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Abstract 

Schizophrenia has a 1% incidence rate world-wide and those diagnosed present with positive 

(e.g. hallucinations, delusions), negative (e.g. apathy, asociality), and cognitive symptoms. 

However, both symptom burden and associated brain alterations are highly heterogeneous and 

intimately linked to prognosis. In this study, we present a method to predict individual symptom 

profiles by first deriving clinical subgroups and then using machine learning methods to perform 

subject-level classification based on magnetic resonance imaging (MRI) derived neuroanatomical 

measures. Symptomatic and MRI data of 167 subjects were used. Subgroups were defined using 

hierarchical clustering of clinical data resulting in 3 stable clusters: 1) high symptom burden, 2) 

predominantly positive symptom burden, and 3) mild symptom burden. Cortical thickness 

estimates were obtained in 78 regions of interest and were input, along with demographic data, 

into three machine learning models (logistic regression, support vector machine, and random 

forest) to predict subgroups. Random forest performance metrics for predicting the group 

membership of the high and mild symptom burden groups exceeded those of the baseline 

comparison of the entire schizophrenia population versus normal controls (AUC: 0.81 and 0.78 

vs. 0.75). Additionally, an analysis of the most important features in the random forest 

classification demonstrated consistencies with previous findings of regional impairments and 

symptoms of schizophrenia.  
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1. Introduction 

The clinical presentation of schizophrenia contains numerous symptom dimensions that are 

differentially expressed in individuals who suffer from this disorder (Tandon et al. 2009). The 

interaction between various risk factors (genetic, environmental, social, and lifestyle) have been 

implicated in the onset of schizophrenia, potentially impacting the development of a diverse 

number of neural circuits (Selemon and Zecevic 2015; Patel et al. 2014). Differential exposure 

and dosing of these risk factors (during critical periods), and individual-specific susceptibility 

factors, may result in the heterogeneity commonly observed in responsivity to treatment, 

frequencies and lengths of active and remissive periods, different levels of functional impairment, 

and diverging functional outcomes (Selemon and Zecevic 2015; Tandon et al. 2009). Several 

anatomical, volumetric, and morphological brain abnormalities have previously been observed in 

schizophrenia including overall reductions in brain volume and increases in ventricular sizes noted 

in postmortem analyses (Brown et al. 1986), and decreases in the volume and cortical thickness 

of frontal and temporal regions measured from magnetic resonance imaging (MRI) data (van Erp 

et al. 2018; Kuperberg et al. 2003; Honea et al. 2005; Glahn et al. 2008). Correlations between 

regional cortical thinning and schizophrenia symptomatology has been demonstrated in large 

scale studies (Walton et al. 2018, 2017). However, similar to clinical presentation, structural 

alterations of schizophrenia patients are also immensely heterogeneous. This variability is thought 

to reflect multiple etiologies of this spectrum disorder, which can be identified in data-driven ways 

by grouping patients with similar clinical or anatomical presentation.  

 

Significant evidence exists for the presence of clinical subtypes of schizophrenia (Crow et al. 

1986; Liddle 1987; Dollfus et al. 1996; Carpenter et al. 1976) which in turn have been shown to 

have distinct patterns of structural alterations (Nenadic et al. 2015; Nenadic et al. 2010; 

Koutsouleris et al. 2008). Conversely, data-driven methods have also been implemented to 

subtype patients based on structural and functional biomarkers (Yang et al. 2014; Clementz et al. 

2016; Dwyer et al. 2018; Brodersen et al. 2014). Thus, understanding the link between brain 

structure and symptom heterogeneity may be a critical first step to improving outcomes for 

patients. For example, previous studies have linked the persistence of negative symptoms to 

greater brain abnormalities to explain poorer functional outcomes (Li et al. 2018; Makowski et al. 

2017) 

 

Machine learning methods are powerful in identifying patterns of structural and functional 

impairment in widely-distributed brain regions for single-subject prediction tasks in schizophrenia 

(Zarogianni et al. 2013; Arbabshirani et al. 2017; Davatzikos et al. 2005). Current classifiers 

leveraging neuroimaging-based biomarkers are able to differentiate patients suffering with 

schizophrenia from normal controls with a sensitivity and specificity of about 80% (Kambeitz et 

al. 2015). Higher accuracies have been reported when patients are grouped based on symptom 

presentation (Nenadic et al. 2010). Improvements in predictive power based on clinical variables 

have also been demonstrated when patients have first been stratified into biologically 

homogeneous subgroups (Dwyer et al. 2018). Thus, defining clinically meaningful subgroups and 

using neuroanatomy to predict them may be an important step forward to understanding the 

neural basis for heterogeneity observed in schizophrenia.  
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In this manuscript, we use a data-driven approach to characterize the clinical heterogeneity in a 

schizophrenia sample. Further, we assess the feasibility of using neuroanatomical variables as 

predictors of individual clinical profiles. This combines two methodologies: 1) clinical variables 

were used to produce subgroups in a data-driven manner, then 2) cortical thickness features were 

used to predict symptom profiles.  

