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Montreal, December 11th, 2019.
To:
Dr.  Suzanne Higgs,
Editor-in-Chief, Appetite

Dear Editor-in-Chief,  
I am pleased to be re-submitting, after reviewers reply, this original manuscript entitled 

“Genetically predicted gene expression of prefrontal DRD4 gene and the differential 
susceptibility to childhood emotional eating in response to positive environment” for 
consideration in your esteemed journal. We thank the Reviewers 1 and 3 for his/her comments that 
certainly improved our work.

In 2016, we reported that girls living under adverse socioeconomic conditions and carrying 
the genetic polymorphism of the dopamine D4 receptor gene (48-base-pair variable number of 
tandem repeats region in the third exon) 7-repeat allele consume more calories derived from fat 
compared to non-carriers; however, the same individuals consume less calories derived from fat 
when living in a privileged economic and social stratum, when compared to non-carriers1. This 
was the first evidence that the differential susceptibility framework can be applied to metabolic 
vulnerability. In this theory, alleles previously considered to be “risk” alleles in fact confer 
openness to environmental modification, a finding with important implications for disease 
prevention and social pediatrics. The article received an editorial from Jay Belsky2, and 
considerable attention from the media and from the academic community (22 citations in 2 years). 

In the current manuscript, we expand the previous work by using a sophisticated and more 
comprehensive genomics approach to evaluate DRD4-related differential susceptibility to 
obesogenic behaviors in children. We explored this theoretical framework in response to different 
environmental scenarios, aiming at identifying responsiveness to environmental modifications, 
which can help to inform the development of more cost-effective health policies.

This manuscript has not been published, posted or submitted for publication elsewhere. We 
have no conflicts of interest to disclose. 
Thank you for your consideration.

Sincerely,

Patricia Pelufo Silveira, MD, PhD
Department of Psychiatry, Faculty of Medicine, McGill University
Douglas Hospital Research Centre, 6875 Boulevard LaSalle, Montreal, QC, H4H 1R3,
Canada.
Phone: 514-761-6131 (ext.2776) Fax: 514-761-6131
patricia.silveira@mcgill.ca

1. Silveira PP, Gaudreau H, Atkinson L, et al. Genetic Differential Susceptibility to Socioeconomic Status and 
Childhood Obesogenic Behavior. JAMA Pediatrics. 2016.

2. Belsky J. The Differential Susceptibility Hypothesis: Sensitivity to the Environment for Better and for 
Worse. JAMA Pediatr. 2016;170(4):321-322.
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Authors reply to editors and reviewers [2]

Reviewer 1

The authors have adequately responded to my earlier comments and concerns. 

Reviewer 3

Thank you for the modifications brought to your article. In order to have a more informative 
final version, I suggest the following modifications:

1. Abstract: remove last sentence or replace by a conclusion more directly related to the 
present findings.

The last sentence was replaced and now reads:

These results provide further evidence for the genetic differential susceptibility, accounting for 
the benefit of positive environments.  

2. Line 80: remove “This”

Correction was done as suggested.

3. Line 138: describe total number of participants in the MAVAN cohort and justify how 
the number of participants for the present study was reached (same remark for the Gusto 
cohort)

Sample size was defined based on which participants had all the data needed for this study 
available at the time of the statistical analysis procedures (genotype, variables from the 
environmental score, outcomes). The total sample size for both cohorts was added and now 
reads:

Procedure: Information collected at birth as well as at 48 months of age was used. A total of 
132 out of 630 participants had data available for all the measures relevant for this study (birth 
records, genotype, the Child Eating Behavior Questionnaire at 4 years of age and positive 
postnatal environmental score).

Procedures. We used information collected at birth as well as at 5 years of age. A total of 443 
participants out of 1173 had data available for all the measures relevant for this study (birth 
records, genotype, CBEQ at 60 months of age and positive postnatal environmental score).

4. Line 142: replace CBEQ by CEBQ

Correction was done as suggested.

5. Lines 161 and 213: Please justify the methodological choice for the calculation of the 
positive environment score for both cohorts (for instance using the justification used in 



reply to Reviewer 2: “Phenotypes such as birth size have been extensively shown in the 
literature to have “programming” effects on the individual’s metabolism, altering the 
response to the environment and subsequently increasing the likelihood of developing 
non-communicable diseases such as obesity. For example, a well-known effect of poor 
fetal growth is the programming of food preferences, widely explored by our lab [24-27], 
and confirmed by others [28-31]. Therefore, we believe that these long-lasting 
“programming” effects work as if they were a first or immediate “layer” of the 
environment, dictated by the individual’s current metabolic features that result from a 
past exposure (poor fetal growth). We discussed extensively about these environmental 
“layers” in a review (Dalle Molle et al., Neuroscience and Biobehavioral Reviews, 73: 
326–339) [32]. The inclusion of attachment style is aligned with the same idea. Evidence 
has shown its effects on development of several socioemotional characteristics [33, 34], 
having a programming effect on socioemotional development [35, 36].”).

Thank you for your comments, the following sentences were altered and now reads:

Line 142: Predictors: Positive postnatal environmental score - This score accounts for positive 
environmental conditions on the postnatal period of life. Figure 1 shows which variables and 
cut-offs were used to compute this score. Presence of each component established by its cut-off 
point yield one point. The total score is represented by the summation of points. The score was 
built in a cumulative index manner [18], accounting for stablished predictors of child health and 
development [7].

