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Abstract 

The central theme of this dissertation is the development of a new approach to con

ceptualize and quant if y dependence structures of capture-recapture data for closed 

populations, with specifie emphasis on epidemiological applications. We introduce 

a measure of source dependence: the Coefficient of IncrementaI Dependence (CID). 

Properties of this and the related Coefficient of Source Dependence (CSD) of Vandal, 

Walker, and Pearson (2005) are presented, in particular their relationships to the con

ditional independenee structures that can be modelled by hierarchieal joint log-linear 

models (HJLLM). From these measures, we develop a new class of marginallog-linear 

models (MLLM), which we compare and contrast to HJLLMs. 

We demonstrate that MLLMs serve to extend the uni verse of dependence struc

tures of capture-recapture data that can be modelled and easily interpreted. Further

more, the CIDs and CSDs enable us to meaningfully interpret the parameters of joint 

log-linear models previously excluded from the analysis of capture-recapture data for 

reasons of non-interpretability of model parameters. 

In order to explore the challenges and features of MLLMs, we show how to produce 

inference from them under both a maximum likelihood and a Bayesian paradigm. 

The proposed modelling approach performs well and provides new insight into the 

fundamental nature of epidemiological capture-recapture data. 



Résumé 

Le thème central de la présente thèse est le développement d'une nouvelle approche 

conceptuelle et quantitative envers les structures de dépendance de données de capture

libération obtenues de population fermée, particulièrement en ce qui concerne les 

applications épidémiologiques. On propose une mesure de dépendance des sources. 

de données : le coefficient de dépendance incrémentielle (CID). On démontre les pro

priétés de cette mesure et du coefficient de dépendance de source (CSD) de Vandal et 

al. (2005), en particulier leurs relation avec les structures d'indépendance condition

nelle habituellement modélisées à l'aide de modèles log-linéaires hiérarchiques conjoint 

(HJLLM). À partir de la forme des deux mesures, on développe une nouvelle classe 

de modèles log-linéaires marginaux (MLLM), que nous comparons et contrastons aux 

HJLLM. 

On démontre que les MLLMs élargissent l'univers des structures de dépendance 

de données de capture-libération qui peuvent être modélisées et aisèment interprétées. 

De plus, les CID et CSD permettent une interprétation des paramètres des modèles 

log-linéaires non hiérarchiques. Auparavant, ces modèles étaient exclus de l'analyse 

des données de type capture-libération à cause de l'impossibilité d'interpréter les 

paramètres du modèle. 

Afin d'explorer les problématiques et les caractéristiques des MLLM, on présente 

des résultats de l'approche de vraisemblance ainsi que de l'approche bayésienne. Pour 

résumer, l'approche de modélisation proposée offre des résultats satisfaisants et ouvre 

11 



de nouvelles perspectives sur la nature même des données de capture-libération dans 

le domaine de l'épidémiologie. 
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Overview 

In this dissertation we present a new modelling approach for capture-recapture data 

of closed populations. The main motivation for the work is the application of capture

recapture methodology (CRM) to epidemiology; in this context several overlapping 

sources of data that record individuals with the condition of interest are used. Sta

tistical modelling is used to account for the features of the observed data in order 

to estimate the unknown total number of individuals N with the condition of inter

est. CRM is particularly useful for (a) populations that are hard to count perhaps 

because the individuals, such as intravenous drug users, do not wish to be identified, 

and (b) for rare conditions, such as amyotrophie lateral sclerosis, an acute disease of 

the central nervous system, for which alternative enumeration approaches would be 

prohibitively expensive. 

Dependence between sources is the primary feature to take into account when 

undertaking statistical modelling of capture-recapture data. One of the most com

mon approaches is the use of joint log-linear models in which sources are treated as 

factors and source dependence is modelled via the inclusion of interaction terms. In 

partieular, hierarchieal joint log-linear models are most widely used in order to model 

conditional dependence structures, maintain interpretability of model parameters and 

apply theory from graphical models. 

The central theme of this dissertation is the development of a new approach to 

conceptualize and quantify dependence structures of capture-recapture data. In so 



doing we present a new framework in which to explore the relationship between N and 

the dependence structure and the inherent problem of non-identifiability: namely that 

knowledge of the population size N together with the observed data fully determines 

the dependence structure of the data. Nonetheless, estimating N when incomplete 

but overlapping data sources are available, is of relevance to many areas of public 

health. 

We develop a measure of source dependence: the Coefficient of IncrementaI De

pendence (CID), related to the Coefficient of Source Dependence (CSD) of Vandal et 

al. (2005). For K sources these measures exist for aIl possible marginal combinat ions 

of sources. Properties of the measures are provided, including their relationships to 

the specifie conditional independence structures that can be modelled by hierarchical 

joint log-linear models. 

The form of these measures motivates the development of a new modelling ap

proach in which marginal means are modelled rather than joint (or cell) means as is 

the case with joint log-linear models, which we name the class of marginallog-linear 

models (MLLM). Two equivalent parameterizations are presented, the first in terms 

of the CIDs, the second in terms of the CSDs. Both provide their own useful interpre

tations. In fact, these measures enable us to meaningfully interpret the parameters 

of non-hierarchical joint log-linear models. In turn, this enables us to sensibly ex

tend the universe of dependence structures able to be modelled using joint log-linear 

models which were previously excluded for reasons of non-interpretability of model 

parameters. 

In order to relate the class of MLLMs to structures modelled by the standard an

alytical approach of hierarchical joint log-linear modelling, we derive the form of the 

MLLM for joint and conditional independence structures. First it is shown that, for 

the simple dependence structures of complete independence and mutual dependence, 

the marginal modelling approach is equivalent to the joint log-linear modelling ap-
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proach. However, even for the three-source case, there is no unconstrained marginal 

model equivalent to the hierarchical joint log-linear model for conditional inde pen

dence. Consequently, our new approach is more than a mere reparameterization of 

the standard hierarchial joint log-linear modelling approach. Thus, the universe of 

dependence structures that can be modelled is extended via this work. 

Inference is made using both the likelihood and Bayesian paradigms. In both 

cases certain constraints must be enforced on the marginal means originating from 

the multinomial nature of the cell counts. The CIDs are treated as fixed effects in 

the likelihood approach whilst the Bayesian formulation assumes that the CIDs are 

random effects. The latter formulation fits into the class of generalized linear mixed 

models. 

Both real and simulated data are analyzed. Simulated data are used to demon

strate that inference is in line with reality. It is shown that our modelling approach 

out-performs hierarchial joint log-linear models when the true underlying dependence 

structure is non-hierarchical. The analysis of real data serves to explore the features 

and challenges of our proposed class of marginallog-linear models. 

In short, the proposed marginal modelling approach performs well and provides 

new insight into the fundamental nature of epidemiological capture-recapture data. 

3 



Chapter 1 

Introduction and Motivation 

Capture-recapture methodology (CRM) is used in epidemiology to estimate the 

size of a human population by combining several incomplete sources of information. 

The total population size is estimated by using the information in the overlap of these 

sources to estimate how many individu aIs have not been observed. 

In or der to understand a disease it is important to obtain accurate estimates of 

its prevalence. Such knowledge helps in the development of strategies to monitor the 

disease over time, as well as to implement prevention or management programs. CRM 

can be used for such ends. It has broad application and has been used to estimate 

the prevalence or incidence of a number of different disorders, such as neurological 

disorders including multiple sclerosis (Forbes & Swingler, 1999; Corona & Romàn, 

2006), amyotrophie lateral sclerosis (Coffman, Homer, Grambow, & Lindquist, 2005; 

Preux et al., 2000), epilepsy (Debrock, Preux, & Houinato, 2000), Parkinson's dis

ease (Sanchez, Buritica, Pineda, Uribe, & Palacio, 2004) and dementia (?, ?), as well 

as other conditions including spina bifida (Hook & Regal, 1980), strokes (Tilling, 

Sterne, & Wolfe, 2001) birth defects (Fienberg, 1972), fetal alcohol syndrome (Ege

land, Perham-Hester, & Hook, 1995), diabetes (Fienberg, 1972; Bruno et al., 1994; 

Ismail, Beeching, Gill, & Bellis, 2000) and HIV (Bartolucci & Forcina, 2006; Abeni, 

4 



Brancato, & Perucci, 1994). 

Applications in human populations also extend to a broad range of issues in public 

health and demography, such as in estimating the number of hospitalizations due to 

influenza (Grijalva et al., 2006), determining the number of intravenous drug users 

(Hickman et al., 2004; Domingo-Salvany et al., 1998), of street children (Gurgel, da 

Fonseca, Neyra-Castaeda, Gill, & Cuevas, 2004), estimating the size of a regionalles

bian population (Aaron, Chang, Markovic, & LaPorte, 2003), as well as determining 

fertility and mortality (Aslan, Ozcebe, Bertan, & Karaagaoglu, 2004). It has also 

found politically relevant application in the realm of human rights. In particular, it 

has been used to estimate the nUJ;nber of human rights violations induding killings 

in conflicts in Kosovo (Hagan, Schoenfeld, & Palloni, 2006; Ball & Asher, 2002) and 

East Timor (Silva & Ball, 2005). 

It is believed that the first recorded application in human populations was in 

the 18th century when Laplace used the methodology to estimate the population of 

France (Hook & Regal, 1995). In terms of applications to human health, the first 

use appears to have been by Sekar and Deming (International Working Group for & 

Forecasting, 1995a) who used CRM to estimate birth and death rates in India and to 

assess the extent of registration of these events. 

Applications of CRM are most relevant for populations that are difficult to enu

merate. Reasons for such difficulties might be related to the hidden nature of the 

condition. For instance intravenous drug users are difficult to reach (Hickman et al., 

2004; Domingo-Salvany et al., 1998). An alternÇ),tive reason might be that the con

dition of interest is a rare condition, such as amyotrophie lateral sderosis (Preux et 

al., 2000). 

CRM provides an alternative to standard sampling schemes which might be pro

hibitively expensive, even for common conditions. In using existing data sources, 

costs can be reduced. Moreover, estimates obtained more appropriately are better 
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able to correct for under-count, which occurs under sampling schemes with differ

ent sampling, or capture, probabilities. Under-count can arise in many instances, 

and might be quite large for chronic diseases, such as multiple sclerosis (Forbes & 

Swingler, 1999), as weIl as infectious diseases such as Severe Acute Respiratory Syn

drome (SARS) (Lange & LaPorte, 2003), since such conditions are often treated by 

a variety of different health professionals and even by private practitioners, (Lange, 

Chang, & LaPorte, 2004). Such mechanisms pose a variety of challenges to the de

tection of individuals with the condition of interest. 

U nder-count is a problem inherent in population censuses. In recent decades 

much work has been undertaken to use CRM to correct for this under-count. We will 

discuss such use and the princip les associated with it in Section 1.3. Several countries, 

including the UK (Brown, Diamond, Chambers, Buckner, & Teague, 1999), Canada 

(Statistics Canada, 2006) and the USA (Freedman, 1991), have employed CRM to 

correct for the under-count inherent even in national census data (see Fienberg, 1992, 

for a bibliography). Typically, a two-source approach is adopted with the second 

source obtained by a post-enumeration survey in which a sample of the population is 

re-contacted as a follow-up to the census. 

There is extensive literature in the application of CRM to ecology. In fact, it 

is believed to be the application with the most literature starting from the work 

of Petersen in 1894 (IWGDMF, 1995). The main difference between applications 

of CRM to counting animaIs and counting humans is that a sequence of trappings 

is usually conducted for animal ,populations. The sequential time effect must be 

taken into account in statistical modelling. When studying human populations, there 

is rarely a natural time ordering to the data sources available. Consequently the 

chronological capture sequence will not be considered in this dissertation and no 

discussion of models which take this feature into account will be included. 

A note on terminology. When used in epidemiology, capture-recapture tech-
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niques are also referred to as multi-list or multi-systems methods. We will employ 

the 'capture-recapture' denomination.'Source' is used to denote the random event 

of sampling a given group and 'list' for the observed sample. Both terms will be used 

in this dissertation. 

1.1 Capture-recapture fundamentals 

In order to understand the principles of CRM, we present first an example of an 

epidemiological data set in the form typically employed, that of the incomplete con

tingency table. Then we state the assumptions made throughout the work presented 

in this dissertation. 

The goal of CRM is to estimate the unknown population size N. This is achieved 

using information about the appearance of the nobs observed individuals in several 

overlapping sources. The source membership data of the nobs individu aIs is typically 

summarized in what is called an incomplete contingency table (Fienberg, 1972). For 

instance, Table 1.1 presents an example of a three-source data set from the literature. 

It summarizes the source membership data of an nobs = 271 individuals used to 

estimate the prevalence of hepatitis in northern Taiwan (Chao, Tsay, Lin, Shau, & 

Chao, 2001). The three lists, denoted by A, Band C for consistency with the notation 

used throughout this dissertation, were described as follows (with their corresponding 

names from Chao et al., 2001): 

• A: list of records based on a serum test taken by the Institute of Preventive 

Medicine, Department of Health of Taiwan (P-list); 

• B: list of hospital records recorded by the National Quarantine Service (Q-list); 

• C: list of records collected by epidemiologists (E-list). 
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Ayes A No 

B yes B No B yes BNo 

17 

69 

18 

55 

63 

? 

Table 1.1: Hepatitis data of Chao et al. (2001) 

In order to present the type of notation used in this dissertation, the general 

incomplete contingency table for three lists is presented in Table 1.2. The table is 

AYes A No 

BYes B No B yes B No 

CYes nABC nABC nABC nABC 

C No nABC nABC nABC nABC =? 

Table 1.2: Incomplete Contingency Table: Three Source 

incomplete since the number of individuals observed in none of the sources nunobs is 

unknown. 

We consider now the information contained in the incomplete contingency table 

for three sources. For example, the number of individuals observed in all three sources 

is denoted by nABC, whilst the number observed in only source A but none of the 

other two sources is denoted by nABC. Thus, from Table 1.1, nABC = 28, whilst 

nABC = 69. We note that nunobs = nABC in the three-source case. 

An idea which will be used throughout this dissertation is that of obtaining mar

ginal counts from cell (joint, see Remark 1.1) counts. For instance, the number of indi

viduals observed in source A, irrespective of their membership in Band C, is denoted 

by nA. It is evident from Table 1.1 that nA is the sum of the 4 cell counts which appear 

in the left half of the table. That is, nA = 28+21+ 17 +69 = 135, written symbolically 
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as nA = nABC+nABë+nASC+nASë. The number ofindividuals in sources A and E, 

irrespective oftheir membership in source C, denoted by nAB, is another example of a 

marginal count. Again, it is evident from Table 1.1 that nAB is obtained by summing 

the 2 entries in the first column of data in the table. Therefore, nAB = 28 + 21 = 49, 

given symbolically by nAB = nABC + nABë' Likewise nAS is obtained by summing 

the second column of the table: nAS = nASC + nAsë = 17 + 69 == 86. Similàrly, nA 

can be decomposed as follows: nA = nAB + nAS = 49 + 86 = 135. 

Remark 1.1 Terminology: jointjcell and marginal. 

The terminology joint and cell will be used interchangeably throughout this disser

tation. In so doing we are able to distinguish between the marginal cou~ts and the 

cell, or joint, counts of the incomplete contingency table. The terminology joint is 

of particular use when referring to modelling techniques, such as those described in 

Section 1.2.1. 

Example 1.1 In the three-source example provided in Table 1.1, nAsë = 69 is a 

joint count, w:hilst nA = 135 and nAB = 49 are marginal counts. Note that the 

joint count of the highest order, namely nABC = 28, is also a marginal count. As a 

consequence, there are as many marginal counts as cell counts (see Remark 1.3). 

Remark 1.2 Notation: nR. 

We describe here notation that is applicable to both joint and marginal counts. S 

will be used to denote the complement of any source S. We further let 

nR= n S , 
SER 

where n is a set of sources or source complements. 

Example 1.2 Consider the hepatitis data set of Table 1.1. Then, for n = {A, E, C}, 

nR = n{A,S,C} = 69, which we denote by = nABC for simplicity. Alternatively, for 
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R = {A}, nn = n{A} = 135, which, again for simplicity, we den ote by nA. We note 

that it is possible to distinguish between the use of nn for cell and marginal counts 

by examining the cardinality of R: for the general K -source case, should IRI = K, 

then nn refers to a cell count, else to a marginal count should IRI < K (except in 

the case of the marginal, equivalently joint, K-way count, which is of order K). 

Remark 1.3 Notation: neelh n marg , IL and m. 

For clarity, we will use the three-source case to introduce the notation. The cell and 

marginal counts can be summarized in vector form as follows 

nAÊC nA 

nABC nB 

nAÊc nc 

neeli = nABC and n marg = nAB 

nABC nAC 

nABC nBC 

nABC nABC 

There is a one-to-one linear transformation between the vectors of cell and· marginal 

counts, as ordered as ab ove , summarized by the following relationship 

n marg = Aneeli' 

where 
1 0 0 1 1 0 1 

0 1 0 1 0 1 1 

0 0 1 0 1 1 1 

A= 0 0 0 1 0 0 1 (1.1) 

0 0 0 0 1 0 1 

0 0 0 0 0 1 1 

0 0 0 0 0 0 1 
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We notice that the entries in n marg are arranged so that marginal counts of the 

same order are placed together, with single-source counts followed by pairwise counts, 

then three-way counts. Moreover, the first source subscript A runs faster than B, 

which runs faster than C. Throughout this dissertation such a convention will be 

employed. As a result, the ordering of the entries of ncell is such that n marg = Ancell' 

with A the upper triangular matrix that corresponds to such an ordering. 

Furthermore, when a probability model is assumed for the cell counts (to be de

scribed in Section 1.1.3), IL and m will be used to denote the cell and marginal means 

of the corresponding cell and marginal counts given by ncell.and n marg , respectively. 

Thus, the relationship between IL and m is given by m = AIL, just as n marg = Ancell' 

Remark 1.4 Notation: P ['Rn]. 

As with Remark 1.2, let 'R denote a list of sets (sources or source complements). We 

define 'Rn = nsEnS. Then 

For simplicity we use P ['R] to denote P ['Rn]. 

Example 1.3 Consider again the hepatitis data set of Table 1.1. Then, for 'R = 

{A, E, C}, 

P['Rn] = P [AnEnC]. 

Alternatively, for 'R = {A} 

P['Rn] = PlA]. 

Assumptions made throughout the dissertation 

There are several assumptions made throughout this dissertation, which are in line 

with those frequently adopted in the literature (see the International Working Group 
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for Disease Monitoring and Forecasting, IWGDMF, 1995a). The assumptions will be 

specified here. For assumptions likely to be violated in the epidemiological context, we 

provide references to work detailing approaches to accommodate such violations. The 

meaning and implications of the assumptions will become clearer via the discussions 

in the remainder of the current chapter. 

• The population is closed. 

• There is no time ordering to the sources. 

• AU of the population can be observed. 

• There is perfect matching (i.e. no tag loss, in the terminology of the ecological 

capture-recapture literature). 

• AU cases are true cases, Le. there are no false positives. 

First we consider the assumption that the population under study is a closed 

population, together with the second assumption of no time ordering. For animal 

populations there are often situations, generaUy associated with the sequential time 

ordering of trappings, that cause the population under study to be open rather than 

closed. If animaIs can die or move from the study site then probabilities of capture will 

be affected and the population is no longer closed. In epidemiology, such difficulties 

are usuaUy avoided (Chao et al., 2001 discuss differences between animal and human 

populations). If the study objective is to determine the prevalence of a condition 

at a given moment, then the population is closed precisely by definition and by the 

choice of a specific date on which to measure the prevalence. Thus, the population 

is assumed to be closed by design. For incidence studies, if the period under study is 

sufficiently short, then births, deaths or emigration will have minimal effect. Again, 

it is reasonable to assume the population is closed. Thus, for our purposes and 

throughout this dissertation, we will assume the population is closed. Accordingly, 
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we will not review the extensive literature on open models with dynamic components 

( Schwarz & Seber, 1999, provide an extensive overview of capture-recapture methods 

for animal populations). 

Techniques exist to account for violations of the the fourth and fifth assumptions. 

Seber, Huakau, and Simmons (2000) and Lee, Seber, Holden, and Huakau (2001) 

discuss list mismatches for the case of two sources and several sources, respectively, 

whilst Lee (2002) provides a general discussion of violations of the assumption of 

perfect mat ching between sources. Should there be false positive diagnoses, Brenner 

(1994) and Brenner (1996) explore potential consequences, whilst de Greef et al. 

(2006) present methods to account for such misdiagnoses with analysis of a real data 

set. 

Remark 1.5 Scope of this dissertation. 

The methodology presented in this dissertation is intended to be used for three or more 

sources, as with aIl modelling approaches described in later chapters. For reasons of 

clarity, the two-source case will be considered in the next section. 

1.1.1 Dependence 

We recall that the primary goal of capture-recapture analysis is to estimate N. In 

or der to do so, it is necessary to account for features of the observed data such as rela

tionships between the sources. The primary feature to address is that of dependence 

of sources. 

In order to introduce the notion of dependence, we will discuss the simplest 

capture-recapture setting for two sources, A and B. Table 1.3 is the incomplete 

contingency table for the two-source setting. In this case, nunobs = n;w, just as 

nunobs = nABë in the three-source example presented above. The well-known Pe-

13 



Byes nAB nAË 

BNo nÂB . nÂË =? 

Table 1.3: Incomplete Contingency Table: Two Sources 

tersen (Petersen, 1896) estimator of N is given by 

N
A _ nAnB 

- , 
nAB 

(1.2) 

which is based on an assumption. of independence between sources A and B, using a 

hypergeometric distribution for the number observed in the overlap between sources 

(See Alho, 1990, for a description of the hypergeometric model. Section 1.1.3. presents 

the probability models to be used in this dissertation, Le. those on the cell counts 

of the incomplete contingency table). Under the hypergeometric model, there is a 

nonzero probability that nAB = 0, i.e. that no individuals are observed in both 

sources. In this case the Petersen estimator has infinite bias. Bias corrections methods 

have been considered by Chapman (1951) for the two-source case and by Evans and 

Bonett (1994) and Rivest and Lévesque (2001) for the general K-source case. 

Remark 1.6 Petersen Estimator: Departures from independence. 

The derivation of the Petersen estimator (1.2) relies on the assumption of indepen

dence between sources. In the two-source case, the sources are said to be positively 

dependent when individuals are more likely to appear in source A if they appear in 

source B, and vice versa. If we erroneously assume independence in such a situation, 

N is underèstimated. Under the independence assumption we would expect that the 

number of individuals observed in both sources would be a smaller proportion of the 

total population size than it would be under positive dependence. In the expres

sion of the Petersen estimator, the value of nAB in the positive dependence setting 
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will be larger than under the assumption of independence. Since it appears in the 

denominator it would deftate Ev (sée page 3129 of Chao et al., 2001 for a similar 

discussion) . 

In a similar manner, if we assume independence when in fact the two sources are 

negatively dependent, then the Petersen estimator will overestimate N since the nAB 

term of the denominator of (1.2) will be smaUer than expected under independence. 

A related justification is presented in the section entitled "Two-list model" starting 

on page 1049 of IWGDMF (1995a). 

Such relationships prove use fuI for a preliminary analysis of capture-recapture 

data. Even if more than two sources are availabIe, it is useful to calculate aU Pe

tersen estimators for aIl pairs of sources (Wittes, Colton, & Sidel, 1974). Whenever a 

Petersen estimate for two sources is sm aIler than the number of individuals observed, 

nobs, there is evidence of possible positive dependence between those two sources. Of 

course, lack of such relationships does not imply that sources are independent. 

It is not possible to test the assumption of independence in the two-source capture 

recapture setting. As canbe seen in Table 1.3, there are three data points avaiIable. 

A test of independence such as the X2 test would require knowledge of njd,). Again, 

precisely because of the nature of CRM, this value is unknown. In fact, this is a 

feature of the generai K-source capture-recapture setting. For K sources. there are 

2K -1 data points. Testing for K-way independence would require aU 2K data points 

thus it is not possible to test for the highest level of dependence. Of course, K-way 

dependence may still be present. In this dissertation, we present new methods to take 

into account such dependence. 

15 



1.1.2 Relationship between heterogeneity and dependence 

Since dependence forms the central theme of this dissertation, we now present an 

example-based discussion describing the equivalent relationship between heterogene

ity of capture probabilities and dependence (where homogeneity of capture proba

bilities is such that for each source, every individual has the same probability of 

capture). 

As an example we consider the use of CRM to determine the number of intra

venous drug users in a city. The present discussion, while loosely based on the work 

of Hickman et al. (2004), IWGDMF (1995a) and Domingo-Salvany et al. (1998), is 

intended purely as a conceptual example to examine the relationship between the two 

assumptions. 

Example 1.4 Drug U sers. 

Suppose that, in an attempt to estimate the prevalence of injection drug use in a 

given time and place, two of the data sources available are drug arrest records and 

the data base of a drug rehabilitation program. It might be expected that drug us ers 

who participate in the rehabilitation program are less likely to commit crimes if the 

program is successful. Consequently, individuals who participate in the program are 

less likely to be arrested than those who do not participate. Moreover, in order to 

assume homogeneity of capture probabilities, it would be necessary to assume that 

all individuals (whether observed or unobserved) are equally likely to appear in the 

arrest record source and all are equally likely to participate in the drug rehabilitation 

program. In reality such assumptions are unlikely to hold. Other factors may affect 

the probability. that an individual is arrested, leading to heterogeneity of capture 

probabilities on the Iist of arrests. For the drug rehabilitation program, it is likely 

that certain kinds of individu aIs are more likely to participate. For instance, pregnant 

women might be more likely to appear since they shouid be followed by a medicai 
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profession al who is likely to recommend such a program. 

The scenario described above, in which those in the drug rehabilitation program 

are less likely to be arrested than those who are not, would violate the assumption 

of homogeneity of capture probabilities within a source. Moreover, this situation is 

likely to induce dependence between the sources of arrest records and the database of 

the drug rehabilitation program. The direction of this dependence would be related to 

the proportion of aIl N individuals who participate in the rehabilitation program. If 

a large proportion participate, the expected number of individuals who are arrested 

will decrease, as compared to a situation of homogeneity in capture probabilities. 

Such a scenario would lead to negative dependence between sources. Alternatively, if 

aH of those arrested are referred to the rehabilitation program, positive dependence 

between the two sources would arise. In fact, such dependence would not be driven 

by the characteristics of the individuals according to which capture probabilities vary; 

rather it would be due to a referral mechanism applied uniformly to aIl individuals 

who are arrested. (Note that this distinction is a very fine one. One could also argue 

that being arrested aIt ers capture probabilities.) It is not difficult to think of many 

other difIerent ways in which characteristics of the individuals can cause heterogeneity 

of capture probabilities which in turn induce dependence. In fact, this is a common 

feature of most capture-recapture data. • 

The above discussion leads to the distinction between two types of source depen

dence: 

• Heterogeneity-induced source dependence, and 

• Pure source dependence. 

As described above, heterogeneity-induced source dependence (also referred to as ap

parent dependence by IWGDMF, 1995a), can be attributed to characteristics of the 

individuals whereas the second, pure source dependence (also referred to as local 
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dependence or list dependence by Chao et al., 2001), cannot be attributed to char

acteristics of the individual beyond their membership in sorne sources. It may arise 

because of how individuals or their conditions are managed. 

Stratification to account for heterogeneity 

Stratification involves subdividing the sample of observed individuals into strata ac

cording to patterns of discrete covariates. Each stratum is analyzed separately and the 

population estimates for each stratum added together to obtain the overall population 

estimate (continuous covariates may be discretized, Plante, Rivest, & Tremblay, 1998, 

and Darroch, Fienberg, Gloneck, & Junker, 1993). In practice, stratification by ob

served covariate patterns is used to reduce the effects of heterogeneity of capture prob

abilities. lndeed, when stratum heterogeneity is ignored, results are biased (Kadane, 

Meyer, & Tukey, 1999). If the observed strata explain all of the dependence, then 

all individuals in each stratum will have the same probability of capture within any 

given source; thus the sources will be conditionally independent given the stratum. 

However, when there are unobservedcovariates that modulate capture probabilities, 

such stratification is unable to fully correct for heterogeneity. Even if stratification 

is used, residual dependence may occur within strata and thus dependence modelling 

techniques are still required. 

Statistical modelling approaches for more than two sources in general are therefore 

needed, irrespectively of whether stratification is used. In Sections 1.2 and 1.3 we 

will describe parametric and nonparametric approaches. In Section 1.2, in which 

we introduce the standard log-linear modelling approach (which we refer to as joint 

log-linear modelling for reasons described below), we will describe the dependence 

structures that can be modelled by the joint log-linear modelling approach, which is 

essential for the work developed in Chapter 2 and indeed for the very essence of the 

new methodological work presented in this dissertation. 
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1.1.3 Likelihoods for incomplete contingency tables 

The discussion provided in this section will show that it is natural to work with 

the multinomial likelihood. For computational convenience, we can use a known 

relationship between the multinomial and Poisson distributions in order to employ 

the more computationally (to be discussed in the context of modelling in Section 1.2) 

convenient Poisson distribution (Sandland & Cormack, 1984). 

The multinomial and Poisson likelihoods 

Two-source multinomial likelihood 

Consider the simple two-source case for sources A and B as introduced in Sec

tion 1.1.1, with the incomplete contingency table given by Table 1.3. We will present 

the development of the multinomiallikelihood in this setting. It is natural to consider 

the N individuals of the population as being assigned to one of four categories, which 

we denote by AB, AB, AB and AB corresponding to the cells of Table 1.3. Then 

nAË, nAB, nAB and nAË, individuals are assigned to each of the four categories with 

probabilities denoted by PAË, PAB, PAB and PAË = 1- (PAË + PAB + PAB). The corr~

sponding likelihood on the unknown parameters N and the vector of cell probabilities, 

p, is a multinomiallikelihood given by 

(1.3) 

where 

The data are composed of the 3 observed cell entries of Table 1.3, where nAË = 

N - nobs = N - (n AË + n AB + n AB)' Examination of likelihood (1.3) shows that there 

are four unknown parameters to be estimated, namely N and three components of p 

(not 4 since the probabilities are constrained to sum to 1) using the three observed 

cell entries nAË, nAB, nAB. Thus, without further constraints (such as an assumption 
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of independence as in the case of the Petersen estimator (1.2)), it is not possible to 

simultaneously estimate all parameters. 

K -source multinomial likelihood 

A natural extension to the gèneral K-souree case, as described by Sanathanan (1972) 

is given here in line with the notation introduced by Bishop, Fienberg, and I{olland 

(1975). (See Cormack, 1989, Darroch, 1958, Fienberg, 1972 for a similar development; 

Basu & Ebrahimi, 2001, Casella & George, 1992 and Huggins, 1989, for the equivalent 

probability model at the level of the individual; Bunge & Fitzpatrick, 1993, for an 

overview of a range of probability models.) 

The number of observed cells of the incomplete contingency table is given by 

d = 2K - 1. Let nl, . .. ,nd denote the observed cell entries of the incomplete con

tingency table with a single subscript used to denote the cell entry rather than the 

inclusion/exclusion notation used for the two-source case above in (1.3). The K

source likelihood for N and the (d + 1) x 1 vector of cell probabilities p, is given 

by 

N! d . 
L(N P) 1 d 1 (1 - p*)N-nO b8 IIp~', , ; Uincomp . = , 

(N - nobs). I1i=l ni· i=l 

(l.4) 

where nobs = Z=~=1 ni, p*= Z=~=1 Pi ::; 1 is the probability that an individual is 

observed, P*,Pi > 0, i = 1, ... , d and Uincomp = (nl, ... , nd) is the vector of observed 

data of the K-souree incomplete contingency table. Such a likelihood (1.4) is invariant 

to permutations of the cell entries of the incomplete contingency table. 

Remark 1.7 We note that there are d+ 1 parameters (i.e. N and the d probabilities 

of the (d + l)-dimensional vector of probabilities p, sinee z=t!; Pi = 1) to estimate 

using the d observed cell entries Uincomp. In order to address such overparameteriza

tion, it is necessary to place constraints on the parameters of the likelihood, such as 

by specifying a model for the parameters (See section 1.2). In specifying a model on 
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the capture probabilities p = p(O) with a reduced set of parameters 0, where 101 < d, 

it is possible to simultaneously estimate p = p(O) and N (Bishop et al., 1975). 

K -source Poisson likelihood 

In order to formulate the Poisson likelihood, suppose that the cell entries ni are 

independent Poisson random variables with means l1i = NPi (Cormack, 1989). Then 

the Poisson likelihood for N and the vector of cell probabilities p is given by 

(1.5) 

where ni and Pi refer to the same cell counts and cell probabilities, respectively, as 

with the multinomial likelihood above. 

Relationship between multinomial and Poisson likelihoods 

The maximum likelihood estimates obtained from the multinomial model and the 

Poisson modelconditioned on the population size N are identical (Sandland & Cor

mack, 1984). The general equivalenée of the Poisson conditioned on N and the 

multinomial is given, for instance, by Christensen (1997): 

Result Let ni, ... ,nd be independent with ni cv Poisson(l1i) so that ni + ... + nd cv 

Poisson(l1i + ... + I1d). Then (ni, ... , nd)IN cv multinomial(N, Pi,· .. , Pd), where 

N = ni + ... + nd and Pi = ILl +~:+ILd' i = 1, ... , d. 

However, inference based on the two models is different: the asymptotic variances 

of the estimators of N under the two models differ (Sandland & Cormack, 1984), with 

that under the Poisson model larger than under the multinomial model. However, 

for parameters which do not involve N, Cormack and Jupp (1991) showed that the 

asymptotic covariances are the same. (See also Baker, 1994.) 

Remark 1.8 The parameter of interest: N vs. lE [N]. 

The fundamental difference between the multinomial and Poisson distributions and 
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their use in the capture-recapture setting is the parameter of interest: with the 

multinomial, inference is made on the parameter N whilst for Poisson inference, 

N is treated as random, so that inference is made on the parameter lE [N] (Farring

ton, 2002). As noted ab ove , the same point estimates are obtained (Sandland & 

Cormack, 1984) irrespective of which distribution is adopted and thus irrespective of 

which parameter is to be estimated. Farrington (2002) pointed out that treating N 

as a random variable under the Poisson model adds a level of variation which leads to 

wider confidence intervals, thus providing further support of the asymptotic variance 

result of Sandland and Cormack (1984), in which the variance is larger under the 

Poisson model. 

Farrington (2002) argues that when interests lies in the underlying prevalence 

or incidence of disease, rather than the actual number of cases, then the parameter 

of primary interest is the expectation lE [N] of Nover a suit able superpopulation, 

rather than its realized value. A related difference of the two models is that under 

the multinomial model N ~ nobs, whilst under the Poisson model there is no such 

constraint on the parameter lE [N] (Farrington, 2002). 

Remark 1.9 The likelihood used in this dissertation. 

In this dissertation we are most interested in counting the number of individuals rather 

than determining properties of the underlying process which drives the condition of 

interest. Therefore, we will adopt the multinomiallikelihood for inference purposes. 

In cases for which there are computational advantages to be gained, the Poisson 

likelihood we will be adopted (for example, for the frequentist modelling of Chapter 3). 
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1.2 Literature review: Parametric approaches to 

modelling CR data 

In this next section we provide a literature review of parametric modelling approaches 

used to reduce the dimensionality of the capture probability vector p of the equiva

lent multinomial (1.4) and Poisson (1.5) likelihoods described in the previous section. 

Since the new marginal modelling approach introduced in this dissertation (see Sec

tion 2.4 for the introduction and Chapt ers 3 and 5 for frequentist and Bayesian ap

pro aches to inference) will be compared to the standard modelling approach of joint 

log-linear modelling (JLLM), we will provide a reasonably comprehensive description 

of the use of JLLM in the capture-recapture setting. We begin this section with JLLM 

before describing other models, in particular a range of individual-level models. 

1.2.1 Joint log-linear models 

Log-linear modelling is one of the most common approaches to modelling epidemio

logical capture-recapture data (Fienberg, 1972; Cormack, 1989; IWGDMF, 1995a). 

More specifically, it is generally accepted that such data should be modelled using 

hierarchical joint log-linear models (HJLLM) (Fienberg, 1972; Cormack, 1989; Madi

gan, York, & Allard, 1995; Madigan & York, 1997; Stanghellini & van der Heijden, 

2004; and implied in the second paragraph of Hook & Regal, 1997, in which the au

thors enumerate all possible models for different numbers of sources, of which there 

are 8, 114 and 6893 models for three, four and five sources, respectively). The inclu

sion of an interaction between a set of sources in such a model entails the inclusion 

of alliower-order interactions between sources in that set (Bishop et al., 1975). Such 

HJLLMs model conditional independence structures (Christensen, 1997), which fit 

within the framework of graphical models (Lauritzen, 1995) (see description below). 
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Remark 1.10 We note that further. evidence for the use of the reduced class of joint 

log-linear models given by the class of HJLLMs is provided by practices observed in 

the literature rather than explicit statements. We know of a single reference to a 

non-HJLLM in the epidemiological c~pture-recapture literature (Ismail et aL, 2000). 

Remark 1.11 Terminology: joint log-linear models 

We use the prefix joint to distinguish between the commonly-called log-linear mod

els, which are models on the joint means of the incomplete contingency table (see 

Remark 1.1) and the new marginallog-linear modelling approach introduced in this 

dissertation. 

Fienberg (1972), Cormack (1989) and Chao et al. (2001) propose three equivalent 

parameterizations of HJLLMs. As stated by Cormack (1989), the parameterization 

of Fienberg (1972) uses main effects and interactions averaged over allievels of other 

factors thus necessitating a series of parameter constraints, whilst that of Cormack is 

such that a main effect of a particular list contrasts the number of individuals not seen 

in the list but seen in every other, with those seen in all samples. In such a case the 

intercept-term corresponds to the logarithm of the expected number of individu aIs 

observed in all sources. We adopt the parameterization of Chao et al. (2001), in 

which the intercept-term corresponds to log lE [nunobs], so that IV = nobs+7Îunobs, with 

7Îunobs obtained from the fitted intercept-term. The main effect terms correspond to 

deviations from log lE [nunobs]. Since the primary goal of a capture-recapture analysis 

is to estimate N, which is done via estimation of nunobs in the case of HJLLMs, it is 

useful that one of the model parameters corresponds to nunobs. Moreover, unlike the 

parameterization of Fienberg (1972), no intricate constraints are required. 

Example 1.5 Three-source HJLLMs 

For the three-source case, the model for independence and the most general saturated 
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model are given below, parameterized according to Chao et al. (2001). 

HJLLM of Independence Saturated HJLLM 

log lE [n ABel a+aA log lE [nABel a+aA 

log lE [nABel a+aB log lE [nABel a+aB 

log lE [n ABel a+ac log lE [n ABel a+ac 

log lE [n ABel a+aA +aB log lE [nABel a + aA + aB + aAB 

log lE [nABel a+aA +ac log lE [n ABel a + aA + ac + aAC 

log lE [n ABel = a+aB+ac log lE [nABel a + aB + ac + aBC 

log lE [nABcl a + aA +aB + ac log lE [nABcl a + aA + aB + ac + aAB + aAC + aBC 

Remark 1.12 Further to the stated equivalence of the Poisson conditioned on N 

and the multinomial as given in Section 1.1.3, Lang (1996b) provides a discussion of 

the similarities and differences of inference under both likelihood models for geileral 

log-linear models, whilst Cormack (1989) does so in the capture-recapture setting. 

HJLLMs, conditional independence structures and graphical models 

HJLLMs model conditional independence structures (Christensen, 1996). As stated 

by Madigan and York (1997), such dependence structures can be represented by undi

rected, chordal graphs, which are termed decomposable graphical models (Whittaker, 

1990 and Lauritzen, 1995). Dependence is modelled by the inclusion of interaction 

termsi like those of the saturated model of Example 1.5. 

Using the three-source case as an illustration, we introduce the hierarchical models 

notation of Christensen (1997) to be used in Chapter 2. 

Example 1.6 Consider the three-source capture-recapture setting. We use JL to 

denote independence. 

25 



• Mutual independence. In this case AJLB, AJLC and B JLC so that aAB = 

aAC = aBC = O. Such a model is represented by [A][B][C] (Christensen, 1997) 

and given in Example 1.5. 

• Joint independence. For example, AJLC and B JLC but A and B are dependent. 

AIl terms of the saturated model of Example 1.5 are included except for the 

interactions corresponding to independence. That is aAC = 0 and ŒBC = O. 

Such a model is represented by [AB][C] (Christensen, 1997). 

• Conditional independence: Without loss of generality, we suppose that Band 

C are independent, conditionally on A, that is B JLCIA. Then aBC = 0 in 

the expression of the saturated model of Example 1.5 but aIl other terms are 

included. Such a model is represented by [AB][AC] (Christensen, 1997). 

Remark 1.13 HJLMM descriptor notation. 

Let n and T denote arbitrary sets of sources. Then we use [n, Tl to denote the 

HJLLM specification that includes aIl hierarchical terms of nu T. For example, for 

n = {A, B} and T = {Cl with nu T = {A, B, Cl, a HJLLM with the descriptors 

[n, T] contains terms Œ, ŒA, ŒB, ŒC, ŒAB, ŒAC, ŒBC and ŒABC. 

Remark 1.14 AIl of the theory applicable to the general complete contingency table 

case, including results for parameter estimation via maximum likelihood, is applicable 

to the incomplete contingency table (Bishop et al., 1975). As described earlier, the 

sole difference is that a model corresponding to K-way dependence for the K-source 

example is not estimable. Any HJLLM that includes the highest order term would 

be fully determined and an cens would be estimated perfectly equal to their observed 

value. 

Remark 1.15 Irrespective of which interaction terms are included in the model, the 

single-source marginal counts are sufficient statistics for the model parameters (Bishop 
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et al., 1975). Under maximum likelihood estimation, estimators of the parameters 

are such that the marginal counts are fitted exactly equal to the observed counts. 

That is, mA = nA, mB = nB and mc = nc in the three-source case. An approximate 

relationship of this sort will be observed for the models introduced in this dissertation, 

with the frequentist approach of Chapter 3 and the Bayesian approach of Chapter 5. 

Whenever the dependence structure is more complex than that of independence, 

sufficient statistics correspond to the highest order terms in the model (Bishop et al., 

1975). For the joint independence case, for example [AB][C], MLEs of the model 

parameters are such that mAB = nAB. For conditional independence, for example 

[AB][AC], a similar relationship is observed: mAB = nAB and mAC = nAC. 

Remark 1.16 Accounting for heterogeneity-induced source dependence. 

To account for heterogeneity-induced source dependence, IWGDMF (1995a) propose 

a method which adds a homogeneous term within each level of interaction. That is, 

for example, the same term is used to represent aIl pairwise dependence rather than 

including a different interaction term for each pair of sources. Such an approach is use

fuI when covariates thought to explain the dependence are not available (Stanghellini 

& van der Heijden, 2004). 

Several alternatives have been proposed to account for unobserved heterogeneity 

which are essentially variations on log-linear models with latent variables. Stanghellini 

and van der Heijden (2004) present such a model to account for observed and unob

served heterogeneity. Since the modelling approach in this thesis will not distinguish 

between the two forms of dependence we will not describe such models for hetero

geneity here; rather we will discuss them in the next section. 
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Precision estimation and confidence intervals 

Asymptotic normality of the estimator N can be used to form (1 - a)% Wald con

fidence intervals of the form N ± za/2Sè(N), where Sè(N) is obtained by the 8-

method (Seber, 1982), using the estimated intercept-term of the HJLLM, denoted 

below by a. The 8-method is used to obtain the estimated variance under the as

sumption of an underlying Poisson likelihood 

so that 

Sèp(N) = Sè(nunobs) ~ exp(&)Sè(â). 

When the multinomial likelihood is assumed, the estimated variance is given by 

(Rivest & Lévesque, 2001) 

Varm [N] = exp(&) + Varp [N] . 
However, the distribution of N is typically skewed (IWGDMF, 1995a), implying 

that the asymptotic normality approach may give misleading results. Transformations 

of N may alleviate such concerns (for example the log-transformation of Borchers, 

Buckland, & Zucchini, 2002). 

An alternative approach is that of profile likelihood (Cormack, 1992 and Regal & 

Hook, 1984). As noted by IWGDMF (1995a), the advantage of such an approach is 

that it is like working with the best possible transformation of N. Buckland (1984) de

veloped bootstrap methods for the capture-recapture setting, as advocated by several 

other authors (Buckland & Garthwaite, 1991; Norris & Pollock, 1996). 

We will use Wald intervals assuming an underlying Poisson likelihood in Chapter 3 

for computational convenience, despite the concerns raised above related to the use 

of Wald confidence intervals. We consider such usage reasonable since the purpose of 

the analysis in that chapter will be one of model comparison. 
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Model selection 

When working within the inferential framework of maximum likelihood it is natural 

to select amongst nested models using likelihood ratio tests (IWGDMFI, 1995a). 

