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Abstract

The Expectation-Maximization (EM) algorithm has long been recognized as a powerful

tool for approximating the maximum likelihood estimator in parametric models with la-

tent variables. This thesis provides a selective survey of the existing EM literature, span-

ning from its original formulation in the 1970s to its present-day developments, with the

objective of creating a valuable resource for future research. By exploring the evolution

of the EM algorithm, we present both earlier and recent results as well as practical ap-

plications in mixture models. Chapter 1 serves as a thorough introduction to the EM,

contextualizing it within the broader framework of parameter estimation in parametric

models with latent variables. In Chapter 2, we study the general convergence proper-

ties of the EM; in particular, we present conditions under which the algorithm’s fitted

iterates converge inside a ball centered around the true parameter of the model. Mean-

while, in Chapter 3, we survey the existing literature on the EM algorithm as it relates

to Gaussian mixture models and mixed linear regression models. Finally, in Chapter 4,

we conclude with a discussion on important aspects such as initialization, SNR, parame-

terization, and new research directions for the EM algorithm. By collating the wealth of

knowledge available on the EM algorithm, this thesis offers researchers a valuable refer-

ence for understanding, applying, and advancing the EM algorithm.
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Abrégé

L’algorithme Expectation-Maximization (EM) est depuis longtemps reconnu comme un

outil puissant pour approximer les parametres de modèles paramétriques avec des vari-

ables latentes. Cette thèse propose une revue sélective de la littérature existante sur

l’EM, couvrant sa formulation originale dans les années 1970 jusqu’à ses développements

actuels, dans le but de créer une ressource précieuse pour la recherche future. En ex-

plorant l’évolution de l’EM, nous présentons à la fois des résultats antérieurs et récents,

des applications pratiques et des exemples numériques ou appropriés. Le chapitre 1 sert

d’introduction approfondie à l’algorithme dans le cadre de l’estimation des paramètres

de modèles paramétriques. Dans le chapitre 2, nous étudions les propriétés générales

de convergence de l’EM ; en particulier, nous présentons les conditions dans lesquelles

les itérations de l’algorithme convergent autours des vrais paramètres du modèle. Par-

allèlement, dans le chapitre 3, nous passons en revue la littérature existante sur l’EM

appliqué aux modèles de mélange de gaussiennes et aux modèles de régression linéaire

mixtes. Enfin, dans le chapitre 4, nous concluons par une discussion sur des aspects im-

portants tels que l’initialisation, le SNR, la paramétrisation, et les nouvelles orientations

de recherche pour l’algorithme EM. En rassemblant et en analysant les connaissances

disponibles sur l’algorithme EM, cette thèse offre aux chercheurs une référence précieuse

pour comprendre, appliquer et faire progresser notre comprehension de l’EM.
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Chapter 1

Introduction

In this Chapter, we commence by providing a concise historical overview of the research

on the EM algorithm, highlighting its evolution and significance in the field of parameter

estimation. Building upon this foundation, we delve into the core problem of parameter

estimation in parametric latent variable models. We define the key components of the

estimation process, including the probability densities, the log-likelihood function, and

the method of maximum likelihood estimation. With a solid understanding of the under-

lying principles, we motivate the EM, then unveil its iterative steps. Moreover, we extend

the discussion to encompass other relevant algorithms commonly employed for param-

eter estimation in parametric models with latent variables. Throughout this chapter, we

reinforce our explanations and insights by providing detailed examples within the realm

of Gaussian mixture models (GMMs) and mixed linear regression (MLR) models, further

solidifying the conceptual understanding and practical applications of the EM algorithm.

1.1 History of the EM Algorithm

The problem of accurately estimating parameters in the presence of missing information

has puzzled statisticians for almost a century. The EM algorithm, formally presented in

1977, has become widely-used for fitting parametric models with latent variables due to
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its intuitive nature and appealing algorithmic properties (see Chapter 2). However, the

mathematical details surrounding its convergence have been limited – until recently.

Early appearances of the EM can be traced back to the 1950s. Hartley [16, 1958] simpli-

fied and unified older known techniques for parameter estimation in latent variable mod-

els. He further provided practical examples such as modelling the pollution of Phleum

pratense seeds by the presence of weed seeds where the complete data was assumed to

follow a Poisson distribution. Orchard and Woodbury [27, 1972] studied parameter esti-

mation with latent variables for mixed linear regression, and mixtures of k-multivariate

Gaussians. In these early works, the contributions were iterative algorithms whose iter-

ations are no-more difficult to perform than parameter estimation of parametric models

with no missing data – which is well understood. Moreover, they introduced the first ap-

pearances of the Expectation (E) and Maximization (M) steps that gave the EM algorithm

its name.

It wasn’t until 1977 that Dempster et al. [9] generalized previous works (such as Hart-

ley [16, 1958], Baum et al. [2, 1970], Hartley and Hocking [17, 1971], Orchard and Wood-

bury [27, 1972], and Sundberg [35, 1974]) into a more broadly applicable algorithm for

computing maximum likelihood estimates based on incomplete data. They introduced

the general form of the EM and proved several important results (see Section 2.2). Ever

since, the EM algorithm has been used for a wide variety of problems including but not

limited to density estimation, clustering, and regression.

In the years following its introduction, numerous papers were published on the EM

providing details on its convergence properties and diverse applications. Early work

focused on the convergence of the EM’s fitted parameter to local optima or stationary

points of the log-likelihood function. Notably, Wu [37, 1983] rectified an error in the

original 1977 paper [9, Theorem 2] where the proof made incorrect use of the triangle

inequality. In addition, he proved several convergence properties of the EM which we

break apart for the reader in Section 2.3. Some years later, Tseng [36, 2004], developed

an ”entropy-like” proximal point iteration, of which the EM algorithm is a special case,
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which allowed for more intuitive analysis of the convergence properties. In 2014, Bal-

akrishnan et al. [1] introduced a novel framework for analyzing the local convergence

of the EM algorithm, establishing conditions under which the algorithm’s iterates con-

verge to the true parameter of the model (see Section 2.4). Their work laid the foundation

for subsequent advancements in the field, employing a combination of concentration of

measure inequalities and other techniques to bridge the results from population EM to

finite-sample EM (see Algorithm 3 and Algorithm 1).

GMMs have been a particularly prominent domain for the application of the EM algo-

rithm. Dempster et al. [1] and Tseng [36] initially included GMMs as practical examples,

but it was Balakrishnan et al. [1] who first demonstrated the local convergence of the EM’s

fitted parameters to the true parameter in a 2-component symmetric Gaussian mixture

with unknown mean parameter. Subsequently, Kwon et al. [21, 2020] extended this result

to k-component spherical Gaussian mixtures with unknown mean parameters. Dwivedi

et al. [11, 2018] analyzed the local convergence of the EM algorithm to the true parame-

ter for over-parametrized 2-component symmetric Gaussian mixtures. For the same class

of models, Dwivedi et al. [12, 2018] demonstrated that the EM algorithm retains its fast

convergence up to certain constants in the under-specified setting.

While Gaussian mixture models have garnered significant attention, they are not the

sole focus of research on mixture models. The class of MLR models has been extensively

studied in the past two decades. Balakrishnan et al. [1] made notable contributions to the

analysis of symmetric mixtures of two linear regressions, where only the solution param-

eter is unknown. They characterized the local convergence properties, initially in the high

signal-to-noise (SNR) ratio regime. Subsequently, Kwon et al. [23, 2020] obtained tighter

bounds in the high SNR regime and extended the analysis to the middle and low SNR

regimes. What’s more, they provided local convergence results in the same settings when

the mixing weights are additionally unknown. one year prior, Kwon et al. [22] explored

the local convergence properties of the EM for k-component MLR with only the variance

parameter unknown, utilizing the sample-splitting variant of the EM algorithm. Histor-
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ically, results for MLR appear after similar findings for Gaussian mixtures emerge. Our

literature survey suggests that the EM works in similar ways on the two mixture models

as similarities in the rates of convergence for both mixture models are consistent through-

out. Unlike Gaussian mixtures, the over-parameterized and under-parameterized MLR

setting is – to our knowledge – yet to receive a proper look.

Very recent advancements have further enriched the research landscape surrounding

the EM algorithm. Ho et al. [18, 2022] extended the framework introduced by Balakrish-

nan et al. [1] and addressed cases where the EM algorithm exhibits instability. Meanwhile

Kunstner et al. [20, 2022] presented an alternative perspective on the EM algorithm in the

context of the exponential family of distributions, conceptualizing it as a mirror descent

algorithm. Doing so, they obtained non-asymptotic convergence properties that are in-

variant of the choice of parameterization.

With the growing popularity of the EM algorithm in the field of machine learning,

an increasing number of papers have been published on the topic. Consequently, it has

become challenging to discern the contributions made under various conditions. In this

thesis, we aim to selectively review the extensive literature spanning several decades of

research, providing a comprehensive resource on the EM algorithm for current and future

researchers, with a particular emphasis on mixture models.

1.2 Notation

We introduce several notations that will be used throughout this thesis. The set of positive

semi-definite matrices on Rd×d is denoted as Sd
+, while the set of positive definite matrices

is denoted as Sd
++. We use R+ to represent the interval [0,∞), R++ to represent (0,∞), and

R̄ to represent [−∞,∞]. The notation [k] refers to the set {0, 1, 2, ..., k − 1}. For a vector

x ∈ Rd, we denote ∥x∥2 to be the euclidean norm of x. For a matrix M ∈ Rm×n, we denote

∥M∥F to be the Frobenius norm of M , if M is invertible we denote M−1 as its inverse

and |M | as its determinant. For a set A ∈ Rs, we denote intA to be the interior of A and
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P(A) to be the power set of A. Further, for a continuous function f(x, y) : Rd × Rs → R,

we denote ∇1f(x, y) =
d
dx
f(x, y) and ∇2f(x, y) =

d
dy
f(x, y). The notation x ≲ y signifies

that x is smaller than or equal to y up to logarithmic factors. Similarly, x ≳ y is used to

indicate that x is greater than or equal to y up to logarithmic factors. Lastly, we employ

the notation y is Õ(x) to express that y is O(x) up to logarithmic factors. The same logic

applies to Ω̃.

1.3 Parameter Estimation with Latent Variables

Parameter estimation is a fundamental problem in statistical inference, with numerous

applications in machine learning, data analysis, and other fields. The aim is to recover

the true parameter θ∗ of a parametric model from the feasible set

Ω := {θ ∈ Rs : θ is a possible vector of parameters}.

In particular, we assume that Ω is convex for the remainder of this thesis, unless specified

otherwise. In this thesis, we deal – specifically – with latent variable parametric models,

meaning that some of the data is missing or unobserved. This presents a challenge for

traditional parameter estimation methods, such as the method of maximum likelihood

estimation which we introduce in Section 1.3.3.

1.3.1 Parametric Models With Latent Variables

We assume the reader has a prior basic understanding of the notion of a random variables

(RV) and its probability density. To distinguish between an RV and its realization, we use

capital letters and lower-case letters, respectively. For example, Yi represents an RV while

yi is its realization. Further, We may use the capital letter without its index to mean the

same distribution: Yi and Y have the same distribution. We formally introduce latent

variable parametric models below.

Suppose the data we observe is (y1, ..., yn) and denote yi ∈ Rd to be the ith of n obser-

vations. We denote (z1, ..., zn) as the latent unobserved portion of the data where zi ∈ Rp
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is the ith of n unseen observations. The complete data is written as ((y1, z1), ..., (yn, zn))

where (yi, zi) ∈ Rd × Rp is the ith of n complete observations. We define

H : y 7→ H(y) := {z ∈ Rp : z can be sampled from Z|Y = y} (1.1)

to be the map which takes an observation and outputs the set of all its possible corre-

sponding latent variables.

We make the following standard assumptions for the data. First, Y1, ..., Yn are inde-

pendent and identically distributed (i.i.d) and so are Z1, ..., Zn. Also, the joint RV of the

complete data (Y, Z) has a pdf fθ∗ : Rd × Rp 7→ R+ where θ∗ ∈ Ω is the true parameter of

the model; in particular, for all θ ∈ Ω, we assume fθ(y, z) exists for all (y,z) in the sample

space and fθ(y, z) > 0 almost everywhere on the sample space. Similarly, Y also has the

pdf

gθ∗(y) :=

∫
H(y)

fθ∗(y, s)ds (1.2)

which maps Rd 7→ R+. We make the remark that in cases where the missing latent vari-

able is discrete, the integral term becomes a summation over the support. Lastly, the

conditional RV Z|Y has the conditional pdf

kθ∗(z|y) :=
fθ∗(y, z)

gθ∗(y)
(1.3)

which maps Rd × Rp 7→ R+. If the latent variable is discrete, kθ∗ is a probability density

mass function (pmf) instead. We provide two detailed and practical examples of latent

variable models below.

Example 1 (k-component d-dimensional Gaussian mixture models (GMMs)). Gaussian

mixture models of k-components in d-dimensions are parametric models with latent variables

wherein observations (y1, ..., yn) ∈ Rd×n are sampled from a linear combination of k indepen-

dent Gaussian components and the latent variable z ∈ [k] := {0, 1, ..., k − 1} is the discrete label

expressing which Gaussian component an observation was sampled from. Formally, the observa-
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tions are sampled from

Y ∼
k−1∑
j=0

π∗
jN (µ∗

j ,Σ
∗
j) (1.4)

where π∗
j ∈ [0, 1] for all j ∈ [k] are the mixing weights satisfying

∑k−1
j=0 π

∗
j = 1 and N (µ∗

j ,Σ
∗
j) is

a multivariate Gaussian distribution with mean µ∗
j ∈ Rd and covariance matrix Σ∗

j ∈ Sd
++. For

this class of parametric models, H(y) is given as

H(y) := {0, 1, ..., k − 1}

and the relevant pdfs and pmfs are provided below as

The pdf of N (µ∗
j ,Σ

∗
j) is G(y;µ∗

j ,Σ
∗
j) :=

exp{−1
2
(y − µ∗

j)
TΣ∗

j
−1(y − µ∗

j)}
(2π)

d
2 |Σ∗

j |
1
2

; (1.5)

the pdf of Y is gθ∗(y) :=
k−1∑
j=0

π∗
jG(y;µ∗

j ,Σ
∗
j); (1.6)

the pmf of Z is pθ∗(z) := π∗
z ; (1.7)

the pmf of Z|Y is kθ∗(z|y) :=
π∗
zG(y;µ∗

z,Σ
∗
z)∑k−1

j=0 π
∗
jG(y;µ∗

j ,Σ
∗
j)
; (1.8)

the pdf of Y |Z is vθ∗(y|z) := G(y;µ∗
z,Σ

∗
z); (1.9)

the pdf of (Y, Z) is fθ∗(y, z) := π∗
zG(y;µ∗

z,Σ
∗
z). (1.10)

In this context, the true parameter vector θ∗ = (π∗
j , µ

∗
j ,Σ

∗
j)j∈[k] fully describes the mixture.

One may ask why we restrict Σ∗
j to the open set Sd

++ when it is well known that the covari-

ance matrix of a multivariate Gaussian distribution can be singular, therefore belonging to the

bigger and closed set Sd
+. This is because in the case where the covariance matrix is singular, the

multivariate Gaussian distribution is degenerate; it does not have a density with respect to the k-

dimensional Lebesgue measure. It is easiest to see why in (1.5) where Σ∗
j
−1 does not exist when Σ∗

j

is singular. One could restrict such a d-dimensional Gaussian to rank(Σ∗
j)-dimensions in favor of

a new distribution whose covariance matrix is now positive definite. However, this is not advisable

for d-dimensional Gaussian mixtures where k > 1 since there are more than one Gaussian com-

ponent. This is because information can be lost from the other components that have a covariance
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matrix that is already full rank. Still, the Disintegration Theorem makes it possible to define the

density in the case where Σ∗
j is singular (see [13] and [28]). However, we will not use it in this

thesis.

Example 2 (k-component d-dimensional mixed linear regression models (MLR)). Mix-

tures of k-linear regressions in d-dimensions are parametric models with latent variables wherein

observations ((y1, x1), ..., (yn, xn)) are sampled from a linear combination of k independent linear

regression components and the latent variable z ∈ [k] = {0, 1, ..., k − 1} is the discrete label ex-

pressing which regression component an observation was sampled from. In particular y ∈ R is the

response variable while x ∈ Rd are the covariates. Formally, we assume the observations (y,x) are

sampled from

Y ∼
k−1∑
j=0

π∗
jN(⟨X,µ∗

j⟩, σ∗
j
2) (1.11)

X ∼ N (0, Id) (1.12)

where π∗
j ∈ [0, 1] for all j ∈ [k] are the mixing weights satisfying

∑k−1
j=0 π

∗
j = 1 andN(⟨X,µ∗

j⟩, σ∗)

is a univariate Gaussian distribution with mean ⟨X,µ∗
j⟩ and variance σ∗

j ∈ R++. For this class of

parametric models, H(y, x) is given as

H(y) := {0, 1, ..., k − 1}

8



and the relevant pdfs and pmfs are provided below as

pdf of N(⟨x, µ∗
j⟩, σ∗): G(y;µ∗

j , σ
∗
j ) :=

exp{− (y−⟨x,µ∗
j ⟩)2

2σ∗
j
2 }

σ∗
j

√
2π

; (1.13)

pdf of (Y,X): gθ∗(y, x) :=

[
k−1∑
j=0

π∗
jG(y; ⟨x, µ∗

j⟩, σ∗
j
2)

]
G(x; 0, Id); (1.14)

pmf of Z: pθ∗(z) := π∗
z ; (1.15)

pmf of Z|(Y,X): kθ∗(z|y, x) :=
π∗
zG(y; ⟨x, µ∗

z⟩, σ∗
z
2)∑k−1

j=0 π
∗
jG(y; ⟨x, µ∗

j⟩, σ∗
j
2)
; (1.16)

pdf of (Y,X)|Z: vθ∗(y, x|z) := G(y; ⟨x, µ∗
z⟩, σ∗

z
2)G(x; 0, Id); (1.17)

pdf of (Y,X,Z): fθ∗(y, x, z) := π∗
zG(y; ⟨x, µ∗

z⟩, σ∗
z
2)G(x; 0, Id); (1.18)

where G is the pdf of a multivariate Gaussian given as (1.5). In this context, the true parameter

vector θ∗ := (π∗
j , µ

∗
j , σ

∗
j )j∈[k] fully describes the mixture.

1.3.2 Log-likelihood Function

The likelihood function is the function whose output is the probability of observing the

sample data viewed as a function of the model parameters θ ∈ Ω. For latent variable

models, the log-likelihood function,

Ln(θ) :=
1

n

n∑
i=1

[log(gθ(yi))]

=
1

n

n∑
i=1

[
log

(∫
H(yi)

fθ(yi, s)ds

)]
,

(1.19)

is a convenient alternative to the likelihood function as it allows us to work with summa-

tions instead of products. Meanwhile, the population log-likelihood function,

L(θ) := Eθ∗ [log(gθ(Y ))]

=

∫
Rd

log(gθ(s))gθ∗(s)ds,
(1.20)
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which can be thought of as taking n → ∞ in (1.19), is considered solely for analysis

purposes.

