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Abstract 

This dissertation comprises three essays that study three distinct derivative contracts. 

The first essay proves, in a model-free framework, that early exercise of futures-style 

options on futures, whether calls or puts, is suboptimal. The result is robust to 

transaction costs, liquidity constraints and collateral requirements. Assuming a 

frictionless market, three additional model-free results are obtained: i) put-cali parity, 

ii) equality of time values of puts and calls with the same strike and expiration, and 

iii) positivity of time value before expiration. The second essay develops a new 

invoice priee formula for Treasury bond futures contracts as a more effective 

alternative to the current conversion factor system. The equilibrium "cheapest to 

deliver" and futures price at expiration are identified. The empirical part of the essay 

documents that the new function dramatically improves the ab il it y of the futures 

invoice priee to approximate the market prices of the corresponding deliverable 

bonds. The third essay offers a regression-based empirical study of the determinants 

of credit defauIt swap premia. Leverage, volatility and interest rates are found to 

account for a large percentage of the variation of premia. A principal components 

analysis of the regression residuals finds no evidence of a missing factor. The results 

achieved for credit default premia more c10sely corroborate structural models of 

credit risk than those obtained by Collin-Dufresne et al. (2001) for corporate bond 

yield spreads. 
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Résumé 

Cette dissertation comporte trois essais qui étudient trois contrats dérivés distincts. 

Le premier essai démontre, sans se basant sur un modèle, que l'exercice prématuré 

des futures-style options sur futures, qu'elles soient des options d'achat ou de vente, 

est sous optimal. Le résultat est robuste à l'addition des coûts de transaction, des 

contraintes de liquidité et des conditions collatérales. Supposons un marché sans 

friction, trois autres résultats - non basés sur un modèle- obtiennent a savoir: i) la 

parité put-cali, ii) l'égalité des valeurs temps des options d'achat et de vente de même 

maturité et prix d'exercice, et iii) la positivité de la valeur temps avant l'expiration de 

l'option. Le second essai propose une nouvelle formule de calcul du prix de 

facturation pour les contrats futures sur les bons de trésor comme une alternative plus 

efficace au courant système de facteur de conversion. La « moins cher à délivrer» et 

les prix futures à l'équilibre à la maturité sont identifiés. La partie empirique de 

l'essai documente que la nouvelle fonction améliore sensiblement la capacité des prix 

de facturation à terme à approximer les prix du marché de l'obligation à délivrer 

correspondante. Le troisième essai examine les déterminants de la prime de défaut 

sur les contrat d'échange (CDS) â partir des régressions mulivariées. Nous trouvons 

que l'endettement, la volatilité et les taux d'intérêts peuvent expliquer un grand 

pourcentage de la variation totale de la prime. Une analyse en composante principale 

des résidus de la régression ne trouve aucune évidence de facteurs manquants. Les 

résultats accomplis pour les primes de défaut corroborent plus étroitement les 

modèles structurels de risque de crédit que ceux obtenus par Collin-Dufresne et al. 

(2001) pour les écarts de rendements sur les obligations corporatives. 
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Introduction 

Derivatives straddle many related research fields. These include theoretical valu­

ation, empirical testing, calibration, hedging performance of models, market mi­

crostructure and contract design. The essays comprising this dissertation draw 

elements from all these areas: contract design (essays 1 and especially 2), empiri­

cal testing of model predictions (essay 3), valuation of existing derivative contracts 

(essays 1, 2), empirical comparison of alternative derivative contract design (essay 

2), transaction costs and illiquidity coneerns (essays 2, 1), and hedging (essay 2). 

The first essay, "The Suboptimality of Early Exercise of Futures-Style Options: 

A Model-Free Result", examines futures options whose premia are not paid up 

front, but marked to market in the same way as a futures priee. The results 

obtained in this paper are the following: 

1. put-call parity, 

2. equality of the time value of calls and put with the same strike and expira­

tion, 

3. positivity of the time value, and 

4. suboptimality of early exercise. 

AlI these results have been derived in the previous literature, but only for 

specifie models and assuming frictionless markets. First, l prove the four results, 

also assuming frictionless markets, but allow for arbitrary dynamics of the under­

lying futures price and of the interest rate. Therefore, in a frictionless market, 

the four results are model-independent. Second, l show that the fourth result is 

even more general in that it is robust to transaction costs, illiquidity constraints 

and exchange collateral requirements. Consequently, the suboptimality of early 

exercise trivializes inclusion of the American feature in contract specifications. 

In my second essay, "Improving the design of Treasury-bond futures contracts" , 

forthcoming in the Journal of Business, l propose an alternative method for invoic­

ing futures contracts and compare it with the conversion factor system currently 

in use. At the outset of each T-bond futures contract, the exchange establishes 

a list of eligible bonds for delivery. On expiration, the seller makes his selec­

tion. The multi-asset feature of T-bond futures contracts serves principally to 

facilitate delivery of the underlying, thus avoiding liquidity problems in the spot 

market that could render it difficult or too costly for the seller to make delivery. 
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ln futures contracts on a single underlying, the short receives, at expiration, a 

payment computed using a futures invoiee priee equal to the last settlement priee. 

For multi-asset T-bond futures, however, applying the same futures invoice priee 

for any deliverable bonds can make it too onerous for the seller to deliver any bond 

save the cheapest. Such a proeedure, therefore, renders the bond selection facil­

ity obsolete. To mitigate this coneern, exchanges utilize a so-called "conversion 

factor" formula that makes the invoice priee a function not only of the last settle­

ment priee, but also of the bond chosen for delivery. 1 propose a new formula to 

determine the invoiee priee as a function of the same variables. With this new for­

mula, the invoiee price of each deliverable bond is doser to its corresponding spot 

priee. Consequently, one would expect that the demand for deliverable bonds be 

less coneentrated on a single issue. In turn, this minimizes overpricing of optimal 

deliverable bonds and of the futures contract and deliberately provoked shortages 

of that issue are discouraged. For the particular case of a fiat yield curve, the pro­

posed method achieves equality of invoiee priee and markets priee. The empirical 

performanee of both methods is compared by measuring the differenee between 

invoiee priee and market priee of the deliverable bonds. The method proposed in 

this essay outperforms the current one in practice by up to 4 times. Therefore, 

my modification of the above formula constitutes an important improvement to 

the design of T -bond futures contracts. 

The third essay of my dissertation, "The determinants of credit default swap 

premia", coauthored with Prof. Jan Ericsson and Prof. Kris Jacobs, is an em­

pirical study on credit default swaps (CDS). This instrument is essentially an 

insuranee contract against the default of an underlying entity. On the one hand, 

the buyer regularly pays a premium up to expiration or until default of the issuer 

of the underlying bonds. On the other hand, upon default, he is entitled to sell 

underlying bonds at par. In our study, we carry out linear regression analysis on 

the relationship between CDS premia and key variables suggested by economic 

theory. Our benchmark results focus on financial leverage, firm-specific volatil­

ity and the risk-free rate. We find that the estimated coefficients for the three 

variables are consistent with theory and that the estimates are highly significant, 

both statistically and economically. The size of the effects is intuitively plausible. 

The amount of variation in swap premia explained by the differenee regressions 

is higher than in existing work on corporate bond spreads. When we consider 

regressions in levels, explanatory power is quite high with R-squares ranging from 

50% to 75%. Thus, variables drawn from economic theory are clearly important 
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to explain credit default swap premia. 

Literature Review 

In this literature review, 1 first outline the progression of key articles that provide 

the theoretical foundation for my dissertation. Second, 1 relate my essays to those 

articles. And third, 1 discuss the literature associated to each essay separately. 

Derivatives theory can be traced back to Modigliani and Miller (1958) in their 

use of no-arbitrage arguments. There are two means of computing equilibrium 

relative prices. The simplest precludes arbitrages consisting in static strategies 

e.g. in the pricing of forwards relative to the spot priee. More complex dynamic 

arbitrage strategies were introduced by Merton (1973) in continuous time to prove 

the Black and Scholes (1973)'s formula, and by Cox et al. (1979), in discrete 

time, with the use of backward induction in binomial trees. Before studying 

any partieular model, Merton (1973) developed a selection of model-free results 

which any rational pricing model should satisfy. These conditions were derived 

by ruling out dominated strategies that would lead ta static arbitrages. On the 

other hand, derivatives pricing theory was, from its ineeption, applied to the 

theory of corporate securities valuation by Black and Scholes (1973) and Merton 

(1974), who priee corporate bonds and equity by considering them as derivatives 

on the company's assets. Implicit in the valuation of a bond is the credit spread 

included in its yield to maturity. Using simple no-arbitrage arguments, Duffie 

and Singleton (2003) show that the credit spread of a floating rate par bond 

must equal the credit default swap premium. For standard bonds, the credit 

default swap premium approximates the credit spread of the bonds issued by the 

underlying entity. 

Merton (1973)'s approach of setting model-free boundaries to options prices is 

followed in the first essay. While Merton (1973) concluded that exercising a caU 

on non-dividend stock is suboptimal, 1 show that it is never optimal to exercise a 

futures-style option on futures, regardless of it being a call or a put. A Modigliani 

and Miller (1958) type arbitrage is used in the second essay ta establish the T-bond 

futures priee at expiration, given the priees of aH the bonds that are deliverable by 

the seller. This arbitrage is more complex than those contained in Modigliani and 

Miller (1958) because the futures priee has a direct connection with the optimal 

bond to deliver. At the same time, this bond is determined by comparing the 

market priee of each eligible bond and its futures invoiee priee, whieh is a function 
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of the futures priee to be determined. The third essay capitalizes on Duffie and 

Singleton (2003) 's relationship between credit default swaps premia and bond 

credit spreads by pinpointing the theoretical determinants of swap premia in the 

determinants of bond credit spreads dictated by Merton (1974)'s model: leverage, 

volatility and interest rates. 

The following documents the research found on futures-style options, the sub­

ject of my first essay. Duffie (1989) coneeives the term "pure futures options" 

(PFO) to denote futures-style options on futures. He notes that European PFO 

are equivalent to futures on an European option on futures (where the futures 

expiration coincides with that of the option). Assuming a Black (1976) mar­

ket (a futures price following a geometric Brownian motion and a deterministic 

interest rate), Lieu (1990) develops a formula for the valuation of futures-style 

options. Within this framework, he proves that the time value of a European 

PFO is always positive before maturity. Because the time value of an American 

option cannot be lower, early exercise is never optimal. Assuming constant inter­

est rates, he derives put-calI parity and shows how calls and puts with the same 

strike and expiration have equal time value. Duffie and Stanton (1992) is a study 

of continuously resettled European contingent daims pricing within a stochastic 

economy. The contingent daims are allowed to provide a convenienee yield. Chen 

and Scott (1993) allows for stochastic interest rates within the Cox et al. (1985a) 

general equilibrium framework. Their model provides formulae for the valuation 

offutures-style options and validates Lieu (1990)'s put-caU parity. They also show 

that, under Cox et al. (1985a)'s framework, early exercise is never optimal. Kuo 

(1993) also incorporates stochastic interest rates into the valuation of European 

options. However, the interest rate and the futures priee are governed by the 

same source of uneertainty. He hypothesizes that pure futures options could be 

optimally exercised early within the context of his model. My first essay shows 

how this can never be the case, regardless of the model. Easton (1997) tests 

put-calI parity in the Sydney Futures Exchange. Satchell et al. (1997) establishes 

that futures-style options can be valued using the Lieu (1990)'s formulae, if the 

pricing kernel is lognormally distributed. A forward-style option also requires 

that the interest rate accumulation factor be lognormal. Frey and Sommer (1998) 

generalizes a Geske-type compound options formula, to a setting with stochastic 

interest rates and a futures-style option as the underlying. Kutner et al. (2001) 

extends Barone-Adesi and Whaley (1987)'s model to value American futures-style 

options on spot. When the cost of carry is negative, there exists an early-exercise 
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premium. Options on futures can be valued using the option-on-spot model and 

by setting the cost of carry equal to zero, which makes the model equivalent to 

Lieu (1990)'s. In the empirieal part of the paper, whieh is based on the reduced 

form of their model, they show that the early exercise premia of PFO traded on 

the Australian AlI Ordinaries Share Price Index are economicallY zero. 

Merton (1973) shows conditions that any rational pricing model for option on 

spot should satisfy. Among other model-free results, he proves: i) put-calI parity, 

ii) that the value of a call always exceeds its intrinsie value, and iii) that it is 

never optimal to exercise a calI before expiration. These model-free results, which 

constitute the first part of his paper, only assume that investors prefer more to 

less. Only afterwards does he analyze a partieular model, Black-Scholes's, and 

derives their formula using pure arbitrage arguments. 1 follow Merton (1973)'s 

lead in not using a particular model to prove results whieh are model-independent. 

Now, 1 will comment on the literature related to my second essay on Treasury­

bond futures contracts. As mentioned in the Introduction, the short of such 

contracts can choose whieh bond to deliver among a prespecified basket of eli­

gible bonds. The literature refers to this ability as the quality option, which is 

the object of the following papers. Gay and Manaster (1984) applies Margrabe 

(1978)'s 2-asset exchange option pricing formula to commodity futures contracts. 

Their research shows that the quality option has a significant impact on futures 

pricing. Kane and Marcus (1986) is an early attempt to value the quality option of 

'Ireasury-bond futures contracts by using Monte Carlo simulation of term struc­

tures. Livingston (1987) argues that the value of the quality option is zero under 

continuous frictionless trading. A note by Kane and Marcus (1988) questioned 

the validity of his arguments. Boyle (1989) argues that delivery options can have 

significant value, especially when the number of deliverable assets is large. He also 

studies the interaction between the timing option and the quality option. Hemler 

(1990)'s results indieate that the quality option of T-bond futures contracts is 

worth considerably less than what Kane and Marcus (1986) reported. Carr and 

Chen (1997) utilize a two-factor model to determine the T-bond futures price in 

the presence of the quality option. They find that the value of the quality option 

is not negligible. Kamara and Siegel (1987) and Yu (1999) investigate hedging in 

the presence of the quality option. 

Obviously, the value of a quality option is crucially dependent on the form of 

the futures invoiee priee function, Le. the algorithm which computes the futures 

invoice priee to be paid by the short. The literature has highlighted certain 
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weaknesses in the current functional form which impact the good functioning 

of the futures and underlying spot markets. Kane and Marcus (1986) notice that 

profits and equilibrium futures prices can differ substantially, depending on the 

ultimately chosen deliverable bond. Jordan and Kuipers (1997) show how the 

futures contract can significantly distort the spot price of the optimal bond for 

delivery, whieh is referred to as the "cheapest to deliver" (CTD). In addition, they 

pinpoint "the importance of contract design" and specifically cite the conversion 

factor system as a cause for the above distortions. However, they do not offer any 

alternative to the conversion factor system. Schulte and Violi (2001) examine the 

effect of futures contracts on the European spot market. They state that "The 

tremendous level of activity in the EUREX contract has raised concerns about 

the risk of a short age in the cheapest to deliver". They argue that, in order to 

avoid "squeezes", it is important that it not be easily forecastable whieh bond, 

at expiration, will become the CTD. Merriek et al. (2003) investigate a well­

publicized market manipulation episode: an attempted delivery squeeze in a bond 

futures contract traded in London. 