As further noted by IWGDMF (1995a), information criteria can be used to select 

amongst nonnested models. Burnham, White, and Anderson (1995) discuss the use of 

several information criteria for capture-recapture data including the AIC (Sakamoto, 

Ishiguro, & Kitigawa, 1986) and BIC (Draper, 1995) given by 

AIC = -21og(L(N, â)) + 2q 

BIC = -21og(L(N, â)) + log(n)q, 

(1.6) 

(1. 7) 

where q is the number of model parameters and L(N, â) the likelihood evaluated at 

the MLEs of N and the model parameters. There is disagreement as to what n should 

be (IWGDMF, 1995a), with sorne suggesting that it should be fixed at nobs (Hook & 

Regal, 1997). The BIC penalizes large models more heavily than the AIC, thus the 

BIC tends to select more parsimonious models than the AIC. Simulations by Hook 

and Regal (1997) suggest that the AIC is preferable in the capture-recapture setting; 

thus it is the model selection criterion we adopt for model selection in Chapter 3. In 

practice, the AIC is calculated for aH models in order to select the model with the 

lowest value as the best model. 

Model averaging 

In basing inference on a single model, selected according to a criterion such as AIC, 

no measure of model mis-specification is incorporated into confidence intervals. Thus, 

inference is condition al on the correct model having been chosen (IWGDMF, 1995). 

Buckland, Burnham, and Augustin (1997) propose a model weighting approach to 

account for model uncertainty, whilst Madigan and York (1997) use a Bayesian ap

proach. In this dissertation we will not perform model averaging; rather we will 
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undertake model selection in the frequentist analysis of Chapter 3. 

1.2.2 Individual-level models 

As described in Section 1.1.2, heterogeneity of capture probabilities (i.e different 

probabilities of inclusion in a list for different individuals ) is termed observable when 

it can be explained by observed covariates, such as age or sex. Stratification by the 

covariate believed to be associated with heterogeneous capture probabilities is one 

approach (Bishop et al., 1975). An alternative parametric modelling approach is to 

consider the class of models that accommodate heterogeneity by modelling individual

levellist-inclusion (or capture) probabilities. Unlike HJLLMs, which model source

level inclusion probabilities, such models stratify the population at the finest level, 

that of the individual. 

Alho (1990) and Huggins (1989) independently developed comparable logistic re

gression approaches that accommodate both categorical and continuous covariates. 

This approach assumes that the lists operate independently at the individual level 

(Alho, 1990), with the work extended by Zwane and van der Heijden (2005) to allow 

for possible dependence between lists. 

When covariates explaining heterogeneity are not available, several approaches 

have been proposed. The latent class approach advocated by Pledger(2000) assumes 

that individu aIs cluster into several latent classes such that aIl individuals within a 

class have the same probability of inclusion on a given list (Agresti, 1994; Coull & 

Agresti, 1999; Fienberg, Johnson, & Junker, 1999). The model of Coull and Agresti 

(1999) and Fienberg et al. (1999) is the Rasch model (Rasch, 1969), first introduced 

in the context of educational testing. Both Coull and Agresti (1999) ànd Fienberg et 

al. (1999) demonstrate that the Rasch model is equivalent to a log-linear model of 

quasi-symmetry (Bishop et al., 1975). 

As stated by Bartolucci and Forcina (2006), a basic assumption of such latent 
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c1ass models is that lists operate independently within homogeneous subjects, so that 

marginal association is due entirely to unobserved heterogeneity. Stanghellini and 

van der Heijden (2004) present an approach to allow for marginal association be

tween lists via bivariate interactions between lists condition al on the latent, for a 

model with categorical covariates, whilst Bartolucci and Forcina (2001) adopt an 

alternative approach which allows separate modelling of the univariate marginaIs and 

the bivariate associations (as stated in Bartolucci & Forcina, 2006) in the presence 

of categorical covariates. They further extend their work on the modelling of observ

able and unobservable heterogeneity (Bartolucci & Forcina, 2006) to accommodate 

continuous covariates whilst also allowing for conditional dependence amongst lists. 

The authors point out that these models are only slightly more flexible than those of 

Bartolucci and Forcina (2001) when only discrete covariates are available. 

Remark 1.17 We note that the inferential framework adopted in aIl references de

tailed in the present section is that of maximum likelihood estimation, excépt for the 

Rasch model of Fienberg et al. (1999), in which a Bayesian approach was adopted. 

In Section 1.4 we present additional Bayesian work. 

1.3 Literature review: Nonparametric approaches 

to modelling CR data 

In this section we consider work from the literature related to cens us under-count as 

itself related to sample coverage. The ideas presented here are required for Chapter 2. 

In particular, we define the Coefficient of Covariation (CCV) related to the measures 

of source dependence introduced in Chapter 2. 

In order to assess the extent of under-count, a post-enumeration survey (PES) is 

undertaken on a sample of households togenerate a two source capture-recapture data 
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set (Chao & Tsay, 1998). We note that "correlation bias" is a term commonly used 

to denote what is often referred to as dependence in the general capture-recapture 

literature. As stated in the introduction to this chapter, several countries induding 

Canada, the UK and the USA, now routinely collect PES data to correct for under

count. See Redfern (2004) for a description of practical issues of under-count in 

the UK cens us and Mitchell, Dorling, Martin, and Simpson (2002) concerning the 

1.2 million people missed from the 1991 UK census. Robinson, West, and Adlakha 

(2002) presents an assessment of the under-count in Cens us 2000 in the USA, whilst 

Anderson and Fienberg (2002) discuss the controversy surrounding adjustment of 

under-count in censuses. 

Sample coverage 

First we introduce the foundational work of Good (1953). He presents a method 

of sample coverage which has subsequently been applied to species estimation (see 

Bunge & Fitzpatrick, 1993, for a review) and to the correction of under-count of cen

sus estimates (Chao et aL, 2001). Good describes the method as follows. Consider 

drawing a random sample from a population of various species. Then r / N is not a 

good estimate of the population frequency p of a particular species, when r, the num

ber of times that particular species is observed, is small. Good provides methods for 

estimating p with very few assumptions on the underlying population. The estimate 

of pis expressed in terms of nr (r = 1,2,3, ... ), where nr is the number of distinct 

species that are observed r times in the sample. An estimate of the proportion of the 

species occurring in the sam pIe can be obtained directly. 

Chao, Lee, and Jeng (1992) describe how the relationship between sample coverage 

and population size has been used to obtain estimates of N from capture-recapture 

data for animal populations. However, as noted by Chao and Tsay (1998), the ani

mal population methods of Chao et al. (1992) cannot be applied directly to census 
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under-count, partly because there are typically only two or three samples in a census 

under-count setting (as opposed to considerably more, usually, in animal abundance 

estimation). Additionally, there is no time-ordering to the lists (as stated in the 

assumptions in Section 1.1). 

Therefore, Chao and Tsay (1998) develop nonparametric methods for census 

under-count correction. They introduce the CCV and its relationship to sample cov

erage. We proceed with the description here based directly on that of Chao and Tsay 

(1998), with the notation and terminology adapted to that used in this dissertation. 

For two sources A and B, the sample coverage' of the two sources is defined as 

(Chao & Tsay, 1998) 

C = ~ [I:i lE [XiBIXiA]I[XiA > 0] + I:i lE [XiAIXiB]I[XiB > 0]] , (1.8) 
2 I:i lE [XiBIXiA] I:i lE [XiAIXiB] 

where 

XiS = I[the ith individual is listed in source S], S = A, B, 

and I[.] is the usual indicator function. When dependence is present, Chao and Tsay 

(1998) note that it is difficult to count the number unobserved directly but that the 

sam pIe coverage can be well estimated. An estimator is given by 

ê = ~ (nAB + n AB ) . 
2 nA nB 

When no dependence is present, Chao and Tsay (1998)demonstrate that 

IV- nA+nB 
- 2ê ' 

(1.9) 

where ê = nAB(1/nA + 1/nB)/2, which leads to the Peter sen (1.2) estimator IV = 

nAnB/nAB. 

Coefficient of covariation 

Consider the K -source setting to estimate the true (unknown) population size N. Let 

the data for each of the N individuals be included in an N x K matrix X = (Xij ) 
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where 

X ij = I[the ith individual is listed in source Sj], 

and I[.] is the usual indicator function. Assume that individu aIs act independently 

and define the average inclusion probability for source Sj as !-lSj = (liN) 2:[:1 E(Xij ). 

The definition of the coefficient of covariation (CCV) of sources Sj and Sk is given by 

1 N 
wsjsk = N L E[(Xij - !-lSJ(Xik - !-lSk)]/(!-lsj!-lSk)· 

i=l 

(1.10) 

The CCV measures the degree of dependence between sources and is equal to 0 in the 

case of independent sources. It is defined for the general K -source case, for sources 

Sb ... , SK, as follows: 

1 N 
wS1, ... ,SK = N L E[(XiS1 - !-lSl) (XiS2 - !-lS2)··· (XiSK - !-lsK)]/(!-lSl ... !-lSK)· 

i=l 

When capture probabilities are homogeneous (i.e. do not differ by individuals), 

Chao and Tsay (1998) show that (1.10) simplifies to 

(1.11) 

where PSjSj is the probability of appearing in sources Sj and Sk, likewise PSj and PSk 

are the marginal probabilities of appearing in sources Sj and Sk, respectively. For 

three sources 

(1.12) 

Furthermore, they state that analogous expressions for higher order CCV scan be 

derived. In Chapter 2 we will state an explicit relationship between the CID for two 

and three sources and the CCV for two and three sources given by (1.11) and (1.12), 

respectively. 
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Estimation of N 

In the two-source case, Chao and Tsay (1998) derive an expression relating the pop

ulation size N to the CCV. For clarity, let the two sources be denoted by A and B. 

Then the relationship between N and W AB is given by 

N _ lE [nA]lE [nB] ( ) 
- lE [nAB] 1 +WAB . 

As further noted by the authors, WAB must be estimated. However, there are insuf

ficient degrees of freedom to test whether WAB is different from O. Thus, if there is 

dependence, such an approach cannot be used in practice (unless a Bayesian approach 

is used and a prior distribution placed on WAB, an approach not adopted by Chao & 

Tsay, 1998). Such relationships become useful for three or more sources (see Chao & 

Tsay, 1998 for a discussion), as is the case with the new modelling approach presented 

in this dissertation. 

1.4 Literature review: Bayesian approaches to mod-

elling CR data 

Much of the Bayesian capture-recapture literature is based on two classes of models 

described in Section 1.2, namely HJLLMs and the Rasch latent class model, and 

variations thereon. Here we provide an overview of the features of the different 

approaches presented in the literature. 

Both Madigan and York (1997) and King and Brooks (2001a) describe Bayesian 

approaches for HJLLMs. For the former, a three-source data set was analyzed by 

fitting all 7 HJLLMs with inference based on an average over all models according to 

the posterior probability of each model. King and Brooks (2001a) combine the work 

of Madigan and York (1997) and Dellaportas and Forster (1999) by using reversible 

jump MCMC (Green, 1995) to move between all models in the class of HJLLMs. 
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Casella and George (1992) use Gibbs sampling to calculate Bayes estimates for a 

simplified version of the Rasch model, in which capture probabilities are assumed to 

be homogeneous. Fienberg et al. (1999) extend that work to the full Rasch model. 

As stated by Fienberg et al. (1999), prior to the use of MC MC methods (see below 

for a description) for capture-recapture data, several authors developed Bayesian ap

proaches with minimal computational challenges. Roberts (1967) dealt with the two

source setting with homogeneous capture probabilities. Castledine (1981) extended 

the approach to multiple captures, again with homogeneous capture probabilities to 

obtain the marginal posterior of N under a specific prior specification. In the same 

setting, Smith (1991) used empirical Bayes approaches to obtain the posterior of N. 

Garthwaite, Yu, and Hope (1995) examined the sensitivity of the posterior of N to 

different priors on N and showed that the number of captures in each sample (equiv

alently list) typically provides little information about N. Recent work by Wang, 

He, and Sun (2007) discusses thedifficulties of obtaining noninformative priors for a 

Bayesian capture-recapture mode!; 

1.4.1 Overview of the Bayesian paradigm and MCMC meth

ods 

In this section we provide a brief overview of the Bayesian paradigm and associated 

computational techniques. A comprehensive description of Bayesian data analysis 

can be found in Gelman, Carlin, Stern, and Rubin (2004) and Gilks, Richardson, and 

Spiegelhalter (1996). The description given here is based on a similar section of the 

author's work in Turner (2002), with notation similar to that used by Gelman et al. 

(2004). The interested reader can consult the text "for a more complete description. 

Bayes' theorem 

We consider Bayes' theorem in its simplest form for a single scalar parameter. For 
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ease of exposition, we will assume that aIl random variables are continuous. The 

theory applies equally to discrete random variables. Let () be the parameter to be 

estimated and y (which depends on ()) the data observed. Then 

7r(()jy) = f((), y) = 7r(())f(yj()) = 7r(())L(()jy) 
f(y) f(y) f(y) 

(1.13) 

where 7r(()jy) is known as the posterior density of (), 7r(()) the prior density of (), f(yj()) 

is the conditional density function of y, L(yj()) is the likelihood of () given the observed 

y and f(y) = J 7r(())f(yj()) d() is the integrated likelihood. Sinee f(y) does not depend 

on () it can be considered a constant for fixed y. Henee,(1.13) is equivalent to 

7r(()jy) ex 7r(())L(()jy) (1.14) 

These expressions form the basis of Bayesian inference, Of course, the same 

relationship exists for multivariate data, Y, and a multi-dimensional parameter, (J. 

Notice that the posterior density of () is composed of information from the data y, 

in the form of the likelihood, and an a priori distribution for (). It is a compromise 

between information from these two sources Consequently, if there is very little known 

about () a priori, a noninformative prior distribution should be accorded to (). (We 

note that the terms vague, fiat and diffuse are used somewhat similarly, depending 

on the context. See Gelman et al., 2004.) Such a noninformative prior on () will play 

a minor role in forming the posterior distribution of () via (1.13). Consequently, the 

posterior distribution will be largely determined by the observed data. 

Conjugacy 

A family of prior distributions is known as a conjugate family for datajsamples from a 

particular distribution (i.e. with a particular likelihood) if the posterior distribution 

is in the same family as the prior. We consider a simple example as illustration. 

Let X be a random sample of size n from Bernoulli(()). Then Y = I:~=1 Xi '" 

. Bin(n, ()). Suppose we observe Y = y, (y = 0, 1, ... ,n). Furthermore, suppose that 
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19 t'V Beta(a, (3), where a and (3 are assumed to be known. Then, by (1.13) 

(I",-1(1-(I)}3-1 (n)eY(1 _ e)n-y 
1I'(OIY) = B(a,(3) y 

Jo1
1l'(O)f(yIO) dO 

(l'''-1(1-(I)iJ-1 (n)OY(1 _ o)n-y 
B(a,(3) y 

(n) B(y+a,n-y+(3) 
y B(a,(3) 

ey+a- 1(1 _ e)n-y+,B-l 

B(y + a, n - y + (3) 
(1.15) 

where B(a, (3) = r2~~~). Therefore, Oly t'V Beta(y + a, n - y + (3). In this case 

the posterior distribution of 0 is a Beta distribution just as the prior was, indicating 

that the Beta family is the conjugate family for datajsamples from the Binomial 

distribution (i.e. for the binomiallikelihood). Moreover, this example demonstrates 

one of the important properties of conjugacy stated next. 

Remark 1.18 Adopting a conjugate prior, whether it be uni-dimensional, as in the 

previous example, or multi-dimensional, often aids in computation and in simulation 

procedures that are based on the Bayesian paradigm. It is a property that will be 

adopted in Chapters 4 and 5. 

Hierarchical prior structure 

When the parameters of the prior distribution of 11'(19), termed the hyperparameters, 

are unknown, it is necessary to place a distribution on them. In such a way it is 

possible to generate the posterior distribution of e. Let </J denote the hyperparameters 

of the prior distribution of 0 deIioted by 1I'(OI</J), where the distribution of </J is denoted 

by f(</J). Then the joint prior distribution is 11'(19, </J) = 1I'(OI</J)f(</J). The likelihood 

is now L(e, </Jly) = f(yle, </J). But the sampling distribution of y is assumed to be 

independent of the hyperparameters, </J. Therefore, L(e, </Jly) = f(yle, </J) = f(yIO) = 
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L(O!y). Rence, using (1.14), the joint posterior distribution is 

1f(O,4>!y) ex f(4))1f(O!4>)f(y!O, 4» 

= f(4))1f((}!4>)f(y!(}) 

= 1f((}, 4»f(y!O) 

= 1f(0, 4»L((}!y) (1.16) 

A clear example of this can be found in Chapter 5 of Gelman et al. (2004). We recall 

that 0 is the parameter (or vector of parameters) of interest. A joint posterior dis

tribution is generated using the hierar'chical model (1.16). The condition al posterior 

density of (), given the hyperparameter(s), 4>, can then be determined analytically. 

Moreover, the marginal distribution of 4> can be determined by integrating out O. 

MCMC computational methods 

There are many challenges to estimation of the components of a Bayesian model. 

Thus, simulation techniques are often used. The difficulties may arise because the 

integration necessary to determine the densities of (1.16) is too complex or because 

the densities may not even exist in a closed form that can be calculated analytically. 

Rere we will provide a brief introduction to some standard Bayesian computational 

methods, in particular Markov chain Monte Carlo methods. 

The methods adopted to determine the posterior distribution of the parameter(s) 

of interest (Le. () or both () and 4> in the section above) are based on the simulation 

of a random walk which converges to an equilibrium distribution corresponding to 

the posterior distribution, 1f((}!y), with the properties of irreducibility and ergodicity. 

Detailed balance ensures that there is time irreversibility (see Chapter 1 of Gilks et 

aL, 1996). 1 J'he random walk is generated by successively sampling values from 

1 Note that we will adopt the notation 7r( Bly) throughout. It will be assumed that B could be a 
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the marginal posterior conditional distributions (e.g. the marginal posterior condi

tional distribution of (h, f((hIB2"'" Bm' y)). These distributions can be determined 

by examining the joint distribution f(B, y) = 1f(B)L(Bly) in the expression of the hi

erarchical model (1.16). The simulated values form a chain which is Markov, sinee 

each draw depends only on the previous one and is independent of all those that came 

before. Depending on the nature of the target distribution (i.e. that of B), various 

methods exist to generate such a chain. Here we will discuss two of them which will 

be used in Chapters 4 and 5. They are the Gibbs Sampler and the Metropolis algo

rithm. We note that the Gibbs Sampler is a special case of the Metropolis algorithm, 

which in turn is a special case of the Metropolis-Hastings algorithm. 

The Gibbs sampler 

Casella and George (1992) provide a thorough and relatively simple introduction 

to the Gibbs Sampler, as do Gelman et al. (2004). We suppose that our para

meter of interest, B, is an m-dimensional vector (recall that this could include the 

hyperparameter(s) <f». Consider the model in (1.14) or equivalently in (1.16). We 

are interested in determining the joint posterior distribution, 1f(Bly). In or der to 

do so we will sample from the full conditional distributions, which are of the form 

1f(BiIBl , ... ,Bi-l, Bi+1' ... ,Bm' y), i = 1, ... ,m. These distributions can be determined 

by examining the joint distribution f(B, y) should the priorjlikeihood combination by 

conjugate. An initial value of B, (BiO), ... ,B~)) is chosen (see Gelman et al., 2004 for 

a discussion). The Gibbs sampler algorithm then samples successively from the full 

conditional distributions according to the following iteration scheme: 

(1'1') (Hl) (Hl) (i) (i) sample B2 from 1f(B2 IBl ,B3' ... ,Bm, y) 

vector and could include the hyperparameters of the hierarchical model (1.16). Therefore, in this 

discussion 7r(Oly) will also be used to represent 7r(O, q'>ly). 
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(l'l'l') l e(i+l) f (e le(i+l) e(i+l») samp e m rom 1T ml"'" m-l' Y , 

At each run through the loop a vector e(i), i = 1,2"" is generated, The sequence of 

vectors, e(1), e(2), ' , , , form a Markov chain since each realization of the vector, e(i) , 

depends only on the value of the vector in the previous iteration, e(i-l) , Gelman et al. 

(2004) demonstrate that the chain converges towards the joint posterior distribution 

that we are interested in, 1T(eIY), Both Casella and George (1992) and Gelman et al. 

(2004) discuss how to determine whether the chain has converged, Casella and George 

(1992) discuss how the generated sequence of vectors, e(1), e(2), ' , , , is used to deter

mine properties of the posterior distribution 1T( ely) by using the fact that e(l), e(2), ' , , , 

is a sample from 1T(ely), or that after sorne run-in period, r (r 2': 1) iterations say, 

the sequence e(r+1) , e(r+2), ' , , , is considered a sample from 1T( ely), For instance, the 

mean and variance of 1T(eIY) can be determined, just as can any percentiles of the dis

tribution, We are, of course, ultimately interested in determining the unconditional 

marginal distributions, f(ei ), i = 1, ' , , ,m, Casella and George (1992) indicate that 

th t 't' (e le(j) e(j) e(j) e(j»), - 1 ' - 1 2 lIt d equanlleS1T il'"'' i-l' i+l"'" m,Y,~- , .. "m,J- " .. "cacuae 

. , th ' l t d l e(j) e(j) e(j) e(j) t th 'h 't t' t ' us mg e Slmu a e va ues l "'" i-l' i+l"'" m a e Jt l era Ion con am more 

information about f (ei ) than the simulated values, e}O) , e?) , e}2) , ' , , , themselves, For 

instance, the me an of f(ei ) can be estimated by (l/n) I::7':~ e?), In the limit this 

expression tends to the true mean of f(ei ), However, a better estimate uses the follow

ing: (l/n) I::7':~ lE [eilel
j
), ' , , ,e}'!.\, e}21" , , ,eg>, y] if these condition al expectations 

can be evaluated, 

The Metropolis algorithm 

The Gibbs Sampler is a special case of the Metropolis Aigorithm, Recall that at each 

stage of sampling in the Gibbs Sampler there was no decision taken as to whether or 

not to accept the updated vector-value of the parameter. The Metropolis Aigorithm 
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includes, at each iteration, a decision pro cess as to whether or not to accept the 

updated parameter value. Both Tanner (1996) and Gelman et al. (2004) indicate 

how this decision is made. Suppose that the vector e(*) is the proposed updated 

vector at the ith iteration. If e(*) increases the posterior density then it is accepted. 

If it decreases the posterior density then it is only kept (accepted) with a certain 

probability. 

We will provide an outline of this scheme which uses the same notation as Gelman 

et al. (2004). We will include aIl of the main ideas but it will be necessary to consult 

the text for a full description. As with the Gibbs sampler we choose a starting value 

of e from a starting distribution and name this e(O). Then proceed with the following: 

• Sample a candidate point e(*) from a symmetric jumping distribution at time t, 

J(e(*)\e(t-l)). 

• Calculate the ratio of the conditional density at the proposed point and at the 

previous point in the chain 

(1.17) 

• Set 
with probability min(r,l) 

otherwise. 

This algorithm generates a Markov chain. In order to generate the posterior density of 

e, the Markov chain is used in the same way as that generated by the Gibbs sampler. 

The Metropolis Algorithm involves a so-called rejectionj acceptance component. 

However, the Gibbs Sampler will always accept the proposed parameter vector e(*), 

even if it decreases the posterior density. Both methods will accept e(*) with proba

bility 1 if it increases the posterior density. It is important to note that the power of 

these methods, as indicated by Gelman et al. (2004), is not the Markov property but 
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the fact that the distributions are essentially improved at each iteration. Forming a 

Markov chain is desirable for ease of proving the convergence of the chain and other 

such properties. 

Remark 1.19 The Metropolis algorithm is a special case of the Metropolis-Hastings 

algorithm, for which the jumping mies Jt are not necessarily symmetric, as is the 

case with the Metropolis algorithm presented here. Since we will use only symmetric 

proposai distributions in Chapters 4 and 5, we will not discuss the more general 

Metropolis-Hastings algorithm here. 

Convergence and Run-In Period. It is natural to expect that the choice of starting 

values will influence the number of iterations required to achieve convergence of the 

Markov Chain. Moreover, the question of how to determine whether convergence 

has been achieved is, of course, one of great importance. An issue linked to this 

question is how great a 'mn-in' period to allow. All of these issues, particularly that 

of convergence, have been examined extensively by many authors. Both Gelman et 

al. (2004) and Brooks (1998) address aU of these questions in sorne detail. 

It is recommended to mn not only one sequence of iterations but sever al simultane

ously, each of which begins with different starting values. Moreover, the use of starting 

values from overdispersed distributions is advocated (Gelman et aL, 2004). One can 

then compare within sequence variation to between sequence variation. InitiaUy, be

tween sequence variation will be greater than within sequence variation. As the chain 

approaches the equilibrium distribution the two variations will become increasingly 

similar. This fact has been exploited in developing a statistic that is used widely 

to determine convergence. It is described in sorne detail by Gelman et al. (2004) 

and by Brooks and Gelman (1998). The statistic is known as the Gelman-Rubin 

convergence statistic, as indicated in Gelman et al. (2004). We will not describe the 

statistic in detail here; suffice to say that it is a statistic calculated for each parameter 
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that is being estimated by the algorithm. In order to conclude that convergence has 

been achieved, the value of the statistic should be approximately equal to 1 for each 

parameter being estimated. 

1.5 Literature review: General parametric mod

elling techniques 

In this section we descrihe modelling techniques that enable us to place the work 

presented in this dissertation relative to developments broader th an those only in the 

capture-recapture setting. 

Generalized linear mixed models 

McCulloch and Searle (2001) introduce the class of generalized linear mixed models 

(GLMM), building on the work of McCullagh and Nelder (1999), who present the 

class of generalized linear models (GLM). We let y be a veCtor of response variables 

and 9 a link function (not necessarily linear) which operates on each element of y. 

The GLM is defined by 

g(IE [y]) = X{3 (1.18) 

extended to the definition of the qLMM, given by 

g(IE [ylu]) = X{3 + Zu, where u"-' fu(u), (1.19) 

where, in each case, y is taken from an exponential family and X is the design matrix 

for the fixed effects (3. In the case of the GLMM, Z is the design matrix for the 

random effects u, which are assumed to he distributed according to the distribution 

fu(u). It is usually assumed that the response vector y consists of conditionally 
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independent elements, each with a distribution from the exponential family so that 

Yilu ,,", indep fllilu(Yulu) 

fllilu(Yulu) = exp{[Yi'Yi - bbi)]/T2 
- C(Yi, TH. 

See McCulloch and Searle (2001) for further details. 

We note that by adding random effects to the GLM, it is possible to incorporate 

correlation and to undertake broader inference since a greater range of models fit into 

such a class (McCulloch & Searle, 2001). For example, the analysis of longitudinal 

data necessitates the incorporation of correlation between observations on the same 

individuals (Diggle, Heagerty, Liang, & Zeger, 2002). The model we introduce in 

Chapter 4 is a further generalization of the GLMM, in which the link function g 

takes linear combinations of the entries of lE [ylu], equivalently, the model is of the 

form A(lE [ylu]) = X{3 + Zu, where A is an invertible matrix. Zhao, Staudenmayer, 

Coull, and Wand (2006) discuss a general framework for Bayesian GLMMs, in which 

it is understood that the link function g operates element-wise on the vector lE [ylu]. 

The model introduced in Chapter 4 of this dissertation is a Bayesian model of a 

similar form. However, there are additional challenges faced in our setting in which 

the link function operates on linear combinations of the entries of lE [y 1 u], rather than 

the simpler element-wise operation of g in (1.19). 

Marginal models for categorical data 

The new modelling approach introduced in this dissertation is a model on marginal 

means of a contingency table (in particular the incomplete contingency table of the 

capture-recapture setting). In such a case both models (1.18) and (1.19) assume that 

the elements of y are distributed as independent Poisson random variables or that 

y has a multinomial distribution with N as the population size. Here we present a 

description of general marginal models for categorical data. Such models typically 
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fit into the class of GLMMs as described ab ove , with g not necessarily a function on 

each element of y, but one which might take linear combinations of those elements. 

Haber (1985b) describes maximum likelihood methods for log-linear models for 

categorical data (thought of as arranged in a contingency table), with the most general 

model given by 

C log IL = X{3, (1.20) 

where C is a matrix which serves to form linear combinations ~f the entries of IL, the 

cell means of the contingency table, corresponding to the vector of cell means lLeell 

introduced in Section 1.1. Haber and Brown (1986) further extend the method to the 

case where expected frequencies are subject to linear constraints. 

Lang and Agresti (1994) build on this work to develop a more general model 

form to simultaneously model the joint and marginal distribution of multivariate 

categorical responses. The model takes the form 

C log AIL = X{3, ident (IL) = 0 (1.21) 

where C = CJEBCM , B' = (A~,A~), X = XJEBXM , {3 = ((3~,{3~), and 

ident(lL) = 0 denotes the multinomial identifiability constraints, and J refers to 

the model on the joint me ans and M to that on the marginal means. We note that 

(1.20) is a special case of (1.21), with a composed only of parameters related to the 

joint cell means of the contingency table and not the marginal means. 

The marginal model we introduce in Chapter 2, which we treat via maximum like

lihood estimation in Chapter 3, is of the form given by (1.21), in which a is composed 

only of entries related to the marginal distribution and not the joint distribution, as 

is the case with (1.20). The matrix A is also composed of entries relating to the 

marginal distribution and not the joint distribution. It is an upper triangular matrix 

given by (1.1) for the three-source case. Details of variance estimation of the model 

parameters of Chapter 3 are given in Appendix F, in particular for the model of that 
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chapter, derived according to the results of Lang and Agresti (1994). 

Lang, McDonald, and Smith (1999) present a class of association-marginal models 

for multivariate categorical data of a form similar to' (1.21), where the model is given 

by 

C log AIL = Xf3. 

We note that this form is more general than the specifications of (1.21). The authors 

describe a maximum likelihood approach to model fitting. Molenberghs and Lesaffre 

(1999) describe a method in which the joint distribution of IL is expressed in terms 

of the marginal me an functions and pairwise and higher order association measures. 

A general theoretical framework is presented by Bergsma and Rudas (2002) who 

introduce a general definition of marginallog-linear parameters. They describe condi

tions under which the model parameters are smooth and variation independent, and 

conditions under which large-sample theory applies. 

Marginal models for capture-recapture data 

As described above in Section 1.2.2, we have identified two references in which the 

authors develop a marginal model specific to the capture-recapture setting (Bartolucci 

& Forcina, 2002 and Bartolucci & Forcina, 2006). In both instances the marginal 

modeIling does not extend to the modelling of complete marginal association. The 

marginal modeIling approach introduced in this dissertation considers the complete 

marginal distribution of aIl orders including the highest K-way for the K-source 

setting. 

Remark 1.20 We note that we have found no reference to a Bayesian approach to 

marginal modelling and in particular no such reference to Bayesian marginal mod

elling of capture-recapture data. Thus, the work presented in Chapters 4 and 5 is a 

new approach to combining both components. 
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1.6 Outline of dissertation 

This dissertation presents a marginal log-linear modelling approach able to model 

arbitrary dependence structures, which are a larger class than those modelled by hi

erarchicallog-linear models. In so doing we provide a new approach to conceptualizing 

dependence in capture-recapture data. 

Chapter 2 

A measure of dependence for capture-recapture data named the Coefficient of In

crementaI Dependence (CID) is introduced, related to the Coefficient of Source De

pendence (CSD) of Vandal et al. (2005). Both measures are defined for aIl possible 

2K - 1 combinat ions of sources for the K -source case. Properties of both measures are 

derived. The CID is related to the CSD in that it measures changes in dependence 

due to moving from margins of lower dimension to those of higher dimension. On the 

other hand the CSDs measure dependence on a more absolute scale. 

These measures form the basis for a new class of marginal log-linear models 

(MLLM). Unlike hierarchical joint log-linear models (HJLLM), MLLMs in their most 

general form are able to accommodate dependence structures that are non-hierarchial 

and not necessarily of a conditional independence form. Moreover, MLLMs may pro

vide an indication ofwhether K-way dependence is present for which it is not possible 

to test using JLL models, even nonhierarchical ones. We derive the class of models 

and examine its relationship to the conditional independence structures modelled by 

HJLLMs. We see that for the HJLLM of independence and joint dependence there 

is an equivalent MLLM, whilst the MLLM equivalent to the HJLLM of condition al 

independence is a constrained model. 
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Chapter 3 

For the new marginallog-linear model formulated in terms of the CIDs, we present a 

maximum likelihood approach to parameter estimation. The goal of this chapter is to 

further understand the relationship between MLLMs and HJLLMs. As such, a robust 

method will not be presented. Rather, we will present specific examples of data sets, 

both real and simulated in or der to demonstrate that the MLLM performs well. In 

sorne cases, in particular for a nonhierarchical dependence structure, we observe that 

the MLLM out-performs the best HJLLM. 

Chapter 4 

An alternative approach to the parametric models of Chapter 3 is presented in this 

chapter. The dependence structure of the incomplete contingency table is modelled 

using random effects. A general form of the model is presented together with the 

development of a general Bayesian framework. Such a model fits into the class of 

generalized linear mixed models described in Section 1.5. This approach, in working 

with a model on the marginal means, is new in the field of capture-rècapture, except 

for a single related model of the form given by Bartolucci and Forcina (2001) and Bar

tolucci and Forcina (2006). An MCMC scheme for parameter estimation subject to 

constraints is discussed. 

Chapter 5 

In this chapter we present a specific form of the random effects model introduced in 

Chapter 4 parameterized in terms of the CIDs (as introduced in Chapter 2). The 

CIDs are treated as random effects, which differs to Chapter 3, in which the CIDs 

were treated as fixed effects. We describe the specific details of the MCMC scheme 

introduced in Chapter 4 and present results from an analysis of the real data set 
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analyzed via maximum likelihood in Chapter 3. We explore the sensitivity of posterior 

inference to the prior specification on N and the random effects variance. 

Chapter 6 

In this chapter we present an overview of the dissertation and an indication of the 

original work developed therein. 
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Chapter 2 

Two Measures of Source 

Dependence 

2.1 Introduction and overview of source depen

dence 

Statistical modelling of capture-recapture data must account for possible dependence 

between sources. As discussed in Section 1.1.1, there is rarely full independence 

between sources. For this reason, the concept of source dependence, and approaches 

to modelling it in or der to estimate the true unknown population size N, is the central 

theme of this dissertation. 

In this chapter we present a new approach to understanding source dependence. 

This is done by the introduction of a new measure of dependence named the Co

efficient of Incremental Dependence (CID) derived from the Coefficient of Source 

Dependence (CSD) of Vandal et al. (2005). Both measures are defined for all possi-
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ble marginal combinations of sources. That is, for the general K -source case there are 

K single-source margins, (~) two-source margins, aU the way up to the single K-way 

marginal combinat ion of sources. These measures form the basis of a new marginal 

modelling approach, which will also be introduced in this chapter. 

Both the CID and CSD are defined as ratios of population-Ievel probabilities of 

source membership. Of course, the true values of the CIDs and CSDs are unknown. 

This is a direct consequence of the nature of capture-recapture data: the population 

size, N, is unknown and is to be estimated and therefore the true underlying depen

dence structure is also unknown. Correctly modelling the true underlying dependence 

structure provides the means to estimate N. To this end, two parameterizations of a 

new marginal modelling approach will be presented, the first based on the CIDs and 

the secon~ on the CSDs. For the purposes of this introductory discussion, the two 

parameterizations are essentially interchangeable. Whenever we discuss them we will 

refer to CIDs and write CSD in parentheses. 

Further motivation for this new marginal modelling approach is related to what we 

view as the current restrictive practices ofmodelling dependence for capture-recapture 

data. As described in Section 1.2, hierarchical joint log-linear models (HJLLMs) are 

believed to be the most widely adopted class of models used to analyze epidemio

logical capture-recapture data. They are restrictive in their inability to model non

hierarchical dependence structures. Rather, HJLLMs model condition al independence 

structures, whichare hierarchical in nature. In this chapter we will demonstrate that 

non-hierarchical dependence structures may arise in practice, by providing a simple 

example. Nonetheless, the use of HJLLMs is advocated by many authors (Bishop 

et al., 1975; see description in Section 1.2.1 for more advocates), in part because of 

the interpretability of model parameters (see Section 1.2.1) and their relationship to 

graphical models. 

Few authors choose to fit non-hierarchicaljoint log-linear models (non-HJLLMs) in 

52 



addition to HJLLMs and then select the best model amongst all joint log-linear models 

(JLLMs). Indeed, we know of only one case in the literature, that of Ismail et al. 

(2000). The major drawback of non-HJLLMs, and the one raised by most advocates 

of HJLLMs, is lack of interpretability of model parameters. But, as described above, 

in excluding non-HJLLMs there are dependence structures which cannot be modelled 

weIl. Thus, there is a need for interpretable, alternative models of dependence in or der 

to well estimate N when the true underlying dependence structure is not well modelled 

by hierarchical models. The CIDs (CSDs) provide a way in which to interpret model 

parameters of non-HJLLM. Furthermore, the marginal modelling presented in this 

thesis (whose model parameters are interpretable in terms of the CIDs (CSDs)), 

provide a uni verse of dependence structures complementary to those that can be 

modelled by JLLMs. 

This chapter is organized as follows. In Section 2.2 the definition of the CSD 

is presented. Properties of the CSD are provided, including explicit results stating 

the specific form of the CSD for the conditional dependence structures that can be 

modelled by the standard approach of HJLLMs. (Examples are presented later in 

Section 2.4.2 for the three and four-source cases). In so doing the restrictive nature 

of HJLLMs isdemonstrated. Further properties of the CSDs are presented including 

statements concerning bounds and the rate of change of CSDs with changes in N. 

Next an explicit relationship of the CSD to the Coefficient of Covariation (CCV) 

measure of Chao and Tsay (1998) is presented. This measure is closely related to 

that of our CID which is defined in Section 2.3. Properties of the CID are presented 

in Section 2.3.3. Specifically, we state and prove the general K-source one-to-one 

relationship between the CIDs and CSDs. 

In Section 2.4, we introduce the marginallog-linear model (MLLM), using early 

parts of this chapter as motivation. The CID and CSD parameterizations are pre

sented along with specific relationships to the conditional dependence structures mod-
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elled by HJLLMs. We do so by simultaneously deriving the explicit form of the CrDs 
1 

and the CSDs (from Section 2.2) for such dependence structures. It is shown that 

marginal models with sorne CIDs (CSDs) fixed at 0 are equivalent to simple depen

dence structures modelled by HJLLMs (independence and joint independence) but 

that the marginal model equivalent to the HJLLM for conditional independence is 

a constrained MLLM (in practice Lagrange multipliers could be used to enforce the 

constraints). Thus, there is no unconstrained MLLM equivalent to the HJLLM for 

conditional independence. Examples are presented for the three and four-source cases. 

Remark 2.1 Note that in this and in subsequent chapters, we will not distinguish 

between heterogeneity-induced source dependence (described in Section 1.1.1 and 

more specifically in Section 1.1.2) and pure source dependence. The reasons are two

fold: first, there is more than enough to say with respect to dependence in general in 

the new framework presented in this dissertation and, second, covariate information 

is not always readily available to enable more sophisticated modelling which might 

account for sorne dependence via the inclusion of covariate information. Such work 

will be undertaken in the future. 

2.2 Coefficients of source dependence 

In this section we present the definition of the Coefficient of Source Dependence (CSD) 

as first introduced in Vandal et al. (2005) and further described in Melocco (2002). 

2.2.1 Definition 

Consider a source denoted by S. Let P [S] denote the probability that a randomly 

chosen individual in the population appears in source Sj such a probability is a 

property of the source rather than of the individualsin the population under study 
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and represents the average probability of inclusion in source S, averaged over aU 

individu aIs in the population. A natural measure of dependence for a set of sources 

denoted by Q 'is one which measures departures from independence, given by: 

. . P [nSEQS] 
DefimtIon 2.1 cQ = fI ' 

P[S] 
SEQ 

which represents the ratio of the joint probability of membership in aU sources divided 

by the joint probability under independence. The Coefficient of Source Dependence 

(CSD) for the set of sources in Q, denoted by CQ, is defined as the naturallogarithm 

of cQ. 

Definition 2.2 CQ = log (cQ) = log (p rrSEQS
]). 

P[S] 
SEQ 

Remark 2.2 Consider Q composed of K sources and given by Q = {S1,"" SK}' 

Then, CQ = C{Sl,,,.,SK}' To lighten notation, let Cs1, ... ,SK = C{Sl,.",SK}' 

Remark 2.3 From definition 2.2, the single-source CSD corresponding to source S 

is identically zero. In this case Q = {S}, and CQ = C{S} which we denote by Cs 

(see the previous remark). Then Cs = 0, which is referred to as the single-source 

CSD corresponding to source S. Further, we define the intersection of sources in the 

empty set to be the whole population and the empty product to be equal to 1, so 

that C0 = o. 

The motivation for the development of the CSD measure is twofold. First, as 

will be seen in Section 2.4, the definition of the CSD (and that of the related CID) 

naturally leads to a marginal modelling approach for capture-recapture data (hence 

the motivation to define the CSD according to Definition 2.2 rather than Definition 

2.1). Secondly, it is a useful tool in its own right, complete with interesting properties 

and a useful reformulation, which we present in Section 2.3. 
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The CSD measures the strength and direction of dependence between any marginal 

combination of sources, of which there are 2K - 1 for K sources, ranging from the K 

single-source CSDs, which we term the one-way CSDs, to the single K-source CSD, 

which we term the K-way CSD. 

Example 2.1 Consider the two-source case with sources denoted by A and B. There 

are 2 one-way CSDs identically equal to 0 (see Remark 2.3) and a single two-way CSD 

given by 

(
p[AnB] ) 

CAB = log P [A]P [B] . 

Examination of the form of CAB shows that a value of 0 corresponds to independence, 

whilst CAB> 0 corresponds to positive dependence (P [AIB] > P [A] and P [BIA] > 

P [B]) and CAB < 0 negative dependence (P [AIB] < P [A] and P [BIA] < P [B]). 

Example 2.2 Now consider the three-source case, with sources A, Band C. There 

are 23 - 1 = 7 CSDs in total. The 3 one-way CSDs are identically equal to 0 (see 

Remark 2.3), whilst the 3 two-way CSDs are given by: 

( p~n~) (p~n~) (p~n~) 
CAB = log P [A]P [B] , CAC = log P [A]P [Cl , CBC = log P [B]P [Cl , 

and the single three-way CSD given by 

( 
p[AnBnC] )' 

CABC = log P [A]P [B]P [Cl . 

We note that the interpretation of the CSD sign as indicating the direction of in

dependence still holds for the three-way CSD. For instance if CABC > 0, then 

P [A n BIC] > P [A]P [B], and so on. 

2.2.2 Properties 

In this section we consider the behaviour of CSDs in several respects: we consider the 

CSDs implied by HJLLMs, some inequalities for CSDs, their relationship to N, and 
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their relationship to the Coefficient of Covariation of Chao et al. (2001). 

HJLLMs and CSDs 

In order to provide an interpretive background to CSDs in terms of known dependence 

structures, we first examine the behaviour of the CSDs for aU dependence structures 

that can be represented by a hierarchical joint log-linear model. RecaU that, for such 

models, aU possible interactions of lower order which can be formed from each of the 

higher order interactions must be included in the model. The available dependence 

structures are mutual independence, joint independence, conditional independence 

and mutual dependence (as described in Chapter 1). Before examining the form of 

these dependence structures, consider a general result to be used for the specific con

ditional independence structures for the three-source and four-source cases presented 

in Section 2.4.2 below where we simultaneously present the corresponding results for 

the CIDs and the marginal models (to be introduced in Section 2.4). 

Theorem 2.3 Let R, T and S den ote arbitmry sets of sources such that RnS = 0. 

We recall the HJLLM conventions presented in Section 1.2.1. Then if the groups 

[R, T] and [S, T] appear in the HJLLM specification with no [A, B] specification where 

A c Rand B c S (so that sources in R and sources in Sare conditionally indepen

dent given sources in T) 

CnUSUT = CnUT + CSUT - CT· 

The proof of this Theorem appears in Appendix D on page 222. 

Remark 2.4 In the simplest of cases, R = {B}, S = {C} and T = {A}. In this 

instance, if [AB] and [AC] belong in an HJLLM description (entailing conditional 

independence of Band C given A), the relationship CABC = CAB + CAC - CA 

must hold by Theorem 2.3. In other words the 3-way component of dependence is 

decomposed in such a manner. 
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Remark 2.5 The general results presented in this section will en able us to explore 

specifie characteristics of the CSDs for the three-source and four-source case, to .be 

presented in Section 2.4.2. Theorem 2.3 states that a HJLLM of conditional indepen

dence entails specifie linear equality constraints on the CSDs. 