 

Data from SchizConnect (http://schizconnect.org) of 104 patients and 63 normal controls was 

used. Hierarchical clustering was performed on the patient symptom severity data, resulting in 

three stable clusters and representing patients with high symptom burden, predominantly positive 

symptom burden, and low symptom burden. Demographic variables and the average cortical 

thickness in 78 brain regions defined by the Automated Anatomical Labeling atlas (Tzourio-

Mazoyer et al. 2002) parcellations were used as input features into three machine learning 

algorithms (logistic regression, support vector machine, and random forest), and the subgroups 

as class labels. Random forest performance metrics for predicting the group membership of the 

high symptom burden and the mild symptom burden groups exceeded those of the baseline 

comparison of all patients versus normal controls. Further, the cortical regions that were the most 

informative predictors in each random forest classification task were different for each subgroup, 

indicating distinct neuroanatomical impairments in each subtype. Additionally, important features 

in the subgroup classification task were shown to be consistent with previous findings of regional 

impairments (Glahn et al. 2008; Bora et al. 2011; Honea et al. 2005) and symptom associations 

in schizophrenia (Allen et al. 2008; Sumich et al. 2005; Walton et al. 2017; Wylie and Tregellas 

2010) (e.g: right superior temporal gyrus (Shenton et al. 2001; Sun et al. 2009), left Heschl’s gyrus 

(Hirayasu et al. 2000) and the right insula (Nesvåg et al. 2008) for the high symptom burden 

group, the bilateral insula (Bora et al. 2011) for the predominantly positive symptom burden group, 

and the right anterior cingulate and paracingulate gyri and left insula (Kuperberg et al. 2003) for 

the mild symptom burden group). Once validated, integration of this type of technique in the clinic 

may potentially improve patient specific diagnosis and personalized treatment options. 

2. Materials and methods 

2.1 Dataset 

The T1-weighted magnetic resonance imaging (MRI) data and the scales for the assessment of 

positive and negative symptoms (SAPS/SANS) clinical measures of the Northwestern University 

Schizophrenia Data and Software Tool (NUSDAST) dataset (Wang et al. 2013) were downloaded 

from the SchizConnect website (http://schizconnect.org/). Demographics of the included subjects 

and the total scores of all SAPS and SANS items are shown in Table 1. 

 

Table 1: Demographic characteristics of the included subjects of the NUSDAST dataset 

Demographic Schizophrenia patients 
Mean (standard deviation) 

Normal controls 
Mean (standard deviation) 
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Sex 63 M / 41 F 35 M / 28 F 

Age 33.1 (12.4) 26.1 (10.5) 

SAPS 24.2 (18.0) - 

SANS 31.8 (19.1) - 

2.2 MRI pre-processing and cortical thickness estimation 

MRI pre-processing was performed using the automated minc-bpipe-library pipeline 

(https://github.com/CobraLab/minc-bpipe-library). Briefly, bpipe performs bias field correction 

using a variant of N4ITK (Tustison et al. 2010), registration to a common space using a 12 

parameter affine transformation (Collins et al. 1994), removal of non-head regions (such as the 

neck), and brain extraction using BEaST (Eskildsen et al. 2012). Then, cortical thickness was 

estimated at 81,924 vertices using the fully automated CIVET pipeline 

(http://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET, version: 1.1.12) (Ad-Dab’bagh et al. 

2006; Zijdenbos et al. 2002). The typical image processing steps of CIVET are: linear registration 

to the MNI ICBM 152 average (Collins et al. 1994), non-uniformity correction (Sled et al. 1998), 

brain extraction (Smith 2002), tissue classification into white matter (WM), gray matter (GM) and 

cerebrospinal fluid (CSF) using priors derived from nonlinear registration and accounting for 

partial volume effects (Tohka et al. 2004), GM-WM and GM-CSF surface extraction and 

registration (MacDonald et al. 2000; Kim et al. 2005; Kabani et al. 2001), and estimation of cortical 

thickness at 81,924 vertices (Lerch and Evans 2005).  All the steps of CIVET were performed 

except for the non-uniformity correction, which was performed using the improved N4ITK as a 

pre-processing step (Eskildsen et al. 2012). The cortical thickness values measured by CIVET 

were reduced to 78 mean cortical thickness values using parcellations defined by the automated 

anatomical labeling (AAL) atlas (Tzourio-Mazoyer et al. 2002).  

2.3 Machine learning analyses 

The clinical heterogeneity in a schizophrenia dataset was characterized by demarcating subtypes 

using clustering of SAPS/SANS clinical variables. Further, cortical thickness features were used 

as predictors of clinical profiles (i.e. cluster memberships) at the single-subject level.  

2.3.1 Cluster definition and stability 

Agglomerative hierarchical clustering was implemented on z-scored clinical data (59 SAPS/SANS 

items) of the study participants with a schizophrenia diagnosis (N=104), to identify clinical 

subgroups of disease presentation. Hierarchical clustering was performed by building a 

dendrogram, where subject similarity was Euclidean distance, and group linkage was based on 

Ward’s criterion (Ward 1963). The number of clusters present in the dataset was determined 

based on a cluster stability analysis introduced by Ben-Hur et al. (Ben-Hur et al. 2002). Briefly, 

two subsamples were randomly selected, each consisting of 80% of the original number of study 

participants and then independently clustered, into 2-, 3-, and 4- clusters. In each of the two 

subsamples, a comparison matrix is generated where an entry of 1 is given if two study 
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participants are clustered together. The similarity between the comparison matrices of the two 

subsamples is assessed by computing the fraction of entries on which the two agree, in the set 

of subjects that they have in common, resulting in a matching fraction between 0 and 1 (Ben-Hur 

et al. 2002). To probe stability, this process was repeated 1000 times, for each of the 2-, 3-, and 

4- number of clusters, and plotted as individual histograms. Permutation analysis was performed 

to ensure that the clusters are representative of distinct groups irrespective of the input dataset. 

