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Abstract

In machine learning one is usually given a data set of real high dimensional vectors X ,

based on which it is desired to select a hypothesis θ from the space of hypotheses Θ using

a learning algorithm. An immediate assumption that is usually imposed on X is that it is

a subset from the very general embedding space Rp which makes the Euclidean distance

‖ · ‖2 to become the default metric for the elements of X . Since various learning algorithms

assume that the input space is Rp with its endowed metric ‖·‖2 as a (dis)similarity measure,

it follows that selecting hypothesis θ becomes intrinsically tied to the Euclidean distance.

Metric learning is the problem of selecting a specific metric dX from a certain family of

metrics D based on the properties of the elements in the set X . Under some performance

measure, the metric dX is expected to perform better on X than any other metric d ∈ D.

If the learning algorithm replaces the very general metric ‖ · ‖2 with the metric dX , then

selecting hypothesis θ will be tied to the more specific metric dX which carries all the in-

formation on the properties of the elements in X .

In this thesis I propose two algorithms for learning the metric dX ; the first for su-

pervised learning settings, and the second for unsupervised, as well as for supervised and

semi-supervised settings. In particular, I propose algorithms that take into consideration

the structure and geometry of X on one hand, and the characteristics of real world data sets

on the other. However, if we are also seeking dimensionality reduction, then under some

mild assumptions on the topology of X , and based on the available a priori information,

one can learn an embedding for X into a low dimensional Euclidean space Rp0, p0 ≪ p,

where the Euclidean distance better reveals the similarities between the elements of X and

their groupings (clusters). That is, as a by-product, we obtain dimensionality reduction

together with metric learning.

In the supervised setting, I propose PARDA, or Pareto discriminant analysis for dis-

criminative linear dimensionality reduction. PARDA is based on the machinery of multi-

objective optimization; simultaneously optimizing multiple, possibly conflicting, objective

functions. This allows PARDA to adapt to the class topology in the lower dimensional

space, and naturally handles the class masking problem that is inherent in Fisher’s discrim-
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inant analysis framework for multiclass problems. As a result, PARDA yields significantly

better classification results when compared with modern techniques for discriminative di-

mensionality reduction.

In the unsupervised setting, I propose an algorithmic framework, denoted by X (note

the different notation), that encapsulates spectral manifold learning algorithms and gears

them for metric learning. The framework X captures the local structure and the local

density information from each point in a data set, and hence it carries all the information

on the varying sample density in the input space. The structure of X induces two distance

metrics for its elements, the Bhattacharyya-Riemann metric dBR and the Jeffreys-Riemann

metric dJR. Both metrics reorganize the proximity between the points in X based on the

local structure and density around each point. As a result, when combining the metric

space (X, dBR) or (X, dJR) with spectral clustering and Euclidean embedding, they yield

significant improvements in clustering accuracies and error rates for a large variety of

clustering and classification tasks.
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Sommaire

Dans l’apprentissage de machine, on a généralement un ensemble de données réelles de

vecteurs X à hautes dimensions, à partir duquel il est désiré de sélectionner une hypothèse

θ parmi l’espace des hypothèses Θ à travers un algorithme d’apprentissage. Une suppo-

sition immédiate généralement imposée sur X , est qu’il est un sous-ensemble de l’espace

intégral Rp qui par défaut transforme la distance Euclidienne ‖·‖2 pour devenir la métrique

pour les éléments de X . Puisque il y’a plusieurs algorithmes d’apprentissage qui supposent

que l’espace d’entrée est Rp avec son métrique ‖ · ‖2 comme une mesure de similarité (ou

même une mesure de différence), donc la sélection de l’hypothèse θ devient liée à la distance

Euclidienne intrinsèquement.

L’apprentissage de métrique est le problème de sélectionner une métrique spécifiques

dX à partir d’une certaine famille de métriques D basée sur les propriétés des éléments de

l’ensemble X . Sous certaines mesures de performance, la métrique dX devrait performer

sur X mieux que n’importe quelle autre métrique d ∈ D. Si l’algorithme d’apprentissage

remplace la métrique très générale ‖ · ‖2 avec la métrique dX , la sélection de l’hypothèse

sera liée à la métrique la plus spécifique dX qui transporte toutes les informations sur les

propriétés des éléments de X .

Dans cette thèse, je propose deux algorithmes pour l’apprentissage de la métrique dX ; le

premier pour l’apprentissage supervisé, et le deuxième pour l’apprentissage non-supervisé,

ainsi que pour l’apprentissage supervisé et semi-supervisé. En particulier, je propose des

algorithmes qui prennent en considération la structure et la géométrie de X d’une part,

et les caractéristiques des ensembles de données du monde réel d’autre part. Cependant,

si on cherche également la réduction de dimension, donc sous certaines hypothèses légères

sur la topologie de X , et en même temps basé sur des informations disponibles a priori, on

peut apprendre une intégration de X dans un espace Euclidien de petite dimension R
p0,

p0 ≪ p, où la distance Euclidienne révèle mieux les ressemblances entre les éléments de X

et leurs groupements (clusters). Alors, comme un sous-produit, on obtient simultanément

une réduction de dimension et un apprentissage métrique.

Pour l’apprentissage supervisé, je propose PARDA, ou Pareto discriminant analysis,



iv

pour la discriminante réduction linéaire de dimension. PARDA est basé sur le mécanisme

d’optimisation à multi-objectifs; optimisant simultanément plusieurs fonctions objectives,

éventuellement des fonctions contradictoires. Cela permet à PARDA de s’adapter à la

topologie de classe dans un espace dimensionnel plus petit, et naturellement gère le problème

de masquage de classe associé au discriminant Fisher dans le cadre d’analyse de problèmes

à multi-classes. En conséquence, PARDA permet des meilleurs résultats de classification

par rapport aux techniques modernes de réduction discriminante de dimension.

Pour l’apprentissage non-supervisés, je propose un cadre algorithmique, noté par X, qui

encapsule les algorithmes spectraux d’apprentissage formant an algorithme d’apprentissage

de métrique. Le cadre X capture la structure locale et la densité locale d’information de

chaque point dans un ensemble de données, et donc il porte toutes les informations sur

la densité d’échantillon différente dans l’espace d’entrée. La structure de X induit deux

métriques de distance pour ses éléments: la métrique Bhattacharyya-Riemann dBR et la

métrique Jeffreys-Riemann dJR. Les deux mesures réorganisent la proximité entre les points

de X basé sur la structure locale et la densité autour de chaque point. En conséquence,

lorsqu’on combine l’espace métrique (X, dBR) ou (X, dJR) avec les algorithmes de “spectral

clustering” et “Euclidean embedding”, ils donnent des améliorations significatives dans

les précisions de regroupement et les taux d’erreur pour une grande variété de tâches de

clustering et de classification.
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Notation

a, b, c or i, j, k Non-bold lower-case letters represent scalar variables (a, b, c) or in-

dexes (i, j, k).

x,y, z Bold lower-case letters are vectors.

A,B,C Bold upper-case letters are matrices.

X ,Y ,R Calligraphic upper-case letters are usually sets or manifolds.

R, S Double bold upper-case letters are spaces (or manifolds).

n Number of samples.

p Number of input features.

p0 The intrinsic dimensionality of the data (defined below).

Rp The p-dimensional Euclidean space.

I The identity matrix.

A ≻ 0, A � 0 Matrix A is positive definite (PD) or positive semi-definite (PSD)

respectively.
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S
p×p
++ The space (or manifold) of symmetric PD matrices of dimension

p× p.

G( · ;µ,Σ) The multivariate Gaussian distribution with mean vector µ ∈ Rp,

and covariance matrix Σ ∈ S
p×p
++ .

tr(A) tr(A) =
∑

i aii is the trace of the square matrix A ∈ Rp×p.

‖ · ‖2 The Euclidean norm.

‖ · ‖A Euclidean norm weighted by the symmetric and PD matrixA. This

is also known as the generalized quadratic distance (GQD). See

below for more details.

〈·, ·〉 The dot product operator.
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Chapter 1

Introduction

There are various applications of machine learning, pattern recognition, and computer vi-

sion in which one is faced with a data set of n objects D = {D1, . . . , Dn}, based on which

it is desired to select a hypothesis θ from the space of hypotheses Θ using a learning

algorithm. For instance, θ can be a hypothesis for classification, clustering, or density es-

timation, while Di can be an image, a video sequence, a text document, or a gene under

some test condition, to mention a few. Using some domain knowledge, each object Di is

usually represented as a high dimensional feature vector xi ∈ Rp, resulting in a data set

D = {xi}ni=1
1. Further, it is assumed that D ⊂ X , where X is known as the input space,

and the elements of X are assumed to be independent and identically distributed (i.i.d)

samples from an unknown probability distribution Pr(X = x).

Once this setting is established, an immediate assumption that is usually imposed on

D is that X is a subset from Rp, with the Euclidean distance ‖ · ‖2 becoming the default

metric for the elements of X . Since various learning algorithms assume that the input space

is Rp with its endowed metric ‖ · ‖2 as a (dis)similarity measure, it follows that selecting

hypothesis θ becomes intrinsically tied to the Euclidean distance. This is indeed the case

for various learning algorithms such as the k nearest neighbour (k-NN) classifier [2], radial

basis functions [3], logistic regression [4], the perceptron [5], neural networks [6], linear

support vector machines [7, 8], k-means clustering [9], and many others.

1There are various other scenarios in which each object Di is represented as a time-series (or sequential)
pattern, a bag of features, or more generally, as a one set of vectors Si. This setting will be slightly covered
in Chapter 6.

2011/12/14
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The main motivation for this thesis is to investigate the over simplified, and rather

unjustified assumption that X ⊂ R
p, with the consequence that the Euclidean distance is

the metric for the elements of X . Although it is true that the elements of X are vectors

in Rp, the input space X is rarely Euclidean [10]. As will be shown in the next chapter,

the input space X has more special properties than the very generic space Rp, and these

properties should be exploited for better hypothesis learning.

To see this from a different perspective, consider for instance two data sets from two

different domains; one for face images, and one for genes under different test conditions.

Let each element in each data set be represented by the most standard and widely ac-

ceptable features as a high dimensional vector. Now, given this setting, it is legitimate to

ask the following questions: Is it possible that due to the unified representation for a face

and a gene as vectors in Rp1 and Rp2 respectively, that the Euclidean distance measure is

suitable for both data sets? Is the Euclidean distance a universal metric for any data set

from any domain as long as it is represented as vectors in R
p? What does the Euclidean

distance between two genes, or two faces mean? In this thesis, I try to give answers to these

questions based on the literature for metric learning [11, 12, 13, 14, 15, 16, 17], manifold

learning algorithms, and spectral methods [18, 19, 20, 21, 22, 23, 24, 25, 26, 27].

In particular, I propose two new approaches for learning a low dimensional (semi-)metric

space2 (M, dM) from X ; one in the supervised multiclass setting, and the other in the un-

supervised learning setting, such that the similarities between the elements of X , their

structure, and their groupings (clusters) are revealed by the (semi-)metric dM. Both ap-

proaches are realized by algorithms: Pareto discriminant analysis (PARDA) for supervised

multiclass dimensionality reduction [28], and an algorithmic framework – denoted for now

by X – that encapsulates spectral learning algorithms, and gears them for unsupervised

metric space learning [29, 30, 31]. Both approaches, and consequently the research here,

are motivated by the following questions:

• When is the Euclidean distance a useful metric for the points in X ?

• If each xi is associated with a class label yi, where yi ∈ Y = {C1, . . . , Cc} and c is

2See Appendix.
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the number of classes in the data, can one learn a metric function specifically for

D = {(xi, yi)}ni=1 ⊂ X × Y that better discriminates between points from different

classes?

• A more challenging setting is the following – given only the data set D ⊂ X , and

without labels nor side information, can one learn a metric function specifically for

X in an unsupervised manner?

• Alternatively, since various learning algorithms assume that the input space is Rp

and rely on the Euclidean distance as a metric, can one learn a low dimensional

Euclidean embedding for X , such that the natural clusters and groupings in the data

are manifested by the Euclidean distance?

1.1 Thesis Organization

In Chapter 2, I motivate the problem of metric learning and show how it is strongly tied to

machine learning algorithms. Next, I argue that the input space X should not be simply

treated as a subset from the general Euclidean space Rp. This is due to the topological

structure and geometry of X on one hand, and the incoherence of real world data with

the geometry of Euclidean spaces on the other. These arguments suggest that one should

learn a metric dX that takes the topology, geometry, and the characteristics of real world

data into consideration. However, if only some mild assumptions are made on the topology

and geometry of X , and depending on the available a priori information, one can learn an

embedding for X into a low dimensional Euclidean space Rp0, p0 ≪ p, where the Euclidean

distance better reveals the similarities between the elements of X and their groupings (clus-

ters). That is, as a by-product, we obtain dimensionality reduction together with metric

learning. These are the main ideas underlying the algorithms in Chapters 4 and 5.

In Chapter 3, I briefly review the early ideas of metric learning that appeared in [11, 12,

13, 14, 15, 16, 17], followed by my initial work on local learning of a Mahalanobis metric

for query based operations [32, 33, 34, 35], and I close the chapter with a quick review for

the literature of spectral manifold learning algorithm [25, 26, 18, 19, 36, 27, 20, 21, 23, 24].
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In Chapter 4, I consider the problem of learning a low dimensional embedding for the

data set D = {xi}ni=1 ⊂ X when the a priori information in the form of labels yi ∈ Y are

available for learning. This problem can be seen as a special case of the metric learning

problem in which one learns an instance from the generalized quadratic distance (GQD):

d(x,y;A) =
√

(x− y)⊤A(x− y), where A ≻ 0, and x,y ∈ Rp.

Here, we rely on the framework for Fisher’s linear discriminant analysis (LDA) in the

multiclass setting for learning a projection matrix B ∈ Rp×p0, where p0 ≪ p. I propose a

new algorithm, namely Pareto discriminant analysis (PARDA) [28], for Fisher’s LDA that

is based on the machinery of multiobjective optimization [37, 38]. PARDA decomposes

the multiclass problem into a set of pairwise objective functions representing the pairwise

distance between different classes. Unlike existing extensions of Fisher’s LDA to multiclass

problems that typically maximize the sum of pairwise distances between classes, PARDA

simultaneously maximizes each pairwise distance, encouraging the case where all classes are

equidistant from each other in the lower dimensional embedding space. Solving PARDA is

a multiobjective optimization problem – simultaneously optimizing multiple, possibly con-

flicting, objective functions – and the resulting solution is known to be “Pareto Optimal”.

PARDA adapts to the class topology in the lower dimensional subspace, and hence it

naturally overcomes the class masking problem that is inherent in Fishers’ LDA for the mul-

ticlass setting. As a result, PARDA finds subspaces that improve the separation between

classes, which finally results with lower error rates when compared with modern methods

for discriminative linear dimensionality reduction methods. To the best of my knowledge,

this is the first research to address the multiclass linear dimensionality reduction problem

as a multiobjective minimization problem. Further, in Chapter 7, it will be shown that

PARDA can define a general framework for learning discriminative linear dimensionality

reduction models.

In Chapter 5, I consider the problem of learning a low dimensional metric space for

the data set D = {xi}ni=1 ⊂ X when no a priori information in the form of labels or side-

information are available for learning. Here I propose a two-step algorithmic framework

for learning a metric space, based on spectral methods, in an unsupervised manner. In

the first step, the algorithm extracts local density information from each point xi ∈ D and
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forms an augmented data set DA = {(xi,Ai)}ni=1, where Ai ≻ 0. The augmented data set

DA is a subset from what is defined in Chapter 5 as the augmented data space X, where

X ⊂ R
p × S

p×p
++ , and S

p×p
++ is the space of symmetric positive definite (PD) matrices. The

motivation for X is to accommodate the characteristics of real world data sets and the

uneven sample distribution in the input space. As will be shown, the augmented data set

DA carries all the information on the varying sample density in D.

In the second step, spectral embedding algorithms are used to embed the augmented

data set DA into a low dimensional Euclidean space (Rp0, ‖ · ‖2). That is, unlike the tradi-

tional setting where spectral algorithms are directly applied on D, here spectral methods

are applied on the augmented data set DA which carries the information on the varying

density in the input space X . However, to apply spectral methods on DA, a similarity or

a distance measure needs to be defined over the 2-tuples (xi,Ai). Based on convolution

kernels, I introduce the relaxed exponential kernels KJR and KBR for the augmented space

X, which naturally induce two corrected divergence measures that adhere to the five met-

ric axioms3; the Jeffreys-Riemann metric dJR, and the Bhattacharyya-Riemann metric dBR.

Due to the metric properties of dJR and dBR, I show, using the results of Young &

Householder [39], and Gower & Legendre [40], that the metric spaces (X, dJR) and (X, dBR)

can be embedded in a low dimensional Euclidean space using classical multidimensional

scaling (MDS) [39, 41, 42]. Also, based on the results of Scheonberg [43], I show that the

kernels KJR and KBR can embed (X, dJR) and (X, dBR) in a low dimensional Euclidean

space using Laplacian embedding [25, 26, 27, 20].

The metric spaces (X, dJR) and (X, dBR) reorganize the proximity between the points

in D based on dJR and dBR respectively, which take the varying local density of the input

space into consideration, and respect the geometry of Rp and S
p×p
++ . This is unlike the GQD

type measures, including the Euclidean distance, that are constant over the entire input

space and do not take this varying density into consideration. This makes the metrics dJR

and dBR more suitable for the characteristics of real world data sets, and the uneven sample

distribution in the input space. As will be shown in Chapter 5, the metrics dJR and dBR sig-

nificantly improve the performance of spectral clustering on data sets from various domains.

3See Appendix.
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As an application of the developed metrics in Chapter 5, in Chapter 6 I consider the

problem of learning a hypothesis (classification and clustering) over sets of vectors (SOVs),

a.k.a bags of features, that appeared in the work of Kondor & Jebara [44], and Moreno

et al. [45]. Interestingly, the metrics dJR and dBR, and the relaxed kernels KJR and KBR

naturally fit in this setting and will be used as distance and similarity measures for this

type of data. I will show that these measures together with Laplacian and Euclidean

embeddings, can be used for classification and clustering of SOVs, and they usually lead

to better results than the measures proposed in [44] and [45]. This will be demonstrated

using preliminary experiments for classification of human actions and clustering of human

motion in video sequences.

1.2 Contributions

This thesis draws from the areas of metric learning, linear discriminant analysis, nonlinear

dimensionality reduction, spectral and manifold learning algorithms, and kernel methods.

Its contributions also lie across these areas. Specifically, this thesis advances the following

developments:

• A new algorithm for discriminative linear dimensionality reduction using the frame-

work of multiobjective optimization [28]. The algorithm takes in to consideration the

class topology in the lower dimensional subspace, and hence it naturally leverage the

class masking problem that is inherent in Fisher’s LDA multiclass problems. PARDA

was presented in CVPR 2010 [28], and its journal version is under preparation. Prof.

De La Torre introduced me to Fisher’s LDA as a method for metric learning, together

with their class masking (merging) problem. I analyzed the problem, proposed the

solution based on multiobjective optimization, developed all the algorithms, and car-

ried all the experimental results. Prof. De La Torre and Prof. Ferrie helped in

theoretical discussions and in writing the manuscripts.

• An algorithmic framework that encapsulates the metric spaces (X, dJR), or (X, dBR)

with spectral manifold learning algorithms to learn an embedding for X into a low

dimensional Euclidean space R
p0 [29, 30]. The framework overcomes the limitations

of generalized quadratic distance type measures, and offers a means to handle the
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uneven sample distribution in the input space. Further, the framework captures the

local structure and the local density information for each point in the data set, which

is finally manifested by the metrics dJR & dBR.

• Two corrected divergence measures for Gaussian densities that adhere to all metric

axioms; namely the Jeffreys-Riemann metric dJR and the Bhattacharyya-Riemann

metric dBR [29, 30] . The metrics dJR & dBR give a new meaning for the distance

between points based on the local structure and the local density around each point.

That is, two points are close or similar to each other, when they are physically close

to each other in the input space, and the local structure and density around each

point are very similar. When the metric space (X, dBR) is combined with spectral

clustering, it yields significant improvements in clustering accuracy for a large variety

of data sets. The research work on the metrics dJR & dBR appeared for the first

time in [29], where we also derived their respective kernels. In this work, Prof.

Ferrie and Prof. De La Torre helped in theoretical discussions and in writing the

manuscript. Mohak Shah, the second co-author in [30], suggested that another entry

point to obtain the metrics dJR & dBR, can be via convolution kernels. Hence, we

reintroduced the metrics dJR & dBR from that kernel perspective in [30]. The work

on the augmented space X with the metrics dJR & dBR as a general framework that

can encapsulate manifold learning algorithms is only presented in this thesis so far.

• A framework for unifying the representation for sets of vectors (or bags of features)

based on the metrics dJR & dBR [31]. The framework has the following properties. (1)

It allows any learning algorithm to be transparently applied on SOVs through their

images residing in a low dimensional subspace. (2) The framework offers a reduction,

by orders of magnitude, in the data’s space complexity, which correlates directly with

the computational complexity of the learning algorithm, resulting in significantly

faster hypothesis learning. (3) The framework is unsupervised, and hence it does

not require labels nor side-information. However, if labels or side-information are

available, they can be naturally integrated into the framework. (4) The spectral

embedding algorithm in the framework reveals the natural clusters in the sets of

vector. (5) The framework has a well defined generalization to out-of-sample examples

using the Nyström formula, and hence it does not require retraining the system

whenever new data are available. This research work was presented in [31], and Prof.



1 Introduction 8

Ferrie helped in theoretical discussions, and in writing the manuscript.
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Chapter 2

Motivation

The problem of metric learning can be informally described as inferring the mutual dis-

tances between a set of objects. The inference process should take into consideration the

nature of the objects in terms of their structure, and their relative differences such that the

distance between similar objects should always be smaller than the distance between less

or non similar objects. The problem of metric learning is strongly tied to machine learning

algorithms. To see this, it is necessary to have a formal understanding of the definition

of metric spaces, from which the problem of metric learning can be defined, as well as an

understanding of how learning algorithms interact with metric spaces.

A metric space [46, p. 3] is an ordered pair (X , d), where X is a non-empty abstract

set (of any objects/elements whose nature is left unspecified), and d is a distance function,

or a metric, defined as: d : X ×X 7→ R, and ∀ a, b, c ∈ X , the following axioms hold:

1. d(a, b) ≥ 0,

2. d(a, a) = 0,

3. d(a, b) = 0 iff a = b,

4. Symmetry : d(a, b) = d(b, a), and

5. The triangle inequality : d(a, c) ≤ d(a, b) + d(b, c)1.

1A semi-metric distance satisfies Axioms (1), (2) and (4) only. That is, the triangle inequality need not
hold for semi-metrics, and d(a, b) can be zero for any a, b and a 6= b. For instance, (Rp, ‖ · ‖2) is a metric
space, while (Rp, ‖ · ‖2

2
) is a semi-metric space.

2011/12/14
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In metric learning, one is given the set X with the requirement of selecting a specific metric

dX ∈ D based on the properties of the elements in the set X , where D is a certain family

of metrics (or semi-metrics). Under some performance measure, the metric dX is expected

to perform better on X than any other metric d ∈ D. Given this understanding for metric

learning and metric spaces, let us see how machine learning algorithms interact with X .

2.1 Machine Learning Algorithms and Metric Spaces

In machine learning, there are two fundamental spaces; the input space X ∼ Pr(X), and

the space of hypotheses Θ [10]. Learning algorithms select a hypothesis θ ∈ Θ based on the

training set D = {(xi, yi)}ni=1 ⊂ X ×Y in the supervised learning case, or based on the set

D = {xi}ni=1 ⊂ X in the unsupervised learning case. By selecting a hypothesis θ ∈ Θ based

on D, the learning algorithm, either implicitly or explicitly, assumes that X and Θ are

embedded in some space. Indeed, there are various algorithms such as the k-NN classifier

[2], radial basis functions [3], logistic regression [4], the perceptron [5], neural networks [6],

linear support vector machines [7, 8], and k-means clustering [9], that assume the data is

embedded in the metric space (Rp, ‖·‖2). Note that in theory, these algorithms just assume

the existence of any metric space as defined above, and not necessarily the Euclidean space.

However, as mentioned earlier, an object D is usually transformed by the feature extraction

process into a vector x ∈ Rp, and in practice, it become easier to assume that (Rp, ‖ · ‖2)
is the data’s embedding space. Therefore, selecting the hypothesis θ becomes intrinsically

tied to the metric space (Rp, ‖ · ‖2).

However, ‖ · ‖2 is the metric for the very general embedding space Rp. If this general

metric is replaced by dX , which is specifically for X , then the learning algorithm will use the

more specific metric space (X , dX ) for selecting θ ∈ Θ. In fact, the input space X has more

specific properties than the very generic space Rp; these properties should be exploited for

better hypothesis learning and are discussed in the following sections.

Remark. In some applied domains such as text categorization, computer vision, bioin-

formatics, etc., researchers have proposed different (dis)similarity measures that were found

to be better than the Euclidean distance. Indeed, this came through tremendous effort in

terms of studying the nature of data in hand in each of these applied domains. However,
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there are a few questions with regard to these (dis)similarity measures. A first question

is whether these (dis)similarity measures define metric spaces as defined above in order

to allow any learning algorithm to be transparently applied to these domains. Second, to

what extent these (dis)similarity measures are coherent with the unknown Pr(X). In other

words, it is a question whther these (dis)similarity measures make or do not make any

assumptions on the data distribution, and whether the nonlinearity of the data and the

varying density in the input space are taken into consideration.

2.1.1 The structure and geometry of X

If X ∼ Pr(X) is considered as a collection of sets, which is known as the topological struc-

ture of a set, then X is rarely an Euclidean space Rp [10]. Take for instance the data space

of intensity images which are usually matrices within a bounded range of intensity values.

There is no real meaning for images outside that range which are obtained by addition or

scalar multiplication. The same holds if one considers images represented by histograms

of gradients, or short video clips represented by a histogram of orientations of optical flow

vectors. These histograms always have positive values and lie within a certain range; there

is no real meaning for histograms outside this range. A similar argument follows for the hy-

pothesis space Θ. Take for instance, the set of weights for a neural network, the parameters

of hidden Markov models, or the parameters for probabilistic models, such as Gaussians,

exponentials, multinomials, etc. Therefore, topologically, X and Θ are not Euclidean.

Also note the geometric ramifications of considering X and Θ as an Euclidean space

Rp. The geometry of Rp is manifested through the Euclidean distance ‖ · ‖2. When using

this distance measure for X and Θ, we are actually imposing an artificial distance on these

spaces [10]. This false imposition also holds even if the data or models are real vectors.

Imposing the Euclidean distance is equivalent to detaching D from its context, ignoring

that it is generated from a certain unknown probability distribution, and treating the points

in D as general points in Rp with no common context or shared information.

2.1.2 Real world data sets and the geometry of Rp

Another reason for avoiding the assumption that the input space X is directly embedded

in R
p is the nature of real world data sets; their nature is incoherent with the geometry of
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Rp, and also incoherent with the Euclidean distance. A set of reasons for this incoherence

is that data sets such as images, videos, documents, etc., are usually (i) highly structured,

(ii) highly nonlinear, (iii) measured from various sources at different scales with various

degrees of variability and correlation, and (iv) prone to various sources of noise that may

largely deviate the measurements, raise outliers, and cause ambiguities in the data.

Another reason is the limited number of training samples. That is, the training set

D is finite, and it is not known a priori if D is uniformly and sufficiently sampled from

X . Moreover, although it is assumed that the samples in X are i.i.d from Pr(X), it is

not known to what extent this assumption really holds for real world data sets, given the

above characteristics. As such, it is acceptable to assume that low probability areas for

Pr(X) are poorly sampled, and hence poorly represented in the training set D. These issues

altogether result in what is known as the uneven sample distribution in the input space [47].

Let us consider the Geometry of Rp, manifested by the Euclidean distance ‖ · ‖2, un-
der the characteristics of real world data sets and the uneven sample distribution prob-

lem. By expanding the squared Euclidean distance ‖x − y‖22 to (x − y)⊤I(x − y), one

directly obtains an instance from the generalized quadratic distance (GQD) d(x,y,A) :
√

(x− y)⊤A(x− y), where A is a symmetric positive definite (PD) matrix, I is the iden-

tity matrix, and x,y ∈ Rp. From a statistical vantage point, the Euclidean distance is the

optimal metric if the data are generated from a spherical Gaussian distribution with equal

variances and zero correlations among the variables – the spherical assumption2. This is

not only a hard to attain natural setting in real world data sets, it is at the other extreme

from their characteristics described above.

Thus, an inherent limitation of the Euclidean distance, and more generally the GQD,

is that they are constant over the entire input space X , and hence, they do not take into

consideration the uneven sample distribution problem. For the GQD, it implies that the

matrix A is globally defined over the whole input space, which enforces a global Gaussian

assumption for the data – the ellipsoidal assumption. This is an unjustified assumption

since a large Gaussian distribution with a full covariance matrix does not yield a faithful

approximation of the true distribution Pr(x).

2When A is the inverse of the sample covariance matrix, the GQD is known as the Mahalanobis distance.
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2.2 Learning an Embedding From X

The discussion above suggests that the Euclidean space Rp should not be imposed on X ,

and hence hypothesis learning should not be immediately applied in Rp by default. It also

suggests that one should learn a metric dX that takes the topology, geometry, and the

characteristics of real world data into consideration. However, if we are also seeking di-

mensionality reduction, then under some mild assumptions on the topology and geometry

of X , and depending on the available a priori information, one can learn an embedding

for X into a lower dimensional Euclidean space Rp0, p0 ≪ p, where the Euclidean distance

better reveals the structure in the data in terms of similarities and clusters.

In Chapter 4, I consider the problem of learning an embedding for the data set D =

{xi}ni=1 ⊂ X when the a priori information in the form of labels yi ∈ Y are available for

learning. In terms of metric learning, this can be seen as learning an instance of the GQD

‖ · ‖A, where A ∈ Rp×p, and A ≻ 0. However, to achieve linear dimensionality reduction

together with metric learning, the matrix A is required to be low rank; that is A � 0,

and A = BB⊤, where B ∈ Rp×p0, and p0 ≪ p. Moreover, since labels are available for

learning, it is required that the matrix B linearly projects the data into a subspace that

better discriminates between points from different classes.

Learning the matrix B becomes an instance from Fisher’s linear discriminant analysis

(LDA) for dimensionality reduction. However, the difference here is that this is a multiclass

setting in which each class is explicitly modelled as a multivariate Gaussian distribution,

with different means and covariance matrices (or heteroscedastic LDA). Note here the joint

usage of the labels (a priori information) together with the simple assumption that each

class is a multivariate Gaussian distribution. As will be shown, the proposed algorithm

learns a projection matrix B that maximizes a separation measure between these Gaus-

sians in a low dimensional subspace.