Bounds on CSDs 

We now explore relationships between the CSDs. Specifically, we consider bounds 

on the CSDs, which, as will be demonstrated, are a direct consequence of the order 

relationships amongst the underlying marginal source probabilities. 

There is an inherent or de ring on marginal probabilities. If Q is a set of sources 

and Q* c Q is any subset, then P [nSEQ'S] ~ P [nSEQS]. Consider, for instance, 

the probability P [A n B] that a randomly selected individual is captured by both 

sources A and B. This probability is bounded ab ove by the individual probabilities 

of membership in each of sources A and B, denoted by P [A] and P [B], respectively. 

That is 

where PA, PB and PAB denote P [A], P [B] and P [A n B], respectively. 

These ideas form the basis of the following Proposition, which places upper and 

lower bounds on a CSD relating to an arbitrary number of sources. 

Proposition 2.1 Let n denote a set of sources, with corresponding CSD Cn. We 

define Pn = P [nsEnS]. Then 

( pn) ( En ) log -Inl ~ Cn ~ log Il P , 
Pn SEn S 
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where 

= maxPr[S] 
SER 

min 
QEI'('R) 

IQI = l'R.I-l 

and where lP' (R) is the power set of R. 

Example 2.3 We consider the workings of Proposition 2.1 in the two-source case. 

Without loss of generality, assume that PA ~ PB. Then 

Therefore 
PAB PB 1 1 
--<--=-<-
PAPB - PAPB PA - PB' 

and the corresponding CSD, CAB, is bounded in the following manner 

log (i;) ~ CAB = log (~;B) ~ -log(PA). (2.1) 

Example 2.4 For three sources, a more extensive series of bounds exists. Consider 

sources A, Band C. Similarly to the two-source case above, without loss of generality, 

assume that PA ~ PB ~ Pc. Then 

PAB ~ min{PA, PB} = PB 

PAC ~ min{PA, Pc} = Pc 

PBC ~ min{PB, Pc} = Pc 

which leads to upper bounds on the three pairwise CSDs given by 

CAB ~ -log(PA) 

CAC ~ -log(Pc) 

CBC ~ -log(Pc), 

59 



and an upper bound on the threeway CSD given by 

with a tighter upper bound given by 

where P2 = min{PAB , PAC, PBC}' 

Lower bounds on the pairwise CSDs are given as follows 

(2.2) 

Remark 2.6 Figure 2.1 shows the region of feasible values for CAB for the case 

where PA > PB > Pc with fixed marginal probabilities PAB = 0.2, PAC = 0.1 and 

PBC = 0.099. In this case, as shown in (2.1), the upper bound is controlled by PA, 

whilst the lower bound is controlled by both PA and PAB, as shown by (2.2). 

For any capture-recapture data set, the set of feasible values of aIl of the CSDs is 

thus constrained by the magnitude and ordering of the marginal source probabilities. 

This relationship demonstrates that, although the CSDs range over lR, there exist 

constraints on the set of an CSDs for a given data set that cannot be overlooked. 

Relationship to the Coefficient of Covariation 

The CSD is related to the Coefficient of Covariation (CCV) introduced by Chao 

and Tsay (1998), which was discussed in Section 1.3. For the two-source case, the 

relationship is given by the following proposition. 
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Figure 2.1: Upper and lower bounds for CAB for PA > PB > Pc with PAB = 

0.2, PAC = 0.1 and PBC = 0.099. 

Proposition 2.2 Consider two sources, A and B. Let WAB denote the two-source 

CCV defined by (1.10). Then 

(2.3) 

Proo! Consider the definition of the CCV for sources A and B, as given by (1.10). 

Recall that XiA and XiE are indicator functions that individual i belongs to sources A 

and B, respectively, and /-lA and /-lB denote average inclusion probabilities for sources 

A and B, respectively. Now, since these random variables, XiA and XiE, are indicator 

functions, the expectation of the product is simply lE [XiAXiE] = Pr[XiA = 1, XiE = 

1] = Pr[A n BI! = il, in terms of the notation developed here in this dissertation. 
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That is, the expectation of the product of the random variables XiA and XiE is equal 

to the probability that the ith individual is in both sources A and B. Thus, from the 

definition of W AB we obtain 

1 L:[:1 lE [(XiA - J.LA)(XiE - J.LB)] 
WAB =-

N J.LAJ.LB 

~ L:[:1 lE [XiAXiB - J.LAXiE - J.LBXiA + J.LAJ.LB] 
N J.LAJ.LB 

~ L:[:1 lE [XiAXiE] (J.LAN J.LB + J.LBN J.LA - N J.LAJ.LB) 
N J.LAJ.LB N J.LAJ.LB 

1 L:[:1 lE [XiAXiB] ( ) 
= N J.LAJ.LB - 1, 2.4 

Under random sampling of individuals in the population of interest, Pr[l = i] = 

l/N. We can therefore equate the average probability J.LA of inclusion in source A 

and the probability that a randomly selected individual is observed in source A. 

. 1 N 

J.LA = N LlE[XiA] 
i=l 

N 

= L Pr[All = i]Pr[l = i] 
i=l 

N 

= Lpr[A,l = i] 
i=l 

=Pr[A]. (2.5) 

Likewise J.LB = Pr[B]. 

Consider the numerator of (2.4). Using the Law of Total Probability, it can be 

re-expressed as 

1 N N 

- L lE [XiAXiB] = L Pr[A n BI! = i]Pr[! = i] 
N i=l i=l 

N 

= LPr[AnB,I = i] 
i=l 

= Pr[AnB]. (2.6) 
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Substituting from (2.5) and (2.6) into (2.4) leads to 

1 2:[:1 Pr[A n BII = i] 
WAB = - -1 

N f..LAf..LB 

Pr[AnB] 
= Pr [A] Pr[B] - 1 

= CAB -1, 

as required. o 

Remark 2.7 This relationship demonstrates that the two-way CCV is a translation 

of the exponential of the corresponding CSD. It is immediately obvious that such a 

relationship holds in the case of independence: when sources A and B are indepen

dent, the CSD is known to be given by CAB = 0 and CAB = exp(CAB ) = 1, just as 

the CCV is given by WAB = O. 

Remark 2.8 An approximation can be derived as follows. Taking the first-order 

Taylor expansion of the naturallogarithm of CAB, Le. of CAB, which is valid for CAB 

close to 1 (Le. close to independence) yields 

WAB = CAB -1 ~ log CAB = CAB' (2.7) 

Proposition 2.3 Consider three sources, A, Band C. Let WABG denote the three

way CCv. Then 

WABG = (CABG - 1) - (CAB - 1) - (CBG - 1) - (CAG - 1). (2.8) 

If the CSDs are close ta zero, then 

Here we present an outline of the proof using the same assumptions as for the rela

tionship for two sources derived above. The full derivation is presented in Appendix D 

on page 224. 
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Prao! 

WABC = (CABC - 1) - (CAB - 1) - (CBC - 1) - (CAC - 1) 

~ log CABC -log CAB -log CBC -log CAC, from the first order Taylor expansion for log 

-log (CA:::;CAC) 

= log (CABCCACBCC) , - since by definition CA = CB = Cc = 1 
CABCBCCAC 

= CABC - (CAB + CBC + CAC) + (CA + CB + Cc), by definition of the CSDs 

o 

Remark 2.9 Thus, the CCV for three sourceS,WABC, is approximately equal to 

a linear combination of all three-way, two-way and single-source CSDs. Moreover, 

the linear combination has an inclusion/exclusion form. Although it may appear 

unimportant to include the single-source CSDs, since they are identically equal to 

0, it is formally use fuI to do so for the development of an alternative measure of 

dependence, the Coefficient of IncrementaI Dependence, which will be introduced in 

the next section. 

Remark 2.10 For four sources the following relationship can be derived using the 

same assumptions as for the three source case. 

WABCD = (CABCD - 1) + (CAB - 1) + (CBC - 1) + (CBD - 1) + (CAC - 1) 

+ (CAD - 1) + (CCD - 1) - (CABC - 1) - (CABD - 1) - (CACD - 1) - (CBCD - 1) 

~ log (CABCDCABCACCADCBCCBDCCD) , if the CSDs are close to zero 
CABCCABDCACDCBCD 

= log ( CABCD'CABCACCADCBCCBDCCD ) 

CABCCABDCACDCBCDCACBCCCO 

= C ABCD - (CABC + C ABD + C ACD + CBCD) 

+ (CAB + CAC + C AD + C BC + C BD + CCD) - (CA + C B + Cc + CD) 
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Again, as with the three-source case, the four-way CCV WABeD, is approximately 

equal to an inclusion-exclusion linear combinat ion of the four-way CSD and an three

way, two-way and single-source CSDs. Such relationships play an important role in 

motivating the reformulation of the CSDs presented in the next section. 

Rate of Change of CSDs with change in N 

We wish to examine the form of the CSDs with a change in the assumed value of N. 

To do so, we consider completing the incomplete contingency table of nobs individu aIs 

with various additional numbers of individu aIs corresponding to different values of N. 

See Table 2.1 for a prototypical three-source incomplete contingency table. In order 

to present Example 2.5 below, a three-source example of the form of the CSDs for a 

change in the assumed value of N, we first present sorne necessary theory. 

Consider the data collected from a capture-recapture study for a set of K sources, 

denoted by Q. There are 2K - 1 data points corresponding to the source membership 

data aggregated over aIl nobs observed individuals. For each completed table, it is 

possible to obtain the exact value of the 2K - 1 CSDs denoted by Cn , where n c Q, 

for Inl = 1, ... , K. When N is known, the marginal probabilities of belonging to a 

specific combinat ion of sources can be expressed in terms of marginal means and N. 

Proposition 2.4 Let Q be a set of sources and let N be known. Then P [B] = ms/N 

for a source B E Q and P [n] = mn/N, for ne Q. 

Remark 2.11 Notation. 

We use P [n] to denote P [nn] and mn to denote mnn , where nn = nsEnS for n a 

set of sources. 

The relationships characterized by Proposition 2.4 enables the CSDs to be re

formulated in the following manner. Substituting for such relationships into Defini-
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tion 2.1 yields the following 

which is a ratio of marginal means scaled by sorne power of N. This, in turn, leads to 

an alternative expression for the CSD in terms of marginal means and N rather the 

marginal probabilities of the original definition of the CSD given by Definition 2.2. 

Proposition 2.5 Let Q be a set of sources and let N be known. Then 

Cn = (Inl- 1) log N + logmn - 2: log ms, for ne Q. (2.10) 
SEn 

Remark 2.12 Now, when N is known, the expected marginal counts are simply 

equal to the observed counts, sinee the complete table accounts for the entire popu

lation. That is, mn = nn, for n c Q. 

Using (2.10) for the complete table, the relationship between N and the CSDs is given 

by the foIlowing proposition. 

Proposition 2.6 Let Q be a set of sources and let N be known. Then a natural 

estimator ên of Cn is 

ên = (Inl- 1) logN + lognn - 2: logns, for ne Q. 
SEn 

Remark 2.13 It is evident from Proposition 2.6 that aIl estimated k-way CSDs, 

k = 1, ... , 1 QI, increase with N at the same rate since only the log N term changes 

with N in a nonlinear manner (as a function of N). Pairwise CSDs, for example 

êAB = logN +lognAB - (log nA +lognB), have a positive rate of change liN which 

decreases as N increases. 

Example 2.5 With this example we will explore the properties of the CSDs for N 

known, using the theory outlined in Propositions 2.4- 2.6. Consider a three-souree 
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simulated data example for which source membership for each of 1000 individu aIs 

is assigned according to a multinomial distribution with fixed probabilities for each 

of the 23 cells of the complete contingency table. As usual in the capture-recapture 

setting, the ceU corresponding to the number of individu aIs observed in none of the 

three sources would be unobserved. An example of simulated data is presented in Ta

ble 2.1 (a description of the data generation mechanism is presented in Appendix C). 

Of the 1000 individu aIs of the simulated population, 754 were observed. For this 

AYes 117 96 64 72 

ANa 109 134 162 nunobs = ? 

Table 2.1: Observed sample simulated from population size 1000 

capture-recapture data set we wish to examine the form of the CSDs with a change 

in the assumed value of N, i.e with departures from the true value of N = 1000. 

That is, it is assumed that the data set of the incomplete contingency table remains 

the same but that N changes. The values of the estimated CSDs corresponding to 

different values of N will be obtained using Proposition 2.6. In this way it will be 

possible to observe the effect of a changing N on the dependence structure present 

in such data, as weU as to explore the relationships between the CSDs themselves, 

specifically between the pairwise CSDs and the three-way relative to the pairwise. 

The relationship of Proposition 2.6 is confirmed by Figure 2.2. We see equal 

change for aU k-way CSDs with increasing N (Remark 2.13). It is clear that the 

change is equal for all pairwise CSDs: the three lines are parallel. For the single 

three-way CSD, C ABC, the change is governed by 2 log N rather than by log N, as N 

increases. Again, such a difference is clearly apparent in Figure 2.2, in which the Hne 
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Figure 2.2: Estimated CSDs for data of Table 2.1 for different values of N 

corresponding to C ABC diverges from the three pairwise CSDs. 

2.3 Coefficients of incremental dependence 

In this section we introduce a second measure, the Coefficient of IncrementaI Depen

dence (CID) (see Definition 2.4) which is designed to decompose dependence into its 

K-way components. 

2.3.1 Motivation 

The CSDs measure dependence in a manner which can be thought of as absolute. As 

an illustration, consider the three-way CSD, CABC. It can be thought of as operating 

on an absolute scale since it do es not quantify how much additional dependence 
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can be explained by an three sources compared to that measured by the 3 pairwise 

CSDs, CAB, CAC and CBC' Rather, it quantifies an dependence at the level of the 

three sources irrespect ive of that present at all of the two-way levels. An alternative 

approach would be to develop a measure which quantifies the additional three-way 

dependence not already accounted for in the two-way dependence structure. 

In this section we present an example, Example 2.6, for the three-source case. 

This example provides more specific motivation for a reformulation of the CSDs. 

Example 2.6 Consider a simple three-source example for which the only dependence 

present occurs between sources A and B, Le. an underlying model of joint indepen

dence denoted by [AB][C]. Suppose that CAB = log(1.2). By assumption, the other 

two pairwise CSDs are given by CAC = CBC = O. In this case, as was shown above 

in Section 2.2.2, CABC = CAB = log(1.2). But given that, by assumption, there is 

no three-way dependence, a measure of three-way dependence that would take on a 

value of zero would be attractive in this case. 

Consider the following expression: 

CABC - (CAB + CAC + CBe) = log(1.2) - (log(1.2) + 0 + 0) = O. 

Being equal to 0, this expression provides a sense of the magnitude of how much 

additional dependence is accounted for jointly by all three sources relative to that 

which can be accounted for by all pairs. It would appear to be a natural measure to 

adopt for such an example. 

Remark 2.14 The second measure of dependence which we propose, namely the 

Coefficient of IncrementaI Dependence (see Definition 2.4), is of a form related to the 

property described in Example 2.6. In the next section the CIDs, which are designed 

to decompose dependence into its several K-way components, will be defined and 

their properties explored. 
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2.3.2 Definition 

Definition 2.4 Let Q be any set of sources. Then the Coefficient of Incremental 

Dependence (CID) "IQ for the sources contained in "IQ is given by 

n 

"IQ = 2) -l)jn L CR, (2.11) 
j=l 

where (here and hereafter) the notation 

RcQ 

IRI=j 

L CR indicates that the sum is taken 

RcQ 

IRI=j 
over all subsets n of Q with cardinality j, and jn = j if n is even and j + 1 if n is 

odd. We also define "10 = o. 

Remark 2.15 For completeness, we note that the single-source CrDs are set equal 

to the single-source CSDs, which are defined to be O. 

Example 2.7 The differences between the form of the CID (see Definition 2.4) when 

the càrdinality of n is even compared to· when it is odd, will be illustrated using the 

three-source case. Using Definition 2.4 for three sources, A, Band C, the CrDs are 

defined as follows 

"lA = CA = 0 

"lB = CB = 0 

"le = Ce = 0 
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Remark 2.16 Non-single source CrDs are related to non-single source CSDs by a 

linear transformation represented by, = GC in matrixjvector terms, where C and, 

denote the (2 K - K -1) x 1 vector of non-single source CSDs and CIDs, respectively, 

and G represents the linear transformation given by (2.11). 

Example 2.8 In the three-source case, we can take 

IAB 1 0 0 0 CAB 

lAC 0 1 0 0 CAC 
,= ,G= and C= (2.13) 

IBC 0 0 1 0 C BC 

IABC -1 -1 -1 1 C ABC 

Remark 2.17 Notice that the approximate relationships observed between the CCV 

and CSD, given by (2.7), and (2.9) for two and three sources, respectively, are precisely 

equal to the definition of the CIDs, as exemplified here in the three-source case (2.12). 

Thus, there is an approximate equality between the CrD and CCV for a given set of 

sources. 

Remark 2.18 Consider the definition of the three-way term, IABC in (2.12). It is 

defined as the difference between the three-way CSD, CABC, and the sum of the three 

pairwise CSDs, CAB, CAC and CBc. Such a difference represents the additional three

way dependence not explained jointly by the pairwise dependence, which is measured 

by the sum of the pairwise CSDs. 

2.3.3 Properties 

In this section we present properties of the CIDs and their relationship to the CSDs. 

The main result of this section, Theorem 2.5, presents the general form of the CSDs 

in terms of the CrDs by deriving the inverse of the relationship provided by Defini

tion 2.4. 
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Theorem 2.5 Let Q be any set of sources and denote by CQ the CSD associated with 

this set of sources. Then 

CQ = L'Ys. (2.14) 
ScQ 

The pro of of this Theorem appears in Appendix D on page 225. 

Remark 2.19 Theorem 2.5 serves to make explicit the manner in which the CIDs 

decompose dependence. It formalizes the inverse relationship between the CIDs and 

the CSDs. That is, it provides the inverse transformation of the CSDs in terms of the 

CIDs. The original transformation, with the CIDs expressed in terms of the CSDs, 

is that used as the definition of the CIDs, given by Definition 2.4. The specifie form 

of this relationship for the three-source case was described above with the complete 

set of CIDs given by (2.12). The corresponding inverse relationship, with the system 

of CSDs expressed in terms of the CIDs, is given by (2.15) in the following example. 

It is evident that there is a one-to-one relationship between the system of CSDs and 

CIDs for three sources as is the case for the general K-source case. The specifie form 

of the G matrix for the four-source case is provided in Appendix A. 

Remark 2.20 Non-single source CSDs are related to non-single source CIDs by the 

inverse of the linear transformation given by Remark 2.16. Thus, the inverse transfor

mation is represented by C = G-1-y in matrixjvector terms, where G-1 represents the 

transformation for non-single sources given, for example, by (2.13) for three sources. 

Example 2.9 For three sources, the inverse transformation which expresses the 

single-source CSDs in terms of the CIDs is given by 

CA = 'YA = 0 

CB = 'YB = 0 

Ce = 'Ye = 0, 
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whilst that for the non-single source CSDs is given by C = G-1" where 

1 0 0 0 

G-1 = 
0 1 0 0 

(2.15) 
0 0 1 0 

1 1 1 1 

with , and C are given in Example 2.8. 

Example 2.10 (Example 2.5 continued.) 

We consider now the rate of change of the CIDs for changes in N. Figure 2.3 shows 

the CIDs changing with N in the way that Figure 2.2 showed the CSDs changing 

with N. The same data set is used. It is evident that the three-way CID changes 

at the same rate as each of the pairwise CIDs rather than at a different rate as was 

the case with the CSDs. It can be shown that the same relationship is observed 

for the general K -source case. Thus, working with the Coefficients of IncrementaI 

Dependence rather than the Coefficients of Source Dependence enables us to measure 

dependence between any number of sources on the same scale rather than on different 

scales. Therefore, the CIDs are comparable in terms of magnitude irrespect ive of the 

number of sources, whereas the corresponding CSDs are not. 

Theorem 2.5 provides an expression for a k-way CSD in terms of all CIDs of equal 

or lower order. It leads to the following result relating marginal source probabilities 

and the CIDs. 

Corollary 2.1 Let 7l'Q = log P [nSEQS]. Then 

7l'Q = L 7l'{S} + L IR (2.16) 
SEQ RcQ 

Prao! The proof is immediate from CQ = 7l'Q - 2::SEQ 7l'{S} and Theorem 2.5. 0 
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Figure 2.3: Estimated CIDs corresponding to estimated CSDs of Figure 2.2 
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Remark 2.21 Thus, Corollary 2.1 provides an explicit decomposition of the log

marginal source probability 11" Q corresponding to the set of sources Q. Such a decom

position is formed by the constituent single-source marginal probabilities (the 11"{S} 

for S E Q) of Q and all CIDs of or der 1 QI and lower. In the next section, we will see 

that using Corollary 2.1 to decompose 11"Q, the log-marginal probability for a set of 

sources Q, naturally leads to the form of a marginal model. We present the form of 

the model and describe its properties. 

CoroUary 2.1 leads, in turn, to Theorem 2.6. 

Theorem 2.6 Let Q be a set of sources and 11"Q = log P [nSEQS]. Then for IQI = 

n ~ 2 and jn defined as per Definition 2.4 
n 

IQ = L(-l)jn L 11"n· 

j=l ncQ 

Inl=j 

The proof of this Theorem appears in Appendix D on page 229. 

(2.17) 

Remark 2.22 Theorem 2.6 expresses the CID for the set of sources Q as an inclu

sion/exclusion form on marginal source probabilities. The equivalent form in terms 

of the CSDs, as per Definition 2.4, is exactly the same but with Cn replacing 11"n: 

any CID can be equivalently expressed in terms of aU CSDs of equal or lower or der 

or aU marginal probabilities of equal or lower order. 

2.4 Marginal log-linear models using source de-

pendence measures 

Throughout the discussion of measures of dependence it has been emphasized that 

one of the goals of such theory is to develop a new modelling approach. In this section 

we will describe the development of the model from CoroUary 2.1. 
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First, let Q denote a set of sources. Elementary results from sampling theory for 

population size N yield 

P [QJ = ";,Q, 
where P [QJ and mQ are used to denote P [QnJ and mnSEQ' respectively, whichcorre

spond to the probability of, and expected number of individu aIs in, the intersection 

of the sources contained in Q, respectively. Equivalently 

1fQ = log (";,Q) , (2.18) 

for known N. 

We have the following proposition. 

Proposition 2.7 Let Q be a set of sources and let mQ be defined as above. Then 

logmQ = -(IQI- 1) log N + L log ms + L "In· 
SEQ ncQ 

Prao! Combining (2.18) with Corollary 2.1 yields 

1fQ = log U}f) 

whence the result. 

2:SEQ 1f{S} + 2:ncQ"In 

2:SEQ log (!!Jf) + 2:ncQ"In, 

o 

Remark 2.23 Thus, Proposition 2.7 provides the general form of the marginal mean 

mQ in terms of the single-source marginal means and aIl CIDs of equal or lower order. 

The full development of the marginal model is obtained by parameterizing the 

single-source marginal means as (3 S = log ms and (30 = log N. This leads us to define 

the marginallog-linear model in the following manner: 

76 



Definition 2.1 Let Q be a set of sources and K = 1 QI. Then the following system of 

2K - 1 equations constitutes the marginallog-linear model (MLLM) for the K sources 

ofQ· 

log ms = f3s, for SE Qj 

log mR = -(Inl - 1)f3o + L f3s + L "(T, for n cQ 
SEQ TeR 

It is a model on marginal means rather th an on the joint cell means that are modelled 

by the joint log-linear modelling approach (see Section 1.2.1). 

An equivalent parameterization in terms of the CSDs is obtained using Theo

rem 2.5, which yields the following proposition. 

Proposition 2.8 Let Q be a set of sources and let d = 21Q1 - 1. Then the following 

system of d equations is equivalent ta the marginal log-linear model for Q as given by 

Definition 2.7. 

log ms = f3s, for SE Q 

logmR = -(Inl- 1)f3o + L f3s + CR, for ne Q 
SEQ 

Example 2.11 Consider the three-source case for source A, Band C. Using Def-

inition 2.7, with d = 23 - 1 = 7, the full specification of the three-source marginal 

log-linear model is given by: 

log mA = f3A 

logmB = f3B 

logmc = f3c 

logmAB = -f3o + f3A + f3B + "(AB 

log mAC = -f3o + f3A + f3c + "(AC 

logmBc = -f3o + f3B + f3c + "(BC 

logmABc = -2f3o + f3A + f3B + f3c + "(AB + "(AC + "(BC + "(ABC· 
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The equivalent CSD parameterization, obtained from Proposition 2.8 is 

log mA = f3A 

logmB = f3B 

logmc = f3c 

logmAB = -f3a + f3A + f3B + CAB 

log mAC = -f3a + f3A + f3c + CAC 

logmBc = -f3a + f3B + f3c + CBC 

logmABC = -2f3a + f3A + f3B + f3c + CABC. 

Definition 2.8 Let Q be a set of sources and let d = 21Q1 - 1. Then the matrix form 

of the system of d equations for the IQI-source capture-recapture setting is given by: 

logm = log (AIL) = X(3 + Z" (2.20) 

where m, IL and, are d x 1 vectors of marginal means, cell means, and C/Ds, 

respectively, (3 is the (IQI + 1) x 1 vector of all such parameters. A is the d x d 

upper triangular matrix which transforms cell means into marginal means, X is the 

d x (1 Q + 11) design matrix for (3 and Z the design matrix for,. 

Remark 2.24 Model form (2.20) fits into the class of models described by Lang and 

Agresti (1994) which simultaneously model the joint and marginal distributions of 

multivariate categorical responses. We note that their setting applies to complete 

contingency tables rather than the capture-recapture setting. 

Example 2.12 (Example 2.11 continued.) Consider the three-source setting for 

sources A, Band C. Then d = 23 -1 = 7. The matrix form of the marginallog-linear 
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model is given by Definition 2.8, with 

mA /-lARC "(A 

mB /-lABC "(B 
{Jo 

mc /-lARC "(c 

13= 
{JA 

m= mAB p,= /-lABC ,= "(AB 
{JB 

mAC /-lABC "(AC 
{Jc 

mBC /-lABC "(BC 

mABC /-lABC "(ABC 

1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 

0 1 0 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 

0 0 1 0 1 1 1 0 0 0 1 0 0 1 0 0 0 0 

A= 0 0 0 1 0 0 1 X= -1 1 1 0 z= 1 1 0 1 0 0 0 

0 0 0 0 1 0 1 -1 1 0 1 1 0 1 0 1 0 0 

0 0 0 0 0 1 1 -1 0 1 1 0 1 1 0 0 1 0 

0 0 0 0 0 0 1 -2 1 1 1 1 1 1 1 1 1 1 

Proposition 2.9 The matrix form equivalent to that of Definition 2.8 in terms of 

the CSDs, for the general form of the 1 QI-source marginal model is given by: 

logm= log(Ap,) = Xf3 + C, 

where aU vectors and matrices are given by Definition 2.8, with C the d x 1 vector 

of CSDs. Note that the design matrix on C is the identity matrix, so is not written 

explicitly. 

Praof The proof is immediate from the expression of the CSDs in terms of the CIDs, 

given by Theorem 2.5. o 

79 



Example 2.13 (Example 2.11 continued.) The matrix form in terms of the CSDs 

is given by Proposition 2.9, with all matrices as above and 

CA 

CB 

Cc 

c= CAB 

CAC 

CBC 

CABC 

2.4.1 Constrained parameter space of marginallog-linear model 

Modelling marginal means presents sorne additional challenges as compared to mod

elling cell means. Since aIl cell means must be non-negative, i.e. J..t :::: 0, only marginal 

means which correspond to non-negative cell means are feasible. That is, mis su ch 

that A -lm:::: O. In order to ensure non-negativity of the cell means, we examine the 

relationship between marginal and cell means via the form of the model. 

The constraints placed on the marginal means via the marginallog-linear model 

are given by the following proposition. 

Proposition 2.10 Let Q be a set of sources. Then the marginal log-linear model 

given by Definition 2.7, and its equivalent reparameterization given by Proposition 2.8, 

is defined subject to the following system of constraints 

J..t = A-lm:::: 0 

====} J..t = A-l exp(X,8 + Z,) :::: 0 
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Example 2.14 (Example 2.11 continued.) Consider again the three-source case. 

The relationship between the 7 ceIl means and 7 marginal means is given by 

/-LABë 

/-LABë 

/-LABC 

/-LABë 

/-LABC 

/-LABC 

/-LABC 

1 0 0 -1 -1 0 1 

0 1 0 -1 0 -1 1 

0 0 1 0 -1 -1 1 

0 0 0 1 0 0 -1 

0 0 0 0 1 0 -1 

0 0 0 0 0 1 -1 

0 0 0 0 0 0 0 

mA - mAB - mAC + mABC 

mB - mAB - mBC + mABC 

mc - mAC - mBC + mABC 

mAB -mABC 

mAC-mABC 

mBC-mABC 

mABC 

mA 

mB 

mc 

mAB 

mAC 

mBC 

mABC 

(2.21) 

Thus, ensuring non-negativity of the ceIl means corresponds to the following order 

relationship on the marginal means: 

mA - mAC ~ mAB - mABC ~ 0 

mB - mAB ~ mBC - mABC ~ 0 

mc - mBC ~ mAC - mABC ~ 0 

mABC ~ O. 

Such an ordering is intuitive. For example, the marginal mean for sources A and 

C must be larger than that for sources A, Band C. This relationship is given by 

mAB - mABC ~ O. 
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2.4.2 Relationship to hierarchical joint log-linear models 

In this section we will relate the marginal models to hierarchical joint log-linear 

models (HJLLM) in order to understand their similarities and differences and their 

place relative tostandard analytical approaches for capture-recapture data. First we 

present a result (Theorem 2.9) that characterises the form of the CIDs corresponding 

to the conditional independence structures modelled by hierarchical joint log-linear 

models. We then examine the behaviour of the marginal model for all dependence 

structures that can be represented by a hierarchical joint log-linear model. The avail

able dependence structures are mutual independence, joint independence, conditional 

independence and mutual dependence (as described in Chapter 1, Section 1.2.1). We 

consider the three and four-source cases as examples to present the specific form of 

the marginal model for each of the dependence structures. In each case we will ob

tain the form of the CSDs (using Theorem 2.3) and the CIDs (using Theorem 2.9 

below) which characterize the MLLMs corresponding to the HJLLMs of each depen

dence structure. In the three-source case, we will state explicitly the form of the 

corresponding marginal model. 

Remark 2.25 Notation. 

We introduce the following notation: if n, s, T ... are disjoint sets of sources, we 

write JI:D(n) for the power set ofn and let JI:D* (n) = JI:D (n)\{0}, and JI:D* (n, s, T, ... ) = 

JI:D* (n) EB JI:D* (S) EB JI:D* (T) EB ... , where if A and lffi are classes of sets, A EB lffi = 

{S = AU B : A E A, BE lffi}. (We hold to the convention that A EB lffi EB 0 = A EB lffi.) 

Thus JI:D* (n, s, T) consists of lists of sources in which at least one source cornes from 

each of n, Sand T. 
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Finally we let 

'Y [R] = L 'YQ, 
QElP'*(n) 

'Y [R,S] L 'YQ, 
QElP'*(n,S) 

and so on. 

Example 2.15 In the simplest form, R = {A} and S = {B}. Then 'Y [R] = 'YA, 

'Y [S] = 'YB and 'Y [R, S] = 'YAB· 

Similarly to Theorem 2.3, we can characterize conditional independence hierar

. chical joint log-linear models using CIDs as follows. 

Theorem 2.9 Suppose that an HJLLM description con tains the pair of descriptors 

[R*, T] and [S*, Tl, R* n S* = 0, and no descriptor of the form [R,S] such that 

R c R* and S c S*, so that sources in R* and sources in S* are conditionally 

independent given the sources in T. 

Then for any proper subsets R c R* and Sc S* we have 

'Y [R, S, T] = -'Y [R, S]. (2.22) 

Proo! First, we note that we can rewrite Theorem 2.5 as 

Cn,T = 'Y [R] + 'Y [T] + 'Y [R, T] (2.23) 

and similarly 

Cn,S,T = 'Y [R] + 'Y [S] + 'Y [T] + 'Y [R, S] + 'Y [R, T] + 'Y [S, T] + 'Y [R, S, T]. (2.24) 

Now by Theorem 2.3 and un der the presence of [R*, T] and [S*, T] in the descrip

tion of the HJLLM, we have 

Cn,S,T Cn,T + CS,T - CT 

'Y [R] + 'Y [T] + 'Y [R, T] + 'Y [S] + 'Y [T] + 'Y [S, T]- 'Y [T] (2.25) 
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by (2.23). Equating (2.24) and (2.25) yields the result. o 

Remark 2.26 In the simplest of cases, R = {A}, S = {B} and T = {Cl. In this 

instance, if [AC] [BC] is the HJLLM description of the model (entailing conditional 

independence of A and B given C), the relationship "(ABC = -"(AB must hold by 

(2.22). In other words the 3-way component of dependence exactly cancels out the 

2-way component of dependence borne by the conditionally independent sources. 

Corollary 2.2 Let an HJLLM description be given by [1î*][7;*] ... [~*], where 7;,* n 

7j* = 0 for i =J j. Let Ti c 7;,* and 7j c 7j*. Then "([Ti, 7j] = 0 for i=J j. 

Proo! Let T = 0. Then "([Ti, 7j, T] = "([Ti,7j]. But the descriptors [7;,*, T] 

[7;,*] and [7j*, T] = [7j*] satisfy the conditions of Theorem 2.9 above. Therefore 

"([Ti, 7j, T] = -"([Ti, 1J] as well, which can onlyoccur if "([Ti, 1J] = O. 0 

Remark 2.27 The above corollary states that the CIDs corresponding to sets of 

sources that exhibit independence will be zero. Dependence is not increased by jointly 

considering mutually independent sets of sources together. 

Example 2.16 Three-source hierarchical dependence structures. 

We now consider the three-source capture-recapture setting for sources A, Band C. 

We recall that there are 3 pairwise CIDs (equivalently CSDs) and a single three-way 

CID (equivalently CSD), whilst the 3 single-source CIDs (equivalently CSDs) are all 

identically equal to 0 The non-single source CSDs are not known, precisely because 

only a portion of the population is observed in a capture-recapture study. 

We will show the following, where, for brevity in this list, 'joint model' refers to 

'hierarchical joint log-linear model', 

• For joint dependence structures (including independence), the marginal and 

joint model are equivalent with certain CSDs set equal to O. Such a marginal 

model is thus a re-parameterization of the joint model. 
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• A conditional dependence structure corresponds to a marginal model with con

straints placed on the CIDs. In such a case, the marginal model is not a re

parameterization of the joint model. 

In the four cases presented next, purporting to mutual independence, joint indepen

dence, condition al independence and mutual dependence, aIl models will be expressed 

in terms of N and probabilities (joint or marginal) rather than the corresponding pa

rameterizations in terms of log-means (joint and marginal). This is in line with the 

descriptions outlined in Bishop et al. (1975) for complete contingency tables and 

enables us to gain compactness. Although N is unknown in the capture-recapture 

setting, aIl of the underlying theory for the form of hierarchical joint log-linear mod

els for capture-recapture data is the same as that for complete contingency tables, 

again as stated in Bishop et al. (1975). For instance, the model for independence is 

expressed in the same manner for complete and incomplete contingency tables, with 

the only difference being the number of data points available from which to estimate 

model parameters. 

As already noted in Chapter 1, there are sorne models which cannot be fitted to 

incomplete contingency tables. As always, it is possible to fit an identifiable model 

with at most as many parameters as data points. In the case of the incomplete 

contingency table for K-source capture-recapture data, the number of parameters 

cannot exceed 2K - 1, the number of available data points. 

Here we present the four cases. AIl vectors and matrices are as defined in Example 2.12 

and provided in Appendix A 

Mutual Independence. Mutual independence implies that aIl subsets of the three 

sources exhibit independence. Such a dependence structure is represented as [A] [B] [Cl 

in the notation introduced in Christensen (1997) and Bishop et al. (1975) as described 

in Section 1.2.1. By CoroIlary 2.2, aIl CIDs, equivalently aIl CSDs, are identicaIly 

zero. That is "(AB = "(AC = "(BC = "(ABC = O. 
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The corresponding HJLLM for mutual independence (Bishop et al., 1975), expressed 

in terms of the six marginal probabilities PA = Pr[A], PB = Pr[B] and Pc = Pr[C] 

and PA = 1 - PA, PE = 1 - PB and Pc = 1 - Pc, is given by the following model on 

the cell means J-t: 

/-lAEe NPAPEPe 

/-lABe NpAPBPe 

/-lAEe NPAPEPe 

/-lABe NPAPBPe 

/-lAEe NPAPEPe 

/-lABe NPAPBPe 

/-lABe NpAPBPe 

The equivalent expression in terms of the marginal means ID is obtained by pre

multiplying J-t by the transformation matrix A, so that ID = AJ-t, to yield 

1 0 0 1 1 0 1 NPAPEPe N(PAPEPe + PAPBPe + PAPEpe + PAPBPe) 

0 1 0 1 0 1 1 NpAPBPe N(PAPBPe + PAPBPe + PAPBPe + PAPBPe) 

0 0 1 0 1 1 1 NPAPEPe N(PAPEPe + PAPEPe + PAPBPe + PAPBPe) 

0 0 0 1 0 0 1 NPAPBPe = N(PAPBPe + PAPBPe) 

0 0 0 0 1 0 1 NPAPEPe N(PAPEPe + PAPBPc) 

0 0 0 0 0 1 1 NpAPBPe N(PAPBPe + PAPBPe) 

0 0 0 0 0 0 0 NPAPBPe NPAPBPe 

N(PAPe + PAPe) NPA 

N(PBPe + PBPe) NPB 

N(PEPe + PBPe) Npe 

N(PAPB(Pe + pc))) NPAPB 

N(PAPc(PE + PB)) NPAPe 

N(PBPc(PA + PA)) NPBPe 

NPAPBPe NpAPBPe 
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The final expression is precisely that of the marginal model for independence given by 

Definition 2.7 with aU CIDs set to O. Thus, the joint log-linear model and marginal 

log-linear model forms are equivalent for the case of independence and are simply two 

different parameterizations of the same model. Note that N is indeed unknown in 

the case of capture-recapture data but the form of the model is unaffected by the fact 

that one data point of the contingency table is missing. 

Joint Independence. Without loss of generality, suppose that sources A and B are 

dependent but that there is no other dependence exhibited between the three sources. 

Such a structure is given by [AB][C] (Christensen, 1997). By CoroUary 2.2, ,AC = 

,BC = O. Equivalently, CAC = CBC = 0, whereas ,AB = CAB # 0 since sources A and 

B are dependent, by assumption. Furthermore, ,ABC = 0, by CoroUary 2.2. Thus 

CABC = CAB, as CABC = ,AB + ,AC + ,BC + ,ABC by Theorem 2.5. Thus 3-way 

dependence, is completely explained by 2-way dependence. 

The corresponding HJLLM for joint independence (Bishop et al., 1975), expressed in 

terms of the five marginal probabilities PAB = P [A n B], PAB = P [A n BJ, PAB = 

P [A n BJ, Pc = P [Cl and Pë = 1 - Pc, is given by the foU~wing model on the ceU 

means IL: 

/-LABë NPABPë 

/-LABë NpABPë 

/-LABC NpABPC 

/-LABë NPABPë 

/-LABC NPABPC 

/-LABC NpABPC 

/-LABC NPABPC 

The equivalent expression in terms of the marginal means ID is obtained using ID = 
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AIL, to yield 

1 0 0 1 1 0 1 NPAtJPë N (p AtJPë + PABPë + P AtJPe + PABPe) 

0 1 0 1 0 1 1 NpABPë N(PABPë + PABPë + PABPe + PABPe) 

0 0 1 0 1 1 1 NPAtJPe N (p AtJPe + P AtJPe + P ABPe + PABPe) 

0 0 0 1 0 0 1 NPABPë = N(PABPë + PABPe) 

0 0 0 0 1 0 1 NpAtJPe N (p AtJPe + P ABPe ) 

0 0 0 0 0 1 1 NPABPe N(PABPe + PABPe) 

0 0 0 0 0 0 0 NpABPe NPABPe 

NpA(Pë + pc) NPA 

NpB(Pë +Pe) NPB 

Npc(ptJ + PB) Npe 

NpAB(Pë + pc) NPAB 

NPAPe NPAPe 

NPBPe NPBPe 

NpABPe NPABPe 

The final expression is precisely that of the marginal model for joint independence 

given by Definition 2.7 with aIl CIDs set to 0 except for '"'(Be, whose form is not 

constrained to be set to 0 since there is dependence between sources A and B, as de

scribed above. Thus, the joint log-linear model and marginallog-linear model forms 

are equivalent for the case of joint independence and are simply two different para': 

meterizations of the same model. Again, note that N is indeed unknown in the case 

of capture-recapture data but the form of the model is unaffected by the fact that 

one data point of the contingency table is missing. 

Conditional Independence Without loss of generality, suppose that sources Band C 

are independent, conditionaIly on membership in source A. Such a structure is given 

by [AB][AC] (Christensen, 1997) and implies that A and B are pairwise dependent, 
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as are A and C. In this case ,AB =1- 0 and ,AC =1- 0 (equivalently CAB =1- 0 and 

CAC =1- 0). Moreover, since conditional independence of Band C given A does not 

imply marginal independence of Band C, it follows that ,BC =1- 0 (equivalently 

C BC =1- 0). We show in Appendix D, page 231, that C BC is completely determined 

by the CSDs CAB and CAC and the marginal probability Pr[A] (equivalently ,BC 

is completely determined by the CIDs ,AB and ,AC and the marginal probability 

Pr[A]), since 

Pr[A] ( 1 ) 
CBC = 1 _ Pr[A] CABCAC - CAB - CAC + Pr[A] . 

For the three-way CID, we get 

,ABC = -,AB (2.26) 

from Theorem 2.9, just as Theorem 2.3 yields the equivalent relationship for the 

three-way CSD: 

(2.27) 

stated equivalently as C ABC = CAB + CAC, from Remark 2.3. 

Therefore, a MLLM for conditional independence of B lLCIA would require that the 

constraint given by (2.26) (equivalently (2.27)) be enforced. Consequently, unlike the 

cases of mutual independence and joint independence, the marginal model equivalent 

to the HJLLM of conditional independence is a constrained MLLM. Thus, the MLLM 

is not a direct reparameterization of the HJLLM with some CIDs set to zero. 
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We note that that the HJLLM for conditional independence is expressed as (Bishop 

et al., 1975) 

J.tABC N~ 
PA 

J.tABC N~ 
PA 

J.tABc N~ 
PA 

J.tABC 
NPABPMJ 

PA 

J.tABC 
NPABPAC 

PA 

J.tABC N~ 
PA 

J.tABC NPABPAC 
PA 

whose equivalent marginal form is expressed as (details not provided) 

using m = Ap,. 

NPA 

NPB 

Npc 

NPAB 

NPAC 

N(~ + P.1Jœ.1Q) 
PA PA 

N~ 
PA 

Mutual Dependence In this case, represented by [ABC] there is three-way dependence 

and none of the CSDs, neither the pairwise nor the three-way, are necessarily equal to 

O. Such a dependence structure can be represented by an HJLLM but, as discussed 

in Section 1.1.1, cannot be uniquely estimated since there are insufficient degrees of 

freedom. 

Remark 2.28 The previous example serves to make explicit the relationships be

tween HJLLMs and MLLMs. For simple dependence structures, the MLLMs equiva

lent to hierarchical joint log-linear models are obtained by constraining certain CIDs 
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(equivalently CSDs) to be equal to O. Such a relationship is intuitive. Given that the 

CrDs (CSDs) measure departures from independence it seems natural that setting a 

CSD equal to 0 in the marginal model is similar to omitting the corresponding interac

tion term of the hierarchical joint log-linear model. However, HJLLMS of conditional 

independence correspond to specific linear constraints on the CrDs (CSDs). 

Example 2.17 Four-source hierarchical dependence structures. 

