrices and concluded that adenine was the most

common nucleotide found in full motifs and core motif regions, which in fact reflects

the distribution of A’s, C’s, G’s and T’s in the human genome. But, any of these

assumptions have yet to be confirmed.

4.3 Angiopoietin-1 Dataset

This set of regions was provided by Dr Sabbah Hussain from the Microbiology and

Immunology department of McGill University. It consist of a list genes significantly

up-regulated and down-regulated by angiopoietin-1, for the purpose of identifying
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transcription factors activated by this growth factor.

4.3.1 Motivation

Blood vessels are an important part of the circulatory system, which is the system

that is in charge of transporting blood throughout the body. There exists three major

types of blood vessels: (1) arteries, which carry the blood away from the heart; (2)

capillaries, which enable the actual exchange of water and chemicals between the

blood and the tissues; and (3) veins, which carry blood from the capillaries back

towards the heart.

The growth of arterial (blood) vessels can be happen in various different ways [15]:

1. Vasculogenesis: refers to the formation of vascular structures from circulating

or tissue-resident endothelial progenitors. This form is particularly related to

the development of the vascular system in embryos.

2. Angiogenesis/Arteriogenesis: refers to the sprouting of thin-walled endothelium-

lined structures and its stabilization. This form plays is particularly related to

the repair mechanism of damaged tissues in adults.

3. Collateral Growth: refers to the expansive growth of pre-existing vessels, form-

ing collateral bridges between arterial networks.

All of these forms of vessel growth are often summarized as angiogenesis. An-

giogenesis is a normal process in growth and development, and has a very impor-

tant role in wound healing. On the one hand, when vessel growth is dysregulated

this can contribute to the development of several malignant inflammatory, infectious

and immune disorders, for example: cancer, psoriasis, arthritis, blindness, obesity,

asthma atherosclerosis [62]. On the other hand, insufficient vessel growth and vessel
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regression can cause: heart and brain ischemia 2, neurodegeneration, hypertension,

pre-eclampsia, respiratory distress, and osteoporosis [15].

The biological mechanisms that stimulate the process of angiogenisis are diverse.

There exists various angiogenic proteins, including several growth factors that are

involved in this process, among them, some called the angiopoietins.

Angiopoietins are protein growth factors that promote angiogenesis. Four different

angiopoietins proteins have been identified: Ang1, Ang2, Ang3, Ang4. Of those four,

Ang-1 and Ang-2 are the best characterized angiopoietins, while Ang-3 and Ang-4, are

less characterized. Angiopoietins function by binding and activating their physiologic

receptors Tie-1 and Tie-2. Also, transcription factors Egr-1 [1] and KLF-2 [73] have

been identified as important TF downstream from Tie-2 receptors.

4.3.2 Methods

The list of genes described in the begining of the section consisted of 58 up-regulated

genes and 43 down-regulated genes identified in Dr. Hussain’s lab by exposing human

umbilical vein endothelial cells to phosphate buffer saline (PBS) as control and to 300

ng/ml of angiopoietin-1 (ligand for Tie-2 receptors) for a period of four hours and

later hybridized as RNA to Affymatrix oligo microarrays.

As the list provided indicated the names of up-regulated and the down-regulated

genes, but not regions of interest to be investigated, a conversion to BED format had

to be done. This formating can be divided into three steps:

1. For every gene on the list transcription start sites (TSS) were localized and used

as references to identify promoters regions upstream and downstream.

2ischemia can be defined as an inadequate blood supply to an organ or part of the body
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2. Flanking DNA regions of size 1kb, 10kb and 100kb were selected around the

TSS 3.

3. The flanking regions were converted to BED format (indicating the chromo-

some, region start and region end) and written to text files, six of them in

total. Three for the down-regulated genes (down1kb.bed, down10kb.bed and

down100kb.bed) and three for the up-regulated genes (up1kb.bed, up10kb.bed

and up100kb.bed).

After the files were in a suitable format each bed file was analyzed using our

program to identify over-represented TF binding sites.