In Chapter 5, I consider the more challenging setting when Y is not available for learn-

ing. Here, the realm of Euclidean geometry is abandoned in favour of a more flexible and

richer class of geometries. To consider this new geometry, one mild assumption needs to

be made about X , and this is local smoothness. Based on this assumption, the space X
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can be considered as a smooth differentiable manifold which is locally Euclidean. Mani-

folds are the natural generalization of Euclidean spaces to locally Euclidean spaces, and

differentiable manifolds are their smooth counterparts [10]. Studying such smooth locally

Euclidean spaces is the subject of Riemannian geometry [48] which is partially used in this

research. Note that these assumptions are only required to hold locally around each point,

and not globally on the whole data.

Based on the smoothness and locally Euclidean assumption of X , I extract from the

data set D = {xi}ni=1 a new augmented data set DA = {(xi,Ai)}ni=1 that carries the local

density information from the neighbourhood around each xi, where Ai ∈ S
p×p
++ . To define

a (dis)similarity measure between the 2-tuples (xi,Ai) and (xj,Aj), I rely on Riemannian

geometry to define the Riemannian metric dR for the elements of Sp×p
++ , which when com-

bined with convolution kernels, define the relaxed exponential kernels KJR & KBR, and

the corrected divergence measures dJR & dBR. The non-empty set DA together with the

metrics dJR and dBR define the metric spaces (DA, dJR) and (DA, dBR) respectively, which

are embedded in the low dimensional metric space (Rp0, ‖ · ‖2), using Laplacian and Eu-

clidean embedding.

In the following chapter, I will review some background material that is complimentary

and necessary for the remaining chapters. This includes, briefly reviewing some metric

learning algorithms, spectral manifold learning algorithms, and finally my initial work on

local learning of a Mahalanobis metric for query based operations.
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Chapter 3

Methods of Metric Learning

In this chapter I briefly review the literature on metric learning, my previous work on local

learning of a Mahalanobis metric for query based operations [32, 33, 34, 35], and finally

spectral manifold learning algorithms.

3.1 Metric Learning

The literature on metric learning can be categorized according to three dimensions [49, 50];

1) supervised, unsupervised or semi–supervised 2) local or global, and 3) linear or non–

linear. The supervised approach is further categorized based on the type of labels which

can be either in the form of class labels, pairwise distances, or pairwise constraints. The

latter constraints are also known as equivalence (+ve) and inequivalence (−ve) constraints,
or side information [11]. If the data are only partially labelled with any kind of the previous

labels, then the algorithm that learns the metric is considered to be semi–supervised. In

the following, I present a brief literature review for various metric learning algorithms that

combine the different aforementioned dimensions to form groupings of like algorithms.

3.1.1 Supervised local metric learning using class labels

The earliest work on metric learning in this category dates back to 1981 with the work of

Short and Fukunaga [51] where they try to minimize the difference between the finite sam-

ple nearest neighbour (NN) classification error and the asymptotic NN error (or the twice

Bayes error bound). Assuming a smooth posterior and conditional densities around points,

2011/12/14
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the distance between a query point and its neighbours is weighted by the gradient of the

posterior probability with respect to the query point, given the labels of the nearest neigh-

bours. This should give a larger weight to features that are relevant to the classification

task (a.k.a local feature relevance). Friedman [52] reuses the idea of local feature relevance

combined with recursive partitioning of the space, in a similar spirit to decision trees, to

achieve a flexible nearest neighbour metric that is adapted to each point and its neighbour-

hood. Hastie and Tibshirani [53] generalize the work of Short and Fukunaga by defining

local linear discriminant analysis (LDA) for each query point and its neighborhood. Their

neighbourhoods are in the form of ellipsoids stretched along decision boundaries between

classes. Domeniconi and Gunopulos [54] use support vector machines (SVMs) to compute

locally flexible metrics where the maximum margin of SVMs decides the most discriminat-

ing features (or directions) over the query point’s neighborhood, and hence provides weights

for each feature. In a similar vein, Domeniconi et al. [55] replace SVMs by Chi–squared

distance analysis while Peng et al. [56] replace SVMs by quasiconformal kernels to achieve

the same purpose. By changing class labels to fully or partially side–information, Chang

and Yeung [57] learn a metric through local linear transformations of neighbourhoods. The

metric is learned independently for each point and its neighbourhood through a regularized

moving least squares framework with closed form solutions.

3.1.2 Supervised and semi–supervised global metric learning

In supervised and semi–supervised global metric learning using class labels or side–information,

most algorithms learn a metric through the general family of Mahalanobis distances ||x−
y||A = (x− y)′A(x− y), where A ∈ S

d×d
++ and S

d×d
++ is the space of square and symmetric

positive definite (SPD) matrices. The differences between these algorithms are due to the

context and constraints defining each metric.

Supervised global metric learning using class labels

Goldberg et al. [14] define a differentiable probability function (softmax) using ||x− y||A
with A as its parameter. This function is optimized to maximize the probability of correct

classification using the labels in the training set. In an extended work, Globerson and

Roweis [15] use the same objective function to map all points that belong to the same class

into a single point, i.e. collapsing the class to a single point. Weinberger et al. [16] search for
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a matrix A that defines a linear transformation such that k nearest neighbours of the same

class are always kept together while samples from other classes are separated by a large

margin, hence the name large margin nearest neighbour classifier (LMNN). They formulate

their problem as a semi–definite program with constraints derived from each point in the

training set and its k nearest neighbours and solve it using convex optimization.

Supervised global metric learning using side–information

Schultz and Joachims [12] define their constraints in the form of triplet relative compar-

isons; i.e. for samples x, y and z the relative comparison information is in the form of: x

is closer to y than x is closer to z. They induce the initial distance from a domain specific

similarity measure then search for a matrix A with minimum trace that will decode and

respect these constraints as follows: ||x − y||A < ||x − z||A. The major drawback of this

approach is that the number of constraints scales, at best, quadratically with the number

of samples since these are required to define triplet constraints for each sample with all

other samples in the data set.

Xing et al. [11] use +ve and −ve constraints to find a matrix A that will keep points

in the +ve constraints set close to each other, while points in the −ve constraints set far

from each other. Bar–Hillel et al. [13], in a simpler and a faster algorithm which they call

relevant component analysis (RCA), rely only on +ve constraints to define the metric. Hoi

et al. [58], motivated by RCA, encapsulate Xing’s [11] setting in an LDA framework that

they call it discriminant component analysis (DCA) and minimize the ratio of determinants

between the covariance of +ve constraints and the covariance of −ve constraints. Xiang

et al. [17] in a variant of this framework minimize the ratio of traces for speed and efficiency

purposes, while Tsang et al. [59] develop a kernelized version of RCA. The major advantage

of Xing and RCA algorithms is that they can be used when partial side–information is

available, however their generalization performance depends on the available amount of

partially labelled data. In the same category, an online pseudo–metric learning for A was

proposed by Shalev–Shwartz et al. [60] using +ve and −ve constraints, and Tsang and

Kwok [61] encapsulate the +ve and −ve constraints sets in the context of idealized kernels

and formulate the metric learning as a ν–SVM type training.
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3.2 Local Learning of a Mahalanobis Metric

The research work presented in this thesis started from my previous work on the minimum

volume ellipsoid metric (MVEM) [32, 33, 34, 35]. There, the objective was to learn a met-

ric for query based operation in an unsupervised manner. By query based operations it

is meant to find the nearest neighbour or neighbours for a query point xq. Similar to the

augmented space X in Chapter 5, the MVEM takes into consideration the uneven sample

distribution in the input space [47], and the fact that the data lie on or near a smooth low

dimensional manifold M.

To see this, consider a data set X = {xi | 1 ≤ i ≤ m, xi ∈ Rp} that is drawn from

a probability distribution Pr(X). Let xq be defined as a “query point” such that, either

xq ∈ X , or xq ∼ Pr(X); i.e. a new point that is drawn from Pr(X). We are interested

in learning a metric for each query point xq that is based on the information in a small

neighbourhood N (xq) ⊂ X around xq. That is, the metric is defined independently for

each point. Using a flexible definition of N (·), the metric tries to preserve the local infor-

mation in N (xq) using a regularized covariance matrix Σq of the neighbourhood N (xq).

This covariance matrix is then used to define a Mahalanobis distance that can measure

the distance between xq and any other point x ∼ Pr(X). Although the objective was to

define the MVEM in an unsupervised manner, the fact that it was used for query based

operations led to supervised training for learning the neighbourhood size for each data set,

and the regularization parameter for the covariance matrices.

The MVEM has some limitations inherent from its definition. Note that the metric is

defined locally with respect to a small neighbourhood N (xq) around the query point xq

which is the basic ingredient for local learning algorithms [47]. This neighbourhood defines

the local covariance matrix Σq which in turn defines a local subspace spanned by its prin-

cipal eigenvectors. The Mahalanobis distance defined by the MVEM is then the Euclidean

distance between xq and any other point y that is projected on this local subspace. This

implies that for two points x and y, each with its own neighbourhood and covariance ma-

trix, Σx and Σy respectively, the distance between the two points is not comparable, and

the global symmetry of the distance can not be established.
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Fig. 3.1 Manifold M has two points on it, X and Y with their neighbour-
hoods defined by the ellipses Σx and Σy respectively, with their major and
minor axes pointing along and orthogonal to the manifold respectively. Σ−1

x

maps every point, Y for instance, in the global space defined by the data set
to another point Ȳ in the local subspace spanned by its eigenvectors.

Figure 3.1 illustrates this limitation. Consider two points x and y from the data set

X , not necessarily far away from each other, and each point is defined by its own neigh-

bourhood, N (x) and N (y), which define the covariance matrices Σx and Σy respectively.

The distance between the two points can be defined in two different ways; ||x− y||Σ−1
x

and

||x − y||Σ−1
y
, which makes both distance measures different since the weighting matrix is

different. Therefore, globally, the MVEM is not symmetric and does not satisfy the triangle

inequality, and as a result, distances between different points are not comparable.

Due to this particular setting, the MVEM is suitable for query based operations since

it defines a Mahalanobis metric for each query point. However, the MVEM can not define

a global metric on X due its definition as mentioned above. A simple remedy to its

shortcoming is to define the distance between x and y as :

d(x,y) = 1
2
(||x− y||Σ−1

x
+ ||x− y||Σ−1

y
).

As it will be shown in Chapter 5, this distance is the first term of the symmetric

Kullback-Leibler (KL) divergence between two Gaussian densities with different means

and different covariance matrices. Hence, d(x,y) misses the second term which is a dis-

similarity measure between covariance matrices. This second term penalizes the distance

between x and y when the second moments of the local density around each point are not

similar. This interpretation gives a new meaning for the distance between points based on
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the proximity of points in the input space, and the similarity of the local density around

each point encoded in the second moments of the variables in each neighbourhood.

At this point, to achieve global metric learning in a supervised and unsupervised manner,

the research work was split into two different directions; 1) supervised metric learning and

linear dimensionality reduction based on Fisher’s linear discriminant analysis introduced

in Chapter 4, and 2) unsupervised metric learning based on spectral manifold learning

algorithms introduced in Chapter 5.

3.3 Spectral Manifold Learning Algorithms

Manifold learning algorithms [18, 19, 20, 21, 23, 24] address a longstanding problem at

the intersection of geometry and statistics: “Compute a low dimensional embedding of high

dimensional data sampled (with noise) from an underlying manifold” [62]. This objective is

not new when the embedding is assumed to be linear. For instance, under a linear embed-

ding assumption, principal component analysis (PCA) [63] and multi–dimensional scaling

(MDS) [39, 41, 64, 65, 66, 42] are the canonical forms of (linear) dimensionality reduction.

When the linearity assumption does not hold, or when it is expected that nonlinear em-

bedding will reveal more on the structure in the data, PCA and MDS are no longer valid

solutions. Therefore, the novelty in recent manifold learning algorithms is their assumption

of a nonlinear embedding process.

Similar to PCA and MDS, manifold learning algorithms are unsupervised nonparametric

techniques for dimensionality reduction that rely on the machinery of eigensolvers. Hence,

their optimization algorithms do not suffer from local minima and can scale well with large

and high dimensional data sets thanks to state-of-the-art eigensolvers.

Various algorithms were proposed to recover the low dimensional manifold of the data;

local linear embedding (LLE) by Saul and Roweis [18], ISOMAP by Tenenbaoum, De Silva,

and Langford [19], Laplacian eigenmaps by Belkin and Nyiogi [20], Hessian eigenmaps by

Donoho and Grimes [21], local tangent space alignment (LTSA) by Zhang and Zha [23], and

maximum variance unfolding (MVU) by Weinberger and Saul [24]. There are also various

algorithms for spectral clustering which are mainly motivated by graph cuts and random
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walks on graphs. This includes the work of Y. Weiss on segmentation using eigenvectors

[26], normalized cuts by Shi and Malik [25], random walks view for spectral segmentation

by Meila and Shi [36], and spectral clustering by Ng, Jordan, and Weiss [27].

Despite the different names and motivations for all the above algorithms, they all share

the use of an eigendecomposition step to obtain a lower dimensional embedding for the

data set D = {xi}ni=1 ⊂ X . The eigendecomposition step characterizes the nonlinear

manifold Mp0 on the hyperplane Rp0 ⊂ Rp, where p0 ≪ p, on which the data set D
would lie. During this characterization, spectral manifold learning methods perform two

simultaneous tasks; dimensionality reduction, and the characterization of non-spherical,

non-compact clusters which are intimately related to nonlinear manifolds (both are regions

of high densities). Therefore, both tasks, spectral clustering and manifold learning are

linked since the clusters captured by spectral clustering can be arbitrary curved manifolds

(as long as there is enough data to locally capture the curvature of the manifold) [67].

“Dimensionality reduction is an interesting alternative to feature selection. Like

feature selection, it yields a low dimensional representation which helps to build

lower capacity predictors in order to improve generalization. However, unlike

feature selection it may preserve information from all the original input vari-

ables. If the data truly lies on a low dimensional manifold, it may preserve

almost all of the original information while representing it in a way that eases

learning” [67].

3.3.1 A formal definition for manifold learning

We begin our discussion with a general, formal definition for manifold learning [68]. We

are given a set of high dimensional points X = {x1, . . . ,xn} ∈ Rp where n is the number of

points and p is the dimensionality of the input space. It is assumed that the data points lie

on, or near, an underlying smooth nonlinear manifold M of dimension p0. Further, Mp0

is assumed to be an immersed sub–manifold of the ambient Euclidean space R
p, where

p≫ p0. Let yi denote the coordinate of a point on Mp0 corresponding to the point xi, so

that we have the map yi → xi, 1 ≤ i ≤ n. Given this setting, the problem of manifold

learning can be stated as follows:
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Manifold learning: Given a set of the natural coordinates X = {x1, . . . ,xn} of points

on the manifold Md0, find a single global coordinate system or a set of parameterized rep-

resentations Y = {y1, . . . ,yn}.

It is intuitive to develop the manifold Mp0 on the hyperplane Rp0 ⊂ Rp, and this what

most of manifold learning algorithms do. The mapping in that case may be isometric

(preserve distances), conformal (preserve angles), or follow some weaker conditions such as

locally isometric, locally conformal, or a combination of both. Based on this formal setup,

I will briefly review some well known spectral manifold learning algorithms. These are:

metric or classical multidimensional scaling (cMDS) [39, 41, 64, 65, 66, 42], ISOMAP [19],

Laplacian eigenmaps (LAPMAP) [20] and spectral clustering (SC) [27], and local linear

embedding (LLE) [18]. For further details and justification of the algorithms, the reader is

kindly requested to refer to the original papers of these algorithms.

3.3.2 Skeleton of a general spectral manifold learning algorithm

The algorithms that will be discussed in the following can all be cast in a common framework

which computes an embedding for the training data using an eigendecomposition of a

symmetric similarity matrix M. The embedding is nothing more than the coordinates of

the leading eigenvectors of the matrix M. This framework can be described as follows:

1. Given a data set D = {xi}ni=1, construct a similarity matrix based on a neighbourhood

graph or a fully connected graph for the data set D. LetKD denote the kernel function

that produces M by Mij = KD(xi,xj). Note that KD should be a symmetric PSD

kernel. Note also that KD might not only depend on xi and xj, but on all the data

set D and hence the notation KD.

2. Optionally, transform M, yielding a processed symmetric matrix M∗. This transfor-

mation can include normalization, scaling, centering, extracting the Laplacian, trace

maximization, etc. Note that this is equivalent to having another kernel K∗
D that fills

the entries M∗
ij .

3. Compute the d0 largest eigenvalues λj and their corresponding eigenvectors vj ∈ Rn

of matrix M∗, where 1 ≤ j ≤ d0.
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4. The embedding of each example xi is the vector yi = [yi1, yi2, . . . , yid0 ]
⊤, with yij is the

ith element of the jth eigenvector of M∗. Alternatively, as in cMDS and ISOMAP,

the embedding yij =
√

λjvij .

Classical multidimensional scaling (cMDS)

cMDS starts from a distance matrix constructed from the Euclidean distance between every

pair of points in D. Note that cMDS works only with the notion of a metric as pointed

out in [40]. As a transformation, cMDS transforms the Euclidean distance matrix into a

similarity matrix using the double centering formula, which transforms distances to dot

products:

M∗
ij = −1

2

(

Mij −
1

n
si −

1

n
sj +

1

n2
sisj

)

, (3.1)

where Mij = ‖xi − xj‖2, and si =
∑n

j=1Mij . The embedding yij is given by
√

λjvij.

ISOMAP

ISOMAP generalizes MDS to nonlinear manifolds. The algorithm starts by defining a k

nearest neighbour graph for the set D. After constructing the neighborhood graph, un-

like cMDS, ISOMAP replaces the Euclidean distance between two points with a discrete

approximation of the geodesic distance between the points on the manifold. This approxi-

mated geodesic distance is computed using Djikstra’s shortest path algorithm between the

two points. Once the new distance matrix between the points is obtained, the algorithm

proceeds exactly as cMDS.

LLE

Similar to ISOMAP, LLE start by defining the k-NN graph of the data set D. The basic

assumption of LLE is that each point can be faithfully reconstructed from its neighbour-

hood; i.e. each point is a linear combination from the points in its neighbourhood. Hence

LLE preserves local distances and angles between points in the neighbourhood. The al-

gorithm proceeds as follows. First, a sparse matrix of local predictive weights Wij is

computed, such that
∑

j Wij = 1 if point xj is a neighbour for point xi, and
∑

j Wij = 0

if not. The predictive weights for each local neighbourhood are estimated by minimizing
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∑

j = Wij(xj−xi)
2, which is equivalent to a constrained system of linear equations. Then,

the matrix M = (I − W)⊤(I − W) is formed with possibly an additional regularization

term on the diagonal of M. Finally, the embedding is obtained by the smallest eigenvectors

of M (except for the first eigenvector with a zero eigenvalue).

LAPMAP and SC

Laplacian eigenmaps (LAPMAP) also starts by defining a k-NN graph over the data set D.

The similarity on each edge of the graph is approximated by the Gaussian kernel instead of

the Laplacian operator. From the new similarity matrix (or gram matrix obtained by the

Gaussian kernel), the Laplacian operator is computed and it becomes the new similarity

matrix for the data points. The Laplacian optimally preserves the local geometry for each

points, and hence LAPMAP and LLE are similar in that regard. The justification of the

graph Laplacian is motivated from the role of the Laplace Beltrami operator in providing

an optimal embedding of the continuous manifold. Hence, the continuous manifold is

approximated by the neighbourhood graph of the data, and the Laplace Beltrami operator

is approximated by the graph Laplacian [69]. The final embedding is obtained by the

eigenvectors corresponding to the smallest eigenvalues (except the smallest one) of the

following generalized eigenvalue problem (GEP):

Lv = λSv, (3.2)

where L = S−M is the Laplacian operator, S is a a diagonal matrix with sii =
∑n

j=1Mij ,

and λ and v are the generalized eigenvalues and eigenvectors of L. Note that the gen-

eralized eigenvectors of L are equivalent to the eigenvectors of I − S−1M. That is, the

difference here is in the normalization by S−1 which is known as divisive normalization,

and it is closely related to a random walk over the data neighbourhood graph [36].

SC was proposed earlier than LAPMAP, and it proceeds exactly as LAPMAP except for

two steps. The first is the normalization of the Laplacian, where [27] define the Laplacian

as L = I −D−1/2MD−1/2. The second is that the embedded vectors yi are normalized to

have unit length; i.e. the embedded points are projected on the unit sphere. After that,

k-Means clustering is applied on the embedded normalized vectors.
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H–LLE, LTSA, and MVU

Hessian eigenmaps or Hessian LLE (H–LLE) [21] and local tangent space alignment (LTSA)

[23] follow the same steps of LLE, however they operate on the tangent space defined

at each neighbourhood. Hence, H–LLE and LTSA are also locally isometric and locally

conformal. In a similar vein, Maximum variance unfolding (MVU) [24] tries to maximize

the variance in the data under the constraint of being locally isometric and conformal. The

alignment matrixM in their approach is the grammatrix of the data and the transformation

applied on M is the trace maximization process under the constraints of preserving the

local geometry. Finally, similar to all other algorithms, the final embedding is found via

the solution of the eigensystem using the top eigenvectors of the optimized gram matrix.

Discussion

ISOMAP finds low dimensional coordinates that preserve the geodesic distance between

high dimensional points. It assumes that the high dimensional data are generated by lift-

ing low dimensional points that lie in a convex set through an isometric lifting. Donoho

and Grimes [21] consider the particular case of images and point out that imaging pro-

cesses are more accurately represented by local isometry, and that the location of multiple

objects in a scene cannot be represented by a convex low dimensional set. They presented

H-LLE to handle these special conditions. LLE finds a conformal mapping that preserves

the affine relationship between high dimensional points in local neighbourhoods. Similar

to LLE, LAPMAP and MVU preserve a notion of local geometry; the proximity of points

in a neighbourhood weighted by local distance metrics for LAPMAP, and local isometry

for MVU [70].

Despite the differences between these algorithms, it was pointed put in [71] that if

the points do not densely sample the manifold, the local neighbourhood structure of the

manifold becomes difficult to estimate, and these algorithms recover low dimensional points

that do not exhibit the desired neighbourhood attributes. The impact of the manifold

sampling on the quality of the embedding obtained by manifold learning algorithms became

known as the topological stability of the algorithm. Despite its importance, the question

of topological stability for these algorithms is usually overlooked, and to the best of my

knowledge, there is no major study in the machine learning literature that addresses this
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question. However, as will be discussed in Chapter 7, the augmented space X introduced

in Chapter 5 can be used to improve the topological stability of spectral manifold learning

algorithms.
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Chapter 4

Pareto Disciminant Analysis

In this chapter, I consider the problem of learning a low dimensional embedding for the

data set D = {(xi, yi)}ni=1 ⊂ X ×Y when the a priori information in the form of labels yi is

available for learning. In terms of metric learning, this can be seen as learning an instance

of the GQD ‖ · ‖A, where A ∈ Rp×p, and A ≻ 0. However, to achieve linear dimensionality

reduction together with metric learning, the matrix A is required to be low rank; that is

A � 0, and A = BB⊤, where B ∈ R
p×p0, and p0 ≪ p. Moreover, since labels are available

for learning, it is required that the matrix B linearly projects the data onto a subspace

that better discriminates between points from different classes.

Here, I rely on the framework for Fisher’s linear discriminant analysis (LDA) in the

multiclass setting for learning the matrix B. I propose a new algorithm, namely Pareto

discriminant analysis (PARDA) [28], for Fisher’s LDA that is based on the machinery of

multiobjective optimization [37, 38]. PARDA decomposes the multiclass problem to a set

of pairwise objective functions representing the pairwise distance between different classes.

Unlike existing extensions of Fisher’s LDA to multiclass problems, that typically maximize

the sum of pairwise distances between classes, PARDA simultaneously maximizes each

pairwise distance, encouraging the case where all classes are equidistant from each other in

the lower dimensional embedding space. Solving PARDA is a multiobjective optimization

problem – simultaneously optimizing more than one, possibly conflicting, objective func-

tions – and the resulting solution is known to be “Pareto Optimal”. To the best of my

knowledge, this is the first research to address the multiclass linear dimensionality reduction

2011/12/14
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problem as a multiobjective minimization problem.

4.1 Linear Discriminant Analysis (LDA)

Fisher Discriminant Analysis (FDA) originally developed by Fisher in 1936 [72] is a tech-

nique for dimensionality reduction that is optimal for classification under two assumptions:

(1) the number of classes c is exactly two, and (2) the samples in each class are assumed

to be generated from a multivariate Gaussian distribution with different means and equal

covariance matrices (homoscedastic data) [73]. In this context, FDA is guaranteed to find a

one dimensional subspace that will classify the samples with the optimal error rate, Bayes

error, and the subspace is known to be Bayes optimal [73]. As an illustration, Figure 4.1

shows the difference between FDA and the well known principal component analysis (PCA)

[63] technique for dimensionality reduction.

Rao [74] extended this approach to the multiclass homoscedastic case (c > 2), under the

condition that the number of features p ≥ c (and assuming the number of samples n > p).

The resultant c− 1 dimensional subspace is also guaranteed to be Bayes optimal, and the

technique has become known as Linear Discriminant Analysis (LDA). Rao, however, noted

that if the lower dimensional subspace has dimensionality p0 < c−1, the resultant subspace

will not be Bayes optimal. It is only recently that Hamsici and Martinez [75] pushed the ho-

moscedastic case further and derived a Bayes optimal one dimensional subspace when c > 2.

When the covariance assumption does not hold for c ≥ 2 (heteroscedastic data), Rao

proposed to approximate the heteroscedastic problem with a homoscedastic setting and

solve the approximated problem instead. His approximated problem considered that all

classes have different means but share a common covariance matrix that is a weighted av-

erage of all the covariance matrices of the original problem. This approximation matrix

became known as the pooled sample covariance matrix, or the average within–class scatters

matrix Sw. Rao’s final solution became the well known formulation based on the Rayleigh

quotient of the between–class scatter matrix Sb and Sw. The obtained subspace, however,

is not Bayes optimal for the original heteroscedastic problem.

Several researchers, backed by theoretical justifications, have scrutinized the limitations
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Fig. 4.1 The data points shown here are from two well separated Gaussian
distributions (green and red) with different means and equal covariance matri-
ces, and hence the two parallel ellipses. The one dimensional subspace defined
by PCA (magenta line) is in the direction of the maximum variance of the total
data distribution. Projecting on this subspace yields a strong overlap between
the two classes. The one dimensional subspace defined by FDA (cyan line)
is in the direction of maximal separation between the two classes. Projecting
on this subspace yields optimal separation between the two classes, and hence
minimal Bayes error, which is zero in this case.

and non–optimality of LDA when its strong assumptions do not hold, and proposed ex-

tensions derived from Gaussian assumptions [76, 77, 78, 79] and kernel methods [80, 81] to

generalize LDA to the multiclass heteroscedastic case. The result was a plethora of algo-

rithms that have been reported to perform well in a variety of application domains, most no-

tably face recognition. A good review for these methods can be found in [82, 83, 84, 85, 75].

Of particular interest is the extension proposed by De La Torre and Kanade [86], namely

multimodal oriented discriminant analysis (MODA), where it was shown that FDA’s ob-

jective function is a special case of a more general objective that maximizes the symmetric

Kullback–Leibler (KL) divergence between two Gaussian densities, when the two Gaus-

sians share the same covariance matrix. Note that the symmetric KL divergence (SKLD)

considers the difference in mean locations and the difference in covariance matrices. This

is the rational for MODA, for which it searches for a low dimensional linear transformation
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Fig. 4.2 (A) A Synthetic example of a 3–class problem with three dimen-
sional data. The numbers shown on arrows indicate the symmetric Kullback–
Leibler divergence (KLD). (B) Projection using MODA on a two–dimensional
space. Observe that the two classes that are close in the input space propor-
tionally increase the KL divergence less than the classes that are further in
the input space. (C) Projections obtained by Pareto Discriminant Analysis
(PARDA) encourages the classes to be equally spread from each other in the
lower dimensional space.

that maximizes the SKLD between the two classes in the low dimensional subspace.

To account for the multiclass heteroscedastic case, MODA sums over all SKLDs between

every pair of different classes and maximizes that sum in the lower dimensional subspace.

This is very similar to LDA’s objective function, which as shown by Loog et al. [82], max-

imizes the sum of pairwise FDAs between all pairs of different classes. Hence MODA is a

consistent generalization of FDA/LDA to multimodal Gaussian distributions with different

means and covariance matrices.

However, as noted by several researchers [82, 83, 87, 28], even if all the homoscedastic

assumptions are satisfied, LDA and MODA suffer from the serious problem of merging

classes that are close to each other in the original input space, a.k.a the class separation

(or masking) problem. This is due to the fact that LDA and MODA shift the two–class

problem to the multiclass setting by maximizing the sum of all SKLDs, which is a suitable
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objective function when all classes are in proximity to each other in terms of KL divergence.

Figure 4.2 A depicts a synthetic example for a 3–class problem with three dimensional

data. Traditional methods like LDA or MODA find projections that maximize the sum

of pairwise Mahalanobis distances (LDA) or the SKLD (MODA) between pairwise classes.

Note that the SKLD, and the Mahalanobis distance (a special case of SKLD) are positive

quadratic distance functions. From the optimization of minimax functions [88], it is known

that the sum of positive powered functions,
∑m

j=1[fj ]
p, for p > 1, is a smooth approx-

imation for max1≤j≤m[fj ]
p as p increases to infinity, and hence

∑m
j=1[fj ]

p ≈ [fr]
p where

fr > fj ∀j 6= r. Using this argument1, it is possible to see that LDA and MODA are in fact

maximizing a smooth approximation of the maximum of pairwise Mahalanobis distances

and SKLDs respectively.

Hence, LDA and MODA intrinsically prefer solutions that encourage maximizing the

largest distance in the input space to make it even larger in the lower dimensional subspace.

In other words, LDA and MODA put needless effort to maximize already distant classes in

the input space. This effect can be seen in Figure 4.2 B, where MODA’s projection gives

relatively better increase in terms of KL divergence to the classes that are farther away

in the input space, while it only makes a slight effort to separate between classes that are

very close to each other in the input space.

4.2 From LDA to Pareto Discriminant Analysis (PARDA)

We note that the multiclass problem for LDA and MODA defines an independent objective

function for each pair of different classes that needs to be optimized, namely maximize the

SKLD between every pair of different classes. Hence, the set of all pairs of different classes

define an optimization problem with multiple objective functions that share one final solu-

tion, and they all need to be simultaneously optimized. Given this perspective, maximizing

the sum over all pairwise SKLDs (or quadratic distances) does not consider each objective

function independently, since as explained above, maximizing that sum approximates a

max function that encourages maximizing the largest SKLD. This implies that the opti-

mization procedure does not search for a solution that is in maximal agreement amongst all

1This will be explained in more detail in Section 4.6
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independent and possibly conflicting objective functions. This shows that upgrading the

problem of learning a discriminant subspace from the two–class setting to the multiclass

setting by summing over all pairwise SKLDs as in LDA/MODA, is not the appropriate

path to handle a multiobjective optimization problem [89, 37, 38], since by summing no

maximal agreement is guaranteed between all pairwise KL divergences.