Substantial research does exist on the valuation of quality options whose value 

depends on the futures invoice priee function. However, although many papers 

have expressed reservations about the current functional form, no research has 

proposed an alternative invoice price function that attenuates the aforementioned 

drawbacks. This is precisely the goal of my second essay. Note that Kane and 

Marcus (1984) propose a minor variation to the conversion factor system. How­

ever, their goal of increasing the hedging effectiveness of T-bond futures differs 

from the main objective of my essay and is unrelated to the concern expressed by 

the authors in the previous paragraph. 

Little empirieal work has been carried out on credit default swaps (CDS), the 

subject of my third essay. Houweling and Vorst (2005) implements a set of sim­

ple reduced-form models on market CDS quotes and corporate bond quotes. The 

paper focuses on the pricing performance of the model and on the choice of bench­

mark yield curve. Hull et al. (2004) analyzes the impact of rating announcements 

on the pricing of CDS. Longstaff et al. (2004) and Blanco et al. (2003) study the 

relative pricing of corporate bonds and default swaps. 

In contrast, a body of empirieal work abounds on corporate bonds, another 

credit-sensitive instrument. This work often resorts to what are known as reduced­

form models.1 These assume, exogenously, the dynamies of default probabilities 

ISee Jarrow and Turnbull (1995) and Duffie and Singleton (1999) for early work on this topic. 
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and use market data to capture the parameters necessary to value credit-sensitive 

daims in a way that predudes arbitrage.2 This approach finds its origins in 

models of the risk-free term structure.3 . While these models have been shown to be 

versatile in practical applications, they fuUy discount the theoretical determinants 

of prices of defaultable securities. 

An alternative approach, commonly referred to as the structural approach, 

relies on models that have evolved foUowing Black and Scholes (1973) and Merton 

(1974), which price corporate bonds and stock by considering them derivatives 

of the company's total assets. This method directly links credit-risky instrument 

pricing to the economic determinants of financial distress and loss-given-default.4 

Following Merton (1974)'s work, the basic structural model has been further ex­

tended. Such extensions typicaUy focus on the importance of additional theoret­

ical variables or change the precise functional dependence of default on existing 

theoretical variables. However, alternative models parallel each other to the ex­

tent that default and, therefore, the value of default-sensitive securities depend 

on a number of determinants that are central to Merton (1974)'s approach. First, 

leverage is fundamental to aU these models: ceteris pari bus , the higher the lever­

age, the greater the probability of default by a firm. Second, assets volatility is 

a key determinant of the value of default-sensitive bonds because the latter are 

equivalent to credit risk-free bonds and short puts, whose value is influenced by 

volatility. Third, the level of the riskless rate also impacts the value of that option. 

Although the correlation between the risk-free rate and the bond spread is not 

strictly part of Merton (1974)'s analysis, which assumes a constant interest rate, 

the framework does predict, through comparative statics, a negative relationship 

between these two variables. As the risk-free rate determines the risk-adjusted 

drift of firm value, then any increase in this variable will have the effect of de­

creasing risk-adjusted default probabilities and also spreads. The same result has 

been proved in theoretical studies where risk-free rate dynamics have explicitly 

been modelled, and empirical studies have confirmed the predicted sign of the 

Useful surveys can be found in Lando (1997) and Duffie and Singleton (2003). 
2Empirical papers using reduced form models to value credit risky bonds include Bakshi et al. 

(2001), Driessen (2004), Duffee (1999), Duffie and Lando (2000), Duffie et al. (2003) and Elton 
et al. (2001). 

3For examples of this approach see Duffie and Singleton (1999), Jarrow and Turnbull (1995), 
Lando (1998), and Madan and Unal (2000). 

4Important examples include Black and Cox (1976), Collin-Dufresne and Goldstein (2001), 
Geske (1977), Kim et al. (1993), Leland (1994), Leland and Toft (1996), Longstaff and Schwartz 
(1995) and Nielsen et al. (1993). 
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aforesaid correlation.5 However, Duffie and Singleton (2003) states that one pos­

sible explanation for the empirical negative correlation is the existenee of st ale 

corporate bond priees. Spreads are measured as the differenee between corporate 

and the 'Ifeasury yield curves; therefore, an increase in 'Ifeasury yields might be 

associated with a decrease in spreads until the recorded corporate bond priee ac­

counts for the change. The results of the third essay reject the latter explanation 

because we measure the credit component directly, and also find the previously 

mentioned negative correlation. 

In empirical studies, structural models have typically performed poorly.6 Per­

haps as a result of the difficulty of implementing structural models in practiee, 

a more pragmatic and direct stanee was taken by Collin-Dufresne et al. (2001) 

who adopt the structural approach only to identify the theoretical determinants of 

corporate bond credit spreads. The variables are then re-employed as explanatory 

variables in regressions for innovations in corporate credit spreads, rather than in­

puts to a particular structural model. Their main findings show that the predicted 

variables only weakly explain spread changes, and a principal components analy­

sis indicates that a major part of the residuals of the regression corresponding to 

different bonds are driven by a common systematic factor. 7 Campbell and Taksler 

(2003) effect a similar analysis but use regressions for levels of corporate bond 

spread. They conclude that firm-specific equity volatility is an important deter­

minant of corporate bond spread and that the economic effects of volatility are 

significant. Cremers et al. (2004) confirm this result and argue that option-based 

volatility contains useful information for this type of analysis that differs from 

that included in historical volatility. My third essay is intimately related to these 

papers. Rowever, our approach differs significantly from theirs in that we study 

entirely different data: CDS premia rather than corporate bond yield spreads. 

Use of default swaps rather than bonds proffers at least two major advantages. 

First, default swap premia, while economically comparable to bond yield spreads, 

do not require specification of a benchmark risk-free yield curve. Renee, we avoid 

5See e.g. Longstaff and Schwartz (1995) and Collin-Dufresne and Goldstein (2001). Duffee 
(1998) finds that low rating bonds are more sensitive to the interest rate. The third essay find 
the same pattern. 

6See in particular Jones et al. (1984), Jones et al. (1985), Lyden and Saranati (2000) and 
Ogden (1987). More recently Eom et al. (2004) have documented the difficulty of implementing 
these models. 

7The empirical exercise implemented by CGM (2001) is in the spirit of the asset pricing study 
of Fama and MacBeth (1973). See Cochrane (2001, chapter 12) for an in-depth analysis of this 
technique. 
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the noise which can arise from a misspecified risk-free yield curve (see Houweling 

and Vorst (2005)). Second, default swap premia may reflect changes in credit risk 

more accurately and promptly than corporate bond yield spreads. Blanco et al. 

(2003) provide evidence that changes in the credit quality of the underlying name 

are liable to be reflected more quickly in the swap premium than in the bond 

yield spread. Moreover, should additional non-default components be present in 

bond spreads, their variation can obscure the impact of changes in credit quality. 

Fisher (1959), Houweling et al. (2004), Longstaff et al. (2004) and Perraudin and 

Taylor (2002) document the existence of an illiquidity component in bond yield 

spreads and Elton et al. (2001) includes the differential state tax treatment given 

to corporate and government bonds as one of the components of bond spreads. 
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The three essays that follow are presented in a sequence that fiows from the 

theoretical to the empirical. Order of production was not respected as the first 

essay was the last written. 
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1 Introduction 

The premium of traditional options on futures is paid up front. It is weIl known 

that such options, both calls and puts, are optimaIly exercised before expiration, 

should they be deep enough in the money. Using a model-free framework, this 

paper shows that exercising options on futures before expiration is suboptimal 

when the premium is not paid up front but marked to market in the same way as 

the priee of a futures contract. 

Options can be classified according to their underlying into options on spot 

and options on futures. While the former give the long the right to buy or sell 

spot, the latter give the right to buy or sell futures. In addition, options can be 

qualified as either traditional- or futures-style as per the method of posting the 

premium. On the one hand, the premium of a traditional-style option is paid up 

front. This way of paying the premium is referred to as "traditional-style premium 

posting". On the other hand, the premium of a futures-style option is settled in 

the same way as the priee of a futures contract. The buyer of a futures-style 

option does not pay the full option premium at the initiation of the transaction. 

Rather, during the life of the option (including the exercise day) , he pays (reeeives) 

any decrease (increase) in the option's premium as a margin. For that purpose, 

the exchange determines a settlement premium according to market conditions at 

the end of the trading hours of each trading day. U pon exercise, the buyer pays 

the settlement premium of the day. The settlement premium paid upon exercise 

plus the net cumulative margin paid during the life of the option add up to the 

premium originally negotiated. Under the method just described, the premium of 

the option is said to be futures-style posted. 

At present, all exchange-traded options on spot are traditional-style. How­

ever, options on futures can be traditional-style or futures-style, depending on the 

exchange where they are listed. This paper deals with futures-style options on 

futures. For parsimony, the literature uses the abbreviated terminology initiated 

by Duffie (1989): pure futures options (PFO).l AlI options on futures traded on 

EUREX, Euronext and SFE are PFO.2 Euronext is a holding company compris­

ing the operations of AEX, Belfox, BVLP, BXS, LIFFE, MATIF and MONEP. 

Aceepting a petition by American exchanges, the Commodity Trading Futures 

l Futures-style options on spot are studied by Kutner, Porter & Thatcher (2001) who, adapt­
ing Barone-Adesi & Whaley (1987), show that an early exercise premium can exist when the 
cost of carry is negative. 

2For an example of contract specifications, see Eurex (2004). 
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Commission has perrnitted futures-style prernium posting for commodity options 

on futures. 

Futures-style options offer advantages over traditional-style options: i) With 

traditional-style prernium posting, the writer has to maintain collateral, known as 

the premium margin, at the exchange's disposaI for an amount at all times equal 

to the last settlement premium.3 This collateral is kept by the exchange and not 

passed to the buyer; therefore, there is an aggregate commitment of liquidity by 

the traders. 4 This commitment can be substantial when an option is in the money. 

Futures-style options avoid any such immobilization of collateral. A premium 

margin is not needed because, being settled as futures, these options have zero 

net present value and, therefore, the exchange can costlessly replaee the futures­

style position of an insolvent party.5 ii) The priee of a traditional-style, in-the­

money option can be discouraging for a potential buyer with capital restrictions. 

In contrast, no down payment is required with futures-style options. iii) Although 

usually considered unlikely, a clearing house default can hurt a traditional-style 

more than a futures-style option buyer. While the buyer of traditional-style option 

has an exposure at all times equal to the option value, the purchaser of futures­

style options is, upon resettlement, risk free. 

The literature on futures-style options is lirnited.6 Two papers show the sub­

optimality of early exercise of PFO under particular models. Lieu (1990) proves 

suboptimality assuming a Black (1976) market, where the futures priee follows 

a geometric Brownian motion and the interest rate is constant. Chen & Scott 

(1993) prove the result under stochastic interest rates within the Cox, Ingersoll 

& Ross (1985a) general equilibrium framework and rely on Cox, Ingersoll & Ross 

(1981) to establish a link between the futures priee and the spot priee of the 

underlying. Both papers demonstrate that, within their respective settings, the 

European PFO priee exceeds its intrinsic value and, therefore, so does the priee 

3If the short becomes insolvent, the exchange will use the premium margin to buy an option 
of the same strike and expiration. The exchange's counterparty will receive a short position in 
the option and thus replace the insolvent trader. 

4 An economic loss may derive if the return of the collateral is lower than the opportunity 
cost of the trader. 

5Exchanges also require collateral to coyer losses from potential changes in priees. 1 do not 
expand on this extra requirement here because it is essentially the same for both traditional-style 
and futures-style options. Later, 1 will return to this topic when dealing with the optimality of 
early exercise. 

6Research dealing with PFO but not specifically with the early exercise strategy include 
Duffie & Stanton (1992), Twite (1996), Satchell, Stapleton & Subrahmanyam (1997), and Frey 
& Sommer (1998), and White (1999). 

13 



of the American counterpart, thus making early exercise suboptima1.7 Rowever, 

after deriving a model for European PFO, where the futures priee and the interest 

rate are driven by the same source of uneertainty, Kuo (1993) posits that early 

exercise might be prieed in his model, leaving the valuation of American PFO for 

future research. 

The most important contribution of this paper is to prove the suboptimality 

of early exercise of PFO in a model-free context. 1 do so in the spirit of Merton 

(1973), assuming only that investors prefer more to less. Specifically, the stochas­

tic process of the underlying futures can be absolutely arbitrary, provided there 

exists a positive probability that the option will expire either in or out of the 

money. Moreover, 1 make no assumptions about the dynamics of interest rates. 

For example, futures priee and interest rates dynamics can display stochastic 

volatility, jumps in the level and volatility, and discontinuities in time. Further­

more, the proofs do not rely on the existenee of either an interest rate market or 

a spot market for the underlying of the futures contract. Apart from their gen­

erality, the arguments used in this paper have two other advantages: first, their 

simplicity and, second, the analogy to the standard arguments used for options 

on spot by the literature. 

One may wonder, at this point, why this line of argument has not been tried 

before by the literature when it would only have been natural to follow Merton 

(1973) and regular textbooks in their treatment of options on spot, where, before 

studying specific models, they derive model-free rational constraints to options 

premia and exercise policy. The reason for this omission can be attributed to the 

particularities of PFO: (i) both the option and its underlying always have zero 

value, and (ii) there are cash flows during the whole life of the option. Therefore, 

we cannot structure arbitrage or dominanee arguments in the usual way, whereby 

only two points in time are considered. Renee, it may seem that a model for Eu­

ropean options is needed to show that the premium always surpasses the intrinsic 

value, and that, therefore, the dominating American counterpart should not be 

exercised early. 

The scope of this paper extends beyond merely allowing for arbitrary futures 

priee or interest rate dynamics in a frictionless market. Early exercÏse is still 

suboptimal in a market with transaction costs, liquidity constraints and collateral 

requirements. This ensures the realism of the conclusions, from which 1 derive 

7Empirical work by Kutner et al. (2001) shows that the early exercise premium of pure futures 
calls traded on the Australian Ail Ordinaries Share Priee Index is economically zero. 
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implications for the design of PFO contracts. AlI the results of this paper hold 

regardless of the underlying of the futures contract: stocks, bonds, commodities 

with convenience yields, indexes representing traded assets (e.g., stock indexes), 

or indexes representing non-traded quantities (e.g., weather indexes). 

Lieu (1990) and Chen & Scott (1993) provide proofs of put-calI parity in 

their respective settings.8 As previously mentioned, they also prove that, before 

expiration, the premium of a PFO always exceeds its intrinsic value. In addition, 

Lieu (1990) shows that the intrinsic value of calls and puts with the same strike 

and expiration have equal time value. l prove that, in frictionless markets, these 

three results are totally general. 

AlI results by Lieu (1990) and Chen & Scott (1993) assume a frictionless mar­

ket. In this setting, l use arbitrage arguments and backward induction to prove 

them. In the case of markets with frictions, the basic tool for the proofs is the 

gains process (cumulative marking-to-market proceeds) of PFO, of their under­

lying futures, and of portfolios combining both instruments. l introduce a novel 

dominance criterion based on gains processes of alternative strategies. Under this 

criterion, the early-exercise strategy is dominated by the holding strategy, even 

in the presence of transaction costs, liquidity constraints, and collateral require­

ments. 

