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Abstract

Unconstrained face detection is the task of robustly finding and locating faces in an im-

age subject to possible variations in facial scale, blur, pose, illumination, occlusion, and

facial expression. It is a critical first step towards a host of modern surveillance applica-

tions, including but not limited to face verification, face recognition, face tracking, and

human-computer interaction. Though much progress has been made in unconstrained face

detection during the past decade, the majority of work focuses on improving the detection

robustness on variations caused by blur, pose, illumination, occlusion and facial expression.

Facial scale, despite its immense influence on face detection accuracy, has received much

less attention than have the above factors. This is partially due to the fact that most

traditional face detection benchmark datasets tend to collect faces of relatively large size

and with modest scale variation. Nonetheless, in real-world applications, such as surveil-

lance systems, it is imperative to possess an equal ability to detect both big faces (close to

camera) and tiny ones (far away from the camera) at the same time. To the best of our

knowledge, no published face detection algorithm can detect a face as large as 1000× 1000

pixels while simultaneously detecting another one as small as 10× 10 pixels within a single

image with similarly high accuracy.

We introduce a Multi-Path Face Detection Network (MP-FDN) to filter an image for

simultaneously proposing and verifying different sized faces in parallel paths. This is the

first time that faces across a large span of scales are detected by a single network with

forked detection paths. More importantly, the division of the paths are not handcrafted,

but totally based on the scale sensitivity inherent in the convolutional networks that was

also discovered in this thesis for the first time. MP-FDN consists of two stages. The

first stage is a Multi-Path Face Proposal Network (MP-FPN) that suggests faces at three

different scale ranges. This design is based on our observation that the hierarchical multi-

scale layers of deep convolutional networks (ConvNet) can inherently represent face patterns

at multiple scales. In particular, low-level ConvNet layers are more sensitive to tiny faces,

while high-level ConvNet layers are more discriminative to big faces. To this end, MP-

FPN utilizes three parallel outputs of the convolutional feature maps to simultaneously

predict small, medium and large candidate face regions, respectively. The second stage is

a Multi-Path Face Verification Network (MP-FVN) that further eliminates false positives

while including false negatives. MP-FVN utilizes the same three parallel paths as MP-FPN.
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For each detection path, it pools features from both a face candidate region (provided by

MP-FPN) and a larger contextual region (surrounding the face candidate region).These

facial and contextual features are then concatenated to provide a more accurate “faceness”

probability to the face candidate. Note that the network structure and hyper-parameters

of MP-FPN and MP-FVN are completely based on controlled experiments, rather than

being “handcrafted”.

To testify to the performance of MP-FDN on the basis of its ability to perform face

detection, we conducted comprehensive experiments on two challenging public face de-

tection benchmark datasets: WIDER FACE and FDDB datasets. MP-FDN consistently

achieves better than the state-of-the-art performance on both of them. Specifically, on the

most challenging so-called “hard partition” of WIDER FACE test set that contains faces

as small as about 9 pixels and as large as more than 1000 pixels in height, MP-FDN out-

performs the former best result by 9.8% for the Average Precision. This demonstrates that

MP-FDN is a viable and accurate face detector for unconstrained face detection, especially

in the case of large scale variations.
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Résumé

La détection de visage sans contrainte est l’action de trouver et localiser de façon précise

des visages dans une image, avec de possibles variations dans la taille, la netteté, la pose,

l’éclairage, l’occlusion ou l’expression du visage. C’est une première étape critique permet-

tant la créationd’un grand nombred’applications de surveillance modernes, qui comprendla

vérification faciale, la reconnaissance faciale, le pistage des visages et l’interaction homme-

machine. Bien que beaucoup de progrès aient été réalisés dans la détection de visage sans

contrainte au cours de la dernière décennie, la majorité du progrès a consisté à améliorer la

détection en présence de variations causées par la netteté, la pose, l’éclairage, l’occlusion et

l’expression du visage. La taille du visage, malgré son influence sur la précision de détection

de visage, a reçu beaucoup moins d’attention que les facteurs ci-dessus. Ceci est en partie

dû au fait que, traditionnellement, la plupart des jeux de données utilisés dans la détection

des visagestendent à rassembler des visages de taille relativement grande et sans grande

variation. Néanmoins, dans de réelles applications, comme les systèmes de surveillance, il

est impératif de pouvoir détecter à la fois les gros (près de la caméra) et les petits visages

(loin de la caméra). À notre connaissance, aucun algorithme de détection de visage publié

ne peut simultanément détecter un visage d’une taille de 1000 × 1000 pixels et un autre

aussi petit que 10× 10 pixels dans une seule image avec une précision similaire.

Nous présentons un Réseau de Détection de Visages Multi-Voies (RDV-MV) qui filtre

une image en proposant et vérifiant simultanément plusieurs visages de taillesdifférentes

dans des voies parallèles. C’est la première fois qu’un seul réseau est capable de détecter

plusieurs visages de tailles variables en utilisant des voies de détection fourchues. Plus im-

portant encore, la division des chemins n’est pas décidée par l’auteur, mais plutôt basée sur

la sensibilité à la taille inhérente aux réseaux convolutifs qui a également été découverte

dans cette thèse. RDV-MV se divise en deux étapes. La première étape est un Réseau

de Proposition de Visages Multi-Voies (RPV-MV) qui suggère des visages appartenant à

trois catégories de taille. Cechoix est basé sur l’observation suivante: les couches àéchelles

multiples hiérarchisées des réseaux convolutifsprofonds (ConvNet) peuvent représenter de

façon intrinsèque des types de visage de tailles différentes. En particulier, les couches Con-

vNet de bas niveau sont plus sensibles aux petits visages, tandis que les couches ConvNet

de haut niveau sont plus discriminatoires pour les grands visages. À cette fin, RPV-MV

utilise trois sorties parallèles des couches convolutives pour prédire simultanément les pe-
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tites, moyennes et grandes régions de visages candidats. La deuxième étape est un Réseau

de Vérification de Visages Multi-Voies (RVV-MV) qui élimine les faux positifs tout en in-

cluant les faux négatifs. RVV-MV utilise les mêmes trois chemins parallèles que RPV-MV.

Pour chaque chemin de détection, le réseau regroupe à la fois les particularités de la région

candidate (fournie par RPV-MV) et d’une région contextuelle plus grande (entourant la

région candidate). Ces caractéristiques faciales et contextuelles sont ensuite concaténées

pour fournir une probabilité plus précise de la validité du visage proposé. Notez que la

structure du réseau et les hyper paramètres des RPV-MV et RVV-MV sont entièrement

basés sur des expériences contrôlées plutôt que d’être choisis manuellement.

Pour témoigner de la capacité du RDV-MV à effectuer une détection de visage, nous

avons mené des expériences approfondies sur deux ensembles de données de référence de

détection de visage difficiles: les jeux de données WIDER FACE et FDDB. Le RDV-MV

réalise constamment de meilleurs résultatsque l’état de l’art. Plus précisément, sur la partie

la plus difficile, du jeu de données WIDER FACE qui contient des visages aussi petits que 9

pixels et aussi grands que 1000 pixels de hauteur, RDV-MV surpasse le précédant meilleur

résultat par 9.8% pour la précision moyenne. Cela démontre que RDV-MV est un détecteur

de visages viable et précis pour la détection de visages sans contrainte, en particulier dans

les visages avec une grande variation de tailles.
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Chapter 1

Introduction

1.1 Motivation

Although face detection has been extensively studied during the past two decades, detecting

unconstrained faces in images and videos has not yet been convincingly solved: most classic

learning methods and recent deep learning methods tend to detect faces where fine-grained

facial parts (e.g., eyes, nose and mouth) are clearly visible. This property negatively affects

their detection performance in the case of faces at low-resolution or out-of-focus blur,

which are common issues in surveillance camera data. The lack of progress in this regard

is largely due to the fact that current face detection benchmark datasets (e.g., FDDB [1],

PACAL FACE [2] and AFW [3]) are biased towards high-resolution face images with limited

variations in scale. Recently, a new dataset, WIDER FACE [4], has been published as a

potential face detection benchmark. This database consists of 32,203 images with 393,703

labeled faces. It is the largest publicly available database to date for face detection research.

Images in WIDER FACE also have the highest degree of variation in scale, pose, occlusion,

lighting conditions, and image blur, as shown in Figure 1.1.

As indicated in the WIDER FACE report [4], of all the factors that affect face detection

performance, scale is the most significant one. Specifically, when using EdgeBox [5], a

state-of-the-art object proposal approach, for discovering potential faces in WIDER FACE

dataset, the detection rates consistently stay below 30% for the small scale faces (between

10-50 pixels in height), even if 10,000 proposals are used for each image. The WIDER FACE

report [4] further presented the detection performance of four well-known face detection

algorithms on small scale faces: The Viola-Jones (VJ) face detector [6] achieved only 4%
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Fig. 1.1 An example of face detection results on the WIDER FACE
dataset [4] using the MP-FDN method proposed in this thesis. We observe
that it can robustly detection unconstrained “hard faces” with large variations
in scale, pose, occlusion, lighting conditions, and image blur.

Average Precision (AP), the Deformable Part Model (DPM) face detector [7], 5.5% AP,

the Aggregated Channel Features (ACF) face detector [8], 11.5% AP, and Faceness-net [9],

12% AP.

With the above result, we can arguably say that the so-called handcrafted features1 used

in first three methods, that is, VJ [6], DPM [7] and ACF [8] face detectors are not sufficiently

informative to represent small-scale facial patterns. However, it is surprising that Faceness-

net, a recently proposed deep convolutional network model, also cannot achieve promising

performance on small-scale faces. This result contradicts the commonly held assumption in

the machine learning community that deep convolutional networks (ConvNets) possess an

ability to automatically learn informative features and achieve high classification accuracy

based on these features. Therefore we must ask the following:

Question 1 : What is the reason behind the phenomenon that “tiny faces” cannot be

accurately detected by ConvNets?

Question 2 : Is there any way that we can adapt the deep learning framework so as

1VJ employs Haar-like features, DPM utilizes HOG features, and ACF uses a combination of multiple
simple channel features, such as HSV color and gradient magnitude channels.
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to detect tiny facial patterns with high accuracy?

This thesis aims to investigate these two questions. Our investigation suggests a detailed

answer to Question 1, and a “YES” answer to Question 2. To further verify the “YES”

answer, we have proposed a Multi-Path Face Detection Network (MP-FDN) to detect both

tiny and big faces with high accuracy. At the same time, it is noteworthy that by virtue of

the abundant feature representational power of deep neural networks and the employment

of contextual information, our method also possesses a high level of robustness to variations

in pose, occlusion, illumination, out-of-focus blur and background clutter.

MP-FDN is composed of two stages: face proposal and face verification, as shown in

Figure 1.2.
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Fig. 1.2 Two stages of the proposed Multi-Path Face Detection Network
(MP-FDN).

In the face proposal stage, a Multi-Path Face Proposal Network (MP-FPN) proposes

faces at three different scales2: small (less than 12 pixels in height3), medium (12-128 pixels

in height) and large (larger than 128 pixels in height4). These scales cover the majority of

2By scale we refer to the size of a square box surrounding a face.
3In practice, we found the proposed MP-FDN can detect faces as small as 6 pixels in height.
4In practice, we found the proposed MP-FDN can detect faces as large as about 610 pixels in height.
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faces available in all public face detection databases, e.g., WIDER FACE [4], FDDB [1],

PASCAL FACE [2] and AFW [3]. For each input image, MP-FPN outputs a set of bounding

boxes containing candidate face regions and a set of corresponding scores indicating the

so-called “faceness” probabilities of each face candidate. As will be seen in Chapter 3,

MP-FPN can serve as a strong stand-alone face detector. However, in order to further

remove difficult false positives while including difficult false negatives, we add a second

face verification stage.

In the face verification stage, a Multi-Path Face Verification Network (MP-FVN) first

sends each proposal to one of the three verification paths according to the same scale par-

titions as in MP-FDN. Then the corresponding verification path pools features from both

the face proposal region (provided by MP-FPN) and a larger contextual regions surround-

ing the face proposal. These two features are then concatenated as the final feature to

discriminate the face proposal as face or non-face.

1.2 Thesis Contributions

This thesis makes two contributions.

First, this thesis investigates the reason behind the phenomenon that tiny facial pat-

terns cannot be accurately detected by deep convolutional networks (ConvNets). With a

series of controlled experiments, we have been able to establish a rule for the sensitivity of

scale for individual layers in the ConvNets. That is, lower-level convolutional layers with

higher-resolution feature maps are most sensitive to small-scale facial patterns, but almost

agnostic to large-scale facial patterns. This is due to the limited size of the receptive field.

Conversely, higher-level convolutional layers with lower-resolution feature maps respond

strongly to large-scale facial patterns while ignoring the small-scale patterns. Consider the

well-known VGG16 ConvNet model [10] as an example. For a face of a height within 5-15

pixels, the conv3 layer has the highest detection accuracy among all convolutional layers.

Even if their feature maps are extrapolated to the same spatial resolution as conv3s feature

maps, the conv4 and conv5 layers cannot achieve as high detection accuracy as the conv3

layer. Notwithstanding this phenomenon, most previous VGG16-based object detection

and face detection methods make predictions solely based on feature maps of the conv5

layer, which is not an optimal approach for detecting tiny object/face patterns. We believe

For an image containing even larger faces, we can down-sample it to detect these faces.
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that the results of our investigation can benefit the future research on small-scale object

detection, such as face and pedestrian detection.

Second, this thesis proposes a new deep convolutional neural network model, Multi-Path

Face Detection Network (MP-FDN) for unconstrained face detection. MP-FDN achieves

state-of-the-art detection performance on both the WIDER FACE [4] and FDDB [1] datasets.

In particular, on the most challenging so-called “hard partition” of the WIDER FACE test

set that contains mostly small faces, we outperform the former best result by 9.8% for the

Average Precision.

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 is a literature review of the

background related to face detection research, including a review of general object detection,

face detection, and a summary of available benchmarks for face detection. Chapter 3

conducts a series of controlled experiments to investigate the layer-wise scale sensibility of

deep convolutional networks. Chapter 4 illustrates the details of the proposed Multi-Path

Face Detection Network (MP-FDN). Chapter 5 presents experiments that compare the

proposed MP-FDN with other state-of-the-art face detection algorithms on the WIDER

FACE [4] and FDDB [1] datasets. We present a detailed analysis of MP-FDN's robustness

to various factors: scale, blur, occlusion, illumination, head pose, and facial expression.

Chapter 6 concludes the thesis and proposes future work.
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Chapter 2

Literature Review

Face detection is the task of finding and locating faces in an image, while general object

detection is to find and locate all the instances of one or more categories of objects in an

image. It is obvious that face detection can be regarded as a special case of general object

detection with a single object category – human face – to be detected. In reality, many

face detection algorithms were inspired by the methodologies employed in general object

detection. Recently, with deep learning methods being successfully applied in the field of

object detection, they have provided new insights into designing high performance face

detection algorithms.

In view of the strong affinity between general object detection and face detection, in

the first section, we review the recent developments regarding general object detection.

We concentrate on how to detect objects at different scales which may give insight to the

research topic of this thesis face detection across a large span of scales. In the second

section, we summarize the development of face detection methods over the past decade,

and when necessary, link them with related general object detection methodologies. In

the third section, we discuss commonly used face detection benchmark datasets and their

properties. Lastly, we present an overall analysis of the related work. Based on this

analysis, we propose the research plan of this thesis, which will be discussed in Chapter 3

and Chapter 4.



2 Literature Review 7

2.1 General object detection

Object detection systems can be viewed as image classifiers that are repurposed to perform

detection tasks. To be specific, an object detection system uses a classifier for a certain

specific object and evaluates it at different scales and locations in a given image. In terms of

how these scales and locations are visited, general object detection methods can be broadly

classified into three categories:

1. Sliding window approaches re-sample an input image into an image pyramid and

then densely scan the image pyramid at evenly spaced locations with the sliding window.

The characteristic of Objectness is evaluated within each window by an object classifier.

2. Region proposal approaches first employ a region proposal method in an image to

generate candidate bounding boxes that potentially enclose objects, and then run object

classifiers only on these proposed boxes. Clearly, there is a risk factor in this case since not

all pixels in the image are visited by this method.

3. Proposal-free approaches utilize a set of prior boxes (often some large non-overlapping

grids that cover the whole image) to replace region proposals. These boxes are regressed to

more precise bounding boxes that tightly enclose potential objects, and at the same time,

classified as object/non-object by virtue of deep convolutional neural networks. Table 2.1

summarizes the three categories by indicating representative approaches for each category.

Table 2.1 Categorization of general object detection methods

Category Representative Approaches

Sliding window DPM [11], Aggregated Channel features [12],

Overfeat [13]

Region Proposal

- Classical region proposal R-CNN [14], SPP-net [15], Fast R-CNN [16],

ION [17], MultiPath network [18]

- CNN-based single-path region proposal DeepMultiBox [19], Faster R-CNN [20],

PVANet [21], R-FCN [22]

- CNN-based multi-path region proposal MS-CNN [23], FPN [24]

Proposal-free YOLO [25], SSD [26]
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2.1.1 Sliding window approaches

A representative of using a sliding window based object detection is the well-known De-

formable Parts Models (DPM) [11]. In DPM, each object category consists of a mixture

of star-structured models. Each star-structured model has a root filter that approximately

covers an entire object, as well as several higher resolution part filters that cover smaller

parts of the object. The object detection process procedes as follows. Given an input

image, a standard image pyramid is obtained via repeated smoothing and sub-sampling.

Then a HOG feature map [12] is computed from each level of the image pyramid, thus

forming a feature pyramid. Finally, objects are detected by computing the appearance and

deformation scores of the root and part filters at each position and scale of the HOG feature

pyramid. This mixture of deformable part models methodology can usually well account

for various views of an object as well as the appearance variations within each view, thus

achieving high detection performance. However, the calculation of a feature pyramid is

quite time-consuming. For example, to construct a feature pyramid of three scales (e.g., 1,
1
2

and 1
4

of the original image size, respectively) that engages two octaves1, DPM needs to

compute 21 feature maps2.

Dollar et al. [27] went a step further to accelerate the feature pyramid computation.

They only perform an exact computation for one feature map at each octave. All other

feature maps are approximated via extrapolation from the neighboring feature maps of

nearby scales. Then a so-called aggregated channel feature (ACF) pyramid is computed

from this approximated image pyramid. ACF is a combination of multiple visual cues,

including HOG features, normalized gradient magnitude, and LUV color channels. Finally,

a scan window slides over each position of this ACF pyramid, in this case, used for ob-

ject/pedestrian detection. Aggregated channel features can be efficiently computed and

are more informative than the single HOG features used in the DPM detector. However,

both ACF and HOG features are handcrafted3 features which may unintentionally filter

out some informative visual cues.

Overfeat [13] is one of the early works that utilize a deep learning framework for object

1An octave is the interval between one scale and another with half or double its spatial resolution.
2There are 10 levels in each octave of a DPM. This means that we need to go down 10 levels in the

pyramid from a certain feature map to obtain a feature map computed at twice the resolution.
3This is a term that is used in the literature to distinguish features computed by a Deep Neural Network

from features that are arbitrarily selected by the person writing the computer program. It has nothing to
do with either hands or crafts!
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detection. The Overfeat network consists of two stages, feature extraction and classifi-

cation. In the feature extraction portion, a set of convolution and subsampling filters

extract features at each location and scale of an image pyramid to generate feature maps.