My contribution in this research direction stems from the above observation. In partic-

ular, I propose a set of new parametrized objective functions for multiclass HDA based on

the theory of multiobjective optimization (MOP) [89, 37, 38]. Due to their parametriza-

tion, these objective functions can easily adapt to the class topology of the classification

problem. While LDA and MODA’s objectives pull apart the two classes with the largest

SKLD, PARDA, or Pareto Discriminant Analysis, tries to equally spread all classes from

each other.

PARDA concentrates its effort on overlapping classes while it safeguards well separated

classes from overlapping in the lower dimensional subspace. In other words, PARDA puts

more effort in maximizing the distance between classes that are closer in the projected

space, and will relax the constraint between classes that are farther away. Figure 4.2 C

shows the projection obtained by PARDA in a two dimensional space. Unlike MODA,

the two-dimensional projection obtained by PARDA encourages the case where classes are

equally spread from each other in the lower dimensional space.

4.3 Basic Formulation of Linear Discriminant Analysis

Here I review the basic and standard formulation of LDA. Given a data setD = {(xi, ℓi)
n
i=1 ⊆

R
p × L} with labels ℓi ∈ L = {C1, . . . , Cc}, LDA’s objective is to find a linear transforma-

tion B ∈ Rp×p0, with p0 ≪ p such that the data of each class when projected in the low

dimensional subspace is compact as much as possible, while all the classes are maximally

separated from each other. A rather standard formulation to obtain the linear transforma-
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tion matrix B∗ is via the generalized Rayleigh quotient defined as follows:

B∗ = argmax
B

ELDA(B), where (4.1)

ELDA(B) = tr{(B⊤S1B)−1(B⊤S2B)},

S1 = {Sb,Sb,St}, S2 = {Sw,St,Sw}, the columns of B∗ are the generalized singular vectors

of the generalized eigenvalue problem (GEP): S1B = ΛS2B, and Λ = diag{λ1, . . . , λp} is

the generalized eigenvalue matrix. The matrices Sb, Sw and St are known as the between–

class scatter matrix, the within–class scatter matrix and the total–class scatter matrix

respectively.

Formally, Sb, Sw and St are defined as follows:

Sw =

c
∑

j=1

Pr(Cj)Σ̂j, (4.2)

Sb =
c
∑

j=1

Pr(Cj)(µ̂j − µ̂0)(µ̂j − µ̂0)
⊤, and (4.3)

St = Sb + Sw, where (4.4)

Σ̂j = 1/(nj − 1)

nj
∑

i∈Cj

(xi − µ̂j)(xi − µ̂j)
⊤,

µ̂j = 1/nj

nj
∑

i∈Cj

xi, µ̂0 =
c
∑

j=1

Pr(Cj)µ̂j ,

with the prior probability of class Cj denoted by Pr(Cj), and
∑c

j=1 nj = n. The upper

bound on the ranks of Sb, Sw and St is min(c − 1, p), min(n − c, p) and min(n − 1, p)

respectively.

Problem (4.1) with Sb and Sw replacing S1 and S2 respectively is considered the most

popular LDA objective in the literature. The formulation, however, is restricted to the

original homoscedastic setting when the samples in each class Cj are assumed to have

a Gaussian distribution G( · ;µj ,Σj) with Σ1 = · · · = Σc = Σ. In practice, when

the covariance assumption does not hold, or when the classes are not Gaussians, all the
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Gaussian parameters are approximated by their sample estimates, and Σ is approximated

by Sw. Unfortunately, this approximation does not fully exploit the rich information in the

heteroscedastic setting which is represented in the covariance matrix of each class.

4.3.1 A different formulation for multiclass heteroscedastic LDA

Various researchers have proposed different extensions from the homoscedastic case to the

heteroscedastic one [76, 90, 78, 79]. Of particular interest, were the ideas proposed by

Tou & Heyden in 1967 [91] on feature extraction, where they derived LDA’s objective in

Problem (4.1) from maximizing the symmetric KL divergence [92] between two Gaussian

densities under the homoscedastic assumption. Independently, De La Torre and Kanade

[86] paralleled Tou and Heyden’s ideas in their much richer model MODA. Since MODA

is a consistent generalization of LDA to multimodal Gaussian distributions with different

means and covariance matrices, we will adopt MODA’s formulation for our multiclass HDA

framework. Let the symmetric KL divergence between two Gaussian densities Gi and Gj

be defined as follows:

J(Gi,Gj) = (µi − µj)
⊤(Σ−1

i +Σ−1
j )(µi − µj) + tr

(

ΣiΣ
−1
j +Σ−1

i Σj − 2I
)

. (4.5)

MODA seeks a linear transformation B ∈ R
p×p0 with p0 ≪ p such that J(Gi,Gj) in the

lower dimensional subspace is maximized. Note that the linear transformation B can have

any number of bases p0 such that 1 ≤ p0 ≤ p − 1. This is unlike FDA/LDA that can

only define subspaces of dimensionality p0 ≤ min(c − 1, p − 1). In the lower dimensional

subspace, classes ℓi and ℓj will be projected as Gi(B
⊤µi , B

⊤ΣiB) and Gj(B
⊤µj , B

⊤ΣjB)

respectively. In turn, J(Gi,Gj;B) in the lower dimensional subspace can be expressed as:

J(Gi,Gj;B) = u⊤
ijB
[

(B⊤ΣiB)−1 + (B⊤ΣjB)−1
]

B⊤uij+

tr{(B⊤ΣiB)(B⊤ΣjB)−1 + (B⊤ΣiB)−1(B⊤ΣjB)− 2B⊤B}, (4.6)

where uij = (µi−µj). After some algebraic manipulation, Equation (4.6) can be simplified

to:

J(Gi,Gj ;B) = tr
[

(B⊤ΣiB)−1(B⊤AijB)
]

+ tr
[

(B⊤ΣjB)−1(B⊤AjiB)
]

, (4.7)
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where Aij = uiju
⊤
ij + Σj and Aji = uiju

⊤
ij + Σi. Finally, for the c–class heteroscedastic

setting, the linear transformation matrix B∗ is obtained via MODA’s objective function

defined as:

B∗ = argmax
B

EMODA(B), where (4.8)

EMODA(B) =

c−1
∑

i=1

c
∑

j=i+1

J(Gi,Gj;B).

Note that maximizing Problem (4.8) under the assumption that Σi = Σj = Σ for

1 ≤ i, j ≤ c, i 6= j, and with the constraint that the columns of B are orthogonal, will

directly yield the standard LDA formulation for the multiclass problem. That is, MODA

and LDA have the same general formulation and the difference between them is in the

homoscedastic vs. heteroscedastic assumption.

4.4 Literature Review

The literature on discriminant analysis (DA) is immense and a thorough review will be

beyond the scope of this thesis. The review presented here focuses on four different re-

search directions of DA; heteroscedastic & multiclass extensions of LDA, the small sample

size (SSS) problem, the class merging (separation) problem, and information theory based

approaches for DA.

4.4.1 Heteroscedastic multiclass extensions of LDA

Campbell [76] was the first to develop a general formulation for LDA as a maximum like-

lihood estimation of the parameters of a Gaussian model. His model’s structure relied on

two assumptions: 1) all class means (or all discriminatory information between the classes)

lie in a (c−1)–dimensional subspace of the original p–dimensional input (or feature) space;

and 2) all classes have equal covariance matrices (homoscedastic setting). Hastie and Tib-

shirani [90] tried to work around the homoscedastic assumption of Campbell and proposed

that each class can be modelled as mixtures of Gaussians while maintaining that all classes

and sub–classes share a pooled covariance matrix. Based on this idea, Zhu and Martinez

[84] proposed techniques for determining the optimal number of subclasses – or Gaussian
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components – in each class.

Kumar and Andreou [78] extended Campbell’s maximum likelihood model to the het-

eroscedastic setting and named it heterscedastic discriminant analysis (HDA). Their objec-

tive function is the log–likelihood of the Guassian models in the projected low dimensional

subspace. By taking the gradient of this objective, they derive maximum likelihood esti-

mators for the class means and covariances in the low dimensional subspace.

Saon et al. [93] defined an objective function based on the ratio of determinants instead

of the trace of the generalized Rayleigh quotient in Equation (4.1) introduced earlier. That

is, they maximize

ESAON(B) =
c
∏

j=1

[(B⊤ΣjB)−1(B⊤SBB)]nj ,

which is weighted product of each individual dimension (or direction) of the data. This

objective function models the data orientation (or directionality) and has the property of

being invariant to transformations of the range of the solution (eigenvectors). In addition,

similar to LDA and HDA, it is invariant to linear transformations of the data in the input

space. In the same spirit of Saon et al. , Zhu and Hastie [79] proposed the generalized

feature extraction criterion, which generalizes the Fisher criterion when the covariance

assumption does not hold, or even better, when the data of each class is not Gaussian.

4.4.2 The small sample size (SSS) problem

The SSS problem and its effect on the solutions obtained by DA is probably one of the

very well studied problems in the literature of DA. The earliest formal treatment for the

SSS problem is due to Friedman in [94] where he proposed a regularization framework for

linear and quadratic discriminant analysis.

The pattern recognition and computer vision communities targeted this problem in the

context of face recognition. Belhumeur et al. [95] proposed a two–stage LDA via their

algorithm PCA+LDA. Later Chen et al. [96] showed that the null space of Sw contains

the most discriminative information. Based on their work, Yu and Yang [97] proposed
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direct–LDA which simultaneously diagonalizes Sw and Sb and discards the null space of

Sb. Howland and Park [98] proposed to solve the DA criterion via the generalized singular

value decomposition (GSVD) algorithm. Alternatively, Ye and Li [99] proposed a two–stage

LDA via a data transformation step based on the QR decomposition of the Sb.

Recently, Zhang and Sim [85] established a neat understanding for the four main sub-

spaces that define LDA using the Fukunaga–Koontz transform (FKT). Based on their anal-

ysis they showed that the FKT/LDA is equivalent to LDA/GSVD [98], and provided a uni-

fied framework for other subspace methods such as: Fisherface (PCA+LDA), PCA+NULL,

LDA/QR and LDA/GSVD.

4.4.3 The class merging problem

To solve the class merging (or separation) problem, Lotlikar and Kothari [100] proposed

fractional step DA (F–LDA) where the dimensionality is reduced in fractional steps; i.e.

iteratively from p to p−1 (one dimension at a time) while applying proper weighting on the

data in order to avoid the class merging problem. Lu et al. [83], in a two–stage algorithm,

proposed a weighted variant of direct–LDA [97] combined with fractional step LDA [100].

For the between–class scatter matrix Sb, they applied weights that are inversely propor-

tional to the distance between class means. Alternatively, Loog et al. [82] suggested that

the weights applied to Sb should link the distance between the class means to the amount of

error they cause. Therefore, the weight between two classes is measured as 1
2δij

erf(δij/2
√
2),

where erf(·) is the error function and δij is the Euclidean distance between class means i

and j in the whitened space.

Recently, there has been some interesting proposals for solving the class masking prob-

lem. These proposals can be found in the work of Zhang and Yeung [101], Yu et al. [102],

and Bian and Tao [103]. The common objective in these solutions is the maximization of the

smallest distance between the classes in the low dimensional subspace. This is unlike our

objective function presented here, which focuses on maximizing every pairwise distance

among all classes. In fact, our proposed framework presented here encourages solutions

where all classes are well separated and equidistant from each others.
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4.4.4 Information theoretic approaches

In the last decade, information theory based approaches for DA have gained more atten-

tion. The basic and common ingredient among these approaches is an objective function

that maximizes a certain measure of information. These objective functions do not lead to

GEPs, but rather, to optimization techniques based on gradient descent, quadratic opti-

mization and their variants.

Based on advances in information theoretic learning using Renyi’s entropy [104], Torkkola

[105] used Renyi’s entropy of order 2 [106] coupled with Parzen density estimators, and

maximized the mutual information between the class labels and the data in the projected

low dimensional space. This approach relaxes the Gaussian assumption of each class and

naturally handles the heteroscedastic setting through non–parametric density estimators2.

Inspired by Torkkola’s model, Kaski and Pletonen [107] proposed another model with two

different ingredients; 1) they use Shanon’s entropy instead of Renyi’s, and 2) they maximize

the log likelihood of the data in the low dimensional subspace instead of maximizing the

mutual information between the labels and the data.

MODA [86], as discussed earlier, is another instance of this category since it explic-

itly maximizes the symmetric KL divergence between different classes when each class is

modelled as a mixture of Gaussian densities. In a similar vein, Tao et al. [87] proposed

GADA, or general averaged divergence analysis, which is a further generalization of MODA.

GADA replaces the symmetric KL divergence in MODA with the general Bregman diver-

gence [108], and replaces the sum of all pairwise divergences by a general mean divergence

function. Similar to MODA, GADA does not consider each pair of classes separately, and

hence it puts needless effort on already distant classes.

4.5 Multiobjective Optimization

Multiobjective optimization (MOP), or vector optimization (VOP), is a branch of opti-

mization science that is concerned with the simultaneous optimization of more than one

objective function. In real world applications, it is often the case that the objectives are

2Please refer to the affiliated references in [105] for more details on these approaches.
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contradictory in a way that optimizing one of the objectives entails a poor performance of

another. In such cases, one would require a good compromise solution which is subopti-

mal but acceptable as much as possible to the individual objective functions. MOP, VOP

or multicriteria optimization, is the science that can find this good compromise solution [37].

Let f(θ) = [f1(θ) . . . fκ(θ)]
⊤ be the vector valued objective function to be optimized

where f(θ) ∈ Rκ, θ ∈ R ⊆ Rd is the parameter vector for the set of objective functions,

fj(θ) ∈ R is the jth objective function, R is the feasible set for the values of the parameter

vector θ, and Rκ is the objective space. For the sake of a consistent discussion in this

section, we will consider that our objective is to minimize3 f(θ). Accordingly, the goal

of VOP is to find θ∗ that simultaneously minimizes all fj(.)’s. In practice, the individual

objective functions can be in contradiction to each other; i.e. an improvement with regard

to one objective can cause the deterioration of at least another objective function.

Since minimization of any objective function presupposes that various objective function

values can be compared with each other, an appropriate ordering concept that is suitable

for VOP is needed on the objective space Rκ. For reasons that will be shown later, it is

difficult to have a total ordering that compares any two arbitrary elements in Rκ, therefore

a weaker, or a partial ordering relation denoted by “≤” will be used instead.

Definition (Order relation “≤” in the objective space Rκ) Let z1 and z2 be two points

in the objective space R
κ. The order relation “≤” is defined as z1 ≤ z2 ⇐⇒ z2 − z1 ∈ R

κ
+,

where Rκ
+ = {z ∈ Rκ | zi ≥ 0, and 1 ≤ i ≤ κ} is the nonnegative orthant of Rκ and,

∀i ∈ {1, . . . , κ}, zi1 ≤ zi2, ∃j ∈ {1, . . . , κ} s.t. zj1 < zj2.

Since R
κ
+ is a special case of the convex cone, then “≤” is guaranteed to be compatible

with the linear structure of Rκ; i.e. for z1, z2, z3 ∈ Rk, and α ∈ R, α > 0, then 1) if

z1 ≤ z2 ⇒ αz1 ≤ αz2, and 2) if z1 ≤ z2 ⇒ z1 + z3 ≤ z2 + z3. In addition, properties such

as reflexivity, transitivity, and antisymmetry are all satisfied for the relation “≤” [37].

In optimization terms, if z1 = f(θ1) and z2 = f(θ2) represent two values of a vector

valued objective function, then z1 ≤ z2 implies that z1 is at least as small (as good) as z2

3Inverting the discussion on maximizing f(θ) can be simply done by minimizing −f(θ).
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with regard to all objectives and it is strictly smaller (or better) with regard to at least

one objective. In this case, θ1 is said to dominate θ2. There are vector pairs, however,

for which neither z1 ≤ z2 nor z1 ≥ z2 are true; for instance the vectors [2, 4]⊤ and [4, 2]⊤.

In such cases, the partial order relation reflects the fact that both objectives are of equal

importance, and to select one solution, additional input is required from the domain expert,

or the decision maker. To this end, it is very important to emphasize the main difference

between scalar valued optimization and vector valued optimization. While the former

possesses a total ordering relation induced by the real numbers, the latter possesses only

a partial ordering relation according to the definition above. On the basis of this ordering

concept, we can proceed with a formal definition for the task of VOP [89, 37].

Definition Let Z = f(R) ⊆ Rκ be the image of the feasible set R ⊆ Rd in the objective

space. A point z∗ ∈ Z is called Globally Efficient with regards to the order relation “≤”

defined on Rκ, if and only if there exists no other z ∈ Z s.t. z ≤ z∗ and z 6= z∗. A point

θ∗ ∈ R is called Globally Pareto Optimal if and only if z∗ = f(θ∗) is globally efficient. A

point θ1 ∈ R is said to Dominate another point θ2 ∈ R if and only if f(θ1) ≤ f(θ2) and

f(θ1) 6= f(θ2).

Based on these definitions, VOP can be formally defined as finding efficient points

z∗ ∈ Z with regard to the order relation “≤” on Rκ, along with their Pareto optimal points

θ∗ pertaining to them [38]. It could be the case, however, that all objective functions are of

equal importance. In this case, the best that VOP can do is to provide the decision maker a

set of all efficient points along with their Pareto optimal points pertaining to them. The set

of all efficient points and their pertaining Pareto optimal points are known as the Efficient

Set and the Pareto Set respectively.

There are various techniques for solving VOP problems, and the interested reader can

refer to [38] and [37] for a rigorous treatment of the subject. A class of these techniques

form what are known as deterministic methods. These methods “scalarize” the vector

optimization problem through a parametric formulation and then solve the new objective

function using standard optimization techniques. From the deterministic class, we found

that the weighted–sum method [38] and the weighted Lδ–Metric method [37] are very

well studied scalarizing techniques with concrete theoretical results that guarantee Pareto

optimal solutions. The Lδ–Metric method is also known as the compromise method, the
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target method, or the approximation of the ideal point method [38] for reasons that will

be explained in Subsection 4.5.2.

4.5.1 The weighted–sum method

The weighted–sum (WS) method was first introduced by Zadeh [109] and it is probably

the most widely known vector optimization method. The WS method assigns a weight wj

to each objective function such that wj ≥ 0, ∀ j ∈ {1, . . . , κ}, and ∑κ
j=1wj = 1. That is,

the WS method forms a convex combination of the objective functions. The final objective

function to be minimized is:

θ∗ = argmin
θ∈R

w⊤f(θ), (4.9)

where w = [w1 . . . wκ]
⊤. The weight wj reflects the significance of the individual objective

function fj(·), and hence, it can reflect some a priori knowledge from the problem domain

or, impose some bias on the final solution θ∗. By varying the weight vector w, one can

obtain a subset of the Efficient Set and its pertaining subset of Pareto optimal solutions.

We state here Theorem 4.1 from [38] (see Chapter 3 for a complete proof ) that guarantees

a Pareto optimal solution for the WS method in Problem (4.9).

Theorem 4.5.1 Let θ∗ ∈ R be an optimal solution of (4.9), then the following statements

hold:

1. If w ≥ 0, then θ∗ is Pareto optimal.

2. If w ≥ 0 and θ∗ is a unique optimal solution of (4.9), then θ∗ is globally Pareto

optimal.

Theorem 4.5.1 has more details in [38] than those presented here since it further dis-

criminates between different Pareto optimal solutions. The most relevant detail to our

discussion is that if w > 0, i.e. all its components are strictly greater than zero, then the

solution is known to be a properly Pareto optimal solution, while if w > 0 and θ∗ is a

unique solution, then θ∗ is known to be a strong Pareto optimal solution. We will rely on

this property of the weight vector when this method will be presented in the context of

LDA in Section 4.6.
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The WS method however has an implicit assumption which can easily be a drawback in

practice. The method requires that Z = f(R) be a convex set. In practice the set Z might

not necessarily be convex and as a side effect, there will be a set of efficient solutions z∗

that can not be found using the WS method. In other words, the WS method might work

poorly for non–convex Z.

4.5.2 The Lδ–metric method

In an ideal situation, the objective of VOP is to achieve the optimal solution for each

individual objective function fj(·). Let t∗ ∈ Rκ be such an ideal target point in the

objective space. Then, ∀ z ∈ Z, t∗ ≤ z and t∗ might or might not be in Z. Since in real

world problems, the individual objectives might conflict with each other, achieving t∗ is

impossible, however it can serve as a reference point with the goal of seeking a solution as

close as possible to t∗ (see Figure 4.3). Formally, given a distance function dist : Rκ×Rκ →
R+, the Lδ–Metric method is given by: minθ∈R dist(f(θ)− t∗). Since the objective space

R
κ is endowed with a vector norm ‖·‖ then the induced weighted distance, or the Lδ–Metric

method can be defined as follows:

θ∗ = argmin
θ∈R

d(θ), where (4.10)

d(θ) =

(

κ
∑

j=1

wj|fj(θ)− t∗j |δ
)

1

δ

,

δ ∈ [1,∞], wj > 0 is the weight for the j-th objective function, and
∑k

j=1wj = 1. Similar to

the WS method, the weight wj reflects the significance of the objective function fj(·). Note
that the WS method can be considered as a special case from the Lδ–Metric method. Also

note that by definition of the Lδ–Metric method, the weight vector w > 0, and according

to Theorem 4.5.1, θ∗ will be at least a properly Pareto optimal solution. We now state

Theorem 4.20 from [38] (see proof in pp. 112), that links the monotonicity of a norm to the

solution obtained by Problem (4.10), in order to introduce our main result of this section

in Corollary 4.5.3.

Theorem 4.5.2 (4.20 in [38]) If ‖ · ‖ is a strictly monotonic norm and θ∗ is an optimal

solution of Problem (4.10), then θ∗ is Pareto optimal.
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Corollary 4.5.3 For the Lδ norm ‖ · ‖δ , if 1 ≤ δ < ∞ and θ∗ is the optimal solution

for Problem (4.10), then ‖ · ‖δ is strictly monotonic, and θ∗ is Pareto optimal.

The Lδ–Metric method has a nice interpretation in terms of level sets [38] {z ∈ Rκ | ‖z−
t∗‖δ ≤ u} where such sets contain all points of distance u or less to t∗. From that per-

spective, the goal of the Lδ–Metric method is to search for the smallest u such that the

intersection of the corresponding level set with Z = f(R) is nonempty. Figure 4.3 illustrates

this concept for the L2 norm.

Fig. 4.3 The intersection of level sets for the Lδ–Metric method for δ = 2
and with Z = f(R) in the objective space. Note that the ideal point t∗ /∈ f(R)
and the efficient point z∗ is the closest to it.

4.6 Pareto Discriminant Analysis

It is possible now to formulate the multiclass heteroscedastic discriminant analysis (HDA)

model in the multiobjective optimization framework introduced in the previous section.

Since the proposed framework is meant to handle the multiclass heteroscedastic setting

while trying to avoid the class merging problem, a clear understanding for the class sepa-

ration problem is needed first.
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4.6.1 The class masking problem

Let us recall the original objective function optimized by FDA and MODA in the case of

two–class problems:

J(Gi,Gj;B) = tr
[

(B⊤ΣiB)−1(B⊤AijB)
]

+ tr
[

(B⊤ΣjB)−1(B⊤AjiB)
]

, (4.11)

where Aij = uiju
⊤
ij +Σj , Aji = uiju

⊤
ij +Σi , and uij = (µi − µj). Maximizing Equation

(4.11) with respect to B will find a projection into a lower dimensional subspace that

maximizes the symmetric KL divergence between Gi and Gj . The final solution B∗
ij will be

optimal in terms of separation for classes Gi and Gj . To account for the multiclass setting,

LDA and MODA use the same objective function in which it sums over all pairwise SKLD

and maximizes that sum:

EMODA(B) =
c−1
∑

i=1

c
∑

j=i+1

J(Gi,Gj;B). (4.12)

Note that the original SKLD between two Gaussians Gi and Gj ,

J(Gi,Gj) = (µi − µj)
⊤(Σ−1

i +Σ−1
j )(µi − µj) + tr

(

ΣiΣ
−1
j +Σ−1

i Σj − 2I
)

, (4.13)

has in fact two terms: the first term, which is a quadratic distance, measures the difference

between the means µi and µj , and a second term which measures the difference, or the

discrepancy between the two covariances Σi and Σj of Gi and Gj respectively (see Kullback

[92] pp. 6–7 for this explanation). From the optimization of minimax functions [88], it

is known that the sum of positive powered functions,
∑m

j=1[fj ]
p, for p > 1, is a smooth

approximation for max1≤j≤m[fj ]
p as p is increasing, and hence

∑m
j=1[fj]

p ≈ [fr]
p where

fr > fj ∀j 6= r. Using this argument in the light of Equation (4.12), it is possible to see

that LDA/MODA’s objective function is in fact a smooth approximation of the following:

EMODA(B) ≈ max
i,j

J(Gi,Gj;B), 1 ≤ i, j ≤ c , i 6= j , (4.14)

due to the first term in Equation (4.13) which is the quadratic distance between the means

of Gi and Gj . Hence, LDA and MODA intrinsically prefer solutions that encourage maxi-

mizing the largest distance between µi and µj in the input space to make it even larger in
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the lower dimensional subspace. In other words, shifting the problem from the two–class

setting to the multiclass setting using this scalarization technique (plain summing over

all objectives) intrinsically yields the class separation problem. Consequently, LDA and

MODA put needless effort to maximize already distant classes in the input space.

4.6.2 A multiobjective optimization framework for HDA

Here we propose a different scalarization for the multiclass heteroscedastic setting using the

multiobjective optimization framework. In this framework, since each pair of classes, Gi and

Gj , 1 ≤ i, j ≤ c , i 6= j , define their own individual objective function J(Gi,Gj;B), then all

κ = c(c− 1)/2 pairs of classes result in κ objective functions that need be simultaneously

optimized. Since it is expected that the objective functions can conflict with each other,

using the VOP framework can guarantee that the obtained subspace will be in maximal

agreement with all pairwise objectives, but suboptimal for each individual objective. Using

the WS method or the Lδ–Metric method, and setting the appropriate weight vector for

each model, the optimization effort will be distributed according to the class topology of

the classification problem. The simultaneous optimization of the objective functions will

put more effort on overlapping classes while safeguarding distant classes from overlapping

in the lower dimensional subspace.

This is the major difference between MODA and LDA on one side and Pareto discrim-

inant analysis (PARDA) on the other side. While MODA (and LDA in the homoscedastic

case) sum over all J(Gi,Gj ;B)’s, and search for a basis that maximizes that sum, PARDA

plugs all the pairwise objective functions in a multiobjective optimization framework and

searches for a basis that is in maximal agreement with all pairwise objective functions and

simultaneously maximizes them.

Formally, using the scalarization of the WS method in Problem (4.9) (with Theorem

4.5.1), and the Lδ–Metric method in Equation (4.10) (with Corollary 4.5.3), Pareto dis-
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criminant analysis (PARDA) can be defined using the following two optimization problems:

B∗
WS

= argmax
B∈R

EWS(B), where (4.15)

EWS(B) =

c
∑

i=1

c
∑

j=i+1

wijJ(Gi,Gj ;B), s.t.
∑

i,j

wij = 1 , wij > 0 , and

B∗
Lδ
= argmin

B∈R
ELδ(B), where (4.16)

ELδ(B) =

c
∑

i=1

c
∑

j=i+1

wij [J(Gi,Gj ;B)− t∗ij ]
2, s.t.

∑

i,j

wij = 1 , wij > 0 ,

where R ⊆ Rp×p0, and the sum was decomposed over all pairwise classes. For the Lδ–

Metric method, δ was set to 2 to guarantee the strict monotonicity of the norm. According

to Theorem 4.5.1 and Corollary 4.5.3, and given a proper target vector t∗, the obtained

solutionsB∗
WS

and B∗
Lδ
from Problems (4.15) and (4.16) respectively, will be Pareto Optimal.

Note that MODA can be considered a special case of EWS if wij = 1 ∀ i, j and, if the

convex combination constraint on the weights is neglected. A similar remark follows for

GADA [87] which is a generalized mean function over Bregman divergence measures. Also,

note that since B∗
Lδ

is found by minimizing Problem (4.16), then tij > 0, for if tij = 0, it

will encourage reducing the divergence between Gi and Gj to zero and hence increase the

overlap between them until they collapse over each other – which is obviously an undesirable

solution.

4.6.3 Minimization of PARDA

Unfortunately, there is no closed form solution for the optimization of the objective func-

tions in Problems (4.15) and (4.16), and an iterative algorithm based on gradient ascent

(descent) is used instead. For EWS ,

Bt+1 = Bt + η1
∂EWS(B)

∂B
, where (4.17)

∂EWS(B)

∂B
=

c
∑

i=1

c
∑

j=i+1

wij
∂J(Gi,Gj ;B)

∂B
, (4.18)
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while for ELδ ,

Bt+1 = Bt − η2
∂ELδ(B)

∂B
, where (4.19)

∂ELδ(B)

∂B
=

c
∑

i=1

c
∑

j=i+1

2wij(J(Gi,Gj ;B)− t∗ij)
∂J(Gi,Gj;B)

∂B
, (4.20)

where η1 and η2 are the step lengths for the gradient ascent (descent) procedures in Equa-

tions (4.17) and (4.19) respectively. Fortunately, the gradient of J(Gi,Gj ;B) with respect

to B has a closed form solution as follows:

∂J(Gi,Gj;B)

∂B
= {2AijBΦi − 2ΣiBΦiQijΦi}+ {2AjiBΦj − 2ΣjBΦjQjiΦj} , (4.21)

where

Φi = (B⊤ΣiB)−1 , Φj = (B⊤ΣjB)−1 ,

Qij = (B⊤AijB) , and Qji = (B⊤AjiB). (4.22)

The step length parameters, η1 and η2, are initially small (0.01 in all our experiments) and

they are decreased by a factor of 38.2%4 if the objectives, EWS(B) and ELδ(B), decrease

(instead of increase) or increase (instead of decrease) respectively. Other strategies such as

explicit line search are possible but this simple method has provided very good results in

all our experiments. Both objective functions in Problem (4.15) and (4.16) are non–convex

problems and any gradient ascent (or descent) method can be trapped into local minima.

Therefore, we typically start the algorithm with multiple initializations (10 times in all our

experiments) and select the solution with the lowest training error. Alternatively, the best

solution B∗ can be chosen with cross-validation, or via minimizing the validation error.

More explanation on these details can be found in Section 4.7.

4.6.4 Initial basis B0

In order for the gradient ascent (descent) procedure to find a better and stable solution

B∗ away from local minima, a good initial guess B0 is needed to start the procedures. For

this, we use one of the well known objectives of LDA, max tr{(B⊤SwB)−1(B⊤StB)}, to
4This is in fact the golden ratio factor (1.618034) used in many single variable optimization procedures.
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give an initial basis B0. Based on the results of Zhang & Sim [85] and Ding & Li [110],

the null space of St contains no useful discriminatory information in the data, and hence

we first apply whitening transformation on the data and discard the dimensions with zero

eigenvalue. Next, in the whitened space, the eigenvectors of Sw are computed and used as

an initial guess for B0. Note that the maximum rank for Sw is min(n− c, p).