We now examine the dependence structures that can be represented by hierarchical 

joint log-linear models among four sources, A, B, Gand D. Although the simpler 

dependence structures are exactly those presented for three sources, we will describe 

each fully for completeness. We will present results in terms of the CSDs only. The 

corresponding results for the CrDs are obtained by Theorem 2.9, Corollary 2.2 or 

Definition 2.4, whilst the corresponding marginal model forms can be obtained using 

the same approach as in the previous example. We note that the three-way CSDs are 

expressed in terms of the three-way CrDs as follows (Theo rem 2.5): 

GABC = "(AB + "(AC + "(BC + "(ABC 

C ABD = "(AB + "(AD + "(BD + "(ABD 

CACD = "(AC + "(AD + "(CD + "(ACD 

GBCD = "(BC + "(BD + "(CD + "(BCD, 

with the four-way CSD given by 

GABCD = "(AB + "(AC + "(AD + "(BC + "(BD + "(CD 

+"(ABC + "(BCD + "(ACD + "(BCD + "(ABCD· 

(2.28) 

Mutual rndependence. Mutual independence, represented by [A][B][C][D], implies 

that aH subsets of the four sources exhibit independence. Thus, all of the 6 pairwise, 
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4 three-way and the single four-way CSDs are exactly equal to O. 

Joint Independence. 

Case 1 Without loss of generality, suppose that sources A and B are dependent but 

no other dependence is exhibited. Such a structure is denoted by [AB] [Cl [D]. 

Then CAB oF 0, whereas CAC = CAD = C BC = C BD = CCD = O. As seen for 

the three-source case above 

Further, 

CABCD = CAB. 

The remaining three-way CSDs are equal to 0, 

Case 2 Another case of joint independence structure occurs with structure [AB][C D]. 

That is, assume without loss of generality that sources A and B are jointly 

independent of sources C and C. Then, using similar reasoning to the previous 

case, 

Likewise, 

and 

CABCD = CAB + CCD. 

Conditional Independence. Without loss of generality, suppose that C and D are 

independent, conditionally on membership in sources A and B. Such a structure is 

denoted by [ABC][ABD]. As with the example of condition al independence for the 
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three-source case ab ove , conditional independence of Gand D given A and B, does 

not imply that Gand D are marginally independent. Thus, it is not possible to say 

that GCD = O. In this case none of the other pairwise CSDs are equal to 0 since, by the 

principle of hierarchy for such a model, all other pairs must be dependent. Moreover, 

the 2 three-way CSDs, G ABC and G ABD, are not equal to 0 since, by assumption, each 

of these triples exhibits dependence. 

For the other 2 three-way CSDs, G ACD and GBCD, it is not possible to obtain a direct 

relationship to any of the known CSDs. This can be seen by expanding from the 

definition of CACD, (2.1), in the following manner 

Pr[AnGnD] 
CACD = Pr[A]Pr[G]Pr[D] 

Pr[G n DIA]Pr[A] 
Pr[A]Pr[G]Pr[D] 

Pr[GnDIA] 
Pr[G]Pr[D] . 

Gand D are not necessarily conditionally independent given A, and the conditional 

distributions of GIA and DIA are arbitrary. The same reasoning applies to GBCD. 

For the four-way CSD, Theorem 2.3 states that 

(2.29) 

As with the three-source case of conditional independence ab ove (i.e. [AB] [AC] for 

sources A, Band G), Theorem 2.3 is used to decompose the highest or der CSD. 

With this four-source example, we note that conditioning is made on two sources 

rather than the single source in the three-source example and the joint effect of both 

of the two conditioning sources must be accounted fOL 

If sources A and B are assumed independent, equivalently CAB = 1 and GAB = 0, 

then we .obtain 

from Theorem 2.3. That is, the four-way CSD is equal to the sum of the 2 three-way 

CSDs, GABC and GABD , when there is also pairwise independence of A and B. 
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Mutual Dependence. In this case there is four-way dependence and none of the CSDs 

are equal to O. Again, as in the three-source case, such a set-up can be modeIled by 

a hierarchicallog-linear model at the co st ofover-parameterization. 

Remark 2.29 As with the three-source case given in Example 2.16, the previous 

example serves to make explicit the relationships between HJLLMs and MLLMs. For 

simple dependence structures, the MLLMs equivalent to hierarchical joint log-linear 

models are obtained by constraining certain CIDs (equivalently CSDs) to be equal 

to o. However, HJLLMs of conditional independence correspond to specifie linear 

constraints on the CIDs (CSDs) and thus the MLLM equivalent to the HJLLM is a 

constrained model and not a mere reparameterization of the HJLLM as is the case 

for simple dependence structures. 

Remark 2.30 Nonhierarchical dependence. With the discussion of hierarchical 

dependence structures of the current section, we close by considering nonhierarchical 

dependence structures. On page 232 of Appendix D we provide an example of three 

events that are pairwise independent but jointly dependent, thus demonstrating that 

nonhierarchical dependence can occur. In the capture-recapture setting, a possible 

scenario like that of the example would arise for three lists should the probability 

that an individual appear on a list depends on hisjher membership on both of the 2 

other lists, whilst knowing only that an individu al appears on one such list provides 

no information concerning hisjher appearance on each of the other lists separately. 

It is known that HJLLMs, designed to accommodate hierarchical dependence 

structures, do not necessarily weIl model nonhierarchical dependence. We suggest 

that the class of MLLMs offer greater flexibility in modelling such structures. A data 

analysis of data generated according to a nonhierarchical dependence structure will 

be presented in the next chapter. 
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Summary 

We will provide evidence as to the flexibility of the marginal model in the following 

chapt ers , in which we undertake parameter estimation and inference. A frequentist 

approach will be presented in Chapter 3. In Chapter 4 a Bayesian development for a 

general model form will be presented, followed by a specifie model parameterization 

in Chapter 5. 
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Chapter 3 

Frequentist Marginal Log-Linear 

Models 

3.1 Introduction 

In this chapter we consider the general form of the marginallog-linear model intro

duced in Chapter 2 (see Definition 2.7). We describe a family of marginal models 

which consists of all those derived from the general form by fixing different combina

tions of CIDs (or CSDs) to zero. We follow with a description of parameter estimation 

via maximum likelihood, which includes reference to the challenges posed by fitting 

a model on marginal means using a likelihood on joint cell means. 

Data analysis is performed for 3 four-source data sets: the diabetes data set 

of Bruno et al. (1994) and two simulated data sets. Of these latter, the first is gen

erated according to a conditional independence model and the second according to a 

nonhierarchical dependence structure. The data analysis consists of fitting all possible 

joint log-linear models, both hierarchical and nonhierarchical, as well as all possible 
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marginallog-linear models, and to compare the models using simple model selection 

criterion. The relationship to joint log-linear models will be presented and the manner 

in which marginallog-linear models account for dependence structures similarly and 

differently to hierarchical joint log-linear models will be described. These examples 

will serve to provide concrete empirical evidence for the properties of the CIDs and 

marginallog-linear models described in Chapter 2. 

The work presented in this chapter is not intended to be the definitive frequentist 

formulation. Rather the goal of this work is twofold: first, to demonstrate that it 

is possible to obtain reasonable maximum likelihood estimates using the CID model 

formulation; and, second, to begin to explore dependence structures which are not 

well modelled by hierarchicallog-linear models and demonstrate that our model thus 

parameterized is able to out-perform both the best-performing hierarchicallog-linear 

model and nonhierarchicallog-linear model (see Section 3.5.4). 

With these goals in mind, this chapter presents ideas to aid exploration and under

standing whilst still offering a possible route to analysing capture-recapture data. It 

should be noted that in demonstrating that the marginal model performs better than 

the best hierarchical model for certain types of capture-recapture data, we provide 

weight to the argument in favour of using non-hierarchical joint log-linear models in 

capture-recapture as well as more general settings. Before presenting the results of 

the analysis of such data, we begin with a discussion of the model and the inferential 

procedure to be used, that is maximum likelihood estimation. 

3.2 The marginallog-linear model 

The most general form of the marginallog-linear model introduced in Chapter 2 is 

given by Definition 2.7 for a set of sources Q. We include the definition here again 

for completeness. 
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Definition 3.1 Let Q be a set of sources and let K = 1 QI. Then the following system 

of 2K - 1 equations constitutes the marginallog-linear model for the K sources of Q. 

logms = f3s, for SE Q; 

logmn = -(lnl-1)logN + I)ogms+ L'YT' forn c Q. (3.1) 
SEQ Ten 

Equivalently, the formulation can be re-expressed in terms of the CSDs using Propo

sition 2.8, again presented here for completeness. 

Proposition 3.1 Let Q be a set of sources and let K = 1 QI. Then the following 

system of 2K - 1 equations is equivalent ta the marginal log-linear model for Q as 

given by Definition 3.1. 

log ms = f3s, for SE Q 

logmn = -(Inl- 1) log N + L log ms + Cn , for ne Q (3.2) 
SEQ 

Example 3.1 Consider the three-source capture-recapture setting, with sources A, 

Band C. Then the following system of 23 - 1 = 7 linear equations constitutes the 

three-source marginal model parameterized in terms of the CIDs: 

log mA = f3A 

logmB = f3B 

logmc = f3c 

logmAB = -f3o + f3A + f3B + 'YAB 

log mAC = -f3o + f3A + f3c + 'YAC 

logmBc = -f3o + f3B + f3c + 'YBC 

logmABC = -2f3o + f3A + f3B + /3c + 'YAB + 'YAC + 'YBC + 'YABC, (3.3) 
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whilst the equivalent formulation in terms of the CSDs is given by: 

log mA = f3A 

10gmB = f3B 

logmc = f3c 

10gmAB = -f3o + f3A + f3B + CAB 

log mAC = -f3o + f3A + f3c + CAC 

10gmBc = -f3o + f3B + f3c + CBC 

10gmABc = -2f3o + f3A + f3B + f3c + CABC, (3.4) 

• 

3.3 Family of marginal models and parameter re

duction 

Both the CIDs and CSDs measure dependence. As described in the previous chapter, 

the manner in which they achieve this differs. In the case of the CSDs (see Defini

tion 2.2), dependence is measured as a departure from marginal independence. For 

CIDs (see Definition 2.4), it is measured as the incremental dependence injected by 

a subset of sources into a set of sources. For instance, a three-way CID measures the 

additional dependence in the three corresponding sources not accounted for by all of 

the 3 pairs of sources marginally. 

Setting CIDs (CSDs) equal to zero in the CID parameterization (3.1) (the CSD 

parameterization (3.4)), alters the form of the dependence structure being modelled. 

In so doing, the number of parameters to be estimated is reduced. Setting CIDs 

(CSDs) equal to zero is equivalent to omitting the corresponding term in the model 

and can be thought of in a similar manner to that of omitting interaction terms in 
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a joint log-linear model. As described in the previous chapter, marginal models are 

able to model dependence differently to hierarchical joint log-linear models; first, since 

they are not constrained to adhere to the principle of hierarchy (Bishop et al., 1975), 

and, secondly, since the form of the model necessarily implies that the modelling is 

done so differently. 

In working with the CID parameterization rather than the CSD parameterization, 

givenfor the three-source case by (3.3) and (3.4), respectively, we gain modelling 

fiexibility, Whenever a CSD is fixed at 0, the equation for the corresponding marginal 

mean is the same as the model for independence. However, such a situation does not 

arise under the CID ML LM formulation wherein, for models of dimension greater 

or equal to 3, it is possible to set sorne CIDs equal to zero whilst retaining other 

non-zero CID terms. In so doing, it is possible to retain sorne terms that model 

dependence rather than necessarily removing an dependence terms in the case of the 

CSD formulation. We illustrate this point with the three-source case. 

Example 3.2 Consider the three-source case, for sources A, Band C. We placEl the 

following constraint on the CSDs in (3.4): CAC = CBC = CABC = O. Then the model 

is given by 

log mA = f3A 

10gmB = f3B 

logmc = f3c 

10gmAB = -f3o + f3A + f3B + CAB 

log mAC = -f3o + f3A + f3c 

log mBC = -f3o + f3B + f3c 

10gmABc = -2f3o + f3A + f3B + f3c, (3.5) 

which is the model for mutual dependence of A and B. However, if "lAC = "IBC = 
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"IABC = 0 in the CID parameterization (3.3), the corresponding model is not that of 

mutual dependence of A and B, rather it is given by 

logmA = {JA 

logmB = {JB 

logmc = {Jc 

logmAB = -{Jo + {JA + {JB + "IAB 

log mAC = -{Jo + {JA + {Jc 

logmBC = -{Jo + {JB + {Jc 

logmABc = -2{Jo + {JA + {JB + {Jc + "IAB, 

In this case, there is a term that measures dependence in the expression for m ABC, the 

three-way marginal (equivalently joint) mean. In both cases the number of parameters 

to be estimated is reduced by 3 but the nature of the modelled dependence is different. 

The CID formulation equivalent to (3.5) would impose the constraint "IABC = -"IAB 

(as per the discussion in Section 2.3). Further, we note that such a model is not that 

of conditional independènce of B JLAjC, which would have non-zero CIDs "lAC and 

"IBC, as per the setting presented in Example 2.16. 

The previous example serves to demonstrate that a model in which CSDs are set to 

zero is less plausible than a model setting CIDs equal to zero, since every combination 

of lists is given its own offset term, as it were, in the form of a CSD. We therefore 

focus our discussion on the CID parameterization, which we employ for data analysis 

in Sections 3.5.2 - 3.5.4. 

Remark 3.1 The general form of the CID formulation of the marginal model (and 

also the CSD formulation) is over-parameterized. For the general K-source capture

recapture setting, there are 2K parameters to estimate, corresponding to (K + 1) 

(3 terms (i.e. (3o,(3A, ... ,(3K) and (2K -1) - K CIDs (CSDs). However, there are 
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only 2K - 1 data points, corresponding to the 2K - 1 ceU entries of the incomplete 

contingency table (given by Table 1.2, for the three-source case), available to estimate 

these parameters. Thus, the system is under-determined with insufficient data to 
\ 

simultaneously estimate aH model parameters. 

Parameter reduction must be undertaken in order to achieve model identifiability. 

Even with a parameter reduction of l, the number of parameters to estimate would 

equal the number of data points to be used for this estimation. That is, the model 

would be saturated. In this situation, as with any statistical model which seeks 

to fit a model to a data set with as many parameters as data points, the maximum 

likelihood estimation procedure used would yield model parameter estimates which fit 

to the data perfectly, In the capture-recapture setting, this translates into estimated 

model parameters which yield estimated cell means that are equal to the observed 

cell counts. 

Unsaturated models can be obtained by setting more than a single CID (CSD) 

equal to zero. In fact, a family of marginal models exists in which we consider all 

possible combinations of CIDs (CSDs) that are fixed at zero and the marginal models 

that correspond to these combinat ions of zero-valued CIDs. The following proposition 

specifies the number of possible models in this family, for which all main effect terms 

corresponding to the single-source marginal means are included. This is a specific 

feature of capture-recapture data: since the goal is to use all of the K data sources 

available in the general case, main effect terms should be included for aU of these K 

sources. This principle will be adhered to henceforth. 

Proposition 3.2 Let Q denote a set of sources and K = 1 QI. Let s equal the num

ber of non-single source CIDs (CSDs) of Q. Then there are s possible CID (CSD) 

parameters of model (3.1) (model (3.2)) ta be estimated, where 

s = (2K 
- 1) - K. 
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Furlhermore 

1. The number of marginal models with all possible combinations of CIDs (CSDs) 

fixed at zero is given by 28
• 

2. There are 28 
- 1models that are not over-parameterized. 

3. Of these, there are 28 
- (s + 1) unsaturated models. 

Proof. The proof is immediate from simple combinatorial arguments. 

1. The number of possible models with all combinat ions of s CrDs (CSDs) fixed 

at zero, ranging from 0 CrDs (CSDs) to all s CrDs (CSDs), is given by 

(~) + G) + G) + ... + C ~ 1) + G) = 28

• 

2. Since there are 2K - 1 data points, the number of model parameters cannot 

exceed this value. The only model with more than 2K - 1 parameters is that 

with none of the s crDs (CSDs) fixed at zero (i.e. the model that includes all 

CrDs (CSDs)). Thus, there are 28 
- 1 models that are not over-parameterized. 

3. U nsaturated models contain fewer parameters than the number of data points 

with which to estimate the parameters. Of the 28 
- 1 models that are not over

parameterized, we remove the (~) = s models with one of the s CrDs (CSDs) 

fixed at zero to yield 28 
- (1 + s). 

o 

Example 3.3 For the three-source case there are s = (23 - 1) - 3 = 4 CrDs. Thus, 

using Proposition 3.1, 16 unique models exist. Of those 16 models, 1 of them is over

parameterized (i.e. the model parameters cannot be estimated uniquely). Of the 15 

models that are not over-parameterized, 4 of them are saturated (i.e. there are as 

many data points as parameters to estimate). Thus, there are Il unsaturated models 

to be considered. 
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Example 3.4 For the four-source case there are s = (24 
- 1) - 4 = 11 CIDs and 

consequently many more possible marginal models than in the three-source case. 

Using Proposition 3.1, 2048 unique models exist. Of those 2048 models, 1 of them 

is over-parameterized (Le. the model parameters cannot be estimated uniquely). Of 

the 2047 models that are not over-parameterized, 11 are saturated (i.e. there are 

as many data points as parameters to estimate). Thus, there are 2036 unsaturated 

models to be considered. 

Remark 3.2 Note that in the case of HJLMMs there is a single saturated model for 

the general K-source case, whereas in considering non-hierarchical models, as we do 

here with the marginal models, there are (~) = K such models, which correspond to 

the number of ways in which one of the CIDs can be fixed at zero. 

Before being able to select amongst a set of models, it is necessary to specify the 

family amongst which we must select. Sensibly, it is only possible to consider the 

fa~ily that consists of aU marginal models which are not over-parameterized. Thus, 

for the four-source data sets analyzed in this chapter, we consider the family of 2047 

marginal models as described in the previous example, Example 3.4. In order to 

perform data analysis using this family of non-over parameterized marginal models, 

we must select the parameter estimation procedure to be used. In the next section 

we describe the maximum likelihood approach we choose to use, as weU as the Fisher 

Scoring algorithm we employ to obtain the corresponding parameter estimates. 

3.4 Maximum likelihood estimation 

In general, maximum likelihood estimates can be obtained by using Fisher Scoring 

when there are no constraints on the parameter space. In working with a model on 

the marginal means m, it is necessary to ensure that the corresponding ceU means 
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IL = A -lm, are positive (for a description of the matrix A, which transforms cell 

means into marginal means, see the matrix form below, as first introduced in (2.20)). 

Such constraints on the 2K - 1 cell means place corresponding non-linear constraints 

on the model parameters and define the feasible parameter space. In practice, again 

since the goal of this chapter is not to provide a definitive approach to maximum 

likelihood estimation for the best model formulation, it is possible to use Fisher 

Scoring starting the algorithm from a value known to be reasonably well inside the 

feasible parameter space. Indeed, when we used estimates obtained by fitting the 

joint log-linear model for independence in R (R Programming Language, 2004) (by 

using the inbuilt glm function with log link and a Poisson likelihood) as our starting 

values, the Fisher Scoring algorithm moved out of the feasible parameter space in 

very few instances. In situations where it did, an adjustment was made to move the 

parameter estimates to the nearest feasible point in the direction of maximum change 

as used in the Fisher Scoring algorithm. This was not difficult to implement and 

satisfied the exploratory goal of this chapter. 

Implementation of the Fisher Scoring algorithm requires both the score vector and 

information matrix of the likelihood together with the model as specified by (3.1). 

Given the relationship between the multinomial and Poisson likelihoods outlined in 

Section 1.1.3 and described in Sandland and Cormack (1984), combined with the 

fact that the score and information matrix of the Poisson likelihood are much easier 

to deal with than those of the multinomial likelihood, we choose to work with the 

Poisson likelihood in this chapter. 

It is useful to re-express model (3.1) in matrix form in order to obtain easily 

readable expressions for the score and information matrix. For the general case of K 

sources, let d = 2K - 1 be the number of entries in the incomplete contingency table 

and let s = d - K be the number of possible non-single source CIDs to be estimated 

(Recall that sorne can be fixed at zero, equivalently omitted from the model, to reduce 
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the model dimension). Let A be the d x d matrix that transforms the cell means into 

marginal means, p, the d x 1 vector of cell means, m the d x 1 vector of marginal 

means, X the d x (K + 1) design matrix for the (K + 1) x 1 vector f3 and Z the d x p 

design matrix for the p x 1 vector of CIDs to be estimated, which is denoted by " 

where p :=:; s - 1. For the K sources Sb"" SK, 

f3= (3.6) 

As described in Chapter 2, the matrix form of the marginallog-linear model (3.1), is 

given by 

logm = log(Ap,) = Xf3 + Z,. 

For convenience, this model can be expressed in the following equivalent form as 

logm = log(Ap,) = Yd, (3.7) 

where 

We use q to denote the dimension of d with q = (K + 1) + p, where p is the number of 

non-zero CIDs in the model. Then we require q :=:; d or equivalently p :=:; d- (K + 1) = 

(2 K -1) - (K + 1) = s - 1, where we recall that sis the number of non-single source 

CIDs. The matrix Y is the d x q design matrix corresponding to the q-dimensional 

vector d. 

Remark 3.3 As noted in Remark 2.24, we recognize that model (3.7) is a member 

of the class of models described by Lang and Agresti (1994) to simultaneously model 
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the joint and marginal distributions of multivariate categorical responses. Again we 

note that the setting of Lang and Agresti (1994) applies to complete contingency 

tables rather than the capture-recapture setting. 

Example 3.5 In particular, for three sources, K = 3, d = 2K - 1 = 7 and s = 4. 

The most general model (Le. with no CIDs fixed at zero) is over-parameterized and 

is given by 

log(m) = log(AI-t) = Y8, 

where 

mA 1 0 0 1 1 0 1 

mB 0 1 0 1 0 1 1 

mc 0 0 1 0 1 1 1 

m= mAB ;A= 0 0 0 1 0 0 1 , 

mAC 0 0 0 0 1 0 1 

mBC 0 .0 0 0 0 1 1 

mABC 0 0 0 0 0 0 1 

(30 
/-lABO 0 1 0 0 0 0 0 0 

(3A 
/-lABO 0 0 1 0 0 0 0 0 

(3B 
/-lABC 0 0 0 1 0 0 0 0 

Y= and 8 = 
(3c 

I-t= /-lABO -1 1 1 0 1 0 0 0 
"(AB 

/-lABC -1 1 0 1 0 1 0 0 
"(AC 

/-lABC -1 0 1 1 0 0 1 0 
"(BC 

/-lABC -2 1 1 1 1 1 1 1 
"(ABC 

Remark 3.4 Reduced models are obtained by removing appropriate columns from 

the design matrix Y and the corresponding CID parameters in the parameter vector 
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Ô. As mentioned above, we require q ~ d in order for the model parameters to be 

estimable. The general model given by (3.7) is over-parameterized whenever q > d. 

Example 3.6 For three sources, the model that contains only the three-way CID is 

given by 

log(m) = log(A/L) = Yô, 

where 
0 1 0 0 0 

0 0 1 Q 0 f30 

0 0 0 1 0 f3A 

Y= -1 1 1 0 0 and Ô = f3B 

-1 1 0 1 0 f3c 

-1 0 1 1 0 "'(ABC 

-2 1 1 1 1 

Then q = 5 for d = 7 data points. 

Remark 3.5 AU of the theory derived below applies to a general form of Y and Ô, 

for q ~ d, where q is the dimension of the parameter vector Ô. 

Likelihood 

The Poisson log-likelihood of Ô can be expressed as 

[(8) = n'log[/L(ô)]- e'/L(ô) = n'log[A -1 exp(Yô)]- e'/L(ô), (3.8) 

where n is the d x 1 vector of observed ceU counts and e is a d x 1 vector of 1s. The 

corresponding q x 1, q ~ d, score vector is given by 

U(ô) = Y'diag(exp(Y ô))(A -1)' [n 0 /L(ô)-I - e] 
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using the conventions described in Appendix B (with exponentiation of a matrix ap

plied element-wise, as introduced by Gentleman & Vandal, 2001) whilst the negative 

q x q information matrix is given by 

where, for ease of notation, dependence of p, on 0 has been suppressed and p, = 

p,( 0). The derivations of the score vector and information matrix are reproduced 

from Vandal et al. (2005) in Appendix F. 

The Newton-Raphson algorithm uses the following scheme to update the 0 para

meters at the 8th step from a value of Os: 

starting from an initial value denoted by 00. Fisher scoring, a well-known likelihood 

maximization method, replaces the observed information matrix 1(0) with its expec

tation lE [1(0)], thereby stabilizing the algorithm. Expectation is taken with respect 

to the distribution of the vector of cell counts n, which is assumed to be a vector 

of independent Poisson rançiom variables with expectation p" as per (3.8). Taking 

expectations entry-wise in (3.9), we see that each matrix entry is a linear function of 

the cell counts of the d x p matrix, 1(0). Thus, we have a linear function on each 

entry from n and the expectation operator can be applied directly to each entry of 

n. Specifically we can apply lE [n] = p, to (3.9) to obtain 

(3.10) 

The Fisher scoring iteration is given by 

As alluded to earlier in this section, there are additional challenges posed by 

fitting a model on marginal me ans using à likelihoodon the cell means. Positivity 
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of the cell means must be ensured as Fisher Scoring updates d. Ensuring positivity 

of IL corresponds to an ordering of the marginal probabilities of m as outlined in 

the previous chapter in Section 2.4.1. These constraints are non-linear in model 

parameters, d, which implies that maximum likelihood estimation must be performed 

subject to the d non-linear constraints given by 

IL = A-lm ~ 0, 

where the inequality applies element-wise. 

As mentioned ab ove , in working with simulated data it is possible to start from 

reasonable starting values which would not cause the Fisher scoring algorithm to 

pass through infeasible values of IL. Thus, such an approach will be adopted without 

recourse to complex optimization algorithms which enforce such constraints. In fact, 

in most cases, starting the algorithm from the parameter estimates obtained from 

fitting the joint log-linear model for independence (using the glm function with log 

link and the Poisson family in the R Programming Language, 2004) is sufficient to 

prevent the algorithm from leaving the feasible parameter space. Furthermore, in 

assuming a Poisson likelihood and performing inference on JE [N], it is not necessary 

to ensure that the parameter of interest, JE [N] is larger than the number of observed 

individuals, as would be the case if the multinomiallikelihood had been assumed and 

inference were to be performed on the parameter N. Since the results presented here 

are proof of concept, and the computational techniques involved not the focus of our 

discussion, it is not a serious drawback that the optimization technique used will not 

apply to aH data and aH starting values. 

3.5 Data analysis 

In this section we will analyze one real and two simulated four-source data sets. The 

analysis consists infitting aH possible 2047 MLLMs to each data set by implementa-
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tion of the Fisher Scoring algorithm derived in the previous section, as well as fitting 

an possible 2047 JLLMs, including those which are nonhierarchical. In each case, we 

will use the AIC model selection criterion (Sakamoto et al., 1986) to select the best 

model amongst aU aH models of each family. The best MLLM will be compared to the 

best HJLLM. In so doing, we will demonstrate that the family of marginallog-linear 

models is complementary to the family of hierarchical joint log-linear models and, in 

sorne cases, are selected over a HJLLM. Moreover, the analyses serve another purpose: 

they provide weight to our suggestion that the uni verse of models to be considered 

using the standard joint log-linear modelling approach should be extended to include 

nonhierarchical models. 

Remark 3.6 Note on the choice of AIC. The work of Hook and Regal (1997) 

supports the use of AIC in the capture-recapture setting. (See Section 1.2.1 for 

further details.) They found that the performance of other information criteria for 

model selection were found to be roughly equivalent. The use of AIC simplifies the 

discussion and is sufficient to demonstrate the viability of MLLMs as alternatives to 

JLLMs. 

Remark 3.7 Note on terminology. The suffix LLM of JLLM and MLLM will 

be used interchangeably for log-linear models and log-linear modelling, where the 

context will dictate the meaning. 

3.5.1 Modelling approach 

We will consider the four-source capture-recapture setting. As described earlier in 

this chapter, the different marginal log-linear models to be considered are obtained 

by fixing aU possible combinat ions of the 11 non-single source CIDs equal to O. From 

Proposition 3.1, and as shown in Example 3.4, there are 2047 non-overparameterized 

models, of which 2036 are unsaturated. Likewise, using the same reasoning related 
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to the 11 possible interaction terms, there are 2047 non-overparameterized joint log

linear models, of which 2036 are unsaturated. Of these, 113 models are hierarchical. 

The Fisher Scoring algorithm (described in Section 3.4) will be used to obtain 

maximum likelihood estimates for the marginallog-linear models. Code was written 

in R (R Programming Language, 2004) to implement the algorithm (see Appendix G 

for the code). The inbuilt glm function (with log link and the Poisson family) in R 

was used to run aIl joint log-linear models. We computed AIC values without using 

the inbuilt function in R for the JLLMs. In such a way the same code was used for aU 

models ~nd we avoided any potential differences in definition for the AIC. Estimates 

of precision for N were obtained using the asymptotic standard errors described in 

Section 1.2.1 for the JLLMs assuming an underlying Poisson likelihood (which we 

note will give tighter confidence intervals that those obtained assuming a multinomial 

likelihood - see Section 1.2.1) and using the approach of Lang and Agresti (1994) for 

the MLLM, also described in Chapter 1. Details are provided in Appendix F.2. 

Estimating CIDs 

For the best model in each family, the CIDs will estimated and contrasted using two 

different approaches: the model-based approach and the non-parametric approach, 

which we describe here. 

Model-based approach 

For MLLMs, the CIDs are parameters to be estimated. Thus, their value is obtained 

directly from the estimated model. In the case of JLLMs, the fitted model parameters 

are used to obtain the corresponding fitted ceU probabilities, from which the CIDs 

are calculated. 

Non-parametric approach 

This approach is the same for both MLLMs and JLLMs. The estimated N is used to 

complete the table of observed cell counts to obtain an estimated cell mean for the 

112 



unobserved cell. The corresponding table of cell probabilities for the complete table 

is used to calculate the CIDs. 

Simulation of data sets 

The simulated data sets to be analysed are described in Sections 3.5.3 and 3.5.4 

below. In both cases, an underlying multinomial likelihood is assumed. Given the 

equivalence of point estimates obtained using a Poisson model to those obtained using 

the multinomial model (Sandland & Cormack, 1984), we will fit the models using the 

more computationally straightforward Poisson likelihood, as mentioned in Section 3.4. 

3.5.2 Real data: Diabetes data set 

In this section we consider a real four-source data set that has been analysed sev

eral times in the literature (Bruno et al., 1994; IWGDMF, 1995a; Fienberg et al., 

1999; Bartolucci & Forcina, 2001). The data set is provided in Table 3.1. Bruno 

et al. (1994) sought to enumerate all individuals with diabetes in a northern re

gion of Italy on October 1, 1988. The four sources, denoted by A, B, C and D for 

consistency with the notation used throughout this dissertation, were described in 

IWGDMF (1995a) as follows: 

• A: list of all patients with a previous diagnosis of insulin-dependent diabetes 

mellitus or non-insulin dependent diabetes mellitus via a diabetic clinic and/or 

family physicians; 

• B: list of all patients discharged with a primary or secondary diagnosis of 

diabetes in aU public and private hospitals in the region; 

• C: computerized database list of insulin and oral hypoglycemic prescriptions 

for 1988; 
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• D: list of an residents of the region who requested a reimbursement for insulin 

and reagent strips. 

Ayes ANo 

Byes BNo Byes BNo 

CYes Dyes 58 46 14 8 

DNo 157 650 20 182 

CNo Dyes 18 .12 7 10 

DNo 104 709 74 ? 

Table 3.1: Diabetes data set of Bruno et al. (1994). 

Of the 2069 cases, most were observed in source A. There were 1754, 452, 1135 

and 173, observed in each of sources A, B, C and D, respectively. Thus, very few 

individuals were observed in each of sources Band D. This is not surprising given 

that these sources correspond to hospital discharges and reagent syringes, which we 

would expect to capture fewer individuals than the diabetic clinics and prescriptions. 

Further details of the data set can be found in the original article (Bruno et aL, 1994). 

In Hne with the approach adopted by IWGDMF (1995a) and described in Sec

tion 1.1.1, we present the results from each of the pairwise Peter sen estimates as a 

first step in our analysis We notice that three of these estimates fan below the ob

served number of individuals, 2069. As stated in IWGDMF (1995a), and suggested 

in Wittes et al. (1974), the very low value (relative to the rest) of il for sources B 

and D suggests the need to consider positive dependence amongst sources. Thus, we 

do not anticipate that a model of independence be selected as the best model. 

We now proceed to present results from an 2047 MLLMs and 2047 JLLMs. First, 

Figure 3.1 presents a plot of an AIC values against the number of model parameters. 

Secondly, Figure 3.2 presents the corresponding values of il for each of the models, 
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Sources N 
A,B 2351 

A,e 2185 

A,D 2262 

B,e 2057 

B,D 803 

e,D 1555 

Table 3.2: Pairwise Petersen estimates of Diabetes data set of Bruno et al. (1994). 

again compared to the number of parameters in the model. In both cases, we use 

col ours and symbols to distinguish between the MLLMs and the JLLMs, and to 

further distinguish between those that are hierarchical and nonhieràrchical in the 

latter. Note that there were three marginal models\ aU of which contained the four

way CID "/ABCD, for which there were computational difficulties using the Fisher 

Scoring algorithm. We do not include these three models in the discussion below. 

Figure 3.1 shows the AIC value for models related to the number of model pa

rameters. We see that the minimum AIC of an 2047 JLLMs and that of an 2047 

MLLMs are very close. In both cases the models contain 12 parameters. Table 3.3 

summarizes these results and presents the form of each of these models. The best 

JLLM slightly outperforms the best MLLM with an AIC of 24.91 compared to 25.07 

for the best MLLM. 

A + B + C + D + AB + AC + AD + BC + ABC + ABD + ACD + ABCD 

A + B + C + D + AB + AC + AD + BC + CD + ABC + ACD + BCD + ABCD 

A+B+C+D+AB+AC+AD+BC+CD+ABC+ABD+ACD+ABCD 
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Figure 3.1: Ale vs. number of model parameters for all four-source JLLMs and 

MLLMs for diabetes data of Table 3.1 

We notice that both the best-performing JLLM and best-performing MLLM (as 

selected by the Ale criterion) are nonhierarchical. In both instances, nonhierarchical 

models are preferred over the best-performing HJLLM, which is more parsimonious 

with 10 parameters but with a larger Ale value of 27.62. The best overall model 

is the nonhierarchical JLLM which provides an estimate of N = 3092, followed by 

the MLLM with an estimate which is considerably smaller at N = 2345. Should we 

constrain ourselves to the standard analysis of choosing amongst the best-performing 
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Figure 3.2: N MLE vs. number of model parameters for aU four-source JLLMs and 

MLLMs for diabetesdata of Table 3.1 

HJLLM, we would estimate an intermediate value of il = 2771. 

As a result of the differences in il according to which of the three families of models 

we select amongst, there is quite a difference in the point estimate of the proportion 

of the population observed in the data set. For the best-performing JLLM, 67% 

(2069/3092) of the diabetes population is assumed to have been observed, for the 

best-performing HJLLM, 75% (2069/2771), with a much higher proportion at 88% 

(2069/2345) estimated to have been observed for the best-performing MLLM. 
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Model Model parameters 95% 

Family AIC AB AC AD BC BD CD ABC ABD ACD BCD ABCD q fi C.1. 

JLLM 24.91 1 1 1 1 1 1 0 0 0 0 1 12 3092 (2573, 3611) 

HJLLM 27.62 1 1 0 1 1 1 0 0 0 0 0 10 2771 (2491, 3050) 

MLLM 25.07 0 1 0 1 1 1 1 0 0 1 1 12 2345 (2295, 2396) 

Table 3.3: Best-performing models by model family for diabetes data 

Remark 3.8 Both the best performing JLLM and MLLM contain the same number 

of parameters (see Table 3.3). Although the model form does not contain the same 

types of dependence terms, we observe that in both cases a term related to four-way 

dependence is included: in the case of the JLLM this is a four-way interaction term 

(note that the model is not saturated since it has fewer than 15 parameters), whilst 

in the case of the MLLM this term is the 4-way CID, denoted by "(ABCD. Further, 

we note that the 4-way interaction in the JLLM models the differential behavior of 

the corresponding cell with respect to other cells, while the 4-way term in the MLLM 

models the extra dependence induced by considering 4 sources, as distinct from 3-

and 2-way dependence. 

Table 3.4 provides additional information concerning the fit of each of the best 

performing models in each of the three families. It contains the estimated CIDs (us

ing both the model-based and nonparametric techniques described on page 112) for 

each of the three best-performing models, as well as the estimated marginal means. 

We choose to examine the estimated marginal means rather than the estimated cell 

means since, as will be described below in terms of sufficiency, they exhibit more 

meaningful properties than the cell means. We notice that the CIDs for each of the 

best performing models of each of the three families are differeilt since the models 

relate to different dependence structures. Nonetheless, the CIDs serve to provide in-

118 



CD ::r: ~ rJl 
ct- ~ ..... L' 0-
S ...... 

L' CD 
\l) s::: C.:> Estimated CID ct-o· ~ 
? \l) .. 

Margin 1 JLLM HJLLM MLLM 1 Observed 1 Estimated marginal mean l:::l 
'"1 0.. Cl 
CD ...... 
rJl s:: t:J MB NP MB NP MB NP count JLLM HJLLM MLLM '0 rJl 
CD L' 

\l) () L' ct- l:::l AI 0 0 0 0 0 0 1754 1754 1754 1754 ..... s::: -< p... 
CD -...... 

::il S BI ':< \l) 0 0 0 0 0 0 452 452 452 452.04 
p-' '"1 
CD aq 
'"1 ..... 

CI 0 0 0 0 0 0 1135 1135 1135 1136.03 CD l:::l 

s:: \l) ...... 
t:O S DI 0 0 0 0 0 0 173 173 173 173 

CD 
\l) \l) 

l:::l l:::l AB 1 0.273 0.273 1 0.164 0.164 1 0 -0.003 1 337 337 337 338.04 0.. rJl 

Z 0' 
AC 1 0.347 0.347 1 0.238 0.238 1 0.069 0.071 911 911 911 910.25 '"1 

f-' ""CI 
f-' 0.. 

'" :::r ~. 
AD 1 0.312 0.312 1 0.174 0.202 1 0 0.035 134 134 130.27 129.37 0.. cr' 

C=;. CD 
ct-

\l) CD BC 1 0.406 0.406 1 0.296 0.296 1 0.134 0.130 249 249 249 250.45 ct- rJl 
CD p... 

S \l) BD 1 1.344 1.344 1 1.235 1.235 1 1.068 1.068 97 97 97 97.02 ct-
0 \l) 
0.. 

~ CD CD 1 0.685 0.685 1 0.576 0.576 1 0.402 0.409 126 126 126 125.30 ...... 0 1 
cr' S \l) 

ABC 1 -0.199 -0.200 1 -0.102 -0.091 1 0.069 0.076 215 1 215.22 212.65 215.06 rJl 0-CD CD 0.. rJl 
ct-

ABD 1 -0.257 -0.262 1 -0.105 -0.152 1 0 0.014 1 76 1 76.36 77.47 72.55 \l) 1 

l:::l '0 
0.. CD 

'"1 

ACD 1 -0.272 -0.284 1 -0.144 l:::l 0' -0.174 1 0 -0.007 1 104 1 105.17 104.23 100.40 
0 '"1 

l:::l S BCD 1 -0.412 -0.387 1 -0.240 -0.277 1 -0.114 -0.111 1 72 70.25 74.77 71.70 '0 S· \l) 
'"1 aq 
\l) c...... AB CD 1 0.172 0.165 1 0.075 0.055 1 -0.107 -0.112 1 58 58 63.85 55.35 S L' 
CD L' ct-
'"1 s::: ..... 
() 



terpretation to model parameters of nonhierarchical JLLMs, which are often excluded 

from the analysis of capture-recapture data. For the MLLM, the nonparametrically 

estimated CIDs corresponding to the CID-terms omitted from the model are not zero 

as with the model-based approach. This is to be expected given that the fitted model 

is Iiot used in the estimation procedure aside from using the value of N from the 

fitted model. Further features observed in that table occur for all data sets. We delay 

discussion of these common features until Section 3.5.5, which follows the analysis of 

the two simulated data sets presented in Sections 3.5.3 and 3.5.4. 

Figure 3.2 shows the point estimates of N relative to the number of model pa

rameters q for all 2047 JLLMs and all 2047 MLLMs. The interest of such a plot is 

that sorne models (independence, saturated, sorne 2-way interaction models) can be 

immediately identified on the graph as having the same· fit for JLLMs and MLLMs. 

(As with the description of features of Table 3.4, several of the features observed 

in Figure 3.2 occur for all data sets. Again, we delay discussion of these common 

features until Section 3.5.5.) 

A feature of Figure 3.2, particular to the diàbetes data set, is that the estimates 

of N obtained from MLLMs tend to be sm aller than those obtained by using JLLMs. 

Moreover, we observe that there are point estimates of N sm aller than nobs = 2069 

for sorne of the MLLMs but for none of the JLLMs. In choosing to adopt the Poisson 

model for computational reasons, it is possible that the corresponding point estimate 

N be smaller than nobs, sinee the parameter of interest is lE [N] rather than N. 

Nonetheless, in the case of the best performing MLLM, N = 2345 > nobs, and the 

lower limit of the asymptotic 95% confidence interval, given by (2295,2396), exceeds 
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3.5.3 Simulated data: Conditional independence 

The data analysis undertaken in the previous section concerns a real data set. Conse

quently we do not have a notion of the true N and it is not possible to determine how 

well the model performs in terms of estimating that true value. Using simulated data 

provides a means to verify the performance of modelling techniques. In this section 

and the next, we analyze two different simulated capture-recapture data sets with a 

true underlying population size of N = 1000 in each case. Two different dependence 

structures will be used: first, condition al independence and, second, a nonhierarchi

cal dependence structure. In so doing, we will be able to assess how well the model 

selected by the AIC criterion performs for thespecific data set under study. 

Remark 3.9 We note that in working with a single simulated data set in each case, 

there is sampling variability which will not be accounted for explicitly by determin

ing frequentist coverage properties of the model. This is not the goal of the current 

chapter. We draw the reader's attention to the fact that it is possible that, by chance, 

the simulated data set is somewhat different to the true generating structure. Never

theless, the analyses presented in this section and the next section, serve the useful 

purpose of exploring the use of MLLMs. We will hold to requiring coverage of the 

true value of N = 1000 by the 95% confidence intervals. Further, such intervals may 

be unreasonable tight because of the method used (the Wald, asymptotic approach 

assuming an underlying Poisson likelihood, using VarP [N] of Section 1.2.1). 

The four-source simulated data set considered in this section is generated accord

ing to a known conditional dependence structure given by [AB][AC][D]. The results 

from this analysis serve to confirm the result given by Theorem 2.9 for HJLLMs, 

concerning the value of the CIDs for a model of conditional independence. 

The data are shown in Table 3.5 and the details of the generating mechanism can 

be found in Appendix E. We now proceed to present results from all 2047 MLLMs 
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Ayes ANo 

Byes BNo Byes BNo 

CYes Dyes 16 24 5 10 

DNo 61 92 34 47 

CNo Dyes 50 72 16 26 

DNo 165 224 50 ? 

Table 3.5: Data generated according to the condition al independence structure given 

by [AB][AC][D] (see Appendix E). 

and 2047 JLLMs. First, Figure 3.3 presents a plot of all AIC values against the 

number of model parameters. Secondly, Figure 3.4 presents the corresponding values 

of .IV for each of the models, again compared to the number of parameters in the 

model. In both cases, we use colours and symbols to distinguish between the MLLMs 

and the JLLMs, and to further distinguish between those that are hierarchical and 

nonhierarchical in the latter. 

Figure 3.3 shows the AIC value for models related to the number of model pa

rameters q. We see that the minimum AIC of all 2047 JLLMs and that of all 2047 

MLLMs are very close. In both cases the models contain 7 parameters. In fact, it 

is clear that the best-performing JLLM is in fact a HJLLM and, thus, it is also the 

best-performing HJLLM. Table 3.6 confirms this relationship, as it summarizes these 

results and presents the form of each of the best-performing models. 

The best-performing MLLM slightly outperforms the best-performing JLLM with 

an AIC of 16.13 compared to 16.24 for the best HJLLM. We notice that both the 

best-performing MLLM and JLLM contain the same CID and interaction terms in 

the case of the MLLM and HJLLM, respectively. The best overall model is the 

MLLM which provides an estimate of .IV = 964, compared to the estimate of .IV = 
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Figure 3.3: AIC vs. number of model parameters for aH four-source JLLMs and 

MLLMs for data of Table 3.5 generated according to [AB] [AC] [D] 

966. for the best-performing JLMM. Thus, with point estimates of 964 and 966, the 

estimated proportion of the population observed in the capture-recapture data set 

is 92% (obtained using 892/965 by taking the average of the two very close point 

estimates). We observe that none of the 95% confidence intervals contain the true 

value N = 1000 (see Remark 3.9). Thus, our MLLM performs no worse than the 

best-performing JLLM. 
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Figure 3.4: NMLE vs. number of model parameters for aIl four-source JLLMs and 

MLLMs for data of Table 3.5 generated according to [AB] [AC] [D] 

Table 3.7 provides additional information concerning the fit of each of the best

performing models in each of the JLLM and MLLM families. It contains the esti

mated CrDs (using both the model-based and nonparametric techniques described on 

page 112) and estimated marginal means for each of the best-performing models. As 

with the diabetes data iil Section 3.5.2, we choose to examine the estimated marginal 

means rather than the estimated cell means. A feature of this table serves to confirm 

results shown in Chapter 2. 
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Model Model parameters 95% 

Category AIC AB AC AD BC BD CD ABC ABD ACD BCD ABCD q il C.I. 