Classification is accomplished by a sub-network of regressors and classifiers. These are si-

multaneously computed across all positions in the feature maps to obtain bounding boxes

and their corresponding confidence scores. Nearby bounding boxes are then merged via a

greedy merging strategy to obtain final object predictions. Unlike DPM [11] and ACF [27],

these filters are not assigned to any particular semantic meaning beforehand, but automat-

ically acquire informative cues during the training process. Furthermore, at each image

scale, the filters are convolved across the entire image in one pass in order to generate

feature maps. This avoids an explicit scan process as in DPM [11] and ACF [27]. However,

to detect an object, the regressor and classifier will still need to densely sample all locations

of all the feature maps.

Sliding window approaches share a common drawback that an object classifier needs to

evenly and densely sample feature maps. This is normally quite a time-consuming process.

2.1.2 Region proposal approaches

Region proposal approaches provide a way to circumvent the above-mentioned drawback of

sliding window approaches. Based on the fact that in most situations objects are sparsely

located in natural images, region proposal methods first eliminate most obvious back-

ground regions using a simple binary-classification algorithm. It then applies a set of strong

category-specific detectors to the remaining regions to detect instances of each object cat-

egory. Region proposal approaches can be divided into three categories based on how they

are generated: independent region proposal, CNN-based single-path region proposal and

CNN-based multi-path region proposal. The first category employs a third-party algorithm

(mostly classical learning methods) to propose object candidate regions. These regions are

then classified by a detection network as object/non-object by a detection network. The

region proposal algorithm and the following detection network do not share any computa-

tion, so we name it “independent” region proposal. The last two both utilize Convolutional

Neural Networks (CNN) to generate region proposals. The region proposal network always

shares convolution computation with the following detection network to improve computa-

tion efficiency. Single-path region proposal methods postulate object candidates by means
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of feature maps of a single convolutional layer (hereafter abbr. for conv-layer), which is al-

ways the last conv-layer of a CNN framework. By comparison, multi-path region proposal

methods feature maps use several intermediate conv-layers that are at different spatial

resolutions. A detailed review of each category of region proposal approaches is as follows.

Independent region proposal approaches

Girshick et al. [14] proposed a Region-based Convolution Neural Networks (R-CNN),

which is a seamless combination of classic learning and deep learning methods for object

detection. R-CNN starts by generating a few thousands of category-agnostic4 region pro-

posals with the selective search algorithm [28] for each image. These region proposals, with

arbitrary shapes, are warped to rectangles of a fixed size and then used by AlexNet [29] as a

training set (See Figure 2.1). The resulting Deep Neural Network is employed extract deep

features. A class-specific SVM classifier is then applied to classify these deep features as

object or background. Finally, these same deep features are used by a class-specific bound-

ing box regressor to provide more accurate localization for each object instance. R-CNN

improves object detection accuracy by a large margin compared to previous classical learn-

ing methods. However, because R-CNN needs a forward pass through the convolutional

network for each region proposal, it is very time-consuming.

Fig. 2.1 An overview of R-CNN object detection system. Reprinted from
Rich feature hierarchies for accurate object detection and semantic segmenta-
tion [14], by Girshirk et al., 2014, retrieved from http://ieeexplore.ieee.

org/ Copyright 2014 by IEEE.

Spatial pyramid pooling networks (SPP-net) [15] were proposed to speedup R-CNN

by passing the entire image through CNN only once. The SPP-net first computes the

4By class-agnostic we mean the region proposals are selected as potential object.
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convolutional feature maps for the whole image. Then spatial pyramid pooling is applied

on each candidate window in the feature maps to pool a fixed-length deep feature vector for

this proposal. These candidate windows are the original region proposals that are projected

on feature maps (See Figure 2.2). Finally, as in R-CNN, the deep features are passed

through a SVM classifier for object/background classification, followed by a bounding box

regressor for localization regression. Compared to R-CNN, SPP-net has two significant

advantages: (1) SPP-net computes convolutional feature maps for the entire image only

once, thus avoiding a repeated computation of CNN features for each region proposal and

leading to a 10 to 100× speedup when compared to R-CNN; (2) R-CNN needs to warp an

region proposal to a fixed size which is then submitted to a CNN to obtain a fixed-length

deep feature vector. In contrast, SPP-net can accept region proposals of arbitrary size and

use spatial pyramid pooling to generate a fixed-length deep representation. However, we

note that the conv-layers before spatial pyramid pooling deal with the whole image while

the fully connected layers after spatial pyramid pooling deals only with region proposals

(See Figure 2.2). Thus the network fine-tuning process cannot update the conv-layers that

precede spatial pyramid pooling.

Fig. 2.2 An overview of SPP-net [15]. The feature maps are computed from
the entire image. The spatial pyramid pooling is performed in candidate win-
dows to obtain a fixed-length feature vectors. The candidate windows are the
result of projecting original region proposals to feature maps. Reprinted from
Spatial pyramid pooling in deep convolutional networks for visual recognition,
by He et al., 2014, retrieved from https://link.springer.com/chapter/10.

1007/978-3-319-10578-9_23 Copyright 2014 by Springer.
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Fast R-CNN [16] was proposed to address the above issue of SPP-net. An input image

of arbitrary size is input into a fully convolutional network to obtain convolutional feature

maps. At the same time, region proposals are projected to the feature maps to form

a set of candidate windows. A regions-of-interest (ROI) pooling layer is then applied

to pool each candidate window into a fixed-size feature map, which is later mapped to

a feature vector by fully connected layers. The feature vector then passes through two

sibling layers, one for object/background classification and the other for bounding box

regression (See Figure 2.3). Fast R-CNN gets rid of the multi-stage pipeline (including

three stages: feature extraction with CNN, object classification with SVM, bounding box

regression with a linear regressor) in R-CNN [14] and SPP-net [15] . Instead, it combines

feature extraction and object detection into a single network via ROI pooling layer. Also,

by virtue of multi-task learning, object classification and bounding box regression can be

done simultaneously within the network, and their respective losses can be back-propagated

through the whole network to update all fully connected layers and conv-layers. These

technical improvements enable fast R-CNN to gain higher detection quality than [14, 15]

on the PASCAL VOC dataset [30]. However, fast R-CNN only uses information near an

object's region of interest that was pooled from feature maps of the last conv-layer. As a

result, its detection performance drops considerably on the MS COCO dataset [31], which

contains a larger proportion of small-scale objects than the PASCAL VOC dataset [30].

Fig. 2.3 An overview of Fast R-CNN architecture [16]. Reprinted from
Fast r-cnn, by Girshick, 2015, retrieved from http://ieeexplore.ieee.org/

Copyright 2015 by IEEE.

Several approaches have adapted fast R-CNN [16] to detect objects at a broad range

of scales. For example, Inside-Outside Net (ION) [17] introduced multi-scale analysis and

contextual representations to the fast R-CNN system. The authors first use ROI pooling
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to extract features not only from the last conv-layer, but also several intermediate conv-

layers that contain high-resolution visual information. Then two spatial Recurrent Neural

Networks (RNNs) are applied after the last conv-layer to provide horizontal and vertical

contextual information for the whole image, thus forming a contextual feature map. This

is followed by the use of an ROI pooling layer that provides for contextual features in the

image. Both the multi-scale and contextual features are L2-normalized and concatenated

to produce a single feature vector for object classification and bounding box regression.

The MultiPath Network [18] pools features from multiple conv-layers (same as [17]) for

four region crops with fields-of-view of 1×, 1.5×, 2× and 4× of the original proposal box.

The 1× field of view is the only information used in fast R-CNN, while other three are

newly added to explicitly include contextual information. This is an alternative to the

spatial RNNs used in [17] for context representation. Due to the inclusion of multi-scale

and contextual information, ION [17] and MultiPath Network [18] improve the detection

quality of small-scale objects in the MS COCO dataset [31] by a large margin. However,

they share a significant disadvantage, namely, that both training and testing are not end-

to-end processes. This is because region proposals are mostly obtained by classical learning

methods (e.g. selective search [28], EdgeBox [5]) that are independent from the following

convolutional network. Moreover, as indicated in [32], region proposal generation dominates

the processing time of the entire pipeline, thus posing a computational bottleneck.

The algorithms presented in the next two sub-sections manage to solve this problem by

using CNNs for both region proposal and object detection.

CNN-based single-path region proposal approaches

Erhan et al. [19] proposed “DeepMultiBox”, a deep neural network that generates a

small number of object candidates in a class agnostic manner. During training, the authors

first cluster the ground truth locations of training data and obtain K clusters to be used

as priors for predicted locations. An optimal assignment problem is then solved for each

training image so that each true object box in this image is assigned to its nearest prior

predication. These assigned prior predications are used as positive samples and the rest

as negative. Finally, the network is trained on these data with a multi-task loss function.

This function consists of an L2 distance loss between coordinates of each positive sample

and its ground truth, and a cross-entropy loss for each positive/negative prediction. During

testing, an image plus the K prior predictions (same as those used in training) are input
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to the trained network, which outputs an updated location as well as a confidence score for

each prior prediction. The top 10 highest scoring detections are kept and classified by a

class-specific deep neural network. DeepMultiBox is one of the earliest works that applied

a CNN for generating object proposals. However, a separate CNN that does not share any

computation with DeepMultiBox is required to classify these proposals. Also, it may miss

some potential objects by only using a predefined number of prior predictions.

Ren et al. [20] proposed Faster R-CNN that shares convolutional features between a

class-agnostic Region Proposal Network (RPN) and the fast R-CNN [16] object detector

mentioned earlier. An RPN replaces the usage of sparse prior predictions in [19] with

a dense prediction of all positions in a feature map. At each feature map location, k

region proposals of different scales and aspect ratios are predicted. They are parameterized

relative to k reference boxes, called anchors. Each anchor is centered at a given position

and associated with a scale and aspect ratio. The anchors are necessary because they

refer to both the scale and position information so that objects of different sizes located

in any position of an image can be detected by an RPN. Moreover, the RPN shares all

convolutional layers with fast R-CNN. This design help reduces the region proposal time

by a considerable margin when compared to the selective search algorithm [28] used in [16].

Recently, Kim et al. introduced PVANet [21], which enhanced the faster R-CNN system

with three modifications. First, a C.ReLU unit [33] was added to after each conv-layer

in the first three stages in order to reduce the computational cost. Second, Inception

structures [34] were applied to replace the normal 3× 3 conv-layers of the last three stages.

An Inception unit combines conv-layers of different sizes, e.g. 1x1, 3x3 and 5x5, which

correspond to different receptive fields that can better capture visual patterns of various

scales than a single 3 × 3 conv-layer. Third, the feature maps of both the last conv-layer

and two intermediate conv-layers are rescaled to the same spatial dimension and then

concatenated for both region proposal and object classification. These skip connections are

similar to those used in [17, 24]. The philosophy of this design is that a combination of

fine-grained details (intermediate conv-layers) with highly abstracted information (the last

conv-layer) can improve both region proposal and classification networks when detecting

objects of different scales. With these modifications, PVANet is able to achieves superior

detection performance than faster-RCNN [20] on PASCAL VOC dataset [30].

Dai et al. [22] have proposed Region-based Fully Convolutional Network (R-FCN) that

replaces the ROI pooling in the classification sub-network of [20] with a position-sensitive
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ROI pooling layer. This layer pools features from position-sensitive score maps produced

by feature maps of the last conv-layer. The pooled features are directly used by a softmax

layer for object classification. The position-sensitive ROI pooling improves computation

efficiency of the classification sub-network by eliminating time-consuming fully connected

layers from it. Moreover, the so-called atrous convolution trick [35] is used on last stage

of conv-layers to increase the spatial resolution of their features maps so as to increase the

detection accuracy of small objects.

In summary, Faster R-CNN and its descendants have achieved state-of-the-art object

detection performance on the PASCAL VOC [30] and MS COCO [31] datasets. However,

both RPN and fast R-CNN sub-networks are based on feature maps at a single spatial

resolution. Furthermore, skip connections and atrous convolution [35] are used in [21] and

[22], respectively, in order to maintain fine-grained details. Nevertheless, the stride of the

single-resolution feature maps still makes it difficult to detect small objects5.

CNN-based multi-path region proposal approaches

Cai et al. [23] proposed a multi-scale CNN (MS-CNN) that created multiple forked pro-

cessing. Hence candidates are simultaneously passed through three parallel region proposal

branches. These branches emanate from different conv-layers of a CNN trunk. On the one

hand, small objects can be proposed from the branch that emanates after an intermediate

conv-layer with a small stride and fine-grained details. On the other hand, large objects

can be proposed from the branch that emanates after the final conv-layer with a large stride

and highly abstracted information. Finally, a detection sub-network is employed to process

and classify region proposals into different categories. As might be expected, MS-CNN

shows better detection performance than faster RCNN [20] when detecting small objects,

such as pedestrians and cars at a distance.

Lin et al. [24] have noticed that a multi-scale, pyramidal hierarchy of deep convolutional

networks is a natural source for constructing a deep feature pyramid for object detection.

They created such a feature pyramid in a top-down manner by utilizing feature maps of the

last conv-layer of each convolutional stage6. For a given convolutional stage, the feature

5Faster R-CNN, PVANet and R-FCN all have a stride of 16 pixels w.r.t the input image, meaning that
a 16x16 object in the original image is represented by only one node in the feature maps of last conv-layer.
Therefore, an object smaller than 16x16 can hardly be detected.

6A convolutional stage is a stack of several conv-layers that are of the same spatial resolution. Two
nearby convolutional stages are connected by a sub-sampling layer (e.g. a max pooling or average pooling
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maps of its last conv-layer are first convolved with a 1× 1 conv-layer to reduce the channel

dimension to 256. The convolved feature maps are then added to the de-convolved (×2)

feature maps of nearby higher-level convolutional stage in an element-wise manner. The

resulting feature maps serve as a layer in the final feature pyramid. RPN and the fast

R-CNN sub-network in [20] are consecutively applied to each layer of the generated feature

pyramid to propose object candidates and classify them. Small objects are proposed and

classified by low-level high-resolution layers, while large objects by high-level low-resolution

layers. This feature pyramid network (FPN) achieve higher detection accuracy than [20]

when detecting small and medium-size objects in the MS COCO dataset [31].

Multi-path region proposal approaches provide a natural way for utilizing the multi-

scale feature maps of a CNN to detect objects at multiple scales. However, we note that

neither [23] nor [24] discussed how to choose the scale range for each proposal branch.

2.1.3 Proposal-free approaches

Even if faster R-CNN [20] and its variations [21, 22, 23, 24] are able to reduce the region

proposal overhead by sharing convolutional computations between region proposal and

classification sub-networks, both training and testing still contain multiple steps. Proposal-

free approaches eliminate the region proposal sub-network and thus make training and

testing of the object detection network a single-step process.

Redmon et al. [25] proposed You Only Look Once (YOLO) a single CNN network that

models object detection as a regression problem. The approach first resizes an input image

to a fixed size (448×448), and then runs a convolutional network7 over the image to obtain

a 7×7×30 tensor of predictions (See Figure 2.4). This tensor corresponds to a 7×7 evenly

divided grid of the input image. Each grid cell predicts two bounding boxes and their class

probabilities. Thus the complete tensor predicts 98 bounding boxes per image and class

probabilities for each box. Because of the removal of the separate region proposal step,

YOLO enjoys a speedup in detection efficiency. However, as the authors have reported,

it suffers from more localization errors and fails to detect small objects8. The high miss

layer).
7This network consists of six stage of conv-layers and two fully connected (fc) layers. The 7 × 7 × 30

tensor is the output of the second fc layer.
8Note that it may be possible to tweak the YOLO framework to detect smaller objects. For example,

this could be achieved by enlarging the default image size (448 × 448) or dividing the input image into a
grid denser than 7× 7. However, this is beyond the scope of the original paper.
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rate for small objects is caused largely by the 7 × 7 coarse division of the input image,

which cannot account for small objects less than the size of a single cell (64 × 64). The

large localization error is mostly due to the usage of a fully connected (fc) layer to generate

the tensor. The fc layer combines global information of the whole image which obviously

cannot regress the position of a local grid cell with high accuracy.

Fig. 2.4 An overview of the YOLO architecture [25]. YOLO consists of six
stages of convolutional layers (short for Conv. Layers in figure) followed by two
stages of fully connected layers (short for “Conn. Layer” in figure). Reprinted
from You only look once: Unified, real-time object detection, by Redmon et
al., 2016, retrieved from http://ieeexplore.ieee.org/ Copyright 2016 by
IEEE.

The Single Shot Multibox Detector (SSD) [26] provides a solution to the above two is-

sues. First, SSD evaluates default boxes of different aspect ratios at each location of several

feature maps. These feature maps are of a different spatial resolution that is generated by

conv-layers at multiple stages (See Figure 2.5). This is very similar to the MS-CNN [23]

mentioned above. However, these default boxes are not used for proposing region can-

didates, but directly for object classification and bounding box regression. Since they

originate from feature maps at different resolutions, they can better predict both small

and large object than a fixed 7 × 7 grid used in [25]. Second, the SSD network is fully

convolutional, so that each default box is classified and regressed by the local information

surrounding the box. This leads to more precise object localization than [25].

Proposal-free methods provide simpler and more efficient ways for object detection.

Nevertheless, the default grid partition [25] or default boxes [26] are, after all, very simple
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Fig. 2.5 An overview of the SSD architecture [26]. Reprinted from SSD:
Single shot multibox detector, by Liu et al., 2016, retrieved from https:

//link.springer.com/chapter/10.1007/978-3-319-46448-0_2 Copyright
2016 by Springer.

object priors. They generally have large position offsets and shape inconsistency with

respect to ground-truth object boxes. This leads to heavy location regression burden to the

object detector. In contrast, the object proposals provided by a RPN [20] are more complex

object priors that match ground-truth object boxes well and lead to more accurate object

localization. As a result, both YOLO [25] and SSD [26] are inferior to region proposal-based

approaches [20, 21] in terms of average precision on the PASCAL VOC dataset [30].

In summary to this section, the current state-of-the-art of general object detection indi-

cates that region proposal approaches demonstrate the best performance with an efficient

end-to-end network structure. This is particularly the case for multi-path region proposals,

which have showed their potential to detect small-scale objects. However, these are still

equal or larger than the size of 32× 32. Moreover, authors of these publications have not

provided any details of how to actually select the appropriate scale range for each proposal

branch. Consequently, in order to deal with these issues, the research presented in this the-

sis will propose the method Multi-Path Face Detection Network (MP-FDN). This approach

belongs to the family of multi-path region proposals but includes two major improvements.

First, we provide a detailed and systematic way to select the optimal scale range for each

proposal branch. Second, we extend the lower bound of the object size from 32×32 to 8×8,

so that faces as small as 8 × 8 and as large as 800 × 800 can be detected simultaneously

with high accuracy.
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2.2 Face detection

Face detection is a binary classification problem that classifies each image patch of a static

image9 as face or non-face. It has been extensively studied over the past two decades: when

searching the key words “face detection” in the Google Scholar academic search engine,

more than three million results are produced10. We review only the most representative

works. Chronologically, face detection methods can be classified into two major categories:

1. Classical learning approaches densely sample an input image with a sliding window.

At each sampling position, so-called handcrafted features are extracted and evaluated by a

classic learning method. According to how the facial features are modeled, this category can

be further divided into two sub-categories: deformable part and rigid template approaches.

Classical learning methods have dominated the face detection literature from the late 1990s

to 2014.