4.6.5 The weight wij

The weight vector plays the crucial role in the WS and the Lδ–Metric methods since it

drives the optimization procedure to concentrate its effort on more important objectives in

favour of other less important ones. For discriminant analysis, one would desire to bias the

solution towards classes that will overlap in the lower dimensional space. In our previous

work [28], the weights relied on the target vector of the Lδ–Metric method.

Here I propose a more general approach for deciding the weights wij that does not

depend on the target vector and can be used with the WS method and the Lδ–Metric

method as well. In the first step, the symmetric KL divergence J(Gi,Gj) is computed

between every pair of classes in the lower dimensional subspace obtained by the initial basis

B0. Then wij = w̄ij/
∑

i,j w̄ij, where w̄ij = [2.J(Gi,Gj)]
−2. This weighting scheme gives

very small weights to distant classes (in terms of KL divergence) relative to the overall

divergences between all classes, while it assigns large weights to close classes relative to

the overall divergences between classes. In this way, the optimization procedure will focus

more on finding linear transformations that separate nearby classes, while safeguard distant

classes from overlapping.

4.6.6 Adaptive weights and the Pareto set of optimal solutions B∗

The weight vector w assigned to the multiobjective function (WS or Lδ–Metric) at the

beginning of the optimization procedure is fixed and does not change during the iterative

optimization. The reason for that has to do with convergence5. If the weights are changed

in each iteration, each set of weights will define a new optimization problem in each gradient

ascent (descent) step. Consequently, the sequence of gradient vectors will point to different

directions in the objectives space and will not converge to a solution. Having adaptive

weights at each step of the gradient ascent (descent) procedure is possible assuming that

5Personal communication with Prof. M. Ehrgott [38].
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the weights updating rule will result in consistent gradient directions towards the optimal

solution.

A common practice in the MOP literature is to assign different weight vectors to the

multiobjective function based on some a priori knowledge from the problem domain. For

each weight vector, a Pareto optimal solution is obtained and the decision maker selects

which Pareto solution will better fit the multiobjective functions involved. A more prin-

cipled approach is to explore the manifold of Pareto solutions and how it reflects on the

weight of each objective function. This gives the decision maker an informative interpreta-

tion of each Pareto solution. The set of Pareto optimal solutions lying on this differentiable

manifold [37] is known as the Pareto set. Recently, there are two approaches to explore

this manifold; the stochastic based approach which is due to Schäffler [111], and the deter-

ministic based approach which is due to Hillermeier [37]. Investigating an adaptive weight

approach for MOP, and the use of Schäffler or Hillermeier approaches to obtain a Pareto

set in the context of discriminant analysis are worthwhile research directions that we leave

for future research work.

4.6.7 The target vector t∗

The target vector t∗ plays an important role together with the weights wij for the Lδ–

Metric method. To see this, note that the WS method, similar to LDA and MODA, does

not impose any constraints on the minimum divergence between classes. This is unlike

the Lδ–Metric method which uses the target vector that can act as a constraint on the

minimum divergence between the classes. In the context of discriminant analysis, an ideal

setting would be to find a subspace in which all classes are equally spread, or equidistant

from each other. Given a set of properly selected weights, the target vector in the Lδ–

Metric method will encourage the optimization procedure to favour solutions in which all

classes are equidistant from each other. In other words, it will encourage the multiob-

jective optimization to focus its effort on separating overlapping classes, while safeguards

well separated classes from overlapping in the lower dimensional subspace. This is the ra-

tional for our approach described here to select the target values for the Lδ–Metric method.

In our previous work [28], we proposed a method inspired by the “ideal point” concept
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introduced in the previous section. Although this method helped to validate the theoretical

framework in the preliminary experiments stage, in practice, and for large data sets, this

method is not efficient since it requires solving each individual objective J using MODA

first. Hence, computationally, it is not feasible for high dimensional data sets with large

number of classes.

Here, I rely again on the initial basis B0 and all pairwise SKLD measures J(Gi,Gj)

in the low dimensional subspace obtained by B0. To achieve the ideal setting of equally

spreading all the classes in the low dimensional subspace, I set the target values to be very

large and equal for all the objective functions. That is, all tij values are set equal to one

large value t∗ that is obtained as follows:

t∗ = [2.max
i,j

J(Gi,Gj)]
2 , 1 ≤ i, j ≤ c , and i 6= j . (4.23)

4.6.8 Handling large number of classes

The above PARDA formulation imposes a complexity constraint for high dimensional data

sets with large number of classes. For a c–class problem, PARDA will construct a mul-

tiobjective optimization problem with κ = c(c − 1)/2 objective functions. For an experi-

mental small data set such as the CMU-PIE face data set [112]6 with only 68 classes and

32×32 = 1024 pixels (no. of fearures), the number of objective functions is 2278. Although

the MOP theory is invariant to the number of objective functions, the capacity of compu-

tational resources will render this formulation non feasible. In the following we propose a

different configuration that reduces the number of objective functions from c(c − 1)/2 to

only c objective functions.

The previous formulation considers one objective function for each pair of classes. This

can be considered as a one–vs–one configuration which in turn drives the large number of

objective functions. An alternative configuration is to consider a one–vs–all strategy where

each class Gi is encouraged to pull itself away from all other classes (combined), while all

other classes (combined) are also encouraged to be pulled far away from class Gi.

6http://www.zjucadcg.cn/dengcai/Data/PIE/PIE 32x32.mat
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Recall the objective function in Equation (4.11) between classes Gi and Gj . For a c–

class problem, Gi is the Gaussian distribution whose parameters µi and Σi are estimated

from the points in class ℓi . For all other data points that are not in class ℓi , let G ′
i be the

Gaussian distribution that models these data points with sample mean µ′
i and a sample

covariance matrix Σ′
i . Plugging Gi and G ′

i in Equation (4.11) will yield:

J(Gi,G ′
i;B) = tr

[

(B⊤ΣiB)−1(B⊤R′
iB)
]

+ tr
[

(B⊤Σ′
iB)−1(B⊤RiB)

]

, (4.24)

where R′
i = (µi − µ′

i
)(µi − µ′

i
)⊤ +Σ′

i , and Ri = (µi − µ′

i
)(µi − µ′

i
)⊤ +Σi.

Maximizing Equation (4.24) with respect toB will yield a subspace B∗
i that is optimal in

terms of separation between Gi and all other classes combined. For a c–class problem, there

will be c such objective functions that need to share one optimal solution B∗. Again, this is

a multiobjective optimization setting which can be encapsulated in a PARDA framework.

Using the WS and the Lδ–Metric methods, the optimal linear transformation B∗ is obtained

using the new objective functions as follows:

B∗
WS

= argmax
B∈R

EWS(B), where (4.25)

EWS(B) =
c
∑

i=1

wiJ(Gi,G ′
i;B), s.t.

∑

i

wi = 1 , wi > 0 , and

B∗
Lδ
= argmin

B∈R
ELδ(B), where (4.26)

ELδ(B) =
c
∑

i=1

wi[J(Gi,G ′
i;B)− t∗i ]

2, s.t.
∑

i

wi = 1 , wi > 0 .

Obviously, the new one–vs–all (OVA) configuration for the multiclass setting allows

PARDA to require less memory resources than the one–vs–one (OVO) configuration. Sim-

ilarly, if a parallel implementation is considered on today’s multicore architectures, then

PARDA with an OVA configuration will be much faster than PARDA with an OVO con-

figuration. The weight values and the target values are not differently set in the new

configuration, and they are exactly as described in the previous sections. The optimization

using gradient ascent (descent) is slightly modified to accommodate the new configuration,
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where the gradient equations in (4.18) and (4.20) are now changed to be:

∂EWS(B)

∂B
=

c
∑

i=1

wi
∂J(Gi,G ′

i;B)

∂B
, and (4.27)

∂ELδ(B)

∂B
=

c
∑

i=1

2wi (J(Gi,G ′
i;B)− t∗ij)

∂J(Gi,G ′
i;B)

∂B
respectively. (4.28)

4.6.9 A note on computational complexity

The computational bottleneck for the OVA configuration of PARDA lies in evaluating the

objective function in Equations (4.24), (4.25), and (4.26), and in evaluating the gradients

in Equations (4.21), (4.27), and (4.28). The computational complexity for the objective

function in Equation (4.24) is roughly O (κ(p30 + p0p
2)) in the worst case, where κ is con-

stant factor. That is for a c class problem, the complexity is roughly O (cκ(p30 + p0p
2))

in the worst case. The computational complexity for the gradient in Equation (4.21) is

roughly O (π(p30 + p2p20)), where π is another constant factor, and for a c class problem it

is O (cπ(p30 + p2p20)) in the worst case. Note that cubic terms are due to matrix inversions

of the covariance matrices which luckily occur only in the lower dimensional space. Since

minimizing PARDA is an iterative process based on a gradient descent algorithm, the above

computational complexity is multiplied by the number of steps taken by the algorithm.

4.7 Experiments

We conducted extensive experiments on a diversity of real data sets to evaluate PARDA’s

performance. Four different PARDA objective functions were used in these experiments :

1. The original PARDA formulation using the one–vs–one configuration combined with

both scalarization methods, Lδ–Metric (OVO-Lδ) and WS (OVO-WS).

2. The alternative PARDA formulation that uses the one–vs–all configuration combined

with both scalarization methods, Lδ–Metric (OVA-Lδ) and WS (OVA-WS).

Six different algorithms are used for comparisons with PARDA’s four algorithms: di-

rect LDA (dLDA) [97] based on the implementation in [83], White+LDA (WLDA) [95],



4 Pareto Disciminant Analysis 53

Table 4.1 Specifications of the eighteen data sets used in our experiments.

Dataset Size (n) No. of features (p) No. classes (c) Source

glass 214 9 6 UCI [1]

iris 150 4 3 “

isolet 7797 617 26 “

letter 20000 16 26 “

lymphography 148 18 4 “

new thyroid 215 5 3 “

page blocks 5473 10 5 “

satimages 6435 36 6 “

segment 2310 18 7 “

shuttle 58000 9 7 “

vowel 990 11 11 “

yeast 1484 6 10 “

MNIST 10000 24 × 24 10 [113]

USPS 9298 16 × 16 10 [114]

CMU-PIE 11554 32 × 32 68 [112]

Yale--B 2414 32 × 32 38 [115]

ETH80 3280 64 × 64 8 [116]

OSP 2500 1080 10 [117]

aPAC [82], principle component analysis (PCA), relevant component analysis (RCA) [13],

and MODA [86]. That is, including the four PARDA algorithms, ten algorithms in total

will be used in this comparative study. Note that DLDA, WLDA and aPAC can find low

dimensional subspaces of dimensionality p0, where 1 ≤ p0 ≤ min(c − 1, p − 1), and their

optimal discriminating subspace is achieved when p0 = min(c− 1, p− 1).

4.7.1 Data sets

Our data set pool consists of eighteen data sets from various domains :

• Twelve data sets from the UCI machine learning repository [1] – these are glass,

iris, isolet, letter, lymphography, new thyroid, page blocks, satimages,
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segment, shuttle, vowel and yeast.

• Two handwritten digits data sets – MNIST [113] and USPS [114].

• Two data sets for face recognition – CMU-PIE [112] and the extended Yale–B [115]
7.

• One object recognition data set – ETH80 [116].

• The Ohio sitting posture data set (OSP) [117].

Note that all these data sets corresponds to multiclass problems on purpose. The size,

number of features and the number of classes for these data sets are shown in Table 4.1.

Due to the large size of MNIST, we used only the first 1000 images from each class

in the training set, which makes the total size of this data set 10000 samples. Unlike all

other data sets, the original format for isolet, satimages, and USPS has explicit training

and test sets. In order to have a homogenous set of experiments and a common ground for

performance comparisons using cross validation, each test set was concatenated to its cor-

responding training set to form a unified data set like all other sets used in the experiments.

For ETH80, we used the cropped–close128 set, in which all images are RGB, cropped to

128×128 pixels, and the object is centred in the image. These images were transformed to

intensity (grey scale) images and reduced in size to 64×64 pixels using a Gaussian pyramid

of one level. Except for ETH80, no other preprocessing was applied to any data set.

4.7.2 Visual comparison of low dimensional projections

We first compare the different projections obtained from each algorithm when applied on

real data sets. For the purpose of demonstration, we use two data sets from the UCI ma-

chine learning repository, iris and new thyroid, where each data set has three classes. Since

c = 3, the linear transformation Bp×p0 obtained from DLDA, WLDA and aPAC will be

optimal when p0 = 2.

7http://www.zjucadcg.cn/dengcai/Data/FaceData.html. CMU-PIE is in the random.mat file, and Yale–
B is in the YaleB 32x32.mat file.
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Fig. 4.4 Projections obtained from the ten algorithms used in this study on the iris data set
(c = 3, p = 4, n = 150).
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Table 4.2 Comparing the empirical error (%), with standard deviation, for
DLDA, WLDA, aPAC, PCA, RCA and MODA with that of OVO-Lδ and
OVO-WS for p0 = c− 1.

Dataset DLDA WLDA aPAC PCA RCA MODA OVO-Lδ OVO-WS
glass 45.7 (7.8) 44.7 (9.6) 47.8 (9.0) 44.2 (11.1) 47.8 (9.0) 45.7 (10.5) 41.0 (10.7) 43.6 (13.1)
iris 4.6 (4.5) 2.0 (4.5) 2.0 (4.5) 2.6 (3.4) 2.0 (4.5) 2.0 (4.5) 2.0 (4.5) 5.3 (7.5)
isolet 6.9 (2.3) 6.3 (1.8) 6.2 (1.8) 9.2 (2.7) 6.2 (1.8) 11.5 (1.7) 5.9 (1.0) 5.3 (1.2)
letter 13.3 (0.9) 12.9 (1.1) 12.9 (1.1) 13.1 (0.9) 12.9 (1.0) 12.7 (0.9) 12.7 (1.1) 16.9 (1.5)
lymphography 32.5 (11.7) 28.7 (7.9) 28.7 (8.9) 38.1 (11.1) 30.0 (8.7) 42.5 (13.4) 25.0 (9.7) 21.2 (11.8)
new thyroid 24.7 (12.8) 10.4 (8.0) 9.0 (5.7) 17.1 (11.0) 9.0 (5.7) 4.7 (5.0) 6.6 (6.4) 3.8 (7.0)
page blocks 57.0 (15.9) 25.6 (13.0) 43.5 (15.2) 67.9 (12.9) 43.9 (15.1) 28.3 (19.2) 17.4 (10.2) 15.3 (9.0)
satimages 16.1 (4.8) 16.9 (4.7) 17.3 (4.8) 17.5 (5.1) 17.3 (4.8) 19.7 (5.3) 15.9 (5.1) 19.0 (3.7)
segment 22.6 (1.8) 7.4 (1.3) 7.6 (1.8) 22.1 (1.7) 14.4 (6.1) 7.7 (1.6) 6.4 (1.5) 7.7 (1.1)
shuttle 4.2 (0.2) 18.0 (4.7) 6.1 (0.4) 4.2 (0.2) 6.1 (0.4) 4.4 (0.3) 3.7 (0.7) 11.4 (2.5)
vowel 36.8 (9.6) 42.3 (8.8) 42.3 (8.8) 35.8 (8.3) 42.2 (8.9) 35.6 (8.5) 32.5 (6.5) 41.8 (8.9)
yeast 54.1 (3.0) 53.2 (3.1) 54.1 (2.4) 53.8 (3.0) 54.5 (2.5) 56.7 (2.9) 53.9 (3.4) 52.8 (4.1)
MNIST 13.1 (1.4) 13.0 (1.3) 15.6 (1.6) 13.9 (1.5) 13.6 (1.4) 18.1 (2.0) 11.8 (1.0) 12.1 (1.2)
USPS 9.7 (1.0) 6.8 (1.3) 7.1 (1.4) 11.2 (1.2) 7.1 (1.4) 8.6 (1.9) 5.8 (1.2) 5.9 (5.9)
CMU-PIE 7.6 (17.2) 11.4 (18.6) 15.7 (20.3) 7.7 (17.0) 15.7 (20.3) 6.3 (16.0) N.A. N.A.
Yale--B 6.9 (10.8) 12.6 (15.5) 14.2 (16.3) 6.5 (10.1) 14.2 (16.3) 5.1 (8.4) 8.5 (11.5) 27.9 (18.4)
ETH80 38.6 (10.2) 28.9 (10.1) 67.7 (5.1) 44.5 (7.6) 86.0 (1.5) 50.7 (6.3) 37.3 (9.1) 40.0 (7.7)
OSP 31.7 (7.2) 31.4 (7.1) 46.6 (8.5) 31.5 (8.7) 68.3 (5.7) 32.0 (7.2) 30.0 (8.4) 31.4 (6.4)

Figures 4.4 and (4.5) show the projections, with classification error, for the ten different

algorithms on the iris and new thyroid data sets respectively. The reported error on the

data sets is based on a quadratic classifier that is explained in the next subsection. It can

be clearly seen that PARDA algorithms achieve the lowest errors amongst other algorithms,

and their projections are very comparable to the best projections obtained from all other

algorithms. On these two data sets, the WS method with both configurations, one–vs–one

(PDA.2) and one–vs–all (PDA.4), achieve the lowest error rates.

4.7.3 Comparing classification error of low dimensional projections

The performance of all algorithms was measured using the classification error rate (%) in

the low dimensional subspace defined by the linear transformation matrix B obtained from

the different algorithms. The classification error reported here is the empirical error of a

quadratic classifier (with standard deviation) using a 10 folds cross validation scheme. The

quadratic classifier is used in the low dimensional subspace, where a new sample x ∈ R
d is

first projected into the lower dimensional subspace as y = B⊤x, and then y is assigned the

label of the nearest class. The nearest class is decided based on the minimum Mahalanobis

distance

√

(y − µ̂i)
⊤Σ̂i(y − µ̂i), where µ̂i and Σ̂i are the sample mean and the sample

covariance matrix for class Gi in the low dimensional subspace.
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Fig. 4.5 Projections obtained from the ten algorithms used in this study on the newthyroid data
set (c = 3, p = 5, n = 215).
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Table 4.3 Comparing the empirical error (%), with standard deviation, for
DLDA, WLDA, aPAC, PCA, RCA and MODA with that of OVA-Lδ and
OVA-WS for p0 = c− 1.

Dataset DLDA WLDA aPAC PCA RCA MODA OVA-Lδ OVA-WS

glass 45.7 (7.8) 44.7 (9.6) 47.8 (9.0) 44.2 (11.1) 47.8 (9.0) 45.7 (10.5) 51.0 (11.9) 52.6 (7.4)

iris 4.6 (4.5) 2.0 (4.5) 2.0 (4.5) 2.6 (3.4) 2.0 (4.5) 2.0 (4.5) 2.0 (3.2) 2.6 (4.6)

isolet 6.9 (2.3) 6.3 (1.8) 6.2 (1.8) 9.2 (2.7) 6.2 (1.8) 11.5 (1.7) 6.7 (1.4) 6.7 (6.1)

letter 13.3 (0.9) 12.9 (1.1) 12.9 (1.1) 13.1 (0.9) 12.9 (1.0) 12.7 (0.9) 12.7 (1.0) 17.1 (1.5)

lymphography 32.5 (11.7) 28.7 (7.9) 28.7 (8.9) 38.1 (11.1) 30.0 (8.7) 42.5 (13.4) 26.8 (8.8) 18.1 (9.9)

new thyroid 24.7 (12.8) 10.4 (8.0) 9.0 (5.7) 17.1 (11.0) 9.0 (5.7) 4.7 (5.0) 5.7 (6.2) 4.7 (6.3)

page blocks 57.0 (15.9) 25.6 (13.0) 43.5 (15.2) 67.9 (12.9) 43.9 (15.1) 28.3 (19.2) 17.1 (7.9) 15.8 (8.9)

satimages 16.1 (4.8) 16.9 (4.7) 17.3 (4.8) 17.5 (5.1) 17.3 (4.8) 19.7 (5.3) 15.6 (5.5) 18.9 (3.8)

segment 22.6 (1.8) 7.4 (1.3) 7.6 (1.8) 22.1 (1.7) 14.4 (6.1) 7.7 (1.6) 6.3 (1.8) 8.2 (1.3)

shuttle 4.2 (0.2) 18.0 (4.7) 6.1 (0.4) 4.2 (0.2) 6.1 (0.4) 4.4 (0.3) 3.8 (0.2) 12.2 (2.4)

vowel 36.8 (9.6) 42.3 (8.8) 42.3 (8.8) 35.8 (8.3) 42.2 (8.9) 35.6 (8.5) 34.9 (7.5) 41.2 (9.7)

yeast 54.1 (3.0) 53.2 (3.1) 54.1 (2.4) 53.8 (3.0) 54.5 (2.5) 56.7 (2.9) 53.2 (4.0) 54.2 (1.7)

MNIST 13.1 (1.4) 13.0 (1.3) 15.6 (1.6) 13.9 (1.5) 13.6 (1.4) 18.1 (2.0) 12.4 (1.4) 13.2 (1.1)

USPS 9.7 (1.0) 6.8 (1.3) 7.1 (1.4) 11.2 (1.2) 7.1 (1.4) 8.6 (1.9) 6.3 (1.1) 7.2 (0.9)

CMU-PIE 7.6 (17.2) 11.4 (18.6) 15.7 (20.3) 7.7 (17.0) 15.7 (20.3) 6.3 (16.0) 10.1 (20.4) 16.6 (22.2)

Yale--B 6.9 (10.8) 12.6 (15.5) 14.2 (16.3) 6.5 (10.1) 14.2 (16.3) 5.1 (8.4) 8.8 (12.4) 29.4 (18.2)

ETH80 38.6 (10.2) 28.9 (10.1) 67.7 (5.1) 44.5 (7.6) 86.0 (1.5) 50.7 (6.3) 39.6 (9.7) 40.9 (7.4)

OSP 31.7 (7.2) 31.4 (7.1) 46.6 (8.5) 31.5 (8.7) 68.3 (5.7) 32.0 (7.2) 31.2 (7.6) 30.7 (6.6)

Since the four PARDA algorithms studied here rely on MODA’s formulation, and

MODA is included in our comparative study, the same set of initialization parameters

used with PARDA were applied to MODA. That is, the number of different initializations

for MODA was 10, and the initial step length for its gradient ascent procedure was 0.01. In

addition, similar to the four PARDA algorithms, MODA is applied on the whitened space

of the data and not on the data’s original input space.

4.7.4 Analysis of the results

Table 4.2 compares the empirical error for the six algorithms (DLDA, WLDA, aPAC, PCA,

RCA and MODA) with PARDA’s original configuration, one–vs–one, using the Lδ–Metric

method (PDA.1) and the WS method (PDA.2), and for p0 = c − 1. For most of the data

sets, fifteen out of eighteen, it can be seen that PDA.1 and PDA.2 achieve the lowest error

amongst other algorithms, with a slight edge for PDA.1 over PDA.2. Due to the high

dimensionality (1024) and the large number of classes (68) for CMU-PIE, neither the WS

method nor the Lδ–Metric method could be solved on our computational servers due to the
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excessive amount of memory required by this configuration. This was simply solved using

the one–vs–all configuration as shown in Table 4.3.

For CMU-PIE, Yale–B and ETH80, we note that MODA and WLDA had the lowest

error on these data sets. There are two equally important reasons for that. First, our

experience with PARDA algorithms tells that for data sets with a large number of classes

and high dimensionality, the gradient ascent (descent) procedure can easily get stuck into

local minima. An easy remedy for this problem is to increase the number of different ini-

tializations, albeit this would increase the total training time. A more principled approach

is to investigate other optimization techniques specifically for multiobjective optimization

in the context of discriminant analysis.

The second reason for PARDA’s decreased performance is the weight vector. Since

MODA is a special case of the WS method – i.e. no weights on the pairwise KL diver-

gences – the improved performance of MODA (for CMU-PIE and Yale–B) over all other

algorithms implies that all the classes for these problems are in proximity to each other in

terms of KL divergence. This implies that the weights for PDA.1 and PDA.2 should be

more uniform in these particular cases. Unfortunately, the weighting scheme described in

Subsection 4.6.5 does not encourage such a uniform distribution for the weights.

It is important to note that the target vector for the Lδ–Metric method does not con-

tribute to this decrease in performance. As explained in the previous section, this is due

to our rationale for selecting target values that encourage the optimization procedure to

prefer solutions in which all classes are equidistant from each other.

Table (4.3) compares the empirical error for the six algorithms with PARDA’s alterna-

tive configuration, one–vs–all, using the Lδ–Metric method (PDA.3) and the WS method

(PDA.4), for p0 = c−1 as well. Here we note a slight performance decrease for PARDA algo-

rithms in favour of WLDA and MODA. Nevertheless, for thirteen data sets out of eighteen,

either PDA.3 or PDA.4 achieve the lowest error amongst all other algorithms. For other

data sets, PDA.3 and PDA.4 maintain a competitive performance with all other algorithms.

For CMU-PIE, the error reported using the new one–vs–all PARDA configuration shows



4 Pareto Disciminant Analysis 60

Table 4.4 Comparing the lowest empirical error (%) of DLDA, WLDA,
aPAC, PCA and MODA with the empirical error of OVO-Lδ, OVO-WS, OVA-
Lδ, and OVA-WS for p0 = c− 1.

Dataset Lowest Error OVO-Lδ OVO-WS OVA-Lδ OVA-WS

glass PCA 44.2 (11.1) 41.0 (10.7) 43.6 (13.1) 51.0 (11.9) 52.6 (7.4)

iris WLDA, aPAC, RCA, MODA 2.0 (4.5) 2.0 (4.5) 5.3 (7.5) 2.0 (3.2) 2.6 (4.6)

isolet aPAC, RCA 6.2 (1.8) 5.9 (1.0) 5.3 (1.2) 6.7 (1.4) 6.7 (6.1)

letter MODA 12.7 (0.9) 12.7 (1.1) 16.9 (1.5) 12.7 (1.0) 17.1 (1.5)

lymphography WLDA 28.7 (7.9) 25.0 (9.7) 21.2 (11.8) 26.8 (8.8) 18.1 (9.9)

new thyroid MODA 4.7 (5.0) 6.6 (6.4) 3.8 (7.0) 5.7 (6.2) 4.7 (6.3)

page blocks WLDA 25.6 (13.0) 17.4 (10.2) 15.3 (9.0) 17.1 (7.9) 15.8 (8.9)

satimages DLDA 16.1 (4.8) 15.9 (5.1) 19.0 (3.7) 15.6 (5.5) 18.9 (3.8)

segment WLDA 7.4 (1.3) 6.4 (1.5) 7.7 (1.1) 6.3 (1.8) 8.2 (1.3)

shuttle DLDA, PCA 4.2 (0.2) 3.7 (0.7) 11.4 (2.5) 3.8 (0.2) 10.1 (2.1)

vowel MODA 35.6 (8.5) 32.5 (6.5) 41.8 (8.9) 34.9 (7.5) 41.2 (9.7)

yeast WLDA 53.2 (3.1) 53.9 (3.4) 52.8 (4.1) 53.2 (4.0) 54.2 (1.7)

MNIST WLDA 13.0 (1.3) 11.8 (1.0) 12.1 (1.2) 12.4 (1.4) 13.2 (1.1)

USPS WLDA 6.8 (1.3) 5.8 (1.2) 5.9 (5.9) 6.3 (1.1) 7.2 (0.9)

CMU-PIE MODA 6.3 (16.0) N.A. N.A. 10.1 (20.4) 18.3 (22.7)

Yale--B MODA 5.1 (8.4) 8.5 (11.5) 27.9 (18.4) 8.8 (12.4) 29.4 (18.2)

ETH80 WLDA 28.9 (10.1) 37.3 (9.1) 40.0 (7.7) 39.6 (9.7) 40.9 (7.4)

OSP WLDA 31.4 (7.1) 30.0 (8.4) 31.4 (6.4) 31.2 (7.6) 30.7 (6.6)

that this configuration can accommodate data sets with large number of classes and large

number of input features, while it can maintain a comparable performance with other al-

gorithms. However, as explained earlier, the decreased performance for CMU-PIE, Yale–B

and ETH80 is due local minima and the initial weights on the pairwise KL divergences.

Since the one–vs–all PARDA configuration is an approximation to the original one–vs–

one PARDA configuration, it is important to compare these two configurations using the

two proposed scalarization techniques, WS and Lδ–Metric. Table 4.4 compares the four

different PARDA algorithms with the lowest error achieved by any of the other six different

algorithms.

First, by comparing the Lδ–Metric scalarization method using both configurations, one–

vs–one (PDA.1) and one–vs–all (PDA.3), it can be seen that both models maintain very

similar results with a slight improvement for PDA.1 over PDA.3. This is expected since the

the one–vs–one configuration is more faithful to the class topology and assigns an objective

function for every pair of different classes. A similar remark can be made with regard
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to the WS scalarization method under both configurations. That is, in general there is

no significant increase in error when considering the one–vs–all instead of the one–vs-one

configuration.

This is an encouraging result since it permits, without sacrificing performance, to re-

place the one–vs–one configuration that scales quadratically with the number of classes,

with an efficient configuration that scales linearly with the number of classes. This down-

scale of model complexity has a direct impact on the time and space complexity of the

PARDA framework.

Second, by comparing both scalarization methods, Lδ–Metric vs. WS, under both

configurations, it can be seen that the Lδ–Metric method is usually superior to the WS

method. Note that both methods use the same approach for setting the weights on the

pairwise SKLDs as explained in Subsection 4.6.5, and hence the inferior performance of

WS in general is not due the weights selection. However, there are two reasons for the

superior performance of the Lδ–Metric method. 1) As discussed in Subsection 4.5.1, the

WS method assumes that the set of efficient solutions in the objective space is a convex

set. Since in practice this might not be true, there will be a set of efficient solutions that

can not be found by the WS method. 2) Similar to MODA, the WS method does not

impose any constraints on the minimum distance between the classes. This is unlike the

Lδ–Metric method in which the target vector encourages the optimization procedure to

equally spread the classes in the low dimensional subspace. Finally, in terms of running

time, it was noticed that the Lδ–Metric method, in both configurations, is much faster than

the WS method.

In summary, the above analysis strongly suggests that PARDA using the Lδ–Metric

scalarization method and a one–vs–all configuration, form an efficient algorithm for multi-

class heteroscedastic discriminant analysis.

4.8 Discussion and Concluding Remarks

In this chapter I have presented a supervised subspace learning algorithm based on Fisher

discriminant analysis (FDA). The algorithm is based on a fundamentally new perspective



4 Pareto Disciminant Analysis 62

for the multiclass linear dimensionality reduction problem. Here, the multiclass problem

is perceived as a set of pairwise, possibly conflicting, objective functions representing the

pairwise distance between different classes. This perspective raised the need for the ma-

chinery of multiobjective optimization for which its optimal solution is known to exist.

