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ABSTRACT

Personalized medicine is a rapidly growing field of health research. Dynamic

treatment regimes (DTRs) are a way of formalizing the sequence of decisions that

are made based on the personal medical history. Value search estimators such as

inverse probability weighted estimators (IPWE) and augmented inverse probability

weighted estimators (AIPWE) are frequently used for estimating DTRs. These es-

timators directly specify a restricted class of regimes and find the optimal regime

by maximizing the expected outcome under each of the regimes in the class. The

IPWE is a singly robust estimator which requires the correct specification of the

treatment model, however, the AIPWE enjoys double robustness properties: an un-

biased estimator is obtained provided at least one of the outcome regression model or

treatment model is correctly specified. Recently, a new method of estimating DTRs

was proposed, dynamic weighted ordinary least squares (dWOLS) that combines two

established methods: Q-learning and G-estimation. In this thesis, instead of using

the original inverse probability weights, I propose the use of dWOLS-style weights

in singly- and doubly-robust value-search estimators to estimate the optimal DTRs.

The new singly-robust estimators with the dWOLS weights are proven to possess the

consistency property, whereas the doubly-robust estimators are shown not to achieve

consistency. I illustrate the performance of the newly proposed estimation methods

through simulation studies and further illustrate them in an analysis of the United

States National Health and Nutrition Examination Survey.
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RÉSUMÉ

La médecine personnalisée est un domaine de recherche en pleine croissance. Les

programmes dynamiques de traitement (PDT) permettent de formaliser et d’adapter

une série de décisions en fonction de l’historique médicale d’un patient. L’estimation

des PDT dépend souvent d’estimateurs pondérés selon la probabilité inverse (EPPI)

ou d’estimateurs augmentés pondérés selon la probabilité inverse (EAPPI). Ces deux

familles d’estimateurs spécifient non seulement une classe restreinte de programmes,

elles permettent aussi d’identifier le programme optimal au moyen de la maximisa-

tion de la réponse espérée pour chaque programme. Les EPPI sont des estimateurs

robustes simples: ils requièrent une spécification correcte du modèle de traitement.

Les EAPPI bénéficient toutefois d’une double robustesse: ils sont non biaisés à con-

dition que soient correctement spécifiés le modèle de traitement ou le modèle de

régression pour la réponse. Récemment, une nouvelle méthode d’estimation des

PDT a été proposée: la méthode des moindres carrés ordinaires, pondérés et dy-

namiques (MCOPD). Elle combine deux méthodes communes: le Q-learning et le G-

estimation. Dans ce mémoire, plutôt que la pondération selon la probabilité inverse

conventionnelle, je propose la pondération de style MCOPD pour les estimateurs

robustes simples et doubles dans le contexte des PDT. Je démontre que le nouvel

estimateur robuste simple est cohérent, contrairement à l’estimateur robuste double.

J’illustre la performance des méthodes proposées par l’intermédiaire de simulations et

de l’analyse de données tirées du National Health and Nutrition Survey (NHANES)

des États Unis.
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CHAPTER 1
Introduction

1.1 General Overview of Personalized Medicine

Personalized medicine (PM), also known as precision medicine, is becoming a

more and more important topic. PM is a medical model that proposes the customiza-

tion of healthcare for each patient. The basic idea behind personalized medicine is

that medical treatment is tailored for each individual patient.

The primary and essential motivation of personalized medicine is the well-

established fact that patients often respond in different ways to a specific medical

treatment, both in terms of the primary outcome as well as side-effects. Benefits of

personalized medicine include increased compliance or adherence to medical treat-

ment, having the option of enhanced patient care by selecting the optimal treatment,

and reduction of the overall cost of healthcare since practices or products are tailored

to the individual patient’s needs. In this model, diagnostic testing is often employed

for selecting appropriate and optimal treatments (Chakraborty and Moodie, 2013).

The term “personalized treatment” is often used in the context of individualization

on genetic information, as well as on other measures such as symptoms or other

clinical responses.

The primary reason that statisticians are interested in this increasingly im-

portant topic is the growing interest in making the personalized treatment more

evidence-based or data-driven, hence posing new methodological challenges that are
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often beyond the scope of traditional quantitative tools. Much of statistical literature

has focused on personalized treatment for chronic diseases, for example both Tsuang

and Woolson (1977) and Jorm et al. (1997) focus on depression and schizophrenia;

I will describe various study designs and statistical analysis methods that aid in de-

veloping evidence-based personalized treatments for chronic diseases. For effective

long-term care of the patients, many of these chronic conditions require ongoing med-

ical intervention, following the chronic care model (CCM) (Wagner et al., 2001). This

poses additional challenges for the paradigm of personalized medicine since the per-

sonalization has to happen through multiple stages of intervention. In this context,

dynamic treatment regimes (Murphy, 2003; Robins, 2004; Lavori and Dawson, 2004)

offer a vehicle to operationalize the sequential decision-making process involved in

the personalized clinical practice consistent with the CCM, and thereby a potential

way to improve it.

In this work, I will restrict my research to a single treatment decision rather

than a longitudinal sequence of decisions.

1.2 Individualized Treatment Regimes and Dynamic Treatment Regimes

An individualized treatment regime (ITR) is a mathematical function that takes

in covariates and outputs a decision for a single stage of treatment; a dynamic treat-

ment regime (DTR) is simply a sequence of ITRs for treatment given longitudinally

in sequence, i.e. a DTR is a set of sequential decision rules in which decisions on

treatment are made for a given state (e.g. demographics, case history, genetic in-

formation, etc.) of the patient that can change over time; therefore a DTR could

2



involve changing the treatment based on the patient response to the previous treat-

ment. In comparison, for traditional treatments, all subjects are assigned the same

level and type of treatment, and the assigned treatments do not depend on or update

according to the status of patients. ITRs allow treatment to be individualized to the

patient through a systematic set of rules.

1.3 Thesis Aims and Structure

There are a variety of approaches to estimating an ITR, all of which fall into

two broad classes: regression-based methods and value search (classification-based)

estimators.

The regression-based approach to estimating an optimal ITR, which indirectly

estimates the optimal ITR, seeks to classify subjects into different risk levels esti-

mated by a parametric or semi-parametric regression model using prognostic factors

and then to assign therapy according to risk level. For instance, one could model

the conditional expectation of the mean outcome given history and intermediate de-

cisions via regression, and then find the difference in outcomes from treatments and

optimize the estimated mean or contrast model at each stage, eventually leading

to an optimal personalized treatment sequence. However, the parametric or semi-

parametric regression model assumptions may not be valid due to the complexity of

the disease mechanism and individual heterogeneity. If the model specification is not

correct, these methods run the risk of providing a biased estimator of the optimal

decision rule.

As an alternative, the second method of estimating optimal ITRs, value search

estimation, proposes an approach that directly maximizes the value function or

3



marginal mean outcome of each member in a pre-specified class of regimes, often

indexed by some parameter η ∈ Θ, and then picks the regimes that maximize the

estimated mean outcome of the population amongst each of the candidate regimes.

This method emphasizes prediction accuracy of the clinical response model instead

optimizing the decision rule directly. Value search estimators include familiar ap-

proaches such as inverse probability weighting.

Recently, a new method of estimating ITRs was proposed, called dynamic

weighted ordinary least squares. The approach introduced a new class of weights

to be used in a regression-based approach to ITR estimation. The objective of the

research undertaken in this thesis is to investigate the use of this class of weights in

value search estimation of ITRs.

The thesis is structured as follows. In Chapter 2, I review some popular methods

to estimate ITRs via both regression-based approaches and value search estimators.

In Chapter 3, I outline the proposed method of using the new family of weights in

value search estimators and consider asymptotic properties of the estimators. The

proposed approaches are then evaluated via simulations in Chapter 4, and applied

to the United States’ National Health and Nutrition Examination Survey in Chapter

5. Chapter 6 summarizes the contributions to the statistical literature made in this

thesis and concludes with future work.
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CHAPTER 2
Methods to Estimate Optimal Individualized Treatment Regimes

In this Chapter, I will explain the necessary data, and possible data sources,

for estimation of an optimal ITR. I will introduce the notation that will be used

throughout the thesis, and provide a literature review of existing methods used to

estimate ITRs. An ITR provides an algorithm for treatment, and this algorithm may

resemble clinical care provided by physicians, who typically attempt to summarize

all relevant patient information to obtain a treatment recommendation that is best

for a specific individual. To estimate a regime using data, the following information

is needed:

1. treatment options, including different medications, drugs, dose-level, modes of

delivery, time schedules, etc;

2. critical decision points at which treatment is assessed and decisions are made

(i.e. when are decisions made to continue, stop, add, or subtract treatment);

3. how treatment decisions are currently made (measurements on those covariates

used to make treatment decisions, and information on how are they used);

4. measurements on other covariates that might also be useful for making treatment-

tailored decisions;

5. and possibly also measurements on any additional prognostic variables that

would help to predict the outcome.
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Within the ITR framework, I can use data to formalize clinical decision making such

that treatment rules are data-based. An optimal treatment regime is that leading

to the greatest benefit (biggest value of a positive outcome) overall in the target

patient population. As we shall soon see, information on items (1), (2), and (4)

are essential for any statistical analysis of a data source that aims to estimate an

ITR. All methods of estimation additionally require at least one of (3) or (5) to be

available to the analyst as well.

2.1 Data Sources

The data for discovering optimal ITRs can be obtained from either observational

studies (non-experimental data) or randomized trials (experimental data).

2.1.1 Observational Data

Non-experimental data, i.e. observational data, may arise from a variety of

sources, such as cohort studies, electronic medical records, etc. The upside of this

kind of data is that it is often possible to obtain data on a large number of individ-

uals at a low cost. However, some of the important variables may not be available

from the data set and it is then not easy to learn about their potential to improve

through personalization (Chakraborty and Moodie, 2013). There has been vigorous

research recently on estimating optimal treatment regimes based on the data from

observational studies by Sterne et al. (2005), Petersen et al. (2014), etc.

Drawing a causal interpretation from observational data relies heavily on several

assumptions which I will be discussing in Section 2.1.4.

I know that estimation from observational data can be tricky owing to con-

founding and various hidden biases; thus, when randomized data are available, they

6



are often preferred (Rubin, 1974; Holland, 1986; Rosenbaum, 1991). It is crucial

for researchers to generate meaningful data for discovering optimal ITRs, which is

a developmental procedure rather than a confirmatory procedure. Thus, the usual

confirmatory randomized trials are no longer especially helpful and a special class of

designs, called sequential multiple assignment randomized trial (SMART) designs,

tailor-made for the purpose of discovering optimal DTRs, has been developed.

2.1.2 Sequential Multiple Assignment Randomized Trial

Randomized trials are the gold standard in study design, as randomization cou-

pled with compliance allows causal interpretations to be drawn from the statistical

association (relation) (Chakraborty and Moodie, 2013).

The sequential multiple assignment randomized trial (SMART) design frame-

work was proposed by Murphy (2005). A SMART design is a special kind of multi-

stage randomized clinical trial design in which the assumption of “sequentially ignor-

able treatment” holds by design. The assumption of sequential ignorability asserts

that the assigned component is independent of future potential outcomes, conditional

on the subject history, but is untestable in data from observational studies (Kosorok

and Moodie, 2015).