Preliminary Results for the Angiopoietin-1 Dataset Surprising Z-scores (scores

greater than 6.00) for sixty-two PWMs in either one of the up-regulated or down-

regulated regions were found. Some of these results are shown for the activator

protein family (AP) in Table 4.7, for signal transducer and activator of transcription

(STAT) in Table 4.8, finally for the ETS family in Table 4.9. In the three tables

Z-scores greater than or equal to 6 are shaded in gray.

It is important to notice that in Table 4.7, Table 4.8 and Table 4.9, most of the

surprising Z-scores are in the flanking regions of size 100kb. However, there are a few

large Z-scores in the flanking regions of size 10kb.

These preliminary results raised some intersting questions, for instance: can we

know exactly which specific genes generated those surprising Z-scores?

To answer this question a more detailed analysis was done, as described below.

3Flanking size of 1kb, means 1kb upstream and 1kb downstream, for a region of total size of 2kb.

The same applies for flanking size of 10kb and 100kb.
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Table 4.7: Z-scores obtained by the program using the Ang-1 dataset over TRANSFAC profiles (AP
Family)

Upregulated Downregulated

Matrix ID Factor 1kb 10kb 100kb 1kb 10Kb 100Kb

M00172 AP -1 0.08 1.95 6.05 -2.53 -0.73 2.13

M00173 AP -1 0.65 3.49 6.08 -0.96 0.61 2.75

M00174 AP -1 1.28 6.03 11.64 -0.92 -1.63 4.87

M00175 AP -4 -2.97 1.57 9.71 -1.10 5.27 11.97

M00176 AP -4 -2.09 1.59 9.30 0.34 6.36 11.33

M00199 AP -1 -1.56 8.87 14.19 -2.39 -0.71 6.21

M00924 AP -1 0.27 4.65 6.17 -3.09 -0.74 3.06

M00925 AP -1 0.41 5.07 12.81 -2.38 -0.94 5.95

M00926 AP -1 -0.02 5.10 13.64 -1.99 -1.21 6.10

M00927 AP -4 -2.87 3.18 12.15 -2.76 5.61 11.14
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Table 4.8: Z-scores obtained by the program using the Ang-1 dataset over TRANSFAC profiles
(STAT Family)

Upregulated Downregulated

Matrix ID Factor 1kb 10kb 100kb 1kb 10Kb 100Kb

M00223 STATx 2.24 5.92 9.15 0.67 0.34 5.06

M00259 STAT 5.26 4.22 6.21 2.70 3.66 7.12

M00457 STAT5A 5.76 9.24 9.91 2.60 1.50 5.64

M00459 STAT5B 2.73 6.68 7.26 1.41 2.84 5.70

M00460 STAT5A 6.42 5.29 5.73 2.95 1.78 2.45

M00493 STAT5A 3.56 5.06 10.06 3.02 2.42 5.88

M00494 STAT6 4.53 5.17 10.32 3.26 2.86 6.70

M00496 STAT1 5.01 7.45 13.07 4.63 5.49 8.15

M00497 STAT3 2.42 1.94 0.96 0.14 -0.64 2.07

M00498 STAT4 3.96 4.97 9.70 4.40 3.78 9.02

M00499 STAT5A 3.05 1.70 3.81 6.42 2.56 3.11

M00500 STAT6 2.68 5.07 11.99 3.88 2.09 7.05

Table 4.9: Z-scores obtained by the program using the Ang-1 dataset over TRANSFAC profiles
(ETS-type Family)

Upregulated Downregulated

Matrix ID Factor 1kb 10kb 100kb 1kb 10Kb 100Kb

M00025 Elk-1 5.57 6.97 12.51 2.36 2.59 7.50

M00074 c-ETS-1(p54) 3.37 3.63 9.54 0.54 2.30 4.54

M00339 c-ETS-1 2.40 5.71 9.04 -0.15 -0.15 4.65

M00340 c-ETS-2 3.03 4.90 9.96 0.67 4.62 7.34

M00341 GABP 4.54 4.96 7.94 3.75 3.44 4.36

M00771 ETS 3.76 7.43 13.22 1.90 2.01 7.22

M00971 ETS 4.81 6.15 13.03 1.72 2.49 6.46
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4.3.3 Gene-by-Gene Scoring

For the purpose of figuring out which genes were responsible for generating the result-

ing Z-scores, individual bedfiles were first created for every gene, comprising regions

of flanking size 1kb, 10kb and 100kb and then analyzed individually to obtain Z-score

for each of the 62 PWMs of interest selected from the preliminary results.