The optimal solution for this multiobjective problem, known as Pareto optimal, is sub-

optimal for each individual objective function, but is in maximal agreement between all

the possibly conflicting objective functions. It is this nature of the Pareto solution that al-

lowed us to use it efficiently in subspace learning. In terms of discriminating subspaces, the

Pareto subspace separates between classes that overlap in the input space, while safeguards

already distant classes from overlapping in the embedding space. In fact, the proposed al-

gorithm encourages Pareto subspaces in which all classes are equidistant from each other.

The Pareto framework presented here for discriminant analysis imposes different ques-

tions in various research directions. The first question is on the initial weight for each

objective function. How to choose these weights, should they be updated or not, and if so,

what is the update rule for these weights to guarantee convergence to the right Pareto so-

lution? A second question is about the objective functions in Equations (4.25) and (4.26).

These objective functions do not have a regularization term on the variable B, nor do

they impose an orthogonality constraint on B in the embedding space. A third question is

on the gradient descent procedure used for optimization. Since the objective functions in

Equations (4.25) and (4.26) are weighted summations of convex functions (the symmetric

KL divergence) with positive weights, is there any potential for using more sophisticated

algorithms such as the Newton method? Another question is whether the stochastic ap-

proach of Schäffler [111], or the deterministic algorithm of Hillermeier [37] for exploring

all the Pareto set of solutions are suitable for discriminant analysis, since the variable of

interest here is the matrix B which has a particular structure.

Taking few steps backward from the discriminant analysis context and terminology, the

matrix B∗ defines a low rank, square symmetric matrix A∗ = B∗B∗⊤, which is the main

element for a GQD-type semi-metric. That is, since A∗ is low rank, then A∗ is PSD,

and hence it defines a semi-metric space (Rp, ‖ · ‖A∗), which is suitable for classification

purposes. While semi-metric spaces can be useful for classification purposes, they are
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risky for clustering and unsupervised learning. As it will be shown in the next chapter,

unsupervised embedding in semi-metric spaces can yield unstable embeddings, and can

easily collapse all points in the input space into one point in the embedding space. These are

undesirable outcomes for unsupervised algorithms for metric learning and dimensionality

reduction, since there are no labels to validate the new configuration of the points. In the

following chapter, I will consider this more difficult setting for subspace learning in which

there are no class or group labels on the data, and it is required to learn an embedding into

a low dimensional subspace that reveals the natural structure and groupings in the data.
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Chapter 5

Unsupervised Metric Learning

In this chapter, I consider the problem of learning a metric space for the data set D =

{xi}ni=1 ⊂ X when no a priori information in the form of labels or side-information are

available for learning. Here I propose an algorithmic framework for learning a metric

space based on spectral embedding methods. The algorithm has the following properties.

(i) The algorithm is totally unsupervised, and hence it does not require partial labels nor

partial side-information. (ii) The algorithm, simultaneously, overcomes the global Gaussian

assumption and defines a metric that varies according to the sample density in the input

space. One one hand, the algorithm can better accommodate the characteristics of real

world data sets, and overcome the uneven sample distribution in the input space. On the

other hand, the metric space obtained by the algorithm can reveal more about the non-

spherical and non-compact clusters in the data, which finally improves the efficiency of

clustering algorithms when applied to data embedded in this new metric space.

5.1 Motivation

The traditional approach for learning a metric over the data set D = {xi}ni=1 ⊂ X ⊂ R
p

learns an instance of the generalized quadratic distance (GQD) :

d(xi,xj ;A) =
√

(xi − xj)⊤A(xi − xj), A ≻ 0,

in a supervised or a semi-supervised manner. A major limitation for this type of metric

learning is that learning the matrix A requires the existence of at least partial labels or

2011/12/14
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partial side-information. Hence, these algorithms can not be applied in a fully unsuper-

vised setting. A second limitation of these algorithms is that the GQD enforces a global

Gaussian assumption over D, which is unjustified given the characteristics of real world

data sets discussed in Section 2.1.2. A third limitation, again due to the GQD, is that the

metric is constant over the entire space, and hence, it does not take into consideration the

uneven sample distribution in the input space. In this chapter, I propose a metric learning

algorithm, based on spectral methods, that is totally unsupervised and can overcome the

previously mentioned limitation of traditional metric learning algorithms.

Spectral embedding methods [18, 19, 20, 25, 26, 27] are a group of unsupervised, non-

parametric learning algorithms that share the use of an eigendecomposition step for ob-

taining a lower dimensional embedding of the data set D. The shared eigendecomposition

step characterizes the nonlinear manifold Mp0 on the hyperplane Rp0 ⊂ Rp on which the

data set D would lie [22]. During this characterization, spectral methods perform two

simultaneous tasks; dimensionality reduction, and the characterization of non-spherical,

non-compact clusters which are intimately related to nonlinear manifolds (both are regions

of high densities). Hence spectral methods, finally, obtain an embedding for the set D in

the low dimensional space, where the structure and grouping in the data are manifested by

the Euclidean distance.

Despite the interesting properties of spectral embedding methods, there are few issues

that require careful consideration with this type of algorithm:

1. The limitations mentioned above for the GQD can still echo in spectral embedding

methods through the Euclidean distance.

2. The embedding process itself can result in unstable, counter intuitive embeddings, or

can easily collapse some (or all) points in D onto one or multiple points in the final

embedding space.

3. The uneven sample distribution; most of spectral manifold learning algorithms try to

preserve a certain notion of geometry, either globally and/or locally. If the data do

not densely sample the manifold, the local and/or global structure of the manifold

becomes difficult to estimate, and these algorithms recover low dimensional points

that do not exhibit the desired attributes [71].
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These are undesirable states for any unsupervised learning algorithm that will be deployed

in the new embedding space. An unstable embedding can make the clustering problem

harder, while collapsing the points can easily mislead the clustering algorithm.

Both issues of spectral methods are related to the input of the eigendecomposition step

of spectral embedding methods. That is, the eigendecomposition step takes as input a

symmetric PSD matrix K ∈ Rn×n that is extracted from the adjacency matrix for the

graph G(D, E) defined over the data set D, where D now acts as the set of vertices, and E
is the set of edges. For instance, KPCA defines a fully connected graph over D, while LLE,

Isomap, Laplacian eigenmaps, and spectral clustering define fully connected or neighbour-

hood graphs using ǫ-balls or the k nearest neighbours (NN) of each xi ∈ D.

The first issue of spectral methods is related to the similarity on the edge eij which, in

many cases, is directly related to the Euclidean distance between xi and xj. For instance,

the similarity in KPCA, Laplacian eigenmaps, and spectral clustering, can be measured

using kernels such as the linear dot product kernel, the exponential kernel KE = ‖x−y‖2
σ

,

and the Gaussian kernel KG =
‖x−y‖2

2

σ
, where σ > 0 (see [22] for more details on LLE and

Isomap). Since the Euclidean distance is a more restricted version of the GQD – replacingA

with the identity matrix I – then the same limitation for the GQD applies to the Euclidean

distance. What slightly leverages these limitations is the existence of affinity control param-

eters, as σ in KE and KG, that can be optimized according to the task under consideration.

The second issue of spectral methods is due to the metric properties of the similarity

measure on the edge eij, even if it is not related to the Euclidean distance. If the similarity

measure relies on a distance metric, where all metric axioms are satisfied, then the em-

bedding process will respect these metric properties while characterizing the non-spherical

and non-compact clusters in the data, yielding a meaningful embedding in the metric space

(Rp0, ‖·‖2). However, if the similarity measure relies on a semi-metric distance, then Axioms

(3) and (4) are not required to hold1. That is, the triangle inequality might not be satisfied,

and the distance between any two points a and b can be zero for any a 6= b. Then, during

the embedding, these metric properties will be violated while characterizing the clusters,

which might easily result in unstable embeddings, or collapse all the points onto one point

1See Appendix
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in the embedding space. For instance, the difference between these two types of similarity

measures can be noticed in KE and KG, where the former relies on a metric distance, while

the latter relies on a semi-metric one. This issue will be discussed in detail with examples in

Section 5.4.2, where the discussion is completely based on the results of I. Schoebërg in [43].

The above limitations of metric learning algorithms, and the special considerations of

spectral embedding methods suggest that an unsupervised metric learning algorithm should

meet the following requirements :

(i) The algorithm should not rely on partial labels nor partial side-information on the

data.

(ii) The algorithm should further leverage the limitations of the GQD (and the Euclidean

distance), which implies overcoming the global Gaussian assumption and the fact that

the GQD is constant over the entire input space.

(iii) The algorithm should be careful about the metric properties of similarity measures

used on the graph G(D, E), in order to obtain a proper embedding in the metric space

(Rp0, ‖ · ‖2), such that the structure and grouping in the data are better manifested

by the Euclidean distance.

5.1.1 Requirements analysis

The first requirement above is to avoid any reliance on labels or side information for learn-

ing a metric space. To this end, I will rely on spectral embedding algorithms due to their

unsupervised and non-parametric nature, and their flexibility that can encompass the sec-

ond and third requirements above (as will be shown shortly). In addition, similar to PCA

[63] and classical multi-dimensional scaling (MDS) [39, 41, 42], spectral methods are tech-

niques that rely on the machinery of eigensolvers. Hence, their optimization algorithms do

not suffer from local minima and can scale well with large and high dimensional data sets

thanks to state-of-the-art eigensolvers.

There are two reasons for which spectral embedding methods can be considered as

metric space learning algorithms:
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• The fact that the eigendecomposition step characterizes the nonlinear manifold Mp0

on the hyperplane Rp0 ⊂ Rp. If Mp0 is not defined on Rp0, then learning a hypothesis

directly on Mp0 is very hard since it requires computing the geodesics between points

instead of distances, and requires estimating the dimensionality p0 for M. Since there

is no a priori knowledge on D, these two problems become notoriously hard to solve.

• The fact that all spectral embedding methods are all KPCA algorithms with different

kernels (and normalizations) that are learned from the data, for which generalization

to out-of-sample examples is accurately obtained using the Nyström formula [22].

If there is no generalization to out-of-sample examples, then the embedding is re-

stricted to the training samples only, and can not be defined as a mapping nor as a

transformation, which defies the notion of generalization for learning algorithms.

Requirement (ii) addresses the incompatibility between the GQD on one hand, and the

characteristics of real world data sets and the uneven sample distribution on the other other

hand. That is, the global Gaussian assumption, and the fact that the GQD is constant

over the entire space, can not accommodate the characteristics of real world data sets, nor

the uneven data distribution in the input space. This incompatibility, however, suggests

that the global Gaussian assumption should be abandoned. Also, it suggests that the dis-

tance or the similarity measure between the vertices of the graph G(D, E) should vary in

according to underlying sample distribution in the input space. Fortunately, these two

suggestions meet nicely with the principal of local learning algorithms proposed by Bottou

and Vapnik [47]. More specifically, theoretical analysis [118] supported by empirical results

[47], suggest that a learning algorithm that adopts a local adjustment by means of local

parameters, whose impact is limited to small neighbourhoods in the input space, can ac-

commodate the characteristics of real world data sets and the uneven sample distribution,

yielding a significant improvement of the overall performance of the learning algorithm.

Therefore, the proposed unsupervised metric learning algorithm will rely on the principle

of local learning to compute the distance or the similarity between the vertices of the graph

G(D, E).

Requirement (iii) stresses that this distance or similarity measure that will vary over the

input space according to the underlying sample density should be induced from a proper

metric in order to guarantee that the embedding space is the metric space (Rp0, ‖ · ‖2).
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5.2 Skeleton of the Proposed Algorithm

The proposed algorithm for unsupervised metric learning is comprised of two steps. In the

first step, as depicted in Figure 5.1, the global Gaussian assumption imposed by the GQD

is relaxed and allowed to hold only in a local neighbourhood around each sample xi ∈ D.

Note that the local Gaussian assumption does not impose any constraints nor assumptions

on the global data distribution. The local Gaussian assumption, however, associates with

each xi a symmetric PD matrix Ai ∈ S
p×p
++ , which is the covariance matrix of the local

Gaussian distribution centred at xi. This matrix Ai naturally emerges as the necessary

local parameter needed to leverage the uneven sample distribution effect. However, intro-

ducing the matrices Ai changes the structure of the data from the simple set of vectors

D = {xi}ni=1 ⊆ X , to a new augmented data set DA = {(xi,Ai)}ni=1 ⊆ X of the 2-tuples

(xi,Ai), where X is defined as the new augmented space for the data. Note that X carries

all the information on the varying data density in the input space. Note also that the

augmented space X can be obtained in a supervised or unsupervised manner, however here

I consider the unsupervised case since the objective is unsupervised metric space learning.

In the second step, spectral embedding algorithms are used to embed the augmented

data set DA ⊂ X into a low dimensional Euclidean space (Rp0, ‖ · ‖2). That is, unlike

the traditional setting where spectral algorithms are directly applied on D, here spectral

methods are applied on the augmented data set DA ⊂ X that carries all the information

on the varying density in the input space X .

To apply spectral methods on DA, a similarity or a distance measure needs to be de-

fined over the tuples (xi,Ai) and (xj ,Aj) in order to define the similarity matrix of the

new graph G(DA, E). Due to the particular structure of X, convolution kernels [119] be-

come the intuitive similarity functions for this new augmented space. In particular, based

on the structure of the exponential kernel KE and the Gaussian kernel KG, I introduce

the relaxed exponential kernels KJR and KBR for the augmented space X. On one hand,

the new relaxed kernels allow all kernel based learning algorithm to be directly applied

on the augmented space X. On the other hand, they naturally induce two new distance

metrics2, the Jeffreys-Riemann metric dJR, and the Bhattacharyya-Riemann metric dBR

2According to the definition of a metric in Chapter 2
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Fig. 5.1 (A) In the traditional setting, spectral methods rely on the Eu-
clidean distance between X (green) and Y (blue), either explicitly as in clas-
sical MDS, or implicitly via the exponential kernel KE or the Gaussian kernel
KG as in spectral clustering. (B) The local Gaussian assumption proposed
here, considers the few nearest neighbours (NNs) around X and Y , and then
each set of NNs is modelled as a Gaussian distribution as in (C). The spectral
methods proposed here will rely on the dissimilarity (or difference) between
the two Gaussian distributions instead of the Euclidean distance between X
and Y .

which introduce the new metric spaces (X, dJR) and (X, dBR) respectively.

Based on the results of I. Schoënberg [43], I show that X can be embedded in the low

dimensional metric space (Rp0, ‖ · ‖2) using KJR and KBR. Similarly, using the results of

Young & Householder [39], and Gower & Legendre [40], I show that X can be embedded

in (Rp0, ‖ · ‖2) using dJR and dBR. While the first embedding is realized via Laplacian

embedding algorithms [25, 26, 27, 20], the second embedding is realized via classical MDS

algorithm, or Euclidean embedding [39, 41, 42], using the metrics dJR and dBR.

Although exponential kernels based on semi-metrics have been explored in different in-

carnations [44, 45], the issue of adhering to metric properties as proposed here has been



5 Unsupervised Metric Learning 71

overlooked. We also note that the issue of adhering to metric properties is stressed in the

theorems of Young & Householder [39] and Gower & Legendre [40] for Euclidean embed-

ding. As mentioned earlier, semi-metrics violate the properties of metric spaces, and in the

context of embedding they result in unstable embeddings, and can collapse all the point

into one point in the embedding space. In this chapter, I will also discuss the drawbacks

that result from such violations.

5.3 The Augmented Space X

The proposal for relaxing the constraint which enforces the matrix A in the GQD to be

globally defined for the entire input space, is equivalent to relaxing the global Gaussian

assumption on the data to be only valid in a small neighbourhood around each sample

xi ∈ D. Note that this mild assumption on the local distribution around each xi does not

impose any constraints nor assumptions on the global data distribution. To realize the

local Gaussian assumption, each xi is associated with a symmetric matrix Ai ≻ 0 defined

as:

Ai =
1

m− 1

m
∑

xj∈Ni

(xj − xi)(x
j − xi)

⊤ + γI , (5.1)

where xj ∈ X , Ni = {xj}mj=1 is the set of m nearest neighbours (NNs) to xi, and 0 < γ ∈ R

is a regularization parameter. The regularization here is necessary to avoid the expected

rank deficiencies in Ai’s, which are due to the small number of NNs considered around xi,

together with the high dimensionality of the data3, and hence, this helps avoid over-fitting

and outlier reliance. The definition of Ai in (5.1) is simply the average variance–covariance

matrix between xi and itsm NNs. In the context of local learning, Ai is the local parameter

that introduces the necessary local adjustment for the learning algorithm to leverage the

uneven sample distribution effect.

The local Gaussian assumption, as depicted in Figure 5.1, can be seen as anchoring a

Gaussian density Gi(µi,Σi) at point xi, where its mean µi ≡ xi and its covariance matrix

Σi ≡ Ai. This assumption can be extended in the spirit of [120, 121] by letting xi ∈ Ni

3Note that γ is unique for all Ai’s.
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which yields that:

µi ≡ µ̂i =
1

m+ 1

∑

xj∈Ni

xj, and

Σi ≡ Σ̂i =
1

m

∑

xj∈Ni

(xj − µ̂i)(x
j − µ̂i)

⊤ + γI . (5.2)

This can be seen as a local smoothing of the data, combined with local feature extrac-

tion by means of a generative model, where the features are the parameters µ̂i and Σ̂i for

each xi ∈ X . Note that Ai and Σ̂i are defined in an unsupervised manner. However, if

auxiliary information is available in the form of labels or side information, then the pro-

posed approach here can naturally be extended to supervised and semi-supervised learning.

Here, the set of NNs for each xi is selected using the Euclidean distance. Although this

is might not be suitable for very high dimensional data, in a small local neighbourhood

the Euclidean distance is more reliable than it is for far away points. This is due to our

initial assumption in Section 2.2 that the input space X is smooth and locally Euclidean.

Also, selecting the very few NNs of a point xi does not violate the notion of locality in high

dimensional spaces. Nevertheless, it is essential to use more sophisticated techniques for

finding the NNs of each xi [122] in high dimensional spaces.

The result of the local Gaussian assumption introduces a new component Ai for each

xi ∈ X which changes the structure of the input data from the set of vectors D = {xi}ni=1

to an augmented data set DA = {(xi,Ai)}ni=1 ⊆ X of 2-tuples (xi,Ai), where X is the de-

sired augmented space. This change in the data structure, in turn, requires a new measure

for the (dis)similarity between (xi,Ai) and (xj ,Aj), since the Euclidean distance can only

operate on the first element of the 2-tuples (xi,Ai) – i.e. elements in Rp – and not the

symmetric matrix Ai ≻ 0.

Note that the augmented space X implicitly represents the parameters for the set of

local Gaussians G = {Gi(µi,Σi)}ni=1, which will be referred to as the dual perspective for X.

In order to avoid any future confusion in the notation, this will be the default definition for

X, where implicitly, (µi,Σi) ≡ (xi,Ai), or (µi,Σi) ≡ (µ̂i, Σ̂i). In the following sections, I
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formally define suitable kernels and distance measures for the augmented space X.

5.4 A Convolution Kernel for The Augmented Space X

The framework of convolution kernels suggests that a possible kernel for the augmented

space X can have the following structure [119]:

KX{(µi,Σi), (µj,Σj)} = Kµ(µi,µj)KΣ(Σi,Σj),

where Kµ and KΣ are symmetric PSD kernels, which yields that KX is symmetric and PSD

as well. Our approach for defining Kµ and KΣ is based on the definition of KE , which is

an exponential function of the Euclidean distance between its two inputs. Due to the PSD

and symmetry properties of metrics and semi-metrics, Axioms (1), (2), & (4), it follows

that KE is symmetric and PSD. This result is due to Theorem 4 in [43] which states that:

Theorem 5.4.1 The most general positive function f(x) which is bounded away from zero

and whose positive powers [f(x)]α, α > 0, are PSD is of the form: f(x) = exp{c+ ψ(x)},
where ψ(x) is PSD and c ∈ R.

If ψ(µi − µj) = ‖µi − µj‖, σ > 0, and for any real c then KE is PSD. Note that it is

only due to the axiomatic definition of metrics and semi-metrics that we are allowed to

state that metrics and semi-metrics are PSD. Also, it is important to emphasize that while

metrics and semi-metrics are PSD by their axiomatic definition, KE is PSD in the sense of

PSD functions [43] and Mercer kernels [123] introduced in the Appendix.

The above discussion suggests that if dµ(·, ·) and dΣ(·, ·) are metrics (or semi-metrics)

for {µi}ni=1 and {Σi}ni=1 respectively, then Kµ and KΣ can be defined as:

Kµ(µi,µj) = exp
{

− 1
σ
dµ(µi,µj)

}

,

KΣ(Σi,Σj) = exp
{

− 1
σ
dΣ(Σi,Σj)

}

, and hence

KX = exp
{

− 1
σ
[dµ + dΣ]

}

, (5.3)

where σ > 0 , and [dµ + dΣ] is a (semi-)metric for the augmented space X. In Section

5.5.2, it will be shown that, in general, dµ is the GQD between µi and µj, while dΣ is a

(semi-)metric for symmetric PD covariance matrices.
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5.4.1 Isometric embedding in a Hilbert space H

An interesting property of the exponential function in KE and KG is its ability to perform

an isometric embedding for (Rp, ‖ · ‖2) and (Rp, ‖ · ‖22) into a Hilbert space H. This result

is due to Theorem 1 in [43] which states that:

Theorem 5.4.2 A necessary and sufficient condition that a separable space S with a semi-

metric distance d, be isometrically embeddable in H, is that the function exp{−αd2}, α > 0,

be PSD in S. Moreover, if d is a metric, then the triangle inequality is preserved through

the embedding, and the new space becomes a metric space4.

Therefore, if dµ and dΣ are (semi-)metrics for {µi}ni=1 and {Σi}ni=1 respectively, then by

Theorem 5.4.1, Kµ � 0 and KΣ � 0, and by Theorem 5.4.2, ({µi}ni=1, dµ), ({Σi}ni=1, dΣ)

and (X, [dµ + dΣ]) are isometrically embeddable in H.

Another result of Theorem 5.4.2 is that it clarifies the difference between embeddings

obtained via semi-metrics, and those obtained via metrics. While the former will result in

a semi-metric space, the latter will yield a metric space. This will be clarified with a real

example shortly.

Theorem 2 in [43] is similar to Theorem 5.4.2; however it addresses the particular case

of spaces with m real numbers, Sm, and equipped with a norm function ϕ(x), x ∈ Sm, and

a distance function ϕ(x− x′)
1

2 . This theorem will be used instead of Theorem 5.4.2, when

the Riemannian metric for symmetric PD matrices is introduced.

5.4.2 Metrics vs. semi-metrics for isometric embedding

The crucial difference between metrics and semi-metrics in the context of embedding can

be explained in the light of Theorem 5.4.2. Semi-metrics are relaxed versions of metric

measures in which Axiom (3), d(a, b) = 0 iff a = b, and the triangle inequality are not

required to hold. A result of this relaxation is that semi-metrics can mislead an algorithm

that relies on distance metrics since d(a, b) can be zero for any pairs a,b and a 6= b. More-

over, violating the triangle inequality results in violating the relative distance between the

points. As a net result, semi-metrics have tendency to collapse all the points into a single

4See footnote in [43, p. 525].
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Fig. 5.2 Embedding of the Wisconsin database for breast cancer (WDBC)
[1] obtained by SC using two different kernels, KE (left) and KG (right). The
data set has two classes, 569 samples, and 30 features.

point in the embedding space.

To see this, consider the real example depicted in Figure 5.2 which shows the embedding

obtained by Laplacian eigenmaps using two different kernels to fill in the affinity matrix;

KE (left) which uses a metric, and KG (right) which uses a semi-metric. It can be seen

that the semi-metric space obtained by KG led to catastrophic results since it collapsed all

the points from the two classes into a single point at (1, 0). This scenario is guaranteed

not to happen in metric spaces due to Axioms (3) and (5), which explains why metrics

can be favoured over semi-metrics in the context of embedding. Based on this insight, in

the following section, I will define some metrics and semi-metrics that will characterize the

kernel KX.

5.5 Kernels for Probability Distributions

To derive dµ and dΣ, our discussion begins from the dual perspective for X, or the set

G = {Gi(µi,Σi)}ni=1, and the definition of KE as an exponential function of the Euclidean

distance between its input vectors. The fundamental difference here is that the elements

of interest are not the vectors xi,xj ∈ Rp, but rather the two Gaussian distributions
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Gi,Gj ∈ Gp, with µi 6= µj and Σi 6= Σj. It follows that the Euclidean distance describing

the difference between xi and xj needs to be replaced with a dissimilarity measure for

probability distributions, and this measure should be at least a semi-metric in order to

guarantee that the resulting kernel is PSD, according to Theorem 5.4.2.

A natural measure for the dissimilarity between probability distributions is the diver-

gence, which by definition according to Ali & Silvey [124], and Csiszar [125], is not a metric.

To see this, let P be a family of probability distributions, and let P1, P2 ∈ P be defined

over the same domain of events E , then the divergence of P2 from P1 is:

div(P1, P2) = Ep1{C(φ)} =

∫

E

p1(x)C(φ(x))dx, (5.4)

where div(P1, P2) ∈ [0,∞), p1, p2 are the probability density functions of P1 and P2 respec-

tively, φ(x) = p1(x)/p2(x) is the likelihood ratio, and C is a continuous convex function on

(0,∞).

Note that by definition, div(P1, P2) ≥ 0, and equality only holds when P1 = P2 [124].

This is equivalent to Axioms (1), (2) & (3) of a metric, and hence div(P1, P2) is PSD

(by the Axioms of metric definition). The divergence as defined in Equation (5.4) is not

symmetric5 since div(P1, P2) 6= div(P2, P1). A possible symmetrization for the divergence

can be : sdiv(P1, P2) = div(P1, P2) + div(P2, P1), where sdiv preserves all the properties of

a divergence as postulated by Ali–Silvey and Csiszar [92]. Hence, sdiv is symmetric and

PSD and a possible kernel for P1 and P2 can be:

KP(P1, P2) = exp{− 1
σ
sdiv(P1, P2)}, σ > 0. (5.5)

Using Theorems 5.4.1 and 5.4.2, KP is symmetric and PSD, and (P, sdiv) is isometrically

embeddable in H. Note that KP is in the same spirit of the exponential kernel KE as

explained above. In addition, KP is valid for any symmetric divergence measure from

the class of Ali–Silvey or f–divergence [125], and hence it is valid for any probability

distribution. Note that the kernel KP is not the only kernel for probability distributions,

5Depending on the choice of C(·) in (5.4) and its parametrization, one can derive symmetric divergence
measures, see [124] for examples.
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and other kernels have been proposed in [126, 127, 128].

5.5.1 The case of Gaussian densities

We now consider the particular case of Gaussian densities under some classical symmetric

divergence measures such as the symmetric KL divergence, or Jeffreys divergence dJ , the

Bhattacharyya divergence dB, and the Hellinger distance dH . For G1,G2 ∈ Gp, Jeffreys

divergence dJ can be expressed as:

dJ(G1,G2) =
1
2
u⊤Ψu+ 1

2
tr{Σ−1

1 Σ2 +Σ−1
2 Σ1} − p, (5.6)

where Ψ = (Σ−1
1 +Σ−1

2 ), and u = (µ1 − µ2). The Bhattacharyya divergence dB and the

Hellinger distance dH are both derived from the Bhattacharyya coefficient ρ, which is a

measure of similarity between probability distributions:

ρ(G1,G2) = |Γ|− 1

2 |Σ1|
1

4 |Σ2|
1

4 exp{−1
8
u⊤Γ−1u},

where Γ = (1
2
Σ1+

1
2
Σ2). The Hellinger distance dH can be derived from ρ as

√

2[1− ρ(G1,G2)],

while dB is defined as − log[ρ(G1,G2)] :

dB(G1,G2) =
1
8
u⊤Γ−1u+ 1

2
ln
{

|Σ1|−
1

2 |Σ2|−
1

2 |Γ|
}

. (5.7)

Kullback [92] and Kailath [129] note that dJ and dB are positive and symmetric but violate

the triangle inequality, while dH meets all metric axioms. Using the kernel definition in

(5.5), it is straight forward to define the following kernels:

KJ(G1,G2) = exp{− 1
σ
dJ(G1,G2)}, σ > 0, (5.8)

KH(G1,G2) = exp{− 1
σ
dH(G1,G2)}, σ > 0, and (5.9)

KB(G1,G2) = exp{−dB(G1,G2)} = ρ(G1,G2). (5.10)

We note that [44] have proposed the Bhatacharyya kernel ρ(G1,G2) and confirm that it is

PSD through the product probability kernel (PPK). In contradiction, [45] have proposed

the KL kernel KJ(G1,G2) and claim, without justification, that it is not PSD. Since dJ and

dB are semi-metrics, and dH is a metric, then using Theorems 5.4.1 and 5.4.2, KJ , KH and
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KB are symmetric and PSD kernels, and (X, dJ), (X, dB), and (X, dH) are isometrically

embeddable in H.

5.5.2 A close look at dJ and dB

Kullback [92, pp. 6,7] describes dJ(G1,G2) as a sum of two components, one due to the

difference in means weighted by the covariance matrices (the first term), and the other due

to the difference in variances and covariances (the second term). Note that this explana-

tion is also valid for dB(G1,G2). Recalling KX from Equation (5.3), then dµ and dΣ can be

characterized as follows.

The first term in Equations (5.6) and (5.7) is equivalent to the GQD, up to a constant

and a square root – i.e. semi-metrics. If Σ1 = Σ2 = Σ, then:

dJ(G1,G2) = u⊤Ψu,

dB(G1,G2) = u⊤Γ−1u.







dµ (5.11)

The second term in Equations (5.6) and (5.7) is a discrepancy measure between two co-

variance matrices that is independent from µ1 and µ2. If µ1 = µ2 = µ then:

dJ(G1,G2) = tr{Σ−1
1 Σ2 +Σ−1

2 Σ1} − p,

dB(G1,G2) = ln
{

|Γ||Σ1|−
1

2 |Σ2|−
1

2

}

,







dΣ (5.12)

which define two semi-metrics between Σ1 and Σ2. Although the quadratic terms in Equa-

tion (5.11) can be transformed into metrics by taking the square root of each term, it is

not clear how the semi-metrics in Equation (5.12) can be transformed into metrics. This

is investigated in the following subsection.

5.5.3 A metric for symmetric PD matrices

The drawback of the distance measures in Equation (5.12) is that they are semi-metrics,

and hence they violate the geometry of Sp×p
++ which is a metric space. The factorizable

nature of KX, and the decomposition of dJ(G1,G2) and dB(G1,G2) into two different compo-

nents, where the second term is independent from µ1 and µ2, allows us to introduce a metric
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for symmetric PD matrices that can be used instead of the semi-metrics in Equation (5.12).

A symmetric PD matrix is a geometric object and the manifold S
p×p
++ has a specific

structure with defined geometric properties. This is the subject of Riemannian geometry,

and fortunately, Sp×p
++ is equipped with an inner product that induces a natural distance

metric, or a Riemannian metric, between all its elements. The Riemannian metric respects

the geometry of Sp×p
++ , which is unlike the semi-metrics in (5.12) that are just derived from

dJ(G1,G2) and dB(G1,G2), and unaware of the geometry of Sp×p
++ .