Line 162: The rationale behind including these variables that represent both phenotype measures 
(e.g. birth size, attachment) and family environment measures (e.g. maternal mental health, marital 
strain) together into the same score was based on the literature of early life adversity/protection 
and their long-term effects on child neurodevelopment and behavior. Phenotypes such as birth size 
have been extensively shown in the literature to have “programming” effects on the individual’s 
metabolism, altering the response to the environment and subsequently increasing the likelihood 
of developing non-communicable diseases such as obesity. For example, a well-known effect of 
poor fetal growth is the programming of food preferences, widely explored by our lab (1-4), and 
confirmed by others (5-8). These long-lasting “programming” effects work as if they were a first 
or immediate “layer” of the environment, dictated by the individual’s current metabolic features 
that result from a past exposure. The inclusion of attachment style is aligned with the same idea. 
Evidence has shown its effects on development of several socioemotional characteristics (9, 10), 
having a programming effect on socioemotional development (11, 12). We discussed extensively 
about these environmental “layers” in a review (13).

Line 236: Differences can be seen on Figure 3 that shows variables and cut-offs used in the 
GUSTO cohort, that were chosen to best match the score created in the discovery cohort.  

6. Line 173: When you refer to the “target sample” here, what do you mean, since you don’t 
have a biopsy of the PFC. Do you mean the buccal cells? Please clarify. This is important 
to help Appetite readers not fully understand your paper.

When we say “target sample”, we mean the MAVAN cohort, and we made this clearer in the 
paper now. But it is important to clarify to the reviewer that the PrediXcan prediction model, 



proposed by Gamazon in 2015, generates algorithms to estimate the genetically determined 
component of gene expression in specific brain regions from the subject’s genotype from the 
target sample, in this case the MAVAN cohort. PrediXcan was indeed created using PFC gene 
expression data from human brain donors, that also had genotype data. This way, the gene 
expression information was translated into a model that uses only the genotype information from 
your sample (in this case, MAVAN or GUSTO) to estimate the gene expression of a given gene.

We made a scheme to facilitate the understanding of this portion of the manuscript. Figure was 
added on line 193. 

Figure 2: Scheme for the generation of predicted DRD4 gene expression on discovery and 
replication cohorts. PrediXcan prediction model is applied to PFC gene expression data from 
human brain donors, that also had genotype data. The gene expression information was 
translated into a model that uses only the genotype information from our sample (in this case, 
MAVAN or GUSTO) to estimate the gene expression of a given gene (in this case, DRD4).

7. Line 182 Add “or food approach” in the brackets

Correction was done as suggested.

8. Line 183  Add (or food avoidance) after “anti-intake”. 

Correction was done as suggested.

9. Line 217: Is 6000$ annual or monthly for the Gusto cohort?

Correction was done, figure two on the household income now reads: “Household total monthly 
gross income 6000$ and above”

10. Line 249: this is not clear to me why you applied a one-tailed p-value threshold for the 
replication study only

Thank you for pointing this out. An extended explanation was added on line 274 to 282 and now 
reads:



The replication analysis considered statistically significant results using one-tailed P-value 
thresholds. We considered the analysis done in the discovery cohort (MAVAN) to be exploratory 
and in this case, we used two-tailed P-value thresholds, since the direction of the forthcoming 
results were not anticipated. For the analysis done in the replication cohort (GUSTO) we 
anticipated results direction based on what we found in the discovery cohort. A one-tailed test is 
appropriate if the estimated value may depart from a reference value in only one direction. For 
that reason, the one-tailed P value thresholds were considered appropriated to confirm the results 
direction we saw in the discovery cohort.

11. Line 252 : Add a bracket after population structure: “(i.e. presence of a systematic 
difference in allele frequencies between subpopulations in a population, possibly due to 
different ancestry)”.

Correction was done as suggested.

12. Tabled 1 and 2: Were the high DRD4 predicted expression levels of the same amplitude 
in the MAVAN and the GUSTO cohorts?

Thank you for pointing this out. The mean and standard deviation for the predicted DRD4 values 
according to Predixcan were included in the sample description table for MAVAN (table 1) and 
GUSTO (table 2). 

13. Figures 3 and 4: Please add a legend to explain what the red lines mean or remove them. I 
don’t think they are necessary

Thank you for pointing this out. An explanation of the criteria used to determine differential 
susceptibility on the GxE interaction was added to the statistical analysis section (line 283) and 
now reads:

To verify if the gene by environment interaction finding was aligned with the differential 
susceptibility model, we followed criteria developed by Roisman et al (2012). Three measures 
were considered; if regions of significance were inside the range of the environmental variation; 
if the markers PA (proportion affected) and PoI (proportion of interaction) were consistent with 
differential susceptibility; and if there was absence of nonlinear terms X2 and ZX2.

The following was added to the Figures 4 and 5 legend “The vertical lines depict the regions of 
significance”. 

14. Line 318 :Add “some” before “obesogenic behaviors”.

Correction was done as suggested.

15. Line 318-20: please replace “In MAVAN, a high predicted prefrontal DRD4 gene 
expression decreases the risk for the development of behaviors associated with emotional 
over-eating in children as young as 4 years old that are raised in a more positive 
environment.” By “In MAVAN, a high predicted prefrontal DRD4 gene expression was 



associated to a decreased emotional over-eating in children as young as 4 years old that 
are raised in a more positive environment.”

Correction was done as suggested.

16. Line 321-323: I don’t understand what justifies this sentence. I don’t read this in Tables 1 
& 2. Please justify precisely, or remove this sentence

We agree with the suggestion and the sentence was taken out.

