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Abstract

The central theme of this dissertation is the development of a new approach to con-
ceptualize and quantify dependence structures of capture-recapture data for closed -
populations, with specific emphasis on epidemiological applications. We introduce
a measure of source dependence: the Coefficient of Incremental Dependence (CID).
Properties of this and the related Coefficient of Source Dependence (CSD) of Vandal,
Walker, and Pearson (2005) are presented, in particular their relationships to the con-
ditional independence structures that can be modelled by hierarchical joint log-linear
models (HJLLM). From these measures, we develop a new class of marginal log-linear
models (MLLM), which we compare and contrast to HJLLMs.

We demonstrate that MLLMs serve to extend the universe of dependence struc-
tures of capture-recapture data that can be modelled and easily interpreted. Further-
more, the CIDs and CSDs enable us to meaningfully interpret the parameters of joint
log-linear mddels previously excluded from the analysis of capture-recapture data for
reasons of non-interpretability of model parameters.

In order to explore the challenges and features of MLLMs, we show how to produce
inference from them under both a maximum likelihood and a Bayesian paradigm.
The proposed modelling épproach performs well and provides new insight into the

fundamental nature of epidemiological capture-recapture data.



Résumé

Le theme central de la présente theése est le développement d’une nouvelle approche
conceptuelle et quantitative envers les structures de dépendance de données de capture-
libération obtenues de population fermée, particulierement en ce qui concerne les
applications épidémiologiques. On propose une mesure de dépendance des sources
de données : le coefficient de dépendance incrémentielle (CID). On démontre les pro-
priétés de cette mesure et du coefficient de dépendance de source (CSD) de Vandal et
al. (2005), en particulier leurs relation avec les structures d’indépendance condition-
nelle habituellement modélisées a I’aide de modeles log-linéaires hiérarchiques conjoint
(HJILLM). A partir de la forme des deux mesures, on développe une nouvelle classe
de modeles log-linéaires marginaux (MLLM), que nous comparons et contrastons aux
HILLM. |

On démontre que les MLLMs élargissent I'univers des structures de dépendance
de données de capture-libération qui peuvent étre modélisées et aisement interprétées.
De plus, les CID et CSD permettent une interprétation des parameétres des modeles
log-linéaires non hiérarchiques. Auparavant, ces modeles étaient exclus de ’analyse
des donﬁées de type capture-libération & cause de l'impossibilité d’interpréter les
parametres du modele.
| Afin d’explorer les problématiques et les caractéristiques des MLLM, on présente
des résultats de 'approche de vraisemblance ainsi que de I’approche bayésienne. Pour

résumer, I’approche de modélisation proposée offre des résultats satisfaisants et ouvre
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de nouvelles perspectives sur la nature méme des données de capture-libération dans

le domaine de 1’épidémiologie.
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Overview

In this dissertation we present a new modelling approach for capture-recapture data
of closed pop_ulations. The main motivation for the work is the application of capture-
recapture methodology (CRM) to epidemiology; in this context several overlapping
- sources of data that record individuals with the condition of interest are used. Sta-
tistical modelling is used to account for the features of the observed data in order
to estimate the unknown total number of individuals N with the condition of inter-
est. CRM is particularly useful for (a) populations that are hard to count perhaps
because the individuals, such as intravenous drﬁg ﬁsers, do not wish to be identified,
and (b) for rare conditions, such as amyotrophic lateral sclerosis, an acute disease of
the central nervous system, for which alternative enumeration approaches would be
prohibitively expensive. |

Dependence between sources is the primary feature to take into account when
undertaking statistical modelling of capture-recapture data. One of the most com-
mon approaches is the use of joint log-linear models in which sources are treated as
factors and source dependence is modelled via the inclusion of interaction terms. In
particular, hierarchical joint log-linear models are most widely used in order to model
conditional dependence structures, maintain interpretability of model parameters and
apply theory from graphical models. |

The central theme of this dissertation is the development of a new approach to

conceptualize and quantify dependence structures of capture-recapture data. In so



doing we present a new framework in which to explore the relationship between NV and
the dependence structure and the inherent problem of non-identifiability: namely that
knowledge of the population size N together with the observed data fully determines
the dependence structure of the data. Nonetheless, estimating N when incomplete
but overlapping data sources are available, is of relevance to many areas of public
health.

We develop a measure of source dependence: the Coefficient of Incremental De-
pendence (CID), related to the Coefficient of Source Dependence (CSD) of Vandal et
al. (2005). For K sources these measures exist for all possible marginal combinations
of sources. Properties of the measures are provided, including their relationships to
the specific conditional independence structures that can be modelled by hierarchical
joint log-linear models.

The form of these measures motivates the development of a new modelling ap-
proach ih which marginal means are modelled rather than joint (or cell) means as is
the case with joint log-linear models, which we name the class of marginal log-linear
models (MLLM). Two equivalent parameterizations are presented, the first in terms
of the CIDs, the second in terms of the CSDs. Both provide their own useful interpre-
tations. In fact, these measures enable us to meaningfully interpret the parameters
of non-hierarchical joint log-linear models. In turn, this enables us to sensibly ex-
tend the universe of dependence structures able to be modelled using joint log-linear
models which were previously excluded for reasons of non-interpretability of model
parameters.

In order to relate the class of MLLMs to structures modelled by the standard an-
alytical approach of hierarchical joint log-linear modelling, we derive the form of the
MLLM for joint and conditional independence structures. First it is shown that, for
the simple dependence structures of complete independence and mutual dependence,

the marginal modelling approach is equivalent to the joint log-linear modelling ap-



proach. However, even for the three-source case, there is no unconstrained marginal
model equivalent to the. hierarchical joint log-linear model for conditional indepen-
dence. Consequently, our new approach is more than a mere reparameterization of
the standard hierarchial joint log-linear modelling approach. Thus, the universe of
dependence structures that can be modelled is extended via this work.

Inference is made using both the likelihood and Bayesian paradigms. In both
cases certain constraints must be enforced on the marginal means originating from
the multinomial nature of the cell counts. The CIDs are treated as fixed effects in
the likelihood a;pproach whilst the Bayesian formulation assumes that the CIDs are
random effects. The latter formulation fits into the class of generalized linear mixed
models.

Both real and simulated data are analyzed. Simulated data are used to demon-
strate that inference is in line with reality. It is shown that our modelling approach
out-performs hierarchial joint log-linear models when the true .un'derlying dependence
structure is non-hierarchical. The analysis of real data serves to explore the features
and challenges of our proposed class of marginal log-linear models.

~ In short, the proposed marginal modelling approach performs well and provides

new insight into the fundamental nature of epidemiological capture-recapture data.

'



Chapter 1

Introduction and Motivation

Captufe—recapture methodology (CRM) is used in epidemiology to estimate the
size of a human population by combining several incomplete sources of information.
The total population size is estimated by using the information in the overlap of these
sources to estimate how many individuals have not been observed.

In order to understand a disease it is important to obtain accurate estimates of
its prevalence. Such knowledge helps in the development of strategies to monitor the
disease over time, as well as to implement prevention or management programs. CRM
can be used for such ends. It has broad application and has been used to estimate
the prevalence or incidence of a number of different disorders, such as neurological
disorders induding multiple sclerosis (Forbes & Swingler, 1999; Corona & Roman,
2006), amyotrophic lateral sclerosis (Coffman, Horner, Grambow, & Lindquist, 2005;
Preux et al., 2000), epilepsy (Debrock, Preux, & Houinato, 2000), Parkinson’s dis-
ease (Sanchez, Buritica, Pineda, Uribe, & Palacio, 2004) and dementia (7, ?7), as well
‘as other conditions including spina bifida (Hook & Regal, 1980), strokes (Tilling,
Sterne, & Wolfe, 2001) birth defects (Fienberg, 1972), fetal alcohol syndrome (Ege-
land, Perham-Hester, & Hook, 1995), diabetes (Fienberg, 1972; Bruno et al., 1994;
Ismail, Beeching, Gill, & Bellis, 2000) and HIV (Bartolucci & Forcina, 2006; Abeni,
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Brancato, & Perucci, 1994).

Applicationé in human populations also extend to a broad range of issues in public
health and demography, such as in estimating the number of hospitalizations due to
influenza (Grijalva et al., 2006), determining the number of intravenous drug users
(Hickman et al., 2004; Domingo-Salvany et al., 1998), of street children (Gurgel, da
Fonseca, Neyra-Castaeda, Gill, & Cuevas, 2004), estimating the size of a regional les-
bian population (Aaron, Chang, Markovic, & LaPorte, 2003), as well as determining
fertility and mortality (Aslan, Ozcebe, Bertan, & Karaagaoglu, 2004). It has also
found politically relevant application in the realm of human rights. In particular, it
has been used to estimate the number of human rights violations including killings
in conflicts in Kosovo (Hagan, Schoenfeld, & Palloni, 2006; Ball & Asher, 2002) and
East Timor (Silva & Ball, 2005).

It is believed that the first recorded application in human populations was in
the 18th century when Laplace used the methodology to estimate the population of
France (Hook & Regal, 1995). In terms of applications to human health, the first
use appears to have been by Sekar and Deming (International Working Group for &
Forecasting, 1995a) who used CRM to estimate birth and death rates in India and to
assess the extent of registration of these events.

Applications of CRM are most relevant for populations that are difficult to enu-
merate. Reasons for such difficulties might be related to the hidden nature of the
condition. For instance intravenous drug users are difficult to reach (Hickman et al.,
2004; Domingo-Salvany et al., 1998). An alternative reason might be that the con-
dition of interest is a rare condition, such as amyotrophic lateral sclerosis (Preux et
al., 2000).

CRM provides an alternative to standard sampling schemes which might be pro-
hibitively expensive, even for common conditions. In using existing data sources,

costs can be reduced. Moreover, estimates obtained more appropriately are better



able to correct for under-count, which oécurs under sampling schemes with differ-
ent sampling, or capture, probabilities. Under-count can arise in many instances,
and ndight be quite large for chronic diseases, such as multiple sclerosis (Forbes &
Swingler, 1999), as well as infectious diseases such as Severe Acute Respiratory Syn-
drome (SARS) (Lange & LaPorte, 2003), since such conditions are often treated by
a variety of different health professionals and even by private practitioners, (Lange,
Chang, & LaPorte, 2004). Such mechanisms pose a variety of challenges to the de-
tection of individuals with the condition of interest.

Under-count is a problem inhefent in population censuses. In recent decades
much work has been undertaken to use CRM to correct for this under-count. We will
discuss such use and the principles associated with it in Section 1.3. Several countries,
including the UK (Brown, Diamond, Chambers, Buckner, & Teague, 1999), Canada
(Statistics Canada, 2006) and the USA (Freedman, 1991), have employed CRM to
correct for the under-count inherent even in national census data (see Fienberg, 1992,
for a bibliography). Typically, a two-source approach is adopted with the second
source obtained by a post-enumeration survey in which a sample of the population is
re-contacted as a follow-up to the census.

There is extensive literature in the application of CRM to ecology. In fact, it
is believed to be the application with the most literature starting from the work
of Petersen in 1894 (IWGDMF, 1995). The main difference between applications
of CRM to counting animals and counting humans is that a sequence of trappings

is usually conducted for animal populations. The sequential time effect must be
| taken into account in statistical modelling. When studying human populations, there
is rarely a natural time ordering to the data sources available. Consequently the
chronological capture sequence will not be considered in this dissertation and no
discusbsion of models which take this feature into account will be included.

A note on terminology. When used in epidemiology, capture-recapture tech-



niques are also referred to as multi-list or multi-systems methods. We will employ
the ‘capture-recapture’ denomination. ‘Source’ is used to denote the random event
of sampling a given group and ‘list’ for the observed sample. Both terms will be used

in this dissertation.

1.1 Capture-recapture fundamentals

In order to understand the principles of CRM, we present first an example of an
epidemiological data set in the form typically employed, that of the incomplete con-
tingency table. Then we state the assumptions made throughout the work presented
in this dissertation.

The goal of CRM is td estimate the unknown population size N. This is achieved
using information about the appearance of the ngs observed individuals in several
overlapping sources. The source membership data of the ns individuals is typically
summarized in what is called an incompllete contingency table (Fienberg, 1972). For
instance, Table 1.1 presents an example of a three-source data set from the literature.
It summarizes the source membership data of all ng, = 271 individuals used to
estimate the prevalence of hepatitis in northern Taiwan (Chao, Tsay, Lin, Shau, &
Chao, 2001). The three lists, denoted by A, B and C for consistency with the notation
used throughout this dissertation, were described as follows (with their corresponding

names from Chao et al., 2001):

e A: list of records based on a serum test taken by the Institute of Preventive

Medicine, Department of Health of Taiwan (P-list);
e B: list of hospital records recorded by the National Quarantine Service (Q-list);

e C: list of records collected by epidemiologists (E-list).



Aves Ano
Bves Bno | Byes Bno
Cves | 28 17 18 63
Cno | 21 69 55 ?

~Table 1.1: Hepatitis data of Chao et al. (2001)

In order to present the type of notation used in this dissertation, the general

incomplete contingency table for three lists is presented in Table 1.2. The table is

AYes ANo
BYes BNo BYes BNO

Cyes | nABC TaBc | iBC NABC

Cno | maBe Mape | niBc mMase ="

Table 1.2: Incomplete Contingency Table: Three Source

incorﬁplete since the number of individuals observed in none of the sources nynops is
unknown.

We consider now the information contained in the incomplete contingency table
for three sources. For example, the number of individuals observed in all three sources
is denoted by napc, whilst the number observed in only source A but none of the
other two sources is denoted by n,55. Thus, from Table 1.1, napc = 28, whilst
nagc = 69. We note that nunes = nip¢ in the three-source case.

An idea which will be used throughout this dissertation is that of obtaining mar-
ginal counts from cell (joint, see Remark 1.1) counts. For instance, the number of indi-
viduals observed in source A, irrespective of their membership in B and C, is dénoted
by n4. It is evident from Table 1.1 that n 4 is the sum of the 4 cell counts which appear

in the left half of the table. That is, n4 = 28421+17+69 = 135, written symbolically
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a8 MA = NABC +Nape+Nagc+nape- The number of individuals in sources A and B,
irrespective of their membership in source C, denoted by n4p, is another example of a
marginal count. Again, it is evident from Table 1.1 that nup is obtained by Summing
the 2 entries ih the first column of data in the table. Therefore, nap = 28 + 21 = 49,
given symbolically by nap = napc + napa. Likewise n 45 is obtained by summing
the second column of the table: nyg = napc + nage = 17+ 69 = 86. Similarly, ng

can be decomposed as follows: ng = nap+ ns5 = 49+ 86 = 135.

Remark 1.1 Terminology: joint/cell and marginal.

The terminology joint and cell will be used interchangeably throughout this disser-
tation. In so doing we are able to distinguish between the marginal counts and the
cell, or joint, counts of the incomplete contingency table. The terminology joint is
of particular use when referring to modelling techniques, such as those described in

Section 1.2.1.

Example 1.1 In the three-source example provided in Table 1.1, ngpe = 69 is a
joint count, whilst ng = 135 and nap = 49 are marginal counts. Note that the
joint count of the highest order, namely napc = 28, is also a marginal count. As a

consequence, there are as many marginal counts as cell counts (see Remark 1.3).

Remark 1.2 Notation: ny.
We describe here notation that is applicable to both joint and marginal counts. S
will be used to denote the complement of any source S. We further let

Ak

SER

nr = )

where R is a set of sources or source complements.

Example 1.2 Consider the hepatitis data set of Table 1.1. Then, for R = {4, B, C},

nr = Ngap,cy = 69, which we denote by = nype for simplicity. Alternatively, for
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R = {A}, ng = ngay = 135, which, again for simplicity, we denote by n4. We note
that it is possible to distinguish between the use of ng for cell and marginal counts
by examining the cardinality of R: for the general K-source case, should |R| = K,
then ng refers to a cell count, else to a marginal count should |R| < K (except in

the case of the marginal, equivalently joint, K-way count, which is of order K).

Remark 1.3 Notation: nc, Nmarg, ¢4 and m.
For clarity, we will use the three-source case to introduce the notation. The cell and -

marginal counts can be summarized in vector form as follows

NABC nA
NABC B
NABC nc
Neell = (1456 | 80d Dmerg = | Nap
NaBC nac
NAiBc npc
_nABCJ | "ABC |

There is a one-to-one linear transformation between the vectors of cell and marginal

counts, as ordered as above, summarized by the following relationship
Nparg = Ancell;

where

>
Il
o 0o O o o =

©C O H O = O =

O O O O O = O
o O O o = o O
o O O = O =
O = O O = = O
e e R R

—~~
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—
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We notice that the entries iﬁ Npare are arranged so that marginal counts of the
same order are placed together, with single-source counts followed by pairwise counts,
then three-way counts. Moreover, the first source subscript A runs faster than B,
which runs faster than C. Throughout this dissertation such a convention will be
employed. As a result, the ordering of the entries of ne is such that Nparg = Anca,
with A the upper triangular matrix that corresponds to such an ordering.

Furthermore, when a probability model is assumed for the cell counts (to be de-
scribed in Section 1.1.3), u and m will be used to denote the cell and marginal means
of the corresponding cell and marginal counts given by Ngen and Dyarg, respectively.

Thus, the relationship between p and m is given by m = A, just as Npare = Ancg.

Remark 1.4 Notation: P [Rn]. »
As with Remark 1.2, let R denote a list of sets (sources or source complements). We

define R = NgerS. Then

P[Rn] = P[NserS].

For simplicity we use P [R] to denote P [Rn).
Example 1.3 Consider again the hepatitis data set of Table 1.1. Then, for R =
{4,B,C},

PR =P[AnBNC).
Alternatively, for R = {A}

P[Rn) = P[A]

Assumptions made throughout the dissertation

There are several assumptions made throughdut this dissertation, which are in line

with those frequently adopted in the literature (see the International Working Group
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for Disease Monitoring and Forecasting, INGDMF, 1995a). The assumptions will be
specified here. For assumptions likely to be violated in the epidemiological context, we
provide references to work detailing approaches to accommodate such violations. The
meaning and implications of the assumptions will become clearer via the discussions

in the remainder of the current chapter.
e The populatioﬁ is closed.
e There is no time ordering to the sources.
e All of the population can be observed.

e There is perfect matching (i.e. no tag loss, in the terminology of the ecological

capture-recapture literature).
e All cases are true cases, i.e. there are no false positives.

First we consider the assurhpt;ion that the population under study is a closed
popillation, together with the second assumption of no time ordering. For animal
populations there are often situations, generally associated with the sequential time
ordering of trappings, that cause the population under study to be open rather than
closed. If animals can die or move from the study site then probabilities of capture will
be affected and the population is no longer closed. In epidemiology, such difficulties
are usually avoided (Chao et al., 2001 discuss differences between animal and human
populatibns). If the study objective is to determine the brevalence of a condition
at a given moment, then the population is closed precisely by definition and by the
choice of a specific date on which to measure the prevalence. Thus, the population
is assumed to be closed by design. For incidence studies, if the period under study is
sufficiently short, then births, deaths or emigration will have minimal effect. Again,
it is reasonable to assume the population is closed. Thus, for our purposes and

throughout this dissertation, we will assume the population is closed. Accordingly,
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we will not review the extensive literature on open models with dynamic components
( Schwarz & Seber, 1999, provide an extensive overview of capture-recapture methods
for animal populations).

~ Techniques exist to account for violations of the the fourth and fifth assumptions.
Seber, Huakau, and Simmons (2000) and Lee, Seber, Holden, and Huakau (2001)
discuss list mismatches for the case of two sources and several sources, respectively,
whilst Lee (2002) provides a general discussion of violations of the assumption of
perfect matching between sources. Should there be false positive diagnoses, Brenner
(1994) and Brenner (1996) explore potential consequences, whilst de Greef et al.
(2006) present methods to account for such Ihisdiagnoses with analysis of a real data

set.

Remark 1.5 Scope of this dissertation.
The methodology presented in this dissertation is intended to be used for three or more
sources, as with all modelling appfoaches described in later chapters. For reasons of

clarity, the two-source case will be considered in the next section.

1.1.1 Dependence

We recall that the primary goal of capture-recapture analysis is to estimate N. In
order to do so, it is necessary to account for features of the observed data such as rela-
tionships between the sources. The primary feature to address is that of dependence
of sources.

In order to introduce the notion of dependence, we will discuss the simplest
capture-recapture setting for two sources, A and B. Table 1.3 is the incomplete
contingency table for the two-source setting. In this case, nynops = nip, just as

Nunobs = N ipc in the three-source example presented above. The well-known Pe-
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Aves  Ano

BYes NAB NAB
Bro | map  map =7

Table 1.3: Incomplete Contingency Table: Two Sources

tersen (Petersen, 1896) estimator of N is given by

¢ nang
N = ,
NAB

(1.2)

which is based on an assumption of independence between sources A and B, using a
hypergeometric distribution for the number observed in the overlap between sources
(See Alho, 1990, for a description of the hypergeometric model. Section 1.1.3 presents
the probability models to be used in this dissertation, i.e. those on the cell counts
of the incomplete contingency table). Under the hypergeometric model, there is a
nonzero probability that nap = 0, i.e. that no individuals are observed in both
sources. In this case the Petersen estimator has infinite bias. Bias corrections methods
have been considered by Chapman (1951) for the two-source case and by Evans and

Bonett (1994) and Rivest and Lévesque (2001) for the general K-source case.

Remark 1.6 Petersen Estimator: Departures from independence.

The derivation of the Petersen estimator (1.2) relies on the assumption of indepen-
dence between sources. In the two-source case, the sources are said to be positively
dependent when individuals are more likely to appear in source A if they appear in
source B , and vice versa. If we erroneously assume independence in such a situation,
N is underestimated. Under the independence assumption we would expect that the
number of individuals observed in both sources would be a smaller proportion of the
total population size than it would be under positive dependence. In the expres-

sion of the Petersen estimator, the value of nyp in the positive dependence setting

14



will be larger than under the assumption of independence. Since it appears in the
denominator it would deflate N (see page 3129 of Chao et al., 2001 for a similar
discussion).

In a similar manner, if we assume independence when in fact the two sources are |
negatively dependent, then the Petersen estimator will overestimate NV since the n p
term of the denominator of (1.2) will be smaller than expected under independence.
A related justification is presented in the section entitled “Two-list model” starting

on page 1049 of IWGDMF (1995a).

Such felatiohships prove useful for a preliminary analysis of capture-recapture
data. Even if more than two sources are available, it is useful to calculate all Pe-
tersen estimators for all pairs of sources (Wittes, Colton, & Sidel, 1974). Whenever a
Petersen estimate for two sources is smaller than the number of individuals observed,
Nebs, there is evidence of possible positive dependence between those two sources. Of
course, lack of such relationships does not imply that sources are independent.

It is not possible to test the assumption of independence in the two-source capture
recapture setting. As can be seen in Table 1.3, there are three data points available.
A test of independence such as the x? test would require knowledge of njz5. Again,
precisely because of the nature of CRM, this value is unknown. In fact, this is a

feature of the general K-source capture-recapture setting. For K sources there are
2K 1 data points. Testing for K-way independence would require all 2K data points
thus it is not possible to test for the highest level of dependence. Of course, K-way
dependence may still be present. In this dissertation, we present new methods to take

into account such dependence.
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1.1.2 Relationship between heterogeneity and dependence

Since dependence forms the central theme of this dissertation, we now present an
example-based discussion describing the equivalent relationship between heterogene-
ity of capture probabilities and dependence (where homogeneity of capture proba-
bilities is such that for each source, every individual has the same probability of
capture).

As an example we consider the use of CRM to determine the number of intra-
venous drug users in a city. The present discussion, while loosely based on the work
of Hickman et al. (2004), IWGDMF (1995a) and Domingo-Salvany et al. (1998), is
intended purely as a conceptual example to examine thQ relationship between the two

assumptions.

Example 1.4 Drug Users.

Suppose that, in an attempt to estimate the prevalence of injection drug use in a
given time and place, two of the data sources available are drug arrest records and
the database of a drug rehabilitation program. It might be expected that drug users
who participate in the rehabilitation program are less likely to commit crimes if the
program is successful. Consequently, individuals who participate in the program are
less likely to be arrested than those who do not participate. Moreover, in order to
assume homogeneity of capture probabilities, it would be necessary to assume that
all individuals (whether observed or unobserved) are equally likely to appear in the
arrest record source and all are equally likely to participate in the drug rehabilitation
program. In reality such assumptions are unlikely to hold. Other factors may affect
the probability. that an individual is arrested; leading to heterogeneity of capture
| probabilities on the list of arrests. For the drug rehabilitation pfogram, it is likely
that certain kinds of individuéls are more likely to participate. For instance, pregnant

women might be more likely to appear since they should be followed by a medical
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professional who is likely to recommend such a program.

The scenario described above, in which those in the drug rehabilitation program
are less likely to be arrested than those who are not, would violate the assumption
of homogeneity of capture probabilities within a source. Moreover, this situation is
likely to induce dependence between the sources of arrest records and the database of
the drug rehabilitation program. The direction of this dependence would be related to
" the proportion of all N individuals who participate in the rehabilitation program. If
a large proportion participate, the expected number of individuals who are arrested
will decrease, as compared to a situation of homogeneity in capture probabilities.
Such a scenario would lead to negative dependence between sources. Alternatively, if
all of those arrested are referred to the rehabilitation program, positive dependence
between the two sources would arise. In fact, such dependence would not be driven
by the characteristics of the individuals according to which capture probabilities vary;
rather it would be due to a referral mechanism applied uniformly to all individuals
who are arrested. (Note that this distinction is a very fine one. One could also argue
that being arrested alters capture probabilities.) It is not difficult to think of many
other different ways in which characteristics of the individuals can cause heterogeneity
of capture probabilities which in turn induce dependence. In fact, this is a common

feature of most capture-recapture data. ' _ .

The above discussion leads to the distinction between two types of source depen-

dence:
o Heterogeneity-induced source dependence, and
e Pure source dependence.

As described above, heterogeneity-induced source dependence (also referred to as ap-
parent dependence by IWGDMF, 1995a), can be attributed to characteristics of the

individuals whereas the second, pure source dependence (also referred to as local
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dependence or list dependence by Chao et al., 2001), cannot be attributed to char-
acteristics of the individual beyond their membership in some sources. It may arise

because of how individuals or their conditions are managed.

Stratification to account for heterogeneity

Stratification involves subdividing the sample of observed individuals into strata ac-
cording to patterns of discrete covariates. Each stratum is analyzed separately and the
population estimates for each stratum added together to obtain the overall population
estimate _(c_ontinuous covariates may be discretized, Plante, Rivest, & Tremblay, 1998, .
and Darroch, Fienbérg, Gloneck, & Junker, 1993). In practice, stratification by ob-
servéd covariate patterns is used to reduce the effects of heterogeneity of capture prob-
abilities. Indeed, when stratum heterogeneity is ignored, results are biased (Kadane,
Meyer, & Tukey, 1999). If the observed strata explain all of the dependence, then
all individuals in each stratum will have the same probability of capture within any
given source; thus the sources will be conditionally independent given the stratum.
However, when there are unobserved covariates that modulate capture probabilities,
such stratification is unable to fully correct for heterogeneity. Even if stratification
is used, residual dependence may occur within strata and thus dependence modelling
techniques are still required. ‘

Statistical modelling approaches for more than two sources in general are therefore
needed, irrespectively of whether stratification is used. In Sections 1.2 and 1.3 we
will describe parametric and nonparametric approaches. In Section 1.2, in which
we introduce the standard log-linear modelling approach (which we refer to as joint
log-linear modelling for reasons described below), we will describe the dependence
structures that can be modelled by the joint log-linear modelling approach, which is
essential for the work developed in Chapter 2 and indeed for the very essence of the

new methodological work presented in this dissertation.
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1.1.3 Likelihoods for incomplete contingency tables

The discussion provided i‘n this section will show that it is natural to work with
the multinomial likelihood. For computational convenience, we can use a known
relationship between the multinomial and Poisson distributions in order to employ
the more computationally (to be discussed in the context of modelling in Section 1.2)

convenient Poisson distribution (Sandland & Cormack, 1984).

The multinomial and Poisson likelihoods

Two-source multinomial likelihood

Consider the simple two-source case for sources A and B as introduced in Sec-
tion 1.1.1, with the incomplete contingency table given by Table 1.3. We will present
the development of the multinomial likelihood in this setting. It is natural to consider
the N individuals of the population as being assigned to one of four categories, which
we denote by AB, AB, AB and AB corresponding to the cells of Table 1.3. Then
n ABsNig,nap and nzp, individuals are assigned to each of the four categories with
probabilities denoted by pag,pig,PaB and pig = 1 — (pag +pip +pas). The corrga;
sponding likelihood on the unknown parameters N and the vector of cell probabilities,
p, is a multinomial likelihood given by

N!
nag!nipnaslng

I PP P A DUAPp AT, (1.3)

L(N,p;nap,n4B, naB) =
where
PAB:PAB,PAB,PAE > 0 and pap+pap+pas+pasp=1.
The data are composed of the 3 observed cell entries of Table 1.3, where ni5 =
N —neps = N — (n45+nip+nap). Examination of likelihood (1.3) shows that there
are four unknown parameters to be estimated, namely N and three components of p

(not 4 since the probabilities are constrained to sum to 1) using the three observed

cell entries n453,n 45, nag. Thus, without further constraints (such as an assumption
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of independence as in the case of the Petersen estimator (1.2)), it is not possible to

simultaneously estimate all parameters.

K-source multinomial likelihood
A natural extension to the general K-source case, as described by Sanathanan (1972)
is given here in line with the notation introduced by Bishop, Fienberg, and Holland
(1975). (See Cormack, 1989, Darroch, 1958, Fienberg, 1972 for a similar development;
Basu & Ebrahimi, 2001, Casella & George, 1992 and Huggins, 1989, for the equivalent
probability model at the level of the individual; Bunge & Fitzpatrick, 1993, for an
overview of a range of probability models.)

The number of observed cells of the incomplete contingency table is given by
d = 2K — 1. Let ny,...,nq denote the observed cell entries of the incomplete con-
tingency table with a single subscript used to denote the cell entry rather than the
inclusion/exclusion notation used for the two-source case above in (1.3). The K-
source likelihood for N and the (d + 1) x 1 vector of cell probabilities p, is given
by

L(N ‘ ) N
» P Dincomp } =
: P (N — Tuops)! HLI n;!

d
1 = p )N [ 21, (1.4)
=1

where ngps = Zgﬂ ng, p* = Z?:l p; < 1 is the probability that an individual is
observed, p*,p; >0, i=1,...,d and Dincomp = (N1, . . ., N4) is the vector of observed
data of the K-source incomplete contingency table. Such a likelihood (1.4) is invariant

to permutations of the cell entries of the incomplete contingency table.

Remark 1.7 We note that there are d+ 1 parameters (i.e. N and the d probabilities
of the (d + 1)-dimensional vector of probabilities p, since Zf_:fll p; = 1) to estimate
using the d observed cell entries nincomp. In order to address such overparameteriza-
tion, it is necessary to place constraints on the parameters of the likelihood, such as

by specifying a model for the parameters (See section 1.2). In specifying a model on
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the capture probabilities p = p(@) with a reduced set of parameters 6, where |0| < d,
it is possible to simultaneously estimate p = p(@) and N (Bishop et al.; 1975).

K -source Poisson likelihood

In order to formulate the Poisson likelihood, suppose that the cell entries n; are
independent Poisson random variables with means y; = Np; (Cormack, 1989). Then

the Poisson likelihood for N and the vector of cell probabilities p is given by

. (Vi)™
LP(Na P; nincomp) = H eXp(—Npi) n:'" s (15)

i

i=1
where n; and p; refer to the same cell counts and cell probabilities, respectively, as

with the multinomial likelihood above.

Relationship between multinomial and Poisson likelihoods

The maximum likelihood estimates obtained from the multinomial model and the
Poisson model conditioned on the population size N are identical (Sandland & Cor-
mack, 1984). The general equivalence of the Poisson conditioned on N and the
multinomial is given, for instance, by Christensen (1997): |

Result Let n,,...,nq be independent with n; ~ Poisson(u;) so that ny + -+ +ng ~
Poisson(uy + - -+ + pa). Then (ny,...,n4)|N ~ multinomial(N, py,...,pq), where

N=n+---+ngand p; = i=1,...,d.

However, inference based on the two models is different: the asymptotic variances
of the estimators of N under the two models differ (Sandland & Cormack, 1984), with
that under the Poisson model larger than under the multinomial model. However,
: fdr parameters which do not involve N, Cormack and Jupp (1991) showed that the

asymptotic covariances are the same. (See also Baker, 1994.)

Remark 1.8 The parameter of interest: N vs. [E[N].

The fundamental difference between the multinomial and Poisson distributions and
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their use in the capture—recapturé setting is the parameter of interest: with the
multinomial, inference is made on the parameter N whilst for Poisson inference,
N is treated as random, so that inference is made on the parameter IE [N] (Farring-
ton, 2002). As noted above, the same point estimates are obtained (Sandland &
Cormack, 1984) irrespective of which distribution is adopted and thus irrespective of
which parameter is to be estimated. Farrington (2002) pointed out that treating N
as a random variable under the Poisson model adds a level of variation which leads to
wider confidence intervals, thus providing further support of the asymptotic variance
result of Sandland and Cormack (1984), in which t‘he‘variance is larger under the
Poisson model.

Farrington (2002) argues that when interests lies in the underlying prevalence
or incidence of disease, rather than the actual number of cases, then the parameter
of primary interest is the expectation IE [N] of N over a suitable superpopulation,
rather than its realized value. A related difference of the two models is that under
the multinomial model N > ngs, whilst under the Poisson model there is no such

constraint on the parameter IE [N] (Farrington, 2002).

Remark 1.9 The likelihood used in this dissertation.

In this dissertation we are most interested in counting the number of individuals rather
than determining properties of the underlying process which drives the condition of
interest. Therefore, we will adopt thé multinomial likelihood for inference purposes.
In cases for which there are computational advantages to be gained, the Poisson

likelihood we will be adopted (for example, for the frequentist modelling of Chapter 3).
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1.2 Literature review: Parametric approaches to

modelling CR data

In this next section we provide a literature review of parametric modelling approaches
used to reduce the dimensionality of the capture probability vector p of the equiva-
lent multinomial (1.4) and Poisson (1.5) likelihoods described in the previous section.
Since the new marginal modelling approach introduced in this dissertation (see Sec-
tion 2.4 for the introduction and Chapters 3 and 5 for frequentist and Bayesian ap-
proaches to inference) will be compared to the standard modelling approach of joint
log-linear modelling (JLLM), we will provide a reasonably corﬁprehensive description
of the use of JLLM in the capture-recapture setting. We begin this section with JLLM

before describing other models, in particular a range of individual-level models.

1.2.1 Joint log-linear models

Log-linear modelling is one of the most common approaches to modelling epidemio-
logical capture-recapture data (Fienberg, 1972; Cormack, 1989; IWGDMF, 1995a).
More specifically, it is generally accepted that such data should be modelled using
hierarchical joint log-linear models (HJLLM) (Fienberg, 1972; Cormack, 1989; Madi-
gan, York, & Allard, 1995; Madigan & York, 1997; Stanghellini & van der Heijden,
2004; and implied in the second paragraph of Hook & Regal, 1997, in which the au-
thors enumerate all possible models for different numbers of sources, of which there
are 8, 114 and 6893 models for three, four and five sources, respectively). The inclu-
sion of an interaction between a set of sources in such a model entails the inclusion
of all lower-order interactions between sources in that set (Bishob et al., 1975). Such
HJLLMs model conditional independencé structures (Christensen, 1997), which fit

within the framework of graphical models (Lauritzen, 1995) (see description below).
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Remark 1.10 We note that further evidence for the use of the reduced class of joint
log-linear models given by the class of HJLLMs is provided by practices observed in
the literature rather than explicit statements. We know of a single reference to a

non-HJLLM in the epidemiological capture-recapture literature (Ismail et al., 2000).

Remark 1.11 Terminology: joint log-linear models

We use the prefix joint to distinguish between the commonly-called log-linear mod-
. els, which are models on the joint means of the incomplete contingency table (see
Remark 1.1) and the new marginal log-linear modelling approach introduced in this

dissertation.

Fienberg (1972), Cormack (1989) and Chao et al. (2001) propose three equivalent -
parameterizations of HJLLMs. Aé stated by Cormack (1989), the parameterization
of Fienberg (1972) uses main effects and interactions averaged over all levels of other
factors thus necessitating é series of parameter constraints, whilst that of Cormack is
such that a main effect of a particular list contrasts the number of individuals not seen
in the list but seen in every other, with those seen in all samples. In such a case the
intercept-term corresponds to the logarithm of the expected number of individuals
observed in all sources. We adopt the parameterization of Chao et al. (2001), in
which the intercept-term corresponds to log IE [nynes], SO that N = Ngps + Punobs, With
Aunobs Obtained from the fitted intercept-term. The main effect terms correspond to
deviations from log IE [nynes|. Since the primary goal of a capture-recapture analysis
is to estimate IV, which is done via estimation of Ny, in the case of HJLLMs, it is
useful that one of the model parameters corresponds to nypeps. Moreover, unlike the

parameterization of Fienberg (1972), no intricate constraints are required.

Example 1.5 Three-source HILLMs

For the three-source case, the model for independence and the most general saturated
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model are given below, parameterized according to Chao et al. (2001).

HJLLM of Independence

Saturated HJLLM

logE [nsps] = a+aa logE [nape] = a+aa

log E [n 455 o+ oap logE[nigs] = a+ap

log E [n150] a+og logE[nipc] = a+ac

log E [n4p65] a+as+ap logE [naps] = a+aa+ap+asp

log IE [n45¢] a+as+ac logEE[nape] = a+asa+ac+aac

loé]E[n,;Bc] = a+ap+oc logE[nipc] = a+ap+ac+ ape

logE [nape] = at+as+ap+ac logEnape] = a+aa+ap+ac+ aap+ aac+ ape

Remark 1.12 Further to the stated equivalence of the Poisson conditioned on N
and the multinomial as given in Section 1.1.3, Lang (1996b) provides a discussion of
the similarities and differences of inference under both likelihood models for-general

log-linear models, whilst Cormack (1989) does so in the capture-recapture setting.

HJLLMs, conditional independence structures and graphical models

HJLLMs model conditional independence structures (Christensen, 1996). As stated
by Madigan and York (1997), such dependence structures can be represented by undi-
rected, chordal graphs, which are termed decomposable graphical models (Whittaker,
1990 and Lauritzen, 1995). Dependence is modelled by the inclusion of interaction
terms, like those of the saturated model of Example 1.5.

Using the three-source case as an illustration, we introduce the hierarchical models

-notation of Christensen (1997) to be used in Chapter 2.

Example 1.6 Consider the three-source capture-recapture setting. We use A to

denote independence.
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e Mutual independence. In this case Al B, AN C and BIC so that aap =
asc = ape = 0. Such a model is represented by [A][B][C] (Christensen, 1997)

and given in Example 1.5.

e Joint independence. For example, A IL.C and B 1L.C but A and B are dependent.
All terms of the saturated model of Example 1.5 are included except for the
interactions corresponding to independence. That is auc = 0 and age = 0.

Such a model is represented by [AB][C] (Christensen, 1997).

o Conditional independence. Without loss of generality, we suppose that B and
C are independent, conditionally on A, that is B C|A. Then agc = 0 in
the expression of the saturated model of Example 1.5 but all other terms are

included. Such a model is represented by [AB][AC] (Christensen, 1997).

Remark 1.13 HJLMM descriptor notation.

Let R and 7 denote arbitrary sets of sources. Then we use [R,7| to denote the
HJLLM specification that includes all hierarchical terms of R U 7. For example, for
R = {A,B} and 7 = {C} with RU T = {A, B,C}, a HILLM with the descriptors

[R, 7] contains terms «, a4, ap, ac, ®¢AB, 0Ac, @B and aapc.

Remark 1.14 All of the theory applicable to the general complete cdntingency table
case, including results for parameter estimation via maximum likelihood, is applicable
to the incomplete contingency table (Bishop et al., 1975). As described earlier, the
sole difference is that a model corresponding to K-way dependence for the K-source
example is not estimable. Any HJLLM that includes the highest order term would
be fully determined and all cells would be estimated perfectly equal to their observed

value.

Remark 1.15 Irrespective of which interaction terms are included in the model, the

single-source marginal counts are sufficient statistics for the model parameters (Bishop
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et al., 1975). Under maximum likelihood estimation, estimators of the parameters
are such that the marginal counts are fitted exactly equal to the observed counts.
That is, M4 = ng4, Mmp = ng and Mg = ne in the three-source case. An approximate
relationship of this sort will be observed for the models introduced in this dissertation,
with the frequentist approach of Chapter 3 and the Bayesian approach of Chapter 5.
Whenever the dependence structure is more complex than that of independence,
sufficient statistics correspond to the highest order terms in the model (Bishop et al.,
1975). For the joint independence case, for example [AB][C], MLEs of the model
parameters are such that map = nap. For conditional independence, for example '

[AB][AC], a similar relationship is observed: Mg = nap and Mac = nac.

Remark 1.16 Accounting for heterogeneity-induced source dependence.
To account for heterogeneity-induced source dependence, IWGDMF (1995a) propose
a method which adds a homogeneous term within each level of interaction. That is,
for example, the same term is used to represent all pairwise dependence rather than
including a different interaction term for each pair of sources. Such an approach is use-
ful when covariates thought to explain the dependence are not available (Stanghellini
& van der Heijden, 2004).

Several alternatives have been proposed to account for unobserved heterogeneity
which are essentially variations on log-linear models with latent variables. Stanghellini
and van der Heijden (2004) present such a model to account for observed and unob-
served heterogeneity. Since the modelling approach in this thesis will not distinguish
between the two forms of dependence we will not describe such models for hetero-

geneity here; rather we will discuss them in the next section.
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Precision estimation and confidence intervals

Asymptotic normality of the estimator N can be used to form (1 — )% Wald con-
fidence intervals of the form N =+ za/géé(N ), where §8(IN) is obtained by the &-
method (Seber, 1982), using the estimated intercept-term of the HJLLM, denoted
below by a. The §-method is used to obtain the estimated variance under the as-

sumption of an underlying Poisson likelihood
Vatp [N] — Var [Aunoss] = exp(24)Var (@)

so that

§8p(IV) = 88(Alunobs) = exp(&)5R(Q).