If dR is the Riemannian metric for Sp×p
++ , then dΣ in Equation (5.3) can be replaced with

dR, and hence KX can be redefined as follows:

KX = Kµ(µ1,µ2)KR(Σ1,Σ2), (5.13)

= exp{− 1
σ
dµ} exp{− 1

σ
dR},

= exp{− 1
σ
[dµ + dR]}, σ > 0, (5.14)

where dR is formally introduced in the next subsection.

5.5.4 The Riemannian metric for S
p×p
++

The manifold of symmetric PD matrices S
p×p
++ is a differentiable manifold in which each

point A ∈ S
p×p
++ has a tangent space TA(S

p×p
++ ) that is endowed with an inner product, or a

Riemmanian metric 〈·, ·〉A, on the elements of the tangent space. The dimensionality of Sp×p
++

and its tangent space is p(p+ 1)/2. The inner product induces a norm on the elements of

the tangent space such that for B′ ∈ TA(S
p×p
++ ), the norm is defined as: ‖B′‖2A = 〈B′,B′〉A.

The Riemannian metric by definition of an inner product, is bilinear, symmetric, PSD, and

C∞ in A, ∀A ∈ S
p×p
++ [130]. Due to the inner product 〈·, ·〉A, the tangent space in the

case of Riemannian manifolds is a finite dimensional Euclidean space. Being C∞, the inner

product and the induced norm vary smoothly from point to point on the manifold.

The metric dR was first derived by C. Rao [131], and thoroughly studied by Atkin-

son and Mitchel in [132] (see also their affiliated references for a comprehensive review).

Independently, in geodesic sciences, Förstner and Moonen [133] derived the same metric
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ten years latter. The metric was initially introduced to the computer vision community

through the work of X. Pennec [134] in the context of diffusion tensor imaging (DTI) based

on the work of Atkinson and Mitchel. The skeleton of the derivation below is based on the

concise derivation of the metric presented in the work of Tuzel et al. [135].

The distance between two points A and B on S
p×p
++ is equal to the minimal length curve

connecting the two points, or the geodesic. The geodesic between two points is unique, and

it starts from the tangent space of A until it reaches point B on the manifold. Given point

B, the inverse mapping, or logarithmic map logA, finds the point B
′ ∈ TA(S

p×p
++ ) that starts

the geodesic connecting A to B. That is, logA : Sp×p
++ 7−→ TA(S

p×p
++ ). The inverse mapping

is uniquely defined across all the manifold for symmetric PD matrices. It turns that the

length of the geodesic connecting A to B is the norm of B′ ∈ TA(S
p×p
++ ) [136]:

d2(A,B) = ‖B′‖2A = 〈logA(B), logA(B)〉A. (5.15)

To obtain the explicit form of the metric, it remains to define the inner product 〈·, ·〉A on

T (Sp×p
++ ) and the inverse mapping logA(B) for Sp×p

++ [136]:

〈B′
1,B

′
2〉A = tr{A− 1

2B′
1A

−1B′
2A

− 1

2}, and (5.16)

logA(B) = A
1

2 log(A− 1

2BA− 1

2 )A
1

2 ≡ B′
3, (5.17)

where B′
1, B

′
2, B

′
3 ∈ TA(S

p×p
++ ). Note that the manifold logarithmic operator logA which is

manifold and point specific, should not be confused with the ordinary matrix logarithmic

operator. By plugging (5.17) into (5.15) and expressing the inner product as in (5.16) we

obtain the Riemannian metric for Sp×p
++ :

dR(A,B) = tr{log2Λ(A,B)} 1

2 , (5.18)

where Λ(A,B) = diag(λ1, . . . , λp) is the generalized eigenvalue matrix for the generalized

eigenvalue problem: AΦ = ΛBΦ, and Φ is the column matrix of its generalized eigenvec-

tors. Note that dR is invariant to inversion and to affine transformations of the coordinate

system [133]. Since dR is induced by a norm on T (Sp×p
++ ), then using Theorems 5.4.1 and

5.4.2, KR is PSD, and (TA(S
p×p
++ ), dR) is isometrically embeddable in H, for all A ∈ S

p×p
++ .
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Fig. 5.3 Embeddings obtained by Laplacian embedding or spectral cluster-
ing using KE, KH , KJ , KB , and KBR on the swiss role data set. Note the
discontinuities in the embedding obtained by KJ and KB .

5.6 Relaxed Kernels for The Augmented Space X

Besides Jeffrey’s kernel KJ , Hellinger’s kernel KH , and Bhattacharyya’s kernel KB in Equa-

tions (5.8), (5.9) and (5.10) respectively, we define two new kernels for the augmented space

X based on the metric dR:

KJR(G1,G2) = exp{− 1
σ
dJR(G1,G2)}, and (5.19)

KBR(G1,G2) = exp{− 1
σ
dBR(G1,G2)}, where (5.20)

dJR(G1,G2) = (u⊤Ψu)
1

2 + dR(Σ1,Σ2),

dBR(G1,G2) = (u⊤Γ−1u)
1

2 + dR(Σ1,Σ2),

Ψ ≻ 0, Γ−1 ≻ 0, and σ > 0.

The relaxed kernels KJR and KBR introduce two new metrics, or corrected divergence mea-

sures, for the augmented space X; the Jeffreys-Riemann metric dJR, and the Bhattacharyya-

Riemann metric dBR. The positive definiteness of Ψ and Γ−1, and the square root on

the quadratic terms of dJR and dBR, assure that the quadratic terms are metrics. If
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Fig. 5.4 Embeddings obtained by Laplacian embedding or spectral cluster-
ing using KE , KH , KJ , KB , and KBR on the toroidal hellix data set.
Note how KJ and KB yield different embeddings with discontinuities. Note
also the tendency of dJ and dB to overlap points over each other.

µ1 = µ2 = µ, then dJR and dBR will yield the Riemannian metric dR, and hence, KJR

and KBR will be equal to KR. If Σ1 = Σ2 = Σ, then dJR and dBR will yield the GQD. If

Σ = I, the GQD will be equal to the Euclidean distance, and KJR and KBR will yield the

original exponential kernel KE .

Similar to KE and KG, the relaxed kernels KJ , KH , KB, KJR and KBR rely on the dis-

tance between the 2-tuples (µ1,Σ1) and (µ2,Σ2). Moreover, they all provide an isometric

embedding for the space X, and the difference between these embeddings is due the metric

or semi-metric defining each kernel. While dJ and dB are semi-metrics, dH , dJR and dBR

are metrics. Since Axioms (3) & (5) do not hold for semi-metrics, it follows that dJ and

dB will not preserve the relative geometry between the elements in Rp, and that between

the elements in S
p×p
++ . Although dH is a metric, it relies on a semi-metric for covariances

matrices, which is not the case for dJR and dBR.

This crucial difference between dJ and dB on one hand, and dH , dJR and dBR on the

other hand, together with the augmented space X is illustrated in the embeddings obtained
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Fig. 5.5 Embeddings obtained by Laplacian embedding or spectral cluster-
ing using KE , KH , KJ , KB , and KBR on the punctured sphere data set.
Note how for KH and KBR the local neighbourhood modelling together with
metric properties yield the expected embedding of the data set, which is a disc.
Note also how KJ and KB yield an embedding which roughly has the same
shape as that of KE , while trying to collapse all the points along a vertical
line.

on three toy data sets with known embeddings. These figures, better seen in colour (or on

a coloured display), aim to give a qualitative measure on the stability of the embedding.

Figure 5.3, shows five different embeddings for the swiss role data set. The expected

embedding is a continuous rectangular sheet or a continuous straight line in two dimen-

sions with the same colour ordering of the original three dimensional data set. It can be

seen that all the kernels yield almost the same embedding except for the discontinuities

encountered by KJ and KB.

Figure 5.4, shows five different embeddings for the toroidal helix data set. The ex-

pected embedding for this data set is continuous circle in two dimensions with the same

colour ordering of the original data set. Here the embeddings via the augmented space

with KJ or KB do not yield such results, and in fact, the embeddings try to collapse all the

points onto a line. Note also the discontinuities in these embeddings. The reader should

note that in these two cases, swiss-role and toroidal helix, the exponential kernel KE
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gave the expected embeddings, and the same follows for the embeddings via the augmented

space with KH and KBR.

Figure 5.5, shows five different embeddings for the punctured sphere data set. Here

the expected embedding is a disk in two dimensions with the same color ordering of the

original sphere in three dimensions. The Laplacian embedding via KE failed to deliver the

expected embedding which shows the incapability of KE to preserve the original structure

in the data. The same follows for the embeddings obtained via the augmented space with

KJ and KB, with the additional side effect of trying to collapse all the points onto a line.

Here the power of the augmented space, together with KH and KBR is more obvious. That

is, the augmented space with the relaxed kernels that preserve all the metric properties

was able to deliver the expected embedding in this case and in all the previous cases as

well. This is unlike the embeddings obtained by the augmented space with KJ and KB

that lacked the triangle inequality property in dJ and dB respectively.

The relaxed kernels KJR and KBR and the metrics dJR and dBR are now ready to

embed DA ⊂ X in the metric space (Rp0, ‖ · ‖2). In the following, I will present two

different types of spectral algorithms to obtain such an embedding. The first algorithm is

Laplacian eigenmaps, and the second is classical MDS or Euclidean embedding. In order to

simplify the notation cumbersomeness, only KBR and dBR will be used in the discussions

and examples presented in the following sections.

5.7 Laplacian Embedding for X

Given the augmented data set DA = {(µi,Σi)}ni=1 ≡ {Gi}ni=1, the relaxed kernel KBR,

and the dimensionality p0 of the embedding space, an embedding for (DA ⊂ X, dBR) into

(Rp0, ‖ · ‖2) can be obtained using Laplacian eigenmaps as follows:

1. Construct the data graph G(DA, E), where G can be a fully connected graph, an

ǫ-ball graph, or a k-NN graph, and E is the set of edges for G.
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2. Construct the affinity (or similarity) matrix K ∈ Rn×n such that:

[kij ] =

{

KBR(Gi,Gj) if eij = 1,

0 else,

where eij ∈ E .

3. Compute the diagonal matrix D, where [dii] =
∑n

j=1Kij, and 1 ≤ i ≤ n.

4. Compute the normalized Laplacian matrix L = D− 1
2KD− 1

2 .

5. Perform an eigendecomposition for the Laplacian matrix L to UΛU⊤, and select the

first p0 eigenvectors [u1, . . . ,up0] and their corresponding eigenvalues (λ1, . . . , λp0),

where λ1 > λ2 > · · · > λp0.

6. Form the matrix Y = U1:p0 = [u1 . . .up0], where Y ∈ Rn×p0.

Now each row yi of Y is the embedding of the 2-tuple (µi,Σi) ≡ Gi which represents the

original data point xi with its neighbourhood Ni. Note that in the context of clustering, p0

is usually equal to the number of clusters in the data. When this is not the case, and the

number of clusters is not known, p0 can be considered as the intrinsic dimensionality of the

data which can be estimated by an algorithm such as [137], where usually p0 ≪ min(p, n).

In general, selecting the dimensionality p0 or the number of clusters is a fundamental ques-

tion of model selection that is not addressed here. The eigenvalues (λ1, . . . , λp0) computed

above will play a crucial role in generalizing the embedding obtained here to out-of-sample

examples as described in Section 5.9.

It can be seen that the algorithm above does not rely on labels nor side-information,

however when such additional information is available, they can be easily incorporated

in the algorithm. Note that the spectral clustering algorithm in [27] has the same steps

above, followed by normalizing the rows of Y to have unit length and finally apply k-Means

clustering on the normalized vectors.

5.7.1 Discussion

The steps of the above algorithm are originally due to the spectral graph theory described

in the work of F. Chung [69]. This algorithm first appeared in the work of Shi & Malik
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[25] on image segmentation, and further analysed by Y. Weiss in [26]. Independently, in

the context of kernel methods, Cristianini and Shawe-Taylor [138] introduced the Lapla-

cian to obtain a clustering from the gram (or similarity) matrix of the data. This is was

the first link between kernel methods and spectral graph theory methods for unsupervised

learning. In NIPS 2002, the normalized Laplacian was introduced in a very different way

as a manifold learning algorithm under the title Laplacian eigenmaps by Belking & Nyiogi

[20]. Surprisingly, one year latter (NIPS 2003), He & Nyiogi reintroduced the same steps

of Laplacian eigenmaps with different motivations under the title of locality preserving pro-

jection (LPP) [139]. This reinvention of the algorithm under different motivations was

also noted in [22]. Ng et al. [27], based on careful theoretical analysis and justifications,

added two further steps to the above algorithm; (1) the normalization step for the rows of

Y, and (2) the k-Means clustering step in the embedding space. Ng et al. also noted the

intriguing link between kernel methods and spectral graph theory in the work of Cristianini

and Shawe-Taylor.

To the best of my knowledge, the research work presented here has the following con-

tributions over the work in [27, 20]:

1. This research work is the first to consider the metric properties of the embedding

through the exponential function based on the results of I. Schoenberg [43].

2. This research work is the first to consider the limitations of the GQD (including the

Euclidean distance) and propose that the initial distance or similarity measure on the

data graph for spectral methods should vary according to the sample density in the

input space. Further, this varying distance measure should preserve all the metric

properties to guarantee a proper embedding in a low dimensional Euclidean space.

3. These two previous issues lead to the introduction of the augmented space X, studying

the metric properties of divergence measures, and in particular the case of Gaussian

densities, and finally the introduction of the corrected divergence measures dJR and

dBR [29], and the relaxed kernels KJR and KBR [30].

In the following section, I show that the augmented metric space (X, dBR) can also be

embedded in (Rp0, ‖·‖2) using the classical MDS or Euclidean embedding algorithm, thanks

to the metric properties of dBR.
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5.8 Euclidean Embedding for X

Using the metric dBR, it is straightforward to define an Euclidean embedding for the metric

spaces (X, dBR), using the Theorems of Young & Househlder [39] and Gower & Legendre

[40]. Before proceeding to the embedding steps, it is important to define metric matrices

for a general set of points in Rp, their PSD properties, and their low dimensional Euclidean

embedding.

For a set of n unknown points, assume the matrix [dij ] = D ∈ Rn×n is given with all

the mutual distances (or dissimilarities) between the n points, such that dij = dji, dii = 0,

and dij ≥ 0, ∀ i, j. Note here that the points and the distance function are not specified.

Gower & Legendre [40] define a metric matrix as follows:

Definition D is said to be a distance metric matrix (DMM) if the metric (triangle)

inequality dij + dik ≥ djk holds for all triples (i, j, k).

Note that the metric d of any metric space (M, d), where M is any non-empty set of

objects, can define a DMM, while semi-metrics can not define DMMs since Axiom (3) and

the triangle inequality of metrics are not required to hold. Euclidean distance matrices

(EDMs), for example, share the same definition above since the Euclidean distance is a

metric. However, an EDM has a more specific definition, which is Definition (2) in [40]:

Definition D is said to be an Euclidean distance matrix (EDM) if the n points can

be embedded in an Euclidean space as {pi}ni=1, such that the Euclidean distance between

pi and pj is dij, ∀ i, j.

The definition, alone, does not state how to formally validate whether D is an EDM or

not. The necessary and sufficient condition for D to be an EDM is in Theorem III in [39],

and Theorem 4 in [40] which is stated after the following definitions.

Let D be defined as above, and let [− 1

2
d2ij] = S ∈ Rn×n, ∀ i, j. Define the centering

matrix H ≡ Hn×n = In×n− 1
n
11⊤, where I is the identity matrix, and 1 is a vector of ones.

Theorem 5.8.1 D is an EDM if and only if the matrix K = HSH is PSD.
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Young & Householder [39] further discuss the reverse direction of the theorem. That

is, if K is symmetric and PSD, then there exist a set of n real points in an Euclidean

space with mutual distance dij = dji, and these points can be obtained as follows. Since

K is symmetric and PSD, by eigendecomposition of K to VLV⊤, where the columns of

V are the eigenvectors of K, L = diag{ℓ1, . . . , ℓp0, 0, . . . , 0} is its eigenvalue matrix, and

ℓ1 > ℓ2 > · · · > ℓp0, then the coordinates of these n points are the rows of the matrix

Y = VL
1
2 , where Y ∈ Rn×p0.

The key observation here is that from Theorem 5.8.1 and the previous definitions, it

follows directly that if K is symmetric and PSD, then D is also a DMM. Hence, given

only a DMM, and not necessarily an EDM, one can easily obtain its representing set of n

real points in an Euclidean space Rp0, with p0 ≪ n. Recalling the definition of a metric

space (M, d), a DMM can represent the mutual distances between all the elements of the

non-empty set M since d is a metric by definition. Therefore, for any metric space (M, d)

it is possible to obtain an Euclidean embedding for this set as long as d is a metric. Note

that matrix K is in fact a centralized dot product matrix, or a centralized gram matrix,

which describes the similarity between the original input points. If d is a semi-metric, the

similarity matrix K is not guaranteed to be PSD, and hence the resulting low dimensional

subspace will be a semi-metric space where metric properties and relatives distances be-

tween points can be violated.

In a similar fashion, and using Theorem 5.8.1 with the previous definitions, the metric

space (DA ⊂ X, dBR) can be embedded in the low dimensional Euclidean space (Rp0, ‖ · ‖2)
using the following procedure.

1. Define the DMM D ∈ Rn×n such that [dij] = dBR(Gi,Gj), ∀ i, j.

2. Compute the similarity matrix K = HSH, where S = [− 1
2
d2ij], and H is the centering

matrix as defined earlier. Since dBR is a metric, then according to Theorem 5.8.1 K

is PSD.

3. Perform an eigendecomposition for K to VLV⊤, and construct the matrix Y =

V1:p0L
1
2

1:p0
, where Y ∈ Rn×p0.

Again, each row yi of Y is the embedding of the 2-tuple (µi,Σi) ≡ Gi which represents
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the original data point xi with its neighbourhood Ni. Similar to the Laplacian embedding,

this procedure is totally unsupervised and does not require any labels nor side-information.

Finally, it is worth noticing that any hypothesis learning algorithm can be directly applied

on the set {yi}ni=1 instead of the original data set {xi}ni=1.

5.9 Generalization to Out-of-Sample Examples

The procedures above for Laplacian embedding and Euclidean embedding describe the

training phase for embedding (X, dBR) into a low dimensional Euclidean space Rp0. For

Laplacian embedding, the parameters learned during the training phase are the matrices

U1:p0 = [u1 . . .up0 ] and Λ1:p0 = diag(λ1, . . . , λp0). For Euclidean embedding, these are the

matrices V1:p0 = [v1 . . .vp0 ] and L1:p0 = diag(ℓ1, . . . , ℓp0).

Suppose we are given m new 2-tuples D∗
A = {(µ∗

1,Σ
∗
1), . . . , (µ

∗
m,Σ

∗
m)} ≡ {G∗

j }mj=1 that

were not included during the training phase, and it is desired to compute their low dimen-

sional embeddings in Rp0 using the parameters estimated above. Note that the neighbour-

hoods N ∗
j , 1 ≤ j ≤ m are constructed from the original training set D = {xi}ni=1. This

is the problem of generalizing Laplacian embedding and Euclidean embedding to out-of-

sample examples which was thoroughly studied in [22] for most spectral learning algorithms

such as classical MDS, LLE, Isomap, Laplacian eigenmaps, and spectral clustering meth-

ods. Since all these algorithms share a spectral embedding step, it was shown that all these

methods are learning eigenfunctions of similarity between input points, and for which the

Nyström formula [140] provides a method for generalizing these algorithms to out-of-sample

examples.

To obtain the the Nyström formula for Laplacian and Euclidean embeddings, a data

dependent symmetric PSD kernel Kn(xi,xj) needs to be defined over the training data.

From Kn(xi,xj), the Nyström formula can be defined in a closed matrix form. Note that

Kn(xi,xj) may not only depend on xi,xj, but on all the n samples in the training set, and

hence the notation Kn. In general, it can be shown that the similarity matrix K for all

spectral methods, can be constructed from such data dependent kernel Kn(xi,xj).

Let vik be the i-th coordinate of the k-th eigenvector of K, where the eigenvector vk is
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associated with eigenvalue ℓk. Then the Nyström formula for the k-th component of the

out-of-sample point x∗ = [x∗1 . . . x∗k . . . x∗p]
⊤ can be written as:

y∗k ≡ fk,n(x
∗
k) =

√
n

ℓk

n
∑

i=1

vikKn(x
∗,xi) (5.21)

where fk,n is the k-th Nyström estimator with n samples. That is, the final embedding

for the out-of-sample point x∗ is the vector y∗ = [y∗1 . . . y∗k . . . y∗p0]
⊤, where p0 is the

dimensionality of the embedding space. In the following, I will use two data dependent

kernels, one for Laplacian embedding and the other for Euclidean embedding, for which

generalization to out-of-sample examples is straight forward using the Nyström formula.

5.9.1 Generalization of Laplacian eigenmaps

The data dependent kernel for Laplacian eigenmaps can be defined as follows [22]:

KLaplacian
n (xi,xj) =

1

n

K̃(xi,xj)

[Exj
{K̃(xi,xj)}]

1

2 [Exi
{K̃(xi,xj)}]

1

2

, (5.22)

where:

Exj
{K̃(xi,xj)} = 1

m

∑m
j=1 K̃(xi,xj),

Exi
{K̃(xi,xj)} = 1

n

∑n
i=1 K̃(xi,xj),

and K̃(xi,xj) is any off-the-shelf kernel such as the linear dot product kernel, the Gaussian

kernel, etc. However in this particular case, K̃(xi,xj) = KBR(Gi,Gj). Note that all the

expectations in Equation (5.22) are defined over the training set. The first appearance of

this normalized and centralized data dependent kernel was in the context of kernel target

alignment [138], which was the first link between kernel methods and clustering by means

of the Laplacian operator.

Using the general form of the Nyström estimator, the kernel KLaplacian
n , the training

data set DA, the estimated parameters U1:p0 = [u1 . . .up0 ] and Λ1:p0 = diag(λ1, . . . , λp0),

an embedding for the test set D∗
A in Rp0 can be obtained as follows:

1. Define the similarity (or gram) matrix K̃ ∈ Rn×m, where [k̃ij] = KBR(Gi,G∗
j ), where
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1 ≤ i ≤ n, and 1 ≤ j ≤ m.

2. Compute the diagonal matrix Dleft ∈ Rn×n such that:

Dleft = diag
(
√

1
m

∑m
j=1 K̃(1,j) . . .

√

1
m

∑m
j=1 K̃(n,j)

)

.

3. Compute the diagonal matrix Dright ∈ Rm×m such that:

Dright = diag

(

√

1
n

∑n
i=1 K̃(i,1) . . .

√

1
n

∑n
i=1 K̃(i,m)

)

.

4. Compute the normalized similarity (gram) matrix K∗:

K∗ = 1
n
1n 1⊤

m D−1
left K̃ D−1

right.

5. Apply the Nyström formula on K∗ to obtain the embedding for the out-of-sample

2-tuples D∗
A = {(µ∗

1,Σ
∗
1), . . . , (µ

∗
m,Σ

∗
m)} :

Y∗ =
√
n K∗⊤ U1:p0 Λ−1

1:p0 , (5.23)

where Y∗ ∈ Rm×p0 .

Now each row y∗
j of Y∗ is the embedding of the out-of-sample 2-tuple (µ∗

j ,Σ
∗
j) ≡ G∗

j which

represents the original data point x∗
j with its neighbourhood N ∗

j .

5.9.2 Generalization of Euclidean embedding

Similar to Laplacian embedding, classical MDS or Euclidean embedding can be defined in

terms of a data dependent kernel, from which, the generalization to out-of-sample examples

is straight forward via the Nyström formula. The data dependent kernel for classical MDS

can be defined as follows [22]:

KcMDS
n (xi,xj) = −1

2

(

d2(xi,xj)− Exi
{d2(xi,xj)} − Exj

{d2(xi,xj)}+ Exi,xj
{d2(xi,xj)}

)

,

(5.24)
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where:

Exi
{d2(xi,xj)} = 1

n

∑n
i=1 d

2(xi,xj),

Exj
{d2(xi,xj)} = 1

m

∑m
j=1 d

2(xi,xj),

Exi,xj
{d2(xi,xj)} = 1

nm

∑n,m
i,j=1 d

2(xi,xj),

and d is a distance metric between the elements xi and xj . In this particular context,

d(xi,xj) = dBR(Gi,Gj). Again, all the expectations in Equation (5.24) are taken over the

training set.

Using the general form of the Nyström estimator, the kernel KcMDS
n , the training data

set DA, the estimated parameters V1:p0 = [v1 . . .vp0 ] and L1:p0 = diag(ℓ1, . . . , ℓp0), an

embedding for the test set D∗
A in Rp0 can be obtained as follows:

1. Define the DMM D∗ ∈ Rm×n such that [d∗ji] = dBR(G∗
j ,Gi), for 1 ≤ j ≤ m, and

1 ≤ i ≤ n.

2. Compute the similarity matrix K∗ such that:

K∗ = −1
2
[D∗ Hn×n − 1

n
1m1

⊤
n D Hn×n] , (5.25)

where H is the centering matrix defined earlier, and D is the DMM for the training

set defined in step (1) in the training phase of Euclidean embedding.

3. Apply the Nyström formula on K∗ to obtain the embedding for the out-of-sample

2-tuples D∗
A = {(µ∗

1,Σ
∗
1), . . . , (µ

∗
m,Σ

∗
m)}:

Y∗ = K∗ V1:p0 L
− 1

2

1:p0
, (5.26)

where Y∗ ∈ Rm×p0 .

Again, the row y∗
j ofY

∗ is the embedding for the out-of-sample 2-tuple (µ∗
j ,Σ

∗
j) ≡ G∗

j which

represents the original data point x∗
j with its neighbourhood N ∗

j . Note that Equations

(5.25) and (5.26) are also due to [141] which are based on KPCA formulation.
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5.9.3 Discussion

From the generalization via the Nyström formula presented above, one can consider an-

other advantage for adhering to metric properties via measures such as dJR, dBR and dH in

the context of Euclidean embedding. The benefits of dJR and dBR over dH, however, will

be discussed in the next chapter. Euclidean embedding via semi-metrics instead of metrics

will result in the following consequences: First, a DMM can not be defined since Axiom

(3) and the triangle inequality of a metric may not hold, and Second, it follows that the

resulting similarity matrix K will be indefinite.

A first option to overcome this situation is via non-metric MDS [65, 66], which defines

a transformation by minimizing a stress (or error) function. Unfortunately, this transfor-

mation does not provide an embedding nor it can be considered a mapping, and hence,

generalization to out-of-sample examples can not be obtained [142]. Another solution is to

approximate the matrix K to a nearby PSD matrix by truncating the negative eigenvalues

of L, or using minimum shift embedding [141] which adds the smallest constant to L such

that it transforms K to a PSD matrix. Although generalization via the Nyström formula

can be obtained for the approximated matrix, relying on proper distance metrics suppresses

any need for such approximations.

Similar remarks can be made for Laplacian embedding methods (spectral clustering and

Laplacian eigenmaps), however due to their reliance on parametrized kernels, indefinite

similarity matrices K can sometimes be overcome by tuning the kernel parameters. The

scaling parameter σ that appears in the Gaussian kernel, is an example of such a tuning

parameter. Nevertheless, for Laplacian embedding, even if the similarity matrix is based

on a semi-metric and K is PSD, semi-metrics can still have a negative impact on the

embedding as demonstrated in Section 5.4.2.

5.9.4 A note on computational complexity

The computational bottleneck for the augmented space X is in finding the nearest neigh-

bours for each point, forming the covariance matrices, and more importantly filling the

affinity matrix K using the metrics dJR and dBR, or their exponentiated versions. In

almost all of our experiments, both metrics gave very similar results, however, dJR is com-
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putationally less expensive than dBR (when taking into consideration a large data set).

This is due to the first term of dBR which requires computing the inverse of the sum for

two covariance matrices (one for each pair of points). This is however, unlike the first term

in dJR which is the sum of the inverse of the two covariance matrices (one for each point),

which can be done once for every point before filling the matrix K.

The real complexity occurs in computing the Riemmanian metric for two covariance

matrices which involves solving a generalized eigenvalue problem for each pair of points.

The complexity of such a problem is usually O(p3) in the worst case, and if the matrix is of

rank r, and one seeks only the first r eigenvectors, then this reduces to O(r3) in the worst

case. However, what increases the complexity is filling the affinity matrix K which requires

exactly O(n(n−1)
2

r3).

5.10 Related Work to dJR and dBR

So far I have presented the main idea of the unsupervised metric space learning algorithm

using spectral methods and the augmented space X extracted from the input data set D,

which naturally led to the Jeffreys-Riemann metric dJR and the Bhattacharyya-Riemann

metric dBR. The metrics dJR and dBR can also be seen as metrics over the neighboorhoods

Ni, 1 ≤ i ≤ n, when modelled as Gaussian distributions, and hence they can be seen as

an alternative to the Euclidean distance between any two points in D. This perspective

parallels a stream of ideas that considers distances (or similarities) between two subspaces,

tangent spaces, or sets of vectors (SOVs), instead of the direct distance (or similarity) be-

tween points.

In the context of object recognition, Simard et al. [143] represent each image as set of

modified images obtained by different linear transformations. Based on the new represen-

tation, the distance between two sets of images is the distance between the two tangent

planes passing through each set of images. In a similar vein, Ghodsi & Schuurmans [144]

use a similar approach of linear transformations to images in the context of manifold learn-

ing and nonlinear dimensionality reduction. Due to the nature of linear transformations

that are specific to images, this approach can not be easily applicable to general data sets.

Vincent & Bengio [145] propose a different idea in the context of k-NN classification. In
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Table 5.1 The seventeen (17) UCI data sets used in the experiments.

Data set Classes Size Attributes Data set Classes Size Attributes

Balance 3 625 4 Monks–2 2 601 6
Bupa 2 345 6 Monks–3 2 554 6
German 2 1024 2 NewThyroid 3 215 5
Glass 6 214 9 Segment 7 2310 16
HouseVotes 2 435 16 Sonar 2 208 60
Ionosphere 2 351 33 WDBC 2 569 30
Iris 3 150 4 Wine 3 178 13
Lymphography 4 148 18 Yeast 10 1484 6
Monks–1 2 556 6

their algorithm, each point in the training set, together with its m NNs of the same class

(m 6= k), define a subspace. The distance between a query point and all other points in the

data set, reduces to the length of the orthogonal projection from the query point to each

subspace, and hence the name of their algorithm k-local hyperplanes.