1.3.3 Maximum Likelihood Estimation

Defined as the parameter value that maximizes the likelihood function, the maximum

likelihood estimator (MLE) is widely-used for estimating the true parameter of a statis-

tical model. In the case of a parametric model with latent variables, the MLE is given

as

θ̂n ∈ argmax
θ∈Ω

Ln(θ)
(1.19)
= argmax

θ∈Ω

1

n

n∑
i=1

[
log

(∫
H(yi)

fθ(yi, s)ds

)]
. (1.21)

It is well known that, in latent variable models, the MLE is often intractable due to the

non-concave nature of the log-likelihood function [23]. This is in large due to the ap-

pearance of the integral term in (1.19) making direct optimization with respect to θ ∈ Ω

more difficult. To clarify, this integral term is not present for MLE in parametric models

where the observed data is complete. To remedy this, optimization algorithms are used

to approximate the MLE. Among them is the EM algorithm – whose iterations are no-

more difficult than computing the MLE with no missing data. We provide two practical

examples below.

Example 3 (Parameter estimation of GMMs). We consider the problem of estimating the

true parameter of the parametric model described in Example 1 when the covariance matri-

ces (Σ∗
j)j∈[k] are known. For this task, we turn to the MLE defined in (1.21). First, assuming

the covariance matrices (Σ∗
j)

k−1
j=0 are known, we specify the set of feasible parameters as

Ω = {(πj, µj)
k−1
j=0 :

k−1∑
j=0

πj = 1; πj ∈ [0, 1], and µj ∈ Rd, for all j ∈ [k]} (1.22)

10



and make the remark that Ω is closed, convex, but not bounded. Next, we derive the log-likelihood

function according to its definition in (1.19); the function evaluates to

Ln((πj, µj)
k−1
j=0) :=

1

n

n∑
i=1

[
log

(
k−1∑
j=0

πjG(yi;µj,Σ
∗
j)

)]
. (1.23)

At this stage, we would ideally like to maximize Ln over Ω directly, yielding the MLE of the model.

However, this cannot be done directly, in large part, due to the ’log of a sum’ term in (1.23). Were

the missing labels known, this summation term would disappear and the maximization would be

tractable. To remedy this, we will need to consider optimization algorithms to approximate the

MLE of the model (see Example 5).

Example 4 (Parameter estimation of MLR models). We consider the problem of estimating

the true parameter of the parametric model described in Example 2. For this task, we turn to the

MLE defined in (1.21). First, we specify the set of feasible parameters as

Ω := {(πj, µj, σj)
k−1
j=0 :

k−1∑
j=0

πj = 1;πj ∈ [0, 1], µj ∈ Rd, and σ∗
j ∈ R++, for all j ∈ [k]} (1.24)

and make the remark that Ω is convex, but open and unbounded. Next, we derive the log-likelihood

function according to its definition in (1.19); the function evaluates to

Ln(θ) :=
1

n

n∑
i=1

[
log

(
k−1∑
j=0

πjG(yi; ⟨xi, µj⟩, σj2)G(xi; 0, Id)

)]
. (1.25)

At this stage, we would ideally like to maximize Ln over Ω directly, yielding the MLE of the model.

However, this cannot be done directly, in large part, due to the ’log of a sum’ term in (1.25). Were

the missing labels known, this summation term would disappear and the maximization would be

tractable. To remedy this, we will need to consider optimization algorithms to approximate the

MLE of the model (see Example 6).

We may wonder why the MLE is so appealing for recovering the true parameter of a

statistical model. It was established in [7] that the true parameter vector of a statistical
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model belongs to the set of global maximizers of the population log-likelihood given as

(1.20). Finally, under certain regularity conditions outlined in [19, Theorem 6.1.3], the

MLE converges in probability to the true parameters; that is, θ̂n
p−→

n→∞
θ∗. This property,

known in statistics as consistency, guarantees the MLE θ̂n to approach the true parameter

of the model for large n. Because of this, the method of maximum likelihood estimation is,

by and large, the most popular approach for estimating the true parameter of a statistical

model.

1.4 Expectation-Maximization (EM) Algorithm

The EM algorithm is an iterative algorithm used to approximate the MLE in parametric

models with incomplete data. In this section, we formally introduce the EM algorithm;

we make the distinction between the finite sample EM (Algorithm 1) which is used in

practice, the sample-splitting EM (Algorithm 2) which splits the data set so as to have

iterations based on independent sub-samples, the fully deterministic population EM al-

gorithm (Algorithm 3) indispensable for the analysis of convergence of the previous two

algorithms, and finally, the General EM (Algorithm 4) where the requirement for global

maximization in the M-step is relaxed.

1.4.1 Finite-Sample EM (EM)

Introduced in 1977 by Dempster et al. [9], the finite-sample EM (see Algorithm 1 below) is

the sate-of-the-art for approximating the MLE of latent variable parametric models. The

EM is an iterative algorithm that alternates between the E-step and M-step. The E-step, is

analogous to forming a complete data log-likelihood by giving conditional probabilities

or weights to the unknown latent variables (z1, ..., zn). On the other hand, the M-step

consists in finding the global maximizers of the expression obtained from the E-step. For

12



ease of writing, we may write the EM’s iterations with respect to the EM operator function

Mn(θ
(t)) := argmax

θ∈Ω
Qn(θ|θ(t)) (1.26)

which maps Ω 7→ P(Ω) and where Qn is given below as (1.27). We make the remark that

solutions to the above optimization problem are not always guaranteed to exist in Ω.

Algorithm 1 Finite-Sample EM

Input: Initial θ(0) ∈ Ω, {y1, ..., yn}
for t = 0, ..., T − 1 do

E-Step: Let Qn(θ|θ(t))
(1.27)
=

1

n

∑n
i=1 Eθ(t) [log fθ(Yi, Zi)|Yi = yi]

M-Step: Let θ(t+1) ∈Mn(θ
(t)) = argmax

θ∈Ω
Qn(θ|θ(t))

end for
Output: θ(T )

Provided a sample of size n, each iteration of the EM revolves around the function

Qn(ϕ|θ) :=
1

n

n∑
i=1

Eθ[log fϕ(Yi, Zi)|Yi = yi]

=
1

n

n∑
i=1

∫
H(yi)

log(fϕ(yi, s))kθ(s|yi)ds
(1.27)

which maps Ω× Ω 7→ R. We see that unlike (1.19), Qn(θ
′ |θ(t)) has the integral outside the

log. The advantage of this form was pointed out by Hartley [16, 1958] and is most well

seen in the M-step as each iteration is akin to calculating the MLE of a parametric model

with no missing data, a simpler problem. We provide two practical examples below.

Example 5 (Iterations of the EM for GMMs when the variance is known). We continue the

estimation in Example 3 and obtain an approximation using the EM algorithm (see Algorithm 1).

Since we assume the covariance matrices (Σ∗
j)j∈[k] are known, we denote θ := (πj, µj)j∈[k] ∈ Ω

and θ(t) := (π
(t)
j , µ

(t)
j )j∈[k] ∈ Ω where Ω is given as (1.22). We begin with the evaluation of Qn,

13



deriving it as follows:

Qn(θ|θ(t)) =
1

n

n∑
i=1

k−1∑
j=0

log(fθ(yi, j))kθ(t)(j|yi)


=

1

n

n∑
i=1

k−1∑
j=0

(
log

(
πj

(2π)
d
2 |Σ∗

j |
1
2

)
− 1

2
(yi − µj)

TΣ∗
j
−1(yi − µj)

)
kθ(t)(j|yi)

 .

(1.28)

Now, we are ready to evaluate the EM operator Mn(θ) given as (1.26). Fortunately, the EM

operator exists and has a closed form solution for the model that is given as

Mn(θ
(t)) = (π

(t+1)
j , µ

(t+1)
j )j∈[k] (1.29)

where for all j ∈ [k],

π
(t+1)
j =

∑n
i=1 kθ(t)(j|yi)

n
, (1.30)

µ
(t+1)
j =

∑n
i=1 yikθ(t)(j|yi)∑n
i=1 kθ(t)(j|yi)

. (1.31)

The complete derivation is given in Section A.1.1 of the Appendix.

Example 6 (Iterations of the EM for MLR models). We continue the estimation in Example

4 and obtain an approximation using the EM algorithm (see Algorithm 1). We denote θ :=

(πj, µj, σj)j∈[k] ∈ Ω and θ(t) := (π
(t)
j , µ

(t)
j , σ

(t)
j )j∈[k] ∈ Ω where Ω is given as (1.24). We begin

with the evaluation of Qn, deriving it as follows:

Qn(θ|θ(t)) =
1

n

n∑
i=1

[
k−1∑
j=0

log(fθ(yi, xi, j))kθ(t)(j|yi, xi)

]

=
1

n

n∑
i=1

k−1∑
j=0

log

πjG(xi; 0, Id)√
2πσ2

j

− (yi − ⟨xi, µj⟩)2

2σ2
j

 kθ(t)(j|yi, xi)

 . (1.32)
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Now we are ready to evaluate the EM operator Mn(θ) given as (1.26). Fortunately, the EM

operator exists and has a closed form solution for the model. It is given in [22] as

Mn(θ
(t)) = (π

(t+1)
j , µ

(t+1)
j , σ

(t+1)
j )k−1

j=0 (1.33)

where for all j ∈ [k],

π
(t+1)
j =

∑n
i=1 kθ(t)(j|yi, xi)

n
, (1.34)

µ
(t+1)
j =

(
n∑

i=1

kθ(t)(j|yi, xi)xixTi

)−1( n∑
i=1

kθ(t)(j|yi, xi)yixi

)
, (1.35)

σ
(t+1)
j =

√∑n
i=1(yi − ⟨xi, µ(t+1)

j ⟩)2kθ(t)(j|yi, xi)∑n
i=1 kθ(t)(j|yi, xi)

. (1.36)

One drawback of the EM is that the initial estimate θ(0) is not specified by the algo-

rithm. It is often not clear how to find these initial estimates. As a result, the initialization

of the EM can be critical to whether a global or only local maximum is attained (see Sec-

tion 2.4.2). In Section 4.2 we provide a brief discussion on the topic of initialization for

the EM algorithm in the context of mixture models.

Because the EM is an algorithm used for approximating the MLE of parametric models

with latent variables, we aim to obtain the maximizers of the log-likelihood function Ln

given as (1.19). So why don’t we see Ln in the iterations of Algorithm 1? It happens that

Qn is intimately connected to Ln as follows:

Qn(ϕ|θ) := Ln(ϕ) +Hn(ϕ|θ) ∀θ, ϕ ∈ Ω. (1.37)

Where if Qn is the expected complete data log-likelihood at the current parameter esti-

mate,

Hn(ϕ|θ) :=
1

n

n∑
i=1

Eθ[log kϕ(Zi|Yi)|Yi = yi]

=
1

n

n∑
i=1

∫
H(yi)

log(kϕ(s|yi))kθ(s|yi)ds
(1.38)
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is the expected log of the conditional probabilities of the latent variables at the current

parameter estimate. Relationship (1.37), proven below, is essential for understanding the

EM and will be used throughout this thesis.

Proof of (1.37). Let θ, ϕ ∈ Ω, we first expand Qn according to (1.27).

Qn(ϕ|θ) =
1

n

∑n
i=1 Eθ[log(fϕ(Yi, Zi))|Yi = yi]

Next, we expand fϕ(·) according to (1.3) and use properties of logarithms.

1

n

∑n
i=1 Eθ[log(fϕ(Yi, Zi))|Yi = yi] =

1

n

∑n
i=1 Eθ[log(gϕ(Yi)) + log(kϕ(Zi|Yi))|Yi = yi]

We now use linearity of expectation, then (1.19) and (1.38), to write the above in terms of

Ln and Hn respectively.

1

n

∑n
i=1 Eθ[log(gϕ(Yi)) + log(kϕ(Zi|Yi))|Yi = yi] = Ln(ϕ) +Hn(ϕ|θ)

Combining the above steps, the desired result is obtained. Here, one subtlety was to

notice that Eθ[log(gϕ(Yi))|Yi = yi] = log(gϕ(yi)).

1.4.2 Sample-Splitting EM

It is not uncommon to see a slightly different formulation of Algorithm 1 where the data

set is separated into T sub-datasets. This is referred to as the sample-splitting finite-

sample EM algorithm written below. It is seldom used in practice and exists for the

Algorithm 2 Sample-Splitting Finite-Sample EM

Input: Initial θ(0) ∈ Ω, {{yi : i = (t) n
T
+ 1, (t) n

T
+ 2, .., (t+ 1) n

T
} for t ∈ [T ]}

for t = 0, ..., T − 1 do
Choose tth sub-dataset
E-Step: Let Q n

T
(θ|θ(t)) = 1

n

∑ n
T
i=1 Eθ(t) [log fθ(Yi, Zi)|Yi = yi]

M-Step: Let θ(t+1) ∈M n
T
(θ(t)) = argmaxθ∈ΩQ n

T
(θ|θ(t))

end for
Output: θ(T )

purpose of simplifying the analysis as the iterations are now based on independent sub-

samples.
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1.4.3 Population EM

The population EM algorithm written below as Algorithm 3, is a fully deterministic form

of Algorithm 1 and Algorithm 2. In each iteration, we require θ(t+1) ∈M(θ(t)) where

M(θ(t)) := argmax
θ∈Ω

Q(θ|θ(t)). (1.39)

and Q is given below as (1.40). Popularized by Balakrishnan et al. [1], this non-tractable

algorithm is used solely for analysis of convergence of the EM as its fully deterministic

nature allows for the use of previously derived results from optimization.

Algorithm 3 Population EM

Input: Initial θ(0) ∈ Ω
for t = 0, ..., T − 1 do

E-Step: Let Q(θ|θ(t)) = Eθ∗ [Eθ(t) [log fθ(Yi, Zi)|Yi]]
M-Step: Let θ(t+1) ∈M(θ(t)) = argmax

θ∈Ω
Q(θ|θ(t))

end for
Output: θ(T )

The population versions of the Qn (1.27) and Hn (1.38)are given as

Q(ϕ|θ) := Eθ∗ [Eθ[log(fϕ(Y, Z))|Y ]]

=

∫
Rd

(∫
H(y)

log(fϕ(y, s))kθ(s|y)ds
)
gθ∗(y)dy,

(1.40)

H(ϕ|θ) := Eθ∗ [Eθ[log(kϕ(Y, Z))|Y ]]

=

∫
Rd

(∫
H(y)

log(kϕ(s|y))kθ(s|y)ds
)
gθ∗(y)dy,

(1.41)

where the outer-most expectation is taken with respect to Y ∼ gθ∗ . It is impossible to use

Algorithm 3, since we do not know the true parameter θ∗. Therefore, this algorithm is

considered for analysis purposes only.
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1.4.4 General EM (GEM)

Finally, the General EM algorithms (GEM) (see Algorithm 4 below) are a class of algo-

rithms where for any parameter estimate θ(t), we are satisfied with any θ(t+1) ∈ Ω that

satisfy Q(θ(t+1)|θ(t)) ≥ Q(θ(t)|θ(t)). For ease of writing, we will write the GEM’s iterations

with respective to the GEM operator function

MGEM
n (θ(t)) := {θ ∈ Ω : Q(θ|θ(t)) ≥ Q(θ(t)|θ(t))}. (1.42)

The GEM algorithms are considered, specifically, in cases where it is too difficult to per-

form the global maximization of Qn in the M-step of Algorithm 1; this is often the case in

practice.

Algorithm 4 General EM

Input: Initial θ(0) ∈ Ω, {y1, ..., yn}
for t = 0, ..., T − 1 do

E-Step: Let Qn(θ|θ(t))
(1.27)
=

1

n

∑n
i=1 Eθ(t) [log(fθ(Yi, Zi))|Yi = yi]

M-Step: Let θ(t+1) ∈MGEM
n (θ(t))

(1.42)
= {θ ∈ Ω : Q(θ|θ(t)) ≥ Q(θ(t)|θ(t))}

end for
Output: θ(T )

We make the remark that if Mn(θ
(t)) ⊆ Ω exists for all θ(t) ∈ Ω, then Algorithm 1

belongs to the class of GEM algorithms by definition; that is to say, Mn(θ
(t)) ⊆MGEM

n (θ(t))

for all θ(t) ∈ Ω. In particular this implies that any positive results for GEM algorithms

automatically applies to the EM algorithm. We explore general convergence problems for

this class of algorithms in Section 2.3.1.

1.5 Other Algorithms

In addition to the EM algorithm discussed in Section 1.4, several other algorithms are

commonly employed to approximate the Maximum Likelihood Estimation (MLE) in para-

metric models with incomplete data. In this section, we provide a brief overview of three
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such algorithms: Gradient Descent [5], the Newton-Raphson algorithm [5], and Gradi-

ent EM.

Gradient Descent (see Algorithm 5) is a popular optimization algorithm for obtaining

the minimizer(s) of a function. In the case of maximum likelihood estimation for paramet-

ric models with incomplete data, it involves computing the gradient of Ln with respect

to the parameters. The parameter estimates are updated iteratively by taking steps in the

direction of the computed gradient.

On the other hand, the Newton-Raphson algorithm is a popular optimization algo-

rithm for obtaining the zeroes of a function. In the case of maximum likelihood estimation

in parametric models with incomplete data, it involves computing the gradient and hes-

sian of Ln with respect to the parameters. The parameter estimates are updated iteratively

by solving the first-order Taylor polynomial of ∇Ln at the previous estimates.

Finally, the Gradient EM algorithm, initially proposed by [1], bears a close relation to

the EM algorithm. In each iteration, the Gradient EM algorithm described in Algorithm

6 takes a step in the direction of ∇1Qn(θ
(t)|θ(t)). However, it is important to note that

Gradient EM is not guaranteed to fall under the category of GEM algorithms.

Due to the variety in parametric models with latent variables, , it is challenging to

determine a universally superior algorithm. Yet, work has been completed in an attempt

to shed light on this issue. Salakhutdinov et al. [34] demonstrated a relationship between

Gradient Descent and the EM algorithm for specific latent variable models, showing that

they are connected through a positive definite matrix. Meanwhile, Salakhutdinov and

Ghahramani [33] compared the EM algorithm to Newton-like methods and proposed a

faster converging algorithm for maximum likelihood estimation in parametric models

with incomplete data. The framework proposed by [1] for analyzing the local conver-

gence properties of the EM algorithm can also be applied to Gradient EM. Notably, Yan et

al. [38] investigated the local convergence properties of mixtures of k spherical Gaussians

under the assumption of identity covariance (σ∗
j = 1∀j ∈ [k]). Their results required a sep-

aration of the order Ω̃(
√
k) for each of the k components. They demonstrated that, with
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appropriate initialization, Algorithm 6 converges, with high probability, to a point inside

a ball of radius Õ( d√
n
) centered around the true parameter θ∗ after O(log(

√
n
d
)) iterations.

