#### DRYING OF CONDITIONED HAY IN WINDROWS AS INFLUENCED BY ORIENTATION OF STEMS AND ENVIRONMENTAL CONDITIONS

by

Devendra Singh Duggal

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfilment of the requirement for the degree of Master of Science

Department of Agricultural Engineering McGill University Montreal, Canada September, 1969

: :

DRYING HAY IN WINDROWS

ų . 9

#### ABSTRACT

#### Devendra Singh Duggal

# M.Sc. - Agricultural Engineering DRYING OF CONDITIONED HAY IN WINDROWS AS INFLUENCED BY ORIENTATION OF STEMS AND ENVIRONMENTAL CONDITIONS

The present investigation is concerned with advantages in drying obtained through reorientation of crushed hay plants in windrows formed by a self propelled windrower.

Some physical characteristics of hay windrows were measured. The effects of changes in stem orientation and windrow configuration on the drying characteristics of hay were examined. The influence of environmental conditions of wind velocity and solar radiation on the drying of crushed hay in windrows of different configurations and plant orientations have been reported.

Drying curve comparisons, analysis of variance techniques and Duncan's new multiple range test have been used to establish significant differences in drying characteristics of windrows having different plant orientations and subjected to varying environmental conditions.

i

#### RESUME

#### Devendra Singh Duggal

M.Sc. - Génie Rural

#### INFLUENCE DE L'ORIENTATION DES TIGES ET DE L'ENVIRONNEMENT SUR LA VITESSE DE SECHAGE DU FOIN CONDITIONNE DISPOSE EN ANDAINS

L'objet de cette présente étude est d'étudier les avantages du séchage du foin conditionné, en le réorientant dans les andains formés par une andaineuse automotrice.

Quelques caractéristiques physiques des andains ont été mesurées. Les effets provoqués par le changement de l'orientation des tiges ainsi que la configuration des andains, sur le séchage du foin conditionné disposé en andains de différentes formes et orientations des plantes ont été rapportés.

Des études comparatives des courbes de séchage, des analyses de variances, ainsi que le nouveau test de Duncan, ont été utilisés pour faire apparaître les différences significatives entre les caractéristiques de séchage des andains soumis à des conditions environnantes variables et dont les plantes étaient orientées différemment.

ii

#### ACKNOWLEDGEMENTS

The author expresses sincere appreciation and indebtedness to the following for their invaluable contributions without which the present investigation would not have been as complete.

Dr. R. M. Halyk for suggesting the research problem, and for his able guidance throughout the course of this investigation and in preparation of the thesis.

Professor E. R. Norris for being research director during initial stages of this study.

Professor R. S. Broughton, Chairman, Agricultural Engineering Department, for providing field staff and for his continuing interest, constructive criticism and encouragement.

Visiting Professor W. W. S. Charters from the University of Melbourne; Dr. B. P. Warkentin and Dr. A. S. Malik, respectively of Soil Science and Agricultural Physics Departments of McGill University, for their valuable suggestions.

Staff of the Macdonald College and McGill Computing Centres for their cooperation.

Mr. R. Dallenbach, Farm Manager, Macdonald College, and his staff for their assistance in conducting field experiments.

iii

Technical staff for their help in the construction of the equipment and the field staff for their assistance in the data collection.

Mrs. M. Couture for typing the thesis manuscript.

Acknowledgement is particularly due to Quebec Agricultural Research Council for generous financial support which made this research possible.

# TABLE OF CONTENTS

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ABSTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| RESUME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ••••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ACKNOWLEDGEMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ••••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| LIST OF FIGURES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ••••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| LIST OF TABLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| I. INTRODUCTION AND OBJECTIVES OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | THE STUDY 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| II. REVIEW OF LITERATURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ul> <li>2.1. Theory of Hay Drying</li> <li>2.2. Internal Mechanisms</li> <li>2.2.1. Distribution of water in</li> <li>2.2.2. The role of leaves and s</li> <li>2.2.3. Different drying rate of</li> <li>2.2.4. Mechanical treatments to mechanisms</li> <li>2.3. External Conditions</li> <li>2.3.1. External conditions of t</li> <li>2.3.1.1. Swath versus windrow d</li> <li>2.3.2. External conditions of e</li> <li>2.3.2.1. Equilibrium moisture c</li> <li>2.3.2.3. Latent evaporation</li> </ul> | 5         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9 <td< td=""></td<> |
| 2.3.3. Effects of external cond<br>mechanisms<br>2.4. Determination of Moisture                                                                                                                                                                                                                                                                                                                                                                                                                           | Internal           •••••••         19           Content         ••••         19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| III. MATERIALS AND METHODS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3.1. Design of Experiment<br>3.2. Machine Description<br>3.3. Experimental Procedure .<br>3.3.1. Measurement of physical                                                                                                                                                                                                                                                                                                                                                                                  | 24<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| windrows<br>3.3.2. Measurement of environme<br>3.3.3. Sampling technique and m                                                                                                                                                                                                                                                                                                                                                                                                                            | ental conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ULU!! • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

v

•

# Table of Contents (continued)

|       | 42<br>42                                                                                                                                                                                                                                     | ig e                 |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| IV.   | RESULTS AND DISCUSSION                                                                                                                                                                                                                       | 33                   |
|       | <ul> <li>4.1. Physical Characteristics of Windrows</li> <li>4.2. Environmental Conditions</li> <li>4.3. Drying Characteristics</li> <li>4.3.1. Comparison of drying curves</li> <li>4.3.2. Comparison of time required for hay to</li> </ul> | 33<br>41<br>42<br>42 |
|       | 4.3.3. Comparison of moisture contents at selected<br>times after cutting                                                                                                                                                                    | 58<br>60             |
| v.    | SUMMARY AND CONCLUSIONS                                                                                                                                                                                                                      | 62                   |
| VI.   | APPLICATION OF THE FINDINGS                                                                                                                                                                                                                  | 64                   |
| VII.  | RECOMMENDATIONS FOR FURTHER RESEARCH                                                                                                                                                                                                         | 66                   |
| VIII. | LITERATURE CITED                                                                                                                                                                                                                             | 68                   |
| APPEN | DICES                                                                                                                                                                                                                                        | 74                   |
|       | Appendix A - Programs for computing means and<br>standard deviations of heights, widths<br>and cross-sectional areas of windrows<br>under five treatments, on an IBM system<br>360/75.                                                       |                      |
|       | Appendix B - Climatological data recorded at the<br>test site during the period of the<br>experimental trials.                                                                                                                               |                      |
| -     | Appendix C - Computer program and printout of<br>radiation results computed on an IBM<br>system 360/75 from data recorded at<br>the experimental site.                                                                                       |                      |
|       | Appendix D - IBM system 360/75 computer program<br>and printout of percentage moisture<br>contents of hay windrows under five<br>treatments, at regular intervals<br>during the experimental trials.                                         |                      |

.

# LIST OF FIGURES

,

.

| Figure | 3                                                                                                                                | Page |
|--------|----------------------------------------------------------------------------------------------------------------------------------|------|
| l.     | Treatments performed on hay windrows                                                                                             | 25   |
| 2a.    | New Holland self propelled windrower model 905<br>(Sperry Rand Corp.)                                                            | 27   |
| 26.    | Spiroll Conditioner - 49 inches long, 8 inches in<br>diameter counter rotating crushing rolls (Sperry<br>Rand Corp.)             | 27   |
| 3.     | Layout of the experimental field                                                                                                 | 29   |
| 4.     | Orientation of stems in the natural, inverted and trampled windrow                                                               | 35   |
| 5.     | Variability in computed values of cross-sectional<br>area of the natural windrow at 2-foot intervals<br>along the windrow length | 40   |
| 6.     | Effects of stem orientation on the drying of crushed hay in windrows (Trial 1)                                                   | 49   |
| 7.     | Effects of stem orientation on the drying of crushed hay in windrows (Trial 2)                                                   | 50   |
| 8.     | Wind speed effects on drying of crushed hay in the<br>unshaded windrows of different configurations<br>(Trial 2)                 | 51   |
| 9.     | Wind speed effects on drying of crushed hay in the shaded windrows of different configurations (Trial 2)                         | 52   |
| 10.    | Solar radiation effects on drying of crushed hay in the natural windrows (Trial l)                                               | 53   |
| 11.    | Solar radiation effects on drying of crushed hay in the trampled windrows (Trial 1)                                              | 54   |
| 12.    | Solar radiation effects on drying of crushed hay in the natural windrows (Trial 2)                                               | 55   |

List of Figures (continued)

#### 

. . . .

# LIST OF TABLES

| Table     | F                                                                                                                 | Dage |
|-----------|-------------------------------------------------------------------------------------------------------------------|------|
| 1.        | Methods used for determining moisture content of hay                                                              | 21   |
| 2.        | Treatments performed on hay windrows                                                                              | 24   |
| 3.        | Means and standard deviations of windrow heights<br>(Trial l)                                                     | 36   |
| <b>4.</b> | Means and standard deviations of windrow heights<br>(Trial 2)                                                     | 37   |
| 5.        | Means and standard deviations of windrow widths                                                                   | 38   |
| 6.        | Means and standard deviations of windrow cross—<br>sectional areas                                                | 39   |
| 7.        | Coefficients of variability for width, height and<br>cross—sectional area of windrows under various<br>treatments | 41   |
| 8.        | Effects of stem orientation on drying due to solar radiation                                                      | 57   |
| 9.        | Analysis of variance of the moisture contents                                                                     | 61   |
| 10.       | Comparison of the mean moisture contents of the<br>various treatments (Duncan's new multiple range test)          | 61   |

#### I. INTRODUCTION AND OBJECTIVES OF THE STUDY

Hay cut at 70 to 80 per cent moisture content, wet basis (wb), is dried to a moisture level of about 20 per cent for safe storage (Hall, 1957). Two simultaneous and fundamental processes occur during this drying period: (1) heat is transferred to the hay plants, and (2) mass is transferred as water in liquid or vapour phases within hay plants and as vapour from wet surfaces. In the study of hay drying, therefore, the internal mechanisms of liquid flow in cut plants and the external conditions of the material as well as the surrounding environment are important.

The internal mechanisms demand an understanding of anatomy and physiology of plants pertaining to moisture escape. Distribution of water in green plants (Pedersen and Buchele, 1960), the role of leaves and stomatal behaviour (Jones and Palmer, 1933, 1934; Jones, 1939; Pedersen and Buchele, 1960), and the unequal drying rate of leaves and stems (MacAulay, 1966) are some of the considerations that are important to engineering design of drying systems.

The external conditions of the material and the environment jointly influence external or surface resistance to diffusive and turbulent vapour flow through air surrounding the plant surfaces. Windrowing and tedding (Halyk and Bilanski,

1966; Kurtz and Bilanski, 1967, 1968) and raking (Jones, 1939; Goss <u>et al.</u>, 1964) are some of the engineering attempts to alter material conditions. The external conditions of environment include dry and wet bulb temperatures, wind velocity and solar radiation (Kemp and Roach, 1968).

The study of external conditions of the material is important because such conditions can be altered to accelerate the drying rate. During the field drying of hay, no control of the environment is possible, but a knowledge of the effects of varying environmental conditions on drying with an objective to define good and poor drying conditions is important.

Drying of hay in windrows is an accepted practice. However, no investigation of the effects of orientation of stems in a windrow on the drying rate of hay was available in the cited literature. Also, basic considerations, such as uniformity in windrow configuration and windrow density, have remained neglected so far. These variables are likely to affect the rate of drying hay in windrows and perhaps the quality of hay produced.

The objective of the present investigation was to determine the effects of changes in windrow configuration and orientation of stems in a windrow on the drying characteristics of hay. In windrowed material, an accumulation of vapour within air spaces of the bulk decreases plant to air vapour pressure gradient and lower rate of drying results. The rate of air movement from the air spaces within the bulked material

to open air beyond would affect the drying rate of hay. Solar radiation could be effective in augmenting heat transfer. The effects of stem orientation on drying due to wind and solar radiation therefore formed an important part of this study.

## II. REVIEW OF LITERATURE

A search of literature revealed that the limitation of drying hay in the field lies in the loss of feed value of weather-damaged hay. Oliver (1960) reported that this loss can be as high as 25 to 40 per cent. When hay can be field-dried without being rained on, there is little difference in chemical constituents obtained, based on feeding trials as compared to barn-dried hay (Hodgson <u>et al</u>., 1946, 1947). This is not always possible because the period between rains is often less than the time required for drying during the haying season. The situation is further complicated by the fact that the feed value of hay decreases with excess maturity (Hopkins, 1955; Mowat <u>et al</u>., 1965). Pritchard <u>et al</u>. (1963) have reported a decrease in the <u>in vitro</u> dry matter digestibility of hay at the rate of 0.5 per cent per day throughout the growing season.

In order to minimize field drying losses it is important that the period for which hay is subjected to weather uncertainties is the shortest possible. Since the drying of hay is influenced jointly by internal mechanisms of water movement in the plant material and the conditions external to the material, these factors should be optimized to accelerate the drying rate of hay.

#### 2.1. Theory of Hay Drying

As the initial moisture content of hay is less than the critical moisture content (the point on the drying curve where the constant rate period ends) nearly all the drying occurs in the falling rate period. This period of drying involves (1) the movement of moisture within the material to the surface by liquid diffusion, and (2) the removal of moisture from the surface.

The falling rate period of drying is usually divided into two zones: (1) the zone of unsaturated surface drying, and (2) the zone where internal moisture movement controls drying rate. In unsaturated surface drying, the entire evaporating surface is no longer maintained at saturation by moisture movement within the hay plants. The drying rate decreases for the unsaturated portion and consequently the average rate for the total surface decreases. The external drying variables are functional during this drying zone. At some internal moisture content, nearly whole evaporating surface becomes unsaturated and the internal mechanisms such as liquid diffusion govern the rate of drying.

The equation representing movement of moisture during the falling rate period is based on Newton's equation. By substituting moisture contents, dry basis (db), for temperature in Newton's equation, equation (1) has been obtained (Hall, 1957).

$$\frac{M - M_e}{M_o - M_e} = e^{-kx}$$

where M is the moisture content, db, at any time in hours, x;  $M_e$  is the equilibrium moisture content;  $M_o$  is the original moisture content; and k is the drying constant.  $\frac{M - M_e}{M_o - M_e}$  is known as the moisture content ratio. Another way of representing the drying data is given by the equation:

$$\frac{M}{M_{e}} = e^{-k \times U}$$
(2)

where u is an experimental constant of value less than one.

#### 2.2. Internal Mechanisms

The present understanding of hay drying is based on existing theories of drying of nonliving industrial material. Experience has verified that such theories serve to describe the drying nature of those parts of plants that have reached a dormant stage, such as seeds and woody tissue. Unfortunately, the same does not hold for parts of plants such as leaves and growing As a consequence it is generally recognized that a stems. fundamental understanding of anatomy and physiology of drying. plants is important to identify the natural drying forces which respond to mechanical treatments during the process of hay Distribution of water in green plants, the role of drying. leaves and stomatal behaviour and the unequal drying rate of leaves and stems are some of the aspects of internal moisture movement in cut plants that have been studied.

#### 2.2.1. Distribution of water in green plants

Pedersen and Buchele (1960) conducted studies on water distribution in alfalfa plants at three stages of maturity. They concluded that moisture varied in leaves and stems and the decrease in moisture content per unit length was considerably larger in the top end than in the lower part of the stem.

The highest moisture content was found in the growing section of the plant. In the stem section just below the top end the moisture content in young alfalfa plants in prebloom stage and middle age alfalia plants in one-tenth bloom stage (normal maturity for hay), was found to range from 83.5 to 85.5 per cent, wb. In old alfalfa plants past full bloom (one-fourth seed pods), the moisture content at the same place was found to be about 76 per cent, wb.

The lowest moisture content of all plants was near the root. It was 60 per cent, wb, in old plants and 72 per cent, wb, in middle age and young alfalfa.

These findings imply that in order to increase the drying rate of hay, orientation of plants in a windrow should be such that the plant sections which have highest moisture content and contain most moisture but lose moisture less readily should be more exposed to the external drying conditions of the environment. This is not always possible because: (1) the part of the plant that has highest moisture content does not necessarily contain most moisture, (2) the part that contains the highest moisture content usually dries fastest, (3) the part which loses moisture less readily could be at the opposite end of the part that has the highest moisture content.

It is not likely that all the drying advantages can be obtained in a single orientation of the plants in hay windrows.

An ideal theoretical solution to the problem does not exist at present because of the many unknown factors. However, it should be possible to identify an orientation of plants which is most suitable from the standpoint of faster drying of hay in windrows.

#### 2.2.2. The role of leaves and stomatal behaviour

Based on their experiments with cut plants of Johnson grass, Jones and Palmer (1933) concluded that moisture is conducted to the leaves through the vascular bundles in the stems. Their finding that leaves dry faster when removed from alfalfa plants than when attached, was later confirmed by Pedersen and Buchele (1960). These results led to the conclusion that stem moisture does move into the leaves.

Jones and Palmer (1933) found that the time required after cutting for drying to a given moisture content was lower for complete plants of alfalfa and Johnson grass than for separated leaves and stems. Pedersen and Buchele (1960) found no difference between these two drying periods. Because of these contradictory results the role of leaves in moisture removal from cut plants still remains unexplained. The findings on stomatal behaviour (Miller, 1928; Jones and Palmer, 1932, 1933) are not conclusive in regard to the amount of moisture loss per unit of time.

However, the studies on these aspects suggested that the orientation of plants in a windrow should be such that the leaves remain in a position that favours evaporation of water

carried to them by the vascular bundles. Also the leaves should be so placed as to favour the desired stomatal behaviour.

2.2.3. Different drying rate of leaves and stems.

Pedersen and Buchele (1960), MacAulay (1966) and other investigators have shown that the leaves of cut plants dry faster than the stems. The practical significance of this differential in drying rate of leaves and stems is that during the harvesting process under good drying conditions, the leaves of hay may be dried to levels where they become susceptible to leaf loss because of shattering, while the stems of the same plants contain too much moisture for safe storage.

Zink (1936), Macdonald (1946), Dobie (1948) and Daum (1958) have published researches on leaf loss during field drying of hay. The variance within and among their findings is large. However, leaf losses as high as 70 per cent were reported for alfalfa at 30 per cent moisture content by Zink (1936). As approximately 70 per cent of the protein and 90 per cent of the carotene are contained in the leaves it goes without saying that this loss must be minimized.

It was found by MacAulay (1966) that birdsfoot trefoil leaves become brittle at moisture content of 15 to 18 per cent, wb. Since this critical moisture content is lower than the baling moisture content a reduction in leaf loss is possible through improvements in hay handling techniques. Improvements in techniques would require that stems and leaves dry at similar rates. Orientation of plants in a windrow could affect the drying rates and deserve to be carefully investigated because of the possibility of reducing crop losses.

## 2.2.4. <u>Mechanical treatments to promote</u> internal mechanisms

Treating hay mechanically to speed moisture removal is an established practice. The published researches show that crushing results in faster drying than crimping (Boyd, 1959). Also, crushing (Bruhn, 1955, 1959; Kepner, 1959, 1960; Halyk and Bilanski, 1966; Kurtz and Bilanski, 1967, 1968) as well as crimping (Kepner, 1959, 1960) are considerably more effective when compared to drying of unconditioned hay. The findings on windrow drying rates following crushing and flail mower treatments are contradictory. Halyk and Bilanski (1966) and Kurtz and Bilanski (1967) found crushed hay to dry quicker than the flail mowed hay, whereas Boyd (1959) and Hall (1964) found the opposite to occur. However, there seems to be a general agreement in favour of crushing when over-all performance and field losses are considered. A self-propelled windrower equipped with crushing rolls was therefore used in the present investigation.

#### 2.3. External Conditions

The term external conditions in the literature on drying of solids includes: (1) external conditions of the material, and (2) external conditions of the environment (Perry <u>et al</u>.,1963). Study of drying based on effects of external conditions

although less fundamental, is more generally used because the results have a greater immediate application in equipment design and evaluation.

#### 2.3.1. External conditions of the material

A review of developments in hay handling equipment pointed out that agricultural engineers have been concerned about altering conditions of the material for accelerating the field drying rate of hay ever since the invention of mechanical hay tedder in 1850. The use of tedders and windrowers, and the practice of raking to turn hay windrows, are some of the engineering attempts to alter material conditions. Tedding (Halyk and Bilanski, 1966) and raking (Jones, 1939; Goss <u>et</u> <u>al</u>., 1964) have been found to be effective but are not popular because they are additional operations. The present research is concerned with the placement of hay plants in windrows formed by a self-propelled windrower. The considerations that are important to such an investigation include: (1) swath versus windrow drying, and (2) the windrow configuration and orientation of stems.

#### 2.3.1.1. Swath versus windrow drying

In spite of the faster drying rate reported when crushed hay is left to dry in swaths (Halyk and Bilanski, 1966; Kurtz and Bilanski, 1967) windrow drying is preferred in many instances on account of higher capacity, reduced leaf loss, better pick up of lodged, tangled and rained hay, reduced soil compaction effects and savings in equipment, fuel and manpower costs.

The choice of windrow drying in the present investigation was based on the greater variability in orientation of stems being possible in a windrow than in a swath. This is so because the position of hay plants in windrows can be altered in three dimensions whereas in swaths such a change is limited primarily to the horizontal plane because the thickness of swaths is generally small.

# 2.3.1.2. <u>Windrow configuration and orientation</u> of stems

Dodds and Dick (1967), in working with cereal grains, stated that a good windrow should be firmly supported on the stubble, be capable of shedding water and be in a position of easy recovery by the combine pick up. Relationships between the physical characteristics of windrows and drying rate of hay were not available in the cited literature.

The present investigation is devoted to determining effects of changes in windrow configuration and orientation of stems in a windrow on the drying rate of hay. Also the windrow density and uniformity in windrow configuration are likely to influence the drying characteristics and quality of hay produced. A study of these variables, therefore, should be of value in understanding the kind of plant orientation that is desired to improve drying rates and the quality of the product.

#### 2.3.2. External conditions of environment

Drying rate of field dried hay varies greatly with change in environmental conditions. Therefore, in evaluating drying rates, results from one area are of little significance for applying to another climatic condition or geographic location. Kepner (1960) has reported a drying period of four to six days in the interior valley of California whereas Halyk and Bilanski (1966) have reported similar drying effects in 28 to 32 hours in Ontario. Furthermore, results of Halyk and Bilanski show a considerable difference between drying rates in Guelph and Kemptville which are only 300 miles apart. It was therefore considered important to study the variability of environmental conditions during the field drying period of hay in a typical climate of southwestern Quebec.

The conditions favourable for high transpiration rate in living plants are high temperature (Brigs and Shants, 1916); low relative humidity (Thomas and Hill, 1937); moderate wind speeds and high intensity solar radiation. One would expect similar effects of these variables on drying of cut plants.

Fortin (1965) has reported variation in climatic variables during the drying period of hay. He studied the effects of relative humidity changes on field drying of hay. Zachariah and Lipper (1966) have suggested use of wet bulb depression rather than relative humidity as a drying variable.

It is evident that people have been concerned about the effects of solar radiation on hay drying characteristics from

the statements, "the protection of leaves from the parching action of the sun seems to greatly reduce the shedding and consequently make a much better grade of hay"; and, "the hay is bleached of some of its green colour by the sun" (Jones and Palmer, 1936). Realizing the importance of this drying variable Fortin (1965) has reported the periods of sunshine in the hay drying studies conducted by him. However, the effects of solar radiation as a climatic variable in hay drying have not been reported in the available literature. One of the objectives of this research was to measure the solar radiation effects on drying of crushed hay in windrows of different configurations and stem orientations.

Shepherd (1965) investigated the effects of air speed on the drying rates of harvested clover and rye grass. He estimated effective external resistances\* of material in swaths and windrows to be 8 to 12 times those of plant units exposed singly. He also reported that swaths and windrows in still air and under low field radiation dried respectively at approximately 0.3 and 0.2 times the rate of single units over the high moisture content range, at 0.45 to 0.4 times over the medium range and at 0.6 times over the low range. When air speed was nonlimiting the rates of drying of both swaths and windrows under low radiation conditions were 0.6, 0.9 and 0.9 times

\*External resistance refers to the resistance offered to diffusive and turbulent vapour flow through the air surrounding the plant.

those of single units over the high, medium and low moisture ranges respectively.

Jones and Palmer (1936) found that the direct exposure of plants to the open air and sunshine dried plants at a rate which was higher than the drying rate of material in swaths but lower than the drying rate of windrowed material. These findings do not agree with results found by Shepherd (1965).

In both the studies mentioned above, a swath consisted of a continuous blanket of mown material resting on pasture stubble in the form in which it fell from the mower. Windrows consisted of one to three swaths raked together in the study conducted by Shepherd and two windrows raked together two hours after cutting in the experiments of Jones and Palmer.

It appears that wind speed plays an important role in the field drying of hay. In view of this fact an additional objective of this study was to determine the effect of wind on drying characteristics of hay windrows having various configurations and stem orientations.

The concepts of equilibrium moisture content, latent heat and latent evaporation are pertinent to the present investigation on the drying effects of environmental variables. A brief review of the significance of these variables with reference to important publications is therefore included here.

#### 2.3.2.1. Equilibrium moisture content

Hay is an hygroscopic material. When exposed to a given set of environmental conditions until equilibrium is reached, it will attain a definite moisture content. This moisture is termed the equilibrium moisture content for the specific conditions. At this moisture content the rate of moisture loss from the product is equal to the rate of moisture gain of the product from the surrounding atmosphere. Thermodynamically, equilibrium is reached when the free energy change for the material is zero.

Equilibrium moisture content is represented by the following empirical equation (Henderson, 1952).

$$1 - RH = e^{-cTM_e^n}$$
 (3)

where

RH = relative humidity represented as decimal
T = absolute temperature, deg R
M<sub>e</sub> = equilibrium moisture content, per cent, db
c and n = constants varying with materials.

The concept of equilibrium moisture content is important because:

- (1) it represents the limiting moisture content of the material for specific conditions of humidity and temperature
- (2) having this information for any specific hay, it would be possible to study temperature and rate of air movement as factors of drying, if the relative humidity of the atmosphere

remained unchanged sufficiently long for the material to reach equilibrium moisture

(3) by superimposing equilibrium moisture content data on a psychrometric chart, the vapour pressure of the material can be readily determined.

Equilibrium moisture contents of various hays have been reported by Davis <u>et al.</u> (1950), Dexter <u>et al</u>. (1947) and Zink (1935).

2.3.2.2. Latent heat

In many drying applications the equilibrium moisture data may be used as a basis for determining latent heat. Based on Clapeyron equation, Othmer (1940) proposed the use of an equation of the form:

$$\frac{dP}{dT} = \frac{L}{(V-v)T}$$
(4)

where

P = vapour pressure, lb per sq ft
T = the absolute temperature, deg R
V = the specific volume of saturated water vapour,
cu ft per lb
v = the specific volume of saturated liquid water,
cu ft per lb

L = the latent heat of vaporization, ft-lb per lb. Gallaher (1951) developed the following equation relating the vapour pressures and latent heats of two substances at the same temperature, namely a farm crop and water vapour.

$$\frac{L}{L^{\bullet}} = \frac{\log P_2 - \log P_1}{\log P_2 - \log P_1}$$
(5)

where L and P represent the latent heat and vapour pressure for the farm crop, and L' and P' represent the latent heat and vapour pressure of free water, respectively. Thus, the latent heat ratio of the product and water can be expressed in terms of the moisture content if equilibrium moisture content data are available for several temperatures.

#### 2.3.2.3. Latent evaporation

Latent evaporation measures the integrated effect of solar radiation, dry and wet bulb temperatures and air velocity on the evaporation rate of water from a wet plane, horizontal black surface exposed to climatic conditions. An equation has been developed by Kemp and Roach (1968) for estimating the drying rate of hay based on latent evaporation of the environmental conditions. This relationship has been expressed in equation (6).

$$\log X = AY + \log B \tag{6}$$

where

- Y = instantaneous drying rate, gms of water per 100
  gms of dry sample weight per hour

A and B = constants.

The value of the constant A, in their investigations, varied from 0.0162 to 0.0358 but there is an indication that A may have a single value. The constant B is the equilibrium moisture content of hay for a specific latent evaporation and

would depend upon plant species, maturity and treatment.

## 2.3.3. Effects of external conditions on internal mechanisms

External conditions have been found to influence physiological behaviour of drying plants. It has been established that cellular permeability to moisture increases with temperature (Meyer and Anderson, 1952). Hassler (1959) demonstrated that under dynamic conditions, the internal mechanisms were affected by higher temperatures in such a manner so as to permit freer movement of moisture at a particular vapour pressure. Based on the principles of thermodynamics and heat transfer, he built up a theoretical model of energy balance equating intensity of radiation or rate of energy input to rate of energy loss from a leaf to its surroundings.

# 2.4. Determination of Moisture Content

The importance of a precise method for determination of moisture content is evident from the literature available on this subject as reviewed by Marshall (1953) and Thompson (1958). But unfortunately standard research procedures have not been established yet. This has resulted in use of many methods for moisture content determination (Table 1) by different researchers investigating drying characteristics of hay.

Methods of determining moisture content of hay have been broadly classified as direct and indirect. Direct methods consist of oven drying, drying with desiccants or distillation. Of these oven drying is most commonly used because it is simple, reasonably rapid and does not involve expensive equipment. Indirect methods measure some electric, dielectric, chemical or hygroscopic property of material which depends on moisture content. The measured value of the variable is then related to the moisture percentage. Because of low accuracy and poor repeatability the use of indirect methods is limited to commercial needs.

Two ways in common use for expressing moisture content are wet basis and dry basis. Wet basis expresses the weight of the moisture as a percentage of sample weight. Dry basis relates the moisture weight to the weight of dry material in the sample. Relative merits of the two ways and common errors in their use are available in literature (Clyde, 1943). Wet basis is used commercially for determining hay prices (Hall, 1957) and was therefore used in the present investigation.

The drying methods reported in Table 1 point out the variability in procedures. Such variability does not permit comparison of results from investigations which are otherwise similar in nature. Temperature, pressure and duration of treatment are variables which will need consideration in standardizing drying technique. The problem, however, is complicated because of the fact that decomposition of biological material has been found to occur at comparatively low temperatures while, on the other hand, the intensity with which some of the moisture is held suggests that it may not all be removed at "safe" temperatures, even at very low vapour pressures.

|     | · · · · · · · · · · · · · · · · · · ·                                                                                                                            | ·                                                     | · · · · · · · · · · · · · · · · · · ·                            |                                                                                     |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| No. | Method                                                                                                                                                           | Temperature                                           | Duration                                                         | Reference                                                                           |
|     | (1)                                                                                                                                                              | (2)                                                   | (3)                                                              | (4)                                                                                 |
| 1.  | Oven drying: 2 gms of<br>air dried sample<br>(Analysis of Fodders<br>Sub-Committee 1931-<br>1944)                                                                | 95-105°C<br>(203-221°F)                               | Until the<br>loss in<br>wt does<br>not exceed<br>l mgm/hr        | Agric.Prog.<br>(1945)                                                               |
| 2.  | Drying over P <sub>2</sub> O <sub>5</sub> at 10<br>micron pressure                                                                                               | 40°C<br>(104°F)                                       |                                                                  | Laidlaw and<br>Wylam(1952)                                                          |
| 3.  | Drying over P <sub>2</sub> O <sub>5</sub> at a<br>pressure of 50-100<br>microns (official<br>method recognized by<br>National Institute of<br>Health in U.S. for | 50±1°C<br>(112 <sup>±</sup> 1.8°F)                    | <b>-</b>                                                         | Beckett<br>(1954)                                                                   |
|     | freeze dried<br>biological materials)                                                                                                                            |                                                       |                                                                  |                                                                                     |
| 4.  | Toluene distillation;<br>Drying under vacuum;<br>Oven drying;<br>Drying in an airblast<br>cabinet                                                                | 95°C(203°F)<br>105°C(221°F)<br>46-54°C<br>(115-129°F) | -                                                                | Mitchell<br>(1957)                                                                  |
| 5.  | Oven drying in a<br>forced air oven                                                                                                                              | 77°C(170°F)                                           | 24 hrs                                                           | Boyd (1959)                                                                         |
| б.  | Oven drying;<br>Drying over P2O5;<br>Drying under sus-<br>tained pressure of<br>the order of 1 micron                                                            | 80°C(176°F)<br>40°C(104°F)                            | l6 hrs<br>Until con-<br>stant weig<br>is attained<br>(App.72 hrs | Greenhill<br>(1960)<br>ht<br>d<br>s)                                                |
| 7.  | Oven drying                                                                                                                                                      | 125.80C<br>(195°F)                                    | 30 hrs                                                           | Person<br>& Sorenson<br>(1962)                                                      |
| 8.  | Oven drying                                                                                                                                                      | 100°C(212°F)                                          | 72 hrs                                                           | Hall (1964)                                                                         |
| 9.  | Oven drying                                                                                                                                                      | 80°C(176°F)                                           |                                                                  | Shepherd(1964)                                                                      |
| 10. | AOAC oven drying<br>method for grain and<br>stock feeds                                                                                                          | 135 <u>+</u> 2°C<br>(275 <u>+</u> 3.6°F)              | -                                                                | Horwitz (1965<br>Halyk and<br>Bilanski(1966<br>Kurtz and<br>Bilanski<br>(1967,1968) |

Where drying time is not shown in column 3, the duration of the treatment was given as "to constant weight" or "overnight."

TABLE 1. Methods used for determining moisture content of hay

The oven drying methods for determining moisture content of hay involve two main sources of error. The first is associated with continuing metabolic activity causing loss of material during drying of freshly harvested plants. McRostie and Hamilton (1927), Raymond (1951) and Davies <u>et al.</u> (1948) have investigated this problem. The second error arises from difficulty of completely removing the water from plants at a temperature which will not cause serious decomposition of plant material. Greenhill (1960) has conducted a comprehensive study on this aspect. While working with white clover, alfalfa and short rotation ryegrass he concluded: "Sufficient accuracy would be obtained by oven drying at 80°C at atmospheric pressure and for a standard period, say 16 hours."

His experiments consisted of oven drying hay samples at atmospheric pressure and:

(i) at 105<sup>o</sup>C (221<sup>o</sup>F) for periods of 3, 6, 16, 24, 48 and 96 hours

(ii) at  $80^{\circ}$ C (176°F) for the same periods (iii) at  $95^{\circ}$ C (203°F) for 16 hours.

At temperatures of  $105^{\circ}C$  (221°F) and  $80^{\circ}C$  (176°F) the loss of weight in terms of duration of drying was found to be a logrithmic relation of the form:

L = a log T + b

where: L = loss of weight, per cent

T = duration of drying, hrs

a and b = constants.

22

(7)

|              | ·             | Temper | ature        | <u></u> |
|--------------|---------------|--------|--------------|---------|
| Material     | 105°C (221°F) |        | 80°C (176°F) |         |
|              | "a"           | "L »   | "a"          | "b"     |
| White clover | 1.04          | 0.85   | 0.21         | 0.12    |
| Alfalfa      | 0.63          | 0.10   | 0.17         | 0.00    |
| Ryegrass     | 0.94          | 0.30   | 0.06         | 0.08    |

The reported values of "a" and "b" were as follows:

Greenhill (1960) also found that, white clover and alfalfa would begin to decompose and lose dry matter at a temperature somewhere between  $60^{\circ}C$  (140°F) and  $70^{\circ}C$  (158°F). The value for ryeqrass was estimated to lie between  $70^{\circ}C$  (158°F) and 80°C (176°F). However, while the method proposed by Greenhill has been used in the present study, it is well understood that at 176°F the pasture material does not attain a constant weight but the rate of loss of weight, after moisture removal can be assumed to have ceased, is very low. It is also acknowledged that some small amount of hygroscopic moisture will not be removed because of vapour pressure of air in which samples have been dried. The average residual moisture reported by Greenhill for samples dried at 80°C (176°F) was 0.5 per cent and will vary according to the actual vapour pressure of the atmosphere.

#### III. MATERIALS AND METHODS

#### 3.1. Design of Experiment

Two experimental trials, each consisting of a randomized complete block design having five treatments and four replications, were conducted. Table 2 summarizes the treatments.

| Treatment no | Treatment               | Figure no |
|--------------|-------------------------|-----------|
| 1            | Natural windrow         | la; 4a    |
| 2            | Inverted windrow        | 1b; 4b    |
| 3            | Trampled windrow        | lc; 4c    |
| 4            | Trampled windrow shaded | ld        |
| 5            | Natural windrow shaded  | le        |
| :            |                         | · :       |

TABLE 2. Treatments performed on hay windrows

Natural windrow refers to the undisturbed windrow as formed by the self-propelled windrower. The plants in this windrow were placed by the machine in a nearly upright position with heads pointing upward (Figures 1a; 4a). The inverted windrow was made by turning the natural windrow upside down. The heads of the plants in this windrow were pointing down (Figures 1b; 4b). The trampled windrow was formed by trampling the natural windrow. Trampling was used to reduce the included angles of the plants with the horizontal and increase the windrow density (Figures 1c; 4c).



Fig. 1. Treatments performed on hay windrows.


C

(

Fig. 1. Treatments performed on hay windrows.

25

. . . . . .

Shade was provided by 3/4 inch thick, 5 x 10-foot plywood sheets (Figures 1d, 1e) supported at a height of 2 1/2 feet over the windrow sections. Both sides of the plywood sheets were painted with two coats of white enamel paint. Complete shade was observed on the shaded sections between 8:00 am and 6:00 pm throughout the duration of the experiment. Shades were removed at 6:00 pm to provide similar conditions for moisture regain at night by the shaded and unshaded sections.

In the first trial which was conducted at the Macdonald College Farm, the first cut of a mixture of bromegrass and timothy was used as experimental material. The second trial was performed on the first cut of a red clover and alfalfa mixture on a private farm in the vicinity of Macdonald College.

## 3.2. Machine Description

The New Holland model 905 self-propelled windrower equipped with a 10-foot draper header and bat reel (Figure 2a) was used in this investigation. The plants cut by the central part of the cutter bar were guided by the reel to the central delivery opening which was 40 inches wide. The crop cut by the knife sections on either side of this central part fell on two rubberized canvas aprons with wooden slats which carried the material to the central delivery opening. The plants from the windrow thus formed passed through the "spiroll conditioner" consisting of a pair of counter-rotating crushing rolls, 8 inches in



Fig. 2a. New Holland self propelled windrower model 905 (Sperry Rand Corp.).



Fig. 2b. Spiroll Conditioner - 49 inches long, 8 inches in diameter counter rotating crushing rolls (Sperry Rand Corp.).



()

Fig. 2a. New Holland self propelled windrower model 905 (Sperry Rand Corp.).



Fig. 2b. Spiroll Conditioner - 49 inches long, 8 inches in diameter counter rotating crushing rolls (Sperry Rand Corp.). diameter and 49 inches long (Figure 2b). After passing through the crushing rolls, the material was placed in windrows by a deflector shield on the rear of the machine.

The machine was operated at approximately 4 miles per hour. It was felt that uniform forward speed was important for uniformity of windrow configuration.

### 3.3. Experimental Procedure

A test area approximately 40 x 70 feet (Figure 3) was chosen at each of the two locations. Treatments as listed in Table 2 were performed on the hay windrows soon after they were formed. The experimental blocks were designed to contain 70foot lengths of four successive windrows. The treatments within the blocks were applied to 10-foot long sections of the windrows within each experimental block, leaving a 5-foot length of untreated windrow between adjacent treatments.

Time involved in carrying out the required treatments subsequent to cutting affects results considerably (Shepherd, 1957). Therefore, treatments within the blocks were completed simultaneously, limiting the total time for treatments in all four blocks to 30 minutes. The order of treatments was randomized within each of the four blocks.

# 3.3.1. <u>Measurement of physical characteristics</u> of windrows

Orientation of plants in the natural windrow were measured by recording prominent vertical and horizontal angles





Letters (A, B, C, D) refer to the blocks Numbers (1, 2, 3, 4, 5) refer to the treatments as listed numerically in Table 2 W denotes the windrow width

Fig. 3. Layout of the experimental field.





Letters (A, B, C, D) refer to the blocks Numbers (1, 2, 3, 4, 5) refer to the treatments as listed numerically in Table 2 W denotes the windrow width

Fig. 3. Layout of the experimental field.

at which stems were arranged. The altered orientation of plants after the processes of inversion and trampling were described by measuring windrow configuration before and after the treatment. Windrow configuration was described by measuring width and height of the cross-section of windrows under each of the five treatments at 2-foot intervals along the windrow length. At each interval, height was measured at the center of the windrow and at one edge of it. Equivalent height of the windrow was defined as the average of these two heights. From these width and height measurements, cross-sectional areas at 2-foot intervals of the windrow length were computed on an IBM system 360/75.

## 3.3.2. Measurement of environmental conditions

A portable weather station was set up in the experimental field. The climatic variables that were recorded at regular intervals included dry bulb and wet bulb air temperatures, grass temperature by the side of the windrow, wind velocity and net solar radiation absorbed by the windrow.

A sling psychrometer was used for recording dry bulb and wet bulb air temperatures. Wind velocity was measured at an approximate height of 6 feet above ground level using a hand-held anemometer. The climatological data thus recorded appears in Appendix B.

A black globe thermometer proposed by Pereira, Bond and Morrison (1966) and a "Multiriter" recorder manufactured by

Texas Instruments were used to determine net radiation supplied to the windrow by the sun. The values of net radiation at 1/2 hour intervals are shown in Appendix C.

# 3.3.3. <u>Sampling technique and moisture</u> determination

Samples were required at various stages of drying for moisture determination. The "grab" sampling technique of Halyk and Bilanski (1966) was used. Two samples from each replication of a treatment were taken at the time of cutting, at 12:00 noon and at 6:00 pm on the first day and at 8:00 am, 12:00 noon and 6:00 pm on days subsequent to cutting. Additional samples (two from each replication) were taken during the second trial from the shaded and unshaded natural windrows to provide moisture contents at two-hour intervals between 8:00 am and 10:00 pm. Samples scheduled at 6:00 pm on July 16 were not taken because it was raining then. The sampling was resumed at 9:00 am on July 17.

Drying which occurs during the time of sampling of plots demands that sampling time be kept to a minimum. This time was limited to a maximum of 25 minutes for 40 samples taken at each of the 8:00 am, 12:00 noon and 6:00 pm samplings and a maximum of 10 minutes was allowed for the 16 samples taken at two-hour intervals mentioned above.

Samples were sealed in polythene bags and stored at  $35^{\circ}F$ until they were used for moisture determination. The moisture contents were determined by oven drying the samples at  $80^{\circ}C$ 

(172<sup>0</sup>F) for 16 hours according to the recommendation of Greenhill (1960).

-

;

.

:

## IV. RESULTS AND DISCUSSION

The effects of physical characteristics of windrows and environmental conditions on the drying characteristics of hay have been evaluated in three ways:

- (1) comparison of drying curves obtained by plotting moisture content versus drying time
- (2) comparison of time required for hay to reach a specific moisture level
- (3) comparison of moisture content at selected times after cutting by amalysis of variance techniques.

Comparison of the drying curves illustrates the relative drying characteristics of hay but the utility of this method is limited because the application of rigorous statistical approaches is difficult. The methods (2) and (3) listed above have an advantage in that the conventional methods of statistical amalysis can be used to establish significant differences. A comparison of moisture contents at selected times after cutting is particularly useful because the hay harvesting operations are usually scheduled on the basis of moisture content of hay at a given time of day.

### 4.1. Physical Characteristics of Windrows

Observations on the orientation of plants in the natural windrows revealed that such windrows consisted of two distinct

zones (Figure 4a). A zone of systematically arranged plants in sections 1 and 2 occupied either side of a narrow trough. The plants in these sections were placed in a nearly upright position with the heads pointing upward. Their included angles with the horizontal plane ranged from 45 to 60 degrees. These plants formed an angle of approximately 115 degrees with the direction of machine travel. The second zone consisted of some plants in random orientation in the central portion (section 3) of the windrow. The altered orientation of plants and windrow configuration after the processes of inversion and trampling are illustrated in Figures 4b and 4c, respectively.

The means and standard deviations of height, width and cross-sectional area of windrows under various treatments are shown in Tables 3, 4, 5 and 6. These values were obtained from the height and width measurements at 2-foot intervals along the windrow length. The computer programs used for these computations on an IBM system 360/75 appear in Appendix A.

The variability in cross-sectional area of natural windrows is illustrated in Figure 5. The coefficients of variability for width, height and cross-sectional area are shown in Table 7. The coefficients of variability for height and cross-sectional area of the natural windrows were found to be about 2 3/4 times greater than the corresponding value for width. There was no evidence that differences in variability exist between natural windrows and those that have been inverted or trampled. The densities of the inverted and



Fig. 4. Orientation of stems in the natural, inverted and trampled windrow.

÷

|           |             |          | TABLE  | 3         |        |         |       |
|-----------|-------------|----------|--------|-----------|--------|---------|-------|
| MEAN      | NS AND      | STANDARD | DEVIAT | IONS OF V | INDROW | HEIGHTS | .х.   |
|           |             |          | TRIAL  | 1         |        |         |       |
| BLOCK     | OBS.<br>PER | Н        | E      | I G       | н      | Т       | S     |
|           | BLOCK       |          | ~ F    | C T N1    |        | CONTVAL | C NIT |
|           |             | MEAN     | S D    | MEAN      | S D    | MEAN    | S D   |
| TREATMENT | 1           |          |        |           |        |         |       |
| ٨         | 6           | 7 1      | 1.2    | 10.4      | 2.1    | 8.8     | 1.7   |
| B         | 6           | 8.9      | 2.1    | 15.1      | 0.7    | 12.0    | 1.6   |
| Ċ         | 6           | 7.5      | 2.0    | 9.9       | 2.0    | 8.7     | 2.0   |
| D         | 6           | 7.2      | 3.3    | 13.3      | 4.3    | 10.2    | 3.8   |
| AVERAGE   | 24          | 7.7      | 2.3    | 12.2      | 2.6    | 9.9     | 2.5   |
| TREATMENT | 2           |          |        |           |        |         |       |
| Δ         | 6           | 8.1      | 1.9    | 10.2      | 2.2    | 9.2     | 2.1   |
| В         | 6           | 9.1      | 1.8    | 9.4       | 1.5    | 9.2     | 1.6   |
| C         | 6           | 6.1      | 2.2    | 8.7       | 2.5    | 7.4     | 2.3   |
| D         | 6           | 7.8      | 3.1    | 8.6       | 1.8    | 8.2     | 2.5   |
| AVERAGE   | 24          | 7.8      | 2.3    | 9.2       | 2.0    | 8.5     | 2.2   |
| TREATMENT | 3           |          |        |           |        |         |       |
| Δ         | 6           | 4.7      | 0.5    | 5.5       | 0.7    | 5.1     | 0.6   |
| B         | 6           | 4.0      | 0.5    | 4.4       | 1.8    | 4.2     | 1.3   |
| C         | 6           | 5.9      | 1.5    | 6.3       | 2.4    | 6.1     | 2.0   |
| D         | 6           | 5.1      | 0.5    | 6.4       | 1.6    | 5.8     | 1.2   |
| AVERAGE   | 24          | 4•9      | 0.9    | 5.6       | 1.7    | 5.3     | 1.4   |
| TREATMENT | 4           |          |        |           |        |         |       |
| Δ         | 6           | 4.2      | 1.2    | 5.8       | 1.1    | 5.0     | 1.2   |
| B         | 6           | 5.3      | 0.6    | 5.0       | 1.1    | 5.1     | 0.9   |
| Ċ         | 6           | 5.0      | 0.6    | 6.4       | 1.0    | 5.7     | 0.8   |
| D         | 6           | 4.2      | 1.0    | 5.7       | 1.3    | 5.0     | 1.2   |
| AVERAGE   | 24          | 4.7      | 0.9    | 5.7       | 1.2    | 5.2     | 1.0   |
| TREATMENT | 5           |          |        |           |        |         |       |
| Δ         | 6           | 7.3      | 1-8    | 10-4      | 1.5    | 8.9     | 1.6   |
| В         | 6           | 10.6     | 1.0    | 12.7      | 1.3    | 11.7    | 1.2   |
| С         | 6           | 9.7      | 4.0    | 12.2      | 3.5    | 11.0    | 3.8   |
| D         | 6           | 7.4      | 2.2    | 10.0      | 2.2    | 8.7     | 2.2   |
| AVERAGE   | 24          | 8.8      | 2.5    | 11.3      | 2.3    | 10.1    | 2•4   |

S D = STANDARD DEVIATION

Ś

|           |             |          | TABL   | Ξ 3     |         |         |     |
|-----------|-------------|----------|--------|---------|---------|---------|-----|
| MEA       | NS AND      | STANDARD | DEVIAT | IONS OF | WINDROW | HEIGHTS | 36  |
|           |             |          | TRIAL  | 1       |         |         |     |
| BLOCK     | OBS.<br>PER | н        | E      | I G     | ; н     | т       | S   |
|           | BLUCK       | ED       | GE     | CEN     | ITER    | EQUIVAL | ENT |
|           |             | MEAN     | S D    | MEAN    | S D     | MEAN    | S D |
| TREATMENT | 1           |          | و      |         |         |         |     |
| Α         | 6           | 7.1      | 1.2    | 10.4    | 2.1     | 8.8     | 1.7 |
| В         | 6           | 8.9      | 2.1    | 15.1    | 0.7     | 12.0    | 1.6 |
| С         | 6           | 7.5      | 2.0    | 9.9     | 2.0     | 8.7     | 2.0 |
| D         | • 6         | 7.2      | 3.3    | 13.3    | 4.3     | 10.2    | 3.8 |
| AVERAGE   | 24          | 7.7      | 2.3    | 12.2    | 2.6     | 9.9     | 2.5 |
| TREATMENT | 2           |          |        |         |         |         |     |
| А         | . 6         | 8.1      | 1.9    | 10.2    | 2.2     | 9.2     | 2.1 |
| В         | 6           | 9.1      | 1.8    | 9.4     | 1.5     | 9.2     | 1.6 |
| Ċ         | 6           | 6.1      | 2.2    | 8.7     | 2.5     | 7.4     | 2.3 |
| D         | 6           | 7.8      | 3.1    | 8.6     | 1.8     | 8.2     | 2.5 |
| AVERAGE   | 24          | 7.8      | 2.3    | 9.2     | 2.0     | 8.5     | 2.2 |
| TREATMENT | 3           |          |        |         |         |         | ·.  |
| А         | 6           | 4.7      | 0.5    | 5.5     | 0.7     | 5.1     | 0.6 |
| В         | 6           | 4.0      | 0.5    | 4.4     | 1.8     | 4.2     | 1.3 |
| С         | 6           | 5.9      | 1.5    | 6.3     | 2.4     | 6.1     | 2.0 |
| D         | 6           | 5.1      | 0.5    | 6.4     | 1.6     | 5.8     | 1.2 |
| AVERAGE   | 24          | 4.9      | 0•9    | 5.6     | 1.7     | 5.3     | 1.4 |
| TREATMENT | · 4         |          |        |         |         |         |     |
| Α         | 6           | 4.2      | 1.2    | 5.8     | 1.1     | 5.0     | 1.2 |
| В         | 6           | 5.3      | 0.6    | 5.0     | 1.1     | 5.1     | 0.9 |
| С         | 6           | 5.0      | 0.6    | 6.4     | 1.0     | 5.7     | 0.8 |
| D         | 6           | 4.2      | 1.0    | 5.7     | 1.3     | 5.0     | 1.2 |
| AVERAGE   | 24          | 4.7      | 0.9    | 5.7     | 1.2     | 5.2     | 1.0 |
| TREATMENT | Г 5         |          |        |         |         |         |     |
| А         | 6           | 7.3      | 1.8    | 10.4    | 1.5     | 8.9     | 1.6 |
| В         | 6           | 10.6     | 1.0    | 12.7    | 1.3     | 11.7    | 1.2 |
| С         | 6           | 9.7      | 4.0    | 12.2    | 3.5     | 11.0    | 3.8 |
| D         | 6           | 7•4      | 2.2    | 10.0    | 2.2     | 8.7     | 2.2 |
| AVERAGE   | 24          | 8.8      | 2.5    | 11.3    | 2.3     | 10.1    | 2.4 |

.

S D = STANDARD DEVIATION



TABLE 4

| MEANS AND | STANDARD | DEVIATIONS | OF | WINDROW | HEIGHTS |  |
|-----------|----------|------------|----|---------|---------|--|
|           |          |            |    |         |         |  |

TRIAL 2

| BLOCK     | OBS.<br>PER | н          | E          | Ι              | G H   | т      | S   |
|-----------|-------------|------------|------------|----------------|-------|--------|-----|
|           | BLOCK       | ED         |            | <b>C G</b>     | NTED  | FOUTVA |     |
|           |             | EU         | UE _       |                | INTER | EQUIVA |     |
|           |             | MEAN       | 50         | MEAN           | SD    | MEAN   | SD  |
| TREATMENT | 1           |            |            |                |       |        |     |
| А         | 6           | 7.5        | 1.4        | 10.5           | 2.0   | 9.0    | 1.7 |
| В         | 6           | 5.6        | 1.0        | 12.3           | 2.9   | 8.9    | 2.1 |
| C         | 6           | 9.1        | 1.0        | 11.6           | 2.8   | 10.3   | 2.1 |
| D         | 6           | 8.5        | 1.8        | 10.8           | 3.4   | 9.7    | 2.7 |
| AVERAGE   | 24          | 7.7        | 1.3        | 11.3           | 2.8   | 9.5    | 2.2 |
| TREATMENT | 2           |            |            |                |       |        |     |
| Δ         | 6           | 9.7        | 2.0        | 11.3           | 2.1   | 10.5   | 2.1 |
| B         | 6           | 6.8        | 0.6        | 8.9            | 2.4   | 7.8    | 1.8 |
| ř         | 6           | 7.0        | 15         | 10.8           | 2.0   | 8.9    | 1.7 |
|           | 4           |            | 27         | 10.0           | 2.00  | 0.4    | 2 5 |
| U         | 0           | 9.0        | 2          | 10.2           | 2 • 5 | 9.0    | 205 |
| AVERAGE   | 24          | 8.1        | 1.8        | 10.3           | 2.2   | 9.2    | 2.0 |
| TREATMENT | 3           |            |            |                |       |        |     |
| Α         | 6           | 5.7        | 0.7        | 5.3            | 0.7   | 5.5    | 0.7 |
| В         | 6           | 4.7        | 1.1        | 5.4            | 1.3   | 5.0    | 1.2 |
| C C       | 6           | 4.2        | 1.2        | 6.0            | 1.9   | 5.1    | 1.6 |
| ט<br>ה    | 6           | 4 7        | 1•2<br>0 4 | 5 2            | 1.0   | 2 Q    | 0 7 |
| U         | 0           | 7.1        | 0.4        | 5.2            | 0.9   |        | 0.1 |
| AVERAGE   | 24          | 4.8        | 0.9        | 5.5            | 1.3   | 5.1    | 1.1 |
| TREATMENT | 4           |            |            |                |       |        |     |
| А         | 6           | 4.8        | 0.7        | 5.6            | 2.2   | 5.2    | 1.6 |
| B         | 6           | 5.6        | 1.0        | 5.1            | 0.8   | 5.3    | 0.9 |
| C<br>C    | 6           | 5 /        | 2 0        | 5 6            | 1 2   | 5 5    | 17  |
|           | 6           | J•4<br>5 1 | 2.0        | 2 • 0<br>4 · 2 | 1 2   | 54     | 1 1 |
| U         | 0           | 2.1        | 0.9        | 0.2            | 1•2   | 2.0    | 1•1 |
| AVERAGE   | 24          | 5.2        | 1.3        | 5.6            | 1.5   | 5.4    | 1.4 |
| TREATMENT | 5           |            |            |                |       |        |     |
| А         | 6           | 8.9        | 1.9        | 10.4           | 3.4   | 9.7    | 2.7 |
| В         | 6           | 7.0        | 1.6        | 12.2           | 1.8   | 9.6    | 1.7 |
| Ċ.        | 6           | 9.7        | 1.3        | 12.7           | 2.9   | 11.2   | 2.2 |
| Ď         | 6           | 10.4       | 3.1        | 10.7           | 2.0   | 10.5   | 2.6 |
| AVERAGE   | 24          | 9.0        | 2.1        | 11.5           | 2.6   | 10.2   | 2•4 |

S D = STANDARD DEVIATION

.

MEANS AND STANDARD DEVIATIONS OF WINDROW WIDTHS

TRIAL 1.

.

| BLOCK    | OBS.<br>PFR |      | т   | R    | E   | А    | т   | M E   | N   | Т    |     |
|----------|-------------|------|-----|------|-----|------|-----|-------|-----|------|-----|
|          | BLOCK       |      | 1   |      | 2   |      | 3   |       | 4   | 1    | 5   |
|          |             | MEAN | S D | MEAN | S D | MEAN | S D | MEAN  | S D | MEAN | S D |
| А        | 6.          | 41.1 | 3.3 | 30.1 | 2.9 | 46.9 | 4.5 | 44.0  | 1.9 | 38.4 | 4.5 |
| В        | 6           | 42.5 | 2.7 | 29.2 | 5.0 | 43.2 | 4.1 | 44.3  | 4.9 | 33.2 | 2.4 |
| С        | 6           | 38.2 | 2.5 | 30.8 | 2.9 | 47.3 | 6.9 | 42.3. | 7.4 | 45.0 | 8.8 |
| D        | 6           | 39.7 | 4.0 | 31.1 | 4.7 | 39.0 | 6.0 | 43.2  | 4.1 | 41.8 | 3.7 |
| AVERAGE  | 24          | 40.4 | 3.2 | 30.3 | 4.0 | 44.1 | 5.5 | 43.5  | 5.0 | 39.6 | 5.4 |
|          |             |      |     |      |     |      |     |       |     |      |     |
| TRIAL 2. |             |      |     |      |     |      |     |       |     |      |     |
| А        | 6           | 45.3 | 4.5 | 28.7 | 4.0 | 46.8 | 7.1 | 47.8  | 1.9 | 45.2 | 4.7 |
| В        | 6           | 48.5 | 2.9 | 32.7 | 4.5 | 45.5 | 3.4 | 47.0  | 3.5 | 46.3 | 6.0 |
| С        | 6           | 42.7 | 6.1 | 30.5 | 4.5 | 50.7 | 4.0 | 45.7  | 4.2 | 46.2 | 1.7 |
| D        | 6           | 51.7 | 4.8 | 36.8 | 8.2 | 45.2 | 1.9 | 48.7  | 2.3 | 52.3 | 6.9 |
| AVERAGE  | 24          | 47.0 | 4.7 | 32.2 | 5.6 | 47.0 | 4.5 | 47.3  | 3.1 | 47.5 | 5.2 |
|          |             |      |     |      |     |      |     |       |     |      |     |

. . . .

S D = STANDARD DEVIATION

3

38

.

| TRIAL 1. |             |       |                |       |      |                |       |       |      |       |       |
|----------|-------------|-------|----------------|-------|------|----------------|-------|-------|------|-------|-------|
| BLOCK    | OBS.<br>PER |       | Т              | R     | E    | А              | Т     | М     | E N  | т     |       |
|          | BLOCK       |       | 1              |       | 2    |                | 3     |       | 4    |       | 5     |
|          |             | MEAN  | S D            | MEAN  | S D  | MEAN           | S D   | MEAN  | S D  | MEAN  | S D   |
| А        | 6           | 361.0 | 58.9           | 275.1 | 59.9 | 239.0          | 32.7  | 219.1 | 45.5 | 342.2 | 54.7  |
| В        | 6           | 513.4 | 80.5           | 264.8 | 34.2 | 178.7          | 41.3  | 226.5 | 39.0 | 386.3 | 24.9  |
| С        | 6           | 329.0 | 62.4           | 227.2 | 40.4 | 285.9          | 72.6  | 236.1 | 21.4 | 499.9 | 159.7 |
| D        | 6           | 412.3 | 173 <b>.</b> 2 | 253.8 | 59.9 | 227.5          | 62.1  | 216.1 | 60.5 | 364.5 | 87.7  |
| AVERAGE  | 24          | 403.9 | 104.7          | 255.2 | 49•9 | 232.8          | 54•6  | 224.5 | 43.9 | 398.2 | 95.9  |
| TRIAL 2. |             |       |                |       |      |                |       |       |      |       |       |
| Δ        | 6           | 408.4 | 71.1           | 304.9 | 88.1 | 255:7          | 34.0  | 247.5 | 54.0 | 442.0 | 142.1 |
| B        | 6           | 435.8 | 105.2          | 252.7 | 38.6 | 228.5          | 46.6  | 251.2 | 46.6 | 446.7 | 98.9  |
| C        | 6           | 442 5 | 109 3          | 270 6 | 56 2 | 258 1          | 46 0  | 255 1 | 71 3 | 515 2 | 87 2  |
| D D      | 6           | 500.1 | 87.7           | 350.9 | 87.9 | 223.1          | 22.3  | 273.3 | 30.0 | 561.5 | 183.6 |
| U        | 0           | 20001 | 0101           | 550.7 | 0107 | <i>LLJ</i> • I | ~~• / | 21000 | 20.0 | 20102 | 10300 |
| AVERAGE  | 24          | 446.7 | 94.3           | 294.8 | 71.0 | 241.4          | 38.5  | 256.8 | 52.6 | 491.4 | 133.5 |

.

TABLE 6

# MEANS AND STANDARD DEVIATIONS OF WINDROW CROSSECTIONAL AREAS

S D = STANDARD DEVIATION



Fig. 5. Variability in computed values of cross-sectional area of the natural windrow at 2-foot intervals along the windrow length.

۰.

trampled windrows were found to be 1.5 and 1.8 times the density of the natural windrows respectively. These estimates of windrow densities were based on cross-sectional area of windrows.

| Treat <b></b><br>ment<br>no        |                                     | Trial l                              |                                      | Trial 2                            |                                      |                                      |  |  |
|------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|------------------------------------|--------------------------------------|--------------------------------------|--|--|
|                                    | Width                               | Height                               | Cross <b>-</b><br>sectional<br>area  | Width                              | Height                               | Cross <b>-</b><br>sectional<br>area  |  |  |
| 1<br>2 <sup>.</sup><br>3<br>4<br>5 | 7.9<br>13.1<br>12.4<br>11.4<br>13.6 | 25.2<br>25.9<br>26.4<br>19.6<br>23.7 | 25.9<br>19.3<br>23.4<br>19.5<br>24.0 | 10.0<br>17.3<br>9.5<br>6.5<br>10.9 | 23.1<br>21.7<br>21.5<br>25.9<br>23.5 | 21.0<br>24.0<br>15.9<br>20.4<br>27.1 |  |  |

TABLE 7. Coefficients of variability for width, height and cross-sectional area of windrows under various treatments

#### 4.2. Environmental Conditions

The values of wind velocity, grass temperature by the side of the windrow, air temperature, wet bulb depression, relative humidity, and precipitation, recorded at different times of the day during the periods of the two experimental trials, are shown in Appendix B. The net solar radiation absorbed by the windrows was computed on an IBM system 360/75 using the black globe thermometer readings. The computer program and printout of results appear in Appendix C. These data illustrate variability of the environment during the drying period of hay in a typical climate of southwestern Quebec. The wind velocity and solar radiation data have been used to study the effects of these variables on drying characteristics of hay in windrows of different configurations and stem orientations.

# 4.3. Drying Characteristics

## 4.3.1. Comparison of drying curves

The drying curves for the various treatments (Figures 6 through 13) have been developed from the moisture content data shown in Appendix D. Each point on these drying curves is an average of 8 observations obtained by taking two samples from each of the four replications of each treatment. The tables of moisture content data have been arranged according to the sampling schedule that was followed. The experimental site, date and time of each sampling are indicated in the table headings. The first sampling was made at the time of cutting. The program used for computations of moisture contents on the IBM system 360/75 computer appears in the beginning of Appendix D.

In the first experimental trial with a mixture of bromegrass and timothy, only small differences appeared between the drying rates of the natural and the inverted windrows. But after the hay was rained on, the inverted windrows dried faster than the natural windrows (Figure 6). In the second trial, using a mixture of red clover and alfalfa, the natural windrows dried faster than the inverted windrows (Figure 7).

Trampled windrows dried at a rate much lower than either natural or inverted windrows in both the trials (Figures 6 and 7). This appears logical because the external resistance to diffusive and turbulent vapour flow through air surrounding the plant surfaces would increase as density of the bulked material increased and wind speed decreased. Because the trampled windrows were 1.8 times more dense than the natural windrows, their external resistance would be greater than that of the natural windrows. Above a given wind speed the natural windrows would be expected to dry faster than the trampled windrows.