When the multinomial likelihood is assumed, the estimated variance is given by

(Rivest & Lévesque, 2001)

Var,, [N] = exp(&) + Varp []\7] .

However, the distribution of N is typically skewed (IWGDMF, 1995a), implying
that the asymptotic normality approach may give misleading results. Transformations
of N may alleviate such concerns (for example the log-transformation of Borchers,
Buckland, & Zucchini, 2002i.

An alternative approach is that of profile likelihood (Cormack, 1992 and Regal &
Hook, 1984). As noted by INGDMF (1995a), the advantage of such an approach is
that it is like working with the best possible transformation of N. Buckland (1984) de-
veloped bootstrap methods for the capture-recapture setting, as advocated by several
other authors (Buckland & Garthwaite, 1991; Norris & Pollock, 1996).

We will use Wald intervals assuming an underlying Poisson likelihood in Chapter 3
for computational convenience, despite the concerns raised above related to the use
of Wald confidence intervals. We consider such usage reasonable since the purpose of

the analysis in that chapter will be one of model comparison.
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Model selection

When working within the inferential framework of maximum likelihood it is natural
to select amongst nested models using likelihood ratio tests (IWGDMFI, 1995a).
As further noted by IWGDMF (1995a), information criteria can be used to select
amongst nonnested models. Burnham, White, and Anderson (1995) discuss the use of
se{reral information criteria for capture-recapture data including the AIC (Sakamoto,

Ishiguro, & Kitigawa, 1986) and BIC (Draper, 1995) given by

AIC = —210g(L(N, &)) + 2¢ (1.6)
BIC = —2log(L(N, &)) + log(n)q, (1.7)

where ¢ is the number of model parameters and L(N , &) the likelihood evaluated at
the MLEs of N and the model pafameters. There is disagreement as to what n should
be (IWGDMF, 1995a), with some suggesting that it should be fixed at ns (Hook &
Regal, 1997). The BIC penalizes large models more heavily than the AIC, thus the
BIC tends to select more parsimonious models than the AIC. Simulations by Hook
and Regal (1997) suggest that the AIC is preferable in the capture-recapture setting;
thus it is the model selection criterion we adopt for model selection in Chapter 3. In
practice, ‘t;he AIC is calculated for all models in order to select the model with the

lowest valu_e as the best model.

Model averaging

In basing inference on a single model, selected according to a criterion such as AIC,
no measure of model mis-specification is incorporated into confidence intervals. Thus,
inference is conditional on the correct model having been chosen (IWGDMF, 1995).
Buckland, Burnham, and Augustin (1997) propose a model weighting approach to
account for model uncertainty, whilst‘Madigan and York (1997) use a Bayesian ap-

proach. In this dissertation we will not perform model averaging; rather we will
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undertake model selection in the frequentist analysis of Chapter 3.

1.2.2 Individual-level models

As described in Section 1.1.2, heterogeneity of capture probabilities (i.e different
probabilities of inc‘lusion in a list for different individuals ) is termed observable when
it can be explained by observed covariates, such as age or sex. Stratification by the
covariate believed to be associated with heterogeneous capture probabilities is one
approach (Bishop et al., 1975). An alternative parametric modelling approach is to
consider the class of models that accommodate heterogeneity by modelling individual-
level list-inclusion (or capture) probabilities. Unlike HJLLMs, which model source-
level inclusion probabilities, such models stratify the population at the finest level,
that of the individual.

Alho (1990) and Huggins (1989) independently developed comparable logistic re-
gression approaches that accommodate both categorical and continuous covariates.
This approach assumes that the lists operate independently at the individual level
(Alho, 1990), with the work extended by Zwane and van der Heijden (2005) to allow
for possible depe‘nde.nce between lists.

When covariates explaining heterogeneity are not available, several approaches
have been proposed. The latent class approach advocated by Pledger (2000) assumes
that individuals cluster into several latent classes such that all individuals within a
ciass have the same probability of inclusion on a given list (Agresti, 1994; Coull &
Agresti, 1999; Fienberg, Johnson, & Junker, 1999). The model of Coull and Agresti
(1999) and Fienberg et al. (1999) is the Rasch model (Rasch, 1969), first introduced
in the context of educational testing. Both Coull and Agresti (1999) and Fienberg et
al. (1999) demonstrate that the Rasch model is equivalent to a log-linear model of
quasi-symmetry (Bishop et al., 1975).

As stated by Bartolucci and Forcina (2006), a basic assumption of such latent
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class models is that lists operate independently within homogeneous subjects, so that
marginal association is due entirely to unobserved heterogeneity. Stanghellini and
van der Heijden (2004) present an approach to allow for marginal association be-
tween lists via bivariate interactions between lists conditional on the latent, for a
model with categorical covariates, whilst Bartolucci and Forcina (2001) adopt an
alternative approach which allows separate modelling of the univariate marginals and
the bivariate associations (as stated in Bartolucci & Forcina, 2006) in the presence
of categorical covariates. They further extend their work on the modelling of observ-
able and unobservable heterogeneity (Bartolucci & Forcina, 2606) to accommodate
continuous covariates whilst also allowing for conditional dependence amongst lists.
The authors point out that these models are only slightly more flexible than those of

Bartolucci and Forcina (2001) when only discrete covariates are available.

Remark 1.17 We note that the inferential framework adopted in all references de-
tailed in the present section is that of maximum likelihood estimation, except for the
Rasch model of Fienberg et al. (1999), in which a Bayesian approach was adopted.

In Section 1.4 we present additional Bayesian work.

1.3 Literature review: Nonparametric approaches

to modelling CR data

In this section we consider work from the literature related to census under-count as
itself related to Sample coverage. The ideas presented here are required for Chapter 2.
In particular, we define the Coefficient of Covariation (CCV) related to the measures

| of source dependence introduced in Chapter 2.
In order to assess the extent of under-count, a post-enumeration survey (PES) is

undertaken on a sample of households to.generate a two source capture-recapture data -
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set (Chao & Tsay, 1998). We note that “correlation bias” is a term commonly used
to denote what is often referred to as dependence in the general capture-recapture
literature. As stated in the introduction to this chapter, several countries including
Canada, the UK and the USA, now routinely collect PES data to correct for under-
count. See Redfern (2004) for a description of practical issues of under-count in
the UK census and Mitchell, Dorling, Martin, and Simpson (2002) concerning the
1.2 million peopie missed from the 1991 UK census. Robinson, West, and Adlakha
(2002) presents an assessment of the under-count in Census 2000 in the USA, whilst
Anderson and Fienberg (2002) discuss the controversy surrounding adjustment of

under-count in censuses.

Sample coverage

First we introduce the foundational work of Good (1953). He presents a method
of sample coverage which has subsequently been applied to species estimation (see
Bunge & Fitzpatrick, 1993, for a review) and to the correction of under-count of cen-
- sus estimates (Chao et al., 2001). Good describes the method as follows. Consider
drawing a random sample from a population of various species. Then r/N is not a
good estimate of the population frequency p of a particular species, when r, the num-
ber of times that particular species is observed, is small. Good provides methods for
estimating p with very few assumptions on the underlying population. The estimate
of p is expressed in terms of n, (r = 1,2,3,...), where n, is the number of distinct
species that are observed r times in the sample. An estimate of the proportion of the
species occurring in the sample can be obtained directly.

Chao, Lee, and Jeng (1992) describe how the relationship between sample coverage
and population size has been used to obtain estimates of N from capture-recapture
data for animal populations. However, as noted by Chao and Tsay (1998), the ani-

mal population methods of Chao et al. (1992) cannot be applied directly to census
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under-count, partly because there are typically 6n1y two or three samples in a census
under-count setting (as opposed to considerably more, usually, in animal abundance
estimation). Additionally, there is no time-ordering to the lists (as stated in the
assumptions‘ in Section 1.1).

Therefore, Chao and Tsay (1998) develop nonparametric methods for census
under-count correction. They introduce the CCV and its relationship to sample cov-
erage. We proceed with the description here based directly on that of Chao and Tsay
(1998), with the notation and terminology adapted to that used in this dissertation.

For two sources A and B, the sample coverage of the two sources is defined as

(Chao & Tsay, 1998)

C = _]; [ZLE [XiBlXiA]I[XiA > 0] EiE [XiA|XiB]I[XiB > 0]]
T2 > E[Xip|X;a 2 E[Xa|XiB] ’

(1.8)
where
Xis = I[the ith individual is listed in source S|, S=A,B,

and I[.] is the usual indicator function. When dependence is present, Chao and Tsay
(1998) note that it is difficult to count the number unobserved directly but that the

sample coverage can be well estimated. An estimator is given by

é:l(—@+’3ﬁ). (1.9)
2 naA np
When no dependence is present, Chao and Tsay (1998) demonstrate that
N=lAtrs
2C

where C = nap(1/na + 1/np)/2, which leads to the Petersen (1.2) estimator N =

nAnNB/NAB.

Coefficient of covariation

Consider the K-source setting to estimate the true (unknown) population size N. Let

the data for each of the N individuals be included in an N x K matrix X = (Xj;)
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where

X;; = I[the ith individual is listed in source S},

and I[.] is the usual indicator function. Assume that individuals act independently
and define the average inclusion probability for source S; as us} = (1/N) Efil E(Xi;). -

The definition of the coefficient of covariation (CCV) of sources S; and Sy is given by

N .
Ws;S, = —]172 E[(Xsj — ps; ) (Xik — ps,)]/ (ps; 145,,)- (1.10)
i=1

The CCV measures the degree of dependence between sources and is equal to 0 in the
case of independent sources. It is defined for the general K-source case, for sources

S, ..., Sk, as follows:

N
1
WStuSx = T D El(Xis, — psy) (Xis, — pis,) - (Kisye — prsi )}/ (thsy - - si)-
' i=1
When capture probabilities are homogeneous (i.e. do not differ by individuals),
Chao and Tsay (1998) show that (1.10) simplifies to

ijSk
Ds; DSy

ngsk = — 1, (1.11)

where pg,s; is the probability of appearing in sources S; and Sy, likewise ps; and ps,
are the marginal probabilities of appearing in sources S; and Si, respectively. For
three sources

ijSkSm

Py (ws;5, + Wg;8m + WS, Sm) — 1. (1.12)
il k m

WS, S Sm =

Furthermore, they state that analogous expressions for higher order CCVs can be
derived. In Chapter 2 we will state an explicit relationship between the CID for two
and three sources and the CCV for two and three sources given by (1.11) and (1.12),

respectively.
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Estimation of N

In the two-source case, Chao and Tsay (1998) derive an expression relating the pop-
ulation size N to the CCV. For clarity, let the two sources be denoted by A and B.
Then the relationship between N and wyp is given by

N = P—%—?—](l + wap).

As further noted by the authors, wap must be estimated. However, there are insuf-
ficient degréeé of freedom to test whether w4p is different from 0. Thus, if there is
dependence, such an approach cannot be used in practice (unless a Bayesian approach
is used and a prior distribution placed on w AE, an approach not adopted by Chao &
Tsay, 1998). Such relationships become useful for three or more sources (see Chao &

Tsay, 1998 for a discussion), as is the case with the new modelling approach presented

in this dissertation.

1.4 Literature review: Bayesian approaches to mod-

elling CR data

Much of the Bayesian capture-recapture literature is based on two classes of models
described in Section 1.2, namely HJLLMs and the Rasch latent cléss model, and
variations thereon. Here we provide an overview of the features of the different
approaches presented in the literature. |
Both Madigan and York (1997) and King and Brooks (2001a) describe Bayesian
approaches for HJILLMs. For the former, a three-source data set was analyzed by
fitting all 7 HJLLMs with inference based on an average over all models according to
the posterior probability of each model. King and Brooks (2001a) combine the work
of Madigan and York (1997) and Dellaportas and Forster (1999) by using reversible
jump MCMC (Green, 1995) to move between all models in the class of HJLLMs.
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Casella and George (1992) use Gibbs sampling to calculate Bayes estimates for a
simplified version of the Rasch model, in which capture probabilities are assumed to
be homogeneous. Fienberg et al. (1999) extend that work to the full Rasch model.

. As stated by Fienberg et al. (1999), prior to fhe use of MCMC methods (see below
for a description) for capture-recapture data, several authors developed Bayesian ap-
proaches with minimal computational challenges. Roberts (1967) dealt with the two-
source setting with homogeneous capture probabilities. Castledine (1981) extended
the approach to multiple captures, again with homogeneous capture probabilities to
obtain the marginal posterior of N under a specific prior specification. In the same
setting, Smith (1991) used empirical Bayes approaches to obtain the posterior of N.
Garthwaite, Yu, and Hope (1995) examined the sensitivity of the posterior of N to
different priors on N and showed that the number of captures in each sample (equiv-
alently list) typically provides little information about N. Recent work by Wang,
He, and Sun (2007) discusses the difficulties of obtéining noninformative priors for a

Bayesian capture-recapture model.

1.4.1 Overview of the Bayesian paradigm and MCMC meth-

ods

In this section we provide a brief overview of the Bayesian paradigm and associated
computational techniques. A comprehensive description of Bayesian data analysis
can be found in Gelman, Carlin, Stern, and Rubin (2004) and Gilks, Richardson, and
Spiegelhalter (1996). The description given here is based on a similar section of the
author’s work in Turner (2002), with notation similar to that used by Gelman et al.
(2004). The interested reader can consult the text for a more complete description.

Bayes’ theorem

We consider Bayes’ theorem in its simplest form for a single scalar parameter. For
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ease of exposition, we will assume that all random variables are continuous. The

theory applies equally to discrete random variables. Let 6 be the parameter to be

estimated and y (which depends on 6) the data observed. Then

) rO)fwl) ()Ll
=Ty T T T W (1.13)

where 7(f|y) is known as the posterior density of 8, 7(6) the prior density of 8, f(y|6)

is the conditional density function of y, L(y|6) is the likelihood of @ given the observed
y and f(y) = [ 7(6)f(y|0) do is the integrated likelihood. Since f(y) does not depend

on @ it can be considered a constant for fixed y. Hence, (1.13) is equivalent to
m(0ly) o w(0)L(6y) (1.14)

These expressions form the basis of Bayesian inference, Of course, the same
relationship exists for multivariate data, Y, and a multi-dimensional parameter, 6.
Notice that the posterior density of € is composed of information from the data y,
in the form of the likelihood, and an a priori distribution for . It is a compromise
between information from these two sources Consequently, if there is very little known
about @ a priori, a noninformative prior distribution should be accorded to 6. (We
note that the terms vague, flat and diffuse are used somewhat similarly, depending
on the context. See Gelman et al., 2004.) Such a noninformative prior on 8 will play
a minor role in forming the posterior distribution of § via (1.13). Consequently, the
posterior d_isfr_ibution will be largely determined by the observed data.

Conjugacy '

A family of prior distributions is known as a conjugate family for da_ta/samples from a
particular distribution (i.e. with a particular likelihood) if the posterior distribution
is in the same family as the prior. We consider a simple example as illustration.
Let X be a random sample of size n from Bernoulli(d). Then Y = S0 X; ~
" Bin(n,6). Suppose we observe Y = y,(y = 0,1,...,n). Furthermore, sﬁppose that
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6 ~ Beta(a, B), where o and § are assumed to be known. Then, by (1.13)

6" (1-0)~ ‘(n) —y
m(0ly) = B(a,8) y
h 7r(G)f(ylé’) df
w(n) g¥(1 — g)n—y

_ B(a,f)
- ( )B(y+an y+8)
y B(a,p)

9y+a—1(1 . e)n—y—i-ﬂ—l
~ Bly+tan-y+p)

(1.15)

where B(a, ) = %%%2 Therefore, 0|y ~ Béta(y + a,n —y + B). In this case
the posterior distribution of 8 is a Beta distribution just as the prior was, indicating
that the Beta family is the conjugate family for data/samples from the Binomial
distribution (i.e. for the binomial likelihood). Moreover, this example demonstrates

one of the important properties of conjugacy stated next.

Remark 1.18 Adopting a conjugate prior, whether it be uni-dimensional, as in the
previous example, or multi-dimensional, often aids in computation and in simulation
procedures that are based on the Bayesian paradigm. It is a property that will be

adopted in Chapters 4 and 5.

Hierarchical prior structure

When the parameters of the prior distribution of 7(#), termed the hyperparameters,
are unknown, it is necessary to place a distribution on them. In such a way it is
possible to generate the posterior distribution of 8. Let ¢ denote the hyperparameters
of the prior distribution of § denoted by 7(6]¢), where the distribution of ¢ is denoted
by f(¢). Then the joint prior distribution is 7 (6, ¢) = 7(0]¢)f(#). The likelihood
- is now L(0, ¢ly) = f(y|0,¢). But the sampling distribution of y is assumed to be
independent of the hyperparameters, ¢. Therefore, L(0, ¢ly) = f(y|0,d) = f(y|0) =
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L(6)y). Hence, using (1.14), the joint posterior distribution is

¢)m(6]9)f (yl6, ¢)

(0, $ly) o f(
(¢)m(61)f (vl0)
(
(

f
f

T

£@l0)
L(0ly) ’ (1.16)

I}

9,
0

s

)
,9)
A clear example of this can be found in Chapter 5 of Gelman et al. (2004). We recall
that 6 is the parameter (or vector of parameters) of interest. A joint posterior dis-
tribution is generated using the hierarchical model (1.16). The conditional posterior
density of 6, given the hyperparameter(s), ¢, can then be determined analytically.

Moreover, the Iharginal distribution of ¢ can be determined by integrating out 6.

MCMC computational methods

There are many challenges to estimation of the components of a Bayesian model.
Thus, simulation techniques are often used. The difficulties may arise because the
integfation necessary to determine the densities of (1.16) is too complex or because
the densities may not even exist in a closed form that can be calculated analytically.
Here we will provide a brief intrbduction to some standard Bayesian computational
methods, ih particular Markov chain Monte Carlo methods.
The methods adopted to determine the posterior distribution of the parameter(s)
of intefest (i.e. @ or both @ and ¢ in the section above) are based on the simulation
of a random waik which converges to an equilibrium distribution corresponding to
| the posterior distribution, 7(6|y), with the properties of irreducibility and ergodicity.
Detailed balance ensures that there is time irreversibility (see Chapter 1 of Gilks et

al., 1996). ! The random walk is generated by succeséively sampling values from

!Note that we will adopt the notation n(fly) throughout. It will be assumed that ¢ could be a
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the marginal posterior conditional distributions (e.g. the marginal posterior condi-
tional distribution of 6y, f(61|6,...,0m,y)). These distributions can be determined
by examining the jdint distribution f(8,y) = 7(8)L(fly) in the expression of the hi-
erarchical model (1.16). The simulated values form a chain which is Markov, since
each draw depends only on the previous one and is independent of all those that came
before. Depending on the nature of the térget distribution (i.e. that of ), various
methods exist to generate such a chain. Here we will discuss two of them which will
be used in Chapters 4 and 5. They are the Gibbs Sampler and the Metropolis algo-
rithm. We note that the Gibbs Sampler is a special case of the Metropolis algorithm,
which in turn is a special case of the Metropolis-Hastings algorithm.

The Gibbs sampler

Casella and George (1992) provide a thorough and relatively simple introduction
to the Gibbs Sampler, as do Gelman et al. (2004). We suppose that our para-
‘meter of interest, 6, is an m-dimensional vector (recall that this could include the
hyperparameter(s) ¢). Consider the model in (1.14) or equivalently in (1.16). We
are interested in determining the joint posterior distribution, m(f]y). In order to
do so we will sample from the full conditional distributions, which are of the form
(0101, ..,0i-1,0i41, ... ,0m,y), i =1,...,m. These distributions can be determined
by examining the joint distribution f(6,y) should the prior/likeihood combination by
conjugate. An initial value of 6, ( &0), e 07(,?)) is chosen (see Gelmah et al., 2004 for
a discussion). The Gibbs sampler algorithm then samples successively from the full

conditional distributions according to ﬁhe following iteration scheme:
(i) sample 9§i+1) from 7r(01|9§i), .., 09, Y)

(i) sample 65+ from m(6|05*, 09, ..., 6%, y)

vector and could include the hyperparameters of the hierarchical model (1.16). Therefore, in this

discussion 7(f|y) will also be used to represent 7 (6, ¢|y).
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............

0§i+1) , 0(71-‘:—1) )

(iif) sample 05D from (Ol 1> Y

PRI

At each run through the loop a vector 6@, § = 1, 2,> ... is generated. The sequence of
vectors, 81, 0® .. form a Markov chain since each realization of the vector, 6@,
depends only on the value of the vector vin the previous iteration, ¢~ . Gelman et al.
(2004) demonstrate that the chain converges towards the joint posterior distribution
that we are interested in, 7(6|y). Both Casella and George (1992) and Gelman et al.
(2004) discuss how to determine whether the chain has converged. Casella and George
(1992) discuss how the generated sequence of vectors, §1), 0, ... is used to deter-
mine properties of the posterior distribution 7 (|y) by using the fact that 8, 6@ .|
is a sample from 7(0|y), or that after some run-in period, r (r > 1) iterations say,
the sequence "+ 90+2) . is considered a sample from 7(6]y). For instance, the
mean and variance of 7(6|y) can be determined, just as can any percentiles of the dis-
tribution. We are, of course, ultimately interested in determining the unconditional
marginal distributions, f(6;), i = 1,...,m. Casella and George (1992) indicate that
B g9 g9 ()

the quantities 7 (6;|0 0, 0w, y), i =1,...,m,j =1,2,..., calculated

53)’ ) 9(]) () . ,97(%)

" using the simulated values @ 070,05,

at the jth iteration contain more
information about f(6;) than the simulated values, QEO), 951) , 0§2), ..., themselves. For
instance, the mean of f(6;) can be estimated by (1/n) Z;.:(} 91.(j). In the limit this
expression tends to the true mean of f(6;). However, a better estimate uses the follow-
ing: (I/n)3, j;& E [0i|0§j ) ,01@1, Gg_)l, 09, y] if these conditional expectations
can be evaluated.

The Metropolis algorithm

The Gibbs Sampler is a special case of the Metropolis Algorithm. Recall that at each
stage of sampling in the Gibbs Sampler there was no decision taken as to whether or

not to accept the updated vector-value of the parameter. The Metropolis Algorithm
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includes, at each iteration, a decision process as fo whether or not to accept the
updated parameter value. Both Tanner (1996) and Gelman et al. (2004) indicate
how this decision is made. Suppose that the vector ™ is the proposed updated
vector at the ith iteration. If 8*) increases the posterior density then it is accepted.
If it decreases the posterior density then it is only kept (accepted) with a certain
probability.

We will provide an outline of this scheme which uses the same notation as Gelman
et al. (2004). We will include all of the main ideas but it will be necessary to consult
the text for a full description. As with the Gibbs sampler we choose a starting value

of 6 from a étarting distribution and name this 8. Then proceed with the following:

e Sample a candidate point 6*) from a symmetric jumping distribution at time t,

J(O¥)]6e-D),

e Calculate the ratio of the conditional density at the proposed point and at the
previous point in the chain

(6™ |y)

r= (@D’ (1.17)

e Set

40 6™, with probability min(r,1)

6¢-1)  otherwise.
This algorithm generates a Markov chain. In order to generate the posterior density of
6, the Markov chain is used in the same way as that generated by the Gibbs sampler.
The Metropolis Algorithm involves a so-called rejection/acceptance component.
However, the Gibbs Sampler will always accept the proposed parameter vector 9(*5,
even if it decreases the posterior density. Both methods will accept #*) with proba-
bility 1 if it increases the posterior density. It is important to note that the power of

these methods, as indicated by Gelman et al. (2004), is not the Markov property but
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the, fact that the distributions are essentially improved at each iteration. Forming a
Markov chain is desirable for ease of proving the convergence of the chain and other

such properties.

Remark 1.19 The Metropolis algorithm is a special case of the Metropolis-Hastings
algorithm, for which the jumping rules J; are not necessarily symmetric, as is the
case with the Metropolis algorithm presented here. Since we will use only symmetric
proposal distributions in Chapters 4 and 5, we will not discuss the more general

Metropolis—Hastihgs algorithm here.

Convergence and Run-In Period. It is natural to expect that the choice of starting

values will influence the nﬁmber of iterations required to achieve convergence of the
" Markov Chain. Moreover, the question of how to determine whether convergence
has been achieved is, of course, one of great importance. An issue linked to this
question is how great a ‘run-in’ period to allow. All of these issues, particularly that
of convergence, have been examined extensively by many authors. Both Gelman et
al. (2004) and Brooks (1998) addfess all of these questions in some detail.

It is recommended to run not only one sequence of iterations but several simultane-
ously, each of which begins with different starting values. Moreover, the use of s’carting
values from ovérdispersed distributions is advocated (Gelman et al., 2004). One can
then compare within sequence variation to between sequence variation. Initially, be-
tween sequence variation will be greater than within sequence variation. As the chain
approaches the equilibrium distribution the two variations will become increasingly
similar. This fact has been exploited in developing a statistic that is used widely
to determine convergence. It is described in some detail by Gelman et al. (2004)
and by Brooks and Gelman (1998). The statistic is known as the Gelman-Rubin
convergence statistic, as indicated in Gelman et al. (2004). We will not describe the

statistic in detail here; suffice to say that it is a statistic calculated for each parameter
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that is being estimated by the algorithm. In order to conclude that convergence has
been achieved, the value of the statistic should be approximately equal to 1 for each

parameter being estimated.

1.5 Literature review: General parametric mod-

elling techniques

In this section we describe modelling techniques that enable us to place the work
presented in this dissertation relative to developments broader than those only in the

capture-recapture setting.

Generalized linear mixed models

McCulloch and Searle (2001) introduce the class of generalized linear mixed models
(GLMM), building on the wofk of McCullagh and Nelder (1999), who present the
class of generalized linear models (GLM). We let y be a vector of response variables
‘and ¢ a link function (not necessarily linear) which operates on each element of y.

The GLM is defined by
g(Ely]) = X8 (1.18)

extended to the definition of the GLMM, given by
g(E[ylu]) = XB + Zu, where u~ fU(u), (1.19)

where, in each case, y is taken from an exponential family and X is the design matrix
for the fixed effects 3. In the case of the GLMM, Z is the design matrix for the
random effects u, which are assumed to be distributed according to the distribution

fu(u). It is usually assumed that the response vector y consists of conditionally
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independent elements, each with a distribution from the exponential family so that

yilu ~ indep fy;ju(yulu)

Friu(ulu) = exp{lyiv — b(%))/7* — c(yi, 7)}-

See McCulloch and Searle (2001) for further details.

We note that by adding random effects to the GLM, it is possible to incorporate
correlation and to undertake broader inference since a greater range of models fit into
such a class (McCulloch & Searle, 2001). For example, the analysis of longitudinal
data necessitates the incorporation of correlation between observations on the same
individuals (Diggle, Heagerty, Liang, & Zeger, 2002). The model we introduce in
Chapter 4 is a further generalization of the GLMM, in which the link function g
“takes lihear combinations of the entries of IE [y|u], equivalently, the model is of the
form A(E[y|u]) = X8 + Zu, where A is an invertible matrix. Zhao, Staudenmayer,
Coull, and Wand (2006) discuss a general framework for Bayesian GLMMs, in which
it is understood that the link function g operates element-wise on the vector I [y|u].
The model introduced in Chapter 4 of this dissertation is a Bayesian model of a
similar form. However, there are additional challenges faced in our setting in which
the link function operates on linear combinations of the entries of IE [y|u], rather than

the simpler element-wise operation of g in (1.19).

Marginal models for categorical data

The new modelling approach introduced in this dissertation is a model on marginal
means of a contingency table (in particular the incqmplete contingency table of the
capture-recapture setting). In such a case both models (1.18) and (1.19) assume that-
the elements of y are distributed as independent Poisson random variables or that
y has a multinomial distribution with N as the population size. Here we present a

description of general marginal models for categorical data. Such models typically
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fit into the class of GLMMs as described above, with g not necessarily a function on
each element of y, but one which might take linear combinations of those elements.
Haber (1985b) describes maximum likelihood methods for log-linear models for
categorical data (thought of as arranged in a contingency table), with the most general-
model given by
Clogu = X8, (1.20)

where C is a matrix which serves to form lineaf combinations of the entries of u, the
cell means of the contingency table, corresponding to the vector of cell medns [T3
introduced in Section 1.1. Haber and Brown (1986) further extend the method to the
case where expected frequencies are subject to linear constraints.

Lang and Agresti (1994) build on this work to develop a more general model
form to simultaneously model the joint and marginal distribution of multivariate

categorical responses. The model takes the form
Clog Ap = X0, ident(u) =0 (1.21)

where C = C;@Cu, B = (A}, A}), X = X;P Xy, B = (8},8)y), and
ident(p) = 0 denotes the multinomial identifiability constraints, and J refers to
the model on the joint means and M to that on the marginal means. We note that
(1.20) is a special case of (1.21), with & composed only of parameters related to the
joint cell means of the contingency table and not the marginal means.

The marginal mdde_l we introduce in Chapter 2, which we treat via maximum like-
lihood estimation in Chapter 3, is of tﬁe form given by (1.21), in which e is composed
only of entries related to the marginal distribution and not the joint distribution, as
is the case with (1.20). The matrix A is also composed of entries relating to the
marginal distribution and not the joint distribution. It is an upper triangular matrix
given by (1.1) for the three-source case. Details of variance estimation of the model

parameters of Chapter 3 are given in Appendix F, in particular for the model of that
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chapter, derived according to the results of Lang and Agresti (1994).

Lang, McDonald, and Smith (1999) present a class of association-marginal models
for multivariate catégorical data of a form similar to (1.21), where the model is given
by

Clog Ap =Xg.

We note that this form is more general than the spéciﬁcations of (1.21). Thé authors
describg a maximum likelihood approach to model fitting. Molenberghs and Lesaffre
(1999) describe a method in which the joint distribution of p is expressed in terms
of the marginal mean functions and pairwise and higher order association measures.

A general theoretical framework is presented by Bergsma and Rudas (2002) who
introduce a general definition of marginal log-linear parameters. They describe condi-
tions under which the model parameters are smooth and variation independent, and

conditions under which large-sample theory applies:

Marginal models for capture-recapture data

As described above in Section 1.2.2, we have identified two references in which the
authors develop a marginal model specific to the capture-recapture setting (Bartolucci
& Forcina, 2002 and Bartolucci & Forcina, 2006). In both instances the marginal
modelling does not extend to the modelling of complete marginal association. The
marginal modelling approach introduced in this dissertation considers the complete
marginal distribution of all orders including the highest K-way for the K-source

setting.

Remark 1.20 We note that we have found no reference to a Bayesian approach to
marginal modelling and in particular no such reference to Bayesian marginal mod-
elling of capture-recapture data. Thus, the work presented in Chapters 4 and 5 is a

new approach to combining both components.
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1.6 Outline of dissertation

This dissertation presents a marginal log-linear modelling approach able to model
arbitrary dependence structures, which are a larger class than those modelled by hi-
erarchical log-linear models. In so doing we provide a new approach to cdnceptualizing

dependence in capture-recapture data.

Chaptér 2

A measure of dependence for capture-recapture data named the Coefficient of In-
cremental Dependence (CID) is introduced, related to the Coefficient of Source De-
pendence (CSD) of Vandal et al. (2005). Both measures are defined for all possible
2K —1 combinations of sources for the K-source case. Properties of both measures are
derived. The CID is related to the CSD in that it measures changes in dependence
dué to moving from margins of lower dimension to those of higher dimension. On the
other hand the CSDs measure dependence on a more absolute scale.

These measures form the basis for a new class of marginal log-linear models -
(MLLM). Unlike hierarchical joint log-linear models (HJLLM), MLLMs in their most
general form are able to accommodate dependence structures that are non-hierarchial
and not necessarily of a conditional independence form. Moreover, MLLMs may pro-
vide an indication of whether K-way dependence is present for which it is not possible
to test'using JLL models, even nonhierarchical ones. We derive the class of models
and examine its relationship to the conditional independence structures modelled by
HJLLMs. We see that for the HJLLM of independence and joint dependence there
is an equivalent MLLM, whilst the MLLM equivalent to the HJLLM of cohditional

independence is a constrained model.
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Chapter 3

For the new marginal log—lineair model formulated in terms of the CIDs, we present a
maximum likelihood approach to parameter estimation. The goal of this chapter is to
further understand the relationship between MLLMs and HJLLMs. As such, é, robust
method will not be presented. Rather, we will present specific examples of data sets,
both real and simulated in order to demonstrate that the MLLM performs well. In
some cases, in particular for a nonhierarchical dependence structure, we observe that

the MLLM out-performs the best HJLLM.

Chapter 4

An alternative approach to the parametric models of Chapter 3 is presented in this
chapter. The dependence structure of the incomplete contingency table is modelled
using random effects. A general form of the model is presented together with the
development of a general Bayesiah framework. Such a model fits into the class of
' generalized linear mixed models described in.Section 1.5. This approach, in working
with a model on the marginal means, is new in the field of capture-recapture, except
for a single related model of the form given by Bartolucci and Forcina (2001) and Bar-
tolucci and Forcina (2006). An MCMC scheme for parameter estimation subject to

constraints is discussed.

Chapter 5

In this chapter we present a specific form of the random effects model introduced in
Chapter 4 parameterized in terms of the CIDs (as introduced in Chapter 2). The
CIDs are treated as random effects, which .differs to Chapter 3, in Wthh the CIDs
were treated as fixed effects. We describe the specific details of the MCMC scheme

introduced in Chapter 4 and present results from an analysis of the real data set
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analyzed via maximum likelihood in Chapter 3. We explore the sensitivity of posterior

inference to the prior specification on N and the random effects variance.

Chapter 6

In this chapter we present an overview of the dissertation and an indication of the

original work developed therein.
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Chapter 2

"Two Measures of Source

Dependence

2.1 Introduction and overview of source depen-
dence

Statistical modelling of capture-recapture data must account for possible dependence
between sources. As discussed in Section 1.1.1, there is rarely full independence
between sources. For this reason, the concept of source dependence, and approaches
to modelling it in order to estimate the true unknown population size NV, is the central
theme of this dissertation.

In this chapter we present a new approach to understanding source dependence.
This is done by the introduction of a new measure of dependence named the Co-
efficient of Incremental Dependence (CID) derived from the Coefficient of Source

Dependence (CSD) of Vandal et al. (2005). Both measures are defined for all possi-
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ble marginal combinations of sources. That is, for the general K-source case there are
K single-source margins, (12{) two-source margins, all the way up to the single K-way
marginal combination of sources. These measures form the basis of a new marginal
modelling approach, which will also be introduced in this chapter.

Both the CID and CSD are defined as ratios of population-level probabilitiés of
source membership. Of course, the true values of the CIDs and CSDs are unknown.
This is a direct consequence of the nature of capture-recapture data: the population
size, IV, is unknown and is to be estimated and therefore the true underlying depen-
dence structure is also unknown. Correctly modelling the true underlying dependence
structure pfovides the means to estimate N. To this end, two parameterizations of a
new marginal modelling approach will be presented, the first based on the CIDs and
the second on the CSDs. For the purposes of this introductory discussion, the two
parameterizations are essentially interchangeable. Whenever we discuss them we will
~ refer to CIDs and write CSD in parentheses. '

Further motivation for this new marginal modelling approach is related to what we
view as the current restrictive practices of modelling dependence for capture-recapture
data. As described in Section 1.2, hierarchical joint log-linear models (HJLLMs) are
believed to be the most widely adopted class of models used to analyze epidemio-
logical capture-recapture data. They are restrictive in their inability to model non-
hierarchical dependence structures. Rather, HJLLMs model conditional independence
structures, which are hierarchical in nature. In this chapter we will demonstrate that
non-hierarchical dependence structures may arise in practice, by providing a simple
example. Nonetheless, the use of HILLMs is advocated by many authors (Bishop
et-al., 1975; see description in Section 1.2.1 for more advocates), in part because of
the interpretabﬂity of model parameters (see Section 1.2.1) and their relationship to
graphical models.

Few authors choose to fit non-hierarchical joint log-linear models (non-HJLLMs) in
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addition to HJLLMs and then select the best model amongst all joint log-linear models
(JLLMs). Indeed, we know of only one case in the literature, that of Ismail et al.
(2000). The major drawback of non-HJLLMs, and the one raised by most advocates
of HJLLMs, is lack of interpretability of model parameters. But, as described above,
in excluding non-HJLLMs there are dependence structures which cannot be modelled
well. Thus, thereis a need for interpretable, alternative models of dependence in order
to well estimate N when the true underlying dependence structure is not well modelled
by hierarchical models. The CIDs (CSDs) provide a way in Which to interpret model
parameters of non-HJLLM. Furthermore, the marginal modelling presented in this
thesis (whose model parameters are interpretable in terms of the CIDs (CSDs)),
provide a universe of dependence structures complementary to those that can be
modelled by JLLMs.

This chapter is organized as follows. In Section 2.2 the definition of the CSD
is presented. Properties of the CSD are provided, including explicit results stating
the specific form of the CSD for the conditional dependence structures that can be
‘modelled by the standard approach of HJLLMs. (Examples are presented later in
Section 2.4.2 for the three and four-source cases). In so doing the restrictive nature
of HJILLMs is .demonstrated. Further properties of the CSDs are presented including
statements concerning bounds and the rate of change of CSDs with changes in N.
Next an explicit relationship of the CSD to the Coefficient of Covariation (CCV)
measure of Chao and Tsay (1998) is presented. This measure is closely related to
that of our CID which is defined in Section 2.3. Properties of the CID are presented
in Section 2.3.3. Specifically, we state and prove the general K-source one-to-one
. relationship between the CIDs and CSDs.

In Section 2.4, we introduce the marginal log-linear model (MLLM), using early
parts of this chapter as motivation. The CID and CSD parameterizations are pre-

sented along with specific relationships to the conditional dependence structures mod-
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elled by HILLMs. We do so by simultaneously deriving the explicit form of the CIDs
and the CSDs (from Section 2.2).for such depeﬂdencé structures. It is shown that
inarginal models with some CIDs (CSDs) fixed at 0 are equivalent to simple depen-
dence structures modelled By HJLLMs (independence and joint independence) but
that the marginal model equivalent to the HJLLM for conditional independence is
a constrained MLLM (in practice Lagrange multipliers could be used to enforce the
constraints). Thus, there is no unconstrained MLLM equivalent fo the HJLLM for

conditional independence. Examples are presented for the three and four-source cases.

Remark 2.1 Note that in this and in subsequent chapters, we will not distinguish
between heterogeneity-induced source dependence (deScribed in Section 1.1.1 and
more specifically in Section 1.1.2) and pure source dependence. The reasons are two-
fold: first, there is more than enough to say with respect to dependence in general in
the new framework presented in this dissertation and, second, covariate information |
is not always readily available to enable more sophisticated modelling which might
account for some dependence via the inclusion of covariate information. Such work

will be undertaken in the future.

2.2 Coefficients of source dependence.

In this section we present the definition of the Coefficient of Source Dependence (CSD)
as first introduced in Vandal et al. (2005) and further described in Melocco (2002).

2.2.1 Definition

Consider a source denoted by S. Let P [S] denote the probability that a randomly
chosen individual in the population appears in source S; such a probability is a

property of the source rather than of the individuals in the population under study
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and represents the average probability of inclusion in source S, averaged over all
individuals in the population. A natural measure of dependence for a set of sources

denoted by Q'is one which measures departures from independence, given by:
P[NsegS]

[Mris

SeQ

Definition 2.1 cg =

which represents the ratio of the joint probability of membership in all sources divided
by the joint probability under independence. The Coefficient of Source Dependence
~ (CSD) for the set of sources in Q, denoted by CQ, is defined as the natural logarithm

of CQ.

Deﬁnition 2.2 CQ = log (CQ) — log P [nSEQS]
[1 78]
SeQ

Remark 2.2 Consider Q composed of K sources and given by Q@ = {S1,..., Sk}
Then, Cg = C{s,,...sx}- To lighten notation, let Cs,, . s, = Cis,,...5x}

Remark 2.3 From definition 2.2, the single-source CSD corresponding to source S
is identicélly zero. In this case @ = {S}, and Cg = C{s; which we denote by Cs
(see the previous remark). Thén Cs = 0, which is referred to as the single-source
CSD corresponding to source S. Further, Wé define the intersecfion of sources in the
empty set to be the whole population and the empty product to be equal to 1, so
that Cy = 0.

The motivation for the development of the CSD measure is twofold. First, as
will be seen in Section 2.4, the definition of the CSD (and that of the related CID)
naturally leads to a marginal modelling approach for capture-recapture data (hence
the motivation to define the CSD according to Definition 2.2 rather than Definition
2.1). Secondly, it is a useful tool in its own right, complete with interesting properties

and a useful reformulation, which we present in Section 2.3.
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The CSD measures the strength and direction of dependence between any marginal
combination of sources, of which there are 2X — 1 for K sources, ranging from the K
single-source CSDs, which we term the one-way CSDs, to the single K-source CSD,

which we term the K-way CSD.

Example 2.1 Consider the two-source case with sources denoted by A and B. There
are 2 one-way CSDs identically equal to 0 (see Remark 2.3) and a single two-way CSD
given by

szbg<PMHM).

PIAIP[B]

Examination of the form of C4p shows that a value of 0 corresponds to independence,
whils.t Cap > 0 corresponds to positive dependence (P [A|B] > P [A] and P [B|A] >
P[B]) and Cap < 0 negative dependence (P [A|B] < P [A] and P [B|A] < P[B)).

Example 2.2 Now consider the three-source case, with sources A, B and C. There
are 23 — 1 = 7 CSDs in total. The 3 one-way CSDs are identically equal to 0 (see
Remark 2.3), whilst the 3 two-way CSDs are given by:
P[AN B (PMmq) (PBO@)
=1 —_— =] — ), Cpc =1 —
0un =15 (iap1ar)  Osc = 1ot (rapper) O =108 (Fgpy)
and the single three-way CSD given by

PManﬂ)'
P[AIP[BIP[C]) "

Capc = log (

We note that the interpretation of the CSD sign as indicating the direction of in-
dependence still holds for the three-way CSD. For instance if Cypc > 0, then
P[ANB|C] > P[A]P[B], and so on.

2.2.2 Properties

In this section we consider the behaviour of CSDs in several respects: we consider the

CSDs implied by HJILLMs, some inequalities for CSDs, their relationship to N, and
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their relationship to the Coefficient of Covariation of Chao et al. (2001).