JLLM 16.24 0 1 0 0 0 1 0 0 0 0 0 7 966 (948, 984) 

HJLLM 16.24 0 1 0 0 0 1 0 0 0 0 0 7 966 (948, 984) 

MLLM 16.13 0 1 0 0 0 1 0 0 0 0 0 7 964 (943, 987) 

Table 3.6: Best-performing models by model family for data of Table 3.5 generated 

according to [AB][AC][D]. 

The best fitted JLLM is the model of conditional independence of A and D given 

C, denoted by [AC][CD][B], which serves to confirm the result contained in Theo

rem 2.9. The theorem translates into the foIlowing for the HJLLM model given by 

[AC][CD][B]: "(ACD = -"(AD. We see that this relationship holds, with 1'AD = 0.006 

and 1'ACD = -0.006, using the model-based estimates of the CIDs. Moreover, we 

observe that aIl CIDs that should be fitted at zero are estimated as zero via the 

model-based estimates. We note that the same relationship does not hold for the 

nonparametric estimates of the CIDs, precisely because they are not obtained from 

the fitted model. 

Remark 3.10 We note that neither the best-performing JLLM nor best-performing 

!'v1LLM correspond to the correct underlying model given by [AB][AC][D]. Rather 

they are both models of a related conditional independence structure given by [AC][CD][B]. 

(Again, see Remark 3.9.) 

Figure 3.4 shows the point estimates of il relative to the number of model para

met ers q for aIl 2047 JLLMs and aIl 2047 MLLMs. A feature of Figure 3.4 that is 

particular to the simulated data set under study in this section is that the estimates 

of N, denoted by il, obtained from MLLMs are more variable than those obtained 

by using JLLMs. Unlike the results from the diabetes data set, we observe that none 
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of the point estimates of N is smaller than nobs = 892. Moreover, the width of the 

asymptotic 95% confidence intervals for both the best JLLM and best MLLM, are 

reasonably tight with neither interval containing the true value of N = 1000 (See 

Remark 3.9). 

The data analysis undertaken in the current section demonstrates that a MLLM 

model can outperform the standard data analytical approach of HJLLM, even for a 

data set generated according to a known hierarchical dependence structure. Such an 

example supports the necessity exp and the universe of models to be considered to 

include nonhierarchical models. In all cases, the CIDs serve to provide meaning to' 

the model parameters, which is a criticism levelled against the use of nonhierarchical 

models. Moreover, we see that our MLLM can perform at least as well as JLLMs. 

3.5.4 Simulated data: Nonhierarchical dependence 

In this section we consider a four-source simulated data set generated according to 

a known nonhierarchical dependence structure in which the only dependence present 

is in two of the three-way margins, specifically in the two sets of sources given by 

{A, B, C} and {A, B, D}. Note that, unlike a hierarchical structure, there is no 

pairwise dependence. Such a nonhierarchical dependence structure cannot be ex

pressed in the notation of hierarchical models; in particular, it is not represented by 

[ABC][ABD]. Such a nonhierarchical structure is not well modelled by hierarchical 

dependence structures. 

The data are shown in Table 3.8 and the details of the generating mechanism can 

be found in Appendix E. We now proceed to present results from all2047 MLLMs and 

2047 JLLMs. First, Figure 3.5 presents a plot of all AIC values against the number of 

model parameters q. Secondly, Figure 3.6 presents the corresponding values of N for 

each of the models, again compared to the number of parameters in the model. In both 

cases, we use colours and symbols to distinguish between the MLLMs and the JLLMs, 

127 



AYes ANo 

Byes BNo Byes BNo 

CYes Dyes 21 9 6 26 

DNo 61 59 60 70 

CNo Dyes 35 27 17 60 

DNo 82 195 128 ? 

Table 3.8: Data generated according tQ the nonhierarchical dependence structure 

given Appendix E. 

and to further distinguish between those that are hierarchical and nonhierarchical in 

the latter. 

Figure 3.5 shows the AIC value for models related to the number of parameters q 

in the model. We see that, unlike in the previous two sections for the diabetes data 

and the simulated data of condition al independence, the minimum AIC of aU 2047 

JLLMs and that of an 2047 MLLMs are considerably different. For the MLLMs, it 

is given by 19.46 for 12 parameters and for the JLLMs by 22.86 for 11 parameters. 

Neither the best-performing MLLM nor the best-performing JLLM is hierarchical. In 

fact, the best-performing HJLLM does considerably worse than both of these models, 

with an AIC of 24.83 and 12 parameters. Table 3.9 summarizes these results and 

presents the form of each of these models. 

The point estimates il are close to each other, given by 1011, 1017 and 1032 for 

the JLLMs, HJLLMs and MLLMs, respectively. We see that the asymptotic 95% 

confidence intervals contain the true value N = 1000 for the JLLMs and HJLMMs 

but not in the case of the MLLM, as we would wish. It should be noted that these 

intervals, derived from asymptotic arguments, are likely to be tighter than those 

obtained by an alternative non-asymptotic method and we note that the lower bound 
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Figure 3.5: AIC vs. number of model parameters for aU four-source JLLMs and 

MLLMs for data in Table 3.8, generated according to a nonhierarchical dependence 

scheme (see Appendix E). 

of 1003 is close to the truth of N = 1000. Moreover, we observe that the interval 

for the MLLM is tighter than those for both the best-performing JLLM and HJLLM, 

although it do es not contain the true value of N = 1000. 

Remark 3.11 The best-performing JLLM and MLLM contain different numbers of 

parameters (see Table 3.9) and very different terms (which are interaction terms in 

129 



ûl 
QI 

:Z 

Joint log-linear models 
o • Ali 
~ - x Minimum Ale 

• Hierarchical 
x Minimum Ale 

• Marginal log-linear models 
$ Minimum Ale 

o 
iil -..... 

Obs N -=856 

1 

6 

1 

8 

1 

10 

q 

1 

12 

00 

n 

00 

o • 

1 

14 

Figure 3.6: NMLE vs. number of model parameters for all four-source JLLMs and 

MLLMs for data of Table 3.8 generated according to a nonhierarchical dependence 

scheme (see Appendix E). 

the case of JLLMs and CID terms in the case of MLLMs). The best-performing model 

overall, the MLLM, is close to the true underlying generating dependence structure 

for which the only nonzero CIDs are "(ABO and "(ABD (see Table 3.10). It contains the 

CID terms "(ABO and "(ABD, as we would wish, and also "(BO and "(BOD. 

Figure 3.6 shows the point estimates of N relative to the number of model para-

130 



Model Model parameters 95% 

Category AIC AB AC AD BC BD CD ABC ABD ACD BCD ABCD q Iv C.I. 

JLLM 22.86 1 1 1 0 1 0 1 1 0 0 0 11 1011 (958, 1064) 

HJLLM 24.83 1 1 1 1 1 0 1 1 0 0 0 12 1017 (934, 1100) 

MLLM 19.46 0 0 0 1 0 0 1 1 0 1 0 12 1032 (1003,1063) 

Table 3.9: Best-performing models by model family for nonhierarchical dependence 

data of Table 3.8 

met ers q for aU 2047 JLLMs and aU 2047 MLLMs. A feature of Figure 3.6 that is 

particular to the nonhierarchical data set under study is that the estimates Iv of N 

obtained from MLLMs spread out similarly to those from the JLLMs but attain lower 

values than for the JLLMs. Nonetheless, none of the point estimates Iv are smaUer 

than nobs = 856. The features of Table 3.10, which provides additional information 

concerning the fit of each of the best models, will be discussed in the next section. 

The results from this section serve to provide evidence that the fit of a nonhier

archical model, whether it be a marginal or a joint model, can improve that of a 

HJLLM for nonhierarchical data. 

3.5.5 Observations cornrnon to aH analyses 

In this section we describe the common features of the analysis of the three data 

sets in Sections 3.5.2- 3.5.4. For convenience we will use the terms "Figures-AIC" to 

denote Figures 3.1, 3.3 and 3.5, and "Figures-Iv" to denote Figures 3.2, 3.4 and 3.6. 

"Tables-BestModels" will identify Tables 3.3, 3.6 and 3.9, whilst "Tables-Estimates" 

. will be used to denote Tables 3.4, 3.7 and 3.10, which present the estimated CIDs 

and marginal means for each of the best-performing models for the three data sets. 

Remark 3.12 For aU three tables of Tables-Estimates, we choose not to round the 

131 



S 0'" ~ >-' 
0 ('1) 

0- t:rj 
0-........ 

. ('1) ('1) 
>-' 1',:) 1 

C;j 0-
~ ~ t--' 
Ul 0 0 ('1) S 0-
~ 0- Q 
;:l ('1) t-< 

Ul tj p... ct-

;:l "d 
Ul 

0 ('1) ~ 
;:l >-1 ;:l 

"d 8' 0-

CID Marginal me ans 

Estimated 

JLLM HJLLM MLLM Observed Estimated 

Margin True MB NP MB NP MB NP count JLLM HJLLM MLLM 

A 0 0 0 0 0 0 0 489 489 489 488.99 
~ >-1 
>-1 S S ~ 

S 5' ~ 
>-1 

('1) ()q ()q 
ct- ..... 
>-1 ~ ;:l ..... t""' a () 

t""' 
('1) a:;: s Ul 
ct- ('1) s' ::c: ~ 

;:l 
~ ~ Ul 

B 0 0 0 0 0 0 0 410 410 410 411.41 

C 0 0 0 0 0 0 0 312 312 312 311.31 

D 0 0 0 0 0 0 0 201 201 201 199.59 

AB 0 0.004 0.004 0.001 0.010 0 0.025 199 199 199 194.75 
ct-

~ 
..... 

8' 0 
? >-1 

>-1 ~ 
;:l 

('1) 
;:l 0 

Ul ;:l 
"d p... 

8: ('1) a:;: () ('1) 
ct- >-1 
0-"' t""' ~ <: t""' >-1 
('1) () 

0" ~ P"' 
ë=ï 

AC 0 -0.005 -0.005 0.0004 0.0004 0 0.015 150 150 150 147.37 

AD 0 -0.054 -0.054 -0.049 -0.049 0 -0.034 92 92 92 94.48 

BC 0 0.153 0.158 0.163 0.163 0.169 0.178 148 147.36 148 146.88 

BD 0 -0.030 -0.030 -0.025 -0.025 0 -0.010 79 79 79 79.49 

~ ~ 

P"' 
........ 

('1) 0-
>-1 ('1) 
('1) "d 

~ 
('1) 

;:l 
ttI 0-

('1) 
~ ;:l 
;:l () 

CD 0 0.052 0.0004 0.049 0.006 0 0.021 62 65.28 64.71 60.15 

ABC 0.1515 0.142 0.137 0.132 0.132 0.115 0.117 82 82 82 78.00 

ABD 0.4055 0.433 0.433 0.427 0.427 0.400 0.412 56 56 56 56.14 

0- ('1) 

Z 0-
'i:J ~ 
5' ~ 

p... 0 
0-"' 

....., 
() 

~ ~ 
ct-
('1) 1 

ACD 0 0.058 0.061 0.062 0.055 0 0.040 30 31.52 31.52 28.47 

BCD 0 0.010 -0.055 0.011 -0.061 -0.124 -0.076 . 27 30.20 30.27 25.06 

AB CD 0 -0.120 -0.100 -0.121 -0.095 0 -0.079 21 23.08 23.08 19.86 



estimated marginal means ta the nearest integer in arder ta differentiate between 

those estimated perfectly and those not. Thus, whenever an estimated marginal 

mean is an integer it is estimated so perfectly. 

The features in common to the analysis of each of the three data sets are given as 

follows: 

• The AIC and N estimates coincide for the JLLM of independence and the 

MLLM for independence, since these are equivalent (see the models for q = 5 

in Figures-AI C and Figures-N). 

• For the range of saturated models, whether JLLM or MLLM, the model fit is 

the same but N varies. More specifically, consider the following. All models 

with 15 parameters are saturated: there is a single saturated HJLLM, but 11 

saturated JLLMs and 11 saturated MLLMs. Since all such models fit the data 

perfectly they have the same fit, as observed by a single point value at q = 15 

in Figures-AIC. However, there are multiple values of N corresponding to the 

range of the 11 saturated JLLMs and the range of the 11 saturated MLLM 

visible as a range of distinct values at q = 15 in Figures-N. For the HJLLMs 

of each of the three plots of Figures-N, there is a single N value corresponding 

to the single saturated HJLLM. 

• For the plots of Figures-N, we observe that, as the number of model parameters 

q increases, there is a funnelling form ta the N estimates. As a consequence, 

the corresponding estimates of N are more variable and, thus, more spread out. 

• Tables-Estimates provide empirical support to results concerning the fit of suf

ficient statistics of JLLMs as proved in Bishop et al. (1975). For the best

performing JLLMs for each of the three data sets, both hierarchical and non

hierarchical, the single-source marginal means are estimated perfectly equal ta 
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the observed marginal means. In fact, such a property holds for aH JLLMs, as 

described in Bishop et al. (1975). They prove that parameters corresponding 

to aH sufficient statistics, which include the single-source marginal means, are 

estimated perfectly by JLLMs. Such a property also explains some of the other 

perfect fits observed for the JLLMs . 

• Tables-Estimates also show that whenever an interaction term is included in a 

JLLM, the corresponding marginal mean is fitted perfectly equal to the observed 

marginal mean, since the marginal counts corresponding to interactions included 

in the model are sufficient statistics (again, see Bishop et aL, 1975). Thùs, 

for each of the selected JLLMs and HJLLMs shown in Tables-Estimates, the 

marginal mean corresponding to any of the interaction terms included in the 

model, as well as the single-source marginal means are estimated perfectly. 

For example, consider the best-performing JLLM for the data set of conditional 

independence in Section 3.5.3. The chosen model contains two interaction terms 

corresponding to AC and CD (see Table 3.6). From Table 3.7 we see that 

the corresponding marginal means, mAC and mCD, are estimated equal to the 

observed marginal counts of nAC = 193 and nCD = 55. Moreover, the single

source marginal means are also estimated perfectly as mA = nA = 704, mB = 

nB = 397, mc = nc = 289 and mB = nB = 219. 

• An equivalent relationship is not observed with the MLLMs, although further 

investigations would be required to determine whether this is a numerical arte

fact. First, the single-source marginal means are not consistently estimated 

equal to the observed single-source marginal eounts. Nonetheless they are very 

close, within less than 1 individual in aH cases. Second, whenever a CID-term 

is included in the model, the equivalent marginal mean is not necessarily es

timated perfectly equal to the corresponding observed marginal count. For 
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example, consider again the conditional independence data of Section 3.5.3. 

The best-performing MLLM contains only 2 non-zero CIUs, given by "(AC and 

"(CD, whilst the corresponding estimated marginal means mAC = 192.91 and 

mCD = 54.88 are not estimated perfectly equal to the corresponding observed 

marginal counts of nAC = 193 and nCD = 55 . 

• For the estimated CIDs, several features are observed (see Tables-Estimates). 

First, we notice that the non-parametric (NP) CID estimates are close to the 

model-based (MB) estimates. This is to be expected since the MB estimates 

use the fitted cell me ans in place of the observed cell counts, as is the case with 

the NP estimates. When the model fits the data well, the fitted cell means are 

close to the observed cell counts, which they aim to fit. In both cases, the same 

value of if is used, i.e. that obtained from the fitted model. 

• For the MB-based CIDs from the MLLM, those CIDs corresponding to CID

terms omitted from the model are exactly 0, as they are set to 0 by design. 

3.6 Summary 

The nature of the goals of the current chapter was exploratory. These goals were 

twofold: first, to demonstrate that it is possible to obtain reasonable maximum like

lihood estimates under the CID model formulation; and, second, to begin to explore 

dependence structures which are not well modelled by hierarchicallog-linear models 

and demonstrate that our model thus parameterized is able to out-perform both the 

best-performing hierarchical log-linear model and nonhierarchical log-linear model. 

The work presented in this chapter has enabled us to achieve these goals. 

We have demonstrated that a frequentist maximum likelihood approach to the 

analysis of MLLMs can work. For data generated according to a nonhierarchical de-
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pendence structure, a MLLM outperforms even the best-performing nonhierarchical 

JLLM (see Section 3.5.4). Moreover, as seen in Section 3.5.3, MLLMs can even out

perform (in terms of model fit as measured by AIC) the best-performing HJLLM for 

data generated according to a hierarchical dependence structure. For the real dia

betes data set of Section 3.5.2, the best-performing model overall is a nonhierarchical 

JLLM and the MLLM still outperforms the best-performing HJLLM (again as judged 

by AIC). The three analyses serve to provide weight to the suggestion that the uni

verse of models to be considered in the analysis of epidemiological capture-recapture 

should be expanded to included nonhierarchical and marginal models. 

The three data analyses have also served to confirm Theorem 2.9 and Corollary 2.2, 

as weIl as the general results related to JLLMs and sufficiency as per Bishop et al. 

(1975). They have enabled us to explore the nature of the CID measures introduced in 

Chapter 2 and to suggest that these measures can be used to provide interpretability 

to the model fit of nonhierarchical models, even nonhierarchial JLLMs. 

In short, we see that there is scope for using nonhierarchical modelling in the 

analysis of capture-recapture data and the family of marginal log-linear models pro

vide a complementary and universally interpretable class of models to that of joint 

log-linear models. 
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Chapter 4 

Bayesian Marginal Log-Linear 

Models with Random Effects 

4.1 Modelling dependence with random effects 

An alternative approach to the parametric models se en in Chapter 3 is to model 

the dependence structure of the incomplete contingency table using random effects 

(see Coull & Agresti, 2003). Such an approach is not only attractive in its ability to 

reduce the number of parameters to estimate but also, as we shall see in Chapter 5, 

because of the potential form of the model and its interpretation. 

In this chapter we introduce the general form of such a model. In Section 4.2 

we produce its parametric form. In Section 4.3 we motivate the use of the Bayesian 

paradigm for parameter estimation. In Section 4.4, we present the full Bayesian 

formulation consisting of the specification of the likelihood and prior distributions. A 

description of the Markov chain Monte Carlo (MCMC) scheme which can be employed 

to obtain a sample from the joint posterior distribution is provided in Section 4.5. In 

137 



the following chapter we will impIe ment one such random effects model in which the 

CIDs are treated as random effects. 

4.2 The random effects model 

Thé mixed effects marginal model formulation for the general K -source capture

recapture setting is given by 

log(m) = log(AIL) = X{3 + Ze, 

e rv N(O, ~), (4.1) 

. where A is the d x d matrix which transforms the d x 1 vector of cell means IL, into 

the d x 1 vector of marginal means m, for d = 2K - 1, the number of observed cell 

entries in the incomplete K-way contingency table. The (K + 1) x 1 vector of fixed 

effects is denoted by {3 = [,80, {3*1' = [,80, ,8S1' ... , ,8sKl', for sources B1 , ..• , BK, with 

corresponding d x (K + 1) design matrix, X. The r x 1 vector of random effects is 

denoted by e with corresponding d x r design matrix, Z. ~ denotes the r x r covariance 

matrix of the assumed distribution al form of e. Let () denote the (K + 1 + r) x 1 

concatenation of {3 and e given by 

In this chapter we will specify neither the vector of random effects e, nor the 

corresponding design matrix Z, aside from making assumptions on the dimension of 

Z, which will have d rows. One specification for Z and e is presented in Chapter 5. 

Remark 4.1 Note that although () may represent the same model components as 

the 0 vector of Chapter 3, with e equal to the vector of CIDs denoted by l, we 

choose to keep the notation different to reiterate that the current chapter introduces 
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the general form of the mixed effects model. In such a way a distinction is made 

between the two treatments of (J: as fixed effects in Chapter 3, where (J =6, and as 

random effects in the current and subsequent chapters. 

Model (4:1) parallels that given by Coull and Agresti (2003), in which the gen

eralized log-linear model of the form 

C log(AJL) = Xf3 + Ze, (4.2) 

is presented, where C is a matrix of appropriate dimension. Such a model is more 

general than that expressed in (4.1), and is equivalent when C is the identity matrix. 

However, the applications considered by Coull and Agresti (2003) do not relate to 

the capture-recapture setting; rather they relate to smoothing of sparse data for large 

contingency tables. The mixed effects model given by (4.1) has a more specifie form 

in the capture-recapture setting presented in this dissertation. Specifically, the form 

of X and f3 correspond to the form of the marginal model as it was first introduced 

in Chapter 2. 

Remark 4.2 Relationship to Generalized Linear Mixed Models. 

The class of models denoted by (4.2), and consequently that denoted by (4.1), are 

related to the class of generalized linear mixed models as presented by McCulloch 

and Searle (2001). (See Section 1.5 of this dissertation.) We note that the broad 

description of McCulloch and Searle (2001) suggests that they work with the case 

when C = A = 1 and the link function is of a general form, not necessarily the log 

link of (4.2) and (4.1). 

Example 4.1 Consider the three-source capture-recapture setting for sources A, B 

and C. The data are conveniently summarized in the three-source incomplete con

tingency table, given by Table 4.1, as first introduced in Chapter 1. 
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AYes ANa 

B yes B Na B yes BNa 

C Yes nABC nASC nABC nABC 

CNa nABC nASC nABC nASc =? 

Table 4.1: Incomplete Contingency Table: Three Source 

The components of model (4.1) are given as follows (except for the random effects 

vector e and corresponding design matrix Z, whose form remains unspecified in the 

current chapter), where we use the subscript '3' for clarity: 



Remark 4.3 As described in Chapter 3, it is convenient to introduce notation to 

distinguish between the parameter vector, {3, which consists of log N together with 

aIl single source log-marginal means, and that which does not include log N, denoted 

by {3*. In particular, for three sources {33 denotes the full set of {3 parameters, whilst 

{33 * denotes the reduced set which does not include {30. Thus, 

{33 = (4.3) 

4.3 Parameter estimation 

In developing model (4.2), Coull and Agresti (2003) provide an outline of various 

schemes to undertake maximum likelihood estimation of parameters. Unless the 

model parameters can be isolated in the likelihood function, such an approach is 

challenging and usually requires, depending on the specifie model form, special nu

merical tools to integrate out the random effects. One such model form is that given 

by (4.1) for the capture-recapture setting, where isolating the model parameters of 

the likelihood function is impossible. Its likelihood (see Section 1.1.3) is the multino

mial likelihood 

L N O'U' _ N! 1- J-li(O) J-li(O) ni 

( 

d ) N-nobs d 

( , JL( ), mcomp) - (N _ nobs)! n:=l ni! ~ N g ( N ) , 

(4.4) 

where JL = JL(O) = JL({3, 1;) is given by model (4.1) and the indexing is assumed to be 

over aIl d cells of the incomplete contingency table, which, for three sources, is shown 

in Table 4.1. We use nincomp to represent the data of the incomplete contingency table. 

Therefore, in the three-source case, nincomp represents the 7 observed cell entries of 

Table 4.1. 
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There are specific challenges associated with maximum likelihood (ML) estimation 

for model (4.1) under likelihood (4.4). First, as indicated in Chapter 3, one such 

challenge is associated with working with a model on marginal means but a likelihood 

on ceIl means. Model (4.1) is a linear model of the model parameters 0, for the 

marginal means m, but a nonlinear function of 0 for the ceIl means p" since the 

equivalent model on the ceIl means is given by 

p,(O) = p,(j3, e) = A -1 exp (Xj3 + Ze) . 

Unlike joint log-linear models on ceIl means (see Section 1.2.1) for which the canonical 

log link enforces non-negativity of the ceIl means, it is necessary to enforce such 

constraints explicitly for model (4.1). That is 

p,(O) = p,(j3, e) ~ o. (4.5) 

Furthermore, /-Lunobs, the ceIl me an corresponding to the unobserved cell must be 

non-negative. That is 

/-Lunobs ~ O. (4.6) 

In the multinomial likelihood given by (4.4) it is necessary to ensure that the ceIl 

means, induding /-Lunobs, sum to N, or equivalently 

d 

/-Lunobs + L /-Li = N. 
i=l 

(4.7) 

Thus, ML estimation involves maximization of a nonlinear function of 0 given by 

likelihood (4.4), subject to nonlinear inequality constraints on 0 given by (4.5)- (4.7). 

A further constraint imposed by the likelihood is that N ~ nobs. 

From a computational viewpoint, Bayesian MCMC offers a flexible and convenient 

approach to deal with the challenges of enforcing constraints when dealing with a 

function which is is non-linear in the model parameters. Moreover, from an inferential 

viewpoint, it is meaningful to treat both j3 and e as random variables and perform 
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inference which depends on updating prior distributions according to the information 

contained in the observed data, as quantified by the likelihood. Thus, we are able to 

make meaningful probability statements about aIl parameters not only the random 

effects, as would be the case with a traditional maximum likelihood approach. In 

such a way, the so-called random effects are not so different from the so-called fixed 

effects of model (4.1). In this chapter and the following chapter we adopt a Bayesian 

approach for parameter estimation. 

The Bayesian paradigm provides a natural framework in which to accommodate 

randoIll: effects, to incorporate constraints and deal with the challenges posed by the 

nature of the likelihood. Although the known relationship between the multinomial 

and Poisson likelihoods (see Section 1.1.3) allows the use of the latter, we choose to 

work with the multinomiallikelihood in which N is considered the quantity of interest. 

Since MCMC is able to account for the specifie challenges of parameter estimation 

associated with our model and likelihood, it is not necessary to use the equivalence, 

whereas with frequentist joint log-linear modelling and marginallog-linear modelling 

there are considerable computational advantages to adopting the Poisson likelihood 

over the multinomial (see Chapter 3). 

A marginal model with random effects is a new idea in the field of capture

recapture. In fact, the use of random effects for the generalized log-linear model 

has not been discussed extensively in the literature. A known single reference is 

Coull and Agresti (2003), who did not discuss the use of a Bayesian approach. Only 

two applications of marginal modelling to capture-recapture data have been found 

(Bartolucci & Forcina, 2001 and Bartolucci & Forcina, 2006) and, specifically, no 

application of marginal models with random effects. 
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4.4 Bayesian model formulation 

As with aH Bayesian models, a likelihood and prior structure must be specified, to

gether with the corresponding model on the parameters (see Section 1.4.1). Here 

we describe aH components of the Bayesian model. The multinomial likelihood is 

repeated here for completeness. 

Likelihood 

.. _ N! (d J-li(O))N-n
ObS d (J-li(O))ni 

L(N, JL(O), nincomp) - (N _ )' ft ., 1 - L --y:r Il --y:r , 
nobs· i=l n~. i=l i=l 

where JL = JL(O) = JL({3, e) is given by the model. 

Model 

log(m) = log(AJL) = X{3 + Ze 
=? JL( 0) = JL({3, e) = A -1 exp(X{3 + Ze) 

subject to JL( 0) = JL({3, e) ~ 0, 

J-lunobs ~ 0 
d 

N = J-lunob~· + L J-li 
i=l 

(4.8) 
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Hierarchical prior structure 

elL: '" N(O,~) 

~ '" Inv-Wishart(~ol, M) 

/30'" N(fl,(3o' (j~o) 

/3i "'ind N (fl,(3il (j~J, for i = 1, ... K, 

where ~o\ M, (j~o and (j~i' for i = 1, ... K, are fixed. We note that the prior structure 

is expressed in terms of the model components, f3 and e. The model components f3 

are chosen rather than their corresponding N and marginal means fi so that the 

range is given by IR rather th an Z+, as would be the case for a prior on N. 

In practice, as will be seen in the following chapter, we assume a priori that the 

random effects are independent. In such a case the prior variance matrix ~ has all off

diagonal entries set to zero. Thus, if all random effects are assumed to have common 

variance, it is possible to simplify the prior form for the random effects as follows 

çil(j~ "'iid N(O, (j~), for all random effects, i = 1, ... ,r 

(j~ '" scaled inv - x2 (!Jo, 8~) 

/30 '" N(fl,(3o,(j~J 

/3i "'ind N(fl,(3il (j~J, for i = 1, ... K, (4.9) 

where !Jo and 86 are fixed and the parameterization of the scaled inverse-x2 distribu

tion is described in Section 4.5.1, with density plots of the scaled inverse-x2 distrib

ution given in Figure 5.8 (as per the scaled inverse-x2 formulation of Gelman et al., 

2004). 

At this stage, the hierarchical prior structure is not extended to include an ad

ditionallevel of prior information on the hyper-parameters themselves; rather, they 
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are assumed fixed. Motivation for such an extension would arise should we observe 

sensitivity of the posterior distributions to the values at which the highest level hyper

parameters are fixed. In practice they are fixed at levels such that the priors are 

noninformative. For example, large values of O'~o and O'~i are used in order ,that the 

prior distributions on the components of f3 remain noninformative. 

Remark 4.4 Implied priors. 

In working with a log reparameterization of N and m, we must be attentive to the 

nature of the prior structure. For example, for the model parameter {Jo = log N a 

normal prior on {Jo corresponds to a log-normal prior on N. We note that although 

N is integer-valued, it is treated as a continuous random variable in the Bayesian 

parameterization in terms of {Jo, just as with the frequentist joint log-linear models 

in which nunobs is parameterized as log nunobs and treated as a continuous parameter. 

Such a log-normal prior on N is a continuous, right-skewed distribution that places 

most mass in the left tail of the distribution. The prior density of N is given by 

(4.10) 

with corresponding (implied) prior mean, variance and skewness given by 

lE [N] = exp (lLt30 + 0';0 ) 
0'2 2p, +0'2 Var [N] = (e Po - 1)e Po Po 

Skew[N] = (eO'~o +2)VeO'~0-1. (4.11 ) 

Thus, it is apparent from the form of lE [N] that placing a vague prior on {Jo by 

increasing variance O'~o will have the effect of artificially increasing the prior mean 

on N. Such considerations indicate that summary measures such as posterior means 

must be taken for the native parameters, not the reparametrized version. 
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For joint log-linear models in which the model is on the cell means rather than 

the marginal means of our model, King and Brooks (2001b) have considered the prior 

structure implied on reparameterizations of the model parameters. 

Full posterior 

By Bayes' Theorem, the full joint posterior of aIl model parameters, which we denote 

by PCBo,,8*,e,O"~lllincomp), is given by 

(
R r.l* C 21. ) _ L(N, p,(8); llincomp)p(,60, ,8*, e, O"V 

P /JO, tJ ,l!;, 0"1; llmcomp - () , 
P llincomp 

(4.12) 

where P(llincomp) is referred to in the literature as the integrated (data) likelihood. 

The joint prior of aIl parameters p(,6o,,8*, e, O"V is obtained using the hierarchical 

prior structure of (4.9) as follows 

K r 

p(,6o, ,8*, e, O"~) = p(,6o) IIp(,6k) IIp(çiIO"~) x p(O"~), 
k=l i=l 

with dependence on the fixed hyper-prior parameters of (4.9) suppressed. 

From (4.12), the following proportional relationship holds 

(4.13) 

where llincomp denotes the data contained in the incomplete contingency table and 

N = exp(,6o). 
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4.5 MCMC specifications 

In this section we describe in detail an MeMe scheme to sample from the joint 

posterior distribution given by (4.13). Examination of the joint posterior (4.13) shows 

that it is only possible to obtain a full conditional in closed form for the random 

effects variance al. Thus, all other parameters must be updated using an alternative 

princip le to that of a Gibbs update (see Section 1.4). An appropriate approach is to 

use a Metropolis-Hastings proposaI for each of the other parameters. 1 The specific 

details of the full MeMe scheme will first be described here in words and then 

described symbolically. This scheme will be used in the next chapter to implement a 

full Bayesian data analysis of a real data set. 

The scheme proceeds in the following order (details are provided below): 

• Sample an integer value of N conditional on the current value of N via a 

Metropolis-Hastings step. From the updated value of N, obtain the corre

sponding value of {Jo = log N 

• Sample the components of {3* via a Metropolis-Hastings step conditiomi,l on the 

current value of {3*. 

• For the random effects, the scheme will depend on the specific form of Z and 

e. Details of one such case will be provided in the next chapter. 

• Perform a Gibbs update on the random effects variance, al. This is possi

ble sinee the scaled inverse-x2 prior is conjugate for the normal "data" of the 

random effects, in the sense described below. 

All Metropolis-Hastings proposaIs are Gaussian proposaIs, except for that of N, which 

is a symmetric discrete uniform. In so doing, the symmetry of the Gaussian distrib

lThe proposals are an symmetric, thus the proposals are an like the Metropolis algorithm de

scribed in Section 1.4.1. We use the more general Metropolis-Hastings terminology throughout. 
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ution ensures that the forward and backward probabilities are equal and thus cancel 

in the transition probability calculations. 

Remark 4.5 Constraints. 

In order to enforce the model constraints given by IL((}) = ILU3, e) ~ 0 and J-Lunobs ~ 0 

of (4.8), the value of IL((}) is obtained after each Metropolis-Hastings proposaI. Should 

IL((}) violate the constraints, and thus lie outside of the feasible parameter space, the 

proposed parameter values are rejected. Likewise, when a value of N is proposed, it 

is verified that the proposed value is within the feasible parameter space defined by 

N ~ nobs and IL( (}) ~ 0 and N = J-Lunobs + 2:~=1 J-Li· 

4.5.1 Details of the MCMC simulation scheme 

Consider the chain at iteration (t - 1) with parameters denoted by N(t-I) (equiva

lently /3~t-I), ,6*Ct-I), eCt- l ) and Œ:,Ct-I). For each of the components of (} = (,6, e), 

Metropolis-Hastings updates will be used as described above. The details of the 

update are provided here. 

Details: N (equivalently (30) 

Draw NProp from Discrete U(Nt-1 - Nwidth, N t- I + Nwidth), where Nwidth is chosen so 

that acceptance rates are in the range 15% - 30% (for justification, see the theoretical 

work described on page 55, Chapter 3 of Gilks et aL, 1996). Calculate the Metropolis

Hastings ratio, rN (see Chapter 1 for details, in particular the description of the 

Metropolis algorithm in Section 1.4.1), and update N as follows 

. {NProP r > u NCt) = ,N_ 

N(t-I) , rN < U 

where u rv U(O, 1). 
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Details:{3* 

Draw (3*(prop) from MV N({3*<t- 1) , "E), where "E is a variance-covariance matrix con

trolled by the user, again so that acceptance rates are in the range 15% -30%. Calcu

late the Metropolis-Hastings ratio, r {3* (again, see Chapter 1 for details), and update 

(3* as follows 

(4.14) 

where u '" U(O, 1). 

Details: e 
One such case is presented in the following chapter. 

Details:· (T~ 

From the form of the joint posterior distribution (4.13), it is clear that the full condi

tional of (Tl exists in closed form. It is the standard case of normal data with known 

mean and unknown variance, with a scaled inverse-x2 prior on the variance term. 

The random effects themselves, e, are our 'data'. It is straight-forward to show that 

the scaled inverse-x2 prior is conjugate for normal data. The general scheme is given 

here. 

(T~ '" scaled inv - X2 (vo, s~) 

Çi "'iid N(/-l, (T~), for i = 1, ... ,r 

which corresponds to 
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where Il = L (ei~I1)2, ris the dimension of the random effects vector e, I-l the assumed 

common mean of the random effects. 

In order to understand the nature of such a scaled inv-x2 prior, consider the 

value of its mode, expectation and variance. Suppose B, sorne random variable, is 

distributed as B rv scaled inv - X2(1I, 82). Then 

Il 
mode( e) = --282 

11+ 

lE [el = _11_82 , for Il > 2 
11-2 

2112 

Var [B] = (11 _ 2)2(11 _ 4) 8
4

, for Il > 4. (4.15) 

Thus, for small 86, the prior mode of al will be close to O. It is known that, for the 

standard random effects model described above, a prior mode close to zero can cause 

unexpected results in terms of posterior inference. We thus seek to ensure that the 

mode is not too close to O. 

For this prior and data we obtain a conjugate posterior given by 

( vo+r 1) (rll + 110 86) p((J~le) oc ((JV- 2 + exp - 2(J€ ' 

which is proportional to 

2 Id' 2( vos
2
+rv) 

(Je rv sca e mv - X 110 + r, ~ . 

Since the full conditional distribution exists in closed form, a Gibbs update can be 

made for (J~ after the joint Metropolis-Hastings update is performed for aIl the other 

parameters, Le. for () = ({3, e)· 

4.6 Bayesian Model Developments 

In the following chapter we present a random effects formulation of the form (4.1) 

in which the CIDs are treated as random effects. The general principles and MCMC 
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simulation scheme developed in this chapter will be adopted and modified appropri

ately, according to the specifies of the model. We will perform a Bayesian analysis of 

the four-source diabetes data set of Bruno et al. (1994), as analyzed in Chapter 3. 
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Chapter 5 

Bayesian Random Effects 

Modelling: CID Formulation 

5.1 Introduction 

In this chapter we present a specific form of the general Bayesian random effects 

model introduced in Chapter 4 in which we assume the CIDs are random. The model 

form is the Bayesian version of the marginallog-linear model introduced in Chapter 3 

with random rather than fixed CIDs, as was the case in Chapter 3. In so doing, 

we achieve parameter reduction, which is desirable given the limited number of data 

points available for capture-recapture data. 

In Section 5.2 we describe the specific form of the model relative to the general 

form (4.1). In Section 5.3 we describe specifics of the MCMC simulation scheme to 

lead to Section 5.4, in which we present results of a full Bayesian analysis for the four

source diabetes data set of Bruno et al. (1994), analyzed in Chapter 3. The analysis 

consists in demonstrating properties of the Bayesian model of independence, followed 

153 



by an analysis via a reduced model in which only two CIDs are included in the model 

(we describe below the motivation for the choice of the specifie model). We conclude 

with an analysis via the fully parameterized model in which all CIDs are included 

in the model. We discuss the problem of nonidentifiability of model parameters in 

the case of the full model, and compare to the analysis of the reduced model for 

which there are no parameter identifiability issues. In Section 5.5 we conclude with 

a discussion, in particular related to the relationship between the random effects 

variance and N, which is explored via the data analysis of this chapter. 

5.2 CID-based random effects models 

Definition 5.1 Let Q be a set of sources and K = IQI. Then the following system 

of 2K - 1 equations constitutes the CID random effects marginal log-linear model for 

the K sources of Q. 

log(m) = log(Ap;) = X{3 + Z" 

, rv N(O, 17;1), 

where , is the r x 1 vector of all non-single source CIDs, (see Definition 2.11 J, with 

the d x r design matrix Z given by the following concatenation: 

where G-l is the (d - K) x r matrix described in Remark 2.20 and 0 is the K x r 

matrix of zeros. The dimension of, is given by r = d - K, for d = 2K - 1. All other 

matrices and vectors are defined as per the discussion immediately following (4.1). 

Example 5.1 Consider the three-source capture-recapture setting for sources A, B 
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and C. Then the three-source CID random effects marginal model is given as follows 

log(m) = log(A/L) = X{3 + Z[, 

[ f"V N(O, a~I), 

where, in particular 

"(AB f"V N(O, a~) 

"(AC f"V N(O, a~) 

"(BC f"V N(O, a~) 

"(ABC f"V N(O, a~), 

with 

mA 1 0 0 1 1 0 1 J-LABC 

mB 0 1 0 1 0 1 1 J-LABC 

mc 0 0 1 0 1 1 1 J-LABC 

m= mAB ;A= 0 0 0 1 0 0 1 ;/L = J-LABC 

mAC 0 0 0 0 1 0 1 J-LABC 

mBC 0 0 0 0 0 1 1 J-LABC 

mABC 0 0 0 0 0 0 1 J-LABC 

0 1 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 
f30 "(AB 

0 0 0 1 0 0 0 0 

X= ;{3 = 
f3A 

;Z= 
"(AC 

-1 1 1 0 1 0 0 0 ;[= 
f3B "(BC 

-1 1 0 1 0 1 0 0 
f3c "(ABC 

-1 0 1 1 0 0 1 0 

-2 1 1 1 1 1 1 1 
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Compare this form to (3.3), which is the most general form of the fixed effects 

three-source marginal log-linear model. We note that the sole difference with the 

form in Chapter 3 is that the CIDs are treated as fixed rather than random effects. 

As stated in Chapter 3, the model given by (3.3) is over-parameterized. In that case, 

parameter reduction is achieved by setting combinations of CIDs equal to zero, thus 

omitting those terms from the model. Even for the most general form of the random 

effects model for three sources given above, the model is no longer over-parameterized. 

There are 23 - 1 = 7 cell entries available in the three-source contingency table (see 

Table 1.2) with which to estimate the 5 model parameters, namely f30, f3A, f3B, f3c 

and 0";. Nonetheless, from an inferential point of view, estimating 5 parameters 

with only 7 data points is a demanding setting. The Bayesian paradigm provides 

a means to incorporate information via prior distributions to lighten the burden of 

parameter estimation, so to speak, on the 7 cell entries of the three-source incomplete 

contingency table. 

Remark 5.1 The full expression of aIl matrices for the three and four-source cases 

are presented in Appendix A. 

5.3 Bayesian CID-based random effects models 

The likelihood and prior structure are as those described in general terms in Sec

tion 4.4. Likewise, the MCMC scheme used to generate samples from the joint pos

terior distribution of the model parameters is the same as the general form described 

in Chapter 4. 

Details of the MCMC scheme 

Here we describe the specific MCMC update performed for the random effects vector 

ï of CIDs, with corresponding design matrix Z described above. For convenience, 
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subdivide the vector of random effects in the following manner 

'Ypair 

'Y= 
'Y3-way 

(5.1) 

'YK-way 

Consider the MCMC chain at iteration (t - 1) for random effects vector 'Y(t-l). 

Metropolis-Hastings updates are made in blocks for the elements of 'Y(t-l), with blocks 

corresponding to the number of sources, as defined by (5.1). We proceed as follows: 

• Pairwise random effects 'Y pair 

D prop f N( (t-l) 2 1) CIl h M l H . raw'Ypair rom 'Ypair' O"pair . a cu ate t e etropo is- astmgs ratio rpair 

and update 'Y pair as follows 

where u rv U(O, 1). 

{

prop .> 
(t) _ 'Ypair' r palr _ u 

'Y . -paIr (t-l) 
'Ypair , rpair < U 

• Three-way random effects 'Y3way 

D prop f N( (t-l) 2 1) raw 'Y 3way rom 'Y 3way , 0" 3way . Calculate the Metropolis-Hastings ratio 

r3way and update 'Y 3way as follows 

(t) {'Y~:~' r3way 2 u 'Y -3way - (t-l) 'Y 3way' r3way < U 

where u rv U(O, 1). 

• Proceed in a similar manner in block form up to the single K-way random effect. 

Remark 5.2 In each case, the proposaI variances (i.e. O";air> O"~way, etc. ) are adjusted 

by the user so that acceptance rates for each block are in the range 15% -30% (see 
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page 55, Chapter 3 of Gilks et aL, 1996 for sorne justification). Model constraints 

are enforced as per Remark 4.5. Further, we note that for the CID random effects 

formulation of the current chapter, r;, the proposaI variance-covariance matrix of (3* 

is a diagonal matrix with zero off-diagonal entries. 

5.4 Data analysis 

In this section we will revisit the diabetes data set of Bruno et al. (1994), as first 

introduced in Chapter 3 and analyzed using frequentist marginallog-linear models in 

Section 3.5.2. The data are presented again for reference in Table 5.1. Recall that 

for this particular data set very few of the nobs = 2069 observed individuals were 

observed in sources Band D with marginal single-source observed counts given by 

nA = 1754 , nE = 452, ne = 1135 and nD = 173. 

AYes A No 

Byes BNo Byes BNo 

CYes Dyes 58 46 14 8 

DNo 157 650 20 182 

CNo Dyes 18 12 7 10 

DNo 104 709 74 ? 

Table 5.1: Diabetes data set of Bruno et al. (1994). 

We will analyze the diabetes data set using the Bayesian random effects marginal 

model for the four-source capture-recapture setting. The analysis consists in fitting 

two models: first we analyze the data set via a specifie reduced model in which only 2 

of the 11 unknown CIDs are included in the model, and secondly we analyze the data 

set via the full Bayesian model which includes aIl random effects (i.e. none of them 
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are fixed equal to zero). We demonstrate that the parameter identifiability issues 

associated with fitting the full model are not encountered when fitting the reduced 

model. We note that the specific form of the reduced model selected for this chapter 

is that containing the 2 pairwise CIDs given by "(BD and "(CD. These two pairwise 

CIDs were selected based on preliminary. analysis of the diabetes data set via both 

calculation of the 6 Petersen estimates as given in Table 3.2. 