Differences in the distributions of stability fractions between each of the histograms were 

assessed using Kolmogorov-Smirnov tests (Kolmogorov 1992; Smirnov 1939). The optimal 

number of clusters was selected based on the histogram distribution where the majority matching 

fractions in the permutations were greater than random, and which significantly differed from other 

cluster solutions. The 5-cluster solution was not significantly different from the 4-cluster solution 

(p = 0.08) based on a two-sample K-S test, therefore it was not included in the analysis. The 4-

cluster solution shows very poor stability, being left-skewed, with the center on 0.5. The 2-cluster 

solution showed the greatest stability, with most matching fractions exceeding 0.6. However, an 

analysis of the heatmap, Fig. 1A, information indicates that the second cluster contains a 

subgroup of patients with higher SAPS values, evident in the warmer colors grouped together on 

the right side and near the center of the heatmap; thus, partitioning the patients into two clusters 

does not created clinically homogeneous groups. The 3-cluster solution was relatively stable, with 

a higher proportion of permutations having an acceptable value ≥ 0.6, as compared to those falling 

on or below 0.5. Additionally, the 3- and 4-cluster solutions had significantly different distributions 

(p = 2.4 x 10-18, K-S test), and the 4-cluster solution had only 8 patients in one of the clusters; 

thus, the 3-cluster solution was considered to be more reliably stable for subsequent analyses. 

Based on the results of these histograms, the 3-cluster solution (3 subgroups) was selected for 

further analysis. 

2.3.2 Single-subject prediction using supervised learning 

Logistic regression (LR), support vector machine (SVM), and random forest (RF), were used to 

perform single-subject prediction into their respective class (schizophrenia vs. normal control, 

clinical subgroup vs. normal control, subgroup vs. subgroup). These classifiers have been 

previously successfully applied in schizophrenia classification studies (Arbabshirani et al. 2017; 

Zarogianni et al. 2013), and are relatively simple, easily interpretable, and robust. LR was chosen 

because it has few hyperparameters and is robust to overfitting with regularization. SVM and RF 

were chosen because they are both discriminative, capable of handling large amounts of data, 

and can capture non-linear relationships across input features. Three classification methods were 

investigated to provide a comparison between methods commonly used in literature and prevent 

making a priori assumptions on the results. Additionally, given the small sample size, achieving 

similar results with different models increases the confidence of our conclusions. Further, we have 

commonly employed this strategy in the examination of subject-level classification using 

neuroanatomical measures (Winterburn et al. 2017; Bhagwat et al. 2018). 

 

All study participants in the NUSDAST cohort (N=167) were used, with features of each subject 

being the mean cortical thickness measurements in the 78 AAL atlas regions and age and sex 

demographic information (80 input features). Each task was set up as a binary classification 

problem, where the prediction target is either a 0 or 1. First, the classification task of classifying 
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all schizophrenia patients versus all normal controls was performed as the case-control study. 

This case-control task gives a baseline for comparison for the clinical subgroup classifications. 

Next, three classification tasks consisting of each of the three clinical subgroups versus normal 

controls was performed, to assess the ability of differentially diagnosing across subgroups. 

Finally, each clinical subgroup was classified against every other clinical subgroup. Demographic 

information is included as inputs to the models to account for the known effects of age (Tamnes 

and Østby 2018), and sex differences (Ruigrok et al. 2014) on brain structure in both normal 

development and psychiatric disorders. Studies of normal brain development consistently 

observe reductions in cortical thickness beginning in childhood, continuing through the adolescent 

and adulthood periods (Lemaitre et al. 2012). Furthermore, sex differences in the trajectories of 

normal cortical maturation (Mutlu et al. 2013), and in schizophrenia (Narr et al. 2005) have been 

reported. Sex differences in prevalence (McGrath et al. 2008), age of onset (Abel et al. 2010), 

clinical presentation (Abel et al. 2010), and functional outcome (Grossman et al. 2008) are also 

observed. Also, from a feature selection perspective, inclusion of demographic information 

improves feature learning and predictive performance of classifiers (Struyf et al. 2008).  

 

Stratified nested 5-fold cross-validation was performed to optimize the hyperparameters and 

assess the performance of each of the models (LR, SVM, RF). This procedure consists of 5-fold 

cross-validation in the outer loop, and 3-fold cross-validation in the nested loop as shown in 

Supplementary Fig. 1. In the inner loop, gridsearch was implemented to exhaustively search the 

space of all combinations from reasonable hyperparameter ranges (see Supplementary Material). 

From the outer loop, several performance metrics can be calculated, including accuracy, 

sensitivity and specificity (see Supplementary Fig. 3). For our binary classification task, the 

receiver operating characteristic (ROC) curve was generated by plotting (1-specificity) versus 

sensitivity at various thresholds. The area under the ROC curve (AUC) is reported as the 

performance metric for each the test sets. Thus, the overall performance of the model is reported 

as the average performance over the five test sets. All machine learning analysis was performed 

in the Python programming language using the Scikit-learn library (http://scikit-learn.org/stable/, 

version: 0.19.1) (Garreta and Moncecchi 2013). 