A SMART starts with an initial randomization of patients to possible treatments

options, followed by re-randomization at each subsequent treatment decision stage

of all patients to another treatment at each stage.

The main and very important goal of SMARTs is to provide data that allow

estimation of DTRs through a series of trials and mimics that of a usual complete

7



randomized trial in order to perform a more standard analysis and it allows compar-

ison of two or more DTRs by using hypothesis testing which can lead to discovering

the optimal outcome. The secondary and important goal of SMARTs is to provide

data to measure the detailed tailoring or personalization of treatment, i.e. by esti-

mating the effects of DTRs; the optimal DTR is likely to be some form of “assign the

first treatment A and if subjects respond, stay on this treatment A; if subjects do not

respond, switch to treatment B”. I thus can discover more personalized regime by

exploring the effects on particular subgroups based on the baseline or intermediate

outcomes.

The rerandomization at each stage could depend on information collected after

previous treatments, such as how well the patient responded to the previous treat-

ment, before assigning the new treatment. For the purpose of time and feasibility,

SMARTs are mostly designed with two stages and two or three treatment options at

each stage but can be applied with designs that require more than two stages and

three treatment options at a specific stage.

One of the earliest SMART trials was conducted in the field of mental health.

CATIE (Clinical Antipsychotic Trials of Intervention Effectiveness) was funded by

National Institute of Mental Health (NIHM) and was designed to investigate the

treatment sequences of antipsychotic drugs. The CATIE study was designed to

mimic real-life practice in order to inform future clinical care. CATIE is a multi-

stage SMART design with five treatment options at the first stage, four treatment

options at the second stage First and eight treatment options at the third stage.

First, patients were randomized to one of five treatments: perphenazine, olanzapine,

8



quietiapine, risperidone, and ziprasidone and were assessed for psychotic symptoms

and side effects. Within 18 months, subjects could choose to switch medication if this

treatment was not effective. If the first treatment was effective and tolerable then

the patient could choose to stay on this treatment. Subjects who discontinue their

assigned treatment an the first stage are recommended to one of the two treatment

assignment pathways and subjects who discontinue the treatment assignment at the

second stage can choose the treatment designed for third stage, etc. (Stroup et al.,

2003)

Many variables were collected at study entry such as demographics, disease

background; and a number of longitudinal outcome variables including schizophre-

nia symptom measurements, medication adherence and side effects (Kosorok and

Moodie, 2015). Now consider a hypothetical example of a SMART design, that is

similar in context to one of the analyses that will be presented in Chapter 5. I con-

sider a population of sedentary adults and randomize people into one of two groups

(i) reduce TV to at most 1 hour per day or (ii) continue watching at their usual

level. If participants exhibit a high BMI after 6 months, re-randomize the people in

arm (i) to attend an aerobics class once per week or to cut out TV altogether, and

re-randomize those in (ii) to reduce their TV to 1 hour per day or to an aerobics

class once per week without reducing their TV. I present the SMART in Figure 2-1 .

9



Figure 2–1: Diagram of the hypothetical two-stage SMART design mimicking
NHANES the general context of the analyses in Chapter 5.

Figure 2-1: Pink boxes indicate baseline variables defining the (sub)populations of
interest. Grey boxes are intermediate variables defining the subpopulations of inter-
est, and on which treatment choices (and hence randomization probabilities) depend.
Orange boxes denote first-stage randomization, whereas green boxes denote second
stage treatment, which is randomized only for the subpopulations who exhibit high
BMI at the intermediate measurement.
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2.2 Preliminaries

2.2.1 Notation

I use the following notation through out this thesis. Suppose we have k distinct

treatment intervals, j = 1, ..., K, then:

• y: Patient outcome, typically defined such that larger values are preferred;

• aj: The jth treatment decision. I assume treatments are binary with aj =

{0, 1}, referred to as ‘reference or control’ and ‘treatment’, respectively;

• xj: Covariate matrix containing non-treatment information (e.g. age, disease

severity) available prior to the jth treatment decision. Note that xj could

also be a confounding variable, i.e. a common “cause” of both treatment and

outcome. Those variables xj that interact with treatment are called tailoring

or prescriptive variables;

• hj: Covariate matrix containing patient information or history prior to the jth

treatment decision and denoted hj = {x1, a1, x2, a2, ..., xj−1, aj−1, xj};

• A treatment rule is a function dj(hj), dj : hj → aj;

• A DTR is a collection of treatment rules (d1, d2, ..., dk).

Note for one-interval setting (k = 1), the data would only contain (Xi, Ai, Yi), i =

1, 2, .., n.

2.2.2 The Potential Outcomes Framework

Many of the existing methods for observational data rely on the notion of po-

tential outcomes, also called counterfactuals, defined as a patient’s outcome if he

followed a particular treatment regime, possibly different from the regime that he

was actually observed to follow. The individual-level causal effect of a regime may be
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viewed as the difference in outcomes if a person had followed that regime as compared

to a reference regime. The fundamental problem of causal inference lies in the defi-

nition of causal parameters at an individual level. Suppose we are interested in the

causal effect of taking treatment a instead of a′ in a simple single-stage randomized

trial, denoted as Yi(a)−Yi(a
′). Obviously, it is not possible to observe the outcomes

of taking both treatments a and a′; thus the individual-level causal effect can never

be observed. However, population-level causal parameters (or average causal effects)

can be identified under randomization with perfect compliance, or bounded under

randomization with non-compliance. Without randomization, i.e. in observational

studies or indeed randomized trials with imperfect compliance, more assumptions

are needed to estimate the population-level effects.

2.2.3 Assumptions

The axiom of consistency is the fundamental requirement in the potential out-

come framework I have discussed above. This axiom states that the observed outcome

under treatment a is equal to the counterfactual Y (a), thus linking the unobservable

counterfactuals with observable data.

I will now state the assumptions required for unbiased estimation of the treat-

ment effects, and hence of an ITR:

• Stable unit treatment value assumption (SUTVA): A subject’s outcome Y (a)

is not influenced by other subjects’ treatment allocation (Rubin, 1980).

• Exchangeability, i.e. no unmeasured confounding (NUC)

A ⊥ {Y (A)}|X
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• No extrapolation (Positivity): Subjects are to be exposable to both treatments

(there is no contra indication). The mathematical definition of strong positivity

is as follows

inf
a∈A

P (A = a|X) > 0, a.e.

• Well-defined exposure (cannot have multiple versions of treatment).

The first assumption may be called no interference (or no interaction) between units

(Cox, 1958) and is often reasonable, particularly in the context of randomized trials

where study subjects are drawn from a large population. If one subjects’ treatment

affects other subject’s outcome, then this assumption does not hold. There are some

special circumstances in which SUTVA may fail, such as vaccinations for contagious

disease where the phenomenon of “herd immunity” may lead to protection of unvacci-

nated individuals or in the context of group therapy where the interpersonal dynamic

between group members could influence outcomes (Chakraborty and Moodie, 2013).

The second assumption always holds under randomization and may also be

(approximately) true in observational settings where all relevant confounders have

been measured.

Many confounding-adjustment methods in ITR estimation rely on the propensity

score (PS). This approach requires the construction of a treatment model - often a

predicted probability resulting from a logistic regression of treatment on covariates.

The PS is defined to be the coarsest function

π(x) = P (A = 1|X = x)
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where A is a binary treatment and X is a collection of measured covariates (Rosen-

baum and Rubin, 1983). The PS is a balancing score such that, conditional on the

propensity score, the distribution of measured covariates is similar between treated

and untreated subjects, i.e. treatment received is independent of measured covariates

X used to construct the PS.

The third assumption, positivity or experimental treatment assignment (ETA)

states that each possible treatment level occurs with some positive probability within

each stratum of covariate X; in particular, it requires that there are both treated

and untreated individuals at every level of the covariate history. Positivity may

be violated either theoretically or practically. A theoretical or structural violation

occurs if the study design prevents certain individuals receiving a specific treatment

(failure of one type of drug may preclude the prescription of other drugs in that

class). A practical violation of this assumption may occur when a particular stratum

of subjects has a very low probability of getting treatment (Chakraborty and Moodie,

2013).

Having now described the necessary notation and assumptions, I will next review

existing approaches to the ITR estimation.

2.3 Regression-based Approaches to Estimation

Regression-based approaches suggest that estimation of an optimal dynamic

treatment regime can be achieved by proposing and fitting regression models for

the outcome based on history and treatment received to obtain an estimator for the

optimal treatment regime. The most common regression-based methods in the liter-

ature are Q-learning (Watkins, 1989; Watkins and Dayan, 1992), and G-estimation
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(Robins, 2004) with dynamic weighted ordinary least squares (Wallace and Moodie,

2015) a new addition.

2.3.1 Q-learning

Q-learning (Watkins, 1989; Watkins and Dayan, 1992) is a relatively simple

method, which focuses on functions of quality of treatment, i.e. Q-functions, defined

as

QK(hK , aK) = E[Y |HK = hK ]

and

Qj(hj, aj) = E[max
aj+1

Qj+1(Hj+1, Aj+1)|Hj = hj, Aj = aj)].

In a simple one-stage setting, the Q-function is simply

Q(x, a) = E[Y |X = x].

In practice, when in a multi-interval setting, the Q-functions are not known, and thus

we need to estimate them from the existing data, and we often model the Q-functions

linearly as

Qj(hj, aj; βj, ψj) = βTj h
β
j + ψTj ajh

ψ
j

where hβj and hψj are sets of covariates that have a predictive effect on the outcome

that is not modified by the treatment and the covariates that interact with treatment

respectively. I give the proposed algorithm which calculates the estimates of ψj

recursively.
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1. Interval K parameter estimation: we need to find βK and ψK by proposing a

model, leading to the following estimates

(β̂k, ψ̂k) = argmin
1

n

n∑
i=1

(Yi −Qk(hki, Aki; βk, ψk))
2.

2. Interval K optimal ITR is simply

aoptK : argmax
aK

QK(hK , aK ; β̂K , ψ̂K).

3. Interval j − 1 pseudo outcome:

Ŷj−1,i = max
aj

Qj(hji, aj; β̂j, ψ̂j).

4. Interval j − 1 parameter estimation:

(β̂j−1, ψ̂j−1) = argmin
1

n

n∑
i=1

(Yj−1,i −Qj−1(hj−1i, Aj−1i; βj−1, ψj−1))
2.

5. Interval j − 1 parameter rule:

aoptj−1 : argmax
aj−1

Qj−1(hj−1, a−1j; β̂j−1, ψ̂j−1).

6. Repeat this procedure until we get the estimates of all βj’s and ψj’s, j = 1, ...K.

In a one-interval setting, only steps 1-2 are required, so that a linear regression is

performed and the optimal treatment is that which maximizes the expected response.

The Q-learning approach has the advantage of ease in computing, however,

lack of robustness in the estimators could be problematic since Q-learning depends

heavily on being able to correctly specify the model for the Q-functions. Hence, this

approach needs to be undertaken with caution.
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2.3.2 G-estimation

The G-estimation approach that Robins (1992) proposed is a recursive approach

like Q-learning, and starts by estimating the optimal final-stage treatment and then

using the data and this final-stage information, moves backward from the last stage

to the first stage to estimate each previous optimal decision. It requires additional

modeling, however it can offer stronger robustness to potential model misspecifi-

cation. The goal of G-estimation is to estimate the parameters ψ of the optimal

contrast function by a combination of regression models and estimating equations.