In order to demonstrate that the Bayesian formulation of the marginal model 

performs sensibly for a known case, we will first fit the independence model, followed 

by analysis for a single hierarchical prior structure for the reduced model. We will 

then present results from a range of prior distributions for the reduced model in order 

to determine the sensitivity of the posterior distribution to different prior parameters, 

in particular to the prior distributions on the main parameters of interest, namely /30 

and O"~. The same analysis will then be repeated for the full model; that is we first 

present results from the analysis using a single hierarchical prior structure followed 

by results from a sensitivity analysis. 

5.4.1 Modelling approach 

In all analyses described in the following sections, we generate two chains using the 

MC MC scheme described in Section 4.5. The two chains, each of length 10,020,000, 

start from two sets of dispersed starting values. In so doing, we wish to reduce 

dependence of the posterior on the starting values (see Section 1.4.1). Each chain is 

thinned by 200 to yield a sample of 51,000 draws from the joint posterior distribution 

given by (4.12). We then remove the first 1000 iterations of each sample (i.e. burn

in) to yield a sample of size 50,000 from the joint posterior distribution for each 

chain. Although thinning by a factor of 200 reduces dependence on starting values, 

we nonetheless remove the first 1000 iterations of the thinned chain for good measure. 

We combine the two samples each of size 50,000, corresponding to the two MCMC 
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runs, to obtain a single sample of size 100,000 from the full joint posterior distribution 

of all parameters. 

Remark 5.3 Preliminary analyses for both the reduced and full models demon

strated that there was high posterior correlation amongst model parameters, in par

ticular between /30 and the components of "(. As a result, a large thinning factor of 

200 was used to reduce posterior correlation amongst model parameters. Although, 

it is desirable to minimize posterior correlations between model parameters in or der 

to obtain representative samples from the joint posterior distribution, with modern 

computational power it is not a major drawback if reparameterizations of the model 

do not yield such features. If the chain is run for long enough, a reasonable sample 

will be obtained. 

We choose posterior samples of size 50,000 for each chain in line with the approach 

adopted by Fienberg et al. (1999), who also faced similar issues of high posterior 

correlation when working with their Bayesian formulation of the Rasch model. Tables 

5.2 and 5.3 presents such posterior correlations for a single thinned (by 200) MCMC 

chain for the main parameters of interest /30 and O'~ relative to 1 for two different 

models. First, Table 5.2 presents such correlations (including those with the elements 

of (3*) for the reduced model which contains only two pairwise CrDs, namely "(BD and 

"(CD; we note again that all other CrDs are fixed at zero rather than being estimated 

like "(BD and "(CD. We described above the motivation for the choice of such a model. 

Secondly, Table 5.3 presents such correlations for the full model in which all CrDs are 

included in the model with none fixed at zero. (Note that we have not removed the 

lower-half of each of the two tables to remove the repeated symmetric correlations.) 

The posterior correlations are reasonable for the reduced model (see Table 5.2). 

The largest correlation of 0.241 is between /3B and /3D, whilst the correlation between 

the two random effects, "(BD and "(CD, and each of /30 and O'~ is at most 0.134, which 
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again is perfectly reasonable. The main effect parameter f3A is almost uncorrelated 

with the random effects 'BD and ,CD, whereas the main effects f3B and f3D corre

sponding to sources Band D are correlated with the corresponding random effect 

,BD, whilst f3c and f3D are correlated with the corresponding random effect ,CD, 

The posterior correlations for the full model (see Table 5.3) are not as reasonable. 

In fact, we observe very high correlation (close to 1) between the components of 

the random effects vector 1 and f3o, and consequently between the random effects 

themselves, for the full model . The correlation between the components of 1 and O'~ 

are lower and perfectly equal at a reasonably low value of 0.34 (modulo the sign) to the 

posterior correlation between f30 and O'~. Such high posterior correlations arise because 

of nonidentifiability of model parameters (see discussion below). Despite such high 

correlations, the analysis via the full model serves to demonstrate certain features 

of a non-identifiable Bayesian model. We note in addition that the corresponding 

posterior correlations between the components of {3*, and of each component with f30 

and O'~, are at most 0.24 (table not presented). 

The trace plots presented in Figures 5.1 and 5.2 for the reduced and full model, 

respectively, are for a single set of starting values for a chain thinned by a factor of 

200. The chains correspond to the single analyses to be presented in Sections 5.4.3 

and 5.4.4 below. Both figures further confirm the correlation patterns observed in 

Tables 5.2 and 5.3. Figure 5.1 demonstrates that there is good mixing of the chain 

over the parameter space for each of f3o, 0''''( and the two random effects ,BD and ,CD, 

whereas we observe seriaI correlation in Figure 5.2 in each of the corresponding plots 

of f3o, ,BD and ,CD and for the other 9 random effects (plots not presented here) of 

the full model. 

In all cases, C++ code was used to impIe ment the MCMC algorithm. The code can 

be found in Appendix H. Jumping proposaI parameters for the Metropolis-Hastings 

steps were adjusted in order to achieve acceptance rates in the range of 15% - 30%, 
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Figure 5.1: Trace plots of /30, (J,.Y' 'YBD and 'YCD for the reduced model 

as described above. 

The same vague prior distributions were assumed for the components of the /3* 

vector for each chain. Preliminary. analyses demonstrated minimal sensitivity of the 

joint posterior of aH model parameters to the prior distribution on f3*. In particular 

these preliminary analyses demonstrated that there was minimal sensitivity of the 
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Figure 5.2: Trace plots of f3o, (7'''0 '"YBD and '"YCD for the full model 

posterior distributions of the elements of (3* to their own prior distributions (note 

that we state this relationship without including a series of sensitivity plots). In fact, 

they are uniformly close to centered on the corresponding log-marginal counts, given 

by log nA, lognB, lognc and lognD for the four-source case. Thus, we set the same 

prior distribution of each element of (3* with prior parameters given by /-Lf3* = 5.15 
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and a~* = 1.74 for each of the four components of /3*, namely for each of /3A, /3B, /3c 

and /3D. Note that these prior parameters are somewhat arbitrary and correspond to 

a low marginal mean count of exp(5.15) = 172 for each of the four components. 

For the first analysis presented in each of sections 5.4.2, 5.4.3 and 5.4.4, we fix 

the prior parameters of /30 at f-l(3o = 8.06 and a(3o = 0.28, which roughly corresponds 

to a prior 90% range on the corresponding N parameter of 2000-5000 (see following 

discussion) . 

Remark 5.4 Prior parameters for /30. 

In proposing prior parameters for the N(f-l(3o, a~o) prior on /30, it is useful to consider 

the corresponding prior range on N = exp /30. Let Nu and NI be the upper and lower 

levels of the nominal 90% prior range we wish to place on the parameter N. In order 

to obtain the corresponding prior parameters on /30, i.e. f-l(3o' a~o' we equate Nu and 

NI with the exponential of the corresponding 90% bounds of the N(f-l{3o, a~o) prior 

distribution. Then 

which leads to 

Nu = exp(f-l(3o + 1.64a(3o) 

NI = exp(f-l(3o - 1.64a(3o)' 

J-t(3o = (logNu +logNI)/2 

a(3o = (log Nu -logNI)/(2 x 1.64). 

Thus, the prior range of 2000-5000 on N corresponds to f-l(3o = (log 5000+ log 2000) /2 = 

8.06 and a{3o = (log 5000 -log2000)/(2 x 1.64) = 0.28. 

5.4.2 Case of Independence: (J"~ = 0 

In this short section we will demonstrate that the Bayesian random effects model 

performs as expected for the model of independence. That is, we show that the mar-
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ginal posterior distribution for /30 = log N is centered on log NMLE, the log-maximum 

likelihood estimate of N obtained using the frequentist formulation of the marginal 

model, in which the components of the, are treated as fixed effects (see Chapter 3). 

In so doing, we confirm that the Bayesian modelling approach presented in the cur

rent chapter performs as it should in a known setting, thus providing evidence that 

the modelling approach is reasonable. 

It is known by design that the random effects, " measure departures from inde

pendence. Thus, under independence, the components of, must be equal to their 

assumed means, i.e. equal to O. Such a case of full independence corresponds to a 

random effects variance, a;', of O. Consequently, simulation from the full posterior 

distribution (4.13) via MCMC methods is made easier. Since the random effects, " 

are known exactly, it is not necessary to update them in the MCMC scheme described 

in Section 5.3. The only updating in the MCMC scheme is of N and (3* with a;' = 0 

and all components of , equal to zero. 

7.68 7.70 7.72 7.74 7.76 

Figure 5.3: Posterior of /30 for N(8.06, 0.28) prior on /30 under model of independence. 
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Figure 5.3 presents the marginal posterior distribution of f30. Note that the vertical 

axis is not specified since it is not important for our purposes. We use this plot 

to serve the purpose of the current section: to confirm that the Bayesian model for 

independence performs as it should. In Chapter 2, we demonstrated that the marginal 

log-linear model for independence (Le. with all components of 1 fixed at zero in 

the fixed effects model of Chapter 3) is equivalent to the joint log-linear model for 

independence. The (unrounded) point estimate for N obtained from the frequentist 

joint log-linear model for independence1 is given by N = 2250.601, with corresponding 

value /30 = log N = log(2250.601) = 7.719. The vertical line of Figure 5.3 is at this 

value of f30 = 7.719. We observe that the symmetric-looking marginal posterior 

distribution of f30 is close to perfectly centered on the value of 7.719, thus confirming 

that the Bayesian marginal model for independence performs as it should. 

We note that aH the important features of the model and MeMC chain are present 

in the analysis using the model of full dependence presented in the next section. Thus 

we include no further details of the analysis using the model of independence. 

5.4.3 Case of dependenee: (J~ > 0; a specifie form of the 

redueed model 

In this section we consider a model of dependence for which (J~ is not fixed at zero. 

The specifie model, which henceforth will be referred to as the reduced model versus 

the full model to be considered in the following section, is that which contains only 

two CIDs treated as random effects, namely 'YBD and 'YCD. All other CIDs are fixed 

at zero, equivalently they I;\re not included in the model, hence the term 'reduced' 

model. 

The 2 pairwise CIDs given by 'YBD and 'YCD were selected according to preliminary 

lObtained usingthe inbuilt glm function in the R Programming Language (2004), with Poisson 

family and log link. 
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analyses observed via both calculation of the 6 Petersen estimates as given in Table 3.2 

and via the full Bayesian analysis to be presented below (in particular as evinced by 

Figure 5.12 in which we observe posterior distributions of rBD and rCD furthest 

removed from 0). Such analyses suggest that most of the dependence exhibited in the 

diabetes data set is explained in the two marginal pairs given by {B, D} and {C, D}. 

The purpose of the current section is to demonstrate that it is possible to obtain 

identifiable parameter estimates from a model of dependence more complex than the 

simplest model, that of independence. We note that the goal of the current chapter 

is not to perform model selection and obtain the bestmodel according to some model 

selection criterion, rather to demonstrate that a bayesian treatment of an identifiable 

model provides sensible estimates. 

We note that the model containing only rBD and rCD is not the model of condi

tional independence of Band C given D, since by Theorem 2.9 such a model would 

require rBCD = -rBC. Thus, the model considered in the current section is a non

hierarchical model. The model considered here is identifiable (in terms of model 

parameters) unlike the full model presented in the next section. 

Features of analysis for a single prior specification 

We first undertake the full Bayesian analysis for a single hierarchical prior structure. 

The specifie prior structure on the parameters of interest, fio and ()~, is given by 

Table 5.4. Hyperprior values of f-tf3o = 8.06 and ()~o = 0.28 correspond to a prior 90% 

Parameter fia 
Hyperprior parameter 

Value 8.06 

2 
() f30 

0.28 

Va 

5 0.5 

Table 5.4: Hyperprior parameters of fia and ()~ for Bayesian analysis 
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range on N from 2000 to 5000 (as described above in Section 5.4.1). Figure 5.8 shows 

the form of the scaled-inverse X2 prior on 0";. We will discuss further details of this 

prior below when we examine a range of prior distributions. For the moment, we 

select a single prior distribution for 0"; that is loosely informative and enables mass to 

be placed near 0 (i.e. near to independence) since, a priori, we do not wish to place 

great mass away from the case of independence since we prefer to be noninformative 

in our selection of prior distribution. One such prior is defined by lIo = 5 and 85 = 0.5 

(see Figure 5.4 for the spread of this distribution) and is the one selected for the 

present analysis (see Table 5.4). 

Inference on N, f30 and 0"; 
Figure 5.4 shows the marginal posterior distributions of each of f30 and 0";. The 

posteriors represent the effect of updating (via the likelihood, given by (4.4)) the 

prior distributions of each of f30 and O"~ using the observed capture-recapture data of 

the incomplete contingency table given by Table 5.1. The upper panel of Figure 5.4 

shows that the posterior of f30 is bounded below by log nobs = log 2069 = 7.63 as 

per (4.8). The posterior distributions of f30 and 0"; are shifted slightly to the left 

and right, respecitvely with great reduction in variability in the case of f3o, with an 

increase in variability in the case of O"~. As expected by conjugacy, the posterior of 

0"; is a scaled inverse-x2 distribution. 

Table 5.5 provides posterior summaries of f30 and 0";, as well as the corresponding 

posterior summaries of N as obtained from N = exp(f3o) and of 0""(' The upper and 

lower bounds of the symmetric 90% and 95% credible intervals are provided, together 

with the minimum and maximum values in order to examine the range of posterior 

values of each parameter. It should be noted that, although the quantiles of both 

N and O"'Y are obtained by direct transformation of those. on f30 and O"~, respectively, 

the posterior mean of N and O"'Y cannot be obtained by direct transformation of the 
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Figure 5.4: Posteriors of (30 and CT; for N(8.06, 0.28) prior on (30 and scaled-inverse 

X2(5, 0.5) prior on CT;. 



Quantile 

Parameter 0% 2.5% 5% 50% 95% 97.5% 100% Mean 

f30 7.695 7.713 7.716 7.729 7.743 7.746 7.768 7.729 

N 2197 2236 2243 2273 2305 2312 2363 2273 

(J'Y 0.391 0.658 0.723 1.389 4.168 5.543 149.61 1.824 

(J2 
'Y 

0.153 0.433 0.523 1.929 17.372 30.719 22384 6.846 

Table 5.5: Posterior summaries for f3o, N and (J'Y for Bayesian analysis 

corresponding posterior means of f30 and (J~, respectively, since it is not possible to 

reverse the order of a nonlinear function (in this case the exponential operator and 

square root operator) and the expectation operator. Thus, the posterior expectations 

of N and (J'Y were obtained by taking the expectation of the suitably transformed 

values of each of the 100,000 generated points in the simulated chain. 

In working with a log-linear model, the variance of exponentiated parameters op

erates multiplicatively on those exponentiated parameters. For example, the random 

effects variance (J~ represents the variability of the components of" which themselves 

measure departures of the log-marginal means from independence. Thus, (J'Y oper

ates multiplicatively via exp((J'Y) on the corresponding marginal means. Therefore, 

a value of (J~ = 1 for the random effects corresponds to a multiplicative factor of 

exp((J'Y) = 2.71 on the marginal means. 

Remark 5.5 In Remark 4.4, we stated that summary measures of the natural pa

rameters in the hierarchical prior specification were preferable to summary measures 

of their transformation, since the implied priors on the latter may be sensitive to the 

hyper-parameters of the original parameters. For instance, the parameter f30 = log N 

is used in the hierarchical prior structure rather than N. By the reasoning of Re

mark 4.4, we prefer to examine summary measures of f30 rather than N. Nonetheless, 
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since the primary goal of capture-recapture methodology is to perform inference on 

N, we include the appropriate summaries for N in Table 5.7. 

Further details of inference on N 

The posterior mean and median of N coincide at a value of 2273 (see Table 5.5) be

cause of the tight, symmetric nature of the posterior distribution. The 95% credible 

interval for N is given by (2236,2312). The point estimate and 95% asymptotic con

fidence interval of the best (in terms of AIC) frequeIitist marginal log-linear model 

(MLLM) of Section 3.5.2 are given by NMLE = 2345 and (2295,2396), respectively. 

Thus, we observe similarity in terms of location and width of confidence bounds be

tween the results from the Bayesian analysis of the specifie reduced model considered 

here in this section and the best-performing frequentist marginal log-linear model. 

We note however that Wald asymptotic confidence intervals were used in Chapter 3 

(as per the methods of Appendix F.2), which are likely to be unreasonably tight. 

Inference on f3* 

Figure 5.5 shows the nearly symmetric posterior distributions of the components of 

f3* which correspond to the logarithms of the single-source marginal means, mA, mE, 

me and mD. In each case the solid vertical line corresponds to the log-observed 

marginal counts, given by log nA = log 1754 = 7.46, log nE = log 452 = 6.11, 

logne = log1135 = 7.03 and 10gnD = log 173 = 5.15. We observe that each of 

the four posterior distributions is centered on the value that we seek to fit. This is in 

line with results observed for frequentist joint log-linear models, as in Chapter 3 where 

we observed that the MLEs for these four quantities were exactly equal to the ob

served quantities (see discussion in Section 3.5.5). Note that the same noninformative 

prior used for each component of f3* cannot be se en on the four plots of Figure 5.5, 

since the distribution is so vague that the prior density values are too small to be seen 

on the range of the posterior of each component of f3*. The patterns observed in each 

of the four panels of Figure 5.5 provide further evidence that the Bayesian model per-
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Figure 5.5: Posterior of {3* for the reduced model with N(8.06, 0.28) prior on (30 and 

scaled-inverse X2 (5, 0.5) prior on O"~. The verticallines correspond to the log-observed 

marginal counts. 

forms as desired since it is to be expected that the log-single source marginal means 

are estimated close to the corresponding log-observed counts. Heuristically, almost 

all the information gained concerning these parameters originates from the observed 

data. 

Inference on the CID random effects , 

Figure 5.6 shows the posterior distributions of the two non-zero CIDs of the reduced 

model, denoted by ,. Recall that the postulated distribution of each of the two 
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Figure 5.6: Posterior of non-zero CIDs for the reduced model with N(8.06, 0.28) prior 

on /30 and scaled-inverse X2 (5, 0.5) prior on O"~. 

components of, is given by ')'iIO"~ "'iid N(O, O"~) in the hierarchical prior structure. 

In both cases the distributions are close to symmetric, and are located above and 

away from zero thus demonstrating that the two marginal pairs given by {B, D} and 

{C, D} do explain sorne of the dependence present in the diabetes data set. 

Model fit evaluated by fit of J.t to observed data nincomp 

Figure 5.7 demonstrates the fit of the model. The 15 panels show the posterior 

distributions of the 15 cell means of J.t. The verticallines correspond to the observed 

cell count in each case. For clarity, we choose to omit the vertical aXis corresponding 

to the density. The purpose of the plot is to assess the model fit. We see that in 

sorne cases the center of the posterior distribution of each cell mean is very close 

to the observed cell count (in the case of f-tÂBCD and f-tABCD), whilst in others (e.g. 

f-tABCf)) the observed data are not fitted perfectly. Thus the model fit is not perfect 

but reasonable. 
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Figure 5.7: Posteriors of 15 cell means for N(8.06, 0.28) prior on f30 and scaled-inverse 

X2 (5,0.5) prior on O"~. 
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Sensitivity of analysis to a range of prior specifications 

We have seen that the reduced marginallog-linear model with the two CIDs 'YBD and 

'YCD treated as random effects provides reasonable results with inference performed 

within the Bayesian framework. Thus, we wish to determine the sensitivity of pos

terior inference to the prior distributions placed on the main parameters of interest, 

namely on f30 and O'~. Next we provide results from a series of analyses with different 

prior structures. 

We will consider a range of different priors on each of f30 and of O'~. More specif

ically, we will proceed according to the following two steps. First we will work with 

the same N(8.06, 0.28) prior on f30 of the previous section and examine the effect on 

the posterior of both f30 and O'~ for a range of priors on O'~. Second, we will do the 

reverse and work with the same scaled-inverse X2 (5, 0.5) prior on O'~ as in the previous 

section and examine the effect on the posterior of both f30 and O'~ for a range of priors 

on f30. 

Remark 5.6 Before proceeding with the first step of the sensitivity analysis of the 

current section, we will present the reasoning used to choose which priors we place on 

O'~. Figure 5.8 shows density plots of three different priors with degrees of freedom 

2,5 and 10, each at eight different levels of the scale parameter (0.5,1,1.5,3,4,5,10,15). 

For a fixed level 1/0 of the prior degrees of freedom, it is clear that the distribution 

becomes increasingly skewed to the right as the scale parameter 85 increases. This 

can be se en by looking at any one of the three panels in Figure 5.8. For fixed 85, the 

distribution becomes more concentrated towards 0 as 1/0 increases, as ca:n be seen by 

looking at one of the colored lines down across each of the three panels of Figure 5.8. 

Since a change in prior degrees of freedom 1/0 has only a small effect in terms of change 

in spread at fixed prior sc ale parameter 85, we choose to work with a fixed level of 1/0 

to investigate the effect of a change in prior on the full joint posterior distribution. 
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Figure 5.8: Prior distributions for O"~ at three different prior degrees of freedom: 2,5 

and 10, and for each at scale parameter: 0.5,1,1.5,3,4,5,10,15 

We select 110 = 5 since it is the minimum value of 110 for which the variance of the 

distribution is defined. 

Since preliminary analyses at fixed levels of 110 demonstrated that there was mini

mal sensitivity ta the prior distributions with changes in 86, we also selected a single 

prior with 110 = 2 and a single prior with 110 = 10. The corresponding scale para

meter 86 was selected sa that the mode of the distribution was equal ta that for the 

inverse-x2 (5, 0.5), i.e. with a mode of 0.357 (see page 151). 
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Our first step is to explore sensitivity of the posterior distributions to a range 

of priors on (j~ for the N(8.06, 0.28) prior on /30' As just described we fix the prior 

degrees of freedom lIo at 5 and let the scale parameter 86 adopt the four different 

values of 0.1, 0.5, 1 and 1.5, since they place a reasonable amount of mass close to 

zero and we wish to be noninformative about departures from independence a priori. 

We also take a single case each with lIo = 2 and lIo = 10. 

Sensitivity of /30 to prior on (j~ 

There is no ,sensitivity in the posterior of /30 to the prior on (j~ (plots not provided 

since in all cases the posterior of /30 is that given in Figure 5.4). 

Sensitivity of (j~ to prior on (j~ 

Figure 5.9 shows that there is sorne sensitivity of the posterior of (j~ to the prior on 

(j~ at a fixed prior on /30. For lIo = 5, we observe that as 86 increases, the posterior of 

(j~ shifts to the right (see the firstfour panels of Figure 5.9). The final two panels of 

Figure 5.9 further demonstrate sensitivity to the prior value of lIo and 86. 

Now we move to the second step of the sensitivity analysis as described in the 

introduction to the current section. We wish to explore the sensitivity of the posteri

ors of both /30 and (j~ to changes in the prior on /30 for fixed prior on (j~. We choose 

three priors on /30 given by N(8.06, 0.28) (as used for the full analysis in the previous 

section), N(8.06,0.702) and N(7.71, 0.49), which correspond to 90% prior ranges of 

2000-5000, 1000-10,000 and 1000-5000, respectively. 

Sensitivity of /30 to prior on /30 

As with the case of sensitivity to the prior qn (j~ above, there is no sensitivity in the 

posterior of /30 to the prior on /30' Again plots are not provided since in all cases the 
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Figure 5.9: Posterior histograms of O'~ for various priors on O'~ and fixed prior on /30. 

posterior of /30 is that given in Figure 5.4. 

Sensitivity of O'~ to prior on /30 

There is no sensitivity in the posterior on O'~ to the prior on /30 (again plots not in

cluded) unlike the observed sensitivity to the prior on O'~ as observed in Figure 5.9. 

In summary, the discussion above and Figure 5.9 demonstrate that the greatest 
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posterior sensitivity is in O"~ with a change in its own prior. The posterior of (Jo is 

sensitive to neither changes in its own prior nor changes in the prior on O"~, just as 

there is no sensitivity in the posterior of O"~ to changes in the prior on (Jo. Thus, using 

the range of prior distributions selected for this sensitivity analysis, changes in the 

. prior on O"~ have a greater effect than changes in the prior on (Jo. 

5.4.4 Case of dependence: (J"~ > 0; full model 

In this section we consider the more flexible model of dependence, for which O"~ is 

not fixed at zero and none orthe CIDs (treated as random effects) are fixed at zero. 

In such a case, the full analysis consists in mixing over the distribution of O"~ rather 

than working at a single slice of that distribution, namely at O"~ = 0, as was the case 

with the model of independence in Section 5.4.2. Consequently, the components of 

the random effects vector 1 are to be estimated rather than being set to zero and 

more specifically, aIl elements are to be estimated as opposed to only 'YBD and 'YCD 

as was the case in the previous section. 

The manner in which we proceed in this section parallels that for the reduced 

model in the previous section. We first present results for a single prior structure. 

We then examine the sensitivity of the joint posterior of aIl model parameters to the 

prior specification used by examining a range of prior specifications. More specifically, 

we adjust the prior parameters and hyperparameters relating to the main parameters 

of interest, namely (Jo and O"~, of the hierarchical prior structure given by (4.9). 

Before presenting the results, we first address the important issue of nonidentifia

bility of model parameters for the full Bayesian model in order that aIl results will be 

evaluated in this light. The high posterior correlations observed in Table 5.3, despite 

thinning by a factor of 200, suggest that there is a problem with mixing and that it 

is likely that the posterior parameter space has not been explored completely. Such 

problems may arise from nonidentifiability of model parameters. Before presenting 
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the analysis of the full model we will describe the nature of such nonidentifiability by 

presenting the case of the full three-source model given first by Example 2.11, with 

the system of equations repeated here for completeness. 

logmA = {JA 

logmB = {JB 

logmc = {Jc 

logmAB = -{Jo + {JA + {JB + ,AB 

log mAC = -{Jo + {JA + {Jc + ,AC 

logmBc = -{Jo + {JB + {Jc + ,BC 

logmABc = -2{Jo + {JA + {JB + {Jc + ,AB + ,AC + ,BC + ,ABC· (5.2) 

Suppose we fix aIl 7 marginal means (and by design the corresponding {JA, {JB and 

(Jc terms) at known values. We will demonstrate that there are a countable number 

of solutions to the system of equations when {Jo is fixed at a known value. 

First, the pairwise CrDs are obtained from (5.2) and are given by 

,AB = log mAB + {Jo - ({JA + (JB) 

,AC = log mAC + {Jo - ({JA + (Jc) 

,BC = logmBc + {Jo - ({JB + (Jc), 

which, in turn, yields the following expression for ,ABC 

,ABC= logmABc + 2{Jo - ({JA + (JB + (Jc) - bAB + ,AC + 'Be) 

(5.3) 

= logmABc - (logmAB + log mAC + logmBc) - {Jo + ({JA + {JB + (Je). (5.4) 

Now suppose that, for the same 7 fixed marginal means, {Jo is shifted by a constant 

term c. Then we have an alternative system of solutions for ,AB, ,AC, ,BC and ,ABC 
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given by 

'l'AB = log mAB + (/30 + c) - (/3A + /3B) 

'l'AC = log mAC + (/30 + c) - (/3A + /3e) 

'YBC = 10gmBC + (/30 + c) - (/3B + /3c), 

which, in turn, yields the following expression for 'l'ABC 

'l'ABC = 10gmABc - (logmAB + log mAC + 10gmBc)+ 

2(/30 + c) - (/3A + /3B + /3e) - bAB + 'l'AC + 'l'Be) 

(5.5) 

= 10gmABC - (logmAB + log mAC + 10gmBC) - (/30 + c) + (/3A + /3B + /3e). 

(5.6) 

Thus, there are a countable number of solutions for /30, 'l'AB, 'l'AC, 'YBC and 'l'ABC for 

fixed marginal me ans since we can add a constant to /30 and obtain the same solution 

to the system of equations given by (5.2) by adding the same constant to each of the 

three CID terms given by 'l'AB, 'l'AC and 'YBC and subtracting that term from 'l'ABC. 

(We note that there are a countable rather than uncountable number since N is an 

integer.) Therefore, nonidentifiability arises (as it do es for the full model for four 

sources but not stated explicitly here for brevity's sake). 

There are problems as evinced by the high posterior correlations of Table 5.3 

and Figure 5.2. Despite such problems we include the analysis via the full model to 

demonstrate its properties and highlight the challenges of working with such a model. 

It should be noted that the interpretation of the results must be considered dubious 

in the light of the issue of nonidentifiability. Better model fit is achieved than for the 

reduced model precisely because there are so many model parameters which are able 

to provide a close-to-perfect fit. We further hypothesize that reparameterization of 

the model could alleviate sorne of the problems. Such work will be undertaken in the 

future. 
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Features of analysis for a single prior specification 

As with the reduced model in the previous section, we first undertake the full Bayesian 

analysis for a single hierarchical prior structure. The specifie prior structure on the 

parameters of interest, f30 and O'~, is the same as for the reduced model and is given 

here again by Table 5.6. 

Parameter 

Hyperprior parameter l-lf3o 

Value 8.06 

f30 

2 
0' f30 

0.28 

Vo 

5 

0'2 
'Y 

0.5 

Table 5.6: Hyperprior parameters of f30 and O'~ for full Bayesian analysis 

Inference on N, f30 and O'~ 

Figure 5.10 shows the marginal posterior distributions of each of f30 and O'~. The 

posteriors represent the effect of updating (via the likelihood, given by (4.4)) the 

prior distributions of each of f30 and O'~ using the observed capture-recapture data of 

the incomplete contingency table given by Table 5.1. The upper panel of Figure 5.10 

shows that the posterior of f30 is bounded below by log nobs = log 2069 = 7.63 as 

per (4.8).2 The posterior distributions of f30 and O'~ are shifted slightly to the left in 

both cases with a reduction in variability. As expected by conjugacy, the posterior of 

O'~ is a scaled inverse-x2 distribution. 

Table 5.7 provides posterior summaries of f30 and O'~, as well as the corresponding 

posterior summaries of N as obtained from N = exp(f3o) and of 0''1' The upper and 

lower bounds of the symmetric 90% and 95% credible intervals are provided, together 

2The plot was produced using the inbuilt density function of The R Progmmming Language 

(2004). Thus, the appearance of the posterior of /30 below its lower bound of log nobs is an artefact 

of the method used. 
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Figure 5.10: Posteriors of {Jo and (J~ for N(8.06, 0.28) prior on (Jo and scaled-inverse 

X2 (5, 0.5) prior on (J~. 



Quantile 

Parameter 0% 2.5% 5% 50% 95% 97.5% 100% Mean 

/30 7.635 7.663 7.685 7.864 8.114 8.153 8.448 7.877 

N 2069 2128 2175 2602 3341 3475 4668 2658 

(J'Y 0.302 0.427 0.452 0.636 0.971 1.067 1.998 0.664 

(J2 
'Y 

0.091 0.183 0.205 0.404 0.942 1.138 3.994 0.468 

Table 5.7: Posterior summaries for /30, N and (J'Y for Bayesian analysis 

with the minimum and maximum values in order to examine the range of posterior 

values of each parameter. 

Further details of inference on N 

The posterior me an and median of N are given by 2658 and 2602, respectively. With 

a posterior me an larger than the posterior median, the posterior distribution is right

skewed as confirmed by the left panel of Figure 5.10. Such skewness is in part due 

to the normal prior on /30, which in turn implies a right-skewed log-normal prior on 

N. The 95% credible interval for N (see Table 5.7) is given by (2128,3475) for a 

posterior mean and median of 2658 and 2602, respectively. The point estimate and 

95% asymptotic confidence interval of the best (in terms of AIC) frequentist marginal 

log-linear model (MLLM) of Section 3.5.2 are given by .IV MLE = 2345 and (2295,2396), 

respectively. Thus, we observe a nontrivial difference, in terms of both location and 

the width of confidence bounds, between .IVMLE from the best frequentist MLLM and 

the posterior mean and median of the full Bayesian analysis, as we observe such a 

difference between the results of the present full Bayesian and that from the reduced 

model in the previous section. We note however that Wald asymptotic confidence 

intervals were used in Chapter 3 (as per the methods of Appendix F.2), which are 

likely to be unreasonably tight. 
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It should be noted that the corresponding point estimates and confidence inter

vals from the best joint log-linear model (JLLM) and hierarchical JLLM are closer 

in location to the center of the posterior distribution of N obtained from the present 

Bayesian analysis. The point estimates and 95% confidence intervals are given by 

NMLE,JLLM = 3092 and (2573,3611) for the best-performing JLLM, which outper

forms the best HJLLM with NMLE,HJLLM = 2771 and 95% confidence interval given 

by (2491,3050). The greater width of the 95% credible interval over the 95% confi

dence intervals of the best frequentist models is in part due to the fact that model 

selection has not been performed in the Bayesian analysis of the current chapter. 

Rather we have chosen to work with the fully specified model with none of the CIDs 

fixed at zero, unlike the frequentists models of Chapter 3, in which model selection 

was performed amongst aU possible 2047 MLLMs. 

Inference on {3* 

Figure 5.11 shows the nearly symmetric posterior distributions of the components of 

f3* which correspond to the logarithms of the single-source marginal means, mA, mB, 

me and mD (as did Figure 5.5 for the reduced model). In each case the solid vertical 

line corresponds to the log-observed marginal counts, given by log nA = log 1754 = 

7.46, 10gnB = log 452 = 6.11, log ne = log 1135 = 7.03 and 10gnD = log 173 = 5.15. 

We observe that each of the four posterior distributions is centered on the value that 

we seek to fit. This is in line with the results for the reduced model (see Figure 5.5) 

and with the results observed for frequentist Joint log-linear models, as in Chapter 3 

where we observed that the MLEs for these four quantities were exactly equal to the 

observed quantities (see discussion in Section 3.5.5). As with Figure 5.5 we note that 

the same noninformative prior used for each component of f3* cannot be seen on the 

four plots of Figure 5.11, since the distribution is so vague that the prior density 

values are too small to be seen on the range of the posterior of each component of 

{3*. The patterns observed in each of the four panels of Figure 5.11 provide further 
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Figure 5.11: Posterior of f3* for N(8.06, 0.28) prior on /30 and scaled-inverse X2 (5, 0.5) 

prior on (j~. The verticallines correspond to the log-observed marginal counts. 

evidence that the Bayesian model performs as desired since it is to be expected that 

the log-single source marginal means are estimated close to the corresponding log

observed counts. HeuristicaUy, almost aU the information gained concerning these 

parameters originates from the observed data. 

Inference on the CID random effects 1 

Figure 5.12 shows the posterior distributions of aU 11 CIDs, denoted by f. Re

caU that the postulated distribution of each of the components of 1 is given by 

')'il(j~ rviid N(O, (j~) in the hierarchical prior structure. The six panels of the left 
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Figure 5.12: Posterior of CIDs for N(8.06,0.28) prior on /30 and scaled-inverse 

X2 (5,0.5) prior on (j~. 

side of Figure 5.12 show the posteriors for each of the six pairwise CIDs, denoted by 

"IAB, "IAO, "lAD, "IBO, "IBD, "IOD· In aH cases, the distributions are close to syrnrnetric, 

with sorne slight right-skewness observed in the slightly longer right tails of those 

distributions. We observe that the posterior distributions for "IBD and "IOD lie the 
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furthest from zero. The four upper panels on the right side of Figure 5.12 show the 

posteriors for each of the 4 three-way CIDs denoted by 'YABC, 'YABD, 'YACD, 'YBCD, with 

the lowest panel showing that for the single four-way CID 'YABCD' In this case, we 

observe that the posteriors of the three-way CIDs are slightly left-skewed and quite 

close to 0 in aU cases, with the posterior of the sole four-way CID approximately 

symmetric. Thus, there tends to be slight right-skewness in the pairwise CIDs, with 

slight left-skewness in the three-way CIDs. 

The location of the posteriors of the CIDs are loosely in line with the results 

of Chapter 3. The frequentist marginal log-linear model results of Section 3.5.2 

show that the model selected by the AIC contains each of the 7 CID terms given 

by 'YAC, 'YBC, 'YBD, 'YCD, 'YABC, 'YBCD, 'YABCD suggesting that there is a range of depen

dence present in the diabetes data of Table 5.1. Such a feature is confirmed by the 

posteriors of the components of, being centered around values away from zero and in 

sorne cases (i.e. 'YBD and 'YCD) quitè considerably removed from zero. The Bayesian 

analysis of this section serves to provide an indication as to which margins explain 

most of the dependence. Figure 5.12 shows that the {B,D} and {C,D} margins are 

believed to explain much of the dependence thus providing support to the choice of 

the reduced model used in the previous section. 

Questioning which of the CIDs explain most dependence is equivalent to ques

tioning which random effects are most different from zero. Such questioning relates 

to the fundamental issue of random effects modeUing: is the primary interest in the 

variance parameter controlling the distribution of the random effects or in the random 

effects themselves? In the capture-recapture setting it can be useful to understand 

the dependence structure itself, as summarized by the CIDs (Le. the components 

of the random effects vector ,), but the primary goal is to obtain reliable estimates 

of N. Modelling the dependence structure can considered as a means to the end 

of estimation of N. As a consequence, (j~ arguably holds greater interest than the 
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CIDs themselves when these are treated as random effects. Nonetheless, we reiterate 

that there are problems of nonidentifiability with the full Bayesian model which must 

addressed in the future. 
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Figure 5.13: Posteriors of 15 cell means for N(8.06, 0.28) prior on /30 and scaled-inverse 

X2(5, 0.5) prior on O'~. 
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Madel fit evaluated by fit of J-t ta observed data nincomp 

Figure 5.13 demonstrates the fit of the model. The 15 panels show the posterior 

distributions of the 15 cell means of J-t. The verticallines correspond ta the observed 

cell count in each case. For clarity, we choose ta omit the vertical axis corresponding 

ta the density. The purpose of the plot is ta demonstrate that the center of the 

posterior distribution of each cell mean is very close ta the observed cell count thus 

demonstrating that the model fits weIl. Such a result is ta be expected given the 

nature of the nonidentifiability of model parameters. We sa many model parameters 

it is possible for the model ta fit almost perfectly ta the observed data unlike the fit 

of the reduced model observed in Figure 5.7. 

Sensitivity of analysis to a range of prior specifications 

We have se en that the marginal log-linear model with aIl CIDs treated as random 

effects and inference performed within the Bayesian framework is able ta fit the data 

close ta perfectly (see Figure 5.13). In light of the challenges of model nonidentifia

bility, we will present some results ta highlight the sensitivity of posterior inference 

ta the prior distributions placed on the main parameters of interest, namely on /30 

and a;, as was done for the reduced model in the previous section. 

We will consider a range of different priors on each of /30 and of a;. More specifi

cally, as for the reduced model, we will proceed according ta the following two steps. 

First we will work with the same N(8.06, 0.28) prior on f30 of the previous section 

and examine the effect on the posterior of bath /30 and a; for a range of priors on a;. 
Second, we will do the reverse and work with the same scaled-inverse X2 (5, 0.5) prior 

on a; as in the previous section and examine the effect on· the posterior of bath f30 

and a; for a range of priors on /30. 

Our first step is ta explore sensitivity of the posterior distributions ta a range 

of priors on a; for the N(8.06, 0.28) prior on f30. As just described we fix the prior 
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degrees of freedom Vo at 5 and let the scale parameter 85 adopt the four different 

values of 0.1, 0.5, 1 and 1.5, since they place a reasonable amount of mass close to 

zero and we wish to be noninformative about departures from independeJ;lce a priori. 

~ 
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= log(2069)=7.63 
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~a prior 
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Prior on o~: Va =5, s~ = 0.1 

Prior on o~: Va =5, s~ = 0.5 

Prior on o~: Va =5, s~ = 1 

Prior on o~: Va =5, s~ = 1.5 

-----------

8.5 9.0 

Figure 5.14: Posterior of {Jo for various priors on a~ and fixed prior on {Jo. 

Sensitivity of {Jo to prior on a~ 

Figure 5.14 shows the four posterior distributions on {Jo corresponding to the four 

different priors on a~ for the same N(8.06, 0.28) prior on {Jo. In aH four cases the pos-
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terior distributions are less variable than the prior and are shifted to the left. All four 

distributions are bounded below by log nobs = 7.63. 3 In all four cases the posterior 

distributions are close in terms of location. The observed suggestions of bimodality 

of the posterior of f3o, in particular for a prior on O'~ with Vo = 1 and Vo = 1.5, is a 

. result of running two chains and the mixing of the chains. Nonetheless, the results of 

Figure 5.14 serve to demonstrate that thereis sorne sensitivity in the posterior of f30 

to the prior on O'~. 

Sensitivity of O'~ to prior on O'~ 

Figure 5.15 shows three of the posterior distributions on O'~ corresponding to the four 

different priors on O'~ for the same N(8.06,0.28) prior on f3o. Only three of the four 

densities are shown for clarity. The pattern for the fourth (for the case with Vo = 1.5) 

was consistent with the other three cases. In each case we observe that the posterior 

distribution is shifted from the prior. We notice that the direction of this shift differs: 

in the case of the prior with Vo = 0.1, the posterior is shifted to the right relative 

to the prior, whereas for Vo = 0.5 and Vo = 1, it is shifted in the opposite direction. 

The plots of Figure 5.14 demonstrate that there is sensitivity of the posterior of O'~ 

to changes in the prior on O'~. 

Now we move to the second step of the sensitivity analysis as described in the 

introduction to the current section. We wish to explore the sensitivity of the posteri

ors of both f30 and O'~ to changes in the prior on f30 for fixed prior on O'~. We choose 

three priors on f30 given by N(8.06, 0.28) (as used for the full analysis in the previous 

section), N(8.06,0.702) and N(7.71, 0.49), which correspond to 90% prior ranges of 

3Note that, as with the upper panel of Figure 5.10, the inbuilt density function of the R Pro

gmmming Language is used to obtain the plot. Thus the observed part of the posterior densities of 

/30 below 7.63 is an artefact of the inbuilt function. 
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Figure 5.15: Posterior of a~ for various priors on a~ and fixed prior on (30. 

2000-5000, 1000-10,000 and 1000-5000, respectively. 

Sensitivity of (30 to prior on (30 

Figure 5.16 shows the three posterior distributions of (30 corresponding to the three 

different priors on (30 for the same scaled-inverse X2(5, 0.5) prior on a~. In aU three 

cases the posterior distributions are less variable than the three priors and tend to be 

shifted to the left of their corresponding prior. These patterns are similar to those 
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Figure 5.16: Posterior of {30 for various priors on {30 and fixed prior on 0";. 

observed in Figure 5.14 above. As in that figure, all three distributions are bounded 

below by lognobs = 7.63. 4 The four posterior distributions are close to each other in 

terrns of location. There is sorne observed birnodality of the posterior of {30. Despite 

the irnperfect rnixing, the results of Figure 5.16 serve to dernonstrate that there is 

4Note that again, as with the upper panel of Figures 5.10 and 5.14, the inbuilt 'density' function 

of the R Programming Language is used to obtain the plot. Thus the observed part of the posterior 

densities of (30 below 7.63 is an artefact of the inbuilt function. 
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sorne sensitivity in the posterior of (Jo to its own prior distribution. 
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Figure 5.17: Posterior of (J~ for various priors on {Jo and fixed prior on (J~. 

Sensitivity of (J'Y to prior on {Jo 

Figure 5.17 shows the posterior distributions of (J~ corresponding to the three differ

ent priors on (Jo for the sarne scaled-inverse X2 (5, 0.5) prior on (J~. In each case we 

observe that the posterior distribution is barely shifted frorn the prior. Therefore, we 

observe that the posterior of (J~ is rnuch less sensitive to a change in prior on {Jo than 
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it is to a change in its own prior. 

In summary, Figures 5.14-5.17 demonstrate that the greatest posterior sensitivity 

is in (T~ with a change in its own prior. The posterior of /30 is somewhat sensitive to 

changes in both its own prior and the prior on (T~, whereas there is minimal sensitivity 

of the posterior of (T~ to changes in the prior on /30. Thus, using the range of prior 

distributions selected for this sensitivity analysis, changes in the prior on (T~ have a 

greater effect than changes in the prior on /30. Again we evaluate such results in light 

of the challenges of parameter nonidentifiability. Unlike the somewhat restrictive 

reduced model for which there was minimal sensitivity to the prior specification, 

we see greater sensitivity here for the full model. We believe that such a highly 

determined model is able to fit the data close to perfectly, thus .there is sensitivity 

to the prior specification since the parameters are able to be adjusted to obtain the 

close-to-perfect fit. 