In the context of learning over SOVs, Wolf & Shashua [146] propose a general learning

approach within the kernel framework. For two SOVs, their kernel is based on the principal

angles between two subspaces, each spanned by one of the two SOVs. Kondor & Jebara

[44] represent each image as a bag of pixels, which is also a SOV. Each SOV is modelled as

a Gaussian distribution, and the Bhattacharyya kernel KB is used with SVMs to classify

the images. Similarly, Moreno & Vasconcelos [45] represent each multimedia object (an

image or an audio signal) as a bag of features (or one SOV), and then model each SOV

as Gaussian distribution. However, instead of KB, they use the KL kernel KJ with SVMs

to classify the multimedia objects. As an application in Chapter 6, dJR and dBR will be

used as metrics for SOVs in the context of classification and clustering of human actions

extracted from video data

5.11 Experimental Results

The unsupervised metric space learning algorithm presented in this chapter is validated in

the context of unsupervised learning via clustering algorithms. The experimental setting

for showing the efficacy of the augmented space X and the proposed metrics dJR and dBR is
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based on measuring the performance of k-Means clustering in different embedding spaces.

More specifically, for a data set D = {xi}ni=1 ⊂ X , k-Means is run on the input space X
as a baseline performance measure. This baseline k-Means performance is compared to:

1) spectral clustering (SC) according to the version of Ng et al. [27] using the exponential

kernel KE, and 2) SC over the augmented space X using four (4) different kernels: the KL

kernel KJ [45], the Bhattacharyya kernel KB [44], the Hellinger kernel KH , and the pro-

posed kernel KBR. Although the experiments included KJR, it was found that the results

of KJR and KBR are very close to each other, and hence we show only the results for KBR.

This shows that the main difference between dJ(G1,G2) and dB(G1,G2) are the semi-metrics

for covariance matrices in Equation (5.12).

It is important to recall that the original SC algorithm of Ng et al. , is in fact, a Lapla-

cian embedding for X into a metric space (Rp0, ‖ · ‖2) or a semi-metric space (Rp0, ‖ · ‖22)
(depending on the kernel), followed by k-Means clustering in the embedding space. There-

fore SC over X, implies Laplacian embedding for DA ⊂ X using the different kernels KJ ,

KB, KH , and KBR, and then applying k-Means clustering on the data in the different em-

bedding spaces. Therefore, comparing with SC is equivalent to comparing with Laplacian

eigenmaps [20].

The objective of the experiments presented here is twofold:

1. Validate the efficacy of the augmented space X over the input space X for unsu-

pervised learning. This implictly includes validating that X can accommodate the

characteristics of real world data sets, and the uneven sample distribution in the input

space X .

2. Show the efficacy of the proposed relaxed kernels KJR and KBR, and more specifically

the metrics dJR and dBR, over other divergence measures that do not adhere to metric

properties. This also includes the metric dH for the case of Gaussian densities, which

despite being a metric, does not respect the geometry of Sp×p
++ .

5.11.1 Experimental setting

All algorithms were run on 17 data sets from the UCI machine learning repository [1],

shown in Table 5.1. Clustering accuracy was measured using the Hungarian score used in



5 Unsupervised Metric Learning 97

Table 5.2 Clustering accuracy (%), with standard deviation, for k-Means,
SC with KE, and SC over DA = {(µ̂i, Σ̂i)}ni=1 with KJ , KB , KH , and KBR.

Data set k-Means KE KJ KB KH KBR

Balance 51.1 (3.2) 59.3 (2.6) 54.5 (2.7) 58.7 (1.2) 57.5 (2.41) 63.4 (0.5)
Bupa 55.1 (0.1) 56.8 (0.1) 57.6 (0.01) 57.3 (0.01) 58.2 (0.01) 62.3(0.2)
German 67.6 (0.1) 70.0 (0.1) 71.5 (0.02) 71.4 (0.02) 62.7 (0.1) 70.0 (0.05)
Glass 49.7 (3.7) 49.7 (3.8) 52.8 (2.1) 53.2 (1.5) 51.6 (1.1) 53.8 (0.8)
HouseVotes 87.8 (0.1) 87.8 (0.2) 82.1 (0.02) 81.2 (0.2) 83.2 (0.01) 87.5 (0.1)
Ionosphere 70.9 (1.2) 70.3 (0.1) 84.9 (0.1) 85.1 (0.03) 75.7 (0.02) 75.1 (0.4)
Iris 79.8 (15.7) 88.7 (6.6) 90.0 (0.1) 90.0 (0.01) 90.6 (0.01) 96.6 (0.1)
Lymphography 47.0 (6.5) 42.9 (4.8) 59.9 (1.1) 60.8 (1.1) 53.1 (3.5) 55.5 (0.7)
Monks–1 62.6 (6.3) 66.5 (0.02) 68.7 (0.06) 68.7 (0.09) 69.6 (0.04) 68.3 (0.01)
Monks–2 51.4 (1.7) 50.7 (0.07) 57.1 (0.08) 57.0 (0.02) 57.4 (0.1) 63.2 (1.4)
Monks–3 63.9 (6.4) 65.1 (0.1) 69.4 (0.2) 69.8 (0.32) 69.9 (0.09) 80.1 (0.1)
NewThyroid 76.9 (9.4) 75.2 (0.4) 87.5 (5.5) 93.0 (0.01) 92.4 (0.2) 94.4 (0.05)
Segment 50.7 (8.3) 63.3 (4.1) 22.1 (1.1) 43.1 (2.9) 49.9 (3.0) 65.5 (3.3)
Sonar 54.7 (0.8) 55.7 (0.1) 57.2 (0.02) 57.0 (0.2) 58.6 (0.04) 61.9 (0.2)
WDBC 85.4 (0.1) 90.8 (0.1) 65.5 (0.1) 71.7 (0.05) 75.2 (0.01) 89.4 (0.07)
Wine 66.4 (5.9) 70.2 (0.2) 90.4 (0.07) 90.4 (0.03) 91.5 (0.09) 95.2 (0.2)
Yeast 34.2 (1.8) 32.2 (0.9) 32.4 (1.6) 32.7 (1.6) 32.7 (0.97) 37.0 (1.1)

[147, 148], and the performance of each algorithm was averaged over 30 runs of k–Means

with different initializations. Since the number of classes of the UCI data sets is given, the

number of clusters is assumed to be known.

The parameter σ for KE, KJ , KB, KH and KBR was selected using a simple quantile

based approach6. In all the experiments, the number of NNs for the local modelling was

allowed to range between 5 and 16, and the regularization parameter γ in Equations (5.1)

and (5.2) was set to γ = 1. It is important to note that selecting the best parameter values

for σ, γ, the number of NNs for local modelling, and the number of clusters, is a fundamen-

tal question of model selection, and hence, it should not be confounded with verification

of the efficacy of the augmented space X and the the proposed metric dBR reflected by its

use in KBR. Further, even when the best γ value is not selected, the results nevertheless

show that, under this fixed γ setting, clustering after embedding the augmented space X

using KBR into Rp0 typically shows significantly better results.

6The approach was suggested in Alex Smola’s blog: http://blog.smola.org/page/2
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Table 5.3 Clustering accuracy (%), with standard deviation, for k-Means,
SC with KE, and SC over DA = {(xi,Ai)}ni=1 with KJ , KB , KH , and KBR.

Data set k–Means KE KJ KB KH KBR

Balance 51.1 (3.2) 59.3 (2.6) 60.7 (0.5) 60.5 (1.9) 60.2 (1.3) 64.3 (4.9)
Bupa 55.1 (0.1) 56.8 (0.1) 57.6 (0.05) 56.2 (0.1) 57.5 (0.1) 57.3 (0.07)
German 67.6 (0.1) 70.0 (0.1) 71.4 (0.01) 57.7 (0.1) 59.2 (0.1) 70.00 (0.04)
Glass 49.7 (3.7) 49.7 (3.8) 53.3 (1.7) 51.5 (1.8) 48.5 (4.9) 49.7 (3.9)
HouseVotes 87.8 (0.1) 87.8 (0.2) 82.0 (0.02) 82.9 (0.3) 85.0 (1.3) 88.0 (0.01)
Ionosphere 70.9 (1.2) 70.3 (0.1) 83.4 (0.02) 71.5 (0.05) 71.2 (0.05) 72.0 (0.01)
Iris 79.8 (15.7) 88.7 (6.6) 82.0 (0.05) 82.3 (0.3) 82.6 (0.02) 82.6 (0.06)
Lymphography 47.0 (6.5) 42.9 (4.8) 59.1 (1.1) 52.7 (0.05) 51.5 (0.8) 60.5 (4.2)
Monks–1 62.6 (6.3) 66.5 (0.02) 66.5 (0.01) 66.5 (0.05) 66.5 (0.01) 66.5 (0.01)
Monks–2 51.4 (1.7) 50.7 (0.07) 55.0 (0.07) 57.4 (0.2) 55.2 (2.4) 65.2 (0.4)
Monks–3 63.9 (6.4) 65.1 (0.1) 69.3 (0.03) 64.2 (1.3) 63.5 (0.02) 69.6 (0.03)
NewThyroid 76.9 (9.4) 75.2 (0.4) 78.1 (2.1) 87.1 (4.4) 55.0 (0.2) 88.3 (0.02)
Segment 50.7 (8.3) 63.3 (4.1) 24.0 (1.4) 56.0 (3.5) 59.5 (2.3) 66.9 (7.5)
Sonar 54.7 (0.8) 55.7 (0.1) 58.6 (0.02) 57.5 (0.7) 57.2 (0.02) 61.0 (0.02)
WDBC 85.4 (0.1) 90.8 (0.1) 63.7 (0.03) 82.2 (8.5) 73.6 (0.02) 87.3 (0.02)
Wine 66.4 (5.9) 70.2 (0.2) 91.0 (0.01) 89.3 (0.03) 89.3 (0.04) 95.5 (0.04)
Yeast 34.2 (1.8) 32.2 (0.9) 33.9 (1.5) 34.0 (1.4) 33.5 (1.5) 36.0 (1.4)

5.11.2 Analysis of the results

Column 2 in Tables 5.2 and 5.3 show the results of k-Means on the original data input

space X . Column 3 in Tables 5.2 and 5.3 show the results of k-Means after the Laplacian

embedding for X via KE , which is the SC algorithm. Columns 4 to 7 in Tables 5.2 and

5.3 show the results of k-Means after the Laplacian embedding for the augmented data

sets DA = {(µ̂i, Σ̂i)}ni=1, and DA = {(xi,Ai)}ni=1 respectively, using KJ , KB, KH , and

KBR into R
p0. It can be seen that the results in these Tables validate the key ideas in this

chapter; 1) the efficiency and the efficacy of the augmented space X , and 2) the efficacy

of the proposed metrics dJR and dBR over the semi-metrics dJ and dB.

First, it can be seen that for most of the cases, Laplacian embedding for X via KE

yields better clustering accuracy over the base line k-Means algorithm, which is the ex-

pected performance for SC. Second, in general, the accuracy of k-Means after embedding

the augmented space X via the different relaxed kernels, is higher than it is for the standard

SC algorithm. This general trend reflects the efficacy of the augmented space X and its un-

derlying motivation. In addition, it can be noticed that the accuracy of the relaxed kernels
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over DA = {(µ̂i, Σ̂i)}ni=1 is higher than it is over DA = {(xi,Ai)}ni=1, which is probably due

to the smoothing included in defining the 2-tuple (µ̂i, Σ̂i). In the cases when the accuracy

using the relaxed kernels is very close, or slightly inferior, to the accuracy of k–Means on X
and SC via KE, then this is due to the unified γ parameter, which shows a nice opportunity

for improvement under an optimized γ.

In terms of kernels performance, KBR is usually better or as good as all other kernels,

which reflects the combined effect of the augmented space X and adhering to the metric

properties of Rp and S
p×p
++ . While KH and KBR are both relaxed kernels over X, with

satisifed metric properties via dH and dBR respectively, dBR seems to be a better formu-

lation than dH and all other measures. As mentioned earlier, dH uses a semi-metric for

symmetric PD matrices that is unaware of the geometry of Sp×p
++ , which is not the case for

dBR.

Finally, the particular cases of housevotes, segment, and WDBC are another example on

how semi-metrics can yield unreliable embeddings. WhileKJ , KB andKH are quite inferior

to the base line k–Means and to SC via KE , KBR maintains a consistent performance equal

to or higher than these raw algorithms.

5.12 Discussion and Concluding Remarks

In this chapter I have introduced an algorithmic framework for unsupervised metric learn-

ing that is based on spectral methods and not on learning an instance of the GQD. For a

data set D ⊂ X ⊂ Rp, and without any labels nor side-information, the algorithm extracts

local density information from each point xi ∈ D, and forms the augmented space X. The

motivation for X is to accommodate the characteristics of real world data sets and the

uneven sample distribution in the input space, where both factors negatively affect GQD-

type measures. This unsupervised gathering of local information in the form of regularized

local covariance matrices can be seen as a self supervised learning of context from the data

when no a priori information is available. This bootstrap learning of context indeed has a

computational overhead to obtain the augmented data set DA, however this is needed to

compensate the absence of a priori information.
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The augmented space X naturally led to the relaxed kernels over Gaussian densities via

convolution kernels. The factorizable nature of convolution kernels allowed introducing the

Riemannian metric for covariance matrices, which finally led to the new kernels KJR and

KBR, and consequently the Jeffreys-Riemann metric dJR, and the Bhattacharyya-Riemann

metirc dBR. Note that the metrics dJR and dBR were originally introduced in [29], and

based on their axiomatic metric properties, the kernels KJR and KBR were built on top

of them. However, here and in [30]7, convolution kernels were the entry point to KJR and

KBR, which finally led to the metrics dJR and dBR.

The augmented metric space X is richer in information than X about the local struc-

ture in the data since it considers the local density around each point xi ∈ D. Hence the

metrics dJR and dBR take this varying density into consideration, and code it as a distance

measure that respects all metric properties of its constituting arguments. In other words,

the metric spaces (X, dJR) and (X, dBR) reorganize the proximity between the points in D
based on dJR and dBR respectively, which take the varying local density of the input space

into consideration, and respect the geometry of Rp and S
p×p
++ . This is unlike the GQD type

measures that are constant over the entire input space and do not take this varying density

into consideration. This makes the metrics dJR and dBR more suitable for the characteris-

tics of real world data sets, and the uneven sample distribution in the input space.

An interesting feature for the metric spaces (DA, dJR) and (DA, dBR), is that they can

be encapsulated with any spectral or manifold learning algorithm. Based on the results

in previous section, it is expected that this combination significantly improves the perfor-

mance of hypothesis learning in the low dimensional space. In principle, the metric spaces

(X, dJR) and (X, dBR) can be used with any hypothesis learning algorithm. However, since

learning directly over these metric spaces is computationally expensive, embedding via spec-

tral methods offers a great reduction in terms of computational and space complexities,

while preserving all the information on proximities based on dJR and dBR, local densities,

and the correlations among variables during the embedding. In fact, using the analysis of

diffusion maps [149], it can be shown that the Euclidean distance in the embedding space

approximates the metrics dJR and dBR in the augmented space X, upto a scaling factor.

This, however, is left as a future research work.

7Thanks to Mohak Shah.
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Due to the information captured in X, this augmented space can be called an informa-

tion layer over the input space X . This information layer is adaptive since it is controlled by

the regularization parameter γ in Equations (5.1) and (5.2), and the size of the neighbour-

hood for local modelling. These parameters can be jointly optimized with the parameters

of the learning algorithm in the embedding space to improve the overall generalization of

the learning algorithm, however this perspective for X needs further investigation on its

own.

Although all the ideas presented here are under an unsupervised learning setting, they

can be easily extended to the semi-supervised and supervised settings by incorporating the

additional information in the neighbourhood forming and modelling stage, and in com-

puting the similarity matrices K in the Laplacian and Euclidean embedding stages. This

additional information will not only improve the quality of the embedding for the training

data, but will also improve generalization via the Nyström formula. Again, considering

X (with dJR and dBR) as an adaptive information layer, and extending it in supervised,

and semi-supervised learning settings remains to be explored in an independent future work.

In the following chapter, I consider the problem of learning a hypothesis (classification

and clustering) over sets of vectors (SOVs), a.k.a bags of features, that appeared in the

work of Kondor & Jebara [44], and Moreno et al. [45]. Surprisingly, the metrics dJR and

dBR, and the relaxed kernels KJR and KBR naturally fit in this setting and will be used

as distance and similarity measures for this type of data. It will be shown that these

measures together with Laplacian and Euclidean embeddings, can be used in classification

and clustering of SOVs, and they usually lead to better results than the measures proposed

in [44] and [45]. This will be demonstrated using preliminary experiments for classification

of human actions and clustering of human motion in video sequences.
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Chapter 6

A Framework for Hypothesis

Learning Over Sets of Vectors

In this chapter, I extend the unsupervised metric space learning algorithms developed in

Chapter 5 to the problem of hypothesis learning (classification, clustering, etc.) over sets of

vectors (SOVs) [31], a.k.a. bags of features. The term “sets of vectors” is due to Kondor &

Jebara [44], and I use it here to generalize the term “bags of features” since the framework

proposed here can be applied to any vectorial data which has this particular structure. The

proposed framework for hypothesis learning over SOVs fully relies on spectral embedding

via the metrics dJR and dBR, and the relaxed exponential kernels KJR and KBR. The

basic idea of the framework is to represent, or embed, each SOV into a single vector in

a low dimensional Euclidean space. This embedding is not independent for each SOV,

rather it is a collective embedding, for all SOVs, that depends on the similarities among all

SOVs. Hence, classification and clustering can be achieved in the lower dimensional space

on this simpler yet unified data representation, instead of the original structure as sets of

vectors. The proposed framework is validated in two different learning contexts from video

data; 1) supervised learning for human action recognition, and 2) unsupervised learning

for clustering human motion.

6.1 Motivation

Sets of vectors are a common data representation in various domains such as computer

vision in which an image is represented as a bag of features [150], motion analysis in video

2011/12/14
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in which a short video segment is represented as set of spatio–temporal gradient vectors

[151, 152, 153, 154], and in speech recognition in which an utterance is represented as a

set of MFCC vectors [155, 45], to mention a few. Despite their flexibility and richness as a

representation, a major obstacle for directly learning a hypothesis (classification, cluster-

ing, etc.) over sets of vectors is their special structure, in which each object Di in a data

set of objects D is represented by a different number of vectors of fixed dimensionality,

forming that one set of vectors (SOV). This nonuniform format of the input data requires

the learning algorithm, and consequently the algorithm designer, to implicitly handle this

non-regular type of input, either by unifying the format of the input, or by extracting the

necessary information out of it, such as the (dis)similarity between two SOVs.

In this chapter I propose a principled, application independent framework that unifies

the representation of SOVs in order to ease hypothesis learning over this type of data. In

particular, as depicted in Figure 6.1, I propose an unsupervised learning approach that maps

each SOV, or bag of features, to a single vector in a low dimensional Euclidean space. The

proposed framework has slight overlap with some ideas introduced in [156, 44, 45, 150, 153]

which shall be briefly reviewed in the following section. Although the speech recogni-

tion community [155] has pioneered learning over time-series or sequential data, which are

special cases of SOVs, the present work is concerned with geenralized SOVs including se-

quential and time-series data.

The advantages of the proposed framework are as follows:

• The framework allows any learning algorithm to be transparently applied on SOVs

through their images residing in the low dimensional subspace, and hence it frees the

learning algorithm from the overhead of accommodating their special structure.

• The framework offers a reduction, by orders of magnitude, in the data’s space com-

plexity, which correlates directly with the computational complexity of the learning

algorithm, resulting in significantly faster hypothesis learning.

• The framework is unsupervised, and hence it does not require labels nor side-information.

However, if labels or side-information are available, they can be naturally integrated

into the framework.
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• The spectral embedding algorithm in the framework reveals the natural clusters in

D ; i.e. as a by-product, the framework performs implicit clustering for SOVs which

is reflected on the images in the low dimensional subspace.

• The framework has a well defined generalization to out-of-sample examples (SOVs in

this case) using the Nyström formula, and hence it does not require retraining the

system whenever new data are available.

Notations Before proceeding to the following sections, sets of vectors are formally

defined as follows. Let D = {Di}ni=1 be a set of n objects Di, where Di can be a speech

utterance or a short video segment for instance. Using a feature extraction function φ,

the data set D = {Di}ni=1 is transformed to a set S = {Si}ni=1 where φ : Di 7−→ Si =

{xi
1, . . . ,x

i
ti
}, xi

j ∈ Rp, ti is the cardinality of set Si, and Si is one set of vectors. Note that

S is now a set of sets ; a.k.a. a family or a collection of sets. Note also that it is expected

that each SOV Si has a different number of vectors in it.

6.2 Related Work

Earlier approaches to hypothesis learning over SOVs focused on directly measuring the

(dis)similarity between two SOVs using, for instance, dynamic time warping (DTW) [157],

and the earth mover’s distance [158]. Instead of measuring the similarity directly on the

SOVs, a more popular approach in the computer vision community, is to construct a code-

book of words (or visual words) from all the vectors of all SOVs, represent each SOV as a

histogram of visual words, and then define kernels over the histograms [150] to be used for

classification using support vector machines (SVMs).

A slightly different approach, which is adopted here, is to model each SOV Si as a

multivariate Gaussian distribution Gi, where the mean vector µi and the covariance matrix

Σi are estimated using the sample mean and the sample covariance matrix for Si respec-

tively. Now that the set S = {S1, . . . ,Sn} is replaced by the set G = {G1, . . . ,Gn}, a
natural measure of (dis)similarity between two densities are divergence measures such as,

the Bhattacharyya divergence dB, the symmetric Kullback & Leibler (KL) divergence, a.k.a

Jeffreys divergence dJ , and the Hellinger distance dH [92]. For instance, Kondor & Jebara

[44] use SVMs with kernels based on dB to classify images represented as bags of pixels,
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Fig. 6.1 Outline of the proposed framework for unifying the representation
of sets of vectors. In the first step, each bag of features, or set of vectors
(SOV) is modelled as a Gaussian distribution. In the second step, the dif-
ference or similarity between every pair of Gaussian densities is used to fill
a (dis)similarity matrix K. In the third step, spectral embedding methods
(Laplacian or Euclidean embeddings) are used to collectively embed all SOVs
in a low dimensional Euclidean space. The final result is that each bag i is
represented by a single vector yi.
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while Moreno et al. [45] uses SVMs with kernels based on dJ to classify multimedia objects

(video,audio) represented as bags of features.

In the context of supervised learning over time-series data, Jaakkola & Haussler [156]

model each class or category of SOVs using a single hidden Markov model (HMM) [159, 160],

followed by extracting the Fisher score for each SOV Si. The Fisher score is a fixed size

high dimensional vector that is extracted from the HMMs’ parameters with respect to

the pattern Si, and hence it uniquely represents Si. In turn, the Fisher scores unify the

representation of variable length time-series patterns. Following this representation, the

authors define the Fisher kernel over the Fisher scores, and use SVMs to classify these

Fisher scores. Note that this framework is completely different from the standard HMM

based approach used in speech recognition [155]. The advantage of [156] is that it allows

powerful discriminative models such as SVMs, which can not handle variable length input,

to be indirectly used for classifying variable length time-series patterns.

6.3 A Framework for Embedding Sets of Vectors

In the same spirit as the above approaches, but without being geared towards classifica-

tion using SVMs, I propose an application independent framework that focuses on unifying

the representation for SOVs, while discovering their latent natural clusters. That is, as

shown in Figure 6.1, the first step in the framework is to model each bag of features, or

SOV Si as a Gaussian distribution Gi, consequently forming the non-empty set of Gaus-

sians G = {G1, . . . ,Gn}. In the second step, a (dis)similarity measure is used to fill the

dis(similarity) matrix K with the distance (or similarity) between every pair of Gaussian

distributions. In the last step, using the metric space learning algorithms presented in the

previous chapter, each Gaussian Gi is finally embedded as a single vector yi ∈ R
p0, where

in general p0 ≪ p, and p0 ≪ n.

In other words, instead of relying on kernels to measure the similarity between two

probability distributions to be used in an SVM classifier as in [150, 44, 45], the Gaussian

distributions G = {G1, . . . ,Gn} are collectively embedded in a low dimensional subspace

Rp0 in order to unify the representation of SOVs as in the work of Jaakkola & Haussler [156].
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Fig. 6.2 Sample frames from the KTH video data set for human action
recognition.

The key idea of the proposed framework is that after modelling each SOV Si as Gaussian

distribution Gi, we obtain the non-empty set G = {Gi}ni=1. The set G of Gaussians, together

with the metrics dJR and dBR form the metric spaces (G , dJR) and (G , dBR) respectively,

which are the dual perspective for the augmented space X introduced in the previous

chapter. Therefore, it is straight forward to obtain an embedding for the set G = {Gi}ni=1

in the lower dimensional space Rp0 using Laplacian embedding and the kernels KJR and

KBR, or using Euclidean embedding and the metrics dJR and dBR.

6.4 Experiments

The validity of the proposed framework is tested in two different learning contexts; 1)

supervised learning for human action recognition from video sequences, and 2) unsuper-

vised learning for clustering human motion in video sequences. For this purpose, we use

the KTH video data set for human action recognition shown in Figure 6.2 [161]1. The

data set consists of video clips for 6 types of human actions (boxing, hand clapping, hand

waving, jogging, running, and walking) performed by 25 subjects in 4 different scenarios

1http://www.nada.kth.se/cvap/actions/
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(outdoors, outdoors with scale variation, outdoor with different clothes, and indoors), re-

sulting in a total number of video clips n = 6×25×4 = 600. All video sequences are taken

over homogeneous backgrounds with a static camera with a frame rate of 25 fps. The spa-

tial resolution of the videos is 160×120, and each clip has a length of 20 seconds on average.

In the supervised learning setting, Section 6.4.2, the objective is to differentiate between

6 different types of human actions. To this end, the motion in each video clip is represented

as a SOV by means of histograms of gradient orientations, and Euclidean embedding via

dBR is used to embed all SOVs (representing all video clips) in a low dimensional Euclidean

space Rp0, where classification of actions is done via a simple k nearest neighbour (k-NN)

classifier.

In the unsupervised setting, Sections 6.4.3 and 6.4.4, the objective is to cluster the

frames of a long video sequence according to the different types of motion in the video.

More specifically, in a long video sequence, there is a human subject performing different

types of actions, and the objective is to assign frames with very similar motion content,

a unique label. Here, the long video sequence is equally segmented into short video clips,

and the motion information from the frames in each clip is represented as a SOV using

histograms of gradient orientations. Next, Laplacian embedding is used to embed all SOVs

into a low dimensional Euclidean space Rp0, where clustering is performed via the k-Means

algorithm.

6.4.1 Representing motion as sets of vectors (SOVs)

To extract the motion information, a dense optical flow is computed for each video clip

using the Lucas-Kanade algorithm [162]2, resulting in a large set of spatio-temporal gradi-

ents vectors describing the motion of pixels in each frame. The gradient vector is normal

to the local spatio-temporal surface generated by the motion in the space–time volume.

The gradient direction captures the local surface orientation which depends on the local

behavioural properties of the moving object, while its magnitude depends mainly on the

photometric properties of the moving object, and it is affected by its spatial appearance

2Implemented in Piotr’s Image and Video Toolbox for Matlab
http://vision.ucsd.edu/ pdollar/toolbox/doc/
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(color, texture, etc.) [163].

To capture the motion information encoded in the gradient direction, first we apply

an adaptive threshold based on the norm of the gradient vectors to eliminate all vectors

resulting from slight illumination changes and camera jitter. Second, each video frame is

divided into h × w blocks – typically 3 × 3 and 4 × 4 – and the motion in each block is

encoded by an m–bins histogram of gradient orientations. In all our experiments, m is set

to 4 and 8 bins. The histograms of all blocks for one frame are concatenated to form one

vector of dimensionality p = m × h × w. Therefore, a single video clip Di with ti frames

is finally represented as a set Si = {xi
1, . . . ,x

i
ti
}, where xi

j is a p-dimensional vector of the

concatenated histograms of frame j. Since histograms of orientations from optical flow

vectors can not differentiate between two identical actions performed at different speeds, I

excluded the ‘walking’ and ‘running’ classes from the data set. This resulted in n = 400

video clips, for 25 persons performing 4 actions in 4 different scenarios.

6.4.2 Experimental Setting I : Human Action Recognition

After extracting the motion information from each video clip Di and representing it as a

SOV Si, each Si is modelled as a Gaussian distribution Gi with mean vector µ̂i =
1
ti

∑ti
j=1 x

i
j ,

and a covariance matrix Σ̂i =
1

ti−1

∑ti
j=1(x

i
j − µ̂i)(x

i
j − µ̂i)

⊤ + γI , where γ is the regular-

ization parameter as introduced in the previous chapter, and I is the identity matrix. In

all the experiments γ was set to 1.

Using the Euclidean embedding algorithm described in Section 5.8, all the Gaussians

representing the motion of all video clips were embedded in four low dimensional subspaces

R
p0 using four different dissimilarity measures; dJ(Gi,Gj) used in [45] which is a semi-

metric, dB(Gi,Gj) used in [44] which is also a semi-metric, dH(Gi,Gj) which is a metric,

and the metric dBR(Gi,Gj). This resulted in 4 similarity matrices, KJ , KB, KH , and KBR

respectively. Note that p0, the dimensionality of the embedding space, is a free parameter

that is either user defined, or selected by cross validation.

To classify the different actions embedded in the different low dimensional subspaces,

a k–NN classifier is used with, k = {1, 3, 5, 7}. The empirical error rate is measured using
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Table 6.1 Empirical error rate (%), with standard deviation, and the dimen-
sionality p0 of the embedding space obtained by the four different dissimilarity
measures on the four feature settings obtained from the KTH data set.

m× h× w dJ dB dH dBR

4× 3× 3 21.2 (3.8), p0 = 11 20.2 (3.4), p0 = 30 19.7 (3.7), p0 = 45 17.7 (4.7), p0 = 38
4× 4× 4 16.7 (3.6), p0 = 15 17.0 (4.1), p0 = 19 16.9 (3.7), p0 = 44 15.9 (3.2), p0 = 47
8× 3× 3 24.3 (2.9), p0 = 43 23.3 (4.9), p0 = 48 22.1 (3.8), p0 = 44 19.9 (3.8), p0 = 45
8× 4× 4 20.9 (4.6), p0 = 20 20.4 (3.8), p0 = 22 20.4 (3.7), p0 = 22 18.8 (3.5), p0 = 47

a 30 folds double cross validation procedure, in which the data set is randomly split into a

training set (80%) and a test set (20%), and then search for k that minimizes the training

error of the current split. This optimal k is used to obtain the test error of one trial. This

process is repeated 30 times, and the final empirical error (with standard deviation) is the

average test error over all the 30 trials. Since p0 is a free parameter, the optimal p0 for

each embedding is selected based on the lowest empirical error, where p0 ∈ [2, 50].

Before proceeding to the results, it is worth recalling that selecting the optimal values

form, h, w, γ, and the parameters for optical flow computation, is again a question of model

selection which is not addressed here. Nevertheless, even though when these parameters are

not optimized, Euclidean embedding using the metric dBR appears to be a valid framework

for unifying the representation of SOVs with various desirable properties as will be shown

below.