However, as we will discuss in Chapter 3, the local convergence rate of the EM algorithm

in this setting is better.

Algorithm 5 Gradient Descent [5]

Input: f : Rd → R, αt ∈ [0, 1], and θ(0) ∈ Rd

for t = 0, ..., T − 1 do
θ(t+1) := θ(t) − αt∇f(θ(t))

end for
Output: θ(T )

Algorithm 6 Gradient EM [1]

Input: Initialize θ(0) ∈ Ω and {y1, ..., yn}. Let α ∈ R+:
for t = 0, ..., T − 1 do

E-Step: Let Qn(θ
′ |θ(t)) := 1

n

∑n
i=1 Eθ(t) [log(fθ′ (Zi, Yi))|Yi = yi]

M-Step: Let θ(t+1) = Gn(θ
(t)) := θ(t) + α∇1Qn(θ

(t)|θ(t))
end for
Output: θ(T )
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Chapter 2

Selective Review of General Properties

of the EM

In the previous chapter, we discussed the EM algorithm as a widely used approach for

parameter estimation in parametric models with latent variables. We presented the itera-

tions of the EM algorithm used to approximate the MLE of a model with latent variables,

focusing on its application to GMMs and MLR models. However, an essential question

remains: Can we rely on the fitted parameter estimate obtained from the EM algorithm

as a good approximation for the MLE?

To address this question, this chapter examines the general convergence properties of

the EM algorithm (see Algorithm 1). We explore seminal works by Dempster et al. [9],

Wu [37], Tseng [36], and Balakrishnan et al. [1], which shed light on the convergence

behavior of the EM algorithm. By delving into the findings of these papers, we aim to

gain an understanding of the convergence properties of the EM algorithm.

2.1 Preliminary Notation

Throughout this chapter, we adopt the following notation conventions unless explicitly

stated otherwise. The sequences of parameter estimates obtained from executing Al-
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gorithm 1, Algorithm 4, Algorithm 3, and sample-splitting Algorithm 2 are denoted as

{θ(t)}t≥0, {ψ(t)}t≥0, {ϕ(t)}t≥0, and {θ(t)}Tt=0, respectively. Similarly, the corresponding se-

quence of log-likelihood values are denoted as {Ln(θ
(t))}t≥0, {Ln(ψ

(t))}t≥0, {Ln(ϕ
(t))}t≥0,

and {Ln(θ
(t))}Tt=0.

We refer to a point θ ∈ Ω as a stationary point of the log-likelihood function Ln if its

gradient vanishes, i.e., ∇Ln(θ) = 0. Also, a point θ ∈ Ω is considered a limit point of a

sequence if there exists a subsequence that converges to θ.

Furthermore, we utilize the term ’superlevel set’ to denote the set Ωθ(0)(Ln), which

corresponds to the collection of points in Ω where the log-likelihood function Ln is greater

than or equal to its value at the initial parameter θ(0) ∈ Ω (see Definition A.2.3).

2.2 Convergence Properties of {Ln(θ(t))}t≥0

In this section, we present convergence properties of the sequence {Ln(θ
(t))}t≥0 where we

recall that {θ(t)}t≥0 is a sequence obtained from executing iterations of Algorithm 1. We

begin with Lemma 2.2.1, instrumental to the proof of the main result of this section.

Lemma 2.2.1. Let ϕ ∈ Ω, then it follows that

ϕ ∈ argmax
θ∈Ω

Hn(θ|ϕ).

Proof. (Originally stated by Dempster et al. [9])

Let ϕ ∈ Ω. First, observe that

ϕ ∈ argmaxθ∈ΩHn(θ|ϕ) ⇐⇒ Hn(θ|ϕ) ≤ Hn(ϕ|ϕ) ∀θ ∈ Ω.

We dedicate the rest of the proof to showing Hn(θ|ϕ)−Hn(ϕ|ϕ) ≤ 0 ∀θ ∈ Ω. Let θ ∈ Ω, we

expand Hn according to its definition in (1.38), then use linearity of expectation, yielding

Hn(θ|ϕ)−Hn(ϕ|ϕ) =
1

n

∑n
i=1 Eϕ[log(kθ(Zi|yi))− log(kϕ(Zi|yi))|Yi = yi]).

22



Next, because log is concave, we use properties of logarithms and the Jensen’s inequality

given in Theorem A.2.1 to obtain

Hn(θ|ϕ)−Hn(ϕ|ϕ) =
1

n

n∑
i=1

Eϕ

[
log

(
kθ(Zi|yi)
kϕ(Zi|yi)

)∣∣∣∣Yi = yi

]
≤ 1

n

n∑
i=1

log

(
Eϕ

[
kθ(Zi|yi)
kϕ(Zi|yi)

∣∣∣∣Yi = yi

])
.

Finally, we evaluate the above expectation as

1

n

n∑
i=1

log

(
Eϕ

[
kθ(Zi|yi)
kϕ(Zi|yi)

∣∣∣∣Yi = yi

])
=

1

n

n∑
i=1

log

(∫
H(yi)

kθ(s|yi)
�����kϕ(s|yi)�

����kϕ(s|yi)ds
)

=
1

n

n∑
i=1

log

(∫
H(yi)

kθ(s|yi)ds
)

︸ ︷︷ ︸
=1

= 0.

The proof is complete.

We make the remark that it directly follows from the above lemma that for all ϕ ∈ Ω,

Hn(θ|ϕ) ≤ Hn(ϕ|ϕ). The importance of the above result is made obvious in the main result

of this section, presented below.

Theorem 2.2.1. Let θ(t) ∈ Ω and θ(t+1) ∈ Mn(θ
(t)) where Mn is given as (1.26). The following

holds:

a) Qn(θ
(t+1)|θ(t)) ≥ Qn(θ

(t)|θ(t));

b) Hn(θ
(t+1)|θ(t)) ≤ Hn(θ

(t)|θ(t));

c) Ln(θ
(t+1)) ≥ Ln(θ

(t)).

Proof. (Originally proved by Dempster et al. [9, Theorem 1].)

Proof of a): The proof follows by definition: θ(t+1) ∈Mn(θ
(t))

(1.26)⇐⇒ θ(t+1) ∈ argmax
θ∈Ω

Qn(θ|θ(t)).

Proof of b): The proof follows from Lemma 2.2.1: θ(t) ∈ argmax
θ∈Ω

Hn(θ|θ(t)).

Proof of c): First, we remember that
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Ln(θ
(t))

(1.37)
= Qn(θ

(t)|θ(t))−Hn(θ
(t)|θ(t)).

Next, we bound the right-hand side using a) and b), yielding

Qn(θ
(t)|θ(t))−Hn(θ

(t)|θ(t))
a), b)
≤ Qn(θ

(t+1)|θ(t))−Hn(θ
(t+1)|θ(t)).

Lastly, we apply (1.37) again to obtain

Qn(θ
(t+1)|θ(t))−Hn(θ

(t+1)|θ(t)) (1.37)
= Ln(θ

(t+1)|θ(t)).

This completes the proof.

We make the following remarks. First, for any θ(0) ∈ Ω, it follows from the above re-

sult that {Ln(θ
(t))}t≥ is a non-decreasing sequence. Also, it is clear from the above proof

that θ(t+1) ∈ Mn(θ
(t)) can be relaxed and still guarantee Ln(θ

(t+1)) ≥ Ln(θ
(t)). In fact, it is

enough for θ(t+1) to only satisfy Qn(θ
(t+1)|θ(t)) ≥ Qn(θ

(t)|θ(t)). We formalize the latter in

Corollary 2.3.1. Below, we present the last result of this section pertaining to the conver-

gence of the sequence {Ln(θ
(t))}t≥0.

Corollary 2.2.1. Let {θ(t)}t≥0 be a sequence obtained from executing Algorithm 1. Then, if

Ln(θ
(t)) is bounded for all t ≥ 0, it follows that

L̄n := lim
t→∞

Ln(θ
(t)) exists and is finite.

Proof. (Originally stated by Wu [37].)

We recall that Theorem 2.2.1 guarantees the sequence {Ln(θ
t)}t≥0 to be non-decreasing.

If the sequence is additionally bounded, it is a standard result from analysis that it con-

verges monotonically to its finite limit (see [32, Theorem 3.14]).

So far, we have learned that for any θ(0) ∈ Ω, the sequence {Ln(θ
(t))}t≥0 obtained from

Algorithm 1 is non-decreasing and will converge if bounded; a desirable property for an

algorithm used to approximate the MLE. But many things are still unclear. Under which

conditions is the log-likelihood bounded? More importantly, what of the convergence

properties of {θ(t)}t≥0? Does this sequence converge? And if so, what does it converge to?

We explore these questions in the remaining sections of this chapter.
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2.3 Convergence of {θ(t)}t≥0 to Stationary Point(s) of Ln

In this section, we explore a selection of results that provide conditions under which

{θ(t)}t≥0 converges to the stationary point(s) of Ln. We begin by introducing core as-

sumptions that are required for the results that follow:

A1: Ωθ(0)(Ln) is compact for all θ(0) ∈ Ω such that Ln(θ
(0)) > −∞;

A2: Ln(·) and Qn(·|θ) are continuous on Ω for all θ ∈ Ω and

Ln(·) and Qn(·|θ) are differentiable in int Ω for all θ ∈ Ω;

A3: Ωθ(0)(Ln) ⊆ int Ω for all θ(0) ∈ Ω such that Ln(θ
(0)) > −∞.

We make the following remarks to help the interpretability of the assumptions A1, A2,

and A3:

I) for all θ(0) ∈ Ω, it holds that {θ(t)}t≥0 ⊆ Ωθ(0)(Ln). If in addition, A1 holds and

Ln(θ
(0)) > −∞, then {θ(t)}t≥0 is closed, bounded, has at least one limit point, and its

limit point(s) are in Ωθ(0)(Ln);

II) if A2 holds, then Hn(·|θ) is also continuous on Ω for all θ ∈ Ω and differentiable in

the interior of Ω for all θ ∈ Ω;

III) if A1, A2 hold, and θ(0) ∈ Ω such that Ln(θ
(0)) > ∞, then Ln is bounded on Ωθ(0)(Ln)

and the sequence {Ln(θ
(t))}t≥0 is bounded;

IV) if A1, A2 hold, and θ(0) ∈ Ω such that Ln(θ
(0)) > −∞, then Ln takes a maximum over

Ωθ(0)(Ln). If in addition A3 holds, then that maximizer is in int Ω;

V) Suppose A2, A3 hold and θ(0) ∈ Ω such that Ln(θ
(0)) > −∞. If in addition, there is

some t ≥ 0 such that θ(t) = θ(t+1), then θ(t) is a stationary point of Ln.

Proof of I). For all θ(0) ∈ Ω, it follows from Theorem 2.2.1 that {θ(t)}t≥0 ⊆ Ωθ(0)(Ln). When

A1 holds and Ln(θ
(0)) > −∞, then {θ(t)}t≥0 ⊆ Ωθ(0)(Ln) is a bounded sequence and it
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is a consequence of the Bolzano-Weierstrass theorem that it has at least one limit point.

Furthermore, since Ωθ(0)(Ln) is closed, the limit point is in Ωθ(0)(Ln).

Proof of II). This follows from (1.37) together with the fact that the sum of two continuous

function is continuous and the sum of two differentiable function is also differentiable.

Proof of III). Let θ(0) ∈ Ω such that Ln(θ
(0)) > ∞; in particular, Ωθ(0)(Ln) is compact by

A1. Further, because A2 guarantees the continuity of Ln over Ωθ(0)(Ln) ⊆ Ω and since

continuous functions map compact sets to compact sets, it follows that Ln(Ωθ(0)(Ln)) is

compact; thus Ln(Ωθ(0)(Ln)) is also bounded. Since {θ(t)}t≥0 ⊆ Ωθ(0)(Ln), it follows that

{Ln(θ
(t))}{t≥0} ⊆ Ln(Ωθ(0)(Ln)); {Ln(θ

(t))}{t≥0} is bounded.

Proof of IV). Let θ(0) ∈ Ω such that Ln(θ
(0)) > ∞; in particular, Ωθ(0)(Ln) is compact by A1.

Because Ln is continuous over Ω, it follows that it takes a maximum over the compact set

Ωθ(0)(Ln).

Proof of V). We want to show ∇Ln(θ
(t+1)) = 0. We observe that differentiating (1.37) in the

first variable yields

∇Ln(θ
(t+1)) = ∇1Qn(θ

(t+1)|θ(t))−∇1Hn(θ
(t+1)|θ(t)).

Recall θ(t+1) ∈ argmaxθ∈ΩQn(θ|θ(t)) by definition and θ(t+1) ∈ argmaxθ∈ΩHn(θ|θ(t+1)) by

Lemma 2.2.1. Because A3 guarantees θ(t+1) ∈ int Ω, the following first order optimality

conditions hold: ∇1Qn(θ
(t+1)|θ(t)) = 0 and ∇1Hn(θ

(t+1)|θ(t+1)) = 0. We conclude that

∇1Ln(θ
(t)) = 0; the fitted parameter θ(t) is a stationary point of Ln.

We acknowledge that assumptions A1 and A2 are commonly made in literature [1, 9,

36, 37]. However, assumption A3 is less prevalent as it is challenging to verify and does

not hold for a large number of parametric models with latent variables. Nonetheless, as

we will see, it plays a crucial role in the results of this section. Below, we explore the

properties of Ln(θ
(t+1)) in the case where θ(t) ∈ Ω is not a stationary point of Ln.
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Lemma 2.3.1. Assume A2, A3 hold, and θ(0) ∈ Ω such that Ln(θ
(0)) > ∞. If θ(t) is not a

stationary point of Ln, it follows that

Ln(θ
(t+1)) > Ln(θ

(t))

where θ(t+1) ∈Mn(θ
(t)).

Proof. (Originally stated by Wu [37] and Tseng [36])

We recall from Lemma 2.2.1 that θ(t) ∈ argmaxθ∈ΩHn(θ|θ(t)), which directly implies

Hn(θ
(t+1)|θ(t)) ≤ Hn(θ

(t)|θ(t)). (2.1)

Further, because A3 guarantees θ(t) ∈ int Ω, the first order optimality condition that

∇1Hn(θ
(t)|θ(t)) = 0 follows. Next, we differentiate (1.37) in the first variable and obtain

∇Ln(θ
(t))

(1.37)
= ∇1Qn(θ

(t)|θ(t))−∇1Hn(θ
(t)|θ(t)).

Since ∇1Hn(θ
(t)|θ(t)) = 0, the above expression simplifies to ∇Ln(θ

(t)) = ∇1Qn(θ
(t)|θ(t)).

Therefore, we observe that ∇1Qn(θ
(t)|θ(t)) ̸= 0 because we assume θ(t) is not a stationary

point of Ln. This means that – unlike θ(t+1) – the parameter estimate θ(t) ∈ int Ω is not a

maximizer of maxθ∈ΩQn(θ|θ(t)) and thus

Qn(θ
(t+1)|θ(t)) > Qn(θ

(t)|θ(t)). (2.2)

Combining (1.37), (2.1), and (2.2), we obtain

Ln(θ
(t+1))

(1.37)
=

(2.2)
> Qn(θ(t)|θ(t))︷ ︸︸ ︷

Qn(θ
(t+1)|θ(t))−

(2.1)
≤ Hn(θ(t)|θ(t))︷ ︸︸ ︷

Hn(θ
(t+1)|θ(t))

> Qn(θ
(t)|θ(t))−Hn(θ

(t)|θ(t))
(1.37)
= Ln(θ

(t))

and this completes the proof.
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The above lemma extends the result from Theorem 2.2.1 and provides conditions for

which an iteration of the EM will strictly improve the log-likelihood Ln. We make the

remark that the result crucially depends on A3 and the fact that θ(t+1) ∈ argmax
θ∈Ω

Qn(θ|θ(t)).

Below, we obtain conditions under which the limit points θ̄ of {θ(t)}t≥0 are stationary

points of Ln satisfying Ln(θ̄) := L̄n = lim
t→∞

Ln(θ
(t)).

Theorem 2.3.1. Let {θ(t)}t≥0 be a sequence obtained from executing Algorithm 1 where θ(0) ∈ Ω

such that Ln(θ
(0)) > −∞. If A1, A2, A3 hold, and Qn is continuous on Ω × Ω, then, all limit

points θ̄ of {θ(t)}t≥0 are stationary points of Ln and Ln(θ̄) = L̄n.

Proof. (Originally stated by Wu [37, Theorem 2] and Tseng [36].)

To prove this result, we use Zangwill’s Global Convergence Theorem given as Theorem

A.2.4 of the Appendix. Recall the point-to-set map Mn defined as (1.26), let θ(0) ∈ Ω, and

denote the solution set as

T := {θ ∈ int Ω : ∇Ln(θ) = 0}. (2.3)

Below, we prove conditions a), b), and c) of the theorem are satisfied.

Condition a): The condition is satisfied since, choosing K = Ωθ(0)(Ln), it follows that

• K ⊆ Ω;

• {θ(t)}t≥0 ⊆ K by remark I);

• K compact by A1.

Condition b): The condition is satisfied since

• Ln is continuous by A2;

• Theorem 2.2.1 guarantees that Ln(θ
(t+1)) ≥ Ln(θ

(t)) for any θ(t) ∈ Ω and θ(t+1) ∈

Mn(θ
(t));

• Lemma 2.3.1 guarantees that Ln(θ
′
) > Ln(θ) for any θ ∈ Ω/T and θ

′ ∈Mn(θ).
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Condition c): Referring to Definition A.2.4, we show Mn is a closed point-to-set map on

Ω/T . Let θ̄ ∈ Ω/T and suppose there exists {θ(l)}l≥0 ⊆ Ω and {ϕ(l)}l≥0 ⊆ Ω where ϕ(l) ∈

Mn(θ
(l)) such that θ(l) →

l→∞
θ̄ and ϕ(l) →

l→∞
ϕ̄. First, since ϕ(l) ∈ Mn(θ

(l)), it holds that

Qn(ϕ
(l)|θ(l)) ≥ Qn(ϕ|θ(l)) for all ϕ ∈ Ω. Next, we take the lim

l→∞
on both sides of the inequality

to obtain lim
l→∞

Qn(ϕ
(l)|θ(l)) ≥ lim

l→∞
Qn(ϕ|θ(l)) for all ϕ ∈ Ω. Lastly, because Qn is continuous

on Ω× Ω, it follows that Qn(ϕ̄|θ̄) ≥ Qn(ϕ|θ̄) for all ϕ ∈ Ω. Therefore, ϕ̄ ∈ Mn(θ̄) and Mn is

a closed point-to-set map.

This completes the proof.

The aforementioned theorem establishes conditions under which the limit points of

the sequence {θ(t)}t≥0 correspond to stationary points of the log-likelihood function Ln.