The reminder of this paper is organized as follows. The features of PFO con­

tracts are described in Section 2. Put-calI parity, the equality of time values of 

calls and puts with the same strike and expiration, their positivity, and the subop­

timality of early exercise are studied in Section 3 assuming a frictionless market. 

The suboptimality of early exercise is robust to the introduction of transaction 

costs and liquidity constraints in Section 4, and of collateral requirements in Sec­

tion 5. Section 6 draws sorne implications for the design of option contracts and 

Section 7 concludes. 

2 Futures-style options 

l begin by describing regular futures with physical delivery. My objective is to 

start with a well-known instrument and then draw an analogy with PFO. 

8Easton (1997) tests this put-calI parity using data of four major contracts traded on the Syd­
ney Futures Exchange and finds that "The precise parity relationship was observed in between 
15% and one third of aIl cases, depending on the contract. The only systematic violation de­
tected is that Ïn-the-money put and call options are found to be underpriced by a small amount 
when compared with the parity relationship." 

15 



Let Fo be a futures priee agreed upon between the buyer and the seller during 

the trading hours, and FI, F2, ... , FT! the settlement priees that the exchange 

determines according to the priee prevalent at closing time each day. The subindex 

1 corresponds to the day of initiation of the futures contract; the subindex 2, to 

the following day, and so on, and Tf to the expiration. The supraindex f of T 

is meant to distinguish the expiration Tf of the futures contract from that of an 

option on this underlying, denoted T. Note that the subindex t = 0, 1,2, ... , FT! 

of Ft does not represent a cardinal number: both indexes 0 and 1 correspond to 

the day of trade: 0 to the time, during trading hours, when the trade occurs, and 

1, to the closing time. 

The cash fiows for the buyer are: 

Day 

1 (Transaction day) 

2 

Tf -1 

Tf (Expiration) 

Cash ftows 

FT! -1 - FT!-2 

FT! - FT!-l 

Each of these cash fiows is referred to as a variation margin and, the collection 

of them, as marking-to-market proeeeds. At expiration, the long pays an invoiee 

priee equal to FT!, and reeeives the underlying. In summary, the total cash fiows 

for the buyer can be grouped into three components:9 

Al: FT! - Fo, which is the sum of the cash fiows of the previous table, i.e., the 

cumulative variation margin at expiration. 

A2: -FT!, the delivery priee, and 

A3: ST!, the market value of the underlying received. 

Note that Al plus A2 add up to a net payment of Fo, the original futures priee 

agreed upon. This is paid in exchange for the underlying, whose priee turns out 

to be ST! at expiration. Therefore, the final profit is ST! - FO•lO 

A calI (put) option contract on futures gives the long the right but not the 

obligation to buy (sell) a futures contract at a prespecified exercise priee K up 

gIn this section, l will neglect any return or financing cost derived from the variation margins. 
lOIn the absence of frictions, no-arbitrage requires that FT = ST; therefore, A2 and A3 add 

up to zero and the final profit is given by Al. 
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to a eertain date T ::; Tf. The variation margin of the futures contract created 

upon exercise of a call is Fr - K, where 7 is an index indicating the closing time 

of the exercise date, and Fr is the corresponding settlement priee. An equivalent 

definition of a call on futures is: an option whose exercise generates 

• a payoff Fr - K that is cash settled at time 7, and 

• a long futures contract initiated at Fr (instead of K). 

From this point of view, which l will use in this paper, Fr - K is not a futures 

margin but an exercise cash flow. The futures contract originated has zero net 

present value at 7, if the settlement priee accurately represents the futures priee 

at that time. In the case of a put, the long receives an exercise cash ftow of K - Fr 

and a short futures contract initiated at Fr. 

If an option contract is settled futures-style, the premium is not paid cash; 

instead, any increase (decrease) of the premium generates a positive (negative) 

variation margin to the long, and a negative (positive) variation margin to the 

short. Thus, a futures-style option works exactly as a futures contract while the 

option is alive, Le., while neither exercise time 7 nor expiration T has taken place. 

If, for example, the last settlement premium is zero, the long will have paid the 

entire premium during the life of the option. 

For concreteness, l will consider a call option. (For the case of a put, it is 

enough to replace C by P, and Fr - K by K - FT') Assuming the buyer exercises 

the calI, the variation margins are: 

Day 

1 (Transaction day) 

2 

7-1 

7 (Exercise day) 

Cash ftow 

Cr - 1 - Cr - 2 

Cr - Cr- 1 

where Co is the premium negotiated during trading hours, Cl is the settlement 

premium of the day of trade, C2 the settlement premium of the next day, and so 

on. On the day the option is exercised, the long receives an exercise cash ftow of 

Fr - K, and pays the call's settlement priee of that day, Cr. Summing up, the 

total cash ftows for the buyer can be arranged into three components: 

BI: Cr - Co, the accumulated marking-to-market proeeeds, 
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B2: -CT) the settlement priee of the day of exercise, and 

B3: FT - K, the exercise cash flow. 

The anal ogy with a futures contract with physical delivery is that FT - K is 

like the commodity reeeived and CT is the invoiee priee paid for the underlying; 

however, in the case of a PFO, FT - K is reeeived in cash. The sum of B2 and 

B3, FT - K - CT) will be referred to as net exercise cash fiow. 

BI plus B2 add up to -Co, where Co is the premium originaUy negotiated. 

Adding B3, the exercise cash flow, gives the net payoff 

(FT - K) - Co, (1) 

which is the same as that of a traditional-style option on futures, if we abstract 

from the timing of the cash flows. 

When the option is not exercised, T is replaced by T in BI, B2, and the ab ove 

table; and B3 disappears. When the option expires out of the money, the exchange 

sets CT = 0; therefore, B2 is null, and BI is -Co. 

Example 1 

Table 1 considers a pure futures caU with strike 100 that is purchased on Day 1 

and expires on Day 3. The last two columns present cash flows from the buyer's 

perspective. At the moment of transaction, the premium was Co = 1.39 (and the 

futures priee was 101). Had the settlement priee of Day 1 been Cl = 1.39, no 

payment would have been necessary for that day. However, a lower settlement 

premium, Cl = 0.74, generated a negative cash flow, 0.74 - 1.39 = -0.65. Note 

that the last settlement premium is C3 = 0 because the option expires out of the 

money. The cumulative variation margin is -1.39. The agent has lost aU the 

premium. 

Table 1: Option expiring out of the money 
K 100 Variation Ace. Var. 

Margin Margin 
Day 1 Fa 101 Co 1.39 
Day 1 FI 100 Cl 0.74 -0.65 -0.65 
Day 2 F2 100 C2 0.52 -0.22 -0.86 
Day 3 F3 99 C3 0 -0.52 -1.39 
Day 4 F4 98 
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Example 2 

In the example of Table 2, the buyer not only does not pay the premium Co = 0.78 

up front, but he is credited a margin of 0.57 on the very transaction day. 

If the long had decided to exercise on Day 2, he would have received an exercise 

cash fiow of 102 -100 = 2. That same day, he would have paid the last settlement 

premium C2 = 2.04, resulting in a net exercise cash fiow of 2 - 2.04 = -0.04. 

Adding the cumulative variation margin 1.26, would have resulted in a profit to 

the buyer: 1.26 - 0.04 = 1.22.11 The contracted premium would have been paid 

as the sum of the accumulated variation margins minus the last settlement priee 

paid upon exercise: 1.26 - 2.04 = -0.78. As with traditional-style options, the 

net profit would have been equal to the exercise cash fiow minus the premium: 

2 - 0.78 = 1.22. 

At expiration (Day 3), the exchange fixes the last settlement priee C3 equal to 

exercise cash fiow 101 - 100 = 1; henee, the net exercise cash fiow is 1 - 1 = O. 

Whenever this is the case, the profit is equal to the cumulative variation margin, 

in this case 0.22. As always, the cumulative variation margin minus the last 

settlement premium yields the contracted premium 0.22-1 = -0.78. The exercise 

cash fiow minus this premium gives the profit 1 - 0.78 = 0.22. 

Table 2: Option expiring in the money 
K 100 Variation Ace. Var. 

Margin Margin 
Day 1 Fa 100 Co 0.78 
Day 1 F1 101 Cl 1.35 0.57 0.57 
Day 2 F2 102 C2 2.04 0.69 1.26 
Day 3 F3 101 C3 1 -1.04 0.22 
Day 4 F4 100 

3 Case of a frictionless market 

The sketch ofthis section is the folIowing. First, 1 prove put-calI parity, which leads 

to the equality of time values of calIs and puts with the same strike and expiration. 

Building on this result and on the positivity of PFO's premia, 1 demonstrate the 

11 Although the long would have made a profit of 1.22, exercising would have prevented him 
from making a profit of 1.26, hence rendering early exercise suboptimal. The difference is the 
negative net exercise cash ftow -0.04. 
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positivity of time values before expiration, whence the suboptimality of early 

exercise foUows. A frietionless market is assumed throughout. 

Assumption 1 There are no arbitrage opportunities. 

First, note that the intrinsie values triviaUy satisfy put-caU parity:12 

(2) 

For t = T, we have put-caU parity for options priees at expiration, CT - PT = 
Fr - K. Then, foUowing a recursive no-arbitrage argument from expiration to the 

valuation time, and going through aU intermediate settlement times, obtains the 

European put-caU parity: 

Theorem 1 Put-call parity for European pure futures options is 

Ct-pt=Ft-K (3) 

where Ct and Pt sta.nd for the premia of European caUs and puts with the same 

strike and expiration. 

The proof of this theorem, given in the Appendix, extends the validity of Lieu 

(1990)'s put-caU parity by only assuming the absence of arbitrage. While he proves 

this result on the basis of a strategy whereby the variation margins are reinvested 

at a constant risk-free rate, 1 use a no-arbitrage backward induction argument 

wherein the arbitrageurs set up one-day zero-investment portfolios (comprising 

futures-style contracts), thereby rendering interest rates irrelevant. 

Theorem 2 European pure futures puts and caUs with the same expiration and 

strike have equal time values: 

(4) 

Pro of. This result can be obtained by subtracting the put-caU parity (2) of the 

intrinsie values from the put-caU parity (3) of the option priees, and rearranging 
terms. _ 

12Notation: i) (X)+ = max {X, O}. ii) Recall that t = 0,1,2, ... , T. The subindex 0 denotes 
any time during trading hours of the day of trade; the subindex 1, the closing time of that day; 
the subindex 2, the closing time of the following day, and so on. The case t = 0 makes the the 
following expressions completely general in terms of time. 
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Assumption 2 Before expiration, there is always a positive probability that an 

option will expire in the money and a positive probability that it will expire out of 

the money. More formally, for any time t such that t < T, we have Prt (FT> K) > 

o and Prt (FT < K) > O. 

Lemma 1 PFO's premia are always positive before expirationY 

This lemma is proved in the Appendix by using Assumption 2 at t = T - 1 

and then following a recursive arbitrage argument. 

By utilizing this lemma and the equality of the time values of puts and calls 

with the same strike and expiration, the next theorem is easy to demonstrate. 

Theorem 3 Before expiration, the time value of a PFO is always positive: 

Pt> (K - Ft)+ 

Proof. (a) For an at- or out-of-the-money option, the theorem follows from 

Lemma 1. (b) To prove the theorem for an in-the-money calI, consider that a 

put with the same strike and expiration is out of the money and, by (a), has a 

positive time value. From this and Theorem 2, it follows that the time value of 

an in-the-money calI is positive. A symmetric argument establishes the positivity 

of the time value of an in-the-money put .• 

Theorem 4 It is never optimal ta exercise a PFO before expiration. 

Pro of. Let T be the settlement time of a potentiai early-exercise date. Because 

Ct ~ Ct, Theorem 3 implies that Ct > Ft - K for t < T. Therefore, the net 

exercise cash flow of a calI is negative prior to expiration, Ft - K - Ct < O. Since 

the generated futures contract has zero net present value, that negative cash flow 

is sufficient to rule out optimal early exercise. 14 The same argument can be made 

for a put using its net exercise cash flow Ft - K - Ct < 0. 15 • 

13Por a traditional-style option, we can argue that it gives a right but not an obligation and, 
therefore, will always generate a positive cash flow on exercise. This argument does not apply 
to futures-style options because the buyer of the option is obliged to pay variation margins 
whenever the settlement premium drops. 

14Recall the convention of considering the payoff Fr - K as cash settled, and the futures as 
initiated at the settlement priee Fr. 

15In practice, the long can exercise an option during trading hours and also after market 
close until the time deterrnined by the rules of the exchange. Moreover, he can also withdraw 
a submitted exercise order until that time. Therefore the effective decision time is after closing 
time. However, at this time, the resulting futures position cannot be closed. Therefore, the 
assumption of a perfectly liquid market is not satisfied. In the proof, 1 have assumed that the 
effective decision time is the closing time of the market. The proofs of Section 4 are robust to 
the above institutional detail. 
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Corollary. From Theorem 4, Ct = Ct and Pt = Pt, therefore aU the results of this 

section are valid for American PFO. 

Apropos Theorem 4, it is interesting to compare a PFO with a traditional­

style option on futures. The latter can be optimally exercised before expiration 

when it is deep enough in the money. Early exercise's motivation lies in instantly 

collecting the intrinsic value in cash: the interests until expiration on the money 

reeeived can preponderate against the loss of insuranee. This is the case when the 

option is deep enough in the money because of both the larger amount of capital 

available for interest and the lower value of insuranee. In the case of PFO, the 

intrinsie value (plus time value minus premium) has already been cashed in the 

form of variation margins. Therefore, there is no ineentive to exercise early. 

4 Non-optimality of early-exercise 

in the presence of frictions 

Up to this point, 1 have assumed that the market of options and futures is perfectly 

liquid, that there are no transaction costs and that the settlement priees are 

exactly equal to the true market priee. In this section, 1 prove the suboptimality 

of early exercise without relying on those assumptions. As the framework becomes 

more general and realistic, the results will have useful implications for the design 

of options contracts by exchanges. 

Sufficient assumptions to derive the results of this section are: 

1. Investors prefer more to less. 

2. Before expiration, there is always a positive probability that an option will 

be in the money at expiration, and a positive probability that it will be out 

of the money at expiration. More formally, for any time t such that t < T, 

we have Prt (FT> K) > 0 arid Prt (FT < K) > 0.16 

3. A minimal consistency condition on settlement priees. 

16Without this assumption, the suboptimality of early exercise cannot be proved. Neverthe­
less, even without the second assumption, it can be proved that exercising only at expiration is 
an optimal strategy, in the sense that it is not dominated by any other. In other words, it is not 
possible to rule out the case wherein early exercise is as good as exercising at expiration, which 
is the case only if the option is bound to expire in or at the money. This will become obvious 
in the proofs below. In summary, it cannot possibly hurt the buyer of the PFO to limit himself 
to exercise at expiration, even without making the second assumption. 
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In a perfectly liquid market, an exchange can easily determine the settlement 

prices of futures and PFO. In the possibly illiquid market setup of this section, 1 

will only assume that, in determining the settlement priee of a PFO and of the 

underlying futures contract, the exchange does not violate a minimal consistency 

condition between these two priees, 

(5) 

which parallels Theorem 3, and is even weaker. In this section and the next, 1 

deal exclusively with call options because the results and proofs for calls apply, 

mutatis mutandis, to puts. 