Analysis of the results

Table (6.1) shows the empirical error rate on the KTH data set using the experimental

setting described above. First of all, it is interesting to have a round figure on the results

reported on this data set using more sophisticated systems. State of the art results on this

data set with very sophisticated feature descriptors and SVM classifiers are around 20%

error rate as reported in [161], and 10% error rate as reported in [164]. Given the very

simple features used in our experiments, our error rates seems to be very comparable to

these state of the results.

Second, our hypothesis before running the experiments is that the embeddings obtained
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Fig. 6.3 The four similarity matrices KJ top left, KB top right, KH bottom
left, andKBR bottom right. Note the clear block structure for KBR compared
to other matrices. This figure is better seen on a coloured display.

via dJ and dB will yield higher classification error than those embeddings obtained via dH

and dBR since dJ and dB are semi-metrics. According to Theorem 5.8.1 and the definition

of semi-metrics, the resulting similarity matrix K is not guaranteed to be PSD for semi-

metrics, and hence the resulting embedding space will be a semi-metric space in which

metric properties and the relative distances between points are violated. Table 6.1 shows

the classification error (with standard deviation) and the dimensionality of the embedding

space for each dissimilarity measure on the 4 feature sets extracted from the KTH data set.

It can be seen that despite the dimensionality p0, dH resulted in lower classification error

than dJ and dB did, while the embedding based on the proposed metric dBR yielded the

lowest error among all other dissimilarity measures. Although dH is a metric, dBR performs

better since it is able to better characterize the natural grouping in the data and separat

them in Rp0, which is reflected in the form of low error rates in Table 6.1.
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To see this natural grouping of the data, while being able to compare the difference

between the 4 embeddings, we pick the 4 × 4 × 4 feature set from the 4 sets of features

shown in Table 6.1 since it yielded the lowest error rate with all dissimilarity measures.

Using this feature set, we obtain the 4 similarity matrices KJ , KB, KH , and KBR shown

in Figure 6.3 (better seen on a display). It can be clearly seen that KBR has 3 clear block

structures along the diagonal, indicating three main categories in the data, which has orig-

inally 4 classes. Further, the top-left block of KBR has further sub-blocks indicating finer

categories within the data. This is less clear forKH , and obscured in the case ofKJ andKB.

Further analysis can be made by comparing the eigen-spectrum of the four similarity

matrices KJ , KB, KH , and KBR, and in particular, the tail of each eigen-spectrum which

reflects the adherence of each dissimilarity measure to the metric properties. From Theo-

rem 5.8.1, we know that only metrics will yield PSD similarity matrices K. This is exactly

depicted in Figure 6.4 where the smallest eigenvalues for KH and KBR, generated by dH

and dBR respectively, are greater than or equal to zero. This is unlike dJ and dB which

resulted in negative definite matrices KH and KB respectively, and hence the negative

eigenvalues in Figure 6.4.

Finally, it is important to consider the reduction in space complexity achieved by the

proposed framework. If the minimum representation of a single video frame, using the first

feature set in Table 6.1 and a double precision format is 4× 3× 3 (m× h×w) ×4 (bytes)

= 144 bytes per frame, then for 400 clips, with 25 fps, and an average length for video clips

of 20 seconds, the total space required for the data set is 400 × 20 × 25 × 144 ≈ 27 MB.

However, after using the proposed framework, the same data set will require 400 (clips)

× p0 × 4 = 73 KB of memory for p0 = 47 using dBR (see Table 6.1). This is a significant

reduction in space complexity, and indeed learning a hypothesis over the embedded data

set will be much faster than learning a similar hypothesis over the original representation.

6.4.3 Experimental Setting II : Motion clustering – An illustrative example

The objective of these experiments is to cluster or group similar motion profiles in a video

sequence in an unsupervised manner. This task is usually found as preliminary step in ap-

plications such as motion segmentation and tracking [165], event modelling and event based
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analysis for video [163], unusual event detection [166, 152], analysis of spatio-temporal pat-

terns in video [151], scene understanding and analysis [153, 154, 167], etc. In this task, the

video is usually decomposed into smaller units where it is expected that a motion activity

will occur. This smaller unit can be a single frame, a group of contiguous frames, or any

smaller spatio-temporal units known as a cuboids [151, 152, 153, 154]. In the next step,

motion information is extracted from each unit and represented as a p-dimensional vector.

Finally, classification and clustering of motion (or events) can be obtained by applying

learning algorithms on this vectorial representation of motion activities.

Motion clustering has stronger requirements than motion segmentation [168]. While

the latter focuses on detecting and isolating moving pixels from static backgrounds, the

former, in addition to motion segmentation, focuses on grouping similar motion profiles

into clusters. Note that the representative motion profile (or activity) of each cluster, or

the cluster mean, is defined here as a motion pattern. In our particular context, for a

long video sequence in which a human subject is performing different types of actions, the
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(a) (b)

Fig. 6.5 (a) One frame from the illusion sequence with the red lines indi-
cating the four different regions of motion taking place in the sequence. (b)
The red arrows indicate the direction of the black strips in each block. The
green circle indicates the boundary points at which the motion in each block
flips its direction. Note that the two types of motion appearing in each block
are considered together as one motion pattern..

objective is to assign frames which contains similar actions, a unique label. An illustrative

example for motion clustering in a synthetic video sequence is described in the following,

followed by the experiments on longer video sequences with different human actions.

Consider Figure 6.5 which depicts one frame from a sequence of frames known as the

illusion video sequence3. Each frame in the video sequence is divided into 4 blocks, where

the black strips in each block are moving in the directions of the red arrows depicted in

Figure 6.5(b). In the illusion movie, there are four different motion patterns, one for each

block. Given a clustering algorithm and a suitable representation for the motion in the

frame sequence, it is desired to define these 4 different groups/clusters of motion activities

in the sequence.

To extract the motion features from this sequence of 1200 frames, the video is divided

into short video clips of 10 frames/clip; i.e. 120 video clips. Each frame in each video clip

is further divided into 2 × 2 blocks, where the sequence of blocks in the video clip form a

3http://en.wikipedia.org/wiki/File:Illusion movie.ogg



6 A Framework for Hypothesis Learning Over Sets of Vectors 115

Similarity matrix K for the Illusion movie using the kernel K
E
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Fig. 6.6 The similarity matrix K for the illusion video sequence. Note the
4 block structures along the diagonal of the matrix, indicating the 4 different
motion patterns in the data.

spatio-temporal unit known as a cuboid. That is, for 120 clips and 2× 2 blocks, there are

480 cuboids. The motion information in each block is encoded using the m-bins histogram

of gradient orientations as described in the previous section, where m is set to 8.

Due to the steady periodic motion of the illusion movie, the covariance matrices for

all SOVs (or all cuboids) are equal, and hence they carry no additional information for

clustering. Therefore, only the mean vector µ of each SOV is computed as a representation

for the SOV. This resulted in a total of 480 motion descriptor vectors with dimensionality

p = 8, which describe the motion in the illusion sequence.

We apply the standard spectral clustering (SC) algorithm on the 480 motion descriptor

vectors, where the exponential kernel KE is used as a measure of similarity between the

descriptor vectors. Figure 6.6 shows the resulting similarity (or affinity) matrix K for the

descriptor vectors using KE . It can be seen that the matrix has 4 clear block structures

along the diagonal which is equivalent to the number of clusters in the data, or the number
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Fig. 6.7 (A) The eigen-spectrum of the similarity matrix K in Figure 6.6.
(B) The mean histogram of cluster one corresponds the main motion direc-
tions in block 2 which are (0◦ − 45◦) and (180◦ − 225◦). These two different
orientations for the motion in that particular block form what is called the
motion pattern. (C) The mean histogram of cluster two corresponds to the
main motion directions in block 3 which are (180◦ − 225◦) and (0◦ − 45◦).
(D) The mean histogram of cluster three corresponds to the main motion di-
rections in block 1 which are (90◦ − 135◦) and (270◦ − 335◦). (E) The mean
histogram of cluster four corresponds to the main motion directions in block
4 which are (270◦ − 335◦) and (90◦ − 135◦).

of motion patterns that exist in the illusion video sequence. Further, Figure 6.7 A shows

the eigenvalues of the affinity matrix K, in which there are 4 eigenvalues equal to one.

This is a clear indication that the data has exactly 4 connected components, equivalently

4 clusters [169], that correspond to the 4 different motion patterns in the data.

To visualize the four motion patterns in the illusion video sequence, the mean histogram

of each cluster is shown in Figures 6.7 B, (6.7(C)), (6.7(D)), and (6.7(E)). Note that due to

the random initialization for the centres in the k-Means clustering step of SC, the cluster

assignments are not in one to one correspondence with the block numbers in Figure 6.5(a).
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It can be seen that SC well captured the 4 different motions patterns in the illusion video

sequence. In a similar fashion, it is desired to extend the analysis developed above to more

complex videos sequences with different types of human actions.

6.4.4 Experimental setting III : Clustering complex human motion

To generalize the analysis developed above for videos with complex human motion, it is

essential to have a suitable data set for this purpose. To this end, we create a data set of

100 video sequences, each with 6 different human actions from the KTH data set for human

action recognition. For each subject, the 6 video clips from one scenario are concatenated

to form one long video sequence. The length of each concatenated sequence is around 120

seconds, with a frame rate of 25 fps. In order to validate any learning algorithm applied

on the new video sequences, each frame in the video is labelled by the type of action it

contains. Since there are 4 scenarios for each of the 25 subjects, this concatenation resulted

in a total number of video sequences n = 25× 4 = 100.

To extract the motion features from one video sequence Di, each video is divided into

short video clips, with typically 20, 25, 30, and 35 frames/clip. Each frame in each clip is

divided into h × w blocks – typically 3 × 3 and 4 × 4 – and the motion in each block is

encoded by the m-bins histogram of gradient orientations. In all the experiments, m is set

to 4 and 8 bins. The histograms of all blocks in one frame are concatenated to form one

vector of dimensionality p = m × h × w. This makes each short video clip as one SOV,

with 20, 25, 30, or 35 p-dimensional vectors in it.

The final representation of the new data set is as follows. There are n = 100 video

sequences D = {Di}ni=1, and each video Di is divided into short video clips which are rep-

resented as SOVs; Di = {Si
1, . . . ,Si

j, . . . ,Si
Ti
}, where Ti is the number of short clips in video

Di. Similar to the human action recognition experiments, each SOV Si
j is represented as

a Gaussian distribution Gi
j with a mean vector µi

j and a regularized covariance matrix Σi
j ,

where 1 ≤ i ≤ n, and 1 ≤ j ≤ Ti.

The reader should note that in the following experiments, motion clustering will be ap-

plied on each video sequence Di independently, and not simultaneously on all the sequences.
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Further, the accuracy of the clustering algorithm will be measured on each individual video

sequence. The final performance of the clustering algorithm over the 100 sequences, will

be the average of all the clustering accuracies.

To cluster the motion in one video sequence Di, first, the Laplacian embedding algo-

rithm described in Section 5.7 is used to embed all the Gaussians {Gi
1 . . . ,Gi

Ti
} into 4 low

dimensional subspaces Rp0 using the 4 relaxed kernels KJ , KB, KH , and KBR. Since the

number of different actions in a single video is known a priori , the dimensionality of the

embedding space is set to p0 = 6. Next, the k-Means clustering algorithm is applied on

the vectors in Rp0 to cluster the video clips into k = 6 clusters. The k-Means algorithm is

initialized with 30 different initializations, and the clustering with the minimum distortion

is selected as the final result of clustering.

Two clustering accuracy measures are used to assess the quality of clustering for one

video sequence; the Hungarian score [147, 148], and the normalized mutual information

(NMI) measure [170]. The final performance for the embedding process together with the

k-Means algorithm is measured by taking the average Hungarian score and the average

NMI measure over the 100 video sequences.

Analysis of the results

Tables 6.2, 6.3, 6.4, and 6.5 show the average clustering accuracies in the embedding spaces

obtained from different Laplacian embeddings and different feature settings. Under each

feature set, the difference between the embedding spaces is due to the kernel that defines

the similarity matrix K.

The first column in each table shows the number of frames per short video clip. The

second column shows the accuracy for the standard spectral clustering (SC) algorithm – i.e.

Laplacian embedding using the exponential kernel KE – over the raw features representing

each frame in the video sequence. Note that each frame is represented as a p-dimensional

vector, where p = m × h × w. The third column, deonted by KE(µ), shows the results

of the standard SC algorithm over SOVs when each SOV Si
j is represented only by the

mean vector µi
j – i.e. the covariance information in each SOV is not considered. Columns
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Table 6.2 Average clustering accuracy (%), with standard deviation, over
the 100 video sequences in the embedding spaces obtained by Laplacian em-
bedding and the kernels KE , KE(µ), KJ , KB, KH , and KBR. The histogram
of gradient orientations has the following setting: m× h× w = 4× 3× 3.

m× h× w = 4× 3× 3

Hungarian score

frames/clip KE KE(µ) KJ KB KH KBR

20 37.2 (6.3) 55.9 (11.7) 53.0 (11.4) 53.2 (11.5) 57.6 (11.9) 63.5 (12.6)
25 37.2 (6.3) 58.7 (13.2) 54.5 (12.3) 54.8 (12.4) 60.8 (13.3) 66.3 (13.8)
30 37.2 (6.3) 60.0 (13.0) 58.1 (13.3) 62.6 (13.1) 62.6 (13.6) 68.8 (14.0)
35 37.2 (6.3) 63.2 (13.1) 60.7 (14.1) 60.5 (14.1) 66.0 (13.3) 70.6 (13.1)

NMI measure

frames/clip KE KE(µ) KJ KB KH KBR

20 17.6 (7.0) 50.2 (13.8) 47.9 (13.2) 48.2 (13.3) 52.6 (14.0) 56.5 (14.4)
25 17.6 (7.0) 53.2 (14.4) 50.3 (13.2) 50.7 (13.3) 56.3 (13.9) 59.8 (14.5)
30 17.6 (7.0) 55.1 (14.3) 53.9 (13.7) 54.0 (13.7) 58.4 (13.7) 62.1 (14.4)
35 17.6 (7.0) 57.8 (13.6) 56.2 (13.9) 56.3 (13.8) 61.0 (13.2) 63.6 (14.0)

4 to column 7 show the results of k-Means clustering in the embedding spaces obtained by

Laplacian embedding using the relaxed kernels KJ , KB, KH , and KBR. Note that each

table shows the average clustering accuracies using two different measures, the Hungarian

score and the NMI measure.

The four Tables show a consistent behaviour over the different features settings and he

number of frames/clip. As expected, SC using KE for the raw feature vectors, without

grouping them into short clips, yields the lowest accuracies under both measures. Moving

from a raw feature representation to sets of vectors via short video clips and using only the

mean vector for each SOV with the standard SC algorithm, Column 3, boosts the accuracies

by approximately 50%. When considering the covariance information for each SOV, and

using the relaxed kernels KJ and KB, the accuracies drop below those of KE(µ). This is

unlike the accuracies for KH which are significantly higher than KE(µ). This difference

between KJ and KB on one hand, and KH on the other hand, shows the impact of adhering

to metric properties on the embeddings obtained by Laplacian eigenmaps. This is further

emphasized by the accuracies for KBR which consistently outperforms KH and all other

kernels.



6 A Framework for Hypothesis Learning Over Sets of Vectors 120

Table 6.3 Average clustering accuracy (%), with standard deviation, over
the 100 video sequences in the embedding spaces obtained by Laplacian em-
bedding and the kernels KE , KE(µ), KJ , KB, KH , and KBR. The histogram
of gradient orientations has the following setting: m× h× w = 4× 4× 4.

m× h× w = 4× 4× 4

Hungarian score

frames/clip KE KE(µ) KJ KB KH KBR

20 39.4 (6.6) 57.6 (12.1) 53.8 (12.0) 54.1 (12.2) 59.4 (12.7) 65.5 (13.3)
25 39.4 (6.6) 58.7 (12.1) 55.9 13.4) 56.4 (13.4) 63.5 (13.4) 68.2 (13.6)
30 39.4 (6.6) 60.4 (12.6) 58.6 13.5) 58.6 (13.7) 65.3 (13.4) 69.8 (13.7)
35 39.4 (6.6) 63.3 (13.6) 60.9 14.2) 60.6 (13.8) 68.0 (13.9) 71.6 (13.1)

NMI measure

frames/clip KE KE(µ) KJ KB KH KBR

20 21.0 (8.0) 52.0 (13.8 ) 48.8 (13.6 ) 49.4 (13.8) 55.2 (14.1) 59.4 (14.7)
25 21.0 (8.0) 54.1 (13.7) 51.5 (13.6 ) 52.0 (13.4) 59.1 (13.3) 62.2 (13.7)
30 21.0 (8.0) 56.0 (13.4) 54.4 (13.7) 54.9 (13.6 ) 60.8 (13.3) 63.7 (13.5)
35 21.0 (8.0) 58.2 (13.2) 56.8 (13.8 ) 56.5 (13.7 ) 62.9 (12.6) 65.2 (12.5)

6.5 Discussion and Concluding Remarks

In this chapter I have proposed an unsupervised framework for embedding sets of vectors

based on the Bhattacharyya-Riemannian metric dBR. Similar to previous ideas in the lit-

erature, the framework models each SOV as a multivariate Gaussian distribution, forming

by that a non-empty set, or family of Gaussians G . The set of Gaussians G and the met-

ric dBR define the metric space (G , dBR) which is the dual perspective for the augmented

space X introduced in the previous chapter. Therefore, unlike previous methods in the

literature which rely on the dis(similarity) between the Gaussians to only learn a classifier

for the SOVs, the proposed framework embeds the metric space (G , dBR) as points in a

low dimensional Euclidean space Rp0, which allows any learning algorithm to learn from

the low dimensional points instead of the SOVs.

The spectral embedding step offers an implicit clustering for the SOVs based on the

metric dBR. That is, the metric space (G , dBR) reorganizes the proximity between SOVs

based on dBR which explicitly respects the geometry of Rp and S
p×p
++ . This reorganization

for the SOVs is reflected on the embedding and manifested by the Euclidean distance in

R
p0. The spectral embedding step, has two additional advantages; 1) dimensionality reduc-
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Table 6.4 Average clustering accuracy (%), with standard deviation, over
the 100 video sequences in the embedding spaces obtained by Laplacian em-
bedding and the kernels KE , KE(µ), KJ , KB, KH , and KBR. The histogram
of gradient orientations has the following setting: m× h× w = 8× 3× 3.

m× h× w = 8× 3× 3

Hungarian score

frames/clip KE KE(µ) KJ KB KH KBR

20 37.5 (6.9) 58.5 (11.1 ) 55.7 (11.2 ) 56.0 (10.9 ) 60.1 (11.5) 65.1 (13.2)
25 37.5 (6.9) 60.5 (12.3) 58.2 (12.0 ) 58.1 (11.9) 63.6 (13.1) 69.6 (13.6)
30 37.5 (6.9) 62.4 (12.0) 60.0 (12.7) 59.9 (12.6 ) 64.8 (12.9) 70.3 (13.4)
35 37.5 (6.9) 65.2 (13.2) 63.0 (13.3) 62.9 (13.3) 67.4 (13.1) 71.8 (13.6)

NMI measure

frames/clip KE KE(µ) KJ KB KH KBR

20 17.8 (8.9) 53.3 (13.4) 51.2 (13.1 ) 51.5 (12.9 ) 55.5 (13.1 ) 59.0 (14.1)
25 17.8 (8.9) 55.6 (13.3) 54.0 (12.6) 53.9 (12.5) 59.0 (13.1 ) 62.9 (13.9)
30 17.8 (8.9) 58.0 (12.5) 56.0 (13.1) 56.1 (12.9) 60.6 (12.8 ) 64.0 (13.5)
35 17.8 (8.9) 60.0 (12.6) 58.3 (13.2) 58.3 (12.9) 62.3 (12.3) 65.6 (13.0)

tion which results in faster and more efficient hypothesis learning over the SOVs through

their images in Rp0, and 2) generalization via the Nyström formula.

The metric space (G , dBR) can be tuned using the regularization parameter γ, and the

kernel parameter σ. If these parameters are jointly optimized with the parameters of the

hypothesis learning algorithm in the embedding space, the final performance of hypothesis

is guaranteed to improve. Similar to the augmented space X, the proposed framework

can be used in supervised and semi-supervised learning settings. Further, the proposed

framework can be generalized to other distributions over SOVs, and combined with other

divergence measures that adhere to metric properties such as the Jensen-Shannon diver-

gence [171].

The different experiments on the KTH data set for human action recognition clearly

shows the efficacy of the proposed framework and the metric dBR. The experiments used

simple low level features to represent the motion in a video clip, the k-NN classifier and the

k-Means clustering in the embedding space, which were sufficient to show that the proposed

framework is promising when compared to the basic ideas of Kondor & Jebara [44] and

Moreno et al. [45] . An immediate future research work in that direction is to replace the
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Table 6.5 Average clustering accuracy (%), with standard deviation, over
the 100 video sequences in the embedding spaces obtained by Laplacian em-
bedding and the kernels KE , KE(µ), KJ , KB, KH , and KBR. The histogram
of gradient orientations has the following setting: m× h× w = 8× 4× 4.

m× h× w = 8× 4× 4

Hungarian score

frames/clip KE KE(µ) KJ KB KH KBR

20 39.0 (7.2) 58.1 (11.6) 54.0 (12.5) 54.6 (12.7) 60.8 (12.2) 66.3 (12.7)
25 39.0 (7.2) 61.1 (12.2) 57.7 (14.0) 57.7 (13.9) 64.7 (13.2 ) 69.5 (13.2 )
30 39.0 (7.2) 62.8 (12.6) 59.5 (13.4) 59.5 (13.2) 66.3 (12.5) 70.5 (12.6 )
35 39.0 (7.2) 65.7 (13.4 ) 59.5 (13.4 ) 59.5 (13.2) 66.3 (12.5 ) 70.5 (12.6 )

NMI measure

frames/clip KE KE(µ) KJ KB KH KBR

20 20.7 (9.9) 53.2 (13.2) 73.7 (12.2) 73.6 (12.3 ) 73.4 (12.2) 73.7 (11.5 )
25 20.7 (9.9) 56.8 (12.8 ) 52.7 (14.4 ) 52.9 (14.2 ) 60.2 (13.0) 63.7 (13.1 )
30 20.7 (9.9) 58.4 (12.6 ) 54.9 (13.4 ) 55.4 (13.0) 62.0 (12.3 ) 65.1 (12.3 )
35 20.7 (9.9) 60.5 (12.5 ) 54.9 (13.4 ) 55.4 (13.0 ) 62.0 (12.3 ) 65.1 (12.3 )

k-NN classifier with SVMs, and use other multimedia data sets to have comparisons with

[44] and [45]. Another interesting direction to explore is to use more complex low level

features such as the composite frequency features [168], or features based on the trend of

space-time interest points [161] (and similar ideas) together with the proposed framework

in applications such as learning motion patterns from surveillance cameras, crowd analysis,

etc.
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Chapter 7

Conclusions & Future Directions

In practice, there are plethora of instances in which one learns a hypothesis immediately

from the data without considering any sort of metric learning nor dimensionality reduction

for the data. There are also a plethora of instances in which a sort of preprocessing such

as, applying PCA, LDA, whitening transformation, etc. is considered a good practice and

encouraged on the grounds of achieving good performance. These situations mainly appear

at the systems level in which hypothesis learning becomes one part of a bigger pattern

recognition system. Such systems, at a smaller scale for instance, occur in very active areas

such as object/scene recognition in computer vision, and equally in speech recognition. In-

deed these systems achieve state-of-the-art results, however it usually comes with enormous

(and appreciated) efforts in designing feature detectors/descriptors, training, fine tuning

parameters, etc.

In simple terms, the main message of this thesis is that one can achieve better systems

design with less complexity, and better performance, if hypothesis learning is tied to met-

ric learning and/or dimensionality reduction (linear or nonlinear). This is not just being

a good practice, or a good customary habit in a certain application domain. According

to this study, hypothesis learning and metric learning should be one unit, and it is not

optional to learn a hypothesis without learning the necessary metric for the data.

More formally, for a data set D = {x}ni=1, xi ∈ Rp, instead of imposing Rp on D, we

would like to learn the metric space (Rp0, ‖ · ‖2), with p0 ≪ p, such that the Euclidean

2011/12/14
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distance reveals more about the structure and groupings in the data. Note also that with

p0 ≪ p, as by products, we obtain a reduction in space complexity, and build lower capacity

predictors that can improve generalization [67].

An interesting outcome from this research work is the question on whether the lin-

ear/nonlinear embedding process preserves the metric properties or not, and whether the

embedding space is a metric space, a semi-metric space or any other space with different

combinations of properties. For supervised learning, these issues might not constitute se-

rious hazards. However for unsupervised learning, where no labels or side information are

available for the data, these issues become of great importance. In unsupervised learning, it

is not known a priori which points should be close or far away from each other. Therefore,

to avoid any misleading results from the embedding process, one should confirm that it

preserves all the metric properties.

In addition to the conclusions and future research direction at the end of Chapters 4, 5,

and 7, I highlight here more general conclusions and future research questions that I will

be interested to pursue. The Pareto discriminant analysis framework in Chapter 4, and in

particular Equation (4.25), can be considered an instance from a more general model for

linear dimensionality reduction:

(B∗,w∗) = argmax
B∈R, w∈Rc

E(B,w), s.t. B⊤B = I, w⊤1 = 1, and w � 0,

where

E(B,w) =

c
∑

i=1

widiv(Gi,G ′
i;B)− λ‖B‖δ,

div is any divergence measure between probability distributions, λ � 0 is a regularization

parameter, and δ decides the type of norm used in the regularization. This optimization

problem enforces an orthogonality constraint on B, and includes a regularization term on

B as well. Depending on the matrix norm type, B can be a low rank or a sparse (orthogo-

nal) matrix. A similar variant can be obtained for Equation (4.26). The final solution will

not only depend on δ, but as well as on the divergence measure used and its properties.

Note that a loss term based on classification error can be added to this objective function,
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which implies combining metric learning and hypothesis learning in one model. The main

questions now are which divergence measures to use, which matrix norm to use, and more

importantly, how to efficiently optimize this objective function?

The augmented space X in Chapter 5 was only explored here in the unsupervised learn-

ing setting, although it can be easily applied in supervised and semi-supervised learning

settings. The advantage of X is that it captures the local structure and density around each

point in the data set. This local information is manifested in the proposed Bhattachrayya-

Riemann and Jeffreys-Riemann metrics for the space X. The metric spaces (X, dBR) and

(X, dJR) give a new meaning for the distance between points that is based on the local

structure and the local density around each point. That is, two points are close or similar

to each other, when they are physically close to each other in the input space, and the

local structure and density around each point are very similar. This is unlike the Euclidean

distance that does not take any of these aspects into consideration.

Another advantage of X is that it is adaptive, and can be tuned using the neighbour-

hood size m, and the regularization parameter γ which was set to 1 in all experiments.

This implies that the metrics dBR and dJR can be tuned as well. If these parameters are

jointly optimized with a hypothesis learning algorithm, then we obtain a flexible metric

that adapts to the task under consideration.

Note that in spectral clustering, or Laplacian eigenmaps, the main input to the algo-

rithm is the Euclidean distance between points on the data neighbourhood graph, originally

constructed using Euclidean distance as well. If the data neighbourhood graph is built us-

ing the metrics dBR or dJR, we obtain the experiments in Section 5.11, which show that

dBR or dJR can better capture the similarity between points based on this new meaning

for the distance between points. This significant improvement of the results encourages us

to consider the topological stability of all manifold learning algorithm [71] when encapsu-

lated with the augmented space X. That is, a main question for future research work is

whether the adaptive augmented space X can improve, or leverage, the topological stability

of spectral manifold learning algorithms?
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Appendix A

Preliminaries

Positive Definite and Positive Semi-Definite Functions

A scalar x ∈ R is positive definite (PD), or positive semi-definite (PSD), if and only if

x > 0, or x ≥ 0 respectively.

A real continuous function f : Rp 7→ R, that is even : f(−x) = f(x), is said to be PD if

[43] :

n
∑

i,j

f(xi − xj)ρiρj > 0 ,

for arbitrary real ρi, and any n points {xi}ni=1. Similarly, an even function f : Rp 7→ R is

said to be PSD if

n
∑

i,j

f(xi − xj)ρiρj ≥ 0 ,

for arbitrary real ρi, and any n points {xi}ni=1.

Mercer Kernels

A necessary and sufficient condition to guarantee that a symmetric similarity function K is

a kernel function over the input space X , is that K should be PSD as defined above. That

2011/12/14
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is, for the set X and for any set of real numbers a1, . . . , an, the function K must satisfy

the following:
∑n

i=1

∑n
j=1 aiajK(xi,xj) ≥ 0. This ensures the existence of a mapping

φ : X 7→ H, where H is a Hilbert space called the feature space, in which K turns into

an inner product: K(xi,xj) = 〈φ(xi),φ(xj)〉. Such symmetric PSD kernels are known as

Mercer kernels [123]. Note that the difference between Mercer kernels and the definition of

PSD function introduced above is in the extra property of symmetry for Mercer kernels.

However, the main definition of PSD is identical in both cases.

Metric Spaces

A metric space [46, p. 3] is an ordered pair (X , d), where X is a non-empty abstract set

(of any objects/elements whose nature is left unspecified), and d is a distance function, or

a metric, defined as :

d : X ×X 7→ R,

and ∀ a, b, c ∈ X , the following axioms hold : (i) d(a, b) ≥ 0, (ii) d(a, a) = 0, (iii)

d(a, b) = 0 iff a = b, (iv) Symmetry : d(a, b) = d(b, a), and (v) The triangle inequality

: d(a, c) ≤ d(a, b) + d(b, c).

A semi-metric distance satisfies Axioms (i), (ii) and (iv) only. That is, the triangle in-

equality need not hold for semi-metrics, and d(a, b) can be zero for any a, b and a 6= b. For

instance, the Euclidean distance ‖x− y‖2 in Rp is a metric, but ‖x− y‖22 is a semi-metric.

Hence, (Rp, ‖ · ‖2) is a metric space, while (Rp, ‖ · ‖22) is a semi-metric space. Note that

the definition of a metric space is independent from whether X is equipped with an inner

product or not.

The generalized quadratic distance (GQD): d(x,y;A) =
√

(x− y)⊤A(x− y), is a metric,

where A is a square symmetric PD matrix, and x,y ∈ Rp. Note that d(x,y;A)2 is a

semi-metric, and if A is not PD, then d(x,y;A) is also a semi-metric.

Axioms (i) & (ii) produce the positive semi–definiteness of d, and hence metrics and semi-

metrics are both PSD. This definition of positive semi-definiteness is only valid for metrics
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and semi-metrics due to their axiomatic definition above, and can not be generalized to

PSD functions formally introduced above.

Intrinsic Dimensionality

The intrinsic dimensionality of a data set is the number of free variables needed to represent

the data without any loss of information. More formally, a data set X ⊂ Rp is said to have

an intrinsic dimensionality equal to p0 if its elements lie entirely within a p0-dimensional

subspace of Rp [172].
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