Tseng [36] uses the result to prove that, with appropriate initialization, the limit points of

{θ(t)}t≥0 obtained for a 2-component 1-dimensional GMM with known unit variance will

also be stationary points of Ln. It is worth noting that the initialization criterion is easily

verifiable in this case.

In this section, we have identified conditions that ensure the limit points of {θ(t)}t≥0

are stationary points of Ln. However, these conditions can be challenging to verify and

may not hold in general. Furthermore, convergence to a stationary point of Ln alone

does not provide insights into the quality of the obtained approximation for the MLE. To

address this concern, Section 2.4 delves into the topic of assessing the proximity of EM’s

parameter estimates to the true parameter θ∗. Before doing so, we extend some of the

results from the previous two sections to the GEM algorithms.

2.3.1 Convergence of {ψ(t)}t≥0 to stationary point(s) of Ln

In this section, we present results that provide conditions under which {ψ(t)}t≥0 converges

to stationary point(s) of Ln. We begin with the first result for GEM.

Corollary 2.3.1. Let ψ(t) ∈ Ω and ψ(t+1) ∈ MGEM
n (ψ(t)) where MGEM

n is given as (1.42). The

following holds:
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a) Qn(ψ
(t+1)|ψ(t)) ≥ Qn(ψ

(t)|ψ(t));

b) Hn(ψ
(t+1)|ψ(t)) ≤ Hn(ψ

(t)|ψ(t));

c) Ln(ψ
(t+1)) ≥ Ln(ψ

(t)).

Proof. The proof follows from an identical argument to that of Theorem 2.2.1.

It follows from the above theorem that the sequence {Ln(ψ
(t))}t≥0 is non-decreasing

and thus, each iteration of Algorithm 1 can only increase the log-likelihood Ln. Next, we

present a corollary pertaining to the convergence of the sequence {Ln(ψ
(t))}t≥0.

Corollary 2.3.2. Let {ψ(t)}t≥0 be a sequence obtained from executing Algorithm 4. Then, if

Ln(ψ
(t)) is bounded for all t ≥ 0, it follows that

L̄n := lim
t→∞

Ln(ψ
(t)) exists and is finite.

Proof. The proof follows from an identical argument to that of Corollary 2.2.1.

The next result provides conditions under which the limit points of {ψ(t)}t≥0 will be

stationary point(s) of Ln.

Corollary 2.3.3. Let {ψ(t)}t≥0 be a sequence obtained from executing Algorithm 4 where ψ(0) ∈ Ω

such that Ln(ψ
(0)) > −∞. If the following holds:

• A1, A2, A3;

• Qn is continuous on Ω× Ω;

• Ln(ψ
(t+1)) > Ln(ψ

(t)) for all ψ(t) such that ∇Ln(ψ
(t)) ̸= 0.

Then, all limit points ψ̄ of {ψ(t)}t≥0 are stationary points of Ln and Ln(ψ̄) = lim
t→∞

Ln(ψ
(t)).

Proof. The proof follows from an identical argument to that of Theorem 2.3.1.
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The above result summarizes the general properties of GEM algorithms. Similar to

Algorithm 1, the sequence {Ln(ψ
(t))}t≥0 remains non-decreasing and converges if it is

bounded. Hence, GEM algorithms also possess desirable properties for approximating

the MLE. Furthermore, the limit points of {ϕ(t)}t≥0 can be ensured to be stationary points

of Ln, although this requires stricter conditions compared to {θ(t)}t≥0. In light of these

findings, it is preferable, in general, to compute θ(t+1) ∈Mn(θ
(t)) when possible.

2.4 Convergence of {θ(t)}t≥0 to the True Parameter θ∗

In this section, we present the framework developed by Balakrishnan et al. [1] to analyze

the local convergence properties of the EM algorithm towards the true parameter θ∗. The

framework involves two main steps, outlined below:

∥θ(t+1) − θ∗∥2 ≤ ∥ϕ(t+1) − θ∗∥2︸ ︷︷ ︸
Step 1

+ ∥θ(t+1) − ϕ(t+1)∥2︸ ︷︷ ︸
Step 2

(2.4)

Here, θ(t+1) ∈ Mn(θ
(t)) and ϕ(t+1) ∈ M(θ(t)). The first step aims to establish general

conditions under which the sequence {ϕ(t)}t≥0 converges to θ∗. The second step utilizes a

combination of probability theory and other techniques to bound the disparity between

{ϕ(t)}t≥0 and {θ(t)}t≥0. In Section 2.4.1, we address the first step, while Section 2.4.2 focuses

on the second step. Before proceeding, let us introduce another assumption.

We refer to A4 when we require Q(·|θ∗) to be λ-strongly-concave in a neighborhood of

θ∗, where Q is given as (1.40):

A4: ∃ r > 0, λ > 0 such that

Q(θ1|θ∗)−Q(θ2|θ∗) ≤ ⟨∇1Q(θ2|θ∗), θ1 − θ2⟩ −
λ

2
∥θ1 − θ2∥22

∀ θ1, θ2 ∈ B2(θ
∗; r). (2.5)
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We make the remark that A4 only makes sense if ∇1Q(·|θ∗) exists everywhere on Ω. Fur-

ther, we clarify that A4 does not extend to Qn; this assumption is specific to Q and is

therefore solely related to the population EM described in Algorithm 3.

2.4.1 Convergence of population {ϕ(t)}t≥0 to θ∗

In this section, we explore the first step of the framework in (2.4):

∥θ(t) − θ∗∥2 ≤ ∥ϕ(t) − θ∗∥2︸ ︷︷ ︸
Step 1

+ ∥θ(t) − ϕ(t)∥2︸ ︷︷ ︸
Step 2

.

where θ(t+1) ∈ Mn(θ
(t)), ϕ(t+1) ∈ M(θ(t)). We aim to understand the local convergence

properties of ∥ϕ(t)−θ∗∥2. We introduce a notion essential for the main result of this section:

first order stability. We say the functions {Q(·|θ) : θ ∈ Ω} satisfy FOS(γ) over B2(r; θ
∗) if

∥∇1Q(ϕ
(t+1)|θ∗)−∇1Q(ϕ

(t+1)|ϕ(t))∥2 ≤ γ∥θ − θ∗∥2

for all ϕ(t) ∈ B2(r; θ
∗), ϕ(t+1) ∈M(ϕ(t)). (2.6)

We make the remark that the above only makes sense if ∇1Q exists everywhere on Ω×Ω.

Further, given a parametric model, there is no general guarantee that the FOS(γ) condi-

tions can be satisfied for some λ and r. Interestingly, Balakrishnan et al. [1] suggest that

since (2.6) is satisfied for ϕ(t) = θ∗, it may be that under some regularity conditions on

Q, FOS(γ) holds for some choice of γ and r. After careful examination, we see that if A3

holds, it follows that ∇1Q(ϕ
(t+1)|ϕ(t)) = 0 where ϕ(t+1) ∈M(ϕ(t)); in particular, the FOS(γ)

conditions simplify to ∥∇1Q(ϕ
(t+1)|θ∗)∥2 ≤ γ∥ϕ(t) − θ∗∥2. Under this condition, first order

stability guarantees that the gradient do not explode, in fact they are bounded above by

the distance of the current parameter estimate to the true parameter θ∗ up to a constant

factor. Below, we provide a result which may prove useful to verify the conditions of

FOS(γ).

32



Lemma 2.4.1. Assume A2 holds. The functions {Q(·|θ) : θ ∈ Ω} satisfy FOS(γ) over B2(r; θ
∗) if

and only if the functions {H(·|θ) : θ ∈ Ω} satisfy FOS(γ) over B2(r; θ
∗).

Proof. Letting ϕ(t) ∈ B2(r; θ
∗) and ϕ(t+1) ∈M(ϕ(t)), it follows from (1.37) and A2 that

∥∇1Q(ϕ
(t+1)|θ∗)−∇1Q(ϕ

(t+1)|ϕ(t))∥2
1.37
= ∥[∇L(ϕ(t+1)) +∇1H(ϕ(t+1)|θ∗)]− [∇L(ϕ(t+1))−∇1H(ϕ(t+1)|ϕ(t))]∥2

= ∥∇1H(ϕ(t+1)|θ∗)−∇1H(ϕ(t+1))|ϕ(t))∥2.

” =⇒ ”: If the functions {Q(·|θ) : θ ∈ Ω} satisfy FOS(γ) over B2(r; θ
∗), it follows from the

above that

∥∇1H(ϕ(t+1)|θ∗)−∇1H(ϕ(t+1)|ϕ(t))∥2 ≤ γ∥ϕ(t) − θ∗∥2.

” ⇐= ”: Similarly, if the functions {H(·|θ) : θ ∈ Ω} satisfy FOS(γ) B2(r; θ
∗), it follows from

the former that

∥∇1Q(ϕ
(t+1)|θ∗)−∇1Q(ϕ

(t+1)|ϕ(t))∥2 ≤ γ∥ϕ(t) − θ∗∥2.

This completes the proof.

Because given some ϕ(0) ∈ Ω, the sequence {ϕ(t)}t≥0 obtained from Algorithm 3 is

completely deterministic, we use convex optimization theory to analyze its convergence

properties. We give the main result of the section below.

Theorem 2.4.1. Assume A2, A4 hold, and ∃ some r > 0 and 0 ≤ γ < λ such that the functions

{Q(·|θ) : θ ∈ Ω} satisfy FOS(γ) over B2(r; θ
∗). Then, it follows that

∥ϕ(t+1) − θ∗∥ ≤ γ

λ
∥ϕ(t) − θ∗∥ (2.7)

for all ϕ(t) ∈ B2(r; θ
∗) and ϕ(t+1) ∈M(ϕ(t)) where M is given as (1.39).

Proof. (Originally states by Balakrishnan et al. [1, Theorem 1].)

Let ϕ(t) ∈ B2(r1; θ
∗) and ϕ(t+1) ∈M(ϕ(t)). Because θ∗ = argmaxθ∈ΩQ(θ|θ∗) and Ω is convex,
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it follows from Theorem A.2.3 that ⟨∇1Q(θ
∗|θ∗), θ− θ∗⟩ ≤ 0 ∀θ ∈ Ω; in particular, we have

⟨∇1Q(θ
∗|θ∗), ϕ(t+1) − θ∗⟩ ≤ 0. (2.8)

Similarly, because ϕ(t+1) ∈ argmaxθ∈ΩQ(θ|ϕ(t)) and Ω is convex, it follows from Theorem

A.2.3 that ⟨∇1Q(ϕ
(t+1)|θ(t)), θ − ϕ(t+1)⟩ ≤ 0 ∀θ ∈ Ω; in particular, we have

⟨∇1Q(ϕ
(t+1)|ϕ(t)), θ∗ − ϕ(t+1)⟩ ≤ 0. (2.9)

Combining (2.8) and (2.9) yields

⟨−∇1Q(θ
∗|θ∗), θ∗ − ϕ(t+1)⟩ ≤ ⟨−∇1Q(ϕ

(t+1)|θ(t)), θ∗ − ϕ(t+1)⟩. (2.10)

Adding ⟨∇1Q(ϕ
(t+1)|θ∗), θ∗ − ϕ(t+1)⟩ to (2.10), we obtain

i)︷ ︸︸ ︷
⟨∇1Q(ϕ

(t+1)|θ∗)−∇1Q(θ
∗|θ∗), θ∗ − ϕ(t+1)⟩ ≤

⟨∇1Q(ϕ
(t+1)|θ∗)−∇1Q(ϕ

(t+1)|θ(t)), θ∗ − ϕ(t+1)⟩︸ ︷︷ ︸
ii)

. (2.11)

We now look to find a lower bound for i). It follows from A4 that

⟨∇1Q(ϕ
(t+1)|θ∗), θ∗ − ϕ(t+1)⟩+Q(ϕ(t+1)|θ∗)−Q(θ∗|θ∗) ≥ λ

2
∥θ∗ − ϕ(t+1)∥22 (2.12)

⟨∇1Q(θ
∗|θ∗), ϕ(t+1) − θ∗⟩+Q(θ∗|θ∗)−Q(ϕ(t+1)|θ∗) ≥ λ

2
∥θ∗ − ϕ(t+1)∥22. (2.13)

Summing (2.12) and (2.13) together, we obtain

i)︷ ︸︸ ︷
⟨∇1Q(ϕ

(t+1)|θ∗), θ∗ − ϕ(t+1)⟩+ ⟨∇1Q(θ
∗|θ∗), ϕ(t+1) − θ∗⟩ ≥ λ∥θ∗ − ϕ(t+1)∥22. (2.14)
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We have obtained the lower bound. Next, we look to find an upper bound for ii). It

follows from the Cauchy Schwartz inequality and FOS(γ) that

ii) = ⟨∇1Q(ϕ
(t+1)|θ∗)−∇1Q(ϕ

(t+1)|ϕ(t)), θ∗ − ϕ(t+1)⟩

≤ ∥∇1Q(ϕ
(t+1)|θ∗)−∇1Q(ϕ

(t+1)|ϕ(t))∥2∥θ∗ − ϕ(t+1)∥2

≤ γ∥θ∗ − ϕ(t)∥2∥θ∗ − ϕ(t+1)∥2

(2.15)

Substituting (2.14) and (2.15) into (2.11), we obtain

(2.14)︷ ︸︸ ︷
λ∥θ∗ − ϕ(t+1)∥22 ≤

(2.15)︷ ︸︸ ︷
γ∥θ∗ − ϕ(t)∥2∥θ∗ − ϕ(t+1)∥2 .

Finally, rearranging yields ∥θ∗ − ϕ(t+1)∥2 ≤ γ
λ
∥θ∗ − ϕ(t)∥2 and this completes the proof.

Unravelling the recurrence in the above theorem, we see that

∥ϕ(t) − θ∗∥2 ≤
(γ
λ

)t
∥ϕ(0) − θ∗∥2.

Therefore, under the conditions of the theorem, the sequence {ϕ(t)}t≥0 converges geomet-

rically to the true parameter θ∗. However, since we don’t have direct access to {ϕ(t)}t≥0,

our goal is to establish a similar result for the sequence {θ(t)}t≥0. We address this objective in

the next section.

We make the remark that in many practical applications of the EM algorithm, such as

GMMs and MLR models, it is not always necessary to rely on the aforementioned theorem

to obtain a result of the form ∥ϕ(t+1)−θ∗∥2 ≤ κ∥ϕ(t)−θ∗∥2. As explored in Chapter 3, many

researchers tailor their analysis to the specific class of models considered to obtain such a

result in the first step of the framework. We consider step 2 in the subsequent section.

2.4.2 Local Convergence of {θ(t)}t≥0 to θ∗

We recall (2.4) and consider the second step of the framework proposed by [1]:
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∥θ(t) − θ∗∥2 ≤ ∥ϕ(t) − θ∗∥2︸ ︷︷ ︸
deterministic analysis

+ ∥θ(t) − ϕ(t)∥2︸ ︷︷ ︸
stability (ϵunif

M )

where θ(t) ∈ Mn(θ
(t−1)), ϕ(t) ∈ M(θ(t−1)). We aim to bound the disparity between the

population EM operator M and the EM operator Mn; Ho et al. [18] refers to this as the

stability of the EM Operator. Also, unlike {ϕ(t)}t≥0 which is deterministic, Algorithm 1

deals with data generated from a probability distribution and so, the sequence {θ(t)}t≥0 is

random. Therefore, we must introduce some new notions.

Because each iterate θ(t) is based on the same sample, the stability bound must hold

uniformly over the ball B2(r; θ
∗). Consider ϵunifM (n, δ) defined below.

Definition 2.4.1. For a given sample size n and tolerance parameter δ ∈ (0, 1), we define

ϵunifM (n, δ) to be the smallest scalar such that

P
(
sup
S
∥θ(t+1) − ϕ(t+1)∥2 ≤ ϵunifM (n, δ)

)
≥ 1− δ (2.16)

where S :=
{
θ(t+1) ∈Mn(θ

(t)), ϕ(t+1) ∈M(θ(t)) : θ(t) ∈ B2(r; θ
∗)
}

.

For some δ ∈ (0, 1) and sample size n, the quantity ϵunifM (n, δ) serves to uniformly

bound the disparity between M and Mn over the ball B2(r; θ
∗) with probability at least

1− δ. We make the remark that there is no guarantee in general that, given some n and δ,

ϵunifM (n, δ) exists. Even if ϵunifM (n, δ) exists, finding it can be challenging and specific to the

family of parametric models. We now present the main result of this section.

Theorem 2.4.2. If

a) there exists n large enough that ϵunifM (n, δ) ≤ (1− κ)r with probability at least 1− δ;

b) there exists r > 0 such that for all t ≥ 0 and θ(0) ∈ B2(r; θ
∗),

∥ϕ(t+1) − θ∗∥ ≤ κ∥θ(t) − θ∗∥

where θ(t) ∈ B2(r; θ
∗) and ϕ(t+1) ∈M(θ(t));
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it follows that the sequence {θ(t)}t≥0 obtained from executing iterations of Algorithm 1 satisfies

∥θ(t) − θ∗∥2 ≤ κt∥θ(0) − θ∗∥2 +
1

1− κ
ϵunifM (n, δ) (2.17)

with probability at least 1− δ.

Proof. (Originally stated by Balakrishnan et al. [1, Theorem 2].)

For the remainder of this proof, we only consider the event, of probability at least 1 − δ,

guaranteeing ϵunifM (n, δ) ≤ (1− κ)r.

First, we prove by induction that if r satisfies b) and θ(0) ∈ B2(r; θ
∗), then θ(t) ∈

B2(r; θ
∗) for all t ≥ 0, with probability 1− δ.

Base Case: θ(0) ∈ B2(r; θ
∗) by assumption.

Induction Step: Show θ(t) ∈ B2(r; θ
∗) =⇒ θ(t+1) ∈ B2(r; θ

∗).

Since θ(t) ∈ B2(r; θ
∗), it follows from b) that for all ϕ(t+1) ∈M(θ(t)),

∥ϕ(t+1) − θ∗∥2 ≤ κ∥θ(t) − θ∗∥2. (2.18)

Also it follows from the definition of ϵunifM (n, δ) that for all θ(t+1) ∈Mn(θ
(t)), ϕ(t+1) ∈M(θ(t))

∥θ(t+1) − ϕ(t+1)∥2 ≤ ϵunifM (n, δ). (2.19)

Therefore, if θ(t+1) ∈ Mn(θ
(t)), ϕ(t+1) ∈ M(θ(t)), it follows from (2.18), (2.19), and the trian-

gle inequality that

∥θ(t+1) − θ∗∥2 = ∥ϕ(t+1) + θ(t+1) − ϕ(t+1) − θ∗∥2

≤ ∥ϕ(t+1) − θ∗∥2 + ∥θ(t+1) − ϕ(t+1)∥2

≤ κ ∥θ(t) − θ∗∥2︸ ︷︷ ︸
<r

+ ϵunifM (n, δ)︸ ︷︷ ︸
≤(1−κ)r

< r

37



where last step follows because θ(t) ∈ B2(r; θ
∗) ⇐⇒ ∥θ(t) − θ∗∥2 < r and ϵunifM (n, δ) ≤

(1− κ)r under this event. This completes the induction.