2. Deep learning approaches use either a sliding window or a region proposer to sample

an input image. The sampled image patches are then fed to a deep convolutional neural

network (CNN) for feature extraction and face/non-face classification in an end-to-end

manner. Deep learning approaches have dominated the face detection literature since 2015.

Table 2.2 summarizes the two categories by indicating their representative approaches.

2.2.1 Classical learning approaches

There are two established sets of methods for this category of approaches, one based on

deformable parts models and the other on rigid templates. The former models facial organs

(e.g. eyes, nose and mouth) as a set of deformable parts, which add robustness to a face

detector with respect to partial occlusion and facial expression changes. The latter models

the whole face by a set of rigid templates. Though it is less flexible than a deformable parts

model, we will shortly see that good feature selection and training strategies can achieve

equally high performance.

Deformable parts models

Inspired by the successful application of Deformable Parts Model (DPM) in generic ob-

9Face detection can also be used in videos, but this thesis focuses solely on its application in static
images.

10As of March 1, 2017.
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Table 2.2 Categorization of face detection methods

Face Detection Category Representative Approaches

Classical learning method

- Deformable parts models Zhu and Ramanan [3], structural model [2]

- Rigid template Viola-Jones detector [6], NPD [36], Joint cas-

cade [37], Headhunter [7]

Deep learning method

- Sliding window DDFD [38], CNN cascade [39], Multi-task

cascade [40]

- Region proposal Hyperface [41], STN [42], Faceness-Net [9],

CMS-RCNN [43]

ject detection [11], Zhu and Ramanan [3] proposed a mixture of tree-structured deformable

models to jointly perform multi-view face detection, pose estimation and facial landmark

detection. In their framework, each part represents a facial landmark, and the part appear-

ances and spatial relationship between a pair of parts is integrated into the cost function

to infer whether or not a region contains a face.

Yan et al. [2] went a step further by introducing two complementary structural de-

formable models. The first captured both appearance and shape variations in facial re-

gions, while the second was designed to capture the co-occurrence between the face and

other body parts. The latter was said to add robustness to the face detector in case of

heavy occlusion.

Face detectors based on deformable parts enjoy high detection accuracy and require less

training data. However, these data require a laborious annotation of the facial landmarks in

different poses. Moreover, because of the usage of fine-grained facial landmark information,

these methods are not suitable for tiny or blurred face detection.

Rigid templates models

Rigid templates for face detection appeared in the literature much earlier than DPM,

and provoked the publication of many more variants. One of the most influential works

in this direction was the Viola-Jones (VJ) face detector [6]. This paper applied a cascade

of boosting decision stumps on simple and efficient Haar-like features to achieve real-time
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frontal and near-frontal face detection. The idea of efficient extraction of simple features

and boosting cascades inspired a number of papers [36, 37, 44].

Li et al. [44] utilized SURF instead of Haar-like features to reduce feature pool size and

replaced the decision stumps with logistic regression classifiers so as to directly output a so-

called “faceness” probability. Liao et al. [36] proposed a novel Normalized Pixel Difference

(NPD) feature to capture facial appearance variations in unconstrained scenarios and em-

ployed a quadratic tree with a depth of eight instead of the decision stump to enhance the

learning ability. Unsurprisingly, Chen et al. [37] experimentally determined that face align-

ment boosts face detection performance. Based on this finding, they learnt a mixed face

detection-landmark regression decision tree with shape-indexed features within a boosted

cascade framework. This approach showed promising results for both face detection and

alignment.

Inspired by the favorable application of channel features in the domain of pedestrian

detection and general object detection [45, 27], Yang et al. [8] introduced channel features

within the VJ boosted cascade framework. The ensuing rich representation capacity of the

multi-mode channel features helped achieve high accuracy for multi-view face detection.

Mathias et al. [7] studied both rigid template and DPM face detectors. They showed that,

given carefully chosen hyper-parameters, both “vanilla” DPM [11] and VJ detectors [6]

armed with channel features [45] could achieve state-of-the-art performance.

Although the performance of face detectors has increasingly improved by the use of

these classical methods, using handcrafted features and classic classifiers has stymied the

development of seamlessly connecting these two steps in the computational process. This

is because they require heuristically setting many hyper-parameters. For example, both [8]

and [7] need to divide the training data into several partitions according to face pose and

train a separate model for each partition.

2.2.2 Deep learning approaches

Inspired by the successful application of deep convolutional neural networks (CNNs) in

image classification [29, 10] and object detection [14, 15, 16, 20], researchers began to

adapt CNNs to the face detection task. Early works inherited the sliding window approach

commonly used in the classical learning methods mentioned in the above sub-section. The

only difference was that they replaced handcrafted features and classical learning algorithms
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by a CNN structure to represent and classify each image patch in an end-to-end manner.

More recently, even the sliding windows have been replaced by region proposals to increase

computational efficiency. This is a similar developmental trend to general object detection.

Sliding window methods

Farfade et al. [38] proposed a single CNN model based on the AlexNet [29] to deal

with multi-view face detection. Li et al. [39] used a cascade of six CNNs for alternative

face detection and face bounding box calibration. Zhang et al. [40] went a step further

by utilizing multi-task learning in a CNN cascade. They designed a cascade of three CNN

stages, referred to as P-net, R-net and O-net, respectively. P-net is a simple CNN that scans

through an image pyramid to find potential facial regions and eliminate most background

regions. Then R-net and O-net, possessing an increasing complexity, are used for further

eliminating hard negatives. All three sub-networks are learnt in a multi-task manner,

where face classification, bounding box regression and facial landmark localization losses

are simultaneously back-propagated to update the network parameters. Not only does the

multi-task cascade help reduce the number of CNN stages (3 here compared to 6 used

in [39]), but it also boosts face detection performance.

Nevertheless, in general, sliding window methods need to crop facial regions and re-scale

them to specific sizes. This increases the complexity of the training and testing. Thus they

are not suitable for efficient unconstrained face detection where faces of different scales

coexist in the same image.

Region proposal based methods

Yang et al. [9] have suggested applying five parallel CNNs to propose five different facial

parts, and then evaluate the degree of face likeliness by analyzing the spatial arrangement

of responses of the facial parts. The use of facial parts makes the face detector more robust

to partial occlusions, but like the DPM face detectors, as discussed earlier, this method

can only deal with faces of relatively large size.

Ranjan et al. [41] proposed HyperFace, a deep multi-task learning framework that per-

forms face detection, landmark localization, pose estimation and gender recognition at the

same time. Similar to R-CNN [14], HyperFace first employs the Selective Search algo-

rithm [28] to generate region proposals for faces in an image, and then uses AlexNet [29]

to extract deep features for each region proposal. But unlike [14], HyperFace extracts “hy-
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perfeatures” that combine feature maps from both two intermediate conv-layers and the

final conv-layer to generate a fully connected feature vector. Five fully connected layers

are then added in parallel to this feature vector for predicting individual task labels. As

reported by the authors, the deep multi-task framework helps the features achieve a better

understanding of faces, and thus leads to improvements in the individual tasks. However,

similar to [9], the inclusion of the landmark localization task compromises the systems

ability to detect small-scale faces. Also, feature maps of the two intermediate conv-layers

need to be down-sampled to the same size as the feature maps of last conv-layer so that all

of them can be concatenated. This may partially compromise their representation power

for fine-grained details.

Two more recent face detectors [42, 43] are based on Faster R-CNN [20], which has been

discussed in detail in the previous section. Chen et al. [42] have suggested a Supervised

Transformer Network based on [20]. This so-called Transformer uses RPN of [20] to

simultaneously propose faces and their associated facial landmarks. Following this, the

candidate face regions are warped by mapping the detected facial landmarks into a set

of canonical facial landmarks. Finally the warped face regions are verified by a RCNN.

Naturally, the use of facial warping reduces face pose variations, thereby producing more

accurate face detection results. However, it is questionable that this is effective for very

small faces.

Zhu et al. [43] proposed a Contextual Multi-Scale Region-based CNN (CMS-RCNN),

which extended Faster RCNN [20] in regard to two aspects. First, RPN was replaced by

a Multi-Scale Region Proposal Network (MS-RPN) to propose face regions based on com-

bined information from multiple convolutional layers. Secondly, a Contextual Multi-Scale

Convolution Neural Network (CMS-CNN) was proposed for pooling features to replace

RCNN. This is not restricted to the last convolutional layer, as in fast R-CNN, but may

also originate from several lower level convolutional layers. In addition, contextual informa-

tion was also pooled to promote robustness. Thus CMS-RCNN [43] has indeed improved

RPN by combining feature maps from multiple convolutional layers in order to make a

proposal. However, similar to HyperFace [41], in order to concatenate the feature maps

of the last convolutional layer it is necessary to down-sample the lower-level feature maps.

This design diminishes the network’s discriminative power for small-scale face patterns.

In summary, deep learning approaches, due to their seamless concatenation of features

and pattern classification, have outperformed all kinds of classical learning methods and
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become the current trend for performing face detection. In particular, CMS-RCNN [43],

a deep learning framework built on the Faster R-CNN [20], has achieved state-of-the-art

performance in both WIDER FACE [4] and FDDB [1] datasets. However, in the most

difficult hard partition of the WIDER FACE test set that contains mostly small-scale

faces, CMS-RCNN only achieves an average precision (AP) of 64.3%. The research in this

thesis will improves this situation by proposing a Multi-Path Face Network (MP-FDN).

This is achieved by dividing the overall range of facial scales into separated and different

partitions (e.g., small, medium and large) and choosing the optimal convolutional feature

maps in each partition to propose and detect faces. We show that this novel methodology

in the field of face detection can further improve the detection accuracy of small-scale faces

while maintaining the high detection accuracy of the medium- and large-scale faces that

has been achieved by previous deep learning methods.

2.3 Face detection benchmark datasets

This section summarizes nine benchmark datasets for face detection that have been com-

monly used in the past decade. We compare them in terms of the following five aspects:

(1) The numbers of images contained in a dataset

(2) The number of faces contained in the images of a dataset

(3) The proportion of different facial scales (in terms of face height according to [4],

small: between 10-50 pixels, medium: between 50-300 pixels and large: over 300 pixels)

(4) Facial properties11

(5) Annotation style, as shown in Table 2.3.

Early face detection datasets, such as CMU-MIT [46] and CMU profile [47] collected

gray-scale images with frontal and profile faces. Some of the faces had a large degree of

in-plane rotation in order to test the rotation-invariance of a face detection algorithm. But

these faces have relatively large size and little occlusion. The face height partitions are

listed as “N/A” in Table 2.3 because these two datasets only provide facial landmarks that

cannot be directly converted to face height. Nowadays, since color images have prevailed

in most digital cameras and surveillance devices, these datasets are not used very often for

11The property “in the wild” in Table 2.3 means that faces have large variations in scale, pose, illumi-
nation, occlusion and background clutter. In other works, the face images are collected from real world
situations. It is now a phrase frequently used in recent face detection literature.
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benchmarking face detection algorithms.

GENKI-SZSL [48] is one of the early face detection datasets that contain mostly color

images (there is still a small percentage of gray-scale images). Each image contains only

one face, and the face is often centered and salient in an image. In contrast, the Annotated

Faces in-the-Wild (AFW) dataset [3] is a collection of real world face images from Flickr12

images. Faces in this dataset have large variations in scale, pose and illumination. But

since AFW is also used for facial landmark localization, the size of the faces is relatively

large. PASCAL Face [2] is another “in-the-wild” face detection benchmark collected from

the PASCAL person layout dataset, a subset of PASCAL VOC dataset [30]. It contains

more small-scale faces. However, both AFW and PASCAL FACE datasets only contain a

few hundred images.

The FDDB dataset [1] contains 2,845 images with 5,171 faces collected from the Ya-

hoo! News website13. These faces portray a wide range of difficulties including occlusions,

difficult poses, low resolution and out-of-focus blur. The face annotation is provided by

bounding ellipses rather than the commonly used bounding boxes. The authors claimed

that an ellipse provides a more accurate specification than a bounding box without in-

troducing additional parameters. FDDB is a much larger dataset for the evaluation face

detection in the wild. However, like AFW [3] and PASCAL FACE [2], it only reports result

for the whole dataset.

In order to support a fine-grained analysis of detection results, the Multi-Attribute

Labeled Faces (MALF) dataset [49] was proposed. It not only contains more images and

faces than FDDB, but also contains more annotated facial attributes, such as gender (male,

female, unknown), face scale level (easy, medium, hard), pose deformation level (small,

medium and large for each of yaw, pitch and roll), wearing glasses (true, false) and exag-

gerated expression (true, false). These attributes can assist a quantitative exploration of

causes and correlation between different types of errors. The IJB-A dataset [50] was al-

most simultaneously proposed for benchmarking both face detection and face recognition.

It contains 24,327 images with 49,759 faces. However, the faces are generally of large size

in order to permit consideration of the face recognition task.

Recently, WIDER FACE [4] has been proposed to combine the merits of both MALF [49]

and IJB-A [50]. First, it contains a very large number (32,203) of images with 393,703 faces.

12https://www.flickr.com/
13https://www.yahoo.com/news/
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These images were collected from the Internet based on 61 public event categories, such as

festivals, picnics, parades, etc. Currently this is the largest publicly available face detection

dataset. Unlike IJB-A [50], WIDER FACE is solely intended for evaluating face detection

algorithms. Therefore, a large proportion of small-scale faces are included, making it an

excellent source for studying face detection across a large span of scales. Second, similar

to MALF [49], WIDER FACE [4] has annotated additional facial attributes, including

overall level of difficulty (hard, medium, easy), scale (small, medium, large), occlusion

(heavily, partially, none) and pose (typical, atypical), in order to facilitate a fine-grained

analysis of face detection algorithms. For each category of events in WIDER FACE, 40%,

10%, 50% data are randomly selected as training, validation, and testing sets, respectively.

Therefore, WIDER FACE provides an effective source for both training and benchmarking

a face detection algorithm.

2.4 Conclusion

In this chapter, we first presented a literature review of three categories of general object

detection methods. The sliding window approaches can cover each position and scale of an

image pyramid thus not missing any important visual cues. However, it is a time-consuming

process. Region proposal approaches have improved the computational efficiency by using

region proposal algorithms to eliminate most background regions and generate pertinent ob-

ject proposals. Then powerful object classifiers need only to be applied to these proposals.

Completely proposal-free approaches utilize default grids or boxes to replace region propos-

als in order to further boost computational efficiency. However, not surprisingly, they have

shown larger object localization errors and inferior performance at detecting small objects.

The current state-of-the-art of general object detection indicates that CNN-based region

proposal approaches demonstrate the best performance with an efficient end-to-end net-

work structure. This is particularly the case for multi-path CNN region proposals, which

have shown their potential to detect small-scale objects.

We then reviewed two categories specifically designed face detection algorithms. Classic

learning approaches, with various types of features and learning algorithms, have increas-

ingly improved face detection performance over the past decade. However, they fail to

seamlessly connect handcrafted features and the succeeding classifiers in the computa-

tional process and many hyper-parameters need to be set heuristically. During the past
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three years, deep learning approaches have been developed to solve the above issues. They

have boosted the face detection performance by a large margin by employing automatic

feature extraction and a seamless concatenation of features and classifiers. In particu-

lar, similar to general object detection, CNN-based region proposal approaches have also

achieved state-of-the-art performance in unconstrained face detection. However, detecting

tiny faces with high accuracy is still an open issue. As a consequence, this thesis proposes a

Multi-Path Face Detection Network (MP-FDN) to detect faces across a large span of scales

with high accuracy. The main principle behind MP-FDN is that it is not necessary to

employ only a single pathway through a Deep Neural Network (DNN) so that, essentially,

the exact same algorithm analyzes each face detection category. Part of the analysis in the

DNN may be shared by different pathways to deal with various face detection categories.

Such a “forked” strategy permits giving special attention to certain classes. In the case of

face detection, the latter is facial size.

MP-FDN is inspired by multi-path region proposal approaches used in general object

detection, but includes two major improvements. First, we provide a detailed and system-

atic way to select the optimal scale range for each proposal branch of the fork. Second,

we extend the lower bound of the object size from 32× 32 to 8× 8, so that faces as small

as 8 × 8 and as large as 800 × 800 can be detected simultaneously with high accuracy.

We will also show that, by virtue of the abundant feature representational power of deep

neural networks and the employment of contextual information, our method also possesses

a high level of robustness to variations in pose, occlusion, illumination, out-of-focus blur

and background clutter.

According to the review of face detection datasets in Section 2.3, we choose the WIDER

FACE [4] training set to train our MP-FDN face detector for the following three reasons.

First, it contains 159,424 annotated faces collected from 12,880 images. This is currently

the largest publicly available face detection training set. Second, faces in the dataset span

a large number of scales. In particular, 50% of the faces have a height within 10-50 pixels

and 43% within 50-300 pixels. This makes it a relatively balanced source of training data

for creating a DNN detector capable of detecting both small- and large-scale faces. Third,

images in this dataset are collected from 61 human activity events that possess various types

of cluttered backgrounds, which can naturally be used as informative negative examples.

As for testing, we have benchmarked our method on two large datasets, WIDER FACE [4]

test set and FDDB [1] dataset. WIDER FACE test set consist of 16,097 images. As
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previously mentioned, it has multiple facial attribute annotations, and thus supports a

fine-grained analysis of face detection performance in terms of different factors, such as

face size, poses, occlusion, etc. Although MALF [49] also supports fine-grained analysis,

we do not use it because it only contains 5,250 images, much less than WIDER FACE test

set. FDDB contains 2,845 images. Although it is relatively small and does not support

fine-grained analysis, it was released much earlier (in 2010) and has been most frequently

used as a face detection benchmark dataset during the past eight years. Therefore we will

also benchmark the proposed MP-FDN on FDDB so as to make a fair comparison with

most of state-of-the-art algorithms.
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Table 2.3 Comparison of face detection benchmark datasets.

Dataset #Image #Face
Face Height (pixels)

Property Annotation
10-50 50-300 300-

CMU-

MIT [46]

130 511 N/A N/A N/A Gray-scale,

frontal

6 landmarks

CMU

pro-

file [47]

208 441 N/A N/A N/A Gray-scale,

frontal and

profile

6 landmarks for frontal

face, 9 landmarks for pro-

file face

GENKI-

SZSL [48]

3,500 3,500 31% 69% 0 Color &

gray-scale,

with salient

face

Square box

AFW [3] 205 473 12% 70% 18% Color, in

the wild

Rectangle box, 6 land-

marks, discretized view-

point for pitch, yaw and

roll direction

PASCAL

FACE [2]

851 1,341 41% 57% 2% Color, in

the wild

Rectangle box

FDDB [1] 2,845 5,171 8% 86% 6% Color &

gray-scale,

in the wild

Bounding ellipse

MALF [49] 5,250 11,931 N/A N/A N/A Color, in

the wild

Square box, detection

difficulty level, gender,

pose deformation level of

pitch, yaw and roll, oc-

clusion, wearing glasses,

exaggerated expression

IJB-

A [50]

24,327 49,759 13% 69% 18% Color, in

the wild

with salient

face

Rectangle box

WIDER

FACE [4]

32,203 393,703 50% 43% 7% Color, in

the wild

Rectangle box, detec-

tion difficulty level, event

class, occlusion, scale,

pose
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Chapter 3

Sensitivity to Scale According to

Layer Level in a CNN

Multi-path region proposal methods for CNNs (e.g. FPN [24] and MS-CNN [23]) have

achieved state-of-the-art performance in the field of general object detection, especially for

detecting small objects. To our knowledge, such a “multi-path” methodology has never

been applied specifically to face detection so that faces with large-scale variations could be

detected in parallel. However, when directly transferring the available general multi-path

region proposal methods from object detection to face detection, two problems arise. On

the one hand, these methods have a lower bound of detection scale of around 32 × 32

pixels. Nevertheless, in the WIDER FACE dataset [4], 47% of the faces are within the

range of heights 10-30 pixels and the face width has a similar distribution (see Figure 3.1a

and Figure 3.1b). In other words, nearly half of faces can hardly be detected by these

off-the-shelf multi-path object detection methods. On the other hand, both FPN [24] and

MS-CNN [23] have not provided any details of how to select the appropriate scale range for

each proposal branch. To avoid an intuitive but potentially suboptimal partition of scale

range, as well as extend the lower bound of the object size from 32×32 to 8×81, we provide a

detailed and systematic methodology for selecting an optimal scale range for each proposal

branch. We begin this chapter with an introduction to the Faster R-CNN [20] framework,

1In this thesis, we set 8 x 8 as the smallest face scale that needs to be detected. Although there are
faces in the WIDER FACE dataset that are less than 8 x 8, we find that most of them can hardly be
discriminated even by human. Also, these faces are mostly annotated as “ignore”, meaning they are not
required to be detected.
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followed by a series of controlled experiments to verify the scale-sensitivity variation of

feature maps produced by different conv-layers. Next, a multi-path face proposal network

is deduced from these experiments. Lastly, we present an overall conclusion.