The expected outcome is written as

E[Y |H = h] = βTj h
β
j +

k∑
j=1

γj(hj, aj;ψj). (2.1)

The term βTj h
β
j is the same as the one I presented in the Q-functions and the sum

corresponds to the interaction terms in the Q-function. The G-estimation approach

is based on semiparametric models and applies sequentially across intervals. The

conditional expectation contains two parts.

The first part of (2.1) is the treatment-free contribution, and the second part of (2.1)

is the sum of blip-to-reference functions to be defined as

γj(hj, aj) = E[Y āj ,a
opt
j+1 − Y āj−1,aj=0,aoptj+1|Hj = hj]

The blip function γj(hj, aj), at any stage j is defined to be the expected difference

in outcome when using a reference regime aj = 0 instead of aj = 1 at stage j.

The blip functions compare the difference in expected outcome between a subject

who receives treatment a at stage j, and one who receives the reference treatment,
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assuming identical history up to stage j and optimal treatment thereafter.

The regret function is defined as

µj(hj, aj) = E[Y āj−1,a
opt
j − Y āj ,a

opt
j+1|Hj = hj].

The regret function compares the difference between expected outcome under opti-

mal treatment and expected outcome under assigned treatment. The term “regret”

indicates how much we would regret by choosing a instead of aopt. If treatment A is

binary we have a relation between the blip and regret functions:

µj(hj, aj) = γj(hj, a
opt
j ) − γj(hj, aj). The blips and regret functions are essential to

many ITRs estimating methods.

The procedure of G-estimation is as follows

1. Propose a model for the blip function γj(hj, aj, ψj) and let S(Aj) =
dγj
dψj

.

2. Define the G-function Gj(ψ) = Y − γj(hj, aj, ψj) +
K∑

k=j+1

µk(hk, ak, ψk)

3. For expected treatment outcome model: propose a model for E[Gj(ψ)|Hj =

hj; βj] and use the data to estimate the parameters and obtain estimates of βj

in terms of ψj.

4. For the treatment model: propose a model for E[S(Aj)|Hj = hj;αj], and use

the data to get the estimates of α̂j.

5. Construct the function

Uj(ψj, βj, αj) = (Gj(ψ)−E[Gj(ψ)|Hj = hj; βj])(S(Aj)−E[S(Aj)|Hj = hj;αj])

and by substituting parameter estimates from previous steps estimate the blip

parameter by solving the equation system 0 =
n∑
i=1

Uj(ψj, β̂j(ψj), α̂j).
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In G-estimation, the goal of the treatment model is to eliminate imbalance in the

distribution of covariates between treatment and untreated subjects.

2.3.3 Dynamic Weighted Ordinary Least Squares Approach

The dynamic weighted ordinary least squares (dWOLS) approach (Wallace and

Moodie, 2015) builds on the method of G-estimation and Q-learning, and is also a

recursive approach. The method involves doing a sequence of weighted ordinary least

squares regressions in order to obtain blip parameter estimates. Here our assumptions

are that the blip functions at each interval are linear in ψj and our treatment is binary.

Then the algorithm of dWOLS is as follows

1. Define the outcome Ỹj=Yj +
K∑

k=j+1

µk(hk, ak, ψk).

2. For the treatment model:

propose a model of E[S(Aj)|Hj = hj;αj] and use the data to obtain estimates

α̂j.

3. Choose a weight function wj(aj,xj, αj), and use the estimates α̂j to obtain the

estimates of weights ŵj.

4. Conduct a weighted least square regression of Ỹj on (xβj , ajx
ψ
j ) with weights ŵj

where xβj and xψj are variables and functions of variables to be included in the

linear, treatment-free model.

Note that there are several different weights that I can potentially choose,

(1) absolute value weights: w1i(ai, xi) = |ai − P (Ai = 1|Xi = xi)

(2) inverse probability weights (IPW): w2i(ai, xi) =
1

P (Ai=ai|X=x)
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(3) alternative dWOLS weights: w3i(ai, xi) = 1{ai=1} + 1{ai=0}
P (Ai=1|Xi)

1−P (Ai=1|Xi)

and w4i(ai, xi) = 1{ai=0}+1{ai=1}
1−P (Ai=1|Xi)
P (Ai=1|Xi)

, where 1{ai} is the indicator func-

tion that takes values in {0, 1}.

All of above weights satisfy π(x)w(1,x) = (1−π(x))w(0,x), which provide consistent

estimators of ψ (see proof of theorem 1 in the supplementary materials of Wallace

and Moodie (2015)).

2.4 Value Search Approaches to Estimation

The regression based estimators have been criticized for parameterizing the ITR

only indirectly, and often relying on linear specifications of the treatment rule. In

contrast, value search estimators are more direct in that this approach first param-

eterizes the regimes and then finds the value, i.e. the expected outcome, associated

with each regime in the set of regimes under consideration.

The most well-known value search estimation methods from the literature in-

clude marginal structural models (MSM), proposed by Robins et al. (2000); Hernán

et al. (2000); Murphy et al. (2001), estimated by the inverse probability weight-

ing estimator (IPWE) proposed by Robins et al. (2000), or the augmented inverse

probability weighting estimator (AIPWE) of Zhang et al. (2012).

The value of a specific treatment regime, d, is denoted as V d = E[Y (d)], which is

the expected outcome if all subjects were to follow this regime. The optimal regime is

the one regime that maximizes the expected outcome. Many candidate regimes, for

example, take the form “Treat subject i if their initial information Xi is greater than

some value η”, and all regimes are then defined by a set of thresholds, i.e. η ∈ Θ.
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The goal of value search estimators is to identify the optimal threshold, ηopt, from

the defined set of thresholds, Θ.

These methods are more “direct” in that they first parameterize the regimes and

then see the value associated with the set of regimes under consideration, in contrast

to the regression-based approaches which parameterize the regime indirectly.

2.4.1 Inverse Probability Weighted Estimator

The inverse probability weighting method (Robins et al., 2000) lies in the second

class of value search estimation strategy which rather than taking a regression-based

approach where one needs to propose a parametric model, instead directly estimates

the value function or marginal mean outcome of each member in a pre-specified class

of regimes D, often indexed by some parameter η ∈ Θ, where d ∈ D is a function of

covariates X and parameters η. Then picks the regime that maximizes the estimated

value, i.e. the estimated optimal is

dopt = argmax
d∈D

V̂ d ≡ argmax
η∈Θ

V̂ d

where V̂ d (or V̂ d(η)) is the estimated value function of the regime d. Estimating the

value of the candidate regimes can be done by collecting all the subjects whose real-

ized treatment experiences are consistent with each candidate ITR, and computing

the weighted average of the primary outcome.

In a single interval setting, I can write the value function as

V d = EdY =

∫
Y dPd =

∫
Y (

dPd
dPπ

)dPπ.
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Note that changing the probability measure is the same idea as importance sampling

(Hammersley and Handscomb; Hastings, 1970) in Monte Carlo simulation, hence the

ratio dPd

dPπ
can be simplified to

1{A=d(X)}

π(A|X)
(2.2)

where π(A|X) is the propensity score I have defined in Section 2.2.3. Thus

V d = EdY =

∫
Y dPd =

∫
Y
1{A=d(X)}

π(A|X)
dPπ =

∫
wd,πY dPπ

where wd,π =
1{A=d(X)}
π(A|X)

is a weight function depending on data. By using these

weights, subjects whose treatment is “unusual” (i.e. subjects with a low probability

of getting their specific treatment given Xi) are given a larger weight, thus balancing

the confounding distribution in the treated and untreated groups.

An intuitively natural way to estimate V d is V̂ d,

V̂ d = Pn[wd,πY ]

where Pn denotes the empirical average over a sample size of n. Even though the

expectation of the weight function wd,π is 1, it is preferable to normalize the weights

by their sample mean to obtain a more stable estimate. The resulting estimator,

called the inverse probability of treatment weighted estimator (Robins, 2000), is

given by

V̂ d
IPWE =

Pn[wd,πY ]

Pn[wd,π]
=

1

n

n∑
i=1

1{A=d(X)}yi
fA|X(A|X)

.
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Zhang et al. (2012) noted the IPWE(η) is a value search estimator for E[Y (dη)] and

equivalent to estimating the contrast function at each of the observed data points by

IPWE(η) =
1

n

n∑
i=1

Cη,iYi
πc(Xi; η)

where π̂(Xi) is a proposed model for the propensity score π(X), and

πc(Xi; η) = π̂(Xi)d(X, η) + [1− π̂(Xi)][1− d(X, η)]

Cη = Ad(X, η) + (1− A){1− d(X, η)}

and where

ĈIPWE(Xi) =
Ai

π̂(Xi)
Yi −

1− Ai
1− π̂(Xi)

Yi.

Note that there are two approaches to IPWE: a non-parametric approach as I

described above and a parametric marginal structural model (Robins et al., 2000;

Hernán et al., 2000), where the weighted average is computed but a regression model

is proposed for V d. The MSM estimation procedure via inverse probability weights

is as follows:

1. Identify a set of candidate thresholds that we are interested in, denote the set

of thresholds as Θ.

2. Fit treatment models: fit a logistic regression model for the probability of being

treated at each interval including all confounding covariates.

3. Generate an augmented dataset defined by η ∈ Θ.

4. Calculate the IPWEs by using fitted values of model in step 1 by (2.2).
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5. Fit a model for the mean outcome by regressing on some function of parameters

η, denoted by f(η), e.g E[Y |η] = β0 + β1η + β2η
2 and estimate its parameters

by weighted ordinary least squares regression on this augmented dataset using

the weights from last step.

6. Obtain ηopt as the value of η that maximizes the parametric model posited for

E[Y |η].

2.4.2 Augmented Inverse Probability Weighted Estimator

Zhang et al. (2012) proposed a doubly robust augmented inverse probability

weighted estimator, which maximizes the mean outcome across all regimes in a pre-

specified class and is more robust to misspecification of the mean regression models.

The expected outcome can be expressed as

E[Y (d)] = EX [µ(1, X)d(X) + µ(0, X)(1− d(X))]

Note that IPWE can become doubly robust by augmentation as follows

E[Y (d)] = EX
[
{Y (1{A=d})− µ(d,X)}+ µ(d,X)

]
= EX [Y (1{A=d})− µ(d,X)] + EX [µ(d,X)]

where µ(a,X) = E[Y |A = a,X = x], and dopt represents the regime leading to

the largest value of E[Y (d)] (V̂ d) among d ∈ D. i.e dopt = argmaxd∈D E[Y (d)]

(argmaxd∈D V̂
d).

Now I posit a parametric regression model µ(A,X; β) for E[Y |A,X] = µ(A,X).

If I correctly specified the model, then µ(A,X; β) → µ(A,X).
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I can view the proposed model µ(A,X; β) as defining the class of all treatment

regimes indexed by β, D, and Zhang et al. (2012) suggest a way to directly estimate

the optimal regime.

Based on the above considerations to avoid the misspecification of proposed

regression models, the AIPWE approach is viewed as an optimization problem which

needs to identify an estimator for E[Y (dη)] and to maximize it directly in η to

obtain an estimator η̂opt for ηopt (Zhang et al., 2012). For fixed η, Zhang et al.