So far, if r satisfies b) and θ(0) ∈ B2(r; θ
∗), then the following recurrence relation holds

for all t ≥ 0:

∥θ(t) − θ∗∥2 ≤ ∥ϕ(t) − θ∗∥2 + ∥ϕ(t) − θ(t)∥2, where ϕ(t) ∈M(θ(t−1))

≤ κ∥θ(t−1) − θ∗∥2 + ϵunifM (n, δ).

where ϕ(t+1) ∈M(θ(t)). We solve the recurrence below:

∥θ(t) − θ∗∥2 ≤ κ

≤κ∥θ(t−2)−θ∗∥2+ϵunif
M (n,δ)︷ ︸︸ ︷

∥θ(t−1) − θ∗∥2 +ϵunifM (n, δ)

≤ κt∥θ(0) − θ∗∥2 +

[
t∑

s=0

κs

]
ϵunifM (n, δ)

≤ κt∥θ(0) − θ∗∥2 +
1

1− κ
ϵunifM (n, δ).

In the last step, we used that a geometric series with κ ∈ (0, 1) converges to 1
1−κ

. This

completes the proof.

It follows from the above theorem that if T = log1/κ

(
(1−κ)∥θ(0)−θ∗∥2

ϵunif
M (n,δ)

)
, then ∥θ(T )−θ∗∥2 ≤

2
1−κ

ϵunifM (n, δ) with probability at least 1 − δ. Therefore, for all t ≥ T , it follows that θ(t) ∈

B2

(
2

1−κ
ϵunifM (n, δ); θ∗

)
with probability at least 1−δ. This concludes the general properties

of convergence on Algorithm 1.

We make the remark that the main challenge with using the above theorem lies in

calculating a good bound for ϵunifn (n, δ). Still, in our literature survey in Chapter 3, this

theorem is often referenced and used to obtain local convergence properties in a wide

variety of settings. Still, in cases where it proves too difficult to obtain ϵunifm (nδ), it is

possible to turn to sample-splitting EM for easier analysis. We explore this scenario in the

next section.
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2.4.3 Local Convergence of the Sample-Splitting {θ(t)}Tt=0 to θ∗

In this section, we re-consider the second step of the framework proposed by [1] when

the sequence {θ(t)}Tt=0 is obtained from executing Algorithm 2 instead:

∥θ(t) − θ∗∥2 ≤ ∥ϕ(t) − θ∗∥2︸ ︷︷ ︸
deterministic analysis

+ ∥θ(t) − ϕ(t)∥2︸ ︷︷ ︸
stability (ϵM )

.

where θ(t) ∈ M n
T
(θ(t−1)), ϕ(t) ∈ M(θ(t−1)). Unlike {ϕ(t)}t≥0 which is deterministic, Algo-

rithm 2 deals with data generated from a probability distribution and so, the sequence

{θ(t)}Tt=0 is random.

This time, because {θ(t)}Tt=0 is based on independent sub-samples, we no longer need a

bound that holds uniformly over the ball B2(r; θ
∗). Instead, we consider ϵM(n, δ) defined

below.

Definition 2.4.2. For a given sample size n and tolerance parameter δ ∈ (0, 1), we define ϵM(n, δ)

to be the smallest scalar such that fixing any θ(t) ∈ B2(r, θ
∗),

P(∥θ(t+1) − ϕ(t+1)∥2 ≤ ϵM(n, δ)) ≥ 1− δ (2.20)

where θ(t+1) ∈Mn(θ
(t)) and ϕ(t+1) ∈M(θ(t)).

For some δ ∈ (0, 1) and sample size n, the quantity ϵM(n, δ) serves to bound the dis-

parity between M and Mn with probability 1 − δ. We make the remark that there is still

no guarantee in general that, given some n and δ, ϵM(n, δ) exists. We begin with the

below-lemma comparing the two quantities ϵM(n, δ) and ϵunifM (n, δ).

Lemma 2.4.2. Fix n ∈ N and δ ∈ (0, 1). If ϵunifM (n, δ) (see Definition 2.4.1) and ϵM(n, δ) (see

Definition 2.4.1) exist then,

ϵM(n, δ) ≤ ϵunifM (n, δ).

Proof. Fix n ∈ N and δ ∈ (0, 1) such that ϵunifM (n, δ) and ϵM(n, δ) both exist. In addition, let

θ
(t)
1 ∈ B2(r; θ

∗), θ(t+1)
1 ∈Mn(θ

(t)), and ϕ
(t+1)
1 ∈M(θ(t)).
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First, we observe that

∥θ(t+1)
1 − ϕ

(t+1)
1 ∥2 ≤ sup

S
∥θ(t+1) − ϕ(t+1)∥2.

where the set S is described in Definition 2.4.1. Next, it follows that

{(y1, ..., yn) : sup
S
∥θ(t+1) − ϕ(t+1)∥2 ≤ ϵunifm } ⊆ {(y1, ..., yn) : ∥θ(t+1)

1 − ϕ
(t+1)
1 ∥2 ≤ ϵunifm }

Therefore, it follows from the definition of ϵunifM that

1− δ ≤ P
[
sup
S
∥θ(t+1) − ϕ(t+1)∥2 ≤ ϵunifM (n, δ)

]
≤ P

[
∥θ(t+1)

1 − ϕ
(t+1)
1 ∥2 ≤ ϵunifM (n, δ)

]
The above holds for all θ(t)1 ∈ B2(r; θ

∗), θ(t+1)
1 ∈ Mn(θ

(t)), and ϕ
(t+1)
1 ∈ M(θ(t)). Thus, by

definition of ϵM(n, δ), it follows that ϵM(n, δ) ≤ ϵunifM (n, δ). This completes the proof.

We make the remark that the above implies that while ϵunifM (n, δ) can be used as an

upper bound for ϵM(n, δ), the converse is not true. This means that whenever a conver-

gence result is obtained for Algorithm 2, encouraging though it is, the behavior cannot be

expected to hold for Algorithm 1. We now present the main result of this section.

Theorem 2.4.3. Let T ∈ N, if

a) there exists n large enough such that ϵM( n
T
, δ
T
) ≤ (1− κ)r with probability at least 1− δ

T
;

b) there exists r > 0 such that for all t ≥ 0 and θ(0) ∈ B2(r; θ
∗),

∥ϕ(t+1) − θ∗∥ ≤ κ∥θ(t) − θ∗∥

where θ(t) ∈ B2(r; θ
∗) and ϕ(t+1) ∈M(θ(t));
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it follows that the sequence {θ(t)}Tt=0 obtained from executing iterations of Algorithm 2 satisfies

∥θ(t) − θ∗∥2 ≤ κt∥θ(0) − θ∗∥2 +
1

1− κ
ϵM

(
n

T
,
δ

T

)
(2.21)

for all t ∈ {0, 1, , ..., T} with probability at least 1− δ.

Proof. (Originally states by Balakrishnan et al. [1][Theorem 2].)

Unlike the proof of Theorem (2.4.2), iterates of the sequence {θ(t)}Tt=0 are based on in-

dependent sub-samples. Therefore, for each t ∈ {0, 1, ..., T} and with probability at

least 1 − δ
T

, we must see if the bound ∥θ(t+1) − ϕ(t+1)∥2 ≤ ϵM( n
T
, δ
T
) is satisfied where

θ(t+1) ∈M n
T
(θ(t)) and ϕ(t+1) ∈M(θ(t)).

We resolve this by performing a union bound over all T iterations. Let θ(t) ∈ B2(r; θ
∗),

θ(t+1) ∈M n
T
(θ(t)) and ϕ(t+1) ∈M(θ(t)),

P
(
max
t∈[T ]

∥θ(t+1) − ϕ(t+1)∥2 ≤ ϵM

(
n

T
,
δ

T

))
= 1− P

(
∪T−1

t=0

[
∥θ(t+1) − ϕ(t+1)∥2 > ϵM

(
n

T
,
δ

T

)])
(i)

≥ 1−
T−1∑
t=0

P
([

∥θ(t+1) − ϕ(t+1)∥2 > ϵM

(
n

T
,
δ

T

)])
︸ ︷︷ ︸

≤δ/T

≥ 1−
T−1∑
t=0

δ

T

= 1− δ

Where in (i), we used Bonferroni’s inequality. Under the above event of probability at

least 1 − δ where max
t∈[T ]

∥θ(t+1) − ϕ(t+1)∥2 ≤ ϵM
(
n
T
, δ
T

)
, we can continue with an identical

argument to that of Theorem 2.4.2. This completes the proof.

It follows from the above theorem that if T = log1/κ

(
(1−κ)∥θ(0)−θ∗∥2

ϵM( n
T
, δ
T )

)
, then ∥θ(T ) −

θ∗∥2 ≤ 2
1−κ

ϵM
(
n
T
, δ
T

)
with probability at least 1 − δ. Therefore, for all t ≥ T , it follows

that θ(t) ∈ B2

(
2

1−κ
ϵM
(
n
T
, δ
T

)
; θ∗
)

with probability at least 1− δ. This concludes the general

properties of convergence on Algorithm 2.
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2.5 Conclusion

In Chapter 2, we explored the existing EM literature to understand the general proper-

ties of the EM algorithm and investigated its convergence behavior. We have drawn the

following conclusions regarding the convergence properties of the EM algorithm.

First and foremost, we established the connection between the surrogate function Qn

and maximum likelihood estimation, as outlined in equation (1.37). Building upon this

foundation, we demonstrated that for any parameter value ϕ within the parameter space

Ω, the max
θ∈Ω

Hn(θ|ϕ) is attained at θ = ϕ. This result serves as a crucial underpinning for

the subsequent finding. By leveraging the above result, we were able to establish that

the sequence {Ln(θ
(t))}t≥0 is non-decreasing. This observation holds significance as it

provides assurance of progress in likelihood improvement during the iterations of the

EM algorithm. Furthermore, we delved into the conditions under which each iteration of

the algorithm yields parameter estimates that strictly enhance the likelihood function Ln.

This finding crucial in allowing us to derive conditions under which the limit points of

the parameter sequence {θ(t)}t≥0 coincide with stationary points of Ln.

To enhance our understanding of the convergence properties of the EM algorithm,

we explored the general framework proposed by [1] for analyzing the local convergence

properties of the EM algorithm. By considering the iterates of the population EM, de-

noted as {ϕ(t)}t≥0 and under appropriate regularity conditions, we established geometric

convergence of these iterates towards the true parameter θ∗. Additionally, we investi-

gated the concept of stability of the EM operator, as introduced by Ho et al. [18]. Notably,

we found that when the EM operator satisfies the stability criterion, the fitted parameters

are guaranteed to converge geometrically to a point inside a ball centered around the true

parameter, with high probability.

In conclusion, our analysis of the general properties of the EM algorithm has shed light

on its convergence behavior. We have uncovered and re-assembled general properties of

the EM into a series of conditions and results.
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Chapter 3

Selective Review of the EM on Mixture

Models

In this chapter, we delve deeper into the application of the EM algorithm within the con-

text of Gaussian mixture models (GMMs) and mixed linear regression (MLR) models that

were introduced in Examples 1 and 2 of this thesis. Building upon this foundation, we

provide a selective survey of the existing literature on the EM for these mixture mod-

els. We aim to shed light on the key developments, particularly those relevant to the

results presented in Chapter 2. By examining the known rates of convergence of the EM

algorithm for various subclasses of GMMs and MLR, we hope to gain insights on the un-

derlying similarities in the inner workings of the algorithm for these distinct classes of

models.

3.1 Gaussian Mixture Models (GMMs)

From Example 1, we recall that for GMMs, the observed sample data (y1, ..., yn) where

y ∈ Rd is distributed according to (1.4) and the latent variable z ∈ [k] is the discrete label

expressing which Gaussian component an observation was sampled from. In particu-

lar, the vector parameter (π∗
j , µ

∗
j ,Σ

∗
j)j∈[k] fully describes the mixture. In Gaussian mixture
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models, the signal-to-noise ratio (SNR) is used to measure the separation of the compo-

nents:

SNR :=

min
i,j∈[k]

∥µ∗
i − µ∗

j∥2

max
j∈[k]

∥Σ∗
j∥F

. (3.1)

High SNR implies the different Gaussian components are well separated from each other

and therefore identifiable. On the other hand, low SNR means the Gaussian components

are poorly separated and therefore weakly identifiable.

In this section, we survey the relevant literature and unveil the convergence proper-

ties of the EM algorithm when applied to GMMs. More specifically, we consider two

sub-classes of Gaussian mixtures: 2-component symmetric Gaussian mixtures and k-

component spherical Gaussian mixtures.

3.1.1 2-Component Symmetric Gaussian Mixtures

Recall that for general Gaussian mixtures, the sampled data (y1, ..., yn) is distributed ac-

cording to (1.29) and the latent variable z ∈ [k] is the discrete label expressing which

Gaussian component an observation was sampled from. If in addition, k = 2, µ∗
0 = −µ∗

1,

and Σ∗
0 = Σ∗

1, it follows that the data is sampled from a 2-component symmetric Gaussian

mixture. In addition, we say the mixture is balanced if π∗
0 = π∗

1 = 1
2
. In particular, the

parameter vector (π∗
0, µ

∗
0,Σ

∗
0) fully describes the mixture.

The 2-component symmetric Gaussian mixture is widely considered the simplest sub-

class among Gaussian mixture models. As a result, researchers often use it as a bench-

mark when testing properties of the EM algorithm for Gaussian mixtures. This partic-

ular subclass serves as a foundation for understanding the algorithm’s behavior and is

subsequently extended to more complex subclasses. Hence, the 2-component symmetric

Gaussian mixture stands as the most comprehensively studied subclass within the realm

of Gaussian mixture models. In the following section, we present a collection of well-

established properties of the EM algorithm as applied to this specific class of mixture

models.
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3.1.1.1 Case where π∗
0 and Σ∗

0 are known

In this setting, θ(t) = µ
(t)
0 and the EM operator Mn is given in [1] as

Mn(θ
(t)) :=

1

n

n∑
i=0

(2kθ(t)(0|yi)− 1)yi.

In 2014, Balakrishnan et al. [1] considered the balanced case where π∗
0 = π∗

1 = 1
2
. They

used the framework presented in Section 4.1 to separate the convergence analysis into

two easier steps:

∥θ(t) − θ∗∥2 ≤ ∥M(θ(t))− θ∗∥2︸ ︷︷ ︸
Step 1

+ ∥Mn(θ
(t))−M(θ(t))∥2︸ ︷︷ ︸

Step 2

.

They began with Theorem 2.4.1. They showed that if the SNR is bounded below by η > 0

and θ(0) ∈ B2(
∥θ∗∥2

4
; θ∗), then it follows that there is some c > 0 such that

∥M(θ(t))− θ∗∥2 ≤ κ∥θ(t) − θ∗∥2

where κ ≤ exp{−cη2}. Building from this result, they used Theorem 2.4.2 and showed

that, with probability at least 1− δ,

∥θ(t) − θ∗∥2 ≤ κt∥θ(0) − θ∗∥2 +
c2

1− κ
ϕ(σ; ∥θ∗∥2)

√
d

n
log(1/δ)

where c2 > 0 and ϕ(σ; ∥θ∗∥2) = ∥θ∗∥2
√

∥θ∗∥22 + σ2∗. Therefore, for any r, δ, and t ≥ T

where

T ≥ log1/κ

(
∥θ(t) − θ∗∥2(1− κ)

ϕ(σ; ∥θ∗∥2)

√
n

d

1

log(1/δ)

)
∼ O(log1/κ(n/d)),

the statistical error after t iterations is guaranteed to be bounded by

∥θ(t) − θ∗∥2 ≤
(1 + c2)

1− κ
ϕ(σ; ∥θ∗∥2)

√
d

n
log(1/δ) ∼ O(

√
d/n) (3.2)
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with probability at least 1 − δ. In other words, for SNR sufficiently large and suitable

initialization, they showed Algorithm 1 converges – with high probability – to a point in-

side a ball of radius O(
√
d/n) centered around the true parameters θ∗ after O(log1/κ(n/d))

iterations.

Two years later, Daskalakis et al. [8] extended the above result to unbalanced cases

(i.e. π∗
0 ̸= 1

2
) and any non-zero value of the SNR. They showed that if ∥θ(0) − θ∗∥2 ≤ SNR,

the EM converges – with high probability – within O(
√
d/n) Mahalanobis distance (see

Definition A.2.1) of the true parameter θ∗ after O
(

d
SNR2 log(

√
n/d)

)
iterations.

The above results are guaranteed to hold if the problem is well-specified meaning that

the model we are fitting has the same number of components as the true model. This

poses a natural concern since, in practice, we seldom have the guarantee that the prob-

lem is well-specified. In 2018, Dwivedi et al. [11] looked at over-parametrized balanced

and unbalanced 2-component symmetric Gaussian mixtures; the setting where the EM

fits a model with 2 components while the true model has only 1. To think about this,

they thought of the true model as the limiting case of 2-component symmetric Gaussian

mixture where the SNR gradually goes to 0.

In the unbalanced case, [11] found that the convergence properties were similar to that

of the well-specified setting. First, they showed that the population EM iterates {ϕ(t)}t≥0

obtained from Algorithm 3 satisfy

∥ϕ(t) − θ∗∥2 ≤ κt∥ϕ(0) − θ∗∥2

where κ = 1− |1−2π∗
0 |2

2
. Then, they used Theorem 2.4.2 to obtain that Algorithm 1 iterates

converge – with high probability – to a point inside a ball of radius O(
√
d/n) centered

around the true parameter θ∗ after O(log(n/d)) iterations. This is pretty remarkable as

they showed there isn’t any significant change in the rate of convergence when compared

to the well-specified setting.
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In the balanced case, however, [11] found that the rate of convergence was slower

when compared to the well-specified setting. First, it is clear that in this setting, κ > 0

no longer holds; this complicated the analysis. Instead, they showed that the population

iterates {ϕ(t)}t≥0 converge to the true parameter from an arbitrary initialization, but the

progress made at ϕ(t+1) slows down exponentially as a function of ∥ϕ(t) − θ∗∥2. Finally,

they showed that Algorithm 1 iterates converge – with high probability – to a point inside

a ball of radius O((d/n)1/4) centered around θ∗ after O(
√
n/d) iterations. These rates are

tight and comparatively much slower than that of the unbalanced case or that of the well-

specified setting. Last year, Ren et al. [30] explained that this is because, in the unbalanced

case, L(θ) given as (1.20) is no longer locally strongly concave with respect to θ = µ0.