2.3.3 Testing the generalizability of the proposed methods 

There is evidence to suggest that attempting to cluster subjects into groups and then use 

machine learning techniques to predict this class membership may result in overfitting in some 

cases (Dinga et al. 2018). To examine if this was the case in the proposed framework, a proof-

of-concept analysis was performed where within each of the 5 folds of the cross-validation task, 

clusters were generated, and the entire classification task was re-ran with these new labels in 

each of the 5 folds. AUC was used for pairwise comparison of the performance in each of the 

folds (Supplementary Table 1).  
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3. Results 

3.1 Schizophrenia subgroup determination using hierarchical clustering 

Hierarchical clustering results are shown in Fig. 1. The 2-, 3-, and 4- cluster stability analyses are 

shown in Supplementary Fig. 2 A), B), and C), respectively, indicating the frequency of each 

matching fraction.  

 

Dividing the dendrogram into three clusters (blue, green, and red in Fig. 1A partitions the patients 

into those with (1) high loads of both negative and positive symptoms (blue), (2) predominantly 

positive symptoms (green), and (3) mild symptom burden (red), as compared to the average 

population (Fig. 1C and D show the average z-scored SAPS and SANS items across the 

subscales). The demographics of these groups are given in Fig. 1B, showing that the groups 

contain a similar number of study participants (Group 1: 27, Group 2: 36, Group 3: 41), have 

similar average ages (Group 1: 31.3, Group 2: 35.8, Group 3: 31.8), but have a higher proportion 

of males in each cluster (Group 1: 15 M / 12 F, Group 2: 22 M / 14 F, Group 3: 26 M / 15 F).  

3.2 Single-subject prediction of individual symptom profiles in schizophrenia 

Case-control classification: Schizophrenia population vs. normal controls results are 

summarized in the first row of Fig. 2A as ROC curves, and in Fig. 2B summarizing AUC values. 

These figures show that the case-control classifiers perform well above chance and have similar 

performance (LR: 0.69 ± 0.13, RF: 0.75 ± 0.14, SVM: 0.71 ± 0.08), with RF performing the best.  

 

Subgroups versus normal controls classification: Fig. 2B summarizes the AUC values of the 

classification results of groups 1 (high symptom burden), 2 (predominantly positive symptoms) 

and 3 (mild symptom burden) versus normal controls for each of the models. The AUC of the 

group 1 classification is consistently better than the case-control across all of the classifiers (LR: 

0.74 ± 0.13, RF: 0.81 ± 0.11, SVM: 0.80 ± 0.14). However, the AUC of the group 2 classification 

is poorer than the case-control study for all classifiers (LR: 0.61 ± 0.11, RF: 0.61 ± 0.13, SVM: 

0.61 ± 0.04).  Additionally, for the RF model, the group 3 classification shows slight improvement 

in AUC over the baseline comparison (LR: 0.65 ± 0.11, RF: 0.78 ± 0.08, SVM: 0.63 ± 0.09). To 

assess the significance of the subgroup classifications performing better than the case-control 

study, the nonparametric Mann-Whitney-U test (Mann and Whitney 1947) was performed on the 

AUC results following 10 repetitions of the 5-fold cross-validation tasks. Group 1 (high symptom 

burden; RF: p = 0.013) classification was significantly better than the case-control classification 

only for the RF classifier (LR: p = 0.14, SVM: p = 0.35). Additionally, the RF group 3 (mild symptom 

burden) classification was significantly better than the case-control study (p = 0.022). 

 

Subgroup by subgroup classification: The AUC values of the classification results showing the 

group 1 (G1; high symptom burden) versus group 2 (G2; predominantly positive symptoms), 

group 1 versus group 3 (G3; mild symptom burden) and group 2 versus group 3 are shown in 

Supplementary Fig. 4. From these results we can see that the AUCs for all the comparisons, 

across all the classifiers, was around chance (AUC: 0.50).  
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3.3 Analysis of random forest classification results 

To assess which cortical regions were driving the classification in the three subgroups, the top 

ten most relevant features in the RF algorithm, were extracted (Fig. 3, full list of regions provided 

in Supplementary Table 2), where individual colors are not meaningful. The left anterior cingulate 

and paracingulate gyri were of high importance for discriminating all groups against normal 

controls. The G1 and G2 classifications were additionally driven by the right insula, and the left 

temporal poles of the superior temporal and middle temporal gyri. Finally, G2 and G3 classification 

was commonly driven by the left insula. However, the regions unique to each subgroup 

classification provide better insight into their differentiability. In particular, for the high symptom 

burden group (G1 vs. NC) classification, the right superior temporal gyrus and the left Heschl’s 

gyrus were important in classification. For the predominantly positive symptom burden group (G2 

vs. NC), the orbital part of the right inferior frontal gyrus and the medial orbital part of the superior 

frontal gyrus were uniquely important regions for this classification. Finally, two of the important 

predictors of the mild symptom burden group (G3 vs. NC), were the right anterior cingulate and 

paracingulate gyri. 