We thank the editors and reviewers for the careful reading of our manuscript, and for their 
valuable comments that contributed to improving our work.
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Abstract 

Genetic differential susceptibility states that individuals may vary both by exhibiting poor 

responses when exposed to adverse environments, and disproportionally benefiting from positive 

settings. The dopamine D4 receptor gene (DRD4) may be particularly implicated in these effects, 

including disturbed eating behaviors that might lead to obesity. Here, we explore differential 

susceptibility to positive environments according to the predicted genetically regulated gene 

expression of prefrontal cortex DRD4 gene. Using MAVAN as the discovery cohort (Maternal 

Adversity, Vulnerability and Neurodevelopment) and GUSTO as the replication cohort (Growing 

Up in Singapore Towards Healthy Outcomes), we analyzed the interaction between a) a Positive 

postnatal environmental score, that accounts for positive outcomes in the postnatal period and b) 

the genetically regulated gene expression of prefrontal DRD4, computed using a machine learning 

prediction method (PrediXcan). The outcome measures were the pro-intake domains (Emotional 

over-eating, Food Responsiveness, Food Enjoyment and Desire to Drink) from the Child Eating 

Behavior Questionnaire at 48 months of age (MAVAN) and 60 months of age (GUSTO). The 

interaction between the positive environment and the predicted prefrontal DRD4 gene expression 

was significant for emotional over-eating in MAVAN (β=-0.403, p<0.02), in which the high gene 

expression group had more or less emotional eating according to the exposure to lower or higher 

positive environment respectively, showing evidence of differential susceptibility criteria. In the 

replication cohort, a similar result was found with the pro-intake domain Desire to drink (β=-0.583, 

p<0.05). These results provide further evidence for the genetic differential susceptibility, 

accounting for the benefit of positive environments.  

Key words: Emotional eating, Gene expression, Differential susceptibility, DRD4
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38 Abstract 
39
40 Genetic differential susceptibility states that individuals may vary both by exhibiting poor 

41 responses when exposed to adverse environments, and disproportionally benefiting from positive 

42 settings. The dopamine D4 receptor gene (DRD4) may be particularly implicated in these effects, 

43 including disturbed eating behaviors that might lead to obesity. Here, we explore differential 

44 susceptibility to positive environments according to the predicted genetically regulated gene 

45 expression of prefrontal cortex DRD4 gene. Using MAVAN as the discovery cohort (Maternal 

46 Adversity, Vulnerability and Neurodevelopment) and GUSTO as the replication cohort (Growing 

47 Up in Singapore Towards Healthy Outcomes), we analyzed the interaction between a) a Positive 

48 postnatal environmental score, that accounts for positive outcomes in the postnatal period and b) 

49 the genetically regulated gene expression of prefrontal DRD4, computed using a machine learning 

50 prediction method (PrediXcan). The outcome measures were the pro-intake domains (Emotional 

51 over-eating, Food Responsiveness, Food Enjoyment and Desire to Drink) from the Child Eating 

52 Behavior Questionnaire at 48 months of age (MAVAN) and 60 months of age (GUSTO). The 

53 interaction between the positive environment and the predicted prefrontal DRD4 gene expression 

54 was significant for emotional over-eating in MAVAN (β=-0.403, p<0.02), in which the high gene 

55 expression group had more or less emotional eating according to the exposure to lower or higher 

56 positive environment respectively, showing evidence of differential susceptibility criteria. In the 

57 replication cohort, a similar result was found with the pro-intake domain Desire to drink (β=-0.583, 

58 p<0.05). These results provide further evidence for the genetic differential susceptibility, 

59 accounting for the benefit of positive environments.  

60 Key words: Emotional eating, Gene expression, Differential susceptibility, DRD4
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61 Introduction

62 Genes can modulate the cellular and behavioral responses to environmental variation and 

63 some theoretical paradigms guide the understanding of these relationships. The Diathesis-Stress 

64 paradigm states that some individuals are more vulnerable than others to the negative effects of 

65 the environment[1]. However, it does not consider variations in positive aspects. The genetic 

66 differential susceptibility states that individuals may vary both by exhibiting poor responses when 

67 exposed to adverse environments, and disproportionally benefiting from positive settings 

68 (including the simple absence of adversity). These would occur to guarantee survival in different 

69 contexts. This idea is aligned with evolutionary analysis of human development, in which plasticity 

70 to environmental variations is set as a bet hedging against an uncertain future, and to avoid a costly 

71 mismatch between the individual’s ability to face the environmental conditions and the actual 

72 challenges that the environment could impose [2-4]. This framework has advantages since it 

73 considers a broader spectrum of environmental influences, also shedding light on positive aspects 

74 of the environment and its consequences on development. This theoretical concept can also be 

75 seen on the proposed idea of “plasticity genes”, in which dopamine seems to have a central role 

76 [2, 5]. In this sense, individuals that are highly responsive to the environment, in a differential 

77 susceptibility perspective, while being more vulnerable to the damaging effects of an exposure to 

78 environmental adversity, can also benefit more from positive environmental conditions then the 

79 nonresponsive individuals. This is equivalent to the ‘orchid’ children described by Boyce and Ellis 

80 [6], in a theory called biological sensitivity to context.

81 This is corroborated by evidence showing that the mesocorticolimbic pathway finishes its 

82 development later in life, compared to other neurotransmitter systems. This pathway therefore is 

83 susceptible to the influence of the environment for a much long period of time, being an obvious 

84 candidate for a biological mechanism involved in the programming by environmental conditions. 

85 This enhanced sensitivity to the environmental context, associated with specific dopamine 

86 signaling, increases the range of phenotypic possibilities, not focusing only on vulnerabilities, but 

87 also involving better outcomes in particular environmental settings [7]. 