(2012) have shown that the AIPWE for E[Y (dη)] is given by (The second term is

the augmentation term after some algebra)

AIPWE(η) =
1

n

n∑
i=1

{
Cη,iYi

πc(Xi; η, γ̂)
− Cη,i − πc(Xi; η, γ̂)

πc(Xi; η, γ̂)
m(Xi; η, β̂)

}
=

1

n

n∑
i=1

{
d(Xi, η)ĈAIPWE(Xi)

}
+
1

n

n∑
i=1

{
1− Ai

1− π(Xi, γ̂)
− A− π(Xi, γ̂)

1− π(Xi, γ̂)
µ(0, Xi, β̂)

}
where π(X, γ) is a proposed model for the propensity score π(X), γ̂ is the maximum

likelihood (ML) estimator for γ and

πc(Xi; η, γ̂) = π(Xi; γ̂)d(X, η) + [1− π(Xi; γ̂)][1− d(X, η)]

Cη = Ad(X, η) + (1− A){1− d(X, η)}

m(Xi; η, β̂) = µ(1, Xi, β̂)d(Xi, η) + µ(0, Xi, β̂){1− d(Xi, η)}
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and

ĈAIPWE(Xi) =
Ai

π(Xi, γ̂)
Yi −

1− Ai
1− π(Xi, γ̂)

Yi

−Ai − π(Xi, γ̂)

π(Xi, γ̂)
µ(1, Xi, β̂)−

Ai − π(Xi, γ̂)

1− π(Xi, γ̂)
µ(0, Xi, β̂).

The AIPWE borrows information from the specified parametric regression model

for the outcome whereas IPWE estimator makes no use of a regression model for the

outcome. The AIPWE has the double robustness property and this estimator is still

consistent for E[Y (dη)] if at most one of the propensity score π(X; γ) or outcome

regression model µ(A,X; β) is not incorrectly specified. Thus, AIPWE approach

increases IPWE approach’s robustness and often also its asymptotic efficiency by

the augmented term.

2.4.3 Outcome Weighted Learning

Zhao et al. (2012) proposed an approach for estimating the optimal ITR within a

weighted classification framework, where the weights are determined from the clinical

outcomes. This particular method emphasizes prediction accuracy of the clinical

response model instead of optimizing the decision rule directly. The method then

reduces to a computational problem by substituting the 0-1 loss in the classification

with a convex surrogate loss as is done with the support vector machine.

I assume our treatment assignments are binary and denoted by A ∈ {−1, 1},

and following our previously-defined notation, xj is the covariate matrix containing

non-treatment information, and Y is the observed clinical outcome. By maximizing

the expected outcome, I can obtain an optimal ITR. Note while the 0/1 coding of

treatment is widely used in the causal inference literature, the −1/1 coding is more
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common in Q-learning, SMART design, and OWL literature, thus while I shall use

−1/1 coding in the section, I will adopt the 0/1 coding in the rest of this thesis.

I assume that I observe i.i.d. data (Xi, Ai, Yi) , i = 1, 2, ..., n from a randomized

trial. The approaches I have discussed previously indirectly estimate the optimal

ITR, and may actually produce suboptimal ITR’s if the model for Y given (X,A)

is overfitted. Thus, Zhao et al. (2012) proposed a nonparametric approach that

directly maximizes the value function, denoted by V d given as follows, based on an

OWL method, which relies on

V d = EdY =

∫
Y dPd =

∫
Y

{
dPd
dPπ

}
dPπ.

Recall the above integral is the same as the IPWE’s value function of a regime d is,

V d
IPWE =

Pn[wd,πY ]

Pn[wd,π]
.

Naturally, an optimal treatment regime, dopt, is a regime that maximized V d,

dopt = argmax
d
V d
IPWE

= argmax
d
E

{
1{A=d(H)}

fA|H(A|H)
Y

}
.

Zhao et al. (2012) noticed that maximizing V d is the same as finding the optimal

ITR by minimizing the following

dopt = argmin
d
E[Y |A = 1] + E[Y |A = −1]− V d

= argmin
d
E

{
1{A̸=d(X)}

Aπ + (1− A)/2
Y

}
,
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which can be viewed as a weighted classification error and the estimator (viewed as

0-1 loss in machine learning) of this is defined by

d̂opt = argmin
d
n−1

n∑
i=1

Yi
Aiπ + (1− Ai)/2

1{A̸=d(X)} (2.3)

where d(Xi) can be shown to represent sign(f(x)), which can be either positive

or negative. However, equation (2.2) is very difficult to minimize because of the

discontinuity and non convexity. Hence, Zhao et al. (2012) used a convex surrogate

loss called hinge loss (Cortes and Vapnik 1995), which penalizes the complexity of

the decision function to avoid overfitting. The following is their function to minimize

n−1

n∑
i=1

Yi
Aiπ + (1− Ai)/2

(1− Aif(Xi))
+λn||f ||2 (2.4)

where x+ = max(x, 0), ∥f∥ is some norm of f to penalize more complicated functions,

and the term λn||f ||2 is a tuning parameter.

Thus, they can carry out this minimization problem as a weighted classification

problem via standard optimization techniques. Outcome weighted learning could be

argued to be the most complex method of all the methods I have discussed thus

far. Further, it is singly robust. Thus, OWL is the least preferred of the value-

search estimation approaches as it is more difficult to understand and implement

than IPWE and less robust than AIPWE.

2.5 Summary

In this chapter, I have reviewed of the most commonly used regression-based

and value search approaches to estimation of optimal dynamic treatment regimes.

These methods can be used in both single-stage setting and longitudinal settings.
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Table 2–1: Comparison of ITR estimation methods

Method Robustness Specification
Requirement

The Form of Decision
Rule can be Estimated

Q− learning singly-robust outcome model linear rules of the
form “treat when η0 +
η1X1+. . .+ηkXk > 0”

G− estimation doubly-robust outcome model
and propensity
score model

linear rules of the
form “treat when η0 +
η1X1+. . .+ηkXk > 0”

dWOLS doubly-robust outcome model
and propensity
score model

linear rules of the
form “treat when η0 +
η1X1+. . .+ηkXk > 0”

IPWE singly-robust propensity
score model

linear form of rules
or more complicated
form i.e. “treat when
I(η1 > X1)∗...∗I(ηk >
Xk)”

AIPWE doubly-robust outcome model
and propensity
score model

linear form of rules
or more complicated
form i.e. “treat when
I(η1 > X1)∗...∗I(ηk >
Xk)”

OWL singly-robust propensity
score model

linear form of rules
or more complicated
form i.e. “treat when
I(η1 > X1)∗...∗I(ηk >
Xk)”
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In general, the value search estimators target the parameters of the treatment

rule itself instead of the parameters of the mean outcome model or the contrast

model. Value search estimators are often non-parametric and thus require milder

assumptions about the outcome model specifications. Hence, the value search esti-

mators are more robust. One significant shortcoming is that the estimators of the

value functions and the corresponding estimated treatment regimes can be highly

variable due to the weighting by inverse probabilities.

Now I discuss how well these methods perform and present the advantages and

disadvantages of each method in the Table 2-1.

The Q-learning method is easy to implement because the idea and implemen-

tation are quite clear and simple, but it depends very much on correctly specifying

models for Q-functions. Thus, the potential for model misspecification is high which

may yield estimated regimes that are far from the true optimal regime.

The G-estimation method is based on a semi-parametric estimating function.

G-estimation provides the double robustness property, but has traditionally been

unpopular due to its unintuitive presentation in the literature.

The value search approach can handle more complicated rule forms, however, it

can be difficult to implement when the number of tailoring variables is even moder-

ately large.

Both the dWOLS and AIPWE approaches enjoy the double robustness property

as well and are rather simple in computation and concept. AIPWE is the most

promising and attractive of the value search estimators since it is doubly robust,

whereas IPWE and OWL are not, at the modest cost of requiring specification of an
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outcome model. Also, the AIPWE can provide more flexibility than the regression-

based approaches of Q-learning, G-estimation, and dWOLS.

Although AIPWE offers many nice properties, there is still room for improve-

ment and my goal is to fill this gap in the next chapter by proposing a more efficient,

doubly robust value search estimator that incorporates the weights proposed for

dWOLS by Wallace and Moodie (2015).
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CHAPTER 3
Using dWOLS Weights in Value Search Estimators

3.1 Proposed Approach

In the last chapter, I noted that IPWE and AIPWE could be used with more

complicated regime rule forms (non-linear ITRs); moreover, AIPWE enjoys the dou-

bly robust property. I also notice that one specific approach from the literature of

dynamic treatment regimes; namely the dynamic weighted ordinary least square re-

gression proposed by Wallace and Moodie (2015), also provides double robustness.

In particular, I observed that some weights in this framework provided greater effi-

ciency in the decision rule parameter estimation compared to the conventional inverse

probability weights.

The main reason that I prefer the absolute value weights rather than inverse

probability weights is that I anticipate smaller variance owing to the variability of

the weights themselves. The absolute value weights are bounded by |ai − P (ai|X)|

which is always less than or equal to 1. Based on this boundary, I would expect the

absolute weights w1i to have a smaller variance compared to the inverse probability

weighting which can become arbitrarily large.

As for the third type of alternative dWOLS weight, w3i, I also suspect that

this will lead to a smaller weight variance than the inverse probability weights. Like

IPW, it may be unbounded for subjects who do not receive treatment (subjects with

a = 0) but will be bounded for all treated subjects. Likewise for wai .
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Our hypothesis is that the weights of dWOLS could be used in value search

estimation of individualized treatment regimes. In this thesis, in order to explore

the development of ITR estimation methods, I will propose some new estimators that

are defined by combining the weighting schemes in dWOLS with the value search

approaches together to estimate E[Y (dη)]. The new estimators are called simple (s)

and augmented (a) value search estimators (VSEs), i.e. s-VSE and a-VSE.

The formula for the simple estimators of the value function is written as

V̂ d = Ê[Y (dη)] = n−1

n∑
i=1

wiyi1{ai=d}. (3.1)

The formula for the augmented estimators of the value function is written as

V̂ d = Ê[Y (dη)] = n−1

n∑
i=1

[wi(yi − µ(ai, xi; β))1{ai=d} + µ(ai, xi; β)] (3.2)

where d is a candidate regime indexed by η and µ(ai, xi; β) is a proposed parametric

model for the mean outcome given treatment and covariates.

In this chapter, I will prove the consistency of the new estimators, demonstrate

their performance via simulation. Further, in Chapter 5, I apply these to National

Health and Nutrition Examination Survey data.

3.2 Properties of the Newly Proposed Estimators

THEOREM 1: The s-VSE as defined in (3.1) is consistent for a quantity

proportional to the value function, yielding a consistent estimator for the optimal

threshold, ηopt.
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Proof : The estimator is written as

Ê[Y (dη)] = n−1

n∑
i=1

wiyi1{ai=d}.

Then

V̂ d = n−1

n∑
i=1

wiyi1{ai=d}

P−→ E{E[wiYi1{ai=d}|Xi]}

= E{wiE[Yi(d)]}

= kV d

where k = E[wi1{ai=d}] ̸= 1, however this estimator will still be unbiased since k is a

constant, thus

argmax
d∈D

kV d = argmax
d∈D

V d.

Note that if I use the inverse probability weights, I would have k = 1. So even if I

obtain a biased estimator of V d, I can still have an unbiased estimator of ηopt.