3.1.1.2 Case where π∗
0 is known

In this setting and assuming Σ∗
0 = σ∗

0Id for some σ∗
0 ∈ R++, we denote θ(t) = (µ

(t)
0 , σ

(t)
0 Id)

and the EM operator Mn is given in [11] as

Mn(θ
(t)) = (µ

(t+1)
0 , σ

(t+1)
0 )

where

µ
(t+1)
0 :=

1

n

n∑
i=0

(2kθ(t)(0|yi)− 1)yi

σ
(t+1)
0

2
:=

1

d

(∑n
i=1 ∥yi∥22
n

− ∥µ(t+1)
0 ∥22

)
.

There have been some efforts to understand the convergence properties of the EM

when applied to 2-component symmetric Gaussian mixtures where only π∗
0 is known.

In 2019, Dwiveldi et al. [10] characterized the local convergence properties in all SNR

regimes. They showed that under suitable initialization, there is n large enough to guar-

antee Algorithm 1 converges – with high probability – to a point inside a ball of radius

Õ((d/n)1/4) centered around the true parameters θ∗ after Õ(
√
n/d) iterations. Their ob-
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tained rate of convergence is significantly slower than that of Case 3.1.1.1 in the well-

specified setting. But interestingly, it matches very closely the rate obtained for the bal-

anced over-parameterized setting.

3.1.2 k-Component Spherical Gaussian Mixtures

Recall that for general Gaussian mixtures, the sampled data (y1, ..., yn) is distributed ac-

cording to (1.29) and the latent variable z ∈ [k] is the discrete label expressing which

Gaussian component an observation was sampled from. If in addition, Σ∗
j = σ∗

j Id where

σ∗
j ∈ R++ for all j ∈ [k], it follows that the data is sampled from a k-component spherical

Gaussian mixture; we say the mixture is balanced if π∗
j = 1

k
for all j ∈ [k]. In particular, the

parameter vector (π∗
j , µ

∗
j , σ

∗
j Id)j∈[k] fully describes the mixture. Already, it is clear that the

previously considered 2-component symmetric Gaussian mixtures form a subclass of the

k-component spherical Gaussian mixtures. Therefore, any result covered in this section

also applies to the former. Further, the k-component spherical Gaussian mixture is, to our

knowledge, the most complex subclass of Gaussian mixture models to have received sig-

nificant attention in the EM literature. Below, we unveil a selection of known properties

of the EM algorithm on this class of mixture models.

3.1.2.1 Case where (π∗
j , σ

∗
j Id)j∈[k] is known

In this setting, θ(t) = (µ
(t)
j )j∈[k] and the EM operator Mn is derived in Section A.1.1 as

Mn(θ
(t)) =

∑n
i=1 yikθ(t)(j|yi)∑n
i=1 kθ(t)(yi, j|yi)

In 2018, Zhao et al. [41] described the local convergence properties of the EM algo-

rithm for suitably initialized and separated mixtures of k spherical Gaussians with iden-

tity covariance (i.e. σ∗
j = 1 for all j ∈ [k]). They followed the framework for convergence
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analysis introduced in [1]:

∥θ(t+1) − θ∗∥2 ≤ ∥M(θ(t))− θ∗∥2︸ ︷︷ ︸
Step 1

+ ∥Mn(θ
(t))−M(θ(t))∥2︸ ︷︷ ︸

Step 2

.

First, for SNR lower bounded by Ω̃(
√
k) and suitable initialization, they established that

for any θ(t), one iteration of Algorithm 3 will satisfy

∥M(θ(t))− θ∗∥2 ≤
1

2
∥θ(t) − θ∗∥2.

Next, they connected the latter result to Algorithm 1. Letting δ = 2k
n
, C3 > 0 and with

suitable initialization θ(0), they showed

max
j∈[k]

∥µ(t)
j − µ∗

j∥2 ≤
1

2t
max
j∈[k]

∥µ(0)
j − µ∗

j∥2 +
3Rmax

πmin

√
C3kd log n

n

with probability at least 1− δ. Therefore, for any t ≥ T where

T ≥ log2

(
maxj∈[k] ∥µ(t)

i − µ∗
j |2πmin

√
n

3Rmax

√
C3kd log n

)
∼ O

(
log2

√
n

kd

)
,

the statistical error after t iterations is guaranteed to be bounded by

∥θ(t) − θ∗∥2 ≲ O(
√
kd/n) (3.3)

with probability at least 1−δ. In other words, they showed Algorithm 1 iterates converges

– with high probability – to a point inside a ball of radius O(
√

kd
π2
minn

) centered around the

true parameter θ∗ after O
(
log2

√
n
kd

)
iterations.
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3.1.2.2 Case where no parameter is known

In this setting, θ(t) = (π
(t)
j , µ

(t)
j , σ

(t)
j Id)j∈[k] and the EM operator Mn and population EM

operator M are given in [21] as

Mn(θ
(t)) = (π

(t+1)
j , µ

(t+1)
j , σ

(t+1)
j Id)j∈[k])

where

π
(t+1)
j =

∑n
i=1 kθ(t)(j|yi)

n
, for j ∈ [k];

µ
(t+1)
j =

∑n
i=1 yikθ(t)(j|yi)∑n
i=1 kθ(t)(j|yi)

, for j ∈ [k];

σ
(t+1)
j

2
=

∑n
i=1 ∥yi − µ

(t+1)
j ∥22kθ(t)(j|yi)∑n

i=1 kθ(t)(j|yi)
, for j ∈ [k].

Around a decade ago, Moitra et al. [26] and Hardt et al. [15]) showed that with no

restrictions on the SNR, the worst case instances can require as much as Ω(ek) sam-

ples to recover the true parameter with high probability. Then in 2017, Regev and Vi-

jayaraghavan [29] established that Ω(
√
log k) separation is necessary and sufficient for

recovering – with high probability – the true parameter within ϵ distance; a polynomial

(i.e. poly(k, d, 1/ϵ)) number of samples are necessary. Also, they extended this result and

showed that restricted to o(
√
log k) separation, a super-polynomial number of samples

is required to recover the true parameter with high probability. Three years later, Kwon

et al. [21] tightened this bound in the Ω(
√
log k) separation regime. They showed that

with suitable initialization (i.e. ϵ ≲ 1/k), only Õ(kd/ϵ2) samples are necessary for EM to

converge within a ball of radius O(ϵ) of the true parameter θ∗. Kwon et al. [21] achieved

this by extending results of Section 3.1.2.1 that were obtained two years prior by Zhao et

al. [41]; we explain below.
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Like many others, Kwon et al. used the framework for convergence analysis intro-

duced in [1]:

∥θ(t+1) − θ∗∥2 ≤ ∥M(θ(t))− θ∗∥2︸ ︷︷ ︸
Step 1

+ ∥Mn(θ
(t))−M(θ(t))∥2︸ ︷︷ ︸

Step 2

.

But, their analysis differs in two major ways. First, they use the sample-splitting Algo-

rithm 2 which assumes each iteration is based on independent sub-samples. Also, in step

1, they condition the expectation on so-called ”good” and ”bad” samples. When the ini-

tialization is close enough to the true parameters, many samples dubbed ”good” have

approximately the right weights kθ(z|y) according to which Gaussian component they

come from. Denoting ϵgood as the set where the E-step assigns approximately the right

labels the estimation error in the means after one EM step is given by

E[βY |θ∗]− µ∗ = (E[βY |ϵgood, θ∗]− µ∗)P(ϵgood) + (E[βY |ϵCgood, θ∗]− µ∗)P(ϵCgood)

where β = (kθ(t)(1|Y ), ..., kθ(t)(k|Y )). Under suitable separation and if we are close enough

to the true parameters, we will see that E[kY |ϵgood, θ∗] ≈ µ∗ and P(ϵCgood) ≈ 0. For Algo-

rithm 2, they proved that the EM converges locally to the true parameters under Ω(
√
log k)

separation. In fact, they show that for suitable initialization, Algorithm 2 converges lo-

cally – with high probability – to a point inside a ball of radius O(
√
kd/n) centered around

the true parameter θ∗ after O(log
√

n
kd
) iterations. Although the analysis is performed with

Algorithm 2, it is interesting to note that the rates are similar to that obtained above by

Zhao et al. [41]. What’s more [21] obtain the rates in a tighter separation regime.

3.2 Mixed Linear Regression Models

From Example 2, we recall that for general mixtures of k-linear regression, the observed

sample data ((y1, x1), ..., (yn, xn)) is distributed according to (1.11)(1.12) and the latent

variable z ∈ [k] is the discrete label expressing which regression component an observa-

51



tion was sampled from. In particular, the vector parameter (π∗
j , µ

∗
j , σ

∗
j )j∈[k] fully describes

the mixture. In MLR models, the SNR is used to measure the separation of the regression

components:

SNR :=

min
i,j∈[k]

∥µ∗
i − µ∗

j∥2

max
j∈[k]

σ∗
j

. (3.4)

The SNR measure the identifiability of the parametric models. In particular, a low SNR

means the models is weakly identifiable.

In this section, we survey the relevant literature and unveil the convergence properties

of the EM algorithm when applied to MLR models. More specifically, we consider two

sub-classes of MLR models: 2-component symmetric MLR and k-component MLR.

3.2.1 2-Component Symmetric Mixed Linear Regression

Recall from Example 2 that for general mixtures of k-linear regression, the observed sam-

ple data

((y1, x1), ..., (yn, xn)) is distributed according to (1.11)(1.12) and the latent variable z ∈ [k]

is the discrete label expressing which regression component an observation was sampled

from. If in addition, k = 2, µ∗
0 = µ∗

1 and σ∗
0 = σ∗

1 , it follows that the data is sampled from

a 2-component symmetric MLR model; we say the mixture is balanced if π∗
0 = π∗

1 = 1
2
. In

particular, the parameter vector (π∗
0, µ

∗
0, σ

∗
0) fully describes the mixture.

Similarly to its Gaussian mixture model counter-part, the 2-component symmetric

MLR class of models is regarded as the simplest sub-class of MLR models. As a result,

whenever a property of the EM for MLR is to be tested, it will more often than not be

checked for this sub-class of models first. Then, it is extended, if possible, to more general

sub-classes. For this reason, the 2-component symmetric MLR is easily the most well un-

derstood sub-class of MLR models. Below, we unveil a selection of the known properties

of the EM algorithm on this class of mixture models.
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3.2.1.1 Case where π∗
0 and σ∗

0 are known

In this setting, θ(t) = µ
(t)
0 and the EM operator Mn is given in [] as

Mn(θ
(t)) :=

(
1

n

n∑
i=1

yEi
yTEi

)−1(
1

n

n∑
i=1

tanh

(
yRi

yTEi
θ(t)

σ∗2

)
yRi

yEi

)
(3.5)

In 2020, Kwon et al. [23] completely characterized the EM algorithm’s convergence

behavior for 2-component symmetric MLR models. They did so for every SNR regime

whilst not making the restrictive use of sample-splitting Algorithm 2 in the analysis. They

considered the following two categories of SNR:

Low SNR: ∥θ∗∥2 ≲ (d/n)1/4

High SNR: (d/n)1/4 ≲ ∥θ∗∥2.

In the high SNR regime, they followed the framework introduced in Section 4.1 to

separate the convergence analysis into two easier steps:

∥θ(t) − θ∗∥2 ≤ ∥M(θ(t))− θ∗∥2︸ ︷︷ ︸
Step 1

+ ∥Mn(θ
(t))−M(θ(t))∥2︸ ︷︷ ︸

Step 2

.

First, they showed that for any initialization, it follows that

∥M(θ(t))− θ∗∥2 ≤ κ∥θ(t) − θ∗∥2

where κ ≤ 1 − 1
8
∥θ∗∥22. Next, they calculated ϵunifM (n, δ) = cr

√
d log2(n/δ)/n for some

c, r > 0. Finally, they used Theorem 2.4.2 and obtained

∥θ(t) − θ∗∥2 ≤ κ∥θ(t−1) − θ∗∥2 + cr

√
d log2(n/δ)/n.

The remainder of their proof is spent unravelling the above recurrence relation to show

Algorithm 1 iterates converges – with high probability – to a point inside a ball of radius

Õ(max{1, ∥θ∗∥−1
2 }
√
d/n) centered around the true parameters θ∗ after
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O(max{1, ∥θ∗∥−2
2 } log(n/d)) iterations. Interestingly, the statistical error’s upper bound

dependency on
√
d/n is consistent, in all SNR regimes, with the rates obtained in 2013

by Chen et al. [6] for their proposed information-theoretically optimal algorithm. In any

case, they also conjectured that in the high SNR regime, the EM actually has a super-

linear rate of convergence; this was already proven, the same year, by Gosh et al. [14] in

the noiseless setting (i.e. σ∗
0 = 0).

In the low SNR regime, the rates worsen. Contrarily to the high SNR regime, they

did not follow the framework for analysis described above. Instead, their proof hinges

on the idea that EM cannot distinguish between θ∗ = 0 and θ∗ ̸= 0. They realized that,

given the low SNR regime, showing θ(t) ≤ O((d/n)1/4) is sufficient for ∥θ(t) − θ∗∥2 ≤

O((d/n)1/4). In the end, they obtained the guarantee that Algorithm 1 iterates converge –

with high probability – to a point inside a ball of radius Õ((d/n)1/4) centered around the

true parameters θ∗ after Õ(
√
n/d) iterations. As expected, the radius of the ball decreases

while the number of iterations required to reach it increases.

3.2.1.2 Case where π∗
0 is known

In this setting, we denote θ(t) = (µ
(t)
0 , σ

(t)
0 ) and the EM operator Mn is given in [23] as

Mn(θ
(t)) = (µ

(t+1)
0 , σ

(t+1)
0 )

where

µ
(t+1)
0 :=

(
1

n

n∑
i=1

xix
T
i

)−1(
1

n

n∑
i=1

tanh

(
yix

T
i θ

(t)

σ∗2

)
yixi

)

σ
(t+1)
0 :=

√√√√ 1

n

n∑
i=1

y2i − ⟨µ(t+1)
0 , xi⟩2.

In 2020, Kwon et al. [23] attempted to characterize the convergence rate of the EM algo-

rithm for balanced 2-component symmetric MLR models where only π∗
0 is known. Whilst

they remarked that the main challenge with more unknown variables comes from the
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analysis of the population EM, they still obtained a result in the low SNR regime. Given

appropriate initialization satisfying |σ2(0) − 1| ≤ 0.04, they showed the EM iterates for

µ(t), σ(t) converge – with high probability – to a point inside a ball of radius Õ((d/n)1/4)),

Õ(
√
d/n) respectively centered around the true parameters mu∗, σ∗ after Õ(

√
n/d) itera-

tions. Formally, for T suitably large, it follows that

∥θ(T ) − θ∗∥2 ≲ O((d/n)1/4)

∥σ(T ) − σ∗∥2 ≲ O((d/n)1/2)

with high probability.

3.2.2 k-Component Mixed Linear Regression

Recall from Example 2 that for k-component MLR models, the observed sample data

((y1, x1), ..., (yn, xn)) is distributed according to (1.11)(1.12) and the latent variable z ∈ [k]

is the discrete label expressing which regression component an observation was sampled

from. In particular, the parameter vector (π∗
j , µ

∗
j , σ

∗
j )j∈[k] fully describes the mixture. It is

clear the previously considered 2-component symmetric MLR models form a subclass of

the k-component MLR models. Therefore, any result covered in this section also applies

to the former. Below, we unveil a selection of known properties of the EM algorithm on

this class of mixture models.

3.2.2.1 Case where (σ∗
j )j∈[k] is known

In this setting, we denote θ(t) = (π
(t)
j , µ

(t)
j )j∈[k] and the EM operator Mn is given in [22] as

Mn(θ
(t)) = (π

(t+1)
j , µ

(t+1)
j )j∈[k]
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where for all j ∈ [k],

π
(t+1)
j =

∑n
i=1 kθ(t)(j|yi, xi)

n

µ
(t+1)
j =

(
n∑

i=1

kθ(t)(j|yi, xi)xixTi

)−1( n∑
i=1

kθ(t)(j|yi, xi)yixi

)
.

In 2019, Kwon et al. [22] characterized the convergence of the sample-splitting Algo-

rithm 2 for SNR ≥ Ω̃(k). They showed that when θ(0) satisfies ∥θ(0) − θ∗∥2 ≤ O(1/k),

Algorithm 2 iterates converges – with high probability – to a point within a ball of radius

O(ϵ) centered around the true parameters θ∗ after Õ(k2d/ϵ2) iterations. They also consid-

ered the analysis with Algorithm 1; no sample-splitting. Their results differ in that their

is an added polynomial dependence on maxi,j ∥θ∗i − θ∗j∥2 when bounding the statistical

error. They conjecture that this dependence is an artifact of the analysis.

3.3 Conclusion

After conducting an extensive literature survey on the EM algorithm applied to mixture

models, we have observed that the considered settings can be categorized into either

fast or slow convergence regimes. In the fast convergence category, the finite-sample

EM algorithm has been found to converge, with high probability, to a point inside a ball

of radius Õ(
√
d/n) centered around the true parameters θ∗ after Õ(log(n/d)) iterations.

This category primarily encompasses scenarios where (µ∗
j)j∈[k] are unknown. Specifically,

the fast convergence is observed in the 2-component symmetric Gaussian mixture, 2-

component symmetric MLR in the high SNR regime, k-component spherical Gaussian

mixture, and the over-parametrized 2-component symmetric Gaussian mixture in the un-

balanced regime. On the other hand, the slow convergence category entails scenarios

where the finite-sample EM algorithm iterates converge, with high probability, to a point

inside a ball of radius O((d/n)1/4) centered around θ∗ after O(
√
n/d) iterations. Our lit-

erature survey revealed that latent variable models falling under this category include
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the 2-component symmetric Gaussian mixture where π∗
0 is known, 2-component symmet-

ric mixed linear regression in the regime of low SNR and known (π∗
0, σ

∗
0), 2-component

symmetric mixed linear regression with known π∗
0 , and the over-parametrized balanced

2-component symmetric Gaussian mixture with known (π∗
0,Σ

∗
0). Interestingly, we noted

that the convergence category for each setting is not determined by the number of com-

ponents in the mixture model. Instead, a combination of multiple unknown parameters

and low SNR, leading to weakly identifiable models and a more complicated objective

function, appears to be the primary factor contributing to a slower convergence rate. It is

especially interesting that convergence properties of the EM hold across different classes

of mixture models, hinting at some inner-structure of the EM for mixture models. Finally,

we note a strong lack of understand for the convergence of the EM on GMMs or MLR

models when the variance parameters is unknown. According to our literature survey,

this is mainly due to the objective function Ln losing regularity properties with respect to

that parameterization.
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Chapter 4

Discussion of Related Topics

Throughout this thesis, we have examined various aspects of the EM algorithm, including

its convergence to stationary points of Ln or the true parameter θ∗, as well as local con-

vergence properties within GMMs and MLR models. In this chapter, we delve into the

contentious issue of the initialization of the EM, SNR, parameterization, and also present

some recent research advancements from the past year. By addressing these subjects, we

aim to close some of the gaps that were not properly discussed in the previous chapters

as well as explore novel directions in the field.