The analysis resulted in a two-dimensional matrix of Z-scores with 62 columns

(the PWMs) and 43 and 58 rows for down-regulated and up-regulated, respectively.

This matrix was further analyzed using the heatmap.2 function of the gplots library

of R [69] Statistical Tool and heatmaps were created.

The heatmap.2 function works by first finding out patterns between rows and

columns by using similarity distance measurements (hierarchical clustering). In other

words, the rows and columns of the matrix are re-ordered to group together rows and

columns with similar values. Once all the similar values are together, the function

creates a visual representation (a heatmap) of this new ordering, which uses a color

scale to represent the value range (lowest to highest) and which uses a dendrogram

to represent the associations (clusters) formed in the data.

Rationale Behind the Heatmaps Associations in the heatmaps are numerically

not interesting, because the algorithm is just clustering together positions with similar

values, however, there is a deeper biological meaning for these associations, a cluster

in the heatmaps reflects how groups of genes are regulated by a transcription factors,

group of different TFs or families of TFs.

In the next two subsection the resulting clustered heatmaps for up-regulated and

down-regulated are presented. It is important to say that for some clusters in these

heatmaps we found biological evidence for the association, these clusters are explained

in detail. For many other clusters the association remains unclear, these clusters are
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just mentioned and associations are to be further investigated.

The heaptmaps shown in the next two subsections were done using the default

values for the heatmap.2 function, that is, we used euclidean distance as similarity

distance and complete linkage for the hierarchical clustering. It is important to men-

tion that other settings were also tried on the datasets, for instance the average and

single linkage for the hierarchical clustering and even pearson correlation coefficient

as a similarity distance. However not a significant difference was noted, that is, the

same relations between genes and TFs appeared, but in different locations.

4.3.4 Resulting Heatmaps for Up-Regulated Genes

The resulting heatmaps for the Ang-1 dataset for up-regulated genes can be seen in

Figure 4.5 for 1kb flanking regions, in Figure 4.6 for 10kb flanking regions and in

Figure 4.7 for 100kb.

There is noticeable cluster in Figure 4.5 comprised of the following genes: DUSP4,

C8FW, BHLHB2, CCND1, HMGA2, FBXW2, DIPA, STC1,VEGFC and the follow-

ing factors: Adf-1, STAT, E2F, STAT5A, STAT5B. This is an interesting cluster

because it pairs the vascular endothelial growth factor C gene, which encodes the

VEGFC protein which is active in angiogenesis and endothelial cell growth and sur-

vival [60] and the Signal Transducers and Activator of Transcription (STAT) factor

which is activated by the Janus Kinase (JAK) and dysregulation of this pathway

is frequently observed in primary tumors and leads to increased angiogenesis [47].

Moreover, Chen et al. [19] found evidence of over-expressions of VEGF and STAT3,

STAT5 activation in ovarian carcinoma cells.

In the heatmap in Figure 4.6 there exist at least four noticeable clusters:

1. The first cluster is located in the left upper corner and is comprised of the follow-
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1. The first cluster is a very big one, located in the left upper part and is comprised

of the following genes: DIPA, F2RL1, IL8, PTGS2, JUN, PLAU, BHLHB2,

DUSP5, C8FW, GPR4, FLT11 CDC42EP3, EMP1, ETV5, SMTN, STC1,

CORO2B, GARP, CHST11 and some members of the AP and ETS transcription

factors families.

2. The second cluster is located in the right part of the heatmap and is comprised

of the following genes: EGR1, VEGFC, AKAP12, CHST2, PPAP2B, GFR and

Adf-1 transcription factor.

3. The third cluster is located in the bottom of the heatmap and is comprised

of the following genes: MGC48332, FJX1, GALNAC4S-6ST, EPHA4 and the

following transcription factors: Lhx3, Nkx6.2, CHX10, S8, FTZ, Nkx2.5.