5.5 Summary and discussion 

In this chapter we have performed a Bayesian analysis of the complete marginal log

linear model using two different models: the first with two CIDs in the model and 

the second with aH CIDs included in the model. Inboth cases the CIDS were treated 

as random effects. U nlike the frequentist approach of Chapter 3, in which the CIDs 

were treated as fixed effects, we have not performed model selection. Moreover, in 

treating the CIDs as random rather than fixed effects we achieved parameter reduction 

although there are issues related to the nonidentifiability of model parameters of the 

full model which must be addressed. 

By performing inference via the Bayesian paradigm we were able to incorporate 

prior information to neatly accommodate the random effects. Furthermore, we have 
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been able to explore more explicitly the relationship between N and the dependence 
1 

structure measured by the CrDs" whose distributions are controlled by a~. Overall, 

our approach is a seemingly promising methodology, but further thought must be 

given to the nonidentifiability. 
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Chapter 6 

Conclusion 

6.1 Overview 

In this dissertation we have presented a new class of marginal log-linear models 

(MLLM) for population size estimation using capture-recapture data, with an em

phasis on epidemiological applications for closed populations. We presented a new 

framework in which to quantify source dependence with a new measure of depen

dence, the Coefficient of IncrementaI Dependence (CID), which in turn led to new 

modelling approaches in which dependence is modelled via the inclusion of source 

dependence measure terms. Two alternative approaches to inference were presented: 

the likelihood approach in which the measures were treated as fixed effects and a 

Bayesian approach in which they were treated as random. Real and simulated data 

analyses were performed in both cases. Through these analyses we demonstrated that 

we obtain plausible results using our class of marginal models, which were compared 

and contrasted to those obtained using the standard modelling approach of hierar

chical joint log-linear modelling. Further, we demonstrated the manner in which 

MLLMs extend the universe of models for capture-recapture, thus enabling us to ob

tain reasonable population size estimates for dependence structures not necessarily 
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well-modelled by existing methods. In short, the proposed marginal modelling ap

proach performs well and provides new insight into the fundamental nature of the use 

of epidemiological capture-recapture data. 

6.2 Contributions 

In this section we will guide the reader chapter by chapter through the original ma

terial introduced in this dissertation in order to highlight the specifie contributions 

of the work to the literature. 

Chapter 2 

The corner stone of the work presented in this dissertation has been the new manner 

in which we quantify and, indeed, conceptualize source dependence. To this end, we 

introduced a new measure of dependence: the Coefficient of IncrementaI Dependence 

(CID)(see Definition 2.4), that we relate to the Coefficient of Source Dependence 

(CSD) which was first proposed by Vandal et al. (2005), and subsequently developed 

by Melocco (2002). In both instances, these measures exist for aU possible combi

nations of the K available sources, with the CIDs defined in terms of the CSDs. 

We eharacterized the (non-trivial) inverse linear relationship between the CSDs and 

CIDs, that is, with the CSDs expressed as a linear combination of all CIDs of equal 

and lower order (Theorem 2.5). In such a way, we demonstrated the manner in which 

the CIDs decompose source dependence. F'urther, we derived the properties relating 

these measures to (1) the conditional independence structures modeUed by hierarchi

cal joint log-linear models (HJLLM) (Theorems 2.3 and 2.9), (2) simple dependence . 

structures modelled by HJLLMs (Corollary 2.2) (3) the bounds resulting from the 

nested form of the measures (of higher order marginal means nested within lower 

order marginal means, see Proposition 2.1), and, (4) the Coefficient of Covariation of 
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Chao and Tsay (1998) (Propositions 2.2 and 2.3 and Remark 2.10). 

The form of the measures motivated the development of a new class of marginal 

models, named the marginallog-linear models (MLLM), in which marginal means are 

modelled rather than joint (or cell) means, as is the case with joint log-linear models. 

Two parameterizations were presented, the first in terms of the CIDs (Definition 2.7), 

the second in terms of the CSDs (Proposition 2.8). Both provide their own useful 

interpretations, with the CID parameterization preferred for reasons of modelling 

fiexibility and hence used for the data analyses of Chapters 3 and 5. 

The universe of dependence structures that can be modelled is extended by the 

use of our new marginal modelling approach. First it is shown that, for the simple de

pendence structures of complete independence and mutual dependence, the marginal 

modelling approach is equivalent to the joint log-linear modelling approach. However, 

even for the three-source case, there is no unconstrained marginal model equivalent 

to the HJLLM for conditional independence (see Example 2.16). Consequently, our 

new approach is more than a mere reparameterization of the standard hierarchial 

joint log-linear modelling approach. 

Chapter 3 

We compared and contrasted the marginallog-linear modelling approach to the stan

dard modelling approach of HJLLMs. We proposed the family of MLLMs formed 

by setting all possible combinat ions of CIDs (CSDs) equal to zero. The likelihood 

approach was used as the inferential framework to fit the CID parameterization of 

the MLLM (with the CIDs treated as fixed etfects). 

A known equivalence between the multinomial and Poisson likelihoods enabled 

us to exploit the computational simplicity of the latter for the purposes of model 

fitting. We developed (and coded in the R Programming Language, 2004) a Fisher 

Scoring algorithm to obtain maximum likelihood estimates for MLLMs (see code in 
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Appendix G). The procedure was shown to work satisfactorily on real and simulated 

data sets. 

As per the stated objectives of Chapter 3, we showed, via the analyses of these 

data sets, that our new MLLM (1) gives plausible results for real data and known 

dependence structures of simulated data, and (2) can better accommodate nonhierar

chical dependence than the standard modelling approach of HJLLMs. Additionally, 

we demonstrated that the CrDs (CSDs) enable us to interpret the model parameters of 

nonhierarchical joint log-linear models. As a consequence, such a feature enables us to 

sensibly extend the universe of dependence structures able to be modelled using joint 

log-linear models which were previously excluded for reasons of non-interpretability 

of model parameters. 

Chapter 4 

We presented an alternative manner in which to parameterize the MLLM by working 

with a mixed effects model formulation, in which the random effects are used to model 

dependence (see Definition 4.1). Such a model formulation, which to our knowledge 

is new in the field of capture-recapture methodology, is related to the work on the 

generalized log-linear model with random effects of Coull and Agresti (2003), the 

larger class of generalized linear mixed models and the limited literature on general 

marginal modelling techniques. 

We presented motivation for. the adoption of the Bayesian inferential framework 

to accommodate the random effects and the model constraints, like those enforced in 

Chapter 3. A full Bayesian specification was presented for the general form of the 

model, together with a description of the MCMC scheme to be adopted for parameter 

estimation. 
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Chapter 5 

Adopting the general Bayesian mixed effects model form of Chapter 4, we proposed 

one specifie model formulation in which the random effects were set equal to the 

CIDs. Details of the MCMC simulation scheme for the specifie form of the model 

were described (and coded in the C++ language, see Appendix H) and a full Bayesian 

data analysis of the real data set analyzed in Chapter 3 was presented. Such an 

analysis further demonstrated features of the MLLM and, indeed of the fundamental 

nature of capture-recapture data. In the first respect, we saw that the center of the 

posterior distributions of the fixed effect terms were close to those of the frequentist 

formulation of Chapter 3. 

Minimal sensitivity of the posterior distributions of both N (via the /30 parameter) 

and the random effects variance to the priors on each of these parameters was observed 

for the reduced model, with more sensitivity for the full model, likely as a result of the 

nonidentifiability of model parameters. In particular, we observed greater sensitivity 

of each posterior to the prior on the random effects variance for the full model. 

The methodology presented in this chapter is promising. We anticipate that future 

work related to the challenges of nonidentifiability will present interesting results 

and will further illuminate the nature of the marginal model, as weIl as clarifying 

the appropriateness of the model parameterization for inference performed via the 

Bayesian paradigm. 

Summary 

Estimating N when incomplete but overlapping data sources are available, is of rel

evance to many areas of public health. However, there are a range of challenges 

faced when analyzing capture-recapture data. Through the frameworkpresented in 

this dissertation, we have sought to advance the field by developing a framework 

in which to conceptualize and quantify source dependence, whilst presenting a new 
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marginal modelling approach to fully exploit what can be learnt from the incomplete 

capture-recapture data. 

6.3 Future work 

We view the work presented in this dissertation as positioned in both the field of 

capture-recapture methodology and the broader field of general categorical data 

analysis. In both cases, the primary extensions of our work relate to the use of 

our measures of source dependence and the marginal modelling approach itself. For 

the latter, one specific goal is to determine ways in which to incorporate the covariate 

data often available for epidemiological capture-recapture studies into the modelling 

approach. Such a extension offers the possibility of accounting for heterogeneity

induced source dependence. 

Future work we propose, in relation to the CSDs and CIDs, centers around their 

relationships to other known measures of association for contingency tables, including 

those for complete contingency tables, such as the odds ratio. We would seek to for

malize the general K-source relationship between the CCV of Chao and Tsay (1998) 

and the CIDs (CSDs) as demonstrated for the 2, 3 and 4-source case in Chapter 2. 

We propose to further develop the expression of the CSD (and thus, the CID) in 

terms of available covariate information aggregated over each margin, as explored in 

Melocco (2002). Such a measure could be incorporated into an alternative marginal 

model, with covariate information, which should reduce residual variability in the 

marginal modelling approach. Moreover, the measures could be extended to continu

ous variables in addition to the bivariate ones measured here in the capture-recapture 

setting. 

Noting the demonstrated relationship between our CIDs (and CSDs) and the CCV, 

we propose to explore how the CCV might form the basis of a marginal modelling 
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approach at the level of the individual, rather than at the level of the source as with 

our approach. We note further that Chang, LaPorte, Aaron, and Songer (1999) use 

a nonparametric approach to the estimation of N; a modelling approach based on the 

CCV would be a new contribution to· the literature. 

Through the work of this dissertation, we conjecture that every unconstrained 

joint log-linear model corresponds to a constrained marginal log-linear model and 

vice versa. For the frequentist work, an algorithm to fully accommodate the model 

constraints should be developed to construct a software package implementing the 

frequentist methods presented in Chapter 3. In so doing we would hope to extend 

and explore the modelling framework for complete contingency tables. 

There are a range of issues related to the Bayesian formulations of Chapters 4 

and 5. There were computational challenges posed by imperfect mixing, as demon

strated by the high posterior correlations of the random effects and N for the full 

model. Such difficulties can be overcome in part by obtaining long MCMC chains 

thinned by a large factor. Alternatively, model reparameterization offers a means to 

reduce such posterior correlations. We plan on exploiting the ideas of hierarchical 

centered parameterizations of Gelfand, Sahu, and Carlin (1995) and Gelfand, Sahu, 

and Carlin (1996), for normal linear mixed models and generalized linear models, 

respectively, and the ideas of Papaspiliopoulos, Roberts, and Skéild (2003) related to 

nonhierarchical centered parameterizations. 

With our experience of the Bayesian fitting of our model, we anticipate that an 

uncentered parameterization would be preferred, as we believe that the high posterior 

correlation is driven by the nonidentifiability of N and the random effects variance. 

Thus, we would need to tease apart the components of the model expressed directly 

in terms of N. This offers a clue as to how to obtain a reasonable reparameterization. 

Further extending the hyperprior structure is another alternative. 

The Bayesian model fitting techniques and corresponding MCMC simulation scheme 
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should be examined for applications to the broader field of generalized log-linear mod

els, as presented in Coull and Agresti (2003). The authors presented a frequentist, not 

a Bayesian, approach to model fitting, dealing with examples of sparse contingency 

table data (not, we note, the capture-recapture setting). 

We note that the model used in the data analysis of Chapter 5 served the purposes 

of exploration and was via (a) the reduced model containing only two random effects 

(CIDs), and, (b) the full model containing all random effects (CIDs). That is, in 

the latter, none of them is set to zero, contrary to the family of models examined 

in the frequentist analysis of Chapter 3. Further, we note that although there were 

more parameters than data points with which to estimate them, by treating the CIDs 

as random effects, parameter reduction occurs naturally. In the future we hope to 

explore how the Bayesian paradigm, via the inclusion of informative prior information 

(rather than the vague priors used in the analyses of Chapter 5), enables us to gain 

more from the available data but there remains work to be done in order to further 

explore the issue of nonidentifiability. Sorne assessment of the number of effective 

parameters in our model, along the lines of the discussion in Spiegelhalter, Best, 

Carlin, and van der Linde (2002), could be useful. 

In order to reduce the variability in our posterior estimates attributed to the 

presence of unnecessary CIDs, we propose to use reversible jump MCMC (Green, 

1995) to move around the space of the family of models with sorne CIDs set to zero 

in order obtain posterior model summaries which are averaged over aH models, with 

greater weight given to preferred models. 

A related issue, and one which we have begun to explore with preliminary analyses, 

is that of non-identifiability of N and the dependence structure present in the capture

recapture data: namely that knowledge of the population size N together with the 

observed data fully determines the dependence structure of the data. We propose to 

undertake sensitivity analyses by running the MCMC scheme of Chapter 5 at fixed 
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levels of the random effects variance (J~, rather than mixing over the distribution of 

(J~, as was the case with the Bayesian analysis of Chapter 5. Preliminary results 

indicate that there is a strong relationship between N and (J~, with N increasing as 

(J~ increases. 

The marginal modelling approach should be explored for its application to com

plete contingency tables for known N. Furthermore, we seek to develop a model 

selection criterion for joint log-linear models based on the CIDs (CSDs). We propose 

to compare the model-based CIDs (CSDs) to those obtained from the saturated model 

to form the basis of an information criterion, along the lines of the AIC, for example. 

There is scope to use the CIDs (CSDs) to measure the information available from 

pilotstudies for capture-recapture studies to obtain information concerning the source 

dependence structure of the available data. In so doing, the goal would be to obtain 

informative prior information with which to undertake the Bayesian analysis of the 

full study, thereby minimizing the problems posed by the nonidentifiability of N and 

the dependence structure. 

Such ideas are related to those of optimal design for capture-recapture study, 

including issues of optimizing costs. Through pilot studies our ideas may be able 

to be incorporate into a design framework to develop optimal designs for capture

recapture studies in epidemiology. 

Overall, we see that there is scope for a wealth of extensions to a diverse range 

of applications. The work in this dissertation offers the potential to open up a broad 

field of research. 
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Appendix A 

Matrices and vectors used in 

dissertation 

A.1 Three sources 

For three sources, A, Band C , the incomplete contingency table is given by Table A.l 

Ayes ANo 

BYes BNo BYes B No 

CYes nABC nAËC nABC. nABë 

CNo nABë nAËë nABë nAËë =? 

Table A.l: Incomplete Contingency Table: Three Source 
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mA 1 0 0 1 1 0 1 J.LABë 

mB 0 1 0 1 0 1 1 J.LABë 

mc 0 0 1 0 1 1 1 J.LABC 

m= mAB ;A= 0 0 0 1 0 0 1 11= J.LABë , 

mAC 0 0 0 0 1 0 1 J.LABC 

mBC 0 0 0 0 0 1 1 J.LABC 

mABC 0 0 0 0 0 0 1 J.LABC 

and 

0 1 0 0 

0 0 1 0 
f30 logN 

;~'~[;:l 
0 0 0 1 

x= ;{3= 
f3A log mA 

-1 1 1 0 
f3B logmB 

-1 1 0 1 
f3c logmc 

-1 0 1 1 

-2 1 1 1 

1 0 0 0 1 0 0 0 

0 1 0 0 
'G-1 = 

0 1 0 0 
G= , 

0 0 1 0 0 0 1 0 

-1 -1 -1 1 1 1 1 1 

and 
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0 0 0 0 

0 0 0 0 
"(AB 

[GO-'] 
0 0 0 0 

z= for, = 
"(AC 

= 1 0 0 0 
"(BC 

0 1 0 0 
"(ABC 

0 0 1 0 

1 1 1 1 

A.2 Four sources 

For four sources, A, B, C and D, the incomplete contingency table is given by Ta-

ble A.2 

AYes A No 

BYes BNo B yes B No 

CYes Dyes nABCD nAflCD nABCD nAflCD 

DNo nABclJ nAflclJ nAflcD nAflclJ 

CNo Dyes nABCD nAflcD nABCD nAflcD 

DNo nABclJ nAflëlJ nABëlJ nAflëlJ =? 

Table A.2: Incomplete Contingency Table: Four Sources 
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mA 

mB 

mc 

mD 

mAB 

mAC 

mAD 

m= mBC 

mBD 

mCD 

mABC 

mABD 

mACD 

mBCD 

mABCD 

1 0 001 1 1 000 1 1 101 

o 1 0 0 1 001 101 101 1 

o 0 100 1 0 101 101 1 1 

000 100 1 0 1 101 1 1 1 

o 0 0 0 1 0 0 000 1 100 1 

00000 1 0 0 0 0 1 0 1 0 1 

000 000 1 0 0 0 0 1 101 

J\ = 0 0 0 0 0 0 0 100 1 001 1 

o 0 000 000 1 0 0 101 1 

o 0 0 0 0 0 0 ,0 0 1 0 0 1 1 1 

o 0 0 0 0 0 0 0 0 0 1 000 1 

o 0 0 0 0 0 0 0 000 100 1 

o 0 0 0 0 000 0 0 0 0 1 0 1 

o 0 0 0 0 0 0 0 0 0 000 1 1 

o 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

212 

J-lAËJëD 

J-lABëD 

J-lAËJCD 

J-lAËJëD 

J-lABëD 

J-lAËJCD 

J-lAËJëD 

IL = J-lABCD ' 

J-lABëD 

J-lAËJCD 

J-lABCD 

J-lABëD 

J-lAËJCD 

J-lABCD 

J-lABCD 



0 1 0 0 0 

0 0 1 0 0 

0 0 0 1 0 

0 0 0 0 1 

-1 1 1 0 0 

-1 1 0 1 0 {Jo logN 

{JA 
{JA 

-1 1 0 0 1 log mA 

x= ;{3= . {3* - {JB 
-1 0 1 1 0 {JB = logmB , -

{Je 
-1 0 1 0 1 {Je log me 

{JD 
{JD 

-1 0 0 1 1 logmD 

-2 1 1 1 0 

-2 1 1 0 1 

-2 1 0 1 1 

-2 0 1 1 1 

-3 1 1 1 1 

1 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 

G= 0 0 0 0 0 1 0 0 0 0 0 

-1 -1 0 -1 0 0 1 0 0 0 0 

-1 0 -1 0 -1 0 0 1 0 0 0 

0 -1 -1 0 0 -1 0 0 1 0 0 

0 0 0 -1 -1 -1 0 0 0 1 0 

1 1 1 1 1 1 -1 -1 -1 -1 1 
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1 0 0 0 0 0 0 0 0 0 0 

o 1 000 0 0 0 0 0 0 

o 0 1 0 0 0 0 0 0 0 0 

000 1 0 0 0 0 0 0 0 

000 0 1 0 0 0 0 0 0 

G -1 = 0 0 0 0 0 1 0 0 0 0 0 

1 1 0 100 1 0 0 0 0 

1 0 1 0 1 0 0 1 000 

o 1 100 100 100 

000 1 1 1 000 1 0 

1 1 1 1 1 111 111 

o 0 0 0 0 0 0 0 000 

o 0 0 0 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 000 

1 0 0 0 0 0 0 0 000 

o 1 0 000 000 0 0 

"(AB 

"(AC 

"(AD 

"(BC 

o 0 1 0 0 0 0 0 0 0 0 "(BD 

o 0 0 1 0 0 0 0 0 0 0 ,for 'Y = "(CD 

o 0 0 0 1 0 0 0 0 0 0 "(ABC 

o 0 000 1 0 0 0 0 0 

1 1 0 100 1 0 0 0 0 

1 0 1 0 1 0 0 1 000 

o 1 100 1 001 0 0 

000 1 1 1 000 1 0 

1 1 1 1 1 1 1 1 1 1 1 
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Appendix B 

Rules of differentiation 

The following presentation is in line with that in Melocco (2002). Similar 

notation, as well as a description of the results presented in this Appendix can be 

found in Wand (2002) and Magnus and Neudecker (1988). Searle (1982) provides 

useful general matrix the ory for statistics. 

Notation 

Let x be a vector of dimension p x 1 

x= 
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Let u, fi, for i = 1, ... q, be scalar functions of a vector and f a vector function of a 

vector of dimension q x 1, such as 

The following definitions hold 

and 

f1(x) 

h(x) 
f(x) = 

du(x) 
dx 

dx 
[ ( df~~X)) (df~~X)) ... ( df~~X)) ] df(x) 

--= 

âft(x) âh(x) âfq(x) 
âXl âXl âXl 

âft(x) âh(x) âfq(x) 
âX2 âX2 âX2 

âft(x) âh(x) âfq(x) 
âXq âxp âxp 

Basic Rules 

Let A be an m x p matrix and a a p-dimensional vector. We use Da = diag(a) to 

denote the diagonal matrix with a as the diagonal and a 0 b to denote the direct 

product of vectors a and b. Let f and g be vector functions of a vector. 

The following results hold: 

1 ..!J...A(x) - A' . dx -
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2. d:aox= d:Dax=Da 

3. lx f (g(x)) = d:g(x)dg~x/(g(x)) 

4. d: [(f(x))' g(x)] = d~~)g(X) + d~~)f(x) 

5. lx (f(x) 0 g(x)) = d~~) Dg(x) + d~~) Df(x) 

U seful Results 

The following useful results can be obtained using those outlined above. 

~Af(x) = df(x) A' 
dx dx 

Let 

1 
x'[ 

l 
Xp 

and let 1 be a vector function such that 

Then 

In particular 

l(X1) 

l(X2) 
l(x) = 

~l(x) = diag (81(Xi)) 
dx aXi i 

d 
dx exp(x) = Dexp(x), 

d () -1 -log x = D = Dx-I dx x 
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Appendix C 

Simulated data set for Chapter 2 

Details of the three-source data set 

A three-source capture-recapture data set was generated for a population of size 1000, 

according to a scheme which enforced positive dependenceo The theoretical CSDs, 

deemed reasonable from real data sets observed in the literature, are set at 

CAB = 1.333, CAC = 1.1304, CBC = 1.1014, and, CABC = 1.623, (Col) 

For this scheme, the simulated capture-recapture data set consists of 754 individuals 

observed out of the population of size 10000 The distribution of these 754 individu aIs 

amongst the three sources is given in Table Col. 

The observed cell counts UceU and marginal counts u marg corresponding to the 
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Byes BNo 

CYes CNo CYes CNo 

Ayes 117 96 64 72 

ANo 109 134 162 ? 

Table C.1: Observed sample simulated from population size 1000 

incomplete contingency table data of Table C.1 are given by 

nABC 72 nA 349 

nABC 134 nB 456 

nABC 62 nc 452 

ncell = nABC = 96 and n marg = Ancell = nAB 213 (C.2) 

nABC 64 nAC 181 

nABC 109 nBC 226 

nABC 117 nABC 117 

The pairwise Petersen estimates are give~ by 747, 872 and 912, for sources A and 

B, sources A and C, and sources Band C, respectively. These estimates suggest that 

there is positive dependence between sources A and B, since the Petersen estimate of 

747 is lower than the observed number of 754 individuals. For the other two pairs, i.e. 

A and C, and Band C, the Petersen estimates are larger than the observed number 

of 754, which tends to suggest negative dependence. Note that this is not in line with 

the nature of the CSDs which generated the simulated data set, although since the 

CSDs for these pairs are lower than for the pair A and B, the positive dependence of 

the generating mechanism is less strong than for sources A and B. 

For completeness, we describe the details of the data generation scheme used 

to generate the data set in Table C.i according to the CSDs of (C.1). First, each 

individual was randomly assigned one of two covariates, either level1 or level2, with 
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probabilities 

Pr[Z = 1] = 0.7, and, Pr[Z = 2] = 1 - Pr[Z = 1] = 0.3. (C.3) 

Source membership was assigned conditional on covariate level to enable us to calcu

late the true population-Ievel CSDs. The covariate-based CSD is given by Vandal et 

al. (2005) as follows for a set of sources Q and a covariate Z· 

_" I1sEQ Pr[Z =zIS] 
CQ - ~ Pr[Z = z]IQI-l ' 

ail z 

(C.4) 

using the assumption of conditional independence of source membership given covari

ate level given by 

Pr r n SIZ = z] = II Pr [SIZ = z]. 
l1EQ SEQ 

(C.5) 

As a second step in the data generation scheme, source membership was randomly 

assigned conditional on covariate level, according to the following probabilities (set 

by us) 

[

pr[AIZ = 1] Pr[AIZ = 2]] [0.2 0.7] 
Pr[BIZ = 1] Pr[BIZ = 2] = 0.3 0.8 . 

Pr[CIZ = 1] Pr[CIZ = 2] 0.4 0.6 

(C.6) 

Conditional on covariate level, membership in a source was mutually independent of 

membership in any other source. Using the assumption of conditional independence 

(C.5) and the generating probabilities, given by (C.3) and (C.6), it is straightforward 

to evaluate the true (unknown) covariate-based coefficients of source dependence, 

according to (C.4). The population-Ievel CSDs calculated according to this scheme 

are given above by (C.1). 

The theoretical highest-Ievel marginal probabilities are given by 

PA = Pr[A] = Pr[AIZ = l]Pr[Z = 1] + Pr[AIZ = 2]Pr[Z = 2] = 0.35, 

PB = Pr[B] = Pr[BIZ = l]Pr[Z = 1] + Pr[BIZ = 2]Pr[Z = 2] = 0.45, 
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and, 

Pc = Pr[C] = Pr[CIZ = l]Pr[Z = 1] + Pr[CIZ = 2]Pr[Z = 2] = 0.46. (C.7) 

Of course, these probabilities need not sum to 1 since they are not mutually 

exclusive events. Consequently we obtain the following theoretical values for the 

source-specifie covariate distributions 

[
pr[z = liA] Pr[Z = liB] Pr[Z = 1IC]] = [0.4 0.467 0.609]. 

Pr[Z = 21A] Pr[Z = 21B] Pr[Z = 21C] 0.6 0.533 0.391 

In reality, due to the finite nature of the population of size 1000, we obtain an observed 

matrix of 

[pr[~IA] Pr[Z = 21A] 

--Pr[Z = liB] pr[~IC]] = [0.372 0.4496 0.6150] 

Pr[Z = 21C] 0.628 0.5504 0.3850 --Pr[Z = 21B] 

The observed covariate distributions in the three sources are quite different to each 

other and to the population generating probabilities of 0.7 and 0.3. Again, due to the 

finite nature of the simulation of 1000 individuals from such generating probabilities 

the actual covariate distribution in the 1000 individuals is given by 

-- ----Pr[Z = 1] = 0.693, and, Pr[Z = 2] = 1 - Pr[Z = 1] = 0.307 

compared to (C.3). That in the 754 observed individuals is 

-- ----Pr[Z = 1lobs] = 0.6061008, and, Pr[Z = 2lobs] = 1 - Pr[Z = 1lobs] = 0.3938992. 

For completeness, the four remaining marginal probabilities can be shown to be 

given by 

PAB = 0.21,PAc = 0.182,PBc = 0.228,PABC = 0.1176. 
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Appendix D 

Appendix for Chapter 2 

D.I Proof of Theorem 2.3 

Theorem 

Let R, T and 5 denote arbitrary sets of sources such that Rn 5 = 0. We recall 

the HJLLM conventions presented in Section 1.2.1. Then if the groups [R, Tl and 

[5, T] appear in the HJLLM specification with no [A, B] specification where A c R 

and B c 5 (sa that sources in R and sources in 5 are conditionally independent given 

sources in T) 

C 1WSUT = CnUT + CSUT - CT· 

Proof of Theorem 2.3 

Proof. Define Rn = nSEn5, and similarly for 5n and Tn. 
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Pr[Rn n Sn n Tn] .. 
CRUSUT = fI Pr[S] , by defimtlOn 

SER,S,T 

Pr[Rn n Sn\'In]Pr[Tn] 
= 

fISER,S,T Pr[S] 
Pr[Rn\Tn]Pr[Sn\'In]Pr[Tn] . . . . 

= fI Pr[S] , by assumptlOn of condltlOnal mdependence 
SER,S,T 

(Pr[Rn n 'In]/ Pr['In]) (Pr[Sn n 'In]/ Pr[Tn]) Pr['In] 
fISER,S,T Pr[S] 

Pr[Rn n 'In]Pr[Sn n'In] 
= 

Pr['In] fISER,S,T Pr[S] 
Pr[Rn n'In] Pr[Sn n'In] 

fISER,T Pr[S] Pr['In] fIsEs Pr[S] 
Pr[Sn n'In] 

=CRT=-~~--~~ 
, Pr['In] fISEs Pr[S] 

Pr[Sn n'In] fI SET Pr[S] 
= CR T =--'-----:::-::-::::- =-==-=-::-::::-:-'----" 

, fISEs,T Pr[S] Pr[Tn] 
CR,TCS,T 

CT 

whence the result follows. 

D.2 Proof of Proposition 2.3 

o 

This proposition states the relationship between the CCV and CSD for three sources. 

Proposition 

Consider three sources, A, Band C. Let WABC denote the three-way CCV. Then 

WABC = (CABC - 1) - (CAB - 1) - (CBC - 1) - (CAC - 1). 

If the CSDs are close ta zero, then 
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Proof of Proposition 2.3 

Prao! 

1 N 
WABC = N L lE [(Xia - /-La) (Xib - /-Lb) (Xie - /-Le)}/(/-La/-Lb/-Le) 

i=l 

1 N 

= N L lE [XiaXibXie - XiaXib/-Le - /-LaXibXie + /-La/-LeXib - /-LbXiaXie 
/-La/-Lb/-Le i=l 

+ /-Lb/-LeXia + /-La/-LbXie - /-La/-Lb/-Lel 

1 [N N N N 
= N /-La/-Lb/-Le tt lE [XiaXibXiel - /-Le tt lE [XiaXibl - /-La tt E[XibXiel/-La/-Le tt lE [Xibl 

-l', t. 1E [Xi.Xi,] + 1',1', t. lE [X .. ] + 1'.1" t. 1E [X.,] - N 1"1"1',1 

= N 1 [t Pr [A n B n Cil = il - /-Le t Pr[A n Bil = il 
/-La/-Lb/-Le i=l i=l 

N N N 

- /-La L Pr[B n Cil = il + /-La/-Le L Pr[Bll = il - /-Lb L Pr[A n Cil =il 
i=l i=l i=l 

+ 1"1', t. Pr[AI l ~ i] + 1'.1', t. lE [C 1 l ~ i] - N 1"1"1',1 
Pr[A n B n Cl Pr[A n Bl Pr[B n Cl Pr[A n Cl 

=h~h~h~-h~h~-h~h~-h~h~+2 
= (CABC - 1) - (CAB - 1) - (CBC - 1) - (CAC - 1) 

~ log CABC - log CAB -log CBC -log CAC, from the first order Taylor expansion for log 

-log (CA::::CAC) 

= log (CAB'CCACBCC) , since by definition CA = CB = Cc = 1 
CABCBCCAC 

= CABC - (CAB + CBC + CAc) + (CA + CB + CC), by definition of the CSDs 

o 
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D.3 Proof of Theorem 2.5 

Theorem 

Let Q be any set of sources and denote by CQ the CSD associated with this set of 

sources. Then 

(D.1) 

Proof of Theorem 2.5 

Lemma required for proof 

In order to prove Theorem 2.5, we need the following lemma. 

Lemma Let i r = i if r is even and i r = i + 1 if r is odd, i = 1, ... , r. Then 

r-l ( ) ~(_l)ir : =-1 

Praof. Suppose first that r is odd. Then 

(r-l)/2 ( ) r () L (_l)i : + L (_1)r-Hl r ~ i 
i=O i=(rH)/2 

(D.2) 

(D.3) 

In this case, 

(D.4) 
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so that 
r-l ( ) 2)-I)ir ~ = -1, 
i=O '/, 

as required. 

If r is even, then 

~(-1)t) (-1)0G) + ~(-1)t) + (-1rG) 
~ 2+~(-I)i[('~I)+(:=Dl 

~ 2+~(-I)i(r~I)+~(-I)t=n 

Now 

~(-1)i(r ~ 1) ~ ~(-I)t ~ 1) _ (-1)o(r ~ 1) ~-1 
by (D.3) since r - 1 is odd, and 

by (D.4), once again since r - 1 is odd. 

Hence 

(D.5) 

when r is even (or odd, by (D.3), whence 

once again. o 
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Proof of Theorem 2.5 using previous Lemma 

In this section we present the proof of Theorem 2.5. 

Proof. We have, for Q a set of sources of size n, 

n n-1 

'YQ = I:( -1)jn I: Cn = CQ + I:( -1)jn I: Cn, (D.6) 
j=1 ncQ 

Inl=j 

j=1 ncQ 
Inl=j 

by Definition 2.4, where jn = j if n is even and j + 1 if n is odd. 

We proceed by induction. Let Q* be a set of sources of cardinality m. Suppose 

first that m = 1. Then CQ = Cs = 'Ys by Definition 2.4, and 'Ys = 'Ys + 'Y0, which 

shows that the induction hypothesis holds true for m = 1. Suppose now that m ~ 1 

m 

CQ* = I: 'Yn = I: I: 'Yn for m = 1,2, ... , n - 1. (D.7) 
ncQ* j=1 n c Q* 

Inl=j 

We show that if Q = Q* U {S}, then CQ = 2:SCQ'Ys. 

From (D.6), we obtain 

n-1 

CQ = 'YQ + I:(-I)jn+1 I: Cn 
j=1 ncQ 

Inl=j 
n-1 j 

'YQ + I)-l)jn+1 I: I: I: 'Ys from (D.7) 
j=1 n c Q k=1 S C n 

Inl = j ISI = k . 

n-1 n-1 

= 'YQ + I: I: 'Ys I:(-I)jn+1 I: 1, 
k=1 S c Q j=k n :J S 

ISI = k Inl =j 

switching the order of summation. 

227 



N ow the term L: 1 is just the number of supersets of S that are of size 
R-:JS 

IRI=j 
j ~ k. This is obtained by selecting a further j - k sources in addition to the sources 

in S to form n, from a possibility of n - k sources in Q \ S. Thus 

IRI=j 

Further, 

nt\_l)jn+k+l (n -. k) = _ nt\_l)jn+k(n -. k) 
j=O J j=O J 

Now (jn-k = jn + k) mod 2, since 

• if n and k are even, (jn-k = j = j + k = in + k) mod 2; 

• if n and k are odd, (jn-k = j = j + 1 + k = jn + k) mod 2; 

• if n is even and k is odd, (jn-k = j + 1 = j + k = jn + k) mod 2; 

• if n is odd and k is even, (jn-k = j + 1 = j + 1 + k = jn + k) mod 2. 

In particular, (-1 )jn +k = (-1 )jn-k, SO we obtain 

L(_l)jn+kn -.
k 

=-L(-l)jn-k n-. =-(-1)=1, 
n-k-l () n-k-l (k) 

j=O J j=O J 

by the previous Lemma, so 

n-l 

CQ = 'YQ + L L 'Ys = L'Ys, 
k=l Sc Q ScQ 

ISI =k 

as required, since 'Y0 = 0 by definition. o 

228 



D.4 Proof of Theorem 2.6 

Theorem 

Let Q be a set of sources and 1fQ = log P [nSEQS]. Then for 1 QI 2: 2 

n 

'YQ = 2) -l)jn L 1fR· 

j=1 

Proof of Theorem 2.6 

ReQ 

IRI=j 

(D.8) 

Proof. A direct pro of is given below. Here we instead write "IR ~ 'YR if Inl 2: 2 

and "IR ~ 1fR if Inl = 1. Then from (2.16), 

since 'YR = 0 for Inl = 1. But this relates 1f Q and the 'yR'S in a way that is formally 

identical to (D.1). The inverse of this relationship will thus be formally identical to 

(D.6), yielding 
n 

'yQ = L(-l)jn L 1fR; 

j=1 .Re Q 

IRI =j 

but 'yQ = 'YQ for IQI 2: 2, which completes the pro of. 
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Alternative Proof of Theorem 2.6 

n 

'YQ = :L)-l)jn L CR 
j=1 ReQ 

IRI =j 

= i)-l)jn L (7rR - L 7rS) , 

J=1 Re Q SER 

by definition 

IRI=j 

n n 

= L(-l)jn L 7rR - L(-l)jn L L 7rs· 

j=1 ReQ 

IRI=j 

j=1 Ré Q SER 

IRI=j 

It is therefore sufficient to show that the second sum of the right-hand side is 0: 

j=1 Re Q SER 

IRI=j 

SEQ j=1 
R3S 

RcQ 

L 7rs Î) -l)j (~= ~) 
SEQ j=1 J 

L7rs I:(-1)j(n-:-1) =0 (D.9) 
SEQ j=O J 

by (D.5), whence L:7=1(-1)jnL: ReQ L:SER7rS = 0, since the expression is just 

IRI=j 

(D.9) multiplied by +1 or -1. 
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D.5 Details of the HJLLM of conditional indepen

dence of Section 2.4.2. 

Under the HJLLM specified by [AB][AC], where B JLCIA, we obtain 

Pr[B n C] = Pr[B n C n A] + Pr[B n C n A] 

= Pr[B n CIA]Pr[A] + Pr[B n CIA]Pr[A] 

= Pr[BIA]Pr[CIA]Pr[A] + Pr[BIA]Pr[CIA]Pr[A] 

= Pr[B nA] Pr[C n A] P [A] Pr[B n A] Pr[C n A] Pr[A] 
Pr[A] Pr[A] r + Pr[A] Pr[A] 

Pr[B n A]Pr[C n A] Pr[B n A]Pr[C n A] 
= Pr[A] + Pr[A] 

Thus we have 

CBC = 
Pr[B n A]Pr[C n A] Pr[B n A]Pr[C nA] 

Pr[A]Pr[B]Pr[C] + Pr[A]Pr[B]Pr[C] 

1 ( pr[BnA]) ( prCnA) 
= Pr[A]cABCAC + 1 _ Pr[A] .1 - Pr[B] 1 - Pr[C]· 

1 
= Pr[A]cABCAC + 1 _ Pr[A] (1 - Pr[A]cAB) (1 - Pr[A]cAC) 

Pr[A]cABCAC + 1- ~r[A] (1 - Pr[A](cAB + CAC) + Pr[A]2cABCAC) 

= 1 _ ~r[A] (Pr[A]cABCAC - Pr[A]2cABCAC + 1 - Pr[A](cAB + CAC) 

+Pr[A]2cABCAC) 

= Pr[A] (. 1 ) 
1 - Pr[A] CAB CAC - (CAB + CAc) + Pr[A] 
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D.6 Example of a non-hierarchical dependence struc

ture 

Consider tossing two fair die. The sample space is given by 

Let 

Then 

Therefore 

However, 

{(l, 1), (1,2), ... , (1,6), (2, 1), ... , (5,6), (6, 6)}. 

A = {sum is odd, i.e. 3,5,7,9 or 11}, soPr[A] = 18/36 = 1/2 

B = {sum is 3,5,6 or 12}, so Pr[B] = 12/36 = 1/3 

C = {sum is 4,5,10 or 11}, so Pr[C] = 12/36 = 1/3 

Pr[A n Bl = Pr[sum is 3 or 5] = 6/36 = 1/6 = Pr[A]Pr[B] 

Pr[A n C] = Pr[sum is 5 or 11] = 6/36 = 1/6 = Pr[A]Pr[C] 

Pr[B n C] = Pr[sum is 5] = 4/36 = 1/9 = Pr[B]Pr[C] 

AJLB, AJLC and B JLC 

Pr[A n B n C] = Pr[sum is 5] = 1/9 -11/18 = Pr[A]Pr[B]Pr[C], 

which shows that A, Band C are not independent events. Thus, is is possible for three 

events to be pairwise dependent but jointly dependent i.e. which exhibit three-way 

dependence. 
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Appendix E 

Simulation of data sets for 

Chapters 3 and 5 

Introduction . 

We simulate data generated according to a known model and known likelihood in 

order to demonstrate the performance of the model. The model is the marginal 

model parameterized in terms of the CIDs, as given by Definition 2.7; the likelihood 

the multinomial (see Section 1.1.3). We consider the four-source setting. 

In order to generate data sets derived from the true model, we first fix the true 

population size N together with the single source marginal probabilities PA,PB,PC 

and PD. The eleven remaining marginal probabilities are ca1culated according to the 

assumed dependence structure. Whenever the assumed dependence structure places 

no constraints on a marginal probability, we fix it at sorne reasonable value, which 

must be consistent with the nested ordering of marginal probabilities. This will be 

demonstrated below for the dependence structures we consider here. Note that, by 
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specifying the marginal dependence structure, there is an equivalent set of fixed CIDs. 

Here we describe the steps to be taken to generate such data. 

Simulating capture-recapture data under a multino

mial likelihood 

When employing the multinÇ)mial likelihood, inference applies to the parameter N 

and not lE [N], as is the case under a Poisson likelihood. In the latter case, N is a 

random variable rather than a parameter, as is the case when a multinomial model 

is assumed. The following scheme is employed for the general K-source case: 

• Fix N and the single-source marginal probabilities PA,··· ,PK. 

• Specify the non-single source probabilities according to sorne dependence struc

ture (e.g. independence or condition al independence). In sorne instances, for 

certain dependence structures; they will be derived from the single-source mar

ginal probabilities. Fixed values will be chosen if not specified by the structure. 

Note that using the fully specified dependence structure and corresponding mar

ginal probabilities the corresponding theoretical CIDs can be calculated. 

• Obtain the corresponding cell probabilities, P,.., using the relationship P,.. = 

A-1Pm, where the matrix A -1 transforms marginal counts into cell counts and 

similarly marginal probabilities into cell probabilities and Pm denotes marginal 

probabilities. 

• Using the likelihood assumption that the 2K cells of the complete contingency 

table follow a multinomial distribution simulate a 2K vector of observations from 

a single realization of the the multinomial distribution with cell probabilities 
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given by the 2K - 1 vector p,.. and probability 1 - e'p,.. for the remaining cell, 

where e is a vector of ls of length 2K - 1. 

• Use the first 2K -1 entries of the vector of simulated observations as the capture

recapture data set. 

The data sets 

We will consider two dependence structures. The first, a conditional independence 

structure and the second, a nonhierarchical dependence structure. For each, we fix 

the true population size at N = 1000. The single-source marginal probabilities PA, PB 

Pc and PD are fixed at similar values in each case. We determine the eleven remain

ing marginal probabilities in order to fully specify the true underlying dependence 

structure. Finally, in both, we generate a single data set from each of these three 

known models. The underlying population parameters (i.e. N, PA, etc.) are thought 

to be reasonable values based on evidence from the literature. Most epidemiological 

capture-recapture studies seek to eumerate reasonably sized populations, hence the 

choice of N = 1000 and the marginal source probabilities described below. 

Conditional independence 

We assume that the true underlying model is that of conditional independence of B 

and C given A, denoted by [AB][AC][D] in the notation of Christensen (1997). The 

single-source marginal probabilities are assumed to be given by PA = 0.7, PB = 0.4 

Pc = 0.3 and PD = 0.2. We fix 

PAB = 0.3 and PAC = 0.2, 

whilst aIl other marginal probabilities are obtained using the known probability re

lationships given in Chapter 2, Examples 2.16 and 2.17 for this particular model of 
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conditional independence. Thus, the form of PBC depends on the marginal probabil

ities of the conditioning source, A, and is given by: 

PBC = PABPAC + (PB - PAB)(PC - PAo) = 0.119047. 
PA 1- PA 

Notice that this probability is slightly lower than that of 0.12 should Band C be 

marginaIly independent. The 3 remaining pairs of sources are marginaIly independent 

by assumption. Thus 

PAD = PAPD = 0.14 PBD = PBPD = 0.08 PCD = PCPD = 0.06. 

The 4 three-way marginal probabilities are obtained using results from Example 2.17 

and are given by 

PA C = EMŒ.cl..Q. = 0.0857 
B PA ' 

PACD = PACPD = 0.04, 

PABD = PABPD = 0.06 

PBCD = PBCPD = 0.0238, 

and the four-source marginal (which is also the four-source joint probability) by 

PABCD = PDPABC = 0.0171. 

Note that, had aIl sources been marginaIly independent, the three-way marginal 

probabilities would be given by PABC = 0.084, PABD = 0.056, PACD = 0.042 and 

PBCD = 0.024, and, the four-way marginal (equivalently, the four-way joint probabil

ity) by PABCD = 0.0168. For aIl of these marginal combinations, we observe that the 

true three-way and four-way marginal probabilities exceed those under assumptions 

of marginal independence except for the 2 three-way probabilities PACD and PBCD. 

The corresponding ceIl probabilities sum to 0.893. That is, the theoretical proportion 

of the population of size 1000 that is observed is equal to 89%. 