4.1 Simulation Study: Effect of SNR and Parameterization

On Convergence of the EM

In this section we perform a simulation study to study the effects of SNR and parame-

terization of the parameteric model of interest on the convergence of the EM (Algorithm

1). To allow for comparison with known results presented in Chapter 3, we consider, as

benchmark, the 2-component symmetric GMM class of models.
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4.1.1 Preliminaries

In our simulation study, the true model considered is the 2-component 10 dimensional

symmetric Gaussian mixture class of models described in Section 3.1.1. Each observation

is to be sampled from

Y ∼ 1

2
N (µ∗

0, σ
∗
0Id) +

1

2
N (−µ∗

0, σ
∗
0Id) (4.1)

where N (µ∗
0,Σ

∗
0) is a multivariate Gaussian distribution with mean µ∗

0 ∈ R10 and σ∗
0 ∈

R++.

4.1.1.1 SNR regimes and Data Generation

Our simulation study explores several different regimes of SNR; in particular, SNR∈

0.5, 0.75, 1, 1.8, 2, 2.5. The SNR given for GMMS as (3.1) measures the ratio of the sig-

nal strength to the noise level and plays a crucial role in assessing the performance of the

EM algorithm. It quantifies the separability between the underlying components of the

GMMs.

In each SNR regime, we set the true means µ∗
0 as a k-dimensional vector of ones (i.e.

µ∗
0 = (1)j∈[k]). To achieve the desired SNR, we adjust the value of σ∗

0 while keeping the

means fixed. By manipulating the variance, we control the overlap or separability be-

tween the Gaussian components, thereby exploring a range of identifiable scenarios. This

allows us to examine the impact of SNR on the convergence behavior of the EM algorithm.

Once the true parameters are determined for each SNR regime, we generate artifi-

cial data sets using Python. We employ numpy’s random.multivariate normal function

to sample a total of 200 observations from the Gaussian mixture model. This function

ensures that the generated data reflect the characteristics of the specified GMM in (4.1).

To ensure the robustness of our findings, we repeat the data generation process ten

times for each SNR regime. By generating multiple datasets, we account for the inher-

ent randomness and variability in the simulation. This allows us to obtain more robust

results.
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4.1.1.2 Performance Metrics

We employ two distinct performance metrics to evaluate the accuracy of the estimates

obtained from the iterates of Algorithm 1: optimization error and statistical error. These

metrics enable us to assess how well the algorithm approximates the true parameters of

the underlying model.

The statistical error measures the dissimilarity between the parameter estimate at it-

eration t, denoted as θ(t), and the true parameter θ∗. It quantifies the closeness of the

estimated parameter to the ground truth and is defined as ∥θ(t) − θ∗∥2.

In addition to the statistical error, we employ the optimization error as a performance

metric. This error quantifies the discrepancy between the parameter estimate at iteration

t, and the limit of the iterates as t approaches infinity, denoted as θ∞. The optimization

error is computed as ∥θ(t) − θ∞∥2. This metric allows us to assess the convergence rate

and efficiency of the algorithm by measuring the proximity of the current estimate to the

ultimate parameter value.

It is important to note that the optimization error provides insights into the rate at

which the algorithm converges towards the final parameter estimate, while the statisti-

cal error evaluates the accuracy of the estimates with respect to the true model parame-

ters. By considering both metrics, we obtain a comprehensive understanding of the al-

gorithm’s performance throughout the iterations and its ability to capture the underlying

characteristics of the symmetric Gaussian mixture model.

4.1.1.3 Experimental Set-up

Our simulation study consists of two distinct numerical experiments: Experiment 1 and

Experiment 2.

In Experiment 1, we investigate the impact of SNR on the convergence of Algorithm 1

in the context of a 2-component 10-dimensional symmetric Gaussian mixture, with only

µ∗
0 being unknown. To explore the effect of different SNR regimes, we initialize 10 artificial
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datasets, each comprising 200 samples, as described previously. For each dataset, we

perform 20 iterations of Algorithm 1 and record the optimization error and statistical error

after each iteration. This process is repeated for 5 different SNR regimes. By examining

the optimization and statistical errors across these regimes, we gain insights into how

SNR influences the convergence behavior of the algorithm.

In Experiment 2, we simultaneously examine the impact of unknown variance in dif-

ferent SNR regimes for the 2-component 10-dimensional symmetric Gaussian mixture

model. We consider three distinct SNR regimes and initialize 10 artificial datasets, each

consisting of 200 samples, as described previously. For each dataset, we execute 20 itera-

tions of Algorithm 1 in two scenarios: when only µ0 is unknown and when both µ0 and

σ∗
0 are unknown. We calculate the optimization error and statistical error after each itera-

tion. By comparing the results across the different SNR regimes and unknown parameter

scenarios, we gain valuable insights into the combined effect of SNR and parameter un-

certainty on the algorithm’s convergence.

Throughout both experiments, we ensure consistency in the initial parameter values

by calculating θ(0) in such a way that ∥θ(0) − θ∗∥2 remains constant across all regimes and

experiments. This approach guarantees that the initial discrepancy between the estimated

and true parameters is the same across all experiments, allowing for a fair and meaningful

comparison of the optimization and statistical errors.

4.1.1.4 Implementation Details

We do not use any specific python libraries for evaluating iterations of the EM algorithm

other than standard libraries such as numpy, matplotlib, etc. Instead, we implement

the algorithm ourselves and perform the iterations according to the EM operator Mn de-

scribed in Section 3.1.1.2 as

Mn(θ
(t)) = (µ

(t+1)
0 , σ

(t+1)
0 )

61



where

µ
(t+1)
0 :=

1

n

n∑
i=0

(2kθ(t)(0|yi)− 1)yi

σ
(t+1)
0

2
:=

1

d

(∑n
i=1 ∥yi∥22
n

− ∥µ(t+1)
0 ∥22

)
.

4.1.2 Results

We present the results obtained from our numerical experiments on the EM algorithm

in the context of 2-component symmetric GMMs. The primary objective of these experi-

ments is to highlight the algorithm’s limitations and gain insights into its inner workings.

In the first experiment, we aimed to examine the effect of the SNR of the true model on

the convergence of the EM algorithm. As depicted in Figure A.10, we observe a consistent

trend where both the optimization error and statistical error worsen as the SNR decreases.

This finding aligns with the well-established understanding that the EM algorithm tends

to perform less effectively on weakly identifiable models.

The second experiment focuses on comparing the local convergence rate of the EM al-

gorithm for a 2-component 10-dimensional symmetric GMM when the variance is known

or unknown. Our goal was to investigate whether the slower convergence rate observed

when σ∗
0 is unknown can be mitigated for models with large SNR and strong identifiabil-

ity. To explore this, we conducted the experiment across three SNR regimes: 1
2
, 1, and 2.

The results are summarized in Figure A.7, providing insights into the impact on the EM

algorithm’s convergence.

Firstly, we note that the optimization error remains consistent across all tested SNR

regimes, regardless of whether the variance is known or unknown. However, this is not

the case for the statistical error. We find that decreasing the SNR leads to larger statistical

errors, regardless of the knowledge of the variance. In fact, when SNR = 1
2
, we even

observe that the EM’s fitted parameters exhibit a larger statistical error compared to the

initial parameters. Furthermore, the disparity in the convergence rates between the sce-
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narios where σ∗
0 is known and unknown aligns with the findings discussed in Chapter

3.

4.2 Brief Discussion on the Topic of Initialization

Initialization poses a challenge in the application of the EM algorithm, as the convergence

results presented in Chapter 3 often rely on assumptions about the initial parameter θ(0).

However, such assumptions are unlikely to hold in general. In this section, we explore

strategies that researchers have developed to ensure a favorable initialization in the con-

text of MLR models and GMMs, which are widely studied in the literature.

For MLR models, a promising approach involves leveraging both method of moments

estimators and the spectral structure of the data. In the case of a 2-component MLR, Yi

et al. [39] proposed an initialization method based a specific matrix estimated from the

data as 1
n

∑n
i y

2
i xix

T
i . More precisely, they estimate the leading two eigen-vectors of said

matrix that span the same space as θ∗ = (µ∗
0, µ

∗
1). This technique guarantees an initial

parameter θ(0) = (µ
(0)
0 , µ

(0)
1 ) that satisfies ∥θ(0)−θ∗∥2 ≤ ∥µ∗

1−µ∗
0∥2. Three years later, Yi et al.

[40] extended the approach to noiseless k-component MLR models. They employed the

method of moments to estimate (µ∗
j)j∈[k] and then used a tensor factorization algorithm to

obtain the initial estimates (µ
(0)
j )j∈[k]. Remarkably, this initialization method guarantees

that ∥µ(0)
j − µ∗

j∥2 ≤ ϵ for all j ∈ [k] with high probability, provided the sample size n ≥

O( 1
ϵ2
).

In contrast, GMM initialization is relatively simpler. The widely-used k-means algo-

rithm has proven to be effective in providing reasonable estimates for initializing the EM.

In 2020, Kwon et al. [21] used the k-means algorithm to ensure initialization satisfying

∥µ(0)
i − µ∗

i ∥2 ≤ 1
4
mini ̸=j ∥µ∗

i − µ∗
j∥2. This initialization method is not only straightforward

to implement but also well understood, making it a practical choice.

By addressing the crucial issue of initialization, these strategies enhance the effective-

ness and reliability of the EM algorithm in both MLR and GMM settings. The presented
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techniques offer researchers practical and theoretically grounded approaches to initialize

the EM algorithm, fostering its widespread applicability in real-world scenarios.

4.3 New Research Directions

Throughout this thesis, we have observed the extensive research conducted on the EM

algorithm in the past decade. However, with the abundance of work, it can be challenging

to identify the latest and most impactful directions for EM research. In light of this, we

dedicate this section to shed light on significant contributions that we believe will shape

the future of EM research. By highlighting these influential contributions, we aim to

provide valuable insights and inspire further exploration in EM research.

4.3.1 (In)stability of the EM Operator

In Chapter 2, we introduced the framework proposed by Balakrishnan et al. [1] for ana-

lyzing the local convergence of the EM algorithm. This framework, encapsulated by the

inequality

∥θ(t) − θ∗∥2 ≤ ∥M(θ(t))− θ∗∥2︸ ︷︷ ︸
Step 1

+ ∥Mn(θ
(t))−M(θ(t))∥2︸ ︷︷ ︸

Step 2

,

has significantly influenced subsequent research. However, it falls short in addressing

one critical aspect: the analysis of local convergence when the EM operator Mn is unsta-

ble, meaning that ϵunifm (n, δ) does not exist. This limitation has led to the misconception

that unstable algorithms are inherently sluggish and undesirable. But is this really the

case?

Last year, Ho et al. [18] developed a framework that specifically tackles Step 2 in sce-

narios where Mn exhibits instability. They provide [18, Theorem 2] that gives conditions

under which the sequence {θ(t)} converges locally around the true parameter θ∗ with high

probability. They perceive their framework as a natural extension of Theorem 2.4.2 pro-

viding a comprehensive understanding of the EM’s local convergence properties even
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when the EM operator is unstable. Notably, their framework extends beyond the EM

algorithm itself and also encompasses Newton’s method and gradient descent for ap-

proximating the maximum likelihood estimator (MLE) in parametric models with latent

variables. Intriguingly, they. demonstrated that unstable algorithms can achieve faster

convergence and superior accuracy compared to their stable counterparts in the context

of GMMs and non-linear mixed regression.

The work of Ho et al. [18] challenges the conventional belief that stability is always

advantageous and encourages researchers to explore the potential benefits of embracing

instability. Furthermore, their framework’s versatility extends its applicability to other

optimization algorithms beyond the EM, promising fresh insights into a wide range of

latent variable models. By expanding our understanding of instability in the EM operator

and its implications, this research has the potential to pave the way for more efficient and

accurate estimation techniques in various practical settings.

4.3.2 Mirror Descent

Recent work in 2022 by Kunstner et al. [20] offered a new perspective for analyzing the

non-asymptotic convergence properties of the EM. Their results stand out from the rest

because they do not depend on problem specific constants. This is a big deal since, as

we demonstrated through our literature survey in Chapter 3, any slight variations of the

specification for a parametric model with latent variable can considerably complexity the

analysis. Moreover, the approach with which the results are obtained makes no smooth-

ness or concavity assumption for Qn, which is commonly assumed for general results on

the EM. However, one main draw-back is that their analysis is restricted to latent variable

models where the complete data distribution belongs to the exponential family which

GMMs are a part of.

First, they establish that the EM algorithm is equivalent to a mirror descent algorithm

in the sense of Beck et al. [4] with Bregman divergence (see Definition A.2.2). In particular,
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Kunstner et al. [20] demonstrate that the EM operator can be seen as minimizing the

following objective:

min
ϕ∈Ω

Ln(ϕ) ≤ Ln(θ) + ⟨∇Ln(θ), ϕ− θ⟩+DA(ϕ, θ),

whereDA(ϕ, θ) denotes the Bregman divergence induced byA(·), which is the log-partition

of the exponential family distribution.

Building upon this equivalence, they utilize a result from Lu et al. [24, Theorem 3.1] for

mirror descent algorithms. This result enables them to establish a non-asymptotic bound

of the form:

Ln(θ
(T ))− Ln(θ

∗) ≤ 1
T
DA(θ

,θ(0)),

when the EM algorithm is initialized within a locally-convex region with a minimum at θ∗.

Importantly, this bound is independent of problem-specific constants, providing a more

general framework for convergence analysis. Furthermore, Kunstner et al. demonstrate

that under mild and commonly adopted assumptions, it follows that min
t≤T

DA(θ
(t), θ(t+1)) ≤

Ln(θ(0))−Ln(θ∗)
T

holds.

This contribution offers fresh insights into the non-asymptotic convergence properties

of the EM algorithm. Moreover, by avoiding reliance on problem-specific constants and

relaxing commonly made smoothness and concavity assumptions, their results provide a

more general and flexible framework for analyzing the convergence properties of the EM

algorithm.
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Chapter 5

Conclusion

This thesis has provided an exploration of the Expectation-Maximization (EM) algorithm

and its various applications in parameter estimation with latent variables. In Chapter

1, we began by tracing the historical development of the EM algorithm, introducing the

problem of parameter estimation and presenting the formal framework of the EM al-

gorithm for approximating the MLE. Important variants of the EM algorithm, such as

sample splitting EM, Population EM, and General EM, were presented and discussed.

Throughout, we provided examples in the form of the Gaussian Mixture Models (GMMs)

and Mixed Linear Regression (MLR) models and provided derivation where necessary.

Chapter 2 focused on establishing general convergence properties for the EM algo-

rithm as we uncovered some of its most famous results. Through rigorous proofs from

[9] [37] [36] [1], we demonstrated the non-decreasing nature of the likelihood function

and derived conditions under which the EM algorithm yields parameter estimates that

improve the likelihood. Furthermore, we explored convergence properties of the EM

algorithm, including the convergence to stationary points of the likelihood and the con-

tractive behavior leading to convergence to the true parameter. Notably, we highlighted

the significance of the framework for analyzing the local convergence properties of the

EM. Stability conditions, which guarantee geometric convergence of the EM algorithm to

a ball centered around the true parameter.
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Moving on to Chapter 3, we conducted a thorough survey of the EM literature in the

context of GMMs and MLR models. Our review revealed distinct convergence regimes,

namely fast convergence and slow convergence. In the fast convergence regime, we ob-

served that the finite-sample EM algorithm converges to a ball of radius O(
√
d/n) around

the true parameters after O(log(n
d
)) iterations. On the other hand, the slow convergence

regime entailed scenarios where the finite-sample EM algorithm required O(
√

n
d
) itera-

tions to converge to a ball of radius O((d/n)1/4) centered around the true parameters. Re-

markably, we found that the convergence category for each setting was not solely deter-

mined by the number of components in the mixture model, but rather by the combination

of multiple unknown parameters and low SNR conditions, leading to weaker identifiabil-

ity and more challenging optimization landscapes. Moreover, we were surprised to notice

very consistent rates of convergence across the two distinct classes of mixture models. The

consistent convergence rates observed across distinct classes of mixture models highlight

its robustness and motivate further investigations into its underlying mechanisms.

Finally, in Chapter 4, we explored additional topics related to the EM algorithm. We

began with a simulation study investigating the effects of the SNR and parameterization

on the local convergence properties of the EM. We discussed the contentious issue of

EM initialization and examined recent research directions from the past year, aiming to

identify emerging areas of interest and potential future advancements.

In conclusion, our selective review of the existing EM literature reveals the EM algo-

rithm as a practical and widely adopted approach for estimating parameters in models

with latent variables. While its convergence properties are still being uncovered, the EM

algorithm remains – arguably – the most popular algorithm for estimating the param-

eters of parametric models with latent variables. This, on its own, is a testament to its

effectiveness and reason enough to dedicate resources to unveiling its secrets.
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Appendix A

Appendix

A.1 Derivations

A.1.1 Derivation of the EM Operator in Example 5

For the parameter estimation problem described in Example 3, the EM operator is given in

Example 5 as (1.29); we perform the complete derivation hereunder. Referring to the EM

operator’s formal definition in (1.26) we set-out to evaluate the global maximizer of (1.28)

over the set Ω given as (1.22). Treating θ(t) as a constant, the derivation of (1.29) translates

to solving the constrained maximization problem in 2×k variables that is depicted below:

max
(πj ,µj)

k−1
j=0∈Ω

Q1
n((πj)j∈[k]) +Q2

n((µj)j∈[k]) (A.1)

where

Q1
n((πj)

k−1
j=0) :=

1

n

n∑
i=1

[
k−1∑
j=0

log

(
πj

(2π)
d
2 |Σ∗

j |
1
2

)
kθ(t)(j|yi)

]
, (A.2)

Q2
n((µj)

k−1
j=0) :=

1

n

n∑
i=1

[
k−1∑
j=0

−1

2
(yi − µj)

TΣ∗
j
−1(yi − µj)kθ(t)(j|yi)

]
. (A.3)
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Because the objective function and the feasible set are separable in (πj)j∈[k] and (µj)j∈[k],

we split our approach into the following two steps:

A) Global maximization of (A.2) w.r.t. (πj)k−1
j=0 , yielding (1.30);

B) Global maximization of (A.3) w.r.t. (µj)
k−1
j=0 , yielding (1.31).

The vector of solutions θ(t+1) ∈ Ω obtained from A) and B) is the global maximizer of the

optimization problem in (A.1). The rest of the derivation follows below.

A.1.1.1 A): Derivation of (1.30)

We are dealing with the constrained maximization of

max
πj∈R, for all j

Q1
n((πj)

k−1
j=0)

subject to

• γ((πj)
k−1
j=0) :=

∑k−1
j=0 πj − 1 = 0,

• (πj)
k−1
j=0 ∈ [0, 1]k ⇐⇒ h1j((πj)

k−1
j=0) := −πj ≤ 0 and h2j((πj)k−1

j=0) := πj − 1 ≤ 0 for all j.