4.3.5 Resulting Heatmaps for Down-Regulated Genes

The resulting heatmaps for the Ang-1 dataset for down-regulated genes can be seen

in Figure 4.8 for 1kb flanking regions, in Figure 4.9 for 10kb flanking regions and in

Figure 4.10 for 1kb flanking regions.

In the heatmap on Figure 4.8 it can be seen three major clusters (strips):

1. The first strip is comprised of the following genes: SNAPC1, CDKN2C, NMT2,

DACH, PALMD, EZH2, ID2 and the E2F transcription factor.

2. The second strip is comprised of the FLJ23056 gene and the following transcrip-

tion factors: Adf-1, ERF2 and some members of the STAT family.

3. It is also recognizable a cluster near the middle to the right comprised of the fol-

lowing genes: ZNF323, P450RAI-2, PBF, BRD8 and the following transcription

factors: NF-AT and some members of the STAT family.
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the following genes: DOC1, CBFA2T1, NMA, DACH, PBF, CBLB, SULF1 and

the following transcription factors: CEBP, HNF1, APOLYA, Zen, CF4, Nkx6.2,

Nkx2.5, Tst1, Ftz, Ubx.

4.3.6 Analysis of the Results for Ang-1 Dataset

Some conclusions obtained from the analysis of the heatmaps are:

1. In both datasets (up-regulated and down-regulated) the number and size of

the visible clusters in the heatmaps increase as the size of flanking the regions

increases. Basically, we get more significant motifs with larger flanking regions

because we get a higher number of matches. This can also be explained using

the notion of Statistical Power, in this case we have a typical example case

of High Power, when there is too much data but no significant effect can be

detected.

2. As expected from the initial results (Tables 4.7, 4.8, 4.9), various clusters in

the up-regulated genes heatmaps were formed around the STAT, ETS and AP

transcription factor families.

3. The up-regulated 10,000 kb heatmap results of great interest for two reasons:

(1) it validates known results for SRF, EGR-1 and VEGF factors and (2) show

interesting results that can be determined easily with the current wet lab tech-

nologies via biological experiments.

Dr. Hussain expressed interest in confirming our in-silico results for up-regulated

genes with a flanking region of 10kb, specially for AP-1 and ETS transcription factors

and DUSP (DUSP4 and DUSP5) and EGR-1 genes. To date we still wait for the

results.
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4.4 Summary of the Chapter

In this chapter, results from the application of our method on three different datasets

were described and analyzed. We validated our approach theoretically by generating

a dataset composed of random regions in the human genome. Also, we tailored

a specific model for the study of the TF found in CRUNCS regions. Finally, we

presented results on the application of our method to a specific biological dataset for

the Ang-1 protein, with results that are being currently investigated in Dr. Hussain’s

lab.



Chapter 5

Conclusions and Future Work

The inner details of the complex process of gene expression still remain a big question

to be answered. With our current knowledge we have been able to figure out, among

other things, the important role that the process of transcription of genes plays in

the determination of diseases or health. The discovery of the internal workings of this

intrincate system lies tightly interlaced to the advances of technology used to recover

the protein-DNA interactions and protein-protein interactions.

Experimental technologies that are used to discover TFBS in vivo are not exact,

and even proven methods have drawbacks and limitations. For instance, ChIP-chip,

one of the most frequently used experimental method for the discovery of TFBSs,

suffers from problems due to the limited resolution of probes and low signal-to-noise

ratios, which often yield inconclusive results. In this panorama, newer and more effi-

cient methods that do not rely on DNA microarrays, as ChIP-sequencing, have proven

to be succesful to elucidate the genome-wide location of TFBS for human [43] [70]

and mouse [86] and are expected the become the norm in the near future.

Computational methods for the identification of TFBS have become an aid and

to certain point a replacement for traditional experimental discovery methods, but,

94
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newer approach are still needed to overcome the limitations imposed by the futility

theorem.