(a) (b)

Fig. 3.1 Histograms of face height and width in the WIDER FACE dataset.
In addition, about 1.17% faces have a height larger than 300, and about 0.64%
faces have a width larger than 300. For viewing convenience, these are not
included in the above histograms.

3.1 Overview of Faster R-CNN

The so-called Faster R-CNN [20] is a well-known object detection framework, which has

been extended to multi-path object proposal approaches [23, 24] for general object detec-

tion. It has also had a major influence on the state-of-the-art of face detection approaches.

Examples are the supervised transformer network [42] and CMS-RCNN [43]. Therefore, we

employ Faster R-CNN as the basic architecture for a series of controlled experiments. Faster

R-CNN is composed of two modules. The first is a Region Proposal Network (RPN), a fully

convolutional network for generating object proposals. The second is a Fast R-CNN [16]2

object detector that consists of both convolutional layers and fully-connected layers. Fast

R-CNN receives an image as well as its object proposals (provided by RPN) for classifying

these proposals and regressing their positions. In essence, Faster R-CNN transfers the su-

pervised pre-trained image representation for image classification to the object detection

2Distinguished from Faster R-CNN.
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task. As a consequence, various pre-trained deep models for image classification can be em-

ployed in Faster R-CNN using transfer learning. Among them, AlexNet [29], ZF-net [51],

VGG16 [10] and the recently proposed deep residual nets [52] are most commonly used.

Table 3.1 provides a comparison of these models in terms of the number of convolutional

layers and parameters.

Table 3.1 A comparison of common deep CNN models for image classification

Model Name #conv-layer3 #parameter4

AlexNet [29] 5 4M

ZF-net [51] 5 4M

VGG16 [10] 13 15M

Res-50 [52] 53 24M

Res-101 [52] 104 38M

VGG16 is more complex than AlexNet and ZF-net, and achieved better classification

accuracy in the ImageNet Challenge [53]. Although the recently proposed deep residual

networks [52] have reported better image classification performance than VGG16, the com-

monly used residual networks, such as ResNet-50 and ResNet-101, possess a much higher

network complexity and more parameters. Therefore, in view of the training and testing

efficiency, we finally select VGG16 as the backbone of Faster R-CNN. The architecture of

VGG16 is shown in Figure 3.2. It consists of five stages of convolutional layers (conv-layer),

followed by three fully-connected (fc) layers and one softmax layer. Each conv-layer stage

contains 2 or 3 conv-layers, and these conv-layers produce feature maps of the same spatial

dimension. Two consecutive conv-layer stages are connected by a max-pooling layer for

down-sampling feature maps. So the feature maps produced by the conv-layer stages 1-5

are 1, 1
2
, 1

4
, 1

8
, 1

16
of the size of input image, respectively. The fc layers transform the con-

volutional feature maps into a 1000-dimensional vector, which is then passed through the

softmax layer to form a probability distribution corresponding to 1000 object categories.

3Here “conv-layer” includes only convolutional layers but not fully connected (fc) layers. Although an
fc layer can be viewed as a special convolutional layer with a spatial dimension of 1 × 1, it is eliminated
from region proposal network (RPN). Since the experiments in this chapter are based mainly on RPN, we
exclude fc layers when comparing different models.

4These are the number of parameters in the convolutional layers. All numbers are approximated to one
million bit (M).
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Fig. 3.2 The architecture of VGG16.

The two major modules of Faster R-CNN, RPN and Fast R-CNN are depicted in Figures

3.3 and 3.4, respectively. Both of them are adapted from VGG16. In RPN, the last max-

pooling layer, three fc layers and the softmax layer are removed. Instead, a new 3 × 3

conv-layer (“Conv-proposal” in Figure 3.3) is directly added to “Conv5 3”. This newly

added conv-layer can be seen as sliding a 3× 3 convolutional window over the feature map

of “Conv5 3”. The sliding window is fully connected to each 3 × 3 spatial position of the

“Conv5 3” feature map to form a 512-dimensional vector. “Conv-proposal” is followed by

two sibling 1 × 1 conv-layers: “Conv cls” for generating object/non-object probabilities,

and “Conv reg” for predicting bounding boxes. At each sliding window location, k region

proposals of different scales and aspect ratios are predicted at the same time. The k

proposals are parameterized relative to k reference boxes, called anchors [20]. Each anchor

is centered at the sliding window and associated with a scale and an aspect ratio. The

anchors are necessary because they refer to both the scale, shape and position information.

This ensures that objects of different sizes located at any position in an image can be

detected by the convolutional network. The feature map of “Conv5 3” has a stride of 16

pixels with respect to the input image. Thus, for an input image of H×W ×3, “Conv cls”

and “Conv reg” will together produce a feature map of dimension H
16
× W

16
× (2k + 4k).

Fig. 3.3 The architecture of RPN. The conv-layers and max-pooling layers
prior to the convolutional stage 5 have been omitted for the sake of brevity.
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Fig. 3.4 The architecture of Fast R-CNN. The conv-layers and max-pooling
layers prior to the convolutional stage 5 have been omitted for the sake of
brevity.

The fast R-CNN module receives object proposals from RPN and maps them to ROI

regions on the Conv5 3 feature map. For example, an h x w object proposal in an input

image is mapped to an H
16
× W

16
ROI region in the corresponding position. An ROI-pooling

layer is then used to pool features from each ROI region on the Conv5 3 feature map into a

fixed-length vector. This vector goes through two fully connected layers and finally passes

two sibling fully connected layers that generate class scores and bounding box coordinates5.

3.2 Experiments on layer-level scale sensitivity

We point out that in Figure 3.3, RPN generates object proposals solely based on the

last convolutional layer (Conv5 3), which poses two limitations. First, the feature map of

Conv5 3 has a stride of 16 pixels w.r.t the input image, so that objects less than 16 × 16

are likely to be ignored. Second, Conv5 3 has a relatively large receptive field6 (See Table

3.2), which is less sensitive to small-scale object patterns, as illustrated in [23].

Partially inspired by the multi-path object detection methods in [23, 24], we postulate

that conv-layers with large receptive fields (e.g. Conv4 3 and Conv5 3) are more sensitive

to large object patterns, while those with small receptive fields (e.g. Conv2 2 and Conv3 3)

are more sensitive to small-scale patterns. In this section, we will verify this postulate and

5Faster R-CNN was originally evaluated on PASCAL VOC 2007/2012 detection benchmarks, which
have 20 object categories. So there are totally 21 classes (20 object categories and 1 background category).
For each class there are 4 bounding box parameters: two coordinates of the center of a box, and the width
and height of the box.

6The “receptive field” of a conv-layer is the total number of pixels in the input image that contributes
to the calculation of a node in the feature map of this conv-layer. Note that we only compare the last
conv-layer of each convolutional stage since the deepest layer of each stage always has the largest receptive
field in this stage.
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Table 3.2 A comparison of the receptive field of conv-layers in VGG16

Conv-layer Conv1 2 Conv2 2 Conv3 3 Conv4 3 Conv5 3

Receptive Field 5 14 40 92 196

also identify the optimal scale range for each conv-layer.

It is noteworthy that the receptive fields listed in Table 3.2 are not necessarily equiva-

lent to the optimal scales, because they are merely the “theoretical” receptive field values

calculated from the geometrical structure of the network. As argued in [54], a “theoretical”

receptive field is generally much larger than an actual “effective” receptive field for a cer-

tain conv-layer. Therefore, we verify the aforesaid postulate as well as identify the optimal

scale ranges through two groups of controlled experiments. The first group studies the

scale sensitivity of individual conv-layers. This lays the foundation for the next group of

experiments, where feature maps of nearby conv-layers are combined to extend the optimal

scale range and increase the recall rate within the scale range.

3.2.1 Scale sensitivity of individual conv-layers

In this subsection, we investigate the scale sensitivity of different conv-layers. Initially,

inspired by the so-called “network head” defined in [24], we define an RPN head as the

structure of a “Conv proposal” followed by “Conv cls” and “Conv reg” for classification

and regression. A RPN head is actually the last three layers in RPN (see Figure 3.3).

Network architecture

We attach an RPN head to the end of each convolutional stage, i.e., Conv2 2, Conv3 3,

Conv4 3 and Conv5 3, for proposing object regions (see Figure 3.5, 3.6, 3.7 and 3.8).

Besides the above four convolutional stages inherent in the VGG16 [10] framework, we

additionally create a new conv-layer stage, the convolutional stage (conv-stage) 6. This

stage consists of two conv-layers, Conv6 1 and Conv6 2. Conv6 1 is a 3 × 3 × 512 × 1024

convolutional layer, and Conv6 2 is a 1 × 1 × 1024 × 256 convolutional layer for feature

map dimension reduction (see Figure 3.9). This stage is created to presumably improve

the recall rate of large faces7. Similarly, we will use Conv6 2 to propose object regions.

7We noticed a small drop of recall rate between the last two scale ranges in Figure 3.11 (on Page
43), indicating that Conv5 3 may not be the best choice for detection large-size faces. So we created the
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Note that using the last conv-layer of each convolutional stage is a natural choice because

it is the deepest and thus the most informative layer of each convolutional stage, as argued

in [24].

In addition, we avoid using Conv1 2 in this experiment due to its high resolution and

large memory footprint. Moreover, since Conv1 2 is the first convolutional stage of the

network, it is too “shallow” to learn representative features. Another notable issue is that

feature maps of different conv-layers have different numerical ranges. For example, as

reported in [55], the norm of Conv4 3 feature map is much larger than that of Conv5 3.

Consequently, we have added an L2 normalization layer [55] in between the last conv-layer

and the RPN head such that feature maps of different conv-layers are normalized to the

same numerical range before proceeding to the region proposal process.

The criterion for comparing the above conv-layers is quite simple: given objects of a

certain scale range, the conv-layer (equipped with a RPN head) that achieves the top recall

rate for a fixed number of proposals should be the most sensitive to this scale range.

The resolution of output feature map (“Proposal Output”) is another important issue.

From the four figures (Figure 3.5, 3.6, 3.7, 3.8 and 3.9), we notice that the RPN head

attached to different convolutional stages generates output feature maps of different strides

and resolutions8. The stride of an output feature map is the same as the stride of the

last conv-layer to which an RPN head is attached. In other words, the stride of the last

conv-layer decides the stride and resolution of the output feature map, and thus decides

the number of proposals. For example, given an input image of H ×W × 3 and k anchors,

RPN conv4 in Figure 3.7 generates H
8
×W

8
×k region proposals, which are four times as many

as the H
16
×W

16
×k region proposals generated by RPN conv5 in Figure 3-8. In this situation,

it is unfair to directly compare the recall rate of RPN conv4 and RPN conv5, because

RPN conv4 has more choices than RPN conv5 for selecting good proposals. We therefore

employs a deconvolutional layer between the last conv-layer and the L2 normalization layer.

This permits us to up-sample the feature map (of last conv-layer). In addition, we employ

a max-pooling layer for down-sampling the feature map (of the last conv-layer) so that

RPNs with different conv-layers can generate output feature maps of the same stride and

convolutional stage 6, where the Conv6 2 layer has a receptive field of 276, larger than 196 of Conv5 3 and
so it may better detect large facial patterns.

8The stride of a feature map is inversely proportional to the resolution of this feature map. For example,
given an input image of the spatial dimension of H x W, if the output feature map of a CNN has a stride
of N, then the feature map resolution is (H

N )× (W
N ).
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thus the same number of object proposals for a fair comparison. Consider RPN conv4 as

an example. We can up-sample its feature map by employing a deconvolutional layer (see

Figure 3.10a) so that the RPN conv4 can be fairly compared with RPN conv3. Also, it can

be down-sampled by a max-pooling layer (see Figure 3.10b) in order to compare it with

RPN conv5.

Fig. 3.5 The architecture of an RPN with a Conv2 2 (RPN conv2). The
conv-layers and max-pooling layers prior to the convolutional stage 2 have
been omitted for the sake of brevity.

Fig. 3.6 The architecture of an RPN with a Conv3 3 (RPN conv3) The
conv-layers and max-pooling layers prior to the convolutional stage 3 have
been omitted for the sake of brevity.

Consequently, we create 15 versions of RPN, as shown in Table 3.3. An RPN name in

the format of conv(M) s(N) indicates that the PRN head is attached to the last conv-layer

of the Mth convolutional stage, and it generates an output feature map with a stride of N.

Note that we only use three stride output sizes, 4, 8 and 16, which corresponds to the stride

size of Conv3 3, Conv4 3 and Conv5 3, respectively. Although Conv2 2 has a stride of 2,

we do not use this stride because of its large memory footprint. Similarly, we do not use

the stride 32 inherent in Conv6 2 because small faces will probably be neglected using such

a large stride. Instead, we employ deconvolutional layers to enlarge the stride of Conv6 2,
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Fig. 3.7 The architecture of an RPN with a Conv4 3 (RPN conv4). The
conv-layers and max-pooling layers prior to the convolutional stage 4 have
been omitted for the sake of brevity.

Fig. 3.8 The architecture of an RPN with a Conv5 3 (RPN conv5). The
conv-layers and max-pooling layers prior to the convolutional stage 5 have
been omitted for the sake of brevity.

Fig. 3.9 The architecture of an RPN with Conv6 2 (RPN conv6). The conv-
layers and max-pooling layers prior to the convolutional stage 5 have been
omitted for the sake of brevity.
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(a) Feature map up-sampling

(b) Feature map down-sampling

Fig. 3.10 Feature map upsampling using a deconvolutional layer (“Deconv”
in figure) and down-sampling using a max-pooling layer (“MaxPool” in figure).

and thus create conv6 s4, conv6 s8 and conv6 s16, respectively, for a fair comparison with

other convolutional stages.

Data Preparation

We use the WIDER FACE [4] dataset for training and testing, as has been explained

earlier in Section 2.3 of Chapter 2. Since there are nine networks to be trained and tested in

this group of controlled experiments, in order to save training time, we selected 15 out of 61

events in the WIDER FACE training set for training. The selection process was as follows.

As introduced in Chapter 2, images in the WIDER FACE dataset are organized based

on 60 event categories. These categories are evenly divided into three levels of difficulty,

“Easy”, “Medium” and “Hard” according to the detection results of EdgeBox [5]. We

first randomly selected 5 out of the 20 events at each difficulty level. Specifically, “Press

Conference”, “Swimming”, “Family Group”, “Couple” and “Tennis” were selected for the

“Easy” level, “Greeting”, “People Driving Car”, “Group”, “Interview” and “Rescue” were

selected for the “Medium” level, and “Parade”, “People Marching”, “Concerts”, “Award

Ceremony” and “Car Racing” were selected for the “Hard” level. The 15 events that were

chosen contain a total of 3,963 images, which make up about 31% of the whole training
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Table 3.3 Different RPN's used in the controlled experiments

Conv-layer

Used

RPN

name

Output feature

map stride

Deconvolution? Max-pooling?

Conv2 2

conv2 s4 4 × X

conv2 s8 8 × X

conv2 s16 16 × X

Conv3 3

conv3 s4 4 × ×
conv3 s8 8 × X

conv3 s16 16 × X

Conv4 3

conv4 s4 4 X ×
conv4 s8 8 × ×
conv4 s16 16 × X

Conv5 3

conv5 s4 4 X ×
conv5 s8 8 X ×
conv5 s16 16 × ×

Conv6 2

conv6 s4 4 X ×
conv6 s8 8 X ×
conv6 s16 16 X ×

set.

Given a selected image I in the WIDER FACE dataset, we down-sample it to a half

to obtain image I×0.5 and up-sample it twice to obtain I×2. Both down-sampling and up-

sampling were done using bicubic interpolation. Then we randomly cropped a 512 × 512

image patch9 from I, I×0.5 and I×2, respectively. Therefore, three 512 × 512 images were

generated to replace the original image I and employed for training. This choice has three

advantages. First, the original images in WIDER FACE have a relatively large and unfixed

size, which varies around 900 × 1024. Since the image sizes are not fixed, only one image

could have been trained each time (mini-batch size=1). However, after cropping to a fixed

size (512×512), multiple images could be trained simultaneously (mini-batch size¿1), which

improves the training efficiency. Second, as shown in Figure 3.1a and fig3-1-b, small faces

9If the original image had one or both sides containing less than 512 pixels, we padded the cropped
image patch with zeros.
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(between 10-50 pixels in height) are dominating the dataset. Up-sampling images can help

enlarge the size of these faces, thus increasing the number of medium (between 50-300 pixels

in height) and large (over 300 pixels in height) ones. Third, a small number of extra large

faces are over 500 pixels in height, so we down-sample these images to reduce the size of

these faces and maintain 512× 512 image patches throughout the experiments. Note that

some small faces could be made even smaller by down-sampling. However, as discussed in

the next paragraph, extremely small faces (less than 5 pixels in height) were ignored during

the training and testing process.

We use all 3,226 images of 60 event categories in the WIDER FACE validation for

testing. These images were resized and cropped following the same procedure as stated

above, thus creating a total of 9678 test images of the size of 512× 512.

Training and testing Settings

a) Training settings

The computer code of the above 15 versions of RPN was built using Caffe [56]. The

backbone architecture, VGG16, was pretrained on the ImageNet dataset [53]. The weights

of all newly added convolutional layers were randomly initialized from a zero-mean Gaussian

distribution with a standard deviation of 0.01. We use the following k = 7 anchor10 scales

for all RPN's: 8, 16, 32, 64, 128, 256 and 480, respectively. The aspect ratio was set to 1

for all anchors. An anchor was assigned as a positive sample if it had an intersection-over-

union (IOU) ratio greater than 0.5 with any ground truth box, and as a negative sample if

it had an IOU ratio less than 0.3 with any ground truth box. Each mini-batch contains 6

images of the size of 512× 512. Each image had 40 sampled anchors. The ratio of positive

and negative samples was set to 1:3 for all detection branches. All RPN's were trained

by back-propagation and stochastic gradient descent (SGD) [57], using a learning rate of

0.0005 for 16k mini-batches, and 0.00005 for another 4k mini-batches. A momentum of 0.9

and a weight decay of 0.0005 were used.

b) Testing settings

After obtaining face proposals from a test image using the trained model, we first elim-

inated all proposals with a confidence score less than 0.1. Then non-maximum suppression

(NMS) with a threshold of 0.7 was adopted to filter the remaining proposals based on their

confidence scores. Finally, the rest of the proposals were ranked by their scores and a

10See section 3.1 of an explanation of the anchors.
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certain number of the top-ranked ones were selected to calculate the face detection recall

rate. In the past, methods based on region proposals retained a fixed number of proposals

(e.g., 300 proposals used in [20]) for each image in order to compute the recall rate. In

contrast, we have adopted a stricter adaptive selection strategy. Given a test image with N

ground truth faces, we only selected the 2N top-ranked face proposals and computed their

recall rates. Since images in the test set have an average of 7.5 faces, we used an average

of 15 proposals per image instead of the commonly used 300. This strict setting put more

responsibility on the RPN to provide high-quality face proposals. We computed the recall

rate of these proposals according to 31 scale ranges of ground truth face height: [5, 15),

[15, 25), , [295, 305), [305, -). The final scale range included all faces with a height equal

or larger than 305 pixels. For a face in a certain scale range, if it has an IOU larger than

0.5 with any proposal, it is counted as a true positive; otherwise, it is counted as a false

negative.