Because the feasible set Ω1 := {(πj)j∈[k] ∈ [0, 1]k :
∑k−1

j=0 πj = 1} is compact and the objec-

tive function given as (A.2) is continuous on Ω1, we conclude that the objective function

in (A.2) takes a maximum in Ω.

With this in mind, we use the Karush-Khun-Tucker Necessary Conditions Theorem

written for the reader in Theorem A.2.5 of the appendix (see Bertsekas [5, Proposition 3.3.1

and Proposition 3.1.2] for additional details). In our setting, The Karush-Khun-Tucker

Theorem says that if (π(t+1)
j )j∈[k] is a local maximum of (A.1), there exists (π

(t+1)
j )k−1

j=0 ∈ Ω,

λ∗ ∈ R, β∗
1 ∈ Rk, β∗

2 ∈ Rk satisfying:

i) ∇1L((π(t+1)
j )k−1

j=0 , λ
∗, β∗

1 , β
∗
2) = 0;

ii) γ((π(t+1)
j )k−1

j=0) = 0;

iii) 0 ≤ (π
(t+1)
0 , ..., π

(t+1)
k−1 ) ≤ 1;
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iv) β∗
1 , β

∗
2 ≥ 0;

v) For all j, (β∗
1)j = 0 if π(t+1)

j > 0 and (β∗
2)j = 0 if π(t+1)

j < 1;

vi) xT∇2
11L(π

(t+1)
j , λ∗, β∗

1 , β
∗
2)x ≤ 0, for all x ̸= 0 such that

– ∇γ((π(t+1)
j )k−1

j=0)
Tx = 0;

– ( d

dπ
(t+1)
j

− π
(t+1)
j )x = 0 for all j that are active constraints (i.e. (β∗

1)j > 0);

– ( d

dπ
(t+1)
j

π
(t+1)
j − 1)x = 0for all j that are active constraints (i.e. (β∗

2)j > 0);

where the Lagrangian function, L((πj)k−1
j=0 , λ, β1, β2), is given as

Q1
n((πj)

k−1
j=0) + λγ((πj)

k−1
j=0) +

k−1∑
j=0

(β1)jh1j((πj)
k−1
j=0) +

k−1∑
j=0

(β2)jh2j((πj)
k−1
j=0). (A.4)

We make the remark that the preliminary conditions of the theorem are satisfied: Qn,

γ, (h1l)l∈[k], and (h2l)l∈[k] are all twice continuously differentiable w.r.t. πj for all j ∈ [k].

We proceed, beginning with i):

(∇1L((πj)k−1
j=0 , λ, β1, β2))j =

=
d

dπj

[
Q1

n((πj)
k−1
j=0) + λ(

k−1∑
j=0

πj − 1)− (π0, ..., πk−1)β1 + (π0 − 1, ..., πk−1 − 1)β2

]

=
1

n

n∑
i=1

[
d

dπj
log

(
πj

(2π)
d
2 |Σ∗

j |
1
2

)
kθ(t)(j|yi)

]
+ λ− (β1)j + (β2)j

=
1

n

n∑
i=1

[
d

dπj
(log (πj)) kθ(t)(j|yi)

]
+ λ− (β1)j + (β2)j

=
1

n

n∑
i=1

[
1

πj
kθ(t)(j|yi)

]
+ λ− (β1)j + (β2)j

= 0.

Therefore, 1
n

∑n
i=1 [kθ(t)(j|yi)] = (−λ + (β1)j − (β2)j)πj is satisfied for all j ∈ [k]. Using∑k−1

j=0 kθ(t)(j|yi) =
∑k−1

j=0

[
π
(t)
j G(yi;µ(t)

j ,Σ
∗
j)∑k−1

l=0 π
(t)
l G(yi;µ(t)

l ,Σ
∗
l )

]
= 1 and summing over all j ∈ [k] we
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obtain

1

n

n∑
i=1

[
k−1∑
j=0

kθ(t)(j|yi)

]
= −λ

ii)
=1︷ ︸︸ ︷

k−1∑
j=0

πj +
k−1∑
j=0

(β1)j − (β2)j)πj

= −λ+
k−1∑
j=0

((β1)j − (β2)j)πj

= −λ+ (π0, ..., πk−1)(β1 − β2).

So far, from i) and ii), we have showed the solution (π
(t+1)
j )k−1

j=0 , λ∗, β∗
1 , β∗

2 must satisfy

1

n

n∑
i=1

[kθ(t)(j|yi)] = (−λ∗ + (β∗
1)j − (β∗

2)j)π
(t+1)
j (A.5)

where

λ∗ = (π
(t+1)
0 , ..., π

(t+1)
k−1 )(β∗

1 − β∗
2)− 1. (A.6)

We now consider individual cases.

Case 1: β∗
1 = β∗

2 = 0:

Under this case (A.6) simplifies to λ∗ = −1. Plugging everything into (A.5) and solving

for π(t+1)
j , we obtain:

π
(t+1)
j =

1

n

n∑
i=1

[kθ(t)(j|yi)] .

We now check the remainder of the optimality conditions:

• Condition iii) is satisfied since kθ(t) is the pmf of the discrete RV Z and so 0 ≤

kθ(t)(j|yi) ≤ 1 for all j, yi, θ(t);

• Condition iv) is satisfied since β∗
1 = 0 and β∗

2 = 0;

• Condition v) is satisfied since 0 < 1
n

∑n
i=1 [kθ(t)(j|yi)] < 1 is guaranteed by Σ∗

j ∈ Sd
++;
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• Lastly, condition vi) is satisfied since the Hessian satisfies ∇2
11L((π

(t+1)
j )k−1

j=0 , λ
∗, β∗

1 , β
∗
2) ⪯

0:

(∇2
11L((π

(t+1)
j )k−1

j=0 , λ
∗, β∗

1 , β
∗
2))lj =


d2

dπ
(t+1)
j

2Q1
n((π

(t+1)
j )k−1

j=0) =
−1
n

∑n
i=1

k
θ(t)

(j|yi)

π
(t+1)
j

2 < 0 ; l = j

d

dπ
(t+1)
j

d

dπ
(t+1)
l

Q1
n((π

(t+1)
j )k−1

j=0) = 0 ; l ̸= j.

Because all the conditions are satisfied, the point π(t+1)
j = 1

n

∑n
i=1 [kθ(t)(j|yi)] satisfies the

necessary conditions for optimality and could be the local maximizer of (A.1).

Case 2: H1 := {l ∈ [k] : (β∗
1)l > 0} ≠ ∅ or H2 := {l ∈ [k] : (β∗

2)l > 0} ≠ ∅:

Firstly, it follows from v) that:

xi: H1 ∩H2 = ∅,

xii: j ∈ H1 =⇒ (β∗
1)j > 0

v)
=⇒ π

(t+1)
j = 0 =⇒ π

(t+1)
j 1H1(j) = 0,

xiii: j ∈ H2 =⇒ (β∗
2)j > 0

v)
=⇒ π

(t+1)
j = 1 =⇒ π

(t+1)
j 1H2(j) = 1H2(j).

Using the above, we simplify (A.6) and obtain

λ∗ =

[
k−1∑
l=0

π
(t+1)
l [(β∗

1)l1H1(l)− (β∗
2)l1H2(l)]

]
− 1 = −

[
1 +

k−1∑
l=0

(β∗
2)l1H2(l)

]
.

Plugging this result into (A.5) yields

1

n

n∑
i=1

kθ(t)(j|yi) = π
(t+1)
j

[
1 +

(
k−1∑
l=0

(β∗
2)l1H2(l)

)
+ (β∗

1)j1H1(j)− (β∗
2)j1H2(j)

]
.

With a bit more work, we get

1

n

n∑
i=1

kθ(t)(j|yi) =


0 ; j ∈ H1

1 +
(∑k−1

l=0 (β
∗
2)l1H2(l)

)
− (β∗

2)j1H2(j) ; j ∈ H2

π
(t+1)
j + π

(t+1)
j

(∑k−1
l=0 (β

∗
2)j1H2(j)

)
; otherwise.

(A.7)
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In the case where there is some j ∈ [k] such that j ∈ H1, we get from (A.7) that 1
n

∑n
i=1 kθ(t)(j|yi) =

0. However, this is not possible because Σ∗
j ∈ Sd

++. Therefore H1 = ∅. Next, if there is

some j ∈ [k] such that j ∈ H2, xiii guarantees that π(t+1)
j = 1 which, together with ii),

implies π(t+1)
l = 0 for all l ̸= j. It then follows that for all l ̸= j, 1

n

∑n
i=1 kθ(t)(j|yi) = 0;

this is not possible because Σ∗
j ∈ Sd

++. Therefore, H2 = ∅. We conclude that case 2 cannot

occur and the solution π
(t+1)
j = 1

n

∑n
i=1 [kθ(t)(j|yi)] obtained in case 1 is the only possible

point satisfying all the necessary conditions for optimality of the Karush-Khun-Tucker

Theorem. Because we know (A.2) takes a maximimizer over Ω1, that maximimizer can

only be π(t+1)
j = 1

n

∑n
i=1 [kθ(t)(j|yi)].

A.1.1.2 B): Derivation of (1.31)

We are dealing with the unconstrained maximization of

max
(µj)∈Rd, for all j

Q2
n((µj)j∈[k]).

We make the remark that Q2
n((µj)j∈[k]) −→

∥µj∥2→∞
−∞ for all j ∈ [k]. As a result, the super-

level sets of Q2
n are bounded. It follows from Theorem A.2.2 of the appendix that since

Q2
n is additionally continuous, the objective function takes a maximum over R.

To find it, we check the stationary point(s) meaning we solve for all µj ∈ Rd such that

(∇1Q2
n((µj)

k−1
j=0))j = 0. We proceed and obtain

(∇1Q2
n((µj)

k−1
j=0))j =

d

dµj

Q2
n((µj)

k−1
j=0) =

=
d

dµj

1

n

n∑
i=1

[
k−1∑
j=0

−1

2
(yi − µj)

TΣ∗
j
−1(yi − µj)kθ(t)(j|yi)

]

=
1

n

n∑
i=1

[
− d

dµj

1

2
(yi − µj)

TΣ∗
j
−1(yi − µj)kθ(t)(j|yi)

]
=

1

n

n∑
i=1

[
Σ∗

j
−1(yi − µj)kθ(t)(j|yi)

]
= 0
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where the last line relies on the fact that Σ∗
j is a symmetric matrix. Solving for µj , we get

the stationary point is uniquely given as

µ
(t+1)
j =

∑n
i=1 yikθ(t)(j|yi)∑n
i=1 kθ(t)(j|yi)

.

Finally, we check the second order optimality conditions. We differentiate a second time

and obtain a negative semi-definite Hessian matrix; this indicates the concavity of Q2
n((µj)

k−1
j=0)

w.r.t. µj and guarantees that µ(t+1)
j is indeed the local maximizer. This follows because

(∇2
11Q2

n((µj)
k−1
j=0))lj =


d2

dµ2
j
Q2

n((µj)
k−1
j=0) =

1
n

∑n
i=1−Σ∗

j
−1kθ(t)(j|yi) ⪯ 0 ; l = j

d
dµj

d
dµl

Q2
n((µj)

k−1
j=0) = 0 ; l ̸= j

and Σ∗
j is positive definite ⇐⇒ Σ∗

j
−1 is positive definite.

Since µ(t+1)
j is the unique stationary point of this unconstrained maximization problem

and because we know (A.1) takes a maximum over Ω, µ(t+1)
j is the global maximizer in B).

A.2 Complementary results and definitions from Optimiza-

tion

This section contains algorithms, results, and definitions from existing optimization the-

ory which are used in various sections of this thesis.

A.2.1 Results and Definitions

Definition A.2.1 (Mahalabonis Distance [25]). Given a probability distribution X ∈ Rd, the

mahalabonis distance between two points x1, x2 w.r.t. X is

∥x1 − x2∥m :=
√
(x1 − x2)TS−1(x1 − x2)

where S is the covariance matrix of X .
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Definition A.2.2 (Bregman Divergence [20]). For h : Ω → R convex, continuously differen-

tiable, and defined on the closed convex set Ω, the Bregman divergence induced by h

Dh(ϕ, θ) := h(ϕ)− h(θ)− ⟨∇h(θ), ϕ− θ⟩

is given as the difference between the function and its first Taylor expansion at θ around ϕ.

Theorem A.2.1. (Jensen’s Inequality [31, 2.2 b)]) Let g(·) : R 7→ R be a convex function, and X

be a real-valued random variable. Then

g(E[X]) ≤ E[g(X)].

Definition A.2.3 (superlevel sets). For f : Ω → R̄, we denote the superlevel set of f at f(ϕ) as

Ωϕ(f) := {θ ∈ Ω : f(θ) ≥ f(ϕ)}

where ϕ ∈ Ω.

Theorem A.2.2. Let f : Rs → R ∪ {±∞} (continuous).

f takes a maximum on Rs if the superlevel sets Rs
ϕ(f) are bounded for all ϕ ∈ Rs.

Theorem A.2.3. Let x∗ be a local maximum of f(·) over the convex set Ω. Then for all x ∈ Ω,

∇f(x∗)T (x− x∗) ≤ 0.

Proof. We prove this by contradiction

Suppose ∃x′ ∈ Ω with ∇f(x∗)T (x′ − x∗) > 0. Then,

∇f(x∗)T (x′ − x∗) = f
′
(x∗, x

′ − x∗) = lim
(1−λ)→0

f(x∗ + (1− λ)(x− x∗))− f(x∗)

1− λ
> 0

Let {λk}∞k=1 with λk ∈ (0, 1) be a sequence converging to 1 ({λk}k≥0 → 1). This means

{1− λk}∞k=1 → 0

Consider the points z(λk) = x∗ + (1 − λk)(x − x∗) = (λk)x
∗ + (1 − λk)x

′ . z(λk) ∈ Ω by

convexity.

Continuing, we know
f(z(λk))− f(x∗)

1− λk
> 0 for all k sufficiently large.

This then means f(z(λk)) > f(x∗) for all k sufficiently large. Therefore, it follows that
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{z(λk)} → x∗ as k → ∞ with f(z(λk)) > f(x∗) contradicts that x∗ is a local maximum of

f(·) over Ω.

This completes the proof.

Definition A.2.4. (Closed Point-To-Set Map) We say a point-to-set map Ψ : Ω ⊆ Rs → P(Rs)

is closed or outer-semi continuous at θ ∈ Ω if:

There exists {θ(l)}l≥0 ⊆ Ω such that θ(l) →
l→∞

θ, {ϕ(l)}l≥0 where ϕ(l) ∈ Ψ(θ(l)) and ϕ(l) →
l→∞

ϕ

=⇒ ϕ ∈ Ψ(θ).

Theorem A.2.4 (Global Convergence Theorem (Zangwill, [3])). Let the sequence {θ(t)}t≥0 be

generated by θ(t+1) ∈Mn(θ
(t)) where Mn is a point-to-set map on Ω. Let T ⊂ Ω be a solution set.

If the following assertions hold:

a) There exists K ⊆ Ω, K compact set such that for any θ(0) ∈ Ω and {θ(t)}t≥0 generated by

Mn we have θ(t) ∈ K, for any t.

b) There exists a continuous map Ln such that for any θ(t) ∈ Ω, θ(t+1) ∈ Mn(θ
(t)), it follows

that Ln(θ
(t+1)) ≥ Ln(θ

(t)), and for any θ ∈ Ω/T , θ′ ∈ Mn(θ), it follows that Ln(θ
′
) >

Ln(θ).

c) We have Mn(θ) ̸= 0 for any θ ∈ Ω, and Mn is closed on Ω/T (see Definition A.2.4).

Then for any θ(0) ∈ Ω, every limit point θ̄ of {θ(t)}t≥0 belongs to T and Ln(θ
(t)) → Ln(θ̄).

Definition A.2.5 (Lagrangian Function). Let f : Ω → R be a continuous function over a

convex set. For a minimization problem

min f(x)

subject to

• h1(x) = 0,..., hm(x) = 0

• g1(x) ≤ 0,..., gr(x) ≤ 0,

the Lagrangian function L(x, λ, β) : Rs 7→ R is defined as
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L(x, λ, β) := f(x) +
∑m

i=1 λihi(x) +
∑r

j=1 βjgj(x).

Definition A.2.6 (Regular point). Let f : Ω → R be a continuous function over a convex set.

For a minimization problem

min f(x)

subject to

• h1(x) = 0,..., hm(x) = 0

• g1(x) ≤ 0,..., gr(x) ≤ 0,

the feasible point x is regular if the gradients of the active constraints at x are linearly independent.

Theorem A.2.5 (Karush-Khun-Tucker Necessary Conditions: Proposition 3.3.1 of [5]). Let

f : Ω → R be a continuous function over a convex set. Let x∗ be a regular local minimum (see

Definition A.2.6) of the problem

min f(x)

subject to

• h1(x) = 0,..., hm(x) = 0

• g1(x) ≤ 0,..., gr(x) ≤ 0,

where f, hi, gj are continuously differentiable functions from Rs to R. Then there exists unique

Lagrange multiplier vectors λ∗ = (λ∗1, ..., λ
∗
m), β∗ = (β∗

1 , ..., β
∗
r ), such that

• ∇1L(x∗, λ∗, β∗) = 0

• β∗
j ≥ 0 for all j = 1, ..., r,

• β∗
j = 0 for all j /∈ A(x∗)

where A(x∗) is the set of active constraints at x∗ and L(x∗, λ∗, β∗) is the Lagrangian defined in

A.2.5. For any feasible point x, the set of active constraints at x is defined as A(x) := {j : gj(x) =

0}. Further, if f, h, g are twice continuously differentiable, it holds that
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xT∇2
11L(x∗, λ∗, µ∗)x ≥ 0,

for all x ∈ Rs such that

• ∇hi(x∗)Ty = 0 for all i = 1, ...,m and

• ∇j(x
∗)Tx = 0 for all j ∈ A(x∗).

A.3 Figures
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Figure A.1: Optimization Error for SNR of 1
2

Figure A.2: Statistical Error for SNR of 1
2

Figure A.3: Optimization Error for SNR of 1 Figure A.4: Statistical Error for SNR of 1

Figure A.5: Optimization Error for SNR of 2 Figure A.6: Statistical Error for SNR of 2

Figure A.7: This figure compiles results for Numerical Experiment 1. The optimization

and statistical error is shown for 20 iterations of Algorithm 1. The results for the case

where σ∗
0 is unknown is shown in purple while the case where σ∗

0 is known is shown in

red. 80



Figure A.8: Optimization Error Figure A.9: Statistical Error

Figure A.10: This figure compiles results for Numerical Experiment 2. The optimization

and statistical error is shown for 20 iterations of Algorithm 1.
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