3.4 Generalizability of the proposed methods 

Overall, only two of the three machine learning methods were able to predict the new group 

memberships properly after integrating the clustering in each of the 5 folds (Supplementary 

Table 1). RF performed extremely well across each of the folds and provided AUC values 

ranging from 0.67-0.94, in line with the results previously presented. Performance dips slightly 

for LR, where most folds demonstrate AUC between 0.65-0.91; however, in the classification of 

one of the clusters in two of the folds a drop in performance is observed (0.45 and 0.55). SVM, 

however demonstrates limited performance for this task, with AUC values ranging from 0.42-

0.77 (although 0.94 was achieved in the classification of one cluster in a single fold). Taken 

together, these findings suggest that the methodology here may be generalizable with the 

correct combination of clustering technique and machine learning methodology. 

 

 



 
 

 

 



Fig. 1:  A) Heatmap and left-adjacent dendrogram (tree-diagram) representing agglomerative 

hierarchical clustering of the 104 NUSDAST study participants (rows of the heatmap) according 

to their 59 z-scored SAPS/SANS clinical features (columns of the heatmap). The blue, green, 

and red delineations illustrate the 3-cluster solution, separating patients into those having high 

SAPS/SANS, high SAPS, and low SAPS/SANS respectively, relative to the average. B) Group-

wise demographic information of the three clusters. C) Radar plot and D) bar graph of the 

average z-scored SAPS/SANS items in the high symptom burden (Group 1, blue), 

predominantly positive symptom burden (Group 2, green), and mild symptom burden (Group 3, 

red) groups averaged across the major categories of the SAPS (hallucinations, delusions, 

bizarre behaviour, and positive formal thought disorder) and SANS (blunting, alogia, apathy, 

asociality, attention) scales. 
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Fig. 2:  A) LR, SVM, and RF receiver operator characteristic (ROC) curves for the four 

comparisons: all schizophrenia patients versus normal controls (SZ vs NC), group 1 (high 

symptom burden) (G1 vs NC), group 2 (predominantly positive symptom burden) (G2 vs NC), 

and group 3 (mild symptom burden) (G3 vs NC) versus normal controls. B) Summary of 

classification results of LR, RF, and SVM on patients in Group 1 (G1 vs. NC; blue), 2 (G2 vs.  

NC; green), 3 (G3 vs.  NC; red), and all schizophrenia patients (SZ vs. NC; gray) versus normal 

controls. Legend: LR = logistic regression, RF = random forest, SVM = support vector machine, 

ROC = receiver operator characteristic, AUC = area under ROC curve, SZ = schizophrenia, NC 

= normal control, G1 = high symptom burden group, G2 = predominantly positive symptom 

burden group, G3 = mild symptom burden group. 

 

 

 



 
Fig. 3: The 10 most important features in performing the RF classification of the high symptom 

burden (G1 vs NC), predominantly positive symptom burden (G2 vs NC), and mild symptom 

burden (G3 vs NC) groups versus normal controls. Legend: NC = normal control, G1 = high 

symptom burden group, G2 = predominantly positive symptom burden group, G3 = mild 

symptom burden group. 

 

 

 



4. Discussion 

The goal of this manuscript was to investigate classification of data-driven clinical subgroups from 

neuroanatomical features. Using hierarchical clustering of SAPS/SANS individual items, three 

subgroups of clinical presentation were defined (high symptom burden, predominantly positive 

symptom burden, and low symptom burden). Cortical thickness measurements were used as 

inputs into three classifiers (LR, SVM, RF) to predict these clinical profiles. All three classifiers 

predicted the high symptom burden group with an AUC higher than the case-control study. 

Additionally, the RF classifier also outperformed the case-control study in predicting the mild 

symptom burden group. Our results suggest that these data-derived subgroups can be attributed 

to distinct structural alterations. Extracting the most predictive features in the RF classification 

suggested that different regions were more informative for the classification of each subgroup vs 

controls. 

 

Data-driven methods for characterizing schizophrenia heterogeneity have previously been 

employed and are based on grouping either clinical or neuroanatomical attributes. Both Dollfus et 

al. and Carpenter et al. used hierarchical clustering to obtain schizophrenia subtypes (Dollfus et 

al. 1996). The present work most closely emulates the work by Dollfus et al. who also 

implemented hierarchical clustering using Ward’s method on SAPS/SANS measures and 

identified four subtypes of presentation: mild symptom burden, high symptom burden (mixed), 

predominantly positive symptom burden, and predominantly negative symptom burden; three of 

which are similar to the subgroups presented here (Dollfus et al. 1996). However, a limitation of 

the study by Dollfus et al. is that they did not perform stability analysis, which would improve the 

confidence of the cluster solutions. More recently, Clementz et al. took a different approach and 

subgrouped patients based on an extensive biomarker panel, introducing psychosis biotypes 

(biologically distinctive phenotypes), which has since led many research groups to investigate the 

feasibility of clustering study participants based on structural and functional biomarkers for the 

goal of providing a neurobiological-based subtyping (Yang et al. 2014; Clementz et al. 2016; 

Dwyer et al. 2018; Brodersen et al. 2014). The biotypes concept has been invaluable to deepening 

our understanding of schizophrenia. However, a limitation of biotypes from the clinical perspective 

may be the lack of accepted biomarker panel validated for use in schizophrenia research. Further, 

the types of biomarker data acquired by the Bipolar and Schizophrenia Network for Intermediate 

Phenotypes (BSNIP) may be lengthy and costly to acquire (Tamminga et al. 2014). Also, 

treatment options are still typically linked to clinical performance and treatment tolerance. As such, 

clinical assessments remain the easiest and most cost-effective ways of providing a diagnosis 

and studying the clinical heterogeneity of schizophrenia. 