Transaction costs prevent the use of arbitrage arguments, which were the basis 

of the previous section. Instead, 1 will rely on a novel dominanee criterion, which 

is based on the gains processes of the PFO, of the underlying futures contract 

and of combinat ions of them. In our context of futures-style contracts, the gains 

process {Ct}t represents evolution of the cumulative variation margin. 1 observe 

that Ct is not the value of a self-financing portfolio resulting from reinvesting the 

variation margins at an interest rate. It is the mere sum of the variation margins 

at and before t. For example, suppose that strategy C consists of buying and 

holding a pure futures caU, then its gains pro cess is: 

To help visualize the following Lemma and the supporting argument, Figure 

1 displays the gains process of two strategies. The corresponding single-day vari­

ation margins are recorded in the following table. 

Strategy A Strategy B DifferentiaI Str. 

Day 1 30 10 20 
Day 2 -5 10 -15 

Lemma 2 Let ct be the gains process of strategy A and let Gf be the gains 

process of strategy B. If Cf is not exceeded by cf for any t, and there exists 

the possibility that C~ surpasses C~, then strategy A dominates strategy B. More 

formally, for A 's dominating B, it is sufficient that Pr (Cf ~ cn = 1 for all 

t < T, and Pr (C~ > C~) > O. 

This lemma is not entirely obvious because the assumption ct ~ cf allows 
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Figure 1: Dominance in Tenns of Gains Processes 
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for the possibility that, on particular days, the cash fiow of strategy A be lower 

than that of strategy B (e.g., in day 2). To see that the lemma is always true 

in spite of the previous comment, note that, for each negative differential cash 

fiow of strategy A with respect to strategy B (e.g., -$15 in day 2), there will have 

been previous positive differential cash fiows of equal or greater absolute value 

(e.g., $20 in day 1) so that C~ ~ Cf for aIl t. As the positive differential cash 

fiows lead, then, under non-negative interest rates, strategy A is still preferable. 

Negative interest rates are precluded by the absence of arbitrage. 17 

ln a frictionless market, the exercise strategy is independent of the subsequent 

strategy of the investor; what matters are only the cash fiows generated, and 

the value of the remaining position (always zero in that case), which can be 

unwound at will, and without incurring any transaction cost. This sat at the core 

of Theorem 4. However, in the presence of transaction costs, it is costly to unwind 

an unwanted position. As a result, the optimal strategy may vary per investor. 1 

will analyze the exercise decision, first, assuming that the investor would like to 

close the futures position in case of exercise (Case A) and, second, assuming that 

he would prefer to hold it (Case B). 

Case A 

17Non-negative interest rates are also ensured in the absence of an interest rate market, which 
is equivalent to interest rates equaling zero. This comment is motivated by the claim made in 
the Introduction that the proofs of this article do not rely on the existence of an interest rate 
market. 
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For this case, we can imagine an investor who is satisfied with the intrinsic value 

reached by a caU and who, fearing its erosion by a drop of the priee of the under­

lying, is tempted to exercise and close the resulting futures. 

Theorem 5 Assume that, if the investor exercised his pure futures call, he would 

choose to close the resulting long futures position. Then, shorting futures and not 

exercising is a dominating stmtegy. 

Proof. Let T be the settlement time of a potential early-exercise date, and T­

a time during trading hours of that day. Let Cf and Cf be the gains processes 

of the exercise and no-exercise strategy, defined for t ~ T, and including the cash 

flows of the decision day onward (C;?_l = C!;_l = 0). 

Should the investor exercise the call and sell futures at time T- during the 

trading hours (in order to lock in the intrinsic value at that time) , the gains 

process is 

cf (CT - CT- 1 ) + (FT - K - CT) - (FT - FT-) - TC 

FT- - K - CT- 1 - TC (6) 

where CT - CT- 1 denotes the final variation margin of the exercised option, FT -

K - CT is the net exercise cash fiow, - (FT - FT-) is the variation margin at T 

of the short futures opened at T-, and TC are the transaction costs of selling 

futures. l include neither the sum - (Ft - FT) of the variation margins of this 

short futures position nor the sum (Ft - FT) of the variation margins of the long 

futures generated by exercise because the exchange closes the two positions after 

computing the variation margins at T. Note that t is not present in (6), which 

means that the cumulative cash flow is constant for t ~ T. This needs be the case 

because aIl positions are closed at T. 

If the investor only sells a futures contract at the same time T- and does not 

exercise the option, the gains pro cess is 

Cf (Ct - CT- 1) - (Ft - FT-) - TC (7) 

> ((Ft - Kt - CT - 1) - ((Ft - K) - (FT - - K)) - TC 

(8) 

where the weak inequality arises from the exchange respecting consistency con­

dition (5). Comparing (6) with (8), we realize that Cf ~ Cf for aU t ~ T 
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with probability one, and G!J. > G~ with positive probability by assumption 2. 

Therefore, the no-exercise strategy dominates the exercise strategy by Lemma 2 . 

• 
Another dominating strategy can be to short a caU with the same strike and 

expiration. However, the liquidity of a caU option with the same strike and expi­

ration cannot always be guaranteed and is most probably lower than that of the 

futures. Liquidity of the futures is not guaranteed either; this could be thought to 

compromise the plausibility of the dominating strategy of the previous theorem. 

Nevertheless, if the strategy of exercising the option and selling futures is feasible, 

then so is the dominating strategy of just selling futures. 

In the case of a put, a buyer tempted to exercise early and buy futures to 

close his position can be shown to be better off by merely buying futures, and not 

exercising. The proof is similar to that for a caU. 

CaseB 

Assume that, in case of exercising a caU, the investor does not intend to close 

the resulting futures position. He is willing to continue to bet on futures priees 

increasing. Here, no transaction costs are incurred in closing a position. Still, 

the arguments of Section 3 no longer hold because the existence of transaction 

costs breaks their no-arbitrage foundation. In addition, illiquidity can hinder the 

determination of accurate settlement priees, making consistency condition (5) a 

necessary assumption to derive the results of the present section. 

Theorem 6 Assume that, if the investor exercised his pure futures call, he would 

choose to keep the resulting long futures position. Not exercising early is a domi­

nating strategy. 

Pro of. The gains process of the exercise strategy, including the cash flows of the 

decision day onward, is 

(9) 

where Cr - Cr - 1 is the variation margin of the caU on the exercise day and Ft - Fr 

is the cumulative margin of the futures resulting from exercise. The gains process 

of the no-exercise strategy, including the variations margin of the decision day 
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onward, is 

Ct - Cr - l (10) 

> (Ft - K)+ - Cr - l 

> Ft - K - Cr - l + (K - Ft)+ (11) 

where the inequality arises from the exchange's respecting consistency condition 

(5). 

Comparing (9) with (11), we can see that Cf ~ Cf for all t ~ T with prob­

ability one, and C!'j. > C~ with positive probability by assumption 2. Therefore, 

the no-exercise strategy dominates the exercise strategy by Lemma 2. • 

In the case of a put, it can be shown, using similar arguments, that exercising 

with the intention of keeping the resulting short futures, is dominated by merely 

keeping the option alive. 

5 Performance bond 

In this section, I analyze the implications of collateral requirements on the early 

exercise strategy. 

Apart from variation margins,exchanges require from traders an additional 

margin, called a "performance bond", under which they have to deposit sufficient 

collateral to cover the one--day value at risk (VAR) of their positions. VAR is 

computed at a portfolio level, where a portfolio groups positions in a futures 

contract with all options on that contract. The calculations consider a number of 

scenarios with different combinations of the next day's futures price and implied 

volatility. The VAR of the portfolio is the loss under the worst case scenario. 18 

For a time t, the next day's value of a caU in the worst case scenario is 

where Ft+l and ât+l are respectively the futures priee and the volatility in the 

worst case scenario, and where C( ) is the pricing function used by the exchange. 

18See Eurex (2003) for further details. Most of the medium to large exchanges in the world use 
SPAN (Standard Portfolio Analysis of Risk), a system designed by the CME, which computes 
performance bond requirements using the method described. This system handles both spot­
style and futures-style options. 
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The contribution of a long call to the VAR of a portfolio is 

(12) 

In the proofs of the Appendix, l will also make use of the contribution of a long 

futures contract 

VAR{ = - (PHI - Ft) (13) 

and of a short futures contract 

(14) 

Each of these contributions can be positive or negative; however, the VAR of the 

portfolio in the worst case scenario is always positive. The VAR of the portfolio is 

equal to the sum of the contributions of the individual positions. A negative con­

tribution means that the corresponding position acts as a hedge thereby reducing 

the VAR of the portfolio. 

The required value of performance bond at each time t equals the VAR of 

the corresponding portfolio. The performance bond and the variation margin 

described in Section 2 differ not only in the way they are computed. While the 

variation margin paid by one trader is passed to another, the performance bond 

posted by a trader is kept by the clearing house. Unlike the variation margin, 

which must be deposited in cash, the performance bond may also take the form 

of liquid securities, or bank guarantees. The exchange determines the list of the 

eligible securities, the haircut to their market value, and the list of eligible banks. 

While the required value of the performance bond is a stock, a variation margin 

is a flow. However, the performance bond can be subtracted from the cumulative 

variation margin because the latter is also a stock. The result of this subtraction 

is the net liquidity accumulated by a trader, should the performance bond be 

posted in the form of liquid securities, and should haircuts be ignored. 

The effect of the performance bond on the exercise strategy cannot be analyzed 

separately from the effect of the variation margins. For example, if an investor 

exercises a call, this position is replaced by a futures contract. Although VAR{ 

will most probably be greater than V ARf, we cannot make a general statement. 

A scenario assuming a sizeable drop in the implied volatility could re::mlt in the 

opposite inequality. Therefore, exercising a call could bring about a decrease of 

collateral. However, it will be demonstrated that this potential decrease of collat-
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eral will always be compensated by a negative net exercise cash flow. Moreover, 

variation margins or net exercise cash flows are more important than changes in 

required performance bond because the latter can be posted not only in cash, 

but also in traded securities. Therefore, it is irrelevant to consider the changes in 

collateral in isolation. To consider the performance bond from this perspective, l 

will focus on a "modified gains process" to be denoted by Ht, and defined as the 

gains process Gt of the previous section minus the requirements for collateral: 

(15) 

Considering the cumulative variation margin and the required collateral, both 

indexed by t, will ensure that conclusions account for variation margins and col­

lateral requirements of future days, and not only of the exercise day. 

The previous section established that, before expiration, the no-exercise strat­

egy (with gains pro cess Cf') always dominates the exercise strategy (with gains 

process Gf). Theorem 7 will show that considering Hf and Hf does not dispel 

that dominance. 

LeIllIlla 3 Let Gt+I be the gains process at t + 1 but computed at t, using the 

futures price PHI and the implied volatility ât+I of the worst case scenario con­

sidered by the performance bond system. Then, 

Proof. V ARt is the loss at t + 1 in the worst case scenario; therefore, subtracted 

from the gains pro cess at t, yields the gain process at t + 1 in the worst case 

scenario, êHI = Gt - VARt , which equals Ht by definition (15). In the Appendix, 

the lemma is proved separately for both the holding and exercise strategy in each 

of the Cases A and B of the previous section. _ 

Theorem 7 The introduction of the performance bond system does not alter the 

dominance of the no-exercise strategy over the exercise strategy before expiration. 

Proof. Recall that, in any of the two cases of the last section, Cf was not 

greater than Gf' in any possible scenario. êf-t.I and ê~1 are gain processes under 

a restricted set of those scenarios. Therefore, êf-t.I never exceeds ê~1 and ,by 

Lemma 3, Hf is never greater than H{. This is enough to maintain the dominance 

of the no-exercise strategy that was obtained in the previous section in terms of 

29 



Cf and Cf', which are cash accumulated gains. (In a situation like Hi' = Ht
E 

and Cf' > Cf, the no exercise strategy dominates the exercise strategy because 

the investor prefers cash to collateral.) The Appendix includes a separate proof 

for each case and strategy of the previous section. _ 

6 Discussion on contract design 

Because it is never optimal to exercise a PFO before expiration, there is no reason 

to preserve the Ameriean feature in the specification of this contract. This conclu­

sion is robust to transaction costs, illiquidity and performance bond requirements. 

The previous statement assume that investors prefer more to less, and that they 

are able and willing to analyze the alternative strategies presented above, and that 

they actually do so. Failing any of these assumptions, exchanges might include the 

Ameriean feature out of marketing considerations. However, Easton (1997) states 

that early exercise in the SFE is very rare. lg It is possible that sorne investors 

assign a subjective value to the American feature at the moment of a trade but, 

on intending to exercise, are advised by their brokers to reconsider. This would 

reconcile the exchanges' maintaining the American feature with an observed low 

number of exercises. Finally, a reason for maintaining the Ameriean feature is the 

low cost of keeping with tradition.20 

If an option contract is illiquid, the exchange can still use futures-style mar­

gining by equating settlement priees to the outputs of a pricing model. Moreover, 

if the exchange does not dare to make the variation margins, which are settled 

in cash, depend on a model, whose calibration might be subject to dispute, the 

intrinsic value can be utilized as the settlement price. In this case, much of the 

benefit of futures-style margining would be retained when an option is in the 

19He reports number of exercises in 1994 for the four major option contracts at that time. 
l collected the corresponding volumes for the same year. The number of exercises and the 
corresponding volumes (in parenthesis) are the following: 6 (833,667) for the All-Ordinaries 
Share Priee Index Contract, 40 (943,749) for the 90-Day Bank Aceepted Bill Contract, 40 
(507,252) for the 3-Year T-Bond Contract and 300 (800,263) for the 3-Year (lO-Year) T-Bond 
Contract. l was not able to obtain further information from this or other exchanges. 

20The cost of keeping the American feature derives from the exercise procedure, which includes 
assigning the resulting futures contract to an option writer. In fact, the exchange could even 
avoid the latter by assigning the option to itself. This would not impose any risk on the exchangej 
rather, it provide it with a free option. For example, if a trader exercises a call early, he gets a 
long futures position. The exchange, acting 8s his counterparty assumes a short futures position. 
As the short call position remains open, the exchange keeps a long call option against the writer. 
Thus, it effectively acquires, at zero premium, a portfolio equivalent to a long put with the same 
strike of the call. A similar argument holds if a put is exercised early. 
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money. Interestingly, even if exchanges are not precise in the determination of the 

settlement premia, the suboptimality of early-exercise still holds, provided they 

comply with consistency condition (5), which is satisfied by the intrinsic value and 

the output of any reasonable pricing model. 