88 Phenotypes known to be affected by these gene by environment (GxE) interactions include 

89 disturbed eating behaviors that can lead to obesity[8]. In fact, alterations on the dopaminergic 

90 pathways can lead to increased sensitivity to reward and impulsivity [9]. For example, drugs such 

91 as amphetamine and methylphenidate, known for being dopamine enhancers, improve behavioral 
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92 symptoms of most children with attention deficit hyperactivity disorder (ADHD), suggesting that 

93 dopamine signaling plays a role on the onset and maintenance of this condition related to 

94 impulsivity and other executive functions impairments [10]. Similarly dopamine function is 

95 thought to play a role in major depression symptoms, since impairments in motivation and 

96 anhedonia are all related to the disorder, and also regulated in part by the DA neurotransmission  

97 systems [11]. These dopamine signaling alterations can lead to poor decision-making processes, 

98 prompting non-adaptive behaviors such as addiction and altered eating behavior [12-14]. 

99 The dopamine D4 receptor gene (DRD4) exon III VNTR polymorphism has been 

100 particularly implicated in these effects. In 2016, Silveira et al described that variations in this 

101 specific mutation interacted with socioeconomic status (SES) according to the differential 

102 susceptibility framework, influencing fat preferences of girls at 4 years of age[15]. The same girls 

103 who are genetically more prone to develop obesogenic behaviors (increased fat intake) when raised 

104 in low SES conditions, are also less likely to develop obesogenic behaviors when raised in a 

105 positive, high SES environment. Similarly van Strien, Levitan [16] found that hypofunctional 

106 variants of the DRD4 were associated with higher emotional eating in females. However, single 

107 polymorphism approaches may not capture the whole complexity of the function of a gene. Novel 

108 genomics approaches using machine learning algorithms to predict gene expression in tissue 

109 specific regions are available[17], and these are likely able to provide a more comprehensive view 

110 of the role of a specific gene in modulating an individual response to environmental variations.  

111 Even though the differential susceptibility hypothesis accounts for both extremes of the 

112 environmental influence (positive and negative, including the simple absence of adversity)[4], few 

113 studies have used measures that account for positive aspects of the environment[18, 19]. Work is 

114 needed to improve empirical evidence on the responsivity to positive or supporting conditions, 

115 showing that this theoretical framework is in fact relevant to understand effectiveness of 

116 interventions.

117 Here, we propose to expand previous work done by our laboratory [8, 19-22] by using an 

118 innovative and more comprehensive genomics approach to evaluate differential susceptibility to 

119 obesogenic behaviors in children. If the framework is indeed applicable, variations in the predicted 

120 DRD4 gene expression in the prefrontal cortex (where D4 receptors are predominantly localized) 

121 would be associated with differential responsiveness to positive circumstances, here represented 

122 by measures associated with supporting conditions in the postnatal period.  
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123

124 Materials and Methods

125 Subjects: The sample was derived from the prospective birth cohort MAVAN[23] 

126 (Maternal Adversity, Vulnerability and Neurodevelopment) which followed up children at 

127 different time points in the first years of life in Montreal (Quebec) and Hamilton (Ontario), Canada. 

128 Exclusion criteria were severe maternal chronic illness, placenta previa, and history of incompetent 

129 cervix, impending delivery, or a fetus/infant affected by a major anomaly or born at a gestational 

130 age less than 37 weeks. Ethical approvals were obtained from obstetricians performing deliveries 

131 at the study hospitals and by the ethics committees and university affiliates (McGill University 

132 and Université de Montréal, the Royal Victoria Hospital, Jewish General Hospital, Centre 

133 hospitalier de l’Université de Montréal, Hôpital Maisonneuve-Rosemont, St Joseph’s Hospital and 

134 McMaster University, Hamilton, Ontario, Canada). The study was conducted in accordance with 

135 the rules and regulations of the university ethics committees and informed consent was obtained 

136 from all participants.

137 Procedure: Information collected at birth as well as at 48 months of age was used. A total 

138 of 132 out of 630 participants had data available for all the measures relevant for this study (birth 

139 records, genotype, the Child Eating Behavior Questionnaire at 4 years of age and positive postnatal 

140 environmental score). Children and mothers came to the laboratory for testing and to complete the 

141 scales (CEBQ, see details below). Birth records were obtained directly from the birthing units.

142 Predictors: Positive postnatal environmental score - This score accounts for positive 

143 environmental conditions on the postnatal period of life. Figure 1 shows which variables and cut-

144 offs were used to compute this score. Presence of each component established by its cut-off point 

145 yield one point. The total score is represented by the summation of points. The score was built in 

146 a cumulative index manner [19], accounting for stablished predictors of child health and 

147 development [8]. Birth weight percentiles and household gross income were calculated using the 

148 local reference[24],[25]. Maternal mental health information was extracted from different 

149 questionnaires: Beck Depression Inventory, a 21-question multiple-choice self-report 

150 inventory[26]; Edinburgh Postnatal Depression Scale (EPDS), a 10-item self-report scale designed 

151 to screen for postpartum depression[27] and State-Trait Anxiety Inventory (STAI), a two versions 

152 20 item each self-report scaling to measure state and trait anxiety[28]. To measure types of 

153 attachment styles in preschool-aged children the Preschool Separation – Reunion Procedure 
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154 (PSRP) was used [29, 30], having a baseline interaction followed by two separation and reunion 

155 episodes lasting 5 minutes video recorded and scored (reliability k=0.83). The Family Assessment 

156 Device (FAD), a 60-item self-report instrument, was used to assess different domains of family 

157 functioning[31]. The Marital Strain Scale of Pearlin and Schooler was used to assess chronic stress 

158 with the romantic partner [32]. Lastly, a self-report breastfeeding questionnaire[33] was used to 

159 inquire the age at which the baby (in weeks) was fed for the first time with something other than 

160 breast milk, and the age of the baby (in weeks) when mothers stopped nursing (or giving breast 

161 milk). 