The task of predicting TFBS insilico is a non-trivial one, when thinking about it

three reasons that I call the unfairness of the human genome come to mind:

• TFBS are short in nature, usually 5-20 base pairs, and the genome is repetitive

and long, with a size of almost 3 giga bases, thus making the process of TFBS

discovery prone to error and in some sense comparable to find a needle in a

haystack.

• The binding variability of TFs force us to use probabilistic ways to represent this

dynamicity, hence, forcing us to aproximate answers and make use of heuristic

methods.

• As our actual understanding of the processes of gene expression and gene reg-

ulation is reduced, a lot of our own human uncertainty is introduced to the

models we build, therefore, we can only hope and daydream that as technolo-

gies advances our understanding become clearer and clearer.

Even though the TFBS discovery, certainly, we can say that not everything is lost,

and, with the day to day increase of genomic data from different species, we hope that

in the near future methods like phylogenetic footprinting combined with binding site

over-representation and CRM clustering will surprise us by clarifying the relationship

between regulatory regions of different species.

5.1 Contributions

In this thesis two statistical over-representation approaches for the discovery of TFBS

in genomic sequences were described from their theoretical formulations to the bio-
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logical interpretation of the results obtained over five datasets. Our first approach,

which was based in simple binomial over-representation statistics, failed due to the

GC imbalance existant in the human genome. A second more clever approach was

formulated. The main advantage of this new method is that it creates a background

model that takes in account the GC Content of the regions studied. For the calcula-

tion of the GC content, a way to stratify the genomic regions by percentage of their

GC Content was formulated and implemented succesfully.

For the validation of our method three datasets were used. First, two estrogen

receptor (ER) datasets coming from regions described in Carroll et al. [16] and Lin

et al. [50], were analyzed using our GC content stratified approach and succesful

results were obtained, In both cases the ER profiles and related nuclear factors were

found among the top scores. Furthermore, a third validation dataset, consisting

of ramdomly generated regions, was created for the purpose of corroborating the

theoretical value of our approach. The results obtained from this dataset verified our

theoretical assumption and scores were nearly normally distributed as expected.

In addition to the analysis of three validation datasets, two biological datasets were

studied. These datasets have interesting characteristics, which on the one hand, made

the analysis process difficult and on the other hand, making us extend our method

in ways we were not aware were possible. For instance, for the CRUNCS dataset,

we had to change the way the background model was constructed and tailor it to

only take in consideritions the GC content of coding regions of the human genome.

As for the Ang-1 dataset, a complete novel pipeline for the analysis of transcription

factors involved in the up-regulation and down-regulation of genes by angiopoietin was

created. In gene-by-gene fashion individual over-representation scores were obtained

and some biological relations were uncovered by analysing the clustered heatmaps

created for the analysis of this specific dataset.

Besides the novel results found on two biological datasets, the main contribu-
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tion of this project is GATOR, a public webserver capable of computing the over-

representation of TFBS in selected regions of the human genome. We think that the

main feature of this implementation is that it will remain useful in years to come due

to the following characteristics:

1. The structure of the implementation is engineered to be extended to other

genomes. For now it uses predicted TFBS for the human genome, however as

long as predictions are available they can be passed as arguments to the tool.

2. The possibility of changing the background model. Thanks to the experience

gained by analysing the CRUNCS dataset, we now know that we are able to

change the background and tailor it for the necessities of different datasets.

3. The potential of extending the way regions are analyzed and results are pre-

sented. Thanks to the experience gained by analysing the Ang-1 dataset, we

formulated a pipeline that has a gene-by-gene resolution which included clus-

tered heatmaps for further biological interpretations of the Z-scores.

One tangible contribution of this project (that is not reflected in this thesis, but

that we feel is worth mentioning) is the analysis made on a set of genomic regions

related to Estrogen Receptor (ER) for our colaborator Dr. Pierre-Étienne Jacques

from Institut de Recherche Cliniques de Montréal (IRCM). This results were partially

used in their analysis of estrogen receptor signaling, which was later published in a

paper by Gévry et al. [35], paper in which our colaboration was acknoweledged.