 

The choice of the number of clusters included in a specific analysis using data driven techniques 

is often left to the discretion of the researcher and is often considered a design choice. From this 

perspective, the decision to use three clusters rather than 2 is an important design decision. 

Firstly, three subtypes have been defined in the past using other data driven techniques (Liddle 

1987; Malla et al. 1993; Nenadic et al. 2015). Further the symptom dimensions that we describe 

in the different clusters is indeed consistent with previous studies (Dollfus et al. 1996). From the 

perspective of design choices there are several considerations that one must give towards 
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specific methodological choices made, particularly when using a data-driven approach.  We have 

had success employing hierarchical clustering as a method for elucidating subtypes in the past 

(Bhagwat et al., 2018) using a method similar to the one used here (albeit using longitudinal data).  

Others have criticized this design decision due to concerns over the imposed tree structure, 

sensitivity to the similarity metric used to assess similarity, and subjective evaluation required to 

define clusters (Brunet et al., 2004). While we did employ hierarchical clustering, we also 

computed a measure of stability using permutations. However, when comparing the stability 

results associated with different permutation, we further incorporated the information associated 

with performing multiple random selections of subsets of the data.  It should also be noted that 

hierarchical clustering provides an easily interpretable finding that consistently gets used in the 

literature (Ellegood et al. 2015; Felice Reddy et al. 2014; Velthorst et al. 2018; Crouse et al. 2018).  

Further examination of clustering methodology and its impact on subtype definition is required. 

 

Zarogianni et al., and Arbabshirani et al., both reviewed the use of MRI-derived features in 

predicting a schizophrenia diagnosis, summarizing numerous studies in which measures of brain 

morphometry have been shown to be discriminative (Arbabshirani et al. 2017; Davatzikos et al. 

2005). Of which, Davatzikos et al. was the first to show the capability of an SVM classifier in 

assigning a subject-specific diagnosis based on tissue density maps and achieving 81% accuracy 

(Davatzikos et al. 2005). Kambeitz et al. performed a meta-analytic study of 38 papers and 

showed that structural features were able to differentiate schizophrenia patients from normal 

controls with sensitivity and specificity of 76.4% and 79% respectively (Kambeitz et al. 2015). 

Unfortunately, these and other schizophrenia diagnosis classification results presented in the 

literature are not yet at a level that would be acceptable for clinical use; thus, Dwyer et al. 

investigated whether patient subtyping based on gray matter volumes, as derived from MRI, 

would increase the predictive power of classification against normal controls (Dwyer et al. 2018). 

They showed that classification accuracy using clinical variable inputs in predicting the two 

subgroups, was higher than predicting the entire schizophrenia patient population versus normal 

controls (accuracy: 73% and 78.8% versus 68.3%) (Dwyer et al. 2018). Based on a similar 

hypothesis, in the present study, cortical thickness features were used as predictors of our defined 

subgroups, to test whether clinical heterogeneity within the schizophrenia population is presenting 

as different structural alterations and hindering the classifier from learning the patterns of 

pathological presentation, thus saturating the case-control performance. Our results show that 

RF performed better at predicting the group membership of the high and mild symptom burden 

groups, as compared to the baseline classification task (AUC: 0.81 and 0.78 vs. 0.75).  

 

Many of the features extracted by our RF-feature importance analysis were in line with previous 

findings of structural impairments and have been linked to the clinical presentation of 

schizophrenia. For each of the subgroup versus normal control classifications the insula was 

identified as an important feature in classification (high symptom burden: right insula, 

predominantly positive symptom burden: bilaterally, mild symptom burden: left insula). This region 

is implicated in emotional and sensory processing, and impairments have been hypothesized to 

be associated with negative symptoms and hallucinations (Wylie and Tregellas 2010). Numerous 

studies have shown volume reduction in the insula (Glahn et al. 2008; Bora et al. 2011), in addition 

to cortical thickness differences in the left (Kuperberg et al. 2003), right (Nesvåg et al. 2008), and 
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bilaterally  (Bora et al. 2011; Allen et al. 2008) in schizophrenia patients. The results presented 

here indicates that the right, bilateral and left insula are important predictors of high symptom 

burden, predominantly positive symptom burden, and mild symptom burden subgroups 

respectively. This may reflect the importance of patient subtyping based on clinical measures, 

and the assessment of the insular effects of each subtype. The left anterior cingulate and 

paracingulate gyrus were important features in the classification of all the three subgroups. These 

regions are associated with executive function in healthy individuals (Carter et al. 1999), with 

leftward asymmetry linked specifically to executive tasks in males (Fornito et al. 2004). Volume 

reductions of the anterior cingulate have been noted in schizophrenia patients (Glahn et al. 2008; 

Bora et al. 2011). Since each subgroup has a higher proportion of males, it is expected that this 

region would appear as a discriminant feature and be lateralized to the left hemisphere. The right 

superior temporal gyrus and left Heschl’s gyrus were two of the most important features in the RF 

classification of the high symptom burden group. Reductions of both the volume of the superior 

temporal gyrus (Shenton et al. 2001; Sun et al. 2009), and the volume of Heschl’s gyrus (Hirayasu 

et al. 2000) have been noted in schizophrenia patients. These two regions contain the primary 

auditory cortex, and impairments have been associated with auditory hallucinations in 

schizophrenia (Bora et al. 2011; Allen et al. 2008; Honea et al. 2005). Walton et al., found a 

negative relationship between positive symptom severity and bilateral thickness in the superior 

temporal gyrus in the ENIGMA Schizophrenia Working Group consortium dataset containing 

nearly 2000 schizophrenia patients (Walton et al. 2017). Similarly, in a study by Sumich et al. 