162 The rationale behind including these variables that represent both phenotype measures (e.g. 

163 birth size, attachment) and family environment measures (e.g. maternal mental health, marital 

164 strain) together into the same score was based on the literature of early life adversity/protection 

165 and their long-term effects on child neurodevelopment and behavior. Phenotypes such as birth size 

166 have been extensively shown in the literature to have “programming” effects on the individual’s 

167 metabolism, altering the response to the environment and subsequently increasing the likelihood 

168 of developing non-communicable diseases such as obesity. For example, a well-known effect of 

169 poor fetal growth is the programming of food preferences, widely explored by our lab [34-37], and 

170 confirmed by others [38-41]. These long-lasting “programming” effects work as if they were a 

171 first or immediate “layer” of the environment, dictated by the individual’s current metabolic 

172 features that result from a past exposure. The inclusion of attachment style is aligned with the same 

173 idea. Evidence has shown its effects on development of several socioemotional characteristics [42, 

174 43], having a programming effect on socioemotional development [44, 45]. We discussed 

175 extensively about these environmental “layers” in a review [8].

176

Discovery cohort - Score: Positive / Time: Postnatal
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177

178

179

180 This figure is intended to be a single fitting image

181

182 Genetically regulated expression of prefrontal DRD4 gene – The genetically regulated 

183 expression of prefrontal DRD4 gene is computed using a machine learning prediction method 

184 (PrediXcan)[17]. This algorithm was built using a reference dataset from human brain donors 

185 (postmortem), being therefore tissue-specific. This reference dataset is composed by data from 

186 GTEx project [46], GEUVADIS [47] and DGN [48] containing both genotype and gene expression 

187 levels. The PrediXcan prediction model, proposed by Gamazon in 2015, uses a machine learning 

188 approach to generate algorithms to estimate the genetically determined component of gene 

189 expression in specific brain regions from the subject’s genotype in the target sample, in this case 

190 MAVAN cohort. For the genetic score used in this study, we applied this algorithm to our two 

191 samples, and were able to calculate a predicted DRD4 PFC gene expression using the genotype 

192 information available in the children from our birth cohorts (Figure 2).

 Birth size percentile greater or equal to 40% and below or equal to 70%
 Gestational age between 39-40 weeks
 Maternal mental health - presence of either BDI (Beck Depression Inventory) below 2, 

EPDS (Edinburgh Postnatal Depression Scale) below 3 or STAI (State-Trait Anxiety 
Inventory) below 53

 Household total gross income 80,000$ and above
 Secure attachment (as measured by The Preschool Separation – Reunion Procedure - 

PSRP) 
 Good family function (as measured by Family Assessment Device – FAD. Score 

below 1.15)
 The Marital Strain Scale score below 1.45
 Still breastfeeding at 3 months

Figure 1: Variables and cut-offs used to create the Positive postnatal environmental score in 
MAVAN. Presence of each component (described in each bullet) yielded 1 point, and the 
scores represent the summation of points.
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193

194
195
196

197

198 This figure is intended to be a 2-column fitting image

199

200  In MAVAN, we genotyped 242,211 autosomal SNPs using genome-wide platforms 

201 (PsychArray/PsychChip, Illumina) from 200ng of genomic DNA derived from the buccal 

202 epithelial cells. After quality control procedures and imputation, 20,790,893 SNPs with an info 

203 score >0.80 and posterior genotype probabilities >0.90 were available to be used in PrediXcan.

204 Outcome: The Child Eating Behavior Questionnaire[49] is designed to assess children's 

205 eating styles that have been hypothesized to contribute both to underweight and overweight. 

206 Having domains that reflect behaviors of food pro-intake (positive inclinations for eating or food 

207 approach) and anti-intake (or food avoidance). It is a parent-report measure comprised of 35 items, 

208 each rated on a five-point Likert scale that ranges from never to always. The instrument is ideal 

209 for use in research investigating the early precursors of eating disorders or obesity. The 

210 psychometric properties of the instrument have been evaluated and show robust factor structure, 

211 good internal and test-retest reliability[49]. A more recent study also shows validity of the 

212 questionnaire against behavioral measures of eating [50]. The outcome measures used were the 

213 four domains from the questionnaire that reflect pro-intake behaviors  [51]: Enjoyment of Food, 

214 Food Responsiveness, Desire to Drink and Emotional over-eating. Overall these items describe 

Figure 2: Scheme for the generation of predicted DRD4 gene expression on discovery and 
replication cohorts. PrediXcan prediction model is applied to PFC gene expression data from 
human brain donors, that also had genotype data. The gene expression information was 
translated into a model that uses only the genotype information from our sample (in this case, 
MAVAN or GUSTO) to estimate the gene expression of a given gene (in this case, DRD4).
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215 pro-intake behaviors either by enjoyment of food, being responsive to food, having a high desire 

216 to drink or over-eating in response to negative emotions.  

217

218 Replication cohort: Subjects. The sample included children from the prospective birth 

219 cohort GUSTO (Growing Up in Singapore Towards Healthy Outcomes)[52]. Pregnant women 

220 aged 18 years and above were recruited at the National University Hospital (NUH) and KK 

221 Women’s and Children’s Hospital (KKH) in Singapore, being of Chinese, Malay or Indian 

222 ethnicity with homogeneous parental ethnic background. Mothers receiving chemotherapy, 

223 psychotropic drugs or who had type I diabetes mellitus were excluded. Besides that, for the sake 

224 of comparison with the MAVAN cohort, only non-preterm children (born above 37 weeks of 

225 gestation) were considered. The study was approved by the National Healthcare Group Domain 

226 Specific Review Board (NHG DSRB) and the Sing Health Centralized Institutional Review Board 

227 (CIRB). Informed written consent was obtained from each participant. A descriptive paper details 

228 other aspects of the cohort [52].  