The curve of wind speeds recorded at half-hour intervals on the experimental site was superimposed on the drying curves (Figures 8 and 9). These figures provide evidence of a steeper slope of drying curves during periods of high wind speeds. This can be attributed to decrease in external resistance with increasing wind speeds. In the windrowed material, an accumulation of vapour within the air spaces results in a decrease of plant to air vapour pressure gradients and lower rates of drying. Higher wind speeds could remove accumulated vapour from the air spaces and accelerate drying.

During the first trial wind was very calm. The average and maximum wind speeds for the three-day period were 2 and 7 mph respectively. The wind speeds were exceptionally high during the second trial and the corresponding values during this period were 5 and 16 mph.

In comparing the drying characteristics of the natural and the inverted windrows, external resistance to the vapour movement due to the influence of windrow density and wind velocity require consideration. The inverted windrows were found to have a density of 1.6 and 1.5 times the density of the natural windrows in trials 1 and 2 respectively. Direct comparisons are therefore not possible, because the slower drying in the trampled windrows shows that windrow density is an important factor influencing drying rate. The drying rate of the inverted windrows was close to that of the natural windrows in the first trial because wind speeds were very low. The increase in external resistance due to increase in density that accompanied inversion was probably much less than the high value of external resistance that prevailed due to calm wind.

۰--

In comparing results of the first and second trials for comparative drying rates in the natural and inverted windrows, differences in crop characteristics must be considered in addition to the possible differences in external resistance due to different windrow densities and air speeds in the two cases. In spite of the higher density of the inverted windrows in the first trial as compared to the second, the drying rates of the inverted windrows were closer to that of natural windrows in the first trial. The higher drying rate for the natural windrow than the inverted windrow, in the second trial may be attributed to:

(a) lower value of external resistance due to lower windrow

density accompanied by high wind speed

-

(b) the presence of more leaves in the mixture of red clover and alfalfa than in the bromegrass and timothy mixture used in the first trial. This is in agreement with the claim of Jones and Palmer (1933) that the leaves of plants are natural agencies for disposal of plant moisture. As such, they should remain more exposed to the external drying conditions for a higher evaporation rate of the water conducted to them by the stems.

The conclusions from these findings are as follows: (a) in wind regimes having high wind speeds, windrow density would be a critical factor influencing drying rate

(b) the relative advantage obtained from drying hay in windrows with heads pointing upward versus heads pointing downward will vary with different hay crops. In the case of hay species having a high percentage of leaves, an upright orientation of the plants with the heads pointing upward is more desirable.

Estimates of stomatal, cuticular and external resistances of clover (Shepherd, 1964) show that the drying rate of hay would increase by 200 per cent if the external resistance could be reduced to zero.

Shepherd (1965) reported a lower rate of drying of high moisture bulked material than of single units when the upper air speeds were non-limiting. This indicated some retention of external resistance by units within the bulk. The external resistance, therefore, cannot become zero, but could be reduced to a certain minimum value which will be influenced jointly by wind velocity, windrow density and possibly orientation of plants within the windrow. In natural drying of hay, very little control over wind speed is possible. It is therefore important to define the structure of an ideal windrow which will have minimum external resistance.

Shaded windrows were found to dry much slower than the unshaded windrows (Figures 10 through 13). In general the moisture differential between the shaded and unshaded windrows increased during the period between 12:00 noon and 6:00 pm when the intensity of solar radiation was highest (Figures 12 and 13). These statements are not true for the drying period following 0.38 inch rain during the first trial. The reason is that the shades remained on the shaded treatments during the period of rain and the rewetting of the hay was less in these treatments than the unshaded treatments.

The moisture differential between shaded and unshaded windrows was higher when hay was left to dry in the trampled windrows (Figures 11 and 13) compared with corresponding moisture differential in the natural windrows (Figures 10 and 12). This shows that the effect of solar radiation on the drying rate of hay in windrows depends upon windrow configuration, the results being in favour of the trampled windrows as compared with the natural windrows.

The moisture differential between shaded windrows in natural and trampled conditions (Figure 9) was found to be considerably greater than the corresponding moisture differential in unshaded windrows (Figure 8). This variability in moisture differential in the two cases confirms the earlier finding that the drying effect due to solar radiation was more pronounced in the trampled than in the natural windrows. Under shaded conditions this drying advantage of trampled windrows was controlled which resulted in a greater moisture differential compared with corresponding moisture differential in the windrows exposed to the sun.

The results showed that the amount of water evaporated (lbs/btu) from the inverted and trampled windrows was approximately 1 1/4 times greater than the corresponding moisture loss from the natural windrows (Table 8). The calculations were based on drying periods between 8:00 am and 6:00 pm for three days following cutting of the hay.

Since the surface areas of the natural windrows were approximately 1 1/4 times greater than those of the inverted and trampled windrows, this difference in the drying characteristics was not due to the lower value of net radiation on the natural windrows. However, it can be attributed to different methods of heat transfer in the two cases.

In drying with solar radiation the hay becomes warmer than the surrounding air and hay loses heat to the air. An increase in air velocity when heating by radiation decreases

surface temperature of the hay, increasing the heat losses and decreasing the rate of drying. Favourable drying effects of 'solar radiation in the case of the trampled windrows compared with the natural windrows may be attributed to lower rates of air movement in the trampled windrows.

During the transfer of solar radiant heat from the windrow surface to the interior of the windrow, the process of conduction would be dominant in the system consisting of plants in the trampled windrows. In the case of the natural windrows, heat transfer would be controlled by convection rather than conduction. In convection drying heat moves from the air to the product. Since the hay would be at a higher temperature than the surrounding air when solar drying is prominent, convection drying does not occur.

It can be concluded from these results that solar radiation is effective in augmenting heat transfer and accelerating drying rates. Furthermore, compact windrows would be desirable to accelerate drying effects due to this environmental variable alone. It is well understood, however, that the compaction of windrows may slow down drying effects due to other climatic variables.



Fig. 6. Effects of stem orientation on the drying of crushed hay in windrows (Trial 1).



Fig. 7. Effects of stem orientation on the drying of crushed hay in windrows (Trial 2).



Fig. 8. Wind speed effects on drying of crushed hay in the unshaded windrows of different configurations (Trial 2).



Fig. 9. Wind speed effects on drying of crushed hay in the shaded windrows of different configurations (Trial 2).



Fig. 10. Solar radiation effects on drying of crushed hay in the natural windrows (Trial 1).



Fig. 11. Solar radiation effects on drying of crushed hay in the trampled windrows (Trial 1).

54



Fig. 12. Solar radiation effects on drying of crushed hay in the natural windrows (Trial 2).





Fig.13. Solar radiation effects on drying of crushed hay in the trampled windrows (Trial 2).

TABLE 8. Effects of stem orientation on drying due to solar radiation

| Natural windrow |                                                                               |                                                                                                                                          | Inv                                                                                                                                                                                                                                                                                       | erted wi                                                                                                                                                                                                                                                                                                                                             | ndrow                                                                                                                                                                                                                                                                                                                                                                                                                             | Trampled windrow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|-----------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ·Day 1          | Day 2                                                                         | Day 3                                                                                                                                    | ·Day·l·                                                                                                                                                                                                                                                                                   | Day 2                                                                                                                                                                                                                                                                                                                                                | Day 3                                                                                                                                                                                                                                                                                                                                                                                                                             | Day 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Day 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Day 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 70.2            | 35.7                                                                          | 26.3                                                                                                                                     | 70.2                                                                                                                                                                                                                                                                                      | 34.9                                                                                                                                                                                                                                                                                                                                                 | 25.2                                                                                                                                                                                                                                                                                                                                                                                                                              | 70.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 36.1            | 13.6                                                                          | 13.6                                                                                                                                     | 42.1                                                                                                                                                                                                                                                                                      | 17.0                                                                                                                                                                                                                                                                                                                                                 | 16.0                                                                                                                                                                                                                                                                                                                                                                                                                              | 47.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 8.82            | 4.23                                                                          | 2.43                                                                                                                                     | 8.02                                                                                                                                                                                                                                                                                      | 3.56                                                                                                                                                                                                                                                                                                                                                 | 1.81                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 52.30           | 89.24                                                                         | 76.92                                                                                                                                    | 52.30                                                                                                                                                                                                                                                                                     | 89.24                                                                                                                                                                                                                                                                                                                                                | 76.22                                                                                                                                                                                                                                                                                                                                                                                                                             | 52.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 89.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 76.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 58.62           | 58.62                                                                         | . 58.62                                                                                                                                  | 47.10                                                                                                                                                                                                                                                                                     | 47.10                                                                                                                                                                                                                                                                                                                                                | 47.10                                                                                                                                                                                                                                                                                                                                                                                                                             | 47.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 47.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 47.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 3065.82         | 5231.24                                                                       | 4509.05                                                                                                                                  | 2463.33                                                                                                                                                                                                                                                                                   | 4203.20                                                                                                                                                                                                                                                                                                                                              | 3622.93                                                                                                                                                                                                                                                                                                                                                                                                                           | 2460.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4198.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3619.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| .002880         | .000808                                                                       | .000539                                                                                                                                  | •003256                                                                                                                                                                                                                                                                                   | .000847                                                                                                                                                                                                                                                                                                                                              | .000499                                                                                                                                                                                                                                                                                                                                                                                                                           | .002934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .001455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .000320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| -<br>           | .004270                                                                       |                                                                                                                                          |                                                                                                                                                                                                                                                                                           | .004602                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .004709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                 | Nati<br>Day 1<br>70.2<br>36.1<br>8.82<br>52.30<br>58.62<br>3065.82<br>.002880 | Natural wind   Day 1 Day 2   70.2 35.7   36.1 13.6   8.82 4.23   52.30 89.24   58.62 58.62   3065.82 5231.24   .002880 .000808   .004270 | Natural windrow     Day 1   Day 2   Day 3     70.2   35.7   26.3     36.1   13.6   13.6     36.1   13.6   13.6     8.82   4.23   2.43     52.30   89.24   76.92     58.62   58.62   58.62     3065.82   5231.24   4509.05     .002880   .000808   .000539     .004270   .004270   .004270 | Natural windrow   Invi     Day 1   Day 2   Day 3   Day 1     70.2   35.7   26.3   70.2     36.1   13.6   13.6   42.1     8.82   4.23   2.43   8.02     52.30   89.24   76.92   52.30     58.62   58.62   58.62   47.10     3065.82   5231.24   4509.05   2463.33     .002880   .000808   .000539   .003256     .004270   .004270   .003256   .004270 | Natural windrow   Inverted windrow     Day 1   Day 2   Day 3   Day 1   Day 2     70.2   35.7   26.3   70.2   34.9     36.1   13.6   13.6   42.1   17.0     8.82   4.23   2.43   8.02   3.56     52.30   89.24   76.92   52.30   89.24     58.62   58.62   58.62   47.10   47.10     3065.82   5231.24   4509.05   2463.33   4203.20     .002880   .000808   .000539   .003256   .000847     .004270   .004602   .004602   .004602 | Natural windrow   Inverted windrow     Day 1   Day 2   Day 3   Day 1   Day 2   Day 3     70.2   35.7   26.3   70.2   34.9   25.2     36.1   13.6   13.6   42.1   17.0   16.0     8.82   4.23   2.43   8.02   3.56   1.81     52.30   89.24   76.92   52.30   89.24   76.22     58.62   58.62   58.62   47.10   47.10   47.10     3065.82   5231.24   4509.05   2463.33   4203.20   3622.93     .002880   .000808   .000539   .003256   .000847   .000499     .004270   .004602   .004602   .004602   .004602 | Natural windrow   Inverted windrow   Train     Day 1   Day 2   Day 3   Day 1   Day 2   Day 3   Day 1     70.2   35.7   26.3   70.2   34.9   25.2   70.2     36.1   13.6   13.6   42.1   17.0   16.0   47.1     8.82   4.23   2.43   8.02   3.56   1.81   7.22     52.30   89.24   76.92   52.30   89.24   76.22   52.30     58.62   58.62   58.62   47.10   47.10   47.05     3065.82   5231.24   4509.05   2463.33   4203.20   3622.93   2460.72     .002880   .000808   .000539   .003256   .000847   .000499   .002934     .004270   .004602   .004602   .004602   .004602 | Natural windrow   Inverted windrow   Trampled windrow     Day 1   Day 2   Day 3   Day 1   Day 2   Day 3   Day 1   Day 2     70.2   35.7   26.3   70.2   34.9   25.2   70.2   50.7     36.1   13.6   13.6   42.1   17.0   16.0   47.1   32.9     8.82   4.23   2.43   8.02   3.56   1.81   7.22   6.11     52.30   89.24   76.92   52.30   89.24   76.22   52.30   89.24     58.62   58.62   58.62   47.10   47.10   47.05   47.05     3065.82   5231.24   4509.05   2463.33   4203.20   3622.93   2460.72   4198.74     .002880   .000808   .000539   .003256   .000847   .000499   .002934   .001455     .004270   .004602   .004709   .004709   .004709 |  |

Note: Calculations are based on 10-foot length of the windrow and for drying period between 8:00 am and 6:00 pm.

. 57
## 4.3.2. <u>Comparison of time required for hay to</u> reach 25 per cent moisture level

Time required for the hay windrows under various treatments to dry to 25 per cent moisture content is shown in Figure 14. In the first experimental trial, natural and inverted windrows required 25 1/2 and 25 hours respectively. The corresponding times for these same treatments in the second trial were 27 1/4 and 30 1/2 hours. The possible reason for inverted windrows to dry slightly faster in the first and considerably slower in the second trial, as compared with natural windrows, has been discussed in the section on comparison of drying curves. Natural windrow shaded and trampled windrow of trial 2 were the only other treatments that reached 25 per cent moisture level. The exposure times were 50 and 53 hours, respectively. The times represented by the broken bars could not be recorded because the windrows under these treatments did not reach 25 per cent moisture during the periods for which the experiments were conducted.

During the first trial, 0.38 inch rain fell between 5:30 pm on the second day and 8:00 am on the third day, following the morning on which the material was cut. Moisture contents of the hay after rewetting in the unshaded treatments, recorded at 9:00 am on the third day since cutting, were somewhat higher than those at the time of cutting. The corresponding moisture content recorded simultaneously for the shaded treatments was slightly lower than those at the time of cutting because the shades remained on these treatments during the period of rain and rewetting of the hay was to a lesser extent. Following the rain, only the



Fig. 14. Time required for crushed hay in windrows under various treatments to dry to 25 per cent moisture content (wb).



Fig. 14. Time required for crushed hay in windrows under various treatments to dry to 25 per cent moisture content (wb).

. 9 hay in the natural and the inverted windrows reached a 25 per cent moisture level within the duration of the experiment. Thus, the hay which had reached the moisture content of 25 per cent 25 hours after it was cut, could not be bailed for over 70 hours since cutting because of 0.38 inch rainfall. This single example points out the kinds of delays that may be expected when such rain showers occur during hay harvesting.

#### 4.3.3. <u>Comparison of moisture contents at</u> selected times after cutting

Analysis of variance of moisture contents at 12:00 noon on the day following the morning on which the material was cut appears in Table 9. Differences in moisture content amongst treatments were highly significant and differences amongst blocks were non-significant at the 1% level in both trials. Experimental error was used as a basis for testing the hypothesis concerning the differences of moisture contents of the treatments and blocks. An analysis of variance after angular transforms of moisture content percentages (Snedecor, 1961) did not alter these conclusions.

A comparison of the treatment means, using Duncan's new multiple range test, is shown in Table 10. Any two means not underscored by the same line are significantly different from each other. The means underscored by the same line are not significantly different from each other.

| Source of variation                                                                                              | df                                                                     | SS                                                                               | MS                                                    | F                                                                      |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------|
| Trial 1 - 25 hours aft                                                                                           | er cut                                                                 | ting                                                                             |                                                       | •                                                                      |
| Blocks<br>Treatments<br>Experimental error<br>Sampling error                                                     | 3<br>4<br>12<br>20                                                     | 2.22<br>455.28<br>7.18<br>31329.36                                               | 0.74<br>113.82<br>0.59<br>1566.46                     | 1.234 ns<br>190.333 **                                                 |
| Trial 2 7 28 hours aft                                                                                           | er cut                                                                 | ting                                                                             |                                                       |                                                                        |
| Blocks<br>Treatments<br>Experimental error<br>Sampling error                                                     | 3<br>4<br>12<br>20                                                     | 1.36<br>1402.63<br>24.31<br>43169.72                                             | 0.45<br>350.66<br>2.03<br>2158.48                     | 0.224 n<br>173.078 **                                                  |
| ns denotes a non-sign<br>** denotes a highly s<br>(Steel and Torie,                                              | ifican<br>ignific<br>1960)                                             | t difference<br>cant differen                                                    | nce at 1% 1                                           | evel                                                                   |
| ns denotes a non-sign<br>** denotes a highly s<br>(Steel and Torie,<br>TABLE 10. Comparison<br>various treatment | ifican<br>ignific<br>1960)<br>of tl<br>s (Dund                         | t difference<br>cant differen<br>ne mean mo<br>can's new mu                      | nce at 1% 1<br>isture con<br>ltiple rang              | evel<br>tents of the<br>e test)                                        |
| ns denotes a non-sign<br>** denotes a highly s<br>(Steel and Torie,<br>TABLE 10. Comparison<br>various treatment | ifican<br>ignific<br>1960)<br>of tl<br>s (Dund                         | t difference<br>cant differen<br>ne mean mo<br>can's new mu                      | nce at 1% 1<br>isture con<br>ltiple rang              | evel<br>tents of the<br>e test)                                        |
| TABLE 10. Comparison<br>various treatment                                                                        | ifican<br>ignific<br>1960)<br>s (Dund<br>er cut                        | t difference<br>cant differen<br>ne mean mo<br>can's new mu<br>ting              | nce at 1% 1<br>isture con<br>ltiple rang              | evel<br>tents of the<br>e test)                                        |
| TABLE 10. Comparison<br>various treatment<br>Trial 1 - 25 hours aft<br>2<br>25.0                                 | ifican<br>ignific<br>1960)<br>s (Dund<br>er cut<br>1<br>25.2           | t difference<br>cant differen<br>ne mean mo<br>can's new mu<br>ting<br>5<br>28.2 | nce at 1% 1<br>isture con<br>ltiple rang<br>3<br>35.2 | evel<br>tents of the<br>e test)<br>4 <sup>a</sup><br>42.6 <sup>b</sup> |
| TABLE 10. Comparison<br>various treatment<br>Trial 1 - 25 hours aft<br>2<br>25.0<br>Trial 2 - 28 hours aft       | ifican<br>ignific<br>1960)<br>of the<br>s (Dund<br>er cut<br>1<br>25.2 | t difference<br>cant differen<br>can's new mu<br>ting<br>5<br>28.2<br>ting.      | nce at 1% 1<br>isture con<br>ltiple rang<br>3<br>35.2 | evel<br>tents of the<br>e test)<br>4 <sup>a</sup><br>42.6 <sup>b</sup> |

TABLE 9. Analysis of variance of the moisture contents

b Moisture content (% wb).

#### V. SUMMARY AND CONCLUSIONS

1. The drying advantage obtained due to orientation of plants in hay windrows, with plant heads pointing upward versus downward, will vary with different species of hay crops. An upright orientation with plant heads pointing upward is desirable for faster drying of plant species having a high percentage of leaves.

2. The variability associated with configuration of windrows formed by a self-propelled windrower was found to be high. The coefficient of variability for windrow width was approximately 9 per cent and the corresponding value for height and cross-sectional area was about 2 3/4 times as great. A comparison of the calculated values of the coefficient of variability for windrow width, height and cross-sectional area, as a measure of machine performance, was not possible because data on physical characteristics of windrows were not available in the published literature.

3. The rate of drying crushed hay in windrows increased as wind velocity increased and windrow density decreased. The higher drying rate may be attributed to a lower value of external resistance to diffusive and turbulent vapour flow through air surrounding the plant surfaces under these external conditions.

4. Important changes in windrow density occur during manual handling of windrows. It was found that even in careful inversion, windrow density increased to 1 1/2 times. Since drying rate was found to decrease with increase in windrow density, the importance of eliminating operations on windrows which would cause an increase in their density becomes obvious.

5. Compact windrows are desirable to accelerate drying on account of solar radiation heat input alone. This may be attributed to lower rates of air movement in compact windrows and increased heat transfer by conduction as compared to convective heat transfer. When heating by solar: radiation, increased air velocity in fluffy windrows decreases surface temperature of the hay, increasing the heat loss and decreasing the rate of drying.

VI. APPLICATION OF THE FINDINGS

Of the hay conditioners now available on the market, some place plants in windrows with heads pointing upward whereas others cause stems to stick upward. For example, the New Holland self-propelled windrower model 905 used in this study placed crushed hay plants with heads pointing upward. International Harvester (n.d.) claims in its advertising literature that its hay conditioners models 33, 34 and 2A "deposit crushed hay with stems up". Based on our finding that the drying rates obtained in these two orientations will vary with different species of hay crops, a design capable of providing any desired orientation is ideal from the standpoint of functional requirement. However, the machine design aspects of additional mechanisms and increased cost may not justify On the farms where a single hay crop is grown, additional this. features to alter stem orientation may not be required in the machine. The choice of a favourable orientation for this crop could be possible at the time of machinery selection.

The machine used in the present investigation placed stems in windrows with plant heads pointing upward. The heads were pointing inward in section 1 and outward in section 2 as shown in the plan of windrow (Figure 4a). For greater exposure of leaves to environmental conditions which is the reason for

placing the plants with heads pointing upward, the plant heads in both the sections should point outward.

Placing hay in the inverse orientation with heads down and stems up shields the leaves from the sun and suppresses their drying rate compared to the drying rate of the stems. This would be desirable for reducing leaf loss. However, in this orientation the weaker part of the stem was at the bottom of the windrow. This caused the stems to bend, resulting in an apparent increase in windrow density. Since windrow density affects the drying rate of hay, these considerations are important in evaluating the relative merits of various orientations and in establishing a design criterion.

#### VII. RECOMMENDATIONS FOR FURTHER RESEARCH

1. Difficulties encountered with experimental methods and interpretation of results obtained emphasize the need for standardization of sampling techniques and procedures for moisture content determination. Shepherd (1957) attests to the practical difficulties associated with the variability of hay material and has suggested sampling methods. Based on a review of previous researches and results obtained from laboratory experiments, Greenhill (1960) has recommended procedures for determining moisture content of herbage. Association of Official Agricultural Chemists has established official methods for moisture content determination for several materials. Unfortunately, standard research procedures for hay have not been established yet.

2. The resistance to diffusive and turbulent vapour flow through air surrounding the plant surface slows the drying rate of windrowed hay. This resistance is influenced jointly by wind velocity, windrow density and orientation of plants in a windrow. In the field drying of hay no control over wind speeds is practical. Future research in this area should therefore be directed towards defining the structure of a windrow which is ideal for highest rate of drying.

3. Once the desired orientation of plants in windrows from the standpoint of faster drying rates is established for individual species of hay crops, estimates on leaf loss in different orientations will be required before the choice of an acceptable orientation can be made.

67

4. Control of environmental factors influencing the drying rate of hay is not practical in field experiments. This complicates the analysis of results. Theoretical models and controlled laboratory experiments are recommended for establishing external drying effects of environmental conditions. For example, wind tunnel studies could provide an answer to air speed effects on drying.

#### VIII. LITERATURE CITED

Analysis of Fodders Sub-Committee. 1945. Methods of sampling and analysis of feeding stuffs. Agric. Prog. 20: 47-50.

- Beckett, L. G. 1954. Biological Applications of Freezing and Drying. Academic Press Inc. New York. pp.289.
- Boyd, M. M. 1959. Hay conditioning methods compared. Agricultural Engineering 40 (11): 664-667.
- Brigs, L. J. and H. L. Shantz. 1916. Hourly transpiration rate on clear days as determined by cyclic environmental factors. J. Agric. Res. 5 (14): 583-651.
- Bruhn, H. D. 1955. Status of hay crusher development. Agricultural Engineering 36 (3): 165-170.
- Bruhn, H. D. 1959. Performance of forage conditioning equipment. Agricultural Engineering 40 (11): 667-670.
- Clyde, A. W. 1943. Moisture percentages their use and abuse. Agricultural Engineering 24 (10): 332.
- Daum, D. R. 1958. Analysis of factors affecting the leaf shattering of hay during mechanical handling. M.S. thesis, Pennsylvania State University, University Park, Pennsylvania.
- Davis, R. B., G. E. Barlow, Jr, and D. B. Brown. 1950. Supplemental heat in mow drying of hay (III). Agricultural Engineering 31 (5): 223-226.
- Davies, A. W., R. A. Evans and W. C. Evans. 1948. Studies on biochemistry of pasture plants. I. A new technique for preparation and preservation of herbage samples. J. Brit. Grassl. Soc. 3 (2): 153-158.
- Dexter, S. T., W. H. Sheldon, and C. F. Huffman. 1947. Better quality hay. Agricultural Engineering 28 (7): 291-292, 293.
- Dobie, J. B. 1948. Report on alfalfa leaf shatter studies. Unpublished Research, University of California, Davis, California.

Dodds, M. E. and F. B. Dick. 1967. Observations of the performance of a self propelled windrower. Canadian Agricultural Engineering 9 (1): 9-11, 19.

Duggal, D. S. and R. M. Halyk. 1969. Effects of stem orientation on the drying rate of hay in windrows. ASAE Paper No NA 69-203. Presented at Montreal, Canada.

Fortin, J. M. 1965. Efficacité des moyens mécaniques pour réduire la période de séchage des foins sur le champ. Unpublished Research, Laval University, Quebec, Canada.

- Gallaher, G. L. 1951. A method of determining the latent heat of agricultural crops. Agricultural Engineering 32 (1): 34, 38.
- Goss, J. R., R. A. Kepner and L. G. Jones. 1964. Hay harvesting with self propelled windrower compared with mowing and raking. Trans. of the ASAE 7 (4): 357-361.
- Greenhill, W. L. 1960. Determination of dry weight of herbage by drying methods. Brit. Grassland Soc. Journal 15 (1): 48-54.
- Hall, C. W. 1957. Drying Farm Crops. Agricultural Consulting Associates, Inc., Reynoldeburg, Ohio.
- Hall, G. E. 1964. Flail conditioning of alfalfa and its effects on field losses and drying rates. Trans. of ASAE 7 (4): 435-438.
- Halyk, R. M. and W. K. Bilanski. 1966. Effects of machine treatments on field drying of hay. Canadian Agricultural Engineering 8 (1): 28-30.
- Hassler, F. J. 1959. Theoretical identification of critical moisture relation in foliar drying. Trans. of the ASAE 2 (1): 48-51.
- Henderson, S. M. 1952. A basic concept of equilibrium moisture. Agricultural Engineering 33 (1): 29-31.
- Hodgson, J. B., J. B. Shepherd, L. G. Schoenleber, H. M. Tysdol and W. H. Hosterman. 1946. Progress report on comparing the efficiency of three methods of harvesting and preserving forage crops. Agricultural Engineering 27 (5): 219-222.

- Hodgson, R. E. <u>et al.</u> 1947. Comparative efficiency of ensiling, barn curing and field curing forage crops. Agricultural Engineering 28 (4): 154-156.
- Hopkins, B. R. 1955. Some effects of chemical and mechanical treatments in hay making. Ph.D. thesis, Michigan State University, East Lansing, Michigan.
- Horwitz, W. 1965. Official Methods of Analysis of the Association of Official Agricultural Chemists. Tenth Edition. Association of Official Agricultural Chemists, Washington, D.C.
- International Harvester Company (n.d.). Hay Conditioners: Heavy Duty No 33, Heavy Duty No 34, Lower Cost No 2A. Form AD-2425-53, 4-15. Lithographed in the United States of America, Chicago, Illinois.
- Jones, T. N. 1939. Natural drying of forage crops. Agricultural Engineering 20 (3): 115-116.
- Jones, T. N. and L. O. Palmer. 1932. Field curing of hay as influenced by plant physiological reactions. Agricultural Engineering 13 (8): 199-200.
- Jones, T. N. and L. O. Palmer. 1935. Field curing of hay as influenced by plant physiological reactions. II. The role of leaves in the dehydration of hay plants. Agricultural Engineering 14 (6): 156-158.
- Jones, T. N. and L. O. Palmer. 1934. Hay curing: III. Relation of engineering principles and physiological factors. Agricultural Engineering 15 (6): 198-201.
- Jones, T. N. and L. O. Palmer. 1936. Natural drying of forage crops. Agricultural Engineering 17 (10): 433-434, 437.
- Kemp, J. G. and W. S. Roach. 1968. Latent evaporation a measure of hay drying rates. Can. J. Plant Sci. 48 (5): 554-555.
- Kepner, R. A., J. R. Goss, J. H. Meyer and G. L. Jones. 1959. Curing rates, field losses and feeding response with crimped, rolled and untreated alfalfa hay. ASAE Paper No. 59-132, Am. Soc. Agric. Engrs., Ithaca, New York.
- Kepner, R. A., J. R. Goss, J. H. Meyer and L. G. Jones. 1960. Hay conditioning effect on nutrient content. Agricultural Engineering 41 (5): 229-304.

- Kurtz, P. J. and W. K. Bilanski. 1967. Machine treatments on field drying hay. Canadian Agricultural Engineering 9 (2): 113-116.
- Kurtz, P. J. and W. K. Bilanski. 1968. Mechanically treating hay for moisture removal. Canadian Agricultural Engineering 10 (2): 60-63.
- Laidlaw, R. A. and C. B. Wylam. 1952. Analytical studies on the carbohydrates of grasses and clovers. II. Preparation of grass samples for analysis. J. Sci. Food Agric. 3 (10): 494-496.
- MacAulay, J. D. 1966. Mechanical properties affecting leaf loss in birdsfoot trefoil. M.Sc. Thesis in Agricultural Engineering, University of Guelph, Guelph, Ontario, Canada.
- Macdonald, H. A. 1946. Factors affecting the nutritional value of forage plants. Agricultural Engineering 27 (3): 117-120.

Marshall, W. R. 1953. Drying. Ind. Eng. Chem. 45 (1): 47-54.

- McRostie, G. P. and R. I. Hamilton. 1927. The accurate determination of dry matter in forage crops. J. Amer. Soc. Agron. 19 (3): 243-251.
- Meyer, B. S. and D. B. Anderson. 1952. Plant Physiology, D. Van Nostrand, New York. pp 161-165 and 622-623.
- Miller, E. C. 1928. Some observations on the stomata of crop plants. Unpublished Report. Kansas State University, Manhattan, Kansas.

Mitchell, G. E. 1957. Methods of determining dry matter of fresh forages and silages. Jour. Anim. Sci. 16 (4): 1089.

Mowat, D. N., R. S. Fulkerson, W. E. Tossel and J. E. Winch. 1965. The <u>in vitro</u> digestibility and protein content of leaf and stem portions of forages. Can. J. Plant Sci. 45 (4): 321-331.

Oliver, J. H. 1960. Quality control in hay making. Agricultural Engineering 41 (11): 748-750, 761.

Othmer, D. F. 1940. Correlating vapour pressure and latent heat data. Industrial and Engineering Chemistry 32: 841-846.

71

Pedersen, T. T. and W. F. Buchele. 1960. Drying rate of alfalfa hay. Agricultural Engineering 41 (2): 86-89, 7 -> 107.

- Pereira, N., T. E. Bond and S. R. Morrison. 1966. Thermal characteristics of a table-tennis ball used as a black globe thermometer. ASAE Paper No 66-328. Presented at Amherst, Massachusetts.
- Perry, R. H., C. H. Chilton and S. D. Kirkpatrick. 1963. Chemical Engineers Hand Book. Fourth Edition. McGraw-Hill Book Company, New York. pp. 15-32 to 15-45.
- Person, N. K., Jr., and J. W. Sorenson, Jr. 1962. Drying hay with infrared radiation. Agricultural Engineering 43 (4): 204-207.
- Pritchard, G. I., L. P. Felkins and W. J. Pigden. 1963. The in vitro digestibility of whole grasses and their parts at progressive stage of maturity. Can. J. Plant Sci. 43 (1): 79-87.
- Raymond, W. F. 1951. The problem of measuring the nutritive value of herbage. J. Brit. Crassl. Soc. 6 (3): 137-146.
- Shepherd, W. 1957. Experimental methods in hay making trials. Aust. J. Agric. Res. 9 (1): 27-38.
- Shepherd, W. 1964. Paths and mechanisms of moisture movements of detached leaves of white clover (<u>Trifolium repens</u> L). I. Losses of petiole moisture direct from petioles and via laminae. Ann. Bot., London 28 (110): 207-220.
- Shepherd, W. 1965. Air speed effects during drying of harvested pasture material. Aust. J. Agric. Res. 16 (3): 385-389.
- Snedecor, G. W. 1961. Statistical Methods. The Iowa State University Press, Ames, Iowa. pp. 316-319.
- Steel, G. D. and J. H. Torrie. 1960. Principles and Procedures of Statistics. McGraw-Hill Book Company, New York. pp. 68-69.
- Thomas, M. D. and G. R. Hill. 1937. The continuous measurements of photosynthesis, respiration and transpiration of alfalfa and wheat growing under field conditions. Plant Physiol. 12 (2): 285-307.

Thompson, J. H. 1958. Methods for the determination of water. Ind. Chem. 34 (402): 451-453. Zachariah, G. L. and R. I. Lipper. 1966. Weather data as pertaining to crop drying. Trans. of ASAE 9 (2): 261-264.

Zink, F. J. 1935. Equilibrium moistures of some hays. Agricultural Engineering 16 (11): 451-452.

141

Zink, F. J. 1936. Moisture content at which alfalfa leaves shatter. Agricultural Engineering 17 (8): 329-330.

· · ·

**4** D D

·

. .

· · · ·

· ·

# APPENDICES

·

# APPENDIX A

Programs for computing means and standard deviations of heights, widths and cross-sectional areas of windrows under five treatments, on an IBM system 360/75

|      | с   | DRYING HAY IN WINDROWS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | č   | MEANS AND STANDARD DEVIATIONS OF HEIGHTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | õ   | D. S. DUGGAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0001 | •   | DIMENSION MAG(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0001 |     | DATA MAG/141.181.1C1.1D1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0002 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0003 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0004 | 116 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0005 | 110 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0000 | ,   | EDEMATI (11, 73, MEANS AND STANDARD DEVIATIONS OF WINDROW HEIGHTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0007 | 1   | PORMALL /INVISATING AND STANDARD SELECTIONS OF ALL ALL ALL ALL ALL ALL ALL ALL ALL AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0000 |     | L'//<br>UDITE(6.2) KDO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0008 | 2   | $W_{L1} = [0] (2) (7) (2) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0009 | 2   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0010 | 2   | FORMATIN 47Y 2Y, 1910CK1.4Y, 1085, 1.5X, 1H1.5X, 1F1.5X, 111.5X, 1G1.5X, 1H1.5X, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0011 | 5   | PURMAILIAIDIAIZAY DEGGA YAAY GOST YAAY H YAAY E YAAY E YAAY E YAAY E YAAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |     | L'TT'\$2A\$'1'\$2A\$'5'1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0012 |     | NRIE(0)*/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0013 | 4   | FURMAI(1/4,0/A)1/A, 'PER')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0014 | 6   | ROPAT(1), 672, 102, 1810(X))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0015 | 2   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0015 | 4   | EOPMAT(1), 672, 222, 1EDGE1, 102, 1CENTER1, 62, 1EQUIVALENT1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0017 | 0   | TURNAL (1A) DIAY 22AY 2002 YIOAY OLAREA YOAY 2007 MADA Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0018 |     | RODMATIN 474-144-2/44-10FANI-44-15 01)/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0019 |     | $\frac{1}{10000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0020 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0021 |     | $\frac{1}{1} \frac{1}{1} \frac{1}$ |
| 0022 | 9   | TOREAL AND TAKEN THE ATTENT ALL A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0023 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0024 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0025 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0026 |     | STUTEEUA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

FORTRAN IV G LEVEL 1, MOD 4

0027

0028

0029

0030

0031

0032

0033 0034

0035

0036

0037 0038

0039

0040

0041

0042

0043

0044 0045

0046

0047

0048

0049

.

DATE = 69191

12/08/24

MAIN

- 'S D')/)

COUNT=0.

SUMSQE=0.

SUMSQC=0.

SUME=0.

SUMC=0. SUMQ=0.

- DO 10 KOR=1,4
- STOTC=0.

SUME=SUME+EDGE

SUMC=SUMC+CENTER

SUMQ=SUMQ+EQUIV

COUNT=COUNT+1. GO TO 1000

AVC=SUMC/COUNT

AVQ=SUMQ/COUNT

35 AVE=SUME/COUNT

- STOTQ=0.

1000 READ(5,11) JQ.EDGE.CENTER

11 FORMAT(2X,11,2X,10X,2F10.1) IF(JQ.NE.0) GO TO 35

SUMSQE=SUMSQE+EDGE\*EDGE

SUMSQC=SUMSQC+CENTER#CENTER

EQUIV=(EDGE+CENTER)/2.

| FORTRAN IV G LEVEL | 1, MOD 4            | MAIN               | DATE = 0 |
|--------------------|---------------------|--------------------|----------|
| 0050               | SDE=SURT((SUMSQE-CO | UNT*AVE*AVE)/(COUN | T-1.))   |
|                    | SDC=SURT((SUMSQC-CO | UNT*AVC*AVC)/(COUN | T-1.))   |

69191 12/08/24 PAGE 0002

.

. -

| 0050 |    | SDE=SURT((SUMSQE-COUNT*AVE*AVE)/(COUNT-1.))                |
|------|----|------------------------------------------------------------|
| 0051 |    | SDC=SQRT((SUMSQC-COUNT*AVC*AVC)/(COUNT-1.))                |
| 0052 |    | SDQ=SQRT((SDE*SDE+SDC*SDC)/2.)                             |
| 0053 |    | TOTE=TOTE+AVE                                              |
| 0054 |    | TOTC=TOTC+AVC                                              |
| 0055 |    | TOTQ=TOTQ+AVQ                                              |
| 0056 |    | STOTE=STOTE+SDE*SDE                                        |
| 0057 |    | STOTC=STOTC+SDC*SDC                                        |
| 0058 |    | STOTQ=STOTQ+SDQ*SDQ                                        |
| 0059 |    | MCOUNT=COUNT                                               |
| 0060 |    | WRITE(6,36) MAG(KOR), MCOUNT, AVE, SDE, AVC, SDC, AVO, SDO |
| 0061 | 36 | FORMAT(1X,67X,4X,A1,5X,I3,1X,3(F8.1,F7.1))                 |
| 0062 |    | NC=KOR                                                     |
| 0063 | 10 | CONTINUE                                                   |
| 0064 |    | TOTE=TOTE/4.                                               |
| 0065 |    | TOTC=TOTC/4.                                               |
| 0066 |    | TOTQ=TOTQ/4.                                               |
| 0067 |    | STDE=SQRT(STOTE/4.)                                        |
| 0068 |    | STDC=SQRT (STUTC/4.)                                       |
| 0069 |    | STDQ=SQRT(STOTQ/4.)                                        |
| 0070 |    | MZZ=MCOUNT*NC                                              |
| 0071 |    | WRITE(6,38) MZZ, TUTE, STDE, TUTC, STDC, TOTQ, STDQ        |
| 0072 | 38 | FORMAT(/1X,67X,1X,'AVERAGE',1X,14,1X,3(F8.1,F7.1)/)        |
| 0073 | 88 | CONTINUE                                                   |
| 0074 |    | WRITE(6,90)                                                |
| 0075 | 90 | FORMAT( /1X,68X,'S D = STANDARD DEVIATION')                |
| 0076 | 8  | CONTINUE                                                   |
| 0077 |    | STOP                                                       |
| 0078 |    | END                                                        |

TOTAL MEMORY REQUIREMENTS 0007DA BYTES

.

| FORTRAN | I۷ | G  | LEVE  | i.          | 1.     | MOD                   | 4                  | MAIN                                      |           | DATE =  | 69223                                    | 13/46/45         |
|---------|----|----|-------|-------------|--------|-----------------------|--------------------|-------------------------------------------|-----------|---------|------------------------------------------|------------------|
|         |    |    | с     |             | DRY    | ING                   | HAY                | IN WINDROWS                               |           |         |                                          |                  |
|         |    |    | Č     |             | MEA    | NS                    | AND                | STANDARD DEVIATIONS                       | OF WIDTH  | S       |                                          |                  |
|         |    |    | C     |             | D .    | S.                    | DUGG               |                                           |           |         |                                          |                  |
| 0001    |    |    |       |             |        | TEA                   | 10N                | STUT(5),TUTIME(5),M/                      | AG(4),AV( | 5),SD(  | 5),SDTO                                  | (5)              |
| 0003    |    |    | 11    | 8           | FOR    | MAT                   | (1H)               | 1                                         |           |         |                                          |                  |
| 0004    |    |    |       |             | 00     | 115                   | KOS                | =1,23                                     |           |         |                                          |                  |
| 0005    |    |    |       |             | WRJ    | TE (                  | 6,11               | 1)                                        |           |         |                                          |                  |
| 0006    |    |    | - 11  | 1           | FOR    | MAT                   | (1H                | )                                         |           |         |                                          |                  |
| 0007    |    |    | 11    | . ว         | UD     | TEL                   | UE<br>6.13         |                                           |           |         |                                          |                  |
| 0009    |    |    |       | 1           | FOR    | MAT                   | (1X                | 34X.17X. MEANS AND                        | STANDARD  | DEVIA   |                                          | E WINDROW WIDTH  |
|         |    |    |       | 1           | s'/    | )                     |                    |                                           |           |         |                                          |                  |
| 0010    |    |    |       | _           | WRI    | TE(                   | 6,2)               |                                           |           |         |                                          |                  |
| 0011    |    |    |       | 2           | FOR    | MAT                   | (1X,               | 34X,'TRIAL 1.'/)                          |           |         |                                          |                  |
| 0012    |    |    |       | 3           | FOR    | MAT                   | (1X.               | 34X.1X. BLOCK .5X. 1                      | 085.1.108 |         | Y. IR1.5                                 | Y. 161.57.141.57 |
|         |    |    |       | 1           | , 17   | 1,5                   | X . "M             | ',5X,'E',5X,'N',5X,                       | · T· )    |         | A. A | V1.C.17V1.V.17V  |
| 0014    |    |    |       |             | WRI    | TE (                  | 6,4)               |                                           | -         |         |                                          |                  |
| 0015    |    |    |       | 4           | FOR    | MAT                   | (1X,               | 34X,11X,"PER")                            |           |         |                                          |                  |
| 0018    |    |    |       | 5           | HK1    | MAT                   | 0;2]<br>(18.       | 34X-10Y-1810CK1-8Y-1                      |           | 21.124  | 121 12                                   | V 141 198 15171  |
| 0018    |    |    |       | -           | WRI    | TEG                   | 6,6)               | STATIONT DEGCK TONT                       |           | 2.9154  | 9.2.915                                  | ×1.4.115¥1.3./1  |
| 0019    |    |    |       | 6           | FOR    | MAT                   | (1X,               | 34X,15X,5(3X,'HEAN',                      | ,3X,'S D' | )/)     |                                          |                  |
| 0020    |    |    |       |             | DAT    | AM                    | AG/                | A*,*B*,*C*,*D*/                           |           |         |                                          |                  |
| 0021    |    |    |       |             | DD     | 31                    | KC=1               | 2                                         |           |         |                                          |                  |
| 0022    |    |    |       |             | STC    | TUK                   | m=19<br>M}=(       |                                           |           |         |                                          |                  |
| 0024    |    |    | · 1   | 0           | TOT    | IME                   | (KM)               | =0.                                       |           |         |                                          |                  |
| 0025    |    |    |       |             | DO     | 32K                   | =1 <b>,</b> 4      |                                           |           |         |                                          |                  |
| 0026    |    |    |       |             | DO     | 33L                   | =1,5               |                                           |           |         |                                          |                  |
| 0021    |    |    |       |             | CUL    |                       | 0.                 |                                           |           |         |                                          |                  |
| 0029    |    |    |       |             | SUM    | 1=0.                  | •                  |                                           |           |         |                                          |                  |
| 0030    |    |    | 100   | 00          | REA    | D(5                   | ,34)               | JQ,WIDTH                                  |           |         |                                          |                  |
| 0031    |    |    | 3     | 54          | FOR    | MAT                   | (2X,               | 11,2X,F10.2)                              |           |         |                                          |                  |
| 0032    |    |    |       |             | IF(    | JQ.                   | NE .C              | 160 TO 35                                 |           |         |                                          |                  |
| 0034    |    |    |       |             | SUN    | 13 Q<br>1= 5 1 I      | 30M3<br>M+⊎1       | ATHIDIA*WIDIA<br>DTH                      |           |         |                                          |                  |
| 0035    |    |    |       |             | COL    | INT=                  | COUN               | T+1.                                      |           |         |                                          |                  |
| 0036    |    |    |       |             | GO     | TO                    | 1000               |                                           |           |         |                                          |                  |
| 0037    |    |    | 3     | 5           | AV (   | L)=                   | SUM/               | COUNT                                     |           |         |                                          |                  |
| 0038    |    |    |       |             | SUL    | しり=.<br>)す <i>(</i> ) | 5QR1<br>)=ST       | ( SUMSQ=COUN #AV(L])<br>GT( )+SD( )#SD( ) | *AV(L))/( | COUNT-  | 1.))                                     | •                |
| 0040    |    |    |       |             | TOT    | IME                   | (L)=               | TOTIME(L)+AV(L)                           |           |         |                                          |                  |
| 0041    |    |    | 3     | 33          | COM    | IT IN                 | UE                 |                                           |           |         |                                          |                  |
| 0042    |    |    |       |             | MCC    | UNT                   | =COU               | NT                                        |           |         |                                          |                  |
| 0043    |    |    | 1     | 8           | WRI    | TE(                   | 6,18<br>/1 V.      | JMAG(K),MCOUNT,(AV()                      | LP),SD(LP | ),LP=1  | ,5) <sub>j</sub>                         |                  |
| 0045    |    |    | -     |             | NTC    | I=K                   | 1141               | 547,557,81,77,912,27,9                    | 2111010   | • 1 / ) |                                          |                  |
| 0046    |    |    | 3     | 32          | CON    | TIN                   | UE                 |                                           |           |         |                                          |                  |
| 0047    |    |    |       |             | DO     | 88K                   | N=1,               | 5                                         |           |         |                                          |                  |
| 0048    |    |    |       | 00          | TOT    | INE                   | (KN)               | TOTIME(KN)/4.                             |           |         |                                          |                  |
| 0049    |    |    | 0     | 00          | PULC L | 11 U (K<br>)=MC       | N / = 5<br>N I N T | 2KI(5+U)(KN)/4.)<br>#NTA                  |           |         |                                          |                  |
| 0050    |    |    |       |             | WR 2   | TE                    | 6,20               | ) NCO, (TOTIME(NP),S                      | DTO(NP),N | IP=1,5) |                                          |                  |
| 0052    |    |    | 2     | 20          | FOF    | MAT                   | (/1)               | ,34X, 'AVERAGE',2                         | X,I4,2X,5 | (F7.1,  | F6.1)//                                  | )                |
| 0053    |    |    |       |             | IF     | KC.                   | EQ.2               | 1GO TO 31                                 |           |         |                                          |                  |
| 0054    |    |    |       | "           | WK)    |                       | 114                | 7<br>34X. TRIAL 2.1/)                     |           |         |                                          |                  |
| 0055    |    |    | 3     | 31          | 00     | NT IN                 | UÊ                 | JUNT INTUM FO 11                          |           | •       |                                          |                  |
| 0057    |    |    | -     |             | WR     | ITE (                 | 6,89               | )                                         |           |         |                                          |                  |
| 0058    |    |    | ٤     | 89          | FOI    | RMAT                  | ( )                | /35X, 'S D = STANUAR                      | D DEVIATI | (ON')   |                                          |                  |
| 0059    |    |    |       |             | STO    | JP<br>G               |                    |                                           |           |         |                                          |                  |
| 0060    |    |    |       |             | E NI   |                       |                    |                                           |           |         |                                          |                  |
| TOTAL   | ME | 40 | DV DE | <b>6</b> 01 | IT D   |                       | י אדו              | 00706 BYTES                               |           |         |                                          |                  |

.

<u>د:</u>

•

۰.

TOTAL MENDRY REQUIREMENTS 000706 BYTES

| FORTRAN | IV G LE | VEL | 1, 1         | DOM                                                                                                               | 4           | MAIN                     | DATE = 69220                              | 15/11/38           |
|---------|---------|-----|--------------|-------------------------------------------------------------------------------------------------------------------|-------------|--------------------------|-------------------------------------------|--------------------|
|         | c       |     | nev:         | ING                                                                                                               |             |                          |                                           |                    |
|         | č       |     | MEAN         | NS A                                                                                                              | ND ST       | ANDARD DEVIATIONS D      |                                           |                    |
|         | č       |     | D. 5         | S. D                                                                                                              | UGGAL       |                          | OROSSECTIONAL AREAS                       |                    |
| 0001    |         |     | DIM          | ENS I                                                                                                             | ON STO      | DT(5),TOTIME(5),MAG      | (4).AV(5).SD(5).SDTO(5                    | )                  |
| 0002    |         |     | WRIT         | TE (6                                                                                                             | ,118)       |                          |                                           |                    |
| 0003    |         | 118 | FORM         | MAT (                                                                                                             | 1H1)        |                          |                                           |                    |
| 0004    |         |     | 00 1         | 115                                                                                                               | KOS=1       | ,23                      |                                           |                    |
| 0005    |         |     | WRIT         | TE (6                                                                                                             | ,111)       |                          |                                           |                    |
| 0006    |         | 111 | FURM         | MATI                                                                                                              | 1H )        |                          |                                           |                    |
| 0007    |         | 115 |              | TEIA                                                                                                              |             |                          |                                           |                    |
| 0000    |         | 1   | EUDY         | 1 E ( 0<br>4 A T /                                                                                                | 14 . 3/     | Y. MY INCANE AND C       | TANDADD DENTATIONS OF                     |                    |
| 0007    |         | î   | FOR          | 1<br>ΠΝΔ                                                                                                          | LA JS       | SILA MEANS AND S         | TANDARD DEVIATIONS OF                     | AINDRUW CROSS      |
| 0010    |         |     | WRIT         | TE (6                                                                                                             | .2)         |                          | •                                         |                    |
| 0011    |         | 2   | FORM         | ATI                                                                                                               | 1X+34)      | (+'TRIAL 1.'/)           |                                           |                    |
| · 0012  |         |     | WRIT         | FE ( 6                                                                                                            | ,3)         |                          |                                           |                    |
| 0013    |         | 3   | FORM         | AT (                                                                                                              | 1X,34)      | (,1X, 'BLOCK',5X, 'OB    | S. 1, 10X, 1T1, 5X, 1R1, 5X,              | 1E1,5X,1A1,5X      |
|         |         | 1   | L, "T'       | • • 5 X                                                                                                           | • • M • • 5 | 5X, 'E', 5X, 'N', 5X, 'T | • )                                       |                    |
| 0014    |         |     | WRIT         | TE(6                                                                                                              |             |                          |                                           |                    |
| 0015    |         | 4   | FUK          | MATI                                                                                                              | 1X+34)      | (,IIX, PER')             |                                           |                    |
| 0010    |         | 5   | WK11         | 1210                                                                                                              | 121         | 104 1010CK1 04 11        | 1 104 404 104 404 104                     |                    |
| 0018    |         |     | WRIT         | 7AI (<br>Te (6                                                                                                    | 18934/      | (110X1.BEDCK.18X1.1      | •••••••••••••••••••••••••••••••••••••••   | 4 + 12X + 15 / / ) |
| 0019    |         | 6   | FORM         | 4AT (                                                                                                             | 18.341      | (.151.5/31.1MEAN1.3      | X-15 DEX)                                 |                    |
| 0020    |         | -   | DATA         | A MA                                                                                                              | G/ IAI      | 181.1C1.1D1/             | x4-3 D-171                                |                    |
| 0021    |         |     | DO 3         | 31 K                                                                                                              | C=1,2       |                          |                                           | •                  |
| 0022    |         |     | 00 1         | 10KM                                                                                                              | =1,5        |                          |                                           |                    |
| 0023    |         |     | STOT         | T (KM                                                                                                             | )=0.        |                          |                                           |                    |
| 0024    |         | 10  | TOT          | IME (                                                                                                             | KM)=0       | •                        |                                           |                    |
| 0025    |         |     | DO 3         | 32K =                                                                                                             | 1,4         |                          |                                           |                    |
| 0026    |         |     | DO 3         | 33L=                                                                                                              | 1,5         | •                        |                                           |                    |
| 0027    |         |     | CUUN         | NT=0                                                                                                              | •           |                          | •                                         |                    |
| 0028    |         |     | SUMS         | 50=0                                                                                                              | •           |                          |                                           |                    |
| 0030    | 1       | 000 | REAT         | -v.                                                                                                               | 341 .10     | .WIDTH COCC. CENTER      |                                           |                    |
| 0031    | •       | 34  | FORM         | мат <i>і</i>                                                                                                      | 28.11       | 28.510.2.2510.11         |                                           |                    |
| 0032    |         | 5.  | IF(          | JO.N                                                                                                              | E.0)G       | TO 35                    |                                           |                    |
| 0033    |         |     | ABB          | = ( E D                                                                                                           | GE+CE       | TER)/2.                  |                                           |                    |
| 0034    |         |     | CROS         | 5=WI                                                                                                              | DTH#A8      | 3B                       |                                           |                    |
| 0035    |         |     | SUMS         | SQ=S                                                                                                              | UMSQ+(      | CROS*CROS                |                                           |                    |
| 0036    |         |     | SUM:         | ≠SUM                                                                                                              | +CROS       |                          |                                           |                    |
| 0037    |         |     | COUN         | VT =C                                                                                                             | OUNT+       | L.                       | •                                         |                    |
| 0038    |         | 26  | GO 1         | TQ 1                                                                                                              | 000         | 1417                     |                                           |                    |
| 0039    |         | 55  | AVIL<br>CO/I | 1=3                                                                                                               |             |                          |                                           |                    |
| 0040    |         |     | STOT         | L/=3<br>T/  1                                                                                                     |             | 50M34+600N1+AV(L)+A      | V(L))/(COUNI-1.))                         |                    |
| 0042    |         |     | TOT          | IME                                                                                                               | L)=T01      | [[ME(L)+AV(L)            |                                           |                    |
| 0043    |         | 33  | CONT         | TINU                                                                                                              | E           |                          |                                           | •                  |
| 0044    |         |     | MCOL         | JNT=                                                                                                              | COUNT       | •                        | •                                         |                    |
| 0045    |         |     | WRII         | TE ( 6                                                                                                            | ,18)M/      | AG(K),MCOUNT,(AV(LP      | ),SD(LP),LP=1,5)                          |                    |
| 0046    |         | 18  | FORM         | MAT (                                                                                                             | 1X,34)      | (,3X,A1,7X,I2,2X,5(      | F7.1,F6.1))                               |                    |
| 0047    |         |     | NTO          | ¤K                                                                                                                | _           |                          |                                           |                    |
| 0048    |         | 32  | CONT         | TINU                                                                                                              | E _         |                          | ,                                         |                    |
| 0049    |         |     | DU E         | 88KN                                                                                                              | =1,5        |                          |                                           |                    |
| 0050    |         | ~~  | TOTI         | IME(                                                                                                              | KN)=T(      | DTIME(KN)/4.             |                                           |                    |
| 0051    |         | 88  | SUIL         |                                                                                                                   | 1)=SQR1     | (STUT (*N)/4.)           |                                           |                    |
| 0052 /  |         |     |              | -MU()<br>TG 74                                                                                                    |             | U CO. (TOTING(ND) SOT    | 0(ND) NO-1 E)                             |                    |
| 0054    |         | 20  | FORM         | 1 C 1 O                                                                                                           | /)8-24      | X. IAVERAGEL.2V.         | UINFJ+NF#1+2]<br>14,28,5157,1.54 11//1    |                    |
| 0055    |         |     | IF(K         | <c _="" f<="" td=""><td>0.216</td><td>1 TO 31</td><td>• - 7 = ~ 7 = 1 = 1 + 1 + 1 0 + 1 / / / )</td><td></td></c> | 0.216       | 1 TO 31                  | • - 7 = ~ 7 = 1 = 1 + 1 + 1 0 + 1 / / / ) |                    |
| 0056    |         |     | WRIT         | TE(6                                                                                                              | .441        |                          |                                           |                    |
| 0057    |         | 44  | FORM         | MATO                                                                                                              | 1X,34)      | (,'TRIAL 2.'/)           |                                           |                    |
| 0058    |         | 31  | CONT         | TINU                                                                                                              | E           |                          |                                           |                    |
| 0059    |         |     | WRIT         | TE (6                                                                                                             | ,89)        |                          |                                           |                    |
| 0060    |         | 89  | FORM         | MAT (                                                                                                             | //3         | 5X,'S D = STANDARD       | DEVIATION")                               |                    |
| 0061    |         |     | STOP         | Р                                                                                                                 |             |                          |                                           |                    |
| 0025    |         |     | END          |                                                                                                                   |             |                          |                                           |                    |

. ·

i i fi

TOTAL MEMORY REQUIREMENTS 000756 BYTES

.