(Sumich et al. 2005), reductions in the left Heschl’s gyrus were associated with hallucinations and 

delusions.  

 

A number of limitations should be noted in this study. The results presented in this manuscript 

were based on a relatively small sample set, consisting of a total of 167 study participants, patients 

were divided into three subgroups, and study participants were further split into 5 partitions for 

cross-validation. Recently numerous studies have criticized the use of small sample sizes for 

single-subject prediction of brain disorders tasks (Arbabshirani et al. 2017; Woo et al. 2017), 

however, our study is limited by data availability, the decision to prioritize data quality, and 

practicing proper machine learning protocols. To assess the generalizability of the method 

presented in this manuscript it is important to test it on an external validation dataset. Only one 

dataset contained in Schizconnect (http://schizconnect.org/) was used in this analysis; however, 

data from multiple other consortia are available, a subset of which provide SAPS/SANS clinical 

patient information. The functional biomedical information research network (fBIRN) (Keator et al. 

2016) and the Neuromorphometry by Computer Algorithm Chicago (NMorphCH) 

(http://nunda.northwestern.edu/nunda/data/projects/NMorphCH) datasets contained in 

SchizConnect both have T1-weighted MRIs and SAPS/SANS data. However, each site has 

different scanning protocols and clinical measure raters. First attempts to add the study 

participants from the fBIRN and NMorph datasets to the clustering analysis presented in this 

manuscript also produced three clusters, however these separated patients into their respective 

datasets. Future work includes investigating methods for integrating multiple sites into this 

analysis to increase the sample size. However, we did attempt to address this issue by integrating 

the clustering within the 5-fold cross-validation performed in our study. As suggested by others, 

the nature in which the clustering and training and testing is performed may have a significant 
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impact on the results obtained and may limit the generalizability of the final model. We observe 

that two of our machine learning models perform well in this configuration but with limited 

generalizability for SVM-based classifications. This recalls the no free lunch theorem which states 

that, on average, no machine learning algorithm will perform better than others over a broad class 

of problems (Davatzikos et al. 2018).  However, in the present context, it is likely that the 

distributions being examined are most easily separated using simple linear models as we show 

here. In fact, experts in the field have called for examining the problem over a wide range of 

machine learning classes (as we have done here and previously (Bhagwat et al. 2018; Winterburn 

et al. 2017) rather than a single one (as done in (Dinga et al. 2017)) to determine which models 

may be best for a specific problem. Another limitation of this study is that binary classification of 

each subgroup was performed against normal controls. The results of this type of classification 

are highly dependent on the neuroanatomical data of the cohort of controls. Future analysis 

should include validating these results with a different cohort of study participants. Additionally, a 

multi-class classifier, capable of predicting whether an individual belongs to one of the subgroups 

or the class of normal controls, would have more clinical utility; however, previous studies have 

also employed the strategy used here since subgroups may have overlapping patterns of 

alterations (Gould et al. 2014). Poor performance was achieved when multi-class and subgroup 

versus subgroup classifiers were implemented. It is likely that larger sample sizes are required to 

properly perform classification at the single subject-level.  Further, we had attempted to integrate 

MRI data from other datasets to determine if we could augment the sample size using multi-site 

data and attempted to generalize the findings across samples. However, we found that the 

clustering methodology for defining the initial subtypes was more sensitive to site groupings rather 

than clinical groupings. While there are many initiatives underway to deal with site differences in 

univariate analyses related to schizophrenia (van Erp et al. 2016; Thompson et al. 2014), there 

are limited methods available at the moment to accommodate this in small-to-moderate samples 

sizes. This is likely due to differences in severity related to inclusion/exclusion criteria or the nature 

of the population under study as well (e.g.: community dwelling vs. institutionalized).  As data-

driven and machine learning approaches increase in popularity, these issues related to site 

differences will require resolution. From the perspective of experimental design, other measures 

outside of cortical thickness, such as surface area or subcortical volume, may have increased 

classifier accuracy or provided a more complete picture of the effects of the pathology. Finally, it 

is important to note that there is a demonstrated effect of antipsychotics on brain volumes and 

typical antipsychotics have been associated with greater cortical thinning than atypical 

antipsychotics (Ho et al. 2011; van Haren et al. 2011; Ansell et al. 2015). However, this was not 

studied here, and thereby no conclusions can be drawn concerning the effects on our results.  

 

Overall, this study demonstrates that significant heterogeneity exists in the clinical presentation 

of the schizophrenia population, and techniques such as the one proposed are a step towards 

providing single-subject diagnosis based on objective measures of disease. A future direction 

would be to predict symptom severity scores directly from neuroanatomical variables for the future 

goal of detecting subjects that are at risk for developing the disorder.  
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Appendix: Supplementary Material 

Logistic Regression (LR) is a linear classification technique, where the weights applied to each 

feature are determined through an iterative technique (gradient descent) that minimizes a cost 

function (log-likelihood). Regularized LR with ridge regression (L2) penalty was implemented, 

where the hyperparameter that was optimized was the regularization strength, tuned to be a 

power of 10 in the range [-3,8]. 