229 Procedures. We used information collected at birth as well as at 5 years of age. A total of 443 

230 participants out of 1173 had data available for all the measures relevant for this study (birth 

231 records, genotype, CBEQ at 60 months of age and positive postnatal environmental score). 

232 Children and mothers came to the laboratory for testing and to complete scales. Birth records were 

233 obtained directly from the birthing units.

234  Predictors. Positive postnatal environmental score - Was defined and calculated as described in 

235 the MAVAN cohort above, except attachment style and marital relationship quality that were not 

236 available in this cohort. Differences can be seen on Figure 3 that shows variables and cut-offs 

237 used in the GUSTO cohort, that were chosen to best match the score created in the discovery 

238 cohort.

Replication cohort - Score: Positive / Time: Postnatal

 Birth size percentile greater or equal to 40% and below or equal to 70%
 Gestational age between 39-40 weeks
 Household total monthly gross income 6000$ and above
 Family function greater or above 85th percentile (FAD lower or equal to 1.35)
 Maternal mental health at 3 months (presence of either BDI lower or equal to 1, EPDS 
lower or equal to 1, or STAI lower or equal to 49)

Still breastfeeding at 3 months
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240

241

242

243 This figure is intended to be a single fitting image

244

245 Genetically regulated expression of prefrontal DRD4 gene – It was computed using the same 

246 machine learning prediction method (PrediXcan)[17] and brain region as described in the 

247 MAVAN cohort. Genomic DNA in GUSTO was extracted from frozen umbilical cord specimens. 

248 Samples were genotyped on Illumina Omni express arrays and on Illumina Exome arrays, 

249 following the manufacturer's instructions (Expression Analysis Inc). Further quality control on the 

250 genotyping calls were previously described[53]. SNPs were verified for a genotyping rate ≥95% 

251 and no deviation from Hardy–Weinberg equilibrium (P < 0.001), and minor allele frequency ≥0.05, 

252 using PLINK[54, 55]. 

253 Outcome.  The outcome measures were the same used in the MAVAN cohort from the 

254 Child Eating Behavior Questionnaire[49], with the four domains that reflect pro-intake behaviors: 

255 Enjoyment of Food, Food Responsiveness, Desire to Drink and Emotional over-eating. 

256

257 Statistical analysis

258 Statistical analysis of the participants’ baseline characteristics was performed using 

259 Student’s T test for continuous data and chi-square tests for categorical variables (Table 1 and 

260 Table 2). For the baseline comparisons, a median split was used to define the high and low DRD4 

261 predicted gene expression groups. For the main analysis, linear regression models using 

262 continuous DRD4 predicted gene expression values on the PFC, positive postnatal environmental 

263 and the interaction term between these two variables were performed for the four domains of the 

264 CBEQ considered in this study (Enjoyment of Food, Food Responsiveness, Desire to Drink and 

265 Emotional Over-Eating). Regression analysis were corrected for multiple comparisons. The 

266 replication analysis considered statistically significant results using one-tailed P-value thresholds. 

267 We considered the analysis done in the discovery cohort (MAVAN) to be exploratory and in this 

268 case, we used two-tailed P-value thresholds, since the direction of the forthcoming results were 

269 not anticipated. For the analysis done in the replication cohort (GUSTO) we anticipated results 

270 direction based on what we found in the discovery cohort. A one-tailed test is appropriate if the 

Figure 3: Variables and cut-offs used to create the positive postnatal environmental score in 
GUSTO. Presence of each component (described in each bullet) yielded 1 point, and the scores 
represent the summation of points.
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271 estimated value may depart from a reference value in only one direction. For that reason, the one-

272 tailed P value thresholds were considered appropriated to confirm the results direction we saw in 

273 the discovery cohort. Preliminary analysis adjusted by sex showed no main effect or interaction 

274 with sex, therefore in the main analysis boys and girls were analyzed together. To verify if the 

275 gene by environment interaction finding was aligned with the differential susceptibility model, we 

276 followed criteria developed by Roisman et al (2012). Three measures were considered; if regions 

277 of significance were inside the range of the environmental variation; if the markers PA (proportion 

278 affected) and PoI (proportion of interaction) were consistent with differential susceptibility; and if 

279 there was absence of nonlinear terms X2 and ZX2.

280 We examined population structure (i.e. presence of a systematic difference in allele 

281 frequencies between subpopulations in a population, possibly due to different ancestry) and the 

282 models were adjusted by principal components that reflect population stratification [56, 57]. By 

283 adding the principal components, we aim to adjust for false results due to ancestry differences. For 

284 that, first we pruned our datasets to common variants (MAF>0.05) that were not in linkage 

285 disequilibrium (r2<0.20) with a sliding window (50 kilobases) approach that examined linkage 

286 disequilibrium in increments of 5 SNPs using PLINK 1.9 [58]. We performed a principal 

287 component analysis using SMARTPCA on this pruned dataset and generated a scree plot (see Hari 

288 Dass, McCracken [59] for scree plot for the MAVAN cohort). Based on the inspection of the scree 

289 plot, the first three principal components were the most informative of population structure in both 

290 cohorts and were included in all analyses. No other co-variates were used in the regression 

291 analysis. Data were analyzed using the Statistical Package for the Social Sciences (SPSS) version 

292 20.0 software (SPSS Inc., Chicago, IL, USA) and R software[60-62]. Significance levels for all 

293 measures were set at p < 0.05. 

294

295 Table 1: Sample description and differences between High and Low DRD4 predicted gene 
296 expression groups in MAVAN.