# APPENDIX B

# Climatological data recorded at the test site during the period of the experimental trials

# CLIMATOLOGICAL DATA

# July 15-18 1968

| Date<br>and<br>time                                                    | Wind<br>velocity<br>m.p.h.                   | Minimum<br>grass<br>temp.<br><sup>O</sup> F. | Dry bulb<br>temp.<br>°F.                     | Wet bulb<br>temp.<br><sup>O</sup> F.         | Wet bulb<br>depression<br><sup>O</sup> F. | Relative<br>humidity<br>%                    |
|------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|-------------------------------------------|----------------------------------------------|
| July 15<br>am 8:00<br>10:00                                            | ) ()<br>) ()                                 | 63.0<br>74.0                                 | 76.0<br>82.0                                 | 73.0<br>76.0                                 |                                           | 87.5<br>77.0                                 |
| July 16<br>am 9:04<br>ll:01<br>pm 1:01<br>3:04<br>5:04<br>5:34<br>7:04 | D 2<br>D 2<br>D 7<br>D 5<br>D 0<br>D*<br>D 0 | 84.0<br>100.0<br>87.0                        | 80.0<br>86.0<br>87.5<br>89.5<br>91.0<br>80.0 | 76.0<br>79.0<br>80.0<br>80.5<br>82.0<br>77.0 | 4.0<br>7.0<br>7.5<br>9.0<br>9.0<br>3.0    | 83.0<br>73.5<br>72.5<br>67.5<br>68.0<br>87.0 |
| July 17<br>am 9:00<br>11:00<br>pm 1:00<br>3:0<br>5:0                   | D D<br>D D<br>D D<br>D 1<br>D D              | 75.0<br>75.0<br>97.0<br>101.0<br>89.0        | 79.0<br>84.0<br>80.5<br>86.0<br>88.0         | 76.0<br>77.0<br>77.5<br>79.0<br>79.0         | 3.0<br>7.0<br>3.0<br>7.0<br>9.0           | 87.0<br>73.0<br>87.5<br>73.5<br>67.5         |
| July 18<br>am 9:0<br>11:0<br>pm 1:0                                    | 0 0<br>0 4<br>0 2                            | 80.0<br>85.0<br>86.0                         | 82.0<br>86.0<br>85.0                         | 78.0<br>79.0<br>79.0                         | 4.0<br>7.0<br>6.0                         | 82.5<br>73.5<br>76.5                         |

\*0.38 in. rain



# CLIMATOLOGICAL DATA July 29-31 1968

|                        | Date<br>and<br>time                                                                                                               | Wind<br>velocity<br>m.p.h.                                                           | Minimum<br>grass<br>temp.<br>°F.                                                     | Dry bulb<br>temp.<br><sup>O</sup> F.                                                                                 | Wet bulb<br>temp.<br><sup>O</sup> F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Wet bulb<br>depression<br><sup>O</sup> F.                                                                  | Relative<br>humidity<br>%                                                                                                    |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Ju<br>am<br>noon<br>pm | ly 29<br>8:30<br>10:30<br>11:00<br>11:30<br>12:00<br>2:00<br>2:30<br>3:00<br>3:30<br>4:00<br>5:00<br>5:30<br>6:00<br>7:00<br>7:30 | 9<br>9<br>12<br>11<br>9<br>9<br>13<br>11<br>9<br>16<br>15<br>12<br>7<br>8<br>8<br>12 | 71.0<br>67.5<br>78.0<br>77.0<br>76.0<br>80.0<br>82.0<br>74.0<br>80.0<br>67.0<br>60.0 | 59.0<br>63.0<br>62.0<br>68.0<br>70.0<br>63.0<br>70.0<br>63.0<br>66.0<br>78.0<br>62.0<br>68.0<br>68.0<br>68.0<br>63.0 | 55.0<br>58.0<br>60.0<br>63.0<br>58.0<br>61.0<br>57.0<br>56.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0<br>58.0 | 5.0<br>4.0<br>8.0<br>7.0<br>5.0<br>9.0<br>6.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>3.0<br>7.5<br>7.0 | 77.0<br>74.0<br>79.0<br>63.0<br>68.0<br>74.0<br>60.0<br>70.0<br>54.0<br>60.0<br>64.0<br>55.0<br>55.0<br>69.0<br>83.0<br>62.0 |
|                        | 8:00<br>8:30<br>9:00<br>9:30<br>10:00<br>10:30                                                                                    | 12<br>12<br>6<br>0<br>2<br>2                                                         | 56.0<br>54.0<br>52.0                                                                 | 60.0<br>56.0<br>53.0<br>53.0<br>53.0<br>53.0                                                                         | 53.0<br>51.0<br>51.5<br>52.0<br>51.0<br>50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.0<br>5.0<br>4.5<br>1.0<br>2.0<br>3.0                                                                     | 63.0<br>71.0<br>73.0<br>93.0<br>87.0<br>82.0                                                                                 |
| Ju<br>am<br>noon<br>pm | ly 30<br>8:30<br>9:00<br>9:30<br>10:00<br>10:30<br>11:00<br>11:30<br>12:00<br>2:30                                                | 2<br>7<br>4<br>6<br>3<br>2<br>9<br>2<br>0                                            | 59.0<br>64.0<br>76.0<br>80.0<br>82.0<br>86.0<br>90.0<br>95.0<br>100.0                | 58.0<br>59.0<br>66.0<br>68.0<br>70.0<br>72.0<br>70.0<br>79.0                                                         | 54.0<br>56.0<br>58.0<br>62.0<br>60.0<br>60.0<br>63.0<br>60.0<br>67.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.0<br>3.0<br>8.0<br>6.0<br>8.0<br>10.0<br>7.0<br>10.0<br>12.0                                             | 78.0<br>83.0<br>62.0<br>72.0<br>63.0<br>56.0<br>56.0<br>56.0<br>54.0                                                         |
|                        | 3:00<br>3:30<br>4:00<br>4:30                                                                                                      | 1<br>0                                                                               | 98.0<br>95.0<br>95.0                                                                 | 79.0<br>75.0                                                                                                         | 69.0<br>61.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.0<br>14.0                                                                                               | 61.0<br>45.5                                                                                                                 |

(continued)

# CLIMATOLOGICAL DATA July 29-31 1968 (continued)

|            | Date<br>and<br>time                                                                                                                                                              | Wind<br>velocity<br>m.p.h.                   | Minimum<br>grass<br>temp.<br><sup>O</sup> F.                                                                          | Dry bulb<br>temp.<br>°F.                                                                                                             | Wet bulb<br>temp.<br><sup>o</sup> F.                                                                                                 | Wet bulb<br>depression<br><sup>o</sup> F.                                                                          | Relative<br>humidity<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ju<br>pm   | 1 y 30<br>5:00<br>5:30<br>6:00<br>6:30<br>7:30<br>8:00<br>8:30                                                                                                                   | (continue<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | d)<br>76.0<br>56.0<br>52.0<br>48.0                                                                                    | 80.0<br>72.0<br>72.0<br>70.0<br>79.0<br>63.0<br>54.0                                                                                 | 63.0<br>60.0<br>60.0<br>58.0<br>61.0<br>58.0<br>58.0<br>54.0                                                                         | 17.0<br>12.0<br>12.0<br>12.0<br>18.0<br>5.0<br>0.0                                                                 | 38.0<br>50.0<br>50.0<br>48.0<br>35.0<br>74.0<br>100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| noor<br>pm | <pre>1 y 31<br/>7:30<br/>8:30<br/>9:00<br/>9:30<br/>10:00<br/>10:30<br/>11:00<br/>11:30<br/>11:30<br/>12:00<br/>2:30<br/>3:00<br/>3:30<br/>4:30<br/>5:00<br/>5:15<br/>6:00</pre> | 0<br>36310433480000000000                    | 60.0<br>82.0<br>88.0<br>84.0<br>101.0<br>88.0<br>82.0<br>81.0<br>90.0<br>88.0<br>90.0<br>98.0<br>98.0<br>90.0<br>88.0 | 65.0<br>72.0<br>74.0<br>78.0<br>79.0<br>86.0<br>79.0<br>77.0<br>83.0<br>85.0<br>85.0<br>87.0<br>94.0<br>83.0<br>85.0<br>83.0<br>85.0 | 62.0<br>61.0<br>66.0<br>69.0<br>71.0<br>74.0<br>70.0<br>75.0<br>74.0<br>75.0<br>75.0<br>75.0<br>75.0<br>73.0<br>73.0<br>75.0<br>71.0 | 3.0<br>11.0<br>8.0<br>9.0<br>8.0<br>12.0<br>9.0<br>7.0<br>8.0<br>11.0<br>12.0<br>6.0<br>10.0<br>13.0<br>8.0<br>8.0 | 85.0<br>53.0<br>66.0<br>63.0<br>68.0<br>57.0<br>64.0<br>71.0<br>69.0<br>69.0<br>61.0<br>62.0<br>54.0<br>69.0<br>64.0<br>69.0<br>61.0<br>62.0<br>54.0<br>69.0<br>64.0<br>61.0<br>62.0<br>54.0<br>64.0<br>61.0<br>62.0<br>54.0<br>64.0<br>61.0<br>62.0<br>54.0<br>61.0<br>64.0<br>57.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0<br>61.0 |

•

### APPENDIX C

• • •

Computer program and printout of radiation results computed on an IBM system 360/75 from data recorded at the experimental site

| C DRYING HAY IN WINDROWS<br>C NOT RADIATION TO WINDROW<br>C D-S-DUGGAL<br>0001<br>01MENSION MAP(40),MIT(40),MTIME(4)<br>RA=9./5.<br>0003<br>6004<br>6 READ(5,1,END=88) MAP<br>0005<br>1 FORMAT(402)<br>0006<br>WRITE(6,112)<br>0007<br>1012<br>0008<br>1012<br>0010<br>112 FORMAT(14,11)<br>0019<br>1010<br>101<br>0010<br>111 FORMAT(14,11,16)<br>0010<br>111 FORMAT(14,14,25X,882//)<br>0011<br>7 FORMAT(14,14,25X,882//)<br>0015<br>7 FORMAT(14,14,25X,882//)<br>0015<br>1014<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017<br>1017 | FORTRAN | I۷ | G | LEV | EL         | 1,          | MOD            | 4                |                       | MAIN          |                 | . DA           | T <del>E</del> = 69 | 220    |        | ;    | 15/4   | 0/11 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----|---|-----|------------|-------------|----------------|------------------|-----------------------|---------------|-----------------|----------------|---------------------|--------|--------|------|--------|------|
| C NET KADJATION TO HANDON<br>C D1: ADJATION TO HANDON<br>D DATA CONTRACT AND A DECIDENT A DECIDENT AND A DECIDENT A DECIDENT AND A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |    |   | ç   |            | DRY         | ING            | HAY I            | N WIND                | ROWS          |                 |                |                     |        |        |      |        |      |
| 0001 R = 9 - 5.<br>0002 R = 9 - 5.<br>0003 E = 0 - 5.<br>0004 6 READ(5.1,END=88) HAP<br>0005 1 FORMAT(402)<br>0006 WRITE(6.112)<br>0007 112 FORMAT(14)<br>0018 D 0 200 1=.2<br>0009 200 WRITE(6.111)<br>0011 PRINT<br>0011 PRINT<br>0011 PRINT<br>0011 PRINT<br>0011 PRINT<br>0012 7 FORMAT(14) + 64×,19×,27HR A D I A T I O N D A T A)<br>0013 PRINT(3,64×,25×,482//)<br>0014 8 FORMAT(14,64×,25×,44WTINE,2×,4+WIND,3×,31HT E M P E R A T U<br>1 R E_TX,7HRADIANT)<br>0015 PRINT(3,64×,35×,447/HE,2×,4+WIND,3×,31HT E M P E R A T U<br>1 R E_TX,7HRADIANT)<br>0016 10 FORMAT(14,54×,35×,447/HE,2×,4+WIND,3×,31HT E M P E R A T U<br>1 R E_TX,7HRADIANT)<br>0017 PRINT(3,64×,16×,95(20,000) L,2×,5HGLOBE,1×,6HSHIELD,1×,5H<br>10020 11 FORMAT(14,54×,16×,416×,94(20,000),2×,4HFRUH,2×,4HWIN-,1×,4HWIN-)<br>0021 12 FORMAT(14,54×,16×,16×,3HSUN,2×,3HNET) HOU/HR FT**2)<br>0022 13 FORMAT(14,54×,16×,16×,3HSUN,2×,3HNET) HOU/HR FT**2)<br>0023 PRINT13<br>0024 13 FORMAT(14,54×,16×,3HSUN,4×,3HSUN,2(1×,6HFROH,2×,4HAMB.,2×,4HDRO<br>1 H,1×,4HDROM)<br>0027 26 READ20,HTT<br>0028 14 FORMAT(14,54×,16×,3HSUN,4×,3HSUN,2(1×,6HFROUND),2×,4HAMB.,2×,4HDRO<br>1 H,1×,4HDROM)<br>0027 26 READ20,HTT<br>0028 12 FORMAT(14,54×,16×,16×,3HSUN,5HSUN,8G,SG,JO<br>0030 15 FORMAT(14,54×,302)<br>0031 24 READ16,VEL,(MTIME(1),1=1,4),BSUN,SHSUN,8G,SG,JO<br>0032 12 FACT=0,232PSORT (SD)<br>0033 1F(JO-117,18,6<br>0034 17 IF(UE)212,12,22<br>0035 21 FACT=0,<br>0035 22 FORMAT(14),54×,342,15,F8.1,3F7.1,2F6.1,2F6.1,2F6.1)<br>0044 TA2=SGRAA.322.<br>0045 RAL1=FACT=(T1C2-TA1)+EW+(460,+TG1)+#A<br>0046 RAL+FFACT=(T1C2-TA1)+EW+(460,+TG1)+#A<br>0047 TA2=SGRAA.322.<br>0046 RAL+FFACT=(T1C2-TA1)+EW+(460,+TG1)+#A<br>0047 PRINT23,(MTIME(1),1=1,4),1HVEL,TG1,TA1,TG2,TA2,AMB,RHL1,RHLF,<br>1TWET<br>0050 23 FORMAT(14)<br>0459 FORMAT(14)<br>0550 86 CALL EXIT<br>0550 85 CALL EXIT<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |    |   | ř   |            | D.S         |                |                  | NIUW                  | INDKUW        | •               |                |                     |        |        |      |        |      |
| 0002<br>RA=9,75. Marticle and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0001    |    |   | C   |            | DIN         | IFNS           | ΙΟΝ ΜΔ           | P(40).                | MIT140        | .MTIME(         | 41             |                     |        |        |      |        |      |
| 0003     EM=0.173E=08       0004     6     READ[51,END=8B) MAP       0005     1     FGRMAT(140,02)       0006     WRITE(6,111)       0010     111     FGRMAT(141)       0011     PRINT3     MAP       0012     7     FGRMAT(141)       0013     PRINT3 (MAP(1),1=1,8)       0014     B FGRMAT(141,64X,25X,84Z//)       0015     PRINT3 (MAP(1),1=1,8)       0016     PRINT3 (MAP(1),1=1,8)       0017     PRINT3 (X,64X,3X,4HTUME,2X,4HWIND,3X,3HT E M P E R A T U       018     PGRMAT(1X,64X,10X,3HFPS,18X,1HF,19X,12HBU/HR FT**2)       0019     PRINT13       0020     112       0021     PRINT14       0022     PRINT13       0023     PRINT14       0024     13       10     FGRMAT(1X,64X,10X,3HFPS,18X,1HF,19X,2HRGMUD),2X,4HWIN-,1X,4HWIN-)       0025     PRINT13       0026     14       1027     26       1028     20       1029     PRINT14       00201     PRINT15,MIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0002    |    |   |     |            | RA=         | 9./            | 5.               |                       |               |                 | <b>4</b>       |                     |        |        |      |        |      |
| 0004     6     READ(5.1,END=8B) MAP       0005     I FGRMAT(40.2)       0006     WRITE(6,112)       0007     112     FGRMAT(41)       0010     111     FGRMAT(41)       0011     PRINT7     OUTE(6,111)       0012     7     FGRMAT(41,1,1+1,63)       0013     PRINT9     FGRMAT(41,1,1+1,63)       0014     B FGRMAT(11,1,64,7,33,4,4HTIHe,2,1,4HWIND,33,31HT E M P E R A T U       1     R F,7X,7HAROIANT       0015     PRINT9       0016     D FGRMAT(11,4,64,93,4,4HVEL,4,40X,9HHEAT LDAD)       0017     PRINT10       0018     D FGRMAT(11,4,64X,19X,4HVEL,40X,9HHEAT LDAD)       0019     PRINT11       0020     I FGRMAT(11,4,64X,19X,4HVEL,40X,9HHEAT LDAD)       0021     PRINT11       0022     I FGRMAT(11,464X,10X,3HFPS,18X,1HF,19X,12HBTU/HR FT**2)       0021     PRINT11       0022     I FGRMAT(11,464X,10X,4HFR0H,3X,3HET)       0022     PRINT11       0023     I FGRMAT(11,464X,14X,4HRCH,3X,3HET)       0024     I PGRMAT(11,464X,14X,4HRCH,3X,3HSUN,2(1X,4HFROH,2X,4HWIN-,1X,4HWIN-,1X,4HWIN-) <td>0003</td> <td></td> <td></td> <td></td> <td></td> <td>EM=</td> <td>-0.1</td> <td>73E-08</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0003    |    |   |     |            | EM=         | -0.1           | 73E-08           |                       |               |                 |                |                     |        |        |      |        |      |
| <pre>0005 1 FORMAT(4002)<br/>0006 WRITE(6,112)<br/>0007 112 FORMAT(1H)<br/>0010 111 FORMAT(1H)<br/>0011 PRINT7<br/>0012 7 FORMAT(1H,64X,19X,27HR A D I A T I O N D A T A)<br/>0013 PRINT8,(MAP(1),1=1,8)<br/>0016 8 FORMAT(1X,64X,25X,862//)<br/>0015 PRINT9<br/>0016 9 FORMAT(1X,64X,9X,4HVIL,40X,9HHEAT LOAD)<br/>0017 PRINT10<br/>0018 10 FORMAT(1X,64X,9X,4HVEL,40X,9HHEAT LOAD)<br/>0018 10 FORMAT(1X,64X,9X,4HVEL,40X,9HHEAT LOAD)<br/>0019 PRINT11<br/>0020 11 FORMAT(1X,64X,19X,3HFPS,18X,1HF,19X,12H8TU/HR FT**2)<br/>0021 PRINT12<br/>0022 12 FORMAT(1X,64X,14X,4HVEL,40X,9HHEAT LOAD)<br/>0023 14 FORMAT(1X,64X,14X,4HVEL,40X,9HHEAT LOAD)<br/>0024 13 FORMAT(1X,64X,14X,4HVEL,40X,9HHEAT LOAD)<br/>0025 14 FORMAT(1X,64X,14X,4HVEL,40X,9HHEAT LOAD)<br/>0026 14 FORMAT(1X,64X,14X,4HVEL,40X,9HHEAT LOAD)<br/>0027 16 READ20,HIT<br/>0028 20 FORMAT(1X,64X,14X,4HVEL,40X,9HHEAT)<br/>0028 19 FORMAT(1X,64X,14X,4(1X,6HFACING),2X,4HFROH,2X,4HWIN-,1X,4HWIN-)<br/>0029 PRINT14<br/>0028 20 FORMAT(1X,64X,30A2)<br/>0030 15 FORMAT(1X,64X,30A2)<br/>0031 15 FORMAT(1X,64X,30A2)<br/>0033 16 FORMAT(1X,64X,30A2)<br/>0033 17 F(1U,21),21,22<br/>0033 11 F(1U,21),21,22<br/>0034 17 1F(VEL)21,21,22<br/>0035 21 FACT-0.2324SQRT (SO)<br/>0036 1MVEL=0<br/>0037 GO TO 29<br/>0038 22 SO-VEL#1,4667<br/>0038 22 SO-VEL#1,4667<br/>0039 FACT-0.2324SQRT (SO)<br/>0030 25 FORMAT(1X,64X,22,4F5.1,44X,11)<br/>0031 17 F(VEL)21,21,22<br/>0044 TA2=SGRA4322.<br/>0044 TA2=SGRA4322.<br/>0045 RHL(1=FACT+(TG)=TA1]+EM*(450,+TG])**4<br/>RHL=FACT+(TG)=TA1]+EM*(450,+TG])**4<br/>RHL=FACT+(TG)=TA1]+EM*(450,+TG])**4<br/>RHL=FACT+RHLF<br/>0046 AM=TG]=TA1<br/>0046 PRINT23 (NTIME(1),1=1,4),INVEL,TG],TA1,TG2,TA2,AMB,RHLI,RHLF,<br/>1TNET<br/>0050 C3 5 FORMAT(1H)<br/>0051 C0 TO 24<br/>0055 80 CALL EXIT<br/>0056 END</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0004    |    |   | 6   |            | REA         | D(5            | ,1,END           | =88) M                | AP            |                 |                |                     |        |        |      |        |      |
| 0000     MRIEKONIZJ       0001     112     FORMATI(H1)       0000     200 WRITE(6,111)       0011     111     FORMATI(H1,10,11,10,10)       0012     7     FORMATI(H1,10,11,10,10)       0013     112     FORMATI(H1,10,11,10,10)       0014     8     FORMATI(H1,06X,13X,44HIME,2X,44HIND,3X,31HT E M P E R A T U       0015     9     FORMATI(X,66X,13X,44HIME,2X,44HIND,3X,31HT E M P E R A T U       0016     10     FORMATI(X,66X,13X,44HIME,2X,44HIND,3X,31HT E M P E R A T U       0017     PRINTIO     10       0018     10     FORMATI(X,66X,10X,3HFPS,18X,1HF,19X,12HBTU/HR FT**2)       0020     11     FORMATI(X,66X,14X,44HTK,40X,9HHEAT LDAD)       0021     PRINTI     FORMATI(X,66X,14X,44HFROM,3X,3HNET)       0022     12     FORMATI(X,66X,14X,44(1X,64FACING),2X,4HFROM,2X,4HHIN-,1X,4HWIN-)       0023     PRINTI     FORMATI(X,66X,14X,44(1X,64FACING),2X,4HFROM,2X,4HMIN-,1X,44WIN-)       0024     13     FORMATI(X,66X,14X,44(1X,64FACING),2X,4HFROM,2X,4HMIN-,1X,44WIN-)       0025     PRINTIA     FORMATI(X,66X,16X,242,4F5,1,45X,110)       0026     14     FORMATI(X,66X,16X,242,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0005    |    |   |     | 1          | FOR         | MAT            | (40A2)           |                       |               |                 |                |                     |        |        |      |        |      |
| 0006     112     001701111       0009     200     HRITE(6,111)       0011     PRIMATI1     +       0012     7     FORMATI1     +       0013     FORMATI1     +     +       0014     FORMATI1     +     +       0015     FORMATI1     +     +       0016     FORMATI1     +     +       0017     PRINT     +     +       0018     10     FORMATI1     +     +       0019     PRINT1     +     +     +       0011     PRINT1     +     +     +       0016     9     FORMATI1     +     +       0017     PRINT1     +     +     +       0019     10     FORMATI1     +     +     +       0020     11     FORMATI1     +     +     +       0021     12     FORMATI1     +     +     +       0022     13     FORMATI1     +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0008    |    |   | 112 |            | MK1         | 1 E ( (        | 5#112J           |                       |               |                 |                |                     |        |        |      |        |      |
| 0009 200 WRTETA,111<br>0010 111 FRINTT<br>0012 7 FORMAT(1H,54X,19X,27WR A D I A T I O N D A T A)<br>0013 FRINTG (MAP(1),1=1,6)<br>0014 8 FORMAT(1X,64X,2X,4WTIME,2X,4HWIND,3X,31HT E M P E R A T U<br>1 R E,7X,7HRADIANT)<br>0017 PRINT10<br>0017 PRINT10<br>0017 PRINT11<br>0020 11 FORMAT(1X,64X,9X,4HVEL,40X,9HHEAT LOAD)<br>0019 PRINT12<br>0021 01 FORMAT(1X,64X,10X,3HFPS,18X,1HF,19X,12HBTU/HR FT**2)<br>0021 0201 11 FORMAT(1X,64X,16X,5HGLOBE,1X,6HSHIELD,2X,5HGLOBE,1X,6HSHIELD,1X,5H<br>1GLOBE,4X,2HTO,1X,4HFROM,3X,3HNET)<br>0023 PRINT13<br>0024 13 FORMAT(1X,64X,14X,4(1X,6HFACING),2X,4HFROM,2X,4HWIN-,1X,4HWIN-)<br>0025 PRINT14<br>0026 14 FORMAT(1X,64X,18X,3HSUN,4X,3HSUN,2(1X,6HFROM,2X,4HWIN-,1X,4HWIN-)<br>0027 26 READ20,MHT<br>0028 20 FORMAT(1X,64X,18X,3HSUN,4X,3HSUN,2(1X,6HFROM,2X,4HWAMB,2X,4HORO<br>1W,1X,4HDROM)<br>0027 26 READ20,HIT<br>0030 15 FORMAT(1X,64X,18X,3HSUN,4X,3HSUN,5HSUN,5G,5G,JO<br>0031 24 READ16,VEL,(HTIME(1),1=1,4),5SUN,5HSUN,5G,SG,JO<br>0032 16 FORMAT(15,0,2X,442,455.1,44X,11)<br>0033 17 F(JO-1)17,18,6<br>0034 17 IF(VEL)21,22<br>0035 21 FACT=0.<br>0037 GO TO 29<br>0038 22 SOVEL*1,46667<br>0039 FACT=0,232*SQRT(SO)<br>0040 IMVEL=50<br>0044 TA2=SGRAA.32.<br>0045 RNLT=FACT*(TG2-TA2)+EM*(460,+TG])**4<br>RNLT=FACT*(TG2-TA2)+EM*(460,+TG])**4<br>0046 RNLT=FACT*(TG2-TA2)+EM*(460,+TG])**4<br>0047 THET=RNLT-RNLF<br>0048 AMB=TG[-TA1]<br>0050 23 FORMAT(1H,64X,15,F8,1,3F7,1,2F6,1,2F6,1)<br>0051 GO TO 24<br>0055 88 GALL EXIT<br>0055 88 GALL EXIT<br>0056 FND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0008    |    |   | 114 |            | 00          | 200            | TE1.2            |                       |               |                 |                |                     |        |        |      |        |      |
| 0010 111 FORMAT(1H )<br>0011 PRINT<br>0012 7 FORMAT(1H, f6X,19X,27HR A D I A T I O N D A T A)<br>0013 PRINT3 (MAP(1),I=1,B)<br>0014 8 FORMAT(1X,66X,19X,24HTIME,2X,4HWIND,3X,31HT E M P E R A T U<br>1 R E,7X,7HRADIANT)<br>0016 9 FORMAT(1X,66X,3X,4HTIME,2X,4HWIND,3X,31HT E M P E R A T U<br>1 R E,7X,7HRADIANT)<br>0017 PRINT10<br>0019 0018 10 FORMAT(1X,66X,19X,4HVEL.,40X,9HHEAT LOAD)<br>0019 PRINT11X,66X,10X,3HFPS,18X,1HF,19X,12HBTU/HR FT**2)<br>0021 PRINT12X,66X,16X,5HGLOBE,1X,6HSHIELD,2X,5HGLOBE,1X,6HSHIELD,1X,5H<br>1GLOBE,4X,2HTO,1X,4HFROM,3X,3HNET)<br>0023 PRINT13<br>0024 13 FORMAT(1X,66X,14X,4(1X,6HFACING),2X,4HFROH,2X,4HNIN-,1X,4HNIN-)<br>0025 PRINT13<br>0024 13 FORMAT(1X,66X,18X,3HSUN,4X,3HSUN,2(1X,6HGROUND),2X,4HAMB.,2X,4HDRO<br>14,FORMAT(1X,64X,18X,3HSUN,4X,3HSUN,5HSUN,8G,5G,JO<br>0027 26 READ20,MIT<br>0028 20 FORMAT(6A2,102)<br>0029 PRINT15,4NT<br>0030 15 FORMAT(1X,64X,30A2)<br>0030 15 FORMAT(1X,64X,3A2,4F5.1,44X,11)<br>14 FORMAT(1X,64X,3A2,4F5.1,44X,11)<br>0031 15 FORMAT(1X,64X,3A2,4F5.1,44X,11)<br>0032 15 FORMAT(5,0,2X,4A42,4F5.1,44X,11)<br>0033 16 FORMAT(5,0,2Z,4A42,4F5.1,44X,11)<br>0034 17 FI/VEL)17,18,66<br>0035 21 FGCTAC,<br>0035 21 FGCTAC,<br>0036 10 VELSO<br>0039 PACT=0.232FSQRT (SO)<br>0044 129 TG1=SUNRAA+32.<br>0044 TA2SSGRAA+32.<br>0045 RHLT=FACT+1TG2-TA2)+EM*(460,+TG1)**4<br>RHL=FACT+1TG2-TA2)+EM*(460,+TG1)**4<br>0046 RHL=FACT+1TG2-TA2)+EM*(460,+TG1)**4<br>0047 TNE=RHLT-RHLF<br>0048 AMB=TG1-TA1<br>0049 PRINT25<br>0050 25 FORMAT(1H,66X,4A2,15,F8.1,3FT,1,2F6,1,2F6,1)<br>0051 GO TO 26<br>0055 86 GALL EXIT<br>0056 END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0009    |    |   | 2   | 00         | WRI         | TEG            | 6,111)           |                       |               |                 |                |                     |        |        |      |        |      |
| 0011 PRINT7<br>0012 7 FORMAT(1H, 64X, 19X, 27HR A D I A T I O N D A T A)<br>0013 PRINTB,(MAP(1), I=1, 6)<br>0014 8 FORMAT(1X, 64X, 25X, 6AZ//)<br>0015 PRINT10<br>0016 9 FORMAT(1X, 64X, 25X, 6AZ//)<br>0017 PRINT10<br>0018 10 FORMAT(1X, 64X, 3X, 4HTIME, 2X, 4HWIND, 3X, 31HT E M P E R A T U<br>1 R E, 7X, 7HRADIANT)<br>0017 PRINT10<br>0018 10 FORMAT(1X, 64X, 10X, 3HFPS, 18X, 1HF, 19X, 12H6TU/HR FT**2)<br>0021 PRINT11<br>0020 11 FORMAT(1X, 64X, 10X, 3HFPS, 18X, 1HF, 19X, 12H6TU/HR FT**2)<br>0021 PRINT12<br>0022 12 FORMAT(1X, 64X, 16X, 5HGLOBE, 1X, 6HSHIELD, 2X, 5HGLOBE, 1X, 6HSHIELD, 1X, 5H<br>1GLOBE, 4X, 2HTO, 1X, 4HFROM, 3X, 3HNET)<br>0023 PRINT14<br>0024 13 FORMAT(1X, 64X, 18X, 3HSUN, 3X, 3HNET)<br>0025 PRINT14<br>0026 14 FORMAT(1X, 64X, 18X, 3HSUN, 4X, 3HSUN, 2(1X, 6HGROUND), 2X, 4HAMB, +2X, 4HWRO<br>1W, 1X, 4HOROH)<br>0027 26 READ20, HIT<br>0028 20 FORMAT(40A2)<br>0030 15 FORMAT(1X, 64X, 30A2)<br>0031 24 READ16, VEL, (MTIME(1), 1=1, 4), BSUN, SHSUN, 8G, SG, JO<br>0032 16 FORMAT(1X, 64X, 30A2)<br>0033 1F(JQ-1)17, 18, 66<br>1034 17 IF(VEL)21, 22<br>0035 21 FACT=0.<br>0037 GO TO 29<br>0038 22 SO-VEL*1, 44667<br>1039 FACT=0. 232×SQRT (SO)<br>0040 IMVEL=SO<br>0044 72 FGL=BSUN&RA+32.<br>0045 RHL 1=ACT*(1G1=TA1)=EM*(460, +TG1)**4<br>0046 RHL 1=ACT*(1G1=TA1)=EM*(460, +TG1)**4<br>0047 TNETERHL T-RHLF<br>0046 AMB=TG1=TA1<br>0049 PRINT25<br>0050 23 FORMAT(1X, 64X, 4A2, 15, F8.1, 3F7.1, 2F6.1, 2F6.1)<br>0051 GO TO 26<br>0055 88 CALL EXIT<br>0050 FORMAT(1X, 64X, 4A2, 15, F8.1, 3F7.1, 2F6.1, 2F6.1)<br>0054 END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0010    |    |   | 111 |            | FOR         | RMAT           | (1H)             |                       |               |                 |                |                     |        |        |      |        |      |
| <pre>0012 7 FORMAT(1H, 664x,19x,27HR A D I A T I D N D A T A)<br/>0013 PRINT8,(MAP(1),1=1,8)<br/>0014 8 FORMAT(1X,64X,25X,8A2//)<br/>0015 PRINT9<br/>0016 9 FORMAT(1X,64X,3X,4HTIME,2X,4HWIND,3X,31HT E M P E R A T U<br/>1 R E,TX,7HRADIANT)<br/>0017 PRINT10<br/>0018 10 FORMAT(1X,64X,9X,4HVEL,,40X,9HHEAT LOAD)<br/>0019 PRINT11<br/>0020 11 FORMAT(1X,64X,10X,3HFPS,18X,1HF,19X,12H8TU/HR FT**2)<br/>0021 PRINT12<br/>0022 12 FORMAT(1X,64X,16X,5HGLOBE,1X,6HSHIELD,2X,5HGLOBE,1X,6HSHIELD,1X,5H<br/>1GLOBE,4X,2HTO,1X,4HFROM,3X,3HNET)<br/>0023 PRINT13<br/>0024 13 FORMAT(1X,64X,16X,5HGLOBE,1X,6HSHIELD,2X,5HGLOBE,1X,6HSHIELD,1X,5H<br/>1GLOBE,4X,2HTO,1X,4HFROM,3X,3HNET)<br/>0025 PRINT13<br/>0026 14 FORMAT(1X,64X,16X,3HSUN,4X,3HSUN,2(1X,6HGROUND),2X,4HAMB.,2X,4HDRO<br/>1W,1X,4HOROW)<br/>0027 26 READ20,MIT<br/>0028 20 FORMAT(1X,64X,30A2)<br/>0030 15 FORMAT(1X,64X,30A2)<br/>0031 15 FORMAT(1X,64X,30A2)<br/>0032 16 FORMAT(1X,64X,30A2)<br/>0033 16 FORMAT(1X,64X,30A2)<br/>0033 17 F(U=L)21,21,22<br/>0035 21 FACT=0.232*SORT (SO)<br/>0036 1040 1WVEL=50<br/>0037 60 TO 29<br/>0037 62 SOUVEL*1.4667<br/>0039 FACT=0.232*SORT (SO)<br/>0040 1WVEL=50<br/>0041 29 TGL=8SUN#RA+32.<br/>0043 TG2=8G*RA+32.<br/>0044 TA2=SG*RA+32.<br/>0045 RHLT=FACT*(TG1=TA1)+EM*(460.*TG1)**4<br/>0046 RHL=FACT*(TG2=TA2)+EM*(460.*TG1)**4<br/>0047 TK=FAKL*(TTME(1),1=1,4),1WVEL,TG1,TA1,TG2,TA2,AMB,RHL1,RHLF,<br/>1TNET<br/>0050 23 FORMAT(1X,64X,4A2,15,F8.1,3F7.1,2F6.1,2F6.1)<br/>0051 G0 TO 24<br/>0055 88 CALL EXIT<br/>0055 88 CALL EXIT<br/>0056 END</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0011    |    |   |     |            | PRI         | NT7            |                  |                       |               |                 |                |                     |        |        |      |        |      |
| 0013   PRIMIE;(MAP(1), 10, 10, 10, 10, 10, 10, 10, 10, 10, 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0012    |    |   | 7   |            | FOR         | MAT            | (1H +6           | 4X,19X                | ,27HR         | ADIA            | TION           | DA1                 | (A 1   |        |      |        |      |
| <pre>0015 PRINTS<br/>0016 9 FORMAT(1X;64X;3X;4HTIME;2X;4HWIND;3X;31HT E M P E R A T U<br/>1 R E;TX:7HRADIANT)<br/>0017 PRINT10<br/>0018 10 FORMAT(1X;64X;9X;4HVEL.;40X;9HHEAT LOAD)<br/>0019 PRINT11<br/>0020 11 FORMAT(1X;64X;10X;3HFPS;18X;1HF,19X;12HBTU/HR FT**2)<br/>0021 PRINT12<br/>0022 12 FORMAT(1X;64X;16X;5HGLOBE;1X;6HSHIELD;2X;5HGLOBE;1X;6HSHIELD;1X;5H<br/>1GLOBE;4X;2HTO;1X;4HFROM;3X;3HNET)<br/>0023 PRINT13<br/>0024 13 FORMAT(1X;64X;14X;4(1X;6HFACING);2X;4HFROM;2X;4HWIN-,1X;4HWIN-)<br/>0025 PRINT14<br/>0026 14 FORMAT(1X;64X;18X;3HSUN;4X;3HSUN;2(1X;6HGROUND);2X;4HAMB:;2X;4HORO<br/>1W;1X;4HDROW)<br/>0027 26 READ20;HIT<br/>0028 20 FORMAT(4X;64X;30A2)<br/>0031 15 FORMAT(1X;64X;30A2)<br/>0032 16 FORMAT(1X;64X;30A2)<br/>0033 15 FORMAT(1X;64X;30A2)<br/>0034 17 IF(VEL)21;21;22<br/>0035 21 FACT=0.<br/>0036 1WVEL=0<br/>0037 G0 TD 29<br/>0038 22 SO=VEL*1;4667<br/>0039 FACT=0.232*SORT (SO)<br/>0040 1WVEL=50<br/>0041 29 TGI=BSUNRA;432.<br/>0043 TGZ=05GRRA;32.<br/>0044 TA2=SGRA;32.<br/>0045 RHLT=FACT=(1C]=TA1)+EM*(460:+TG1)**4<br/>0044 TA2=SGRA;32.<br/>0045 RHLT=FACT=(1C]=TA1)+EM*(460:+TG1)**4<br/>0046 AHL=FACT*(TG2=TA2)+EM*(460:+TG1)**4<br/>0047 TNTT=RHLT=RLLF<br/>0048 AMB=TGL=TA1<br/>0049 PRINT23;(MTIME(1);1=1,4);JHVEL;TG1;TA1;TG2;TA2;AMB;RHL1;RHLF;<br/>1THET<br/>0050 23 FORMAT(1X;64X;4A2;15;F8:1;3F7:1;2F6:1;2F6:1)<br/>0051 G0 TD 26<br/>0055 B8 CALL EXIT<br/>0055 B8 CALL EXIT<br/>0056 END</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0013    |    |   |     | R          | FOR         | EN18           | 1 1 X - 64       | 110121                | +81<br>882//1 |                 |                |                     |        |        |      |        |      |
| 0016     9 FORMATILX;64X;3X;4HTIHE;2X;4HWIND,3X;3IHT E M P E R A T U<br>I R E;7X;7HRADIANT)       0017     PRINT10       0018     10 FORMATILX;64X;9X;64VEL;40X;9HHEAT LOAD)       0019     PRINT10       0020     11 FORMATILX;64X;10X;3HFPS;18X;1HF,19X;12HBTU/HR FT**2)       0021     PRINT13       0022     12 FORMATILX;64X;10X;3HFPS;18X;1HF,19X;12HBTU/HR FT**2)       0023     PRINT13       0024     13 FORMATILX;64X;14X;4HFROM;3X;3HNET)       0025     PRINT14       0026     14 FORMATILX;64X;14X;4HFROM;3X;3HNET)       0027     26 READ20;MIT       0028     20 FORMATI(402)       0029     PRINT15;MIT       0030     15 FORMATI(1X;64X;18X;3D2)       0031     24 READ16;VEL;(MTIME(1);1=1,4);BSUN;SHSUN;BG;SG;JO       0033     17 IF(VEL)21,21,22       0034     17 IF(VEL)21,21,22       0035     21 FACT=0.       0036     IMVE=0       0037     GO TO 29       0038     22 SO=VEL*1;4667       0039     FACT=0.232*SORT (SO)       0040     IMVE=0       0037     GO TO 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0015    |    |   |     | č          | PRI         | INT9           | 111104           | ~123~1                | 042///        |                 |                |                     |        |        |      |        |      |
| 0017 PRINTIO<br>0018 10 FORMAT(1X,64X,9X,4HVEL.,40X,9HHEAT LDAD)<br>0019 PRINT11<br>0020 11 FORMAT(1X,64X,10X,3HFPS,18X,1HF,19X,12HBTU/HR FT**2)<br>0021 PRINT12<br>0022 12 FORMAT(1X,64X,16X,5HGLOBE,1X,6HSHIELD,2X,5HGLOBE,1X,6HSHIELD,1X,5H<br>1GLOBE,4X,2HTO,1X,4HFROM,3X,3HNET)<br>0023 PRINT13<br>0024 13 FORMAT(1X,64X,14X,4(1X,6HFACING),2X,4HFROM,2X,4HWIN-,1X,4HWIN-)<br>0025 PRINT14<br>0026 14 FORMAT(1X,64X,18X,3HSUN,4X,3HSUN,2(1X,6HGROUND),2X,4HAMB.,2X,4HDRO<br>1W,1X,4HDROW)<br>0027 26 READ20,MIT<br>0028 20 FORMAT(14A,64X,30A2)<br>0029 PRINT15,MIT<br>0030 15 FORMAT(1X,64X,30A2)<br>0031 24 READ16,VEL,(MTIME(1),1=1,4),BSUN,SHSUN,BG,SG,JO<br>0033 1F(JQ-1)17,18,6<br>0034 17 IF(VEL)21,21,22<br>0035 21 FACT=0.<br>0036 IMVEL=0<br>0037 G0 TD 29<br>0038 22 SO=VEL*1.4667<br>0038 22 SO=VEL*1.4667<br>0039 FACT=0.22X*SORT (SO)<br>0040 IMVEL=SO<br>0044 TA2=SG&RA+32.<br>0045 RHLT=FACT*(TG1=TA1)+EM*(460,+TG1)**4<br>RHLT=FACT*(TG1=TA1)+EM*(460,+TG1)**4<br>0046 RHLT=FACT*(TG1=TA1)+EM*(460,+TG1)**4<br>0046 RHLT=FACT*(TG1=TA1)+EM*(460,+TG1)**4<br>0047 TNET=RHLT=RHLT=HLF<br>0048 AMB=TG1=TA1<br>0049 PRINT23,(MTIME(1),1=1,4),IMVEL,TG1,TA1,TG2,TA2,AMB,RHLI,RHLF,<br>1TNET<br>0050 23 FORMAT(1X,64X,4A2,15,F8.1,3F7.1,2F6.1,2F6.1)<br>0051 03 CD 26<br>0055 88 CALL EXIT<br>0056 END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0016    |    |   |     | 9<br>1     | FOR         | MAT            | (1X,64<br>7X,7HR | X,3X,4<br>Adiant      | HTIME;        | 2X,4HWIN        | ID,3X,31H      | тем                 | 1 P    | ER     | A    | T      | U    |
| 0018 10 FORMAT(1X,64X,9X,4HVEL,,40X,9HHEAT LOAD)<br>0019 PRINT11<br>0020 11 FORMAT(1X,64X,10X,3HFPS,18X,1HF,19X,12HBTU/HR FT**2)<br>0021 PRINT12<br>0022 12 FORMAT(1X,64X,16X,5HGLOBE,1X,6HSHIELD,2X,5HGLOBE,1X,6HSHIELD,1X,5H<br>1GLOBE,4X,2HTD,1X,4HFRON,3X,3HNET)<br>0023 PRINT13<br>0024 13 FORMAT(1X,64X,14X,4(1X,6HFACING),2X,4HFROH,2X,4HWIN-,1X,4HWIN-)<br>0025 PRINT14<br>0026 14 FORMAT(1X,64X,18X,3HSUN,4X,3HSUN,2(1X,6HGROUND),2X,4HAMB.,2X,4HORO<br>1W,1X,4HOROW)<br>0027 26 READ20,WIT<br>0028 20 FORMAT(40A2)<br>0029 PRINT15,HIT<br>0030 15 FORMAT(1X,64X,30A2)<br>0031 12 4 READ16,VEL,14TIHE(1),1=1,4),BSUN,SHSUN,BG,SG,JQ<br>0032 16 FORMAT(F5,0,2X,4A2,4F5,1,44X,11)<br>0033 1F(UE,121,21,22<br>0035 21 FACT=0.<br>0036 1WEL=0<br>0037 GO TD 29<br>0038 22 GOVEL#1,4667<br>0039 FACT=0,232*SQRT (SD)<br>0040 1WVEL=50<br>0041 29 TG1=BSUN*RA+32.<br>0042 TA1=SHSUN*RA+32.<br>0044 TA2=SG*RA+32.<br>0044 TA2=SG*RA+32.<br>0044 TA2=SG*RA+32.<br>0044 TA2=SG*RA+32.<br>0044 TA2=SG*RA+32.<br>0045 RHLT=FACT*(TG1=TA1)+EM*(460,+TG1)**4<br>RHLT=FACT*(TG2=TA2)+EM*(460,+TG1)**4<br>0046 RHLT=FACT*(TG1=TA1)+EM*(460,+TG1)*4<br>0047 TNET=#RHT=RHLF<br>0048 AMB=TG1=TA1<br>0049 PRINT23,(MTIME(1),1=1,4),IMVEL,TG1,TA1,TG2,TA2,AMB,RHL1,RHLF,<br>1TNET<br>0050 23 FORMAT(1X,64X,4A2,15,F8.1,3F7,1,2F6,1)<br>0051 23 FORMAT(1X,64X,4A2,15,F8.1,3F7,1,2F6,1)<br>0052 18 PRINT25<br>0053 80 CALL EXIT<br>0056 END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0017    |    |   |     |            | PR          | INTI           | 0                |                       |               |                 |                |                     |        |        |      |        |      |
| 0019 PRINT1<br>0020 11 FORMAT(1X,64X,10X,3HFPS,18X,1HF,19X,12H8TU/HR FT**2)<br>PRINT12<br>0021 12 FORMAT(1X,64X,16X,5HGLOBE,1X,6HSHIELD,2X,5HGLOBE,1X,6HSHIELD,1X,5H<br>1GLOBE,4X,2HTU,1X,6HFAGN,3X,3HNET)<br>0023 PRINT13<br>0024 13 FORMAT(1X,64X,14X,4(1X,6HFACING),2X,4HFROH,2X,4HWIN-,1X,4HWIN-)<br>0025 PRINT14<br>0026 14 FORMAT(1X,64X,18X,3HSUN,4X,3HSUN,2(1X,6HGROUND),2X,4HAMB.,2X,4HDRO<br>1W,1X,4HDROW)<br>0027 26 READ20,MIT<br>0028 20 FORMAT(1X,64X,30A2)<br>0029 PRINT15,HIT<br>0028 16 FORMAT(1X,64X,30A2)<br>0031 24 READ16,VEL,(MTIME(1),1=1,4),8SUN,SHSUN,8G,SG,JQ<br>0032 16 FORMAT(1X,64X,30A2)<br>0033 1F(JQ-1)17,18,6<br>0034 17 IF(VEL)21,21,22<br>0035 21 FACT=0.<br>0036 IMVEL=0<br>0037 GO TO 29<br>0038 22 SO=VEL*1,4667<br>0039 FACT=0.232*SQRT (SO)<br>0040 IMVEL=SO<br>0044 7A2=86&RA+32.<br>0043 TG2=86&RA+32.<br>0044 TA2=SG&RA+32.<br>0044 TA2=SG&RA+32.<br>0045 RHLT=FACT*(TG2-TA2)+EM*(460,+TG1)**4<br>RHLT=FACT*(TG2-TA2)+EM*(460,+TG1)**4<br>AHB=TG1-TA1<br>0049 PRINT23,(MTIME(1),1=1,4),IMVEL,TG1,TA1,TG2,TA2,AMB,RHL1,RHLF,<br>1TNET<br>0050 23 FORMAT(1X,64X,4A2,15,F8.1,3F7.1,2F6.1,2F6.1)<br>0051 26 FORMAT(1),664<br>0052 18 PRINT25<br>0053 25 FORMAT(1),664<br>0054 60 TO 24<br>0055 88 CALL EXIT<br>0056 END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0018    |    |   |     | 10         | FOR         | MAT            | (1X,64           | X,9X,4                | HVEL.,        | 40X,9HHE        | AT LOAD)       |                     |        |        |      |        |      |
| 0020 11 FURMAT(1X,66X,10X,3HFPS,18X,1HF,19X,12HBTU/HR FT**2)<br>PRINT12<br>0021 PRINT12<br>0022 12 FORMAT(1X,66X,16X,5HGLOBE,1X,6HSHIELD,2X,5HGLOBE,1X,6HSHIELD,1X,5H<br>1GLOBE,4X,2HTO,1X,4HFROM,3X,3HNET)<br>0023 PRINT13<br>0024 13 FORMAT(1X,66X,14X,4(1X,6HFACING),2X,4HFROM,2X,4HWIN-,1X,4HWIN-)<br>0025 PRINT14<br>0026 14 FORMAT(1X,66X,18X,3HSUN,4X,3HSUN,2(1X,6HGROUND),2X,4HAMB.,2X,4HDRO<br>1W,1X,4HOROW)<br>0027 26 READ20,WIT<br>0028 20 FORMAT(40A2)<br>0029 PRINT15,MIT<br>0030 15 FORMAT(1X,66X,30A2)<br>0031 24 READ16,VEL,(MTIME(1),I=1,4),BSUN,SHSUN,BG,SG,JQ<br>0032 16 FORMAT(F5.0,2X,4A2,4F5.1,44X,11)<br>0033 1 F(UQ-117,1B,6<br>0034 17 IF(VEL)21,21,22<br>0035 21 FACT=0.<br>0036 IMVEL=0<br>0037 G0 T0 29<br>0038 22 SO=VEL#1,4667<br>0039 FACT=0.232%SQRT (SO)<br>0040 IMVEL=50<br>0041 29 TGL=BSUN&RA432.<br>0042 TA1=SHSUN&RA432.<br>0044 TA2=SG&RA432.<br>0044 TA2=SG&RA432.<br>0045 RHLT=FACT*(TG1-TA1)+EM*(460.+TG1)**4<br>0046 RHLT=FACT*(TG2-TA2)+EM*(460.+TG1)**4<br>0046 AHB=TG1-TA1<br>0049 PRINT23,(MTIME(1),I=1,4),IMVEL,TG1,TA1,TG2,TA2,AMB,RHLI,RHLF,<br>1TNET<br>0050 23 FORMAT(1X,66X,4A2,15,F8.1,3F7.1,2F6.1,2F6.1)<br>0051 G0 T0 24<br>0052 18 PRINT25<br>0053 25 FORMAT(1H) )<br>0054 BCALL EXIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0019    |    |   |     |            | PRI         | INT1           | 1                |                       |               |                 |                |                     |        |        |      |        |      |
| 0022<br>12 FORMAT 1 (1x,64x,16x,5HGLOBE,1x,6HSH1ELD,2x,5HGLOBE,1x,6HSH1ELD,1x,5H<br>1GLOBE,4x,2HTO,1x,4HFROM,3x,3HNET)<br>PRINT13<br>0024<br>13 FORMAT (1x,64x,14x,4(1x,6HFACING),2x,4HFROM,2x,4HWIN-,1x,4HWIN-)<br>0025<br>PRINT16<br>0026<br>14 FORMAT (1x,64x,18x,3HSUN,4x,3HSUN,2(1x,6HGROUND),2x,4HAMB.,2x,4HDRO<br>14,1x,4HOROW)<br>0027<br>26 FEAD20,MIT<br>0028<br>20 FORMAT (40A2)<br>0029<br>PRINT15,HIT<br>0030<br>15 FORMAT (1x,64x,30A2)<br>0031<br>24 READ16,VEL,(MTIME(1),1=1,4),BSUN,SHSUN,BG,SG,JO<br>0032<br>16 FORMAT (F5.0,2x,4A2,4F5.1,44x,11)<br>0133<br>1F(1,0-1)17,18,6<br>0034<br>17 IF(VEL)21,22<br>0035<br>21 FACT=0.<br>0036<br>1MVEL=0<br>0037<br>0038<br>22 SO=VEL#1,4667<br>0038<br>22 SO=VEL#1,4667<br>0040<br>1MVEL=SO<br>0041<br>29 TG1=BSUN#RA+32.<br>0043<br>TG2=BG#RA+32.<br>0045<br>RHLT=FACT*(TG1-TA1)+EM*(460,+TG1)**4<br>RHLT=FACT*(TG2-TA2)+EM*(460,+TG1)**4<br>0046<br>RHLT=FACT*(TG2-TA2)+EM*(460,+TG1)**4<br>0047<br>TNET=RHLT-RHLF<br>0048<br>AMB=TG1-TA1<br>0049<br>PRINT23,(MTIME(1),1=1,4),IMVEL,TG1,TA1,TG2,TA2,AMB,RHLI,RHLF,<br>1NET<br>0050<br>23 FORMAT(11x,64x,4A2,15,F8,1,3F7,1,2F6,1,2F6,1)<br>0051<br>0052<br>18 PRINT25<br>0053<br>25 FORMAT(1H)<br>0054<br>0054<br>0054<br>0055<br>08 CALL EXIT<br>0056<br>END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0020    |    |   |     | 11         | FOF         | MAT            | (1X,64           | X,10X,                | 3HFPS,        | 18X,1HF,        | 19X,12HB       | TU/HR F             | FT**2) |        |      |        |      |
| 16L08E,4X,2MT0,1X,4HFROM,3X,3HRET)     16L08E,4X,2MT0,1X,4HFROM,3X,3HSTT)     0023     0024     13 FORMAT(1X,64X,14X,4(1X,6HFACING),2X,4HFROH,2X,4HWIN-,1X,4HWIN-)     0025     0026     14 FORMAT(1X,64X,18X,3HSUN,4X,3HSUN,2(1X,6HGROUND),2X,4HAMB.,2X,4HDRO     0027   26 READ20,MIT     0028   20 FORMAT(1X,64X,18X,3HSUN,4X,3HSUN,2(1X,6HGROUND),2X,4HAMB.,2X,4HDRO     0027   26 READ20,MIT     0028   20 FORMAT(1X,64X,30A2)     0029   PRINT15,MIT     0030   15 FORMAT(14,64X,30A2)     0031   24 READ16,VEL,(MTIME(1),I=1,4),BSUN,SHSUN,BG,SG,JQ     0032   16 FORMAT(15,64X,30A2)     0033   1F(JQ-1)17,18,6     0034   17 IF(VEL)21,21,22     0035   21 FACT=0.     0036   1WVEL=0     0037   G0 TO 29     0038   22 SO=VEL *1,4667     0039   FACT=0.232*SQRT (SO)     0040   IMVEL=50     0041   29 GO=SUN*RA+32.     0042   TA1=SHSUN*RA+32.     0043   TG2=BG*RA+32.     0044   TA2=SG*RA+32.     0045   RHLT=FACT*(TG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0021    |    |   |     | 12         | FOF         | ENII/          | (1×.64           | X.16X.                | 5461.08       | 6. 1Y.449       | UTELD. 27.     | EUCI OR             | -      | 44641  |      |        |      |
| 0023   PRINT13     0024   13 FORMAT(11x,64X,14X,4(11x,6HFACING),2X,4HFROM,2X,4HWIN-,1X,4HWIN-)     0025   PRINT14     0026   14 FORMAT(11x,64X,18X,3HSUN,4X,3HSUN,2(11x,6HGROUND),2X,4HAMB.,2X,4HDRO     0027   26 READ20,MIT     0028   20 FORMAT(40A2)     0030   15 FORMAT(11x,64X,30A2)     0031   24 READ16,VEL,(MTIME(1),I=1,4),BSUN,SHSUN,BG,SG,JQ     0032   16 FORMAT(15,0,2X,4A2,4F5.1,44X,11)     0033   1F(JQ-1)17,18,6     0034   17 F(VEL)21,21,22     0035   21 FACT=0.     0036   1WVEL=01     0037   GO TO 29     0038   22 SOFVEL#1+4667     0040   IMVEL=50     0042   TA1=SHSUN*RA+32.     0043   TG2=BG*RA+32.     0044   TA2=SG*RA+32.     0045   RHLT=FACT*(TG1=TA1)+EM*(460,+TG1)**4     0046   RHL =FACT*(TG2-TA2)+EM*(460,+TG1)**4     0047   TNET=RHLT=RHLF     0048   AMB=TG1=TA1     0049   PRINT23,(MTIME(1),1=1,4),IMVEL,TG1,TA1,TG2,TA2,AMB,RHL1,RHLF,     0050   23 FORMAT(1X,64X,4A2,15,F8.1,3F7.1,2F6.1,2F6.1)     0051   GO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |    |   |     | <u>، ا</u> |             | NAF .          | 4X.2HT           | N,18.4                | HEROM.        | 37.3005         | )<br>          | 92866606            | , 17   | 04241  | LELI | 1+1)   | (,5H |
| 0024   13 FORMAT(1X,64X,14X,4(1X,6HFACING),2X,4HFROM,2X,4HHIN-,1X,4HWIN-)     0025   PRINT14     0026   14 FORMAT(1X,64X,18X,3HSUN,4X,3HSUN,2(1X,6HGROUND),2X,4HAMB.,2X,4HDRO     107   26 READ20,MIT     0028   20 FORMAT(40A2)     0030   15 FORMAT(1X,64X,30A2)     0031   24 READ16,VEL,(MTIME(1),I=1,4),BSUN,SHSUN,8G,SG,JQ     0032   16 FORMAT(1X,64X,30A2)     0033   17 IF(VEL)21,21,22     0034   17 IF(VEL)21,21,22     0035   21 FACT=0.     0036   IMVEL=0     0037   GO TO 29     0038   22 SO=VEL*1.4667     0039   FACT=0.322*SQRT (SO)     0040   IMVEL=SO     0041   29 TG1=BSUN*RA+32.     0042   TA1=SHSUN*RA+32.     0043   TG2=BG*RA+32.     0044   TA2=SG*RA+32.     0045   RHLT=FACT*(TG1-TA1)+EM*(460.+TG1)**4     0046   RHEFACT*(TG2-TA2)+EM*(460.+TG2)**4     0047   TNET=RHLT=RHLF     0048   AMB=TG1-TA1     0049   PRINT23,(MTIME(1),1=1,4),IMVEL,TG1,TA1,TG2,TA2,AMB,RHLI,RHLF,     0050   23 FORMAT(1X,64X,4A2,15,F8.1,3F7.1,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0023    |    |   |     | •          | PRI         | INTI           | 3                |                       | ni kony       | 27 7 211112 1   | ,              |                     |        |        |      |        |      |
| 0025   PRINT14     0026   14 FORMAT (1X,64X,18X,3HSUN,4X,3HSUN,2(1X,6HGROUND),2X,4HAMB.,2X,4HDRO     0027   26 READ20,MIT     0028   20 FORMAT (40A2)     0029   PRINT15,MIT     0030   15 FORMAT (1X,64X,30A2)     0031   24 READ16,VEL, (MTIME (1),I=1,4),BSUN,SHSUN,BG,SG,JQ     0032   16 FORMAT (F5.0,2X,4A2,4F5.1,44X,11)     0033   1F(JQ-1)17,18,6     0034   17 IF(VE)21,21,22     0035   21 FACT=0.     0036   IMVEL=0     0037   GO TO 29     0038   22 SO=VEL#1.4667     0039   FACT=0.232*SQRT (SO)     0040   IMVEL=SO     0041   29 TG1=BSUN*RA+32.     0042   TA1=SHUM*RA+32.     0043   TG2=BG*RA+32.     0044   TA2=SG*RA+32.     0045   RHLT=FACT*(TG2-TA2)+EM*(460,+TG1)**4     0046   RHLF=FACT*(TG2-TA2)+EM*(460,+TG1)**4     0047   TNET=RHLT-RHLF     0048   AMB=TG1-TA1     0049   PRINT23,(MTIME(1),I=1,4),IMVEL,TG1,TA1,TG2,TA2,AMB,RHLI,RHLF,     0051   GO TO 24     0052   18 PRINT25<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0024    |    |   |     | 13         | FOR         | RMAT           | (1X,64           | X,14X,                | 4(1X,6        | HFACING)        | ,2X,4HFR       | DM,2X,4             | HWIN-  | .,1X,4 | 4HW  | IN-    | )    |
| 0026   14 FORMAT(1x,64X,18X,3HSUN,4X,3HSUN,2(1X,6HGROUND),2X,4HAMB.,2X,4HDRO     1W,1X,4HDROH)   1W,1X,4HDROH)     0027   26 READ20,MIT     0028   20 FORMAT(40A2)     0030   15 FORMAT(1X,64X,30A2)     0031   24 READ16,VEL.(MTIME(1),I=1,4),BSUN,SHSUN,BG,SG,JQ     0032   16 FORMAT(F5.0,2X,4A2,4F5.1,44X,11)     0033   1F(JQ-1)17,18,6     0034   17 IF(VEL)21,21,22     0035   21 FACT=0.     0036   IMVEL=0     0037   GO TO 29     0038   22 SO=VEL*1.4667     0039   FACT=0.232x\$QRT (SO)     0040   IMVEL=SO     0041   29 TG1=BSUN#RA+32.     0042   TA1=SHSUN#RA+32.     0043   TG2=BG#RA+32.     0044   TA2=SG#RA+32.     0045   RHLT=FACT*(TG1-TA1)+EM*(460,+TG1)**4     0046   RHLT=FACT*(TG2-TA2)+EM*(460,+TG1)**4     0047   TNET=RHLT-RHLF     0048   AMB=TG1-TA1     0049   PRINT23,(MTIME(1),1=1,4),IMVEL,TG1,TA1,TG2,TA2,AMB,RHLI,RHLF,     0051   GO TO 24     0052   18 PRINT25     0053   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0025    |    |   |     |            | PRI         | INT14          | 4                |                       |               |                 |                |                     |        | • - •  |      |        |      |
| 0027   26 READ20,MIT     0028   20 FORMAT(40A2)     0030   15 FORMAT(1X,64X,30A2)     0031   24 READ16,VEL,(MTIME(1),I=1,4),BSUN,SHSUN,BG,SG,JQ     0032   16 FORMAT(F5.0,2X,4A2,4F5.1,44X,11)     0033   IF(JQ-1)17,18,6     0034   17 IF(VEL)21,22,22     0035   21 FACT=0.     0036   IMVEL=0     0037   GO TO 29     0038   22 SO=VEL*1.4667     0039   FACT=0.232*SQRT (SO)     0040   IMVEL=SO     0041   29 TGI=BSUN*RA+32.     0042   TA1=SHSUN*RA+32.     0043   TG2=BG*RA+32.     0044   TG2=GG*RA+32.     0045   RHLT=FACT*(TG1=TA1)+EM*(460.+TG1)**4     0046   RHLF=FACT*(TG2=TA2)+EM*(460.+TG1)**4     0047   TNET     0048   AMB=TG1-TA1     0049   PRINT23,(MTIME(I),I=1,4),IMVEL,TG1,TA1,TG2,TA2,AMB,RHLI,RHLF,     0049   PRINT23,(MTIME(I),I=1,4),IMVEL,TG1,TA1,TG2,TA2,AMB,RHLI,RHLF,     0050   23 FORMAT(11X,64X,4A2,15,F8.1,3F7.1,2F6.1,2F6.1)     0051   GO TO 24     0052   18 PRINT25     0053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0026    |    |   |     | 14<br>1    | FOR<br>[₩#] | LMAT<br>X 7 41 | (1X,64<br>HDROW) | X,18X,                | 3HSUN,        | 4X,3HSUN        | I,2(1X,6H      | GROUND              | ,2X,4  | HAMB   | ,22  | K • 41 | IDRO |
| 0028   20 FORMAT(40A2)     0029   PRINT15,MIT     0030   15 FORMAT(1X,64X,30A2)     0031   24 READ16,VEL,(MTIME(1),I=1,4),BSUN,SHSUN,BG,SG,JQ     0032   16 FORMAT(F5.0,2X,4A2,4F5.1,44X,11)     0033   1F(JQ-1)17,18,6     0034   17 IF(VEL)21,21,22     0035   21 FACT=0.     0036   IMVEL=0     0037   GO TO 29     0038   22 SO=VEL#1.4667     0039   FACT=0.232*SQRT (SO)     0040   IMVEL=SO     0041   29 TGL=BSUN*RA+32.     0042   TA1=SHSUN*RA+32.     0043   TG2=BGE*RA+32.     0044   TA2=SG*RA+32.     0045   RHLT=FACT*(TG1=TA1)+EM*(460.+TG1)***4     0046   RHLF=FACT*(TG2=TA2)+EM*(460.+TG1)***4     0045   RHLT=FACT*(TG1=TA1)+EM*(460.+TG1)***4     0046   RHLF=FACT*(TG2=TA2)+EM*(460.+TG1)***4     0047   TNET=RHLT=AHLF     0048   AMB=TG1=TA1     0049   PRINT23,(MTIME(1),I=1,4),IMVEL,TG1,TA1,TG2,TA2,AMB,RHLI,RHLF,     0050   23 FORMAT(1X,64X,4A2,15,F8.1,3F7.1,2F6.1,2F6.1)     0051   GO TO 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0027    |    |   |     | 26         | REA         | D20            | ,MIT             |                       |               |                 |                |                     |        |        |      |        |      |
| 0029   PRINI15,MI1     0030   15   FORMAT(1X,64X,30A2)     0031   24 READ16,VEL,(MTIME(1),I=1,4),BSUN,SHSUN,BG,SG,JQ     0032   16   FORMAT(1X,64X,30A2)     0033   16   FORMAT(1F5.0,2X,4A2,4F5.1,44X,11)     0033   1F(JQ-1)17,18,6     0034   17   IF(VEL)21,21,22     0035   21   FACT=0.     0036   IMVEL=0     0037   GO TO 29     0038   22   SO=VEL#1.4667     0039   FACT=0.232*SQRT (SO)     0040   IMVEL=SO     0041   29   TG1=BSUN*RA+32.     0042   TA1=SHSUN*RA+32.     0043   TG2=BG*RA+32.     0044   TA2=SG*RA+32.     0045   RHLT=FACT*(TG1=TA1)+EM*(460.*TG1)***4     0046   RHLF=FACT*(TG2=TA2)+EM*(460.*TG1)***4     0047   TNET=RHLT=RHLF     0048   AMB=TG1=TA1     0049   PRINT23,(MTIME(1),I=1,4),IMVEL,TG1,TA1,TG2,TA2,AMB,RHLI,RHLF,     0050   23 FORMAT(1X,64X,4A2,15,F8.1,3F7.1,2F6.1,2F6.1)     0051   GO TO 24     0052   18 PRINT25     0054 <td>0028</td> <td></td> <td></td> <td></td> <td>20</td> <td>FOR</td> <td>MAT</td> <td>(40A2)</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0028    |    |   |     | 20         | FOR         | MAT            | (40A2)           |                       |               |                 |                |                     |        |        |      |        |      |
| 0030   15   FORMAT(1X,04X,30A2)     0031   24 READ16,VEL(,MTIME(1),I=1,4),BSUN,SHSUN,BG,SG,JQ     0032   16   FORMAT(F5.0,2X,4A2,4F5.1,44X,11)     0033   IF(JQ-1)17,18,6     0034   17   IF(VEL)21,21,22     0035   21   FACT=0.     0036   IMVEL=0     0037   GO TO 29     0038   22 SO=VEL*1.4667     0039   FACT=0.232*SQRT (SO)     0040   IMVEL=SO     0041   29 TG1=BSUN*RA+32.     0042   TA1=SHSUN*RA+32.     0043   TG2=BG&RA+32.     0044   TA2=SG&RA+32.     0045   RHLF=FACT*(TG1-TA1)+EM*(460.+TG1)**4     0046   RHLF=FACT*(TG2-TA2)+EM*(460.+TG1)**4     0047   TNET=RHLT-RHLF     0048   AMB=TG1-TA1     0049   PRINT23, (MTIME(1),I=1,4),IMVEL,TG1,TA1,TG2,TA2,AMB,RHLI,RHLF,     0050   23 FORMAT(1X,64X,4A2,15,F8.1,3F7.1,2F6.1,2F6.1)     0051   GO TO 24     0052   18 PRINT25     0053   25 FORMAT(1H )     0054   GO TO 26     0055   86 CALL EXIT <t< td=""><td>0029</td><td></td><td></td><td>16</td><td></td><td>PKI</td><td></td><td>5 • M I I</td><td>~ ~ ~ ~ ~</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0029    |    |   | 16  |            | PKI         |                | 5 • M I I        | ~ ~ ~ ~ ~             |               |                 |                |                     |        |        |      |        |      |
| 0032   16 FORMAT(F5.0;2X;4A2;4F5.1;44X,F11)     0033   IF(JQ-1)17;18;6     0034   17 IF(VEL)21;21;22     0035   21 FACT=0.     0036   IMVEL=0     0037   GD TD 29     0038   22 SD=VEL#1.4667     0039   FACT=0.232*SQRT (SD)     0040   IMVEL=50     0041   29 TG1=BSUN*RA+32.     0042   TA1=SHSUN*RA+32.     0043   TG2=BG*RA+32.     0044   TA2=SG*RA+32.     0045   RHLF=FACT*(TG1=TA1)+EM*(460.+TG1)**4     0046   RHF=FACT*(TG2=TA2)+EM*(460.+TG1)**4     0047   TNET=RHLT=RHLF     0048   AMB=TG1=TA1     0049   PRINT23, (MTIME(1),I=1,4),IMVEL,TG1,TA1,TG2,TA2,AMB,RHLI,RHLF,     1TNET   GO TO 24     0050   23 FORMAT(1X,64X,4A2,15,F8.1,3F7.1,2F6.1,2F6.1)     0051   GO TO 24     0052   18 PRINT25     0053   25 FORMAT(1H )     0054   GO TO 26     0055   88 CALL EXIT     0056   END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0030    |    |   | 12  | 74         | REV         | I A LU         | VE1.(            | A 7 3 UAZ<br>MT IME / | /<br>1).1-)   |                 |                |                     |        |        |      |        |      |
| 0033   IF(JQ-1)17,18,6     0034   17 IF(VEL)21,21,22     0035   21 FACT=0.     0036   IMVEL=0     0037   GO TO 29     0038   22 SO=VEL*1.4667     0039   FACT=0.232*SQRT (SO)     0040   IMVEL=SO     0041   29 TG1=BSUN*RA+32.     0042   TA=SHSUN*RA+32.     0043   TG2=BG*RA+32.     0044   TA2=SG*RA+32.     0045   RHLT=FACT*(TG1-TA1)+EM*(460.+TG1)**4     0046   RHLT=FACT*(TG2-TA2)+EM*(460.+TG2)**4     0047   TNET=RHLT-RHLF     0048   AMB=TG1-TA1     0049   PRINT23,(MTIME(I),I=1,4),IMVEL,TG1,TA1,TG2,TA2,AMB,RHLI,RHLF,     1TNET   ITNET     0050   23 FORMAT(1X,64X,4A2,15,F8.1,3F7.1,2F6.1,2F6.1)     0051   GO TO 24     0052   18 PRINT25     0053   25 FORMAT(1H )     0054   GO TO 26     0055   88 CALL EXIT     0056   END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0032    |    |   |     | 16         | FOP         | MAT            | (F5.0,           | 2X•4A2                | •4F5.1        | •44X•11)        | 19 31 30 19 80 | 5120120             | 2      |        |      |        | •    |
| 0034   17 IF(VEL)21,21,22     0035   21 FACT=0.     0036   IMVEL=0     0037   GO TO 29     0038   22 SO=VEL*1.4667     0039   FACT=0.232*SQRT (SO)     0040   IMVEL=SO     0041   29 TG1=BSUN*RA+32.     0042   TA1=SHSUN*RA+32.     0043   TG2=BG*RA+32.     0044   TA2=SG*RA+32.     0045   RHLT=FACT*(TG1-TA1)+EM*(460.+TG1)**4     0044   TA2=SG*RA+32.     0045   RHLT=FACT*(TG2-TA2)+EM*(460.+TG2)**4     0046   RHLT=FACT*(TG2-TA2)+EM*(460.+TG1)**4,     0047   TNET=RHLT-RHLF     0048   AMB=TG1-TA1     0049   PRINT23,(MTIME(1),I=1,4),IMVEL,TG1,TA1,TG2,TA2,AMB,RHLI,RHLF,     1TNET   GO TO 24     0050   23 FORMAT(1X,64X,4A2,15,F8.1,3F7.1,2F6.1,2F6.1)     0051   GO TO 24     0052   18 PRINT25     0053   25 FORMAT(1H )     0054   GO TO 26     0055   88 CALL EXIT     0056   END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0033    |    |   |     |            | IF(         | JQ-            | 1)17,1           | 8,6                   | • • • • •     | • • • • • • • • |                |                     |        |        |      |        |      |
| 0035   21 FACT=0.     0036   IMVEL=0     0037   GD TD 29     0038   22 SO=VEL#1.4667     0039   FACT=0.232*SQRT (SO)     0040   IMVEL=SO     0041   29 TG1=BSUN*RA+32.     0042   TA1=SHSUN*RA+32.     0043   TG2=BGE*RA+32.     0044   TA2=SG*RA+32.     0045   RHLT=FACT*(TG1-TA1)+EM*(460.+TG1)**4     0046   RHLF=FACT*(TG2-TA2)+EM*(460.+TG1)**4     0046   RHLF=FACT*(TG2-TA2)+EM*(460.+TG1)**4     0047   TNET=RHLT-RHLF     0048   AMB=TG1-TA1     0049   PRINT23,(MTIME(I),I=1,4),IMVEL,TG1,TA1,TG2,TA2,AMB,RHLI,RHLF,     1TNET   GO TO 24     0050   23 FORMAT(1X,64X,442,15,F0.1,3F7.1,2F6.1,2F6.1)     0051   GO TO 24     0052   18 PRINT25     0053   25 FORMAT(1H )     0054   GO TO 26     0055   88 CALL EXIT     0056   END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0034    |    |   |     | 17         | IF          | VEL            | 121,21           | • 22                  |               |                 |                |                     |        |        |      |        |      |
| 0035   IM VEL=0     0037   GO TD 29     0038   22 SO=VEL*1.4667     0039   FACT=0.232*SQRT (SD)     0040   IMVEL=SO     0041   29 TGI=BSUN*RA+32.     0042   TA1=SHSUN*RA+32.     0043   TG2=BG&RA+32.     0044   TA2=SG&RA+32.     0045   RHLT=FACT*(TGI-TA1)+EM*(460.+TGI)**4     0046   RHLF=FACT*(TG2-TA2)+EM*(460.+TG2)**4     0047   TNET=RALT-RALLF     0048   AMB=TGI-TA1     0049   PRINT23,(MTIME(I),I=1,4),IMVEL,TG1,TA1,TG2,TA2,AMB,RHLI,RHLF,     1TNET   ITNET     0050   23 FORMAT(1X,64X,4A2,15,F8.1,3F7.1,2F6.1,2F6.1)     0051   GO TO 24     0052   18 PRINT25     0053   25 FORMAT(1H )     0054   GO TO 26     0055   88 CALL EXIT     0056   END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0035    |    |   |     | 21         | FAC         | T=0            | •                |                       |               |                 |                |                     |        |        |      |        |      |
| 0038   22 S0=VEL*1.4667     0039   FACT=0.232*SQRT (SO)     0040   IMVEL=SO     0041   29 TG1=BSUN*RA+32.     0042   TA1=SHSUN*RA+32.     0043   TG2=BG*RA+32.     0044   TA2=SG*RA+32.     0045   RHLT=FACT*(TG1-TA1)+EM*(460.+TG1)**4     0046   RHLF=FACT*(TG2-TA2)+EM*(460.+TG2)**4     0047   TNET=RHLT=RHLF     0048   AMB=TG1-TA1     0049   PRINT23,(MTIME(1),1=1,4),IMVEL,TG1,TA1,TG2,TA2,AMB,RHLI,RHLF,     1TNET   0050     0051   G0 TO 24     0052   18 PRINT25     0053   25 FORMAT(1H)     0054   GO TO 26     0055   88 CALL EXIT     0056   END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0035    |    |   |     |            | 100         |                | 20               |                       |               |                 |                |                     |        |        |      |        |      |
| 0039   FACT=0.232*SQRT (SO)     0040   IMVEL=SO     0041   29 TG1=BSUN*RA+32.     0042   TA1=SHSUN*RA+32.     0043   TG2=BG*RA+32.     0044   TA2=SG*RA+32.     0045   RHLT=FACT*(TG1-TA1)+EM*(460.+TG1)**4     0046   RHLF=FACT*(TG2-TA2)+EM*(460.+TG2)**4     0047   TNET=RHLT-RHLF     0048   AMB=TG1-TA1     0049   PRINT23,(MTIME(I),I=1,4),IMVEL,TG1,TA1,TG2,TA2,AMB,RHLI,RHLF,     1TNET   0050     0051   G0 TO 24     0052   18 PRINT25     0053   25 FORMAT(1H )     0054   GO TO 26     0055   88 CALL EXIT     0056   END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0038    |    |   |     | 22         | 50-         | VEL            | *1.466           | 7                     |               |                 |                |                     |        |        |      |        |      |
| 0040   IMVEL=S0     0041   29 TG1=BSUN*RA+32.     0042   TA1=SHSUN*RA+32.     0043   TG2=BG*RA+32.     0044   TA2=SG*RA+32.     0045   RHLT=FACT*(TG1-TA1)+EM*(460.+TG1)**4     0046   RHLT=FACT*(TG2-TA2)+EM*(460.+TG2)**4     0047   TNET=RHLT-RHLF     0048   AMB=TG1-TA1     0049   PRINT23,(MTIME(I),I=1,4),IMVEL,TG1,TA1,TG2,TA2,AMB,RHLI,RHLF,     1TNET   0050     0051   G0 TO 24     0052   18 PRINT25     0053   25 FORMAT(1H )     0054   G0 TO 26     0055   88 CALL EXIT     0056   END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0039    |    |   |     |            | FAC         | T=0            | .232*S           | QRT (S                | 0)            |                 |                |                     |        |        |      |        |      |
| 0041   29 TG1=BSUN*RA+32.     0042   TA1=SHSUN*RA+32.     0043   TG2=BG*RA+32.     0044   TA2=SG*RA+32.     0045   RHLT=FACT*(TG1-TA1)+EM*(460.+TG1)**4     0046   RHLF=FACT*(TG2-TA2)+EM*(460.+TG2)**4     0047   TNET=RHLT-RHLF     0048   AMB=TG1-TA1     0049   PRINT23,(MTIME(1),I=1,4),IMVEL,TG1,TA1,TG2,TA2,AMB,RHLI,RHLF,     1TNET   ITNET     0050   23 FORMAT(1X,64X,4A2,15,F8.1,3F7.1,2F6.1,2F6.1)     0051   G0 TO 24     0052   18 PRINT25     0053   25 FORMAT(1H )     0054   G0 TO 26     0055   88 CALL EXIT     0056   END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0040    |    |   |     |            | IMV         | /EL=:          | so               |                       |               |                 |                | •                   |        |        |      |        |      |
| 0042   TA1=SHSUN*RA+32.     0043   TG2=BG#RA+32.     0044   TA2=SG*RA+32.     0045   RHLT=FACT*(TG1-TA1)+EM*(460.+TG1)**4     0046   RHLF=FACT*(TG2-TA2)+EM*(460.+TG2)**4     0047   TNET=RHLT-RHLF     0048   AMB=TG1-TA1     0049   PRINT23,(MTIME(I),I=1,4),IMVEL,TG1,TA1,TG2,TA2,AMB,RHLI,RHLF,     1TNET   ITNET     0050   23 FORMAT(1X,64X,4A2,15,F8.1,3F7.1,2F6.1,2F6.1)     0051   GD TD 24     0052   18 PRINT25     0053   25 FORMAT(1H )     0054   GD TD 26     0055   88 CALL EXIT     0056   END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0041    |    |   |     | 29         | TG1         | =B \$1         | JN≉RA+           | 32.                   |               |                 |                |                     |        |        |      |        |      |
| 0043   TG2=5G*RA+32.     0044   TA2=SG*RA+32.     0045   RHLT=FACT*(TG1-TA1)+EM*(460.+TG1)**4     0046   RHLF=FACT*(TG2-TA2)+EM*(460.+TG2)**4     0047   TNET=RHLT-RHLF     0048   AMB=TG1-TA1     0049   PRINT23,(MTIME(I),I=1,4),IMVEL,TG1,TA1,TG2,TA2,AMB,RHLI,RHLF,     1TNET   0050     0051   G0 TO 24     0052   18 PRINT25     0053   25 FORMAT(1H )     0054   G0 TO 26     0055   88 CALL EXIT     0056   END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0042    |    |   |     |            | TAI         | SH:            | SUN*RA           | +32.                  |               |                 |                |                     |        |        |      |        |      |
| 0045 RHLT=FACT*(TG1-TA1)+EM*(460.+TG1)**4   0046 RHLF=FACT*(TG2-TA2)+EM*(460.+TG2)**4   0047 TNET=RHLT=RHLF   0048 AMB=TG1-TA1   0049 PRINT23,(MTIME(I),I=1,4),IMVEL,TG1,TA1,TG2,TA2,AMB,RHLI,RHLF,<br>ITNET   0050 23 FORMAT(1X,64X,4A2,15,F8.1,3F7.1,2F6.1,2F6.1)   0051 G0 T0 24   0052 18 PRINT25   0054 G0 T0 26   0055 88 CALL EXIT   0056 END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0043    |    |   |     |            | 162         |                | 408432           | •                     |               |                 |                |                     |        |        |      |        |      |
| 0046   RHLF=FACT*(TG2-TA2)+EM*(460.+TG2)**4     0047   TNET=RHLT=RHLF     0048   AMB=TG1=TA1     0049   PRINT23,(MTIME(I),I=1,4),IMVEL,TG1,TA1,TG2,TA2,AMB,RHLI,RHLF,<br>ITNET     0050   23 FORMAT(1X,64X,4A2,15,F8.1,3F7.1,2F6.1,2F6.1)     0051   G0 T0 24     0053   25 FORMAT(1H )     0054   G0 T0 26     0055   88 CALL EXIT     0056   END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0045    |    |   |     |            | RHI         | T=F/           | 4CT#(T           | •<br>G1-TA1           | 1+EM#1        | 460. ±TC 1      | 1***           |                     |        |        |      |        |      |
| 0047   TNET=RHLT-RHLF     0048   AMB=TGI-TA1     0049   PRINT23,(MTIME(I),I=1,4),IMVEL,TG1,TA1,TG2,TA2,AMB,RHLI,RHLF,<br>ITNET     0050   23 FORMAT(1X,64X,4A2,15,F8.1,3F7.1,2F6.1,2F6.1)     0051   G0 TO 24     0053   25 FORMAT(1H)     0054   G0 TO 26     0055   88 CALL EXIT     0056   END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0046    |    |   |     |            | RHL         | F=F            | ACT+(T           | G2-TA2                | )+EM*(        | 460.+TG2        | )**4           |                     |        |        |      |        |      |
| 0048 AMB=TG1-TA1   0049 PRINT23,(MTIME(I),I=1,4),IMVEL,TG1,TA1,TG2,TA2,AMB,RHLI,RHLF,<br>ITNET   0050 23 FORMAT(1X,64X,4A2,I5,F8.1,3F7.1,2F6.1,2F6.1)   0051 G0 TO 24   0052 18 PRINT25   0053 25 FORMAT(1H )   0054 GO TO 26   0055 88 CALL EXIT   0056 END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0047    |    |   |     |            | TNE         | T=RI           | HLT-RH           | LF                    |               |                 |                |                     |        |        |      |        |      |
| 0049     PRINT23,(MTIME(1),I=1,4),IMVEL,TG1,TA1,TG2,TA2,AMB,RHLI,RHLF,<br>ITNET       0050     23 FORMAT(1X,64X,4A2,15,F8.1,3F7.1,2F6.1,2F6.1)       0051     GD TD 24       0052     18 PRINT25       0053     25 FORMAT(1H )       0054     GD TO 26       0055     88 CALL EXIT       0056     END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0048    |    |   |     |            | AMB         | S=TG           | 1-TA1            |                       |               |                 |                |                     |        |        |      |        |      |
| 0050     23     FORMAT(1X,64X,4A2,15,F8.1,3F7.1,2F6.1,2F6.1)       0051     GO TO 24       0053     18     PRINT25       0054     GO TO 26       0055     88     CALL EXIT       0056     END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0049    |    |   |     | 1          | PRI         | (NT2)<br>T     | 3 <b>,</b> (MTI  | ME(I),                | I=1,4)        | ,IMVEL,T        | G1,TA1,T       | 52 <b>,</b> TA2,    | AMB,R  | HL I 🕫 | RHLI | =,     |      |
| 0051     GO TO 24       0052     18 PRINT25       0053     25 FORMAT(1H )       0054     GO TO 26       0055     88 CALL EXIT       0056     END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0050    |    |   |     | 23         | FOF         | RMAT           | (1X,64           | X,4A2,                | 15, F8.       | 1,387.1,        | 256.1,250      | 6.1)                |        |        |      |        |      |
| 0052     18 PRINT25       0053     25 FORMAT(1H )       0054     GO TO 26       0055     88 CALL EXIT       0056     END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0051    |    |   |     |            | GO          | TO (           | 24               |                       |               |                 |                |                     |        |        |      |        |      |
| 0055 25 FURMATILM 7<br>0054 GO TO 26<br>0055 88 CALL EXIT<br>0056 END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0052    |    |   |     | 18         | PRI         | INT2           | 5                |                       |               |                 | •              |                     |        |        |      |        |      |
| 0055 88 CALL EXIT<br>0056 END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0053    |    |   |     | 25         | r0F         | MAT TO         | (1H )<br>24      |                       |               |                 |                |                     |        |        |      |        |      |
| 0056 END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0055    |    |   |     | 88         | CAI         | .I. F          |                  |                       |               |                 |                |                     |        |        |      |        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0056    |    |   |     |            | EN          | 5              |                  |                       |               |                 |                |                     |        |        |      |        |      |