HJLLMs and CSDs

In order to provide an interpretive background to CSDs in terms of known dependence
structures, we first examine the behaviour of the CSDs for all dependence structures
that can be represented by a hierarchical joint log-linear model. Recall that, for such
models, all possible interactions of lower order which can be formed from each of the
higher order interactions must be included in the model. The available dependence
structures are mutual independence, joint independence, conditional independence
and mutual dependence’ (as described in Chapter 1). Before examining the form of
these dependence structures, consider a general result to be used for the specific con-
ditional independence structures for the three-source and four-source cases presented
in Section 2.4.2 below where we simultaneously present the corresponding results for

the CIDs and the marginal models (to be introduced in Section 2.4).

Theorem 2.3 Let R, T and S denote arbitrary sets of sources such that RNS = @.
We recall the HILLM conventions presented in Section 1.2.1. Then if the groups
[R,T) and [S, T appear in the HILLM specification with no [.A, B) specification where
ACTR and B C S (so that sources in R and sources in S are conditionally indepen-

dent given sources in T )

Crusutr = Crut + Csur — Cr-
The proof of this Theorem appearé in Appendix D on page 222.
Remark 2.4 In the simplest of cases, R = {B}, S = {C} and T = {A}. In this
instance, if [AB] and [AC] belong in an HJLLM description (entailing conditional
independence of B and C given A), the relationship Capc = Cap + Cac — Ca

must hold by Theorem 2.3. In other words the 3-way component of dependence is

decomposed in such a manner.
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Remark 2.5 The general results presented in this section will enable us to explore
specific characteristics of the CSDs for the three-source and four-source case, to be
presented in Section 2.4.2. Theorem 2.3 states that a HILLM of conditional indepen-

dence entails specific linear equality constraints on the CSDs.

Bounds on CSDs

We now explore relationships between the CSDs. Specifically, we consider bounds
on the CSDs, which, as will be demonstrated, are a. direct consequence of the order
relationships amongst the underlying marginal source probabilities.

There is an inherent ordering on marginal probabilities. If Q is a set of sources
and Q" C Q is any subset, then P [Nsco- S] < P[NgegS]. Consider, for instance,
the probability P[A N B] that a randomly selected individual is captured by both
sources A and B. This probability is bounded above by the individual probabilities
of membership in each of sources A and B, denoted by P [A] and P [B], respectively.
That is

Pap < min{Py, Pg},

where P4, Pg and Psp denote P [A], P[B] and P[AN B, respectively.
These ideas form the basis of the following Proposition, which places upper and

lower bounds on a CSD relating to an arbitrary number of sources.

Proposition 2.1 Let R denote a set of sources, with corresponding CSD Cr. We
define Pr = P [NgerS]. Then

- Pr Py
on(22) < 2 (22 ).
' (le) [Iser Ps

R
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where

Pr =maxPr[S
R ‘pax Pr(S]
Pr = min Py,
QEeP(R)
12 = IR| ~-1

and where P (R) is the power set of R.

Example 2.3 We consider the workings of Proposition 2.1 in the two-source case.
Without loss of generality, assume that P4 > Pg. Then
Psp < Pp.
Therefore
Pup < Pp _ 1 < _1_,
P APB P AP B P A P B
and the corresponding CSD, C4p, is bounded in the following manner

PAB ‘ lAB
< — < - P . .
log (”—Pg ) < Cyp = log (P P ) < —log(Pa) (2.1)

Example 2.4 For three sources, a more extensive series of bounds exists. Consider
sources A, B and C. Similarly to the two-source case above, without loss of generality,

assume that P4 > Pg > Ps. Then
Pap < min{Py4, Pg} = Pp
Pyoc < min{Py4, Po} = Po
Pye < min{Pg, P} = Ps
Pspc < min{Pap, Pac, Ppc} < Fo,
which leads to upper bounds on the three pairwise CSDS given by
Cap < —log(Pa)
Cac < —log(Po)
Cpe < —log(Fo),
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and an upper bound on the threeway CSD given by

P P 1
Casc = log (—_PA;§CPC> < log (————PA PZ Pc> < log ( B, PB> = —log(P4Pg),

with a tighter upper bound given by

P . P.
Canc = log (PA;E;C) < log (PAP;PC) ’

where Pg = min{PAB, PAC, PBC}~

Lower bounds on the pairwise CSDs are given as follows

P
Cap > log (“A—QB)
A
Pac
Cac = log (ﬁ)
2
B

P
A
Cpe > log (%’-) . (2.2)

Remark 2.6 Figure 2.1 shows the region of feasible values for C4p for the case
where P4 > Pg > P¢ with fixed marginal probabilities P4p = 0.2, Psc = 0.1 and
Ppc = 0.099. In this case, as shown in (2.1), the upper bound is controlled by Pj,
whilst the lower bound is controlled by both P4 and P4p, as shown by (2.2).

For any capture-recapture data set, the set of feasible values of all of the CSDs is
thus constrained by the magnitude and ordering of the marginal source probabilities.
This relationship demonstrates that, although the CSDs range over R, there exist

constraints on the set of all CSDs for a given data set that cannot be overlooked.

Relationship to the Coefficient of Covariation

The CSD is related to the Coefficient of Covariation (CCV) introduced byChao
and Tsay (1998), which was discussed in Section 1.3. For the two-source case, the

relationship is given by the following proposition.
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Figure‘2.1: Upper and lower bounds for Cup for P4 > Pg > Pc with Psap =
0.2, Pac = 0.1 and Ppe = 0.099.

Proposition 2.2 Consider two sources, A and B. Let wap denote the two-source

CCYV defined by (1.10). Then
wap = exp(Cap) — 1 =cap — 1. (2.3)

Proof. Consider the definition of the CCV for sources A and B, as given by (1.10).
Recall that X;4 and X;p are indicator functions that individual ¢ belongs to sources A
and B, respectively, and pu4 and pp denot_e average inclusion probabilities for sources
A and B, respectively. Now, since these random variables, X;4 and X;p, are indicator
functions, the expectation of the product is simply IE [X;4X;5] = Pr[Xjs = 1, Xip =
1] = Pr[AN B|I = i), in terms of the notation developed here in this dissertation.
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That is, the expectation of the product of the random variables X;4 and X;p is equal
to the probability that the ith individual is in both sources A and B. Thus, from the

definition of wap we obtain

l 271.11 E [(Xia — pa)(Xi — 1))

wap = N HaApB
_ 1 SN E[XiaXip — paXin — ppXia + papis)
N HAKB
1YL E(XiaXis]  (aNus + psNps — Nuaps)
N pABB Npaps
_ 1YL EXuXs] (2.4)
N HAlB ’ )

Under random sampling of individuals in the population of interest, Pr(l = i] =
1/N. We can therefore equate the average probability pa of inclusion in source A
and the probability that a randomly selected individual is observed in source A.

1 X
#A=’N—Z]E[Xm]

i=1

=" PrlA|I = i|Pr{I = i]

i=1
N

= Pr[A,I=i]
=1

= Pr[A]. (2.5)
Likewise ug = Pr|[B].
Consider the numerator of (2.4). Using the Law of Total Probability, it can be

re-expressed as
1 N N
~ > E[X;aXip] = Z; Pr{An B|I = i|Pr[I =1
N
=> Prl[AnB,I =]

i=1

~PrlAnB]. (2.6)
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Substituting from (2.5) and (2.6) into (2.4) leads to

_ 1YL PriAnBlI =]

w -1
4B N Haptp
Pr[An B|
=1
Pr[A]Pr|B]
=caB— 1,
as required. O

Remark 2.7 This relationship demonstrates that the two-way CCV is a translation
of the exponential of the corresponding CSD. It is immediately obvious that such a
relationship holds in the case of independence: when sources A and B are indepen-
dent, the CSD is known to be given by Cap = 0 and cap = exp(Cap) = 1, just as
the CCV is given by wap = 0.

Remark 2.8 An approximation can be derived as follows. Taking the first-order
Taylor expansion of the natural logarithm of cap, i.e. of C4p, which is valid for cap

close to 1 (i.e. close to independence) yields
WARB = CAB — 1~ 10g CAB — CAB- (27)

Proposition 2.3 Consider three sources, A, B and C. Let wapc denote the three-

way CCV. Then

wape = (capc — 1) — (cap — 1) — (cBe — 1) — (cac — 1). (2.8)
If the CSDs are close to zero, then

wasc = Capc — (Cap + Cpo + Cac) + (Ca+ Cp + Co) (2.9)

Here we present an outline of the proof using the same assumptions as for the rela-
tionship for two sources derived above. The full derivation is presented in Appendix D

on page 224.
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Proof.

wape = (caBc — 1) — (cap — 1) — (cge — 1) — (cac — 1)
=~ log capc — logcap — log cpe — logcag, from the first order Taylor expansion for log

CABC
= log | ————
CABCBCCAC

CABCCACBCC
= log | —————

) , since by definition ¢4 =cg=co =1
CABCBCCAC

= Capc — (CAB + Cpe + CAC) -+ (CA +Cg+ Cc), by definition of the CSDs
O

Remark 2.9 Thus, the CCV for three sources, wapg, is approximately equal to
a linear combination of all three-way, two-way and single-source CSDs. Moreover,
the linear combination has an inclusion/exclusion form. Although it may appear
uﬁimportant to include the single-source CSDs, since they are identically equal to
0, it is formally useful to do so for the development of an alternative measure of
dependence, the Coefficient of Incremental Dependence, which will be introduced in

the next section.

Remark 2.10 For four sources the following relationship can be derived using the

same assumptions as for the three source case.

wapep = (capep — 1) + (cap — 1) + (cBe — 1) + (cap — 1) + (cac — 1)

+ (cap —1) + (ccp — 1) — (capc — 1) — (capp — 1) — (cacp — 1) — (cBep — 1)
~ log (CABCDCABCACCADCBCCBDCCD
CABCCABDCACDCBCD
= log ( CABCDCABCACCADCBCCBDCCD >
CABCCABDCACDCBCDCACBCCCD

) , if the CSDs are close to zero

= Capcp — (Casc + Casp + Cacp + Cpep)

+ (CAB+ Cac+Cup+Csc+Cgp + CCD) —(Ca+Cp+Cc+ CD)
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Again, as with the three-source case, the four-way CCV wapep, is approximately
equal to an inclusion-exclusion linear combination of the four-way CSD and all three-
way, two-way and single-source CSDs. Such relationships play an important role in

motivating the reformulation of the CSDs presented in the next section.

Rate of Change of CSDs with change in N

We wish to examine the form of the CSDs with a change’in the assumed value of N.
To do so, we consider completing the incomplete contihgency table of n, individuals
with various additional numbers of individuals corresponding to different values of N.
See Table 2.1 for a prototypical three-source incomplete contingency table. In order
to present Example 2.5 below, a thrée—source example of the form of the CSDs for a
change in the assumed value of N, we first present some necessary theory.

Consider the data collected from a capture-recapture study for a set of K sources,
denoted by Q. There are 2K — 1 data points corresponding to the source membership
data aggregated over all ns observed individuals. For each completed table, it is
possible to obtain the exact value of the 2X — 1 CSDs denoted by Cz, where R C Q,
for |[R| =1,...,K. When N is known, the marginal probabilities of belonging to a

specific combination of sources can be expressed in terms of marginal means and N.

Proposition 2.4 Let Q be a set of sources and let N be known. Then P [S] = mg/N
for a source S € @ and P[R] = mg/N, for R C Q. »

Remark 2.11 Notation.
We use P [R] to denote P [Rn] and mg to denote mg,,, where Rn = NserS for R a

set of sources.

The relationships characterized by Proposition 2.4 enables the CSDs to be re-

formulated in the following manner. Substituting for such relationships into Defini-
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tion 2.1 yields the following

__ PriR] _ NRI_TR__
[Iser PrlS] [ser ms

which is a ratio of marginal means scaled by some power of N. This, in turn, leads to

CR

an alternative expression for the CSD in terms of marginal means and N rather the

marginal probabilities of the original definition of the CSD given by Definition 2.2.
Proposition 2.5 Let Q be a set of sources and let N be known. Then
Cr=(R|=1)log N + logmp — Z logmg, for R C Q. (2.10)
SeR ,
Remark 2.12 Now, when N is known, the expected marginal counts are simply

equal to the observed counts, since the complete table accounts for the entire popu-

lation. That is, mg = ng, for R C Q.

Using (2.10) for the complete table, the relationship between N and the CSDs is given

by the following proposition.

Proposition 2.6 Let Q be a sét of sources and let N be known. Then a natural ‘
estimator 57& of Cr is
Cr=(IR| —1)log N + lognk - Z logns, for R C Q.
SerR

Remark 2.13 It is evident from Proposition 2.6 that all estimated k-way CSDs,
k=1,...,|Q|, increase with N at the same rate since only the log N term changes
with N in a nonlinear manner (as a function of N). Pairwise CSDs, for example
5,43 = log N + lognap — (logna + lognp), have a positive rate of change 1/N which

decreases as N increases.

a

Example 2.5 With this example we will explore the properties of the CSDs for N

known, using the theory outlined in Propositions 2.4- 2.6. Consider a three-source
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simulated data example for which source membership for each of 1000 individuals
is assigned according to a multinomial distribution with fixed probabilities for each
of the 23 cells of the complete contingency table. As usual in the capture-recapture
setting, the cell corresponding to the number of individuals observed in none of the
three sources would be unobserved. An example of simulated data is presented in Ta-
ble 2.1 (a descfiption of the data generation mechanism is presented in Appendix C).

Of the 1000 individuals of the simulated population, 754 were observed. For this

Bres Bro
Cves COno | Cves Cro
Ave | 117 96 | 64 72
Ano | 109 134 | 162 Tiumops = ?

Table 2.1: Observed sample simulated from population size 1000

capture-recapture data set we wish to examine the form of the CSDs with a change
in the assumed value of N, i.e with departures from the true value of N = 1000.
That is, it is assumed that the data set of the incomplete contingency table rémains
the same‘but that N changes. The values of the estimated CSDs corresponding to
different values of N will be obtained using Proposition 2.6. In this way it will be
possible to observe the effect of a changing N on the dependence structure present
in such data, as well as to explore the relationships between the CSDs themselves,
specifically between the pairwise CSDs and the three-way relative to the pairwise.
The relationship of Proposition 2.6 is confirmed by Figure 2.2. We see equal
change for all k-way CSDs with increasing N (Remark 2.13). It is clear that the
change is equal for all pairwise CSD‘SZ the three lines are parallel. For the single
three-way CSD, Capc, the changé is governed by 2log N rather than by log N, as N

increases. Again, such a difference is clearly apparent in Figure 2.2, in which the line
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Figure 2.2: Estimated CSDs for data of Table 2.1 for different values of N

corresponding to Capc diverges from the three pairwise CSDs.

2.3 Coefficients of incremental dependence

In this section we introduce a second measure, the Coefficient of Incremental Depen-
dence (CID) (see Definition 2.4) which is designed to decompose dependence into its

K-way components.

2.3.1 Motivation

The CSDs measure dependence in a manner which can be thought of as absolute. As
an illustration, consider the three-way CSD, Cape. It can be thought of as operating

on an absolute scale since it does not quantify how much additional dependence
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can be explained by all three sources compared to that measured by the 3 pairwise
CSDs, Cap,Cac and Cpe. Rather, it quantifies all depéndence at the level of the
three sources irrespective of that present at all of the two-way levels. An alternative
approach would be to develop a measure which quantifies the additional three-way
dependence not already accounted for in the two-way dependence structure.

In this sectioﬁ we present an example, Example 2.6, for the three-source case.

‘This example provides more spéciﬁc motivation for a reformulation of the CSDs.

Example 2.6 Consider a simple three-source example for which the only dependence
present occurs between sources A and B, i.e. an underlying model of joint indepen-
dence denoted by [AB] [C]. Suppose that C4p = log(1.2). By assumption, the other
two pairwisé CSDs are given by Cac = Cpc = 0. In this case, as was shown above
in Section 2.2.2, Cypc = Cap = log(1.2). But given that, by assumption, there is
no three-way dependence, a measure of three-way dependence that would take on a
value of zero would be attractive in this case.

Consider the following éxpression:
Capc — (Cap + Cac + Cpe) = log(1.2) — (log(1.2) +0+0) = 0.

Being equal to 0, this expression provides a sense of the magnitude of how much
additional dependence is accounted for jointly by all three sources relative to that
which can be accounted for by all pairs. It would appear to be a natural measure to

adopt for such an example.

Remark 2.14 The second measure of dependence which we propose, namely the
Coefficient of Incremental Dependence (see Definition 2.4), is of a form related to the
property described in Example 2.6. In the next section the CIDs, which are designed
to decompose dependence into its several K-way components, will be defined and

their properties explored.
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2.3.2 Deﬁnition

Definition 2.4 Let Q be any set of sources. Then the Coefficient of Incremental

Dependence (CID) vg for the sources contained in g is given by

n

ve=) (-1 > Cr, (2.11)
=1 RCQ '
IRl =3

where (here and hereafter) the notation Z Cr indicates that the sum is taken

RCQ
: R =j
over all subsets R of @ with cardinality j, and j, = j if n is even and j + 1 if n is

odd. We also define v = 0.

Remark 2.15 For completeness, we note that the single-source CIDs are set equal

to the single-source CSDs, which are defined to be 0.

Example 2.7 The differences between the form of the CID (see Definition 2.4) when
the cardinality of R is even compared to when it is odd, will be illustrated using the
three-source case. Using Definition 2.4 for three sources, A, B and C, the CIDs are

defined as follows

Y4=Ca=0
v8=Cp=0
Yo =Cc =0
vaB = Cap
Yac = Cac
vBc = Chc
Yac = Capc — (Cap + Cac + Che) (2.12)
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Remark 2.16 Non-single source CIDs are related to non-single source CSDs by a
linear transformation represehted by v = GC in matrix/vector terms, where C and ~
denote the (2% — K — 1) x 1 vector of non-single source CSDs and CIDs, respectively,

and G represents the linear transformation given by (2.11).

Example 2.8 In the three-source case, we can take

YaB 1 0 0 o [ cus
' 0 1 0 0 | c
~=| ™| a= and C=| *° (2.13)
YBC 0O 0 1 0 Cac
| YaBC | -1 -1 -1 1} | Case |

Remark 2.17 Notice that the approximate relationships observed between the CCV
and CSD, given by (2.7), and (2.9) for two and three sources, respectively, are precisely
equal to the definition of the CIDs, as exemplified here in the three-source case (2.12).
Thus, there is an approximate equality bétween the CID and CCV for a given set of

sources.

Remark 2.18 Consider the definition of the three-way term, vyapc in (2.12). It is
deﬁned as the difference between the three-way CSD, Capc, and the sum of the three
pairwise CSDs, C4p, Cac and Cpge. Such a difference represents the additional three-
way dependence not explained jointly by the pairwise dependence, which is measured ‘

by the sum of the pairwise CSDs.

- 2.3.3 Properties

In thié section we present properties of the CIDs and their relationship to the CSDs.
The main result of this section, Theorem 2.5, presents the general form of the CSDs
in terms of the CIDs by deriving the inverse of the relationship provided by Defini-
tion 2.4.
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Theorem 2.5 Let Q be any set of sources and denote by Cg the CSD associated with

this set of sources. Then

Cg = > s | (2.14)

SCQ

The proof of this Theorem appears in Appendix D on page 225.

Remark 2.19 Theorem 2.5 serves to make explicit the manner in which the CIDs
decompose dependence. It formalizes the inverse relationship between the CIDs and
the CSDs. That is, it provides the inverse transformation of the CSDs in terms of the
CIDs. The original transformation, with the CIDs expressed in terms of the CSDs,
is that used as the definition of the CIDs, given by Definition 2.4. The specific form
of this relationship for the three-source case was described above with the complete
set of CIDs given by (2.12). The corresponding inverse relationship, with the system
of CSDs expressed in terms of the CIDs, is given by (2.15) in the following example.
It is evident that there is a one-to-one relationship between the system of CSDs and
CIDs for three sources as is the case for the general K-source case. The specific form

of the G matrix for the four-source case is provided in Appendix A.

Remark 2.20 Non-single source CSDs are related to non-single source CIDs by the
inverse of the linear transformation given by Remark 2.16. Thus, the inverse transfor-
mation is represented by C = G !~ in matrix/vector terms, where G! represents the

transformation for non-single sources given, for example, by (2.13) for three sources.

Example 2.9 For three sources, the inverse transformation which expresses the ‘

single-source CSDs in terms of the CIDs is given by

CA=’)’A=0
CB=’)’B=0
Ce=v=0,
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whilst that for the non-single source CSDs is given by C = G ™!, where

; (2.15)

Y = I )
= =)

= O o =
- O = O

with «v and C are given in Example 2.8.

Example 2.10 (Example 2.5 continued..)

We consider now the rate of change of the CIDs for changes in N. Figure 2.3 shows

the CIDs changing with N in the way that Figure 2.2 showed the CSDs changing

with N. The same data set is used. It is evident that the three-way CID changes

at the same rate as each of the pairwise CIDs rather than at a different rate as was

the case with the CSDs. It can be shown that the same relationship is observed

for the general K-source case. Thus, working with the Coefficients of Incremental -
Dependence rather than the Coefficients of Source Dependence enables us to measure

dependence between any number of sources on the same scale rather than on different

scales. Therefore, the CIDs are comparable in terms of magnitude irrespective of the

number of sources, whereas the corresponding CSDs are not.

Theorem 2.5 provides an expression for a k~way CSD in terms of all CIDs of e(jual
or lower order. It leads to the following result relating marginal source probabilities

and the CIDs.

Corollary 2.1 Let mg = log P [NscgS]. Then

TQ = ZW{S} + Z’m (2.16)

SeQ RCQ

Proof. The proof is immediate from Cg = wé — Y seq (s} and Theorem 2.5. O
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Figure 2.3: Estimated CIDs corresponding to estimated CSDs of Figure 2.2
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Remark 2.21 Thus, Corollary 2.1 provides an explicit decomposition of the log-
marginal sdurce probability 7o corresponding to the set of sources Q. Such a decom-
" position is formed by the constituent single-source marginal probabilities (the sy
for S € Q) of @ and all CIDs of order |Q| and lower. In the next section, we will sée
that using Corollary 2.1 to decompose 7g, the log-marginal probability for a set of
sources @, naturally leads to the form of a marginal model. We present the form of

the model and describe its properties.

Corollary 2.1 leads, in turn, to Theorem 2.6.

Theorem 2.6 Let Q be a set of sources and mg = log P [NgegS]. Then for |Q| =
n > 2 and j, defined as per Definition 2.4

n

To =Y (-1 Y mr. (2.17)

3=1 RCQ
|R| =3

The proof of this Theorem appears in Appendix D on page 229.

Remark 2.22 Theorem 2.6 expresses the CID for the set of sources @ as an inclu-
sion/exclusion form on marginal source probabilities. The equivalent form in terms
of the CSDs, as per Definition 2;4, is Qxactly the same but with Cg replacing 7:
any CID can be equivalently expressed in terms of all CSDs of equal or lower order

or all marginal probabilities of equal or lower order.

2.4 Marginal log-linear models using source de-
pendence measures

Throughout the discussion of measures of dependence it has been emphasized that
one of the goals of such theory is to develop a new modelling approach. In this section

we will describe the development of the model from Corollary 2.1.
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First, let Q denote a set of sources. Elementary results from sampling theory for
population size N yield
m
| PlQ= 2,
where P [Q] and mg are used to denote P [Qn] and mn,,, respectively, which corre-
spond to the probability of, and expected number of individuals in, the intersection |
of the sources contained in Q, respectively. Equivalently

g = log (%) , (2.18)

for known N.

We have the following proposition.

Proposition 2.7 Let Q be a set of sources and let mg be defined as above. Then

logmg = —(|Q| — 1) log N + Z logmg + 271;.
SeQ RCQ

Proof. Combining (2.18) with Corollary 2.1 yields

g =10g (F8) = Lo} + LrcolR
= ZSGQ log (%&) + 2 RcQ TR
whence the result. O

Remark 2.23 Thus, Proposition 2.7 provides the general form of the marginal mean

mg in terms of the single-source marginal means and all CIDs of equal or lower order.

The full development of the marginal model is obtained by parameterizing the
single-source marginal means as Bs = log mg and By = log N. This leads us to define

the marginal log-linear model in the following manner:
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Definition 2.7 Let Q be a set of sources and K = |Q|. Then the following system of

2K _ 1 equations constitutes the marginal log-linear model (MLLM) for the K sources
of Q. '

logmg = Bs, for S € Q;

logmg = —(|R| = DB+ Y _Bs+ Y r, forRCQ

SeQ TCR
It is a model on marginal means rather than on the joint cell means that are modelled

by the joint log-linear modelling approach (see Section 1.2.1).
An equivalent parameterization in terms of the CSDs is obtained using Theo-

rem 2.5, which yields the following proposition.

Proposition 2.8 Let Q be a set of sources and let d = 2191 — 1. Then the following
system of d equations is equivalent to the marginal log-linear model for Q as given by
Definition 2.7.

logmg = Bg, for S € Q

logmg = ~(|R| - 1)6o + Zﬁs +Cr, forRCQ
SeQ

Example 2.11 Consider the three-source case for source A, B and C. Using Def-
inition 2.7, with d = 23 — 1 = 7, the full specification of the three-source marginal
log-linear model is given by:
logma = Ba
logmp = Bp
logme = fo
logmag = —fo + Ba+ BB + 4B
logmac = —fo + Ba+ Bc +vac
logmpc = —Po + Bp + Bc + VBC

logmapc = =200 + Ba + Be + Bc + YaB + Yac + VBc + YaBe- (2.19)
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The equivalent CSD parameterization, obtained from Proposition 2.8 is

logma = Ba

logmp = BB

logme = Bc
logmap = —fo+ Ba+ Bp + Cap
logmac = ~fo+ Ba+Pec+ Cac
logmpe = —Bo + Bp + Bc + Cse

logmapc = =260 + Ba+ B + Bc + Capc.

Definition 2.8 Let Q be a set of sources and let d = 2/91 — 1. Then the matriz form

of the system of d equations fof the |Q|-source capture-recapture setting is given by:
logm = log(Au) = X8 + Z, (2.20)

where m, p and v are d X 1 vectors of marginal means, cell means, and CIDs,
respectively, B is the (|Q| + 1) x 1 wector of all such parameters. A is the d x d
upper triangular matriz which transforms cell means into marginal means, X is the

d x (|Q + 1|) design matriz for B and Z the design matriz for .

Remark 2.24 Model form (2.20) fits into the class of models described by Lang and
Agresti (1994) which simultaneously model the joint and marginal distributions of
multivariate categorical responses. We note that their setting applies to complete

contingency tables rather than the capture-recapture setting.

Example 2.12 (Example 2.11 continued.) Cousider the three-source setting for

sources A, B and C. Then d = 23 —1 = 7. The matrix form of the marginal log-linear
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model is given by Definition 2.8, with

- - _ - _ -
ma [19Y:0; TA
mp {HABC B .
Bo
mc HABC Yc
Ba
m= | mup |; = |paps|i Y= |7aB |3 B=
. . Bs
mac HABC YAC
Bc
mpc HABC YBC -7
| maBC | | 11ABC | | 7ABC |
1 001101 0 100 1000 0O00O0
0101011 0 010 01 0O0O0O00O0
0010111 ' 0 0 01 0010¢O0UO002O0
A=(0001001|;X=|-1110[/;Z=[1101000
000O01OQ01 -1 101 1010100
0000011 (=101 1 0110010
LOOOOOOl L—2111 1111111

Proposition 2.9 The matriz form equivalent to that of Definition 2.8 in terms of

the CSDs, for the general form of the |Q|-source marginal model is given by:
logm = log(Ap) = X8+ C,

where all vectors and matrices are gwen by Definition 2.8, with C the d x 1 vector
of CSDs. Note that the design matriz on C is the identity matriz, so is not written

explicitly.

Proof. The proof is immediate from the expression of the CSDs in terms of the CIDs,

given by Theorem 2.5. : O
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Example 2.13 (Example 2.11 continued.) The matrix form in terms of the CSDs

is given by Proposition 2.9, with all matrices as above and

- -

Ca
Cg
Cc
C=|Cus
Cac
Csc

| Cabc |

2.4.1 Constrained parameter space of marginal log-linear model

Modelling marginal means'presents some additional challenges as compared to mod-
elling cell means. Since all cell means must be non-negative, i.e. & > 0, only marginal
means which corréspond to non-negative cell means are feasible. That is, m is such
that A~'m > 0. In order to ensure non-negativity of the cell means, we examine the
» relationship betweén marginal and cell means via the form of the model.
The constraints placed on the marginal means via the marginal log-linear model

are given by the following proposition.

Proposition 2.10 Let Q be a set of sources. Then the marginal log-linear model
given by Definition 2 7, and its equivalent reparameterization given by Proposition 2.8,
is defined subject to the following system of constraints

p=A"m>0

= p=A"lexp(XB+2Zvy) >0
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Example 2.14 (Example 2.11 continued.) Consider again the three-source case.

The relationship between the 7 cell means and 7 marginal means is given by

WABE 100 -1 -1 0 1 ma
LABE 010 -1t 0 -1 1 mg
1752 %s] 001 0 -1 -1 1 me
Yapc! =10 00 1 0 0 -1 maB
HABC 000 0 1 0 -1} | mac
UAiBC 000 O O’ 1 -1 mpe
HABC 0600 0 0 0 0] [masc]

M4 — MAB — MAC + MABC
mp — MABp — MpBc + MABC
mc — mac — Mpc + MABC
= MAB — MABC ‘ (2.21)
mac — MABC

mpc — MABC

maBc

Thus, ensuring non-negativity of the cell means corresponds to the following order

relationship on the marginal means:

ma — mac 2 map — Mape 2 0
mp —map = mpc — masc 2 0
me — mpo = mac — Mape = 0
mapc 2 0.
Such é,n ordering is intuitive. For example, the marginal mean for sources A >and

C must be larger than that for sources A, B and C. This relationship is given by

map — Mmapc 2 0.
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2.4.2 Relationshi'p to hierarchical joint log-linear models

In this section we will relate the marginal models to hierarchical joint log-linear
models' (HJLLM) in order to understand their similarities and differences and their
place relative to standard analytical approaches for capture-recapture data. First we
present a result (Theorem 2.9) that characterises the form of the CIDs corresponding
to the conditional independence structures modelled by hierarchical joint log-linear
models. We then examine the behaviour of the marginal model for all dependence
structures that can be represented by a hierarchical joint log-linear model. The avail-
able dependence structures are mutual independence, joint independence, conditional
independence and mutual dependence (as described in Chapter 1, Section 1.2.1). We
consider the three and four-source cases as examples to present the specific form of
the marginal model for each of the dependence structures. In each case we will ob-
tain the form of the CSDs (using Theorem 2.3) and the CIDs (using Theorem 2.9
below) which characterize the MLLMs corresponding to the HILLMs of each depen-
dence structure. In the three-source case, we will state explicitly the form of the

corresponding marginal model.

Remark 2.25 Notation.

We introduce the following notation: 'if R, S, 7 ... are disjoint sets of sources, we
write P (R) for the power set of R and let P* (R) = P(R)\{@}, and P* (R,S,7T,...) =
PPR)®P*(S)®P*(7T) & ..., where if A and B are classes of sets, A B =
{S=AUB:AecA,BeB}. (We hold to the convention that AGB & & = A®B.)
Thus P* (R, S, T) consists of lists of sources in which at least one source comes from

each of R, S and 7.
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Finally we let

Y[Rl = D e

QeP*(R)

Y [Ra S] = Z v

QeP*(R,S)

and so on.
Examplé 2.15 In the simplest form, R = {A} and S = {B}. Then v[R] = 74,
18] =7p and 7[R, S] = 7aB.

Similarly to Theorem 2.3, we can characterize conditional independence hierar-

- chical joint log-linear models using CIDs as follows.

Theorem 2.9 Suppose that an HILLM description contains the pair of descriptors
[R*,T] and [S*,T], R* N S* = &, and no descriptor of the form [R,S] such that
R C R* and S C 8%, so that sources in R* and sources in 8* are conditionally
independent given the sources in T .

Then for any proper subsets R C R* and S C §* we have
Proof. First, we note that we can rewrite Theorem 2.5 as

Crr =7[RI+7[T]1+~[R, T] (2.23)

and similarly
Crst =7[RI+7[S]+7T]+~7[R,S]+ ¥R, T]+~I[S,T]+~v[R,S5,T]. (2.24)

Now by Theorem 2.3 and under the presence of [R*, 7| and [S*, T] in the descrip-
tion of the HJLLM, we have

Crsr = Crr+Cst—Cr
YR+ T+ 7[R, T+ 7S]+ [T+ (S, T) =7 (7] (2.25)
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by (2.23). Equating (2.24) and (2.25) yields the result. O

Remark 2.26 In the simplest of cases, R = {A}, S = {B} and T = {C}. In this
instance, if [AC][BC] is the HJILLM description of the model (entailing conditional
independence of A and B given C'), the relationship vapc = —vyap must hold by
(2.22). In other words the 3-way component of dependence exactly cancels out the

2-way component of dependence borne by the conditionally independent sources.

Corollary 2.2 Let an HILLM description be given by [T*|[T5Y] . . . [T¥], where T;* N
T} =@ fori#j. Let T, C T;* and T; C T;*. Then 4|T;, T;] =0 for i# j.

Proof. Let T = @. Then ~[7;,7;,T| = ~[7;,7;]. But the descriptors [T*,7] =
[7:*] and [7;*,T] = [T}] satisfy the conditions of Theorem 2.9 above. Therefore
v7;, T;, T) = —v[T;, T;] as well, which can only occur if v[7;, T;] = 0. ' O

Remark 2.27 The above corollary states that the CIDs corresponding to sets of
sources that exhibit independence will be zero. Dependence is not increased by jointly

considering mutually independent sets of sources together.

Example 2.16 Three-source hierarchical dependence structures.

We now consider the three-source capture-recapture setting for sources A, B and C.
We recall that there are 3 pairwise CIDs (equivalently CSDs) and a single three-way
CID (equivalently CSD), whilst the 3 single-source CIDs (equivalently CSDs) are all
identically equal to 0 The non-single source CSDs are not known, precisely because

only a portion of the population is observed in a capture-recapture study.
We will show the following, where, for brevity in this list, ‘joint model’ refers to

‘hierarchical joint log-linear model’,

e For joint dependence structures (including independence), the marginal and
joint model are equivalent with certain CSDs set equal to 0. ‘Such a marginal

model is thus a re-parameterization of the joint model.
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e A conditional dependence structure corresponds to a marginal model with con-
straints placed on the CIDs. In such a case, the marginal model is not a re-

parameterization of the joint model.

In the four cases presented next, purporting to mutual independence, joint indepen-
dence, conditional independence and mutual dependence, all models will be expressed
in terms of N and probabilities (joint or marginal) rather than the corresponding pa-
rameterizations in terms of log-means (joint and marginal). This is in line with the
descriptions outlined in Bishop et al. (1975) for complete contingency tables and
enables us to gain compactness. Although N is unknown in the capture-recapture
setting, all of the underlying theory for the form of hierarchical joint log-linear mod-
els for capture-recapture data is the same as that for complete contingency tables,
again as stated in Bishop et al. (1975). For instance, the model for independence is
expressed in the same manner for complete and incomplete contingency tables, with
the only difference being the number of data points available from which to estimate
model parameters.

As already noted in Chapter 1, there are some models which cannot be fitted to
incomplete contingency tables. As always, it is possible to fit an identifiable model
with at most as many parameters as data points. In the case of the incomplete
contingency table for K-source capture-recapture data, the number of parameters

cannot exceed 2X — 1, the number of available data points.

Here we present the four cases. All vectors and matrices are as defined in Example 2.12

and provided in Appendix A

Mutual Independence. Mutual independence implies that all subsets of the three

sources exhibit independence. Such a dependence structure is represented as [A][B][C]
in the notation introduced in Christensen (1997) and Bishop et al. (1975) as described
in Section 1.2.1. By Corollary 2.2, all CIDs, equivalently all CSDs, are identically

zero. That is vap = vac = vBc = YaBc = 0.
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The corresponding HJLLM for mutual independence (Bishop et al., 1975), expressed
in terms of the six marginal probabilities p4 = Pr[A|, pg = Pr|B] and p¢ = Pr|C]
and pg =1—pa, p5g=1-pp and ps = 1 — pg, is given by the following model on

the cell means u:

The equivalent expression in terms of the marginal means m is obtained by pre-

HaBC
HaBC

HABC

LN’ABC_

Npapppe
Npapspc
Npapspc
Npapspc
Npapppc
Npapspc

| NpapBpe |

multlplymg p by the transformation matrix A, so that m = Ay, to yield

-

0 11

10

O O O O O O 9=
O O O O O =

0
1
0
0
0

, @ © o o = o O

0

1
1
0
0
1
0

1
1
1
1
1
1
0

Npapspc
Npapepo
Npapspc
Npapppe
Npapspc
Npapspc

| Npapspc |

-

N(papc + papc)
N(pspe + pBPC)
N(pgpc + pepC)
N(paps(pc + pc)))
N(papc(ps + pB))
N(pspc(pa +pa))
Npapspc

-
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Npa

Npp

Npc
Npaps
Npapc
Npgpo

q

N(papspe + PaPBPG + PAPBPC + pAPBpC’)
N(papspc + pAPBPG + DADEDC + PAPBPC)
N(pipsPc + PapBPc + PAPBPC + PAPBPC)

N(papspe + papspo)

N(papspc + papspc)

N(papspc + papspc)
Npapspc

| Npapspc |




The final expression is precisely that of the marginal ﬁlodel for independence given by
Definition 2.7 with all CIDs set to 0. Thus, the joint log-linear model and marginal
log-linear model forms are equivalent for the case of independence and are simply two
different parameterizations of the same model. Note that N is indeed unknown in
the case of capture-recapture data but the form of the model is unaffected by the fact

that one data point of the contingency table is missing.

Joint Independence. Without loss of generality, suppose that sources A and B are

dependent but that there is no other dependence exhibited between the three sources.
Such a structure is given by [AB][C] (Christensen, 1997). By Corollary 2.2, yac =
vsc = 0. Equivalently, Cyo = Cpec = 0, whereas yap = Cap # 0 since sources A and
B are dependent, by assumption. Furthermore; yago = 0, by Corollary 2.2. Thus
Capc = Cap, as Capc = V4B + Vac + vBc + YaBc by Theorem 2.5. Thus 3-way
dependence, is completely explained by 2-way dependence. |

The corresponding HJLLM for joint independence (Bishop et al., 1975), expressed in
terms of the five marginal probabilifies pap = P{ANB|, pag = P [/1 N B], Dap =
p [A N E] , pc = P[C] and ps = 1 — pg, is given by the follgwing model on the cell

means
MABGC Npagpo
1ABC Npappc
BABC Npagpc
pape | = |Npaspe
HABC Npagpc
I1¥:%; Npappc
\naBc]| [ Npappo|

The equivalent expression in terms of the marginal means m is obtained using m =
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Ap, to yield

100110 1| |Npagps N(pagPc + PABPG + PaBPC + PaBPC)
01010 1 1| |Npagpe N(pappc + paBPG + PaBPC + PABPC)
001011 1} |Npagpc N(pagpc + pasPc + PisPc + PaBPC)
00010 0 1| |[Npagpa| = N(paBpc + paBpc)
000010 1| [Npagpc N(pagpc + paBpc)
0 000O0 1 1| [Npsispc , N(pappc + raspc)
00 000 0 0] [Npagpo] I Npaspc |
Npa(pe + pc) Npa
Nps(pe +pc) Npg
Npc(ps + pB) Npc
= | Npag(pc + pc) = | Npap
Npapc Npapc
Npgpc Npppc
Npaspc | | Npaspc |

The final expression is precisely that of the marginal model for joint independence
given by Definition 2.7 with all CIDs set to 0 except for vp¢, whose form is not-
constrained to be set to 0 since there is dependence between sources A and B, as de- -
scribed above. Thus, the joint log-linear model and marginal log-linear model forms
are equivalent for the case of joint independence and are simply two different para-
meterizations of the same model. Again, note that N is indeed unknown in the case
of capture-recapture data but the form of the model is unaffected by the fact that

one data point of the contingency table is missing,.

Conditional Independence Without loss of generality, suppose that sources B and C

are independent, conditionally on membership in source A. Such a structure is given

by [AB][AC] (Christensen, 1997) and implies that A and B are pairwise dependent,
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as are A and C. In this case vap # 0 and yac # 0 (equivalently Cap # 0 and
Cac # 0). Moreover, since conditional independence of B and C given A does not
- imply marginal independence of B and C, it follows that vg¢ # 0 (equivalently
Chre 7é 0). We show ih Appendix D, page 231, that Cp¢ is completely determined
by the CSDs Cap and Cac and the marginal probability Pr[A] (equivalently vypc
is completely determined by the CIDs v4p and v4c and the marginal probability
Pr[A]), since

Cenn = Pr[A are— B +_1_
Bc—l—Pr[A] CABCAC — CAB — CAC PriA])

For the three-way CID, we get
YABC = —YAB (2.26)

from Theorem 2.9, just as Theorem 2.3 yields the equivalent relationship for the
three-way CSD:
Cuape = Cap + Cyo — Ca, (2.27)

stated equivalently as Capc = Cap + Cac, from Remark 2.3.

Therefore, a MLLM for conditional independence of B ILC|A would require that the
constraint given by (2.26) (equivalently (2.27)) be enforced. Consequently, unlike the
cases of mutual independence and joint independence, the marginal \model equivalent
to the HJILLM of conditional independence is a constrained MLLM. Thus, the MLLM |

is not a direct reparameterization of the HJLLM with some CIDs set to zero.
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We note that that the HILLM for conditional independence is expressed as (Bishop
et al., 1975) ’ '

- - - -

_ PABPAC
WABC I 2aBPAL
% NBaZEAC
vagaPAQ
Pz
i PABPAG | -
PaBG N=224C 1
- N Paspac
HaBC Pa
MABC NPagkic
Pi
NEABEAC
L pa  J

whose equivalent marginal form is expressed as (details not provided)

r . 7
Npa

Npp
Npc
Npap )

. Npac
PABPAC PABPAC
PV( P + pA )

NEABEAQ
L Pa .

using m = Apu.
Mutual Dependence In this case, represented by [ABC] there is three-way dependence

and none of the CSDs, neither the pairwise nor the three-way, are necessarily equal to
0. Such a dependence structure can be represented by an HJLLM but, as discussed
in Section 1.1.1, cannot be uniquely estimated since there are insufficient degrees of

freedom.