Sample Description

Total sample 
(n=132)

Low DRD4 
(n=67)

High DRD4 
(n=65)

Variable Mean 
or n

SD or 
%

Mean 
or n

SD or 
%

Mean 
or n

SD or 
%

p
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Birth weight (g) 3320.95 455.38 3322.79 450.15 3318.93 464.66 0.96

Gestational age (weeks) 39.18 1.21 39.15 1.06 39.2 1.36 0.82

Maternal age at birth 
(years) 30.81 4.75 31.13 4.04 30.46 5.09 0.4

Montreal site 76 57% 42 31.8% 27 20.4% 0.42

Female sex 68 51% 37 28% 31 23.4% 0.61

Income below 
Can$80,000 56 44% 45 34% 22 16.6% 0.36

Maternal education high 
school or less 2 1.5% 2 1.5% 0 0.0% 0.47

Positive postnatal 
environmental score 3.4 1.52 3.57 1.51 3.34 1.52 0.38

Food Responsiveness 2.27 0.8 2.14 0.81 2.39 0.77 0.09

Food enjoyment 3.58 0.75 3.46 0.8 3.72 0.68 0.06

Desire to drink 3 1.07 3.02 1.11 2.98 1.04 0.82

Emotional over-eating 1.61 0.6 1.62 0.6 1.61 0.6 0.9

PrediXCan DRD4 PFC -0.13 0.22 -0.32 0.15 0.05 0.06 -

297 MAVAN participants’ characteristics by prefrontal DRD4 predicted gene expression group. Data 

298 are expressed as means (standard deviations) or number of participants (percentages).

299 This figure is intended to be a 2-column fitting image.

300

301 Table 2: Sample description and differences between High and Low DRD4 predicted gene 
302 expression groups in GUSTO

Sample Description

Total sample 
(n=428)

Low DRD4 
(n=223)

High DRD4 
(n=205)

Variable Mean 
or n

SD or 
%

Mean 
or n

SD or 
%

Mean 
or n

SD or 
%

p

Birth weight (g) 3122.42 427.06 3151.09 422.83 3091.2
4

430.48 0.15

Gestational age (weeks) 38.46 1.28 38.56 1.2 38.35 1.36 0.1

Maternal age at birth 
(years)

31.31 5.08 31.18 4.91 31.45 5.26 0.58

Female sex 203 47.4% 114 51.1% 89 43.4%
%%
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Sample Description

Income below $6,000 302 70,6% 156 70% 146 71.2% 0.77

Maternal education high 
school or less

277 64.7% 144 64.9% 133 65.5% 0.89

Positive postnatal 
environmental score

2.11 1.24 2.09 1.27 2.14 1.2 0.67

Food responsiveness 2.4 0.69 2.41 0.69 2.39 0.69 0.83

Food enjoyment 3.5 0.79 3.51 0.82 3.5 0.76 0.89

Desire to drink 2.74 0.9 2.84 0.94 2.62 0.84 0.01*

Emotional over-eating 2.79 0.79 2.76 0.77 2.82 0.82 0.44

PrediXCan DRD4 PFC -0.01 0.11 -0.10 0.11 0.06 0.04 -

303
304 GUSTO participants’ characteristics by prefrontal DRD4 predicted gene expression group. Data 

305 are expressed as means (standard deviations) or number of participants (percentages).

306 This figure is intended to be a 2-column fitting image.

307

308 Results

309 Baseline comparisons between predicted gene expression groups can be seen in Table 1 

310 and Table 2. No differences were found between the two groups (high and low predicted prefrontal 

311 DRD4 gene expression) in relation to the main confounding variables in both cohorts. 

312 In MAVAN, we observed a statistically significant interaction effect between the positive 

313 environment score and the predicted prefrontal DRD4 gene expression on emotional over-eating 

314 (β =-0.403, p=0.0159). A simple slope analysis revealed that a more positive environment is 

315 associated with lower emotional over-eating as the DRD4 predicted gene expression increases 

316 (Figure 3). On Figure 4, groups are divided by plus and minus one standard deviation for the sake 

317 of visualization. We confirmed that the interaction is aligned with the differential susceptibility 

318 model according to Roisman et al (2012) method [63], since the regions of significance were inside 

319 the range of the environmental variation; moreover, the markers PA= 0.54 and PoI=0.52 were 

320 consistent with differential susceptibility, as well as the absence of nonlinear terms X2 and ZX2). 

321 This means that the same genetic profile associated with increased benefit from a more positive 

322 environment, is also more affected by a less positive environment, showing more emotional over-

323 eating. After adjusting by multiple comparison this result remains significant.
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324  
325 This figure should be print in color. This figure is intended to be a single fitting image.

326

327 On the same regression model, the predicted prefrontal DRD4 expression had an 

328 independent effect on emotional over-eating (β=1.388. p=0.0240) as well as the positive postnatal 

329 environmental score (β= -0.098, p=0.0129). The same association was not found for the other 

330 domains in the CEBQ: Desire to drink (β=-0.142, p=0.62051); Food Enjoyment (β =-0.088, 

331 p=0.660) and Food Responsiveness (β =-0.047, p=0.968).

332 In the replication cohort, similar results were found with another pro-intake domain from 

333 the CEBQ. The interaction between the positive environment and the predicted prefrontal DRD4 

334 gene expression was statistically significant on the domain desire to drink (β=-0.579, p= 0.01455). 