Results

The recall rates of the fifteen RPNs are shown in Figure 3.11. We see that conv3 s4

achieves the highest recall rate for the range of 5-15, and conv4 s8 has the best performance

for the range of 15-35. For the scale larger than 35 pixels, conv5 s16 and conv6 s16 perform

the best11. This result verifies our postulate that conv-layers with large receptive fields

(e.g. Conv5 3 and Conv6 2) are more sensitive to large object patterns, while those with

small receptive fields (e.g. Conv3 3) are more sensitive to small scale patterns. Another

interesting observation from Figure 3.11 is that the output stride (i.e., s4, s8 and s16)

influences the recall rate. For an RPN at any conv-layer (e.g. conv2, conv3, conv4 or

conv5), a small stride (e.g., 4) can help detect small-scale faces with a higher recall than

a large stride (e.g., 16), while a large stride can facilitate a better detection of large-scale

faces12.

11Please visit the website https://plot.ly/~yumkong/38/, where a detailed view of Figure 3.11 is
provided for a fine-grained comparison of different curves within each facial height range. This website is
long-term effective.

12Note that there is an exception to this rule at the conv6 stage: conv6 s4 performs worse than conv6 s16
in the detection of small faces within the range of 5-15 pixels in height. This is possibly because conv6 s4
undergoes an 8× interpolation in the original feature map (by a deconvolutional layer), and this large
distortion severely affects its performance in detecting small facial patterns.
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Fig. 3.11 Recall rates of different Region Proposal Networks.

3.2.2 Scale sensitivity of combined conv-layers

From the previous sub-section, we know conv-layers differ in scale sensitivity and there is

no single conv-layer that is proficient in detecting faces at all scales. A possible workaround

is to combine different conv-layers in order to extend the range of scale sensitivity. In this

sub-section, we investigate different ways of combining multiple conv-layers to see if they

can extend scale sensitivity as well as improve the recall rate in each scale range.

Network architecture

a) A new convolutional stage

Before investigating the combination of conv-layers, we first create a new conv-layer

stage, the convolutional stage (conv-stage) 6. This stage consists of two conv-layers,

Conv6 1 and Conv6 2. Conv6 1 is a 3 × 3 × 512 × 1024 convolutional layer, and Conv6 2

is a 1 × 1 × 1024 × 256 convolutional layer for feature map dimension reduction. This

stage is created to presumably improve the recall rate of large faces13. Like other convo-

13We noticed a small drop of recall rate between the last two scale ranges in Figure 3.11, indicating that
Conv5 3 may not be the best choice for detection large-size faces. So we created the convolutional stage
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lutional stages, conv-stage 6 can add a deconvolutional or max-pooling layer and a RPN

head to form a new version of RPN of different strides. Here we have created two versions:

conv6 s16 and conv6 s32 (see Figure 3.9). We do not use conv6 s4 or conv6 s8, because

conv-stage 6 is created mainly for detecting large facial patterns, while small strides can

compromise this goal, as discussed in the previous section.

b) Combining multiple conv-layers

We investigate two methods of combining multiple conv-layers. The first is to apply a

concatenation layer to concatenate multiple conv-layers along the channel dimension. This

is especially useful when the conv-layers have different channel dimensions. For example,

when combining conv2 2, conv3 3 and conv4 3 reduce14, which have feature maps of di-

mensions H
4
×W

4
×128, H

4
×W

4
×256 and H

4
×W

4
×256 respectively, a concatenation layer can

concatenate them into a single feature map of H
4
× W

4
× 640 (see Figure 3.12). The second

is to use an element-wise addition layer to sum feature maps of multiple conv-layers, on

the premise that all these feature maps are of the same channel dimension. For example,

in Figure 3.13, we add the feature maps of conv3 3, conv4 3 and conv5 3 since they have

or are reduced to the same dimension of H
8
× W

8
× 256. The resulting feature map is still

of the same dimension of H
8
× W

8
× 256. We experimentally found that a concatenation

layer and an element-wise addition layer have almost the same performance. Since the

element-wise addition layer takes up less memory, we mostly use it in our experiments.

But when combining Conv2 2 with other conv-layers, we use the concatenation layer since

Conv2 2 has a different spatial dimension.

All the new RPNs with combined layers are listed in Table 3.4. Note that conv2 is used

only with a stride of 4, and conv6 only with a stride of 16 and 32. This corresponds to

the conclusions drawn in sub-section 3.2.1. That is, that conv-layers with small receptive

field should use a small stride to better detect small facial patterns, while those with a

large receptive field should be equipped with a large stride to increase the recall rate of

large facial patterns. By contrast, the conv-layers with medium-size receptive fields, such

as conv3, conv4 and conv5, are flexible and already equipped with different possible strides.

6, where the Conv6 2 layer has a receptive field of 276, larger than 196 of Conv5 3 and so it may better
detect large facial patterns.

14Conv4 3 reduce is a 1 × 1 × 512 × 256 convolutional layer added after conv4 3 in order to reduce the
channel dimension of the conv4 3 feature map from 512 to 256. It can reduce memory footprint of the
RPN network without compromising performance. A similar conv-layer, conv5 3 reduce has been used
after conv5 3.
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Fig. 3.12 The architecture of conv234 s4. A concatenation layer is used to
combine different conv-layers (Conv2 2, Conv3 3 and Conv4 3).

Fig. 3.13 The architecture of conv345 s8. An element-wise addition layer is
used to combine different conv-layers (Conv3 3, Conv4 3 and Conv5 3).
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Table 3.4 RPNs with combined conv-layers

Stride RPN name Conv-layer Used Combination Method

Concatenation Element-wise

addition

4

conv23 s4 conv2 2, conv3 3 X

conv34 s4 conv3 3, conv4 3 X

conv45 s4 conv4 3, conv5 3 X

conv234 s4 conv2 2, conv3 3, conv4 3 X

conv345 s4 conv3 3, conv4 3, conv5 3 X

8

conv34 s8 conv3 3, conv4 3 X

conv45 s8 conv4 3, conv5 3 X

conv345 s8 conv3 3, conv4 3, conv5 3 X

16

conv34 s16 conv3 3, conv4 3 X

conv45 s16 conv4 3, conv5 3 X

conv56 s16 conv5 3, conv6 2 X

conv345 s16 conv3 3, conv4 3, conv5 3 X

conv456 s16 conv4 3, conv5 3, conv6 2 X

32 conv56 s32 conv5 3, conv6 2 X

Results

Putting the RPNs with both single layers and the combination of multiple conv-layers

together, there are 28 different versions of RPNs. To enable a fair and detailed comparison,

we compute the recall rate of a even more fine-grained partitions of scale ranges: [5, 8),

[8, 11), . . . , [497, 500), [500, -). This leads to a 28 × 167 table, which is not included in

this thesis due to its large size. However, we found an interesting phenomenon that can

help simplify the original table: in some consecutive scale ranges, a certain RPN always

achieves the highest recall rate. For example, conv23 s4 achieves the top recall rate in the

ranges of [5, 8) and [8, 11), and conv345 s8 performs the best in the ranges from [11, 14)

up to [44, 47). Therefore, we can combine [5, 8) and [8, 11) into [5, 11), and [11, 14) up

to [44, 47) into [11, 47). As a result, we partition the whole spectrum of scale into eight

ranges: [5, 11), [11, 47), [47, 65), [65, 86), [86, 128), [128, 239), [239, 371), [371, -). The
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recall rates of all RPN's on these scale ranges are shown in Table 3.5 (next page).

We can see that in each scale range, the best recall rate is always achieved by a com-

bination of conv-layers. Also, the newly added conv6 2 contributes to conv56 s16 and

conv456 s16, which achieve the highest recall rate for large-scale faces. However, it is no-

ticeable that even the combination of multiple conv-layers can only achieve top performance

within a certain scale range, not the whole scale spectrum.

3.3 Multi-Path Face Proposal Network

We have shown in the previous section that RPN with either a single conv-layer or a

combination of several conv-layers cannot achieve top performance for all scale ranges.

This necessitates a multi-path region proposal network, where each path only deals only

with a scale range in which it is most proficient. Together, the parallel paths achieve the

top performance for each scale range. According to Table 3-5, we can clearly divide the

whole scale spectrum into three big ranges: [5,11) where conv23 s4 achieves the best recall,

[11, 128) where conv345 s8 performs the best, and [128,-) where conv56 s16 performs the

best. According to this partition, we can create a forked three-path face proposal network

to simultaneously examine the three ranges, as shown in Figure 3.14.

Fig. 3.14 The architecture of a Multi-Path Face Proposal Network proposed
in this thesis. The conv-layers and max-pooling layers prior to the convolu-
tional stage 2 have been omitted for the sake of brevity. The three parallel
paths are colored in green, purple and yellow, respectively.



3 Sensitivity to Scale According to Layer Level in a CNN 48

Table 3.6 below shows the anchor scales (in pixels) allocated to each path. These are

decided automatically by the appropriate scale range.

Data Preparation and Settings

We trained the proposed MP-FPN with exactly the same dataset used in section 3.2.

The training and testing settings also follow section 3.2, except for the following one dif-

ference. In section 3.2, all the RPN's in the experiments have only one output path. Thus

the 40 sampled anchors were assigned to this single output path. However, there are three

parallel paths in MP-FPN, so that the sampled anchors should accordingly be split into

three paths. We assigned 16 sampled anchors for Det-s4 path, 24 anchors for Det-s8 path

and 8 anchors for Det-s16 path. This allocational ratio is based on the number of ground

truth faces within the scale range of each detection path.

Results

The detection recall rate of MP-FPN is shown in Table 3.7. It is compared with three

strong baselines: conv23 s4, conv345 s8 and conv56 s16, which are the building blocks of

MP-FPN. We see that MP-FPN outperforms the three strong baselines in all scale ranges

except for the range of 86-128, where it is slightly inferior to conv56 s16. We attribute the

overall superior performance of MP-FPN to the multi-path partition of the network, where

each detection path is able to concentrate on the most appropriate facial range of scales.

3.4 Conclusion

This chapter investigates the scale sensitivity of convolutional layers by a series of controlled

experiments. These experiments are based on the Region Proposal Network (RPN) of

Faster R-CNN framework [20]. We first introduced Faster R-CNN and the traditional RPN,

and then converted the latter into twelve versions of new RPNs. By training and testing

these RPNs with exactly the same data and parameters, we obtained the first interesting

result: conv-layers of different stages are sensitive to different scale ranges. In particular,

the result reflects the common sense that conv-layers with large receptive fields are more

sensitive to large object patterns, while those with small receptive fields are more sensitive

to patterns of small scales. This result well answers Question 1 proposed in Chapter

1: What is the reason behind the phenomenon that “tiny faces” cannot be accurately
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detected by ConvNets? Our answer is that a common convolutional neural network simply

employs the feature map of its last conv-layer to predict faces. This last conv-layer, with a

large receptive field, is not sensitive to small facial patterns, thus leading to a low detection

accuracy of these tiny patterns.

According to this experimental result, we raise another interesting question: can we

combine different stages of conv-layers to create a single output feature map that simulta-

neously provides an optimal recall rate for each input facial scale range? The second group

of controlled experiments gave us a partial NO answer. These experiments showed that

a combination of conv-layers from nearby convolutional stages can actually increase the

sensitivity, and thus the recall rate of a specific scale range. However, NO combination can

achieve an overall optimal performance across the whole scale range. Worse still, combin-

ing too many stages of conv-layers may reduce the recall rate. For example, in Table 3-5,

conv234 s4 performs worse than conv23 s4 when detecting faces of the scale range of 8-11.

The above results inspired the creation of a Multi-Path Face Proposal Network (MP-

FPN) presented in this thesis. MP-FPN uses three parallel paths for proposing faces of

different scales. Each detection path is a combination of two or three conv-layers from

nearby convolutional stages that already achieve the best performance in a certain scale

range. We experimentally found that MP-RPN achieves an overall optimal performance

within the whole scale range. We attribute this result to two merits of MP-RPN. First, the

partition of multiple paths values the scale sensitivity of individual conv-layers. In each

detection path, the conv-layers are allowed to deal solely with the scale ranges that they are

proficient in. Second, the appropriate combination of conv-layers of nearby scales enhances

their sensitivity within a certain scale range.

We observe that MP-FPN is the first CNN framework that achieves a parallel detection

of faces in multiple scales. It eliminates the onerous common practice of extracting features

from an image pyramid. Instead, MP-FPN simply requires a single-scale image as input,

and the detection of faces at multiple scales can be efficiently achieved by the natural

hierarchical structure of convolutional layers.

So far, we have already provided an answer to Question 2 proposed in Chapter 1: Is

there any way that we can adapt the deep learning framework so as to detect tiny facial

patterns with high accuracy? Our answer is: Yes, MP-FPN is a viable choice.
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Table 3.5 Recall rate of all RPNs based on scale range

Output

feature

map

stride

RPN

name

Scale range

5-11 11-47 47-65 65-86 86-128 128-239 239-371 371-

4

conv2 s4 0.027 0.173 0.117 0.096 0.07 0.086 0.088 0.017

conv3 s4 0.101 0.449 0.567 0.586 0.509 0.445 0.412 0.061

conv4 s4 0.036 0.539 0.773 0.809 0.81 0.834 0.81 0.378

conv5 s4 0.009 0.388 0.821 0.86 0.867 0.902 0.939 0.753

conv23 s4 0.105 0.444 0.573 0.579 0.511 0.427 0.314 0.064

conv34 s4 0.091 0.571 0.769 0.809 0.81 0.827 0.805 0.382

conv45 s4 0.035 0.563 0.82 0.868 0.865 0.903 0.941 0.743

conv234 s4 0.098 0.582 0.774 0.81 0.812 0.823 0.769 0.412

conv345 s4 0.092 0.61 0.82 0.865 0.866 0.904 0.93 0.764

8

conv2 s8 0.025 0.269 0.382 0.375 0.292 0.224 0.266 0.047

conv3 s8 0.065 0.489 0.64 0.68 0.626 0.614 0.634 0.155

conv4 s8 0.071 0.588 0.793 0.828 0.825 0.861 0.879 0.527

conv5 s8 0.057 0.421 0.833 0.877 0.888 0.914 0.957 0.818

conv34 s8 0.085 0.611 0.787 0.83 0.837 0.868 0.875 0.493

conv45 s8 0.087 0.619 0.831 0.874 0.884 0.92 0.944 0.828

conv345 s8 0.099 0.635 0.838 0.882 0.892 0.914 0.959 0.821

16

conv2 s16 0 0.182 0.456 0.447 0.473 0.542 0.686 0.213

conv3 s16 0.009 0.318 0.661 0.692 0.708 0.75 0.849 0.405

conv4 s16 0.012 0.393 0.782 0.831 0.837 0.889 0.923 0.669

conv5 s16 0.015 0.365 0.82 0.873 0.882 0.922 0.96 0.845

conv6 s16 0.012 0.27 0.779 0.869 0.89 0.925 0.959 0.899

conv34 s16 0.014 0.434 0.796 0.844 0.841 0.889 0.933 0.709

conv45 s16 0.015 0.452 0.831 0.882 0.888 0.921 0.958 0.858

conv56 s16 0.015 0.371 0.82 0.884 0.885 0.926 0.962 0.899

conv345 s16 0.017 0.45 0.832 0.877 0.891 0.925 0.958 0.858

conv456 s16 0.017 0.416 0.825 0.883 0.885 0.925 0.956 0.902

32
conv6 s32 0 0.103 0.65 0.822 0.86 0.911 0.951 0.875

conv56 s32 0 0.114 0.651 0.823 0.659 0.919 0.957 0.882
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Table 3.6 Anchor allocation for MP-FPN

Detection Path Det-s4 Det-s8 Det-s16

Anchor scale 8× 8 16×16, 32×32, 64×
64, 128× 128

128×128, 256×256,

480× 480

Table 3.7 Rate recall of MP-FPN and other baselines

RPN name Scale range

5-11 11-47 47-65 65-86 86-128 128-239 239-371 371-

conv23 s4 0.105 0.444 0.573 0.579 0.511 0.427 0.314 0.064

conv345 s8 0.099 0.635 0.838 0.882 0.892 0.914 0.959 0.821

conv56 s16 0.015 0.371 0.82 0.884 0.885 0.926 0.962 0.899

MP-FPN 0.284 0.655 0.847 0.891 0.888 0.93 0.966 0.959
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Chapter 4

Overall Architecture of Multi-Path

Face Detection Network

This chapter deals with the overall face detection architecture.

In the previous chapter, we proposed a Multi-Path Face Proposal Network (MP-FPN)

that generates face proposals of different sizes via three parallel paths. Each face proposal

has a corresponding confidence score, indicating its probability of being a face. As has been

seen in the previous chapter, by sorting face proposals according to their confidence score

and selecting the high-scoring proposals as predicted faces, MP-FPN can already serve as

a strong stand-alone face detector.

Nevertheless, when visualizing the detection results of MP-FPN, we found that some

high-scoring face proposals are actually false positives. For example, human hands, ears,

and textured walls are mistakenly detected1 as faces as shown in Figure 4.1a. In contrast,

some low-scoring face proposals are true faces (false negatives). For instance, some faces

that are blurred, partially-occluded, of low-resolution or with large yaw/roll angles are

overlooked as shown in Figure 4.1b

In view of the above situation, we propose making two separate decisions rather than

one in order to detect a face:

1. Is an image patch of small, medium or large-size a potential face?

2. Is the potential face actually a true face?

The MP-FPN proposed in the previous chapter has already made the first decision.

1We use the value 0.7 to threshold face/non-faces. A face proposal with a confidence score larger than
0.7 is counted as a face. Otherwise, it is counted as a non-face.
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(a) False positive examples generated by MP-FPN (green boxes are predicted face bounding
boxes)

(b) False negative examples missed by MP-FPN (red boxes are ground-truth face bounding
boxes)

Fig. 4.1 Examples of false positives and false negatives of MP-FPN on
WIDER FACE validation set.

This chapter first makes the second decision by removing difficult false positives while still

including difficult false negatives. This is achieved by a newly proposed Multi-Path Face

Verification Network (MP-FVN). Next, a new overall architecture of the proposed Multi-

Path Face Detection Network is introduced, with MP-FPN and MP-FVN as the building

blocks. This is the primary contribution of this thesis. Finally, we present a chapter

conclusion.