Remark 2.28 The previous example serves to make explicit' the relationships be-
- tween HJLLMs and MLLMs. For simple dependence structures, the MLLMs equiva-

lent to hierarchical joint log-linear models are obtained by constraining certain CIDs
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(equivalently CSDs) to be equal to 0. Such a relationship is intuitive. Given that the
CIDs (CSDs) measure departures from independence it seems natural that setting a
CSD equal to 0 in the marginal model is similar to omitting the corresponding interac-
tion term of the hierarchical joint log-linear model. However, HJILLMS of conditional

independence correspond to specific linear constraints on the CIDs (CSDs).

Example 2.17 Four-source hierarchical dependence structures.

We now examine the dependence structures that can be represented by hierarchical
joint log-linear models among four sources, A, B, C and D. Although the simpler
dependence structures are eﬁcactly those presented for three sources, we will describe
each fully for completeness. We will present results in terms of the CSDs only. The
corresponding results for the CIDs are obtained by Theorem 2.9, Corollary 2.2 or
Definition 2.4, whilst the corresponding marginal model forms can be obtained using
the same approach as in fhe previous example. We note that the three-way CSDs are

expressed in terms of the three-way CIDs as follows (Theorem 2.5):

CaBc = YAB + Yac + YBc + YaBC
CaBp = YaB + 7ap + v8D + YaBD
Cacp = Yac +Yap + Yop + Yacp

Cscp = YBc +vBD + YD + YBCD>
with the four-way CSD given by

CaBep = YaB + Yac + Yap + YBc + ¥BD + YD (2.28)

+YaBc +YBeD + Yacp + YBeD + YABCD-

Mutual Independence. Mutual independence, represented by [A][B][C][D], implies

that all subsets of the four sources exhibit independence. Thus, all of the 6 pairwise,
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4 three-way and the single four-way CSDs are exactly equal to 0.

Joint Independence.

Case 1 Without loss of generality, suppose that sources A and B are dependent but
no other dependence is exhibited. Such a structure is denoted by [AB][C][D].
"Then Cap # 0, whereas Cac = Cap = Cpe = Cgp = Cep = 0. As seen for

the three-source case above
Capc=Cap and Capp = Cas.

Further,

Capcp = Cas.

The remaining three-way CSDs are equal to 0,
Cacp = Cpep = 0.

Case 2 Another case of joint independence structure occurs with structure [AB][C D).
That is, assume without loss of generality that sources A and B are jointly

independent of sources C' and C. Then, using similar reasoning to the previous

case,

Casc = Capp = Cap.
Likewise,

Cacp = Cgep = Cep,
and

Capcp = Cap + Cep.

Conditional Independence. Without loss of generality, suppose that C' and D are

independent, conditionally on membership in sources A and B. Such a structure is

denoted by [ABC|[ABD)]. As with the example of conditional independence for the
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three-source case above, conditional independence of C and D given A and B, does
not imply that C' and D are marginally independent. Thus, it is not possible to say
that Cop = 0. In this case none of the other pairwise CSDs are equal to 0 sinée, by the
principle of hierarchy for such a model, all other pairs must be dependent. Moreover,
the 2 three-way CSDs, Capc and Capp, are not equal to 0 since, by assumption, each

of these triples exhibits dependence.

For the other 2 three-way CSDs, Cscp and Cpgep, it is not possible to obtain a direct
relationéhip to any of the known CSDs. This can be seen by expanding from the

definition of cacp, (2.1), in the following manner

Pr[AnCnND]  Pr{CnD|A]Pr[A]  Pr[Cn D|A]
Pr[A]Pr{C]Pr[D] "~ PrlA)Pr[C)Pr[D] ~ Pr[C|Pr[D]’

CACD =

-C and D are not necessarily conditionally independent given A, and the conditional

distributions of C|A and D|A are arbitrary. The same reasoning applies to Cpep.

For the four-way CSD, Theorem 2.3 states that
Capcp = Capc + Capp — Cap. (2.29)

As with the three-source case of conditional independence above (i.e.[AB][AC] for
sources A, B and C), Theorem 2.3 is used to decompose the highest order CSD.
With this four-source example, we note that conditioning is made on two sources
rather than the single source in the three-source example and the joint effect of both
of the two conditioning sources must be accounted for,

If sources A and B are assumed independent, equivalently cag = 1 and Cuap =0, .

then we obtain

Capcp = Capc + CaBp,

from Theorem 2.3. That is, the four-way CSD is equal to the sum of the 2 three-way

CSDs, Capc and Capp, when there is also pairwise independence of A and B.
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Mutual Dependence. In this case there is four-way dependence and none of the CSDs

are equal to 0. Again, as in the three-source case, such a set-up can be modelled by

a hierarchical log-linear model at the cost of over-parameterization..

Remark 2.29 As with the three-source case given in Example 2.16, the previous
example serves to make explicit the relationships between HJLLMs énd MLLMs. For
simple dependence structures, the MLLMs equivalent to hierarchical joint log-linear
models are obtained by constraining certain CIDs (equivalently CSDs) to be equal
to 0. However, HJLLMs of conditional independence correspond to specific linear
constraints on the CIDs (CSDs) and thus the MLLM equivalent to the HJLLM is a
constrained model and not a mere reparameterization of the HJILLM as is the case

for simple dependence structures.

Remark 2.30 Nonhierarchical dependence. With the discussion of hierarchical
dépendence structures of the current section, we close by considering nonhierarchical
dependence structures. On page 232 of Appendix D we provide an example of three
events that are pairwise independent but jointly dependent, thus demonstrating that
nonhierarchical dependence can occur. In the capture-recapture setting, a possible
scenario like that of the example would arise for three lists.should the probability
that an individual appear on a list depends on his/her membership on both of the 2
other lists, whilst knowing only thaf an individual appears on one such list provides
no informati'on concerning his/her appearance on each of the other lists separately.
It is known that HJLLMs, designed to accommodate hierarchical dependence
structures, do not necessarily well model nonhierarchical dependence. We suggest
that the class of MLLMs offer greater flexibility in modelling such structures. A data
analysis of data generated according to a nonhierarchical dependence structure will

be presented in the next chapter.
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Summary

We. will provide evidence as to the flexibility of the marginal model in the following
chapters, in which we undertake parameter estimation and inference. A frequentist .
approach will be presented in Chapter 3. In Chapter 4 a Bayesian development for a
general xhodel form will be presented, followed by a specific model parameterization

in Chapter 5. -
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Chapter 3

Frequentist Marginal Log-Linear
Models

3.1 Introduction

In this chapter we consider the general form of the marginal log-linear model intro-‘
duced in Chapter 2 (see Definition 2.7). We describe a family of marginal models
which consists of all those derived from the general form by fixing different combina-
tions of CIDs (or CSDs) to zero. We follow with a description of parameter estimation
via maximum likelihood, which includes reférence to the challenges posed by fitting
a model on marginal means using a likelihood on joint cell means.

Data analysis is performed for 3 four-source data sets: the diabetes data set
of Bruno et al. (1994) and two simulated data sets. Of these latter, the first is gen-
erated according to a conditional independence model and the second according to a
nonhierarchical dependence structure. The data analysis consists of fitting all possible

joint log-linear models, both hierarchical and nonhierarchical, as well as all possible
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marginal log-linear models, and to compare the models using simple model selection
criterion. The relationship to joint log-linear models will be presented and the manner
in which marginal log-linear models account for dependence structures similarly and
differently to hierarchical joint log-linear models will be described. These examples
will serve tb provide concrete empirical evidence for the properties of the CIDs and
marginal log-linear models described in Chapter 2. ‘

The work presented in this chapter is not intended to be the definitive frequentist
formulation. Rather the goal of this work is twofold: first, to demonstrate that it
is possible to obtain reasonable maximum likelihood estimates using the CID model
formulation; and, second, to begin to explore dependence structures which are not
well modelled by hierarchical log-linear models and demonstrate that our model thus
parameterized is able to out-perform both the best-performing hierarchical log-linear
model and nonhierarchical log-linear model (see Section 3.5.4).

With these goals in mind, this chapter presents ideas to aid exploration and under-
standing whilst still offering a possible route to analysing capture-recapture data. It
should be noted that in demonstrating that the marginal model performs better than
the best hierarchical model for certain types of capture-recapture data, we provide
weight to the argument in favour of using non-hierarchical joint log-linear models in
capture-recapture as well as more general settings. Before presenting the results of
the analysis of such data, we begin with a discussion of the model and the inferential

procedure to be used, that is maximum likelihood estimation.

3.2 The marginal log-linear model

The most general form of the marginal log-linear model introduced in Chapter 2 is
given by Definition 2.7 for a set of sources @. We include the definition here again

for completeness.
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Definition 3.1 Let Q be a set of sources and let K = |Q|. Then the following system

of 2K — 1 equations constitutes the marginal log-linear model for the K sources of Q.

logms = Bs, for S € Q;

logmg = —(|R| — 1) log N + Z logmg + 277, forR C Q. (3.1)
5eQ TCR

Equivalently, the formulation can be re-expressed in terms of the CSDs using Propo-

sition 2.8, again presented here for completeness.

Proposition 3.1 Let Q be a set of sources and let K = |Q|. Then the following
system of 2K — 1 equations is equivalent to the marginal log-tinear model for Q as

gtven by Definition 3.1.

logmg = Bs, for S e Q

logmg = —(|R| — 1) log N + Z logmg + Cr, forRC Q (3.2)
SeQ

Example 3.1 Consider the three-source capture-recapture setting, with sources A,
B and C. Then the following system of 2% — 1 = 7 linear equations constitutes the

three-source marginal model parameterized in terms of the CIDs:

logma = fa

logmp = Bp

logme = fe
logmap = —fo+Ba+ B+ 48
logmac = —fo + Ba + Bc + vac
logmpc = —fo + B + Bc + VBC

logmagc = —2B0 + Ba + Bs + Bo + vaB + Yac + Vo + Vasc, (3.3)
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whilst the equivalent formulation in terms of the CSDs is given by:

logma = B4

logmp = BB

logme = Bc
logmap = —fo+ Ba+ P+ Cap
logmac = —fo + Ba+ Bc + Cac
logmpe = —Bo + Bp + Bc + Cac

logmapc = —26 + Ba + B + Bc + Cage, (3.4)

3.3 Family of marginal models and parameter re-
duction

Both the CIDs and CSDs measure dependence. As described in the previous chapter,
the manner in which they achieve this differs. In the case of the CSDs (see Defini-
tion 2.2), dependence is measured as a departure from marginal independence. For
CIDs (see Definition 2.4), it is measured as the incremental dependence injected by
a subset of sources into a set of sources. For instance, a three-way CID measures the
additional dependence in the three corresponding sources not accounted for by all of
the 3 pairs of sources marginally.

Setting CIDs (CSDs) equal to zero in the CID parameterization (3.1) (the CSD
parameterization (3.4)), alters the form of the dependence structure being modelled.
In so doing, the number of parameters to be estimated is reduced. Setting CIDs
(CSDs) equal to zero is equivalent to omitting the corresponding term in the model

and can be thought of in a similar manner to that of omitting interaction terms in
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a joint log-linear model. As described in the previous chapter, marginal models are
able to model dependence differently to hierarchical joint log-linear models; first, since
they are not constrained to adhere to the principle of hierarchy (Bishop et al., 1975),
and, secondly, since the form of the model necessarily implies that the modelling is
done so differently.

In working with the CID parameterization rather than the CSD parameterization,
given for the three;source case by (3.3) and (3.4), respectively, we gain modelling
flexibility. Whenever a CSD is fixed at 0, the equation for the corresponding marginal
mean is the same as the model for independence. However, such a situation does not
arise under the CID MLLM formulation wherein, for models of dimension greater
or equal to 3, it is possible to set some CIDs equal to zero whilst retaining other
non-zero CID terms. In so doing, it is possible to retain some terms that model
dependence rather than necessarily removing all dependence terms in the case of the

CSD formulation. We illustrate this point with the three-source case.

Example 3.2 Consider the three-source case, for sources A, B and C. We place the
following constraint on the CSDs in (3.4): Cac = Cpe = Capc = 0. Then the model
is given by |
logma = B4
logmp = fBp
logme = Bc
logmap = —Bo+ Ba+Pp+ Can
logmac = —fo + Ba+ Bc
logmpc = —fBo + Bz + Bo
logmapc = =260 + Ba + Bs + Pe, (3.5)

which is the model for mutual dependence of A and B. However, if yac = vpc =
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Yapc = 0 in the CID parameterization (3.3), the corresponding model is not that of

mutual dependence of A and B, rather it is given by

logma = Ba

logmp = Bp

logme = Bc
logmap = —fo + Ba + B + 748
logmac = —fo+ Ba+ Bc
logmpc = —fo + BB + Bc

logmapc = —260 + Ba + B + Bc + YaB,

In this case, there is a term that measures dependence in the expression for m4pc, the
three-way marginal (equivalently joint) mean. In both cases the number of parameters
to be estimated is reduced by 3 but the nature o_f the modelled dependence is different.
The CID formulation equivalent to (3.5) would impose the constraint yapc = —vaB
(as per the discussion in Section 2.3). Further, we note that such a model is not that
of conditional independenbe of B A|C, which would have non-zero CIDs «y4¢ and

~BC, as per the setting presented in Example 2.16.

The previous example serves to demonstrate that a model in which CSDs are set to
zero is less plausible than a model setting CIDs equal to zero, since every combination
of lists is given its own offset term, as it were, in the form of a CSD. We therefore
focus our discussion on the CID parameterization, which we employ for data analysis

in Sections 3.5.2 - 3.5.4.

Remark 3.1 The general form of the CID formulation of the marginal model (and
also the CSD formulation) is over-parameterized. For the general K-source capture-
recapture setting, there are 2% parameters to estimate, corresponding to (K + 1)

B terms (i.e. Bo,Ba,...,0k) and (2X — 1) — K CIDs (CSDs). However, there are
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only 2K — 1 data points, corresponding to the 2% — 1 cell entries of the incomplete
contingency table (given by Table 1.2, for the three-source case), available to estimate
these parameters. Thus, the system is under-determined with insufficient data to

simultaneously estimate all model parameters.

Parameter reduction must be undertaken in order to achieve model identifiability.
Even with a parameter reduction of 1, the number of parameters to estimate would
equal ‘qhe number of data points to be used for this estimation. That is, the model
would be saturated. In thi.s situation, as with any statistical model which seeks
to fit a model to a data set with as many parameters as data points, the maximum
likelihood estimation procedure used would yield model parameter estimates which fit
to the data perfectly. In the capture-recapture setting, this translates into estimated
model parameters which yield estimated cell means that are equal to the observed
cell counts.

Unsaturated models can be obtained by setting more than a single CID (CSD)
equal to zero. In fact, a family of marginal models exists in which we consider all
possible combinations of CIDs (CSDs) that are fixed at zero and the marginal models
that correspond to these combinations of zero-valued CIDs. The following proposition
specifies the number of possible models in this family, for which all main effect terms
corresponding to the single-source marginal means are included. This is a specific
feature of capture-recapture data: since the goal is to use all of the K data sources
available in the general case, main effect terms should be included for all of these K

sources. This principle will be adhered to henceforth.

Proposition 3.2 Let Q denote a set of sources and K = |Q|. Let s equal the num-
ber of non-single source CIDs (CSDs) of Q. Then there are s possible CID (CSD)
parameters of model (3.1) (model (3.2)) to be estimated, where

s=02K-1)-K.



Furthermore

1. The number of marginal models with all possible combinations of CIDs (CSDs)

fized at zero is given by 2°.
2. There are 2° — 1 'models that are not over-parameterized.

3. Of these, there are 2° — (s + 1) unsaturated models.
Proof. The proof is immediate from vsimple combinatorial arguments.

1. The number of possible models with all combinations of s CIDs (CSDs) fixed
at zero, ranging from 0 CIDs (CSDs) to all s CIDs (CSDs), is given by

() () e (e (2 ) ()

2. Since there are 2% — 1 data points, the number of model parameters cannot
-exceed this value. The only model with more.than 2K _ 1 parameters is that
with none of the s CIDs (CSDs) fixed at zero (i.e. the model that includes all
CIDs (CSDs)). Thus, there are 2° — 1 models that are not over-parameterized. .

3. Unsaturated models contain fewer parameters than the number of data points
with which to estimate the parameters. Of the 2° — 1 models that are not over-

*) = s models with one of the s CIDs (CSDs)

parameterized, we remove the (1

fixed at zero to yield 2° — (1 + s).
a

Example 3.3 For the three-source case there are s = (22 — 1) — 3 = 4 CIDs. Thus,
using Proposition 3.1, 16 unique models exist. Of those 16 models, 1 of them is over-
parameterized (i.e. the model parameters cannot be estimated uniquely). Of the 15
models that are not over-parameterized, 4 of them are saturated (i.e. there are as
many data points as parameters to estimate). Thus, there are 11 unsaturated models

to be considéred.
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Example 3.4 For the four-source case there are s = (2 — 1) — 4 = 11 CIDs and
consequently many more possible marginal models than in the three-source case.
Using Proposition 3.1, 2048 uniqﬁe models exist. Of those 2048 models, 1 of them
is over-parameterized (i.e. the model parameters cannot be estimated uniquely). Of
the 2047 models that are not over-parameterized, 11 are saturated (i.e. there are
as many data points as parameters to estimate). Thus, there are 2036 unsaturated

models to be considered.

Remark 3.2 Note that in the case of HILMMSs there is a single saturated model for
the general K-source case, whereas in considering non-hierarchical models, as we do
here with the marginal models, there are (Il{ ) = K such models, which correspond to

the number of ways in which one of the CIDs can be fixed at zero.

Before being able to select axﬁongst a set of models, it is necessary to specify the
family amongst which we must select. Sensibly, it is only possible to consider the
family that consists of all marginal models which are not over-parameterized. Thus,
for the four-source data sets analyzed in this chapter, we consider the family of 2047
marginal models as described ‘in the previous example, Example 3.4. In order to
perform data analysis using this family of non-over parameterized marginal models,
we must select the parameter estimation procedure to be used. In the next section
we describe the maximum likelihood approach we choose to use, as well as the Fisher .

Scoring algorithm we employ to obtain the corresponding parameter estimates.

3.4 Maximum likelihood estimation

In general, maximum likelihood estimates can be obtained by using Fisher Scoring
when there are no constraints on the parameter space. In working with a model on

the marginal means m, it is necessary to ensure that the corresponding cell means

104



p = A~lm, are positive (for a description of the matrix A, which transforms cell
means into marginal means, see the matrix form below, as first introduced in (2.20)).
Such constraints on the 25 — 1 cell means place corresponding non-linear constraints
on the modellparameters and define the feasible parameter space. In practice, again
since the goal of this chapter is not to provide a definitive approach to maximum
likelihood estimation for the best model formulation, it is possible to use Fisher
Scoring starting the algorithm from a value known to be reasonably well inside the
feasible parameter space. Indeed, when we used estimates obtained by fitting the
joint log-linear model for independence in R (R Programming Language, 2004) (by
using the inbuilt glm function with log link and a Poisson likelihood) as our starting
values, the Fisher Scoring algorithm moved out of the feasible parameter space in
very few instances. In situations where it did, an adjustment was made to move the
parameter estimates to the nearest feasible point in the direction of maximum change
as used in the Fisher Scoring algorithm. This was not difficult to implement and
satisfied the exploratory goal of this chapter.

Implementation of the Fisher Scoring algorithm requires both the score vector and
information matrix of the likelihood together with the model as specified by (3.1).
Given the relationship between the multinomial and Poisson likelihoods outlined in
Section 1.1.3 and described in Sandland and Cormack (1984), combined with the
fact that the score and information matrix of the Poisson likelihood are much easier
to deal with than those of the multinomial likelihcod, we choose to work with the
Poisson likelihood in this chapter.

It is useful to re-express model (3.1) in matrix form in order to obtain easily
readable expressions for the score and information matrix. For the general case of K
sources, let d = 2% — 1 be the number of entries in the incomplete contingency table
and let s = d — K be the number of possible non-single source CIDs to be estimated

(Recall that some can be fixed at zero, equivalently omitted from the model, to reduce
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the model dimension). Let A be the d X d matrix that transforms the cell means into
marginal means, p the d x 1 vector of cell means, m the d x 1 vector of marginal
means, X the d x (K + 1) design matrix for the (K + 1) x 1 vector 8 and Z the d x p
design matrix for the p x 1 vector of CIDs to be estimated, which is denoted by =,

where p < s — 1. For the K sources S4,..., Sk,

Bo
Bs,

Bsx |

As described in Chapter 2, the matrix form of the marginal log-linear model (3.1), is

given by
logm = log(Ap) = XB + Z~.
For convenience, this model can be e:%pressed in the following equivalent form as
logm = log(Ap) = Y4, (3.7)

where

_ |8 _Ix.
5= . and Y [X,z]

We use ¢ to denote the dimension of § with ¢ = (K + 1)+ p, where p is the number of
non-zero CIDs in the model. Then we require ¢ < d or equivalently p < d— (K +1) =
K -1)— (K + 1) = s — 1, where we recall that s is the number of non-single source
CIDs. The matrix Y is the d x ¢ design matrix corresponding to the g-dimensional

vector 4.

Remark 3.3 As noted in Remark 2.24, we recognize that model (3.7) is a member

of the class of models described by Lang and Agresti (1994) to simultaneously model
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the joint and marginal distributions of multivariate categorical responses. Again we
note that the setting of Lang and Agresti (1994) applies to complete contingency

tables rather than the capture-recapture setting.

Example 3.5 In particular, for three sources, K = 3,d =2K —1 =7 and s = 4.

The most general model (i.e. with no CIDs fixed at zero) is over-parameterized and

is given by
log(m) = log(Ap) = Y9,
where
_ . r | )
ma 1001101
mp 0101011
mg¢ 0010111
m=|mus|;A=10 0010 0 1/,
mac 00001001
mpc 000O0O0OTI1T1
MABC 000O0O0O0T1
[ ] [ ' Bo
HABC 0 10000O00O0 ‘
Ba
HABC 0 0100000
BB
HABC 0 001 00O0O
Bc
K= lpape|Y=|-111010 0 0| andd=
YAB
UaBC -11 010100 _
YAC
KAiBc -10110010
YBC
HABC -2 1111111
) i | YABC |

Remark 3.4 Reduced models are obtained by removing appropriate columns from

the design matrix Y and the corresponding CID parameters in the parameter vector
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d. As mentioned above, we require ¢ < d in order for the model parameters to be

-estimable. The general model given by (37) is over-parameterized whenever q > d.

Example 3.6 For three sources, the model that contains only the three-way CID is

given by
log(m) = log(Ap) = Y4,

where - ;
0 1000
0 0100 i Bo ]
0 0010 Ba

Y=1-1110 0 andd=| g

-11010 Bc
-1 0110 | 74BC |
L—Q 111 1_

.Then g =5 for d = 7 data points.

Remark 3.5 All of the theory derived below applies to a general form of Y and 4,

for ¢ < d, where ¢ is the dimension of the parameter vector o.

Likelihood
The Poisson log-likelihood of § can be expressed as
1(6) = n'log[1e(8)] — €'p(8) = n'log[A™" exp(Y )] — e'p(9), (3.8)

where n is the d x 1 vector of observed cell counts and e is a d X 1 vector of 1s. The

corresponding g X 1, ¢ < d, score vector is given by

U(8) = Y'diag(exp(Yd))(A™) [no pu(6)™' —e]

108



using the conventions described in Appendix B (with exponentiation of a matrix ap-
plied element-wise, as introduced by Gentleman & Vandal, 2001) whilst the negative

gxq information matrix is given by
—1(5) = Y'Dexp(yg) (D(A—1)/(no“—1_e) - (A_l)'Dno“—zrA—lDexp(ya)) Y, (3.9)

where, for ease of notation, dependence of g on 6 has been suppressed and p =

p(9). The derivations of the score vector and information matrix are reproduced
from Vandal et al. (2005) in Appendix F. ‘

| The Newton-Raphson algorithm uses the following scheme to update the  para- :

meters at the sth step from a value of O,
63+1 = 58 -+ 1(63)_1(](63),

starting from an initial value denoted by &o. Fisher scoring, a well-known likelihood
maximization method, replaces the observed information matrix I (6) with its expec-
tation IE [I(d)], thereby stabilizing the algorithm. Expectation is taken with respect
to the distribution of the vector of cell counts n, which is assumed to be a vector
of independent Poisson random variables with expectation u, as per (3.8). Taking
expectations entry-wise in (3.9), we see that each matrix entry is a linear function of
the cell counts of the d x p matrix, I(d). Thus, we have a linear function on each
entry from n and the expectation operator can be applied directly to each entry of
n. Specifically we can apply [E [n] =‘p. to (3.9) to obtain

~E[I(d5)] = ~Y'Dexpiyes)(A™)D,,- 1A Dy Y. (3.10)
The Fisher scoring iteration is given by

63—}-1 = 65 + 1B [I(&s)]—lU(és),

As alluded to earlier in this section, there are additional challenges posed by

fitting a model on marginal means using & likelihood:on the cell means. Positivity
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of the cell means must be ensured as Fisher Scoring updates §. Ensuring positivity
of p corresponds to an ordering of the marginal probabilities of m as outlined in
the previous chapter in Section 2.4.1. These constraints are non-linear in model
parameters, §, which implies that maximum likelihood estimation must be performed

subject to the d non-linear constraints given by
p=A" m>0,

where the inequality applies element-wise.

As mentioned above, in working with simulated data it is possible to start from
reasonable starting values which would not cause the Fisher scoring algorithm to
pass through infeasible values of g. Thus, such an approach will be adopted without
recourse to complex optimization algorithms which enforce such constraints. In fact,
in most cases, starting the algorithm from the parameter estimates obtained from
fitting the joint log-linear model for independence (using the glm function with log
link and the Poisson family in the R Programming Language, 2004) is sufficient to
prevent the algorithm from leaving the feasible parameter space. Furthermore, in
assuming a Poisson likelihood and performing inference on IE [N], it is not necessary
to ensure that the parameter of interest, IE [V] is larger than the number of observed
individuals, as would be the case if the multinomial likelihood had been assumed and
inference were to be performed on the parameter N. Since the results presented here
are proof of concept, and the computational techniques iﬁvolved not the focus of our

- discussion, it is not a serious drawback that the optimization technique used will not

apply to all data and all starting values.

3.5 Data analysis

In this section we will analyze one real and two simulated four-source data sets. The

analysis consists in fitting all possible 2047 MLLMs to each data set by implementa-
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tion of the Fisher Scoring algorithm derived in the previous section, as well as fitting
all possible 2047 JLLMs, inciuding those which are nonhierarchical. In each case, we
will use the AIC model selection criterion (Sakamoto et al., 1986) to select the best
model amongst all all models of each family. The best MLLM will be compared to the
best HJLLM. In so doing, we will demonstrate that the family of marginal log-linear
models is complementary to the family of hierarchical joint log-linear models and, in
some cases, are selected over a HJLLM. Moreover, the analyses serve another purpose:
they provide weight to our suggestion that the universe of models to be considered
using the standard joint log-linear modelling approach should be extended to include

nonhierarchical models.

Remark 3.6 Note on the choice of AIC. The work of Hook and Regal (1997)
supports the use of AIC in the capture—recap;cure setting. (See Section 1.2.1 for
further details.) They found that the performance of other information criteria for
* model selection were found to be roughly equivalent. The use of AIC simplifies the

discussion and is sufficient to demonstrate the viability of MLLMs as alternatives to

JLLMs.

Remark 3.7 Note on terminology. The suffix LLM of JLLM and MLLM will
be used interchangeably for log-linear models and log-linear modelling, where the

context will dictate the meaning.

3.5.1 Modelling approach

We will consider the four-source capture-recapture setting. As described earlier in
this chapter, the different marginal log-linear models to be considered are obtained
by fixing all possible combinations of the 11 non-single source CIDs equal to 0. From
Proposition 3.1, and as shown in Example 3.4, there are 2047 non-overparameterized

models, of which 2036 are unsaturated. Likewise, using the same’reasoning related
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to the 11 possible interaction terms, there are 2047 non-overparameterized joint log-
linear models, of which 2036 are unsaturated. Of these, 113 models are hierarchical.

The Fisher Scoring 'algorithm_(described in Section 3.4) will be used to obtain
maximum likelihood estimates for the marginal log-linear models. Code was written
in R (R Programming Language, 2004) to implement the algorithm (see Appendix G
for the code). The inbuilt glm function (with log link and the Poisson family) in R
was used to run all joint log-linear models. We computed AIC values without using
the inbuilt function in R for the JLLMs. In such a way the same code was used for all
models and we avoided any potential differences in definition for the AIC. Estimates
of precision for N were obtained using the asymptotic standard errors described in
Section 1.2.1 for the JLLMs assuming an underlying Poisson likelihood (which we
note will give tighter confidence intervals that those obtained assuming a multinomial
likelihood - see Section 1.2.1) and using the approach of Lang and Agresti (1994) for
the MLLM, also described in Chapter 1. Details are provided in Appendix F.2.

Estimating CIDs

For the best model in each family, the CIDs will estimated and contrasted using two
different approaches: the model-based approach and the non-parametric approach,
which we describe here. '

Model-based approach

For MLLMs, the CIDs are parameters to be estimated. Thus, their value is obtained
directly from the estimated model. In the case of JLLMs, the fitted model parameters
are used to obtain the corresponding fitted cell probabilities, from which the CIDs
are calculated.

Non-parametric approach

This approach is the same for both MLLMs and JLLMs. The estimated N is used to

complete the table of observed cell counts to obtain an estimated cell mean for the
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unobserved cell. The corresponding table of cell probabilities for the complete table

is used to calculate the ClIDs.

Simulation of data sets

The simulated data sets to be analysed are described in Sections 3.5.3 and 3.5.4
below. In both cases, an underlying multinomial likelihood is assumed. Given the
equivalence of -point estimates obtained using a Poisson model to those obtained using
the multinomial model (Sandland & Cormack, 1984), we will fit the models using the

more computationally straightforward Poisson likelihood, as mentioned in Section 3.4.

3.5.2 Real data: Diabetes data set

In this section we consider a real four-source data set that has been analysed sev-
eral times in the literature (Bruno et al., 1994; IWGDMF, 1995a; Fienberg et al.,
1999; Bartolucci & Forcina, 2001). The data set is provided in Table 3.1. Bruno
et al.‘ (1994) sought to enumerate all individuals with diabetes in a northern re-
gion of Italy on October 1, 1988. The four sources, denoted by A, B, C and D for
consistency with the notation used throughout this dissertation, were described in

IWGDMF (1995a) as follows:

e A: list of all patients with a previous diagnosis of insulin-dependent diabetes
mellitus or non-insulin dependent diabetes mellitus via a diabetic clinic and/or

family physicians;

e B: list of all patients discharged with a primary or secondary diagnosis of

diabetes in all public and private hospitals in the region;

e C: computerized database list of insulin and oral hypoglycemic prescriptions

for 1988;
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e D: list of all residents of the region who requested a reimbursement for insulin

and reagent strips.

Aves Ano
Byes Bno | Bves Bwo
Cves Dyes | 58 46 | 14 8

Dno | 157 650 | 20 182
Cno Dves| 18 12 7 10
Dno | 104 709 | 74 ?

Table 3.1: Diabetes data set of Bruno et al. (1994).

Of the 2069 cases, most were observed in source A. There were 1754, 452, 1135
and 173, observed in each of sources A, B, C énd D, respectively. Thus, very few
individuals were observed in each of sources B and D. This is not surprising given
‘that these sources correspond to hospital discharges and reagent syringes, which we
would expect to capture fewer individuals than the diabetic clinics and prescriptions.
Further details of the data set can be found in the original article (Bruno et al., 1994).

In line with the approach adopted by IWGDMF (1995a) and described in Sec-
tion 1.1.1, we present the results from each of the pairwise Petersen estimates as a
first step in our analysis We noticebthat three of these estimates fall below the ob-
served number of individuals, 2069. As stated in IWGDMF (1995a), and suggested
in Wittes et al. (1974), the very low value (relative to the rest) of N for sources B
and D suggests the need to consider positive dependence amongst sources. Thus, we
do not anticipate that a model of independence be selected as the best model.

We now proceed to present results from all 2047 MLLMs and 2047 JLLMs. First,
Figure 3.1 presents a plot of all AIC values against the number of model parameters.

Secondly, Figure 3.2 presents the corresponding values of N for each of the models,
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Sources | N
A,B | 2351
AC | 2185
AD | 2262
B,C | 2057
B,D 803
C,D | 1555

Table 3.2: Pairwise Petersen estimates of Diabetes data set of Bruno et al. (1994).

again compared to the number of parameters in the model. In both cases, we use
colours and symbols to distinguish between the MLLMs and the JLLMs, and to
further distinguish between those that are hierarchical and nonhierarchical in the
latter. Note that there were three marginal models!, all of which contained the four-
way CID vagcp, for which there were computatiorial difficulties using the Fisher
Scoring algorithm. We do not include these three models in the discussion below.

Figure 3.1 shows the AIC value for models related to the number of model pa-
rameters. We see that the minimum AIC of all 2047 JLLMs and that of all 2047
MLLMs ére very close. In both cases the models contain 12 parameters. Table 3.3
summarizes these results and presents the form of each of these models. The bést
JLLM slightly outperforms the best MLLM with an AIC of 24.91 compared to 25.07
for the best MLLM.

1

A+B+C+D+AB+ AC+ AD + BC + ABC + ABD + ACD + ABCD
A+B+C+D+AB+AC+AD+BC+CD+ ABC+ ACD+ BCD + ABCD

A+B+C+D+AB+AC+AD+BC+CD+ ABC+ ABD + ACD + ABCD
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Figure 3.1: AIC vs. number of model parameters for all four-source JLLMs and

MLLMs for diabetes data of Table 3.1

We notice that both the best-performing JLLM and best-performing MLLM (as
selected by the AIC criterion);are nonhierarchical. In both instances, nonhierarchical
models are preferred over the best-performing HJLLM, which is more parsimonious
-with 10 parameters but with a larger AIC value of 27.62. The besf overall model
is the nonhierarchical JLLM which provides an estimate of N = 3092, followed by
the MLLM with an estimate which is considerably smaller at N = 2345. Should we

constrain ourselves to the standard analysis of choosing amongst the best-performing
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Figure 3.2: NMLE vs. number of model parameters for all four-source JLLMs and

MLLMs for diabetes data of Table 3.1

HJLLM, we would estimate an intermediate value of N = 2771.

As aresult of the differences in N according to which of the three families of models ‘
we select amongst, there is quite a difference in the point estimate of the proportion
of the population observed in the data set. For the best-performing JLLM, 67%
(2069/3092) of the diabetes population is assumed to have been observed, for the

best-performing HJLLM, 75% (2069/2771), with a much higher proportion at 88%
(2069/2345) estimated to have been observed for the best—perforining MLLM.
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Model Model parameters 95%

Family | AIC |as ac ap Bc #p op amc o acp moo apcd | ¢ N CL

JLLM [2491{1 1 1 1 1 1 0 0 0 0 1 |12 3092 (2573,3611)
HJLLM 27621 1 0 1 1 1 -0 0 0 0 0 |10 2771 (2491, 3050)
MLLM{2507(0 1 0 1 1 1 1 0 0 1 1 |12 2345 (2295, 2396)

Table 3.3: Best-performing models by model family for diabetes data

Remark 3.8 Both the best performing JLLM and MLLM contain the same number
of parameters (see Table 3.3). Although the model form does not contain the same
types of dependence terms, we observe that in both cases a term related to four-way
dependence is included: in the case of the JLLM this is a four-way interaction term
(note that the model is not saturated since it has fewer than 15 parameters), whilst
in the case of the MLLM this term is the 4—§vay CID, denoted by yapcp. Further,
we note that the 4-way interaction in the JLLM models the differential behavior of
the corresponding cell with respect to other cells, while the 4-way term in the MLLM
models the extra dependence induced by conéidering 4 sources, as distinct from 3-

and 2-way dependence.

Table 3.4 provides additional information concerning the fit of each of the best
performing models in each of the three families. It contains the estimated CIDs (us-
ing both the model-based and nonparametric techniques described on page 112) for
each of the three best-performing models, as well as the estimated marginal means.
We choose to examine the estimated marginal means rather than the estimated cell
means since, as will be described‘ below in terms of sufficiency, they exhibit more
meaningful properties than the cell means. We notice that the CIDs for each of the
best performing models of each of the three families are different since the models

relate to different dependence structures. Nonetheless, the CIDs serve to provide in-
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Estimated CID

Margin JLLM HIJLLM MLLM Observed | Estimated marginal mean
MB NP MB NP MB NP count | JLLM HJLLM MLLM
A 0 0 0 0 0 0 1754 1754 1754 1754
B| 0 0 0 0 0 0 452 452 452 452.04
C 0 0 0 0 0 0 1135 1135 1135 1136.03
D 0 0. 0 0 0 0 173 173 173 173
AB| 0273 0.273 | 0.164 0.164 0 -0.003 337 337 337 338.04
AC | 0347 0.347 | 0.238 0.238 | 0.069 0.071 )e! 911 911 910.25
‘AD 0.312 0312 | 0.174 0.202 0 0.035 134 134 130.27  129.37
BC{ 0406 0.406 | 0.296 0.296 | 0.134 0.130 249 249 249 250.45
BD | 1.344 1344 | 1.235 1.235 | 1.068 1.068 97 97 97 97.02
CD | 0.685 0.685 | 0.576 0.576 | 0.402 0.409 126 126 126~ 125.30
ABC [ -0.199 -0.200 | -0.102 -0.091 | 0.069 0.076 215 215.22 21265  215.06
ABD | -0.257 -0.262 | -0.105 -0.152 0 0.014 76 76.36 77.47 72.55
ACD | -0.272 -0.284 | -0.144 -0.174 0 -0.007 104 105.17 104.23  100.40
BCD | -0.412 -0.387 | -0.240 -0.277 | -0.114 -0.111 72 70.25 47T 71.70
ABCD | 0.172 0.165 0.055 | -0.107 -0.112 58 58 63.85 55.35



terpretation to model parameters of nonhierarchical JLLMs, which are often excluded
from the analysis of capture-recapture data. For the MLLM, the nonparametrically
estimated CIDs corresponding to the CID-terms omitted from the model are not zero
as with the model-based approach. This is to be expected given that the fitted model
is riot used in the estimation procedure aside from using the value of N from the
fitted model. Further features observed in that table occur for all data sets. We delay B
discussion of these common features until Section 3.5.5, which follows the analysis of
the two simulated data sets presented in Sections 3.5.3 and 3.5.4.

Figure 3.2 shows the point estimates of N relative to the number of model pa-
'rameters q for all 2047 JLLMs and all 2047 MLLMs. The interest of such a plot is
that some models (independence, saturated, some 2-way interaction models) can be
immediately identified on the graph as having the same fit for JLLMs and MLLMs.
(As with the description of features of Table 3.4, several of the features observed
in Figure 3.2 occur for all data sets. Again, we delay discussion of these common
features until Section 3.5.5.) |

A feature of Figure 3.2, particular to the diabetes data set, is that the estimates
of N obtained from MLLMs tend to be smaller than those obtained by using JLLMs.
Moreover, we observe that there are point estimates of N smaller than Nobs = 2069
for some of the MLLMs but for none of the JLLMs. In choosing to adopt the Poisson
model for computational reasons, it is possible that the corresponding point estimate
N be smaller than Tiops; Since the parameter of interest is IE[N] rather than N.
Nonetheless, in the case of the best performing MLLM, N = 2345 > Neps, and the
lower limit of the asymptotic 95% confidence interval, given by (2295,2396), exceeds

TNobs-
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3.5.3 Simulated data: Conditional independence

The data analysis undertaken in the previous section concerns a real data set. Conse-
quently we do not have a notion of the true NV and it is not possible to determine how
well the model performs in terms of estimating that true value. Using simulated data
provides a means to verify the performance of modelling techniques. In this section
and the next, we analyze two different simulated capture-recapture data sets with a
true underlying population size of N = 1000 in each case. Two different dependence
structures will be used: first, conditional independence and, second, a nonhierarchi-
cal dependence structure. In so doing, we will be able to assess how well the model

selected by the AIC criterion performs for the specific data set under study.

Remark 3.9 We note that in working with a single simulated data set in each case,
there is sampling variability which will not be accounted for explicitly by determin-
ing frequentist coverage properties of the model. This is not the goal of the current
chapter. We draw the reader’s attention to the fact that it is possible that, by chance,
the simulated data set is somewhat different to the true generating structure. Never-
theless, the analyses presented in this section and the next section, serve the useful
~ purpose of exploring the use of MLLMs. We will hold to requiring cerrage of the
true value of N = 1000 by the 95% confidence intervals. Further, such intervals may
be unreasonable tight because of the method used (the Wald, asymptotic approach

assuming an underlying Poisson likelihood, using @p []\7 ] of Section 1.2.1).

The four-source simulated data set considered in this section is generated accord-
ing to a known conditional dependence structure given by [AB][AC|[D]. The results
from this analysis serve to confirm the result given by Theorem 2.9 for HJLLMs,
concerning the value of the CIDs for a model of conditional independence.

The data are shown in Table 3.5 and the details of the generating mechanism can

be found in Appendix E. We now proceed to present results from all 2047 MLLMs
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Aves Ao
Byes Bno | Bves Bno
Cyes Dyes | 16 24 5 10
Dno | 61 92 34 47
CNo Dyes| 50 72 | 16 26
Dno | 165 224 | 50 ?

Table 3.5: Data generated according to the conditional independence structure given

by [AB][AC][D] (see Appendix E).

and 2047 JLLMs. First, Figure 3.3 presents a plot of all‘ AIC values against the
number of model parameters. Secondly, Figure 3.4 presents the corresponding values
of N for each of the models, again compared to the number of parameters in the
model. In both cases, we use colours and symbols to distinguish between the MLLMs
and the JLLMs, and to further distinguish between those that are hierarchical and
nonhierarchical in the latter.