335 Simple slope analysis revealed that as the score for the positive environment increases and the 

336 gene expression score also increases, there is a decrease in the desire to drink score. For the sake 

337 of visualization of the results, on Figure 5 the participants are divided in plus and minus one 

338 standard deviation from the mean. After adjusting for multiple comparisons this result was found 

339 marginally significant (p=0.0582). No association was not found for the other CEBQ pro intake 

340 domains: Emotional over-eating (β= -0.046, p=0.3903), Food Enjoyment (β = -0.357, p=0.08866), 

341 Food Responsiveness (β =-0.375, p=0.0660); no evidence for differential susceptibility was 

342 detected in this cohort. 

Figure 4: Evidence of 
differential 
susceptibility - 
Interaction between 
positive postnatal 
environmental score 
and predicted DRD4 
gene expression on 
Emotional over-eating 
at 48 months of age. 
MAVAN Cohort. The 
vertical lines depict the 
regions of significance
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343
344  This figure should be print in color. This figure is intended to be a single fitting image.

345
346 Discussion and conclusion

347 In this study, we demonstrated on both cohorts that environment and genetics were 

348 associated with some obesogenic behaviors in children. In MAVAN, a high predicted prefrontal 

349 DRD4 gene expression decreases the risk for the development of behaviors associated with 

350 emotional over-eating in children as young as 4 years old that are raised in a more positive 

351 environment. Since we found evidence of differential susceptibility, the opposite relationship is 

352 also true, in which these same children, if raised in a less positive environment are in a higher risk 

353 to develop obesogenic behaviors as measured by the CEBQ instrument. In fact, emotional over-

354 eating has been linked to difficulties in weight loss among adults that underwent treatment for 

355 obesity [64] being a stronger predictor of weight gain than life style factors such as little physical 

356 activity and consumption of fruits and vegetables [65]. Emotional over-eating seems to be a risk 

357 factor not only for the development of obesity but for its maintenance as well. 

358 In the GUSTO cohort, a high predicted prefrontal DRD4 gene expression decreases the 

359 risk for the development of behaviors associated with the domain desire to drink in children as 

360 young as 5 years old that are raised in a more positive environment. Although the domains desire 

361 to drink and emotional over-eating are known to be weekly correlated [66], it is also known that 

362 both have a relationship with onset of obesogenic behaviors [64, 65, 67].  Besides that the domain 

363 desire to drink is also considered pro-intake, and is associated with  the consumption of high sugar-

364 sweetened beverages [68]. In fact, the overconsumption of high sugary drinks [69] and the desire 

Figure 5: Interaction 
between positive postnatal 
environmental score and 
predicted DRD4 gene 
expression on Desire to 
Drink at 60 months of age. 
Gusto Cohort.
The vertical lines depict 
the regions of significance
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365 to drink domain have been related to obesity and overweight in children [67]. Although this result 

366 did not survive correction for multiple comparisons, it could be seen as valid since it emerged from 

367 an a priori hypothesis and previous published results [15, 21, 70] characterizing this analysis as 

368 non-exploratory.

369 Despite the difference in the significant domains between the two cohorts, we were able to 

370 demonstrate the effect of the interaction between positive environmental conditions and the 

371 predicted prefrontal DRD4 gene expression on eating behaviors associated with obesity and 

372 overweight. Explanations for the dissimilar results between the cohorts may involve cultural or 

373 behavioral aspects associated with eating styles. The lack of evidence for differential susceptibility 

374 in GUSTO could be explained by the fact that the positive environment score in this cohort does 

375 not include an evaluation of attachment styles as does MAVAN, due to the lack of this data in 

376 GUSTO.  

377 Evidence from the literature showing the relationship between pro intake behaviors and the 

378 function of the DRD4 gene variants [15, 16, 71, 72] and also between dopamine related genes and 

379 susceptibility for environment influences [2], corroborates the relationship seen on this work. It is 

380 important to emphasize that we used a novel genomic approach to predict gene expression in a 

381 tissue specific manner[17], being able to provide a more comprehensive view of the role of a 

382 specific gene in modulating an individual response to environmental variations. It seems that 

383 individual variation on the function of dopaminergic pathways, here represented by the variations 

384 of the predicted prefrontal DRD4 gene expression, could be one of the underlying biological 

385 process that explain the relationship between variations in a positive environment and reduced 

386 probability to develop obesogenic behaviors. This could be happening by altering the subjects’ 

387 reward sensitivity and decision-making behaviors at critical time points during development. 

388 Insights from neuroscience and GxE studies are crucial to understand the biological 

389 processes underlying children’s behavior and susceptibility to negative/positive outcomes. This 

390 has implications for understanding the development of several important health outcomes, 

391 including growth and its deviations, as well as metabolic alterations.

392 These results provide further evidence for the genetic differential susceptibility[2], that 

393 accounts not only for how vulnerable an individual is to adversity, but also how much they will 

394 benefit from positive environments. It is known that children vary according to their susceptibility 

395 to the environmental variations, but this framework brings a biological explanation for this 
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396 observed phenomenon, and accounts for a better characterization of the adverse as well as the 

397 positive environment. Indeed, this is demonstrated here, being the characterization of the 

398 environment in terms of positive circumstances one of the innovative aspects of this study. It gives 

399 strong support for the theoretical framework used, since most of the studies in the area focus on 

400 measures characterizing the environment in terms of adversity only [18, 19]. Here we show that 

401 even when the starting point is a positive characterization of the environment, a moderation effect 

402 in agreement with the genetic differential susceptibility framework can be detected, in this case in 

403 relation to eating behavior. Applying this novel approach to the developmental neuropsychology 

404 and developmental origins of health and disease agenda guides the elaboration of more efficacious 

405 and cost-effective interventions, targeting individuals that would benefit the most from 

406 interventions. Furthermore, this broadens the scope of scientific evidence for interventions that 

407 focus on promotion of health rather than preventing diseases.
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