.

.,

TOTAL MEMORY REQUIREMENTS 0008A6 BYTES

.

### R A D I A T I O N D A T A JULY 29-30 1968

÷.

| TIME    | WIND<br>VEL. | ТЕМР   |        | RATU   |         | RE    | RADIANT<br>HEAT LOAD<br>BTU/HR FT**2 |       |           |
|---------|--------------|--------|--------|--------|---------|-------|--------------------------------------|-------|-----------|
|         | I F J        |        | SUTELD |        | CUTCLD  |       | 5107                                 |       | *2<br>NCT |
|         |              | GLUBE  | SHIELD | GLUDE  | SHIELD  | EDOM  |                                      |       |           |
|         |              | FACING | FACING | FACING | COOLING |       | MIN-                                 | WIN-  |           |
|         |              | 20N    | SUN    | GROUND | GRUUND  | AMD . | UKUW                                 | UKUW  |           |
| JULY 29 |              |        |        |        |         |       |                                      |       |           |
| AM 9.30 | 13           | 62.6   | 60.8   | 59.5   | 59.0    | 1.8   | 130.6                                | 126.5 | 4.1       |
| 10.30   | 13           | 67.1   | 63.0   | 62.4   | 60.8    | 4.1   | 137.0                                | 130.2 | 6.8       |
| 11.00   | 17           | 59.5   | 58.5   | 58.1   | 58.3    | 1.1   | 127.1                                | 124.5 | 2.6       |
| 11.30   | 16           | 66.6   | 63.7   | 62.6   | 61.7    | 2.9   | 135.7                                | 129.9 | 5.8       |
| NOON 12 | 13           | 69.1   | 65.7   | 644    | 63.5    | 3.4   | 138.4                                | 131.6 | 6.9       |
| PM 1.00 | 13           | 69.8   | 71.6   | 67.6   | 68.0    | -1.8  | 134.8                                | 133.8 | 1.0       |
| 2.00    | 19           | 70.7   | 72.0   | 68.0   | 68.9    | -1.3  | 136.0                                | 133.5 | 2.4       |
| 2.30    | 16           | 61.7   | 61.3   | 61.2   | 61.2    | 0.4   | 128.5                                | 127.6 | 0.9       |
| 3.00    | 13           | 64.4   | 65.1   | 64.2   | 64.4    | -0.7  | 130.2                                | 130.5 | -0.3      |
| 3.30    | 23           | 69.8   | 69.8   | 67.1   | 68.0    | 0.0   | 136.3                                | 132.5 | 3.8       |
| 4.00    | 22           | 60.8   | 60.8   | 60.8   | 60.6    | 0.0   | 127.3                                | 127.5 | -0.2      |
| 4.30    | 17           | 68.0   | 68.0   | 65.8   | 66.4    | 0.0   | 134.5                                | 131.7 | 2.7       |
| 5.00    | 10           | 62.2   | 62.2   | 62.2   | 62.2    | 0.0   | 128.7                                | 128.7 | 0.0       |
| 5.30    | 11           | 65.3   | 65.3   | 63.1   | 63.5    | 0.0   | 131.7                                | 129.3 | 2.4       |
| 6.00    | 11           | 62.2   | 62.2   | 59.9   | 60.4    | 0.0   | 128.7                                | 126.0 | 2.7       |
| 7.00    | 17           | 62.6   | 61.5   | 61.5   | 61.5    | 1.1   | 130.1                                | 128.0 | 2.1       |
| 8.13    | 17           | 58.6   | 58.1   | 58.3   | 58.1    | 0.5   | 125.7                                | 125.0 | 0.7       |
| 8.35    | 17           | 54.0   | 54.3   | 55.4   | 54.9    | -0.4  | 120.4                                | 122.6 | -2.2      |
| 8.52    | 8            | 53.6   | 53.6   | 55.0   | 53.6    | 0.0   | 120.4                                | 122.7 | -2.3      |
| 9.30    | 0            | 51.1   | 52.0   | 53.1   | 52.3    | -0.9  | 118.0                                | 119.9 | -1.8      |
| 10.00   | 2            | 51.8   | 52.0   | 53.2   | 52.3    | -0.2  | 118.6                                | 120.4 | -1.8      |
| 10.30   | 2            | 49.8   | 49.8   | 50.2   | 50.0    | 0.0   | 116.9                                | 117.3 | -0.4      |
|         | -            |        |        | 2004   |         |       |                                      |       |           |
| JULY 30 |              |        |        |        |         |       |                                      |       |           |
| AM 8.30 | 2            | 57.2   | 59.2   | 53.6   | 54.1    | -2.0  | 123.0                                | 120.2 | 2.8       |
| 9.00    | 10           | 59.0   | 61.3   | 55.4   | 55.8    | -2.3  | 123.8                                | 121.8 | 2.0       |
| 9.30    | 5            | 62.2   | 64.4   | 57.6   | 58.6    | -2.2  | 127.5                                | 123.5 | 3.9       |
| 10.00   | 8            | 63.9   | 67.6   | 59.9   | 61.7    | -3.8  | 127.7                                | 125.2 | 2.5       |
| 10.30   | 4            | 64.4   | 64.4   | 60.8   | 60.3    | 0.0   | 130.8                                | 127.5 | 3.3       |
| 11.00   | . 2          | 68.4   | 74.7   | 64.4   | 66.2    | -6.3  | 132.3                                | 130.1 | 2.2       |
| 11.30   | 13           | 66.2   | 69.8   | 63.7   | 64.9    | -3.6  | 129.6                                | 129.0 | 0.6       |
| NOON 12 | 2            | 71.6   | 74.5   | 66.7   | 68.4    | -2.9  | 137.0                                | 132.5 | 4.5       |
| PM 2.30 | Ō            | 78.8   | 74.8   | 71.6   | 71.6    | 4.0   | 145.8                                | 138.2 | 7.6       |
| 3.30    | 1            | 79.7   | 76.5   | 71.8   | 73.4    | 3.2   | 147.7                                | 137.9 | 9.8       |
| 4.30    | Ō            | 73.8   | 74.7   | 69.3   | 70.7    | -0.9  | 140.4                                | 135.7 | 4.7       |
| 5.00    | Ō            | 76.1   | 75.2   | 70.7   | 72.5    | 0.9   | 142.9                                | 137.2 | 5.7       |
| 5.30    | Ō            | 72.0   | 70.7   | 68.2   | 68.9    | 1.3   | 138.5                                | 134.6 | 3.9       |
| 6.00    | õ            | 71.8   | 70.2   | 67.6   | 68.5    | 1.6   | 138.3                                | 134.1 | 4.3       |
| 6.30    | Ō            | 70.3   | 68.5   | 67.8   | 68.0    | 1.8   | 136.9                                | 134.3 | 2.6       |
| 7.30    | 0            | 68.0   | 65.5   | 66.0   | 66.2    | 2.5   | 134.5                                | 132.5 | 2.0       |
| 8.00    | Ő            | 60.1   | 57.6   | 60.8   | 58.6    | 2.5   | 126.6                                | 127.3 | -0.7      |
| 8.30    | Ő            | 49.1   | 50.0   | 52.5   | 51.4    | -0.9  | 116.2                                | 119.4 | -3.2      |

# RADIATION DATA JULY 29-30 1968

.

| TIME    | WIND<br>VEL. | ΤE     | Μ | Ρ     | E      | RA     | Т        | U    | F              | R E   | i<br>H | RADIANT | AD          |
|---------|--------------|--------|---|-------|--------|--------|----------|------|----------------|-------|--------|---------|-------------|
|         | LL2          |        | c |       | _      |        | <b>.</b> |      |                |       | BTU    | ′HR FT≯ | <b>*</b> *2 |
|         |              | GLUBE  | 2 | HIELU | ر<br>ا | GLUBE  | SH       | IELC | ) (            | GLOBE | ТО     | FROM    | NET         |
|         |              | FACING | ۲ |       | 2      | FACING | F A      | CING | ż              | FROM  | WIN-   | WIN-    |             |
|         |              | SUN    |   | 501   | N      | GRUUND | GR       | UUNL | )              | AMB • | DROW   | DROW    |             |
| JULY 29 |              |        |   |       |        |        |          |      |                |       |        |         |             |
| AM 9.30 | 13           | 62.6   |   | 60.8  | 3      | 59.5   |          | 59.0 | n              | 1.8   | 130.6  | 126 5   | 4 1         |
| 10.30   | 13           | 67.1   |   | 63.0  | -<br>) | 62.4   |          | 60.8 | 2<br>2         | 4.1   | 137.0  | 120.2   |             |
| 11.00   | 17           | 59.5   |   | 58.5  | 5      | 58.1   |          | 58.3 | 3              | 1.1   | 127.1  | 124.5   | 2.6         |
| 11.30   | 16           | 66.6   |   | 63.   | 7      | 62.6   |          | 61.7 | 7              | 2.9   | 135.7  | 129.9   | 5.8         |
| NOON 12 | 13           | 69.1   |   | 65.7  | 7      | 64.4   |          | 63.5 | 5              | 3.4   | 138.4  | 121 6   | 6 Q         |
| PM 1.00 | 13           | 69.8   |   | 71.6  | 5      | 67.6   |          | 68.0 | Ś              | -1.8  | 134.8  | 132.8   | 1 0         |
| 2.00    | 19           | 70.7   |   | 72.0  | )      | 68.0   |          | 68.9 | ,<br>,         | -1.3  | 136.0  | 133.5   | 2.4         |
| 2.30    | 16           | 61.7   |   | 61.   | 3      | 61.2   |          | 61.2 | >              | 0.4   | 128.5  | 127 6   |             |
| 3.00    | 13           | 64.4   |   | 65.   | Í      | 64.2   |          | 64.4 | -<br>+         | -0.7  | 130.2  | 130.5   | -0.3        |
| 3.30    | 23           | 69.8   |   | 69.8  | 3      | 67.1   |          | 68.0 | ז              | 0.0   | 136.3  | 132.5   | 3.8         |
| 4.00    | 22           | 60.8   |   | 60.8  | 3      | 60.8   |          | 60.6 | Ś              | 0.0   | 127.3  | 127.5   | -0.2        |
| 4.30    | 17           | 68.0   |   | 68.0  | 5      | 65.8   |          | 66.4 | 4              | 0.0   | 134.5  | 131.7   | 2.7         |
| 5.00    | 10           | 62.2   |   | 62.2  | 2      | 62.2   |          | 62.2 | 2              | 0.0   | 128.7  | 128.7   | 0.0         |
| 5.30    | 11           | 65.3   |   | 65.   | 3      | 63.1   |          | 63.5 | 5              | 0.0   | 131.7  | 129.3   | 2.4         |
| 6.00    | 11           | 62.2   |   | 62.2  | 2      | 59.9   |          | 60.4 | 4              | 0.0   | 128.7  | 126.0   | 2.7         |
| 7.00    | 17           | 62.6   |   | 61.5  | 5      | 61.5   |          | 61.5 | 5              | 1.1   | 130.1  | 128.0   | 2.1         |
| 8.13    | 17           | 58.6   |   | 58.1  | 1      | 58.3   |          | 58.1 | 1              | 0.5   | 125.7  | 125.0   | 0.7         |
| 8.35    | 17           | 54.0   |   | 54.   | 3      | 55.4   |          | 54.9 | -<br>-         | -0.4  | 120.4  | 122.6   | -2.2        |
| 8.52    | 8            | 53.6   |   | 53.6  | 5      | 55.0   |          | 53.6 | 5              | 0.0   | 120.4  | 122.7   | -2.3        |
| 9.30    | 0            | 51.1   |   | 52.0  | )      | 53.1   |          | 52.2 | 3              | -0.9  | 118.0  | 119.9   | -1.8        |
| 10.00   | 2            | 51.8   |   | 52.0  | )      | 53.2   |          | 52.3 | 3              | -0.2  | 118.6  | 120.4   | -1.8        |
| 10.30   | 2            | 49.8   |   | 49.8  | 8      | 50.2   |          | 50.0 | )              | 0.0   | 116.9  | 117.3   | -0.4        |
| JULY 30 |              |        |   |       |        |        |          |      |                |       |        |         |             |
|         |              |        |   |       |        |        |          |      |                |       |        |         |             |
| AM 8.30 | 2            | 57.2   |   | 59.2  | 2      | 53.6   |          | 54.1 | L              | -2.0  | 123.0  | 120.2   | 2.8         |
| 9.00    | 10           | 59.0   |   | 61.3  | 3      | 55.4   |          | 55.8 | 3              | -2.3  | 123.8  | 121.8   | 2.0         |
| 9.30    | 5            | 62.2   |   | 64.4  | +      | 57.6   |          | 58.6 | Ś              | -2.2  | 127.5  | 123.5   | 3.9         |
| 10.00   | 8            | 63.9   |   | 67.6  | 5      | 59.9   |          | 61.7 | 7              | -3.8  | 127.7  | 125.2   | 2.5         |
| 10.30   | 4            | 64.4   |   | 64.4  | 4      | 60.8   |          | 60.3 | 3              | 0.0   | 130.8  | 127.5   | 3.3         |
| 11.00   | 2            | 68.4   |   | 74.   | 7      | 64.4   |          | 66.2 | 2              | -6.3  | 132.3  | 130.1   | 2.2         |
| 11.30   | 13           | 66.2   |   | 69.8  | 8      | 63.7   |          | 64.9 | J              | -3.6  | 129.6  | 129.0   | 0.6         |
| NUON 12 | 2            | 71.6   |   | 74.9  | 5      | 66.7   |          | 68.4 | <del>'</del> + | -2.9  | 137.0  | 132.5   | 4.5         |
| PM 2.30 | 0            | 78.8   |   | 74.8  | B      | 71.6   |          | 71.6 | 6              | 4.0   | 145.8  | 138.2   | 7.6         |
| 3.30    | 1            | 79.7   |   | 76.   | 5      | 71.8   |          | 73.4 | ί <del>ι</del> | 3.2   | 147.7  | 137.9   | 9.8         |
| 4.30    | 0            | 73.8   |   | 74.   | 7      | 69.3   |          | 70.7 | 7              | -0.9  | 140.4  | 135.7   | 4.7         |
| 5.00    | Û            | 16.1   |   | 75.2  | 2      | 70.7   |          | 72.5 | 5              | 0.9   | 142.9  | 137.2   | 5.7         |
| 5.30    | 0            | 12.0   |   | 70.   | 7      | 68.2   |          | 68.9 | 9              | 1.3   | 138.5  | 134.6   | 3.9         |
| 6.00    | 0            | (1.8   |   | 70.2  | 2      | 67.6   |          | 68.5 | 5              | 1.6   | 138.3  | 134.1   | 4.3         |
| 0.30    | U            | 10.3   |   | 68.   | 2      | 67.8   |          | 68.0 | נ              | 1.8   | 136.9  | 134.3   | 2.6         |
| 1.30    | 0            | 68.0   |   | 65.5  | Ś      | 66.0   |          | 66.2 | 2              | 2.5   | 134.5  | 132.5   | 2.0         |
| 8.00    | 0            | 60.1   |   | 57.0  | 5      | 60.8   |          | 58.6 | 5              | 2.5   | 126.6  | 127.3   | -0.7        |
| 8.30    | 0            | 49•1   |   | 50.0  | )      | 52.5   |          | 51.4 | ,<br>t         | -0.9  | 116.2  | 119.4   | -3.2        |

# RADIATION DATA JULY 31 1968

 $\bigcirc$ 

| TIME    | WIND | ΤЕ     | ΜP     | ERA    | τU     | R E   | RADIAN      | Т   |
|---------|------|--------|--------|--------|--------|-------|-------------|-----|
|         | VEL. |        |        |        |        |       | HEAT LO     | AD  |
|         | FPS  |        |        | F      |        |       | BTU/HR FT   | **2 |
|         |      | GLOBE  | SHIELD | GLOBE  | SHIELD | GLOBE | TO FROM     | NET |
|         |      | FACING | FACING | FACING | FACING | FROM  | WIN- WIN-   |     |
|         |      | SUN    | SUN    | GROUND | GROUND | ΑΜΒ.  | DROW DROW   |     |
| JULY 31 |      |        |        |        |        |       |             |     |
| AM 8.30 | 0    | 66.2   | 66.2   | 63.5   | 64.4   | 0.0   | 132.6 129.9 | 2.7 |
| 9.00    | 4    | 70.3   | 71.6   | 67.6   | 68.4   | -1.3  | 136.2 133.7 | 2.5 |
| 9.30    | 8    | 71.8   | 72.1   | 68.4   | 69.4   | -0.4  | 138.1 134.1 | 4.0 |
| 10.00   | 4    | 75.0   | 76.6   | 71.6   | 73.0   | -1.6  | 141.0 137.5 | 3.5 |
| 10.30   | 1    | 78.6   | 79.7   | 74.3   | 75.6   | -1.1  | 145.3 140.6 | 4.7 |
| 11.00   | 0    | 81.9   | 81.0   | 77.0   | 77.5   | 0.9   | 149.1 143.9 | 5.3 |
| 11.30   | 5    | 76.5   | 75.6   | 74.7   | 74.5   | 0.9   | 143.8 141.5 | 2.3 |
| NOON 12 | 4    | 74.3   | 74.3   | 73.4   | 73.8   | 0.0   | 141.0 139.9 | 1.1 |
| PM 2.00 | 4    | 81.5   | 79.2   | 77.0   | 78.8   | 2.3   | 149.9 143.0 | 6.9 |
| 2.30    | 5    | 82.0   | 80.6   | 78.8   | 78.4   | 1.4   | 150.1 146.0 | 4.1 |
| 3.00    | 11   | 87.8   | 83.7   | 81.3   | 80.4   | 4.1   | 159.1 149.3 | 9.8 |
| 3.30    | 0    | 93.2   | 91.6   | 86.0   | 86.0   | 1.6   | 162.0 153.8 | 8.3 |
| 4.30    | 0    | 82.9   | 82.0   | 80.6   | 8J•2   | 0.9   | 150.3 147.8 | 2.6 |
| 5.00    | 0    | 80.2   | 79.7   | 78.6   | 79.0   | 0.5   | 147.4 145.6 | 1.8 |
| 5.15    | 0    | 78.4   | 78.4   | 77.5   | 77.5   | 0.0   | 145.4 144.4 | 1.0 |
| 6.00    | 0    | 76.6   | 76.3   | 76.1   | 76.1   | 0.4   | 143.5 142.9 | 0.6 |

# APPENDIX D

i

IBM system 360/75 computer program and printout of percentage moisture contents of hay windrows under five treatments, at regular intervals during the experimental trials

| FORTRAN | IV G LEVEL | I, MOD 4                  | MAIN                    | DATE = 69223             | 14/55/22    |
|---------|------------|---------------------------|-------------------------|--------------------------|-------------|
|         | С          | DRYING HAY IN             | WINDROWS                |                          |             |
|         | С          | DETERMINATION             | OF MOISTURE CONTE       | NTS                      |             |
|         | Ċ          | D.S.DUGGAL                |                         |                          |             |
| 0001    |            | DIMENSION DISH            | 1(123),MAP(40),IDE      | N(5)                     |             |
| 0002    |            | MP=123                    |                         |                          |             |
| 0003    |            | READ4, (DISH(I)           | ,I=1,MP)                |                          |             |
| 0004    | 4          | FORMAT(10F6.2)            |                         |                          |             |
| 0005    |            | PRINT 482                 |                         |                          |             |
| 0006    | 482        | FORMAT(1H1)               |                         |                          |             |
| 0007    |            | PRINT88, (DISH)           | I) + I = 1 + MP )       |                          |             |
| 0008    | 88         | FORMAT(1X,10F)            | .0.2)                   |                          |             |
| 0009    |            |                           |                         |                          |             |
| 0010    |            | NCK=4                     |                         |                          |             |
| 0011    |            | BEN                       |                         |                          |             |
| 0012    | 2000       | DG=NUK+N<br>DEAD1 (MAD/1) | 1-1 251                 |                          |             |
| 0015    | 2000       | CODWAT (SEAS)             | 1=1,301                 |                          |             |
| 0014    | 1          | PEAD 200 NHD              |                         |                          |             |
| 0016    | 200        | FORMAT(12)                |                         |                          |             |
| 0017    | 200        | PRINT 002                 |                         |                          |             |
| 0018    | 992        | FORMAT(1H1)               |                         |                          |             |
| 0019    |            | PRINT 789                 |                         |                          |             |
| 0020    | 789        | EDRMAT(1H )               |                         |                          |             |
| 0021    |            | PRINT 92                  |                         |                          |             |
| 0022    | 92         | FORMAT( 1X.7              | 3X. 34HPERCENTA         | GE MOISTURE CONTENT OF H | ΔΥ)         |
| 0023    |            | PRINT 98, (MAP)           | I),I=1,35)              |                          |             |
| 0024    | 98         | FORMAT(1X,73X,            | 2742)                   |                          |             |
| 0025    |            | PRINT 42                  |                         | •                        |             |
| 0026    | 42         | FORMAT( /1X,7             | 3X,1X,6HSAMPLE,1X       | ,4HDISH,4X,4HDISH,1X,6HI | NITI-,2X,   |
|         |            | 15HF INAL , 3X, 5H        | OIS-,2X,6HSAMPLE)       |                          |             |
| 0027    |            | PRINT 32                  |                         |                          |             |
| 0028    | 32         | FORMAT(1X,73X)            | 4X,3HNO.,2X,3HNO.       | ,5X,3HWT.,1X,6HAL WT.,4X | ,3H₩T.,4X,  |
| 0000    |            | 14HTURE,4X,4HME           | AN)                     |                          |             |
| 0029    |            | PRINT33                   |                         |                          |             |
| 0030    | 55         | FURMAT(1X)/3X             | 16X,4HGM5.,3X,4HG       | MS.,3X,4HGMS.,4X,4HPCT., | 4X,4HPCT./) |
| 0031    | •          | NOLTI NCI                 |                         |                          |             |
| 0032    | 34         | ENDMAT/1V.72V             | OUTOCATHENT 12 1        | •                        |             |
| 0034    | 34<br>79   | SOM-O.                    | 981 REALMEN 1 , 12 , 18 | • /                      |             |
| 0035    | 10         | 00 2 JM=1 NC8             |                         |                          |             |
| 0036    |            | SUM=0.                    |                         |                          |             |
| 0037    |            | D0 2 J=1.N                |                         |                          |             |
| 0038    |            | READ3, JQ, (IDEN          | (I).I=1.5).NO.WT1       | + FINAL                  |             |
| 0039    | 3          | FORMAT(11,4X,5            | A2.1X.14.2F10.1)        |                          |             |
| 0040    |            | IF(JQ)5,5,2000            | )                       |                          |             |
| 0041    | 5          | PER=(WT1-FINAL            | .)/(WT1-DISH(NO))*      | 100.                     |             |
| 0042    |            | PERR≠PER                  |                         | •                        |             |
| 0043    |            | SUM=SUM+PER               |                         |                          |             |
| 0044    |            | SOM=SOM+PER               |                         |                          |             |
| 0045    | -          | IF(J-N)6,7,6              |                         |                          |             |
| 0045    |            | AV=SUM/B                  |                         |                          |             |
| 0041    | •          | FRINI SILIUEN             | 11,1=1,5/,NU,UISF       | I(NU),WII,FINAL,PERK,AV  |             |
| 0048    | 7          | CO TO 2                   | JAZ, 1X, 14, F8. 2, 2F  | (+1+2-8+1)               |             |
| 0049    | ,          |                           |                         |                          |             |
| 0050    | 0          | PRINITO, TIDEN            | 1), I=1,5), NO, DISH    | (NO),WT1,FINAL,PERR      |             |
| 0051    | 10         | FURMAILIX, /UX,           | 5A2,1X,14,F8.2,2F       | 7.1,F8.1)                |             |
| 0052    | . 2        |                           |                         |                          |             |
| 0054    |            | DDINTIAN AND              |                         |                          |             |
| 0055    | 140        | FURMAT(18,738             | 307.10481004 4544       | E4 1)                    |             |
| 0056    | 107        | NSL=NSI +NMP              | SUN I TOHOLUUN MEAN     | \$F0.11                  |             |
| 0057    |            | IF (NSI = 5) 100-1        | 00.78                   |                          |             |
| 0058    | 100        | PRINT 34 NSI              |                         |                          |             |
| 0059    |            | GO TO 78                  |                         |                          |             |
| 0060    | 442        | CALL EXIT                 |                         |                          |             |
| 0061    |            | END                       |                         |                          |             |

TOTAL MEMORY REQUIREMENTS OCOA82 BYTES

#### PERCENTAGE MOISTURE CONTENT OF HAY FIRST CUT MACDONALD COLLEGE FARM JULY 15 1968 11 AM

| S  | NO.     | DISH<br>4NO• | DISH<br>WT.<br>GMS. | INITI-<br>AL WT.<br>GMS. | FINAL<br>WT.<br>GMS. | MOIS-<br>TURE<br>PCT• | SAMPLE<br>MEAN<br>PCT• |
|----|---------|--------------|---------------------|--------------------------|----------------------|-----------------------|------------------------|
| TF | REATMEN | NT 1.        |                     |                          |                      |                       |                        |
| I  | 1       | 101          | 81.80               | 161.1                    | 106.9                | 68.3                  |                        |
| I  | 2       | 102          | 81.50               | 143.5                    | 99.8                 | 70.5                  | 69.4                   |
| I  | 3       | 103          | 81.70               | 143.4                    | 101.0                | 68 <b>.7</b>          |                        |
| I  | 4       | 104          | 81.00               | 140.3                    | 100.5                | 67.1                  | 67.9                   |
| I  | 5       | 105          | 81.90               | 164.8                    | 106.2                | 70.7                  |                        |
| I  | 6       | 106          | 82.40               | 166.0                    | 108.6                | 68.7                  | 69.7                   |

- McGILL UNIVERSITY COMPUTING CENTRE -

### PERCENTAGE MOISTURE CONTENT OF HAY FIRST CUT MACDONALD COLLEGE FARM JULY 15 1968 12 NOON

| SAMPLE             | DISH  | DISH           | INITI-   | FINAL         | MOIS-                 | SAMPLE          |
|--------------------|-------|----------------|----------|---------------|-----------------------|-----------------|
| NO.                | NO.   | AL.            | AL WT.   | WT.           | TURE                  | MEAN            |
|                    |       | GMS.           | GMS.     | GMS.          | PCT.                  | PCT.            |
|                    | чт 3  |                |          |               |                       |                 |
| IREAIME            |       | 01 00          | 127 0    | 00 7          |                       |                 |
| A 1-2 1            | 107   | 81.90          | 127.0    | 99.1          |                       |                 |
| A 1-2 2            | 108   | 81.30          | 109.7    | 93.9          | <b>2</b> 2 • 0        | 28•T            |
| B 1-2 1            | 101   | 81.80          | 120.8    | 97.0          | 61.0                  | 42 0            |
| D 1-2 2            | 102   | 01.00          | 120.7    | 90.U          | 63.U                  | 02.0            |
| 1 - 2 1            | 101   | 81.80          | 142.0    | 107.8         | 50.8                  | <b>F7</b> (     |
| C 1-2 2            | 102   | 81.50          | 140.4    | 106.0         | 28 • 4<br>4 1 7       | 51.6            |
| D 1-2 I            | 10    | 10.00          | 50.9     | 29.1          | 01.1                  | (2.0            |
| 0 1-2 2            | 20    | 17.15          | 51.3     | 30.0          | 62.4<br>MEAN E        | 62.0            |
| TREATME            | NT 2. |                |          | BLUCK         | MEAN D                | 9.9             |
| A 2-2 1            | 109   | 81.90          | 139.0    | 103.6         | 62.0                  |                 |
| A 2 2 1<br>A 2-2 2 | 110   | 81.60          | 131.6    | 101.8         | 59.6                  | 60.8            |
| B 2-2 1            | 103   | 81.70          | 112.3    | 93.8          | 60.5                  | 00.0            |
| B 2-2 2            | 104   | 81.00          | 124.1    | 95.5          | 66.4                  | 63.4            |
| 0 2 2 2            | 103   | 81.70          | 135.6    | 101.9         | 62.5                  | 0.5 • 1         |
| C 2 = 2 1          | 104   | 81.00          | 150.4    | 108.7         | 60.1                  | 61.3            |
| $D_{2-2}$          | 111   | 81 00          | 119.0    | 96.0          | 60.5                  | 01.0            |
|                    | 112   | 91 50          | 122 7    | 100 2         | 54 6                  | 57 6            |
| 0 2-2 2            | 112   | 81.50          | 12201    |               |                       | 0.8             |
| TREATME            | NT 3. |                |          | DLOOK         | DLAN U                | 0.0             |
| A 3-2 1            | 10    | 17.10          | 37.6     | 24.8          | 62.4                  | ·               |
| A 3-2 2            | 19    | 16.45          | 59.9     | 30.9          | 66.7                  | 64.6            |
| B 3-2 1            | 105   | 81.90          | 140.5    | 101.5         | 66.6                  |                 |
| B 3-2 2            | 106   | 82.40          | 125.4    | 95.9          | 68.6                  | 67.6            |
| C 3-2 1            | 105   | 81.90          | 111.6    | 92.2          | 65.3                  |                 |
| $C_{3-2}^{-2}$     | 106   | 82.40          | 138.8    | 103.2         | 63.1                  | 64.2            |
| D 3-2 1            | 10    | 17.10          | 37.6     | 24.8          | 62.4                  |                 |
| D 3-2 2            | 19    | 16.45          | 59.9     | 30.9          | 66.7                  | 64.6            |
|                    |       |                |          | BLOCK         | MEAN 6                | 5.2             |
| TREATME            | NT 4. |                |          |               |                       |                 |
| A 4-2 1            | 9     | 17.05          | 64.2     | 32.4          | 67.4                  |                 |
| A 4-2 2            | 12    | 17.05          | 69.5     | 34.8          | 66.2                  | 66.8            |
| B 4-2 1            | 107   | 81.90          | 145.5    | 101.6         | 69.0                  |                 |
| B 4-2 2            | 108   | 81.30          | 150.1    | 102.8         | 68.8                  | 68.9            |
| C 4-2 1            | 107   | 81.90          | 144.0    | 102.5         | 66.8                  |                 |
| C 4-2 2            | 108   | 81.30          | 140.7    | 99.1          | 70.0                  | 68.4            |
| D 4-2 1            | . 4   | 16.75          | 32.6     | 21.6          | 69.4                  |                 |
| D 4-2 2            | 3     | 16.60          | 42.7     | 24.9          | 68.2                  | 68.8            |
|                    |       |                |          | BLOCK         | MEAN 6                | o8∙2            |
| IREAIME            |       | 14 70          | (2.0     | 22.0          | ( = 0                 |                 |
|                    | . 2   | 10.10          | 63.9     | 32.0          | 67.9                  | (F (            |
|                    | . ð   | 11.00          | 23.U     | 27•3<br>102 1 | 700                   | 0,00            |
|                    | 110   | 01.40          | 124.1    | TO2.T         | 1 U • 7<br>60 4       | 60 7            |
|                    | 100   | 01.00          | 115 2    | 77.0<br>05 0  | 00 • 0<br>4 0 •       | 07 • 1          |
| し ジーム 1<br>・C エン つ | . 109 | 01 70<br>01 40 | 152 0    | 104 1         | 600+0<br>65 2         | 62 0            |
|                    | . 110 | 17 25          | 1,10     | 27 J          | 00•2<br>60 7          | 0.0             |
|                    | . 1   | 16 CO          | 41.0     | 24•2<br>25 0  | 40 F                  | 68 6            |
| 0 5-2 2            | . 0   | 10.00          | 40.1     | 20.7<br>BIUUN | MEAN 4                | 56.7            |
|                    |       |                | - McGILI | L ሆለካሦቲን      | <b>ξ΄ Τ΄ Τ΄ ΄΄</b> ϲά | OMPUTING CENTRE |