Figure 3.3 shows the AIC value for models related to the number of model pa-
" rameters g. We see that the minimum AIC of all 2047 JLLMs and that of all 2047
MLLMs are very close. In both cases the models contain 7 parameters. In fact, it
is clear that the best-performing JLLM is in fact a HILLM and, thus, it is also the
best-performing HJLLM. Table 3.6 confirms this relationship, as it summarizes these
results and presents the form of each of the best-performing models.

The best-performing MLLM slightly outperforms the best-performing JLLM with
an AIC of 16.13 corhpared to 16.24 for the best HJILLM. We notice that both the
best-performing MLLM and JLLM contain the same CID and interaction terms in
the case of the MLLM and HJLLM, respectively. The best overall model is the
MLLM which provides an estimate of N = 964, compared to the estimate of N =
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Figure 3.3: AIC vs. number of model parameters for all four-source JLLMs and

MLLMs for data of Table 3.5 generated according to [AB][AC][D]

966 for the best-performing JLMM. Thus, with point estimates of 964 and 966, the
estimated proportion of the population observed in the capture-recapture data set
is 92% (obtained using 892/965 by taking the average of the two very close point
estimates). We observe that none of the 95% confidence intervals contain the true

value N = 1000 (see Remark 3.9). Thus, our MLLM performs no worse than the
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Figure 3.4: NMLE vs. number of model parameters for all four-source JLLMs and

MLLMs for data of Table 3.5 generated according to [AB][AC][D]

Table 3.7 provides additional information concerning the fit of each of the best-
performing models in each of fhe JLLM and MLLM families. It contains the esti-
mated CIDs (using both the model-based and nonparametric techniques described on
page 112) and estimated marginal means for each of the best-performing models. As
with the diabetes data in Section 3.5.2, we choose to examine the estimated marginal
means rather than the estimated cell means. A feature of this table serves to confirm

results shown in Chapter 2.
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Model Model parameters 95%

Category | AIC |48 ac ap Bc BD ©D ABC ABD ACD BCD ABCD | § N C.L
JLLM (162410 1 0 0 0 1 0 0 0 0 0 |7 966 (948, 984)
HILLM [1624(/0 1 0 0 0 1 0 0 0 0 0 |7 966 (948 984)
MLLIM}{1613(0 1 0 O 0 1 O 0 0 0 0 |7 964 (943, 987)

Table 3.6: Best-performing models by model family for data of Table 3.5 generated
according to [AB][AC][D].

The best fitted JLLM is the model of conditional independence of A and D given
C, denoted by [AC||CD][B], which serves to confirm the result contained in Theo-
rem 2.9. The theorem translates into the following for the HILLM model given by
[AC|[CDI][B]: vacp = —vap. We see that this relationship holds, with 44p = 0.006
and Yacp = —0.006, using the model-based .estimates of the CIDs. Moreover, we
observe that all CIDs that should be fitted at zero are estimated as zero via the
model-based estimates. We note that the same relationship does not hold for the

nonparametric estimates of the CIDs, precisely because they are not obtained from

the fitted model.

Remark 3.10 We note that neither the best-performing JLLM nor best-performing
MLLM correspond to the correct underlying model given by [AB][AC][D]. Rather

they are both models of a related conditional indépendencé structure given by [AC][CD][B].

(Again, see Remark 3.9.)

Figure 3.4 shows the point estimates of N relative to the number of model para-
meters ¢ for all 2047 JLLMs and all 2047 MLLMs. A feature of Figure 3.4 that is
particular to the simulated data set under study in this section is that the estimates
of N, denoted by N , obtained from MLLMs are more variable than those obtained
by using JLLMs. Unlike the results from the diabetes data set, we observe that none
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CID Marginal means
Estimated
JLLM MLLM Observed Estimated
Margin | True MB NP MB NP count, JLLM MLLM
A 0 0 0 0 0 704 704 704
B 0 0 0 0 0 397 397 397
C 0 0 0 0 0 289 280  289.03
D 0 0 0 0 0 219 219 219
AB | 0.069 0 0.009 0 0.008 292 289.27 289.67
AC| -0.049 |-0.087 -0.087 |-0.089 -0.089 193 193 19291
AD 0 0.006 0.015 0 0.0147 162 160.48 159.79
BC | -0.00797 0 -0.023 0 -0.025 116 118.75 118.93
BD 0 0 -0.034 0 -0.035 87 89.98 90.11
CD 0 -0.175 -0.1751-0.178 -0.176 55 55 54.88
ABC | 0.00797 0 -0.015 0 -0.014 7 79.30  79.38
ABD 0 0 0.016 0 0.017 66 65.94  65.75
ACD 0 -0.006 0.070 0 0.072 40 36.73  36.63
BCD 0 0 -0.016 0 -0.015 21 22.60  22.58
ABCD 0 0 0.037 0 0.035 16 15.09  15.07




of the point estimates of N is smaller than ns = 892. Moreover, the width of the
asymptotic 95% confidence intervals for both the best JLLM and best MLLM, are
reasonably tight with neither interval containing the true value of N = 1000 (See
Remark 3.9).

The da_ta analysis undertaken in the current section demonstrates that a MLLM
model can outperform the standard data analytical approach of HJILLM, even for a
data set generated according to a known hierarchical dependence structure.v Such an
example supports the necessity expand the universe of models to be considered to
include nonhierarchical models. In all cases, the CIDs serve to provide meaning to-
the_rﬁodel parameters, which is a criticism levelled against the use of nonhierarchical

models. Moreover, we see that our MLLM can perform at least as well as JLLMs.

3.5.4 Simulated data: Nonhierarchical dependence

In this section we consider a four-source simulated data set generated according to
a known nonhierarchical dependence structure in which the only dependence present
is in two of the three-way margins, specifically in the two sets of sources given by
{A,B,C} and {A, B,D}. Note that, unlike a hierarchical structure, there is no
pairwise dependence. Such a nonhierarchical dependence structure cannot be ex-
pressed in the notation of hierarchical models; in particular, it is not represented by
[ABC|[ABD]. Such a nonhierarchical structure is not well modelled by hierarchical
dependence structures.

The data are shown in Table 3.8 and the details of the generating mechanism can -
be found in Appendix E. We now proceed to present results from all 2047 MLLMs and
2047 JLLMs. First, Figﬁre 3.5 presents a plot of all AIC values against the number of
model parameters g. Secondly, Figure 3.6 presents the corresponding values of N for
each of the models, again compared to the number of parameters in the model. In both

cases, we use colours and symbols to distinguish between the MLLMS and the JLLMSs,
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Aves Ano
Byes Bno | Byes Bno
Cyes Dves | 21 9 6 26
Dno | 61 59 | 60 70
CNo Dyes | 35 27 | 17 60
Dno | 82 195 | 128 7

Table 3.8: Data generated according to the nonhierarchical dependence structure

given Appendix E.

and to further distinguish between those that are hierarchical and nonhierarchical in
the la;tter.

Figure 3.5 shows the AIC valué for models related to the number of parameters ¢
in the model. We see that, unlike in the previous two sections for the diabetes data
and the simulated data of conditional independence, the minimum AIC of all 2047
JLLMs and that of all 2047 MLLMs are considerably different. For the MLLMs, it
is given by 19.46 for 12 parameters and for the JLLMs by 22.86 for 11 parameters.
Neither the best-performing MLLM nor the best-performing JLLM is hierarchical. In
fact, the best-performing HJILLM does considerably worse than both of these models,
with an AIC of 24.83 and 12 parameters. Table 3.9 summarizes these results and
presents the form of each of these models. ‘

The point estimates N are close to each other, given by 1011, 1017 and 1032 for
the JLLMs, HJLLMs and MLLMs, respectively.- We see that the asymptotic 95%
confidence intervals contain the true value N = 1000 for the JLLMs and HJILMMs
but not in the case of the MLLM, as we would wish. It should be noted that these
intervals, derived from asymptotic afguments, are likely to be tighter than those

obtained by an alternative non-asymptotic method and we note that the lower bound
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Figure 3.5: AIC vs. number of model parameters for all foﬁr—source JLLMs and
MLLMs for data in Table 3.8, generated according to a nonhierarchical dependence

scheme (see Appendix E).

of 1003 is close to the truth of N = 1000. Moreover, we observe that the interval
for the MLLM is tighter than those for both the best-performing JLLM and HJLLM,
although it does not contain the true value of N = 1000.

Remark 3.11 The best-performing JLLM and MLLM contain different numbers of

parameters (see Table 3.9) and very different terms (which are interaction terms in
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Figure 3.6: NMLE vs. number of model parameters for all four-source JLLMs and
MLLMs for data of Table 3.8 generated according to a nonhierarchical dependence
scheme (see Appendix E).

the case of JLLMs and CID terms in the case of MLLMs). The best-performing model
overall, the MLLM, is close to the true underlying generating dependence structure
for which the only nonzero CIDs are y4pc and y4gp (see Table 3.10). It contains the

CID terms vapc and yapp, as we would wish, and also vg¢ and vgep.

Figure 3.6 shows the point estimates of _N relative to the number of model para-
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Model Model parameters 95%

Category | AIC | aB ac AD Bc BD oD ABC ABD ACD BGD ABCD | ( N CL
JLLIM 2286 (|1 1 1 0 1 0 1 1 0 0 0 |11 1011 (958, 1064)
HJLLMj248|1 1 1 1 1 0 1 1 0 0 0 |12 1017 (934, 1100)
MLLM {19460 0 0 1 0. 0 1 1 0 1 0 |12 1032 (1003,1063)

Table 3.9: Best-performing models by model family for nonhierarchical dependence

data of Table 3.8

meters g for all 2047 JLLMs and all 2047 MLLMs. A feature of Figure 3.6 that is
par‘ﬁicular to the nonhierarchical data set under study is that the estimates N of N
obtained from MLLMs spread out similarly to those from the J LLMs.but attain lower
values than for the JLLMs. Nonetheless, none of the point estirﬁates N are smaller
than ng, = 856. The features of Table 3.10, which provides additional information
“concerning the fit of each of the best models, will be discussed in the next section.
The results from this section serve to provide evidence that the fit of a nonhier-
archical model, whether it be a marginal or a joint model, can improve that of a

HJLLM for nonhierarchical data.

3.5.5 Observations common to all analyses

In this section we describe the common features of the analysis of the three data
sets in Sections 3.5.2- 3.5.4. For convenience we will use the terms “Figures-AIC” to
denote Figures 3.1, 3.3 and 3.5, and “Figures—N ” to denote Figures 3.2, 3.4 and 3.6.
“Tables-BestModels” will identify Tables 3.3, 3.6 and 3.9, whilst “Tables-Estimates”
" will be used to denote Tables 3.4, 3.7 and 3.10, which present the estimated CIDs

and marginal means for each of the best-performing models for the three data sets.

Remark 3.12 For all three tables of Tables—Estimates, we choose not to round the
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CID Marginal means
Estimated _
_ - JLLM HJLLM MLLM Observed Estimated
Margin | True | MB NP MB NP MB NP count | JLLM HJLLM MLLM
A 0 0 0 0 0 0 0 489 489 489 488.99
B 0 0 0 0 0 0 | 0 410 410 410 411.41
C 0 0 0 0 0 0 0 312 312 312 311.31
D 0 0 0 0 0 0 0 201 201 201 199.59
AB 0 0.004 0.004 | 0.001 0.010 0 0.025 | 199 199 199 194.75
AC 0 -0.005 -0.005 | 0.0004 0.0004 0 0.015 150 150 150 147.37
AD 0 -0.054 -0.054 | -0.049 -0.049 0 -0.034 92 92 92 94.48
BC 0 0.153  0.158 | 0.163 0.163 | 0.169 0.178 148 147.36 148 146.88
BD 0 -0.030 -0.030 | -0.025 -0.025 0 -0.010 79 79 79 79.49
CD 0 0.052 0.0004 | 0.049 0.006 0 0.021 § 62 6528 64.71  60.15
ABC | 0.1515 | 0.142 0.137 | 0.132 0.132 | 0.115 0.117 82 32 82 78.00
ABD | 0.4055 | 0.433 0.433 | 0.427 0.427 | 0.400 0.412 56 56 56 56.14
ACD 0 0.058 0.061 | 0.062 0.055 0 0.040 30 31.52 31.52 2847
BCD 0 0.010 -0.055 | 0.011 -0.061 |-0.124 -0.076 | - 27 30.20 30.27  25.06
 ABCD 0 -0.120 -0.100 | -0.121 -0.095 0 -0.079 21 23.08  23.08 19.86




estimated marginal means to the nearest integer in order to differentiate between
those estimated perfectly and those not. Thus, whenever an estimated marginal

mean is an integer it is estimated so perfectly.

The features in common to the analysis of each of the three data sets are given as

follows:

e The AIC and N estimates coincide for the JLLM of independence and the
MLLM for independence, since these are equivalent (see the models for ¢ = 5

in Figures-AIC and Figures-N).

e For the range of saturated models, whether JLLM or MLLM, the model fit is
the same but N varies. More specifically, consider the following. All models
with 15 parameters are saturated: there is a single saturated HJLLM, but 11
saturated JLLMs and 11 saturated MLLMS. Since all such models fit the data
perfectly they have the same fit, as observed by a siﬁgle point value at ¢ = 15
in Figures-AIC. However, there are multiple values of N corresponding to the
range of the 11 saturated JLLMs and the range of the 11 saturated MLLM
visible as a range of distinct values at g =151in Figures—N . For the HILLMs
of each of the three plots of Figures-N, there is a single N value corresponding

to the single saturated HJLLM.

e For the plots of Figures—N , we observe that, as the number of model parameters
q increases, there is a funnelling form to the N estimates. As a consequence,

the corresponding estimates of N are more variable and, thus, more spread out.

e Tables-Estimates provide empirical support to results concerning the fit of suf-
ficient statistics of JLLMs as proved in Bishop et al. (1975). For the best-
performing JLLMs for each of the three data sets, both hierarchical and non-

hierarchical, the single-source marginal means are estimated perfectly equal to
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the observed marginal means. In fact, suqh a property holds for all JLLMs, as
described in Bishop et al. (1975). They prove that parameters corresponding
to all sufficient statistics, which include the single-source marginal means, are
estimated perfectly by JLLMs. Such a property also explains some of the other
perfect fits observed for the JLLMs.

Tables-Estimates aléo show that whenever an interaction term is included in a
JLLM, the corresponding marginal mean is fitted perfectly equal to the observed
marginal mean, since the marginal counts corresponding to interactions included
in the model are sufficient statistics (again, see Bishop et al., 1975)._ Thus,
for each of the selected JLLMs and HJLLMs shown in Tables-Estimates, the
marginal mean corresponding to any of the interaction terms included in the
model, as well as the single-source marginal means are estiniated perfectly.
For example, consider the best-perforining JLLM for the data set of conditional
independence in Section 3.5.3. The choéen model éontains two interaction terms
corresponding to AC and CD (see Table 3.6). From Table 3.7 we see that
the corresponding marginal means, mac and mgp, are estimated equal to the
observed marginal counts of nae = 193 and ngp = 55. Moreover, the single-
source marginal means are also estimated perfectly as ma4 = nyg = 704, rhg =

np = 397, ﬁlc =Ng = 289 and ’I’hB =Np = 219.

An equivalent relationship is not observed with the MLLMs, although further
investigations would be required to determine whether this is a numerical arte-
fact. First, the single-source marginal means are not consistently estimated
equal to the observed single-source marginal counts. Nonetheless they are very
close, within less than 1 individual in all cases. Second, whenever a CID-term
is included in the model, the equivalent marginal mean is not necessarily es-

timated perfectly equal to the corresponding observed marginal count. For
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example, consider again the conditional independence data of Section 3.5.3.
The best-performing MLLM contains only 2 non-zero CIDs, giVen by vac and
Yop, whilst the corresponding estimated marginal means mac = 192.91 and
mop = 54.88 are not estimated perfectly equal to the corresponding observed

marginal counts of ns¢ = 193 and nep = 55.

For the estimated CIDs, several features are observed (see Tables-Estimates).
First, we notice that the non-parametric (NP) CID estimates are close to the
model-based (MB) estimates.- This is to be expected since the MB estimates
- use the fitted cell means in place of the observed cell counts, as is the case with
the NP estimates. When the model fits the data well, the fitted cell means are
close to the observed cell counts, which they aim to fit. In both cases, the same

value of N is used, i.e. that obtained from the fitted model.

For the MB-based CIDs from the MLLM, those CIDs corresponding to CID-

terms omitted from the model are exactly 0, as they are set to 0 by design.

3.6 Summary

The nature of the goals of the current chapter was exploratory. These goals were

twofold: first, to demonstrate that it is possible to obtain reasonable maximum like-

lihood estimates under the CID model formulation; and, second, to begin to explore

dependence structures which are not well modelled by hierarchical log-linear models

and demonstrate that our model thus parameterized is able to out-perform both the

best-performing hierarchical log-linear model and nonhierarchical log-linear model.

The work presented in this chapter has enabled us to achieve these goals.

We have demonstrated that a frequentist maximum likelihood approach to the

analysis of MLLMSs can work. For data generated according to a nonhierarchical de-

135



pendence structure, a MLLM outperforms even the best-performing nonhierarchical
JLLM (see Section 3.5.4). Moreover, as seen in Section 3.5.3, MLLMs can even out-
perform (in terms of model fit as measured by AIC) the best-performing HJLLM for
data generated according to a hierarchical dependence structure. For the real dia-
betes data set of Section 3.5.2, the best-performing Iﬁodel overall is a nonhierarchical
JLLM and the MLLM still outperforms the best-performing HJLLM (again as judged
by AIC). The three analyses serve to provide weight to the suggestion that the uni-
verse of models to be considered in the analysis of epidemiological capture-recapture
should be expanded to included npnhierarchical and marginal models.

The three data analyses have also served to confirm Theorem 2.9 and Corollary 2.2,
as well as the general results related to JLLMs and sufficiency as per Bishop et al.
(1975). They have enabled us to explore the nature of the CID measures introduced in
Chapter 2 and to suggest that these measures can be used to provide interpretability
to the model fit of nonhierarchical models, even nonhierarchial JLLMs.

In short, we see that there is scope for using nonhierarchical modelling in the
analysis of capture-recapture data arid the family of marginal log-linear models pro-
vide a complementary and universally interpretable class of models to that of joint

log-linear models.
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Chapter 4

Bayesian Marginal Log-Linear

Models with Random Effects

4.1 Modelling dependence with random effects

An alternative approach to the parametric models seen in Chapter 3 is to model
the dependence structure of the incomplete contingency table using random effects
(see Coull & Agresti, 2003). Such an approach is not only attractive in its ability to
reduce the number of parameters to estimate but also, as we shall see in Chapter 5,
because of the potential form of the model and its interpretation.

In this chapter we jntroduce the general form of such a model. In Section 4.2
we produce its parametric form. In Section 4.3 we motivate the use of the Bayesian
paradigm for parameter estimation. In Section 4.4, we present the full Bayesian
formulation consisﬁing of the specification of the likelihood and prior distributions. \A
description of the Markov chain Monte Carlo (MCMC) scheme Which can be employed

to obtain a sample from the joint posterior distribution is provided in Section 4.5. In
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the following chapter we will implement one such random effects model in which the

CIDs are treated as random effects.

4.2 The random effects model

The mixed effects margiﬁal model formulation for the general K-source capture-

recapture setting is given by

log(m) = log(Ap) = XB + Z§,
¢~ N(0,%), (4.1)

- where A is the d X d matrix which transforms the d x 1 vector of cell means y, into
the‘ d >< 1 vector of marginal means m, for d = 2% — 1, the number of observed cell
entries in the incomplete K-way contingency table. The (K + 1) x 1 vector of fixed
effects is denoted by 8 = [ﬂo,ﬂ*_]’ = (Bo, Bsy, - - -, Bsy ), for sources Si,..., Sk, with
corresponding d x (K + 1) design matrix, X. The r x 1 vector of random effects’is :
denoted by & with corresponding d x r design matrix, Z. X denotes the r X r covariance
matrix of the assumed distributional form of §. Let 6 denote the (K+14+r)x1

concatenation of B and £ given by

6 =
3

In this chapter we will specify neither the vector of random effects &, nor the
corresponding design matrix Z, aside from making assumptions on the dimension of

Z, which will have d rows. One specification for Z and & is presented in Chapter 5.

Remark 4.1 Note that although 6 may represent the same model components as
the & vector of Chapter 3, with & equal to the vector of CIDs denoted by -, we

choose to keep the notation different to reiterate that the current chapter introduces
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the general form of the mixed effects model. In such a way a distinction is made
between the two treatments of 8: as fixed effects in Chapter 3, where 8 =4, and as

random effects in the current and subsequent chapters.

Model (4.1) parallels that given by Coull and Agresti (2003), in which the gen-

eralized log-linear model of the form
Clog(Ap) =XB + Z¢, (4.2)

is presented, where C is a matrix of appropriate dimension. Such a model is more
general than that expressed in (4.1), and is equivalent when C is the identity matrix.
However, the applications considered by Coull and Agresti (2003) do not relate to
~ the capture-recapture setting; rather they relate to smoothing of sparse data for large
contingency tables. The mixed effects model given by (4.1) has a more specific form
in the capture-recapture setting presented in this dissertation. Specifically, the form
of X and 8 correspond to the form of the marginal model as it was first introduced

in Chapter 2.

Remark 4.2 Relationship to Generalized Linear Mixed Models.

The class of models denoted by (4.2), and consequently that denoted by (4.1), are
related to the class of generalized linear mixed models as presented by McCulloch
and Searle (2001). (See Section 1.5 of this dissertation.) We note that the broad
description of McCulloch and Searle (2001) suggests that they work with the case
when C = A =1 and the link function is of a general form, not necessarily the log

link of (4.2) and (4.1).

Example 4.1 Consider the three-source capture-recapture setting for sources A, B
and C. The data are conveniently summarized in the three-source incomplete con-

tingency table, given by Table 4.1, as first introduced in Chapter 1.
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‘ AYes ANo
BYes BNo BYes BNo
Cyes | maBC MaBc | MiBc — MABC
Co | MaBG MaBC | MaBc MABC =7

Table 4.1: Incomplete Contingency Table: Three Source

The components of model (4.1) are given as follows (except for the random effects

vector € and corresponding design matrix Z, whose form remains unspecified in the

current chapter), where we use the subscript ‘3’ for clarity:

[ ma ] Fl 00
mpg 010
me 0 01
mg= | mup |;A3= ({0 0 0
mac 000
mpo 000
[maBc| 000
and _ -
0 100
0 010
0 001
X3=(-1 11 0|;Bs=
-1101
-1 011
-2 1 1 1]

o O O = OO = =

o O B O B O

Bo
Ba
BB

| B¢

01 KaBC
11 KHABC
11 WaBc
0 1| ms= |papc|:
01 KaBc
11 BABC
0 1] | #ABC |
] [ log N ]

_ logm g

- logmp ’
| _log mg |

where N is the population size to be estimated. Note that the corresponding matrices

for the four-source setting are found in Appendix A.
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Remark 4.3 As described in Chapter 3, it is convenient to introduce notation to
distinguish between the parameter vector, 3, which consists of log V together with
all single source log-marginal means, and that which does not include log N, denoted
by B*. In particular, for three sources B33 denotes the full set of § parameters, whilst

Bs* denotes the reduced set which does not include B5. Thus,

- -

B
ﬂ" Ba
Bs=|""|, and, Bs"= | 85 | . (4.3)
BB
Be
| Be |

4.3 Parameter estimation

In developing model (4.2), Coull and Agresti (2003) provide an outline of various
schemes to undertake maximum likelihood estiination of parémeters. Unless the
model parameters can be isolated in the likelihood function, such an approach is
challenging and usually requires, depending on the specific model form, special nu-
merical tools to integrate out the random effects. One such model form is that given
by (4.1) for the capture-recapture setting, where isolating the model parameters of
the likelihood function is impdssible. Its likelihood (see Section 1.1.3) is the multino-

mial likelihood

L(N, 14(6); Dieoms) — X 1y 40 N_nabsﬁ (w)
s Kb s incomp (N —nobs)!H;Ll ’I'Li! i=1 N N |

i=1

(4.4)
where p = p(0) = p(B, €) is given by model (4.1) and the indexing is assumed to be
over all d cells of the incomplete contingency table, which, for three sources, is shown
in Table 4.1. We use Dincomp to represent the data of the incomplete contingency table.

Therefore, in the three-source case, Nipcomp represents the 7 observed cell entries of

Table 4.1.
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There are specific challenges associated with maximum likelihood (ML) estimation
for model (4.1) under likelihood (4.4). First, as indicated in Chapter 3, one such
challenge is associated with working with a model on marginal means but a likelihood
on cell means. Model (4.1) is a linear model of the model parameters 8, for the
marginal means m, but a nonlinear function of @ for the cell means u, since the

equivalent model on the cell means is given by

w(0) = pu(B,€) = A exp (XB + Z€) .

Unlike joint log-linear models on cell means (see Section 1.2.1) for which the canonical
log link enforces non-negativity of the cell means, it is necessary to enforce such

constraints explicitly for model (4.1). That is

n(0) = u(B,§) 2 0. _ (4.5)

Furthermore, funobs, the cell mean corresponding to the unobserved cell must be

non-negative. That is

Hynobs _>_ 0. (46)

In the multinomial likelihood given by (4.4) it is necessary to ensure that the cell

means, including pluneps, sum to N, or equivalently

d
Hunobs + Z Hi = N. (47)
’ =1

Thus, ML estimation involves maximization of a nonlinear function of 8 given by
likelihood (4.4), subject to nonlinear inequality constraints on @ given by (4.5)- (4.7).
A further constraint imposed by the likelihood is that N > ngs.

From a computational viewpoint, Bayesian MCMC offers a flexible and convenient
approach to deal with the challenges of enforcing constraints when dealing with a
function which is is non-linear in the model parameters. Moreover, from an inferential

viewpoint, it is meaningful to treat both 8 and £ as random variables and perform
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“inference which depends on ﬁpdating prior distributions according to the information
contained in the observed data, as quantified by the likelihood. Thus, we are able to
make meaningful prbbability statements about all parameters not only the random
effects; as would be the case with a traditional maximum likelihood approach. In -
such a way, the so-called random effects are not so different from the so-called fixed
effects of model (4.1). In this chapter and the following chapter we adopt a Bayesian
approach for parameter estimation.
| The Bayesian paradigm provides a natural framework in which to accommodate
random effects, to incorporate constraints and deal with the challenges posed by the
nature of the likelihood. Although the known relationship between the multinomial
and Poisson likelihoods (see Section 1.1.3) allows the use of the latter, we choose to
work with the multinomial likelihood in which NV is considered the quantity of interest.
Since MCMC is able to account for the specific challenges of parameter estimation
associated with our model and likelihood, it is not necessary to use the equivalence,
whereas With frequentist joint log-linear modelling and marginal log-linear modelling
there are considerable computational advantages to adopting the Poisson likelihood
over the multinomial (see Chapter 3).

A marginal model with réndom effects is a new idea in the field of capture-
recapture. In fact, the use of random effects for the generalized log-linear model
has not.been discussed extensively in the literatﬁre. A known single reference is
‘Coull and Agresti (2003), who did not discuss the use of a Bayesian approach. Only
two applicétions of marginal modelling to capture-recapture data have been found
(Bartolucci & Forcina, 2001 and Bartolucci & Forcina, 2006) and, specifically, no.

application of marginal models with random effects.
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4.4 Bayesian model formulation

As with all Bayesian models, a likelihood and prior structure must be specified, to-
gether with the corresponding model on the parameters (see Section 1.4.1). Here
we describe all components of the Bayesian model. The multinomial likelihood is

repeated here for completeness.

Likelihood

)N—nabsfl<ﬂi]i,0))ni,

| o ~ 1(0)
L(N, p(0); Nincomp) = -

where p = pu(8) = u(B, &) is given by the model.

Model

log(m) = log(Ap) = XB + Z¢
= () = p(B,€) = A exp(XB + Z§)

subject to p(8) = u(B,€) > 0,
Hunobs Z 0
. d
N = HPunobs + Z Hi

=1

N > ng, (4.8)
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Hierarchical prior structure

£ ~ N(0,%)
% ~ Inv-Wishart(Z;*, M)
ﬁO ~ N(u‘ﬁoa 0[230)

Bi ~ina N(ug,,03,), fori=1,...K,

where 357, M, 0%, and g, fori=1,... K, are fixed. We note that the prior structure
is expressed in terms of the model components, B and £. The model components 8
are chosen rathef than their corresponding N and marginal means m so that the
range is given by R rather than Z*, as would be the case for a prior on N.

In practice, as will be seen in the following chapter, we assume a priori that the
random effects are independent. In such a case the prior variance matrix X has all off-
diagonal entries set to zero. Thus, if all random effects are assumed to have common

variance, it is possible to simplify the prior form for the random effects as follows

§i|a§ ~iia N(0, ag), for all random effects,i=1,...,7
052 ~ scaled inv — x*(v, 52)
ﬂo ~ N(I'I’,BO’ 0'%0)

181' ~ind N(uﬂnagi)a fori=1,...K, (49)

where V()‘ and s2 are fixed and the parameterization of the scaled inverse-x? distribu-
tion is described in Section 4.5.1, with density plots of the scaled inverse-x? distrib-
ution given in Figure 5.8 (as per the scaled inverse-x? formulation of Gelman et al.,
2004).

At this stage, the hierarchical prior structuré is not extended to include an ad-

ditional level of prior information on the hyper-parameters themselves; rather, they
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are assumed fixed. Motivation for such én extension would arise should we observe
sensitivity of the posterior distributions to the values at which the highest level hyper-
parameters are fixed. In practice they are fixed at levels such that the priors are
noninformative. For example, large values of ‘7/230 and Ufh are used in order that the

prior distributions on the components of 8 remain noninformative.

Remark 4.4 Implied priors.

In working with a log reparameterization of N and m, we must be attentive to the
nature of the prior structure. For example, for the model parameter Sy = log N a
normal prior on (3 corresponds to a log-normal prior on N. We note that although
N is integer-valued, it is treated as a continuous random variable in the Bayesian
parameterization in terms of [y, just as with the frequentist joint log-linear models
in which nyueps 1s parameterized as log nyn0ps and treated as a continuous parameter.
Such a log-normal prior on N is a continuous, right-skewed distribution that places

most mass in the left tail of the distribution. The prior density of N is given by

exp(—(log N — p,)?/20%,)

N; ,02 = 4.10)
I (Ns i, o5, o (4.10)
with corresponding (implied) prior mean, variance and skewness given by
E [N] = exp (ugo + —2-°l>
Var [N] = (ea?;o —1)e* 50+78,
Skew [N] = (e% + 24/ e%ho — 1. (4.11)

Thus, it is apparent from the form of IE[N] that placing a vague prior on fy by
increasing variance 0[230 will have the effect of artificially increasing the prior mean
on N. Such considerations indicate that summary measures such as posterior means

must be taken for the native parameters, not the reparametrized version.
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For joint log-linear models in which the model is on the cell means rather than -
the marginal means of our model, King and Brooks (2001b) have considered the prior

structure implied on reparameterizations of the model parameters.

Full posterior

By Bayes’ Theorem, the full joint posterior of all model parameters, which we denote
by p(ﬂO; :6*5 g: Ug‘nincomp)a is given by
L(Na “(0), nincomp)p(ﬂOa B, €, U?)

p (nincomp)

p(ﬁO) IB*a £ Uglnincomp) =

(4.12)

where p(Nincomp) is referred to in the literature as the integrated (data) likelihood.
The joint prior of all parameters p(f5o, 8%, &, ag) is obtained using the hierarchical
prior structure of (4.9) as follows

K

p(Bo, B*,€,0%) = p(Bo) [ [ (Bi) Hp (&ilo?) x p(ad),
k=1

=1
with dependence on the fixed hyper-prior parameters of (4.9) suppressed.v
From (4.12), the following proportional relationship holds

p(ﬂO: :3*: 67 Oglninoomp) x
NI w®\ o (mO)\"
(N — ngse) TIE, 74! (1 > —N—> 1 <T>
[ — (4.13)
X exp (203 (Bo — o) > X H exp <2021 ,Ltgk)2>

Bo allBy Br

X H — exp 52 = exp '—Vosg
alte; 7 20¢ (0?)(V0/2+1) 20¢ )

where Njncomp denotes the data contained in the incomplete contingency table and

N = exp(Bo).
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4.5 MCMC specifications

In this section we describe in detail an MCMC scheme to sample from the joint
posterior distribution given by (4.13). Examination of the joint posterior (4.13) shows
that it is only possible to obtain a full conditional in closed form for the random
effects variance og. Thus, all other parameters must be updated using an alternative
principle to that of a Gibbs update (see Section 1.4). An appropriate approach is to
use a Metropolis-Hastings proposal for each of the other parameters.! The specific
details of the full MCMC scheme will first be described here in words and then
described symbolically. This scheme will be used in the next chapter to implement a
full Bayesian data analysis of a real data set.

The scheme proceeds in the foliowing order (details are provided below):

e Sample an integer value of N conditional on the current value of N via a
Metropolis-Hastings step. From the updated value of N, obtain the corre-
sponding value of 8y = log N

e Sample the components of B* via a Metropolis-Hastings step conditional on the

current value of 8.

e For the random effects, the scheme will depend on the specific form of Z and

€. Details of one such case will be provided in the next chapter.

e Perform a Gibbs update on the random effects variance, 02. This is possi-
ble since the scaled inverse-x? prior is conjugate for the normal “data” of the

random effects, in the sense described below.

All Metropolis-Hastings proposals are Gaussian proposals, except for that of N, which

is a symmetric discrete uniform. In so doing, the symmetry of the Gaussian distrib-

!The proposals are all symmetric, thus the proposals are all like the Metropolis algorithm de-

scribed in Section 1.4.1. We use the more general Metropolis-Hastings terminology throughout.

148



ution ensures that the forward and backward probabilities are equal and thus cancel

in the transition probability calculations.

Remark 4.5 Constraints.

In order to enforce the model constraints given by p(0) = (3, &) > 0 and funess => 0
of (4.8), the value of u1(8) is obtained after each Metropolis-Hastings proposal. Should
1 (8) violate the constraints, and thus lie outside of the feasible parameter space, the
proposed parameter values are rejected. Likewise, when a value of N is proposed, it
is verified that thé proposed value is within the feasible parameter space defined by

N > ngs and p(0) > 0 and N = pynobs + Z?:l i

4.5.1 Details of the MCMC simulation scheme

Consider the chain at iteration (¢t — 1) with parameters denoted by N¢~V (equiva-
lently A{¢Y), B*¢D @D and ag’(t—l)_. For each of the components of 8 = (3, ¢),
Metropolis-Hastings updates will be used as described above. The details of the

update are provided here.

Details: N (equivalently ()

Draw NP™P from Discrete U(N*~! — Nyigen, N¥ 71 + Nyidtn), where Nyigin is chosen so
that acceptance rates are in the range 15% - 30% (for justification, see the theoretical
work described on page 55, Chapter 3 of Gilks et al., 1996). Calculate the Metropolis- -
Hastings ratio, 7 (see Chapter 1 for details, in particular the descriptioh of the
Metropolis algorithm in Section 1.4.1), and update N as follows

yo QN 2

NGOy <

where u ~ U(0,1).
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Details: .8*

Draw B*®™P) from MV N (ﬂ*(t'l), Y)), where ¥ is a variance-covariance matrix con-
trolled by fhe user, again so that acceptance rates are in the range 15% -30%. Calcu-
late the Metropolis-Hastings ratio, rg= (again, see Chapter 1 for details), and update
B* as follows

IB*(PYOP)’ rge > u
B = P (4.14)
B rg < u

where u ~ U(0, 1).

Details: &

One such case is presented in the following chapter.

Details: 02

From the form of the joint posterior distribution (4.13), it is clear that the full condi-
tional of og exists in closed form. It is the standard case of normal data with known
mean and unknown variance, with a scaled inverse-y? prior on the variance term.
The random effects themselves, &, are our ‘data’. It is straight-forward to show that
the scaled inverse-x? prior is conjugate for normal data. The general scheme is given

here.

af ~ scaled inv — X2 (vo, sg)
& ~iig N(p,03), fori=1,...,r

which corresponds to

s
p(o?) o< (02)F D exp ( o )

p(£l0?) o (02)7% exp (‘”) ,



where v =) &;"—E, 7 is the dimension of the random effects vector &, u the assumed
common mean of the random effects.

In order to understand the nature of such a scaled inv-x? prior, consider the
value of its mode, expectation and variance. Suppose €, some random variable, is

distributed as 6 ~ scaled inv — x%(v, s?). Then

mode(f) = ” : 252
__ Y 2
E[Q]—V_zs, for v > 2
202 4
Var [0] = for v > 4. (4.15)

[CEPECET
Thus, for small s3, the prior mode of 02 will be close to 0. It is known that, for the
standard random effects model described above, a prior mode close to zéro can cause
unexpected results in terms of posterior inference. We thus seek to ensure that the
mode is not too close to 0.
For this prior and data we obtain a conjugate poéterior given by
P(0Fl€) o« (02)(H+) exp (————W 30’2"53) ,
4

which is proportional to
vo+r

2
0? ~ scaled inv — x2(vg + r, R,

Since the full conditional distribution exists in closed form, a Gibbs update can be
made for ag after the joint Metropolis-Hastings update is performed for all the other

parameters, i.e. for 8 = (83, &).

4.6 Bayesian Model Developments

In the following chapter we present a random effects formulation of the form (4.1)

in which the CIDs are treated as random effects. The general principles and MCMC
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1

simulation scheme developed in this chapter will be adopted and modified appropri-
ately, according to the specifics of the model. We will perform a Bayesian analysis of

the four-source diabetes data set of Bruno et al. (1994), as analyzed in Chapter 3.
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Chapter 5

Bayesian Random Effects

Modelling: CID Formulation

5.1 Introduction

In this chapter we present a specific form of the general Bayesian random effects
model introduced in Chapter 4 in which we assume the CIDs are random. The model
form is the Bayesian version of the marginal log-linear model introduced in Chapter 3
with random rather than fixed CIDs, as was the case in Chapter 3. In so doing,
we achieve parameter reduction, which is desirable given the limited number of data
points available for capture-recapture data.

In Section 5.2 we describe the specific form of the model relative to the general
form (4.1). In Section 5.3 we describe specifics of the MCMC simulation scheme to
lead to Section 5.4, in which we present results of a full Bayesiah analysis for the four-
source diabetes data set of Bruno et al. (1994), analyzed in Chapter 3. The analysis

consists in demonstrating properties of the Bayesian model of independence, followed
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by an analysis via a reduced model in which only two CIDs are included in the model
(we describe below the motivation for the choice of the specific model). We conclude
with an analysis via the fully parameterized model in which all CIDs are included
in the model. We discuss the problem of nonidentifiability of model parameters in
the case of the full model, and compare to the analysis of the reduced model for
which there a,ré no parameter identifiability issues. In Section 5.5 we conclude with
a discussion, in particular related to the relationship between the random effects

variance and N, which is explored via the data analysis of this chapter.

5.2 CID-based random effects models

Definition 5.1 Let Q be a set of sources and K = |Q|. Then the following system

of 25 — 1 equations constitutes the CID random effects marginal log-linear model for

the K sources of Q.

log(m) = log(Ap) = XB + Z,
~ ~ N(O, 031),

where = is the r X 1 vector of all non-single source CIDs, (see Definition 2.11), with

the d X r design matriz Z given by the following concatenation:

10
Z = ,
G-t
where G™1 is the (d — K) x r matriz described in Remark 2.20 and 0. is the K x r

matriz of zeros. The dimension of ~ is given by r = d— K, for d = 25 — 1. All other

matrices and vectors are defined as per the discussion immediately following (4.1).

Example 5.1 Consider the three-source capture-recapture setting for sources A, B
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and C. Then the three-source CID random effects marginal model is given as follows

log(m) = log(Ap) = XB + Zv,
g~ N(O,U,Z;I),

where, in particular

va ~ N

(

Yac ~ N(0, 02
(0, 02
(0,

vBc ~ N
vasc ~ N(0,02),
with _ - _ - - .
ma 1001101 BABC
meo 0010111 HABC
m = mAB ,-A-: 0 O 0 ]. 0 0 1 ;l‘l'= )u‘ABC
mpc 000O0O0T11 HABC
| maBc 00000 0 1] | HABC
0o 10 0l 0000
0 010 - 0000 r T
v Bo YAB
0 001 5 0000
A YAC
X=|-1110}|:8= Z2=110 0 0=
/BB YBC
-1 1 0 1 0100
Bo | YAaBC
-1 011 - 0010 -
-2 1 1 1] 111 1)
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Compare this form to (3.3), which is the most general form of the fixed effects
three-source marginal log-linear model. We note that the sole difference with the
form in Chapter 3 is that the CIDs are treated as fixed rather than random effects.
As stated in Chapter 3, the model given by (3.3) is over-parameterized. In that case,
parameter reduction is achieved by setting combinations of CIDs equal to zero, thus
omitting thdse terms from the model. Even for the most general form of the random
effects model for three sources given above, the model is no longer over-parameterized.
There are 22 — 1 = 7 cell entries available 1n the three-source contingency table (see
Table 1.2) with which to estimate the 5 model parameters, namely By, 84, Bs, Bc
and 0',2),. ‘Nonetheless, from an inferential point of view, estimating 5 parameters
with only 7 data points is a demanding setting. The Bayesian paradigm provides
a means to incorporate information via prior distributions to lighten the burden of
parameter estimation, so to speak, on the_7 cell entries of the three-source incomplete

contingency table.

Remark 5.1 The full expression of all matrices for the three and four-source cases

are presented in Appendix A.

5.3 Bayesian CID-based random effects models

The likelihood and prior structure are as those described in general terms in Sec-
tion 4.4. Likewise, the MCMC scheme used to generate samples from the joint pos-
terior distribution of the model parameters is the same as the general form described

in Chapter 4.