 

Support Vector Machine (SVM) is also a linear classification technique, which finds the optimal 

hyperplane that maximizes the margin of separation between the features of the examples of 

opposing classes. In the case of non-linearly separable data, nonlinear kernel functions (such as 

quadratic, polynomial, or gaussian (radial basis function (RBF))) are used to map the features to 

a higher order feature space.  The hyperparameters of SVM that were tuned were the soft margin 

parameter, kernel coefficient (gamma), and the kernel type. The soft margin parameter 

hyperparameter affects the trade-off between allowing for mis-classified examples and 

maximizing the margin and was optimized to be a power of 10 in the range [-3,8].  The kernel was 

optimized to be either ‘linear’, ‘polynomial’, ‘RBF’, or ‘sigmoid’; while the kernel coefficient was 

tuned as a power of 10 in the range [-5,5]. 

 

Random Forest (RF) is an ensemble classification method composed of a number of decision 

trees, where the class is predicted based on a majority vote. The hyperparameters of RF are the 

number of trees allowed in the forest, tuned in the range of [10,150] taking steps of 10, and the 

minimum number of examples for each split, where 2, 4, or 8 minimum examples were tested. 

 



 
Supplementary Figure 1: Performance of classifiers was evaluated using nested cross-

validation consisting of 5-fold cross-validation in the outer loop, and 3-fold cross-validation in the 

nested loop. 

 

 
Supplementary Figure 2: Histograms showing the frequency of each stability metric (0 : poor, 1 : 

perfect) over 1000 permutations in the A) 2- B) 3- and C) 4- cluster solutions respectively. 



 
Supplementary Figure 3: Confusion matrix and accuracy, sensitivity, and specificity 

performance metrics. 

 

 
Supplementary Figure 4: Summary of classification results of LR, RF and SVM on patients in 

group 1 (high symptom burden) vs. group 2 (predominantly positive symptoms) (G1 vs. G2; 

pink), group 1 vs.  group 3 (mild symptom burden) (G1 vs. G3; gray), and group 2 vs. group 3 

(G2 vs. G3; violet). 

 

Supplementary Table 1: Summary of AUC performance results for LR, RF and SVM in each 

folds of the cross-validation task on patients with newly determined group membership after 

repeating clustering analysis vs. NC 

Fold Classifier AUC performance metric for newly defined subgroups versus NC 

Group 1 Group 2 Group 3 



1 LR 0.76 ± 0.15 0.65 ± 0.11 0.79 ± 0.13 

RF 0.77 ± 0.06 0.81 ± 0.12 0.75 ± 0.16 

SVM 0.77 ± 0.16 0.53 ± 0.18 0.70 ± 0.21 

2 LR 0.70 ± 0.09 0.67 ± 0.16 0.77 ± 0.16 

RF 0.83 ± 0.06 0.74 ± 0.10 0.72 ± 0.19 

SVM 0.55 ± 0.16 0.66 ± 0.19 0.70 ± 0.15 

3 LR 0.45 ± 0.09 0.74 ± 0.15 0.91 ± 0.14 

RF 0.67 ± 0.08 0.83 ± 0.07 0.94 ± 0.05 

SVM 0.57 ± 0.09 0.48 ± 0.34 0.94 ± 0.06 

4 LR 0.70 ± 0.08 0.62 ± 0.12 0.66 ± 0.14 

RF 0.82 ± 0.15 0.73 ± 0.12 0.75 ± 0.14 

SVM 0.55 ± 0.20 0.64 ± 0.22 0.60 ± 0.15 

5 LR 0.63 ± 0.12 0.55 ± 0.14 0.70 ± 0.17 

RF 0.75 ± 0.09 0.69 ± 0.10 0.71 ± 0.15 

SVM 0.71 ± 0.09 0.54 ± 0.15 0.44 ± 0.23 

 

Supplementary Table 2: 10 most important AAL regions in the RF classification 

 Left hemisphere Right hemisphere 

G1 vs. NC - Olfactory cortex 
- Heschl’s gyrus 
- Temporal pole: superior 
temporal gyrus 
- Superior frontal gyrus, 
medial orbital 
- Temporal pole: middle 
temporal gyrus 
- Inferior frontal gyrus, orbital 
part 
- Anterior cingulate and 
paracingulate gyri 

- Superior temporal gyrus 
- Insula 
- Median cingulate and 
paracingulate gyri 

G2 vs. NC - Anterior cingulate and 
paracingulate gyri 
- Calcarine fissure and 
surrounding cortex 
- Temporal pole: middle 
temporal gyrus 
- Parahippocampal gyrus 
- Temporal pole: superior 
temporal gyrus 
- Insula 

- Inferior frontal gyrus, orbital 
part 
- Superior frontal gyrus, 
medial orbital 
- Insula 
- Gyrus rectus 

G3 vs. NC - Anterior cingulate and 
paracingulate gyri 
- Supramarginal gyrus 
- Insula 
- Inferior frontal gyrus, 
triangular part 

- Precentral gyrus 
- Anterior cingulate and 
paracingulate gyri 
- Middle frontal gyrus orbital 
part 
- Inferior occipital gyrus 
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