5.1.1 Other Existing Methodologies

Methods for finding over-represented TFBSs in a set of co-regulated or co-expressed

genes follow a similar approach as described in Section 1.6.3, but differ in the way
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they calculate the background model, the statistical tools to assess the over/under-

representation, the way used to decide what defines an observation, if it relies on

phylogenic approaches to minimize the False Discovery Rate (FDR) and in the specific

case of analyzing gene promoters, the flanking region they look for the presence of

TFBSs.

Our method is quite similar and different at the same time to one recently pre-

sented by Zambelli et al. in [91] called Pscan. It differs in that this method was

designed for calculating the over/under-representation of TFBSs co-regulated genes

only by scanning the promoters sequences of these genes for a in regions of fixed

lenght (-450 to +50, -200 to +50 and -950 to +200), does not rely on comparison

with orthologous sequences for FDR, it that it can be used to locate TFBSs in genes

of four species: human, mouse, rat, fruitfly and Arabidopsis thaliana (plant) and

finally the way the background model is defined is very different from our method.

They resemble in that they both use TRANSFAC and JASPAR predictions and that

the final results are described as heatmaps using the final Z-scores (P-values) ordered

as genes vs. transcription factors.

It is also important to mention another method that was recently published called

PASTAA [71], which also has as main goal the association of genes and their regulating

TFs by scanning the gene promoters, but in this case specifically looking to tissue-

specific genes. It differs from Pscan and from our method in that the list of genes to

be investigated do not have to be co-regulated or co-expressed, therefore can be used

to scan a large set of genes of different categories (tissues or expression patterns) or

even a full genome [91]. It is similar to both Pscan and our method in that it uses

TRANSFAC predictions as input to their program.
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5.2 Future Work

As the methods described in this thesis have a solid theoretical foundation that was

proven to work, we think that the future modifications to be done are not method

itself, but in the implementation. There are at five main changes that are foreseen

for the GATOR implementation:

1. Connect the GATOR program to a TFBS predictor, for instance the one de-

scribed in Blanchette et al. [7], and let the user upload their own profiles, com-

pute their predictions and calculate their Z-scores.

2. Although the GATOR program runs in parallel, we think that it can be made

faster by dividing the jobs in the cluster chromosome by chromosome, instead

of just only matrix by matrix, which is the way it is done now.

3. The loading of the GC content to the COUNTER program can be made faster if

instead of text files the pre-computed GC files are in a binary format (serialized

format) and loaded into memory as it.

4. Add necessary connections from the GATOR to R to post-process the resulting

Z-scores in order to return the results in a visual representation as an histogram

and/or heatmap, as well as a spreadsheet.

5. Add the option to allow the user to upload, not only a list of interesting regions,

but a list of genes (as it was the case for the Ang-1 dataset) for it analysis in a

gene-by-gene fashion.

The research effort exposed in this thesis is far from being exhaustive, our method

is based on a rather simple statistics that are used to assess the over-representation

of transcription factor binding sites in DNA sequences, thus we do not claim to have

a ground-breaking method, but, we feel proud to present to the scientific community
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a method that has proven to be valid and even more important, that has proven to be

a helpful tool to answer real questions in various domains of biology and medecine.
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Glossary

A adenine

bp basepair

C cytosine

ChIP chromating inmunoprecipiation

CPFM corrected position frequency matrix

CRM Cis-regulatory module

CRUNCS coding regions under non-coding selection

DNA Deoxyribonucleic acid

EM expectation maximization

ER estrogen receptor

FDR False discovery rate

G guanine

GATOR Genome-wide Analysis of TFBS Over-Representation

HMM hidden Markov model

IC information content

IUPAC International Union of Pure and Applied Chemistry

kb kilobases

mb megabyte

MCB McGill Centre for Bioinformatics

mRNA messenger ribonucleic acid

nt nucleotides
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PFM position frequency matrix

PHP PHP Hypertext Preprocessor

PSSM position-specific scoring matrix

PWM position weight matrix

RNA ribonucleic acid

RNAP RNA polymerase

SELEX systematic evolution of ligands by exponential enrichment

T thymine

TF transcription factor

TFBS transcription factor binding site

TSS transcription start site