## PERCENTAGE MOISTURE CONTENT OF HAY FIRST CUT MACDONALD COLLEGE FARM JULY 15 1968 6 PM

| TREATMENT 1.         A 1-3 1       93       17.85       52.5       37.0       44.7         A 1-3 2       94       17.70       45.1       34.7       38.0       41.3         B 1-3 1       76       17.40       34.2       26.9       43.5         B 1-3 2       77       17.10       40.2       30.0       44.2       43.8         C 1-3 2       87       17.90       44.3       32.8       43.6       43.0         D 1-3 1       46       17.90       44.4       34.0       41.5       9.5         D 1-3 2       44       17.90       64.7       47.1       37.6       39.5         BLOCK MEAM       41.9       41.9       41.3       82.3       9.5       9.6       1.7         A 2-3 1       95       18.00       72.0       49.5       41.7       44.3         B 2-3 1       78       17.40       43.8       35.5       9.0       38.7         C 2-3 1       89       17.80       49.7       35.6       44.2       44.3         D 2-3 2       40       16.90       47.8       34.5       43.0       41.8         BLOCK MEAN       41.5       41.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SAMPLE<br>NO.      | DISH<br>NO•  | DISH<br>WT.<br>GMS. | INITI-<br>AL WT.<br>GMS. | FINAL<br>WT.<br>GMS. | MOIS-<br>TURE<br>PCT• | SAMPLE<br>MEAN<br>PCT• |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|---------------------|--------------------------|----------------------|-----------------------|------------------------|--|
| A 1-3 1 93 17.85 52.5 37.0 44.7<br>A 1-3 2 94 17.70 45.1 34.7 38.0 41.3<br>B 1-3 1 76 17.40 34.2 26.9 43.5<br>B 1-3 2 77 17.10 40.2 30.0 44.2 43.8<br>C 1-3 1 86 17.30 48.0 35.0 47.3<br>C 1-3 2 87 17.90 44.3 32.8 43.6 43.0<br>D 1-3 1 46 17.90 45.4 34.0 41.5<br>D 1-3 2 44 17.90 64.7 47.1 37.6 39.5<br>BLOCK MEAN 41.9<br>TREATMENT 2.<br>A 2-3 1 95 18.00 72.0 49.5 41.7<br>A 2-3 2 96 17.80 52.8 38.5 40.9 41.3<br>B 2-3 2 79 17.40 43.8 33.5 39.0 38.7<br>C 2-3 1 88 17.50 48.8 34.9 44.4<br>C 2-3 2 89 17.80 49.7 35.6 44.2 44.3<br>D 2-3 1 49 17.75 46.4 34.8 40.5<br>D 2-3 2 40 16.90 47.8 34.5 43.0 41.8<br>BLOCK MEAN 41.5<br>TREATMENT 3.<br>A 3-3 1 97 17.40 66.9 40.7 52.9<br>A 3-3 2 98 17.30 55.5 37.0 48.4 50.7<br>B 3-3 2 81 17.40 40.4 28.8 50.4 51.9<br>C 3-3 2 91 17.80 45.4 30.2 55.1 53.1<br>D 3-3 2 24 17.05 35.0 37.4 42.3 46.7<br>BLOCK MEAN 41.5<br>TREATMENT 3.<br>A 3-3 1 90 17.70 40.4 28.8 51.1<br>C 3-3 2 91 17.80 45.4 30.2 55.1 53.1<br>D 3-3 2 24 17.05 35.0 27.4 42.3 46.7<br>BLOCK MEAN 64.9 60.7<br>B 3-3 1 80 17.10 51.2 33.0 53.4<br>B 3-3 2 91 17.80 45.4 30.2 55.1 53.1<br>D 3-3 2 24 17.05 35.0 27.4 42.3 46.7<br>BLOCK MEAN 50.6<br>TREATMENT 4.<br>A 4-3 1 99 17.85 80.3 36.2 70.6<br>A 4-3 1 99 17.85 80.3 36.2 70.6<br>A 4-3 1 99 17.85 61.4 40.4 28.8 51.1<br>C 3-3 2 91 17.80 45.4 30.2 55.1 53.1<br>D 3-3 2 21 16.85 45.4 26.5 61.4<br>D 4-3 2 100 17.45 51.8 29.5 64.9 67.8<br>B 4-3 2 83 17.10 45.8 25.6 70.4 70.8<br>C 4-3 1 92 17.45 63.7 34.1 64.0<br>C 4-3 2 11 6.85 45.4 26.5 61.4<br>D 4-3 2 21 16.85 45.4 26.5 61.4<br>D 4-3 2 55.1 75.0 45.3 37.1 46.9 47.3<br>D 5-3 1 50 17.50 57.0 38.3 47.3<br>D 5-3 2 51 17.60 50.2 36.1 43.3 41.9<br>B 5-3              | TREATMEN           | T 1.         |                     |                          |                      |                       |                        |  |
| A $1-3 2 94$ 17.70 45.1 34.7 38.0 41.3<br>B $1-3 1 76$ 17.40 34.2 26.9 43.5<br>B $1-3 2 77$ 17.10 40.2 30.0 44.2 43.8<br>C $1-3 1 86$ 17.30 48.0 35.0 42.3<br>C $1-3 2 87$ 17.90 44.3 32.8 43.6 43.0<br>D $1-3 1 46$ 17.90 45.4 34.0 41.5<br>D $1-3 2 44$ 17.90 64.7 47.1 37.6 39.5<br>BLOCK MEAN 41.9<br>TREATMENT 2.<br>A 2-3 1 95 18.00 72.0 49.5 41.7<br>A 2-3 2 96 17.80 52.8 38.5 40.9 41.3<br>B 2-3 2 79 17.40 43.8 33.5 39.0 38.7<br>C 2-3 1 88 17.50 48.8 34.9 44.4<br>B 2-3 2 99 17.80 49.7 35.6 44.2 44.3<br>D 2-3 1 49 17.75 46.4 34.8 40.5<br>D 2-3 1 49 17.75 46.4 34.8 40.5<br>D 2-3 1 49 17.75 46.4 34.8 40.5<br>D 2-3 2 98 17.80 55.5 37.0 48.4 50.7<br>B 3-3 1 97 17.40 66.9 40.7 52.9<br>A 3-3 2 98 17.30 55.5 37.0 48.4 50.7<br>B 3-3 1 90 17.70 40.4 28.8 50.4 51.9<br>C 3-3 2 91 17.80 45.4 30.2 55.1 53.1<br>D 3-3 2 24 17.05 35.0 27.4 47.3 46.7<br>B 17.80 45.4 30.2 55.1 53.1<br>D 3-3 2 24 17.05 35.0 27.4 47.3 46.7<br>BLOCK MEAN 50.6<br>TREATMENT 4.<br>A 4-3 1 99 17.85 80.3 36.2 70.6<br>A 4-3 2 100 17.45 51.8 29.5 64.9 67.8<br>B 4-3 1 92 17.45 63.7 34.1 64.0<br>C 4-3 1 92 17.45 63.7 34.1 64.0<br>C 4-3 2 41 17.85 60.0 32.3 65.7 64.9<br>D 4-3 2 21 16.85 45.4 30.2 55.1 53.1<br>D 3-3 2 21 17.50 45.8 37.5 61.4<br>D 4-3 2 21 16.85 45.4 36.7 34.1 64.0<br>C 4-3 2 41 17.85 60.0 32.3 65.7 64.9<br>D 4-3 2 21 16.85 45.4 26.5 61.4<br>D 4-3 2 21 16.85 45.4 36.7 34.1 64.0<br>C 4-3 2 41 17.85 60.0 32.3 65.7 64.9<br>D 4-3 2 51.0 50.2 36.1 43.3 41.9<br>B 4-3 2 83 17.10 45.8 25.6 7.6 4.9<br>D 4-3 2 21 16.85 45.4 36.7 34.1 64.0<br>C 4-3 2 41 17.85 60.0 32.3 65.7 64.9<br>D 4-3 2 21 16.85 45.4 26.5 66.2 63.8<br>B LOCK MEAN 66.8<br>TREATMENT 5.<br>A 5-3 1 74 17.50 45.6 34.2 40.6<br>A 5-3 2 75 17.60 50.2 36.1 43.3 41.9<br>B 5-3 2 85 17.20 40.2 29.0 48.7 47.0<br>C 5-3 1 39 17.80 54.3 37.1 46.9 47.3<br>D 5-3 2 52 17.50 48.0 37.1 46.9 47.3<br>D 5-3 2 52 17.50 48.0 37.1 46.9 47.3<br>D 5-3 2 52 17.50 47.0 38.3 47.3<br>D 5-3 2 52 17.50 47.0 38.4 47.3<br>D 5-3 2 52 17.50 47.0 38.3 47.3<br>D 5-3 2 52 17.50 47.0 38.0 47.3 37.1 46.9 47.3                      | A 1-3 1            | 93           | 17.85               | 52.5                     | 37.0                 | 44.7                  |                        |  |
| B 1-3 1 76 17.40 34.2 26.9 43.5<br>B 1-3 2 77 17.10 40.2 30.0 44.2 43.8<br>C 1-3 1 86 17.30 48.0 35.0 47.3<br>C 1-3 2 87 17.90 44.3 32.8 43.6 43.0<br>D 1-3 1 46 17.90 45.4 34.0 41.5<br>D 1-3 2 44 17.90 64.7 47.1 37.6 39.5<br>BLOCK MEAM 41.9<br>TREATMENT 2.<br>A 2-3 1 95 18.00 72.0 49.5 41.7<br>A 2-3 2 96 17.80 52.8 38.5 40.9 41.3<br>B 2-3 2 79 17.40 43.8 33.5 39.0 38.7<br>C 2-3 1 88 17.50 48.8 34.9 44.4<br>C 2-3 2 89 17.80 49.7 35.6 44.2 44.3<br>D 2-3 1 49 17.75 46.4 34.8 34.5 43.0 41.8<br>BLOCK MEAM 41.5<br>TREATMENT 3.<br>A 3-3 1 97 17.40 66.9 40.7 52.9<br>A 3-3 2 98 17.30 55.5 37.0 48.4 50.7<br>B 3-3 1 90 17.70 40.4 28.8 51.1<br>C 3-3 1 91 17.80 45.4 30.2 55.1 53.1<br>D 3-3 1 27 17.10 47.9 32.2 51.0<br>D 3-3 2 24 17.05 35.0 27.4 42.3 46.7<br>BLOCK MEAM 50.6<br>TREATMENT 4.<br>A 4-3 1 99 17.85 80.3 36.2 70.6<br>A 4-3 2 100 17.45 51.8 29.5 64.9 67.8<br>B 4-3 2 83 17.10 45.8 25.6 70.4 70.8<br>C 4-3 2 41 7.85 80.3 36.2 70.6<br>A 4-3 2 100 17.45 51.8 29.5 64.9 67.8<br>B 4-3 1 82 17.35 57.2 28.8 71.3<br>B 4-3 2 83 17.10 45.8 25.6 70.4 70.8<br>C 4-3 2 100 17.45 51.8 29.5 64.9 67.8<br>B 4-3 1 82 17.35 57.2 28.8 71.3<br>B 4-3 2 83 17.10 45.8 25.6 70.4 70.8<br>C 4-3 1 92 17.45 63.7 34.1 64.0<br>C 4-3 2 100 17.45 51.8 29.5 64.9 67.8<br>B 4-3 1 53 17.85 68.8 37.5 61.4<br>D 4-3 2 21 16.85 45.4 26.5 66.2 63.8<br>BLOCK MEAM 66.8<br>TREATMENT 5.<br>A 5-3 1 74 17.50 45.6 34.2 40.6<br>TREATMENT 5.<br>A 5-3 1 50 17.50 57.0 38.3 47.3<br>D 5-3 2 51 17.60 54.3 37.1 46.9 47.3<br>D 5-3 2 51 17.50 48.0 37.1 46.9 47.3 | A 1-3 2            | 94           | 17.70               | 45.1                     | 34.7                 | 38.0                  | 41.3                   |  |
| B 1-3 2 77 17.10 40.2 30.0 44.2 43.8<br>C 1-3 1 86 17.30 48.0 35.0 42.3<br>C 1-3 2 87 17.90 44.3 32.8 43.6 43.0<br>D 1-3 1 46 17.90 45.4 34.0 41.5<br>D 1-3 2 44 17.90 64.7 47.1 37.6 39.5<br>BLOCK MEAN 41.9<br>TREATMENT 2.<br>A 2-3 1 95 18.00 72.0 49.5 41.7<br>A 2-3 2 96 17.80 52.8 38.5 40.9 41.3<br>B 2-3 1 78 17.40 39.8 31.2 39.4<br>C 2-3 2 89 17.80 49.7 35.6 44.2 44.3<br>D 2-3 1 88 17.50 48.8 34.9 44.4<br>C 2-3 2 89 17.80 49.7 35.6 44.2 44.3<br>D 2-3 1 49 17.75 46.4 34.8 40.5<br>D 2-3 2 40 16.90 47.8 34.5 43.0 41.8<br>BLOCK MEAN 41.5<br>TREATMENT 3.<br>A 3-3 1 97 17.40 66.9 40.7 52.9<br>A 3-3 2 98 17.30 55.5 37.0 48.4 50.7<br>B 3-3 1 80 17.10 51.2 33.0 53.4<br>B 3-3 2 81 17.40 40.4 28.8 51.1<br>C 3-3 2 91 17.80 44.4 30.2 55.1 53.1<br>D 3-3 1 27 17.10 40.4 28.8 51.1<br>C 3-3 2 91 17.80 45.4 30.2 55.1 53.1<br>D 3-3 2 24 17.05 35.0 27.4 42.3 46.7<br>BLOCK MEAN 50.6<br>TREATMENT 4.<br>A 4-3 1 99 17.85 80.3 36.2 70.6<br>A 4-3 2 100 17.45 51.8 29.5 64.9 67.8<br>B 4-3 2 83 17.10 45.8 25.6 70.4 70.8<br>C 4-3 2 41 17.85 60.0 32.3 65.7 64.9<br>D 4-3 1 53 17.80 45.4 26.5 7 64.9<br>D 4-3 1 53 17.85 64.8 37.5 61.4<br>D 4-3 2 21 16.85 45.4 26.5 66.2 63.8<br>B 4-3 1 82 17.30 55.5 37.0 48.7 47.0<br>C 4-3 2 71 7.60 45.6 34.2 40.6<br>TREATMENT 4.<br>A 4-3 1 99 17.85 68.8 37.5 61.4<br>D 4-3 2 21 16.85 45.4 26.5 66.2 63.8<br>B 4-3 1 53 17.85 68.8 37.5 61.4<br>D 4-3 2 21 16.85 45.4 26.5 66.2 63.8<br>BLOCK MEAN 66.8<br>TREATMENT 5.<br>A 5-3 1 74 17.50 45.6 34.2 40.6<br>TREATMENT 5.<br>A 5-3 1 39 17.80 54.3 37.1 46.9 47.3<br>D 5-3 2 51 17.60 54.3 37.1 46.9 47.3<br>D 5-3 2 51 17.60 54.3 37.1 46.9 47.3<br>D 5-3 2 51 17.60 54.3 37.1 46.9 47.3<br>D 5-3 2 52 17.50 48.0 34.0 45.9 45.7<br>TREATMENT 5.<br>A 5-3 1 50 17.50 57 | B 1-3 1            | 76           | 17.40               | 34.2                     | 26.9                 | 43.5                  |                        |  |
| C 1-3 1 86 17.30 48.0 35.0 42.3<br>C 1-3 2 87 17.90 44.3 32.8 43.6 43.0<br>D 1-3 1 46 17.90 45.4 34.0 41.5<br>D 1-3 2 44 17.90 64.7 47.1 37.6 39.5<br>BLOCK MEAN 41.9<br>TREATMENT 2.<br>A 2-3 1 95 18.00 72.0 49.5 41.7<br>A 2-3 2 96 17.80 52.8 38.5 40.9 41.3<br>B 2-3 1 78 17.40 39.8 31.2 38.4<br>B 2-3 2 79 17.40 43.8 33.5 39.0 38.7<br>C 2-3 1 88 17.50 48.8 34.9 44.4<br>C 2-3 2 89 17.80 49.7 35.6 44.2 44.3<br>D 2-3 1 49 17.75 46.4 34.8 40.5<br>D 2-3 2 40 16.90 47.8 34.5 43.0 41.8<br>BLOCK MEAN 41.5<br>TREATMENT 3.<br>A 3-3 1 97 17.40 66.9 40.7 52.9<br>A 3-3 2 98 17.30 55.5 37.0 48.4 50.7<br>B 3-3 1 80 17.10 51.2 33.0 53.4<br>B 3-3 2 81 17.40 40.4 28.8 50.4 51.9<br>C 3-3 1 90 17.70 40.4 28.8 50.4 51.9<br>C 3-3 1 90 17.70 40.4 28.8 51.1<br>D 3-3 1 27 17.10 47.9 32.2 55.0<br>D 3-3 2 24 17.05 35.0 27.4 42.3 46.7<br>BLOCK MEAN 50.6<br>TREATMENT 4.<br>A 4-3 1 99 17.85 80.3 36.2 70.6<br>A 4-3 2 100 17.45 51.8 29.5 64.9 67.8<br>B 4-3 2 83 17.10 45.4 30.2 55.7 153.1<br>D 3-3 2 21 16.85 57.2 28.8 71.3<br>B 4-3 2 83 17.10 45.8 25.6 70.4 70.8<br>C 4-3 1 92 17.45 63.7 34.1 64.0<br>C 4-3 2 10 17.45 51.8 29.5 64.9 67.8<br>B 4-3 2 83 17.10 45.8 25.6 70.4 70.8<br>C 4-3 1 92 17.45 63.7 34.1 64.0<br>C 4-3 2 11 7.85 60.0 32.3 65.7 64.9<br>D 4-3 1 53 17.85 68.8 37.5 61.4<br>D 4-3 2 21 16.85 45.4 36.2 40.6<br>A 4-3 2 21 16.85 45.4 36.2 60.4 30.4<br>B 4-3 2 85 17.20 40.2 29.0 48.7 47.0<br>C 5-3 1 39 17.80 45.4 37.4 164.0<br>C 4-3 2 51 17.60 50.2 36.1 43.3 41.9<br>B 5-3 1 84 17.10 50.4 35.3 45.3<br>B 4-3 2 85 17.20 40.2 29.0 48.7 47.0<br>C 5-3 2 51 17.60 50.4 35.3 45.3<br>B 5-3 2 85 17.20 40.2 29.0 48.7 47.0<br>C 5-3 2 51 17.60 54.3 37.1 46.9 47.3<br>D 5-3 1 50 17.50 57.0 38.3 47.3<br>D 5-3 1 50 17.50 57.0 38.3 47.3<br>D 5-3 1 50 17.50 57.0 38.3 47.3<br>D 5-3 2 52 17.50 48.0 34.0 45.9 47.7<br>C 5-3 2 51 17.60 54.3 37.1 46.9 47.3<br>D 5-3 2 52 17.50 48.0 34.0 45.9 47.7<br>C 5-3 2 51 17.60 54.3 37.1 46.9 47.3<br>D 5-3 1 50 17.50 57.0 38.3 47.3<br>D 5-3 2 52 17.50 48.0 34.0 45.9 46.6                                                                                                                                                                                                    | B 1-3 2            | 77           | 17.10               | 40.2                     | 30.0                 | <b>4</b> 4 • <b>2</b> | 43.8                   |  |
| C 1-3 2 87 17.90 44.3 32.8 43.6 43.0<br>D 1-3 1 46 17.90 45.4 34.0 41.5<br>D 1-3 2 44 17.90 64.7 47.1 37.6 39.5<br>BLOCK MEAN 41.9<br>TREATMENT 2.<br>A 2-3 1 95 18.00 72.0 49.5 41.7<br>A 2-3 2 96 17.80 52.8 38.5 40.9 41.3<br>B 2-3 1 78 17.40 43.8 33.5 39.0 38.7<br>C 2-3 1 88 17.50 48.8 34.9 44.4<br>C 2-3 2 89 17.80 49.7 35.6 44.2 44.3<br>D 2-3 1 49 17.75 46.4 34.8 40.5<br>D 2-3 2 40 16.90 47.8 34.5 43.0 41.8<br>BLOCK MEAM 41.5<br>TREATMENT 3.<br>A 3-3 1 97 17.40 66.9 40.7 52.9<br>A 3-3 2 98 17.30 55.5 37.0 48.4 50.7<br>B 3-3 1 80 17.10 51.2 33.0 53.4<br>B 3-3 2 91 17.80 49.4 30.2 55.1 53.1<br>D 3-3 2 24 17.05 35.0 27.4 42.3 46.7<br>BLOCK MEAM 50.6<br>TREATMENT 4.<br>A 4-3 1 99 17.85 80.3 36.2 70.6<br>A 4-3 2 100 17.45 51.8 29.5 64.9 67.8<br>B 4-3 2 81 17.10 45.8 25.6 70.4 70.8<br>C 4-3 1 92 17.45 60.7 32.6 57.6 64.9<br>D 3-3 2 21 16.85 43.0 2 55.1 53.1<br>D 3-3 2 24 17.05 35.0 27.4 42.3 46.7<br>BLOCK MEAM 50.6<br>TREATMENT 4.<br>A 4-3 1 99 17.85 80.3 36.2 70.6<br>A 4-3 2 100 17.45 51.8 29.5 64.9 67.8<br>B 4-3 2 83 17.10 45.8 25.6 70.4 70.8<br>C 4-3 1 92 17.45 60.7 32.2 65.7 64.9<br>D 4-3 1 53 17.85 68.8 37.5 61.4<br>D 4-3 2 21 16.85 45.4 30.2 25.1 63.8<br>BLOCK MEAM 66.8<br>TREATMENT 5.<br>A 5-3 1 74 17.50 45.6 34.2 40.6<br>A 5-3 2 75 17.60 50.2 36.1 43.3 41.9<br>B 5-3 1 84 17.10 50.4 35.3 45.3<br>B LOCK MEAM 66.8<br>TREATMENT 5.<br>A 5-3 1 74 17.50 57.0 38.3 47.3<br>D 5-3 2 51 17.60 54.3 37.1 46.9 47.7<br>C 5-3 2 51 17.60 54.3 37.1 46.9 47.7<br>C 5-3 2 51 17.60 54.3 37.1 46.9 47.3<br>D 5-3 1 50 17.50 57.0 38.3 47.3<br>D 5-3 2 52 17.50 48.0 34.0 45.9 46.6<br>HOUCK MEAM 66.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C 1-3 1            | 86           | 17.30               | 48.0                     | 35.0                 | 42.3                  |                        |  |
| D 1-3 1 46 17.90 45.4 34.0 41.5<br>D 1-3 2 44 17.90 64.7 47.1 37.6 39.5<br>BLOCK MEAN 41.9<br>TREATMENT 2.<br>A 2-3 1 95 18.00 72.0 49.5 41.7<br>A 2-3 2 96 17.80 52.8 38.5 40.9 41.3<br>B 2-3 1 78 17.40 39.8 31.2 38.4<br>B 2-3 2 79 17.40 43.8 33.5 39.0 38.7<br>C 2-3 1 88 17.50 48.8 34.9 44.4<br>C 2-3 2 89 17.80 49.7 35.6 44.2 44.3<br>D 2-3 1 49 17.75 46.4 34.8 40.5<br>D 2-3 2 40 16.90 47.8 34.5 43.0 41.8<br>BLOCK MEAM 41.5<br>TREATMENT 3.<br>A 3-3 1 97 17.40 66.9 40.7 52.9<br>A 3-3 2 98 17.30 55.5 37.0 48.4 50.7<br>B 3-3 1 80 17.10 51.2 33.0 53.4<br>B 3-3 2 81 17.40 40.4 28.8 50.4 51.9<br>C 3-3 1 90 17.70 40.4 28.8 50.4 51.9<br>C 3-3 1 90 17.70 40.4 28.8 50.4 51.9<br>C 3-3 1 90 17.70 40.4 28.8 50.4 51.9<br>C 3-3 1 91 17.80 45.4 30.2 55.1 53.1<br>D 3-3 2 24 17.05 55.0 27.4 42.3 46.7<br>BLOCK MEAM 50.6<br>TREATMENT 4.<br>A 4-3 1 99 17.85 80.3 36.2 70.6<br>A 4-3 2 100 17.45 51.8 29.5 64.9 67.8<br>B 4-3 1 82 17.35 57.2 28.8 71.3<br>B 4-3 2 83 17.10 45.8 25.6 70.4 70.8<br>C 4-3 2 10 17.45 51.8 29.5 64.9 67.8<br>B 4-3 1 92 17.45 63.7 34.1 64.0<br>C 4-3 2 11 0 17.45 51.8 29.5 64.9 67.8<br>B 4-3 1 92 17.45 63.7 34.1 64.0<br>C 4-3 2 11 7.85 60.0 32.3 65.7 64.9<br>D 4-3 1 53 17.85 68.8 37.5 61.4<br>D 4-3 2 21 16.85 45.4 20.2 40.6<br>A 5-3 1 74 17.50 45.6 34.2 40.6<br>A 5-3 1 74 17.50 45.4 36.9 47.7<br>C 5-3 2 51 17.60 50.2 36.1 43.3 41.9<br>B 5-3 1 84 17.10 50.4 35.3 45.3<br>B LOCK MEAN 66.8<br>TREATMENT 5.<br>A 5-3 1 74 17.50 45.6 34.2 40.6<br>A 5-3 2 75 17.60 50.2 36.1 43.3 41.9<br>B 5-3 1 84 17.10 50.4 35.3 45.3<br>B LOCK MEAN 66.8<br>TREATMENT 5.<br>A 5-3 1 39 17.80 54.3 36.9 47.7<br>C 5-3 2 51 17.60 50.4 35.3 47.3<br>D 5-3 2 52 17.50 48.0 34.0 45.9 47.3<br>D 5-3 2 52 17.50 48.0 34.0 45.9 46.6<br>BLOCK MEAN 66.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C 1-3 2            | 87           | 17.90               | 44.3                     | 32.8                 | 43.6                  | 43.0                   |  |
| D 1-3 2 44 17.90 64.7 47.1 37.6 39.5<br>BLOCK MEAN 41.9<br>TREATMENT 2.<br>A 2-3 1 95 18.00 72.0 49.5 41.7<br>A 2-3 2 96 17.80 52.8 38.5 40.9 41.3<br>B 2-3 2 79 17.40 39.8 31.2 38.4<br>B 2-3 2 79 17.40 43.8 33.5 39.0 38.7<br>C 2-3 1 88 17.50 48.8 34.9 44.4<br>C 2-3 2 89 17.80 49.7 35.6 44.2 44.3<br>D 2-3 1 49 17.75 46.4 34.8 40.5<br>D 2-3 2 40 16.90 47.8 34.5 43.0 41.8<br>BLOCK MEAM 41.5<br>TREATMENT 3.<br>A 3-3 1 97 17.40 66.9 40.7 52.9<br>A 3-3 2 98 17.30 55.5 37.0 48.4 50.7<br>B 3-3 1 80 17.10 51.2 33.0 53.4<br>B 3-3 2 81 17.40 40.4 28.8 50.4 51.9<br>C 3-3 2 91 17.80 45.4 30.2 55.1 53.1<br>D 3-3 2 24 17.05 35.0 27.4 42.3 46.7<br>BLOCK MEAM 50.6<br>TREATMENT 4.<br>A 4-3 1 99 17.85 80.3 36.2 70.6<br>A 4-3 2 100 17.45 51.8 29.5 64.9 67.8<br>B 4-3 1 82 17.35 57.2 26.8 71.3<br>B 4-3 1 82 17.45 63.7 34.1 64.0<br>C 4-3 2 41 17.85 60.0 32.3 65.7 64.9<br>D 4-3 1 53 17.85 68.8 37.5 61.4<br>D 4-3 2 21 16.85 45.4 26.5 66.2 63.8<br>BLOCK MEAM 66.8<br>TREATMENT 5.<br>A 5-3 1 74 17.50 45.6 34.2 40.6<br>A 5-3 2 75 17.60 50.2 36.1 43.3 41.9<br>D 4-3 2 51 17.60 50.4 35.3 45.3<br>B LOCK MEAM 66.8<br>TREATMENT 5.<br>A 5-3 1 74 17.50 45.6 34.2 40.6<br>A 5-3 2 75 17.60 50.2 36.1 43.3 41.9<br>B 5-3 1 84 17.10 50.4 35.3 45.3<br>B LOCK MEAM 66.8<br>TREATMENT 5.<br>A 5-3 1 74 17.50 45.6 34.2 40.6<br>A 5-3 2 75 17.60 50.2 36.1 43.3 41.9<br>B 5-3 1 84 17.10 50.4 35.3 45.3<br>B LOCK MEAM 66.8<br>TREATMENT 5.<br>A 5-3 1 74 17.50 45.6 34.2 40.6<br>A 5-3 2 75 17.60 50.2 36.1 43.3 41.9<br>B 5-3 1 39 17.80 54.3 36.9 47.7<br>C 5-3 2 51 17.60 54.3 37.1 46.9 47.3<br>D 5-3 2 52 17.50 48.0 34.0 45.9 46.6<br>M 60.0 45.9 46.6<br>M 60.0 45.9 46.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D 1-3 1            | 46           | 17.90               | 45.4                     | 34.0                 | 41.5                  |                        |  |
| TREATMENT 2.       BLUCK MEAN 41.9         A 2-3 1 95 18.00 72.0 49.5 41.7         A 2-3 2 96 17.80 52.8 38.5 40.9 41.3         B 2-3 1 78 17.40 39.8 31.2 38.4         B 2-3 2 79 17.40 43.8 33.5 39.0 38.7         C 2-3 1 88 17.50 48.8 34.9 44.4         C 2-3 2 89 17.80 49.7 35.6 44.2 44.3         D 2-3 1 49 17.75 46.4 34.8 40.5         D 2-3 2 40 16.90 47.8 34.5 43.0 41.8         BLOCK MEAN 41.5         TREATMENT 3.         A 3-3 1 97 17.40 40.4 28.8 51.0 51.2 33.0 57.4         B 3-3 1 80 17.10 51.2 33.0 57.4 8 51.1         C 3-3 2 91 17.80 45.4 30.2 55.1 53.1         D 3-3 1 27 17.10 47.9 32.2 51.0 0         D 3-3 1 27 17.10 47.9 32.2 51.0 0         D 3-3 2 24 17.05 35.0 27.4 42.3 46.7         BLOCK MEAN 50.6         TREATMENT 4.         A 4-3 1 99 17.85 80.3 36.2 70.6         A 4-3 2 100 17.45 51.8 29.5 64.9 67.8         B 4-3 1 82 17.35 57.2 28.8 71.3         B 4-3 2 83 17.10 45.8 25.6 70.4 70.8         C 4-3 2 41 17.85 60.0 32.3 65.7 64.9         D 4-3 1 53 17.85 60.3 36.2 70.6         A 4-3 1 92 17.45 63.7 34.1 64.0         C 4-3 2 41 17.85 60.0 32.3 65.7 64.9         D 4-3 2 51 16.85 45.4 26.5 66.2 63.8         BLOCK MEAN 66.8         TREATMENT 5.         A 5-3 1 74 17.50 45.6 34.2 40.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D 1-3 2            | 44           | 17.90               | 64.7                     | 47.1                 | 37.6                  | 39.5                   |  |
| IREATMENT 2.A 2-3 19518.0072.049.541.7A 2-3 29617.8052.838.540.941.3B 2-3 17817.4039.831.238.4B 2-3 27917.4043.833.539.038.7C 2-3 18817.5048.834.944.4C 2-3 28917.8049.735.644.244.3D 2-3 14917.7546.434.840.550D 2-3 24016.9047.834.543.041.8BLOCK MEAN41.581.055.537.048.450.7B 3-3 18017.1051.233.05.4B 3-3 28117.4040.428.850.451.9C 3-3 19017.7040.428.851.153.1D 3-3 12717.1047.932.251.051.0D 3-3 22417.0535.027.442.346.7BLOCK MEAN50.684.336.270.670.8A 4-3 19917.8580.336.270.6A 4-3 210017.4551.829.564.967.8B 4-3 18217.3557.228.871.38B 4-3 28317.1045.825.670.470.8C 4-3 19217.4563.734.164.064.9D 4-3 22116.85 </td <td></td> <td><b>T</b> 0</td> <td></td> <td></td> <td>BLUCK</td> <td>MEAN 4</td> <td>+1•9</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | <b>T</b> 0   |                     |                          | BLUCK                | MEAN 4                | +1•9                   |  |
| A 2-3 1 95 18.00 72.0 49.5 41.7<br>A 2-3 2 96 17.80 52.8 38.5 40.9 41.3<br>B 2-3 1 78 17.40 39.8 31.2 38.4<br>B 2-3 2 79 17.40 43.8 33.5 39.0 38.7<br>C 2-3 1 88 17.50 48.8 33.9 44.4<br>C 2-3 2 89 17.80 49.7 35.6 44.2 44.3<br>D 2-3 1 49 17.75 46.4 34.8 40.5<br>D 2-3 2 40 16.90 47.8 34.5 43.0 41.8<br>BLOCK MEAM 41.5<br>TREATMENT 3.<br>A 3-3 1 97 17.40 66.9 40.7 52.9<br>A 3-3 2 98 17.30 55.5 37.0 48.4 50.7<br>B 3-3 1 80 17.10 51.2 33.0 53.4<br>B 3-3 2 91 17.80 45.4 30.2 55.1 53.1<br>D 3-3 1 90 17.70 40.4 28.8 50.4 51.9<br>C 3-3 2 91 17.80 45.4 30.2 55.1 53.1<br>D 3-3 1 27 17.10 47.9 32.2 51.0<br>D 3-3 2 24 17.05 35.0 27.4 42.3 46.7<br>BLOCK MEAM 50.6<br>TREATMENT 4.<br>A 4-3 1 99 17.85 80.3 36.2 70.6<br>A 4-3 2 100 17.45 51.8 29.5 64.9 67.8<br>B 4-3 2 83 17.10 45.8 25.6 70.4 70.8<br>C 4-3 1 92 17.45 60.0 32.3 65.7 64.9<br>D 4-3 1 53 17.85 68.8 37.5 61.4<br>D 4-3 2 21 16.85 45.4 26.5 66.2 63.8<br>BLOCK MEAM 66.8<br>TREATMENT 5.<br>A 5-3 1 74 17.50 45.6 34.2 40.6<br>A 5-3 2 75 17.60 50.2 36.1 43.3 41.9<br>BLOCK MEAM 66.8<br>TREATMENT 5.<br>A 5-3 1 74 17.50 45.6 34.2 40.6<br>A 5-3 2 75 17.60 50.2 36.1 43.3 41.9<br>B 5-3 1 84 17.10 50.4 35.3 45.3<br>B 5-3 1 84 17.10 50.4 35.3 45.3<br>B 5-3 1 74 17.60 50.2 36.1 43.3 41.9<br>B 5-3 1 39 17.80 54.3 36.9 47.7<br>C 5-3 2 51 17.60 50.2 36.1 43.3 41.9<br>B 5-3 1 84 17.10 50.4 35.3 45.3<br>B 5-3 1 74 17.50 45.6 34.2 40.6<br>A 5-3 2 75 17.60 50.2 36.1 43.3 41.9<br>B 5-3 1 84 17.10 50.4 35.3 45.3<br>B 5-3 1 84 17.10 50.4 35.3 45.3<br>B 5-3 1 50 17.50 57.0 38.3 47.3<br>D 5-3 2 51 17.60 54.3 37.1 46.9 47.3<br>D 5-3 1 50 17.50 57.0 38.3 47.3<br>D 5-3 2 52 17.50 48.0 34.0 45.9 46.6<br>HOCK MEAN 66.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IKEAIMEN           |              | 10.00               | 72 0                     | 40 F                 | <i>(</i> 1 <b>7</b>   |                        |  |
| A 2-3 2       96       17.60       30.8       31.2       38.4         B 2-3 2       79       17.40       43.8       33.5       39.0       38.7         C 2-3 1       88       17.80       49.7       35.6       44.4         C 2-3 2       89       17.80       49.7       35.6       44.2       44.3         D 2-3 1       49       17.75       46.4       34.8       40.5       5         D 2-3 2       40       16.90       47.8       34.5       43.0       41.8         BLOCK MEA <sup>M</sup> 41.5       8       50.4       50.7       5       37.0       48.4       50.7         B 3-3 1       80       17.10       51.2       33.0       53.4       51.9       5         G 3-3 1       90       17.70       40.4       28.8       50.4       51.9       5         G 3-3 2       91       17.80       45.4       30.2       55.1       53.1       5         D 3-3 1       27       17.10       47.9       32.2       51.0       5       1         D 3-3 2       24       17.65       35.0       27.4       42.3       46.7         B 4-3 2       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A 2 - 3 1          | 95           | 18.00               | 12.0                     | 49.5<br>20 E         | 4 L • 1               | <i>(</i> ,1, 2)        |  |
| b       2-3       1       10       17.40       43.8       33.5       39.0       38.7         C       2-3       1       88       17.50       48.8       34.9       44.4         C       2-3       2       89       17.80       49.7       35.6       44.2       24.3         D       2-3       1       49       17.75       46.4       34.8       40.5         D       2-3       2       40       16.90       47.8       34.5       43.0       41.8         B       3-3       1       97       17.40       66.9       40.7       52.9         A       3-3       1       97       17.40       40.4       28.8       50.4       51.9         C       3-3       1       91       17.80       45.4       30.2       55.1       53.1         C       3-3       1       91       17.80       45.4       30.2       55.1       53.1         C       3-3       2       1       7.05       35.0       27.4       42.3       46.7         BLOCK       MEAM       50.6       70.6       44-3       1.99       17.45       51.8       29.5<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A 2-3 2<br>B 2-3 1 | . 90         | 17.60               | 20 8                     | 31 2                 | 38 4                  | 41.5                   |  |
| D 2-3 2       17       17.50       48.8       34.9       44.4         C 2-3 2       89       17.80       49.7       35.6       44.2       44.3         D 2-3 1       49       17.75       46.4       34.8       40.5       5         D 2-3 2       40       16.90       47.8       34.5       43.0       41.8         BLOCK       MEAN       41.5       8       84.5       43.0       41.8         BLOCK       MEAN       41.5       8       8       54.4       50.7         A 3-3 1       97       17.40       66.9       40.7       52.9         A 3-3 2       98       17.10       51.2       33.0       53.4         B 3-3 1       80       17.10       51.2       33.0       53.4         B 3-3 1       90       17.70       40.4       28.8       51.1         C 3-3 2       91       17.80       45.4       30.2       55.1       53.1         D 3-3 1       27       17.10       47.9       32.2       51.0       D       D         D 3-3 2       24       17.05       35.0       27.4       42.3       46.7         B 4-3 1 <td< td=""><td>B 2-3 1</td><td>70</td><td>17.40</td><td>43.8</td><td>33.5</td><td>20 0</td><td>38 7</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B 2-3 1            | 70           | 17.40               | 43.8                     | 33.5                 | 20 0                  | 38 7                   |  |
| C 2-3 2       89       17.80       49.7       35.6       44.2       44.3         D 2-3 1       49       17.75       46.4       34.8       40.5         D 2-3 2       40       16.90       47.8       34.5       43.0       41.8         B 2-3 1       97       17.40       66.9       40.7       52.9         A 3-3 2       98       17.30       55.5       37.0       48.4       50.7         B 3-3 1       80       17.10       51.2       33.0       53.4       51.9         C 3-3 2       91       17.40       40.4       28.8       50.4       51.9         C 3-3 2       91       17.70       40.4       28.8       50.4       51.9         C 3-3 2       91       17.80       45.4       30.2       55.1       53.1         D 3-3 1       27       17.10       47.9       32.2       51.0       0         D 3-3 2       24       17.05       35.0       27.4       42.3       46.7         BLOCK MEAN       50.6       64.9       67.8       64.4       67.8         B 4-3 1       92       17.45       63.7       34.1       64.0         C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 2 - 3 2          | 88           | 17.50               | 48.8                     | 34.9                 | 44.4                  | 50.1                   |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C 2 - 3 2          | 89           | 17.80               | 49.7                     | 35.6                 | 44 2                  | 44.3                   |  |
| D 2-3 2 40 16.90 47.8 $34.5$ 43.0 41.8 BLOCK MEA <sup>M</sup> 41.5<br>TREATMENT 3.<br>A 3-3 1 97 17.40 66.9 40.7 52.9<br>A 3-3 2 98 17.30 55.5 37.0 48.4 50.7<br>B 3-3 1 80 17.10 51.2 33.0 53.4<br>B 3-3 2 81 17.40 40.4 28.8 50.4 51.9<br>C 3-3 1 90 17.70 40.4 28.8 51.1<br>C 3-3 2 91 17.80 45.4 30.2 55.1 53.1<br>D 3-3 1 27 17.10 47.9 32.2 51.0<br>D 3-3 2 24 17.05 35.0 27.4 42.3 46.7<br>BLOCK MEA <sup>M</sup> 50.6<br>TREATMENT 4.<br>A 4-3 1 99 17.85 80.3 36.2 70.6<br>A 4-3 2 100 17.45 51.8 29.5 64.9 67.8<br>B 4-3 2 83 17.10 45.8 25.6 70.4 70.8<br>C 4-3 1 92 17.45 63.7 34.1 64.0<br>C 4-3 1 92 17.45 63.7 34.1 64.0<br>C 4-3 2 41 17.85 68.8 37.5 61.4<br>D 4-3 2 21 16.85 45.4 26.5 66.2 63.8<br>BLOCK MEA <sup>M</sup> 66.8<br>TREATMENT 5.<br>A 5-3 1 74 17.50 45.6 34.2 40.6<br>A 5-3 2 75 17.60 50.2 36.1 43.3 41.9<br>B 5-3 2 85 17.20 40.2 29.0 48.7 47.0<br>C 5-3 1 39 17.80 54.3 36.9 47.7<br>C 5-3 2 51 17.60 54.3 37.1 46.9 47.3<br>D 5-3 1 50 17.50 57.0 38.3 47.3<br>D 5-3 1 50 17.50 57.0 38.3 47.3<br>D 5-3 2 52 17.50 48.0 34.0 45.9 46.6<br>BLOCK MEAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D 2-3 1            | 49           | 17.75               | 46.4                     | 34.8                 | 40.5                  |                        |  |
| TREATMENT 3.       BLOCK MEAN 41.5         A 3-3 1 97       17.40       66.9       40.7       52.9         A 3-3 2 98       17.30       55.5       37.0       48.4       50.7         B 3-3 1 80       17.10       51.2       33.0       53.4         B 3-3 2 81       17.40       40.4       28.8       50.4       51.9         C 3-3 2 91       17.80       45.4       30.2       55.1       53.1         D 3-3 1 27       17.10       47.9       32.2       51.0       50.6         D 3-3 2 24       17.05       35.0       27.4       42.3       46.7         BLOCK MEAN       50.6         TREATMENT 4.       A       4-3 2       100       17.45       51.8       29.5       64.9       67.8         B 4-3 1 82       17.35       57.2       28.8       71.3       8       4-3 2       100       17.45       63.7       34.1       64.0       64.9       67.8         C 4-3 2 41       17.85       60.0       32.3       65.7       64.9       0       64.9       0       64.9       0       2.5       64.9       67.8       8       8.5       65.7       64.9       64.9       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D 2-3 2            | 40           | 16.90               | 47.8                     | 34.5                 | 43.0                  | 41.8                   |  |
| TREATMENT 3.A $3-3$ 19717.4066.940.752.9A $3-3$ 29817.3055.537.048.450.7B $3-3$ 18017.1051.233.053.4B $3-3$ 28117.4040.428.850.451.9C $3-3$ 29117.7040.428.851.1C $3-3$ 29117.8045.430.255.153.1D $3-3$ 12717.1047.932.251.0D $3-3$ 22417.0535.027.442.346.7BLOCK MEAN50.650.651.829.564.967.8C $4-3$ 19917.8580.336.270.6A $4-3$ 210017.4551.829.564.967.8B $4-3$ 19217.4563.734.164.0C $4-3$ 24117.8560.032.365.764.9D $4-3$ 19217.4563.734.164.0C $4-3$ 24117.8560.032.365.764.9D $4-3$ 22116.8545.426.566.263.8BLOCK MEAN66.881.0MEAN66.881.0TREATMENT 5.45.436.947.765.337.1A $5-3$ 17417.5045.634.240.6A $5-3$ 28517.2040.229.048.747.0C $5-3$ 139 <td< td=""><td></td><td></td><td></td><td></td><td>BLOCK</td><td>MEAN 4</td><td>+1.5</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |              |                     |                          | BLOCK                | MEAN 4                | +1.5                   |  |
| A $3-3$ 1 97 17.40 66.9 40.7 52.9<br>A $3-3$ 2 98 17.30 55.5 37.0 48.4 50.7<br>B $3-3$ 1 80 17.10 51.2 33.0 53.4<br>B $3-3$ 2 81 17.40 40.4 28.8 50.4 51.9<br>C $3-3$ 1 90 17.70 40.4 28.8 51.1<br>C $3-3$ 2 91 17.80 45.4 30.2 55.1 53.1<br>D $3-3$ 1 27 17.10 47.9 32.2 51.0<br>D $3-3$ 2 24 17.05 35.0 27.4 42.3 46.7<br>BLOCK MEAM 50.6<br>TREATMENT 4.<br>A $4-3$ 1 99 17.85 80.3 36.2 70.6<br>A $4-3$ 2 100 17.45 51.8 29.5 64.9 67.8<br>B $4-3$ 1 82 17.35 57.2 28.8 71.3<br>B $4-3$ 2 83 17.10 45.8 25.6 70.4 70.8<br>C $4-3$ 2 10 17.45 63.7 34.1 64.0<br>C $4-3$ 2 1 92 17.45 63.7 34.1 64.0<br>C $4-3$ 2 21 16.85 45.4 26.5 66.2 63.8<br>BLOCK MEAN 66.8<br>TREATMENT 5.<br>A $5-3$ 1 74 17.50 45.6 34.2 40.6<br>A $5-3$ 2 75 17.60 50.2 36.1 43.3 41.9<br>B $5-3$ 1 84 17.10 50.4 35.3 45.3<br>B $5-3$ 2 85 17.20 40.2 29.0 48.7 47.0<br>C $5-3$ 1 39 17.80 54.3 36.9 47.7<br>C $5-3$ 2 51 17.60 54.3 37.1 46.9 47.3<br>D $5-3$ 2 52 17.50 48.0 34.0 45.9 46.6<br>BLOCK MEAN 65.9 47.3<br>D $5-3$ 1 50 17.50 57.0 38.3 47.3<br>D $5-3$ 1 50 17.50 45.6 34.0 45.9 47.3<br>D $5-3$ 2 52 17.50 48.0 34.0 45.9 46.6<br>BLOCK MEAN 45.7<br>C MEAN 45.7 COMPUTING CENTRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TREATMEN           | NT 3.        |                     |                          |                      |                       |                        |  |
| A $3-3$ 2 98 17.30 55.5 37.0 48.4 50.7<br>B $3-3$ 1 80 17.10 51.2 33.0 53.4<br>B $3-3$ 2 81 17.40 40.4 28.8 50.4 51.9<br>C $3-3$ 1 90 17.70 40.4 28.8 51.1<br>C $3-3$ 2 91 17.80 45.4 30.2 55.1 53.1<br>D $3-3$ 1 27 17.10 47.9 32.2 51.0<br>D $3-3$ 2 24 17.05 35.0 27.4 42.3 46.7<br>BLOCK MEAN 50.6<br>TREATMENT 4.<br>A $4-3$ 1 99 17.85 80.3 36.2 70.6<br>A $4-3$ 2 100 17.45 51.8 29.5 64.9 67.8<br>B $4-3$ 1 82 17.35 57.2 28.8 71.3<br>B $4-3$ 2 83 17.10 45.8 25.6 70.4 70.8<br>C $4-3$ 2 91 7.85 60.0 32.3 65.7 64.9<br>D $4-3$ 1 53 17.85 68.8 37.5 61.4<br>D $4-3$ 2 21 16.85 45.4 26.5 66.2 63.8<br>BLOCK MEAN 66.8<br>TREATMENT 5.<br>A $5-3$ 1 74 17.50 45.6 34.2 40.6<br>A $5-3$ 2 75 17.60 50.2 36.1 43.3 41.9<br>B $5-3$ 1 84 17.10 50.4 35.3 45.3<br>B $5-3$ 2 85 17.20 40.2 29.0 48.7 47.0<br>C $5-3$ 1 39 17.80 54.3 36.9 47.7<br>C $5-3$ 2 51 17.60 54.3 37.1 46.9 47.3<br>D $5-3$ 1 50 17.50 45.0 34.0 45.9 46.6<br>BLOCK MEAN 64.9 47.3<br>D $5-3$ 1 50 17.50 45.0 34.0 45.9 46.6<br>BLOCK MEAN 66.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A 3-3 1            | 97           | 17.40               | 66.9                     | 40.7                 | 52.9                  |                        |  |
| B $3-3$ 1 80 17.10 51.2 $33.0$ 53.4<br>B $3-3$ 2 81 17.40 40.4 28.8 50.4 51.9<br>C $3-3$ 1 90 17.70 40.4 28.8 51.1<br>C $3-3$ 2 91 17.80 45.4 30.2 55.1 53.1<br>D $3-3$ 1 27 17.10 47.9 32.2 51.0<br>D $3-3$ 2 24 17.05 35.0 27.4 42.3 46.7<br>BLOCK MEAN 50.6<br>TREATMENT 4.<br>A $4-3$ 1 99 17.85 80.3 36.2 70.6<br>A $4-3$ 2 100 17.45 51.8 29.5 64.9 67.8<br>B $4-3$ 1 82 17.35 57.2 28.8 71.3<br>B $4-3$ 2 83 17.10 45.8 25.6 70.4 70.8<br>C $4-3$ 1 92 17.45 63.7 34.1 64.0<br>C $4-3$ 1 92 17.45 68.8 37.5 61.4<br>D $4-3$ 2 21 16.85 45.4 26.5 66.2 63.8<br>BLOCK MEAN 66.8<br>TREATMENT 5.<br>A $5-3$ 1 74 17.50 45.6 34.2 40.6<br>A $5-3$ 2 75 17.60 50.2 36.1 43.3 41.9<br>B $5-3$ 1 84 17.10 50.4 35.3 45.3<br>B $5-3$ 2 85 17.20 40.2 29.0 48.7 47.0<br>C $5-3$ 2 51 17.60 54.3 37.1 46.9 47.3<br>D $5-3$ 2 52 17.50 48.0 34.0 45.9 46.6<br>BLOCK MEAN 64.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A 3-3 2            | 98           | 17.30               | 55.5                     | 37.0                 | <b>48 • 4</b>         | 50.7                   |  |
| B $3-3$ 281 $17.40$ $40.4$ $28.8$ $50.4$ $51.9$ C $3-3$ 190 $17.70$ $40.4$ $28.8$ $51.1$ C $3-3$ 291 $17.80$ $45.4$ $30.2$ $55.1$ $53.1$ D $3-3$ 127 $17.10$ $47.9$ $32.2$ $51.0$ D $3-3$ 224 $17.05$ $35.0$ $27.4$ $42.3$ $46.7$ BLOCKMEAN $50.6$ TREATMENT 4. $A$ $4-3$ $99$ $17.85$ $80.3$ $36.2$ $70.6$ A $4-3$ 1 $99$ $17.85$ $80.3$ $36.2$ $70.6$ $A$ A $4-3$ 2 $100$ $17.45$ $51.8$ $29.5$ $64.9$ $67.8$ B $4-3$ 1 $82$ $17.35$ $57.2$ $28.8$ $71.3$ B $4-3$ 2 $81.7.10$ $45.8$ $25.6$ $70.4$ $70.8$ C $4-3$ 1 $92$ $17.45$ $63.7$ $34.1$ $64.0$ C $4-3$ 2 $21$ $16.85$ $45.4$ $26.5$ $66.2$ $63.8$ B $17.85$ $60.0$ $32.3$ $65.7$ $64.9$ $64.9$ D $4-3$ 2 $21$ $16.85$ $45.4$ $26.5$ $66.2$ $63.8$ BLOCKMEAN $66.8$ $81.0$ $81.0$ $45.3$ $41.9$ B $5-3$ $1$ $74$ $17.50$ $45.6$ $34.2$ $40.6$ A $5-3$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B 3-3 1            | 80           | 17.10               | 51.2                     | 33.0                 | 53.4                  |                        |  |
| C $3-3$ 1 90 17.70 40.4 28.8 51.1<br>C $3-3$ 2 91 17.80 45.4 30.2 55.1 53.1<br>D $3-3$ 1 27 17.10 47.9 32.2 51.0<br>D $3-3$ 2 24 17.05 35.0 27.4 42.3 46.7<br>BLOCK MEAN 50.6<br>TREATMENT 4.<br>A $4-3$ 1 99 17.85 80.3 36.2 70.6<br>A $4-3$ 2 100 17.45 51.8 29.5 64.9 67.8<br>B $4-3$ 1 82 17.35 57.2 28.8 71.3<br>B $4-3$ 2 83 17.10 45.8 25.6 70.4 70.8<br>C $4-3$ 1 92 17.45 63.7 34.1 64.0<br>C $4-3$ 2 41 17.85 60.0 32.3 65.7 64.9<br>D $4-3$ 1 53 17.85 68.8 37.5 61.4<br>D $4-3$ 2 21 16.85 45.4 26.5 66.2 63.8<br>BLOCK MEAN 66.8<br>TREATMENT 5.<br>A $5-3$ 1 74 17.50 45.6 34.2 40.6<br>A $5-3$ 2 75 17.60 50.2 36.1 43.3 41.9<br>B $5-3$ 1 84 17.10 50.4 35.3 45.3<br>B $5-3$ 2 85 17.20 40.2 29.0 48.7 47.0<br>C $5-3$ 2 51 17.60 54.3 37.1 46.9 47.3<br>D $5-3$ 1 50 17.50 57.0 38.3 47.3<br>D $5-3$ 1 50 17.50 57.0 38.3 47.3<br>D $5-3$ 2 52 17.50 48.0 34.0 45.9 46.6<br>MEAN 66.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B 3-3 2            | 81           | 17.40               | 40.4                     | 28.8                 | <b>5</b> 0 <b>.</b> 4 | 51.9                   |  |
| C $3-3$ 2 91 17.80 45.4 $30.2$ 55.1 53.1<br>D $3-3$ 1 27 17.10 47.9 $32.2$ 51.0<br>D $3-3$ 2 24 17.05 $35.0$ 27.4 42.3 46.7<br>BLOCK MEAN 50.6<br>TREATMENT 4.<br>A $4-3$ 1 99 17.85 80.3 $36.2$ 70.6<br>A $4-3$ 2 100 17.45 51.8 29.5 64.9 67.8<br>B $4-3$ 1 82 17.35 57.2 28.8 71.3<br>B $4-3$ 2 83 17.10 45.8 25.6 70.4 70.8<br>C $4-3$ 1 92 17.45 63.7 34.1 64.0<br>C $4-3$ 2 41 17.85 60.0 32.3 65.7 64.9<br>D $4-3$ 1 53 17.85 68.8 37.5 61.4<br>D $4-3$ 2 21 16.85 45.4 26.5 66.2 63.8<br>BLOCK MEAN 66.8<br>TREATMENT 5.<br>A $5-3$ 1 74 17.50 45.6 34.2 40.6<br>A $5-3$ 2 75 17.60 50.2 $36.1$ 43.3 41.9<br>B $5-3$ 1 84 17.10 50.4 $35.3$ 45.3<br>B $5-3$ 2 85 17.20 40.2 29.0 48.7 47.0<br>C $5-3$ 1 39 17.80 54.3 36.9 47.7<br>C $5-3$ 2 51 17.60 54.3 37.1 46.9 47.3<br>D $5-3$ 1 50 17.50 57.0 $38.3$ 47.3<br>D $5-3$ 1 50 17.50 57.0 $38.3$ 47.3<br>D $5-3$ 2 52 17.50 48.0 $34.0$ 45.9 46.6<br>BLOCK MEAN 45.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C 3-3 1            | 90           | 17.70               | 40.4                     | 28.8                 | 51.1                  |                        |  |
| D $3-3$ 1 27 17.10 47.9 $32.2$ 51.0<br>D $3-3$ 2 24 17.05 $35.0$ 27.4 42.3 46.7<br>BLOCK MEAN 50.6<br>TREATMENT 4.<br>A $4-3$ 1 99 17.85 80.3 $36.2$ 70.6<br>A $4-3$ 2 100 17.45 51.8 29.5 64.9 67.8<br>B $4-3$ 1 82 17.35 57.2 28.8 71.3<br>B $4-3$ 2 83 17.10 45.8 25.6 70.4 70.8<br>C $4-3$ 1 92 17.45 63.7 34.1 64.0<br>C $4-3$ 2 41 17.85 60.0 32.3 65.7 64.9<br>D $4-3$ 1 53 17.85 68.8 37.5 61.4<br>D $4-3$ 2 21 16.85 45.4 26.5 66.2 63.8<br>BLOCK MEAN 66.8<br>TREATMENT 5.<br>A $5-3$ 1 74 17.50 45.6 34.2 40.6<br>A $5-3$ 2 75 17.60 50.2 36.1 43.3 41.9<br>B $5-3$ 1 84 17.10 50.4 35.3 45.3<br>B $5-3$ 2 85 17.20 40.2 29.0 48.7 47.0<br>C $5-3$ 1 39 17.80 54.3 36.9 47.7<br>C $5-3$ 2 51 17.60 54.3 37.1 46.9 47.3<br>D $5-3$ 1 50 17.50 57.0 38.3 47.3<br>D $5-3$ 2 52 17.50 48.0 34.0 45.9 46.6<br>BLOCK MEAN 45.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C 3-3 2            | 91           | 17.80               | 45.4                     | 30.2                 | 55.1                  | 53.1                   |  |
| D $3-3$ 2 24 17.05 35.0 27.4 42.3 46.7<br>BLOCK MEAN 50.6<br>TREATMENT 4.<br>A 4-3 1 99 17.85 80.3 36.2 70.6<br>A 4-3 2 100 17.45 51.8 29.5 64.9 67.8<br>B 4-3 1 82 17.35 57.2 28.8 71.3<br>B 4-3 2 83 17.10 45.8 25.6 70.4 70.8<br>C 4-3 1 92 17.45 63.7 34.1 64.0<br>C 4-3 2 41 17.85 60.0 32.3 65.7 64.9<br>D 4-3 1 53 17.85 68.8 37.5 61.4<br>D 4-3 2 21 16.85 45.4 26.5 66.2 63.8<br>BLOCK MEAN 66.8<br>TREATMENT 5.<br>A 5-3 1 74 17.50 45.6 34.2 40.6<br>A 5-3 2 75 17.60 50.2 36.1 43.3 41.9<br>B 5-3 1 84 17.10 50.4 35.3 45.3<br>B 5-3 2 85 17.20 40.2 29.0 48.7 47.0<br>C 5-3 1 39 17.80 54.3 36.9 47.7<br>C 5-3 2 51 17.60 54.3 37.1 46.9 47.3<br>D 5-3 1 50 17.50 57.0 38.3 47.3<br>D 5-3 2 52 17.50 48.0 34.0 45.9 46.6<br>BLOCK MEAN 65.9 46.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D 3-3 1            | 27           | 17.10               | 4/.9                     | 32.2                 | 51.0                  |                        |  |
| TREATMENT 4.<br>A 4-3 1 99 17.85 80.3 $36.2$ 70.6<br>A 4-3 2 100 17.45 51.8 29.5 64.9 67.8<br>B 4-3 1 82 17.35 57.2 28.8 71.3<br>B 4-3 2 83 17.10 45.8 25.6 70.4 70.8<br>C 4-3 1 92 17.45 63.7 34.1 64.0<br>C 4-3 2 41 17.85 60.0 32.3 65.7 64.9<br>D 4-3 1 53 17.85 68.8 37.5 61.4<br>D 4-3 2 21 16.85 45.4 26.5 66.2 63.8<br>BLOCK MEAN 66.8<br>TREATMENT 5.<br>A 5-3 1 74 17.50 45.6 34.2 40.6<br>A 5-3 2 75 17.60 50.2 36.1 43.3 41.9<br>B 5-3 1 84 17.10 50.4 35.3 45.3<br>B 5-3 2 85 17.20 40.2 29.0 48.7 47.0<br>C 5-3 1 39 17.80 54.3 36.9 47.7<br>C 5-3 2 51 17.60 54.3 37.1 46.9 47.3<br>D 5-3 1 50 17.50 57.0 38.3 47.3<br>D 5-3 2 52 17.50 48.0 34.0 45.9 46.6<br>BLOCK MEAN 66.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 3-3 2            | 24           | 17.05               | 35.0                     |                      |                       | 40.1                   |  |
| A 4-3 199 $17.85$ 80.3 $36.2$ $70.6$ A 4-3 2100 $17.45$ $51.8$ $29.5$ $64.9$ $67.8$ B 4-3 182 $17.35$ $57.2$ $28.8$ $71.3$ B 4-3 283 $17.10$ $45.8$ $25.6$ $70.4$ $70.8$ C 4-3 192 $17.45$ $63.7$ $34.1$ $64.0$ C 4-3 241 $17.85$ $60.0$ $32.3$ $65.7$ $64.9$ D 4-3 153 $17.85$ $68.8$ $37.5$ $61.4$ D 4-3 221 $16.85$ $45.4$ $26.5$ $66.2$ $63.8$ BLOCK MEAN $66.8$ BLOCK MEAN $66.8$ TREATMENT 5.A $5-3$ $17.60$ $50.2$ $36.1$ $43.3$ $41.9$ B 5-3 174 $17.50$ $45.6$ $34.2$ $40.6$ A 5-3 275 $17.60$ $50.2$ $36.1$ $43.3$ $41.9$ B 5-3 184 $17.10$ $50.4$ $35.3$ $45.3$ B 5-3 285 $17.20$ $40.2$ $29.0$ $48.7$ $47.0$ C 5-3 139 $17.80$ $54.3$ $36.9$ $47.7$ C 5-3 251 $17.60$ $54.3$ $37.1$ $46.9$ $47.3$ D 5-3 150 $17.50$ $57.0$ $38.3$ $47.3$ D 5-3 252 $17.50$ $48.0$ $34.0$ $45.7$ C 50.450.72 $36.0$ $46.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TOCATMEN           | а <b>т</b> д |                     |                          | DLUCK                | MEAN                  | 00.0                   |  |
| A 4-3 2 100 17.45 51.8 29.5 64.9 67.8<br>B 4-3 1 82 17.35 57.2 28.8 71.3<br>B 4-3 2 83 17.10 45.8 25.6 70.4 70.8<br>C 4-3 1 92 17.45 63.7 34.1 64.0<br>C 4-3 2 41 17.85 60.0 32.3 65.7 64.9<br>D 4-3 1 53 17.85 68.8 37.5 61.4<br>D 4-3 2 21 16.85 45.4 26.5 66.2 63.8<br>BLOCK MEAN 66.8<br>TREATMENT 5.<br>A 5-3 1 74 17.50 45.6 34.2 40.6<br>A 5-3 2 75 17.60 50.2 36.1 43.3 41.9<br>B 5-3 1 84 17.10 50.4 35.3 45.3<br>B 5-3 2 85 17.20 40.2 29.0 48.7 47.0<br>C 5-3 1 39 17.80 54.3 36.9 47.7<br>C 5-3 2 51 17.60 54.3 37.1 46.9 47.3<br>D 5-3 1 50 17.50 57.0 38.3 47.3<br>D 5-3 2 52 17.50 48.0 34.0 45.9 46.6<br>Mc GULL INTY FRAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\Delta 4-31$      | 99           | 17.85               | 80.3                     | 36.2                 | 70.6                  |                        |  |
| B4-318217.3557.228.871.3B4-328317.1045.825.670.470.8C4-319217.4563.734.164.0C4-324117.8560.032.365.764.9D4-315317.8568.837.561.4D4-322116.8545.426.566.263.8TREATMENT 5.A5-317417.5045.634.240.6A5-327517.6050.236.143.341.9B5-318417.1050.435.345.3B5-328517.2040.229.048.747.0C5-325117.6054.336.947.7C5-325117.6054.337.146.947.3D5-315017.5057.038.347.3D5-325217.5048.034.045.7McGULLHNVERMCKMEAN45.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A 4-3 2            | 100          | 17.45               | 51.8                     | 29.5                 | 64.9                  | 67.8                   |  |
| B 4-3 2 83 17.10 45.8 25.6 70.4 70.8<br>C 4-3 1 92 17.45 63.7 34.1 64.0<br>C 4-3 2 41 17.85 60.0 32.3 65.7 64.9<br>D 4-3 1 53 17.85 68.8 37.5 61.4<br>D 4-3 2 21 16.85 45.4 26.5 66.2 63.8<br>BLOCK MEAN 66.8<br>TREATMENT 5.<br>A 5-3 1 74 17.50 45.6 34.2 40.6<br>A 5-3 2 75 17.60 50.2 36.1 43.3 41.9<br>B 5-3 1 84 17.10 50.4 35.3 45.3<br>B 5-3 2 85 17.20 40.2 29.0 48.7 47.0<br>C 5-3 1 39 17.80 54.3 36.9 47.7<br>C 5-3 2 51 17.60 54.3 37.1 46.9 47.3<br>D 5-3 1 50 17.50 57.0 38.3 47.3<br>D 5-3 2 52 17.50 48.0 34.0 45.9 46.6<br>BLOCK MEAN 45.7<br>Mc GILL INTYFERSITY COMPLANE 45.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B 4-3 1            | 82           | 17.35               | 57.2                     | 28.8                 | 71.3                  | 0100                   |  |
| C 4-3 1 92 17.45 63.7 34.1 64.0<br>C 4-3 2 41 17.85 60.0 32.3 65.7 64.9<br>D 4-3 1 53 17.85 68.8 37.5 61.4<br>D 4-3 2 21 16.85 45.4 26.5 66.2 63.8<br>BLOCK MEAN 66.8<br>TREATMENT 5.<br>A 5-3 1 74 17.50 45.6 34.2 40.6<br>A 5-3 2 75 17.60 50.2 36.1 43.3 41.9<br>B 5-3 1 84 17.10 50.4 35.3 45.3<br>B 5-3 2 85 17.20 40.2 29.0 48.7 47.0<br>C 5-3 1 39 17.80 54.3 36.9 47.7<br>C 5-3 2 51 17.60 54.3 37.1 46.9 47.3<br>D 5-3 1 50 17.50 57.0 38.3 47.3<br>D 5-3 2 52 17.50 48.0 34.0 45.9 46.6<br>BLOCK MEAN 45.7<br>Mc GULL HINGERSITY COMPUTING CENTRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B 4-3 2            | 83           | 17.10               | 45.8                     | 25.6                 | 70.4                  | 70.8                   |  |
| C 4-3 2 41 17.85 60.0 32.3 65.7 64.9<br>D 4-3 1 53 17.85 68.8 37.5 61.4<br>D 4-3 2 21 16.85 45.4 26.5 66.2 63.8<br>BLOCK MEAN 66.8<br>TREATMENT 5.<br>A 5-3 1 74 17.50 45.6 34.2 40.6<br>A 5-3 2 75 17.60 50.2 36.1 43.3 41.9<br>B 5-3 1 84 17.10 50.4 35.3 45.3<br>B 5-3 2 85 17.20 40.2 29.0 48.7 47.0<br>C 5-3 1 39 17.80 54.3 36.9 47.7<br>C 5-3 2 51 17.60 54.3 37.1 46.9 47.3<br>D 5-3 1 50 17.50 57.0 38.3 47.3<br>D 5-3 2 52 17.50 48.0 34.0 45.9 46.6<br>HINTYERSITY COMPLETING CENTRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C 4-3 1            | 92           | 17.45               | 63.7                     | 34.1                 | 64.0                  |                        |  |
| D 4-3 1 53 17.85 68.8 37.5 61.4<br>D 4-3 2 21 16.85 45.4 26.5 66.2 63.8<br>BLOCK MEAN 66.8<br>TREATMENT 5.<br>A 5-3 1 74 17.50 45.6 34.2 40.6<br>A 5-3 2 75 17.60 50.2 36.1 43.3 41.9<br>B 5-3 1 84 17.10 50.4 35.3 45.3<br>B 5-3 2 85 17.20 40.2 29.0 48.7 47.0<br>C 5-3 1 39 17.80 54.3 36.9 47.7<br>C 5-3 2 51 17.60 54.3 37.1 46.9 47.3<br>D 5-3 1 50 17.50 57.0 38.3 47.3<br>D 5-3 2 52 17.50 48.0 34.0 45.9 46.6<br>BLOCK MEAN 45.7<br>Mc GILL LINVERSITY COMPUTING CENTRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C 4-3 2            | 41           | 17.85               | 60.0                     | 32.3                 | 65.7                  | 64.9                   |  |
| D 4-3 2 21 16.85 45.4 26.5 66.2 63.8<br>BLOCK MEAN 66.8<br>TREATMENT 5.<br>A 5-3 1 74 17.50 45.6 34.2 40.6<br>A 5-3 2 75 17.60 50.2 36.1 43.3 41.9<br>B 5-3 1 84 17.10 50.4 35.3 45.3<br>B 5-3 2 85 17.20 40.2 29.0 48.7 47.0<br>C 5-3 1 39 17.80 54.3 36.9 47.7<br>C 5-3 2 51 17.60 54.3 37.1 46.9 47.3<br>D 5-3 1 50 17.50 57.0 38.3 47.3<br>D 5-3 2 52 17.50 48.0 34.0 45.9 46.6<br>BLOCK MEAN 45.7<br>Mc GULL HINGERSITY COMPUTING CENTRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D 4-3 1            | 53           | 17.85               | 68.8                     | 37.5                 | 61.4                  |                        |  |
| TREATMENT 5.       BLOCK MEAN 66.8         A 5-3 1       74       17.50       45.6 $34.2$ $40.6$ A 5-3 2       75       17.60 $50.2$ $36.1$ $43.3$ $41.9$ B 5-3 1       84       17.10 $50.4$ $35.3$ $45.3$ B 5-3 2       85       17.20 $40.2$ $29.0$ $48.7$ $47.0$ C 5-3 1       39       17.80 $54.3$ $36.9$ $47.7$ C 5-3 2       51       17.60 $54.3$ $37.1$ $46.9$ $47.3$ D 5-3 1       50       17.50 $57.0$ $38.3$ $47.3$ D 5-3 2       52       17.50 $48.0$ $34.0$ $45.9$ $46.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D 4-3 2            | 21           | 16.85               | 45.4                     | 26.5                 | 66.2                  | 63.8                   |  |
| A 5-3 17417.5045.6 $34.2$ 40.6A 5-3 27517.6050.2 $36.1$ $43.3$ $41.9$ B 5-3 18417.1050.4 $35.3$ $45.3$ B 5-3 28517.20 $40.2$ $29.0$ $48.7$ $47.0$ C 5-3 13917.8054.3 $36.9$ $47.7$ C 5-3 25117.6054.3 $37.1$ $46.9$ $47.3$ D 5-3 15017.5057.0 $38.3$ $47.3$ D 5-3 25217.50 $48.0$ $34.0$ $45.9$ $46.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |              |                     |                          | BLOCK                | MEAN                  | 66.8                   |  |
| A $5-3$ 1       74       17.50       45.6       54.2       40.6         A $5-3$ 2       75       17.60       50.2       36.1       43.3       41.9         B $5-3$ 1       84       17.10       50.4       35.3       45.3         B $5-3$ 2       85       17.20       40.2       29.0       48.7       47.0         C $5-3$ 1       39       17.80       54.3       36.9       47.7         C $5-3$ 2       51       17.60       54.3       37.1       46.9       47.3         D $5-3$ 1       50       17.50       57.0       38.3       47.3         D $5-3$ 2       52       17.50       48.0       34.0       45.9       46.6         McGULL       BLOCK MEAN       45.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | NI 5.        | 17 50               | 45 4                     | 2/ 2                 | 40 6                  |                        |  |
| A $5-5$ 2       75       17.60 $50.2$ $50.1$ $45.5$ $41.7$ B $5-3$ 1       84       17.10 $50.4$ $35.3$ $45.3$ B $5-3$ 2       85       17.20 $40.2$ $29.0$ $48.7$ $47.0$ C $5-3$ 1       39       17.80 $54.3$ $36.9$ $47.7$ C $5-3$ 2       51       17.60 $54.3$ $37.1$ $46.9$ $47.3$ D $5-3$ 1       50       17.50 $57.0$ $38.3$ $47.3$ D $5-3$ 2       52       17.50 $48.0$ $34.0$ $45.9$ $46.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A 5-3 1            | 75           | 17.50               | 42.0<br>50.2             | 24•2<br>24 1         | 41.0                  | <u> </u>               |  |
| B 5-3 2 85 17.20 40.2 29.0 48.7 47.0<br>C 5-3 1 39 17.80 54.3 36.9 47.7<br>C 5-3 2 51 17.60 54.3 37.1 46.9 47.3<br>D 5-3 1 50 17.50 57.0 38.3 47.3<br>D 5-3 2 52 17.50 48.0 34.0 45.9 46.6<br>BLOCK MEAN 45.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A 5-5 2<br>B 5-2 1 | 21<br>84     | 17.10               | 50•2<br>50-4             | 30 • 1<br>35,2       | 45.3                  | 7107                   |  |
| C 5-3 1 39 17.80 54.3 36.9 47.7<br>C 5-3 2 51 17.60 54.3 37.1 46.9 47.3<br>D 5-3 1 50 17.50 57.0 38.3 47.3<br>D 5-3 2 52 17.50 48.0 34.0 45.9 46.6<br>BLOCK MEAN 45.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B 5-3 2            | 85           | 17.20               | 40.2                     | 29.0                 | 48.7                  | 47.0                   |  |
| C 5-3 2 51 17.60 54.3 37.1 46.9 47.3<br>D 5-3 1 50 17.50 57.0 38.3 47.3<br>D 5-3 2 52 17.50 48.0 34.0 45.9 46.6<br>BLOCK MEAN 45.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C 5 - 3 1          | 39           | 17.80               | 54.3                     | 36.9                 | 47.7                  |                        |  |
| D 5-3 1 50 17.50 57.0 38.3 47.3<br>D 5-3 2 52 17.50 48.0 34.0 45.9 46.6<br>BLOCK MEAN 45.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C 5-3 2            | 51           | 17.60               | 54.3                     | 37.1                 | 46.9                  | 47.3                   |  |
| D 5-3 2 52 17.50 48.0 34.0 45.9 46.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D 5-3 1            | 50           | 17.50               | 57.0                     | 38.3                 | 47.3                  |                        |  |
| MCGILL BLOCK MEAN 45.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D 5-3 2            | 52           | 17.50               | 48.0                     | 34.0                 | 45.9                  | 46.6                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |              |                     | - McGILL                 | BLOCK                | MEAN -                | 45.7                   |  |

## PERCENTAGE MOISTURE CONTENT OF HAY FIRST CUT MACDONALD COLLEGE FARM JULY 16 1968 8 AM

| SAMPLE D<br>NO. 1 | ISH<br>NO•   | DISH<br>WT.<br>GMS. | INITI-<br>AL WT.<br>GMS. | FINAL<br>WT.<br>GMS. | MOLS-<br>TURE<br>PCT. | SAMPLE<br>MEAN<br>PCT. |
|-------------------|--------------|---------------------|--------------------------|----------------------|-----------------------|------------------------|
| TREATMENT         | 1.           |                     |                          |                      |                       |                        |
| A 1 - 4 1         | 1 1          | 6.60                | 41.8                     | 32.6                 | 36 5                  |                        |
| A 1-4 2           | 2 1          | 6.70                | 54.0                     | 41 Q                 | 20.                   | 24 E                   |
| B 1-4 1           | 11 1         | 6.95                | 38.8                     | 32 0                 | 21 1                  | 54.5                   |
| B 1-4 2           | 12 1         | 7.05                | 47.3                     | 36.5                 | 35.7                  | 33.4                   |
| C 1-4 1           | 21 1         | 6.85                | 42.8                     | 35.1                 | 29.7                  | 55.1                   |
| C 1-4 2           | 22 1         | 6.80                | 39.5                     | 32.0                 | 33.0                  | 31.4                   |
| D 1-4 1           | 31 1         | 6.50                | 62.5                     | 47.5                 | 32.6                  | 3101                   |
| D 1-4 2           | 32 1         | 6.15                | 57.8                     | 43.9                 | 33.4                  | 33.0                   |
|                   |              |                     |                          | BLOCK                | MEAN 33               | 3.1                    |
| TREATMENT         | 2.           |                     |                          |                      |                       |                        |
| A 2-4 1           | 31           | 6.60                | 46.4                     | 35.6                 | 36.2                  |                        |
| A 2-4 2           | 41           | 6.75                | 49.0                     | 37.0                 | 37.2                  | 36.7                   |
| B 2-4 1           | 13 1         | 6.95                | 54.5                     | 42.2                 | 32.8                  |                        |
| B 2-4 2           | 14 1         | 6.95                | 51.0                     | 38.7                 | 36.1                  | 34.4                   |
| C 2-4 1           | 23 1         | 6.75                | 48.1                     | 35.7                 | 39.6                  |                        |
| C 2-4 2           | 24 1         | 7.05                | 51.6                     | 39.6                 | 34.7                  | 37.1                   |
| D 2-4 1           | 33 1         | 6.15                | 44.8                     | 35.3                 | 33.2                  |                        |
| D 2-4 2           | 34 1         | 6.00                | 47.9                     | 37.4                 | 32.9                  | 33.0                   |
|                   | _            |                     |                          | BLOCK                | MEAN 35               | 5.3                    |
| IREATMENT         | 3.           |                     |                          |                      |                       |                        |
| A 3-4 1           | 5 1          | 6.75                | 52.4                     | 40.0                 | 34.8                  |                        |
| A 3-4 2           | 6 <u>i</u>   | 6.60                | 40.0                     | 31.4                 | 36.8                  | 35.8                   |
| B 3-4 1           | 15 1         | 1.05                | 43.0                     | 33.1                 | 38.2                  |                        |
|                   | 10 1         | 0.55                | 39.1                     | 30.8                 | 38.4                  | 38.3                   |
| 0 3-4 1           | 20 1         | ( 70                | 46.2                     | 35.2                 | 3/.9                  |                        |
|                   | 20 I<br>25 I | 6.10                | 48.0                     | 35.6<br>20 7         | 39.6                  | 38.7                   |
| D 3-4 2           | 30 I<br>36 I | 6 20                | 30 • 1<br>17 6           | 29.1                 | 34.0                  | 211                    |
| 0 0 1 2           | 50 I         | 0.20                | 41.0                     |                      |                       | 20,∙4<br>7 2           |
| TREATMENT         | 4.           |                     |                          | DLUCK                | MEAN D                | 1.5                    |
| A 4-4 1           | 7 1          | 6.55                | 101.0                    | 59.8                 | 488                   |                        |
| A 4-4 2           | 8 1          | 7.00                | 52.3                     | 37.6                 | 41.6                  | 45.2                   |
| B 4-4 1           | 17 1         | 6.45                | 48.7                     | 32.1                 | 51.5                  | + <b>J</b> ●Z          |
| B 4-4 2           | 18 1         | 6.40                | 47.2                     | 31.2                 | 51.9                  | 51.7                   |
| C 4-4 1           | 27 1         | 7.10                | 51.7                     | 33.7                 | 52.0                  |                        |
| C 4-4 2           | 28 1         | 6.90                | 68.4                     | 38.9                 | 57.3                  | 54.7                   |
| D 4-4 1           | 37 1         | 6.95                | 68.3                     | 40.1                 | 54.9                  |                        |
| D 4-4 2           | 38 1         | 7.20                | 47.6                     | 32.3                 | 50.3                  | 52.6                   |
|                   |              |                     |                          | BLOCK                | MEAN 5                | l•1                    |
| TREATMENT         | 5.           |                     |                          |                      |                       |                        |
| A 5-4 1           | 91           | 7.05                | 37.5                     | 30.4                 | 34.7                  |                        |
| A 5-4 2           | 10 1         | 7.10                | 40.0                     | 32.0                 | 34.9                  | 34.8                   |
| B 5-4 1           | 19 1         | 6.45                | 54.3                     | 40.1                 | 37.5                  |                        |
| 8 5-4 2           | 20 1         | 7.15                | 57.1                     | 41.2                 | 39.8                  | 38.7                   |
| し ラーチ 1           | 29 1         | 6.25                | 47.2                     | 36.3                 | 35.2                  | <b>0</b> / -           |
|                   | 20 L         |                     | 40.0                     | 55•8                 | 34.3                  | 34.8                   |
| D 5-4 1           | 27 L<br>40 1 | 1.8U                | うく・う<br>1.5 マ            | 28.0                 | 30.6                  | <b>2</b> / /           |
|                   | +0 I         | 0.90                | 42•1                     | 24•1<br>BLOCV        |                       | 34•4                   |
|                   | ·····        |                     | McGILL                   | UNIVER               | SITY COM              | PUTING CENTRE          |