□

The dWOLS weights remove confounding bias and therefore are useful in per-

forming regression on a weighted dataset. For a weighted data set (yw, xw, aw), where

weights are in the form of dWOLS weights, Wallace and Moodie (2015) showed that

xw ⊥ aw i.e. E[Xw|Aw = 0] = E[Xw|Aw = 1], is achieved with dWOLS weights

which satisfy

P (Aw = 0|Xw = x)

P (Aw = 0)
=
P (Aw = 1|Xw = x)

P (Aw = 1)
.
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THEOREM 2: a-VSE as defined in (3.2) is consistent for ηopt only when in-

verse probability of treatment weights are used.

Proof : I now prove the consistency of the a-VSEs. Suppose we have a-VSEs with

inverse probability weights, that is the AIPWE. Now, if µ(A,X; β) is correctly spec-

ified, then

n−1

n∑
i=1

[(yi − µ(ai, xi; β)]
P−→ 0.

Thus the first augmented term equals 0 asymptotically and we have

n−1

n∑
i=1

[wi(yi − µ(ai, xi; β))1{ai=d} + µ(ai, xi; β)] → n−1

n∑
i=1

µ(ai, xi; β) → V d.

Hence if µ(A,X; β) is correctly specified, the AIPWE is a consistent estimator for

E[Y (dη)].

Similarly, if π(A = a|X;α) is a parametric model for the propensity score which

is correctly specified, we have

n−1

n∑
i=1

wi1{ai=d} = n−1

n∑
i=1

{
1{ai=d=0}

1− π(A = 1|X;α)
+

1{ai=d=1}

π(A = 1|X;α)

}
→ 1

and so

n∑
i=1

[−wiµ(ai, xi; β)1{ai=d} + µ(ai, xi; β)] → 0.
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We now have

n−1
n∑
i=1

[wi(yi − µ(ai, xi; β))1{ai=d} + µ(ai, xi; β)]

= n−1[
n∑
i=1

wiyi −
n∑
i=1

(wiµ(ai, xi; β)1{ai=d} + µ(ai, xi; β))] → V d.

Hence, the AIPWE is doubly robust and therefore consistent if µ(A,X; β) or

π(A|X;α) is correctly specified.

Note if we substitute “absolute value weights” and “alternative dWOLS weights”

to the above value function of a-VSEs, then

n−1

n∑
i=1

wi1{ai=d} ↛ 1.

and so

n∑
i=1

[−wiµ(ai, xi; β)1{ai=d} + µ(ai, xi; β)] ↛ 0

Hence, it turns out that the AIPWE with dWOLS weights does not lead to an

unbiased estimator of V d, however, a-VSEs is consistent provided the outcome model

is correctly specified.

□

3.3 Implementation

3.3.1 Parametric Approach

The procedures to construct the new estimators parametrically are as follows:

1. Identify a set of candidate thresholds that we are interested in searching over,

denote the set of thresholds as Θ. In this thesis, I will consider regimes of the

form “treat when x > η”, and Θ contains the list of all candidate thresholds η.
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Table 3–1: Hypothetical dataset
subject X Y A
1 -1.2 -0.5 1
2 0.3 1.5 0
3 -0.8 -0.4 1

Table 3–2: Augmented dataset corresponding to the hypothetical data in Table 3-1
subject X Y A η
1 -1.2 -0.5 1 -2
1 -1.2 -0.5 1 -1.4
2 0.3 1.5 0 0.4
3 -0.8 -0.4 1 -2
3 -0.8 -0.4 1 -1.4

2. Propose a model π(A|X;α) for the propensity score π(A|X) and fit the model

to estimate the probability of being treated for each subject at each interval

(e.g fitting a logistic regression model of A on X).

3. Generate a full augmented dataset by η ∈ Θ. For example, if we have a hy-

pothetical dataset (Table 3-1) and I define the thresholds η ∈ {−2,−1.4, 0.4},

then the corresponding augmented dataset is shown as Table 3-2.

4. Construct weights by transforming π(A|X;α) according to the desired form,

e.g. inverse probability of treatment, absolute value weights or alternative

dWOLS weights.

5. Propose a model for the mean outcome as a function of the threshold η, and

possibly also baseline covariates. It is typical to choose a parameterization for

dependence of the outcome on η that is quadratic, allowing for the possibility

that the mean outcome is maximized as a function of η at an interior point of

the set Θ.
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6. Estimate the parameters of the regression model proposed in step (5) using a

weighted linear regression.

7. Obtain ηopt as the value of η that maximizes the expected outcome.

3.3.2 Non-parametric Approach

The procedures to construct the new estimators non-parametrically are as fol-

lows:

1. Begin using steps 1-2 above.

2. We define the thresholds η ∈ Θ, and keep rows of data such that “X > η and

A = 1” and “X < η and A = 0”.

3. Construct weights by transforming π(A|X;α) according to the desired form,

e.g. inverse probability of treatment, absolute value weights or alternative

dWOLS weights.

4. For each candidate threshold, compute the s-VSR or a-VSE according to equa-

tion (3.1) or (3.2), respectively.

5. Use the maximum s-VSE and a-VSE estimates to obtain an estimate of the

optimal regime threshold, ηopt.

3.4 Summary

In this chapter, I have outlined a new class of value search estimators for the

optimal ITR derived by incorporating weights from the regression-based dWOLS

approach into a value search estimator. I proved that the singly robust estimators

yield a consistent estimator of the optimal regime parameters, derived from a (not

necessarily unbiased) estimator of the value function. I also showed that the aug-

mented version of the estimator does not possess the property of double-robustness
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except in the special case where weighting is by the inverse probability of treatment.

I then provided a step-by-step algorithm for implementing both the s- and a-VSEs.

In the next chapter, the performance of the estimators is explored.
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CHAPTER 4
Simulations

In the previous chapter, I proposed the use of dWOLS weights in combination

with value search estimation. I now investigate the performance of several imple-

mentations of the s-VSE and a-VSE. In particular, I examine the following seven

estimators:

1. s-VSE with IPWs, i.e. s− V SEIPW (η)

2. s-VSE with absolute value weights, i.e. s− V SEabs(η)

3. s-VSE with first alternative dWOLS weights (w3i), i.e. s− V SEalt(η)

4. s-VSE with no weights (an incorrectly specified propensity score model), i.e.

s− V SEnowt(η)

5. a-VSE with IPWs, i.e. a− V SEIPW (η)

6. a-VSE with absolute value weights, i.e. a− V SEabs(η)

7. a-VSE with first alternative dWOLS weights (w3i), i.e. a− V SEalt(η)

As proven in the last chapter, the first three of these estimators are consistent pro-

vided the propensity score is correctly specified. The fifth is doubly robust, and hence

consistent provided either the propensity score or the outcome regression model is

correctly specified, whereas the final two estimators will only be consistent with the

outcome regression model is correctly specified, which is typically difficult to achieve.

I now demonstrate procedures and simulation results of both parametric and

non-parametric approaches to constructing the above proposed estimators.
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4.1 Parametric Estimation

I now illustrate and evaluate the performance of all seven estimators by simula-

tion studies. I use a single-stage and one tailoring variable simulated example with

data generated for each subject as follows:

• Covariate Xi ∼ U(0, 1)

• Treatment P (Ai = 1|Xi = xi) = xi

• Outcome Yi ∼ N(eXi −X3
i + Ai(−1 + 4Xi), 1).

I refer this is the first data generating scenario. It is straightforward to obtain the

true optimal treatment regime dopt(X)=1{−1+4X>0}=1{X> 1
4
}.

I refer the following data generation scheme as the second data generating sce-

nario:

• Covariates Xi ∼ N(1, 2)

• Treatment logit[P (Ai = 1|Xi = xi)] =
e−0.5+0.6X

1+e−0.5+0.6X

• Outcome Yi ∼ N(eXi −X3
i + Ai(−1 + 4Xi), 1).

It is still the truth that the optimal regime dopt(X)=1{−1+4X>0}=1{X> 1
4
}. I now obtain

E[Y (dopt)] = 12.07, and ηopt=0.25.

I define the η’s as a sequence of values in the interval [0, 1] for the parametric

approach.

For the parametric approach, I generate the full augmented dataset using the

following the criteria:

1. if x > η and a = 1, or

2. if x < η and a = 0.
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I perform the one-dimensional searching for different η values from the interval

[0, 1] in order to add η as an extra variable to the fully augmented dataset. Now,

based on this fully augmented data set, I use the correctly specified propensity score

π(Xi) = xi (I use π(Xi) = 1 − xi as the incorrect treatment model) and perform

the regression method with the proposed outcome model: Y∼ 1 + η + η2 with the

IPWs and other weights. Then I extract the coefficients from the outcome regression

model and treat them as the coefficients of a quadratic function and maximize this

function to get the optimal η as ˆηopt. For those quadratic terms that have negative

coefficient values, the function is concave and thus, the optimal η value is the one

corresponding to the maximum function value. For those quadratic terms that have

positive coefficients, I examined which boundary η value gave the maximum value

of this function (in this case it would be either 0 or 1). The true value of η is

0.25 as we discussed previously. Under the data-generating mechanism, I obtain

E[Y (dopt)] = 2.37. Then I use the seven estimators I proposed earlier to do the

following analysis:

• Analysis 1 s-VSEs with IPWs: treatment model correct

w(ai, xi) =
1

P (Ai=ai|Xi=xi)

Regress y on (1,η,η2) with P [Ai = 1|Xi = xi] = xi

• Analysis 2 s-VSEs with absolute value weights: treatment model correct

w(ai, xi) = |ai − P (Ai = 1|Xi = xi)|

Regress y on (1,η,η2) with P [Ai = 1|Xi = xi] = xi

42



• Analysis 3 s-VSEs with dWLOS weights: treatment model correct

w(ai, xi) = 1ai=1 + 1ai=0
P (Ai=1|Xi)

1−P (Ai=1|Xi)

Regress y on (1,η,η2) with P [Ai = 1|Xi = xi] = xi

• Analysis 4 s-VSEs with no weights: treatment model incorrect

w(ai, xi) =
1

P (Ai=ai|Xi=xi)

Regress y on (1,η,η2) with P [Ai = 1|Xi = xi] = 1− xi

• Analysis 5 a-VSEs with IPWs: treatment model correct and outcome model

incorrect

w(ai, xi) =
1

P (Ai=ai|Xi=xi)

Regress y on (1,η,η2) with P [Ai = 1|Xi = xi] = xi

• Analysis 6 a-VSEs with absolute value weights: treatment model correct and

outcome model incorrect

w(ai, xi) = |ai − P (Ai = 1|Xi = xi)|

Regress y on (1,η,η2) with P [Ai = 1|Xi = xi] = xi

• Analysis 7 a-VSEs with alternative dWLOS weights: treatment model correct

and outcome model incorrect

w(ai, xi) = 1ai=1 + 1ai=0
P (Ai=1|Xi)

1−P (Ai=1|Xi)

Regress y on (1,η,η2) with P [Ai = 1|Xi = xi] = xi

• Analysis 8 a-VSEs with alternative dWOLS weights: treatment model incorrect

and outcome model correct

w(ai, xi) = 1ai=1 + 1ai=0
P (Ai=1|Xi)

1−P (Ai=1|Xi)

Regress y on (1,η,η2) with P [Ai = 1|Xi = xi] = 1− xi
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I generate the boxplots in Figures 4-1 to 4-3 of ˆηopt estimates for our estimators

and the results of 1000 simulated datasets of size 100, 200, 500. Dashed lines indicate

true optimal threshold. As I expected from our theory, s − V SEIPW , s − V SEabs,

and s−V SEalt appear to be consistent if our treatment model is correctly specified.