7 Conclusion 

Without making any assumption about futures price or interest rate dynamics, 

this paper has shown that, in a no-arbitrage setting, the premium of a PFO before 

expiration always exceeds its intrinsic value, and that it is never optimal to ex­

ercise before expiration. The paper has also proved put-calI parity, and equality 

of time values of puts and calls with the same strike and expiration. A novel 

dominance criterion corroborates that early exercise is never optimal, even in the 

presence of transaction costs, illiquidity, or performance bond requirements, as 

long as the exchange determines option settlement prices satisfying a minimal 

rationality constraint. Consequently, in a market of sufficiently educated partici­

pants, including the American feature among the specifications of a PFO contract 

is of no avail. 
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Appendix 

Pro of of Theorem 1 

In order to make a recursive argument, assume that, at sorne time t + 1, 

(16) 

Now l will show that it follows that, at time t, 

If 

Ct - Pt < Ft - K (17) 

then the following strategy is an arbitrage: sell futures, buy a call and sell a put at 

closing time t. No cash flow is generated that day because, in a frictionless market, 

the settlement priee coincides with the closing priee. The variation margin at t + 1 

is 

(Ft - Ft+1) + (Ct+! - Ct) + (Pt - Pt+1) 

Ft - Ct + Pt + Ct+l - Pt+1 - Ft+1 
" ,,1 v 

=-K by (16) 

(Ft - K) - (Ct - Pt) > 0 

where the inequality follows from (17). This is an arbitrage because there is zero 

investment at time t and a positive certain cash flow at time t + 1. Therefore, 

(17) cannot be true. If Ct - Pt > Ft - K, a symmetric arbitrage can be made, so 

this inequality cannot be true either. 

Therefore, l have shown that 

Ct+ 1 - Pt+ 1 = Ft+ 1 - K ===} Ct - Pt = Ft - K 

To complete the argument, it is enough to note that put-call parity is trivially 

satisfied at expiration time T: 

CT - PT = (FT - K)+ - (K - FT)+ = FT - K 
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Proof of Lernrna 1 

CT = (FT - K)+ 2: 0 and, from Assumption 2, Prt (CT = (FT - K)+ > 0) > 0, 

therefore Prt (CT - I > 0) = 1. (If CT - I ~ 0, buying a caU at T - 1, the closing 

time of the day previous expiration, is an arbitrage. The cash fiow at T - 1 is 0, 

and the variation margin at T, CT - CT-l, can be positive and is never negative, 

which implies an arbitrage.) To go on backward, the following recursive argument 

can be foUowed: If Prt (Ct+l > 0) = 1, then Ct > O. (If not, buying a call is an 

arbitrage.) For a put, the structure of the argument is identical. 

Pro of of Lernrna 3 

The following Case A and Case B correspond to the cases of Section 4. 1 prove 

H t = Ct+l for the exercise and the holding strategy of each of the cases. 

Case A 

If the investor decides to exercise early and close the resulting futures position, 

there is no collateral to subtractj therefore, Ht
E equals Gf, computed in (6) and 

repeated here in (18). 

Hf Gf - V ARf = Gf - 0 

= Fr- - K - Cr- l - TC 
~E 

GHI 

(18) 

Apart from being Gf, (18) is also GEtI under any scenario (CEtI in the worst case 

scenario) because the position was closed at T, which is refiected in the fact that 

(18) is not indexed by t. 
If the investor keeps the option position open and sells futures to lock in the 

intrinsic value, Hf equals Gf, computed in (7) and repeated here in (19), minus 

the performance bond requirement of the combined position, whose components 

are (12) and (14). 

Hi' = Gf - VAR[" = Gf - VARf - VAR;:F 

(Ct - Cr- l ) - (Ft - Fr-) - TC 

+ (êH1 -'- Ct) - (Ft+l - Ft) 
(êt+l - Cr- l ) - (PH! - Fr-) - TC 
~N 

Gt+1 
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Since Gr equals (19), it is clear that (20) is êf-t-1. 

CaseB 

If the investor decides to exercise the option and keep the resulting long futures 

position, Hf equals Cf, computed in (9) and repeated here in (21), minus the 

performance bond (13) for the futures position: 

Hf - cf - VARf = Gf - VAR{ 

(Ft - K - Cr-d 

+ (Ft+1 - Ft) 

FH1 - K - Cr - 1 

~E 

Gt+1 

Since Cf equals (21), it is clear that (22) is ê~1. 

(21) 

(22) 

If the investor decides not to exercise, Hi' equals Gr, computed in (10) and 

repeated here in (23), minus the performance bond (12) for the option. 

Gr - VAR[" = Gr - V ARf 

(Ct - Cr - 1) 

+ (êt+1 - Ct) 
êt+1 - Cr - 1 

~N 

CH1 

While cr equals (23), it is clear that (24) is êf-t-1. 
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Proof of Theorem 7 

Case A 

From (20), 

HtN (êt+l - C7 - 1) - (Ft+! - Fr-) - TC 
> ((Ft+l - K) + - C7-1) - ((Ft+! - K) - (F7- - K)) - TC 

(25) 

Comparing (25) and (18), we conclude that HF never exceeds Hf'. 

CaseB 

From (24), 

(26) 

Comparing (26) and (22), it is clear that HF is never greater than Hf'. 
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While the first paper is theoretical, it does offer corollaries for the design 

of pure futures options. The ensuing paper on Treasury bond futures contracts 

homes directly in on contract design by proposing a modification to the crucial 

algorithm that determines the futures invoice priees of deliverable bonds. 
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1 Introduction 

Specifications of most government bond futures contracts allow the seller to choose 

at expiration which issue to deliver among a list of eligible bonds. Typically, this 

list includes bonds within a maturity range issued by the government of a single 

country. Therefore, when two traders enter into a futures contract, the bond to 

be delivered is not yet known; they only know that it will be one from the list 

corresponding to that contract; only at expiration will the seller choose one bond 

from this list. The main objective of the multi-asset feature is to facilitate the 

delivery of the underlying, thus avoiding liquidity problems in the spot market 

that could make it difficult or unduly expensive for the seller to make delivery. 

The multi-asset design of Treasury-bond futures contracts described here has been 

adopted by, among others, the CBOT, EUREX, LIFFE, MATIF, MEFF, and the 

Montreal Exchange. In this paper, 1 focus on the Treasury-bond futures contract 

traded on the CBOT, one of the most successful derivative contracts in the world. 

For simplicity, 1 will assume that the following events occur simultaneously at 

time T: (i) the futures contract stops trading, (ii) the last settlement priee becomes 

known, (iii) the short chooses the bond to deliver, (iv) the seller delivers, and (v) 

the buyer pays for the bond. In futures contracts on a single underlying, the short 

party receives the last settlement priee FT as a payment for the commodity he 

delivers; in other words, the futures invoiee priee upon delivery is FT. For multi­

asset T-Bond futures, however, eligible bonds differ in maturity and coupon and, 

therefore, they have different spot market values. Using the raw FT as the futures 

invoiee priee would make it far too disadvantageous for the short trader to deliver 

a bond other than the cheapest, thus rendering the ability to choose the bond to 

deliver useless. To mitigate this problem, the futures invoiee priee FIpx is made 

a function not only of FT but also of the particular bond X chosen by the seller 

to deliver: 

FIpX = 9 (FT, X) (1) 

The objective of this futures invoiee priee funetion is to make the futures invoiee 

prices of the different bonds as close as possible to their corresponding spot market 

prices. When this objective is met, the demand of bonds for the purpose of 

delivery is less coneentrated on a single issue, the overpricing of this bond and 

of the futures contract is minimized, and deliberately provoked shortages of that 

issue are discouraged. 

The ability of the short party to choose which bond to deliver is referred to 
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in the literature as the quality option. Obviously, the value of the quality option 

crucially depends on the form of the futures invoiee priee function. A substantial 

amount of research has been done in the valuation of the quality option embedded 

in Treasury Bond Futures Contracts. 1 However, to the best of my knowledge, no 

paper has addressed an even more fundamental research question: Is the current 

functional form 9 (.,.) optimal according to the aforesaid objective? The literature 

has notieed the drawbacks of the current functional form, but no attempt has been 

made to provide an alternative2 . The purpose of this paper is to propose a novel 

functional form 9 (., .) for the futures invoiee priee function (1), that brings the 

futures invoiee priees of the different eligible bonds dramatieally doser to their 

corresponding spot market priees. 

Currently, the futures invoiee priee is determined according to the Conver­

sion Factor System (CFS), whose futures invoice price function is 9 (FT, X) = 

FT CFX ,3 where CFX is a predetermined constant referred to as the conversion 

factor, which is different for each bond X. Ideally, when time T arrives, the fu­

tures invoiee priee FT CFx for each bond X would equal its spot market priee 

S:. Then, the short would be indifferent between delivering any of the eligible 

bonds. But this is true only for very partieular values of the conversion factors; 

and these ideal values depend on market conditions at T. However, in the CFS, 

the conversion factors are precomputed quantities4
, seldom dose to the ideal ones. 

The alternative proposed in this paper can be thought of as allowing conversion 

factors to be computed as a function of market conditions at T. This allows the 

futures invoiee priee to be markedly doser to the spot market priee of each eligible 

bond and, as a result, the objectives of the futures invoiee priee function are much 

better met. 

In the new method 1 propose in this paper, the futures invoiee priee for any 

1 A sample of the papers studying the valuation of the quality option include Cox, Ingersoll 
and Ross (1981), Gay and Manaster (1984), Kane and Marcus (1986), Kamara and Siegel (1987), 
Livingston (1987), Hegde (1988), Boyle (1989), Hegde (1990), Hemler (1990), Carr and Chen 
(1997), Yu (1999), Magdon-Ismail, Atiya and Abu-Mostafa (2000) and Vidal Nunes and Ferreira 
de Oliveira (2003). Sorne of these papers also deal with hedging in the presence of the quality 
option. 

2See, for example, Kane and Marcus (1986), Johnston and McConnell (1989), or Schulte and 
Violi (2001). Kane and Marcus (1984) propose a minor variation to the CF System. However, 
their goal is to increase the hedging effectiveness of the futures contract, which is different from 
the main objective of this paper. 

3The actual formula is 9 (FT, X) == FT CFx + Ali, where Ali are the accrued interests of 
the bond X at time T. 

4The conversion factor of each bond is fixed using a formula that depends only on the cash 
flows maturing after T, with no input related to market conditions at T. 
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eligible bond X is computed by discounting the remaining cash fiows of X at the 

"yield implied by FT". The latter is the yield yNB of a national bond "issued" at 

T, whose tenor and coupon are fixed in the specifications of the futures contract, 

and whose priee is defined to be FT. 1 refer to this way of computing the futures 

invoiee priee as the True Notional Bond System (TNBS). According to the pre­

vious explanation, the futures invoiee priee is a function of FT and X, the same 

inputs used by the CFS. Therefore, the differenee between the two systems is just 

a different form 9 (.,.) of the futures invoiee priee function (1). 

Key in the TNBS is the yield yNB of the notional bond, which, under no­

arbitrage, will be shown to equal the highest among the yields of aU eligible 

issues. Therefore, when the yields of the eligible bonds are similar, discounting aU 

bonds at yNB produees futures invoiee prices that are close to the corresponding 

spot market prices. Given that aU eligible bonds must belong to a particular 

range of maturities, it is reasonable to assume that their yields are similar. In the 

ideal case of a fiat yield curve, whatever its level be, futures invoiee priees would 

perfectly coincide with spot market prices. For the CFS, a fiat yield curve is not 

enough; 6% is the only leveZ5 that obtains the desired equality of futures invoiee 

priees and spot market priees. Therefore, even when, in reality, yields curves are 

not fiat, it is not surprising that the empirieal part of this paper reports a clear 

superiority of the TNBS over the CFS. The similarity among the yields of the 

eligible bonds is responsible for the good empirical performanee of the TNBS. 

The situation is somewhat analogous to that of duration-based strategies that 

rely on the assumption that the yield curve is fiat: these strategies perform weU 

empirically even when the yield curves are not fiat. A refinement of the TNBS is 

suggested at the end of the paper to further improve its behavior under non-fiat 

yield curves. 

The paper is organized as follows: Section 2 explains the criterion to compare 

the TNBS to the CFS, Section 3 states no-arbitrage conditions common to both, 

Section 4 reviews the CFS, Section 5 develops the TNBS, Section 6 empirically 

compares the two systems, Section 7 outlines sorne possible extensions, and Section 

8 concludes. 

5It used to be 8%, the reference rate for contracts that expired before March, 2000. 
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2 Criterion for Evaluating Alternative 

Futures Invoiee Priee Funetions 

The optimal bond for the seller to deliver is referred to as the cheapest-to-deliver 

(CTD); any other eligible bond will be referred to as an alternative bond. The 

preferred form 9 (-,.) of the futures invoiee price function (1) will be the one with 

lower losses for delivering alternative bonds. The next section will show that this 

criterion is equivalent to the one mentioned before: The preferred form of (1) is 

the one that makes the futures invoiee priees of the different bonds doser to their 

corresponding spot market priees at T. Next, 1 discuss four advantages that result 

when the short party faces small losses in delivering alternative bonds. 

First, when those losses are small, the short has an economically real possibility 

of delivering different bonds.6 

Second, when the loss of delivering alternative bonds is small, the priee pressure 

on the spot priee of the CTD (due to the short traders' trying to buy it) is small. 

The reason is that, when the loss of delivering an alternative bond is small, a minor 

increase in the priee of the CTD makes this loss disappear. This, in turn, allows 

the short to optimally deliver another bond and, as a result, the priee pressure 

disappears. Therefore, the upper bound of the possible overpricing of the CTD is 

small.7 

Third, the resulting small upper bound of the overpricing of the CTD prevents 

a material overpricing of the futures contract.8 

6Suppose that the marginal traders, who determine the last settlement priee Fr (and conse­
quently the futures invoice priee of ail eligible bonds by (1)), do not own any ofthe eligible bonds 
and that, therefore, they need to buy them at the ask spot priee. For the present argument, 1 
will denote by CTD the bond of optimal delivery by the aforementioned marginal traders who 
do not own eligible bonds; the rest will be the referred to as the alternative bonds. Although 
those traders will make a loss if they deliver a bond other than the CTD, this might not be the 
case for traders who already own one of the alternative bonds. Consider, for example, a trader 
who is short in futures and hedged with a long spot position in one of the eligible bonds. He 
may want to liquidate his position by delivering this bond. The reason is that his relevant cost 
of delivery is the bid spot priee (lower than the ask) and, therefore, he might find cheaper to 
deliver the bond he owns. However, if the loss from delivering an alternative bond is big, then 
considering bid or ask spot priees will make no difference and, therefore ail the demand will be 
concentrated in the CID. 

7 As Jordan and Kuipers (1997) point out, "the impact of a derivative security on the priee 
of its underlying asset is a central research and public policy issue." They show how the futures 
contract can significantly distort the spot priee of the CTD. Also, they remark "the importanee 
of contract design" and specifically mention the conversion factor system as a cause of the 
aforementioned distortions. However, they do not propose any alternative to the conversion 
factor system. 