## PERCENTAGE MOISTURE CONTENT OF HAY FIRST CUT MACDONALD COLLEGE FARM JULY 16 1968 12 NOON

| SAMPLE D:<br>NO• N | [SH<br>NO• | DISH<br>WT.<br>GMS.                   | INITI-<br>AL WT.<br>GMS. | FINAL<br>WT.<br>GMS. | MOIS-<br>TURE<br>PCT. | SAMPLE<br>MEAN<br>PCT• |
|--------------------|------------|---------------------------------------|--------------------------|----------------------|-----------------------|------------------------|
| TREATMENT.         | 1.         |                                       |                          |                      |                       |                        |
| A 1-5 1            | 1          | 16.60                                 | 33.0                     | 29.0                 | 24.4                  |                        |
| A 1-5 2            | 2          | 16.70                                 | 30.7                     | 27.3                 | 24.3                  | 24.3                   |
| B 1-5 1            | 11         | 16.95                                 | 44.0                     | 36.6                 | 27.4                  |                        |
| B 1-5 2            | 12         | 17.05                                 | 41.5                     | 35.1                 | 26.2                  | 26.8                   |
| 0 1 - 5 1          | 21         | 16.85                                 | 60.0                     | 49.0                 | 25.5                  |                        |
| $C_{1-5}$ 2        | 21         | 16.80                                 | 55.U                     | 45•5<br>47 1         | 24.9                  | 25.2                   |
| D 1 = 5 1          | 32         | 16.15                                 | 27.0<br>40.3             | 4/+1<br>2/ 9         | 22.9                  | 24. 2                  |
|                    | 56         | 10.17                                 | -0•J                     |                      | MEAN 21               | 24•5<br>5.2            |
| TREATMENT          | 2.         |                                       |                          | DLOOK                | MLAN 2.               | ) • L                  |
| A 2-5 1            | 3          | 16.60                                 | 56.5                     | 46.1                 | 26.1                  |                        |
| A 2-5 2            | 4          | 16.75                                 | 44.8                     | 37.5                 | 26.0                  | 26.0                   |
| B 2-5 1            | 13         | 16.95                                 | 52.0                     | 43.2                 | 25.1                  |                        |
| B 2-5 2            | 14         | 16.95                                 | 46.2                     | 38.8                 | 25.3                  | 25.2                   |
| C 2-5 1            | 23         | 16.75                                 | 41.8                     | 36.0                 | 23.2                  |                        |
| C 2-5 2            | 24         | 17.05                                 | 54.3                     | 44.2                 | 27.1                  | 25.1                   |
| 0 2 - 5 1          | 33         | 16.15                                 | 50.0                     | 42.2                 | 23.0                  | <b>00</b>              |
| 0 2-5 2            | 54         | 10.00                                 | 52.3                     |                      |                       | 23.8                   |
| TREATMENT          | 3.         |                                       |                          | DLUCK                | MEAN Z:               | 5.0                    |
| A 3-5 1            | 5          | 16.75                                 | 37.5                     | 30.5                 | 33.7                  |                        |
| A 3-5 2            | 6          | 16.60                                 | 39.6                     | 32.0                 | 33.0                  | 33.4                   |
| B 3-5 1            | 15         | 17.05                                 | 46.2                     | 35.2                 | 37.7                  |                        |
| B 3-5 2            | 16         | 16.55                                 | 40.1                     | 32.5                 | 32.3                  | 35.0                   |
| C 3-5 1            | 25         | 17.15                                 | 47.5                     | 35.6                 | 39.2                  |                        |
| C 3-5 2            | .26        | 16.70                                 | 47.3                     | 36.9                 | 34.0                  | 36.6                   |
| D 3-5 1            | 35         | 16.10                                 | 51.6                     | 39.0                 | 35.5                  |                        |
| 0 5-5 2            | 30         | 16.20                                 | 51.0                     | 38.5<br>DLOCK        | 35.9                  | 35.1                   |
| TREATMENT          | 4.         |                                       |                          | DLUCK                | MEAN 3                | 0•2                    |
| A $4-5$ 1          | +•<br>7    | 16.55                                 | 45.6                     | 33.8                 | 40.6                  |                        |
| A 4-5 2            | 8          | 17.00                                 | 57.0                     | 39.8                 | 43.0                  | 41.8                   |
| B 4-5 1            | 17         | 16.45                                 | 55.0                     | 38.7                 | 42.3                  | 1100                   |
| B 4-5 2            | 18         | 16.40                                 | 51.8                     | 36.8                 | 42.4                  | 42.3                   |
| C 4-5 1            | 27         | 17.10                                 | 52.0                     | 36.7                 | 43.8                  |                        |
|                    | 28         | 16.90                                 | 50.8                     | 35.6                 | 44.8                  | 44.3                   |
| D 4=5 1            | 31<br>20   | 10.95                                 | 43.2                     | 33.0                 | 38.9                  |                        |
| 0 7-7 2            | 50         | 17.20                                 | 54.9                     |                      |                       | 41•1                   |
| TREATMENT          | 5.         |                                       |                          | DLUUK                | MEAN 42               | 2.0                    |
| A 5-5 1            | 9          | 17.05                                 | 33.8                     | 28.7                 | 30.4                  |                        |
| A 5-5 2            | 10         | 17.10                                 | 31.3                     | 27.3                 | 28.2                  | 29.3                   |
| B 5-5 1            | 19         | 16.45                                 | 43.6                     | 36.3                 | 26.9                  |                        |
| B 5-5 2            | 20         | 17.15                                 | 52.5                     | 42.6                 | 28.0                  | 27.4                   |
| C 5-5 1            | 29         | 16.25                                 | 46.9                     | 37.4                 | 3] <b>.</b> 0         |                        |
| L 5-5 2            | 30         | 16.30                                 | 48.1                     | 39.9                 | 25.8                  | 28.4                   |
| り 5-5 l            | 39         | 17.80                                 | 51.2                     | 41.8                 | 28.1                  | 07 0                   |
| U 2-2 2            | 40         | T0•40                                 | 4り。(                     | 3/•8                 | 2/.4<br>MEAN 20       | 27.8                   |
|                    |            | · · · · · · · · · · · · · · · · · · · | — McGILL                 | UNIVER               | SITY con              | APUTING CENTRE         |

畿

#### PERCENTAGE MOISTURE CONTENT OF HAY FIRST CUT MACDONALD COLLEGE FARM JULY 17 1968 9 AM

| SAMPLE DIS           | SH DISH        | INITI-  | FINAL   | MOIS-       | SAMPLE          |
|----------------------|----------------|---------|---------|-------------|-----------------|
| NO• NO               | ). WT.         | AL WT.  | WT.     | TURE        | MEAN            |
|                      | GMS.           | GMS.    | GMS.    | PCT.        | PCT.            |
| TREATMENT 1          |                |         |         |             |                 |
| $\Delta 1 - 7 1 - 7$ | 51 17.60       | 76.2    | 33.5    | 72.9        |                 |
| Δ1-72 F              | 52 17.50       | 101.6   | 40.3    | 72.9        | 72.9            |
| B 1-7 1              | 52 17.50       | 99.7    | 44.3    | 67.6        | 1209            |
| B 1-7 2 6            | 52 17.65       | 95.6    | 41.2    | 69.8        | 68.7            |
| (1-71)               | 71 17.45       | 74.9    | 32.8    | 73.3        |                 |
| $(1-72)^{-1}$        | 72 17.80       | 106.3   | 41.0    | 73.8        | 73.5            |
|                      | 81 17.40       | 92.6    | 41.1    | 68.5        | 13.5            |
|                      | 82 17.35       | 126.1   | 52.6    | 67.6        | 68.0            |
|                      |                | 12001   | BLOCK   | MEAN 7      | 70.8            |
| TREATMENT 2          | 2.             |         | DECON   |             |                 |
| Δ 2-7 1              | 53 17.85       | 82.3    | 37.2    | 70.0        |                 |
| A 2-7 2              | 54 17.35       | 84.8    | 37.1    | 70.7        | 70.3            |
| B 2-7 1              | 63 17.90       | 58.3    | 30.3    | 69.3        |                 |
| B 2-7 2              | 64 17.70       | 88.4    | 41.0    | 67.0        | 68.2            |
| (2-7)                | 73 17.25       | 110.0   | 48.1    | 66.7        | 0002            |
| C = 7 = 7 = 2        | 74 17.50       | 103.6   | 45.8    | 67.1        | 66.9            |
| 02-71<br>02-71       | 83 17 10       | 79.6    | 34.0    | 73.0        | 00.             |
| 0272                 | 84 17 10       | 97 1    | 43 4    | 67.1        | 70.0            |
| 0212                 |                | ) / • I |         | MEAN 6      | 58.9            |
| TREATMENT            | 3              |         | 02000   |             |                 |
| $\Lambda$ 3-7 1      | 5•<br>55 17.65 | 85.0    | 35.6    | 73.3        |                 |
|                      | 56 17.80       | 88.6    | 37.7    | 71.9        | 72.6            |
| R 3-7 1              | 65 17.45       | 70.2    | 32.8    | 70.9        | .2.0            |
| B 3-7 2              | 66 17.30       | 82.0    | 34.1    | 74.0        | 72.5            |
| 0 3 - 7 2            | 75 17.60       | 125.1   | 44.4    | 75.1        | 12.05           |
| $(3-7)^{2}$          | 76 17 40       | 96 5    | 27 7    | 74.3        | 74.7            |
| $D_{3-7}$            | 85 17 20       | 90.7    | 42.8    | 69.0        | 1 77 ● 1        |
|                      | 86 17.30       | 98.4    | 41.3    | 70.4        | 69.7            |
|                      | 00 1/000       | 2011    | BLOCK   | MEAN        | 72.4            |
| TREATMENT            | 4.             |         | DEGON   |             |                 |
| A 4-7 1              | 57 17.60       | 68.0    | 37.0    | 61.5        |                 |
| A 4-7 2              | 58 17.80       | 80.0    | 42.1    | <b>60.9</b> | 61.2            |
| B 4-7 1              | 67 17.10       | 54.7    | 30.8    | 63.6        |                 |
| B 4-7 2              | 68 17.45       | 47.5    | 26.7    | 69.2        | 66.4            |
| C 4-7 1              | 77 17.10       | ) 76.4  | 37.1    | 66.3        |                 |
| C 4-7 2              | 78 17.40       | 85.0    | 37.9    | 69.7        | 68.0            |
| D 4-7 1              | 87 17.90       | ) 51.6  | 29.7    | 65.0        |                 |
| D 4-7 2              | 88 17.50       | 45.7    | 26.0    | 69.9        | 67.4            |
|                      |                | ,       | BLOCK   | MEAN        | 65.8            |
| TREATMENT            | 5.             |         |         |             |                 |
| A 5-7 1              | 59 17.70       | 94.0    | 50.4    | 57.1        |                 |
| A 5-7 2              | 60 17.80       | ) 80.1  | 43.8    | 58.3        | 57.7            |
| B 5-7 1              | 69 17.65       | 5 89.7  | 45.2    | 61.8        |                 |
| B 5-7 1              | 70 17.50       | 76.0    | 39.6    | 62.2        | 62.0            |
| C 5-7 1              | 79 17.40       | 77.8    | 36.8    | 67.9        |                 |
| C 5-7 2              | 80 17.10       | 82.7    | 36.7    | 70.1        | 69.0            |
| D 5-7 1              | 89 17.80       | 48.6    | 31.2    | 56.5        |                 |
| D 5-7 2              | 90 17.70       | 58.8    | 33.8    | 60.8        | 58.7            |
|                      |                |         | BLOCK   | MEAN        | 61.8            |
|                      |                | MCGILI  | LUNIVEN | כסווד כ     | OMPUTING CENTRE |

()

## PERCENTAGE MOISTURE CONTENT OF HAY FIRST CUT MACDONALD COLLEGE FARM JULY 17 1968 12 NOON

ð

| SAMPLE DISH                                                                      | DISH                    | INITI- F     | INAL         | MOLS-                 | SAMPLE              |
|----------------------------------------------------------------------------------|-------------------------|--------------|--------------|-----------------------|---------------------|
| NO. NO.                                                                          | WT.                     | AL WT.       | WT.          | TURE                  | MEAN                |
|                                                                                  | GMS.                    | GMS.         | GMS.         | ΡΟΤο                  | PCT.                |
|                                                                                  |                         |              |              |                       |                     |
| TREATMENT 1.                                                                     | <b>.</b> . <sup>.</sup> |              |              | <b>.</b>              |                     |
| A 1-8 1 1                                                                        | 16.60                   | 59.2         | 35.5         | 55.6                  |                     |
| A 1-8 2 2                                                                        | 16.70                   | 50.3         | 30.2         | 59.8                  | 57.7                |
| B 1-8 1 11                                                                       | 16.95                   | (6.5         | 40.9         | 59.8                  | <i>(</i> <b>) -</b> |
| B 1-8 2 12                                                                       | 17.05                   | 69.1         | 36.0         | 63.6                  | 61.7                |
| C 1 - 8 1 21                                                                     | 16.85                   | 92.0         | 41.2         | 59.6                  | <b>F7</b> 1         |
|                                                                                  | 16.80                   | 11.0         | 41.4         | 54.0                  | 5/•L                |
| 0 1 - 8 1 31                                                                     | 10.50                   | 64•2<br>44 4 | ו•ככ<br>ס דכ | 60.0                  | 60 7                |
| 0 1-8 2 32                                                                       | 10.15                   | 40.4         |              |                       | 0 2                 |
| TREATMENT 2                                                                      |                         |              | DLUUK        | MEAM D                | 7.5                 |
| $\begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$ | 16 60                   | 583          | 36 1         | 53 2                  |                     |
| A 2-0 I 3                                                                        | 16.00                   | 67 9         | 36 6         | J ⊇ • Z<br>61 2       | 57 2                |
| B 2-8 1 13                                                                       | 16.95                   | 50.8         | 33.1         | 52.3                  | J!•2                |
| B 2-8 2 14                                                                       | 16.95                   | 75.8         | 41.2         | 58.8                  | 55.5                |
| 62-8123                                                                          | 16.75                   | 58.0         | 35.5         | 54.5                  | 22.02               |
| C 1-8 1 24                                                                       | 17.05                   | 65.6         | 41.2         | 50.3                  | 52.4                |
| D 2 - 8 1 33                                                                     | 16.15                   | 63.1         | 35.5         | 58.8                  |                     |
| D 2 - 8 2 34                                                                     | 16.00                   | 58.0         | 35.2         | 54.3                  | 56.5                |
|                                                                                  |                         |              | BLOCK        | MEAN 5                | 5.4                 |
| TREATMENT 3.                                                                     |                         |              |              |                       |                     |
| A 3-8 1 5                                                                        | 16.75                   | 55.4         | 34.5         | 54.1                  |                     |
| A 3-8 2 6                                                                        | 16.60                   | 50.0         | 30.2         | 59.3                  | 56.7                |
| B 3-8 1 15                                                                       | 17.05                   | 63.6         | 35.7         | 59 <b>.9</b>          |                     |
| B 3-8 2 16                                                                       | 16.55                   | 66.2         | 35.8         | 61.2                  | 60.6                |
| C 3-8 1 25                                                                       | 17.15                   | 50.0         | 30.0         | 60.9                  |                     |
| C 3-8 2 26                                                                       | 16.70                   | 51.0         | 30.5         | <b>5</b> 9 <b>.</b> 8 | 60.3                |
| D 3-8 1 35                                                                       | 16.10                   | 76.3         | 38.4         | 63.0                  |                     |
| D 3-8 2 36                                                                       | 16.20                   | 50.6         | 31.0         | 57.0                  | 60.0                |
|                                                                                  |                         |              | BLOCK        | MEAN 5                | 9.4                 |
| TREATMENT 4.                                                                     |                         |              |              |                       |                     |
| A 4-8 1 7                                                                        | 16.55                   | 57.6         | 36.3         | 51.9                  |                     |
| A 4-8 2 8                                                                        | 17.00                   | 53.1         | 36.9         | 44.9                  | 48.4                |
| B 4-8 1 17                                                                       | 16.45                   | 46.5         | 32.9         | 45.3                  | 40.0                |
|                                                                                  | 16.40                   | 5/08         | 30.0         | 51.•Z                 | 48•Z                |
|                                                                                  | 17.10                   | 57.0<br>50.0 | 27.4         |                       | 511                 |
|                                                                                  | 16.90                   | 55 0         | 21.4         | 51.8                  | 51.1                |
| D 4 = 0 1 37                                                                     | 17 20                   | 25 0         | 26 0         | 52 Q                  | 52 4                |
| 0 4-0 2 30                                                                       | 17.20                   | 57.7         |              | MEAN                  | 50-0                |
| TREATMENT 5.                                                                     |                         |              | DECON        |                       |                     |
| $\Delta 5-8 1 9$                                                                 | 17.05                   | 46.9         | 31.5         | 51.6                  |                     |
| A 5-8 2 10                                                                       | 17.10                   | 47.6         | 34.0         | 44.6                  | 48.1                |
| B 5-8 1 19                                                                       | 16.45                   | 69.6         | 43.0         | 50.0                  | - <b>- -</b>        |
| B 5-8 2 20                                                                       | 17.15                   | 66.5         | 40.4         | 52.9                  | 51.5                |
| C 5-8 1 29                                                                       | 16.25                   | 46.0         | 31.8         | 47.7                  |                     |
| C 5-8 2 30                                                                       | 16.30                   | 49.7         | 34.0         | 47.0                  | 47.4                |
| D 5-8 1 39                                                                       |                         |              |              |                       |                     |
|                                                                                  | 17.80                   | 45.5         | 32.8         | 45.8                  |                     |
| D 5-8 2 40                                                                       | 17.80<br>16.90          | 45.5<br>47.2 | 32.8<br>34.4 | 45•8<br>42•2          | 44.0                |

IG CENTRE

## PERCENTAGE MOISTURE CONTENT OF HAY FIRST CUT MACDONALD COLLEGE FARM JULY 17 1968 6 PM

| SAMPLE         | DISH     | DISH  | INITI-         | FINAL          | MOT S-         | SAMPLE       |      |
|----------------|----------|-------|----------------|----------------|----------------|--------------|------|
| NU.            | NU.      | WT.   | AL WT.         | WT.            | TURE           | MEAN         |      |
|                |          | GMS.  | GMS.           | GMS.           | РСТ.           | PCT.         |      |
| TDEATMEN       | NT 1     |       |                |                |                |              |      |
| $\Delta 1-9 1$ | 1        | 16.60 | 43.8           | 24 6           | 22 0           |              |      |
| Δ 1-9 2        | 2        | 16.70 | 48 4           | 26 2           | 20.0           | 24.0         |      |
| B 1-9 1        | 11       | 16.95 | -+0•-+<br>55 5 | $30 \cdot 3$   | 20.0           | 30.0         |      |
| B 1-9 2        | 12       | 17.05 | 38.2           | 30.6           | 35 0           | 35 3         |      |
| C 1-9 1        | 21       | 16.85 | 40.0           | 33.1           | 29.8           | د ور         |      |
| C 1-9 2        | 22       | 16.80 | 43.0           | 34.0           | 34.4           | 22 1         |      |
| D 1-9 1        | 31       | 16,50 | 47.0           | 37.6           | 30.8           | 52.01        |      |
| D 1-9 2        | 32       | 16.15 | 48.1           | 36.0           | 37.9           | 34 3         |      |
|                |          | 20125 |                |                | MEAN 3         | 4.4          |      |
| TREATMEN       | NT 2.    |       |                | DECON          |                |              |      |
| A 2-9 1        | 3        | 16.60 | 49.0           | 40.0           | 27.8           |              |      |
| A 2-9 2        | 4        | 16.75 | 41.0           | 33.5           | 30.9           | 29.4         |      |
| B 2-9 1        | 13       | 16.95 | 33.5           | 28.4           | 30.8           |              |      |
| B 2-9 2        | 14       | 16.95 | 31.5           | 27.9           | 24.7           | 27.8         |      |
| C 2-9 1        | 23       | 16.75 | 51.2           | 41.1           | 29.3           | 21.00        |      |
| C 2-9 2        | 24       | 17.05 | 43.0           | 35.5           | 28.9           | 29.1         |      |
| D 2-9 1        | 33       | 16.15 | 38.6           | 32.3           | 28.1           | 2701         |      |
| D 2-9 2        | 34       | 16.00 | 65.5           | 48.8           | 33.7           | 30.9         |      |
|                |          |       |                | BLOCK          | MEAN 2         | 9.3          |      |
| TREATMEN       | VT 3.    |       |                |                |                |              |      |
| A 3-9 1        | 5        | 16.75 | 43.0           | 34.1           | 33.9           |              |      |
| A 3-9 1        | 6        | 16.60 | 52.5           | 38.4           | 39.3           | 36.6         |      |
| B 3-9 1        | 15       | 17.05 | 35.5           | 28.6           | 37.4           |              |      |
| B 3-9 2        | 16       | 16.55 | 35.9           | 28.5           | 38.2           | 37.8         |      |
| C 3-9 1        | 25       | 17.15 | 41.5           | 33.0           | 34.9           | - • • •      |      |
| C 3-9 2        | 26       | 16.70 | 38.0           | 29.4           | 40.4           | 37.6         |      |
| D 3-9 1        | 35       | 16.10 | 39.0           | 30.5           | 37.1           |              |      |
| D 3-9 2        | 36       | 16.20 | 53.0           | 38.6           | 39.1           | 38.1         |      |
|                |          |       |                | BLOCK          | MEAN 3         | 7.5          |      |
| TREATMEN       | VT 4.    |       |                |                |                |              |      |
| A 4-9 l        | 7        | 16.55 | 65.0           | 36.4           | 59.0           |              |      |
| A 4-9 2        | 8        | 17.00 | 63.3           | 36.2           | 58.5           | 58.8         |      |
| B 4-9 1        | 17       | 16.45 | 44.5           | 28.1           | 58.5           |              |      |
| B 4-9 2        | 18       | 16.40 | 50.6           | 29.2           | 62.6           | 60.5         |      |
| C 4-9 1        | 27       | 17.10 | 49.5           | 31.1           | 56.8           |              |      |
| C 4-9 2        | 28       | 16.90 | 56.5           | 30.6           | 65.4           | 61.1         |      |
| D 4-9 1        | 37       | 16.95 | 56.8           | 31.8           | 62.7           | 2            |      |
| D 4-9 2        | 38       | 17.20 | 60.1           | 34.8           | 59.0           | 60.9         |      |
|                |          |       |                | BLOCK          | MEAN 6         | 0.3          |      |
| IREAIMER       | VI 5.    | •     |                |                |                |              |      |
| A 5-9 1        | 9        | 17.05 | 43.4           | 29.1           | 54.3           |              |      |
|                | 10       | 11.10 | 44.6           | 30.9           | 49.8           | 52.0         |      |
|                | 19       | 10.45 | 54.6           | 35.0           | 51.4           |              |      |
|                | 20       | 11.15 | 59.0           | 39.0           | 47.8           | 49.6         |      |
|                | 29       | 16.25 | 44.6           | 30.2           | 50.8           |              |      |
|                | 50<br>20 | 17.00 | 04•1           | 31.1           | 56.5           | 53.6         |      |
| D 5-9 1        | 57<br>70 | 14 00 | 85.5           | 48.8           | 54.2           | <b>5 0 1</b> |      |
|                | 40       | 10.40 | 4U•Z           | 27.5<br>BI 004 | 45.9<br>MEAN 7 | 50.1         |      |
|                |          |       | - McGILL       | UNTA FY        | SITY co        | MPUTING CENT | RE — |

 $\bigcirc$ 

## PERCENTAGE MOISTURE CONTENT OF HAY FIRST CUT MACDONALD COLLEGE FARM JULY 18 1968 8 AM

| SAMPLE        | DISH       | DISH  | INITI-                | FINAL          | MOIS-             | SAMPLE              |
|---------------|------------|-------|-----------------------|----------------|-------------------|---------------------|
| NO.           | NO.        | WT.   | AL WT.                | WT.            | TURE              | MEAN                |
|               |            | GMS.  | GMS.                  | GMS.           | PCT.              | PCT.                |
| 70 5 4 7 11 5 |            |       |                       |                |                   |                     |
| IREATMEN      | NT 1.      | 14 40 |                       |                |                   |                     |
| A1-10 1       | 1          | 16.60 | 46.8                  | 35.1           | 38.7              | _                   |
| A1-10 2       |            | 16.70 | 39.2                  | 30.7           | 37.8              | 38.3                |
| B1 = 10 1     | 11         | 16.95 | 41•1                  | 33.9           | 31.5              | 20.0                |
| 51-10 2       | 12         | 1/.05 | 43•1                  | 34.0           | 34.1              | 32.8                |
| (1-10)        | 21         | 10.82 | 54.5<br>51.1          | 42.1           | 32.9              |                     |
| $D_{1-10}$    | 22         | 16.60 | 21.1                  | 20.0<br>42 E   | 37•7<br>270       | 34.4                |
| D1 - 10 2     | 32         | 16 15 | 20.5                  | 42.0           | 21.0              | 20.1                |
| 01 10 2       | 52         | 10.17 | 40.0                  | 20.00<br>20.00 |                   | 28•1<br>5 0         |
| TREATMEN      | NT 2.      |       |                       | DEUGR          | HILAM D           | 2.5                 |
| A2-10 1       |            | 16.60 | 40.5                  | 32.6           | 231               |                     |
| A2-10 2       | 4          | 16.75 | 46.3                  | 35.8           | 35.5              | 34.3                |
| B2-10 1       | 13         | 16.95 | 44.0                  | 35.2           | 32.5              | 5405                |
| B2-10 2       | 14         | 16.95 | 42.3                  | 34.0           | 32.7              | 32.6                |
| C2-10 1       | 23         | 16.75 | 44.7                  | 35.3           | 33.6              | 52.0                |
| C2-10 2       | 24         | 17.05 | 41.5                  | 32.8           | 35.6              | 34.6                |
| D2-10 1       | 33         | 16.15 | 62.5                  | 47.0           | 33.4              | 5100                |
| D2-10 2       | 34         | 16.00 | 35.6                  | 28.6           | 35.7              | 34.6                |
|               |            |       |                       | BLOCK          | MEAN 3            | 4.0                 |
| TREATMEN      | NT 3.      |       |                       |                |                   |                     |
| A3-10 1       | 5          | 16.75 | 45.3                  | 34.3           | 38.5              |                     |
| A3-10 2       | 6          | 16.60 | 38.2                  | 29.6           | 39 <b>.</b> 8     | 39.2                |
| B3-10 1       | 15         | 17.05 | 43.1                  | 34.5           | 33.0              |                     |
| B3-10 2       | 16         | 16.55 | 52.8                  | 38.4           | 34.7              | 36.4                |
| C3-10 1       | 25         | 17.15 | 41.9                  | 32.5           | 3 <sup>8</sup> .0 |                     |
| C3-10 2       | 26         | 16.70 | 40.3                  | 31.0           | 39.4              | 38.7                |
| D3-10 1       | 35         | 16.10 | 38.1                  | 30.5           | 34.5              |                     |
| 03-10 2       | 36         | 16.20 | 35.4                  | 28.8           | 34•4              | 34.5                |
| TOFATHE       | 17 /       |       |                       | BLOCK          | MEAN 3            | 7.2                 |
|               | VI 4.<br>7 | 14 55 | 12 2                  | <b>22 E</b>    |                   |                     |
| $A^{+-10}$ 1  | 0          | 10.55 | 43.2                  | 32.0           | 40.2              | ( 2                 |
| R4 = 10 2     | 0          | 17.00 | 62.4                  | 41.6           | 45.8              | 43.0                |
| B4-10 2       | 18         | 16.40 | 44.4                  | 20 0           | 4/•9              | 45 0                |
| (4-10)        | 27         | 17.10 | 57.3                  | 38 6           | 46 5              | 49.0                |
| C4 - 10 2     | 28         | 16.90 | 42.6                  | 30.8           | 45.9              | 46 2                |
| D4-10 1       | 37         | 16.95 | 69.7                  | 46.0           | 44.9              | ±0∙2                |
| D4-10 2       | 38         | 17.20 | 35.4                  | 27.0           | 45.2              | 45.5                |
|               |            |       | <b>-</b> - <b>-</b> , | BLOCK          | MEAN 4            | 5.1                 |
| TREATMEN      | NT 5.      |       |                       |                |                   |                     |
| A5-10 1       | 9          | 17.05 | 38.7                  | 31.0           | 35.6              |                     |
| A5-10 2       | 10         | 17.10 | 48.3                  | 36.5           | 37.8              | 36.7                |
| B5-10 1       | 19         | 16.45 | 51.8                  | 38.6           | 37.3              |                     |
| B5-10 2       | 20         | 17.15 | 47.9                  | 35.5           | 4().3             | 38.8                |
| C5-10 1       | 29         | 16.25 | 35.0                  | 28.1           | 36.8              |                     |
| C5-10 2       | 30         | 16.30 | 35.7                  | 28.3           | 38.1              | 37.5                |
| D5-10 1       | 39         | 17.80 | 43.1                  | 34.7           | 33.2              |                     |
| D5-10 2       | 40         | 16.90 | 47.5                  | 35.0           | 40.8              | 37.0                |
|               |            |       | - McGILL              | UNIVER         | SITY CO           | 7.5<br>MPLITING CEN |

-

CENTRE -

## PERCENTAGE MOISTURE CONTENT OF HAY FIRST CUT MACDONALD COLLEGE FARM JULY 18 1968 12 NOON

| SAMPLE<br>NO• | DISH<br>NO.  | DISH<br>WT.<br>GMS. | INITI-<br>AL WT.<br>GMS. | FINAL<br>WT.<br>GMS. | MOIS-<br>TURE<br>PCT. | SAMPLE<br>MEAN<br>PCT. |      |
|---------------|--------------|---------------------|--------------------------|----------------------|-----------------------|------------------------|------|
|               |              | 000                 |                          |                      |                       |                        |      |
|               |              | 1/ 05               | 25 (                     | 22 F                 | 26.2                  |                        |      |
|               | 11           | 10.95               | 22.0                     | 23.0                 | 24.0                  | 00 T                   |      |
| AI-II 2       | 12           | 16.05               | 22.0                     | 23.8                 | 201                   | 22•1                   |      |
| 01 - 11 1     | 21           | 16.80               | 20.2                     | 24.4                 | 2/101                 | <b></b>                |      |
| DI = II 2     | 21           | 16.00               | 20.5                     | 29.9                 | 24.2                  | ~~ • <i>L</i>          |      |
| (1-1)         | 22           | 16.50               | 25.5                     | 21.0                 | 24.5                  | 22.2                   |      |
| $D_{1-11}$    | 52<br>41     | 17 95               | 29.8                     | 23.5                 | 22 4                  | 23.5                   |      |
| $D_{1-11}$ 2  | 42           | 19 05               | 29 3                     | 25.8                 | 24 4                  | 22 0                   |      |
| 01-11 2       | 72           | 10.00               | 20.5                     | BLOCK                | MEAN :                | 23.0                   |      |
| TREATME       | NT 2.        |                     |                          | DECON                |                       |                        |      |
| A2-11 1       | 13           | 16.95               | 29.2                     | 26.6                 | 21.2                  |                        |      |
| A2-11 2       | 14           | 16.95               | 25.8                     | 23.8                 | 22.6                  | 21.9                   |      |
| B2-11 1       | 23           | 16.75               | 25.2                     | 23.3                 | 22.5                  |                        |      |
| B2-11 2       | 24           | 17.05               | 27.5                     | 25.0                 | 23.9                  | 23.2                   |      |
| C2-11 1       | 33           | 16.15               | 20.6                     | 19.7                 | 20.2                  |                        |      |
| C2-11 2       | 34           | 16.00               | 34.6                     | 30.2                 | 23.7                  | 21.9                   |      |
| D2-11 1       | 43           | 18.05               | 29.0                     | 26.2                 | 25.6                  |                        |      |
| D2-11 2       | 44           | 17.90               | 27.0                     | 25.1                 | 20.9                  | 23.2                   |      |
| TREATME       | NT 3         |                     |                          | BLOCK                | MEAN                  | 22.6                   |      |
| A2-11 1       | 15           | 17.05               | 24 1                     | 22.4                 | 24.1                  |                        |      |
| A3 - 11 2     | 16           | 16.55               | 25.6                     | 23.2                 | 26.5                  | 25.3                   |      |
| B3-11 1       | 25           | 17.15               | 25.6                     | 23.3                 | 27.2                  |                        |      |
| B3-11 2       | 26           | 16.70               | 29.8                     | 26.5                 | 25.2                  | 26.2                   |      |
| (3-11)        | 35           | 16.10               | 29.5                     | 25.8                 | 27.6                  | 2002                   |      |
| $C_{3-11}$ 2  | 36           | 16.20               | 26.2                     | 23.4                 | 28.0                  | 27.8                   |      |
| 03-11 1       | 45           | 17.85               | 32.0                     | 28.0                 | 28.3                  | 2100                   |      |
| D3 - 11 2     | 46           | 17.90               | 48.0                     | 39.0                 | 29.9                  | 29.1                   |      |
|               |              |                     |                          | BLOCK                | MEAN                  | 27.1                   |      |
| TREATME       | NT 4.        |                     |                          |                      |                       |                        |      |
| A4-11 1       | 17           | 16.45               | 46.0                     | 33.2                 | 43.3                  | <i></i>                |      |
| A4-11 2       | 18           | 16.40               | 57.5                     | 40.3                 | 4].8                  | 42.6                   |      |
| B4-11 1       | 27           | 17.10               | 47.0                     | 34.1                 | 43.1                  | 12 1                   |      |
| 84-11 2       | 28           | 16.90               | 51.2                     | 36.8                 | 42.0                  | 42.0                   |      |
| (4-11)        | . 31         | 10.95               | 53.0                     | 31.1                 | 4/•4                  | (1.0                   |      |
|               | . <u>3</u> 8 | 17.20               | 51.0                     | 37.0                 | 41.4                  | 41.9                   |      |
| D4-11 1       | . 41         | 17.90               | 43•2                     | 32.3                 | 4 °• 1                | / 1 - <del>7</del>     |      |
| 04-11 Z       | 48           | 17.70               | 53.0                     | 38.8<br>BLOCK        | HEAN<br>MEAN          | 42.2                   |      |
| TREATME       | NT 5.        |                     |                          | 02001                | 1.27                  |                        |      |
| A5-11 1       | . 19         | 16.45               | 31.2                     | 26.3                 | 33.2                  |                        |      |
| A5-11 2       | 2 20         | 17.15               | 34.7                     | 29.2                 | 31.3                  | 32.3                   |      |
| B5-11 1       | 29           | 16.25               | 36.0                     | 30.6                 | 27.3                  |                        |      |
| B5-11 2       | 2 30         | 16.30               | 28.0                     | 24.5                 | 29.9                  | 28.6                   |      |
| C5-11 1       | L 39         | 17.80               | 28.3                     | 24.8                 | 33.3                  |                        |      |
| C5-11 2       | 2 40         | 16.90               | 27.0                     | 24.0                 | 29.7                  | 31.5                   |      |
| D5-11 1       | L 49         | 17.75               | 36.0                     | 30.6                 | 29.6                  | )                      |      |
| D5-11 2       | 2 50         | 17.50               | 28.7                     | 25.5                 | 28.6                  | 29.1                   |      |
|               | ·····        |                     | — McGILL                 | . UNHVEN             | <b>ς δ'Ι Τ΄Υ</b> ΄ (  | COMPUTING CENTI        | RE - |

## PERCENTAGE MOISTURE CONTENT OF HAY FIRST CUT MR. LEGAULT'S FARM JULY 29 1968 8 AM

| S  | AMPLE<br>NO• | DISH<br>NO• | DISH<br>WT.<br>GMS. | INITI-<br>AL WT.<br>GMS. | FINAL<br>WT.<br>GMS. | MOIS-<br>TURE<br>PCT. | SAMPLE<br>MEAN<br>PCT. |
|----|--------------|-------------|---------------------|--------------------------|----------------------|-----------------------|------------------------|
| TR | EATMEN       | NT 1.       |                     |                          |                      |                       |                        |
| Ι  | 1            | 1           | 16.60               | 77.7                     | 36.5                 | 67.4                  |                        |
| I  | 2            | 2           | 16.70               | 63.0                     | 30.1                 | <b>71.1</b>           | 69.2                   |
| Ι  | 3            | 3           | 16.60               | 76.0                     | 34.2                 | 70.4                  |                        |
| I  | 4            | 4           | 16.75               | 66.2                     | 31.0                 | 71.2                  | 70.8                   |
| I  | 5            | 5           | 16.75               | 121.3                    | 48.2                 | 69 <b>.9</b>          |                        |
| I  | 6            | 6           | 16.60               | 81.9                     | 35.4                 | 71.2                  | 70.6                   |

#### PERCENTAGE MOISTURE CONTENT OF HAY FIRST CUT MR. LEGAULT'S FARM JULY 29 1968 10 AM

| 5  | SAMPLE         | DISH   | DISH   | INITI- | FINAL | MOIS-                | SAMPLE |
|----|----------------|--------|--------|--------|-------|----------------------|--------|
|    | INU .          | NU • 1 |        |        | CMS   |                      |        |
|    |                |        | GP43 • | GM3.   | 643.  | PUI.                 | PCI.   |
| TR |                | NT 1.  |        |        |       |                      |        |
| Α  | 1-1A1          | 51     | 17.60  | 54.8   | 30.0  | 66.7                 |        |
| Α  | 1-1A2          | 52     | 17.50  | 49.2   | 27.7  | 67.8                 | 67.2   |
| В  | 1-1A1          | 55     | 17.65  | 75.5   | 34.7  | <b>7</b> 0 <b>.5</b> |        |
| В  | 1-1A2          | 56     | 17.80  | 84.4   | 40.5  | 65.9                 | 68.2   |
| С  | 1-1A1          | 59     | 17.70  | 67.0   | 34.7  | 65.5                 |        |
| Α  | 5-1A2          | 54     | 17.35  | 77.8   | 39.1  | 64.0                 | 64.8   |
| С  | 1-1A2          | 60     | 17.80  | 59.5   | 31.6  | <b>66 • 9</b>        |        |
| D  | 1-1A1          | 63     | 17.90  | 67.4   | 37.0  | 61.4                 | 64.2   |
|    |                |        |        |        | BLOCK | MEAN 6               | 6.1    |
| TF | REATMEN        | VT 5.  |        |        |       |                      |        |
| D  | 1-1A2          | 64     | 17.70  | 60.0   | 30.3  | 70.2                 |        |
| Α  | 5-1A1          | 53     | 17.85  | 76.4   | 37.9  | 65.8                 | 68.0   |
| В  | 5-1Al          | 57     | 17.60  | 62.8   | 33.4  | 65.0                 |        |
| В  | 5-1A2          | 58     | 17.80  | 80.0   | 34.9  | 72.5                 | 68.8   |
| С  | 5-1A1          | 61     | 17.70  | 67.6   | 32.0  | 71.3                 |        |
| С  | 5-1A2          | 62     | 17.65  | 79.3   | 35.6  | 70.9                 | 71.1   |
| D  | 5 <b>-</b> 1A1 | 65     | 17.45  | 63.3   | 32.8  | 66.5                 |        |
| D  | 5-1A2          | 66     | 17.30  | 66.3   | 33.2  | 67.6                 | 67.0   |
|    |                |        |        |        | BLOCK | MEAN 6               | 8.7    |

 $\bigcirc$ 

- McGILL UNIVERSITY COMPUTING CENTRE -

## PERCENTAGE MOISTURE CONTENT OF HAY FIRST CUT MR. LEGAULT'S FARM JULY 29 1968 12 NOON

| SAMPLE DI<br>NO. N     | [SH<br>10• | DISH<br>WT.<br>GMS. | INITI-<br>AL WT.<br>GMS. | FINAL<br>WT.<br>GMS. | MOIS-<br>TURE<br>PCT. | SAMPLE<br>MEAN<br>PCT• |
|------------------------|------------|---------------------|--------------------------|----------------------|-----------------------|------------------------|
| TREATMENT              | 1.         |                     |                          |                      |                       |                        |
| A 1-2 1                | 41         | 17.85               | 75.8                     | 39.5                 | 62.6                  |                        |
| A 1-2 2                | 42         | 18.05               | 53.9                     | 32.7                 | 59.1                  | 60.9                   |
| B 1-2 1                | 1          | 16.60               | 66.0                     | 36.0                 | 60 <b>.7</b>          |                        |
| B 1-2 2                | 2          | 16.70               | 58.5                     | 35.4                 | 55.3                  | 58.0                   |
| C 1-2 1                | 21         | 16.85               | 63.8                     | 35.9                 | 59.4                  |                        |
| C 1-2 2                | 22         | 16.80               | 52.4                     | 33.2                 | 53.9                  | 56.7                   |
| D 1-2 1                | 31         | 16.50               | 60.6                     | 35.0                 | 58.0                  |                        |
| D 1-2 2                | 32         | 16.15               | 66•4                     | 35.8                 | 60.9                  | 59.5                   |
| TDEATMENT              | 2          |                     |                          | BLUCK                | MEAN D                | 8.8                    |
| 1 = 1 = 1              | 42<br>42   | 18 05               | 64 0                     | 37 2                 | 58 3                  |                        |
| A 2 - 2 1<br>A 2 - 2 2 | 45         | 17.90               | 61.6                     | 35.2                 | 60.4                  | 59.4                   |
| B 2-2 1                | 3          | 16.60               | 71.2                     | 36.4                 | 63.7                  | 2741                   |
| B 2-2 2                | 4          | 16.75               | 63.2                     | 35.4                 | 59.8                  | 61.8                   |
| C 2-2 1                | 23         | 16.75               | 59.8                     | 33.2                 | 61.8                  | Q                      |
| C 2-2 2                | 24         | 17.05               | 63.8                     | 35.5                 | 60.5                  | 61.2                   |
| D 2-2 1                | 33         | 16.15               | 86.9                     | 41.8                 | 63.7                  |                        |
| D 2-2 2                | 34         | 16.00               | 53.0                     | 30.7                 | 60.3                  | 62.0                   |
|                        |            |                     |                          | BLOCK                | MEAN 6                | 1.1                    |
| TREATMENT              | 3.         |                     |                          |                      |                       |                        |
| A 3-2 1                | 45         | 17.85               | 91.9                     | 41.3                 | 6º • 3                |                        |
| A 3-2 2                | 46         | 17.90               | 73.0                     | 36.7                 | 65.9                  | 67.1                   |
| B 3-2 1                | 5          | 16.75               | 69.8                     | 36.1                 | 67.4                  | 12 1                   |
| B 3-2 2                | 13         | 16.95               | 76.0<br>55.0             | 38.U                 | 6 <sup>4</sup> •4     | 63.4                   |
| 5 - 2 1                | 25         | 16 70               | 55.U                     | 21.0<br>22 5         | 57 3                  | 50 <b>3</b>            |
|                        | 20         | 16 10               | 52 7                     | 30 4                 | 60.9                  |                        |
| D 3-2 2                | 36         | 16.20               | 115.0                    | 48.9                 | 66.9                  | 63.9                   |
|                        | 20         |                     |                          | BLOCK                | MEAN 6                | 3.4                    |
| TREATMENT              | 4.         |                     |                          |                      |                       |                        |
| A 4-2 1                | 47         | 17.90               | 66.0                     | 36.9                 | 60.5                  |                        |
| A 4-2 2                | 48         | 17.70               | 82.7                     | 38.9                 | 67.4                  | 63.9                   |
| B 4-2 1                | 12         | 17.05               | 68.4                     | 34.4                 | 66.2                  |                        |
| B 4-2 2                | 8          | 17.00               | 60.1                     | 34.2                 | 60.1                  | 63.2                   |
| C 4-2 1                | 27         | 1/.10               | 63.5                     | 31.7                 | 68.5                  |                        |
|                        | 28         | 16.90               | 66•2<br>74 1             | 34.3<br>20 1         | 64•1<br>4/- 2         | 00.0                   |
| D 4 - 2 1              | 20         | 17 20               | 10.1<br>95 0             | 20 • I<br>40 6       | 65 Q                  | 65 1                   |
| 0 4-2 2                | 00         | 11.20               | 00.0                     |                      | MFAN 6                | 54.7                   |
| TREATMENT              | 5.         |                     |                          | 0200                 |                       |                        |
| A 5-2 1                | 49         | 17.75               | 97.0                     | 41.7                 | 69.8                  |                        |
| A 5-2 2                | 50         | 17.50               | 65.8                     | 34.8                 | 64.2                  | 67.0                   |
| B 5-2 1                | 9          | 17.05               | 61.9                     | 32.8                 | 64. • 9               |                        |
| B 5-2 2                | 10         | 17.10               | 75.0                     | 36.4                 | 66.7                  | 65.8                   |
| C 5-2 1                | 29         | 16.25               | 73.0                     | 32.9                 | 70.7                  | · - ·                  |
| C 5-2 2                | 30         | 16.30               | 56.7                     | 30.8                 | 64.1                  | 67•4                   |
| D 5-2 1                | 39         | 17.80               | 88.7                     | 38.8                 | 70.4                  |                        |
| 0 5-2 2                | 40         | 16.90               | 99•1                     | 42•4<br>ΒΙ ΩΓΚ       | 69.2<br>MEAN /        | 67.5                   |
|                        |            |                     | — McGILL                 | UNIVE                | RSITY c               | ÓMPUTING CENTRE -      |

## PERCENTAGE MOISTURE CONTENT OF HAY FIRST CUT MR. LEGAULT'S FARM JULY 29 1968 2 PM

| S  | AMPLE<br>NO.   | DISH<br>NO• | DISH<br>WT.<br>GMS. | INITI-<br>AL WT.<br>GMS. | FINAL<br>WT.<br>GMS. | MDIS-<br>TURE<br>PCT• | SAMPLE<br>MEAN<br>PCT• |
|----|----------------|-------------|---------------------|--------------------------|----------------------|-----------------------|------------------------|
| TR | EATMEN         | IT 1.       |                     |                          |                      |                       |                        |
| Α  | 1-2A1          | 21          | 16.85               | 51.3                     | 33.1                 | 52.8                  |                        |
| Α  | 1-2A2          | 22          | 16.80               | 54.0                     | 37.7                 | 43.8                  | 48.3                   |
| В  | 1-2A1          | 25          | 17.15               | 66.4                     | 39.2                 | 55.2                  |                        |
| В  | 1-2A2          | 26          | 16.70               | 52.7                     | 35.6                 | 47.5                  | 51.4                   |
| С  | 1-2A1          | 29          | 16.25               | 46.7                     | 33.0                 | <b>4</b> 5 • 0        |                        |
| С  | 1-2A2          | 30          | 16.30               | 48.6                     | 33.7                 | 46.1                  | 45.6                   |
| D  | 1-2A1          | 33          | 16.15               | 52.3                     | 32.5                 | 54.8                  |                        |
| D  | 1-2A2          | 34          | 16.00               | 56.5                     | 35.7                 | 51.4                  | 53.1                   |
|    |                |             |                     |                          | BLOCK                | MEAN                  | 49.6                   |
| TR | EATMEN         | IT 5.       |                     |                          |                      |                       |                        |
| Α  | 5 <b>-</b> 2A1 | 23          | 16.75               | 68.4                     | 40.0                 | <b>5</b> 5.0          |                        |
| А  | 5 <b>-</b> 2A2 | 24          | 17.05               | 76.7                     | 44.0                 | 54.8                  | 54.9                   |
| В  | 5-2A1          | 27          | 17.10               | 58.8                     | 34.0                 | 59.5                  |                        |
| В  | 5 <b>-</b> 2A2 | 28          | 16.90               | 67.5                     | 36.3                 | 61.7                  | 60.6                   |
| С  | 5 <b>-</b> 2A1 | 31          | 16.50               | 47.6                     | 31.2                 | <b>52.7</b>           |                        |
| С  | 5-2A2          | 32          | 16.15               | 65.3                     | 36.7                 | 58.2                  | 55.5                   |
| D  | 5-2Al          | 35          | 16.10               | 60.4                     | 33.8                 | 60.0                  |                        |
| D  | 5-2A2          | 36          | 16.20               | 71.7                     | 38.0                 | 60.7                  | 60.4                   |
|    |                |             |                     |                          | BLOCK                | MEAN                  | 57.8                   |

McGILL UNIVERSITY COMPUTING CENTRE

#### PERCENTAGE MOISTURE CONTENT OF HAY FIRST CUT MR. LEGAULT'S FARM JULY 29 1968 4 PM

| SAMPLE DISH<br>NO• NO• | DISH<br>WT•<br>GMS• | INITI-<br>AL WT.<br>GMS. | FINAL<br>WT.<br>GMS. | MOIS-<br>TURE<br>PCT• | SAMPLE<br>MEAN<br>PCT• |
|------------------------|---------------------|--------------------------|----------------------|-----------------------|------------------------|
|                        |                     |                          |                      |                       |                        |
| IKEAIMENT I.           | 17 10               | <b>F</b> ( )             | 27 7                 | 11 E                  |                        |
| A 1-281 67             | 17.10               | 54.2                     | 31.1                 | 44.5                  |                        |
| A 1-2B2 68             | 17.45               | 47.9                     | 31.5                 | <b>5</b> 3 <b>•</b> 9 | 49.2                   |
| B 1-2B1 71             | 17.45               | 41.9                     | 32.0                 | <b>4</b> 0 <b>• 5</b> |                        |
| B 1-2B2 72             | 17.80               | 57.5                     | 37.4                 | 50.6                  | 45.6                   |
| C 1-2B1 75             | 17.60               | 47.9                     | 33.8                 | 46.5                  |                        |
| C 1-2B2 76             | 17.40               | 51.0                     | 35.0                 | 47.6                  | 47.1                   |
| D 1-2B1 79             | 17.40               | 58.8                     | 40.6                 | 44.0                  |                        |
| D 1-2B2 80             | 17.10               | 51.9                     | 35.7                 | 46.6                  | 45.3                   |
|                        |                     |                          | BLOCK                | MEAN 4                | 5.8                    |
| TREATMENT 5.           |                     |                          |                      |                       |                        |
| A 5-2B1 69             | 17.65               | 76.2                     | 44.3                 | 54.5                  |                        |
| A 5-2B2 70             | 17,50               | 68.0                     | 39.8                 | 55.8                  | 55.2                   |
| B 5-2B1 73             | 17.25               | 73.3                     | 41.6                 | 56.6                  |                        |
| B 5-2B2 74             | 17.50               | 47.3                     | 31.7                 | 52.3                  | 54.5                   |
| C 5-2B1 77             | 17.10               | 60.7                     | 35.5                 | 57.8                  |                        |
| $C = 5 - 2B^2 = 78$    | 17.40               | 56.0                     | 35.8                 | 52.3                  | 55.1                   |
| D 5-281 81             | 17 40               | 521                      | 22.5                 | 53 6                  |                        |
|                        | 17 25               | 52 1                     | 1 20                 | 55.6                  | <b>5</b> 7 4           |
| U D-202 82             | L/•35               | 52.8                     | 22.1                 | 23.0                  | 24.0                   |

BLOCK MEAN 54.8

Ø

:

## PERCENTAGE MOISTURE CONTENT OF HAY FIRST CUT MR. LEGAULT'S FARM JULY 29 1968 6 PM

0

| SAMPLE D                                                  | DISH       | DISH  | INITI-   | FINAL        | MOIS-             | SAMPLE       |
|-----------------------------------------------------------|------------|-------|----------|--------------|-------------------|--------------|
| NO.                                                       | NO•        | WT.   | AL WT.   | WT.          | TURE              | MEAN         |
|                                                           |            | GMS.  | GMS.     | GMS.         | PCI.              | PC1.         |
|                                                           | r 1        |       |          |              |                   |              |
|                                                           | i 1.       | 16.60 | 48.2     | 36.8         | 36 . 1            |              |
| $\begin{array}{c} A  I = J  I \\ A  I = J  I \end{array}$ | 2          | 16.70 | 50.4     | 40.5         | 29.4              | 32.7         |
| A = 3 = 2<br>B = 3 = 3 = 1                                | 21         | 16.85 | 49.1     | 37.7         | 35.3              | 52.01        |
| B 1-3 2                                                   | 22         | 16.80 | 48.6     | 36.6         | 37.7              | 36.5         |
| C 1 - 3 1                                                 | 11         | 16.95 | 65.5     | 49.0         | 34.0              |              |
| C 1 - 3 2                                                 | 12         | 17.05 | 34.9     | 27.7         | 40.3              | 37.2         |
| D 1-3 1                                                   | 29         | 16.25 | 52.5     | 37.7         | 40.8              |              |
| D 1-3 2                                                   | 30         | 16.30 | 55.1     | 41.5         | 35.1              | 37.9         |
|                                                           |            |       |          | BLOCK        | MEAN 3            | 5.1          |
| TREATMEN                                                  | r 2.       |       |          |              |                   |              |
| A 2-3 1                                                   | 3          | 16.60 | 51.5     | 35.7         | <b>45.3</b>       |              |
| A 2-3 2                                                   | 4          | 16.75 | 45.5     | 33.1         | 43.1              | 44.2         |
| B 2-3 1                                                   | 23         | 16.75 | 74.0     | 47.5         | 46.3              |              |
| B 2-3 2                                                   | 24         | 17.05 | 58.0     | 41.9         | 39.3              | 42.8         |
| C 2-3 1                                                   | 13         | 16.95 | 34.9     | 27.7         | 40.1              |              |
| C 2-3 2                                                   | 14         | 16.95 | 91.5     | 58.0         | 44.9              | 42.5         |
| D 2-3 1                                                   | 33         | 16.15 | 47.2     | 36.0         | 36.1              |              |
| D 2-3 2                                                   | 34         | 16.00 | 45.0     | 32.9         | 4 <u>1</u> .7     | 38.9         |
|                                                           |            |       |          | BLUCK        | MEAN 4            | 2•1          |
| IREAIMEN                                                  | 1 3.       | 1/ 75 | 42 0     | 20 0         | 1.0 2             |              |
| A 3-3 I                                                   | 2<br>4     | 16.15 | 42.0     | 29.0         | 40.5              | 48 2         |
| A 3-3 2<br>B 3-3 1                                        | 25         | 17 15 | 61 6     | 40.7         | 47.0              |              |
| B 3-3 2                                                   | 25         | 16 70 | 50.7     | 34.3         | 48.2              | 47.6         |
| C 3-3 1                                                   | 15         | 17.05 | 57.5     | 38.2         | 47.7              |              |
| $(3-3)^{2}$                                               | 16         | 16.55 | 44.8     | 32.4         | 43.9              | 45.8         |
| D 3-3 1                                                   | 35         | 16.10 | 74.6     | 48.1         | 45.3              |              |
| D 3-3 2                                                   | 36         | 16.20 | 46.0     | 31.6         | 48.3              | 46.8         |
|                                                           |            |       |          | <b>BLOCK</b> | MEAN 4            | 7.1          |
| TREATMEN                                                  | T4.        |       |          |              |                   | 2            |
| A 4-4 1                                                   | 7          | 16.55 | 65.0     | 35.6         | 60.7              |              |
| A 4-4 2                                                   | 8          | 17.00 | 65.3     | 33.1         | 66.7              | 63.7         |
| B 4-3 1                                                   | 27         | 17.10 | 86.0     | 43.0         | 62.4              |              |
| B 4-3 2                                                   | 28         | 16.90 | 83.8     | 40.5         | 64.7              | 63.6         |
| C 4-3 1                                                   | 17         | 16.45 | 64.0     | 35.9         | 59.1              |              |
| C 4-3 2                                                   | 18         | 16.40 | 71.8     | 35.8         | 65.0              | 62.0         |
| D 4-3 1                                                   | 37         | 16.95 | 84.7     | 43.7         | 60.5              | ( <b>A</b> ( |
| D 4-3 2                                                   | 38         | 17.20 | 70.0     | 38.2         | 60.2              | 60.4         |
|                                                           | <b>T</b> C |       |          | BLUCK        | MEAN 0            | 2•4          |
| IKEAIMEN                                                  | 1 2.       | 17 05 | E 2 7    | 2/. /.       | <b>51 2</b>       |              |
|                                                           | 10         | 17.05 | 52.1     | 24.4         | 5 - 5<br>7 0 0    | 50.2         |
| R 5-2 1                                                   | 21         | 16.50 | 60.7     | 41.0         | + 7 ● U<br>44 - 6 | JU • 2       |
| B 5-3 2                                                   | 32         | 16-15 | 68.5     | 44.0         | 46.8              | 45.7         |
| C 5-3 1                                                   | 19         | 16.45 | 61.6     | 42.0         | 43.4              |              |
| C 5-3 2                                                   | 20         | 17.15 | 52.3     | 37.1         | 43.2              | 43.3         |
| D 5-3 1                                                   | 39         | 17.80 | 110.0    | 66.5         | 47.2              |              |
| D 5-3 2                                                   | 40         | 16.90 | 53.8     | 35.4         | 49 <b>.9</b>      | 48.5         |
|                                                           |            | - ,   | - McGILL | BLOCK        |                   | 6.9          |

TRE ----

## PERCENTAGE MOISTURE CONTENT OF HAY FIRST CUT MR. LEGAULT'S FARM JULY 29 1968 8 PM

| S  | SAMPLE<br>NO• | DISH<br>NO• | DISH<br>WT.<br>GMS. | INITI-<br>AL WT.<br>GMS. | FINAL<br>WT.<br>GMS. | MOIS-<br>TURE<br>PCT. | SAMPLE<br>MEAN<br>PCT• |
|----|---------------|-------------|---------------------|--------------------------|----------------------|-----------------------|------------------------|
| TR |               | VT 1.       |                     |                          |                      |                       |                        |
| Α  | 1-3A1         | 83          | 17.10               | 37.0                     | 30.5                 | 32.7                  |                        |
| Α  | 1-3A2         | 84          | 17.10               | 53.8                     | 41.8                 | 32.7                  | 32.7                   |
| В  | 1-3A1         | 87          | 17.90               | 55.2                     | 41.4                 | 37.0                  |                        |
| В  | 1-3A2         | 88          | 17.50               | 48•4                     | 37.4                 | 35.6                  | 36.3                   |
| С  | 1-3A1         | 91          | 17.80               | 46.6                     | 35.4                 | 38.9                  |                        |
| С  | 1-3A2         | 92          | 17.45               | 48.2                     | 37.2                 | 35.8                  | 37.3                   |
| D  | 1-3A1         | 95          | 18.00               | 42.4                     | 33.7                 | 35.7                  |                        |
| Ð  | 1-3A2         | 96          | 17.80               | 53.7                     | 40.4                 | 37.0                  | 36.4                   |
|    |               |             |                     |                          | BLOCK                | MEAN 3                | 5.7                    |
| TF | REATME        | NT 5.       |                     |                          |                      |                       |                        |
| Α  | 5-3A1         | 85          | 17.20               | 60.2                     | 38.8                 | <b>4</b> 9 <b>• 8</b> |                        |
| Α  | 5-3A2         | 94          | 17.70               | 57.7                     | 38.5                 | <b>4</b> 8 <b>.</b> 0 | 48.9                   |
| В  | 5-3A1         | 89          | 17.80               | 58.5                     | 38.9                 | <b>4</b> 8 • <b>2</b> |                        |
| В  | 5-3A2         | 90          | 17.70               | 55.1                     | 35.5                 | 52.4                  | 50.3                   |
| С  | 5-3A1         | 93          | 17.85               | 48.4                     | 34.2                 | 46.5                  |                        |
| С  | 5-3A2         | 86          | 17.30               | 48.4                     | 33.7                 | 47.3                  | 46.9                   |
| D  | 5-3A1         | 97          | 17.40               | 49.4                     | 35.0                 | 45.0                  |                        |
| D  | 5-3A2         | 98          | 17.30               | 54.3                     | 35.0                 | 52.2                  | 48.6                   |
|    |               |             |                     |                          | BLOCK                | MEAN 4                | 8.7                    |

#### PERCENTAGE MOISTURE CONTENT OF HAY FIRST CUT MR. LEGAULT'S FARM JULY 29 1968 10 PM

.

| S  | AMPLE<br>NO• | DISH<br>NO• | DISH<br>WT.<br>GMS. | INITI-<br>AL WT.<br>GMS. | FINAL<br>WT.<br>GMS. | MOIS-<br>TURE<br>PCT. | SAMPLE<br>MEAN<br>PCT• |
|----|--------------|-------------|---------------------|--------------------------|----------------------|-----------------------|------------------------|
| TR |              | VT 1.       |                     |                          |                      |                       |                        |
| Α  | 1-3B1        | 41          | 17.85               | 48.3                     | 35.7                 | 41.4                  |                        |
| Α  | 1-3B2        | 42          | 18.05               | 43.4                     | 33.3                 | 39.8                  | 40.6                   |
| В  | 1-3B1        | 45          | 17.85               | 49.7                     | 36.9                 | <b>4</b> 0 • <b>2</b> |                        |
| В  | 1-3B2        | 46          | 17.90               | 47.9                     | 35.9                 | <b>4</b> 0 <b>.0</b>  | 40.1                   |
| С  | 1-381        | 51          | 17.60               | 47.5                     | 37.0                 | 35.1                  |                        |
| С  | 1-3B2        | 52          | 17.50               | 45.8                     | 36.0                 | 34.6                  | 34.9                   |
| D  | 1-381        | 55          | 17.65               | 47.8                     | 35.0                 | 42.5                  |                        |
| D  | 1-3B2        | 56          | 17.80               | 42.4                     | 33.4                 | 36.6                  | 39.5                   |
|    |              |             |                     |                          | BLOCK                | MEAN 3                | 8.8                    |
| TF | REATMEN      | VT 5.       |                     |                          |                      |                       |                        |
| Α  | 5-3B1        | 43          | 18.05               | 54.3                     | 38.5                 | <b>43.6</b>           |                        |
| Α  | 5-3B2        | 44          | 17.90               | 49.3                     | 35.0                 | 45.5                  | 44.6                   |
| В  | 5-3B1        | 47          | 17.90               | 51.6                     | 36.5                 | <b>4</b> 4 • 8        |                        |
| В  | 5-3B2        | 48          | 17.70               | 49.0                     | 34.5                 | 46.3                  | 45.6                   |
| С  | 5-3B1        | 53          | 17.85               | 56.0                     | 39.4                 | 43.5                  |                        |
| С  | 5-3B2        | 54          | 17.35               | 50.0                     | 35.1                 | 45.6                  | 44.6                   |
| D  | 5-3B1        | 57          | 17.60               | 74.0                     | 47.5                 | 47.0                  |                        |
| D  | 5-3B2        | 58          | 17.80               | 45.5                     | 31.8                 | 49.5                  | 48.2                   |
|    |              |             |                     |                          | BLOCK                | MEAN 4                | 5.7                    |

## PERCENTAGE MOISTURE CONTENT OF HAY FIRST CUT MR. LEGAULT'S FARM JULY 30 1968 8 AM

| SAMPLE DISH                      | DISH  | INITI-  | FINAL        | MOIS-                 | SAMPLE          |
|----------------------------------|-------|---------|--------------|-----------------------|-----------------|
| NO• NO•                          | WT.   | AL WT.  | WI.          | IURE                  | MEAN            |
|                                  | GMS.  | GMS.    | GMS.         | PCT.                  | PCT.            |
| TDEATMENT 1                      |       |         |              |                       |                 |
| 1 = 4                            | 17.90 | 48.8    | 37.4         | 36.9                  |                 |
| A = 1 + 1 = 01                   | 17 25 | 40.0    | 36 5         | 29.7                  | 22 2            |
| A 1 - 4 2 02                     | 17 90 | 44.0    | 24 9         | 27.1                  | و وو            |
| B = 1 - 4 = 71<br>B = 1 - 4 = 72 | 17.60 | 42.7    | 34 0         | 32.64                 | 22 5            |
| $0 1^{-4} 2 52$                  |       | 42.00   | 22 6         | 27 5                  | 52.05           |
| C 1 = 4 1 51<br>C 1 = 4 2 52     | 17.50 | 43.2    | 55.0<br>46 0 | 3/ 0                  | 36 3            |
| 0 1 = 4 2 52                     | 17.70 | 41.9    | 32.0         | 40.9                  | 50.2            |
| D 1 - 4 1 01                     | 17 45 | 4109    | 24 7         | 4.0 <b>D</b>          | 40 0            |
| 0 1-4 2 02                       | 11.05 | - U - J |              | MEAN 3                | 57              |
| TREATMENT 2.                     |       |         | DECON        | MLAN J                | 2.1             |
| A 2-4 1 83                       | 17.10 | 51.3    | 39.8         | 33.6                  |                 |
| A 2-4 2 84                       | 17.10 | 45.8    | 36.3         | 33.1                  | 33.4            |
| B 2-4 1 93                       | 17.85 | 62.9    | 46.4         | 36.6                  |                 |
| B 2-4 2 94                       | 17.70 | 50.3    | 36.4         | 42.6                  | 39.6            |
| C 2-4 1 53                       | 17.85 | 44.5    | 35.4         | 34.1                  |                 |
| C 2-4 2 54                       | 17.35 | 49.7    | 38.0         | 36.2                  | 35.2            |
| D 2-4 1 63                       | 17.90 | 45.3    | 37.0         | 30.3                  |                 |
| D 2-4 2 64                       | 17.70 | 45.3    | 36.4         | 32.2                  | 31.3            |
|                                  |       |         | BLOCK        | MEAN 3                | 4.9             |
| TREATMENT 3.                     |       |         |              |                       |                 |
| A 3-4 1 85                       | 17.20 | 49.0    | 32.0         | <b>53.5</b>           |                 |
| A 3-4 2 86                       | 17.30 | 63.5    | 42.4         | 45.7                  | 49.6            |
| B 3-4 1 95                       | 18.00 | 55.7    | 36.4         | 51.2                  |                 |
| B 3-4 2 96                       | 17.80 | 45.5    | 30.4         | 54.5                  | 52.9            |
| C 3-4 1 55                       | 17.65 | 56.0    | 35.0         | 54.8                  |                 |
| C 3-4 2 56                       | 17.80 | 56.7    | 35.0         | <b>5</b> 5 <b>.</b> 8 | 55.3            |
| D 3-4 1 65                       | 17.45 | 57.5    | 40.3         | 42.9                  |                 |
| D 3-4 2 66                       | 17.30 | 48.0    | 33.4         | 47.6                  | 45.3            |
|                                  |       |         | BLOCK        | MEAN 5                | 50.7            |
| TREATMENT 4.                     |       |         |              | <b>7</b> 0 0          |                 |
| A 4-4 1 87                       | 17.90 | 55.8    | 35.4         | 53.8                  |                 |
| A 4-4 2 88                       | 17.50 | 63.5    | 35.0         | 62.0                  | 57.9            |
| B 4-4 1 97                       | 17.40 | 52.0    | 32.8         | 55.5                  |                 |
| B 4-4 2 98                       | 17.30 | 53.0    | 32.8         | 56.6                  | 56.0            |
| C 4-4 1 57                       | 17.60 | 60.8    | 38.3         | 52.1                  |                 |
| C 4-4 2 58                       | 17.80 | 55.7    | 34.7         | <b>55.4</b>           | 53•7            |
| 0 4-4 1 67                       | 17.10 | 56.4    | 31.4         | 63.6                  | (2.2.2)         |
| 0 4-4 2 68                       | 11.45 | 60.5    | 34.3         | 60.9<br>MEAN          | 02•2            |
| TREATMENT 5.                     |       |         | BLUCK        | MEAN                  | 01+0            |
| Λ 5-4 1 89                       | 17.80 | 40.6    | 31.8         | 38.6                  |                 |
| $\Lambda 5-42$ 90                | 17.70 | 87.4    | 62.4         | 35.9                  | 37.2            |
| B 5-4 1 99                       | 17.85 | 50.7    | 37.5         | 40.2                  | 5102            |
| B 5-4 2 100                      | 17.45 | 54.0    | 39.8         | 38.9                  | 39.5            |
| (.5-41 59)                       | 17.70 | 47.3    | 34.7         | 42.6                  |                 |
| C 5-4 2 60                       | 17.80 | 56.2    | 43.3         | 33.6                  | 38.1            |
| D 5-4 1 69                       | 17.65 | 52.1    | 39.0         | 38.0                  |                 |
| D 5-4 2 70                       | 17.50 | 58.5    | 41.2         | 42.2                  | 40.1            |
|                                  | 2     |         | BLOCK        | MEAN                  | 38.7            |
|                                  |       | McGILL  | UNIVE        | KSITY C               | OMPUTING CENTRE |