" Details of the MCMC scheme

Here we describe the specific MCMC update performed for the random effects vector

~ of CIDs, with corresponding design matrix Z described above. For convenivence,
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subdivide the vector of random effects in the following manner

'Ypair

Y 3—-wa;
v= _ vy . (6.1)

_’YK—way_

Consider the MCMC chain at iteration (¢t — 1) for random effects vector v(t~1.
MetropolisQHastings updates are made in blocks for the elements of v¢~1), with blocks

corresponding to the number of sources, as defined by (5.1). We proceed as follows:

e Pairwise random effects vy

Draw ~pyr from N (’yg;rl), 05ir]). Calculate the Metropolis-Hastings ratio rpair

and update v,;, as follows

prop
(t) ’yPair ) 'rpair 2 u

7pair -
(t-1)
’Ypair » Tpair < U

where u ~ U(0,1).

e Three-way random effects v,

Draw v5ua from N ('ygzi,),ogwayl). Calculate the Metropolis-Hastings ratio

T3way and update sy, as follows

prop
0 : 73way’ 'r3way Z U

Sway =
way (t=1)
Yiway 1 Taway < U

where u ~ U(0, 1).

e Proceed in a similar manner in block form up to the single K-way random effect.

O3ways €tC. ) are adjusted

Remark 5.2 In each case, the proposal variances (i.e. agai,,

by the user so that acceptance rates for each block are in the range 15% -30% (see
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page 55, Chapter 3 of Gilks et al., 1996 for some justification). Model constraints
are enforced as per Remark 4.5. Further, we note that for the CID random effects
formulation of the current chapter, 3, the proposal variance-covariance matrix of 8*

is a diagonal matrix with zero off-diagonal entries.

5.4 Data analysis

In this section we will révisit the diabetes data set of Bruno et al. (1994), as first
introduced in Chapter 3 and analyzed using frequentist marginal log-linear models in
Section 3.5.2. The data are presented again for reference in Table 5.1. Recall that
for this particular data set very few of the ng, = 2069 observed individuals were
observed in sources B and D with marginal single-source observed counts given by

nag = 1754 , ng = 452, ng = 1135 and np = 173.

Cyes Dvyes| 58 46 | 14 8
Dno | 157 650 | 20 182

Cno Dves| 18 12 | 7 10
Dno | 104 709 | 74 2

Table 5.1: Diabetes data set of Bruno et al. (1994).

We will analyze the diabetes data set using the Bayesian random effects marginal
model for the four-source capture-recapture setting. The analysis consists in fitting
two models: first we analyze the data-set via a specific reduced model in which only 2
of the 11 unknown CIDs are included in the model, and secondly we analyze the data

set via the full Bayesian model which includes all random effects (i.e. none of them
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are fixed equal to zero). We demonstrate that the parameter identifiability issues
associated with fitting the full model are not encountered when fitting the reduced
model. We note that the speciﬁc form of the reduced model selected for this chapter
is that containing the 2 paifwise CIDs given by vgp and vgp. These two pairwise
CIDs were selected based on preliminary analysis of the diabetes data set via both
calculation of the 6 Petersen estimates as given in Table 3.2.

In order to demonstrate that the Bayesian formulation of the marginal model
performs sensibly for a known case, we will first fit the independence model, followed
by analysis for a single hierarchical prior structure for the reduced model. We will
then present resuits from e range of prior distributions for the reduced model in order
to determine the sensitivity of the posterior distribution to different prior parameters,
'in particular to the prior distributions on the main parameters of interest, namely Gy
and a?,. The same analysis will then be repeated for the full model; thatv is we first
present results from the analysis using a single hierarchical prior structure followed

by results from a sensitivity analysis.

5.4.1 Modelling approach

In all analyses described in the following sections, we generate two chains using the
MCMC scheme described in Section 4.5. The two chains, each of length 10,020,000,
start from two sets of dispersed starting values. In so doing, we wish to reduce
dependence of Ithe posterior on the starting values (see Section 1.4.1). Each chain is
thinned by 200 to yield a sample of 51,000 draws from the joint posterior distribution

given by (4.12). We then remove the first 1000 iterations of each sample (i.e. burn- |
in) to yield a sample of size 50,000 from the joint posterior distribution for each
chain. Although thinning by a factor of 200 reduces dependence on starting values,
we nonetheless remove the first 1000 iterations of the thinned chain for good measure.

We combine the two samples each of size 50,000, corresponding to the two MCMC
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runs, to obtain a single sample of size 100,000 from the full joint posterior distribution

of all parameters.

Remark 5.3 Preliminary analyses for both the reduced and full models demon-
strated that thére was high posterior correlation amongst model parameters, in par-.
ticular between Gy and the components of . As a result, a large thinning factor of
200 was used to reduce posterior correlation amongst model parameters. Although,
it is desirable to minimize posterior correlations between model parameters in order
to obtain representative samples from the joint posterior distribution, with modern
computational power it is not a major drawback if reparameterizations of the model
do not yield such features. If the chain is run for long enough, a reasonable sample

will be obtained.

We choose posterior samples of size 50,000 for each chain in line with the approach
adopted by Fienberg et al. (1999), who also faced similar issues of high posterior
correlation when working with their Bayesian formulation of the Rasch model. Tables
5.2 and 5.3 presents such posterior correlations for a single thinned (by 200) MCMC
chain for the main parameters of interest Gy and 03 relative to « for two different
models. First, Table 5.2 presents such correlations (including those with the elements
of 8*) for the reduced model which contains only two pairwise CIDs, namely ypp and
~Yop; we note again that all other CIDs are fixed at zero rather than being estimated
like vgp and yop. We described above the motivation for the choice of such a model.
Secondly, Table 5.3 presénts such correlations for the full model in which all CIDs are
included in the model with none fixed at zero. (Note that we have not removed the
lower-half of each of the two tables to remove the repeated symmetric correlations.)

The posterior correlations are reasonable for the reduced model (see Table 5.2).
The largest correlation of 0.241 is between g and Bp, whilst the correlation between

the two random effects, vgp and v¢p, and each of 3y and 0,27 is at most 0.134, which

160



191

© 81D om) A[uo Sururejuod [opowt

peonpea ayy 10y ¢ pue dOL ‘dgL "Z“g ‘0g woamyaq SUOTIR[IIOD IOLIISOJ :Z'G S[qRL,

| Bo a2 Yep  Yop | Ba Bs Bc Bp

Go | 1.00 | 0.004 | 0.096 0.134 | 0.003 0.004 0.012 -0.017
0,(‘; 0.004 | 1.000 | 0.016 .-0.007 | 0.003 0.001 -0.006 -0.004
~gp | 0.096 | 0.016 | 1.000 -0.065}-0.002 -0.231 -0.001 -0.177
Ycp | 0.134 | -0.007 | -0.065 1.000 |-0.003 -0.007 -0.153 -0.112
Ba i 0.003 { 0.003 | -0.002 -0.003 | 1.000 -0.008 -0.003 -0.009
Oz | 0.004 | 0.001 >-O.231 -0.007 ; -0.008 1.000 0.003 0.241
Be 0.‘011 -0.006 | —0;001 -0.153 | -0.003 0.003 1.000 0.107
Bp | -0.017 | -0.004 | -0.177 -0.112 ;-0.009 0.241 0.107 1.000



again is perfectly reasonable. The main effect parameter 54 is almost uncorrelated
with the random effects vgp and ~v¢op, whereas the main effects 8 and Bp corre-
sponding to sources B and D are correlated with the corresponding random effect
vBD, Whilst ﬂg and fp are correlated with the corresponding random effect yop.

The posterior correlations for the full model (see Table 5.3) are not as reasonable.
In fact, we observe very high correlation (close to 1) between the components of
the random effects vector ~ and [y, and consequently between the random effects
themselves, fqr the full model . The correlation between the components of ¥ and U:‘;
are lower and perfectly equal at a reasonably low value of 0.34 (modulo the sign) to the
posterior correlation between 3y and org. Such high posterior correlations arise because
of nonidentiﬁabﬂity of model vparameters (see discussion below). Despite such high
correlations, the analysis via the full model serves to demonstrate certain features
of a non-identifiable Bayesian model. We note in addition that the corresponding
posterior correlations between the components of 3*, and of each component with Gy
and 0?/, are at most 0.24 (table not presented).

The trace plots presented ‘in Figures 5.1 and 5.2 for the reduced and full model,
respectively, are for a single set of starting values for a chain thinned by a factor of
200. The chains correspond to the single analyses to be presented in Sections 5.4.3
and 5.4.4 below. Both figures further confirm the correlation patterns observed in
Tables 5.2 and 5.3. Figure 5.1 demonstrates that there is good mixing of the chain
over the parameter space for each of 3, o, and the two random effects ypp and v¢p,
whereas we observe serial correlation in Figure 5.2 in each of the corresponding bplots
of Bo, v8p and vep and for the other 9 random effects (plots not presented here) of
the full model. |

In all cases, C++ code was used to implement the MCMC algorithm. The code can
be found in Appendix H. Jumping proposal parameters for the Métropolis—Hastings

steps were adjusted in order to achieve acceptance rates in the range of 15% - 30%,
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Figure 5.1: Trace plots of By, 0y, YBp and y¢p for the reduced model

as described above.

The same vague prior distributions were assumed for the components of the g*
vector for each chain. Preliminary analyses demonstrated minimal sensitivity of the
joint posterior of all model parameters to the prior distribution on 8*. In particular

these preliminary analyses demonstrated that there was minimal sensitivity of the
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Figure 5.2: Trace plots of 8y, 0y, vpp and y¢p for the full model

posterior distributions of the elements of 8* to their own prior distributions (note
that we state this relationship without including a series of sensitivity plots). In fact,
they are uniformly close to centered on the corresponding log-marginal counts, given
by logna, logng, logne and lognp for the four-source case. Thus, we set the same

prior distribution of each element of 3* with prior parameters given by pg = 5.15
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and afg; = 1.74 for each of the four components of 8*, namely for each of 84, 85, B¢
and Bp. Note that these prior parameters are somewhat arbitrary and correspond to
a low marginal mean count of exp(5.15) = 172 for each of the four components.

For the first analysis presented in each of sections 5.4.2, 5.4.3 and 5.4.4, we fix
the prior parameters of fy at pg, = 8.06 and o, = 0.28, which roughly corresponds
to a prior 90% range on the corresponding N parameter of 2000-5000 (see following

discussion).

Remark 5.4 Prior parameters for Jy.

In proposing prior parameters for the N (ug,, ago) prior on (g, it is useful to consider
the corresponding prior range on N = exp . Let N, and N, be the upper and lower
levels of the nominal 90% prior range we wish to place on the parameter N. In order
to obtain the corresponding prior parameters on o, i.e. ug,, 0[230, we equate N, and
N, with the exponential of the corresponding 90% bounds of the N(ug,,0%,) prior
distribution. Then

N, = exp(ug, + 1.6404,)
N, = exp(ug, — 1.6403,),
which leads to
pig, = (log Ny, +log Ny)/2
0, = (log N, — log N;)/(2 x 1.64).

Thus, the prior range of 2000-5000 on N corresponds to g, = (log 5000-+log 2000)/2 = |
8.06 and o4, = (log 5000 — log 2000)/(2 x 1.64) = 0.28.

2:0

5.4.2 < Case of Independence: oy

In this short section we will demonstrate that the Bayesian random effects model

performs as expected for the model of independence. That is, we show that the mar-
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ginal posterior distribution for Fy = log N is centered on log Nuw g, the log-maximum
likelihood estimate of N obtained using the frequentist formulation of the marginal
model, in which the components of the ~ are treated as fixed effects (see Chapter 3).
In so doing, we confirm that the Bayesian modelling approach presented in the cur-
rent chapter performs as it should in a known setting, thus providing evidence that
the modelling approach is reasonable. '

It is known by design that the random effects, «y, measure departures from inde-
pendence. Thus, under independence, the components of v must be equal to their
assumed means, i.e. equal to 0. Such a case of full independence corresponds to a

random effects variance, o2

= of 0. Consequently, simulation from the full posterior

distribution (4.13) via MCMC methods is made easier. Since the random effects, ~,
are known exactly, it is not necessary to update them in the MCMC scheme described
in Section 5.3. The only updating in the MCMC scheme is of N and 8* with a?, =0

and all components of « equal to zero.

Figure 5.3: Posterior of §y for N(8.06,0.28) prior on 3, under model of independencé.
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Figure 5.3 presents the marginal posterior distribution of Gy. Note that the vertical
axis is not specified since it is not important for our purposes. We use this plot
to serve the purpose of the current section: to confirm that the Bayesian model for
independence performs aé it should. In Chapter 2, we demonstrated that the marginal
log-linear model for independence (i.e. with all components of 4 fixed at zero in
the fixed effects model of Chapter 3) is equivalent to the joint log-linear mode! for
independence. The (unrounded) point estimate for N obtained from the frequentist
joint log-linear model for independence! is given by N = 2250.601, with corresponding
value fp = log N = log(2250.601) = 7.719. The vertical line of Figure 5.3 is at this
value of fy = 7.719. We observe that the symmetric-looking marginal posterior
distribution of f is close to perfectly centered on the value of 7.719, thus confirming
that the Bayesian marginal model for independence performs as it should.

We note that all the important features of the model and MCMC chain are present
in the analysis using the rﬂodel of full dependence presented in the next section. Thus
we include no further details of the analysis using the model of independence.

2

5.4.3 Case of dependence: o> > 0; a specific form of the

reduced model

In this section we consider a model of dependence for which 0',27 is not fixed at zero.
The specific model, which henceforth will be referred to as the reduced model versus
the full model to be considered in the following section, is that which contains only
two CIDs treated as random effects, namely vpp and ~vop. All other CIDs are fixed
at zero, equivalently they are not included in the model, hence the term ‘reduced’
model.

The 2 pairwise CIDs given by vgp and y¢p were selected according to preliminary

1Obtained using the inbuilt glm function in the R Programming Language (2004), with Poisson
family and log link.
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analyses observed via both calculation of the 6 Petersen estimates as given in Table 3.2
and via the full Bayesian analysis to be presénted below (in particular as evinced by
Figure 5.12 in which we observe posterior distributions of vgp and yop furthest
removed from 0). Such analyses suggest that most of the dependence exhibited in the
~ diabetes data set is explained in the two marginal pairs given by {B, D} and {C, D}.
The purpose of the current section is to demonstfate that it is possible to obtain
identifiable parameter estimates from a model of dependence more complex than the
simplest model, that of independence. We note that the goal of the current chapter
is not to perform model selection and obtain the best.model according to some model
selection criterion, rather to demonstrate that a bayesian treatment of an identifiable
model provides sensible estimates.

We note that the model containing only ygp and vy¢p is not the model of condi-
tional independence of B and C given D, since by Theorem 2.9 such a model would
require YBCeD = —7BC- Thus, the model considered in the current section is a non-
hierarchical model. The model considered here is identifiable (in terms of model

parameters) unlike the full model presented in the next section.

Features of analysis for a single prior specification -

We first undertake the full Bayesian analysis for a single hierarchical prior structure.
The specific prior structure on the parameters of interest, Gy and aﬁ,-is given by

‘Table 5.4. Hyperprior values of p5, = 8.06 and o, = 0.28 correspond to a prior 90%

2
Parameter Bo o5

Hyperprior parameter | ug, 0[2,0 vy 82

Value | 8.06 028 | 5 0.5

Table 5.4: Hyperprior parameters of §y and a,% for Bayesian analysis
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range on N from 2000 to 5000 (as described above in Section 5.4.1). Figure 5.8 shows
the form of the scaled-inverse x? prior on 03/. We will discuss further details of this
prior below when we examine a range of prior distributions. For the moment, we
select a single prior distribution for (73 that is loosely informative and enables mass to
be placed near 0 (i.e. near to independence) since, a priori, we do not wish to place
great mass away from the case of independence since we prefer to be noninformative
in our selection of prior distribution. One such prior is defined by v = 5 and s2=105
(see Figure 5.4 for the spread of this distribution) and is the one selected for the
present analysis (see Table 5.4).

Inference on N, By and a?y

Figure 5.4 shows the marginal posterior distributions of each of ; and 0,27. The
posteriors represent the effect of updating (via the likelihood, given by (4.4)) the
prior distributions of each of Gy and a?y using the observed capture-recapture data of
the incomplete contingency table given by Table 5.1. The upper panel of Figure 5.4
shows that the posterior of §y is bounded below by logn.s = log2069 = 7.63 as
per (4.8). The posterior distributions of Gy and 0,3 are shifted slightly to the left.
and right, respecitvely with great reduction in variability in the case of Gy, with an
increase in variability in the case of 03. As expected by conjugacy, the posterior of
02 is a scaled inverse-x® distribution.

" Table 5.5 provides posterior summaries of Gy and 03, as well as the corresponding
posterior summaries of N as obtained from N = exp(fp) and of o.,. The upper and
lower bounds of the symmetric 90% and 95% credible intervals are provided, together
with the minimum and maximum values in order to examine the range of posterior
values of each parameter. It should be noted that, although the quantiles of both
N and o, are obtained by direct transformation of those-on 3 and o2, ?espectively,

the posterior mean of N and ¢, cannot be obtained by direct transformation of the
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Quantile

- Parameter | 0% 25% 5% 50% 95% 97.5% 100% | Mean
Bo'| 7.695 7.713 7.716 7.729 7.743 7.746 7.768 | 7.729
N |'2197 2236 2243 2273 2305 2312 2363 | 2273
oy, | 0391 0.658 0.723 1.389 4.168 5.543 149.61 | 1.824

02 (0153 0.433 0523 1.929 17.372 30.719 22384 | 6.846

Table 5.5: Posterior summaries for 3y, N and o, for Bayesian analysis

corresponding posterior means of Gy and 031, respectively, since it is not possible to
reverse the order of a nonlinear function (in this case the exponential operator and
square root operator) and the expectation operator. Thus, the posterior expectations
of N and o, were obtained by taking the expectation of the suitably transformed
values of each of the 100,000 generated points in the simulated chain.

In working with a log-linear model, the variance of exponentiated parameters op-
erates multiplicatively on those exponentiated paramefers. For example, the random
effects variance 03 represents the variability of the components of 4, which themselves
measure departures of the log-marginal means from independence. Thus, o, oper-
ates multiplicatively via exp(o,) on the corresponding marginal means. Therefore,
a value of 0,3 = 1 for the random effects corresponds to a multiplicative factor of

exp(o,) = 2.71 on the marginal means.

Remark 5.5 In Remark 4.4, we stated that summary measures of the natural pa-
rameters in the hierarchical prior specification were preferable to summary measures
of their transformation, since the implied priors on the latter may be sensitive to the
hyper-parameters of the original parameters. For instance, the parameter Gy = log N
is used in the hierarchical prior structure rather than N. By the reasoning of Re-

mark 4.4, we prefer to examine summary measures of 3y rather than N. Nonetheless,
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since the primary goal of capture-recapture methodology is to perform inference on

N, we include the appropriafe summaries for N in Table 5.7.

Further details of inference on N

The posterior mean and median of N coincide at a value of 2273 (see Table 5.5) be-
cause of the tight, symmetric naturé of the posterior distribution. The 95% credible
interval for NV is given by (2236, 2312). The point estimate and 95% asymptotic con-
fidence interval of the best (in terms of AIC) frequentist marginal log-linear model
(MLLM) of Section 3.5.2 are given by Nyp = 2345 and (2295, 2396), respectively.
Thus, we observe similarity in terms of location and width of confidence bounds be-
tween the results from the Bayesian analysis of the specific reduced model considered
here in this section and the best-performing frequentist marginal log-linear model.
We note however that Wald asymptotic confidence intervals were used in Chapter 3
(as per the methods of Appendix F.2), which are likely to be unreasonably tight.

Inference on B*

Figure 5.5 shows the nearly symmetric posterior distributions of the components of
B* which correspond to the logarithms of the single-source marginal means, m4, mg,
me and mp. In each case the solid vertical line corresponds to the log-observed
marginal counts, given by logns = logl754 = 7.46, logng = log452 = 6.11,
logng = log1135 = 7.03 and lognp = log173 = 5.15. We observe that each of
the four postérior distributions is centered on the value that we seek to fit. This is in
line with results observed for frequentist joint log-linear models, as in Chapter 3 where
we observed that the MLEs for these four quantities were exactly equal to the ob-
served quantities (see discussion in Section 3.5.5). Note that the same noninformative
prior used for each component of 8* cannot be seen on the four plots of Figure 5.5,
since the distribution is so vague that the prior density values are too small to be seen
on the range of the posterior of each component of 3*. The patterns observed in each

of the four panels of Figure 5.5 provide further evidence that the Bayesian model per-
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Figure 5.5: Posterior of B* for the reduced model with N(8.06,0.28) prior on S, and
scaled-inverse x*(5,0.5) prior on afy. The vertical lines correspond to the log-observed

marginal counts.

forms as desired since it is to be expected that the log-single source marginal means
are estimated close to the corresponding log-observed counts. Heuristically, almost
all the information gained concerning these parameters originates from the observed

data.

Inference on the CID random effects -y

Figure 5.6 shows the posterior distributions of the two non-zero CIDs of the reduced

model, denoted by 4. Recall that the postulated distribution of each of the two
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2
5

on [ and scaled-inverse x%(5,0.5) prior on o
components of v is given by 'yilo?/ ~iia N (0, U?Y) in the hierarchical prior structure.
In both cases the distributions are close to symmetric, and are located above and
away from zero thus demonstrating that the two mérginal pairs given by {B, D} and
{C, D} do explain some of the dependence present in the diabetes data set.

Model fit evaluated by fit of p to observed data Nincomp

Figure 5.7 demonstrates the fit of the model. The 15 panels show the posterior
distributions of the 15 cell means of p. The vertical lines correspond to the observed
cell count in each case. For clarity, we choose to dmit the vertical axis corresponding
to the density. The purpose of the plot is to assess the model fit. We see that in
some cases the center of the posterior distribution of each cell mean is very close
to the observed cell count (in the case of pjgcp and papep), whilst in others (e.g.
Lapch) the observed data are not fitted perfectly. Thus the model fit is not perfect

but reasonable.
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Sensitivity of analysis to a range of prior specifications

We have seen that the reduced marginal log-linear model with the two CIDs ygp and
veop treated as random effecfs provides reasonable results with inference performed
within the Bayesian framework. Thus, we wish to determine the sensitivity of pos-
terior inference to the prior distributions placed on the main parameters of interest,
namely on Gy and 0,27. Next we provide results from a series of analyses with different
prior structures.

We will consider a range of different priors on each of Gy and of 03. More specif-
ically, we will proceed according to the following two steps. First we will work with
~ the same N (8.06,0.28) prior on f; of the previous section and examine the effect on
the posterior of both Gy and o2 for a range of priors on ¢2. Second, we will do the
reverse and work with the same scaled-inverse x2(5,0.5) prior on 03 as in the previous
section and eiamine the effect on the posterior of both Gy and o?/ for a range of priors

on ,60.

Remark 5.6 Before proceeding with the first step of the sensitivity analysis of the
current section, we will present the reasoning used to choose which priors we place on
03. Figure 5.8 shows density plots of three different priors with degrees of freedom
2,5 and 10, each at eight different levels of the scale parameter (0.5,1,1.5,3,4,5,10,15).
For a fixed level vy of the prior degrees of freedom, it is clear that the distribution
becomes inéreasingly skewed to the right as the scale parameter s2 increases. This
can be seen by looking at any one of the three panels in Figure 5.8. For fixed s, the
distribution becomes‘ more concentrated towards 0 as vy increases, as can be seen by
looking at one of the colored lines down across each of the three panels of Figure 5.8.
Since a change in prior degrees of freedom 14 has only a small effect in terms of change
in spread at fixed prior scale parameter s2, we choose to work with a fixed level of v

to investigate the effect of a change in prior on the full joint posterior distribution.
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Figure 5.8: Prior distributions for 0,27 at three different prior degrees of freedom: 2,5

and 10, and for each at scale parameter: 0.5,1,1.5,3,4,5,10,15

We select vy = 5 since it is the minimum value of vy for which the variance of the
distribution is defined.

Since preliminary analyses at fixed levels of vy demonstrated that there was mini-
mal sensitivity to the prior distributions with changes in s, we also selected a single
prior with vy = 2 and a single prior with vy = 10. The corresponding scale para-
meter s was selected so that the mode of the distribution was equal to that for the

inverse—x2(5, 0.5), i.e. with a mode of 0.357 (see page 151).
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Our first step is to explore sensitivity of the posterior distributions to a range
of priors on 0‘3 for the N (8.06,0.28) prior on fBy. As just described we fix the prior
degrees of freedom vy at 5 and let the scale parameter s2 adopt the four different
values of 0.1, 0.5, 1 and 1.5, since they place a reasonable amount of mass close to
zero and we wish to be noninformative about departures from independence a priori.

We also take a single case each with 1y = 2 and vy = 10.

Sensitivity of Gy to prior on o2

There is no sensitivity in the posterior of fy to the prior on 0,2y (plots not provided

since in all cases the posterior of G, is that given in Figure 5.4).

Sensitivity of o2 to prior on o2

Figure 5.9 shows that there is some sensitivity of the posterior of 0?, to the prior on
0'3, at a fixed prior on (3. For 1y = 5, we observe that as s3 increases, the posterior of
03 shifts to the right (see the first four panels of Figure 5.9). The final two panels of

Figure 5.9 further demonstrate sensitivity to the prior value of vy and s2.

Now we move to the second step of the sensitivity analysis as described in the
introduction to the current section. We wish to explore the sensitivity of the posteri-
ors of both ,30' and 07 to chanées in the prior on f, for fixed prior on ¢2. We choose
three priors on B given by N(8.06,0.28) (as used for the full analysis in the previous
section), N(8.06,0.702) and N(7.71,0.49), which correspond to 90% prior ranges of
2000-5000, 1000-10,000 and 1000-5000, respectively. .

Sensitivity of Gy to prior on Fy

As with the case of sensitivity to the prior on 0.2, above, there is no sensitivity in the

posterior of By to the prior on B. Again plots are not provided since in all cases the
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Figure 5.9: Posterior histograms of 03 for various priors on 0,27 and fixed prior on fo.

posterior of §p is that given in Figure 5.4.

Sensitivity of o,zy to prior on Gy

There is no sensitivity in the posterior on a,zy to the prior on fp (again plots not in-

cluded) unlike the observed sensitivity to the prior on 0,27 as observed in Figure 5.9.
In summary, the discussion above and Figure 5.9 demonstrate that the greatest
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posterior sensitivity is in a?Y with a change in its own prior. The posterior of Gy is
sensitive to neither changes in its own pfior nor changes in the prior on ai, just as
there is no sensitivity in the posterior of a?{ to changes in the prior on 3. Thus, using
the range of prior distributions selected for this sensitivity analysis, changes in the

-prior on Uf/ have a greater effect than changes in the prior on Sy.

5.4.4 Case of dependence: o2 > 0; full model

In this section we consider the more flexible model of dependence, for which 0,21 is
not fixed at zero and none of the CIDs (treated as random effects) are fixed at zero.
In such a case, the full analysis consists in mixing over the distribution of 0?/ rather
than working at a single slice of that distribution, namely at 03 = 0, as was the case
with the model of independence in Section 5.4.2. Consequently, the components of
the random effects vector <y are to be estimated rather than being set to zero and
more specifically, all elements are to be estimated as opposed to only vgp and vyep
as was the case in the previous section.

The manner in which. we proceed in this section parallels that for the reduced
model in the previous section. We first present results for a single prior structure.
We then examine the sensitivity of the joint posterior of all model parameters to the
prior specification used by examining a range of prior specifications. More specifically,
we adjust the prior parameters and hyperparameters relating to the main parameters
of interest, namély Bo and or,%, of the hierarchical prior structure given by (4.9).

Before presenting the results,vwe first address the important issue of nonidentifia-
bility of model parameters for the full Bayesian model in order that all results will be
evaluafed in this light. The high posterior correlations observed in Table 5.3, despite
thinning by a factor of 200, suggest that there is a problem with mixing and that it
is likely that the posterior parameter space has not been explored completely. Such

problems may arise from nonidentifiability of model parameters. Before presenting
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the analysis of the full model we will describe the nature of such nonidentifiability by
presenting the case of the full three-source model given first by Example 2.11, with

the system of equations repeated here for completeness.

logma = B4

logmp = Op

logme = fc
logmap = —fo+ Ba+ BB + 748
logmac = —fo + Ba + Bc + vac
logmpec = —fo + BB + Bc + VBC

logmapc = =200 + Ba+ B + Bc +vaB + Yac + ¥Bc + YaBc- (5.2)

Suppose we fix all 7 marginal means (and by design the corresponding S4, s and
Bc terms) at known values. We will demonstrate that there are a countable number
of solutions to the system of equations when g is fixed at a known value.

First, the pairwise CIDs are obtained from (5.2) and are given by

YaB = logmag + By — (Ba + Bs)
Yac = logmac + fo — (Ba + Bc)
vBc = logmpe + o — (Bs + Bc), (5.3)

which, in turn, yields the following expression for y4g¢

YaBc = logmapc + 260 — (Ba + B + Bc) — (YaB + Yac + ¥BC)

= logmapc — (logmap +logmac + log mpc) — Bo + (Ba + B + Bo).  (5.4)

Now suppose that, for the same 7 fixed marginal means, 3y is shifted by a constant

term c¢. Then we have an alternative system of solutions for v4p,vac,vBc and vapc
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given by

YaB = logmap + (6o + ¢) — (Ba + Bg)
Yac = logmac + (Bo + ¢) — (Ba + Bc)

vBc = logmpe + (o + ¢) — (Bs + Bc), (5.5)
which, in turn, yields the following expression for vag¢

vapc = logmapc — (logmap + log mac + logmpe)+
2(Bo + c) — (Ba+ B+ Bc) — (vaB + vac + VBC)

= logmapc — (logmap + log mac + logmpe) — (Bo + ¢) + (Ba + B + Be).
(5.6)

Thus, there are a countable number of solutions for Bo, YAB, Yac, YBe and Yapc for
fixed marginal means since we can add a constant to 3, and obtain the same solution
to the system of equations given by (5.2) by adding the same constant to each of the
three CID terms given by vap,vac and vpc and subtracting that term from yapc.
(We note that there are a countable rather than uncountable number since N is an
integer.) Therefore, nonidentifiability arises (as it does for the full model for four
sources but not stated explicitly here for brevity’s sake).

There are problems as evinced by the high posterior correlations of Table 5.3
and Figure 5.2. Despite such problems we include the analysis via the full model to
demonstrate its properties and highlight the challenges of working with such a model.
It should be noted that the interpretation of the results must be considered dubious
in the light of the issue of nonidentifiability. Better model fit is achieved than for the
reduced model precisely because there are so many model parameters which are able
to provide a close-to-perfect fit. We further hypothesize that reparameterization of
the model could alleviate some of the problems. Such work will be undertaken in the

future.
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Features of analysis for a single prior specification

As with the reduced model in the previous section, we first undertake the full Bayesian
analysis for a single hierarchical prior structure. The specific prior structure on the
parameters of interest, Gy and a?,, is the same as for the reduced model and is given

here again by Table 5.6.

2

Parameter Bo oy

Hyperprior parameter | pug, 0[230 vo  Sg

Value | 8.06 028 | 5 0.5

Table 5.6: Hyperprior parameters of 8y and a?, for full Bayesian analysis

Inference on N, §; and o2

Figure 5.10 shows the marginal posterior distribﬁtions of each of Gy and 0‘:‘;. The
posteriors represent the effect of updating (via the likelihood, given by (4.4)) the
prior distributions of each of 8, and 03 using the observed capture-recapture data of
the incdmplete contingency table given by Table 5.1. The upper panel of Figure 5.10
shows that the posterior of Gy is bounded below by lognes = log2069 = 7.63 as
per (4.8).2 The posterior distributions of §y and o2 are shifted slightly to the left in
both cases with a reduction in variability. As expected by conjugacy, the posterior of
02 is a scaled inverse-x? distribution.

Table 5.7 provides posterior summaries of Gy and 0,27, as well as the corresponding
posterior summaries of N as obtained from N = exp(f;) and of ¢,,. The upper and

lower bounds of the symmetric 90% and 95% credible intervals are provided, together

2The plot was produced using the inbuilt density function of The R Programming Language
(2004): Thus, the appearance of the posterior of By below its lower bound of log nps is an artefact
of the method used.
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Quantile
Parameter | 0% 25% 5% 50% 95% 97.5% 100% | Mean
Bo | 7635 7.663 7.685 7.864 8.114 8.153 8.448 | 7.877
N | 2069 2128 2175 2602 3341 3475 4668 | 2658
oy | 0.302 | 0.427 0.452 0.636 0.971 1.067 1.998 | 0.664
02 ]0.091 0.183 0.205 0.404 0.942 1.138 3.994 | 0.468

Table 5.7: Posterior summaries for 8y, N and o, for Bayesian analysis

with the minimum and maximum values in order to examine the range of posterior
values of each parameter.

Further details of inference on N

The posterior mean and median of N are given by 2658 and 2602, respectively. With
& posterior mean larger than the posterior median, the posterior distribution is right-
skewed as confirmed by the left panel of Figure 5.10. Such skewness is in part due
to the normal prior on fy, which in turn implies a right-skewed log-normal prior on
N. The 95% credible interval for N (see Table 5.7) is given by (2128, 3475) for a
posterior mean and median of 2658 and 2602, respectively. The point estimate and
95% asymptotic confidence interval of the best (in terms of AIC) frequentist marginal
log-linear model (MLLM) of Section 3.5.2 are given by Nyr = 2345 and (2295, 2396),
respectively. Thus, we observe a nontrivial difference, in terms of both location and
the width of confidence bounds, between NyLe from the best frequentist MLLM and
the povsterior mean and median of the full Bayesian analysis, as we observe such a
difference between the results of the present full Bayesian and that from the reduced
model in the previdus section. We note however that Wald asymptotic confidence
intervals were used in Chapter 3 (as per the methods of Appendix F.2), which are

likely to be unreasonably tight.

186



It should be noted that the corresponding point estimates and confidence inter-
vals from the best joint log-linear model (JLLM) and hierarchical JLLM are closer
in location to the center of the posterior distribution of N obtained from the present
Bayesian analysis. The point estimates and 95% confidence intervals are given by
NMLE,JLLM = 3092 and (2573,3611) for the best-performing JLLM, which outper-
forms the best HJLLM with N MreHILLM = 2771 and 95% confidence interval given
by (2491,3050). The greater width of the 95% credible interval over the 95% confi-
dence intérvals of the best frequentist models is in part due to the fact that model
selection has not been performed in the Bayesian analysis of the current chapter.
Rather we have chosen to work with the fully speciﬁed model with none of the CIDs
fixed at zero, unlike the frequentists models of Chapter 3, in which model selection
was performed amongst all possible 2047 MLLMs.

Inference on B*

Figure 5.11 shows the nearly symmetric posterior distributions of the components of
B* which correspond to the logarithms of the single-source marginal means, my4, mp,
mc and mp (as did Figure 5.5 for the reduced model). In each case the solid vertical
line corresponds to the log-observed marginal counts, given by logn, = log1754 =
7.46, logng = log452 = 6.11, logng = log 1135 = 7.03 and lognp = log173 = 5.15.
We observe that each of the four posterior distributions is centered on the value that
we seek to fit. This is in line with the results for the reduced model (see Figure 5.5)
and with the results observed for frequentist joint log-linear models, as in Chapter 3
where we observed that the MLEs for these four quantities were exactly equal to the
observed quantities (see discussion in Section 3.5.5). As with Figure 5.5 we note that
~ the same noninformative prior used for each component of 3* cannot be seen on the
four plots of Figure 5.11, since the distribution is so vague that the prior density
values are too small to be seen on the range of the posterior of each component of

B3*. The patterns observed in each of the four panels of Figure 5.11 provide further
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Figure 5.11: Posterior of 3* for N(8.06,0.28) prior on B, and scaled-inverse x(5, 0.5)

prior‘ on 03,. The vertical lines correspond to the log-observed marginal counts.

evidence that the Bayesian model performs as desired since it is to be expected th_at
the log-single source marginal means are estimated close to the corresponding log-
observed counts. Heuristically, almost all the information gained concerning these

parameters originates from the observed data.

Inference on the CID random effects ~

Figure 5.12 shows the posterior ‘distributions of all 11 CIDs, denoted by ~. Re-
call that the postulated distribution of each of the components of ~ is given by

fyilcfg ~ia N(0, 031) in the hierarchical prior structure. The six panels of the left
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Figure 5.12: Posterior of CIDs for N(8.06,0.28) prior on f and scaled-inverse
x*(5,0.5) prior on o2,

side of Figure 5.12 show the posteriors for each of the six pairwise CIDs, denoted by
YAB, YAC, YAD, YBC,YBD, Yop- In all cases, the distributions are close to symmetric,
with some slight right-skewness observed in the slightly longer right tails of those

distributions. We observe that the posterior distributions for vygp and y¢p lie the
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furthest from zero. The four upper panels on the right side of Figure 5.12 show the
posteriors for each of the 4 three-way CIDs denoted by vapc, YaBD, YACD, YBCD, With
the lowest i)anel showing that for the single four-way CID vapcop. In this case, we
observe that the posteriors of the three-way CIDs are slightly left-skewed and quite
close to 0 in all cases, with the posterior of the sole four-way CID approximately
symmetric. Thus, there tends to be slight right-skewness in the pairwise CIDs, with
slight left-skewness in the three-way CIDs.

The location of the posteriors of the CIDs are loosely in line with the results
of Chapter 3. The frequentist marginal log-linear model results of Section 3.5.2
show -that the model selected by the AIC contains each of the 7 CID terms given
DY YAC, VB YBD» 10D YABC, YBCD YABCD Suggesting that there is a range of depen-
dence present in the diabetes data of Table 5.1. Such a feature is confirmed by the
posteriors of the components of v being centered around values away from zero and in
some cases (i.e. ypp and ycp) quité considerably removed from zero. The Bayésian
analysis of this section serves to provide an indication as to which margins explain
most of the dependence. Figure 5.12 shows that the {B, D} and {C, D} margins are
believed to explain much of the dependence thus providing support to the choice of
the reduced model used in the previous section.

Questioning which of the CIDs explain most dependence is equivalent to ques-
tioning which random effects are most different from zero. Such questioning relates
to the fundamental issue of random effects modelling: is the primary interest in the
variance parameter controlling the distribution of the random effects or in the random
effects themselves? In the capture-recapture setting it can be useful to understand
the dependence structure itself, as _summarized by the CIDs (i.e. the components
of the random effects vector <), but the primary goal is to obtain reliable estimates
of N. Modelling the dependence structure can considered as a means to the end

of estimation of N. As a consequence, 0,27 arguably holds greater interest than the
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CIDs themselves when these are treated as random effects. Nonetheless, we reiterate

that there are problems of nonidentifiability with the full Bayesian model which must

addressed in the future.
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Figure 5.13: Posteriors of 15 cell means for N(8.06, 0.28) prior on Gy and scaled-inverse

x*(5,0.5) prior on o2,
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Model fit evaluated by fit of p to observed data nincomp

Figure 5.13 demonstrates the fit of the model. The 15 panels show the posterior
distributions of the 15 cell means of g. The vertical lines correspond to the observed
cell count in each case. For clarity, we choose to omit the vertical axis corresponding
to the density. The purpose of the plot is to demonstrate that the center of the
posterior distribution of each cell mean is very close to the observed cell count thus
demonstrating that the model fits well. Such a result is to be expected giVen the
nature of the nonidentifiability of model parameters. We so many model parameters
it is possible for the model to fit almost perfectly to the observed data unlike the fit

of the reduced model observed in Figure 5.7.

Sensitivity of analysis to a range of prior specifications

We have seen that the marginal log-linear niodel with all CIDs treated as random
effects and inference performed within the Bayesian framework is able to fit the data
close to perfectly (see Figure 5.13). In light of the challenges of model nonidentifia-
bility, we will present some results to highlight the sensitivity of posterior inference
to the prior distributions placed on the main parameters of interest, namely on [y
and a?y, as was done for the reduced model in the previous section.

We will consider a range of different priors on each of Fy and of a?y. More specifi-
cally, as for the reduced model, we will proceed according to the following two steps.

First we will work with the same N(8.06,0.28) prior on 3y of the previous section

and examine the effect on the posterior of both 8y and o2 for a range of priors on o2.
Second, we will do the reverse and work with the same scaled-inverse x*(5,0.5) prior
on'ag as in the previous section and examine the effect on the posterior of both Gy
and o2 for a range of priors on (.

Our first step is to explore sensitivity of the posterior distributions to a range

- of priors on o2 for the N(8.06,0.28) prior on B;. As just described we fix the prior
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degrees of freedom vy at 5 and let the scale parameter _sg adopt the four different
values of 0.1, 0.5, 1 and 1.5, since they place a reasonable amount of mass close to

zero and we wish to be noninformative about departures from independence a priori.

B prior
A --- 8.06,0.28
Bo posterior
-~ Prior on 031 Vo =5, s§=0.1
] — Prior on g:: v =5, 2=0.5
: 2. g 2o
log(nobs) — Prioron cz. v =5, sg =1
Z = log(2069)=7.63 — Prioron oy vo =5, 5,=1.5
]
o o
PR -

Bo

Figure 5.14: Posterior of Gy for various priors on 03 and fixed prior on fy.

Sensitivity of o to prior on o2

Figure 5.14 shows the four posterior distributions on By corresponding to the four

different priors on crf, for the same N (8.06,0.28) prior on fy. In all four cases the pos-
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terior distributions are less variable than the prior and are shifted to the left. All four
distributions are bounded below by log nes = 7.63. % In all four cases the posterior

distributions are close in terms of location. The observed suggestions of bimodality
| of the posterior of By, in particular for a prior on 0,27 with 19 = 1 and 1y = 1.5, is a
-result of running two chains and the mixing of the chains. Nonetheless, the results of

Figure 5.14 serve to demonstrate that there is some sensitivity in the posterior of Gy

2

to the prior on o7,

Sensitivity of 0,2{ to prior on 03

Figure 5.15 shows three of the posterior distributions on a?, corresponding to the four
different priors on 0,27 for the same N (8.06,0.28) prior on fy. Only three of the four
densities are shown for clarity. The pattern for the fourth (for the case with vy = 1.5)
was consistent with the other three cases. In each case we observe that the posterior
distribution is shifted from the prior. We notice that the direction of this shift differs:
in the case of the prior with vy = 0.1, the posterior is shifted to the right relative
to the prior, whereas for vy = 0.5 and vy = 1, it is shifted in the opposite direction.
The plots of Figure 5.14 demonstrate that there is sensitivity of the posterior of a?/

to changes in the prior on o2.