BThe connection between the futures priee and the spot priee of the CTD will be shown later: 
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Fourth, the long traders have little ineentive to try to squeeze the market of the 

CTD, i.e. to deliberately provoke a shortage of the CTD. Provoked shortages of 

the CTD may increase its priee and, consequently, increase the futures priee. The 

intention is to generate an extraordinary profit in the futures market for the long 

at the expense of the short, or to sell the bonds at a premium taking advantage 

of the demand by the short futures traders. As explained in the two previous 

paragraphs, the potential overpricing of the CTD and the future are small when 

so are the losses of delivering alternative bonds.9 

Because of these reasons, a relevant metric for comparing the performanee of 

alternative functional forms g(., .) for (1) is the loss generated by the delivery of 

alternative bonds.l° 

3 Cornrnon No-Arbitrage Conditions 

This section provides no-arbitrage conditions applicable both to the Conversion 

Factor System and to the True Notional Bond System and, in general, to any 

functional form 9 (-,.) in (1). These conditions will be used later to derive the 

last settlement priee FT and to identify the CTD in each of the aforementioned 

systems. In addition, the equivalenee of the two criteria mentioned in the first 

paragraph of the previous section is shown. 

The profit resulting from the short's delivering a particular bond X is: 

Profit(X) = Flpx - S?j (2) 

where Flpx is the futures invoiee priee to be paid by the long to the short, and 

S?j is the full spot market priee at T of bond X. 

The optimal bond for the seller to deliver, referred to as the cheapest-to-deliver 

the former is an increasing function of the latter, both in the CF System and in the True NB 
System. 

9Schulte and Violi (2001) consider the effect of the futures contracts on the European spot 
market. They state that "The tremendous level of activity in the EUREX contract has raised 
concerns about the risk of a shortage in the cheapest to deliver". They argue that, in order to 
avoid squeezes, it is important that it not be easily forecastable which bond will become the CTD 
at expiration. Merrick, Naik and Yadav (2002) investigate a well-publicized market manipulation 
episode: an attempted delivery squeeze in a bond futures contract traded in London. 

IOPossible alternative metrics are the upper bound of the overpricing of the CTD or of the 
future. Computations using these metrics are not reported but yield similar results both quali­
tatively and quantitatively. 
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(CTD), is the bond X that maximizes Profit(X): 

CTD == argxmax{Profit(X)}. (3) 

Although it might be a set of more than one bond, the CTD will be referred to 

as if it were just a single bond. 

The following no-arbitrage conditions are proved in Appendix A: 

No-arbitrage condition 1 The delivery of any eligible bond X cannot produce 

a positive profit: 

Profit(X) ::; 0, for aIl X (4) 

Th en, by (2), we have 

Flpx ::; S:, f or aIl X (5) 

No-arbitrage condition II Delivering the CTD generates zero profit: 

Profit(CTD) = 0 (6) 

Then, by (2), we have 

(7) 

From (6) and (3), the CTD is the only one that satisfies (4) with equality; 

therefore, delivering any alternative bond generates a loss. In other words, the 

CTD is the only bond for whieh the short reeeives a futures invoiee priee that equal 

its spot market priee; for any alternative bond, the futures invoiee priee he receives 

is lower than its spot market priee. It is clear, at this point, by looking at (2), 

that the criterion of minimum losses for delivering alternative bonds is equivalent 

to the criterion of closeness of the futures invoiee priees to the corresponding spot 

market priees. 

No-arbitrage condition II, which can be rewritten as 9 (FT, CTD) = Sf.TD by 

substituting (1) into (7), will be used to derive the last settlement priee FT as 

a function of the priee Sf.TD of the CTD. Using this futures-spot relation and 

no-arbitrage condition l, the rule to identify the CTD will be found. 

4 The Conversion Factor System (CFS) 

The CFS is currently the standard in all major exchanges of the world. Tt refers 

to a particular functional form 9 (.,.) for (1). In the CFS, the futures invoiee priee 
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for any eligible bond X is computed according to the following formula: 

(8) 

where Flpx is the futures invoice priee computed for a bond X, FT is the last 

settlement priee of the futures contract, and CFx is a conversion factor (precom­

puted by the exchange) for bond X and for a futures contract expiring a T. 

The conversion factor CFx of bond X equals the would-be priee per $1 face 

value of bond X at the delivery day T when the remaining payments are discounted 

at a predetermined "referenee rate": 

( R) -2(t-T) 

CFx='LCf 1+2" 
t>T 

(9) 

where Cf represents the payment at time t per dollar of faee value of bond X, t 

is the time of payment Cf, and R is the referenee rateY 

The referenee rate R is fixed by the specifications of the contract. In the case 

of the CBOT, it was 8% since the creation of the T-bond futures contract until it 

was changed to 6% beginning with March 2000 contracts.12 

4.1 No-Arbitrage Relations at Expiration 

This section reviews sorne no-arbitrage results for the CFS. It will facilitate the 

presentation of the new results for the TNBS in Section 5.2. 

11 ln reality, the accrued interests must be added to the last member of (8) and subtracted 
from the second member of (9). In order to make the exposition of the CFS easier to foIlow, 1 
assume that T coincides with the beginning of a rentaI period of aIl eligible bonds; therefore, 
accrued interests are zero at T. Nevertheless, the results of the next section are still valid in 
general if we regard Sf as a clean priee. 

12It is instructive to compute the total cash proceeds for the seller during the whole life of 
the contract: 

Total Proceeds for the Seller M arking ta Market Proceeds + IpX 

-(FT - Fo) + FT CFX 

Fo + FT(CFX 
- 1) 

where Fo is the futures priee originally contracted by the seller. If the short delivers a 6% coupon 
bond, then CFx = 1 because the coupon and the discount rate coincide; as a result, the short's 
total cash proceeds are equal to Fo, Le. the originally contracted priee. FT(CFX - 1) is the 
correction intended to make the choice of the bond to deliver unimportant; it is positive when 
the coupon of the bond is higher than 6%, and negative otherwise. 
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For the CFS, the absenee of arbitrage opportunities implies: 

(10) 

The first equality is obtained by specializing (8) for X = CTD and substituting 

it into (7). It gives the relation between the last settlement priee and the spot 

priee of the CTD at expiration. Given that the CTD is the bond that is chosen 

for delivery, it must be the one that determines Fr. 

The ratio gjx is usually referred to as the futures-equivalent priee corre­

sponding to the spot priee Sf of bond xP The last equation in (10) tells us 

that the CTD is the eligible bond with lower futures-equivalent priee: CTD = 
argx min {gJx }. 

To prove the last equation in (10), as weIl as for future referenee, we need a 

convenient expression of the "profit" of delivering any bond X. To specialize (2) 

for the CFS, substitute (8) 

Profit(X) = FrCFx - S?J (11) 

SCTD 
Then, substitute Fr = i5lcm from (10) and rearrange: 

[ 
SCTD SX ] 

Profit(X) = c;'crD - C;'x CF
x (12) 

SCTD 

The last expression allows us to prove the last equality in (10): ijffcro = 

{ 

SX } SCTD SX 
minx ijJx . By contradiction, assume that cJCTD > cJx for sorne X; then, 

Profit(X) > 0, which implies the existenee of an arbitrage opportunity by con­

tradicting (4). 

4.2 Rationale and Shortcomings of the CFS 

The purpose of this section is to explain the rationale and to illustrate the short­

comings of the CFS in order to be able to compare it to the TNBS proposed in 

this paper. 

According to Section 2, the objective of a futures invoiee price function is that 

Profit(X) not be too negative when the delivered bond X is different from the 

13The rationale for this terminology is that the futures-equivalent priee gjx is the would-be 
last futures priee FT if X were the only eligible bond, as ean be ehecked in (10). 
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CTD. ldeally, CFx and 8: should vary in the same proportion across X; in this 
Sx 

way, clx would be constant across X. As a result, (12) would be zero for aIl X 

and the delivery of any bond would be equivalent. 

The CFS does part of the job. For example, the larger X's coupon, the larger 

bath CFx and 8?f, thus producing sorne compensation in the ratio gjx. However, 

in general, the CFS is far from making more or less equivalent the delivery of the 

any bond from the list of eligible issues, and, at times, it makes things even worse. 

In arder ta illustrate the behavior of the CFS in a simple way, l take the case 

of a fiat yield curve at T; then, the yield ta maturity of aIl bonds is a constant 

YT. Now, consider three different scenarios: 

(a) When the yield ta maturity of aIl bonds is equal to the reference rate 

(YT = R), then 8?f = CFx for aIl X, and gfx = 1 for aIl X. Therefore, the short 

is indifferent between delivering any bond by (12). 

(b) When the yield of the bonds is higher than the reference rate (YT > R), 
then 8?f < CFx and gjx < 1 for aIl X. This ratio will be lower, the higher the 

duration of bond X. (See Appendix B) Therefore, the CTD will tend ta be a 

high-duration bond. 

(c) When the yield of the bonds is lower than the reference rate (YT < R), the 

CTD will tend ta be a low-duration bond. (The argument is similar ta that in 

(b).) 

The system works optimally in the very special case (a); but the short suffers 

a loss if he delivers a bond other than the CTD in cases (b) or (c) because the dif­

ferences in gjx across bonds will generate negative values in (12).14 Nevertheless, 

even in the latter cases, the CFS can be of sorne help in reducing the aforesaid 

loss: For equal maturities, the bond with higher coupon will have a higher spot 

price and a higher conversion factor. As a result, there is sorne compensation 

that makes (11) less different across eligible bonds. For a given coupon, when 

this coupon is higher than the yield and the reference rate, longer bonds will have 

higher spot priee and higher conversion factor; sa, here we have certain compen­

sation in (11). The compensations mentioned in this paragraph are less perfect, 

the bigger the differenee between the yield and the reference rate. 

The following is an example where the CFS produces the opposite ta the 

intended effect. If the coupon (assumed fixed across bonds) is between the yield 

and the reference rate, YT < coupon < R, then longer maturity bonds will have 

14These imperfections of the CF System have been noted by the literature. See, for example, 
Kane and Marcus (1986) or Schulte and Violi (2001). 
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higher spot price and lower conversion factor. Therefore, the CFS increases the 

dispersion of (11) across eligible bonds. As the maximum value of Profit(X) is 

zero, a bigger dispersion implies higher losses for delivering alternative bonds. A 

similar outcome obtains for R < coupon < YT. 

The imperfections of the CFS explained in scenarios (b) and (c), and in the 

last two paragraphs were the motivation to devise an alternative form g (., .) for 

the futures invoice price function (1), which is explained next. 

5 The True Notional Bond System (TNBS) 

ln this section 1 propose a new procedure to determine the futures invoice price 

of each eligible bond at T, which will be referred to as the TNBS. 

Notation. PV[·,·l is a present value operator that gives the value at T of the 

bond identified by the first argument, where its cash flows are discounted at the 

rate in the second argument. As an example of the use of this operator, we have 

si == pV(x,Yil (13) 

were Si is the full price of bond X, and yi is its yield to maturity (YTM). 

The following definition is an important building block of the futures invoice 

price determination procedure to be described in the next section. 

Definition (Notional Bond). The national bond (NB) of a futures contmct is 

an imaginary bond with the following chamcteristics: 

• ft is "issued" at the delivery date T of the futures contmct. 

• The coupon and tenor of this bond are fixed; they are part of the definition 

of the futures contmct. 15 Then, we can determine exactly the amount and 

timing of the cash flows of the national bond. 

• The priee of the national bond at T is defined ta be the last settlement priee 

FT of the futures contmct: SflB == FT. 

The yield to maturity of our NB at time T will be denoted by y!jB. Then, 

from the previous definition, we have the following identity 

(14) 

l5For example, for the T-bond futures contracts whose underlying are bonds with at least 15 
years to maturity, the notional bond could have a coupon of 6% and a tenor of 20 years. 
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Sorne remarks about the definition of the notional bond: First, the notional 

bond is an imaginary bond. In principle, the futures Exchange could set any 

coupon and tenor in the specifications of the contract. However, it would be 

most natural to set them within the usual range of coupons and tenors of the 

eligible bonds. Second, to motivate the choiee of Fr as the spot priee of the NB 

at T, we can imagine that the notional bond is our underlying. Then, defining 

S!JB == Fr is a natural choiee because, in any standard futures contract, the 

futures priee converges to the spot priee at expiration. Third, the Notional Bond 

defined above is, in fact, Just an element of the futures invoiee priee function that 

1 will propose. The real underlying assets are the bonds in the list of deliverable 

issues. Fourth, 1 have defined a true notional bond with a predetermined coupon 

and tenor. 1 remark "true" because sorne exchanges that use the CFS daim that 

they list futures contract on a "notional bond" with a coupon that is supposed to 

be the equal to the referenee rate. However, the tenor of this "notional bond" is 

unspecified; therefore, there is not a true notional bond in the CFS. The CBOT 

is careful enough not to use this terminology. 

5.1 Computing the Futures Invoiee Priee 

Instead of stating directly the functional form 9 (., .) to be used in (1), 1 will 

describe a two-step proeedure to compute the futures invoiee priee Flpx . Later, 

1 will collapse the two steps into one expression so as to formally specify 9 (., .). 

To compute the futures invoiee priee Flpx of bond X, the TNBS works as 

follows: 

1. Compute the internaI rate of return of the notional bond from (14): 

(15) 

2. Compute the futures invoiee priee of eligible bond X by discounting its cash 

flows at the rate y!JB: 

(16) 

(While step 1. is common to all eligible bonds, step 2. is different for each.) 

In summary, substituting (15) into (16), we get the proposed futures invoiee 

priee function: 

FlpX = 9 (Fr, X) == PV[X , argy{Fr = PV[NB, y]}] (17) 
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This futures invoiee priee function has the same arguments as the one used 

in the CFS: FT and X. We could think of other functional forms including addi­

tional arguments, for example, futures priees on notes, or futures priees on bills. 

However, it is unlikely that futures exchanges would be willing to aceept a func­

tional form that is much more complex ta explain to the public. Therefore, I 

constrain the choiee of functional forms to those whose only arguments are FT 

and X. Later, I will suggest a refinement of the proposed functional form that 

also satisfies this constraint. 

5.2 No-Arbitrage Relations at Expiration 

In this section I show that, for the TNBS, the absenee of arbitrage opportunities 

in a frietionless market imply 

(18) 

For the sake of comparison to (10), we can reexpress (18) by applying PV{NB, .] 

to all three members of (18) and by using identity (14) in the first: 

(19) 

The first equality in (18) says that the YTM of the NB, as defined by (14), 

has to be equal to the YTM of the CTD .16 To prove it, I start from equal­

ity (7), FlpcTD = Sf.TD, and use (16) and (13) to reexpress this equality as 

PV{CTD, y~B] = PV{CTD, yf.TD] , whence y~B = yf.TD trivially follows. 

A key element in the analysis of the TNBS is the determination of the profit de­

rived from delivering a particular bond X. As an intermediate step, we substitute 

y~B = yf.TD into (16) to get 

Finally, substituting (20) and (13) into (2) we get 

Profit(X) PV{X, y~TD] - PV{X, y;] 

:::::J DXS; (y; _ yjZTD) 

(20) 

(21) 

(22) 

16Note that y!JB = yÇj.TD connects FT with SÇj.TD making the first an increasing function of 
the second because FT is decreasing in ylfB, and yÇj.TD is decreasing in SÇj.TD. Given that the 
CTD is the only eligible bond that is delivered, it must be the one that determines FT. 
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where y: and yrj.TD are continuously compounded rates, and D X is the duration 

ofX. 