## PERCENTAGE MOISTURE CONTENT OF HAY FIRST CUT MR. LEGAULT'S FARM JULY 30 1968 10 AM

| SAMPLE  | DISH                                                                                                                                                                                                        | DISH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | INITI-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FINAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MOIS-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SAMPLE                                               |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| NO.     | NO.                                                                                                                                                                                                         | WT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AL WT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MEAN                                                 |
|         |                                                                                                                                                                                                             | GMS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GMS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GMS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ΡΟΤο                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PCT.                                                 |
|         |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |
| REATMEN | NT 1.                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |
| 1-4Al   | 51                                                                                                                                                                                                          | 17.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>29.5</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      |
| 1-4A2   | 52                                                                                                                                                                                                          | 17.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 53.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29.9                                                 |
| 1-4A1   | 55                                                                                                                                                                                                          | 17.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 39.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>33 • 7</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |
| 1-4A2   | 56                                                                                                                                                                                                          | 17.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 49.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 31.2                                                 |
| 1-4A1   | 59                                                                                                                                                                                                          | 17.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 39.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>25 • 7</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |
| 1-4A2   | 60                                                                                                                                                                                                          | 17.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 44.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26.8                                                 |
| 1-4A1   | 63                                                                                                                                                                                                          | 17.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 49.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |
| 1-4A2   | 64                                                                                                                                                                                                          | 17.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 45.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25.1                                                 |
| -       |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BLOCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MEAN 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.3                                                  |
| REATMEN | NT 5.                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |
| 5-441   | 53                                                                                                                                                                                                          | 17.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 43.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 34.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |
| 5-442   | 54                                                                                                                                                                                                          | 17.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35.3                                                 |
| 5-4A1   | 57                                                                                                                                                                                                          | 17.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |
| 5-442   | 58                                                                                                                                                                                                          | 17.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 33.1                                                 |
| 5-441   | 61                                                                                                                                                                                                          | 17.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 43.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |
| 5-402   | 62                                                                                                                                                                                                          | 17.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 55.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 41.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 33.2                                                 |
| 5-41    | 65                                                                                                                                                                                                          | 17.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3302                                                 |
| 5-412   | 66                                                                                                                                                                                                          | 17 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 87 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 62 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32 8                                                 |
| J-742   | 00                                                                                                                                                                                                          | 11.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 4                                                  |
|         | SAMPLE<br>NO.<br>EATMEN<br>1-4A1<br>1-4A2<br>1-4A1<br>1-4A2<br>1-4A1<br>1-4A2<br>1-4A1<br>1-4A2<br>1-4A1<br>1-4A2<br>1-4A1<br>1-4A2<br>S-4A1<br>5-4A2<br>5-4A1<br>5-4A2<br>5-4A1<br>5-4A2<br>5-4A1<br>5-4A2 | SAMPLE DISH         NO.         NO.         NO.         NO.         NO.         REATMENT 1.         1-4A1         1-4A2         1-4A2         1-4A1         50         1-4A2         1-4A2         1-4A2         60         1-4A2         1-4A2         60         1-4A2         64         REATMENT         5-4A1         57         5-4A2         58         5-4A1         61         5-4A2         62         5-4A2         66 | SAMPLE DISH       DISH         NO.       WT.         GMS.         REATMENT 1.         1-4A1       51         1-4A1       51         1-4A2       52         1-4A1       55         1-4A1       55         1-4A2       56         1-4A2       56         1-4A2       60         1-4A2       60         1-4A2       60         1-4A2       60         1-4A2       64         17.70         1-4A2       64         17.90         1-4A2       64         17.90         1-4A2       64         17.90         1-4A2       64         17.90         1-4A2       54         17.85         5-4A1       57         5-4A2       54         17.80         5-4A1       57         5-4A2       58         5-4A1       61         17.70       5         5-4A2       62         17.65       5         5-4A1       65         5-4A2 | SAMPLE DISH<br>NO. NO.       DISH INITI-<br>WT. AL WT.<br>GMS. GMS.         REATMENT 1.       -4A1 51 17.60 42.0         1-4A1 51 17.60 42.0         1-4A2 52 17.50 53.2         1-4A1 55 17.65 39.3         1-4A2 56 17.80 49.8         1-4A1 59 17.70 39.5         1-4A2 60 17.80 44.6         1-4A2 64 17.70 45.8         REATMENT 5.         5-4A1 53 17.85 43.0         5-4A1 57 17.60 42.1         5-4A2 58 17.80 42.2         5-4A1 61 17.70 43.0         5-4A2 62 17.65 55.1         5-4A1 61 17.70 43.0         5-4A2 66 17.30 87.4 | SAMPLE DISH<br>NO. NO.       DISH INITI-<br>WT. AL WT.<br>GMS. GMS.       FINAL<br>WT.<br>GMS.         1-4A1       51       17.60       42.0       34.8         1-4A1       51       17.60       53.2       42.4         1-4A1       55       17.65       39.3       32.0         1-4A2       56       17.80       49.8       40.6         1-4A2       56       17.80       49.8       40.6         1-4A2       56       17.70       39.5       33.9         1-4A2       60       17.80       44.6       37.1         1-4A2       64       17.70       45.8       39.3         BLOCK         REATMENT 5.       5-4A1       57       17.60       42.1       33.2         5-4A2       54       17.70       43.0       35.3         5-4A2       58       17.80       42.2       34.9         5-4A1       57       17.60       42.1       33.2         5-4A2       58       17.80       42.2       34.9         5-4A2       58       17.80       42.2       34.9         5-4A2       58       17.65       55.1       41.6         5-4A1       61 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

1

## PERCENTAGE MOISTURE CONTENT OF HAY FIRST CUT MR. LEGAULT'S FARM JULY 30 1968 12 NOON

| SAMPLE DISE<br>NO• NO•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H DISH<br>• WT•<br>GMS•                                                    | INITI-<br>AL WT.<br>GMS.                         | FINAL<br>WT.<br>GMS. | MOIS-<br>TURE<br>PCT• | SAMPLE<br>MEAN<br>PCT |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------|----------------------|-----------------------|-----------------------|-----|
| TREATMENT 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                            |                                                  |                      |                       |                       |     |
| $\Delta 1-5 1 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                          | 46.3                                             | 41.0                 | 18.6                  |                       |     |
| A 1-5 2 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 18.05                                                                    | 39.2                                             | 33.9                 | 25.1                  | 21.8                  |     |
| B 1-5 1 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 17.60                                                                    | 43.0                                             | 35.9                 | 28.0                  |                       |     |
| B 1-5 2 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 17.50                                                                    | 39.7                                             | 34.9                 | 21.6                  | 24.8                  |     |
| C 1-5 1 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 17.70                                                                    | 45.8                                             | 40.0                 | 20.6                  |                       |     |
| C 1-5 2 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 17.65                                                                    | 41.0                                             | 35.8                 | 22.3                  | 21.5                  |     |
| D 1-5 1 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 17.45                                                                    | 42.3                                             | 36.3                 | 24.1                  |                       |     |
| D 1-5 2 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 17.80                                                                    | 42.8                                             | 37.0                 | 23.2                  | 23.7                  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                            |                                                  | BLOCK                | MEAN 2                | 2.9                   |     |
| TREATMENT 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                                                          |                                                  |                      | 0 - 0                 |                       |     |
| A 2-5 1 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 18.05                                                                    | 49.8                                             | 41.6                 | 25.8                  |                       |     |
| A 2-5 2 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 17.90                                                                    | 44.8                                             | 36.1                 | 30.1                  | 28.0                  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{ccc} 5 & 17 & 5 \\ 6 & 17 & 5 \\ 6 & 17 & 5 \\ \end{array}$ | 49.5                                             | 27•7<br>20 1         | 29.9                  | 20.2                  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4 17.35                                                                    | 41.2                                             | 30.L                 | <u> 30.</u>           | 50.2                  |     |
| $- \frac{1}{2} - $ | 5 17.90<br>4 17.70                                                         | 50.4                                             | 21.0<br>45 Q         | 28.2                  | 30.2                  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{1}{2}$ 17 25                                                        | 40 0                                             | 22.1                 | 34.7                  | 50.2                  |     |
| $D_{2-5} = 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 17.50                                                                    | 49.1                                             | 40.0                 | 28.8                  | 31.8                  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 11.50                                                                    | 1241                                             | BLOCK                | MEAN 3                | 0.0                   |     |
| TREATMENT 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                                                          |                                                  |                      |                       |                       |     |
| A 3-5 1 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 17.85                                                                    | 65.8                                             | 43.0                 | 47.5                  |                       |     |
| A 3-5 2 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6 17.90                                                                    | 48.7                                             | 36.2                 | 40.6                  | 44.1                  |     |
| B 3-5 1 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 17.65                                                                    | 48.9                                             | 38.3                 | <b>33.9</b>           |                       |     |
| B 3-5 2 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6 17.80                                                                    | 58.2                                             | 39.9                 | 45.3                  | 39.6                  |     |
| C 3 <del>-</del> 5 1 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 17.45                                                                    | 51.3                                             | 36.7                 | 43.1                  |                       |     |
| C 3 <del>-</del> 5 2 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6 17.30                                                                    | 46.8                                             | 36.0                 | 36.6                  | 39.9                  |     |
| D 3-5 1 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 17.60                                                                    | 48.4                                             | 36.3                 | 39.3                  | 20.0                  |     |
| 0 3-5 2 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6 17.40                                                                    | 61.3                                             | 49.0                 | 36.1                  | 38.0                  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                            |                                                  | BLUCK                | MEAN 4                | 0.4                   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 17 00                                                                    | <u> </u>                                         | 21 0                 | 57 2                  |                       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 17.50                                                                    | 40.0                                             | 25 5                 | 5/ • 2                | 58 9                  |     |
| 84-52 4<br>8451 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 17.60                                                                    | 54.4                                             | 32.8                 | 58.7                  | <b>J0</b> • <b>y</b>  |     |
| B 4-5 2 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                            | 67.0                                             | 41.4                 | 52.0                  | 55.4                  |     |
| C 4-5 1 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 17.10                                                                    | 58.0                                             | 35.0                 | 56.2                  |                       |     |
| C 4-5 2 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17.50                                                                      | 94.3                                             | 48.3                 | 59 <b>.</b> 9         | 58.1                  |     |
| D 4-5 1 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 17.10                                                                    | 76.2                                             | 44.6                 | <b>5</b> 3 • <b>5</b> |                       |     |
| D 4-5 2 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8 17.40                                                                    | 62.7                                             | 37.4                 | 55.8                  | 54.7                  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                            |                                                  | BLOCK                | MEAN 5                | 56.7                  |     |
| TREATMENT 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                                                          |                                                  |                      |                       |                       |     |
| A 5-5 1 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9 17.75                                                                    | 57.3                                             | 46.0                 | 28.6                  |                       |     |
| A 5-5 2 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                            | 43.6                                             | 36.0                 | 29.1                  | 28.8                  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DA T(•(0                                                                   | 55.6                                             | 29•8<br>42 E         | <u></u> 2∕.∙4         | 21.0                  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                            | レージと•ソー<br>んん O                                  | 42•9<br>27 0         | 29.0                  | 21.0                  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70 17 50                                                                   | 44•7<br>) 44 5                                   | 36 8                 | 29.U<br>28.K          | 28.8                  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 11.50<br>79 17 40                                                       | , <del>, , , ,</del> , , , , , , , , , , , , , , | 40.5                 | 20.0                  | 20.0                  |     |
| D 5-5 2 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30 17.10                                                                   | ) 56.5                                           | 43.2                 | 33.8                  | 28.9                  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                            |                                                  | BLOCK                | MEAN                  | 29.4                  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                            | McGILL                                           | UNIVE                | кзнт с                | OMPUTING CENT         | rre |



## PERCENTAGE MOISTURE CONTENT OF HAY FIRST CUT MR. LEGAULT'S FARM JULY 30 1968 2 PM

| S  | AMPLE   | DISH  | DISH  | INITI- | FINAL | MOIS-        | SAMPLE |
|----|---------|-------|-------|--------|-------|--------------|--------|
|    | NO.     | NO.   | WT.   | AL WT. | WT.   | TURE         | MEAN   |
|    |         |       | GMS.  | GMS -  | GMS . | PCT.         | PCT.   |
|    |         |       | 0/10  | 0110   | 0110  |              | 1010   |
|    |         |       |       |        |       |              |        |
| IR | REAIMEN |       |       |        |       |              |        |
| Α  | 1-5A1   | 15    | 17.05 | 38.8   | 34.0  | 22.1         |        |
| Α  | 1-5A2   | 16    | 16.55 | 39.5   | 35.5  | 17.4         | 19.7   |
| В  | 1-5A1   | 19    | 16.45 | 46.6   | 40.2  | 21.2         |        |
| В  | 1-5A2   | 20    | 17.15 | 41.3   | 35.6  | 23.6         | 22.4   |
| r  | 1-5/1   | 43    | 18.05 | 49.8   | 43.3  | 20.5         |        |
| č  |         | 10    | 10.00 | 1200   | 20 5  | 10.2         | 10 0   |
| L  | 1-245   | 44    | 17.90 | 43.4   | 38.2  | 19.2         | 19.8   |
| D  | 1-5A1   | 47    | 17.90 | 42.6   | 37.6  | 20.2         |        |
| D  | 1-5A2   | 48    | 17.70 | 39.0   | 34.3  | 22.1         | 21.2   |
|    |         |       |       |        | BLOCK | MEAN 2       | 0.8    |
| TF | REATME  | VT 5. |       |        |       |              |        |
| Δ  | 5-541   | 17    | 16.45 | 55.5   | 46.0  | 24.3         |        |
| 7  | 5       | 10    | 16 40 | 25 0   | 21 5  | 22 6         | 22 4   |
| A  | 5-5A2   | 10    | 10.40 | 5,00   | 51.0  | 27.00        | 2304   |
| В  | 5-5Al   | 41    | 17.85 | 44.0   | 37.6  | 24.5         |        |
| В  | 5-5A2   | 42    | 18.05 | 43.2   | 36.9  | 25.0         | 24.8   |
| С  | 5-5A1   | 45    | 17.85 | 56.1   | 45.9  | 26.7         |        |
| Č. | 5-542   | 46    | 17.90 | 56.2   | 45.7  | 27.4         | 27.0   |
| ň  | 5-5/1   | 49    | 17.75 | 54.4   | 43.7  | 29.2         |        |
| 5  |         | - T J | 17 50 |        | 20 2  | / •<br>⊃ ⊏ 1 | 27 1   |
| υ  | 5-5A2   | 50    | 17.50 | 46.6   | 37.3  | 22.1         | 21.1   |
|    |         |       |       |        | BLOCK | MEAN 2       | 5.6    |

MCGILL UNIVERSITY COMPUTING CENTRE -

## PERCENTAGE MOISTURE CONTENT OF HAY FIRST CUT MR. LEGAULT'S FARM JULY 30 1968 4 PM

| ç  | NO.            | DISH<br>NO• | DISH<br>WT.<br>GMS. | INITI-<br>AL WT.<br>GMS. | FINAL<br>WT.<br>GMS. | MOIS-<br>TURE<br>PCT. | SAMPLE<br>MEAN<br>PCT. |
|----|----------------|-------------|---------------------|--------------------------|----------------------|-----------------------|------------------------|
| TF |                | NT 1.       |                     |                          |                      |                       |                        |
| A  | 1-5B1          | 2           | 16.70               | 37.5                     | 34.1                 | 16.3                  |                        |
| А  | 1-5B2          | 3           | 16.60               | 40.2                     | 37.7                 | 10.6                  | 13.5                   |
| В  | 1-5B1          | 5           | 16.75               | 37.3                     | 33.5                 | 18.5                  |                        |
| В  | 1-5B2          | 6           | 16.60               | 34.8                     | 32.3                 | 13.7                  | 16.1                   |
| С  | 1-581          | 9           | 17.05               | 51.2                     | 45.4                 | 17.0                  |                        |
| С  | 1-5B2          | 10          | 17.10               | 46.8                     | 42.4                 | 14.8                  | 15.9                   |
| D  | 1-5B1          | 13          | 16.95               | 41.8                     | 39.1                 | 10 <b>.9</b>          |                        |
| D  | 1-5B2          | - 14        | 16.95               | 46.8                     | 42.4                 | 14.7                  | 12.8                   |
|    |                |             |                     |                          | BLOCK                | MEAN 1                | 4.6                    |
| TF | REATME         | NT 5.       |                     |                          |                      |                       |                        |
| Α  | 5-5B1          | 4           | 16.75               | 50.7                     | 40.6                 | 29.7                  |                        |
| Α  | 5-5B2          | 1           | 16.60               | 48.4                     | 38.7                 | 30.5                  | 30.1                   |
| В  | 5-5B1          | 7           | 16.55               | 49.0                     | 39.5                 | 29,3                  |                        |
| В  | 5 <b>-5</b> B2 | 8           | 17.00               | 48.5                     | 39.3                 | 29.2                  | 29.2                   |
| С  | 5-5B1          | 11          | 16.95               | 54.3                     | 44.4                 | 26.5                  |                        |
| С  | 5 <b>-</b> 5B2 | 12          | 17.05               | 53.4                     | 41.4                 | 33.0                  | 29.8                   |

## PERCENTAGE MOISTURE CONTENT OF HAY FIRST CUT MR. LEGAULT'S FARM JULY 30 1968 6 PM

舔

0

. .

| SAMPLE<br>NO.      | DISH<br>NO• | DISH<br>WT.<br>GMS. | INITI-<br>AL WT.<br>GMS. | FINAL<br>WT.<br>GMS. | MOIS-<br>TURE<br>PCT• | .SAMPLE<br>MEAN<br>PCT. |
|--------------------|-------------|---------------------|--------------------------|----------------------|-----------------------|-------------------------|
| TREATME            | NT 1.       |                     |                          |                      |                       |                         |
| A 1-6 1            | 1           | 16.60               | 36.6                     | 33.6                 | 15.0                  |                         |
| A 1-6 2            | 2           | 16.70               | 31.7                     | 29.7                 | 13.3                  | 14.2                    |
| B 1-6 1            | 11          | 16.95               | 56.8                     | 50.7                 | 15.3                  |                         |
| B 1-6 2            | 12          | 17.05               | 38.8                     | 35.9                 | 13.3                  | 14.3                    |
| C 1-6 1            | 21          | 16.85               | 41.7                     | 38.1                 | 14.5                  |                         |
| C 1-6 2            | 22          | 16.80               | 37.8                     | 34.8                 | 14.3                  | 14.4                    |
| D 1-6 1            | 31          | 16.50               | 34.0                     | 32.0                 | 11.4                  |                         |
| D 1-6 2            | 32          | 16.15               | 31.9                     | 30.1                 | 11.4                  | 11.4                    |
|                    |             |                     |                          | BLOCK                | MEAN                  | 13.6                    |
| TREATME            | NT 2.       |                     |                          |                      | • • •                 |                         |
| A 2-6 1            | 3           | 16.60               | 37.4                     | 34.1                 | 13.0                  | 17 0                    |
| A 2-6 2            | 12          | 16.15               | 44•4                     | 38.5                 | 21.5                  | 11.2                    |
| B 2-6 1            | 15          | 10.95               | 33•1<br>(2 0             | 31.0                 | 10.1                  | 177                     |
| B 2-6 2            | 14          | 16.90               | 42.9                     | 31.9                 | 17.1                  | 11.1                    |
| $C_{2-6}^{2-6}$    | 25          | 17.05               | 32.5                     | 30.0                 | 16.2                  | 16.6                    |
| D 2-6 1            | 22          | 16.15               | 37.4                     | 33.3                 | 19.3                  | 1000                    |
| D 2-6 2            | 34          | 16.00               | 35.4                     | 32.7                 | 13.9                  | 16.6                    |
|                    | 5.          | 10.00               |                          | BLOCK                | MEÂN                  | 17.0                    |
| TREATME            | NT 3.       |                     |                          |                      |                       |                         |
| A 3-6 1            | 5           | 16.75               | 38.0                     | 32.2                 | 27.3                  |                         |
| A 3-6 2            | 6           | 16.60               | 59.4                     | 44.6                 | 34.6                  | 30.9                    |
| B 3-6 1            | 17          | 16.45               | 49.0                     | 39.0                 | 30.7                  |                         |
| B 3-6 2            | 18          | 16.40               | 51.7                     | 38.4                 | 37.7                  | 34.2                    |
| C 3-6 1            | 39          | 17.80               | 48.0                     | 38.0                 | 33.1                  |                         |
| C 3-6 2            | 40          | 16.90               | 51.6                     | 38.2                 | 38.6                  | 35.9                    |
| D 3-6 1            | 35          | 16.10               | 43.4                     | 34.4                 | 33.0                  | 20 7                    |
| 0 3-6 2            | 36          | 16.20               | 45.3                     | 37.0                 |                       | 30.1                    |
| TOEATME            | NT /        |                     |                          | BLUCK                | MEAN                  | 5209                    |
| A 4-6 1            | NI 4.       | 16 55               | 63.0                     | 36.6                 | 56.8                  |                         |
| A + 0 1<br>A 4-6 2 |             | 17.00               | 72.2                     | 38.2                 | 61.6                  | 59.2                    |
| B 4-6 1            | 15          | 17.05               | 66.1                     | 40.6                 | 52.0                  |                         |
| B 4-6 2            | 16          | 16.55               | 61.0                     | 38.0                 | 5].7                  | 51.9                    |
| C 4-6 1            | . 27        | 17.10               | 58.3                     | 36.1                 | 53.9                  | )                       |
| <u>C 4-6 2</u>     | 28          | 16.90               | 62.7                     | 35.5                 | 59.4                  | 56.6                    |
| D 4-6 1            | . 37        | 16.95               | 94.8                     | 49.0                 | 58.8                  | 6                       |
| D 4-6 2            | 2 38        | 17.20               | 56.5                     | 36.0                 | 52.2                  | 55.5                    |
|                    |             |                     |                          | BLOCK                | MEAN                  | 55.8                    |
| TREATME            | NT 5.       |                     |                          |                      |                       |                         |
| A 5-6 ]            | 9           | 17.05               | 49.8                     | 41.5                 | 25.3                  | 3                       |
| A 5-6 2            | 2 10        | 17.10               | 49.2                     | 39.9                 | 29.0                  | 21•2                    |
| B 5-6 ]            | 19          | 10.40               | 59•4<br>50 3             | 48.0                 | 24.1                  | 2/ 2                    |
| 0 0-0 2<br>C 5-6 1 | 20          | 16 25               | 56.8                     | ኅረ•ኅ<br>ፈና ደ         | 27.1                  | ς τ <b>ι</b> β          |
| C 5-6 2            | 2 30        | 16.30               | 59.4                     | 44_8                 | 33.9                  | 30.5                    |
| D 5-6 1            | 25          | 17.15               | 43.3                     | 35.7                 | 29.1                  |                         |
| D 5-6 2            | 2 26        | 16.70               | 45.5                     | 39.2                 | 21.9                  | 25.5                    |
|                    |             |                     |                          | BLOCK                | MEAN                  | 26.8                    |
|                    |             |                     | - McGILI                 | LUNIVE               | K 21   Y              | COMPUTING CENTRE *      |

#### PERCENTAGE MOISTURE CONTENT OF HAY FIRST CUT MR. LEGAULT'S FARM JULY 30 1968 8 PM

| S  | AMPLE<br>NO• | DISH<br>NO• | DISH<br>WT.<br>GMS. | INITI-<br>AL WT.<br>GMS. | FINAL<br>WT.<br>GMS. | MDIS-<br>TURE<br>PCT• | SAMPLE<br>MEAN<br>PCT• |
|----|--------------|-------------|---------------------|--------------------------|----------------------|-----------------------|------------------------|
| TR | EATME        | NT 1.       |                     |                          |                      |                       |                        |
| Α  | 1-6A1        | 67          | 17.10               | 37.0                     | 34.0                 | 15.1                  |                        |
| Α  | 1-6A2        | 68          | 17.45               | 34.8                     | 32,.5                | 13.3                  | 14.2                   |
| В  | 1-6A1        | 71          | 17.45               | 48.5                     | 42.6                 | 19.0                  |                        |
| В  | 1-6A2        | 72          | 17.80               | 32.5                     | 30.1                 | 16.3                  | 17.7                   |
| С  | 1-6A1        | 75          | 17.60               | 41.1                     | 37.9                 | 13.6                  |                        |
| С  | 1-6A2        | 76          | 17.40               | 40.9                     | 37.9                 | 12.8                  | 13.2                   |
| Ð  | 1-6A1        | 79          | 17.40               | 42.0                     | 38.4                 | 14.6                  |                        |
| D  | 1-6A2        | 80          | 17.10               | 42.6                     | 37.9                 | 18.4                  | 16.5                   |
|    |              |             |                     |                          | BLOCK                | MEAN                  | 15.4                   |
| ΤR | REATME       | NT 5.       |                     |                          |                      |                       |                        |
| Α  | 5-6Al        | 69          | 17.65               | 46.8                     | 38.2                 | 29.5                  |                        |
| Α  | 5-6A2        | 70          | 17.50               | 47.8                     | 38.8                 | 29.7                  | 29.6                   |
| В  | 5-6A1        | 73          | 17.25               | 38.8                     | 34.2                 | 21.3                  |                        |
| В  | 5-6A2        | 74          | 17.50               | 49.2                     | 40.7                 | 26.8                  | 24.1                   |
| С  | 5-6A1        | 77          | 17.10               | 55.0                     | 43.4                 | 30.6                  |                        |
| С  | 5-6A2        | 78          | 17.40               | 68.6                     | 53.2                 | 30.1                  | 30.3                   |
| D  | 5-6A1        | 81          | 17.40               | 48.6                     | 40.0                 | 27.6                  |                        |
| D  | 5-6A2        | 82          | 17.35               | 38.8                     | 34.2                 | 21.4                  | 24.5                   |
|    |              |             |                     | •                        | BLOCK                | MEAN                  | 27.1                   |

Ø

MCGILL UNIVERSITY COMPUTING CENTRE -

#### PERCENTAGE MOISTURE CONTENT OF HAY FIRST CUT MR. LEGAULT'S FARM JULY 30 1968 10 PM

| S  | AMPLE  | DISH  | DISH  | INITI- | FINAL | MOIS-         | SAMPLE |
|----|--------|-------|-------|--------|-------|---------------|--------|
|    | NO •   | NO.   | WT.   | AL WT. | WT.   | TURE          | MEAN   |
|    |        |       | GMS.  | GMS.   | GMS.  | PCT.          | PCT.   |
|    |        |       |       |        |       |               |        |
| TR | EATMEN | NT 1. |       |        |       |               |        |
| Α  | 1-681  | 41    | 17.85 | 43.4   | 37.0  | 25.0          |        |
| Α  | 1-682  | 42    | 18.05 | 54.7   | 46.0  | 23.7          | 24.4   |
| В  | 1-681  | 45    | 17.85 | 44.3   | 39.6  | 17.8          |        |
| В  | 1-6B2  | 46    | 17.90 | 54.2   | 46.9  | 20.1          | 18.9   |
| С  | 1-6B1  | 49    | 17.75 | 38.7   | 34.3  | 21.0          |        |
| С  | 1-6B2  | 50    | 17.50 | 35.4   | 32.3  | 17.3          | 19.2   |
| D  | 1-681  | 53    | 17.85 | 38.3   | 32.7  | 27.4          |        |
| D  | 1-6B2  | 54    | 17.35 | 46.0   | 40.0  | 20.9          | 24.2   |
|    |        |       |       |        | BLOCK | MEAN 2        | 21.7   |
| TR | EATMEN | VT 5. |       |        |       |               |        |
| Α  | 5-6B1  | 43    | 18.05 | 48.1   | 38.4  | 32.3          |        |
| Α  | 5-6B2  | 44    | 17.90 | 60.3   | 45.0  | 36.1          | 34.2   |
| В  | 5-6B1  | 47    | 17.90 | 52.1   | 40.2  | 34.8          |        |
| В  | 5-6B2  | 48    | 17.70 | 50.6   | 38.9  | 35.6          | 35.2   |
| С  | 5-6B1  | 51    | 17.60 | 59.8   | 44.0  | 37.4          |        |
| С  | 5-6B2  | 52    | 17.50 | 61.7   | 48.1  | 30.8          | 34.1   |
| D  | 5-6B1  | 55    | 17.65 | 45.0   | 36.1  | 32.5          |        |
| D  | 5-6B2  | 56    | 17.80 | 46.2   | 36.7  | <b>33 • 5</b> | 33.0   |
|    |        |       |       |        | BLOCK | MEAN :        | 34.1   |

McGILL UNIVERSITY COMPUTING CENTRE

## PERCENTAGE MOISTURE CONTENT OF HAY FIRST CUT MR. LEGAULT'S FARM JULY 31 1968 8 AM

0

| SAMPLE<br>NO•                  | DISH<br>NO. | DISH<br>WT.<br>GMS. | INITI-<br>AL WT.<br>GMS. | FINAL<br>WT.<br>GMS. | MOIS-<br>TURE<br>PCT. | SAMPLE<br>MEAN<br>PCT• |
|--------------------------------|-------------|---------------------|--------------------------|----------------------|-----------------------|------------------------|
| TREATMEN<br>A 1-7 1            | NT 1.<br>71 | 17.45               | 45.5                     | 38.0                 | 26.7                  | 05 0                   |
| B 1-7 1                        | 81          | 17.80               | 46.0<br>54.0             | 39.0<br>45.0         | 24.8                  | 25.8                   |
| B 1-7 2                        | 82          | 17.35               | 51.4                     | 41.1                 | 30.2                  | 27.4                   |
| C 1-7 1                        | 91          | 17.80               | 46.3                     | 39.0                 | 25.6                  | <u> </u>               |
| D 1-7 1                        | 92<br>11    | 16.95               | 28•3<br>39•1             | 48•0<br>34•1         | 22.6                  | 25.4                   |
| D 1-7 2                        | 12          | 17.05               | 49.0                     | 41.0                 | 25.0                  | 23.8                   |
| TDEATMEN                       | UT 2        |                     |                          | BLOCK                | MEAN 2                | 5.6                    |
| A $2-7$ 1                      | 73          | 17.25               | 44.5                     | 38.4                 | 22.4                  |                        |
| A 2-7 2                        | 74          | 17.50               | 52.5                     | 41.7                 | 30.9                  | 26.6                   |
| B 2-7 1                        | 83          | 17.10               | 49.1                     | 41.2                 | 24.7                  |                        |
| B 2-7 2<br>C 2-7 1             | 84          | 17.45               | 58.0<br>50.1             | 46.0                 | 29.3                  | 27.0                   |
| C 2-7 2                        | 94          | 17.70               | 57.3                     | 47.2                 | 25.5                  | 26.1                   |
| D 2-7 1                        | 13          | 16.95               | 50.0                     | 42.5                 | 22.7                  |                        |
| D 2-7 2                        | 14          | 16.95               | 61.5                     | 51.6                 | 22.2                  | 22.5                   |
| TREATMEN                       | NT 3.       |                     |                          | BLUCK                | MEAM Z                | 2.2                    |
| A 3-7 1                        | 75          | 17.60               | 48.0                     | 39.8                 | 27.0                  |                        |
| A 3-7 2                        | 76          | 17.40               | 46.3                     | 39.4                 | 23.9                  | 25.4                   |
| B 3-7 2                        | 85<br>86    | 17.30               | 59.4<br>47.8             | 49.3                 | 23.9                  | 20 0                   |
| C 3-7 1                        | 95          | 18.00               | 69.5                     | 51.7                 | 34.6                  | 20.0                   |
| C 3-7 2                        | 93          | 17.85               | 51.5                     | 41.1                 | 30.9                  | 32.7                   |
| D 3-7 1                        | 15          | 17.05               | 45.0                     | 38.1                 | 24.7                  | <b>2 2 5</b>           |
| 0 5-1 2                        | 10          | 10.00               | 5/.4                     | 44•2<br>BLOCK        | 37.3<br>MEAN 2        | 28.5                   |
| TREATMEN                       | VT 4.       |                     |                          | DLOOK                | HLA Z                 | 0.1                    |
| A 4-7 1                        | 77          | 17.10               | 56.0                     | 34.5                 | 55.3                  |                        |
| A 4-7 2<br>B 4-7 1             | /8<br>87    | 17.40               | 73.5                     | 43.1                 | 54.2                  | 54.7                   |
| B 4-7 2                        | 88          | 17.50               | 59.0                     | 41.3                 | 42.7                  | 47.1                   |
| C 4-7 1                        | 97          | 17.40               | 59.4                     | 45.3                 | 33.6                  |                        |
| C 4-7 2                        | 98<br>17    | 17.30               | 54.5                     | 36.0                 | 49.7                  | 41.7                   |
| D 4-7 2                        | 18          | 16.40               | 63.0                     | 42.0                 | 54•6<br>46•4          | 50.5                   |
|                                |             |                     | 0000                     | BLOCK                | MEAN 4                | 8.5                    |
|                                | NT 5.       | 17 (0               |                          | <b></b>              |                       |                        |
| A = 5 - 7 = 1<br>A = 5 - 7 = 2 | 80          | 17.10               | 44.3<br>42.5             | 35.6                 | 32.3                  | 30.0                   |
| B 5-7 1                        | 89          | 17.80               | 52.7                     | 41.2                 | 33.0                  | 0.00                   |
| B 5-7 2                        | 90          | 17.70               | 52.3                     | 42.0                 | 29.8                  | 31.4                   |
| 0 5-7 1                        | 99<br>04    | 17.85               | 48.7                     | 40 <u>•2</u>         | 27.6                  | 07 /                   |
| D 5-7 1                        | 70<br>19    | 16-45               | 46.2                     | 41•2<br>38.5         | 21.5                  | ۲.4                    |
| D 5-7 2                        | 20          | 17.15               | 45.1                     | 37.2                 | 28.3                  | 27.1                   |
|                                | •           |                     | - McGILL                 | UNIVER               |                       | 9.0<br>MPUTING CENT    |

COMPUTING CENTRE

#### PERCENTAGE MOISTURE CONTENT OF HAY FIRST CUT MR. LEGAULT'S FARM JULY 31 1968 10 AM

| S  | AMPLE<br>NO. | DISH<br>NO• | DISH<br>WT.<br>GMS. | INITI-<br>AL WT.<br>GMS. | FINAL<br>WT.<br>GMS. | MOIS-<br>TURE<br>PCT. | SAMPLE<br>MEAN<br>PCT• |
|----|--------------|-------------|---------------------|--------------------------|----------------------|-----------------------|------------------------|
| TR | EATMEN       | NT 1.       |                     |                          |                      |                       |                        |
| Å  | 1-7A1        | 75          | 17.60               | 50.9                     | 44.7                 | 18.6                  |                        |
| Α  | 1-742        | 76          | 17.40               | 32.2                     | 29.9                 | 15.5                  | 17.1                   |
| В  | 1-7A1        | 79          | 17.40               | 40.5                     | 36.3                 | 18.2                  |                        |
| В  | 1-7A1        | 80          | 17.10               | 41.2                     | 37.0                 | 17.4                  | 17.8                   |
| С  | 1-7A1        | 83          | 17.10               | 31.0                     | 28.3                 | 19.4                  |                        |
| С  | 1-7A2        | 84          | 17.10               | 39.0                     | 34.9                 | 18.7                  | 19.1                   |
| D  | 1-7A1        | 87          | 17.90               | 43.8                     | 39.2                 | 17.8                  |                        |
| D  | 1-742        | 88          | 17.50               | 44.9                     | 40.1                 | 17.5                  | 17.6                   |
|    |              |             |                     |                          | BLOCK                | MEAN                  | 17.9                   |
| TR | EATMEN       | NT 5.       |                     |                          |                      |                       |                        |
| Α  | 5-7A1        | 77          | 17.10               | 35.8                     | 31.0                 | 25.7                  |                        |
| Α  | 5-7A2        | 78          | 17.40               | 31.2                     | 27.6                 | 26.1                  | 25.9                   |
| В  | 5-7Al        | 81          | 17.40               | 49.6                     | 41.4                 | 25.5                  |                        |
| В  | 5-7A2        | 82          | 17.35               | 44.8                     | 36.1                 | 31.7                  | 28.6                   |
| С  | 5-7A1        | 85          | 17.20               | 40.0                     | 34.7                 | 23.2                  |                        |
| С  | 5-7A2        | 86          | 17.30               | 49.6                     | 42.0                 | 23.5                  | 23.4                   |
| D  | 5-741        | 89          | 17.80               | 44.6                     | 38.4                 | 23.1                  |                        |
| D  | 5-7A2        | 90          | 17.70               | 63.4                     | 52.8                 | 23.2                  | 23.2                   |
|    |              |             |                     |                          | BLOCK                | MEAN                  | 25.3                   |