For the single-robust estimator without weight, the boxplot shows lack of consistency

since the estimates deviate away from the true η, 0.25.

The performance of a − V SEIPW appears consistent and the variance of this

estimator seems to be smaller comparing to all three s − V SEs. The a − V SEabs

and a−V SEalt are appeared to be biased for true ηopt = 0.25, except for Analysis 8,

in which the outcome model is correctly specified. The a− V SEalt also is consistent

in the setting where the treatment model is incorrectly specified and the outcome

regression model is correctly specified.

An out of sample estimate of the performance of the estimated ITR was found

by applying the estimated ITR to a new sample of size 100,000 individuals; the

estimated values of V d and its standard errors are presented in Table 4-1 to Table

4-4.

I present in Table 4-1 the estimated values of E[Y (d̂opt)] for the above eight

analysis. This indicates how well each approach performs in terms of optimizing

the outcome under the estimated optimal regime. I obtain similar results as the

regression approach estimators. The unbiased s− V SEs and a− V SEs have better

performance. Analyses 6 and 7 produce worse prediction for the average outcomes

by using the inconsistent estimates of d̂opt = 1{x>η̂opt}.
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Figure 4–1: Distribution of the estimated optimal threshold across 1000 simulated
datasets of size 100 using parametric s- and a-VSEs under the first data-generating
scenario.
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Figure 4–2: Distribution of the estimated optimal threshold across 1000 simulated
datasets of size 200 using parametric s- and a-VSEs under the first data-generating
scenario.
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Table 4–1: The mean outcome estimates under the estimated optimal rule for the
first data generation scenario via parametric approach.

Subjects Analysis Estimate of V d̂ SE of V d̂ Bias of η̂opt SE of η̂opt

n=100 Analysis 1 2.319 0.010 0.007 0.097
Analysis 2 2.365 0.015 0.015 0.071
Analysis 3 2.441 0.012 0.012 0.081
Analysis 4 2.142 0.198 0.213 0.191
Analysis 5 2.167 0.076 0.002 0.073
Analysis 6 2.081 0.238 0.124 0.113
Analysis 7 2.023 0.201 0.105 0.114
Analysis 8 2.241 0.091 0.034 0.081

n=200 Analysis 1 2.451 0.010 0.005 0.069
Analysis 2 2.315 0.014 0.031 0.071
Analysis 3 2.194 0.013 0.030 0.064
Analysis 4 2.112 0.078 0.204 0.145
Analysis 5 2.270 0.033 0.075 0.051
Analysis 6 2.021 0.212 0.101 0.101
Analysis 7 1.916 0.178 0.107 0.089
Analysis 8 2.263 0.076 0.022 0.054

n=500 Analysis 1 2.291 0.007 0.003 0.067
Analysis 2 2.515 0.015 0.035 0.052
Analysis 3 2.357 0.013 0.031 0.051
Analysis 4 2.112 0.178 0.203 0.091
Analysis 5 2.401 0.024 0.078 0.041
Analysis 6 2.011 0.106 0.112 0.109
Analysis 7 2.031 0.108 0.127 0.092
Analysis 8 2.351 0.061 0.012 0.036

46



Figure 4–3: Distribution of the estimated optimal threshold across 1000 simulated
datasets of size 500 using parametric s- and a-VSEs under the first data-generating
scenario.
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I applied our estimators to another mechanism of data generation as well

• Covariates Xi ∼ N(1, 2)

• Treatment logit[P (Ai = 1|Xi = xi)] =
e−0.5+0.6X

1+e−0.5+0.6X

• Outcome Yi ∼ N(eXi −X3
i + Ai(−1 + 4Xi), 1).

It is still the truth that the optimal regime dopt(X)=I(−1 + 4X > 0)=I(X > 1
4
). I

now obtain E[Y (dopt)] = 12.07, and ηopt=0.25.

The estimates of ηopt as shown in Figures 4-4 to 4-6 based on the second data

generating scenario, and lead to similar conclusion as our last simulation.

I present in Table 4-2 the estimated values of E[Y (d̂opt)] for the above eight

analysis. As in the first set of simulations, estimators perform as expected: all s-VSEs

are consistent when treatment is modelled correctly. Of the augmented estimators,
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Figure 4–4: Distribution of the estimated optimal threshold across 1000 simulated
datasets of size 100 using parametric s- and a-VSEs under the second data-generating
scenario.
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Figure 4–5: Distribution of the estimated optimal threshold across 1000 simulated
datasets of size 200 using parametric s- and a-VSEs under the second data-generating
scenario.
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Figure 4–6: Distribution of the estimated optimal threshold across 1000 simulated
datasets of size 500 using parametric s- and a-VSEs under the second data-generating
scenario.
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a-VSE with a correct outcome model (for any weighting scheme) is consistent, and

only a-VSE with IPW is doubly robust.

All consistent estimators provide decision thresholds that lead to population

outcomes that are closer to the true optimal outcome (see Table 4-2) as compared

to the first data generating scenario (Table 4-1).
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Table 4–2: The mean outcome estimates under the estimated optimal rule for the
second data generation scenario via parametric approach

Subjects Analysis Estimate of V d̂ SE of V d̂ Bias of η̂opt SE of η̂opt

n=100 Analysis 1 12.325 19.282 0.017 0.097
Analysis 2 12.165 9.662 0.013 0.055
Analysis 3 12.314 9.969 0.021 0.071
Analysis 4 11.027 33.017 0.171 0.195
Analysis 5 12.121 11.048 0.009 0.071
Analysis 6 11.228 10.782 0.624 0.183
Analysis 7 11.158 15.698 0.605 0.124
Analysis 8 12.231 12.993 0.034 0.081

n=200 Analysis 1 12.215 11.104 0.025 0.063
Analysis 2 12.273 9.361 0.018 0.073
Analysis 3 12.071 8.153 0.078 0.061
Analysis 4 11.671 23.091 0.181 0.145
Analysis 5 12.157 10.030 0.005 0.052
Analysis 6 11.727 9.126 0.626 0.145
Analysis 7 11.411 11.324 0.602 0.190
Analysis 8 12.169 10.015 0.012 0.054

n=500 Analysis 1 12.273 9.655 0.013 0.022
Analysis 2 12.165 8.818 0.035 0.052
Analysis 3 12.375 7.111 0.031 0.050
Analysis 4 11.213 15.641 0.173 0.093
Analysis 5 12.126 9.177 0.018 0.045
Analysis 6 11.171 10.711 0.628 0.109
Analysis 7 11.312 10.172 0.637 0.102
Analysis 8 12.194 7.610 0.017 0.042
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4.2 Non-parametric Estimation

For the non-parametric approach, the simulated data and augmented data set

generation was the same as in Section 4.1. I define the η’s as a sequence of values in

the interval [0, 1] by increments of 0.01 for the non-parametric approach.

In order to investigate these weights, I now apply non-parametric VSE by using

three different weights satisfying equation (4.1) with the same augmented dataset

generation method as the first approach. Note that here, unlike previously, I directly

construct seven estimators: s − V SEIPW , s − V SEabs,s − V SEalt, s − V SEnowt

a−V SEIPW , s−V SEabs, s−V SEalt and all the weights are of the form I described

earlier in the literature review Section 2.2.3, which involves proposing models for

both µ(A,X; β) and the propensity scores π(X). I use both correctly and incorrectly

specified propensity score models. For sample sizes 100, 200 and 500, I generate 1000

simulated datasets according to the first and second data generating scenario and

conduct in total eight analyses:

• Analysis 1 s-VSEs with IPWs: treatment model correct

w(ai, xi) =
1

P (Ai=ai|Xi=xi)

Regress y on (1,a,x,ax) with P [Ai = 1|Xi = xi] = xi

• Analysis 2 s-VSEs with absolute value weights: treatment model correct

w(ai, xi) = |ai − P (Ai = 1|Xi = xi)|

Regress y on (1,a,x,ax) with P [Ai = 1|Xi = xi] = xi

• Analysis 3 s-VSEs with alternative dWLOS weights: treatment model correct

w(ai, xi) = 1ai=1 + 1ai=0
P (Ai=1|Xi)

1−P (Ai=1|Xi)

Regress y on (1,a,x,ax) with P [Ai = 1|Xi = xi] = xi

51



• Analysis 4 s-VSEs with no weights: treatment model incorrect,

Regress y on (1,a,x,ax) with P [Ai = 1|Xi = xi] = 1− xi

• Analysis 5 a-VSEs with IPWs: treatment model correct and outcome model

incorrect, w(ai, xi) =
1

P (Ai=ai|Xi=xi)

Regress y on (1,a,x,ax) with P [Ai = 1|Xi = xi] = xi

• Analysis 6 a-VSEs with absolute value weights: treatment model correct and

outcome model incorrect, w(ai, xi) = |ai − P (Ai = 1|Xi = xi)|

Regress y on (1,a,x,ax) with P [Ai = 1|Xi = xi] = xi

• Analysis 7 a-VSEs with alternative dWOLS weights: treatment model correct

and outcome model incorrect, w(ai, xi) = 1ai=1 + 1ai=0
P (Ai=1|Xi)

1−P (Ai=1|Xi)

Regress y on (1,a,x,ax) with P [Ai = 1|Xi = xi] = xi

• Analysis 8 a-VSEs with alternative dWOLS weights: treatment model incorrect

and outcome model correct, w(ai, xi) = 1ai=1 + 1ai=0
P (Ai=1|Xi)

1−P (Ai=1|Xi)

Regress y on (1,a,x,ex,x3,ax) with P [Ai = 1|Xi = xi] = xi + x2i

I generated the boxplots (Figures 4-7 to 4-9) of estimated ηopt values for the

eight analyses for 1000 simulated datasets for all s − V SEs and a − V SEs with

the three different weight schemes and both correct and incorrect propensity score

models. Dashed lines indicate true ηopt, which is 0.25. Results are as expected, and

consistent with the parametric estimators.
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Figure 4–7: Distribution of the estimated optimal threshold across 1000 simulated
datasets of size 100 using parametric s- and a-VSEs under the first data-generating
scenario.
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Figure 4–8: Distribution of the estimated optimal threshold across 1000 simulated
datasets of size 200 using parametric s- and a-VSEs under the first data-generating
scenario.
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Figure 4–9: Distribution of the estimated optimal threshold across 1000 simulated
datasets of size 500 using parametric s- and a-VSEs under the first data-generating
scenario.
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I found that in the single-stage setting, s−V SEs with all three weight schemes

provides unbiased and almost equally larger variances compared to the original a−

V SEIPW . The a − V SEabs and a − V SEalt seem to return smaller variances than

both of the s−V SEs and a−V SEIPW , however, these two estimators where biased.

The variance relationship between a− V SEabs and a− V SEalt is not very clear and

thus, further investigation may be needed in order to combine these new weights

with other estimators that could enjoy consistency properties.