Looking only at the YTM of the different eligible bonds, we do not know 

the complete ranking of eligible bonds according to the seller's preferences for 

delivery because, as we can see in (22), DX Sf also counts. However, we can say 

which is the first bond in the ranking (the CTD) by looking only at the YTM 

of the eligible bonds. The rule is that the CTD is the eligible bond with the 

highest YTM: CTD = argx max {y:}. This rule derives from the second equality 

of (18), yrj.TD = maxx {Y:}, which l prove next. By contradiction, assume that 

yrj.TD < yf for sorne X; then (21) and (22) are positive, whieh implies the existence 

of an arbitrage opportunity by contradicting (4). 

5.3 Rationale of the TNBS and 

Comparison with the CFS 

Bonds of similar maturities have similar yields. Therefore, if the eligible bonds 

belong to a convenient range of maturities, their yields will be similar. In this 

case, (21) and (22) will be small, and delivering a bond different from the CTD 

will generate only a small loss. This was precisely the metric proposed in Section 

2 to judge alternative forms 9 (.,.) for the futures invoice price function (1), hence 

the rationale of the TNBS. 

While the range of maturities needs to be narrow for futures contracts on short 

term notes, it can be wide for long term bonds because the latter's yields tend to 

differ much less. The note and bond futures contracts at the CBOT follow exactly 

this pattern; therefore, the futures invoice priee function proposed here fits the 

current structure of the contracts at the CBOT. 

Another way to see the rationale of the TNBS: given that the yields of the 

eligible bonds are similar, the futures invoice price (20) received by the short for 

delivering any bond will be close to its market value. 

Now, l compare the TNBS with the CFS. Let us say that a futures invoice 

priee determination system works perfectly when VX : Profit(X) = O. (This is 

consistent with Section 2.) Assume that the yield curve is fiat. While the CFS 

works perfectly only when the level of the yield is equal to the 6% reference rate, 

the TNBS works perfectly for any level of yield by (21) or (22). Thus, the world 

in whieh the CFS works perfectly is much more implausible than the one in which 

the TNBS does. It is somewhat ironic that the CFS only works perfectly in a 
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world in which the yields are fixed, in which case a bond futures contract would 

be useless. The empirical part of this paper shows that the proposed system is 

superior to the CFS also for real-world non-fiat yield curves. 

Another disadvantage of the CFS is that, when yields become too different from 

the referenee rate, the Exchange has to change the referenee rate. The CBûT was 

reeently forced to change the referenee rate from 8% to 6% to diminish the losses of 

delivering a bond different from the cheapest-to-deliver. In contrast, no change in 

the computation of the futures invoiee priee is ever needed in the TNBS. Although 

this may seem a minor consideration, in practiee it is not: the CBÛT had to widely 

publicize the year 2000 change in the referenee rate and its implications in order 

to avoid confusions, and needed the approval by the Commodity Futures 'frading 

Commission. 

The remarks of the two previous paragraphs are particularly important in 

emerging countries, where the interest rates include ever-changing credit spreads, 

which make interest rates more volatile than in developed economies. Therefore, 

the yields can easily depart very substantially from the reference rate. 

A word about hedging. In the CFS, hedgers usually compute the sensitivity of 

the futures priee to changes in the interest rate assuming that a particular bond 

will turn out to be the CTD. When the CTD is still uneertain, hedging becomes 

problematic and may require frequent rebalancing of the hedger's portfolio. As 

an example of this, cases (b) and (c) of Section 4.2 imply that, under a fiat yield 

curve, a small increase in the yield from being lower to being higher than the 

referenee rate R makes the CTD switch dramatically from low duration bonds to 

high duration bonds. In contrast, under the TNBS, hedgers can design the typical 

hedging strategies quite easily: they only need to remember that the futures priee 

is the present value of the notional bond and, therefore, they can act as if the 

underlying of the futures contract were the notional bond. The most common 

duration-based strategies assume that the yield curve suffers only parallel shifts. 

Under this assumption, the change in the yield yNB of the notional bond is equal 

to the change in the rest of the yields because yNB is just their maximum. 

CBûT (2000) considers a frequently asked question: "How do you determine 

the yield of a 'freasury futures eontraet based on its priee?" This paper eoncludes 

that, in the CFS, futures eontracts do not have a yield. 17 In contrast, in the TNBS 

17If we knew in advanee at time t which bond will be the CTD at T, then we would be able 
to say that the yield of the futures contract at t is the yield that the CTD would have at T if 
its priee at this time were Pt CpCTD (known at t). However, the CTD is not known in advance. 
Furthermore, even at T, the yield of the futures contract may not be unique if two or more 
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there is a clear yield, namely, the yield of the notional bond. This yield can be 

compared to the yields of Treasury bonds, knowing that, at expiration, y!j.B will 

equal the highest among the yields of all eligible bonds. This feature adds to the 

contract's appeal to speculators and the public in general. 

Finally, we can consider the effect of the futures market on the spot market: 

the anomalies at the far end of the spot yield curve will tend to be lower with the 

TNBS than with the CFS. Even with an overall upward sloping yield curve, it is 

common to see a negative slope in the far end of the yield curve. This is usually 

attributed to the fact that the longest bonds have been issued more reeently and 

therefore still remain more liquid. The CFS can stress this anomalous negative 

slope in the far end of the yield curve: when the yields are higher than the referenee 

rate, the highest-duration bond tends to be cheaper to deliver, pushing its priee 

up and its yield down. On the contrary, the TNBS will tend to flatten the far end 

of the yield curve because the CTD will be the bond with higher YTM. Then, an 

increased demand of the CTD in anticipation for delivery will drive its priee up 

and its YTM down. 

6 Empirical Comparison of the Two Systems 

This section empirically compares the CFS and the TNBS according to the losses 

generated by delivering bonds different from the cheapest-to-deliver. The rationale 

for the chosen criterion of comparison was explained in Section 2. The focus is 

on the Treasury-bond futures contract traded on the CBOT. The eligible bonds 

are long-term U.S. Treasury bonds that mature in at least 15 year's time from 

the expiration of the corresponding futures contract. 18 First, for reasons that l 

explain later, results are presented using simulated bonds that are valued from an 

estimated yield curve model. Then, as a robustness check, l present results using 

actual Treasury bond priees. 

The Data. The sam pie contains US Treasury bonds and notes included in the 

CRSP's Monthly US Treasury Database from February 1985 to Deeember 2001. 

Only taxable, non-flower, non-callable bonds and notes were used. 

Yield Curve Model. The Nelson and Siegel (1987) yield curve model was fitted 

to all the data of the sample. This model assumes that the functional form of the 

bonds are CTD at the same time. 
181n addition, eligible bonds should not be callable for at least 15 years. 1 will ignore the 

possibility of delivering callable bonds because, at present, the US Treasury is not issuing them 
any more and there are not any eligible callable bonds left for the T-bond futures contract. 
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instantaneous forward rate at t as a function of maturity m is 

(23) 

whenee we can get the functional form of the zero-coupon yields at t as a function 

of maturity m: 

<51 and <52 were constrained to be the same for aIl the dates of the sample. Then 

the evolution of the linear parameters {,BI ,t, ,B2,t' ,B3,t} t characterizes the evolution 

of the yield curve through time. Nelson and Siegel (1987) and Diebold and Li 

(2002) have notieed that very little goodness-of-fit is sacrifieed when <51 and <52 are 

constrained to be constant through time, even when they foree <51 = <52 . 

6.1 ResuIts 

Although there only exist futures contracts expiring every three months, l simu­

lated the behavior of futures expiring every single month, thus taking advantage 

of all the data points in the sample. 

Using the estimated yield curves, l simulated the priees of bonds of different 

maturities for each month of the sample. The chosen maturities range from 15 to 

30 years with a step of half a year; thus l work with 31 bonds at each expiration, 

which closely approximates the number of deliverable issues in the CBOT's Trea­

sury Bond Futures Contract. The coupon of the simulated bonds is chosen to be 

8%; the results are robust to the choiee of coupon. 

The simulated prices were the input to simulate, at each time, the YTM of 

the different bonds, the yield yNB of the notional bond using (18), the futures 

invoiee priees of the bonds under the TNBS using (16), and the corresponding 

losses using (2). The same simulated prices were the input to compute, for each 

month in the sample, the futures priee under the CFS using (10), and the losses 

from delivering the different bonds using (11). 

Recall that "alternative bonds" denote the eligible bonds that are not the CTD. 

Let lt,i be the loss under the CFS derived from the seller's delivering, at date t, 

$1 faee value of the alternative bond i. For each date t, the losses {lt,i}~~l for 

the 30 alternative bonds were sorted in aseending order to obtain {Lt,#} :=1 such 

that Lt,# ~ Lt, #+1. This sorting determines the ranking # of the alternatives 
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Figure 1: Average loss per $1 of face value from delivering the #th best alternative 
ta the CTD. 

to the CTD according to the seller's preferences. Now suppose that we pick the 

loss of the #th ranked bond for each of the n months in the sample: {Lt,#} ~=1 . 
n 

The average L# = ~ L Lt ,# of those values is shown by the corresponding round 
t=l 

marker of Figure 1. The triangular markers show the results of a parallel ordering 

and the same computations for the losses corresponding to the TNBS. From the 

procedure described above, the markers of Figure 1 show the losses of the cheaper 

bonds to deliver to the left and the more expensive to deliver to the right. 

The higher horizontalline in Figure 1 indicates the average of the round mark-
ln 

ers, L = ~ L L#, Le. the average loss of delivering each and every bond sim-
#=1 

ulated at each and every month of the sample period for the CFS. The lower 

horizontal line shows the parallel computation for the TNBS. As we can see, the 

average loss in the CFS is more than twice the one of the TNBS. However, this 

figure focuses our attention on the less important losses, the ones that will never 

occur, because the higher differences are those corresponding to the less preferred 

bonds. 

A better picture of the relative losses generated by the two systems can be 

obtained by dividing the height of each marker by that of the marker located in 

the same vertical line corresponding to the TNBS. The resulting ratios are the 

markers of Figure 2. In this way, for each #, the average losses corresponding to 

each of the two systems have been standardized so as to have 1 for the TNBS. 
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Figure 2: Standardized average loss from delivering the #th best alternative to 
the CTD. Measured as a proportion of the eorresponding average loss in the NB 
System. 

The horizontal line is just the average of the markers eorresponding to the CFS. 

In Figure 2, we can clearly see the most important eomparison, the one between 

the losses in the left side of the graph: those in the CFS are of the order of four 

times those of the TNBS. Table 1 displays the results diseussed so far. 

6.2 Why use simulated priees? 

The reason for using simulated priees is that actual priees of the crn are usually 

overvalued beeause of the demand of short future traders and, possibly, of market 

manipulators. This overprieing of the crn has two effeets: 

1. By the first equation in (10), the futures eontract becomes overprieedj there­

fore, the short must make exeess payments of variation margins. 

2. The overprieing of FT inereases the futures invoiee priee reeeived by the 

short, thus reducing the losses of delivering alternative bonds.19 

As the CFS is the futures invoiee priee determination procedure used in the real 

world, the bonds that are the crn according to this system are usually overprieed, 

even long before the expiration of the futures eontract. Therefore, aceording to 2., 

19The effect of an overpricing of the CTD on the losses of delivering alternative bonds can be 
seen in (12). 

55 



# CF True NB Ratio 
1 0.00083 0.00019 4.29 
2 0.00165 0.00040 4.11 
3 0.00246 0.00062 3.95 
4 0.00325 0.00086 3.80 
5 0.00404 0.00110 3.67 
6 0.00481 0.00136 3.54 
7 0.00558 0.00163 3.42 
8 0.00634 0.00192 3.30 
9 0.00710 0.00222 3.20 
10 0.00785 0.00254 3.10 
11 0.00860 0.00287 3.00 
12 0.00935 0.00321 2.91 
13 0.01009 0.00357 2.83 
14 0.01084 0.00394 2.75 
15 0.01159 0.00434 2.67 
16 0.01234 0.00475 2.60 
17 0.01309 0.00517 2.53 
18 0.01384 0.00562 2.46 
19 0.01461 0.00608 2.40 
20 0.01539 0.00657 2.34 
21 0.01617 0.00706 2.29 
22 0.01697 0.00758 2.24 
23 0.01779 0.00812 2.19 
24 0.01862 0.00868 2.15 
25 0.01947 0.00926 2.10 
26 0.02035 0.00987 2.06 
27 0.02126 0.01049 2.03 
28 0.02221 0.01116 1.99 
29 0.02319 0.01186 1.96 
30 0.02419 0.01258 1.92 

Average 0.01213 0.00519 2.79 

Table 1: Comparison between the lasses (per dollar of face value) generated by the 
CF and the True NB Systems. The last column is the ratio of the previous two. 
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using actual priees would reduce the losses for the CFS reported in the previous 

figures. However, this reduction of losses is not something to celebrate because it 

is compensated by the losses in the futures explained in 1.; in fact, the latter are 

much more harmful because they affect the short even when he delivers the CTD. 

Therefore, it is preferable that the overpricing of the CTD does not reduce the 

reported losses. To avoid taking this overpricing into account, 1 used simulated 

prices obtained from a parsimonious representation of the yield curve so as to 

simulate a spot market not distorted by pressures from the futures market. 

In addition, there may be other specialness factors that are not caused by 

the futures contracts. Given that no attempt is made to consider them under 

either the CFS or the TNBS, it is desirable that they do not play any role in the 

comparison of the two systems. The use of a smooth representation of the yield 

curve is useful to wash them away. 

Finally, using simulated prices fills the big gaps in maturities observed espe­

cially in the first half of the sample. As these gaps are not present any more in 

today's market, it would be of no interest to let them influence the results. 

In spite of the previous comments, 1 show the results using actual priees as a 

robustness check. 1 restrict the experiment to data from February 1991 onward, 

the reason being that, from that month on, there are at least 16 bonds per month 

allowing me to compute at least 15 losses for all months; also, since that month 

there are no big differences between the maturity of one bond and that of the 

closest-in-terms-of-maturity bond. Given that in recent times we do not see any 

more those big maturity "holes", it would be of no interest to include the ef­

fect of such holes in the results. This is important given that the first preferred 

alternatives to the CTD are usually bonds of similar maturities. 

Figures 3 and 4 are the equivalent of Figures 1 and 2 except for the use of 

actual prices to compute losses. The horizontal lines of Figures 3 and 4 were 

computed as an average of the losses of delivering each of the bonds available at 

each date, not only the first 15 alternative bonds, whose average losses are shown 

by the markers; that is why they seem out of line in Figure 3. 

The first three round markers of Figure 4 have a height of the order of 3, 

somewhat less than the ones of Figure 2, possibly reflecting the overpricing of the 

cheaper bonds to deliver. However the CFS still compares very unfavorably to 

the TNBS. 
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Figure 3: Average loss per $1 of face value from delivering the #th best alternative 
to the CTD. (Using observed priees; computed to check robustness.) 
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Figure 4: Standardized average loss from delivering the #th best alternative to 
the CTD. Measured as a proportion of the corresponding average 10ss in the NB 
System. (Using observed priees; computed to check robustness.) 
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7 Possible Extensions 

1 showed in Sections 4.2 and 5.3 that the TNBS works perfectly under fiat yield 

curves. In that situation, any bond can be delivered without any loss. In this 

section, 1 suggest sorne extensions that could be used to fine tune the TNBS. 