٠

McGILL UNIVERSITY COMPUTING CENTRE -

## PERCENTAGE MOISTURE CONTENT OF HAY FIRST CUT MR. LEGAULT'S FARM JULY 31 1968 12 NOON

\_ ·

| TREATMENT 1.<br>A 1-8 1 44 17.90 40.8 37.1 16.2<br>A 1-8 2 46 17.90 37.0 34.4 13.6 14.9<br>B 1-8 1 56 17.80 38.3 35.8 12.2<br>B 1-8 2 54 17.35 36.2 33.4 14.9 13.5<br>C 1-8 1 11 16.95 44.3 40.5 13.9<br>C 1-8 2 28 16.90 46.4 41.7 15.9 14.9<br>D 1-8 1 32 16.15 39.4 36.0 14.6<br>D 1-8 2 37 16.95 45.2 41.5 13.1 13.9<br>BLOCK MEAN 14.3<br>TREATMENT 2.<br>A 2-8 1 39 17.80 43.0 39.0 15.9<br>A 2-8 2 51 17.60 46.1 39.9 21.8 18.8<br>B 2-8 2 52 17.50 41.2 37.4 16.0 14.3<br>C 2-8 2 17 16.45 31.9 29.1 18.1 17.1<br>D 2-8 1 55 17.65 38.1 35.4 13.2<br>B 2-8 2 7 16.45 31.9 29.1 18.1 17.1<br>D 2-8 1 55 17.65 38.1 35.4 13.2<br>D 2-8 2 34 16.00 33.9 30.9 16.8 15.0<br>BLOCK MEAN 16.3<br>TREATMENT 3.<br>A 3-8 1 55 17.65 44.8 37.3 27.8<br>A 3-8 2 77 17.10 49.8 40.8 27.5 27.7<br>B 3-8 1 42 18.05 50.2 40.2 31.1<br>B 3-8 1 42 18.05 50.2 40.2 31.1<br>B 3-8 1 42 18.05 50.2 40.2 31.1<br>B 3-8 2 29 16.25 42.0 35.0 27.2 25.4<br>D 3-8 2 9 16.25 42.0 35.0 27.2 25.4<br>D 3-8 2 29 16.25 42.0 35.0 27.2 25.4<br>D 3-8 2 29 16.55 50.2 36.7 47.0<br>BLOCK MEAN 27.2<br>TREATMENT 4.<br>A 4-8 1 24 17.05 52.9 36.4 46.0<br>BLOCK MEAN 27.2<br>TREATMENT 4.<br>A 4-8 1 24 17.05 50.2 36.7 47.0<br>B 4-8 1 43 18.05 50.2 36.7 47.0<br>B 4-8 1 43 18.05 50.2 36.7 45.0 43.5<br>C 4-8 1 30 16.30 99.4 41.7 41.1<br>C 4-8 2 25 17.15 54.5 39.6 39.9 40.5<br>D 4-8 2 33 16.15 50.1 35.9 41.8 43.7<br>BLOCK MEAN 43.3<br>TREATMENT 5.<br>A 5-8 1 26 16.70 44.5 39.6 19.9 40.5<br>D 4-8 2 33 16.15 50.1 35.9 41.8 43.7<br>BLOCK MEAN 43.3<br>TREATMENT 5.<br>A 5-8 1 26 16.70 44.5 39.0 19.9<br>5-8 1 40 16.90 39.9 35.9 17.4<br>B 5-8 2 49 17.75 43.6 38.4 19.4 21.3<br>D 5-8 1 33 17.20 53.1 46.0 19.8<br>BLOCK MEAN 43.3<br>BLOCK MEAN 43.3<br>B 5-8 1 38 17.20 53.1 46.0 19.8<br>BLOCK MEAN 43.3<br>B 5-8 1 40 16.90 39.9 35.9 17.4<br>B 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>BLOCK MEAN 43.3<br>B 5-8 1 38 17.20 53.1 46.0 19.8<br>B 100 CK MEAN 43.3<br>B 5-8 1 38 17.20 53.1 46.0 19.8<br>B 100 CK MEAN 19.5<br>B 17.8 BLOCK MEAN 19.5<br>B 17.8                                                                                                                                                                                                                                                                               | SAMPL<br>NC   | E DI   | SH<br>10. | DISH<br>WT.<br>GMS. | INITI-<br>AL WT.<br>GMS. | FINAL<br>WT.<br>GMS. | MOIS-<br>TURE<br>PCT. | SAMPLE<br>MEAN<br>PCT• |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------|-----------|---------------------|--------------------------|----------------------|-----------------------|------------------------|---------|
| TREATMENT 1.       4       17.90       40.8       37.1       16.2         A 1-8 1       56       17.90       37.0       34.4       13.6       14.9         B 1-8 2       56       17.35       36.2       33.4       14.9       13.5         C 1-8 1       11       16.95       44.3       40.5       13.9         C 1-8 2       28       16.90       46.4       41.7       15.9       14.9         D 1-8 1       32       16.95       45.2       41.5       13.1       13.9         BLOCK MEAN       14.3       14.3       14.3       14.3       14.3         TREATMENT 2.       BLOCK MEAN       14.3       14.3       14.3         TREATMENT 2.       A 2-8 2       51       17.60       42.0       38.9       12.7         B 2-8 1       50       17.50       42.0       38.9       12.7       14.3         C 2-8 2       17       16.45       31.9       29.1       18.1       14.3         C 2-8 1       31       16.50       34.3       35.6       15.0       14.3         C 2-8 2       17.165       38.1       35.4       13.2       10       27.5       27.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |        |           |                     |                          |                      |                       |                        |         |
| A 1-8 1 44 17.90 40.8 37.1 16.2<br>B 1-8 1 56 17.80 38.3 35.8 12.2<br>B 1-8 2 54 17.35 36.2 33.4 14.9 13.5<br>C 1-8 1 11 16.95 44.3 40.5 13.9<br>C 1-8 2 28 16.90 46.4 41.7 15.9 14.9<br>D 1-8 1 32 16.15 39.4 36.0 14.6<br>D 1-8 2 37 16.95 45.2 41.5 13.1 13.9<br>BLOCK MEAN 14.3<br>TREATMENT 2.<br>A 2-8 1 39 17.80 43.0 39.0 15.9<br>A 2-8 2 51 17.60 46.1 39.9 21.8 18.8<br>B 2-8 1 50 17.50 42.0 38.9 12.7<br>B 2-8 2 52 17.50 41.2 37.4 16.0 14.3<br>C 2-8 1 13 16.95 34.3 31.5 16.1<br>C 2-8 2 17 16.45 31.9 29.1 18.1 17.1<br>D 2-8 1 55 17.65 38.1 35.4 13.2<br>D 2-8 1 55 17.65 38.1 35.4 13.2<br>D 2-8 1 53 17.85 44.8 37.3 27.8<br>A 3-8 1 53 17.85 44.8 37.3 27.8<br>A 3-8 1 53 17.85 44.8 37.3 27.8<br>A 3-8 2 27 17.10 49.8 40.8 27.5 27.7<br>B 3-8 1 42 18.05 50.2 40.2 31.1<br>B 3-8 2 49 16.25 42.0 35.0 27.2 25.4<br>D 3-8 1 14 16.95 43.2 37.0 23.6<br>C 3-8 2 11 6.65 50.2 41.0 2 <sup>A</sup> .3 29.7<br>C 3-8 1 14 16.95 43.2 37.0 23.6<br>C 3-8 2 29 16.25 42.0 35.0 27.2 25.4<br>D 3-8 1 35 16.10 50.3 41.5 25.7<br>D 3-8 2 46 17.70 52.9 36.4 46.0<br>A 4-8 1 22 1 16.85 50.2 36.7 42.0<br>B LOCK MEA <sup>M</sup> 27.2<br>TREATMENT 4.<br>A 4-8 1 24 17.05 52.9 36.4 46.0<br>A 4-8 1 27 17.10 52.9 36.4 46.0<br>A 4-8 2 21 16.85 50.2 36.7 42.0<br>B 4-8 1 43 18.05 50.2 36.7 42.0<br>B 4-8 1 43 18.05 50.2 36.7 42.0<br>B 4-8 1 43 18.05 50.2 36.7 42.0<br>B 4-8 1 27 17.15 54.5 39.6 39.9 40.5<br>D 4-8 2 33 16.15 50.1 35.9 41.8 43.7<br>B 10.0 K MEA <sup>M</sup> 43.3<br>TREATMENT 5.<br>A 5-8 1 26 16.70 44.5 39.0 19.8<br>A 5-8 1 26 16.70 44.5 39.0 19.9<br>B 5-8 1 40 16.90 39.9 35.9 17.4<br>B 5-8 2 49 17.75 43.6 38.4 19.4 21.3<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>B 10.0 K MEA <sup>M</sup> 43.3<br>B 10.0 K MEA <sup>M</sup> 43 | TREATM        | IENT   | 1.        | 17 00               | (0.0                     | <b></b>              | 1 / 0                 | -                      |         |
| A 1-8 2 46 17.90 37.0 34.4 13.0 14.9<br>B 1-8 1 56 17.80 38.3 35.8 12.2<br>B 1-8 2 54 17.35 36.2 33.4 14.9 13.5<br>C 1-8 1 11 16.95 44.3 40.5 13.9<br>C 1-8 2 28 16.90 46.4 41.7 15.9 14.9<br>D 1-8 1 32 16.15 39.4 36.0 14.6<br>D 1-8 2 37 16.95 45.2 41.5 13.1 13.9<br>BLOCK MEAN 14.3<br>TREATMENT 2.<br>A 2-8 1 39 17.80 43.0 39.0 15.9<br>A 2-8 2 51 17.60 46.1 39.9 21.8 18.8<br>B 2-8 2 52 17.50 42.0 38.9 12.7<br>B 2-8 2 52 17.50 42.0 38.9 12.7<br>B 2-8 2 52 17.50 42.0 38.9 12.7<br>D 2-8 1 33 16.95 34.3 31.5 16.1<br>C 2-8 1 13 16.95 34.3 31.5 16.1<br>C 2-8 2 17 16.45 31.9 29.1 18.1 17.1<br>D 2-8 1 55 17.65 38.1 35.4 13.2<br>D 2-8 2 34 16.00 33.9 30.9 16.8 15.0<br>BLOCK MEAM 16.3<br>TREATMENT 3.<br>A 3-8 1 53 17.85 44.8 37.3 27.8<br>A 3-8 1 53 17.85 44.8 37.3 27.8<br>A 3-8 2 27 17.10 49.8 40.8 27.5 27.7<br>B 3-8 1 42 18.05 50.2 40.2 31.1<br>B 3-8 2 48 17.70 50.2 41.0 28.3 29.7<br>C 3-8 1 14 16.95 43.2 37.0 23.6<br>C 3-8 2 29 16.25 42.0 35.0 27.2 25.4<br>D 3-8 1 35 16.10 50.3 41.5 25.7<br>D 3-8 2 36 16.10 50.3 41.5 25.7<br>D 3-8 2 36 16.10 50.3 41.5 25.7<br>D 3-8 2 36 16.20 48.5 40.0 27.2 25.4<br>D 3-8 1 35 16.10 50.3 41.5 25.7<br>D 3-8 2 1 16.85 56.3 38.5 45.1 45.6<br>B 4-8 2 45 17.85 63.0 42.7 45.0 43.5<br>C 4-8 1 20 16.30 59.4 41.7 41.1<br>C 4-8 2 21 16.85 56.3 38.5 45.1 45.6<br>B 4-8 1 43 18.05 50.2 36.7 42.0<br>BLOCK MEAM 27.2<br>TREATMENT 4.<br>A 4-8 1 24 17.05 52.9 36.4 46.0<br>A 4-8 2 45 17.85 63.0 42.7 45.0 43.5<br>C 4-8 1 30 16.30 59.4 41.7 41.1<br>C 4-8 2 33 16.15 50.1 35.9 41.8 43.7<br>BLOCK MEAM 43.3<br>TREATMENT 5.<br>A 5-8 1 26 16.70 44.5 39.6 39.9 40.5<br>D 4-8 2 33 16.15 50.1 35.9 41.8 43.7<br>BLOCK MEAM 43.3<br>TREATMENT 5.<br>A 5-8 1 26 16.70 44.5 39.0 19.8<br>A 5-8 1 26 16.70 44.5 39.0 19.8<br>A 5-8 1 26 16.70 44.5 39.0 19.8<br>BLOCK MEAM 43.3<br>TREATMENT 5.<br>A 5-8 1 26 16.75 43.6 38.4 19.4 21.3<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>BLOCK MEAM 43.3<br>TREATMENT 5.<br>A 5-8 1 26 16.75 43.6 38.4 19.4 21.3<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>BLOCK MEAM 43.15<br>BLOCK MEAM 43.3<br>BLOCK MEAM 43.15<br>BLOCK MEAM 43.5<br>BLOCK MEAM 43.5<br>BLOCK MEAM 43.3<br>BLOCK MEAM 42.1.3<br>BLOCK MEAM 42.1.3<br>BLOCK MEAM 42.1.3<br>BLOCK MEAM 42.1.3                                                                                                                                                                                                                                                                                 | A 1-8         | 1      | 44        | 17.90               | 40.8                     | 31.1                 | 16.2                  | 14 0                   |         |
| D 1-80 1       300       30.3       30.4       14.9       13.5         C 1-8 1       11       16.95       44.3       40.5       13.9         C 1-8 2       28       16.90       46.4       41.7       15.9       14.9         D 1-8 1       32       16.95       45.2       41.5       13.1       13.9         BLOCK MEAN       14.3       80.0       14.6       14.3         TREATMENT 2.       42.8       39.0       15.9       80.0       80.0       14.3         A 2-8 2       51       17.60       46.1       39.9       21.8       18.8       8         B 2-8 1       50       17.50       42.0       38.9       12.7       8       14.3         C 2-8 2       17       16.45       31.9       29.1       18.1       17.1         D 2-8 1       55       17.65       38.1       35.4       13.2       0       0.9       16.8       15.0         BLOCK MEAN       16.3       14.2       37.4       16.0       14.3       14.3       14.60       14.3       14.5       14.1       17.1       15.0       15.0       15.0       16.10       16.3       15.0       16.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A 1-8         | 2      | 46        | 17.90               | 31.0                     | 34.4                 | 12.2                  | 14.9                   |         |
| b 1 - 6 2       34       11       16.95       35.7       1.7.9       1.7.9         C 1 - 8 1       11       16.95       44.3       40.5       13.9         C 1 - 8 1       32       16.15       39.4       36.0       14.6         D 1 - 8 2       37       16.95       44.3       40.5       13.1       13.9         TREATMENT 2.       A       2-8       39       17.80       45.2       41.5       13.1       13.9         REATMENT 2.       A       2-8       151       17.60       46.4       39.9       21.8       18.8         B 2-8       150       17.50       42.0       38.9       12.7       8         B 2-8       13       16.95       34.3       31.5       16.1       C         C 2-8       17       16.45       31.9       29.1       18.1       17.1         D 2-8       34       16.00       33.9       30.9       16.8       15.0         BLOCK MEAN       16.3       17.85       44.8       37.3       27.8       3.4       3.8       1.5       1.6       1.6       3.4       3.5       1.6       3.6       1.5       2.7       1.6       3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D 1-0         | 1      | 20<br>57  | 17 25               | 26.2                     | 22.4                 | 14.0                  | 12 5                   |         |
| C 1-8 2 28 16.90 46.4 41.7 15.9 14.9<br>D 1-8 1 32 16.15 39.4 36.0 14.6<br>D 1-8 2 37 16.95 45.2 41.5 13.1 13.9<br>BLOCK MEAN 14.3<br>TREATMENT 2.<br>A 2-8 1 39 17.80 43.0 39.0 15.9<br>A 2-8 2 51 17.60 46.1 39.9 21.8 18.8<br>B 2-8 1 50 17.50 42.0 38.9 12.7<br>B 2-8 2 52 17.50 41.2 37.4 16.0 14.3<br>C 2-8 1 13 16.95 34.3 31.5 16.1<br>C 2-8 2 17 16.45 31.9 29.1 18.1 17.1<br>D 2-8 1 55 17.65 38.1 35.4 13.2<br>D 2-8 2 34 16.00 33.9 30.9 16.8 15.0<br>BLOCK MEAN 16.3<br>TREATMENT 3.<br>A 3-8 1 53 17.85 44.8 37.3 27.8<br>A 3-8 2 27 17.10 49.8 40.8 27.5 27.7<br>B 3-8 2 48 17.70 50.2 40.2 31.1<br>B 3-8 2 48 17.70 50.2 40.2 31.1<br>B 3-8 1 42 18.05 50.2 40.2 31.1<br>B 3-8 1 42 18.05 50.2 40.2 31.1<br>B 3-8 1 42 18.05 50.2 40.2 31.1<br>D 3-8 2 36 16.20 48.5 40.0 26.3 29.7<br>C 3-8 1 14 16.95 43.2 37.0 23.6<br>C 3-8 2 29 16.25 42.0 35.0 27.2 25.4<br>D 3-8 2 36 16.20 48.5 40.0 26.3 26.0<br>BLOCK MEAN 27.2<br>TREATMENT 4.<br>A 4-8 1 24 17.05 52.9 36.4 46.0<br>A 4-8 2 25 17.15 54.5 39.6 39.9 40.5<br>D 4-8 1 33 16.10 59.4 41.7 41.1<br>C 4-8 2 25 17.15 54.5 39.6 39.9 40.5<br>D 4-8 2 33 16.15 50.1 35.9 41.8 43.7<br>BLOCK MEAN 45.5<br>D 4-8 2 33 16.15 50.1 35.9 41.8 43.7<br>BLOCK MEAN 43.3<br>TREATMENT 5.<br>A 5-8 1 26 16.70 44.5 39.0 19.8<br>A 5-8 1 26 16.70 44.5 39.0 19.8<br>BLOCK MEAN 43.3<br>TREATMENT 5.<br>A 5-8 1 26 16.70 44.5 39.0 19.8<br>BLOCK MEAN 43.3<br>TREATMENT 5.<br>A 5-8 1 26 16.70 44.5 39.0 19.8<br>BLOCK MEAN 43.3<br>TREATMENT 5.<br>A 5-8 1 26 16.75 43.6 38.4 19.4 21.3<br>D 5-8 2 31 16.75 43.6 38.4 19.4 21.3<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>BLOCK MEAN 19.5<br>BLOCK MEAN 19.5                                                                                                                                                                                                                                                       | D 1 = 0       | 2      | 24<br>11  | 14 05               | 50.2                     | 55.4<br>40 5         | 12 0                  | TOOD                   |         |
| C 1-8 2       20       10:10       10:15       39:4       36:0       14:6         D 1-8 2       37       16:95       45:2       41:5       13:1       13:9         BLOCK MEAN       14:3         TREATMENT 2.       A       2-8 2       51       17:60       46:1       39:9       21:8       18:8         B 2-8 1       50       17:50       41:2       37:4       16:0       14:3         C 2-8 2       52       17:50       41:2       37:4       16:0       14:3         C 2-8 1       13       16:95       38:1       31:5       16:1       17:1         D 2-8 1       55       17:65       38:1       35:4       13:2       17:1         D 2-8 2       34       16:00       33:9       30:9       16:8       15:0         BLOCK MEAN       16:3       16:20       48:5       13:2       17:7       16:3         A 3-8 1       53       17:85       44:8       37:3       27:8       16:3         A 3-8 1       53       17:85       42:0       35:0       27:2       25:4         D 3-8 2       29       16:25       42:0       35:0       27:2       25:4 <td>C 1 = 0</td> <td>1</td> <td>70</td> <td>16 00</td> <td>44.5</td> <td>40.9</td> <td>15 0</td> <td>14 0</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C 1 = 0       | 1      | 70        | 16 00               | 44.5                     | 40.9                 | 15 0                  | 14 0                   |         |
| D 1-8 2 37 16.95 45.2 41.5 13.1 13.9<br>BLOCK MEAN 14.3<br>TREATMENT 2.<br>A 2-8 1 39 17.80 43.0 39.0 15.9<br>A 2-8 2 51 17.60 46.1 39.9 21.8 18.8<br>B 2-8 2 52 17.50 42.0 38.9 12.7<br>B 2-8 2 52 17.50 41.2 37.4 16.0 14.3<br>C 2-8 1 13 16.95 34.3 31.5 16.1<br>C 2-8 2 17 16.45 31.9 29.1 18.1 17.1<br>D 2-8 2 34 16.00 33.9 30.9 16.8 15.0<br>BLOCK MEAN 16.3<br>TREATMENT 3.<br>A 3-8 1 53 17.85 44.8 37.3 27.8<br>A 3-8 2 27 17.10 49.8 40.8 27.5 27.7<br>B 3-8 1 42 18.05 50.2 40.2 31.1<br>B 3-8 2 48 17.70 50.2 41.0 28.3 29.7<br>C 3-8 1 14 16.95 43.2 37.0 23.6<br>C 3-8 2 29 16.25 42.0 35.0 27.2 25.4<br>D 3-8 1 35 16.10 50.3 41.5 25.7<br>D 3-8 2 36 16.10 50.3 41.5 25.7<br>D 3-8 2 36 16.20 48.5 40.0 26.3 26.0<br>BLOCK MEAN 27.2<br>TREATMENT 4.<br>A 4-8 1 24 17.05 52.9 36.4 46.0<br>A 4-8 2 21 16.85 56.3 38.5 45.1 45.6<br>BLOCK MEAN 27.2<br>TREATMENT 4.<br>A 4-8 1 24 17.05 52.9 36.4 46.0<br>A 4-8 2 21 16.85 56.3 38.5 45.1 45.6<br>BLOCK MEAN 27.2<br>TREATMENT 4.<br>A 4-8 1 24 17.05 52.9 36.4 46.0<br>A 4-8 2 21 16.85 56.3 38.5 45.1 45.6<br>BLOCK MEAN 27.2<br>TREATMENT 4.<br>A 4-8 1 24 17.05 52.9 36.4 46.0<br>A 4-8 2 21 16.85 56.3 38.5 45.1 45.6<br>BLOCK MEAN 43.3<br>TREATMENT 5.<br>A 5-8 1 26 16.70 44.5 39.6 39.9 40.5<br>D 4-8 2 33 16.15 50.1 35.9 41.8 43.7<br>BLOCK MEAN 43.3<br>TREATMENT 5.<br>A 5-8 1 26 16.70 44.5 39.6 19.8<br>A 5-8 1 26 16.70 44.5 39.6 19.9<br>A 5-8 2 22 16.80 51.3 44.4 20.0 19.9<br>B 5-8 1 40 16.90 39.9 35.9 17.4<br>B 5-8 1 26 16.75 40.5 35.0 23.2<br>C 5-8 2 5 16.75 43.6 38.4 19.4 21.3<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>BLOCK MEAN 19.5<br>BLOCK MEAN 19.5<br>BLOCK MEAN 19.5<br>BLOCK MEAN 19.5<br>BLOCK MEAN 19.5<br>BLOCK MEAN 19.5<br>BLOCK MEAN 43.3<br>TREATMENT 5.<br>A 5-8 1 26 16.70 44.5 39.0 20.5 18.9<br>C 5-8 2 49 17.75 49.5 43.0 20.5 18.9<br>C 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>BLOCK MEAN 19.5<br>BLOCK                                                                                                                                                                                                                                                          | $D_{1-8}$     | 2      | 20        | 16.15               | 40.4<br>20 4             | 36.0                 | 14.6                  | T.4 0 2                |         |
| TREATMENT 2.       A 2-8 1 39 17.80 43.0 39.0 15.9         A 2-8 1 39 17.80 443.0 39.0 15.9         BLOCK MEAN 14.3         C 2-8 1 13 16.95 34.3 31.5 16.1         C 2-8 2 17 16.45 31.9 29.1 18.1 17.1         D 2-8 1 55 17.65 38.1 35.4 13.2         D 2-8 2 34 16.00 33.9 30.9 16.8 15.0         BLOCK MEAN 16.3         TREATMENT 3.         A 3-8 1 53 17.85 44.8 37.3 27.8         A 3-8 1 53 16.10 50.2 41.0 29.3 1.1         B 3-8 2 48 17.70 50.2 41.0 29.3 29.7         C 3-8 2 29 16.25 42.0 35.0 27.2 25.4         D 3-8 2 36 16.20 48.5 40.0 26.3 26.0         BLOCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 1<br>2 | 27        | 16 95               | 45 2                     | 41 5                 | 12.1                  | 12.9                   |         |
| TREATMENT 2.       A 2-8 1 39 17.80 43.0 39.0 15.9         A 2-8 2 51 17.60 46.1 39.9 21.8 18.8         B 2-8 1 50 17.50 42.0 38.9 12.7         B 2-8 2 52 17.50 41.2 37.4 16.0 14.3         C 2-8 1 13 16.95 34.3 31.5 16.1         C 2-8 2 17 16.45 31.9 29.1 18.1 17.1         D 2-8 2 34 16.00 33.9 20.9 16.8 15.0         BLOCK MEAN 16.3         TREATMENT 3.         A 3-8 1 53 17.85 44.8 37.3 27.8         A 3-8 1 53 17.85 44.8 37.3 27.8         A 3-8 1 42 18.05 50.2 40.2 31.1         B 3-8 2 48 17.70 50.2 41.0 28.3 29.7         C 3-8 1 14 16.95 43.2 37.0 23.6         C 3-8 2 29 16.25 42.0 35.0 27.2 25.4         D 3-8 1 35 16.10 50.3 41.5 25.7         D 3-8 2 36 16.20 48.5 40.0 26.3 26.0         BLOCK MEAN 27.2         TREATMENT 4.         A 4-8 1 24 17.05 52.9 36.4 46.0         A 4-8 1 24 17.05 52.9 36.4 45.1 45.6         B 4-8 1 43 18.05 50.2 36.7 42.0         B 4-8 1 43 18.05 50.2 36.7 42.0         B 4-8 1 27 17.10 47.0 33.4 45.5         D 4-8 2 33 16.15 50.1 35.9 41.8 43.7         BLOCK MEAN 43.3         C 4-8 2 22 16.80 51.3 44.4 20.0 19.9         B 4-8 2 49 17.75 49.5 43.0 20.5 18.9         C 4-8 2 22 16.80 51.3 44.4 20.1 19.9         B 5-8 1 26 16.75 43.6 38.4 19.4 21.3         D 4-8 2 33 16.15 50.1 35.9 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 1-0         | ٤      | 10        | 10.95               | 7002                     |                      | MEAN                  | 14.3                   |         |
| A 2-8 1 39 17.80 43.0 39.0 15.9<br>A 2-8 2 51 17.60 46.1 39.9 21.8 18.8<br>B 2-8 1 50 17.50 42.0 38.9 12.7<br>B 2-8 2 52 17.50 41.2 37.4 16.0 14.3<br>C 2-8 1 13 16.95 34.3 31.5 16.1<br>C 2-8 2 17 16.45 31.9 29.1 18.1 17.1<br>D 2-8 1 55 17.65 38.1 35.4 13.2<br>D 2-8 2 34 16.00 33.9 30.9 16.8 15.0<br>BLOCK MEAM 16.3<br>TREATMENT 3.<br>A 3-8 1 53 17.85 44.8 37.3 27.8<br>A 3-8 2 27 17.10 49.8 40.8 27.5 27.7<br>B 3-8 1 42 18.05 50.2 40.2 31.1<br>B 3-8 2 48 17.70 50.2 41.0 28.3 29.7<br>C 3-8 1 14 16.95 43.2 37.0 23.6<br>C 3-8 2 29 16.25 42.0 35.0 27.2 25.4<br>D 3-8 1 35 16.10 50.3 41.5 25.7<br>D 3-8 2 36 16.20 48.5 40.0 26.3 26.0<br>BLOCK MEAM 27.2<br>TREATMENT 4.<br>A 4-8 1 24 17.05 52.9 36.4 46.0<br>A 4-8 2 21 16.85 56.3 38.5 45.1 45.6<br>B 4-8 1 24 17.05 52.9 36.4 46.0<br>A 4-8 2 21 16.85 56.3 38.5 45.1 45.6<br>B 4-8 1 24 17.05 52.9 36.4 46.0<br>A 4-8 2 25 17.15 54.5 39.6 39.9 40.5<br>D 4-8 2 33 16.15 50.1 35.9 41.8 43.7<br>BLOCK MEAM 43.3<br>TREATMENT 5.<br>A 5-8 1 26 16.70 44.5 39.0 19.8<br>A 5-8 2 22 16.80 51.3 44.4 20.0 19.9<br>B 5-8 1 40 16.90 39.9 35.9 17.4<br>BLOCK MEAM 43.3<br>TREATMENT 5.<br>A 5-8 1 26 16.70 44.5 39.0 19.8<br>A 5-8 1 23 16.75 40.5 35.0 23.2<br>C 5-8 1 23 16.75 40.5 35.0 23.2<br>C 5-8 2 5 16.75 43.6 38.4 19.4 21.3<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 1 47 17.90 41.9 88.1 15.8 17.8<br>D 5-8 1 47 17.90 41.9 88.1 15.8 17.8<br>D 5-8 2 47 17.90 41.9 88.1 15.8 17.8<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 1 47 17.90 41.9 88.1 15.8 17.8<br>D 5-8 1 47 17.90 41.9 88.1 15.8 17.8<br>D 5-8 1 247 17.90 41.9 88.1 15.8 17.8<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 1                                                                                                                                                                                                                                                                                              | TREATM        | 1ENT   | 2.        |                     |                          | DLOOK                | ULA"                  | 1100                   |         |
| A 2-8 2 51 17.60 46.1 39.9 21.8 18.8<br>B 2-8 1 50 17.50 42.0 38.9 12.7<br>B 2-8 2 52 17.50 41.2 37.4 16.0 14.3<br>C 2-8 1 13 16.95 34.3 31.5 16.1<br>C 2-8 2 17 16.45 31.9 29.1 18.1 17.1<br>D 2-8 1 55 17.65 38.1 35.4 13.2<br>D 2-8 2 34 16.00 33.9 30.9 16.8 15.0<br>BLOCK MEAN 16.3<br>TREATMENT 3.<br>A 3-8 1 53 17.85 44.8 37.3 27.8<br>A 3-8 2 27 17.10 49.8 40.8 27.5 27.7<br>B 3-8 1 42 18.05 50.2 40.2 31.1<br>B 3-8 2 48 17.70 50.2 41.0 28.3 29.7<br>C 3-8 1 14 16.95 43.2 37.0 23.6<br>C 3-8 2 29 16.25 42.0 35.0 27.2 25.4<br>D 3-8 1 35 16.10 50.3 41.5 25.7<br>D 3-8 2 36 16.20 48.5 40.0 26.3 26.0<br>BLOCK MEAN 27.2<br>TREATMENT 4.<br>A 4-8 1 24 17.05 52.9 36.4 46.0<br>A 4-8 2 21 16.85 56.3 38.5 45.1 45.6<br>B 4-8 2 45 17.85 63.0 42.7 45.0 43.5<br>C 4-8 1 30 16.30 59.4 41.7 41.1<br>C 4-8 2 25 17.15 54.5 39.6 39.9 40.5<br>D 4-8 2 33 16.15 50.1 35.9 41.8 43.7<br>BLOCK MEAN 43.3<br>TREATMENT 5.<br>A 5-8 1 26 16.70 44.5 39.C 19.8<br>A 5-8 2 29 17.75 49.5 43.0 20.5 18.9<br>C 5-8 1 23 16.75 40.5 35.0 23.2<br>C 5-8 2 5 16.75 40.5 35.0 23.2<br>C 5-8 2 5 16.75 40.5 35.0 23.2<br>C 5-8 2 21 16.85 11.3 44.4 20.0 19.9<br>B 5-8 1 40 16.90 39.9 35.9 17.4<br>B 5-8 2 49 17.75 49.5 43.0 20.5 18.9<br>C 5-8 1 23 16.75 40.5 35.0 23.2<br>C 5-8 2 5 16.75 40.5 35.0 23.2<br>C 5-8 2 5 16.75 40.5 35.0 23.2<br>C 5-8 2 5 16.75 40.5 35.0 23.2<br>C 5-8 2 49 17.79 41.9 38.1 15.8 17.8<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>D 5-8 2 47 17                                                                                                                                                                                                                                                                                                  | Δ 2-8         | 1      | 39        | 17.80               | 43.0                     | 39.0                 | 15.9                  |                        |         |
| B 2-8 1 50 17.50 42.0 38.9 12.7<br>B 2-8 2 52 17.50 41.2 37.4 16.0 14.3<br>C 2-8 1 13 16.95 34.3 31.5 16.1<br>C 2-8 2 17 16.45 31.9 29.1 18.1 17.1<br>D 2-8 1 55 17.65 38.1 35.4 13.2<br>D 2-8 2 34 16.00 33.9 30.9 16.8 15.0<br>BLOCK MEAN 16.3<br>TREATMENT 3.<br>A 3-8 1 53 17.85 44.8 37.3 27.8<br>A 3-8 2 27 17.10 49.8 40.8 27.5 27.7<br>B 3-8 1 42 18.05 50.2 40.2 31.1<br>B 3-8 2 48 17.70 50.2 41.0 28.3 29.7<br>C 3-8 1 14 16.95 43.2 37.0 23.6<br>C 3-8 2 29 16.25 42.0 35.0 27.2 25.4<br>D 3-8 1 35 16.10 50.3 41.5 25.7<br>D 3-8 2 36 16.20 48.5 40.0 26.3 26.0<br>BLOCK MEAN 27.2<br>TREATMENT 4.<br>A 4-8 1 24 17.05 52.9 36.4 46.0<br>A 4-8 2 21 16.85 56.3 38.5 45.1 45.6<br>B 4-8 1 43 18.05 50.2 36.7 42.0<br>B 4-8 2 45 17.85 63.0 42.7 45.0 43.5<br>C 4-8 2 25 17.15 54.5 39.6 39.9 40.5<br>D 4-8 2 33 16.15 50.1 35.9 41.8 43.7<br>BLOCK MEAN 43.3<br>TREATMENT 5.<br>A 5-8 1 26 16.70 44.5 39.0 19.8<br>A 5-8 2 29 17.75 49.5 43.0 20.5 18.9<br>C 5-8 2 49 17.75 49.5 43.0 20.5 18.9<br>C 5-8 2 49 17.79 41.9 38.1 15.8 17.8<br>MCGILL UNIVERSITY COMPUTING CENTRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A 2-8         | 2      | 51        | 17.60               | 46.1                     | 39.9                 | 21.8                  | 18.8                   |         |
| B 2-8 2 52 17.50 41.2 37.4 16.0 14.3<br>C 2-8 1 13 16.95 34.3 31.5 16.1<br>C 2-8 2 17 16.45 31.9 29.1 18.1 17.1<br>D 2-8 1 55 17.65 38.1 35.4 13.2<br>D 2-8 2 34 16.00 33.9 30.9 16.8 15.0<br>BLOCK MEAN 16.3<br>TREATMENT 3.<br>A 3-8 2 27 17.10 49.8 40.8 27.5 27.7<br>B 3-8 1 42 18.05 50.2 40.2 31.1<br>B 3-8 2 48 17.70 50.2 41.0 28.3 29.7<br>C 3-8 1 14 16.95 43.2 37.0 23.6<br>C 3-8 2 29 16.25 42.0 35.0 27.2 25.4<br>D 3-8 1 35 16.10 50.3 41.5 25.7<br>D 3-8 2 36 16.20 48.5 40.0 26.3 26.0<br>BLDCK MEAN 27.2<br>TREATMENT 4.<br>A 4-8 1 24 17.05 52.9 36.4 46.0<br>A 4-8 2 21 16.85 56.3 38.5 45.1 45.6<br>B 4-8 1 43 18.05 50.2 36.7 42.0<br>BLDCK MEAN 27.2<br>TREATMENT 4.<br>A 4-8 1 24 17.05 52.9 36.4 46.0<br>A 4-8 2 25 17.15 54.5 39.6 39.9 40.5<br>C 4-8 1 30 16.30 59.4 41.7 41.1<br>C 4-8 2 33 16.15 50.1 35.9 41.8 43.7<br>BLOCK MEAN 43.3<br>TREATMENT 5.<br>A 5-8 1 26 16.70 44.5 39.C 19.8<br>A 5-8 2 49 17.75 49.5 43.0 20.5 18.9<br>C 5-8 1 23 16.75 43.6 38.4 19.4 21.3<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 1 38 17.8<br>B 5-8 1 38 17.8<br>B 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 1 38 17.8<br>B 5-8 1 38 17.8<br>B 5-8 1 38 17.8<br>B 5-8 1 38 17                                                                                                                                                                                                                                                                                        | B 2-8         | ī      | 50        | 17.50               | 42.0                     | 38.9                 | 12.7                  |                        |         |
| C 2-8 1 13 16.95 34.3 31.5 16.1<br>C 2-8 2 17 16.45 31.9 29.1 18.1 17.1<br>D 2-8 1 55 17.65 38.1 35.4 13.2<br>D 2-8 2 34 16.00 33.9 30.9 16.8 15.0<br>BLOCK MEAN 16.3<br>TREATMENT 3.<br>A 3-8 1 53 17.85 44.8 37.3 27.8<br>A 3-8 2 27 17.10 49.8 40.8 27.5 27.7<br>B 3-8 2 48 17.70 50.2 41.0 29.3 29.7<br>C 3-8 1 14 16.95 43.2 37.0 23.6<br>C 3-8 2 29 16.25 42.0 35.0 27.2 25.4<br>D 3-8 2 36 16.20 48.5 40.0 26.3 26.0<br>BLOCK MEAN 27.2<br>TREATMENT 4.<br>A 4-8 1 24 17.05 52.9 36.4 46.0<br>A 4-8 2 21 16.85 56.3 38.5 45.1 45.6<br>B 4-8 1 43 18.05 50.2 36.7 42.0<br>B 4-8 2 45 17.85 63.0 42.7 45.0 43.5<br>C 4-8 1 30 16.30 59.4 41.7 41.1<br>C 4-8 2 25 17.15 54.5 39.6 39.9 40.5<br>D 4-8 1 27 17.10 47.0 33.4 45.5<br>D 4-8 2 33 16.15 50.1 35.9 41.8 43.7<br>BLOCK MEAN 43.3<br>TREATMENT 5.<br>A 5-8 1 26 16.70 44.5 39.0 19.8<br>A 5-8 1 23 16.75 40.5 35.0 23.2<br>C 5-8 1 33 16.75 40.5 35.0 23.2<br>C 5-8 1 30 16.30 59.4 41.7 41.8<br>BLOCK MEAN 43.3<br>TREATMENT 5.<br>A 5-8 1 26 16.70 44.5 39.0 19.8<br>A 5-8 1 26 16.70 44.5 39.0 19.8<br>BLOCK MEAN 43.3<br>TREATMENT 5.<br>A 5-8 1 26 16.75 40.5 35.0 23.2<br>C 5-8 1 23 16.75 40.5 35.0 23.2<br>C 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>BLOCK MEAN 19.4 21.3<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>BLOCK MEAN 19.5<br>McGILL UNIVERSITY COMPUTING CENTRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B 2-8         | 2      | 52        | 17.50               | 41.2                     | 37.4                 | 16.0                  | 14.3                   |         |
| C 2-8 2 17 16.45 31.9 29.1 18.1 17.1<br>D 2-8 1 55 17.65 38.1 35.4 13.2<br>D 2-8 2 34 16.00 33.9 30.9 16.8 15.0<br>BLOCK MEAN 16.3<br>TREATMENT 3.<br>A 3-8 1 53 17.85 44.8 37.3 27.8<br>A 3-8 2 27 17.10 49.8 40.8 27.5 27.7<br>B 3-8 1 42 18.05 50.2 40.2 31.1<br>B 3-8 2 48 17.70 50.2 41.0 29.3 29.7<br>C 3-8 1 14 16.95 43.2 37.0 23.6<br>C 3-8 2 29 16.25 42.0 35.0 27.2 25.4<br>D 3-8 1 35 16.10 50.3 41.5 25.7<br>D 3-8 2 36 16.20 48.5 40.0 26.3 26.0<br>BLOCK MEA <sup>M</sup> 27.2<br>TREATMENT 4.<br>A 4-8 1 24 17.05 52.9 36.4 46.0<br>A 4-8 2 21 16.85 56.3 38.5 45.1 45.6<br>B 4-8 1 43 18.05 50.2 36.7 42.0<br>B 4-8 2 45 17.85 63.0 42.7 45.0 43.5<br>C 4-8 1 30 16.30 59.4 41.7 41.1<br>C 4-8 2 25 17.15 54.5 39.6 39.9 40.5<br>D 4-8 1 27 17.10 47.0 33.4 45.5<br>D 4-8 1 26 16.70 44.5 39.0 19.8<br>A 5-8 1 26 16.70 44.5 39.0 19.8<br>A 5-8 1 23 16.75 40.5 35.0 23.2<br>TREATMENT 5.<br>A 5-8 1 26 16.70 44.5 39.0 19.8<br>A 5-8 1 23 16.75 40.5 35.0 23.2<br>C 5-8 1 33 16.75 40.5 35.0 23.2<br>C 5-8 1 23 16.75 40.5 35.0 23.2<br>C 5-8 1 23 16.75 40.5 35.0 23.2<br>C 5-8 1 23 16.75 40.5 35.0 23.2<br>C 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>B HOCK MEAN 19.4<br>B 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>MCGILL UNIVERSITY COMPUTING CENTRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C 2-8         | 1      | 13        | 16.95               | 34.3                     | 31.5                 | 16.1                  |                        |         |
| D 2-8 1 55 17.65 38.1 35.4 13.2<br>D 2-8 2 34 16.00 33.9 30.9 16.8 15.0<br>BLOCK MEAN 16.3<br>TREATMENT 3.<br>A 3-8 1 53 17.85 44.8 37.3 27.8<br>A 3-8 2 27 17.10 49.8 40.8 27.5 27.7<br>B 3-8 1 42 18.05 50.2 40.2 31.1<br>B 3-8 2 48 17.70 50.2 41.0 28.3 29.7<br>C 3-8 1 14 16.95 43.2 37.0 23.6<br>C 3-8 2 29 16.25 42.0 35.0 27.2 25.4<br>D 3-8 1 35 16.10 50.3 41.5 25.7<br>D 3-8 2 36 16.20 48.5 40.0 26.3 26.0<br>BLOCK MEAN 27.2<br>TREATMENT 4.<br>A 4-8 1 24 17.05 52.9 36.4 46.0<br>A 4-8 2 21 16.85 56.3 38.5 45.1 45.6<br>B 4-8 1 43 18.05 50.2 36.7 42.0<br>B 4-8 2 45 17.85 63.0 42.7 45.0 43.5<br>C 4-8 1 30 16.30 59.4 41.7 41.1<br>C 4-8 2 25 17.15 54.5 39.6 39.9 40.5<br>D 4-8 1 27 17.10 47.0 33.4 45.5<br>D 4-8 2 33 16.15 50.1 35.9 41.8 43.7<br>BLOCK MEAM 43.3<br>TREATMENT 5.<br>A 5-8 1 26 16.70 44.5 39.C 19.8<br>A 5-8 1 22 16.80 51.3 44.4 20.0 19.9<br>B 5-8 1 40 16.90 39.9 35.9 17.4<br>B 5-8 2 49 17.75 49.5 43.0 20.5 18.9<br>C 5-8 1 23 16.75 40.5 35.0 23.22<br>C 5-8 1 23 16.75 40.5 35.0 23.22<br>C 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>PLOCK MEAM 49.5<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>PLOCK MEAM 49.5<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>PLOCK MEAM 49.5<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>PLOCK MEAM 49.5<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>PLOCK MEAM 49.5<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>PLOCK MEAM 49.5<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>PLOCK MEAM 49.5<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>PLOCK MEAM 49.5<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>PLOCK MEAM 49.5<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>PLOCK MEAM 49.5<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>PLOCK MEAM 19.5<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>PLOCK MEAM 19.5<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>PLOCK MEAM 19.5<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>PLOCK MEAM 19.5<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>PLOCK MEAM 19.5<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>PLOCK MEAM 19.5<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>PLOCK MEAM 19.5<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>PLOCK MEAM 19.5<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>PLOCK MEAM                                                                                                                                                                                                                                                                                  | C 2-8         | 2      | 17        | 16.45               | 31.9                     | 29.1                 | 18.1                  | 17.1                   |         |
| D 2-8 2 34 16.00 33.9 30.9 16.8 15.0<br>BLOCK MEAN 16.3<br>TREATMENT 3.<br>A 3-8 1 53 17.85 44.8 37.3 27.8<br>A 3-8 2 27 17.10 49.8 40.8 27.5 27.7<br>B 3-8 1 42 18.05 50.2 40.2 31.1<br>B 3-8 2 48 17.70 50.2 41.0 29.3 29.7<br>C 3-8 1 14 16.95 43.2 37.0 23.6<br>C 3-8 2 29 16.25 42.0 35.0 27.2 25.4<br>D 3-8 1 35 16.10 50.3 41.5 25.7<br>D 3-8 2 36 16.20 48.5 40.0 26.3 26.0<br>BLOCK MEAN 27.2<br>TREATMENT 4.<br>A 4-8 1 24 17.05 52.9 36.4 46.0<br>A 4-8 2 21 16.85 56.3 38.5 45.1 45.6<br>B 4-8 1 43 18.05 50.2 36.7 42.0<br>B 4-8 2 45 17.85 63.0 42.7 45.0 43.5<br>C 4-8 1 30 16.30 59.4 41.7 41.1<br>C 4-8 2 25 17.15 54.5 39.6 39.9 40.5<br>D 4-8 2 33 16.15 50.1 35.9 41.8 43.7<br>BLOCK MEAN 43.3<br>TREATMENT 5.<br>A 5-8 1 26 16.70 44.5 39.0 19.8<br>A 5-8 2 49 17.75 49.5 43.0 20.5 18.9<br>C 5-8 1 23 16.75 40.5 35.0 23.2<br>C 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>BLOCK MEAN 19.5<br>D 4-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>BLOCK MEAN 19.5<br>C 47.8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>BLOCK MEAN 19.5<br>BLOCK ME                                                                                                                                                                                                                                  | D 2-8         | 1      | 55        | 17.65               | 38.1                     | 35.4                 | 13.2                  |                        |         |
| BLOCK MEAN 16.3         TREATMENT 3.         A 3-8 1       53       17.85       44.8       37.3       27.8         A 3-8 2       27       17.10       49.8       40.8       27.5       27.7         B 3-8 2       27       17.10       50.2       40.2       31.1         B 3-8 2       48       17.70       50.2       41.0       28.3       29.7         C 3-8 1       14       16.95       43.2       37.0       23.6       23.6         C 3-8 2       29       16.25       42.0       35.0       27.2       25.4         D 3-8 1       35       16.10       50.3       41.5       25.7       0         D 3-8 2       36       16.20       48.5       40.0       26.3       26.0         BLOCK MEAN       27.2       7.4       3.4       4.8       24.15       17.05         D 3-8 2       21       16.85       56.3       38.5       45.1       45.6         B 4-8 2       45       17.85       63.0       42.7       45.0       43.5         C 4-8 1       30       16.30       59.4       41.7       41.1       1         C 4-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D 2-8         | 2      | 34        | 16.00               | 33.9                     | 30.9                 | 16.8                  | 15.0                   |         |
| TREATMENT 3.         A 3-8 1       53       17.85       44.8       37.3       27.8         A 3-8 2       27       17.10       49.8       40.8       27.5       27.7         B 3-8 1       42       18.05       50.2       40.2       31.1         B 3-8 1       42       18.05       50.2       40.2       31.1         B 3-8 1       42       18.05       50.2       40.2       31.1         B 3-8 2       29       16.25       42.0       35.0       27.2       25.4         D 3-8 1       35       16.10       50.3       41.5       26.7       D         D 3-8 2       36       16.20       48.5       40.0       26.3       26.0         BLOCK MEAN       27.2       27.2       27.2       27.2       27.2         TREATMENT 4.       44.8       17.05       52.9       36.4       46.0       46.0         A 4-8 1       24       17.05       52.9       36.4       46.0       44.6       63.0         B 4-8 2       21       16.85       56.3       38.5       45.1       45.6         B 4-8 2       25       17.15       54.5       39.6       39.9 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>BLOCK</td> <td>MEAN</td> <td>16.3</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |        |           |                     |                          | BLOCK                | MEAN                  | 16.3                   |         |
| A 3-8 1 53 17.85 44.8 37.3 27.8<br>A 3-8 2 27 17.10 49.8 40.8 27.5 27.7<br>B 3-8 1 42 18.05 50.2 40.2 31.1<br>B 3-8 2 48 17.70 50.2 41.0 28.3 29.7<br>C 3-8 1 14 16.95 43.2 37.0 23.6<br>C 3-8 2 29 16.25 42.0 35.0 27.2 25.4<br>D 3-8 1 35 16.10 50.3 41.5 25.7<br>D 3-8 2 36 16.20 48.5 40.0 26.3 26.0<br>BLOCK MEAN 27.2<br>TREATMENT 4.<br>A 4-8 1 24 17.05 52.9 36.4 46.0<br>A 4-8 2 21 16.85 56.3 38.5 45.1 45.6<br>B 4-8 1 43 18.05 50.2 36.7 42.0<br>B 4-8 2 45 17.85 63.0 42.7 45.0 43.5<br>C 4-8 1 30 16.30 59.4 41.7 41.1<br>C 4-8 2 25 17.15 54.5 39.6 39.9 40.5<br>D 4-8 1 27 17.10 47.0 33.4 45.5<br>D 4-8 1 26 16.70 44.5 39.6 19.9 40.5<br>D 4-8 1 26 16.70 44.5 39.0 19.8<br>A 5-8 1 26 16.70 44.5 39.0 19.8<br>A 5-8 1 26 16.70 44.5 39.0 19.8<br>A 5-8 1 22 16.80 51.3 44.4 20.0 19.9<br>B 5-8 1 40 16.90 39.9 35.9 17.4<br>B 5-8 2 49 17.75 49.5 43.0 20.5 18.9<br>C 5-8 1 23 16.75 40.5 35.0 23.2<br>C 5-8 1 23 16.75 43.6 38.4 19.4 21.3<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>PHOCK MEAN 19.5<br>M GILL UNIVERSITY COMPUTING CENTRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TREAT         | 1ENT   | 3.        |                     |                          |                      |                       |                        |         |
| A 3-8 2 27 17.10 49.8 40.8 27.5 27.7<br>B 3-8 1 42 18.05 50.2 40.2 31.1<br>B 3-8 2 48 17.70 50.2 41.0 28.3 29.7<br>C 3-8 1 14 16.95 43.2 37.0 23.6<br>C 3-8 2 29 16.25 42.0 35.0 27.2 25.4<br>D 3-8 2 36 16.20 48.5 40.0 26.3 26.0<br>BLOCK MEA <sup>M</sup> 27.2<br>TREATMENT 4.<br>A 4-8 1 24 17.05 52.9 36.4 46.0<br>A 4-8 2 21 16.85 56.3 38.5 45.1 45.6<br>B 4-8 2 45 17.85 63.0 42.7 45.0 43.5<br>C 4-8 1 30 16.30 59.4 41.7 41.1<br>C 4-8 2 25 17.15 54.5 39.6 39.9 40.5<br>D 4-8 1 27 17.10 47.0 33.4 45.5<br>D 4-8 2 33 16.15 50.1 35.9 41.8 43.7<br>BLOCK MEA <sup>M</sup> 43.3<br>TREATMENT 5.<br>A 5-8 1 26 16.70 44.5 39.C 19.8<br>A 5-8 2 22 16.80 51.3 44.4 20.0 19.9<br>B 5-8 1 40 16.90 39.9 35.9 17.4<br>B 5-8 2 49 17.75 49.5 43.0 20.5 18.9<br>C 5-8 2 5 16.75 43.6 38.4 19.4 21.3<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8                                                                                                                                                                                                                                                                              | A 3-8         | 1      | 53        | 17.85               | 44.8                     | 37.3                 | 27.8                  |                        |         |
| B       3-8       1       42       18.05       50.2       40.2       31.1         B       3-8       2       48       17.70       50.2       41.0       28.3       29.7         C       3-8       1       14       16.95       43.2       37.0       23.6         C       3-8       2.9       16.25       42.0       35.0       27.2       25.4         D       3-8       1       35       16.10       50.3       41.5       25.7         D       3-8       2       36       16.20       48.5       40.0       26.3       26.0         BLOCK       MEAN       27.2       27.2       36.4       46.0       44.8       24       17.05       52.9       36.4       46.0       46.0         A       4-8       24       17.05       52.9       36.4       46.0       45.6       84.8       43.18.05       50.2       36.7       42.0       44.8       45.6       84.8       43.18.05       50.2       36.7       42.0       43.5       50.2       44.5       44.7       41.1       44.8       43.5       50.2       50.4       45.5       50.5       50.1       35.9       41.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A 3-8         | 2      | 27        | 17.10               | 49.8                     | 40.8                 | 27.5                  | 27.7                   |         |
| B 3-8 2 48 17.70 50.2 41.0 28.3 29.7<br>C 3-8 1 14 16.95 43.2 37.0 23.6<br>C 3-8 2 29 16.25 42.0 35.0 27.2 25.4<br>D 3-8 1 35 16.10 50.3 41.5 5.7<br>D 3-8 2 36 16.20 48.5 40.0 26.3 26.0<br>BLOCK MEAN 27.2<br>TREATMENT 4.<br>A 4-8 1 24 17.05 52.9 36.4 46.0<br>A 4-8 2 21 16.85 56.3 38.5 45.1 45.6<br>B 4-8 1 43 18.05 50.2 36.7 42.0<br>B 4-8 2 45 17.85 63.0 42.7 45.0 43.5<br>C 4-8 1 30 16.30 59.4 41.7 41.1<br>C 4-8 2 25 17.15 54.5 39.6 39.9 40.5<br>D 4-8 2 33 16.15 50.1 35.9 41.8 43.7<br>BLOCK MEAN 43.3<br>TREATMENT 5.<br>A 5-8 1 26 16.70 44.5 39.6 19.8<br>A 5-8 2 22 16.80 51.3 44.4 20.0 19.9<br>B 5-8 1 40 16.90 39.9 35.9 17.4<br>B 5-8 2 49 17.75 49.5 43.0 20.5 18.9<br>C 5-8 1 23 16.75 43.6 38.4 19.4 21.3<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>BLOCK MEAN 19.5<br>C 4.8 1 7.8<br>BLOCK MEAN 19.5<br>D 4.9 23.1 0.15 50.1 35.9 41.8 43.7<br>BLOCK MEAN 42.3 3<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>BLOCK MEAN 19.5<br>C 4.8 2 47 17.90 41.9 38.1 15.8 17.8<br>BLOCK MEAN 19.5<br>C 500 20.5 18.9<br>C 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>BLOCK MEAN 19.5<br>C 500 20.5 18.9<br>C 500 20.5 18.9<br>C 500 20.5 18.9<br>C 500 20.5 18.9<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>BLOCK MEAN 20.0 19.9<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>BLOCK MEAN 20.0 19.9<br>B 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>BLOCK MEAN 20.5 19.5<br>D 4.5 2 47 17.90 41.9 38.1 15.8 17.8<br>BLOCK MEAN 20.5 19.5<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>BLOCK MEAN 20.5 20.5 18.7<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>BLOCK MEAN 20.5 15.8 17.8<br>BLOCK MEAN 20.5 15.8 17.8<br>BLOCK MEAN 20.5 18.9<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>BLOCK MEAN 20.5 18.9<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>BLOCK MEAN 20.5 18.9<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>D 5-8 1 38 17.20 53.1 45.8 17.8                                                                                                                                                                                                                                                                                      | B 3-8         | 1      | 42        | 18.05               | 50.2                     | 40.2                 | 31.1                  |                        |         |
| C 3-8 1 14 16.95 43.2 37.0 23.6<br>C 3-8 2 29 16.25 42.0 35.0 27.2 25.4<br>D 3-8 1 35 16.10 50.3 41.5 25.7<br>D 3-8 2 36 16.20 48.5 40.0 26.3 26.0<br>BLOCK MEAN 27.2<br>TREATMENT 4.<br>A 4-8 1 24 17.05 52.9 36.4 46.0<br>A 4-8 2 21 16.85 56.3 38.5 45.1 45.6<br>B 4-8 1 43 18.05 50.2 36.7 42.0<br>B 4-8 2 45 17.85 63.0 42.7 45.0 43.5<br>C 4-8 1 30 16.30 59.4 41.7 41.1<br>C 4-8 2 25 17.15 54.5 39.6 39.9 40.5<br>D 4-8 1 27 17.10 47.0 33.4 45.5<br>D 4-8 2 33 16.15 50.1 35.9 41.8 43.7<br>BLOCK MEAN 43.3<br>TREATMENT 5.<br>A 5-8 1 26 16.70 44.5 39.C 19.8<br>A 5-8 2 22 16.80 51.3 44.4 20.0 19.9<br>B 5-8 1 40 16.90 39.9 35.9 17.4<br>B 5-8 2 49 17.75 49.5 43.0 20.5 18.9<br>C 5-8 1 23 16.75 40.5 35.0 23.2<br>C 5-8 2 5 16.75 43.6 38.4 19.4 21.3<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>BLOCK MEAN 19.5<br>McGILL UNIVERSITY COMPUTING CENTRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B <b>3-</b> 8 | 2      | 48        | 17.70               | 50.2                     | 41.0                 | 28.3                  | 29.7                   |         |
| C $3-8$ 2 29 $16.25$ 42.0 $35.0$ 27.2 $25.4$<br>D $3-8$ 1 $35$ $16.10$ 50.3 $41.5$ $25.7$<br>D $3-8$ 2 $36$ $16.20$ $48.5$ $40.0$ $26.3$ $26.0$<br>BLOCK MEAN 27.2<br>TREATMENT 4.<br>A $4-8$ 1 24 $17.05$ 52.9 $36.4$ $46.0$<br>A $4-8$ 2 21 $16.85$ 56.3 $38.5$ $45.1$ $45.6$<br>B $4-8$ 2 $45$ $17.85$ $63.0$ $42.7$ $45.0$ $43.5$<br>C $4-8$ 1 $30$ $16.30$ $59.4$ $41.7$ $41.1$<br>C $4-8$ 2 $25$ $17.15$ $54.5$ $39.6$ $39.9$ $40.5$<br>D $4-8$ 1 $27$ $17.10$ $47.0$ $33.4$ $45.5$<br>D $4-8$ 1 $27$ $17.10$ $47.0$ $33.4$ $45.5$<br>D $4-8$ 2 $33$ $16.15$ $50.1$ $35.9$ $41.8$ $43.7$<br>BLOCK MEAN $43.3$<br>TREATMENT 5.<br>A $5-8$ 1 $26$ $16.70$ $44.5$ $39.0$ $19.8$<br>A $5-8$ 2 $22$ $16.80$ $51.3$ $44.4$ $20.0$ $19.9$<br>B $5-8$ 1 $40$ $16.90$ $39.9$ $35.9$ $17.4$<br>B $5-8$ 2 $49$ $17.75$ $49.5$ $43.0$ $20.5$ $18.9$<br>C $5-8$ 1 $23$ $16.75$ $40.5$ $35.0$ $23.2$<br>C $5-8$ 1 $23$ $16.75$ $40.5$ $35.0$ $23.2$<br>C $5-8$ 1 $38$ $17.20$ $53.1$ $46.0$ $19.8$<br>D $5-8$ 1 $38$ $17.8$<br>BLOCK MEAN $19.5$<br>C $MECHLL$ UNIVERSITY COMPUTING CENTRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C 3-8         | 1      | 14        | 16.95               | 43.2                     | 37.0                 | 23.6                  |                        |         |
| D 3-8 1 35 16.10 50.3 41.5 25.7<br>D 3-8 2 36 16.20 48.5 40.0 26.3 26.0<br>BLOCK MEAN 27.2<br>TREATMENT 4.<br>A 4-8 1 24 17.05 52.9 36.4 46.0<br>A 4-8 2 21 16.85 56.3 38.5 45.1 45.6<br>B 4-8 2 45 17.85 63.0 42.7 45.0 43.5<br>C 4-8 1 30 16.30 59.4 41.7 41.1<br>C 4-8 2 25 17.15 54.5 39.6 39.9 40.5<br>D 4-8 1 27 17.10 47.0 33.4 45.5<br>D 4-8 2 33 16.15 50.1 35.9 41.8 43.7<br>BLOCK MEAN 43.3<br>TREATMENT 5.<br>A 5-8 1 26 16.70 44.5 39.C 19.8<br>A 5-8 2 22 16.80 51.3 44.4 20.0 19.9<br>B 5-8 1 40 16.90 39.9 35.9 17.4<br>B 5-8 2 49 17.75 49.5 43.0 20.5 18.9<br>C 5-8 1 23 16.75 40.5 35.0 23.2<br>C 5-8 2 5 16.75 43.6 38.4 19.4 21.3<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>BLOCK MEAN 19.5<br>MCGILL UNIVERSITY COMPUTING CENTRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C 3-8         | 2      | 29        | 16.25               | 42.0                     | 35.0                 | 27.2                  | 25.4                   |         |
| D 3-8 2 36 16.20 48.5 40.0 26.3 26.0<br>BLOCK MEAN 27.2<br>TREATMENT 4.<br>A 4-8 1 24 17.05 52.9 36.4 46.0<br>A 4-8 2 21 16.85 56.3 38.5 45.1 45.6<br>B 4-8 1 43 18.05 50.2 36.7 42.0<br>B 4-8 2 45 17.85 63.0 42.7 45.0 43.5<br>C 4-8 1 30 16.30 59.4 41.7 41.1<br>C 4-8 2 25 17.15 54.5 39.6 39.9 40.5<br>D 4-8 1 27 17.10 47.0 33.4 45.5<br>D 4-8 2 33 16.15 50.1 35.9 41.8 43.7<br>BLOCK MEAN 43.3<br>TREATMENT 5.<br>A 5-8 1 26 16.70 44.5 39.C 19.8<br>A 5-8 2 22 16.80 51.3 44.4 20.0 19.9<br>B 5-8 1 40 16.90 39.9 35.9 17.4<br>B 5-8 2 49 17.75 49.5 43.0 20.5 18.9<br>C 5-8 1 23 16.75 40.5 35.0 23.2<br>C 5-8 1 23 16.75 40.5 35.0 23.2<br>C 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>BLOCK MEAN 19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D 3-8         | 1      | 35        | 16.10               | 50.3                     | 41.5                 | 25.7                  |                        |         |
| BLUCK MEAN       27.2         TREATMENT 4.       A 4-8 1       24       17.05       52.9       36.4       46.0         A 4-8 2       21       16.85       56.3       38.5       45.1       45.6         B 4-8 2       21       16.85       50.2       36.7       42.0         B 4-8 2       45       17.85       63.0       42.7       45.0       43.5         C 4-8 1       30       16.30       59.4       41.7       41.1       11         C 4-8 2       25       17.15       54.5       39.6       39.9       40.5         D 4-8 1       27       17.10       47.0       33.4       45.5       55         D 4-8 2       33       16.15       50.1       35.9       41.8       43.7         BLOCK MEAN       43.3       TREATMENT 5.       A       5-8 1       26       16.70       44.5       39.0       19.8         A 5-8 2       22       16.80       51.3       44.4       20.0       19.9       9         B 5-8 1       40       16.90       39.9       35.9       17.4       8       5.8       24.9       17.75       49.5       43.0       20.5       18.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D 3-8         | 2      | 36        | 16.20               | 48.5                     | 40.0                 | 26.3                  | 26.0                   |         |
| IREATMENT 4.A 4-8 124 $17.05$ $52.9$ $36.4$ $46.0$ A 4-8 221 $16.85$ $56.3$ $38.5$ $45.1$ $45.6$ B 4-8 243 $18.05$ $50.2$ $36.7$ $42.0$ B 4-8 245 $17.85$ $63.0$ $42.7$ $45.0$ B 4-8 245 $17.85$ $63.0$ $42.7$ $45.0$ C 4-8 130 $16.30$ $59.4$ $41.7$ $41.1$ C 4-8 225 $17.15$ $54.5$ $39.6$ $39.9$ $40.5$ D 4-8 127 $17.10$ $47.0$ $33.4$ $45.5$ D 4-8 233 $16.15$ $50.1$ $35.9$ $41.8$ $43.7$ BLOCK MEAN $43.3$ BLOCK MEAN $43.3$ TREATMENT 5. $A5-8$ $2$ $22$ $16.80$ $51.3$ $44.4$ $20.0$ $19.9$ B 5-8 126 $16.70$ $44.5$ $39.0$ $19.8$ $A5-8$ $222$ $16.80$ $51.3$ $44.4$ $20.0$ $19.9$ B 5-8 140 $16.90$ $39.9$ $35.9$ $17.4$ $B5-8$ $123$ $16.75$ $43.6$ $38.4$ $19.4$ $21.3$ D 5-8 123 $16.75$ $43.6$ $38.4$ $19.4$ $21.3$ $5.8$ $17.8$ D 5-8 138 $17.20$ $53.1$ $46.0$ $19.8$ $17.8$ D 5-8 247 $17.90$ $41.9$ $38.1$ $15.8$ $17.8$ D 5-8 247 $17.90$ $41.9$ $38.1$ $15.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |        |           |                     |                          | BLOCK                | MEAN                  | 27.2                   |         |
| A 4-8 1 24 17.05 52.9 36.4 46.0<br>A 4-8 2 21 16.85 56.3 38.5 45.1 45.6<br>B 4-8 1 43 18.05 50.2 36.7 42.0<br>B 4-8 2 45 17.85 63.0 42.7 45.0 43.5<br>C 4-8 1 30 16.30 59.4 41.7 41.1<br>C 4-8 2 25 17.15 54.5 39.6 39.9 40.5<br>D 4-8 1 27 17.10 47.0 33.4 45.5<br>D 4-8 2 33 16.15 50.1 35.9 41.8 43.7<br>BLOCK MEAN 43.3<br>TREATMENT 5.<br>A 5-8 1 26 16.70 44.5 39.C 19.8<br>A 5-8 2 22 16.80 51.3 44.4 20.0 19.9<br>B 5-8 1 40 16.90 39.9 35.9 17.4<br>B 5-8 2 49 17.75 49.5 43.0 20.5 18.9<br>C 5-8 1 23 16.75 40.5 35.0 23.2<br>C 5-8 2 5 16.75 43.6 38.4 19.4 21.3<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>BLOCK MEAN 19.5<br>McGILL UNIVERSITY COMPUTING CENTRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TREAT         | MENT   | 4.        | 17 05               | 52.0                     | 3/ /                 |                       | <b>`</b>               |         |
| A       4-8       2       21 $18.85$ $56.3$ $38.5$ $45.1$ $45.6$ B       4-8       1       43 $18.05$ $50.2$ $36.7$ $42.0$ B       4-8       2 $45$ $17.85$ $63.0$ $42.7$ $45.0$ $43.5$ C       4-8       1       30 $16.30$ $59.4$ $41.7$ $41.1$ C       4-8       2 $25$ $17.15$ $54.5$ $39.6$ $39.9$ $40.5$ D       4-8       2 $25$ $17.15$ $54.5$ $39.6$ $39.9$ $40.5$ D       4-8       2 $33$ $16.15$ $50.1$ $35.9$ $41.8$ $43.7$ BLOCK       MEAN $43.3$ $44.4$ $20.0$ $19.9$ B       5-8       1 $26$ $16.70$ $44.5$ $39.0$ $19.8$ A       5-8       2 $22$ $16.80$ $51.3$ $44.4$ $20.0$ $19.9$ B       5-8       1 $23$ $16.75$ $43.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A 4-8         | 1      | 24        | 1/.05               | 52.9                     | 30.4<br>30.5         | 45.0                  | )                      |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A 4-8         | 2      | 21        | 10.05               | 50.3                     | 38.5                 | 47•1<br>47•1          | . 42.0                 |         |
| B       4+0       2       4+3       17.05       05.0       42.7       47.0       41.1         C       4+8       1       30       16.30       59.4       41.7       41.1         C       4+8       2       25       17.15       54.5       39.6       39.9       40.5         D       4+8       27       17.10       47.0       33.4       45.5         D       4+8       23       16.15       50.1       35.9       41.8       43.7         BLOCK       MEAN       43.3       43.3       84.4       20.0       19.9         A       5-8       1       26       16.70       44.5       39.0       19.8         A       5-8       2       22       16.80       51.3       44.4       20.0       19.9         B       5-8       1       40       16.90       39.9       35.9       17.4         B       5-8       2       49       17.75       49.5       43.0       20.5       18.9         C       5-8       1       23       16.75       43.6       38.4       19.4       21.3         D       5-8       1       38 <td>D 4-8</td> <td>1</td> <td>45</td> <td>17 05</td> <td>50•2<br/>43 0</td> <td>20 • 1<br/>42 7</td> <td>47.00</td> <td>)<br/>435</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D 4-8         | 1      | 45        | 17 05               | 50•2<br>43 0             | 20 • 1<br>42 7       | 47.00                 | )<br>435               |         |
| C 4-8 2 25 17.15 54.5 39.6 39.9 40.5<br>D 4-8 1 27 17.10 47.0 33.4 45.5<br>D 4-8 2 33 16.15 50.1 35.9 41.8 43.7<br>BLOCK MEAN 43.3<br>TREATMENT 5.<br>A 5-8 1 26 16.70 44.5 39.C 19.8<br>A 5-8 2 22 16.80 51.3 44.4 20.0 19.9<br>B 5-8 1 40 16.90 39.9 35.9 17.4<br>B 5-8 2 49 17.75 49.5 43.0 20.5 18.9<br>C 5-8 1 23 16.75 40.5 35.0 23.2<br>C 5-8 2 5 16.75 43.6 38.4 19.4 21.3<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>BLOCK MEAN 19.5<br>McGILL UNIVERSITY COMPUTING CENTRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6 4-8         | 2      | 20        | 16 30               | 59.0                     | 41.7                 | 41.1                  | +3.5                   |         |
| D 4-8 1 27 17.10 47.0 33.4 45.5<br>D 4-8 2 33 16.15 50.1 35.9 41.8 43.7<br>BLOCK MEAN 43.3<br>TREATMENT 5.<br>A 5-8 1 26 16.70 44.5 39.C 19.8<br>A 5-8 2 22 16.80 51.3 44.4 20.0 19.9<br>B 5-8 1 40 16.90 39.9 35.9 17.4<br>B 5-8 2 49 17.75 49.5 43.0 20.5 18.9<br>C 5-8 1 23 16.75 40.5 35.0 23.2<br>C 5-8 2 5 16.75 43.6 38.4 19.4 21.3<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>BLOCK MEAN 19.5<br>McGILL UNIVERSITY COMPUTING CENTRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C 4-8         | 2      | 25        | 17.15               | 54.5                     | 39.6                 | 39.9                  | 40.5                   |         |
| D 4-8 2 33 16.15 50.1 35.9 41.8 43.7<br>BLOCK MEAN 43.3<br>TREATMENT 5.<br>A 5-8 1 26 16.70 44.5 39.C 19.8<br>A 5-8 2 22 16.80 51.3 44.4 20.0 19.9<br>B 5-8 1 40 16.90 39.9 35.9 17.4<br>B 5-8 2 49 17.75 49.5 43.0 20.5 18.9<br>C 5-8 1 23 16.75 40.5 35.0 23.2<br>C 5-8 2 5 16.75 43.6 38.4 19.4 21.3<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>BLOCK MEAN 19.5<br>McGILL UNIVERSITY COMPUTING CENTRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D 4 - 8       | 1      | 27        | 17,10               | 47.0                     | 33.4                 | 45.5                  | 5                      |         |
| TREATMENT 5.       BLOCK MEAN 43.3         A 5-8 1       26       16.70       44.5       39.0       19.8         A 5-8 2       22       16.80       51.3       44.4       20.0       19.9         B 5-8 1       40       16.90       39.9       35.9       17.4         B 5-8 2       49       17.75       49.5       43.0       20.5       18.9         C 5-8 1       23       16.75       40.5       35.0       23.2       23.2         C 5-8 2       5       16.75       43.6       38.4       19.4       21.3         D 5-8 1       38       17.20       53.1       46.0       19.8         D 5-8 2       47       17.90       41.9       38.1       15.8       17.8         BLOCK MEAN       19.5       McGILL       UNIVERSITY       computing centre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D 4-8         | 2      | 33        | 16.15               | 50.1                     | 35.9                 | 41.8                  | 43.7                   |         |
| TREATMENT 5.         A 5-8 1       26       16.70       44.5       39.0       19.8         A 5-8 2       22       16.80       51.3       44.4       20.0       19.9         B 5-8 1       40       16.90       39.9       35.9       17.4         B 5-8 2       49       17.75       49.5       43.0       20.5       18.9         C 5-8 1       23       16.75       40.5       35.0       23.2         C 5-8 2       5       16.75       43.6       38.4       19.4       21.3         D 5-8 1       38       17.20       53.1       46.0       19.8         D 5-8 2       47       17.90       41.9       38.1       15.8       17.8         BLOCK       MEAN       19.5       COMPUTING CENTRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5,0           | -      | 55        | 10010               | 2001                     | BLOCK                | MEAN                  | 43.3                   |         |
| A       5-8       1       26       16.70       44.5       39.0       19.8         A       5-8       2       22       16.80       51.3       44.4       20.0       19.9         B       5-8       1       40       16.90       39.9       35.9       17.4         B       5-8       2       49       17.75       49.5       43.0       20.5       18.9         C       5-8       2       49       17.75       49.5       35.0       23.2         C       5-8       2       5       16.75       43.6       38.4       19.4       21.3         D       5-8       1       38       17.20       53.1       46.0       19.8         D       5-8       2       47       17.90       41.9       38.1       15.8       17.8         BLOCK       MEAN       19.5       COMPUTING CENTRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TREAT         | MENT   | 5.        |                     |                          |                      |                       |                        |         |
| A       5-8       2       16.80       51.3       44.4       20.0       19.9         B       5-8       1       40       16.90       39.9       35.9       17.4         B       5-8       2       49       17.75       49.5       43.0       20.5       18.9         C       5-8       1       23       16.75       40.5       35.0       23.2         C       5-8       2       5       16.75       43.6       38.4       19.4       21.3         D       5-8       1       38       17.20       53.1       46.0       19.8         D       5-8       2       47       17.90       41.9       38.1       15.8       17.8         BLOCK       MEAN       19.5       COMPUTING CENTRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A 5-8         | 1      | 26        | 16.70               | 44.5                     | 39.0                 | 19.8                  | 3                      |         |
| B       5-8       1       40       16.90       39.9       35.9       17.4         B       5-8       2       49       17.75       49.5       43.0       20.5       18.9         C       5-8       1       23       16.75       40.5       35.0       23.2         C       5-8       2       5       16.75       43.6       38.4       19.4       21.3         D       5-8       1       38       17.20       53.1       46.0       19.8         D       5-8       2       47       17.90       41.9       38.1       15.8       17.8         B       DCK       MEGILL       UNIVERSITY       COMPUTING CENTRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A 5-8         | 2      | 22        | 16.80               | 51.3                     | 44.4                 | 20.0                  | ) 19.9                 |         |
| B       5-8       2       49       17.75       49.5       43.0       20.5       18.9         C       5-8       1       23       16.75       40.5       35.0       23.2         C       5-8       2       5       16.75       43.6       38.4       19.4       21.3         D       5-8       1       38       17.20       53.1       46.0       19.8         D       5-8       2       47       17.90       41.9       38.1       15.8       17.8         BLOCK       MEGILL       UNIVERSITY       COMPUTING CENTRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B 5-8         | 1      | 40        | 16.90               | 39.9                     | 35.9                 | 17.4                  | +                      |         |
| C 5-8 1 23 16.75 40.5 35.0 23.2<br>C 5-8 2 5 16.75 43.6 38.4 19.4 21.3<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>BLOCK MEAN 19.5<br>McGILL UNIVERSITY COMPUTING CENTRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B 5-8         | 2      | 49        | 17.75               | 49.5                     | 43.0                 | 20.5                  | 5 18.9                 |         |
| C 5-8 2 5 16.75 43.6 38.4 19.4 21.3<br>D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>BLOCK MEAN 19.5<br>McGILL UNIVERSITY COMPUTING CENTRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C 5-8         | 1      | 23        | 16.75               | 40.5                     | 35.0                 | 23.2                  | 2                      |         |
| D 5-8 1 38 17.20 53.1 46.0 19.8<br>D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>BLOCK MEAN 19.5<br>McGILL UNIVERSITY COMPUTING CENTRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C 5-8         | 2      | 5         | 16.75               | 43.6                     | 38.4                 | 19.4                  | + 21.3                 |         |
| D 5-8 2 47 17.90 41.9 38.1 15.8 17.8<br>BLOCK MEAN 19.5<br>McGILL UNIVERSITY COMPUTING CENTRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D 5-8         | 1      | 38        | 17.20               | 53.1                     | 46.0                 | 19.8                  | 3                      |         |
| McGILL UNIVERSITY COMPUTING CENTRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D 5-8         | 2      | 47        | 17.90               | 41.9                     | 38.1                 | 15.8                  | 3 17.8                 |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |        |           |                     | McGILl                   | UNIVEI               | ₹ \$ I T Y            | COMPUTING CENTRE       | · ····· |

#### PERCENTAGE MOISTURE CONTENT OF HAY FIRST CUT MR. LEGAULT'S FARM JULY 31 1968 2 PM

| S  | AMPLE<br>NO. | DISH<br>NO• | DISH<br>WT.<br>GMS. | INITI-<br>AL WT.<br>GMS. | FINAL<br>WT.<br>GMS. | MOIS-<br>TURE<br>PCT• | SAMPLE<br>MEAN<br>PCT• |
|----|--------------|-------------|---------------------|--------------------------|----------------------|-----------------------|------------------------|
| TR | EATMEN       | NT 1.       |                     |                          |                      |                       |                        |
| Α  | 1-8A1        | 59          | 17.70               | 31.9                     | 29.8                 | 14.8                  |                        |
| Α  | 1-8A2        | 60          | 17.80               | 27.6                     | 26.2                 | 14.3                  | 14.5                   |
| В  | 1-8A1        | 63          | 17.90               | 45.7                     | 41.0                 | 16.9                  |                        |
| В  | 1-8A2        | 64          | 17.70               | 33.6                     | 31.2                 | 15.1                  | 16.0                   |
| С  | 1-8A1        | 67          | 17.10               | 32.0                     | 29.7                 | 15.4                  |                        |
| С  | 1-8A2        | 68          | 17.45               | 40.0                     | 36.9                 | 13.7                  | 14.6                   |
| D  | 1-8A1        | 71          | 17.45               | 40.1                     | 36.5                 | 15.9                  |                        |
| D  | 1-8A2        | 72          | 17.80               | 42.3                     | 38.4                 | 15.9                  | 15.9                   |
|    |              |             |                     |                          | BLOCK                | MEAN ]                | 5.3                    |
| TR | EATME        | NT 5.       |                     |                          |                      |                       |                        |
| Α  | 5-8A1        | 61          | 17.70               | 45.0                     | 39.1                 | 21.6                  |                        |
| А  | 5-8A2        | 62          | 17.65               | 34.8                     | 31.3                 | 20.4                  | 21.0                   |
| В  | 5-8A1        | 65          | 17.45               | 46.2                     | 40.9                 | 18.4                  |                        |
| В  | 5-8A2        | 66          | 17.30               | 34.1                     | 31.3                 | 16.7                  | 17.6                   |
| С  | 5-8Al        | 69          | 17.65               | 38.2                     | 35.0                 | 15.6                  |                        |
| С  | 5-8A2        | 70          | 17.50               | 38.2                     | 34.9                 | 15.9                  | 15.8                   |
| D  | 5-8A1        | 73          | 17.25               | 45.0                     | 40.7                 | 15.5                  |                        |
| D  | 5-8A2        | 74          | 17.50               | 38.5                     | 35.5                 | 14.3                  | 14.9                   |
|    |              |             |                     |                          | BLOCK                | MEAN                  | 17.3                   |

đ

#### PERCENTAGE MOISTURE CONTENT OF HAY FIRST CUT MR. LEGAULT'S FARM JULY 31 1968 4 PM

٩

| S  | AMPLE<br>NO• | DISH<br>NO• | DISH<br>WT•<br>GMS• | INITI-<br>AL WT.<br>GMS. | FINAL<br>WT.<br>GMS. | MOIS-<br>TURE<br>PCT. | SAMPLE<br>MEAN<br>PCT• |
|----|--------------|-------------|---------------------|--------------------------|----------------------|-----------------------|------------------------|
| TR | EATMEN       | NT 1.       |                     |                          |                      |                       |                        |
| Α  | 1-8B1        | 1           | 16.60               | 33.8                     | 31.3                 | 14.5                  |                        |
| Α  | 1-8B2        | 9           | 17.05               | 49.3                     | 45.2                 | 12.7                  | 13.6                   |
| В  | 1-8B1        | 5           | 16.75               | 40.6                     | 37.4                 | 13.4                  |                        |
| В  | 1-8B2        | 6           | 16.60               | 38.6                     | 35.4                 | 14.5                  | 14.0                   |
| Ċ  | 1-8B1        | 14          | 16.95               | 38.4                     | 35.7                 | 12.6                  |                        |
| С  | 1-8B2        | 10          | 17.10               | 40.1                     | 37.1                 | 13.0                  | 12.8                   |
| D  | 1-8B1        | 13          | 16.95               | 45.8                     | 42.6                 | 11.1                  |                        |
| D  | 1-8B2        | 16          | 16.55               | 42.1                     | 38.4                 | 14.5                  | 12.8                   |
|    |              |             |                     |                          | BLOCK                | MEAN                  | 13.3                   |
| TR | EATME        | NT 5.       |                     |                          |                      |                       |                        |
| Α  | 5-8B1        | 3           | 16.60               | 30.0                     | 28.4                 | 11.9                  |                        |
| Α  | 5-8B2        | 4           | 16.75               | 33.1                     | 30.4                 | 16.5                  | 14.2                   |
| В  | 5-8B1        | 7           | 16.55               | 39.4                     | 36.4                 | 13.1                  |                        |
| В  | 5-8B2        | 8           | 17.00               | 31.0                     | 28.9                 | 15.0                  | 14.1                   |
| С  | 5-8B1        | 11          | 16.95               | 51.4                     | 47.2                 | 12.2                  |                        |
| С  | 5-8B2        | 12          | 17.05               | 34.6                     | 32.2                 | 13.7                  | 12.9                   |
| D  | 5-8B1        | 15          | 17.05               | 39.9                     | 37.2                 | 11.8                  |                        |
| D  | 5-882        | 2           | 16.70               | 37.7                     | 34.3                 | 16.2                  | 14.0                   |
|    |              |             |                     |                          | BLOCK                | MEAN                  | 13.8                   |

MCGILL UNIVERSITY COMPUTING CENTRE -

-

# PERCENTAGE MOISTURE CONTENT OF HAY FIRST CUT MR. LEGAULT'S FARM JULY 31 1968 4 PM

ŧ,

| S  | AMPLE<br>NO. | DISH<br>NO• | DISH<br>WT.<br>GMS. | INITI-<br>AL WT.<br>GMS. | FINAL<br>WT.<br>GMS. | MOIS-<br>TURE<br>PCT. | SAMPLE<br>MEAN<br>PCT. |
|----|--------------|-------------|---------------------|--------------------------|----------------------|-----------------------|------------------------|
| TR |              | NT 1.       |                     |                          |                      |                       |                        |
| Α  | 1-881        | 1           | 16.60               | 33.8                     | 31.3                 | 14.5                  |                        |
| Α  | 1-8B2        | 9           | 17.05               | 49.3                     | 45.2                 | 12.7                  | 13.6                   |
| В  | 1-8B1        | 5           | 16.75               | 40.6                     | 37.4                 | 13.4                  |                        |
| В  | 1-8B2        | 6           | 16.60               | 38.6                     | 35.4                 | 14.5                  | 14.0                   |
| С  | 1-8B1        | 14          | 16.95               | 38.4                     | 35.7                 | 12.6                  |                        |
| С  | 1-8B2        | 10          | 17.10               | 40.1                     | 37.1                 | 13.0                  | 12.8                   |
| D  | 1-8B1        | 13          | 16.95               | 45.8                     | 42.6                 | 11.1                  |                        |
| D  | 1-8B2        | 16          | 16.55               | 42.1                     | 38.4                 | 14.5                  | 12.8                   |
|    |              |             |                     |                          | BLOCK                | MEAN 1                | .3.3                   |
| TR | EATME        | NT 5.       |                     |                          |                      |                       |                        |
| Α  | 5-8B1        | 3           | 16.60               | 30.0                     | 28.4                 | 11.9                  |                        |
| Α  | 5-8B2        | 4           | 16.75               | 33.1                     | 30.4                 | 16.5                  | 14.2                   |
| В  | 5-8B1        | 7           | 16.55               | 39.4                     | 36.4                 | 13.1                  |                        |
| В  | 5-8B2        | 8           | 17.00               | 31.0                     | 28.9                 | 15.0                  | 14.1                   |
| С  | 5-8B1        | 11          | 16.95               | 51.4                     | 47.2                 | 12.2                  |                        |
| С  | 5-8B2        | 12          | 17.05               | 34.6                     | 32.2                 | 13.7                  | 12.9                   |
| Ð  | 5-8B1        | 15          | 17.05               | 39.9                     | 37.2                 | 11.8                  |                        |
| D  | 5-8B2        | 2           | 16.70               | 37.7                     | 34.3                 | 16.2                  | 14.0                   |
|    |              |             |                     |                          | BLOCK.               | MEAN                  | 13.8                   |

MCGILL UNIVERSITY COMPUTING CENTRE -

#### PERCENTAGE MOISTURE CONTENT OF HAY FIRST CUT MR. LEGAULT'S FARM JULY 31 1968 6 PM

| SAMPLE<br>NO•      | DISH<br>NO• | DISH<br>WT.<br>GMS. | INITI-<br>AL WT.<br>GMS. | FINAL<br>WT.<br>GMS. | MOIS-<br>TURE<br>PCT• | SAMPLE<br>MEAN<br>PCT. |
|--------------------|-------------|---------------------|--------------------------|----------------------|-----------------------|------------------------|
|                    |             |                     |                          |                      |                       |                        |
| TREATMEN           | NT 1.       | 17 70               | 20 0                     | 25 2                 | 101                   |                        |
| A 1-9 1            | 1           | 16.00               | 20.0                     | 20 0                 |                       | 14 0                   |
| A 1-9 2<br>B 1-0 1 | 11          | 16.70               | 26 9                     | 30.0<br>34 5         | 12.5                  | 14•2                   |
| B 1-9 1            | 12          | 17.05               | 34.2                     | 31.7                 | 14.6                  | 13.1                   |
| (1-9)              | 21          | 16.85               | 40.1                     | 36.9                 | 13.8                  | 1.7 • 1                |
| $C_{1-9}$          | 22          | 16.80               | 32.4                     | 30.1                 | 14.7                  | 14.3                   |
| D 1-9 1            | 31          | 16.50               | 30.8                     | 29.0                 | 12.6                  | 1105                   |
| $D_{1-2}$          | 32          | 16.15               | 32.5                     | 30.2                 | 14.1                  | 13.3                   |
|                    |             | 100122              | 5205                     | BLOCK                | MEAN 1                | 3.7                    |
| TREATME            | VT 2.       |                     |                          |                      |                       |                        |
| A 2-9 1            | 3           | 16.60               | 38.4                     | 34.9                 | 16.1                  |                        |
| A 2-9 2            | 4           | 16.75               | 46.8                     | 41.0                 | 19.3                  | 17.7                   |
| B 2-9 1            | 13          | 16.95               | 34.3                     | 32.0                 | 13.3                  |                        |
| B 2-9 2            | 14          | 16.95               | 41.0                     | 36.3                 | 19.5                  | 16.4                   |
| C 2-9 1            | 23          | 16.75               | 37.9                     | 34.8                 | 14.7                  |                        |
| C 2-9 2            | 24          | 17.05               | 40.6                     | 37.1                 | 14.9                  | 14.8                   |
| D 2-9 1            | 33          | 16.15               | 39.2                     | 35.8                 | 14.8                  |                        |
| D 2-9 2            | 34          | 16.00               | 38.0                     | 34.5                 | 15.9                  | 15.3                   |
|                    |             |                     |                          | BLOCK                | MEAN .                | 16.0                   |
| TREATME            | NT 3        | 14 75               | ( <b>)</b>               | 24 5                 | <b>n</b> n <b>n</b>   |                        |
| A 3-9 1            | 5           | 16.75               | 42.5                     | 30.5                 | 20.0                  | 24 4                   |
| A 3-9 Z            | 15          | 17 05               | 21.4<br>25 5             | 21 1                 | 20.0                  | 24.4                   |
| B 3-9 I            | 12          | 14 55               | 22.2<br>20.2             |                      | 20.0                  | 22 6                   |
| C 3-9 2            | 10          | 10.00               | 43.0                     | 36 8                 | 23.5                  | 25.0                   |
| $(3-9)^{2}$        | 26          | 16 70               | 27 2                     | 32 1                 | 200                   | 22.0                   |
|                    | 20          | 16.10               | 40.1                     | 35.2                 | 20.4                  | 22.00                  |
| $D_{3-9}^{2}$      | 36          | 16.20               | 42.5                     | 36.5                 | 22.8                  | 21.6                   |
|                    | 20          | 20020               |                          | BLOCK                | MEAN                  | 22.9                   |
| TREATME            | NT 4.       |                     |                          |                      |                       |                        |
| A 4-9 1            | 7           | 16.55               | 59 <b>.</b> 7            | 41.5                 | 42.2                  |                        |
| A 4-9 2            | 8           | 17.00               | 53.8                     | 37.8                 | <b>43.5</b>           | 42.8                   |
| B 4-9 1            | 17          | 16.45               | 50.6                     | 36.4                 | 41.6                  |                        |
| B 4-9 2            | 18          | 16.40               | 49.0                     | 34.9                 | 43.3                  | 42.4                   |
| C 4-9 1            | 31          | 16.50               | 46.1                     | 35.0                 | 37.5                  |                        |
| C 4-9 2            | 28          | 16.90               | 48.7                     | 35.8                 | <b>40.6</b>           | 39.0                   |
| D 4-9 1            | ·· 37       | 16.95               | 70.6                     | 48.6                 | 41.0                  |                        |
| D 4-9 2            | 38          | 17.20               | 75.0                     | 52.7                 | 38.6                  | 39.8                   |
|                    |             |                     |                          | BLOCK                | MEAN                  | 41.0                   |
| IREAIME            | NI 5.       | 1 - 0 -             |                          | / <b>-</b> -         | 10 5                  |                        |
| A 5-9 1            | 9           | 17.05               | 49.5                     | 43.5                 | 18.5                  | 17 0                   |
| A 5-9 2            | 10          | 14 45               | 43•U<br>25 0             | ンソ・U<br>スク フ         | 12.4                  | T / • O                |
| B 5-0 7            | 20          | 10.47<br>17 15      | 20.0                     | 20 0                 | エロ・フ<br>1に つ          | 15.0                   |
| ( 5-9 L            | 20<br>20    | 16 25               | 22 2<br>22 2             | 2707<br>30.4         | 17.0                  | 1707                   |
| C 5 - 9 2          | 30          | 16.30               | 40.1                     | 36.7                 | 14.3                  | 15.6                   |
| D 5-9 1            | 39          | 17.80               | 32.6                     | 30.0                 | 17.6                  |                        |
| D 5-9 2            | 40          | 16.90               | 33.2                     | 30.3                 | 17.8                  | 17.7                   |
|                    |             |                     |                          | BLOCK                | MEAN                  | 16.5                   |
|                    |             |                     | - McGILL                 | UNIVE                | KOLLA C               | OMPUTING CENTRE        |