Now we move to the second step of the sensitivity analysis as described in the
introduction to the current section. We wish to explofe the sensitivity of the posteri-
ors of both £y and ag to changes in the prior on Gy for fixed prior on 03. We choose
three priors on fy given by N(8.06, 0.28) (as used for the full analysis in the previous
section), N(8.06,0.702) and N(7.71,0.49), which correspond to 90% prior ranges of

3Note that, as with the upper panel of Figure 5.10, the inbuilt density function of the R Pro-
gramming Language is used to obtain the plot. Thus the observed part of the posterior densities of

Bo below 7.63 is an artefact of the inbuilt function.
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. Figure 5.15: Posterior of a,% for various priors on afy and fixed prior on [q.

2000-5000, 1000-10,000 and 1000-5000, respectively.

Sensitivity of By to prior on Sy
Figure 5.16 shows the three posterior distributions of 3y corresponding to the three

different priors on Gy for the same scaled-inverse x?(5,0.5) prior on a?/. In all three
cases the posterior distributions are less variable than the three priors and tend to be

shifted to the left of their corresponding prior. These patterns are similar to those
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Figure 5.16: Posterior of 8, for various priors on Gy and fixed prior on oZ.

observed in Figure 5.14 above. As in that figure, all three distributions are bounded
below by 10g Neps = 7.63. 4 The four posterior distributions are close to each other in
terms of location. There is some observed bimodality of the posterior of Fy. Despite

the imperfect mixing, the results of Figure 5.16 serve to demonstrate that there is

4Note that again, as with the upper panel of Figures 5.10 and 5.14, the inbuilt ‘density’ function
of the R Programming Language is used to obtain the plot. Thus the observed part of the posterior

densities of By below 7.63 is an artefact of the inbuilt function.
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some sensitivity in the posterior of Gy to its own prior distribution.
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Figure 5.17: Posterior of Uf; for various priors on fy and fixed prior on 0,27.

Sensitivity of 0. to prior on Sy

Figure 5.17 shows the posterior distributions of af/ corresponding to the three differ-
ent priors on (3 for the same scaled-inverse x2(5,0.5) prior on a?,. In each case we
observe that the posterior distribution is barely shifted from the prior. Therefore, we

observe that the posterior of 0,27 is much less sensitive to a change in prior on fy than
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it is to a change in its own prior.

In summary, Figures 5.14-5.17 demonstrate that the greatest posterior sensitivity
is in or,zy with a change in its own prior. The posterior of (3 is somewhat sensitive to
changes in both its own prior and the prior on 03, whereas there is minimal sensitivity
of the posterior of 03 to changes in the prior on By. Thus, using the range of prior
distributions selected for this sensitivity analysis, changes in the prior on 03 have a
greater effect than changes in the prior on ). Again we evaluate such results in light
of the challenges of parameter nonidentifiability. Unlike the somewhat restrictive
reduced model for which there was minimal sensitivity to the prior specification,
we see greater sensitivity here for the full model. We believe that such a highly
determined model is able to fit the data close to perfectly, thus there is sensitivity
to the prior specification since the parameters are able to be adjusted to obtain the

close-to-perfect fit.

5.5 Summary and discussion

In this chapter we have performed a Bayesian analysis of the complete marginal log-
linear model using two different models: the first with two CIDs in the model and '
the second with all CIDs included in the model. In-both cases the CIDS were treated
as random effects. Unlike the frequentist approach of Chapter 3, in which the CIDs
were treated as fixed effects, we have not performed model selection. Moreover, in
treating the CIDs as random rather than fixed effects we achieved parameter reduction
although there are issues related to the nonidentifiability of model parameters of the
full model which must be addressed. '

By performing inference via the Bayesian paradigm we were able to incorporate

prior information to neatly accommodate the random effects. Furthermore, we have
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been able to explofe more explicitly the relationship between N and the dependence
structure measured by the CIDs =y, whose distributions are controlled by 0,3. Overall,
our approach is a seemingly promising methodology, but further thought must be

given to the nonidentifiability.
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Chapter 6

Conclusion

6.1 Overview

In this dissertation we have presented a new class of marginal log-linear models
(MLLM) for population size estimation using capture-recapture data, with an em-
phasis on epidemiological applications for closed populations. We presented a new
framework in which to quantify source dependence with a new measure of depen-
dence, the Coefficient of Incremental Dependence (CID), which in turn led to new
modelling approaches in which dependence is modelled via the inclusion of source
dependence measure terms. Two alternative approaches to inference were presented:
the likelihood approach in which the measures were treated as fixed effects and a
Bayesian approach in which they were treated as random.. Real and simulated data
analyses were performed in both cases. Through these analyses we demonstrated that
we obtain plausible results using our class of marginal models, which were compared
and contrasted to those obtained using the standard modelling approach of hierar-
chical joint log-linear modelling. Further, we demonstrated the manner in which
MLLMs extend the universe of models for capture-fécapture, thus enabling us to ob-

tain reasonable population size estimates for dependence structures not necessarily

200



well-modelled by existing methods. In short, the proposed marginal modelling ap-
proach performs well and provides new insight into the fundamental nature of the use

of epidemiological capture-recapture data.

6.2 Contributions

In this section we will guide the reader chapter by chapter through the original ma-
terial introduced in this dissertation in order to highlight the specific contributions

of the work to the literature.

Chapter 2

The cornerstone of the work presented in this dissertation has been the new manner
in which we quantify and, indeed, conceptualize source dependence. To this end, we
introduced a new measure of dependence: the Coéﬁicient of Incremental Dependence
(CID)(see Definition 2.4), that we relate to the Coefficient of Source Dependence
(CSD) which was first proposed by Vandal et al. (2005), and subsequently developed
by Melocco (2002). In both instances, these measures exist for all possible combi-
nations of the K available sources, with the CIDs defined in terms of the CSDs.
We characterized the (non-trivial) inverse linear relationship between the CSDs and
CIDs, that is, with the CSDs expressed as a linear combination of all CIDs of equal
and lower order (Theorem 2.5). In such a way, we demonstrated the manner in which
the CIDs decompose source dependence. Further, §ve derived the properties relating
these measures to (1) fhe conditional independence structures modelled by hierarchi-
cal joint log-linear models (HJLLM) (Theorems 2.3 and 2.9), (2) simple dependence -
structures modelled by HJLLMs (Corollary 2.2) (3) the bounds resulting from the
nested form of the measures (of higher order marginal means nested within lower

order marginal means, see Proposition 2.1), and, (4) the Coefficient of Covariation of
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Chao and Tsay (1998) (Propositions 2.2 and 2.3 and Remark 2.10).

The form of the measures motivated the development of a new class of marginal
models, named the marginal log-linear models (MLLM), in which marginal means are
modelled rather than joint (or cell) means, as is the case with joint log-linear models.
_ Two pérameterizations were presented, the first in terms‘of the CIDs (Definition 2.7),
the second in terms of the CSDs (Proposition 2.8). Both provide their own useful
interpretations, with the CID parameterization preferred for reasons of modelling
flexibility and hence used for the data analyses of Chapters 3 and 5.

The universe of dependence structures that can be modelled is extended by the
use of our new marginal modelling approach. First it is shown that, for the simple de-
pendence structures of complete independence and mutual dependence, the marginal
modelling approach is equivalent to the joint log—liﬁear modelling approach. However,
even for the three-source case, there is no unconstrained marginal model equivalent
to the HJLLM for conditional independence (see Example 2.16). Consequently, our
new approach is more than a mere reparameterization of the standard hierarchial

joint log-linear modelling approach.

Chapter 3

We compared and contrasted the marginal log-linear modelling approach to the stan-
dard modelling approach of HJLLMs. We proposed the family of MLLMs formed
by setting all possible combinations of CIDs (CSDs) equal to zero. The likelihood
approach was used as the inferential framework to fit the CID parameterization of
the MLLM (with the CIDs treated as fixed effects). |

A known equivalence between the multinomial and Poisson likelihoods enabled
us to exploit the computational simplicity of the latter for the purposes of model
fitting. We developed (and coded in the R Programming Language, 2004) a Fisher

Scoring algorithm to obtain maximum likelihood estimates for MLLMs (see code in
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Appendix G). The procedure was shown to work satisfactorily on real and simulated
data sets.

As per the stated objecfives of Chapter 3, we showed, via the analyses of these
data sets, that our new MLLM (1) gives plausible results for real data and known
dependence structures of simulated data, and (2) can better accommodate nonhierar-
chical dependence than the standard modelling approach of HJLLMs. Additionally,
we demonstrated that the CIDs (CSDs) enable us to interpret the model parameters of
nonhierarchical joint log-linear models. As a consequence, such a feature enables us to
sensibly extend the universe of dependence structures able to be modelled using joint
log-linear models which were previously excluded for reasons of non—interbretability

of model parameters.

Chapter 4

We presented an alternative manner in which to parameterize the MLLM by working
with a mixed effects model formulation, in which the random effects are used to model
dependence (see Definition 4.1). Such a model formulation, which to our knowledge
is new in the field of capture-recapture methodology, is related to the work on the
generalized log-linear model with random effects of Coull and Agresti (2003), the
larger class of generalized linear mixed models and the limited literature on general
marginal modelling techniques.

We presented motivation for the adoption of the Bayesian inferential framework
to accommodate the random effects and the model constraints, like those enforced in
Chapter 3. A full Bayesian specification was presented for the general form of the
model, together with a description of the MCMC scheme to be adopted for parameter

estimation.
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Chapter 5

Adopting the general Bayesian mixed effects model form of Chaptef 4, we proposed
one specific model formulation in which the random effects were set equal to the
CIDs. Details of the MCMC simulation scheme for the specific form of the model
were described (and coded in the C++ language, see Appendix H) and a full Bayesian
data analysis of the real data set analyzed in Chapter 3 was presented. Such an
analysis further demonstrated features of the MLLM and, indeed of the fundamental
nature of capture-recapture data. In the first respect, we saw that the center of the
postérior distributions of the fixed effect terms were close to those of the frequentist
formulation of Chapter 3.

Minimal sensitivity of the posterior distributions of both N (via the 8y parameter)
and the réndom effects variance to the priors on each of these parameters was observed
for the reduced model, with more sensitivity for the full model, likely as a result of the
nonidentifiability of model parameters. In particular, we observed greater sensitivity
of each posterior to the prior on the random effects variance for the full model.
The methodology presented in this chapter is promising. We anticipate that future
work related to the challenges of nonidentifiability will present interesting results
and will further illuminate the nature of the marginal model, as well as clarifying
the appropriateness of the model parameterization for inference performed via the

Bayesian paradigm.

Summary

Estimating N when incomplete but overlapping data sources are available, is of rel-
evance to many areas of public health. However, there are a range of challenges
faced when analyzing capture-recapture data. Through the framework presented in
this dissertation, we have sought to advance the field by developing a framework

in which to conceptualize and quantify source dependence, whilst presenting a new
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marginal modelling approach to fully exploit what can be learnt from the incomplete

capture-recapture data.

6.3 Future work

We view the work presented in this dissertation as positioned in both the field of
capture-recapture methodology and the broader field of general categorical data
analysis. In bo_th cases, the primary extensions of our work relate to the use of
our measures of source dependence and the marginal modelling approach itself. For
the latter, one specific goal is to determine ways in which to incorporate the covariate
data often available for epidemiological capture-recapture studies into the modelling
approach. Such a extension offers the possibility of accounting for heterogeneity-
induced source dependence.

Future work we propose, in relation to the CSDs aﬁd CIDs, centers around their
relationships to other known measures of association for contingency t.ables, including
those for complete contingency tables, such as the odds ratio. We would seek to for-
malize the general K-source relationship between the CCV of Chao and Tsay (1998)
and the CIDs (CSDs) as demonstrated for the 2, 3 and 4-source case in Chapter 2.
We propose to further develop the expression of the CSD (and thus, the CID) in
terms of available covariate information aggregated over each margin, as explored in
Melocco (2002). Such a measure could be incorporated into an alternative marginal
model, with covariate information, which should reduce residual variability in the
marginal modelling approach. Moreover, the measures could be extended to continu- -
ous variables in addition to the bivariate ones measured here in the capture-recapture
setting.

Noting the demonstrated relationship between our CIDs (and CSDs) and the CCV,

we propose to explore how the CCV might form the basis of a marginal modelling
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approach at the level of the individual, rather than at the level of the source as with
our approach. We note further that Chang, LaPorte, Aaron, and Soﬁger (1999) use
a nonparametric approach to the estimation of N; a modelling approach based on the
CCV would be a new contribution to the literature.

Through the work of this dissertation, we conjecture that every unconstrained
joint log-linear model corresponds to a constrained marginal log-linear model and
vice versa. For the frequentist work, an algorithm to fully accommodate the model
constraints should be developed to construct a software package implemeﬁting the
frequentist methods presented in Chapter 3. In so doing we would hope to extend
and explore the modelling framework for complete contingency tables.

There are a range of issues related to the Bayesian formulations of Chapters 4
and 5. There were computational challenges posed by imperfect mixing, as demon-
strated by the high posterior correlations of the random effects and N for the full
model. Such difficulties can be overcome in part by obtaining long MCMC chains
thinned by a large factor. Alternatively, model reparameterization offers a means to
reduce such posterior correlations. We plan on exploiting the ideas of hierarchical
centered parameterizations of Gelfand, Sahu, and Carlin (1995) and Gelfand, Sahu,
and Carlin (1996), for normal linear mixed models and generalized linear models,
respectively, and the ideas‘ of Papaspﬂiopoulo‘s, Roberts, and Skéld (2003) related to
nonhierarchical centered parameterizations. ’

With our experience of the Bayesian fitting of our model, we anticipate that an
uncentered parameterization would be preferred, as we believe that the high posterior
correlation is driven by the nonidentifiability of N and the random effects variance.
Thus, we would need to tease apart the components of the model expressed directly
in terms of N. This offers a clue as to how to obtain a reasonable reparameterization.
Further extending the hyperprior structure is another alternative.

The Bayesian model fitting techniques and corresponding MCMC simulation scheme
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should be examined for applications to the broader field of generalized log-linear mod-
els, as presented in Coull and Agresti (2003). The authors presented a frequentist, not
a Bayesian, approach to model fitting, dealing with examples of sparse contingency
table data (not, we note, the capture-recapture setting).

We note that the model used in the data analysis of Chapter 5 served the purposes
of exploration and was via (a) the reduced model containing only two random effects
(CIDS), and, (b) the full model containing all random effects (CIDS). That is, in
the latter, none of them is set to zero, contrary to the family of models examined
in the frequentistvanalysis of Chapter 3. Further, we note that although there were
more parameters thgn data points with which to estimate them, by treating the CIDs
as random effects, parameter reduction occurs .naturally. In the future we hope to
explore how the Bayesian paradigm, via the inclusion of informative prior information
(rather than the vague priors used in the analyses of Chapter 5), enables us to gain
more from the available data but there remains work to be done in order to further
explore the issue of nonidentifiability. Some assessment of the number of effective
parameters in our model, along the lines of the discussion in Spiegelhalter, Best,
Carlin, and van der Linde (2002), could be useful.

In order to reduce the variability in our posterior estimates attributed to the

| presence of unnecessary CIDs, we propose to use reversible jump MCMC (Green,
1995) to move around the space of the family of models with some CIDs set to zero
in order obtain posterior model s_bummaries which are averaged over all models, with
greater weight given to preferred models.

A related issue, and one which we have begun to explore with preliminary analyses,
is that of non-identifiability of N' and the dependence structure present in the capture-
recapture data: namely that knowledge of the population size N together with the
observed data fully determines the dependence structure of the data. We propose to

undertake sensitivity analyses by running the MCMC scheme of Chapter 5 at fixed
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levels of the random effects variance af",, rather than mixing over the distribution of

2

5» 8s was the case with the Bayesian analysis of Chapter 5. Preliminary results

o
indicate that there is a strong relationship between N and 0,27, with N increasing as
2
1%

p increases.

The marginal modelling approach should be explored for its application to com-
plete contirigency tables for known N. Furthermore, we seek to develop a model
selection criterion for joint log-linear models based on the CIDs (CSDs). We propose
to compare the model-based CIDs (CSDs) to those obtained from the saturated model
to form the basis of an information criterion, along the lines of the AIC, for example.

There is scope to use the CIDs (CSDs) to measure the information available from
pilot.studies for capture-recapture studies to obtain information concerning the source
dependence structure of the available data. In so doing, the goal would be to obtain
informative prior information with which to undertake the Bayesian analysis of the
full study, thereby minimizing the problems pbsed by the nonidentifiability of N and
the dependence structure.

Such ideas are related to those of optimal design for capture-recapture study,
including issues of optimizing costs. Through pilot studies our ideas may be able
to be incorporate into a design framework to develop optimél designs for capture-
recapture studies in epidemiology.

Overall, wé see that there is scope for a wealth.of extensions to a diverse range
of applications'. The work in this dissertation offers the potential to open up a broad

field of research.

208



~Appendix A

Matrices and vectors used 1n

dissertation

A.1 Three sources

For three sources, A, B and C', the incomplete contingency table is given by Table A.1

AYes ANo
BYes BNo BYes BNo

Cyes | MABC MaBc | MaBc . TMABC

CNo | MaBC MaBC | MABC MABC =

Table A.1: Incomplete Contingency Table: Three Source
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= o = O

[ ma 1001101
mp 0101011
mo 0010111
m= | mup 0001001
mMAC 000O0OT1OQO01
mpc 0000O0O0T11
|maBC 000000 1]
and _ ;
0 100
0 010 - - y
Bo log N
0 001 5 |
A ogma
X=1]|-1110|;8= =
Bs| = |logmp
-1 101
Bc logmc
-1 011 - - -
-2 111
1. 0 O OW 1
0 1 0 0 i 0
G: ;G_ =
0O 0 1 0 0
-1 -1 -1 1 1
and
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A.2 Four sources

If
- o o = © o o

- o = O O O O
= = o O O o O
= O O O O o O

for v =

YAB
YAC

YBC

| YABC |

For four sources, A, B, C and D, the incomplete contingency table is given by Ta-

ble A.2

AYes ANo
BYes ) BNo : BYes BNo
Cyes Dvyes | naBcD maBcp | MABcD — MABep
Dno | maBcD MaBcb | MaBCD — MABCD
CNo Dves | naBcDp TMaBep | PABcD  MABCD
Do | maBGD MABCD | MABGD MABCD =!

Table A.2: Incomplete Contingency Table: Four Sources
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Appendix B

Rules of differentiation

The following presentation is in line with that in Melocco (2002). Similar
notation, as well as a description of the results presented in this Appendix can be
found in Wand (2002) and Magnus and Neudecker (1988). Searle (1982) provides

useful general matrix theory for statistics.

Notation

Let x be a vector of dimension p x 1

x3

)
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Let u, f;, for i = 1,...q, be scalar functions of a vector and f a vector function of a

vector of dimension ¢ X 1, such as

fi(x)
f2(x)

The following definitions hold

~—r
Al
e
l}z

du(x
dx

and

- [(42) (%) (42)

1 1 Oz,
0f1() 8f2(x) 9fq()
Ozo Oxo e Bxo

ofi(x) 8f2(x) o 9ex)

L Oz, By v Orp
Basic Rules

Let A be an m x p matrix and a a p-dimensional vector. We use D, = diag(a) to
denote the diagonal matrix with a as the diagonal and a o b to denote the direct
product of vectors a and b. Let f and g be vector functions of a vector.

The following results hold:

1. LA(x)=A
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d - 4 =
2. a;aox—deax-"‘Da

3. £E(g(x) = 28(x) gt (B(x))

4. £ [(£60) ()] = E2g(x) + L&D (x)

5. f‘x (f(x) © g(x)) = ﬂd(,'zc_)Dg(x) + dig:() Df(x)

Useful Results

The following useful results can be obtained using those outlined above.
d _df(x)

—Af =_—7A’
dx (x) dx
Let

1]

of

L

x—°l — x5
1
| L5

and let 1 be a vector function such that

I(x) =

_l(xp)_
-Then

d iy ol(z;)
d—xl(x) = diag ( B, )z

In particular



Appendix C

Simulated data set for Chapter 2

Details of the three-Sou_rCe data set

A three-source capture-recapture data set was generated for a population of size 1000,
according to a scheme which enforced positive dependence. The theoretical CSDs, ‘

deemed reasonable from real data sets observed in the literature, are set at
Cap = 1.333,Cac = 1.1304,Cpc = 1.1014, and, Cspc = 1.623, (C1)

For this scheme, the simulated capture-recapture data set consists of 754 individuals
observed out of the population of size 1000. The distribution of these 754 individuals
amongst the three sources is given in Table C.1.

The observed cell counts ncy and marginal counts ny.,, corresponding to the

218



Byes Bno
Cyes COno | Cyves Cno
Aves | 117 96 64 72
Ano 1 109 134 | 162 ?

Table C.1: Observed sample simulated from population size 1000

incomplete contingency table data of Table C.1 are given by

- - - - r - - -

NABG 72 na 349
NABGC 134 ngB 456
NABC 62 - ne 452
Deell = |naps| = | 96 | and Npmarg = Ancen = | nap | = (213, (C.2)
nago| | 64 A nac 181
NABC 109 : npc 226
nasc|  [117] napc|  [117)

The pairwise Petersen estimates are giveh by 747, 872 and 912, for sources A and
B, sources A and C, and sources B and C, respectively. These estimates suggest that
there is positive dependence between sources A and B, since the Petersen estimate of
747 is‘lower than the observed number of 754 individuals. For the other two pairs, i.e.
A and C, and B and C, the Petersen estimates are larger than the observed number
of 754, which tends to suggest negative dependence. Note that this is not in line with
the nature of the CSDs which generated the simulated data set, although since the
CSDs for these pairs are lower than for the pair A and B, the positive dependence of
the generating mechanism is less strong than for sources A and B.

For completeness, we describe the details of the data generaﬁon scheme used
to generate the data set in Table C.1 according to the CSDs of (C.1). First, each

individual was randomly assigned one of two covariates, either level 1 or level 2, with
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probabilities
Pr(Z=1]=0.7, and, Pr[Z=2]=1- Pr{Z=1]=0.3. (C.3)

Source membership was assigned conditional on covariate level to enable us to calcu-
late the true population-level CSDs. The covariate-based CSD is given by Vandal et

- al. (2005) as follows for a set of sources Q and a covariate Z ‘

[[seo Pr(Z = 2|5]
Co=2 “pig=go1

(C.4)

all z
using the assumption of conditional independence of source membership given covari-
ate level given by

Pr Lﬂ S|z = z} =[] Pris|Zz = 2. (C.5)
€Q

SeQ
As a second step in the data generation scheme, source membership was randomly

assigned conditional on covariate level, according to the following probabilities (set

by us)
Pr[A|Z =1] Pr[A|Z =2 0.2 0.7
Pr|B|Z =1] Pr{B|Z=2]| = |03 08} (C.6)
Pr(C|Z =1] Pr[C|Z =2 04 0.6

Conditional on covariate level, membership in a source was mutually independent of
membership in any other source. Using the assumption of conditional independence
(C.5) and the generating probabilities, given by (C.3) and (C.6), it is straightforwérd
to evaluate the true (unknown) covariate-based coefficients of source dependence,
according to (C.4). The population;level CSDs calculated according to this scheme
are given above by (C.1).

The theoretical highest-level marginal probabilities are given by
pa = Pr[A] = Pr[A|Z = 1|Pr(Z = 1] + Pr[A|Z = 2]Pr|Z = 2] = 0.35,
ps = Pr[B] = Pr|B|Z = 1|Pr[Z = 1] + Pr[B|Z = 2|Pr[Z = 2] = 0.45,
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and,
po = Pr[C] = Pr[C|Z = 1|Pr|Z = 1] + Pr[C|Z = 2|Pr[Z = 2] = 046.  (C.7)

Of course, these probabilities need not sum to 1 since they are not mutually
exclusive events. Consequently we obtain the following theoretical values for the

source-specific covariate distributions

Pr(Z =2|A] Pr|Z=2\B] Pr|Z=2|C] 0.6 0.533 0.391]

l:P’I"[Z =1|4] Pr[Z =1|B] Pr|Z =1|C] 0.4 0.467 0.609
In reality, due to the finite nature of the population of size 1000, we obtain an observed

matrix of

Pr(Z =1|4] PrZ=1|B] PrZ=1|C]| |0.372 0.4496 0.6150
Pr(Z = 2|A] PrZ =2|B] Pr[Z = 2|C] 0.628 0.5504 0.3850

The observed covariate distributions in the three sources are quite different to each
other and to the population generating probabilities of 0.7 and 0.3. Again, due to the
finite nature of the simulation of 1000 individuals from such generating probabilities

the actual covariate distribution in the 1000 individuals is given by

Pr(Z = 1] = 0.693,and, PrZ = 2| = 1 — Pr[Z = 1] = 0.307
compared to (C.3). That in the 754 observed individuals is

Pr|Z = 1|obs] = 0.6061008, and, Pr{Z = 2|obs] = 1 — Pr[Z = 1]obs] = 0.3938992.

For completeness, the four remaining marginal probabilities can be shown to be
given by
paB = 0.21,pac = 0.182, pgo = 0.228, papc = 0.1176.

221



“Appendix D

Appendix for Chapter 2

D.1 Pfoof of Theorem 2.3

Theorem

Let R, T and S denote arbitrary sets of sources such that RNS = &. We recall
the HILLM conventions presented in Section 1.2.1. Then if the groups [R,T] and
s ,T | appear in the HILLM specification with no [A, B] specification where A C R
and B C S (so that sources in R and sources in S are conditionally independent given

sources in T )

Crusur = Crur + Csur — Cr.

Proof of Theorem 2.3

Proof. Define Rn =NgserS, and similarly for S, and 7.
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c ZP’F[RnnSman]
RUsUT HSE’R.,S,T Pr([S]”°
~__ Pr[RanN Sa|7n| Pr(T7]
- [ser,s.r Pris]
_ Pr[Rn|Tn]Pr[Sn|Tn] Pr(T5
B HSG‘R,S,T Pr(S]
_ (Pr[Rn N T0]/ Pr(Tn]) (Pr[Sn 0 Tn]/ Pr{Tn]) PriTn]
HSE'R,S,T Pr(S]
_ Pr[RaNT3)Pr(Sn N Th)
~ Pr{T) HSeR,S,T Pr[S]
_ Pr[RnNT5] Pr(S~ N T4
B HSe‘R,T Pr(S] PriTa] [Tges PriS]
_. Pr(S~N7Ta)
T PriTa] TTses Pris]
— Pr[Sn N T) Tlser Pr(S]
~ " sesz PriS] PriT]
_ CRTCST

?

cTr

by definition -

, by assumption of conditional independence

whence the result follows. |

D.2 Proof of Proposition 2.3

This proposition states the relationship between the CCV and CSD for three sources.

Proposition
Consider three sources, A, B and C. Let wapc denote the three-way CCV. Then
wapc = (capo — 1) — (cap — 1) — (cgo — 1) — (cac — 1).
If the CSDs are close to zero, then

wapc =~ Capc — (Cap + Cpe + Cac) + (Ca+ Cp + Co)

223



Proof of Proposition 2.3

Proof.

1 N

WABC = D E[(Xia — pta)(Xio — 16)(Xic — phe)]/ (Hatiotic)

i=1

1

N .
= ———— Y E[XiaXiXic — XiaXivte — taXoXic + patteXio — tisXiaXic
| N%chz [ b XiaXippte = paXiv Xic + patteXip — ppXiaXi

=1

+ potteXia + fatoXic — Hallslic)

N N N N
1 )
= N, [_S_ E [ X0 X Xic) — te E E [ XiaXib) — ta E E[ X Xic) tatte E B [Xi)

i=1 ' i=1 i=1 i=1

N . N N
—Hb Z E [XiaXic] + Uolhe Z E [Xia] + Hattb Z E [Xic] - Nﬂaﬂblllcil

i=1 i=1 i=1

N : N
1
= — PrilANBNC|I =1} — PrlANB|I =1
| S PN BACI ==Y PrlAn B =

N N N .
—a Y Pr[BOC| =]+ papc Y Pr[BII =i] — ¥ _ PrlANC|I =]

i=1 i=1 : i=1

N ; N
+ potte y_, PrlAIL = i] + papsp y B[O = 1] - Nﬁ"aﬂbﬂcjl

=1 i=1

_ Pr[AnBnC] Pr[An B| Pr(BNC]| PriAnC] 5
= PrlA|PriBIPr[C] _ PrlA|Pr|B] _ PriBIPrC]  PrAPrC]  °

= (CABC - 1) - (CAB - 1) - (CBC - 1) - (CAC - 1)

~ log capc — log cap — log cgo — log cac, from the first order Taylor expansion for log -

CABC
=log { ———
CABCBCCAC

' CABCCACBCC
= log | ————

) , since by definition' ¢4 =cg=cc =1
CABCBCcCAC

= Capc — (Cap + Cgc + Cac) + (Ca+ Cp + C¢), by definition of the CSDs

O
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D.3 Proof of Theorem 2.5

Theorem

Let Q be any set of sources and denote by Cq the CSD associated with this set of

sources. Then

CQ = Z’Ys. ) (Dl)

ScQ
Proof of Theorem 2.5
Lemma required for proof

‘In order to prove Theorem 2.5, we need the following lemma.

Lemma Let i, =14 if r is even and i, =i+ 1 ifrisodd, i =1,...,7. Then
r—1 A
Su(]) =1
i=0 ¢
Proof. Suppose first that r is odd. Then
r S (r 1)/2 r
2 () = R ev()e 2 ()
i=0 i=(r+1)/2 ’
(r 1)/2 r .
= ( ) + > (= ’+1( ) (D.2)
z—o i=(r+1)/2 -t
(T 1)/2 0
- = ( ) + Z (—=1)7+! <J> letting j = r — 4,

(r-—l)/2 . 4
— Z [(_1)1,+ (_l)z-f-l] (

1=0

’f) =0 (D.3)

In this case,

S () =) = o - 0.4
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so that -
S+ () =
=0 ¢

as required.

If r is even, then
Z;(—l)’(;f) = 1e(;) +:§;(~1v‘(:) +-2r(7)
-7 ()]

C e S ()

Now

B () - B () -

by (D.3) since 7 — 1 is odd, and

- Ee() - Eor(D)

)

by (D.4), once again since r — 1 is odd.

Hence )
;(—’w(i) =0 (D.5)

when 7 is even (or odd, by (D.3), whence

S () = S () = () = o=

=0 =0

nce again. O
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Proof of Theorem 2.5 using previous Lemma

In this section we present the proof of Theorem 2.5.
Proof. We have, for Q a set of sources of size n,

n

n—1
Yo = Z(—l)j" Y Cr=Co+> (-1)" > Cr, (D.6)
=1 RCQ =1 RCQ

IRl =3 » Rl =34

by Definition 2.4, where j, = j if n is even and j + 1 if n is odd.
We proceed by induction. Let Q* be a set of sources of cardinality m. Suppose
first that m = 1. Then Cg = Cs = <5 by Definition 2.4, and vs = vg + 7Yz, which
shows that the induction hypothesis holds true for m = 1. Suppose now that m > 1

CQ*=Z’YR:§: Z yr form=1,2,...,n—1. (D7)

RCQ* =l R o

Rl=j

We show that if @ = Q* U {S}, then Cg = 3" 5.o7s-
From (D.6), we obtain

n—1
Co = 7o+ ) (-1)"* > Cx
7j=1

RCQ
IR|=J
n—1 j
= 79+Z(—1)j”+1 Z Z Z 7vs from (D.7)
=1 rRcg *l scr
RI=3j ISl=k "
n—1 n—1
= o+, Y, sy ()" Yo,
k=l scq Ik RS
ISl =k IR| =j

switching the order of summation.
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Now the term ¥ RoS 1 is just the number of supersets of S that are of size

Rl =3
j > k. This is obtained by selecting a further j — k sources in addition to the sources

in § to form R, from a possibility of n — k sources in Q \'S. Thus

x=(e)

RDS
IRl =3
Further,
n-1 n—1
Z(_l)jn"'l Z 1 = Z(_l)jn+1<7'b_:>
=k RS =k a
IRl =3

Now (Jn—k = jn + k) mod 2, since

e if n and k are even, (ju—r =J =Jj +k =Jn+ k) mod 2;

e ifnand k are odd, (jpx =j=7+1+k=j,+k) mod 2

e ifniseven and kisodd, (jpxr =Jj+1=j+k=jo+k) mod 2;

e if nisodd and kiseven, (Jpxk =7 +1=j+1+k=j,+ k) mod 2.

In particular, (—1)7+* = (~1)%»-*, so we obtain
n—k—1 n—k—1
. —k . —k
D Il (R B SR e G e
4=0 J i=0 J
by the previous Lemma, so

. n—1
Co=70+Y, Y, Ys=2 7

k=1 59 SCQ
S| =k

as required, since vo = 0 by definition. 0
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D.4 Proof of Theorem 2.6

Theorem

Let Q be a set of sources and 7ré = log P [NscoS]. Then for |Q| > 2

n

vo =Y (-1 Y m. (D.8)

j=1 RCQ
IRf = j

Proof of Theorem 2.6

Proof. A direct proof is given below. Here we instead write g = r if |R| > 2

"and¥g = wg if |[R| = 1. Then from (2.16),

T = Z"YR,

RCQ

since 7z = 0 for |R| = 1. But this relates g and the jz’s in a way that is formally
identical to (D.1). The inverse of this relationship will thus be formally identical to
(D.8), yielding

n

Yo=Y (-1 D s

7= RCQ
IRl =3
but 4o = g for |Q| > 2, which completes the proof. O
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Alternative Proof of Theorem 2.6

n

Yo = Z(—l)j" Z Cr

J=1

RCQ
IRl =3
n
= Z(—l)j’” Z (WR—ZWS), by definition
j=1 RCO SeR
R =3
n n
LN EIID D 3 S S D
=1 RCQ g=1 rRco SR
IR| = IR| =i

It is therefore sufficient to show that the second sum of the right-hand side is 0:

n

Z(—l)f‘ Yo s = Zwsznj(—l)j o1

j=1 RCQ SerR SeQ j=1 RSS
IR| = j
RCQ
= Zﬂ'si(—l)j <n B 1)
: j—1
SeQ j=1
nt n—1
= Z”SZ(“l)j< . > =0 (D.9)
‘Se@ =0 J

by (D.5), whence 37_,(~1)™3° RCQ Y ser®s = 0, since the expression is just

IR =3
(D.9) multiplied by +1 or —1.
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D.5 Details of the HIJLLM of conditional indepen-
dence of Section 2.4.2.
Under the HJLLM specified by [AB][AC], where B ILC|A, we obtain

PriBnC] =Pr[BﬂCﬂA]+Pr[BnCnA]
= Pr[B N C|A)Pr[A] + Pr[B n C|A]Pr{4]

= Pr[B|A]Pr[C|A]|Pr[A] + Pr|B|A]|Pr[C|A]Pr[A] |
_ Pr[Bn A] Pr[C N A] Pr[Bn A] PriCn A

R L R
__ Pr[BNnAJPr[CNnA] | Pr[Bn AlPr[Cn A
= P PrA]

Thus we have

Pr[BNAJPr[CNnA] Pr[BnAJPr(CnA]
Pr[A]Pr[B]Pr|C] Pr[A)Pr{B]Pr[C)

- pr[A]éABcAc + 1—_—115;@ (1 - f%g[_g]ﬂ ) (1 P;f[glé)

1 — Pr(Alcap) (1 — Pr[Alcac)

CBCc =

1
= P?"[A]CABCAC + T—__P;[_AT (

= Pr [A]CABCAC + T_“_;T‘q ( — [ ‘](CAB + CAc) + PT‘[A]2CABCAC)

= 1 Pr[A (Pr{Alcapecac — PrlA*capcac + 1 — Pr(Al(cas + cac)

+Pr A]ZCABCAC
_ Pr[A] B +eac) + 1
- 1 _ P [A CABCAC CAB AC PT'[A]
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D.6 Example of a non-hierarchical dependence struc-
ture

Consider tossing two fair die. The sample space is given by

(1,1),(1,2), ..., (1,6),(2,1),...,(56), (6,6)}.

Let
A = {sum is odd, i.e. 3,5,7,9 or 11}, so Pr{A] = 18/36 = 1/2
B = {sum is 3,5,6 or 12}, so Pr{B] = 12/36 = 1/3
C = {sum is 4,5,10 or 11}, so Pr[C] = 12/36 = 1/3
Then
Pr[AN B] = Pr[sum is 3 or 5] = 6/36 = 1/6 = Pr[A|Pr|[B]
Pr[ANC] = Prisum is 5 or 11} = 6/36 = 1/6 = Pr{A]Pr[C]
Pr[BNC| = Prisum is 5] = 4/36 = 1/9 = Pr[B]Pr[C]
Therefore
AlLB, AlCand BALC
However,

Pr[AN BN C)] = Prlsum is 5] = 1/9 # 1/18 = Pr[A]|Pr|B|Pr[C],

which shows that A, B and C are not independent events. Thus, is is possible for three
events to be pairwise dependent but jointly dependent i.e. which exhibit three-way

dependence.
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Appendix E

Simulation of data sets for

Chapters 3 and 5

Introduction

We simulate data generated according to a known model and known likelihood in
order to demonstrate the performance of the model. The model is the marginal
model parameterized in terms of the CIDs, as given by Definition 2.7; the likelihood
the multinomial (see Section 1.1.3). We consider the four-source setting,.

In order to generate data sets derived from the true model, we first fix the true
population size N together with the single source marginal probabilities p4, pg, pc
and pp. The eleven remaining marginal probabilities are calculated according to the
assumed dependence structure. Whenever the assumed dependence structure places
no constraints on a marginal probability, we fix it at some reasonable value, which
must be consistent with the nested ordering of marginal probabilities. This will be

demonstrated below for the dependence structures we consider here. Note that, by
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specifying the marginal dependence structure, there is an equivalent set of fixed CIDs.

Here we describe the steps to be taken to generate such data.

Simulating capture-recapture data under a multino-

mial likelihood

When employing the multinemial likelihood, inference applies to the parameter N
and not IE[N], as is the case under a Poisson likelihood. In the latter case, N is a
random variable rather than a parameter, as is the case when a multinomial model

is assumed. The following scheme is employed for the general K-source case:
e Fix N and the single-source marginal probabilities py4, ..., k.

e Specify the non-single source probabilities according to some dependence struc-
ture (e.g. independence or conditional independence). In some instances, for
ceftain dependence structures; they will be derived from the single-source mar-
ginal probabilities. Fixed values will be chosen if not specified by the structure.
,Note that using the fully specified dependence structure and corresponding mar-

ginal probabilities the corresponding theoretical CIDs can be calculated.

e Obtain the corresponding cell probabilities, p,, using the relationship p, =
A~ !p,,, where the matrix A~! transforms marginal counts into cell counts and
similarly marginal probabilities into cell probabilities and py, denotes marginal -

probabilities.

e Using the likelihood assumption that the 2% cells of the complete contingency
table follow a multinomial distribution simulate a 2% vector of observations from

a single realization of the the multinomial distribution with cell probabilities
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given by the 2% — 1 vector p, and probability 1 — e'p,, for the remaining cell,
® B

where e is a vectof of 1s of length 2% — 1.

e Use the first 2% —1 entries of the vector of simulated observations as the capture-

recapture data set.

The data sets

We will consider two dependence structures. The first, a conditional independence
structure and the second, a nonhierarchical dependence structure. For each, we fix
the true population size at N = 1000. The single-source marginal probabilities p4, pp
pc and pp are fixed at similar values in each case. We determine the eleven remain-
ing marginal probabilities in order to fully specify the true underlying dependence
structure. Finally, in both, we generate a single data set from each of these three
known models. The underlying population parameters (i.e. N, p4, etc.) are thought
to be reasonable values based on evidence from the literature. Most epidemiological
capture-recapture studies seek to eumerate reasonably sized populations, hence the

choice of N = 1000 and the marginal source probabilities described below.

Conditional independence

We assume that the true underlying model is that of conditional independence of B
and C given A, denoted by [AB][AC][D] in the notation of Christensen (1997). The

single-source marginal probabilities are assumed to be given by pa = 0.7, pp = 0.4

pc = 0.3 and pp = 0.2. We fix
PAB = 0.3 and PAC = 02,

whilst all other marginal probabilities are obtained using the known probability re-

lationships given in Chapter 2, Examples 2.16 and 2.17 for this particular model of
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conditional independence. Thus, the form of ppc depends on the marginal probabil-

ities of the conditioning source, A, and is given by:

_ PaBpac (pB — paB)(Pc — Pac)
Pa 1—pa

Notice that this probability is slightly lower than that of 0.12 should B and C be

PBC = 0.119047.

marginally independent. The 3 remaining pairs of sources are marginally independent

by assumption. Thus

Pap = papp =0.14 ppp = pppp = 0.08 pcp = pcpp = 0.06.

The 4 three-way marginal probabilities are obtained using results from Example 2.17

and are given by

papc = PABRAC = 0.0857,  papp = paspp = 0.06

pacp = pacpp = 0.04, ppcp = peepp = 0.0238,

and the four-source marginal (which is also the four-source joint probability) by

paBcp = pppasc = 0.0171.

Note that, had all sources been marginally independent, the three-way marginal
probabilities would be given by papc = 0.084, papp = 0.056, pacp = 0.042 and
peep = 0.024, and, the four-way marginal (equivalently, the four-way joint probabil-
ity) by papcp = 0.0168. For all of these marginal combinations, we observe that the
true three-way and four-way marginal probabilities exceed those under assumptions
of marginal independence except for the 2 three-way probabilities pacp and ppep-
The corresponding cell probabilities sum to 0.893. That is, the theoretical proportion
of the population of size 1000 that is observed is equal to 89%.

For the assumed conditipnal independence structure here, the true underlying

CIDs, which correspond to the specified probability distribution are given by
vap = 0.06899 ~vac = —0.04879 ~pc = —0.00797 ~yapc = 0.00797,
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with all others equal to 0. Note that yapc = —vBc¢ since, by assumption, B 1L C|A,
that is B and C are independent, conditionally on A.
Table E.1 presents a data set generated according to this assumed underlying

dependence structure.

Aves Axo
Byves Bno | Byes Bno
Cyess Dyes| 16 24 | 5 10

Do | 61 92 | 34 47
CNo Dyes| 50 72 | 16 26
Dno | 165 224 | 50  ?

Table E.1: Data generated according to the conditional dependence structure given
by [AB][AC][D].