I present in Table 4-3 the estimates of E[Y (d̂opt)] for the above eight analysis.

Again, I obtain similar results as the parametric VSEs. Except for Analysis 4, 6,

and 7, the s − V SEs and a − V SEs have similar performance as measured by the

expected outcome in population treated under the estimated optimal ITR. Analyses
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6 and 7 produce worse prediction for the average outcomes by using the inconsistent

estimates of d̂opt = 1{x>η̂opt}.

Table 4–3: The mean outcome estimates under the estimated optimal rule for the
first data generation scenario via non-parametric approach

Subjects Analysis Estimate of V d̂ SE of V d̂ Bias of η̂opt SE of η̂opt

n=100 Analysis 1 2.251 0.031 0.007 0.096
Analysis 2 2.352 0.022 0.015 0.061
Analysis 3 2.264 0.027 0.012 0.065
Analysis 4 2.133 0.198 0.203 0.191
Analysis 5 2.391 0.076 0.002 0.076
Analysis 6 1.951 0.238 0.124 0.113
Analysis 7 2.051 0.201 0.105 0.114
Analysis 8 2.464 0.110 0.034 0.081

n=200 Analysis 1 2.251 0.027 0.005 0.099
Analysis 2 2.435 0.021 0.031 0.071
Analysis 3 2.561 0.023 0.030 0.064
Analysis 4 2.131 0.178 0.206 0.145
Analysis 5 2.353 0.033 0.071 0.089
Analysis 6 2.017 0.212 0.100 0.106
Analysis 7 2.041 0.178 0.105 0.082
Analysis 8 2.363 0.103 0.023 0.054

n=500 Analysis 1 2.313 0.019 0.003 0.057
Analysis 2 2.500 0.013 0.034 0.042
Analysis 3 2.317 0.015 0.033 0.061
Analysis 4 2.011 0.178 0.202 0.069
Analysis 5 2.313 0.024 0.078 0.043
Analysis 6 2.015 0.106 0.112 0.467
Analysis 7 1.921 0.108 0.125 0.061
Analysis 8 2.371 0.061 0.011 0.031

The estimates of ηopt for second data generation scheme is shown in Figures

4-10 to 4-12 and similar conclusion can be reached as in the parametric modeling

simulation. Dashed lines indicate true ηopt, which is 0.25.
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Figure 4–10: Distribution of the estimated optimal threshold across 1000 simulated
datasets of size 100 using parametric s- and a-VSEs under the second data-generating
scenario.
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Figure 4–11: Distribution of the estimated optimal threshold across 1000 simulated
datasets of size 200 using parametric s- and a-VSEs under the second data-generating
scenario.
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Figure 4–12: Distribution of the estimated optimal threshold across 1000 simulated
datasets of size 500 using parametric s- and a-VSEs under the second data-generating
scenario.
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I present in Table 4-4 the estimates of E[Y (d̂opt)] for the above eight analyses

under the second data generation scenario. As before, the unbiased s − V SEs and

a− V SEs have similar performance as measured by the expected outcome in a new

population treated under the estimated optimal ITR. Analyses 6 and 7 produce worse

prediction for the average outcomes by using inconsistent estimates of d̂opt = 1{x>η̂opt}.

All the simulation results that I have shown for the non-parametric value search

approach demonstrate great similarity to the results for the parametric value search

estimators.

4.3 Summary

In this chapter, I performed simulations which demonstrated the consistency of

the s-VSE approach under correct specification of the treatment model and consis-

tency of the a-VSE approach under correct specification of the outcome model, as
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Table 4–4: The mean outcome estimates under the estimated optimal rule for the
second data generation scenario via non-parametric approach

Subjects Analysis Estimate of V d̂ SE of V d̂ Bias of η̂opt SE of η̂opt

n=100 Analysis 1 12.375 17.122 0.017 0.087
Analysis 2 12.053 10.212 0.024 0.053
Analysis 3 12.154 9.661 0.021 0.072
Analysis 4 11.052 29.217 0.091 0.196
Analysis 5 12.081 10.781 0.009 0.076
Analysis 6 11.122 11.698 0.638 0.193
Analysis 7 11.151 12.698 0.615 0.124
Analysis 8 12.231 12.112 0.034 0.088

n=200 Analysis 1 12.175 10.114 0.005 0.063
Analysis 2 12.132 9.251 0.021 0.071
Analysis 3 12.371 8.850 0.018 0.064
Analysis 4 11.022 20.280 0.184 0.145
Analysis 5 12.313 11.371 0.075 0.051
Analysis 6 11.237 10.819 0.655 0.151
Analysis 7 11.415 10.181 0.637 0.189
Analysis 8 12.135 11.821 0.022 0.054

n=500 Analysis 1 12.353 7.077 0.003 0.067
Analysis 2 12.645 8.125 0.035 0.052
Analysis 3 12.615 8.127 0.031 0.050
Analysis 4 11.813 13.271 0.173 0.093
Analysis 5 12.076 8.041 0.078 0.045
Analysis 6 11.723 7.914 0.612 0.109
Analysis 7 11.321 9.101 0.627 0.102
Analysis 8 12.102 8.093 0.012 0.041
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well as double-robustness in the special case of a-VSE where the inverse probability

of treatment weighting is used. As expected, the estimator of (a quantity propor-

tional to) the value function was made more efficient by the use of absolute value

weights; however this did not translate into smaller variability in the estimator of

the optimal threshold. I am therefore left with the rather discouraging conclusion

that improvements on the s-VSE that corresponds to the traditional IPWE cannot

easily be made through a judicious choice of weights.

59



CHAPTER 5
Analysis of the National Health and Nutrition Examination Survey Data

5.1 Background

It is commonly recognized that exercise and physical activity have wide-ranging

health benefits, from decreased weight to improved mood (Taylor et al., 2004). In-

creasingly, leisure time activities are more sedentary, with television watching, video

games, and personal computing among the most popular pastimes. Further, people

in industrialized countries are expending less energy in activities of daily living, and

at work. A change in the volume of daily physical activity may account for this

apparent discrepancy (United States. Department of Health, 1996).

The prevalence of overweight diagnoses continues to increase in the US adult

population (Must et al., 1999). Mokdad et al. (2003) state that overweight and

obesity diagnoses were significantly associated with diabetes, high blood pressure,

high cholesterol, asthma, arthritis, and poor health status. Obesity and diabetes are

major causes of morbidity and mortality in the United States (Must et al., 1999) as

well as throughout the world. Evidence from several studies indicates that obesity

and weight gain are associated with an increased risk of diabetes (Ford et al., 1997).

Hypertension affects 65 million adult Americans and is a major risk factor for

myocardial infarction, stroke, heart failure, and renal failure. The prevalence of

hypertension has not declined although the improvement in blood pressure control
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is encouraging. The control of blood pressure is crucial in the prevention of these

adverse outcomes (Ong et al., 2007).

It has been suggested that even adults who are unwilling or unable to meet

recommended levels of exercise will benefit from undertaking some physical activity

(Garber et al., 2011). It may even be the case that there are psychological benefits

to setting lower but achievable targets. I therefore set out to investigate whether

the amount of physical activity needed to optimize three different measures of health

(body mass index (BMI), systolic blood pressure, and self-reported general health)

should be tailored to individual characteristics. In particular, I investigated whether

it would be advantageous to tailor physical activity to how sedentary a person is, as

measured by the number of TV hours watched, or by self-reported level of depression.

I apply unbiased s- and a-VSEs to data from the United States’ National Health and

Nutrition Examination Survey Data to examine this question.

5.2 Methods

5.2.1 The NHANES data

The National Health and Nutrition Examination Survey (NHANES) is a pro-

gram of studies designed to assess the health and nutritional status of adults and

children in the United States. The survey is unique in that it combines interviews

and physical examinations (Centers for Disease Control and Prevention).

The NHANES data has multiple waves, and in each wave, the NHANES in-

terview includes demographic, socioeconomic, dietary, and health-related questions.

61



The examination component consists of medical, dental, and physiological measure-

ments, as well as laboratory tests administered by highly trained medical personnel

(Centers for Disease Control and Prevention).

According to NHANES’s description file, ‘The NHANES data is collected on

the prevalence of chronic conditions in the population. Estimates for previously

undiagnosed conditions, as well as those known to and reported by respondents, are

produced through the survey’.1

For my analysis, in order to investigate whether access to physical activity could

be tailored to individual characteristics, namely how sedentary a person is, which is

measured by the number of TV hours, and depression level. I apply the proposed

new estimators on the Third National Health and Nutrition Examination Survey

data (NHANES III), restricted to adults with age greater than or equal to 18 and

excluding pregnant women.

5.2.2 Analyses

I begin by outlining the variables used for the analyses, then proceed to describe

the estimators.

Outcome variables I considered three outcomes: BMI, self-reported general health,

and systolic blood pressure. BMI is a tool used to measure weight. As a high BMI is

indicative of greater weight (e.g., a BMI greater than or equal to 30 defines obesity,

while a BMI less than 30 but at least 25 indicates overweight), I transformed the

outcome, since ITR estimation methods are traditionally set up seek to maximize the

1 http://www.cdc.gov/nchs/nhanes/about_nhanes.htm
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outcome. I recoded the outcome BMI as BMI = |max(BMI)−BMI|. The second

outcome that I considered was self-reported general health, which is measured on a 5

point scale (poor, fair, good, very good, or excellent); these categories were assigned

values from 1 to 5 and the variable was treated as continuous. Finally, systolic blood

pressure (SBP) was transformed as follows: SBP = max(SBP )− SBP . Note that

SBP is measured as the average of three measurements of systolic blood pressure.

Treatment variable I consider physical activity as the treatment variable. Physical

activity is being record as “Yes” if a participant does moderate or vigorous-intensity

sports, fitness or recreational activities; if not, physical activity is recorded as “No”.

I recode “Yes” as 1 and “No” as 0 for convenience.

Tailoring variables I consider two tailoring variables: number of TV hours watched

and self-reported level of depression. The hours of TV watched is measured by

number of hours per day on average that a participant watched TV over the past

30 days and a 7 level scale (0 hours, 0 to 1 hour, 1 hour, 2 hours, 3 hours, 4 hours,

More than 4 hours). These categories were assigned values -0.5, 0.5, 1, 2, 3, 4, and

5 and the variable was treated as continuous. The self-reported level of depression

is measured by number of days where participant felt down, depressed or hopeless.

The levels are none, several, majority (more than half the days), or almost all. I

combined two levels (majority and almost all) together due to sparse numbers and

recoded the 3 level as -0.5, 1, and 2.

Confounding variables Several potentia confounding variables were included in the

analysis: age, gender, poverty, income, race, and smoking status. Poverty is a ratio

of family income to poverty guidelines. Smaller numbers indicate more poverty.
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Smoking status is measured by self-report of having smoked 100 or more cigarettes

in their life time.

Estimators

1. s-VSE (IPWE) with IPWs, i.e. s− V SEIPW

2. s-VSE with absolute value weights, i.e. s− V SEabs

3. s-VSE with alternative dWOLS weights, i.e. s− V SEalt

4. a-VSE with IPW (AIPWE), i.e. a− V SEIPW

5. a-VSE with absolute value weights, i.e. a− V SEabs

6. a-VSE with alternative dWOLS weights, i.e. a− V SEalt

I used a logistic regression model to adjust for confounding, and a linear model

for the mean outcome required for the augmented approaches. The non-parametric

implementation of the estimators was used in all cases. Candidate regimes were “be

physically active if hours of TV watched> ηTV ” for ηTV ∈ {−0.05, 0.25, 0.75, 1.5, 2.5, 3.5, 4.2}

and ”Be physically active if depression > ηdep” for ηdep ∈ {−0.1, 1.1, 1.6}.