4.1 Multi-Path Face Verification Network

We attribute the occurrence of difficult false positives and false negatives to two major

reasons. First, in MP-FPN, each face proposal is represented by either a 256-dimensional

(Det-s8 and Det-s16 path) or a 384-dimensional (Det-s4 path) vector. This turns out not

to be sufficiently discriminative of the difficult face/non-face patterns as shown in Figure

4-1. Second, we can observe from Figure 4-1 that most misclassifications happen when the

image patches are of low resolution. Clearly, these low-resolution patches are insufficient

for extracting representative features. A natural way to solve this problem would be to

introduce contextual information. Torralba and Sinhas human vision experiments [58] have

shown that the inclusion of contextual information increases a humans ability to detect



4 Overall Architecture of Multi-Path Face Detection Network 54

faces. Later, contextual information was also used in face detection algorithms [43, 2] to

improve detection accuracy. The objective of this section is to design a Face Verification

Network (FVN) to further improve the detection recall rates for faces at various scales.

To this end, the FVN should be able to easily combine features from both a facial region

and a corresponding contextual region. Moreover, the FVN should also leverage higher

dimensional vectors to better represent the facial and contextual features than MP-FPN

does.

We first chose to use Fast R-CNN [16] as a preliminary framework of the Face Veri-

fication Network (FVN) for the following two reasons. First, it leverages an ROI-pooling

layer and two consecutive fully-connected (fc) layers to represent each candidate object

region. Thus employing both of these fc layers makes it possible to represent the region by

a 4096-dimensional vector. This is more representative of facial features than the 256-d or

384-d vectors used in MP-FPN. Second, the ROI-pooling layer can easily be extended to

pool features from both an object region and a larger contextual region2.

However, the preliminary result showed that Fast R-CNN can only improve the recall

rate for large-size faces compared to MP-FPN. The recall rate of Fast R-CNN for small-

and medium-size faces even decreases compared to MP-FPN3. We postulate that this result

is largely due to the fact that Fast R-CNN only pools features from the feature map of the

last conv-layer (conv5 3). Nevertheless, as has been shown in Chapter 3, a single conv-layer

cannot generate feature maps that are sensitive to all facial scales. To verify this postulate,

as well as design an optimal Face Verification Network that can improve the recall rate of

all facial scales, we adapted the original Fast R-CNN to the following structure as shown

in Figure 4.2.

We use exactly the same three paths (s4, s8 and s16) as in MP-FPN to represent small,

medium and large facial patterns. The only difference is that an ROI-pooling layer is

attached to the end of each detection branch to replace an RPN head in MP-FPN. These

ROI-pooling layers pool features from different detection paths according to the size of

the face proposals. When a face proposal has a height less than 12 pixels, its features

are pooled from s4 path. When a face proposal has a height larger than 128 pixels, its

features are pooled from s16 path. Lastly, face proposals with a height between 12 and 128

pixels are processed by the s8 path. This partition follows the optimal scale range of each

2The ROI-pooling layer in original Fast R-CNN framework only pools features from an object region.
3See Table 4.1 for detailed comparisons. “FVN-conv5” in Table 4.1 is actually Fast R-CNN.
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detection path, as indicated in Chapter 3. Since the values of the features pooled from these

different paths have different scales and norms, an L2-normalization layer is added after

ROI-pooling layer to keep the value from each path within approximately the same scale.

Then, because the features pooled from each detection path are of the same dimension, they

can be concatenated along in a fourth channel (the so-called “num” channel in Caffe [56]),

and then passed through two fc layers for face/non-face classification4. Note that the

original Fast R-CNN does a simultaneous classification and regression because the prior

RPN stage cannot provide a precise bounding box for each object category. In contrast,

since MP-RPN stage has already provided precise face bounding boxes, we eliminate the

regression task in this face verification stage. We will refer to the face verification stage

as a Multi-Path Face Verification Network (MP-FVN) since face proposals are verified via

three parallel paths according to their size.

In the following sub-sections, a series of controlled experiments are discussed to verify

the effectiveness of the proposed MP-FVN. We also investigate the effect of adding different

contextual information, different ROI-pooling sizes, as well as an online hard example

mining (OHEM) layer.

4.1.1 Training and test settings

We use exactly the same data and settings for all of the controlled experiments in this

chapter, as follows.

Data Preparation We directly use the same training and testing data as in Chapter

3. Specifically, the training data contain 11889 images of size 512×512. These images come

from 15 event categories of the WIDER FACE training set. The testing data contain 9,678

images of size 512 × 512. These images come from all 61 event categories of the WIDER

FACE validation set. See Section 3.2 for the details of the data preparation.

Training settings The proposed MP-FVN and other baseline networks were all built

using Caffe [56]. The trained MP-FPN model in Chapter 3 was used to initialize MP-FVN

and all other baselines. For example, since MP-FVN and MP-FPN share convolutional

layers in conv-stage1-6, as well as “Conv4 3 reduce” and “Conv5 3 reduce”, the parameters

of these conv-layers in MP-FVN were initialized by the parameters of corresponding conv-

4This face/non-face classification is actually a re-scoring of the face proposals provided by MP-FPN.
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Fig. 4.2 The architecture of the proposed Multi-Path Face Verification Net-
work (MP-FVN) without contextual information. Given an image and N face
proposals as input data, MP-FVN outputs an N × 2 vector, indicating the
face/non-face score of each proposal. Note that a “Conv roi s4 reduce” con-
volutional layer is added after “RoiPool face s4” to reduce the pooled feature
block in s4 path from 384-d to 256-d. S8 and s16 paths do not have such a
conv-layer because they naturally generate 256-d feature blocks.

layers in MP-FPN. The weights of all newly added fully-connected layers were randomly

initialized from a zero-mean Gaussian distribution with a standard deviation of 0.01. A

face proposal was assigned as a positive sample if it had an intersection-over-union (IOU)

ratio greater than 0.5 with any ground truth box, and as a negative sample if it had an

IOU ratio less than 0.3 with any ground truth box. Each mini-batch contained 2 images of

the size of 512× 512. Each image had 48 sampled face proposals in each baseline network.

The ratio of positive and negative samples was set to 1:3. For MP-FVN, we assigned 16

sampled face proposals for the s4 path, 32 for the s8 path and 8 for the s16 path. This

allocational ratio was based on the number of ground truth faces within the scale range

of each detection path. The ratio of positive and negative samples was set to 1:3 for all

detection paths. All networks were trained by back-propagation and stochastic gradient

descent (SGD) [57], using a learning rate of 0.0005 for 12k mini-batches, and 0.00005 for

another 12k mini-batches. A momentum of 0.9 and a weight decay of 0.0005 were used.

Testing settings Given a test image, we first applied MP-FPN discussed in Chapter

3 to obtain face proposals of this image. Then all proposals with a confidence score less

than 0.1 were eliminated. All remaining face proposals and the test image were fed to
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a MP-FVN to obtain final classification scores. Next, non-maximum suppression (NMS)

with a threshold of 0.5 was adopted to filter the face proposals based on their classification

scores. Finally, the rest of the proposals were ranked by their classification scores. The

same adaptive selection strategy that was introduced in Chapter 3 was adopted to obtain

a specific number of the top-ranked face proposals in order to calculate the face detection

recall rate. Specifically, given a test image with N ground truth faces, we only selected

the 2N top-ranked face proposals and computed their recall rates. To make a fine-grained

comparison of the recall rate in different facial scale ranges, we computed the recall rate of

these proposals according to the same eight scale ranges of ground truth face heights used

in Chapter 3: [5, 11), [11, 47), [47, 65), [65, 86), [86, 128), [128, 239), [239, 371), [371, -).

The final scale range included all faces with a height equal to or larger than 371 pixels.

For a ground-truth face within a certain scale range, if it has an IOU larger than 0.5 with

any face proposal, it was counted as a true positive; otherwise, it was counted as a false

negative.

4.1.2 Comparison with baselines

We compared the proposed MP-FVN with five baseline Face Verification Networks (FVN):

FVN-conv2, FVN-conv3, FVN-conv4, FVN-conv5 and FVN-conv2345, as shown in Figure

4.3, 4.4, 4.5, 4.6 and 4.7, respectively. The network “FVN-conv(M)” means the ROI-

pooling and fc layers are attached to the Mth convolutional stage, and all the subsequent

conv-layers in VGG16 backbone are eliminated. Particularly, in FVN-conv2345, for each

face proposal, features were pooled from conv-stage 2, 3, 4 and 5, respectively by separate

ROI-pooling layers. These features were then concatenated as a single feature block which

passed fc layers to obtain a classification score.

Table 4.1 shows the test results of MP-FVN and other baselines. We can see that

the proposed MP-FVN outperforms other baselines for the overall recall rate. As for fine-

grained comparisons, MP-FVN outperformed other baselines in all face scale ranges except

the range [239, 371), where it lagged behind FVN-conv2345 by a slight margin. We also

note that when using a single conv-layer for face verification, the overall recall rate is even

less than MP-FPN, meaning that no single conv-layer contains enough information for

improving the overall face detection recall rate. In contrast, when combining features from

multiple conv-layers as in FVN-conv2345, the overall recall rate surpassed that of MP-FPN.
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Fig. 4.3 The architecture of FVN-conv2.

Fig. 4.4 The architecture of FVN-conv3.

Fig. 4.5 The architecture of FVN-conv4.
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Fig. 4.6 The architecture of FVN-conv5.

Fig. 4.7 The architecture of FVN-conv2345.

However, the recall rate can be further improved by employing the MP-FVN, where each

path combines the conv-layers that are most sensitive to a certain scale range. We notice

that MP-FVN improves the recall rates of MP-FPN in all scale ranges. This demonstrates

that adding MP-FVN as a second stage of the proposed face detection process is necessary.

As an overall comment, we note that the two lower scale ranges are the most difficult and

do not perform very well.

4.1.3 Does context help?

The MP-FVN used in the previous subsection only pools features from face proposal regions.

In this subsection, we also extract features from a larger contextual region to investigate

the effect of adding contextual information to MP-FVN.

We investigate four types of contextual information, as shown in Figure 4-8. Suppose

the original region is [l, t, w, h], where l is the horizontal coordinate of its left edge, t the

vertical coordinate of the top edge, and w, h the width and height of the region, respectively.

The corresponding four types of contextual regions are defined as follows.
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Table 4.1 Rate recall of MP-FVN and other baselines (without context
information)

Network name Scale range

5-11 11-47 47-65 65-86 86-128 128-239 239-371 371- All

MP-FPN 0.284 0.655 0.847 0.891 0.888 0.93 0.966 0.959 0.603

FVN-conv2 0.245 0.649 0.841 0.862 0.908 0.933 0.955 0.946 0.589

FVN-conv2 0.26 0.645 0.849 0.871 0.91 0.942 0.958 0.949 0.592

FVN-conv2 0.247 0.642 0.856 0.872 0.913 0.947 0.964 0.956 0.588

FVN-conv2 0.25 0.601 0.842 0.867 0.914 0.942 0.965 0.953 0.565

FVN-conv2 0.267 0.681 0.864 0.891 0.921 0.949 0.972 0.966 0.616

MP-FVN 0.293 0.691 0.879 0.912 0.928 0.955 0.967 0.97 0.631

1. Context I: [l − 0.5w, t, 2w, 2h], which is 2 × 2 bigger than the original region and

approximately covers the hair below the forehead, the neck and part of the shoulder of a

person (See Figure 4.8a).

2. Context II: [l− 0.5w, t− 0.5h, 2w, 2h], which is 2× 2 bigger than the original region

and approximately covers the hair and the neck of a person (See Figure 4.8b). This con-

textual information is similar to what Torralba and Sinha [58] used in their human vision

experiments.

3. Context III: [l − w, t, 3w, 3h], which is 3 × 3 bigger than the original region and

approximately covers the hair below the forehead, the neck and part of the upper body of

a person (See Figure 4.8c).

4. Context IV: [l − w, t− h, 3w, 3h], which is 3× 3 bigger than the original region and

approximately covers the hair, the neck and shoulder of a person (See Figure 4.8d).

Accordingly, we modified MP-FVN so that it could pool features from both a face

proposal region and its corresponding contextual region. Then features of these two regions

were concatenated to represent a face proposal as a whole (See Figure 4.9). All other

structures were exactly the same as in Figure 4.2.

Table 4.2 shows the test results of MP-FVN with different contextual information.

We can observe that the overall recall rate has been improved by about 2% by adding

contextual information. Noting the fine-grained scale partitions, we discern that contextual
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(a) Context I (b) Context II

(c) Context III (d) Context IV

Fig. 4.8 Different contextual information (blue boxes) used in experiments.
Red boxes are face regions.

Fig. 4.9 The architecture of the proposed Multi-Path Face Verification Net-
work (MP-FVN) with contextual information.
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information behaves differently for different scale ranges. For small and medium face sizes

(5-128 pixels in height), contextual information can improve recall rates by a relatively large

margin (more than 1%). However, contextual information does not affect the recall rate of

large-size faces very much. When comparing the four types of contextual information, we

find that they have a quite similar performance, indicating the center and the size of the

contextual region has a certain degree of robustness. Since Context III outperforms other

context types by a slight margin, we use it in all of the following experiments.

Table 4.2 Rate recall of MP-FVN with different context information

MP-FVN type Scale range

5-11 11-47 47-65 65-86 86-128 128-239 239-371 371- All

No context 0.293 0.691 0.879 0.912 0.928 0.955 0.967 0.97 0.631

Context I 0.311 0.719 0.89 0.925 0.934 0.958 0.974 0.97 0.652

Context II 0.311 0.722 0.889 0.924 0.934 0.963 0.973 0.963 0.653

Context III 0.313 0.721 0.891 0.922 0.935 0.962 0.974 0.966 0.654

Context IV 0.313 0.72 0.892 0.924 0.936 0.958 0.972 0.959 0.653

4.1.4 What is the best ROI-pooling size?

ROI-pooling size5 is an import factor that affects detection performance. The Fast R-

CNN [16], which was used for object classification in PASCAL VOC dataset [30], employed

a ROI-pooling layer of size 7× 7 to pool the features from the conv5 3 feature map. This

map has a stride of 16 with respect to the input image, meaning that 16 pixels in the input

image are mapped to 1 pixel in the conv5 3 feature map. Since the ROI-pooling size is

7×7, the object region in the conv5 3 feature map must be equal to or larger than 7×7 to

avoid a reduction in the number of bins. Accordingly, the object size in input image should

at least be (7 × 16) × (7 × 16) = 112 × 112. Because the size of an object in PASCAL

VOC dataset [30] is typically larger than 112×112, a 7×7 ROI-pooling size is a reasonable

choice. However, the situation is completely different for face detection, especially for faces

5A ROI-pooling size of N × N means that, given an object region of arbitrary size, the ROI-pooling
layer will pool features from it and output a feature block of the spatial size of N ×N .
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of small size. Typically, for an 8×8 face processed by the s4 path, its effective resolution in

the feature map of the “Concat23” layer (See Figure 4.9) is only 2× 2. Even if we extract

features from its corresponding 24 × 24 contextual region (“Context III”), the effective

resolution is 6× 6, still less than 7× 7. As indicated in [59], when an ROI-pooling layer's

effective input resolution is less than output resolution, the pooling bins collapse and the

features become less discriminative. Therefore, in all the previous experiments, we used an

ROI-pooling size of 4× 4 as a tradeoff to extract both facial and contextual regions for all

detection paths. In the following controlled experiments, we further support our choice by

comparing four kinds of the ROI-pooling sizes: 3× 3, 4 × 4, 5 × 5 and 7× 7. The results

are shown in Table 4.3. We observe that the overall recall rate drops considerably when

using the traditional 7× 7 pooling size. This verifies our previous discussion. In contrast,

when using a smaller pooling size, such as 3× 3, 4× 4 or 5× 5, the recall rates are similar

to each other. Since 4 × 4 outperforms the other two by a small margin we use it in all

following experiments.

Table 4.3 Rate recall of MP-FVN with different ROI-pooling sizes

MP-FVN type Scale range

5-11 11-47 47-65 65-86 86-128 128-239 239-371 371- All

3× 3 0.312 0.721 0.893 0.921 0.935 0.961 0.973 0.956 0.653

4× 4 0.313 0.721 0.891 0.922 0.935 0.962 0.974 0.966 0.654

5× 5 0.31 0.719 0.891 0.923 0.937 0.958 0.974 0.966 0.652

7× 7 0.299 0.656 0.866 0.907 0.925 0.947 0.963 0.939 0.612

4.1.5 Does OHEM help?

The training samples for MP-FVN are typically extremely unbalanced. This is because face

regions are scarce compared to background (non-face) regions, so only a few face proposals

are positive (matched to ground-truth face regions) and most of the proposals are negative

(matched background regions). In previous experiments, we randomly selected a fixed

number of positive and negative samples for each detection path (see section 4.1.1 for

details) to provide a balanced training set. However, as indicated by [60], explicitly mining
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hard examples with high training loss leads to better training and testing performance

than randomly sampling all examples. In this thesis, we propose an Online Hard Example

Mining (OHEM) layer specifically for MP-FVN. It is inserted between “Fc8” and “Fc cls”

layers to mine hard positive and negative examples, as shown in Figure 4.10. These selected

hard examples are then used in back-propagation for updating network weights.

Fig. 4.10 The architecture of the proposed Multi-Path Face Verification
Network (MP-FVN) with OHEM layer (orange box).

Two steps are involved in the OHEM layer:

Step 1 : For each detection path (s4, s8 or s16), instead of randomly selecting a fixed

number of positive and negative examples, all face proposals are processed and their facial

and contextual features are extracted by ROI-pooling layers and then concatenated into a

single ROI feature.

Step 2 : The ROI features of face proposals from different paths are concatenated and

fed forward to fc layers to obtain initial classification scores. All face proposals are sorted in

the descending order of their classification loss and the top 48 samples are selected according

to this order. Note that we do not set a positive-negative ration for data balancing here.

As indicated in [60], if any class were neglected, its loss would increase until it has a high

probability of being sampled. When there are images where face ROIs are easy (e.g., big

faces with frontal views), the network can use only negative samples in a mini-batch. In

contrast, when negative samples are trivial, the mini-batch can be full-face ROIs.

The proposed OHEM layer is “online” in the sense that it is seamlessly integrated into

the forward pass of the network to generate a mini-batch of hard examples. Thus we do
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not need to freeze the training model to mine hard examples from all training data; it is

sufficient to use the hard examples to update the current model. Note that unlike [60],

which freezes all fc layers for hard example mining, here our OHEM layer only freezes the

last fc layer (“Fc cls”) when mining hard examples. This modification saves training time

and memory usage.

Table 4.4 shows the recall rate of MP-FVN with and without an OHEM layer. We

notice that the OHEM layer does not help improve the overall recall rates. We attribute

this result to the following reason. In the process of mining hard examples, an OHEM layer

breaks the balance of the number of examples among different detection paths. In previous

experiments, we randomly selected 16, 24 and 8 examples from each detection path, so

that the parameters of each detection path could be updated in a single training iteration.

However, an OHEM layer may select examples from a single path and thus only update

parameters of that path in a training iteration. This leads to an imbalanced training among

different paths, which thus causes a drop in the recall rate in certain scale ranges.

In view of the results discussed above, we decided NOT to include the OHEM layer in

our final network structure.