For the assumed conditional independence structure here, the true underlying 

CIDs, which correspond to the specified probability distribution are given by 

"(AB = 0.06899 "(AC = -0.04879 "(BC = -0.00797 "(ABC = 0.00797, 
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with an others equal to O. Note that "(ABC = -"(BC since, by assumption, B JLCIA, 

that is Band C are independent, conditionally on A. 

Table E.1 presents a data set generated according to this assumed underlying 

dependence structure. 

AYes A No 

Byes BNo Byes BNo 

CYes Dyes 16 24 5 10 

DNo 61 92 34 47 

CNo Dyes 50 72 16 26 

DNo 165 224 50 ? 

Table E.1: Data generated according to the conditional dependence structure given 

by [AB][AC][D]. 

N onhierarchical dependence 

We assume that the true underlying model is that of a nonhierarchical dependence 

structure with theonly dependence present between 2 of the three marginal com

binations of sources, namely within each of the two sets given by {A, B, C} and 

{A, B, D}. Note that such a nonhierarchical dependence structure cannot be ex

pressed in the notation of hierarchical models; it is not represented by [ABC][ABD], 

since, by assumption, no lower order dependence is present. 

The single-source marginal probabilities are given by PA = 0.5, PB = 0.4 PC = 0.3 

and PD = 0.2. We fix 

PABO = 0.07 and PABD = 0.06, 

whilst all other marginal probabilities are obtained using the known probability rela

tionships given in Chapter 2, Example 2.17 for this particular model of nonhierarchical 
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dependence. 

All 6 pairwise sets of sources are assumed to be marginally independent and are 

given by 

PAB = PAPB = 0.2, PAC = PAPC = 0.15, PAD = PAPD = 0.1, 

PBC = PBPC = 0.12, PBD = PBPD = 0.08, PCD = PCPD = 0.06, 

Likewise, the remaining 2 three-way sets of sources, {A, C, D} and {B, C, D}, are 

also assumed to be marginally independent. Thus, 

PACD = PAPCPD = 0.03 and PB CD = PBPCPD = 0.024, 

whilst the single four-way marginal (equivalently joint) probability is obtained using 

the following 

PABCPABD 0021 
PABCD = =.. 

PAPB 

Notice that this probability exceeds that under marginal independence of the four 

sources,which would be equal to 0.012. Likewise under marginal independence of each 

of the sets {A, B, C} and {A, B, D}, the marginal probabilities would be equal to 0.06 

and 0.04, respectively, rather than the values of 0.07 and 0.06, respectively, at which 

they have been fixed. Thus, the nonhierarchical dependence structure assumed in this 

case tends to exhibit positive dependence throughout whenever there is dependence 

present. The corresponding cell probabilities sum to 0.853. That is, the theoretical 

proportion of the population of size 1000 is equal to 85%. 

For this nonhierarchical dependence structure, the true underlying CIDs, which 

correspond to the specified probability distribution, are given by 

,ABC = 0.1515 ,ABD = 0.4055, 

with aU others equal to O. 

Table E.2 presents a data set generated according to this assumed underlying 

dependence structure. 
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AYes A No 

B yes . BNo BYes B No 

C Yes D yes 21 9 6 26 

D No 61 59. 60 70 

CNo DYes 35 27 17 60 

D No 82 195 128 ? 

Table E.2: Data generated according to the non-hierarchical dependence structure 

with only dependence within the sets {A, B, C} and {A, B, D} 
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Appendix F 

Appendix for Chapter 3 

F .1 Score and Information calculations for Poisson 

likelihood 

Using the rules of matrix and vector differentiation stated in Appendix B, the score 

vector is derived as follows: 

U(<5) = !li 
8<5 
8M al 

= 
8<58M 
8M 8(n'log(M) - e'M) 

8<5 8M 

= ~~ [diag(M)-ln - e] 

8A -1 exp (Y <5) [d' ()-1 ] = 1ag M n - e 
8<5 

= Y'diag(exp(Y <5))(A -1)' [n 0 M(<5)-I - e] , 
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whilst the negative q x q information matrix is given by 

82Z 
-1(6) = 86'86 . 

8U(6) 
86 

= :6 (exp (Y 6) 0 [A-It(n 0 J-L-1 - e)]) Y 

= [:6 (exp (Y 6)) D A -lI(nop,-Le) 

+ :6 [A -1t(n 0 J-L-1 
- e)] D exP(Y6)] y 

= [Y'Dexp(Y6)D(A-1)/(nop.-Le) 

+ :6[noJ-L(6)-I]A-1DexP(Y6)] y 

= [Y'Dexp(Y6)D(A-1 )'(nop.-I -e) 

8 a -1 -1 ] 
+86[J-L(6)]8J-L[J-L ]DnA D exp(Y6) y 

= [Y'Dexp(Y6)D(A -1 )/(nop.-I -e) 

- (Y'DexP(Y6)(A -1)'Dnop.-2I) A -1DexP(Y6)] y 

= Y'DexP(Y6) (D(A-1)/(nop.-Le) - (A -1)'Dnop.-21A -1DexP(Y6)) Y, 

where, for ease of notation, dependence of J-L on 6 has been suppressed and J-L = J-L( 6). 

F.2 Derivation of the asymptotic covariance ma

trix for Poisson sampling of Chapter 3 

Lang and Agresti (1994) present the general form of models able to simultaneously 

model both the joint and marginal distributions of multivariate categorical responses. 

Such a model, similarly to that introduced by Haber (1985b), takes the form: 

ClogBJ-L = Wa, ident(J-L) = 0 (F.1) 
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where C = CJEBCM, B' = (BJ,BM), W = WJEBWM, 0 = (oJ,oM)' and 

ident(lL) = 0 denotes the multinomial identifiability constraints, and, J refers to the 

model on the joint means and M to that on the marginal means. Although, the 

theory developed in both Lang and Agresti (1994) and Haber (1985b) refers to the 

general case of sampling from S independent multinomial samples, we will consider 

S = 1 since the capture-recapture setting considered in this dissertation concerns a 

single incomplete contingency table at a time. We let d denote the length of the 

vector IL and q the length of the vector o. 

Lang and Agresti introduce a constraint reparameterization of the freedom equa

tion form of model (F.1). Such a constraint parameterization is given by 

U'ClogBIL = 0, ident(lL) = 0, (F.2) 

where the space spanned by the columns of U is the orthogonal complement of the 

space spanned by the columns of W and U is of full column rank. Equivalently 

U'W = o. From Haber (1985b), U is computed using: 

U = (1 - W(W'W)-lW')V, (F.3) 

where V is a d x (d - q) matrix of full column rank. The first constraint equation 

of (F.2) imposes d - q linear constraints on the cell me ans IL. 

The matrix V, and consequently U, is not unique. It must be noted that, although 

seemingly not clarified by Haber (1985b), Vis not entirely arbitrary. We must ensure 

that U spans the same subspace as W'. An approach to obtaining an appropriate 

matrix U, is based on using the Singular Value Decomposition (SVD) (Searle, 1982) 

of Q =(1 - W(W'W)-lW') as follows: If Q1DQQ~ is the SVD of Q, where DQ 

has zeros everywhere except for in the first p entries, say of the diagonal, which we 

denote by DQp' then 
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In practice, the inbuilt svd function of the R Programming Language (2004) can be 

used to obtain the SVD of Q and thus, to obtain U. 

Maximum likelihood estimation (MLE) consists in maximizing the kernel of the 

multinomial, equivalently the Poisson, likelihood given by 

l(f..t; n) = n'log f..t 

subject to the model parameter space defined by the freedom equations of (F.1) or 

equivalently the constraint equations of (F.2). As described by Lang and Agresti 

(1994), it is most useful to work in terms of the constraint equations. Thus, the 

model parameter space is given by 

{f..t: U'ClogBf..t = 0, ident(f..t)} = {f..t: f(f..t) = 0, ident(f..t)}. (F.4) 

Lang and Agresti (1994) describe modifications to the Newton-Raphson algorithm 

proposed by Haber (1985b) to solve the Lagrangian (not presented here) which sum

marizes the function to be maximimized and the constraints given by (F.2). Their 

approach deals with a matrix that is much easier to invert than that given in Haber 

(1985b). In order to ensure that the numerical algorithm used to obtain the maximum 

likelihood estimates of a does not move to a values that correspond to negative val

ues of f..t, a reparameterization from f..t to ,= log f..t is adopted. The model parameter 

space is thus given by the following reparameterization of (F.4) 

{(: U'C logB exp ( = 0, ident(()} = {( : h(() = 0, ident(()}. 

The MLE of (, (: , is obtained by solving for ê in the likelihood equations 

g( 9) =" A "= A = ° A [81~ê;n) - exp((:) + 8~(") À] [n - exp((:) + H((:)À] 
h(() h(() 

where 9 = vec((, À) and H((:) = 8h(()/8( is the d x (d - q) matrix of derivatives 

of the (d - q) x 1 vector h(() = U'C log A exp ( with respect to the d x 1 vector ( 
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given by 

Ôhd _ P(;)] 
Ô(1 

: , 
ôhd _ q (;) 

Ô(d 

(F.5) 

where h(C) = (h1(C),··· ,hd-p(C))'. 

Lang and Agre~ti (1994) provide the asymptotic normal distributions of Ô = 
,1 AI 

(C , À )' under certain nonrestrictive assumptions. Of particular interest to us is the 

asymptotic covariance matrix of our model parameters a given for the Poissàn sam

pling scheme by 

where 

(F.7) 

and D(C) is the d x d vector with C on the diagonal. 

Next we see how to apply this theory to our marginallog-linear model. 

Application of approach to frequentist MLLM of Chapter 3 

It is clear that the marginal model introduced in Section 2.4 (see Definition 2.7) fits in 

the class ofmodels of the form (F.1) with C equal to the identity matrix and B equal 

to the A matrix of the marginal model so that the B J matrix of B is not included 

for the marginal model. For the marginal model forms considered in Chapter 3, in 

which the CIDs are treated as fixed parameters to be estimated, the a vector of (F.1) 

is precisely that denoted by Ô, the vector of length q :::; d, where d = 2K - 1 in the 

K-source capture-recapture setting. 
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In order to derive the asymptotic covariance matrix of the parameter vector 6 

of our model using (F.6), we first derive the form of ~p. using (F.7). Using the 

definition of h(() from (F.2) together with that of H(() from (F.5) and the chain 

rule for differentiation of a vec,tor function yields 

H = ô(U'log Be') 
ô( 

de' dBe' d log Be' dU'log Be' 
= d( de' dBe' d log Be' 

= Dexp(,)B'DB~xp(,) U 

= DJ.tB'DB~U, 

where B = A, for the marginal model and U is obtained as described above. 
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Appendix G 

R code for Chapter 3 

Code for algorithm to fit frequentist MLLM 

FOUR SOURCE FREQUENTIST CODE # THIS CODE FITS ALL 2047 JLL (HIER 
AND NON-HIER) TO FOUR SOURCES # AS WELL AS ALL FREQUENTIST MLLM 
WITH CIDS TREATED AS FIXED EFFECTS # WITH ALL DIFFERENT 
COMBINATIONS SET TO ZERO # # FOR VARIANCE ESTIMATION FROM LANG AND 
AGRESTI (JASA 1994) # # 

K<-4 

S4<-matrix(0,nrow=15,ncol=4) S4[,1] <- c(1, 0, 
0, 0, 1, 1, 1, 0, 1) S4 [,2] <- c(O, 1, 0, 0, 1, 
1, 0, 1, 1) S4[,3] <- c(O, 0, 1, 0, 0, 1, 0, 1, 
1) S4[,4] <- c(O, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 

Mmat<-t(S4) Mmat<-rbind(Mmat,S4[,1]+S4[,2]==2) 
Mmat<-rbind(Mmat,S4[,1]+S4[,3]==2) 
Mmat<-rbind(Mmat,S4[,1]+S4[,4]==2) 
Mmat<-rbind(Mmat, S4 [, 2] +S4[, 3] ==2) 
Mmat<-rbind(Mmat,S4[,2]+S4[,4]==2) 
Mmat<-rbind (Mmat, S4 [,3] +S4 [,4] ==2) 
Mmat<-rbind(Mmat,S4[,1]+S4[,2]+S4[,3]==3) 
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0, 0, 1, 1, 1, 0, 
0, 0, 1, 1, 0, 1, 
0, 1, 1, 0, 1, 1, 
1, 1, 1, 1) 



Mmat<-rbind(Mmat,S4[,1]+S4[,2]+S4[,4]==3) 
Mmat<-rbind(Mmat,S4[,1]+S4[,3]+S4[,4]==3) 
Mmat<-rbind(Mmat,S4[,2]+S4[,3]+S4[,4]==3) 
Mmat<-rbind(Mmat,S4[,1]+S4[,2]+S4[,3]+S4[,4]==4) 

A4<-Mmat 
A4<-t(A4) 

dimnames(A4)<-list( 
c(IAbcd", l aBcd", l abCd", Il abcD Il ,IABcd" ,IAbCd", IAbcD", "aBCd" ,laBcD" ," abCD", 
"ABCd", IABcD", Il AbCD Il ,l aBCD", "ABCD"), 
c(IIAI,IB" ,liCOl , "D" , Il AB Il , Il AC Il , Il AD Il ,"BC", Il BD Il , "CD n , "ABC","ABD","ACD", "BCD" ,"ABCD")) 
# X matrices will be extracted from this one 
bigm<-cbind(1-apply(A4[, 1:4] ,l,sum),A4) 

A4<-t(A4) 

# This will be used for column extraction # from bigm 

# Note that there are 2047 models (hierarcal and non-hierarchical) 
for four sources with the four main effects included in all # 
Calculate using a<-choose(ll,l); or(i in 2:11){a <- a + 
choose(ll,i)}; a 

models<-matrix(O,nrow=2047,ncol=11) for (i in 1:2047) { 
modn<-i-1 
for (j in 1: 11){ 

if (modn\%\%2) models[i,j]<-l # i.e. modn\%\%2 
modn<-modn\%/\%2}}# integer division 

models<-cbind(l,l,l,l,l,models) 

models<-models==l # changes to TRUE/FALSE 

modn mod 2 

satform4<-(apply(models,l,sum)==15)*1 # indicator of whether model 
is one of l1saturdated models 

#----- indicator for hierarchical models 

hierform4<-rep(O,2047) hierform4[1:64]<-1 
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ind.hier<-c(76,80,92,96,108,112,124,128, 
150,152,158,160,182,184,190,192, 295,296,303,304,311,312,319,320, 
569,570,571,572,573,574,575,576, 224,256, 368,384, 636,640, 
440,448, 702,704, 831,832, 512,768,896,960,1024) 
hierform4[ind.hier] <-1 

basmod<-"tot-A+B+C+D" 
tokens<-c("AB", "AC", "AD", "BC", "BD", "CD", "ABC", "ABD", "ACD", "BCD", "ABCD") 
formulas<-list() for (i in, l:dim(models) [1]) 
formulas<-c(formulas,as.formula(paste(c(basmod, 

tokens[models[i,-(1:5)]]),collapse="+"))) 

# The usual suspects 
11<-function(n.beta,X;A) { 
mu<-as.vector(solve(A,exp(X%*%beta))) 
sum(n*log(mu)-mu)} 

score<-function(n,beta,X,A) { 
eta<-as.vector(exp(X%*%beta)) 
mu<-as.vector(solve(A,eta)) 
t(X)\%*\%diag(eta)\%*\%solve(t(A),n/mu-l)} 

finf<-function(n,beta,X,A) { 
eta<-as.vector(exp(X\%*\%beta)) 
mu<-as.vector(solve(A,eta)) 
temp<-solve(A,diag(eta)\%*\%X) 
t(temp)\%*\%diag(l/mu)\%*\%temp} 

# This ,is really Fisher scoring mixed with steepest ascent, 
# aIl dampened & with a few checks on feasibility 

mle.old<-function(n,betastart,X,A,tol=le-7,maxiter=100,maxhi=5,fac=10,ns=4) 
{ diff<-l oldbeta<-betastart iter<-O whup<-F hyperiter<-O while 
(diff>tol && hyperiter<maxhi) { 

while (diff>tol && iter<maxiter) { 
dirl<-solve(finf(n,oldbeta,X,A),score(n,oldbeta,X,A)) 
topl<-min(-(bldbeta[l: (ns+l)]/dirl[l: (ns+l)]) [dirl[l:( ns+l)]<O] ,1) 
if (dirl [1] <0) 

topl<-min«oldbeta[2:(ns+l)] [dirl[2:(ns+l)]>0]-oldbeta[1])/ 
(dirl[1]-dirl[2:(ns+l)] [dirl[2:(ns+l)]>0]),topl) 
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else 
top1<-1 

dir2<-score(n,oldbeta,X,A) 
top2<-min(-(oldbeta[1:(ns+1)]/dir2[1: (ns+1)]) [dir2[1: ( ns+1)] <0] ,1) 
if (dir2[1]<0) 

top2<-min«oldbeta[2:(ns+1)] [dir2[2:(ns+1)]>0]-oldbeta[1])/ 
(dir2[1]-dir2[2:(ns+1)] [dir2[2: (ns+1)]>0]) ,top2) 

else 
top2<-1 

foo.fun<-function(lambda,oldbeta,dir,n,X,A) 
-11(n,oldbeta+Iambda*dir,X,A) 

opt1<-optimize(f:foo.fun,interval:c(0,top1),oldbeta:oldbeta,dir:dir1,n:n,X:X,A: 
opt2<-optimize(f:foo.fun,interval:c(0,top2)'loldbeta=oIdbeta,dir=dir2,n=n,X=X,A= 
if (is.na(opt1$objective)) opt1$objective<-Inf 
if (is.na(opt2$objective)) opt2$objective<-Inf 
if (whup) { 

opt1$minimum<-min(fac*opt1$minimum, 1) 
opt2$minimum<-min(fac*opt2$minimum,1) 
whup<-F} 

if (opt1$objective<opt2$objective) #objective function is -loglhd 
beta<-oldbeta+opt1$minimum*diri 

else 
beta<-oldbeta+opt2$minimum*dir2 

diff1<-beta-oldbeta 
diff<-max(abs(diff1)) 
oldbeta<-beta 
iter<-iter+1} 

if (diff>tol) whup<-T 
hyperiter<-hyperiter+1} 

return(list(beta,ll(n,beta,X,A),diff1,score(n,beta,X,A),iter))} 

# Here the parameters of beta are (betaO,betastar,CIDs) 

mIe<-function(n,betastart,X,A,tol:1e-S,maxiter:100,ns=4) { diff<-l 
oldbeta<-betastart iter<-O 

while (diff>tol && iter<maxiter) { 
dir<-solve(finf(n,oldbeta,X,A),score(n,oldbeta,X,A)) 
top<-min(-(oldbeta[l: (ns+1)]/dir[1: (ns+1)]) [dir[l: (ns+ 1)]<0],1) 
if (dir[l]<O) 

top<-min«oldbeta[2:(ns+1)] [dir[2:(ns+1)]>0]-oldbeta[1])/ 
(dir[1]-dir[2:(ns+1)] [dir[2:(ns+1)]>0]),top) 

else 
top<-l 
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foo. fun<-function (lambda , oldbeta,dir,n,X,A) 
-ll(n,oldbeta+lambda*dir,X,A) 

opt<-optimize(f=foo.fun,interval=c(O,top), 
oldbeta=oldbeta,dir=dir,n=n,X=X,A=A) 

if (is.na(opt$objective)) opt$objective<-1nf 
beta<-oldbeta+opt$minimum*dir 

diff1<-beta-oldbeta 
diff<-max(abs(diff1)) 
oldbeta<-beta 
iter<-iter+1} 

return(list(beta,ll(n,beta,X,A),diff1,score(n,beta,X,A),iter))} 

fitted.marg<-function(beta,X,A) { 
mtot<-exp(X%*%beta) 
solve(A,mtot)} 

# asymptotic covariance matrix of model parameters for a single 
model 
# U is any d by (d-p) matrix (where p is number of 
parameters in model) su ch that U'X = ° 
# Haber (1985) states that U can be calculated using U (1-
X'(X'X)-(-l)X)W, 
# where W is a d by (d-p) matrix with inde pendent 
columns 

asymp.cov.mle.fun<-function(beta.MLE,mu.MLE,X,A,U) { 
p<-length(beta.MLE) 

} 

eta <-log(mu.MLE) 
marg.MLE <- A%*%mu.MLE 
diag.eta <-diag(as.vector(eta)) 
diag.inv.eta <- diag(as.vector(l!eta)) 
diag.inv.Amu <-diag(as.vèctor(l!(marg.MLE))) 
H <- diag(as.vector(mu.MLE))%*%t(A)%*%diag(as.vector(l!marg.MLE))%*%U 
Sigma.mu.MLE <- diag.eta - H%*%solve(t(H)%*%diag.inv.eta%*%H)%*%t(H) 
temp <- solve(t(X)%*%X)%*%t(X)%*%diag.inv.Amu%*%A 
Sigma.alpha.MLE <- temp%*%Sigma.mu.MLE%*%t(temp) 

# to extract diagonal just need to do diag(matrix.name) 
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Appendix H 

C++ code for MCMC scheme of 
Chapter 5 

1* 
Code to run MCMC simulation of CID formulation of Bayesian 
random effects model for K sources using data from incomplete 
contingency table at fixed level of RE variance with no centering 
of RE and ability to set any RE equal to 0 

Procedure: 
1. Metropolis-Hastings update for N 
2. Metropolis-Hastings update for aU betastar 
3. Metropolis-Hastings update for aU pairwise RE centered on 
4. Metropolis-Hastings update for aU threeway RE centered on 
5. Etc. for RE 

0 
0 

In order to set a specifie RE equal to 0 the tool we use is to fix 
the prior RE variance for that component equal to 0 

using namespace std; #include <iostream> #include <fstream> Il 
Needed for file input/output #include <math.h> 

1* Library containing random/statistical functions *1 #include 
<gsl/gsl_rng.h> #include <gsl/gsl_randist.h> #include 
<gsl/gsl_statistics_double.h> #include <gsl/gsl_vector.h> #include 
<gsl/gsl_sf_gamma.h> Il Needed for gamma function #include 
<gsl/gsl_matrix.h> #include <gsl/gsl_blas.h> #include 
<gsl/gsl_statistics_double.h> #include <gsl/gsl_sf_gamma.h> 
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double multinom_loglike_fun(const double totalN, gsl_vector* 
cell_num_vec, const double nobs, 

} 

gsl_vector* cell_mean_vec){ 

double n_unobs = totalN - nobs; 
int j; 
double loglike=O, sumprobs=O; 

Ilcout«"$$$$$$"«endl; 
loglike+=gsl_sf_lnfact«unsigned int)totalN); 
Ilcout«loglike«endl; 
loglike -= gsl_sf_lnfact«unsigned int) n_unobs); 
Ilcout«loglike«endl; 
for(j=O;j<cell_num_vec->size;j++){ IITrick to avoid passing length of vector 

loglike+=cell_num_vec->data[jJ*log(cell_mean_vec->data[jJ/totalN) -
gsl_sf_lnfact«unsigned int) cell_num_vec->data[jJ); 

sumprobs+=cell_mean_vec->data[jJ/totalN; 
Ilcout«loglike«endl; 

} 

loglike += n_unobs * log(1 - sumprobs); 
Ilcout«loglike«endl; 
Ilcout«"$$$$$$"«endl; 
return(loglike); 

int main(int argc, char* argv[J) { 

I*Creates file streams for file output *1 

ifstream the_data_file, the_param_file; 
of stream the_output_file; 

I*Checks to see that enough arguments have been given*1 

if(argc < 4){ 
cout«"Not enough arguments"«endl; 
return(O); 

} 

1* Opens file for writing *1 
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/*Assumes first argument is data file*/ 

the_data_file.open(argv[l], ios: :in); 
if(lthe_data_file){ 

cout«"Parameter file not found"«endl; 
} 

/*Assumes second argument is the parameter file*/ 

the_param_file.open(argv[2] , ios::in); 
if(lthe_param_file){ 

cout«"Parameter file not found"«endl; 
} 

/*Assumes third argument is output file*/ 

the_output_file.open(argv[3] , ios: :out); 
if(!the_output_file){ 

cout«"File a not found"«endl; 
} 

gsl_rng *r; 
const gsl_rng_type * T; 

T = gsl_rng_default; 
r = gsl_rng_alloc (T); 

/*Assumes that fourth argument is the seed*/ 

long int seed; 

seed = atoi(argv[4]); 
gsl_rng_set(r,seed); 

/*Maintenanace vars*/ 
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int ctr; 
int feasible_flag, pwise_loop, levelwise_loop, pwise_ctr, pwise_ctr2; 
double current_like=O, prop_like=O; 
double current_prior=O, prop_prior=O; 

/*Assumes that the number of iterations is first*1 

int number_of_samples; 
the_param_file » number_of_samples; 

I*Assumes that the number of data points is second in 
parameter file i.e. K*I 

int numsources; 
the_param_file » numsources; 

I*Assumes that the number by which to thin is third in 
parameter file *1 

int thin; 
the_param_file » thin; 

cout«number_of_samples«" "«numsources«endl; 

int nobs=O; 
int n_rand_effect=-numsources; 
Il counts how many of the RE, i.e. the two or more source gammas are to be estimat 
Il i.e. how many ahve non-zero prior variance in param_file 
Il need to initialise at -K since in loop where it is updated below 
Il the loop includes the betastar terms and there are K of them 
int num_observed_counts = (int)pow(2,(double)numsources) - 1; 

int data_loop; 
gsl_vector* observed_counts; 
observed_counts = gsl_vector_alloc(num_observed_counts); 

1* Read in cell entries of incomplete contingency table from data file 
ordered according to order laid out by Ainv matrix*1 

for(data_loop=O;data_loop<num_observed_counts;data_loop++){ 
the_data_file » observed_counts->data[data_loop]; 
nobs += (int) observed_counts->data[data_loop]; 
cout«gsl_vector_get(observed_counts,data_loop)«" "; 
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} 

cout«endl; Il to return to a new line 

I*Declare betaO*1 

double betaO, betaO_prop; 
double N; 
int beta_Ioop; 

1* 4th entry in param file is starting value for N *1 
the_param_file » N; 
betaO = log (N) ; 

I*Declare gammas*1 
gsl_vector *gammas, *gammas_prop; 
int gammas_Ioop; 
gammas = gsl_vector_calloc(num_observed_counts); Il Sets equal to zero 
gammas_prop = gsl_vector_calloc(num_observed_counts); Il Sets equal to zero 
1* Put in loop to read gammas here from param file 

5th entry is beta vec 
6th entry is RE vector 

Note that the K beta terms and d-K RE terms are aIl 
called gammas here in this code for convenience. 
They will aIl be generatedsimilarly centered on previous value 
Under independence aIl REs are zero *1 

cout«"***"«endl; 
for(gammas_loop = 0; gammas_Ioop < num_observed_counts; gammas_Ioop++){ 

the_param_file » gammas->data[gammas_Ioop]; 
gammas_prop->data[gammas_loop] = gammas->data[gammas_Ioop]; 
cout«gammas->data[gammas_loop] «" "; 

} 

cout«endl; 

I*Declare acceptance indicators*1 
int accept_N; 
gsl_vector *accept_gammas; 
accept_gammas = gsl_vector_calloc(numsources); 
1* this is of length equal to number of sources, i.e. K, since we accept/reject 

at each level so have acceptance indicator at each level of source 
combinations, i.e. single, pair, threeway etc. *1 

I*Declare large vector multiplication*1 
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gsl_vector *current_logmargmeanvec, *prop_logmargmeanvec; 
gsl_vector *current_margmeanvec, *prop_margmeanvec; 
gsl_vector *current_cellmeanvec, *prop_cellmeanvec, *output_cellmeanvec; 

current_logmargmeanvec=gsl_vector_calloc(num_observed_counts); 
prop_logmargmeanvec=gsl_vector_calloc(num_observed_counts); 
current_margmeanvec=gsl_vector_calloc(num_observed_counts); 
prop_margmeanvec=gsl_vector_calloc(num_observed_counts); 
current_cellmeanvec=gsl_vector_calloc(num_observed_counts); 
prop_cellmeanvec=gsl_vector_calloc(num_observed_counts); 
output_cellmeanvec=gsl_vector_calloc(num_observed_counts); 

I*Set up Ainv matrix 
Read in 7th entry in param file as Ainv matrix*1 

gsl_matrix *Ainv; 
Ainv = gsl_matrix_alloc(num_observed_counts,num_observed_counts); 
int matrowloop,matcolloop; 
double tempval; 
for(matrowloop=O;matrowloop<num_observed_counts;matrowloop++) { 

} 

for(matcolloop=O;matcolloop<num_observed_counts;matcolloop++){ 
the_param_file » tempval; 
gsl_matrix_set(Ainv,matrowloop,matcolloop,tempval); 

} 

1* Read in 8th entry 
Set up X matrix 
the design matrix for all gammas, 
i.e. betastar (not including betaO) and RE (CIDs) centered on 0*1 

gsl_matrix* X; 
X = gsl_matrix_calloc(num_observed_counts, num_observed_counts); 
for(matrowloop=O;matrowloop<num_observed_counts;matrowloop++) { 

} 

for(matcolloop=O;matcolloop<num_observed_counts;matcolloop++){ 
the_param_file » tempval; 
gsl_matrix_set(X,matrowloop,matcolloop,tempval); 
cout«gsl_matrix_get(X, matrowloop, matcolloop) «" "; Il prints out X mat 

} 

cout«endl; 
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I*Setting vector for betaO constants i.e. vector of 
values which mulitply betaO in model *1 

} 

gsl_vector *betaOconstvec; 
betaOconstvec = gsl_vector_alloc(num_observed_counts); 

for(pwise_loop=l;pwise_loop<=numsources;pwise_loop++){ 
for(levelwise_loop = pwise_ctr; 

} 

levelwise_loop < pwise_ctr+(int) gsl_sf_choose(numsources, pwise_Ioop); 
levelwise_loop++){ 

betaOconstvec->data[levelwise_loop] = 1 - pwise_Ioop; 
cout«levelwise_loop«" Il «l-pwise_Ioop«endl; 
Il prints out level and corresponding factor to multiply betaO 

pwise_ctr = pwise_ctr+(int) gsl_sf_choose(numsources, pwise_Ioop); 

1* Calculate marginal mean and cell vectors*1 

1* Calculate current log marg mean*1 

Il First multiply X by vector of gammas 
gsl_blas_dgemv(CblasNoTrans, 1.0, X, gammas, 0.0, current_Iogmargmeanvec); 
Il Second add in the correct number of betaO terms to each entry in vector 
gsl_blas_daxpy(betaO,betaOconstvec,current_logmargmeanvec); 

1* Turn into current marginal mean's*1 
Il Note on dereferencing vectors: (*betas).data is equivalent to betas->data 

for(pwise_ctr = 0; pwise_ctr < num_observed_counts; pwise_ctr++){ 
current_margmeanvec->data[pwise_ctr] = 

exp(current_Iogmargmeanvec->data[pwise_ctr]); 
} 

1* Turn into Cell means by premultiplying by Ainv*1 

gsl_blas_dgemv(CblasNoTrans,1.0,Ainv, current_margmeanvec, 0.0, 
current_cellmeanvec); 
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1* Turn into Cell means by premultiplying by Ainv*1 

gsl_blas_dgemv(CblasNoTrans,1.0,Ainv, current_margmeanvec, 0.0, 
output_cellmeanvec)j 

Il Evaluate likelihood from starting values 
current_like = multinom_loglike_fun(N, observed_counts, nobs, current_cellmeanvec) 

I*Read in prior values*1 
double priormu_betaO, priorsd_betaO; 
gsl_vector *priormu_gamma, *priorsd_gamma, *indicator_sd_gammaj 
priormu_gamma = gsl_vector_alloc(num_observed_counts)j 
priorsd_gamma = gsl_vector_al~oc(num_observed_counts); 
indicator_sd_gamma = gsl_vector_alloc(num_observed_counts)j 
I*a vector of indicators of whether the corresponding gamma 
should be estimated or le ft set to 0 
clearly the first K entries which correspond to the 
single sources betastar vector should be estimated 
and these entries should be equal to 1 *1 

Il 9th and 10th entry in param file 
the_param_file » priormu_betaOj 
the_param_file » priorsd_betaOj 
1* llth series of entries are prior mean and sd first for betastar vector 
and then in the l2th series for each of the d-K gamma RE (usually centered on 0) * 
for(gammas_loop=O;gammas_loop<num_observed_countsjgammas_loop++){ 

} 

the_param_file »priormu_gamma->data[gammas_loop]; 
the_param_file » priorsd_gamma->data[gammas_loop] j 
n_rand_effect = n_rand_effect + (priorsd_gamma->data[gammas_loop] > 0); 
indicator_sd_gamma->data[gammas_loop] = (priorsd_gamma->data[gammas_loop] > 0); 
Il set equal to 1 if gamma param to be estimated or to 0 if not 

cout « Il Number random effects Il « endlj 

I*Prior calculations*1 

int priorloopj 

259 



I*Set up current stuff*1 
I*Set proposaI size for N and beta*1 

double N_jump, N_prop; 
gsl_vector *gammas_jump; 
gammas_jump = gsl_vector_alloc(numsources); 
Iidouble beta_jump; 
Il 13th and 14th entries in param file 
the_param_file » N_jump; 
cout « liN jump:"« N_jump « endl; 
Ilthe_param_file » beta_jump; 
for(gammas_loop=O;gammas_loop<numsources;gammas_loop++){ 

the_param_file » gammas_jump->data[gammas_Ioop]; 
cout«"Gammas jump:"« gammas_jump->data[gammas_Ioop] «endl; 

} 

1* Set random effects variance to initial value. 
15th entry in file. 16th and 17th entry 
are prior scale s20 and prior nuO of RE variance distn*1 
double sd_re; 
double nuO, nu , df, scale; 
Il set degrees of freedom parameter of prior & posterior dist of random 
Il effects variance. 
double s20, s2; 
Il set scale parameter of prior & 
Il posterior dist of random effects variance 
Il st art only from numsources since don't want 
Il to look at variance of betastar 
Il terms which are the first K gamma terms in our gamma vector 
l*for(gammas_loop=numsources;gammas_loop<num_observed_counts; gammas_Ioop++) { 

if (priorsd_gamma->data[gammas_loop] >0) 
var_re = priorsd_gamma->data[gammas_loop] ; 

}*I 
Il actually this loop goes through aIl RE variances and so ends up 
Il starting from the last values which is nonzero. 
Il AlI RE variance which are non-zero should be set to same value 
Il as each other since that is what would be required for fixed variance case. 

the_param_file » sd_re; Ilinitial value 
the_param_file » s20; 
the_param_file » nuO; 

260 



df = nuO + (double)n_rand_effect; Il known from calculation of Gibbs update 

Il now reset aIl RE sd equal to initial value of RE sd if 
Il they are supposed to be estimated as given by indicator_sd_gamma vector 
for(gammas_loop=numsources;gammas_loop<num_observed_counts;gammas_Ioop++){ 

priorsd_gamma->data[gammas_loop] = indicator_sd_gamma->data[gammas_loop]*.sd_re 
Il this is under the assumption that aIl RE have same variance 
cout « Il Initial RE sd "« priorsd_gamma->data[gammas_loop] « endl; 

} 

I*Main 100p*1 

double accept_ratio; 
int level_flag=O; 
for(ctr=O; ctr<number_of_samples; ctr++){ 

Il reset acceptance indicators accept_N and accept_gammas 
accept_N = 0; 
for(pwise_ctr2 = 0; pwise_ctr2 < numsour~es; pwise_ctr2++){ 

accept_gammas->data[pwise_ctr2] = 0; 
} 

I*Betas together *1 
Il use this next trick to correctly have probability of going +-N_jump, 
Il need to add 1 to upper bound so that taking floor will get to +N_jump 
N_prop = floor(gsl_ran_flat(r, -N_jump, N_jump+l) + N); 
betaO_prop = 10g(N_prop); 

1* Calculate prop log marg mean*1 

gsl_blas_dgemv(CblasNoTrans, 1.0, X, gammas_prop, 0.0, prop_logmargmeanvec); 
Il prop_logmargmeanvec = X%*%gammas_prop 
gsl_blas_daxpy(betaO_prop,betaOconstvec,prop_logmargmeanvec); 
Il prop_logmargmeanvec= betaO_prop*betaOconstvec + prop_logmargmeanvec 

1* Turn into prop marginal means*1 
for(pwise_ctr2 = 0; pwise_ctr2 < num_observed_counts; pwise_ctr2++){ 

prop_margmeanvec->data[pwise_ctr2] = exp(prop_logmargmeanvec->data[pwise_ctr 
} 

I*Turn into prop cell means*1 
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gsl_blas_dgemv(CblasNoTrans,1.0,Ainv, prop_margmeanvec, 0.0, 
prop_cellmeanvec); 

Il prop_cellmeanvec = Ainv\%*\%prop_margmeanvec 

feasible_flag = (gsl_vector_min(prop_cellmeanvec) > 0) && 
(N_prop > max«double)nobs, 

gsl_stats_mean(prop_cellmeanvec->data, 1, 
num_observed_counts)*(double)(num_observed_counts))); 

if (feasible_flag){ 

I*Accept/reject*1 

prop_like = multinom_loglike_fun(N_prop,observed_counts, 
nobs, prop_cellmeanvec); 

I*Calculate prior distribution for betaO *1 
current_prior = log(gsl_ran_gaussian_pdf(betaO -

priormu_betaO, priorsd_betaO)); 
prop_prior = log(gsl_ran_gaussian_pdf(betaO_prop -

priormu_betaO, priorsd_betaO)); 

I*Calculate accept/reject ratio for betaO*1 

if(gsl_ran_flat(r,0.0,1.0)<exp(accept_ratio)){ 
current_like = prop_like; 
betaO = betaO_prop; 
N = N_prop; 
accept_N = 1; 
Ilcout«"### "«accept_N«endl; 

} 

} Il end of feasible_flag check on N_prop 

I*Update for the proposed beta/eta vector *1 

pwise_ctr=O; 
gsl_vector_memcpy(gammas_prop,gammas); 
for(pwise_loop=l;pwise_loop<=numsources;pwise_loop++){ 

level_flag=O; 
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for(levelwise_loop = pwise_ctrj 
levelwise_loop < pwise_ctr+(int) gsl_sf~choose(numsources, pwise_Ioop)j 
levelwise_loop++){ 

if(priorsd_gamma->data[levelwise_loop] >O){ 
Il Only update gammas_prop different to 0 if 
Il the prior variance for that component > O. 
Il In this way do not update Re that we want to set equal to 0 

1* Note on use of gsl_vector_set(gsl_vector * v, size_t i, double x) 
This function sets the value of the i-th element of a vector v to x. 
If i lies outside the allowed range of 0 to n-l 
then the error handler is invoked *1 

gsl_vector_set(gammas_prop,levelwise_loop, 
gammas->data[levelwise_loop]+gsl_ran_gaussian(r, 

gammas_jump->data[pwise_Ioop-l]))j 
level_flag=lj 
Il this indicates that we've reached the end of the series of marginal ga 
Il corresponding to the same number of sources 
Il e.g. single source, then pairs etc. 
} 

} Il end of 'for' loop over levelwise loop 

if (level_flag) { 
Il START level_flag: so for the same level of margins, 
Il i.e. single then pairs then triples etc. 
feasible_flag =Oj 
Il reset feasible flag to 0 so that can make 
Il a check at each level of sources for gammas 

1* Calculate prop log marg mean*1 

gsl_blas_dgemv(CblasNoTrans, 1.0, X, gammas_prop, 0.0, prop_logmargmeanvec)j 
gsl_blas_daxpy(betaO,betaOconstvec,prop_logmargmeanvec)j 

1* Turn into prop marginal means by just updating those margins 
which are being dealt with, 
i.e. single source, then pairs then triples etc. AlI other entries remain the sa 

for(pwise_ctr2 = Oj pwise_ctr2 < num_observed_countsj pwise_ctr2++){ 
prop_margmeanvec->data[pwise_ctr2] = exp(prop_logmargmeanvec->data[pwise_ctr2])j 
} 
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I*Turn into prop cell means*1 
gsl_blas_dgemv(CblasNoTrans,1.0,Ainv, prop_margmeanvec, O.O,prop_cellmeanvec); 

feasible_flag = (gsl_vector_min(prop_cellmeanvec) > 0) && (N > max«double)nobs, 
gsl_stats_mean(prop_cellmeanvec->data, 1, num_observed_counts)* 

(double)(num_observed_counts))); 

if (feasible_flag) { 

} 

I*Accept/reject by level of number of sources in margin 
i.e. single source then pairs, triples, etc.*1 

prop_like = multinom_loglike_fun(N, observed_counts, nobs, prop_cellmeanvec); 

I*Calculate prior distribution for gammas*1 
current_prior=O; 
prop_prior=O; 
for(levelwise_loop = pwise_ctr; 
levelwise_loop < pwise_ctr+(int) gsl_sf_choose(numsources, pwise_Ioop); 

levelwise_loop++){ 
if(priorsd_gamma->data[levelwise_loopJ >O){ 

current_prior += log(gsl_ran_gaussian_pdf(gammas->data[levelwise_loop] -
priormu_gamma->data[levelwise_loop], priorsd_gamma->data[levelwise_loop])); 
prop_prior += log(gsl_ran_gaussian_pdf(gammas_prop->data[levelwise_loop] -
priormu_gamma->data[levelwise_loop], priorsd_gamma->data[levelwise_loop])); 

} Il end of 'if' priorsd_gamma->data[levelwise_loopJ >0 

I*Calculate accept/reject ratio*1 

if(gsl_ran_flat(r,0.0,1.0)<exp(accept_ratio)){ 

gsl_blas_dgemv(CblasNoTrans,1.0,Ainv, prop_margmeanvec, 0.0, 
output_cellmeanvec); 

current_Iike = prop_like; 
accept_gammas->data[pwise_Ioop-1J = 1; 
for(levelwise_loop pwise_ctr; 

levelwise_loop < pwise_ctr+(int) gsl_sf_choose(numsources, pwise_Ioop); 
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levelwise_loop++){ 
gammas->data[levelwise_loop] 

} 

gammas_prop->data[levelwise_loop]; 

} Il end 'if' accept_ratio 
} Il END feasible_flag 

} Il END level_flag: 

pwise_ctr = pwise_ctr+ (int) gsl_sf_choose(numsources,pwise_loop); 
Il To shift down gamma vector by the number ·of at the specific level 
Il of margin, i.e. single then pair, etc. 
} Il END for(pwise_loop=l;pwise_loop<=numsources;pwise_loop++){ 

1* Gibbs step for RE variance *1 
nu = 0.0; 
for (gammas_loop numsources; gammas_loop < num_observed_counts; gammas_loop++){ 
Il add up over RE not including betastar 

nu nu + gammas->data[gammas_loop]*gammas->data[gammas_loop]; 

(nuO*s20 + nu)/df; 
sqrt«df*scale)/gsl_ran_chisq(r,df)); 

Il now update sd of each RE according to whether or not it should be estimated 

for(gammas_loop=numsources;gammas~loop<num_observed_counts;gammas_loop++){ 

priorsd_gamma->data[gammas_loop] = indicator_sd_gamma->data[gammas_loop]* sd_re; 
Il this is under the assumption that all RE have same variance 

} 

Il THINNING 
if( (ctr % thin)==O){ 

the_output_file« betaO«" "; 
for(pwise_ctr2=0;pwise_ctr2<num_observed_counts;pwise_ctr2++){ 

the_output_file « gammas->data[pwise_ctr2]«" "; 
} 

the_output_file « accept_N«" "; 
for(pwise_ctr2=0;pwise_ctr2<numsources;pwise_ctr2++){ 

the_output_file « accept_gammas->data[pwise_ctr2]«" "; 
} 
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} 

for (pwise_ctr2=O; pwise_ctr2<num_observed_counts; pwise_ct r2++) { 
the_output_file « output_cellmeanvec->data[pwise_ctr2]«" "; 

} 

} 

the_output_file « endl; 
} 

system(IPAUSE"); 
I*Allocate space for the data*1 

gsl_vector_free(prop_margmeanvec); 
gsl_vector_free(current_margmeanvec); 
gsl_vector_free(prop_cellmeanvec); 
gsl_vector_freeCcurrent_cellmeanvec); 
gsl_vector_free(output_cèllmeanvec); 
gsl_vector_free(gammas); 
gsl_vector_free(prop_logmargmeanvec); 
gsl_vector_free(current_logmargmeanvec); 
gsl_vector_free(observed_counts); 
gsl_vector_free(betaOconstvec); 
gsl_vector_free(priormu_gamma); 
gsl_vector_freeCpriorsd_gamma); 
gsl_rng_free(r); 
the_output_file.close(); 
the_param_file.close(); 
the_data_file.close(); 
return(O); 
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