Standard errors were computed by bootstrap resampling, taking 1000 samples

with replacement. I also assessed the stability of the estimated treatment rule across

resamples by calculating the frequency with which the optimal threshold in the orig-

inal sample was optimal across the 1000 bootstraps.

5.3 Results

I obtained the estimates of ηopt and then the estimates of standard error of

ηopt from 1000 bootstraps, and present these in Table 5-1. These regimes suggest

that everyone should do moderate or vigorous-intensity sports, fitness or recreational

activities, and there is no advantage to tailoring.

64



Results of fitting the mean model using linear models are presented in Tables

5-4, 5-5, and 5-6 and show that interactions are not statistically significant, which is

supportive of the conclusion that the VSE approaches reached.

The estimates of s − V SEIPW (η) and a − V SEAIPW (η) for the value function

E(Y ) and the corresponding standard errors are presented in Figures 5-1 to 5-6,

and the optimal regimes η for each tailoring variable suggest there is no evidence

of tailoring and everyone should do moderate or vigorous-intensity sports, fitness

or recreational activities. From Table 5-2 and Table 5-3, the percentage of times

Table 5–1: Estimated optimal regimes η̂opt and expected outcomes for Self-reported
General Health, SBP and BMI for the tailoring variables TV hours watched and
depression

Tailoring Variable: TVhours

Outcome BMI Self-reported
General Health

SBP

Estimators E[Y ] η̂opt E[Y ] η̂opt E[Y ] η̂opt

s− V SEIPW (η) -5.086 0.75 2.380 -0.05 94.175 0.52
s− V SEw1(η) N/A 0.75 N/A -0.04 N/A 1.11
s− V SEw3(η) N/A 0.73 N/A -0.05 N/A 0.29
a− V SEIPW (η) -5.085 0.03 2.355 -0.05 94.796 1.01
a− V SEw1(η) N/A -0.05 N/A -0.04 N/A -0.04
a− V SEw3(η) N/A -0.04 N/A -0.04 N/A 0.16

Tailoring Variable: Depressed

Outcome BMI Self-reported
General Health

SBP

Estimators E[Y ] η̂opt E[Y ] η̂opt E[Y ] η̂opt

s− V SEIPW (η) -5.053 -0.10 2.095 -0.10 91.447 0.24
s− V SEw1(η) N/A -0.09 N/A -0.10 N/A -0.069
s− V SEw3(η) N/A -0.10 N/A -0.09 N/A 0.29
a− V SEAIPW (η) -5.053 -0.10 2.114 -0.10 92.401 0.02
a− V SEw1(η) N/A -0.08 N/A -0.10 N/A 0.01
a− V SEw3(η) N/A -0.10 N/A -0.10 N/A 0.44
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Figure 5–1: E(YBMI ) vs. η̂TVhours with 95% bootstrap confidence intervals
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Figure 5–2: E(YBMI ) vs. η̂Depressed with 95% bootstrap confidence intervals
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Figure 5–3: E(YSelf-reported General Health) vs. η̂TVhours with 95% bootstrap confidence
intervals
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Figure 5–4: E(YSelf-reported General Health) vs. η̂Depressed with 95% bootstrap confidence
intervals
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Figure 5–5: E(YSBP) vs. η̂TVhours with 95% bootstrap confidence intervals
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Figure 5–6: E(YSBP) vs. η̂Depressed with 95% bootstrap confidence intervals
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estimated optimal regimes ηopt chosen show the strong robustness of our regimes for

the proposed s− V SEIPW , s− V SEw1 , s− V SEw3 , and a− V SEAIPW .

Table 5–2: Percentage of times estimated optimal regimes η̂opt chosen over all treat-
ment regimes and 95% CI of the expected outcomes for Self-reported General Health,
SBP and BMI for the tailoring variable TV hours watched

Tailoring Variable: TVhour Outcome: BMI
Estimator % times ηopt chosen E[Y ] 95% CI of E[Y ]
s− V SEIPW 0.007 -5.086 (-5.344,-4.369)
s− V SEW1 0.006 N/A N/A
s− V SEW3 0.024 N/A N/A
a− V SEIPW 0.874 -5.085 (-5.494,-4.636)

Outcome: Self-reported General Health
Estimator % times ηopt chosen E[Y ] 95% CI of E[Y ]
s− V SEIPW 1.000 2.380 (2.306,2.455)
s− V SEw1 0.996 N/A N/A
s− V SEw3 0.999 N/A N/A
a− V SEIPW 0.996 2.355 (2.283,2.424)

Outcome: SBP
Estimator % times ηopt chosen E[Y ] 95% CI of E[Y ]
s− V SEIPW 0.764 94.175 (92.611,97.738)
s− V SEw1 0.534 N/A N/A
s− V SEw3 0.819 N/A N/A
a− V SEIPW 0.316 94.796 (92.813,95.545)
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Table 5–3: Percentage times estimated optimal regimes η̂opt chosen over all treatment
regimes and 95% CI of the expected outcomes for Self-reported General Health, SBP
and BMI for tailoring variable depression

Tailoring Variable: Depressed Outcome: BMI
Estimator % times ηopt chosen E[Y ] 95% CI of E[Y ]
s− V SEIPW 0.995 -5.053 (-6.714,-5.780)
s− V SEW1 0.990 N/A N/A
s− V SEW3 0.965 N/A N/A
a− V SEIPW 1.000 -5.053 (-6.744,-5.835)

Outcome: Self-reported General Health
Estimator % times ηopt chosen E[Y ] 95% CI of E[Y ]
s− V SEIPW 0.995 2.095 (2.018,2.170)
s− V SEw1 1.000 N/A N/A
s− V SEw3 0.991 N/A N/A
a− V SEIPW 0.998 2.114 (2.048,2.179)

Outcome: SBP
Estimator % times ηopt chosen E[Y ] 95% CI of E[Y ]
s− V SEIPW 0.905 91.447 (89.210,93.829)
s− V SEw1 0.974 N/A N/A
s− V SEw3 0.898 N/A N/A
a− V SEIPW 0.677 92.401 (90.889,93.881)
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Table 5–4: Linear regression of outcome BMI with tailoring TV hours watched and
depression

Variables Estimate Std. Error p-value
(Intercept) -8.736 0.990 < 0.001
Physical activity 2.509 0.559 < 0.001
Age 0.042 0.001 < 0.001
Gender (male) -0.150 0.291 0.607
Poverty 0.106 0.152 0.485
Race(Black) -1.790 0.892 0.045
Race(Hispanic) -0.265 0.993 0.789
Race(Mexican) -2.668 0.934 0.004
Race(White) -1.010 0.761 0.185
Race(Other) -1.728 1.092 0.114
Income 9.723−6 6.764−6 0.151
Smoke status 2.033 0.306 < 0.001
Depressed 0.183 0.2.235 0.413
TVhour -0.231 0.1281 0.071
Physical activity*depressed -0.185 0.341 0.058
Physical activity*TVhours -0.202 0.179 0.257

Table 5–5: Linear regression of outcome Self-reported General Health with tailoring
TV hours watched and depression

Variables Estimate Std. Error p-value
(Intercept) 1.943 0.160 < 0.001
Physical activity 0.377 0.090 < 0.001
age -0.003 0.002 0.043
Gender(male) -0.037 0.047 0.429
Poverty 0.137 0.025 < 0.001
Race(Black) -0.222 0.144 0.123
Race(Hispanic) -0.131 0.160 0.412
Race(Mexican) -0.187 0.151 0.213
Race(White) 0.016 0.123 0.895
Race(Other) 0.134 0.176 0.447
Income −3.385−7 1.092−6 0.756
Smoke status -0.149 0.049 0.003
Depressed -0.199 0.036 < 0.001
TVhours 0.014 0.021 0.476
Physical activity*depressed 0.073 0.055 0.194
Physical activity*TVhours -0.034 0.029 0.227
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Table 5–6: Linear regression of outcome SBP with tailoring TV hours watched and
depression

Variables Estimate Std. Error p-value
(Intercept) 117.1 3.199 < 0.001
Physical activity 3.934 1.802 0.029
Age -0.504 0.032 < 0.001
Gender(male) -0.968 0.938 0.302
Poverty 4.168 0.487 < 0.001
Race(Black) -7.086 2.871 0.014
Race(Hispanic) -3.374 3.197 0.292
Race(Mexican) -3.728 3.007 0.215
Race(White) -1.755 2.450 0.474
Race(Other) 2.951 3.516 0.401
Income −1.710−4 2.177−5 < 0.001
Smoke status -0.872 0.986 0.377
Depressed 1.550 0.719 0.031
TVhours 0.471 0.412 0.254
Physical activity*depressed -2.420 1.096 0.057
Physical activity*TVhours -0.956 0.576 0.101
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5.4 Summary

Using the proposed VSEs, I found no evidence that physical activity recommen-

dations should be tailored; as demonstrated by the plots, where the expected outcome

for different values of tailoring threshold are very flat, with no significant peak that

might indicate an optimal ITR out of all the candidate rules. The results from my

non-parametric VSEs are supported by the regression-based approach, which found

a significant effect of physical activity but no significant interaction with either hours

of TV watched or level of depression. My findings are in line with current medical

recommendations that physical activity benefits all (able) adults.
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CHAPTER 6
Discussion and Conclusion

I have proposed new simple and augmented value search estimators to esti-

mate the optimal individualized treatment regime over a specified class of regimes

in a single stage setting, where the class must be defined prior to analysis based

on clinical considerations such as cost and availability of the tailoring variable of

interest. The new class of VSEs may be applied to data arising from either a clin-

ical trial or an observational study; in the latter case, under the assumption of no

unmeasured confounding, removal of confounding bias is achieved through modeling

of the propensity score and creating appropriate weights such as inverse probability

of treatment weights or absolute value weights. I proved consistency of the opti-

mal threshold estimator (despite bias in the estimator of the value function) for all

simple VSEs and augmented VSEs under the assumption of correct outcome model

specification. In general, however, the a-VSEs were not doubly robust.

In this work, I have focused only on the one-interval setting, to estimate optimal

ITRs. It is possible to extend this to a multiple-interval setting so as to examine

DTRs, i.e. treatment sequences. However, as my results have suggested there is

little benefit to using less variable weights to improving estimation of the parameters

of ultimate interest, that is the ITRs; it is not clear that there is significant benefit

to using weights other than the traditional and hence familiar, inverse probability of

treatment weights.
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A rather surprising result was observed in my simulations for the first scheme of

data generation: unlike the estimator of the value function, the variance of the esti-

mator for the optimal treatment threshold, ηopt, appears to be somewhat insensitive

to large changes in the sample size. An important avenue for further research is un-

derstanding the convergence rate of the VSEs, as this will be crucial to understanding

power and sample size considerations in future analyses.

The drive to personalize medicine continues, and the need for methods that are

robust and easily explained to clinical researchers is a high priority. The statistical

challenges are significant and exciting in a field that is less than two decades old.
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