Nonbhierarchical dependence

We assume that the true underlying model is that of a nonhierarchical dependence
structure with the -only dependence present between 2 of the three marginal com-
binations of sources; namely within each of thé two sets given by {A,B,C} and
{A,B,D}. Note that such a no.nhierarchical dependence structure cannot be ex-
pressed in the notation of hierarchical models; it is not represented by [ABC|[{ABD],
since, by assumbtion, no lower order dependeﬁce is present.

The single-source marginal probabilities are given by ps = 0.5, pp = 0.4 pc = 0.3
and pp = 0.2. We fix

papc = 0.07 and papp = 0.06,

- whilst all other marginal probabilities are obtained using the known probability rela-

tionships given in Chapter 2, Example 2.17 for this particular model of nonhierarchical
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dependence.
All 6 pairwise sets of sources are assumed to be marginally independent and are

given by

paB =paps = 0.2, pac =papc =0.15, pap=papp =0.1,
pec = pppc = 0.12, ppp = pppp =0.08, pcp = pcpp = 0.06,
Likewise, the remaining 2 three-way sets of sources, {A,C, D} and {B,C, D}, are

also assumed to be marginally independent. Thus,

Pacp = papepp = 0.03 and ppcp = pepcpp = 0.024,

whilst the single foﬁr—way marginal (equivalently joint) probability is obtained using

the following
PABCPABD _ 0.021.
bapB
Notice that this probability exceeds that under marginal independence of the four

PABCD =

sources, which would be equal to 0.012. Likewise under marginal independeﬁce of each
of the sets { A, B,C} and {A, B, D}, the marginal probabilities would be equal to 0.06
and 0.04, respectively, rather than the values of 0.07 and 0.06, respectively, at which
they have been fixed. Thus, the honhierarchical dependence structure assumed in this
case tends to exhibit positive dependence throughout whenever there is dependence
present. The corresponding cell probabilities sum to 0.853. That is, the theoretical
proportion of the population of size 1000 is equal to 85%.

For this nonhierarchical dependence structure, the true underlying CIDs, which

correspond to the specified probability distribution, are given by

Yapc = 0.1515 yapp = 0.4055,

with all others equal to 0.
Table E.2 presents a data set generated according to this assumed underlying

dependence structure.
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Aves Ano
Byes. Bwo | Bves Bno
Cyee Dyes| 21 9 | 6 26

Dno | 61 59| 60 70
Cno Dves | 35 27 | 17 60
Dno | 82 19510128 7

Table E.2: Data generated according to the non-hierarchical dependence structure

with only dependence within the sets {A, B,C} and {A,B,D}
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Appendix F

Appendix for Chapter 3

F.1 Score and Information calculations for Poisson

likelihood

Using the rules of matrix and vector differentiation stated in Appendix B, the score

vector is derived as follows:

_ Opo(n'log(p) — €'p)
BT o

= O fhiag()n —
=35 [diag(p) "'n — e]

-1 :
= 0A" exp(Y9) ?:SP(Y'&) [diag(p)'n — e]

= Y'diag(exp(Y8))(A™) [no u(6) —e],
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whilst the negative ¢ X ¢ information matrix is given by
0%l
1) = 55755
_ou(s)

00
0

T %

0
['53 exp Y(S) DA U(nop—I—e)

(exp(Y8) o [A(nop™ —e))) ¥

66 [A 1'(n o] l,l, —_ e)] Dexp(Y5)] Y
= [Y,Dexp(YJ)D(A—l)’(no;rI—e)
0 ‘ -
+ 2no u() 1A Dunira)| ¥

= [Y'Depvs)D(a-1y mou-r—e)

0 a . _ _
5 O gl 1D A Doy | ¥

= [Y,Dexp(Yé)D(A—l)’(nopr—e)
= (Y'Dexp(rs)(A™) Daoy-21) A™ Depvs)] Y

= YIDexp(Y&) (D(A“l)’(nop.—f—e) - (A—l),Dnop,—”A-_lDexp(Yé)) Y;

where, for ease of notation, dependence of p on 8 has been suppressed and pu = p(8).

F.2 Derivation of the asymptotic covariance ma-
trix for Poisson sampling of Chapter 3

Lang and Agresti (1994) present the general form of models able to simultaneously
model both the joint and marginal distributions of multivariate categorical responses.

Such a model, similarly to that introduced by Haber (1985b), takes the form:
ClogBu = Wa, ident(u) =0 (F.1)
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where C = C; @ Cuy, B’ = (B},BYy), W = W, D Wy, a = (o), a,), and
ident(pt) = 0 denotes the multinomial identifiability constraints, and, J refers to the
model on the joint means and M to that on the marginal means. Although, the
theory developed in both Lang and Agresti (1994) and Haber (1985b) refers to the
general case of sampling from S independent multinomial samples, we will consider
S = 1 since the capture-recapture setting considered in this dissertation concerns a
single incomplete contingency table at a time. We let d denote the length of the
vector ¢ and ¢ the length of the vector .

Lang and Agresti introduce a constraint reparameterization of the freedom equa-

tion form of model (F.1). Such a constraint parameterization is given by
U'Clog Bu = 0, ident(p) = 0, (F.2)

where the space spanned by the columns of U is the orthogonal com[;lement of the
space spanned by the columns of W and U is of full column rank. Equivalently

U'W = 0. From Haber (1985b), U is computed using:
U=(I-WWW) W)V, (F.3)

where V is a d X (d — ¢) matrix of full column rank. The first constraint equation
of (F.2) imposes d — g linear constraints on the cell means .

The matrix V, and consequently U, is not unique. It must be noted that, although
seemingly not clarified by Haber (1985b), V is not entirely arbitrary. We must ensure
that U spans the same subspace as W’. An approach to obtaining an appropriate
matrix U, is based on using the Singular Value Decomposition (SVD) (Searle, 1982)
of Q = (I - W(W'W)™ W) as follows: If Q,DqQ} is the SVD of Q, where Dq
has zeros everywhere except for in the first p entries; say of the diagonal, which we
denote by Dq,, then
Dq,

0

U=Q



In practice, the inbuilt svd function of the R Programming Language (2004) can be
. used to obtain the SVD of Q and thus, to obtain U.
Maximum likelihood estimation (MLE) consists in maximizing the kernel of the

multinomial, equivalently the Poisson, likelihood given by
l(p;n) =n'log p

subject to the model parameter space defined by the freedom equations of (F.1) or
equivalently the constraint equations of (F.2). As described by Lang and Agresti
(1994), it is most useful to work in terms of the constraint equations. Thus, the

model parameter space is given by

{p:U'ClogBu =0, ident(p)} = {p: f(p) = 0, ident(u)}. (F.4)

Lang and Agresti (1994) describe modifications to the Newton-Raphson algorithm
proposed by Haber (1985b) to solve the Lagrangian (not presented here) which sum-
marizes the function to be maximimized and the constraints given by (F.2). Their
approach dealé with a matrix that is much easier to invert than that given in Haber
(1985b). In order to ensure that the numerical algorithm used to obtain the maximum
likelihood estimates of o does not move to a values that correspond to negative val-
ues of u, a reparameterization from p to ¢ = log i is adopted. The model parameter

space 1s thus given by the following reparameterization of (F.4)
{¢:U'ClogBexp¢ =0, ident(¢)} = {¢ : h(¢) = 0, ident(¢)}:

The MLE of ¢, ¢ , is obtained by solving for @ in the likelihood eéquations

A(¢m 5 L o)y | y A

£(6) = _Ea’c_z - exp(AC) + Jac—))‘ _|n- exp(C)A+ H({A —o
h(¢) - h(Q)

where 6 = vec(¢, A) and H(¢) = 0h(¢)/d¢ is the d x (d — q) matrix of derivatives

of the (d — ¢) x 1 vector h(¢) = U’Clog A exp { with respect to the d x 1 vector {
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given by

He oh(¢)

¢

B8h(¢) Bha_p(C)

3G £
= : S I (F.5)
' 0ha(¢) Bha_g(&)

3a T 8

where h(¢) = (h1(€), ..., ha—p(C))"

Lang and Agreéti (1994) provide the asymptotic normal distributions of 0 =
(é/, :\’)’ under certain nonrestrictive assumptions. Of particular interest to us is the
asymptotic covariance matrix of our model parametersba given for the Poisson sam-

pling scheme by
Yo = (WW)'WCD(Bu) 'BE;B'DBu) 'CWW'W), (F.6)

where

B =D() - HE'D(()'H)'H, (F.7)

and D(¢) is the d x d vector with ¢ on the diagonal.

Next we see how to apply this theory to our marginal log-linear model.

Application of approach to frequentist MLLM of Chapter 3

It is clear that the marginal model introduced in Section 2.4 (see Definition 2.7) fits in
the class of models of the form (F.1) with C equal to the identity matrix and B equal
to the A matrix of the marginal model so that the B, matrix of B is not included
for the marginal model. For the marginal model forms considered in Chapter 3, in
which the CIDs are treated as fixed parameters to be estimated, the a vector of (F.1)
is precisely that denoted by &, the vector of length ¢ < d, where d = 2X — 1 in the

K-source capture-recapture setting.
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In order to derive the asymptotid covariance matrix of the parameter vector 8
of our model using (F.6), we first derive the form of 3, using (F.7). Using the
definition of h(¢{) from (F.2) together with that of H(¢) from (F.5) and the chain
rule for differentiation of a vector function yields
(U’ log Be¢)

¢
_ de¢ dBef dlog Be¢ dU’ log Be¢
T d¢ de$  dBe¢  dlogBe¢

= Dexp(() BID]—31exp(C) U

H =

=D,B'Dg.U,

where B = A, for the marginal model and U is obtained as described above.
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Appendix G
R code for Chapter 3

Code for algorithm to fit frequentist MLLM

FOUR SOURCE FREQUENTIST CODE # THIS CODE FITS ALL 2047 JLL (HIER
AND NON-HIER) TO FOUR SOURCES # AS WELL AS ALL FREQUENTIST MLLM
WITH CIDS TREATED AS FIXED EFFECTS # WITH ALL DIFFERENT
COMBINATIONS SET TO ZERO # # FOR VARIANCE ESTIMATION FROM LANG AND
AGRESTI (JASA 1994) # #

K<-4

S4<-matrix(0,nrow=15,ncol=4) 84[,1] <- ¢(1, 0, 0, 0, 1, 1, 1, O,
0, 0, 1, 1, 1, 0, 1) s4([,2] <~ c(0, 1, 0, 0, 1, 0, 0, 1, 1, O, 1,
i, 0, 1, 1) s4[,3] <~ ¢c(0, 0, 1, 0, O, 1, 0, 1, O, 1, 1, 0, 1, 1,
1) s4(,4] <- ¢(0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1)

Mmat<-t(S4) Mmat<-rbind(Mmat,S4([,1]+S4(,2]==2)
Mmat<-rbind (Mmat,S4[;1]1+54[,3]==2) -
Mmat<-rbind (Mmat,S4[,1]+S4[,4]1==2)

Mmat<-rbind (Mmat,S4[,2]+S4[,3]==2)
Mmat<-rbind (Mmat,S4[,2]+84[,4]==2)

Mmat<-rbind (Mmat,S4[,3]1+54(,4]==2)
Mmat<-rbind (Mmat,S4[,1]+84([,2]+84(,3]==3)
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Mmat<-rbind (Mmat,S4(,1]1+S4[,2]1+84[,4]==3)
Mmat<-rbind (Mmat,S4([,1]1+S4([,3]+54[,4]==3) -
Mmat<-rbind (Mmat,S4[,2]+S4[,3]+S4[,4]==3)
Mmat<-rbind (Mmat,S4[,11+54([,2]+84(,3]+84[,4]1==4)

A4<-Mmat
Ad4<-t (A4)

dimnames (A4)<-1list(
c("Abcd",“chd","ade","abcD","ABcd","Ade","AbcD","aBCd“,"chD","abCD“,

"ABC4", "ABcD","AbCD","aBCD", "ABCD"),

C("A" R IIBIl s lICH . IlDlI . IlABII . IIAC!I R IlADIl R IIBC!I , IIBDH R IICDII_, IIABCII R lIABD" s IIACDII , IIBCDII s IIABCDII))
# X matrices will be extracted from this one

bigm<-cbind (1-apply(A4(,1:4],1,sum),A4)

A4<-t (A4)
# This will be used for column extraction # from bigm
# Note that there are 2047 models (hierarcal and non-hierarchical)
for four sources with the four main effects included in all #
Calculate using a<-choose(11,1); or(i in 2:11){a <- a +
choose(11,i)}; a '
models<-matrix(0,nrow=2047,ncol=11) for (i in 1:2047) {
modn<-i-1
for (§j in 1:11){
if (modn\%\%2) models[i,jl<-1 # i.e. modn\%\%2 = modn mod 2
modn<-modn\%/\%2}}# integer division
models<-cbind(1,1,1,1,1,models)
models<-models==1 # changes to TRUE/FALSE
satform4<-(appiy(models,1,sum)==15)*1 # indicator of whether model
is one of 11 saturdated models

#-——— indicator for hierarchical models

hierform4<-rep(0,2047) hierform4[1:64]<-1
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ind.hier<-c(76,80,92,96,108,112,124,128,
150,152,158,160,182,184,190,192, 295,296,303,304,311,312,319,320,
569,570,571,572,573,574,575,576, 224,256, 368,384, 636,640,
440,448, 702,704, 831,832, 512,768,896,960,1024)
hierform4[ind.hier]<-1

basmod<-"tot"A+B+C+D"
tokens<_c(“ABll R IIACII , IlAD" R IIBC" s llBDll . lICD" s llABCII R "ABD" , llACD" , "BCD" , "ABCDII)
formulas<-list() for (i in 1:dim(models) [1])
formulas<-c(formulas,as.formula(paste(c(basmod,

tokens [models[i,-(1:5)1]),collapse="+")))

# The usual suspects
ll<-function(n,beta,X,;A) {
mu<-as.vector(solve (A, exp(X)*/beta)))
sum (n*log (mu) -mu) }

score<~function(n,beta,X,A) {
eta<-as.vector (exp(X/*/beta))
mu<-as.vector(solve(A,eta))
t(X)\%x\%diag(eta) \%*\%solve (t(A) ,n/mu-1)}

finf<-function(n,beta,X,A) {
eta<-as.vector (exp (X\%*\%beta))
mu<-as.vector(solve(A,eta))
temp<-solve(A,diag(eta)\%*\%X)

t (temp) \l*\%diag(1/mu) \/%*\%temp}

# This dis really Fisher scoring mixed with steepest ascent,
# all dampened & with a few checks on feasibility

mle.old<-function(n,betastart,X,A,tol=1e-7,maxiter=100,maxhi=5,fac=10,ns=4)
{ diff<-1 oldbeta<-betastart iter<-0 whup<-F hyperiter<-0 while
(diff>tol && hyperiter<maxhi) {
while (diff>tol && iter<maxiter) {
diri<-solve(finf(n,oldbeta,X,A),score(n,oldbeta,X,A))
topl<-min(-(oldbetall: (ns+1)]/diri[1: (ns+1)]1) [dir1[1: (ns+1)]<0],1)
if (dir1[11<0) : '
topl<-min((oldbetal2: (ns+1)] [dir1[2: (ns+1)]>0] -oldbetal[1])/
(diri[1]-dir1[2:(ns+1)]{dir1(2: (ns+1)]1>0]) ,topl)
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else
topi<-1
dir2<-score(n,oldbeta,X,A)
top2<-min(-(oldbetal[l: (ns+1)]/dir2([1: (ns+1)]) [dir2[1: (ns+1)]1<0],1)
if (dir2[1]1<0)
top2<-min((oldbetal2: (ns+1)] [dir2[2: (ns+1)]>0]—oldbeta[1])/
(dir2[1]-dir2[2: (ns+1)] [dir2{2: (ns+1)]1>0]) ,top2)
else
top2<-1
foo.fun<-function(lambda,oldbeta,dir,n,X,A)
-11(n,o0ldbeta+lambda*dir,X,A)
opti<-optimize(f=foo.fun,interval=c(0,topl),oldbeta=oldbeta,dir=dirl,n=n,X=X, A=
opt2<-optimize (f= foo.fun,lnterval—c(o,top2)ﬂoldbeta-oldbeta,d1r-d1r2,n=n,X—X,A-
if (is.na(opti$objective)) optiPobjective<-Inf
if (is.na(opt2$objective)) opt2$ob3ect1ve< Inf
~if (whup) {
opti$minimum<-min(fac*opti$minimum,1)
opt2$minimum<-min(fac*opt2$minimum,1)
whup<-F}
if (opti$objective<opt2$objective) #objective function is -loglhd
beta<-oldbetatopti$minimum*dirl
else
beta<-oldbetatopt2$minimum*dir2
diffi1<-beta-oldbeta
diff<-max(abs(diff1))
oldbeta<-beta
iter<-iter+1}
if (diff>tol) whup<-T
hyperiter<-hyperiter+1}
return(list(beta,11(n,beta,X,A), d1ff1 score(n,beta,X,A) ,iter))}

#»Here.the parameters of beta are (betal,betastar,CIDs)

mle<-function(n,betastart,X,A,tol=1e-8,maxiter=100,ns=4) { diff<-1
oldbeta<-betastart iter<-0
while (diff>tol && iter<maxiter) {
dir<-solve(finf (n,oldbeta,X,A),score(n,oldbeta,X,A))
top<-min(-(oldbetal1:(ns+1)]/dir([1: (ns+1)])[d1r[1 (ms+1)]<0],1)
if (dir[11<0)
top<-min((oldbeta[2: (ns+1)] [dir[2: (ns+1)]>0]-oldbeta[1])/
(dir[1]-dir[2: (ns+1)] [dir[2: (ns+1)]1>0]) ,top)
else
top<-1
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foo.fun<-function(lambda,oldbeta,dir,n,X,A)
-11(n,oldbeta+lambda*dir,X,A)
opt<-optimize(f=foo.fun,interval=c(0,top),
oldbeta=oldbeta,dir=dir,n=n,X=X,A=A)
if (is.na(opt$objective)) opt$objective<-Inf
beta<-oldbeta+topt$minimumrdir
diffi<-beta-oldbeta
diff<-max(abs(diffl))
oldbeta<-beta
iter<-iter+1}
return(list(beta,l1(n,beta,X,A),diff1,score(n,beta,X,A),iter))}

fitted.marg<-function(beta,X,A) {
mtot<-exp (X%*¥beta)
solve(A,mtot)}

# asymptotic covariance matrix of model parameters for a single
model

# U is any d by (d-p) matrix (where p is number of

parameters in model) such that U’X =,O

# Haber (1985) states that U can be calculated using U = (I -
&)XV, '
# where W is a d by (d-p) matrix with independent

columns

asymp.cov.mle.fun<-function(beta.MLE,mu.MLE,X,A,U) {
p<-length(beta.MLE)
eta <-log(mu.MLE)
marg.MLE <- A%*Ymu.MLE
diag.eta <-diag(as.vector(eta))
diag.inv.eta <- diag(as.vector(1/eta))
diag.inv.Amu <-diag(as.vector(1/(marg.MLE)))
H <~ diag(as.vector (mu.MLE))%x*%t (A)%*%diag(as.vector (1/marg.MLE) ) %*%U
Sigma.mu.MLE <- diag.eta - HY*}solve(t(H)%+*%diag.inv.etal*%H)%*%t (H)
temp <- solve (t (X)%*%X)%*%t (X)%*Ydiag. inv. Amu/*%A
Sigma.alpha.MLE <- temp%*%Sigma.mu.MLE}*)t (temp)
}

# to extract diagonal just need to do diag(matrix.name)
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Appendix H

C++ code for MCMC scheme of
Chapter 5

/*

Code to run MCMC simulation of CID formulation of Bayesian
random effects model for K sources using data from incomplete
contingency table at fixed level of RE variance with no centering
of RE and ability to set any RE equal to 0O

Procedure:
1. Metropolis-Hastings update for N
2. Metropolis-Hastings update for all betastar
3. Metropolis-Hastings update for all pairwise RE centered on 0O
4. Metropolis-Hastings update for all threeway RE centered on 0
5. Etc. for RE

In order to set a specific RE equal to O the tool we use is to fix
the prior RE variance for that component equal to O

*/

using namespace std; #include <iostream> #include <fstream> //
Needed for file input/output #include <math.h>

/* Library containing random/statistical functions */ #include
<gsl/gsl_rng.h> #include <gsl/gsl_randist.h> #include
<gsl/gsl_statistics_double.h> #include <gsl/gsl_vector.h> #include
<gsl/gsl_sf_gamma.h> // Needed for gamma function #include

- <gsl/gsl_matrix.h> #include <gsl/gsl_blas.h> #include
<gsl/gsl_statistics_double.h> #include <gsl/gsl_sf_gamma.h>
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double multinom_loglike_fun(const double totalN, gsl_vector*
cell_num_vec, const double nobs,
gsl_vector* cell_mean_vec){

double n_unobs = totalN - nobs;
int j;
double loglike=0, sumprobs=0;

//cout<<"$$$$$$ " <<endl;

loglike+=gsl_sf_lnfact((unsigned int)totallN);

//cout<<loglike<<endl;

loglike -= gsl_sf_lnfact((unsigned int) n_unobs);

//cout<<loglike<<endl;

for(j=0;j<cell_num_vec->size;j++){ //Trick to avoid passing length of vector
loglike+=cell_num_vec->datal[j]l*log(cell_mean_vec->datalj]/totalN) -

gsl_sf_lnfact((unsigned int) cell_num_vec->dataljl);

sumprobs+=cell_mean_vec->datal[j]/totalN;
//cout<<loglike<<endl;

}

loglike += n_unobs * log(1l - sumprobs);

//cout<<loglike<<endl; -

//cout<<"$$$$$$" <<endl;

return(loglike) ;

int main(int argc, char* argv[]) {
/*Creates file streams for file output */
ifstream the_data_file, the_param_file;
ofstream the_output_file;
/*Checks to see that enough arguments have been givenx/
if(argec < 4){

cout<<"Not enough arguments"<<endl;
return(0) ;

}

/* Opens file for writing */
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/*Assumes first argument is data filex/
the_data_file.open(argv[l], ios::in);
if (1the_data_file){
cout<<"Parameter file not found"<<endl;
}
/*Assumes second argument is the parameter file*/
the_param_file.open(argv(2], ios::in);
if (!the_param_file){
cout<<"Parameter file not found"<<endl;
}
/*Assumes third argument is output filex/
the_output_£file.open(argv[3], ios::out);
if (the_output_file){
cout<<"File a not found"<<endl;
}
/*Set up for RNGx/

gsl_rng *r; -
const gsl_rng_type * T;

gsl_rng_env_setup();

T = gsl_rng_default;
r = gsl_rng_alloc (T);

/*Assumes that fourth argument is the seed*/
long int seed;

seed = atoi(argv(4]);
gsl_rng_set(r,seed);

/*Maintenanace varsk/

254



int ctr; .

int feasible_flag, pwise_loop, levelwise_loop, pwise_ctr, pwise_ctr2;
double current_like=0, prop_like=0;

double current_prior=0, prop_prior=0;

/*Assumes that the number of iterations is first*/

int number_of_samples;
the_param_file >> number_of_samples;

/*Assumes that the number of data points is second in
parameter file i.e. Kx/

int numsources;

the_param_file >> numsources;

/*Assumes that the number by which to thin is third in
parameter file */

int thin;
the_param_file >> thin;

cout<<number_of_samples<<" "<<numsources<<endl;

int nobs=0;

int n_rand_effect=-numsources;

// counts how many of the RE, i.e. the two or more source gammas are to be estimat -
// i.e. how many ahve non-zero prior variance in param_file

// need to initialise at -K since in loop where it is updated below

// the loop includes the betastar terms and there are K of them

int num_observed_counts = (int)pow(2, (double)numsources) - 1;

int data_loop;
gsl_vector* observed_counts;
observed_counts = gsl_vector_alloc(num_observed_counts);

/* Read in cell entries of incomplete contingency table from data file
ordered according to order laid out by Ainv matrix*/

for(data_loop=0;data_loop<num_observed_counts;data_loop++){
the_data_file >> observed_counts->data([data_loop];
nobs += (int) observed_counts->dataldata_loop];
cout<<gsl_vector_get (observed_counts,data_loop)<<" ";
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}

cout<<endl; // to return to a new line
/*Declare betalx*/

double betal, betaO_prop;
double N;
int beta_loop;

/* 4th entry in param file is starting value for N */
the_param_file >> N;
beta0 = log(N);

/*Declare gammas*/
gsl_vebtor *gammas, *gammas_prop;
int gammas_loop;
gammas = gsl_vector_calloc(num_observed_counts); // Sets equal to zero
gammas_prop = gsl_vector_calloc(num_observed_counts); // Sets equal to zero
/* Put in loop to read gammas here from param file
5th entry is beta vec
6th entry is RE vector
Note that the K beta terms and d-K RE terms are all
called gammas here in this code for convenience.
They will all be generated similarly centered on previous value
Under independence all REs are zero */
cout<<"*xx*"<<endl;
for(gammas_loop = 0; gammas_loop < num_observed_counts; gammas_loop++){
the_param_file >> gammas->data[gammas_loop];
gammas_prop->data[gammas_loop] = gammas->datal[gammas_loop] ;
cout<<gammas->data[gammas_loop]<<" ";
¥

cout<<endl;

/*Declare acceptance indicators*/

int accept_N;

gsl_vector *accept_gammas;

accept_gammas = gsl_vector_calloc(numsources);

/* this is of length equal to number of sources, i.e. K, since we accept/reject
at each level so have acceptance indicator at each level of source
combinations, i.e. single, pair, threeway etc. */

/*Declare large vector multiplication*/
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gsl_vector *current_logmargmeanvec, *prop_logmargmeanvec;
gsl_vector *current_margmeanvec, *prop_margmeanvec;
gsl_vector *current_cellmeanvec, *prop_cellmeanvec, *output_cellmeanvec;

current_logmargmeanvec=gsl_vector_calloc(num_observed_counts);
prop_logmargmeanvec=gsl_vector_calloc(num_observed_counts) ;
current_margmeanvec=gsl_vector_calloc(num_observed_counts);
prop_margmeanvec=gsl_vector_calloc(num_observed_counts) ;
current_cellmeanvec=gsl_vector_calloc(num_observed_counts);
prop_cellmeanvec=gsl_vector_calloc(num_observed_counts);
output_cellmeanvec=gsl_vector_calloc(num_observed_counts);

/*Set up Ainv matrix
Read in 7th entry in param file as Ainv matrix*/

gsl_matrix *Ainv;
Ainv = gsl_matrix_alloc(num_observed_counts,num_observed_counts);
int matrowloop,matcolloop;
double tempval;
for (matrowloop=0;matrowloop<num_observed_counts;matrowloop++){
for (matcolloop=0;matcolloop<num_observed_counts;matcolloop++){
the_param_file >> tempval;
gsl_matrix_set(Ainv,matrowloop,matcolloop,tempval);

/* Read in 8th entry
Set up X matrix
the design matrix for all gammas,
i.e. betastar (not including beta0) and RE (CIDs) centered on 0%/

gsl_matrixx X;
X = gsl_matrix_calloc(num_observed_counts, num_observed_counts);
for (matrowloop=0;matrowloop<num_observed_counts;matrowloop++){
for(matcolloop=0;matcolloop<num_observed_counts;matcolloop++){
the_param_file >> tempval;
gsl_matrix_set (X,matrowloop,matcolloop,tempval);
cout<<gsl_matrix_get (X, matrowloop, matcolloop)<<" "; // prints out X mat
} -

cout<<endl;
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/*Setting vector for beta0 constants i.e. vector of
values which mulitply beta0 in model */

gsl_vector *betalOconstvec;

betaOconstvec = gsl_vector_alloc(num_observed_counts);

pvise_ctr=0;

for(pwise_loop=1;pwise_loop<=numsources;pwise_loop++){
for(levelwise_loop = pwise_ctr;
levelwise_loop < pwise_ctr+(int) gsl_sf_choose(numsources, pwise_loop);
levelwise_loop++){
betaOconstvec->data[levelwise_loop] = 1 - pwise_loop;
cout<<levelwise_loop<<" "<<l-pwise_loop<<endl; ‘
// prints out level and corresponding factor to multiply beta0
} ' -
pwise_ctr = pwise_ctr+(int) gsl_sf_choose(numsources, pwise_loop);

}

/* Calculate marginal mean and cell vectors*/

/* Calculate current log marg meanx/

// First multiply X by vector of gammas

gsl_blas_dgemv(CblasNoTrans, 1.0, X, gammas, 0.0, current_logmargmeanvec);
// Second add in the correct number of beta0 terms to each entry in vector
gsl_blas_daxpy(betal,betalOconstvec,current_logmargmeanvec);

/* Turn into current marginal mean’s*/
// Note on dereferencing vectors: (x¥betas).data is equivalent to betas->data .

for(pwise_ctr = 0; pwise_ctr < num_observed_counts; pwise_ctr++){
current_margmeanvec—->datafpwise_ctr] =

exp(current_logmargmeanvec->data([pwise_ctr]);

}

/* Turn into Cell means by premultiplying by Ainv*/

gsl_blas_dgemv(CblasNoTrans,1.0,Ainv, current_margmeanvec, 0.0,
current_cellmeanvec) ;
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/* Turn into Cell means by premultiplying by Ainv+/

- gsl_blas_dgemv(CblasNoTrans,1.0,Ainv, current_margmeanvec, 0.0,
output_cellmeanvec) ;

// Evaluate likelihood from starting values
current_like = multinom_loglike_fun(N, observed_counts, nobs, current_cellmeanvec)

/*Read in prior values*/

double priormu_betaO, priorsd_betaO;

gsl_vector *priormu_gamma, *priorsd._gamma, *indicator_sd_gamma;
priormu_gamma = gsl_vector_alloc(num_observed_counts);
priorsd_gamma = gsl_vector_alloc(num_observed_counts) ;
indicator_sd_gamma = gsl_vector_alloc(num_observed_counts);
/*a vector of indicators of whether the corresponding gamma
should be estimated or left set to O

clearly the first K entries which correspond to the

single sources betastar vector should be estimated

and these entries should be equal to 1 */

// 9th and 10th entry in param file

the_param_file >> priormu_betaO;

the_param_file >> priorsd_beta0;

/* 11th series of entries are prior mean and sd first for betastar vector

and then in the 12th series for each of the d-K gamma RE (usually centered on 0) *
for(gammas_loop=0;gammas_loop<num_observed_counts;gammas_loop++){

the_param_file >> priormu_gamma—>data[gémmas_loop];

the_param_file >> priorsd_gamma->datal[gammas_loop];

n_rand_effect = n_rand_effect + (priorsd_gamma->datalgammas_loop] > 0);
indicator_sd_gémma—>data[gammas_loop] = (priorsd_gamma->data[gammas_loop] > 0);
// set equal to 1 if gamma param to be estimated or to 0 if not

}
cout << " Number random effects " << n_rand_effect << endl;

/*Prior calculationsx/

int priorloop;

current_prior = log(gsl_ran_gaussian_pdf (beta0 - priormu_betalO, priorsd_betal));
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/*Set up current stuffx/
/*Set proposal size for N and betax/

double N_jump, N_prop;

gsl_vector *gammas_jump;

gammas_jump = gsl_vector_alloc(numsources);

//double beta_jump;

// 13th and 14th entries in param file

the_param_file >> N_jump;

cout << "N jump:"<< N_jump << endl;

//the_param_file >> beta_jump;

for (gammas_loop=0;gammas_loop<numsources;gammas_loop++){
the_param_file >> gammas_jump->data[gammas_loop] ;
cout<<"Gammas jump:"<< gammas_jump->datal[gammas_loop] <<endl;

}

/* Set random effects variance to initial value.
15th entry in file. 16th and 17th entry
are prior scale s20 and prior nu0 of RE variance distn*/
double sd_re;
double nu0, nu , df, scale;
// set degrees of freedom parameter of prior & posterior dist of random
// effects variance. ‘
double s20, s2;
// set scale parameter of prior &
// posterior dist of random effects variance
// start only from numsources since don’t want
// to look at variance of betastar
// terms which are the first K gamma terms in our gamma vector
/*for (gammas_loop=numsources ;gammas_loop<num_observed_counts;gammas_loop++){
if (priorsd_gamma->data[gammas_loop]>0)
var_re = priorsd_gamma->data[gammas_loop];
x/
// actually this loop goes through all RE variances and so ends up
// starting from the last values which is nonzero.
// All RE variance which are non-zero should be set to same value
// as each other since that is what would be required for fixed variance case.

the_param_file >> sd_re; //initial value

the_param_file >> s20;
the_param_file >> nu0;
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df = nu0 + (double)n_rand_effect; // known from calculation of Gibbs update

// now reset all RE sd equal to initial value of RE sd if
// they are supposed to be estimated as given by indicator_sd_gamma vector
for (gammas_loop=numsources;gammas_loop<num_observed_counts;gammas_loop++) {
priorsd_gamma->data[gammas_loop] = indicator_sd_gamma->data[gammas_loop]*. sd_re
// this is under the assumption that all RE have same variance
cout << " Initial RE sd " << priorsd_gamma->datalgammas_loop] << endl;

¥

/*Main loop*/

double accept_ratio;
int level_flag=0;
for(ctr=0; ctr<number_of_samples; ctr++){
// reset acceptance indicators accept_N and accept_gammas
accept_N = 0;
for(pwise_ctr2 = 0; pwise_ctr2 < numsources; pwise_ctr2++){
accept_gammas->data[pwise_ctr2] = 0;

}

/*Betas together */

// use this next trick to correctly have probability of going +-N_jump,
// need to add 1 to upper bound so that taking floor will get to +N_jump
N_prop = floor(gsl_ran_flat(r, -N_jump, N_jump+1) + N);

betalO_prop = log(N_prop);

/* Calculate prop log marg mean*/

gsl_blas_dgemv(CblasNoTrans, 1.0, X, gammas_prop, 0.0, prop_logmargmeanvec);
// prop_logmargmeanvec = XJ*¥gammas_prop
gsl_blas_daxpy(betaO_prop,betalconstvec,prop_logmargmeanvec) ;

// prop_logmargmeanvec= betaO_propxbetalOconstvec + prop_logmargmeanvec

/* Turn into prop marginal means*/
for(pwise_ctr2 = 0; pwise_ctr2 < num_observed_counts; pwise_ctr2++){
prop_margmeanvec->data[pwise_ctr2] = exp(prop_logmargmeanvec->datalpwise_ctr

¥

/*Turn into prop cell means*/
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gsl_blas_dgemv(CblasNoTrans,1.0,Ainv, prop_margmeanvec, 0.0,
prop_cellmeanvec); :
// prop_cellmeanvec = Ainv\%*\¥prop_margmeanvec

feasible_flag = (gsl_vector_min(prop_cellmeanvec) > 0) &&
(N_prop > max((double)nobs,

gsl_stats_mean(prop_cellmeanvec->data, 1,
num_observed_counts)*(double) (num_observed_counts)));

if(feasible_flag){
/*Accept/reject*/

prop_like = multinom_loglike_fun(N_prop,observed_counts,
nobs, prop_cellmeanvec);

/*Calculate prior distribution for betal */

current_prior = log(gsl_ran_gaussian_pdf (betal -
priormu_betal, priorsd_beta0l));

prop_prior = log(gsl_ran_gaussian_pdf (betaO_prop -
priormu_betal, priorsd_beta0l));

/*Calculate accept/reject ratio for betalx/
accept_ratio = prop_like + prop_prior - (current_like + current_prior);

if(gsl_ran_flat(r,0.0,1.0)<exp(accept_ratio)){
current_like = prop_like;
beta0 = betaO_prop;
N = N_prop;
accept_N = 1;
//cout<<"### “"<<accept_N<<endl;
}
} // end of feasible_flag check on N_prop

/*Update for the proposed beta/eta vector */
pwise_ctr=0;
gsl_vector_memcpy (gammas_prop,gammas) ;

for(pwise_loop=1;pwise_loop<=numsources;pwise_loop++){
level_flag=0;
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for(levelwise_loop = pwise_ctr;
levelwise_loop < pwise_ctr+(int) gsl_sf_choose(numsources, pwise_loop);
levelwise_loop++){

if (priorsd_gamma->data[levelwise_loop] >0){

// Only update gammas_prop different to O if

// the prior variance for that component > O.

// In this way do not update Re that we want to set equal to O

/* Note on use of gsl_vector_set(gsl_vector * v, size_t i, double x)
This function sets the value of the i-th element of a vector v to x.
- If i lies outside the allowed range of O to n-1
then the error handler is invoked */

gsl_vector_set(gammas_prop,levelwise_loop,
gammas->data[levelwise_loopl+gsl_ran_gaussian(r,
gammas_jump->data{pwise_loop-1]));
level _flag=1; .
// this indicates that we’ve reached the end of the series of marginal ga
// corresponding to the same number of sources
// e.g. single source, then pairs etc.
}

} // end of ’for’ loop over levelwise loop

if (level_flag){

// START level_flag: so for the same level of margins,
// i.e. single then pairs then triples etc.
feasible_flag =0;

// reset feasible flag to O so that can make

// a check at each level of sources for gammas

/* Calculate prop log marg meank/

gsl_blas_dgemv(CblasNoTrans, 1.0, X, gammas_prop, 0.0, prop_logmargmeanvec) ;
gsl_blas_daxpy(betal,betaOconstvec,prop_logmargmeanvec) ; '

/* Turn into prop marginal means by just updating those margins

which are being dealt with,

i.e. single source, then pairs then triples etc. All other entries remain the sa
for(pwise_ctr2 = 0; pwise_ctr2 < num_observed_counts; pwise_ctr2++){
prop_margmeanvec->data[pwise_ctr2] = exp(prop.logmargmeanvec->datalpwise_ctr2]);
} - ”
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/*Turn into prop cell means*/
gsl_blas_dgemv(CblasNoTrans,1.0,Ainv, prop_margmeanvec, 0.0,prop_cellmeanvec);

feasible_flag = (gsl_vector_min(prop_cellmeanvec) > 0) && (N > max((double)nobs,
gsl_stats_mean(prop_cellmeanvec->data, 1, num_observed_counts)*
(double) (num_observed_counts)));

if (feasible_flag){

/*Aécept/reject by level of number of sources in margin
i.e. single source then pairs, triples, etc.*/

prop_like = multinom_loglike_fun(N, observed_counts, nobs, prop_cellmeanvec);

/*Calculate prior distribution for gammas*/
current_prior=0; )
prop_prior=0;
for(levelwise_loop = pwise_ctr;
levelwise_loop < pwise_ctr+(int) gsl_sf_choose(numsources, pwise_loop);
levelwise_loop++){
if (priorsd_gamma->data[levelwise_loop] >0){
current_prior += log(gsl_ran_gaussian_pdf (gammas->data[levelwise_loop] -
priormu_gamma->data[levelwise_loopl], priorsd_gamma->dataflevelwise_loopl));
prop_prior += log(gsl_ran_gaussian_pdf (gammas_prop->data(levelwise_loop] -
priormu_gamma->data[levelwise_loop], priorsd_gamma->datallevelwise_loopl));
} // end of ’if’ priorsd_gamma->datal[levelwise_loop] >0

}.
/*Calculate accept/reject ratiox/
accept_ratio = prop_like + prop_prior - (current_like + current_prior);

if(gsl_ran_flat(r,0.0,1.0)<exp(accept_ratio)){

gsl_blas_dgemv(CblasNoTrans,1.0,Ainv, prop_margmeanvec, 0.0,
output_cellmeanvec) ;

current_like = prop_like;
accept_gammas->data[pwise_loop-1] = 1;
for(levelwise_loop = pwise_ctr;
levelwise_loop < pwise_ctr+(int) gsl_sf_choose(numsources, pwise_loop);
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levelwise_loop++)q{
gammas->data[levelwise_loop] = gammas_prop->datallevelwise_loop];
}
} // end ’if’ accept_ratio
} // END feasible_flag
} // END level_flag:

pwise_ctr = pwise_ctr+ (int) gsl_sf_choose(numsources,pwise_loop);
// To shift down gamma vector by the number of at the specific level
// of margin, i.e. single then pair, etc. '

} // END for(pwise_loop=1;pwise_loop<=numsources;pwise_loop++){

/* Gibbs step for RE variance */

= 0.0; .
for(gammas_loop = numsources; gammas_loop < num_observed_counts; gammas_loop++){
// add up over RE not including betastar

nu = nu + gammas->data[gammas_loop]*gammas->data[gammas_loop];
}
scale = (nuO*s20 + nu)/df;
sd_re = sqrt((dfxscale)/gsl_ran_chisq(r,df));

// now update sd of each RE according to whether or not it should be estimated

for (gammas_loop=numsources ; gammas_loop<num_observed_counts;gammas_loop++){
priorsd_gamma->data[gammas_loop] = indicator_sd_gamma->datal[gammas_loopl* sd_re;
// this is under the assumption that all RE have same variance

} .

// THINNING
if( (ctr % thin)==0){
the_output_file<< betal<<" ";
for(pwise_ctr2=0;pwise_ctr2<num_observed_counts;pwise_ctr2++){
the_output_file << gammas->datalpwise_ctr2]<<" *;

}

the_output_file << accept_N<<" ";
for(pwise_ctr2=0;pwise_ ctr2<numsources ;pwise_ ctr2++){
the_output_file << accept_gammas->data[pwise_ctr2]<<" ";

}
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the_output_file<< sd_re<<" ";

for (pwise_ctr2=0;pwise_ctr2<num_observed_counts;pwise_ctr2++){
the_output_file << output_cellmeanvec->datal[pwise_ctr2]<<" ";

the_output_file << endl;
}

system("PAUSE") ;
/*Allocate space for the data*/

gsl_vector_free(prop_margmeanvec) ;
gsl_vector_free(current_margmeanvec) ;
gsl_vector_free(prop_cellmeanvec);
gsl_vector_free(current_cellmeanvec) ;
gsl_vector_free(output_céllmeanvec);
gsl_vector_free(gammas) ;
gsl_vector_free(prop_logmargmeanvec) ;
gsl_vector_free(current_logmargmeanvec);
gsl_vector_free(observed_counts);
gsl_vector_free(betalconstvec) ;
gsl_vector_free(priormu_gamma);
gsl_vector_free(priorsd_gamma) ;
gsl_rng_free(r);
the_output_file.close();
the_param_file.close();
the_data_file.close();

return(0);
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