Table 4.4 Rate recall of MP-FVN with and without OHEM layer

OHEM Scale range

5-11 11-47 47-65 65-86 86-128 128-239 239-371 371- All

with 0.313 0.721 0.891 0.922 0.935 0.962 0.974 0.966 0.654

without 0.307 0.723 0.894 0.923 0.936 0.962 0.975 0.959 0.653

4.2 Multi-Path Face Detection Network: Putting MP-FPN and

MP-FVN Together

According to the experiments and discussions in Chapter 3 and in this chapter, we are able

to put forward a Multi-Path Face Detection Network (MP-FDN) for unconstrained face

detection. MP-FDN is composed of two stages as shown in Figure 4.11.

Stage 1: MP-FPN
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Fig. 4.11 The architecture of the proposed Multi-Path Face Detection Net-
work (MP-FDN).
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The first stage is a Multi-Path Face Proposal Network (MP-FPN) as proposed in Chap-

ter 3. MP-FPN leverages the scale sensitivity variations of different conv-layers for gen-

erating small-, medium- and large-size face proposals through three parallel paths. As

explained in Section 3.1, face proposals are parameterized relative to a set of pre-defined

reference boxes, called anchors. The RPN head6 of a detection branch predicts the “face-

ness” probability of each anchor allocated to this branch. At the same time, the position

and size of the anchor are regressed to obtain a new box that can tightly enclose a face

region. According to the scale sensitivity obtained from experiments in Chapter 3, we al-

locate anchors of different sizes to each detection path, as has already been shown in Table

3.6 in Chapter 3.

MP-FPN was introduced and compared with other baseline networks in Chapter 3.

However, since Chapter 3 focused on comparing various face proposal networks, the training

details of a specific network, like MP-FPN, was not presented. As MP-FPN is used as the

first stage of our face detection framework and has not yet been discussed in detail, we

provide the training details as follows.

During training, the parameters Wmpfpn of the MP-FPN are learned from a set of N

training samples S = {(Xi, Yi)}Ni=1, where Xi is an image patch associated with an anchor,

and Yi = (pi, bi) is the combination of its ground truth label pi = {0, 1} (0 for non-face

and 1 for face) and ground truth box regression target bi = (bxi , b
y
i , b

w
i , b

h
i ) that is associated

with the ground truth face region. The latter parameterizations are the same as the four

coordinates in [20]: bxi = (xgt−xi)/wi, b
y
i = (ygt−yi)/hi, bwi = log(wgt/wi), b

h
i = log(hgt/hi),

where x, y, w, h denote the two coordinates of the box center, width, and height. Variables

xi, xgt are for the image patch Xi and its ground truth face region Xgt
i respectively (likewise

for y, w, and h). We define the loss function for MP-FPN as

We define the loss function for MP-RPN as

l(Wmpfpn) =
M∑

m=1

αmL
m({(Xi, Yi)}i∈Sm |Wmpfpn) (4.1)

where M = 3 is the number of detection branches, αm is the weight of loss function

Lm, and S = {S1, S2, ..., SM}, where Sm contains the training samples of the mth detection

branch. The loss function for each detection branch contains two objectives

6See section 3.2 for the definition of a RPN head.
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Lm({(Xi, Yi)}i∈Sm |Wmpfpn) =
1

Nm

∑
i∈Sm

Lcls(p(Xi), pi) + λ [[pi = 1]]Lreg(b(Xi), bi) (4.2)

where Nm is the number of samples in the mini-batch of the mth detection branch,

p(Xi) = (p0(Xi), p1(Xi)) is the probability distribution over the two classes, non-face

and face, respectively. Lcls is the cross-entropy loss (aka., “softmax loss”), b(Xi) =

(bx(Xi), b
y(Xi), b

w(Xi), b
h(Xi)) is the predicted bounding box regression target, Lreg is the

smoothL1 loss function defined in [16] for bounding box regression and λ is a trade-off

coefficient between classification and regression. Note that Lreg is computed only when a

training sample is positive ([[pi = 1]]).

The trained model that uses the loss function in equation 4.1 provides a face proposal

(including a bounding box and its confidence score) corresponding to each anchor. Only

high-scoring face proposals are fed forward to the second stage for further verification.

Stage 2: MP-FVN

The second stage is a Multi-Path Face Verification Network (MP-FVN) as proposed

in section 4.1. MP-FVN utilizes the same three parallel paths to extract both facial and

contextual features for small-, medium- and large-size face proposals, respectively, and a

final classification score is given to each face proposal according to its concatenated facial

and contextual features. As discussed in Section 4.1, we allocate face proposals to different

branches according to the size of the face. This follows the scale sensitivity rule7 that was

determined from experiments described in Chapter 3. Table 4.5 shows the face proposal

height range allocated to each detection branch.

Table 4.5 Face Proposal Allocation for MP-FVN

Detection Path s4 s8 s16

Face Proposal Height (x) x < 12 12 ≤ x < 128 x ≥ 128

During training, the parameters Wmpfvn of the MP-FVN are learned from a set of K

7The scale sensitivity rule was described in Section 3.3. Specifically, the conv23 s4 path is most sensitive
to facial regions below 12 pixels in height, conv345 s8 is most sensitive to facial regions with a height between
12 and 128, and conv56 s16 is most sensitive to facial regions larger than 128 pixels in height.
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training samples T = {(Xi, Yi)}Ki=1, where Xi is a face proposal obtained from MP-FPN,

and Yi = li is its ground truth label8 li = {0, 1} (0 for non-face and 1 for face). We define

the loss function for MP-FVN as

l(Wmpfvn) =
M∑

m=1

βmΦm({(Xi, Yi)}i∈Tm|Wmpfvn) (4.3)

where M = 3 is the number of detection branches, βm is the weight of the loss function

Φm, and T = {T 1, T 2, ..., TM}, where Tm contains the training samples of the mth detection

branch. The loss function for each detection branch is

Φm({(Xi, Yi)}i∈Tm|Wmpfvn) =
1

Gm

∑
i∈Tm

Lcls(p(Xi), li) (4.4)

where Gm is the number of samples in the mini-batch of the mth detection branch,

p(Xi) = (p0(Xi), p1(Xi)) is the probability distribution over the two classes, non-face and

face, respectively. Lcls is the cross-entropy loss (aka., “softmax loss”).

With a trained MP-FVN model using the loss function in equation 4.3, we can obtain

an updated confidence score for each face proposal. The new confidence scores are used as

final “faceness” probabilities.

4.3 Conclusion

This chapter first proposed a Multi-Path Face Verification Network (MP-FVN) for elim-

inating difficult false positives and include different false negatives from the set of face

proposals given by MP-FPN. A series of controlled experiments were conducted to select

the optimal hyper-parameters and structure for MP-FVN, including contextual region size,

ROI-pooling size, and whether to include an OHEM layer or not. Next, this MP-FVN and

the MP-FPN proposed in Chapter 3 were assembled to form the final Multi-Path Face De-

tection Network (MP-FDN). The loss functions and overall training and testing procedures

of MP-FDN are exposed in details.

At this point, having assembled all the necessary components, we turn to the next

chapter where we describe the experiments that were performed on actual data.

8A face proposal is labeled as 1 when it has an Intersection-Over-Union (IOU) ratio equal or larger than
0.5, and 0 otherwise.
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Chapter 5

Experiments and Results

This chapter validates the effectiveness of the proposed Multi-Path Face Detection Network

(MP-FDN). The first section presents the training and testing datasets. The second section

describes the specifics of the experimental settings. Experimental results on WIDER FACE

[4] and FDDB [1] datasets will be reported in detail in the next two sections. Lastly, a

chapter conclusion is presented.

5.1 Datasets

As introduced and discussed in Chapter 2, we will use the WIDER FACE [4] training set

to train the proposed MP-FDN. The effectiveness of MP-FDN will be benchmarked on the

WIDER FACE test set, WIDER FACE validation set and FDDB dataset [1]. The main

characteristics of WIDER FACE and FDDB datasets are summarized as follows.

WIDER FACE

The WIDER FACE dataset [4] contains 32,203 images with 393,703 labeled human

faces (each image has an average of 12 faces). Faces in this dataset have a high degree of

variability in scale, pose, occlusion, lighting conditions, and image blur. They are organized

based on 61 event classes. For each event class, 40%, 10% and 50% of the images are

randomly selected for the training, validation and test sets. As a result, there are 12,880,

3,226 and 16,097 images in the training, validation and test sets, respectively. Both the

images and their associated ground truth labels used for training and validation are available
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online1 for training a face detection model and selecting the hyper-parameters for the model.

However, for the test set, only the images are available and the detection results need to

be submitted to an evaluation server in order to obtain the Precision-Recall curves.

Moreover, both the validation and test sets are divided into three levels of difficulty:

“Easy”, “Medium”, “Hard” based on the detection rate of EdgeBox [5], so that the

Precision-Recall curves need to be reported for each difficulty level2. Although we have

used the WIDER FACE validation set to select the hyper-parameters for MP-FPN and

MP-FVN, images in the validation set are never used in the training process. Therefore,

we are safe to evaluate the detection results on both the test and the validation sets of

the WIDER FACE dataset. The WIDER FACE dataset employs the PASCAL VOC [30]

evaluation metric for evaluating the detection results. Specifically, if the ratio of the inter-

section of a predicted face region with an annotated face region over the union of these two

regions is greater than 0.5, a score of 1 is assigned to the detected region, and 0 otherwise.

FDDB

The FDDB dataset [1] has been a standard database for evaluating face detection al-

gorithms over the past eight years. It contains the annotations for 5,171 faces in a set of

2,845 images. Each image in the FDDB dataset has less than two faces on average. These

faces mostly have large sizes compared to those in the WIDER FACE dataset. FDDB uses

a bounding ellipse to annotate each face region. Two types of evaluation metrics are pro-

vided for evaluating detection results on the FDDB dataset, discrete score and continuous

score. The discrete score metric is the same as the PASCAL VOC evaluation metric used in

WIDER FACE. For the continuous score criterion, the Intersection-over-Union (IoU) ratio

is used directly as the score for the detected region without any thresholding.

Like most face detection algorithms, MP-FDN uses bounding rectangles3 to describe

predicted face regions, while the FDDB dataset applies bounding ellipses to annotate

ground-truth face regions. Due to the shape inconsistency, the continuous score for a

face is lower when directly computing the IoU ratio of a rectangle and an ellipse. Some

1http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/index.html
2Users of this test set have no knowledge about the difficulty level of the images in the test set. In

fact, it is necessary to submit all predicted face boxes to the server, which then provides three ROC curves
based on the unknown “hard”, “medium” and “easy” data partitions.

3This is because MP-FDN is trained on the WIDER FACE training set, which employs bounding
rectangles to annotate ground-truth face regions.
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face detection algorithms employ a post-hoc elliptical regressor to transform the predicted

bounding rectangles to bounding ellipses in order to improve the continuous score. This

may cause confusion when comparing different algorithms since we do not know whether a

top-ranking algorithm is due to its original bounding box prediction or its special post-hoc

elliptical regression. In contrast, under the discrete score criterion, various algorithms can

directly compare their original bounding box predictions with the ground truth ellipses

because an IoU threshold of 0.5 can mitigate the shape differences between a predicted

bounding box and a ground-truth bounding ellipse. Therefore, we only employ the discrete

score metric to report our detection results.

5.2 Training and Testing Settings

The code for MP-FDN (including MP-FPN and MP-FVN) was built using Caffe [56] and

its MATLAB interface (aka matcaffe [56]). The detailed training and testing settings are

as follows.

5.2.1 Training Settings

MP-FPN

We use all of the 12,880 images in the WIDER FACE training set to train an MP-FPN

detector. These images are processed as follows. Given a training image I and a set of

m bounding box annotations {[x1, y1, w1, h1], , [xm, ym, wm, hm]}, that indicate the center

coordinates, width and height of all the m faces in this image, we first obtain the maximum

height of all these bounding boxes: hmax = max(h1, h2, , hm). If hmax is larger than 500

pixels, we down-sample image I to a half to obtain image I×0.5. If hmax is smaller than 250

pixels, we up-sample image I twice to obtain I×2. Both down-sampling and up-sampling

were done using bicubic interpolation. Otherwise, if hmax is between 250 and 500 pixels,

we flip the columns of image I left to right to obtain Iflip. Therefore, for each image I, we

can obtain a transformed image Itrans, where

Itrans =


I×0.5, if hmax > 500

Iflip, if 250 ≤ hmax ≤ 500

I×2, if hmax < 250
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Then we randomly cropped an 800 x 800 image patch4 from I and Itrans, respectively. In

this way, two 800× 800 images are generated to replace the original image I and employed

for training5. See Figure 5.1 as an illustration.

Fig. 5.1 Illustration of training data preparation.

As a result, the training set contains 25,760 images rather than 12,880 images. This

choice of data preparation has three advantages. First, the original images in WIDER FACE

4If the original image has one or both sides containing less than 800 pixels, we pad the cropped image
patch with zeros.

5The advantage of this data preparation method has been explained in detail in Section 3.2. In all
controlled experiments in chapter 3 and 4, we used 512× 512 image patches for training. But here we use
larger 800× 800 image patches to include more face regions.
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have a relatively large and variable size, which fluctuates around 900×1024. However, after

cropping to a fixed size (800×800), multiple images could be trained simultaneously (mini-

batch size¿1), which improves the training efficiency. Second, as shown in Figure 3.1a,

small faces (between 10-50 pixels in height) dominate the dataset. Up-sampling images

can help enlarge the size of these faces, thus increasing the number of medium (between

50-300 pixels in height) and large (over 300 pixels in height) ones. Third, a small number

of extra large faces are over 500 pixels in height, so we down-sample these images to reduce

their size so that they can be associated with at least one of the anchors in the training

process6.

The backbone architecture of MP-FPN, VGG16, was pretrained on the ImageNet

dataset as found in [53]. The weights of all newly added convolutional layers were ran-

domly initialized from a zero-mean Gaussian distribution with a standard deviation of

0.01. We used the following k = 7 anchor7 scales: 8, 16, 32, 64, 128, 256 and 480. These

are allocated to three detection paths according to Table 3.6. The aspect ratio was set to

1 for all anchors. Furthermore, an anchor was assigned as a positive sample if it had an

intersection-over-union (IOU) ratio greater than 0.5 with any ground truth box, and as a

negative sample if it had an IOU ratio less than 0.3 with any ground truth box. Each mini-

batch contained 2 images of the size 800 × 800. In addition, each image had 56 sampled

anchors: 16 for Det-s4 path, 32 anchors for Det-s8 path and 8 anchors for Det-s16 path (see

the structure of MP-FPN in Figure 4.11). This allocation ratio was based on the number

of ground truth faces within the scale range of each detection path. The ratio of positive to

negative samples was set to 1:3 for all detection branches. All RPNs were trained by back-

propagation and stochastic gradient descent (SGD) [57], using a learning rate of 0.0005 for

90k mini-batches, and 0.00005 for another 30k mini-batches. A momentum of 0.9 and a

weight decay of 0.0005 were employed.

We used the trained MP-FPN model to obtain a set of face proposals for each training

image. Then we eliminated all proposals with a confidence score less than 0.1. Finally, non-

maximum suppression (NMS) with a threshold of 0.7 was adopted to filter the remaining

6As discussed below, the largest anchor size that we used in training was 480 × 480. When a face is
much larger than 480× 480, it cannot be associated with any anchors and thus will not contribute to the
training process. To avoid this situation, we down-sample an image that contained faces large than 500
pixels in height by half so that they could be associated with an anchor. See section 4.2 for details of the
association of an anchor and a ground-truth bounding box.

7See section 3.1 of an explanation of the anchors.
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proposals based on their confidence scores. The remaining proposals were later used for

training MP-FVN.

MP-FVN

We used the same 25,760 training images, as well as their corresponding face proposals

as described above, to train MP-FVN. The trained MP-FPN model was used to initial-

ize MP-FVN parameters. Specifically, since MP-FVN and MP-FPN share convolutional

layers in conv-stage1-6, as well as “Conv4 3 reduce” and “Conv5 3 reduce” (see Figure

4.11), the parameters of these conv-layers in MP-FVN were initialized by the parameters

of corresponding conv-layers in MP-FPN. The weights of all newly added conv-layers and

fully-connected layers in MP-FVN were randomly initialized from a zero-mean Gaussian

distribution with a standard deviation of 0.01. A face proposal was assigned as a positive

sample if it had an intersection-over-union (IOU) ratio greater than 0.5 with any ground

truth box, and as a negative sample if it had an IOU ratio with any ground truth box less

than 0.3. Each mini-batch contained 1 image of the size of 800 × 800. For each training

image, we assigned 16 sampled face proposals for the s4 path, 32 for the s8 path and 8 for

the s16 path. This allocation ratio was based on the number of ground truth faces within

the scale range of each detection path. The ratio of positive and negative samples was

set to 1:3 for all detection paths. MP-FVN was trained by back-propagation and stochas-

tic gradient descent (SGD) [57], using a learning rate of 0.0005 for 25k mini-batches, and

0.00005 for another 25k mini-batches. A momentum of 0.9 and a weight decay of 0.0005

were used.

5.2.2 Testing Settings

Given a test image Itest, we first down-sampled it by half to obtain image Itest0.5. Then both

Itest and Itest0.5 were fed to MP-FPN to obtain two sets of face proposals. The proposals

of Itest0.5 were enlarged twice so that they could match the face sizes in the original image

Itest. Next, the two sets of proposals are combined into a single face proposal set. We

eliminated all proposals with a confidence score less than 0.6 from the face proposal set.

After that, non-maximum suppression (NMS) with a threshold of 0.7 was adopted to filter

the proposals based on their confidence scores. The remaining proposals and the original

image Itest were fed to MP-FVN to obtain an updated confidence score for each proposal.

Finally, non-maximum suppression (NMS) with a threshold of 0.33 was adopted to filter the
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proposals based on their new confidence scores. The resulting face proposals were regarded

as predicted face regions. Note that we use Itest0.5 for proposing extra-large faces since there

are some extra-large faces in the WIDER FACE dataset. For example, some faces have a

height larger than 1000 pixels. These faces cannot be captured in the original image since

the largest anchor scale of MP-FPN is only 480 pixels8. By down-sampling the original

image, the face size is also down-sampled by a half. This guarantees that these large faces

can be proposed by a certain detection path of MP-FPN. Since the area of Itest0.5 is 25% of

the original image area, it only increases the computational load of MP-FPN by 25%, and

does not affect the computational load MP-FVN at all.

5.3 Results on the WIDER FACE Dataset

In this section, we first compare the proposed MP-FDN to other strong baseline algorithms

on WIDER FACE dataset. Then qualitative results of MP-FDN are presented. Next, we

show the sensitivity of MP-FDN to different facial attributes. Finally, false positives and

false negatives are analyzed in details.

5.3.1 Precision-Recall Curves

We compare the proposed MP-FDN with all six strong face detection methods available

on the WIDER FACE website: Two-stage CNN [4], Multiscale Cascade [4], Multitask

Cascade [40], Faceness [9], Aggregate Channel Features (ACF) [8] and CMS-RCNN [43].

Figure 5.2a, 5.2b, 5.2c shows the Precision-Recall curves and the Average Precision

values of the different methods on the Hard, Medium and Easy partitions of the WIDER

FACE validation set, respectively. The proposed MP-FDN algorithm consistently ranks in

first place on all partitions. On the hard partition, the proposed MP-FDN outperforms

all six strong baselines by a large margin. Specifically, it achieves an increase of 12.6%

in Average Precision compared to the 2nd place CMS-RCNN method. On the medium

partition, MP-FDN still ranks in first place, outperforming the 2nd place CMS-RCNN

8As explained in Chapter 3, face proposals are generated by regressing the position and size of an anchor
that is located close to a ground-truth face region. More importantly, the anchor and the ground-truth
face region should have similar sizes. For example, a 500× 500 face region can be proposed by a 480× 480
anchor. However, an 800× 800 face region cannot be proposed by a 480× 480 anchor due to its large size
difference.
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method by a small margin of 0.2% in Average Precision. Lastly, on the easy partition, the

proposed MP-FDN and the strong baseline CMS-RCNN method are tied for the first place.
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Fig. 5.2 Precision-Recall Curves of WIDER FACE validation set.

Figure 5.3a, 5.3b, 5.3c shows the Precision-Recall curves and the Average Precision

values on the Hard, Medium and Easy partitions of the WIDER FACE test set. On the

hard partition, the proposed MP-FDN still outperforms all other strong baselines by a

large margin. Specifically, it achieves an increase of 9.8% in Average Precision compared to

the 2nd place CMS-RCNN method. On the medium partition, MP-FDN outperforms the

2nd place CMS-RCNN method by a small margin of 0.1% in Average Precision. However,

on the easy partition, the proposed MP-FDN lags behind CMS-RCNN method by a small

margin of 0.3% in Average Precision.
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Fig. 5.3 Precision-Recall Curves of WIDER FACE test set.

The above results demonstrate the overall superior performance of the proposed MP-

FDN for tackling the challenge of large-scale variation in unconstrained face detection.



5 Experiments and Results 78

Specifically, for the easy and medium partitions of the WIDER FACE dataset that contains

large- and medium-size faces, MP-FDN matches or even slightly outperforms the state-of-

the-art face detection algorithms. For the hard partition of the WIDER FACE dataset

that contains mostly tiny faces, MP-FDN outperforms the state-of-the-art methods by a

large margin. We note that the hard partition contains ALL faces greater than 10 pixels

in height, so not only tiny faces, but also medium and large-size faces are included in

this partition9. Therefore, MP-FDN's remarkable improvement in Average Precision on

the hard partition accurately represents its superior performance on the full range of face

scales.

5.3.2 Qualitative Results

Qualitative results of MP-FDN on the WIDER FACE validation and test sets are shown

in Figure 5.4. We observe that MP-FDN exhibits a high level of robustness to variations

in pose, occlusion, illumination, facial scale, facial expression, and out-of-focus blur.

5.3.3 Fine-grained Attributes Analysis

In this subsection, we study the sensitivity of the proposed MP-FDN to six facial attributes:

Aspect Ratio, Bounding Box Area (BBox Area), Bounding Box Height (BBox Height), Blur,

Expression, Illumination, Occlusion and Pose. The study is based on the hard partition

of the WIDER FACE validation set10. This partition contains 31,958 faces with their

ground-truth bounding boxes.

Aspect Ratio is defined as ground-truth face height divided by ground-truth face width.

BBox Area is the pixel area of the ground-truth face bounding box. BBox Height is the

height (in pixels) of the ground-truth face bounding box. Inspired by [61], we sort these

9We note that in the validation set of WIDER FACE dataset, the hard partition contains all 31,958
faces equal to or larger than 9 pixels in height. The medium partition contains all 13,319 faces equal to or
larger than 16 pixels in height. The easy partition contains all 7,211 faces equal to or larger than 34 pixels
in height. In other words, the hard partition is a super-set of both the medium and easy partitions, and
the medium partition is a super-set of the easy partition. Although we do not know the detailed number
of faces in each partition in the WIDER FACE test set, faces in the test set should be allocated to the
easy, medium and hard partitions, respectively following the same distribution rules.

10We use the validation set rather than the test set because the former has ground-truth labels while the
latter does not. Moreover, we only use the hard partition of the validation set because it contains all of
the faces in this set that are greater than 10 pixels in height. In other words, it is a superset of both the
medium and the easy partitions.
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Fig. 5.4 Qualitative results on the WIDER FACE [4] validation and test
sets
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three facial attributes in the descending order and then partition them into five categories:

extra-small (XS: bottom 10%), small (S: next 20%), medium (M: next 40%), large (L: next

20%), and extra-large (top 10%). The other five attributes, Blur, Expression, Illumination,

Occlusion and Pose follow the definitions in the WIDER FACE technical report [4]. The

category partitions of the eight facial attributes are summarized in Table 5.1.

Table 5.1 Category partitions of facial attributes

Attribute Partition

Aspect Ratio (x) XS(x ≤ 1.02), S(1.02 < x ≤ 1.17), M(1.17 < x ≤ 1.38), L(1.38 <

x ≤ 1.6), XS(x > 1.6)

BBox Area (y) XS(y ≤ 112), S(112 < y ≤ 224), M(224 < y ≤ 1260), L(1260 <

y ≤ 6030), XS(y > 6030)

BBox Height (z) XS(z ≤ 12), S(12 < z ≤ 17), M(17 < z ≤ 40), L(40 < z ≤ 89),

XS(z > 89)

Blur Clear, Normal Blur, Heavy Blur

Expression Typical expression, Exaggerated Expression

Illumination Normal illumination, Extreme illumination

Occlusion11 No occlusion (None), Partial occlusion, Heavy occlusion

Pose12 Typical pose, Atypical Pose

For each facial attribute, the number of ground-truth faces in each of its category

partitions is imbalanced. For example, there are much more faces in the typical expression

than in the exaggerated expression category. To enable a fair comparison of imbalanced

categories of a facial attribute, we employed the average normalized precision (APN) in [61]

to describe the face detection performance for each category of a facial attribute. The

average normalized precision (APN) is calculated as follows:

APN =
1

Nc

∑
c

R(c).N

R(c).N + F (c)

11Partial occlusion is when 1%-30% facial area is occluded. Heavy occlusion is when over 30% of the
facial area is occluded.

12A facial pose is atypical when either the roll or pitch is larger than 30 degrees, or the yaw is larger
than 90 degrees. Otherwise, the facial pose is typical.
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where R(c) is the fraction of faces detected with confidence of at least c. N is roughly

equal to the average number of faces in each facial attribute category. F (c) is the number

of incorrect detections with at least a confidence of c. Nc is number of confidence score

partitions. We set N to 950013. All other parameters were set by default. Refer to the

publicly available code14 in [61] for more details.

Figure 5.5 shows the sensitivity of MP-FDN to the eight facial attributes indicated by

the average normalized precision. For BBox Height (Fig. 5.5a), MP-FDN performs under

average when the face bounding box height is small or extra-small. Since BBox Height

is positively correlated with BBox Area, a similar result appears when the face bounding

box area is small or extra-small, as shown in Figure 5.5b. For Aspect Ratio (Fig. 5.5c),

MP-FDN performs under average when the facial height-width ratio is either extra-small

or extra-large.

MP-FDN also performs under average in the case of heavy blur, partial or heavy oc-

clusion, and atypical pose. In contrast, MP-FDN is quite robust to exaggerated expression

and extreme illumination: it performs above average in these two situations.

Figure 5.6 summarizes the impact of different facial attributes in the same plot. We ob-

serve that the MP-FDN is most sensitive to BBox Height (APN ranges from 0.168 to 0.945)

and BBox area (APN ranges from 0.144 to 0.946). The next two important factors are Blur

(from 0.418 to 0.906) and Occlusion (from 0.266 to 0.777), followed by Aspect Ratio and

Expression. The latter two influence face detection performance in different directions:

extreme aspect ratio negatively affects the APN (0.436) while exaggerated expression posi-

tively affects the APN (0.891). Lastly, MP-FDN is least sensitive to Illumination and Pose.

While atypical pose causes a little drop of APN from 0.656 to 0.550, extreme illumination

leads to a small increase of APN from 0.648 to 0.696.

5.3.4 Hard False Positive Analysis

We select the top-100 high-scoring false positives as shown in Figure 5.7. Due to their

high confidence scores, they should the non-face objects that most resemble facial patterns.

However, we observe that most of them are real human faces miss-labeled by the authors

139500 was obtained as follows. There are 31,958 faces in total. They need to be partitioned according 8
facial attributes and there are 27 categories in total for the 8 attributes. So for each category, the average
number of face is 31, 958× 8/27 ≈ 9469. We approximate this to obtain 9500.

14http://dhoiem.web.engr.illinois.edu/projects/detectionAnalysis/
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Fig. 5.5 Sensitivity to different facial attributes. The normalized Average
Precision (APN ) is shown for each facial attributes.
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Fig. 5.6 A summary of the impact of different facial attributes. The max-
imum and minimum average normalized precision (APN ) is plotted for each
attribute. “Height” indicates “BBox Height” in Figure 5.5. Similarly, “Area”
indicates “BBox Area”, “Ratio” indicates “Aspect Ratio”, “Expr” indicates
“Expression”, “Illum” indicates “Illumination”, and “Occl” indicates “Occlu-
sion”.
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of WIDER FACE dataset [4].

A detailed analysis of the reasons for the top-100 false positives is given in Table 5.2.

Table 5.2 Reasons for the top-100 false positives

Reason Percentage

Miss-labeling 60%

Cartoon character/ mask/ figure carving 10%

Inaccurate localization 9%

Non-face object 21%

5.3.5 Hard False Negative Analysis

We also selected the top-100 low-scoring false negatives as shown in Figure 5.8. We found

that about half of these faces would hardly be recognized as such, even by a human. The

other half are due to heavy occlusion, blur, low-resolution, atypical pose, facial incomplete-

ness, or a combination of these factors. A detailed analysis of the reasons of these false

negatives is shown in Table 5.3.

Table 5.3 Reasons for the top-100 false negatives

Reason Percentage

Undetectable by humans 51%

Detectable by humans

Heavy occlusion 29%

Blur or Low resolution 11%

Atypical pose 6%

Incomplete face 3%

5.4 Results on the FDDB Dataset

To show the general face detection capability of the proposed MP-FDN method, we directly

apply MP-FDN previously trained on the WIDER FACE training set to the FDDB dataset.



5 Experiments and Results 85

Fig. 5.7 Top-100 high-scoring false positives obtained for the WIDER
FACE [4] validation set. These are sorted in a descending order from left
to right and from top to bottom, according to their confidence scores.
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Fig. 5.8 Top-100 low-scoring false negatives of WIDER FACE [4] validation
set. They are sorted in ascending order from left to right and from top to
bottom, according to their confidence score.
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We first compare the result of MP-FDN with other strong baseline algorithms. Then,

qualitative results of MP-FDN are presented.

5.4.1 ROC Curves

We make a comprehensive comparison with 15 other typical baselines: Viola-Jones [6],

SurfCascade [44], ZhuRamanan [3], NPD [36], DDFD [38], ACF [8], CascadeCNN [39],

CCF [62], JointCascade [37], HeadHunter [7], FastCNN [63], Faceness [8], HyperFace [41],

MTCNN [40] and UnitBox [64]. Figure 5.9 shows the ROC curves of these sixteen meth-

ods using the discrete score criterion. As shown in Figure 5.9, the proposed MP-FDN

outperforms ALL of the other 15 methods and has the highest average recall rate (0.973).
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Fig. 5.9 ROC curves of MP-FDN and other published methods on the
FDDB dataset [1].
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5.4.2 Qualitative Results

Qualitative results for MP-FDN on the FDDB dataset are shown in Figure 5.10. We observe

that proposed MP-FDN face detector is robust to variations in scale, pose, occlusion,

expression, and out-of-focus blur.

Fig. 5.10 Qualitative results on the FDDB dataset [1].
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5.5 Conclusion

This chapter benchmarked the proposed MP-FDN method on two representative face detec-

tion datasets, WIDER FACE [4] and FDDB [1]. MP-FDN consistently achieved the highest

performance on these datasets. In particular, on the “hard partition” of the WIDER FACE

validation and test sets that contain faces of height as small as 10 pixels while as large as

more than 1000 pixels, MP-FDN outperforms the previous best method by 12.6% and

9.8%, respectively, in Average Precision. This demonstrates the superior capability of the

proposed MP-FDN at detecting faces across a large span of scales. Besides facial scale, the

qualitative results on the WIDER FACE and FDDB datasets also illustrate that our algo-

rithm exhibits a high level of robustness to other important factors, including illumination,

pose, occlusion, facial expression, and out-of-focus blur.

In addition, we have made a fine-grained analysis of eight facial attributes that may

affect the face detection performance of MP-FDN: face bounding box height, face bounding

box area, facial height-width ratio, blur, expression, illumination, occlusion and facial pose.

We also made a detailed analysis of the hard false positives and hard false negatives. Both

the fine-grained facial attribute analysis and hard false negative analysis showed that face

scale15, blur and occlusion affect the face detection performance the most. This shows us

directions for further improving face detection performance. However, this is not enough:

the analysis of the hard false positives and hard false negatives on WIDER FACE dataset

showed that many hard false positives are actually human faces, and many hard false

negatives are undetectable even by humans. This result indicates that, not only face

detection algorithms, but also face detection benchmarks need to be improved to promote

the development of face detection research.

15Face scale here refers to both face bounding box height and face bounding box area.
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Chapter 6

Conclusion

As stated at the outset, this thesis focuses on answering the following two questions:

Question 1 : What is the reason behind the phenomenon that tiny faces cannot be

accurately detected by a Convolutional Neural Network (ConvNet)?

Question 2 : Is there any way that we can adapt the deep learning framework so as

to detect tiny facial patterns with high accuracy?

The series of controlled experiments in Chapter 3 uncovered the scale sensitivity rule

that directly answers the first question. The scale sensitivity rule can be described as

follows: A low-level convolutional layer (conv-layer) with a small receptive field is most

sensitive to small object patterns, while a high-level conv-layer with a large receptive field

is most discriminative to large object patterns. Accordingly, the answer to Question 1 is

that a common convolutional neural network simply employs the feature map of its last

conv-layer to predict faces. This last conv-layer, with a large receptive field, is not sensitive

to small facial patterns, thus leading to a low detection accuracy of these tiny patterns.

Not content at merely finding the answer to Question 1 , we further proposed a new

ConvNet that leverages the scale sensitivity rule to achieve simultaneous and accurate

detection of faces across a large span of scales, thus giving a definite answer “YES” to

Question 2 . Specifically, we classified all conv-layers in a ConvNet into three groups,

namely, “Det-S4”, “Det-S8” and “Det-S16”1, that are sensitive to small, medium and large

facial patterns, respectively. For “Det-S4”, the conv-layers in this group are combined to

form a sub-network that is proficient at proposing small-sized faces (5-11 pixels in height).

1See Figure 3.14.
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Similarly, the conv-layers in “Det-S8” form a sub-network that is proficient at propos-

ing medium-sized faces (12-128 pixels in height), and the conv-layers in“Det-S16” form

a sub-network proficient at proposing large-sized faces (larger than 128 pixels in height).

Thus, the three groups form a three-pronged network for proposing faces of three scale

ranges. We refer to this as a Multi-Path Face Proposal Network (MP-FPN). MP-FPN

can simultaneously predict small, medium and large faces through the three parallel detec-

tion branches. To further improve the discriminative power for the hard false positives and

hard false negatives generated by MP-FPN, we designed an additional follow-on Multi-Path

Face Verification Network (MP-FVN) to verify each face proposal. MP-FVN still adopts

the same three paths to deal with small, medium and large face proposals. However, for

each such detection path, MP-FVN combines the deep features of each facial region with

a larger contextual region to verify the confidence of the face proposal. Furthermore, MP-

FPN and MP-FVN share the majority of conv-layers and parameters (see Figure 4.11),

thereby composing an end-to-end Multi-Path Face Detection Network (MP-FDN).

We have verified the effectiveness of MP-FDN by employing two large face detec-

tion benchmark datasets that together contain over 20,000 test images. On the WIDER

FACE [4] validation and test sets, for the so-called “medium partition” and “easy partition”

that contain medium- and large-size faces, the proposed MP-FDN matched or even out-

performed state-of-the-art methods by a small margin. More importantly, for the so-called

“hard partition” that contains mostly tiny faces, it outperforms the previously best result

by 12.6% on the validation set, and 9.8% on the test set, in terms of average precision. On

the FDDB dataset [1], MP-FDN achieves an average recall of 97.3%, outperforming all the

other 15 strong face detection algorithms. These results demonstrate that the proposed

MP-FDN is a viable and accurate algorithm for face detection.

Next, we suggest four possible improvements and additions as future work:

(1) In the investigation of the impact of different facial attributes to MP-FDN (see

Section 5.3.3), we found that the normalized average precision of tiny faces lagged much

behind that of large faces (see Figure 5.5a and Figure 5.5b), implying that there is significant

room for improving the detection accuracy of tiny faces. We plan to introduce the super-

resolution technique [65] in the tiny face detection path (“Det-S4” in Figure 4.11). Since

there already exist deep ConvNets for super-resolution, for example, [65], we can seamlessly

combine these super-resolution conv-layers to “Det-S4”. Moreover, this modification will

not affect other two paths for detecting medium- and large-size faces because all detection
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paths are run independently and in parallel.

(2) We also note that occlusion exerts the second largest influence on the face detection

performance of MP-FDN (see Figure 5.5g), next to facial scale. We observe that most

occluded faces often have occluded contextual information so that MP-FDN cannot lever-

age contextual features for an effective verification of these faces (see Figure 5.8). As an

alternative to the contextual information that was already used in MP-FDN, we plan to

introduce data regarding facial parts to alleviate the occlusion problem. Specifically, we

plan to create a new training set for this purpose based on MP-FDN. In order to achieve

this, we will mask parts of the face and even other body regions (e.g., neck, shoulder and

upper body) with random colors for a proportion of the training images. These artificially

occluded faces, as well as natural faces, will be used to train the MP-FDN. This will en-

hance MP-FDN's sensitivity to facial parts and thus probably improve its robustness to

facial occlusion.

(3) We note that although the proposed MP-FDN achieved the highest average recall

rate (0.973) among all 16 face detection methods on the FDDB dataset (see Figure 5.9), its

true positive rate (aka recall rate) is lower than several other methods when the number of

false positives are less than about 80 (see Figure 5.9). This implies that MP-FDN generates

a small number of high-scoring false positives that even a high threshold cannot separate

them from the true positives. We plan to investigate the reason behind the high-scoring

false positives in the FDDB dataset and introduce a mechanism to mine these false positive

patterns during the training process. This might lead to a MP-FDN that is more robust

at detecting these hard false positives.

(4) In the visualization of the hard false positives of WIDER FACE dataset (see Figure

5.7), we found many miss-labeled true faces (taking up 60% of the top-100 false positives).

Moreover, in the visualization of the hard false negatives in the WIDER FACE dataset (see

Figure 5.8), we found many labeled faces are hardly recognized even by humans (taking

up 51% of the top-100 false negatives). These cases of miss-labeling and wrong labeling

can possibly mislead any face detection algorithm that is trained or tested on the dataset.

Therefore, we make it one of our future tasks to improve the labeling of WIDER FACE

dataset2. We also observed that the proposed MP-FDN detects “faces” of cartoon charac-

2We expect to communicate with the authors of WIDER FACE dataset, and possibly assist them to
improve the face labeling, so that this currently largest face detection dataset will become a more effective
training and evaluation tool for face detection research.
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ters and figure carvings, as well as faces wearing a mask (see Figure 5.7), which apparently

are not counted as faces by WIDER FACE dataset. In fact, it is still controversial whether

these patterns should be counted as faces [7]. Thus it would seem that a clear-cut definition

of “face” in the context of face detection research is necessary.

Last but not least, we believe that the scale sensitivity rule and the multi-pronged

parallel proposal & verification network structure embodied in MP-FDN could be very

useful to not only face detection, but other related computer vision problems.
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