Their pur pose is to deal better with non-fiat yield curves while keeping the futures 

invoiee priee as a function of only FT and X. AlI of them have a common structure, 

which 1 denote the Refined Version of the TNBS. This Refined Version would work 

as follows. The Exchange fixes a spread sX for each eligible bond X of the list 

of deliverable issues of a new futures expiration before this expiration is listed. In 

computing the futures invoiee priee of each bond X, the prespecified spread sX 

will be added to y!j.B, and the sum of the two will be used to discount the cash 

fiows of X: 

(24) 

This expression replaces (16) while y!j.B is still computed as in (15). 

In order to emphasize the timing of the determination of the spread, let T be 

the time the spreads sX, V X are fixed by the Exchange for a partieular futures 

expiration and v the time this expiration begins to be traded, th en we will require: 

T<v<T 

We need T < V so that the contract be perfectly defined before trading begins. 

If, at time T, the expected shape of the yield curve for time T is different from 

fiat, then the introduction of well chosen spreads may reduee the expected losses 

from delivering alternative bonds. 

Condition for Indifference in the Delivery of Eligible Bonds. Using arguments 

similar to the ones of Section 5.2, the following can be proved. If, at time T, the 

Exchange fixed spreads such that it turns out later at T that 

sX = y:f - y~, for all X 

where Z is an arbitrary (possibly imaginary) bond, then the delivery of any eligible 

bond is indifferent for the short. In other words, when the shape of the term 

structure of spreads sX is equal to the shape of the term structure of YTMs yf 
at T of the eligible bonds, then indifferenee in delivery is achieved. 

How the Exchange can fix the spreads at T. Because of the previous indifferenee 
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condition, a simple rule to fix the spreads would be 

The better the Exchange can forecast the differences in YTMs, the less important 

will be for the short to deliver any of the eligible bond. 

It is often daimed that more than 75% of the movements of the yield curve 

are parallel shifts. This fact should make the forecast of y: - yf more precise 

because this difference is aimost20 independent of the level of the yield curve. 

A crude forecast of y: - yf is y; - y;. A more sophisticate and general 

procedure is to forecast the zero-coupon yield curve to be observed at T, and 

then to compute forecasted prices and the corresponding forecasts for the YTMs. 

The yield-curve forecast can be performed in an infinity of ways; see for example 

Duffee (2002) and Diebold and Li (2002). 

If the Exchange is reluctant to fix the spreads based on a new estimation of 

the zero-coupon yield curve every time a new expiration is about to be listed, 

it may consider using its unconditional average shape. Although the latter is a 

poor forecast, recall that the level is not important, only the shape is. Using this 

forecast might still be better than assuming that the yield curve will be fiat. The 

advantage of this procedure is that, once the unconditional estimates have been 

obtained, the estimates can be frozen and, therefore, the rule for the determination 

of the spread is automatic: there is not need of further estimations each time a 

new futures expiration is about to be listed. Then, this rule can be incorporated 

in the definition of the contract on a permanent basis. 

On the MATIF, which is now part of Euronext, there used to be a bond 

futures contract that induded both French and German government bonds in the 

list of deliverable issues. Apart from the usual problems of the CFS, this contract 

had the drawback that the CTD was almost always a French bond. Then the 

contract can hardly benefit from the addition of the German bonds to the basket 

of deliverable issues. (See Schulte and Violi (2001)) Situations like this could be 

handled by forecasting two different yield curves, one for each issuer, and using 

the corresponding one in determining the spread of each bond. If the Exchange 

preferred a futures invoice price determination system doser to the simple version 

of the TNBS, then s x could be 0 for any bond X corresponding to one of the 

countries, and a constant s x' for any X' corresponding to the other country. 

20 A parallel shift of fly in the yield curve produces a change in the YTMs of the bonds only 
approximately equal to fly, as it has been noted by Ingersoll, Skelton and Weil (1978)). 
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ln addition to the general shape of the yield curve, we could take into account 

the idiosyncratic part of the YTM of each bond due, for example, to liquidity 

issues or to differences in seniority. 

8 Conclusion 

ln this paper 1 have proposed a new method, the TNBS, for determining the 

invoiee priee in futures contracts where the seller chooses one bond to deliver 

out of a list of deliverable issues. Assuming no-arbitrage, 1 have derived the 

following theoretical results for the proposed system: the equilibrium futures priee 

at expiration, its relation to the priee of the CTD, the equilibrium determination 

of the cheapest-to-deliver, and the equilibrium futures invoiee priee of aU eligible 

bonds. Finally, after explaining the rationale of the TNBS, 1 have empiricaUy 

shown that it strictly dominates the CFS, the current standard in the industry. 

The empirical part of this paper shows that the TNBS dramatically reduces the 

losses derived from delivering a bond different from the cheapest-to-deliver. As a 

result, the TNBS gives the seller an economically more real possibility of delivering 

alternative bonds, provides a tighter bound to the overpricing of the cheapest­

to-deliver and of the futures contract, and lessens the ineentives to deliberately 

provoke shortages of the cheapest-to-deliver. 

The Refined Version of the TNBS may reduee even further the losses of de­

livering alternative bonds. In addition, it allows a reasonable design for futures 

contracts whose list of deliverable securities comprises bonds issued by different 

countries. Finally, it permits the inclusion of bonds with different liquidity and 

seniority. The last point may be important for bonds issued by less developed 

countries. 

The TNBS is conceptually clear. One can think of the futures contract as if 

the underlying were a single bond: the notional bond. For practical purposes like 

hedging or speculating on the level of the yield curve, the error of this only approx­

imate characterization can be ignored. In addition, a yield can be meaningfully 

and straightforwardly ascribed to the futures priee. 

In future work l plan to 1) address the valuation of bond futures under the 

TNBS, 2) quantify the advantages of the TNBS over the CFS in the use of bond 

futures for risk management, and 3) treat in detail the Refined Version of the 

TNBS. 
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Appendix A 

Proof of no-arbitrage condition 1 

If Profit(X) > 0, arbitrageurs can short the futures contract at T, choose ta 

deliver bond X and make a profit. The reverse arbitrage cannat be done for any 

X because the long cannat choose which bond the short will deliver. 

Proof of no-arbitrage condition II 

For X = CTD, (4) implies Profit ( CTD) :::; o. Now l show that also Profit( CTD) 2: 
O. If Profit(CTD) < 0, arbitrageurs will buy futures at T, and the worst that can 

happen ta them in this zero-sum game is that the short delivers the CTD. Then 

the arbitrageur will make at least a profit of -Profit(CTD) > O. (Remember 

that Profit(X) is the profit of the seller; ta get the one of the buyer we have ta 

change its sign.) 

Appendix B 

The influence of the level of yields on the determination of the cheapest­

to-deliver in the CFS 

This Appendix shows that, for a fiat yield curve, when the yield of the bonds 

is higher than the reference rate, then the CTD will tend ta be a high-duration 

bond, and that, on the contrary, when the yield is lower than the reference rate, 

then the CTD will tend ta be a low-duration bond. 

The argument will make use of four elements. First, YT will be the continuously 

compounded yield ta maturity of aIl bonds at time T: 

si = L C{ e-YT(t-T) , for all X 
t>T 

Second, the duration of a bond X is equal ta 

(25) 

(26) 

Third, R, the reference rate, will be used as a continuously compounded yield, 
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such that (9) becomes 
CpX = L C{ e-R(t-T) 

t>T 

Fourth, recall the rule that identifies the CTD: 

CTD = argx min {gfx } 

(27) 

(28) 

When the yield of aIl bonds, a constant YT, is higher than the reference rate 

(YT > R), then S?J < Cpx for aIl X. The higher the duration of X, the greater 

tends to be the absolute value of the difference between log S?J and log Cpx by 
SX SX 

(26), the lower log clx, and the lower the futures-equivalent priee clx. Then, by 

(28), the CTD will tend to be a high-duration bond. 

A similar argument shows that, on the contrary, when the yield is lower than 

the reference rate (YT < R), the CTD will tend to be a low-duration bond. 
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While the previous essay concentrates on Treasury bond futures contracts, a 

derivative of government bonds, the following studies a derivative on corporate 

bonds, namely credit default swaps. 
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Faculty of Management, McGill University 

September 2004 

Abstract 

Using a new dataset of bid and offer quo tes for credit default swaps, we 

investigate the relationship between theoretical determinants of default risk 

and actual market premia using linear regression. These theoretical deter­

minants are firm leverage, volatility and the riskless interest rate. We find 

that estimated coefficients for these variables are consistent with theory and 

that the estimates are highly significant both statistically and economically. 

The explanatory power of the theoretical variables for levels of default swap 

premia is approximately 60%. The explanatory power for the differences 

in the premia is approximately 23%. Volatility and leverage by themselves 

also have substantial explanatory power for credit default swap premia. A 

principal component analysis of the residuals and the premia shows that 

there is only weak evidence for a residual common factor and also suggests 

that the theoretical variables explain a significant amount of the variation 

in the data. We therefore conclude that leverage, volatility and the riskfree 

rate are important determinants of credit default swap premia, as predicted 

by theory. 
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1 Introduction 

A credit derivative is a contingent daim that allows the trading of default risk 

separately from other sources of uncertainty. From being a fledgling market in the 

mid nineties, credit derivative markets have grown tremendously over the last few 

years. The market exceeded 2 trillion dollars in outstanding notional principal in 

2002, and it is expected to double in size by the end of 2004. The most standard 

contract is the single-name credit default swap (CDS) which accounts for roughly 

half of the trading activity.l This instrument is essentially an insurance contract 

against the default of an underlying entity. Compensation is paid if a credit event 

occurs while in return the buyer of protection makes regular payments based on 

the swap premium. 

Little empirical work has been done on credit derivative markets.2 Notable 

exceptions indude Houweling & Vorst (2005), Hull, Predescu & White (2004) and 

Longstaff, Mithal & Neis (2004). Houweling & Vorst (2005) implement a set of 

simple reduced form models on market CDS quotes and corporate bond quotes. 

The paper focuses on the pricing performance of the model and the choice of 

benchmark yield curve. Hull et al. (2004) analyze the impact of rating announce­

ments on the pricing of CDSs. Longstaff et al. (2004) and Blanco, Brennan & 

Marsh (2003) study the relative pricing of corporate bonds and default swaps. 

In the last decade, a more substantial body of empirical work has emerged on 

other credit sensitive instruments, in particular corporate bonds. This work can 

be categorized according to the theoretical framework it relies on. One popular 

approach is to use what are known as reduced form models.3 These models ex­

ogenously postulate the dynamics of default probabilities and use market data to 

recover the parameters needed to value credit sensitive daims.4 While these mod­

els have been shown to be versatile in practical applications, they remain relatively 

silent on the theoretical determinants of the prices of defaultable securities. 

An alternative approach, commonly referred to as the structural approach, is 

[These statistics and forecasts are based on publications by the British Bankers' Association. 
A very similar picture emerges from our dataset. Although it includes sorne transactions that 
date back to 1995, the number of quotes is negligible until the turn of the cent ury. Subsequently 
the market experienced explosive growth (see Figure 1). 

2Theoretical work includes Das (1995), Hull & White (2000) and Das & Sundaram (1998). 
3See Jarrow & Thrnbull (1995) and Duffie & Singleton (1999) for early work on this topic. 

Useful surveys can be found in Lando (1997) and Duffie & Singleton (2003). 
4 Empirical papers using reduced form models to value credit risky bonds include Bakshi, 

Madan & Zhang (2001), Driessen (2004), Duffee (1999), Duffie & Lando (2000), Duffie, Pedersen 
& Singleton (2003) and Elton, Gruber, Agrawal & Mann (2001). 
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to rely on models that have evolved following Black & Scholes (1973) and Merton 

(1974). This approach links the priees of credit risky instruments directly to the 

economic determinants of financial distress and loss given default. 5 In particular, 

these models imply that the main determinants of the likelihood and severity of 

default are financial leverage, volatility and the risk free term structure. These 

models have been plagued by poor performance in empirical studies.6 Perhaps 

as a result of the difficulty of implementing structural models in practiee, a more 

direct approach was taken by Collin-Dufresne, Goldstein & Martin (2001) (CGM), 

who use the structural approach to identify the theoretical determinants of corpo­

rate bond credit spreads. These variables are then used as explanatory variables 

in regressions for changes in corporate credit spreads, rather than inputs to a 

particular structural model. CGM conclude that the explanatory power of the 

theoretieal variables is modest, and that a significant part of the residuals are 

driven by a common systematic factor which is not captured by the theoretical 

variables. Campbell & Taksler (2003) (CT) perform a similar analysis but use 

regressions for levels of the corporate bond spread. They conclude that firm spe­

cific equity volatility is an important determinant of the corporate bond spread 

and that the economic effects of volatility are large. Cremers, Driessen, Maenhout 

& Weinbaum (2004) (CDMW) confirm this result, and argue that option-based 

volatility contains information useful for this type of analysis that is different from 

historieal volatility. 

Our study is intimately related to these papers. Although our focus is also on 

credit risk, an important distinction is that we study very different data - default 

swap premia rather than corporate bond yield spreads. Using default swaps rather 

than bonds has at least two important advantages. 

First, default swap premia, while economieally comparable to bond yield spreads, 

do not require the specification of a benchmark risk free yield curve - they are 

already "spreads". Thus we avoid any added noise arising from a misspecified 

model of the risk free yield curve. The choice of the risk free yield curve includes 

the choice of a reference risk free asset, which can be problematie (see Houweling 

& Vorst (2005)), but also the choice of a framework to remove coupon effects. 

5Important examples include Black & Cox (1976), Collin-Dufresne & Goldstein (2001), Geske 
(1977), Kim, Ramaswamy & Sundaresan (1993), Leland (1994), Leland & Toft (1996), Longstaff 
& Schwartz (1995) and Nielsen, Saa-Requejo & Santa-Clara (1993). 

6See in particular Jones, Mason & Rosenfeld (1984), Jones, Mason & Rosenfeld (1985), 
Lyden & Saranati (2000) and Ogden (1987). More recently Eom, Helwege & Huang (2004) have 
documented the difficulty of implementing these models. 
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Second, default swap premia may reflect changes in credit risk more accurately 

and quickly than corporate bond yield spreads. Blanco et al. (2003) provide 

evidence that changes in the credit quality of the underlying name are likely to 

be reflected more quickly in the swap premium than in the bond yield spread. 

AIso, if there are other important non-default components in bond spreads, their 

variation will obscure the impact of changes in credit quality. 7 

Like CGM, CT and CDMW, we carry out linear regression analysis on the 

relationship between default swap premia and key variables suggested byeconomic 

theory. Our benchmark results focus on financial leverage, firm specifie volatility 

and the risk free rate. We run regressions on changes in premia as well as for 

the levels of the premia. We find that the estimated coefficients for the three 

variables are consistent with theory and that the estimates are highly significant 

both statistically and economically. The size of the effects is intuitively plausible. 

This is true both for regressions in levels and differences. Interestingly, we find 

a negative correlation between CDS premia and the risk free rate. A similar 

correlation has been documented for bond yield spreads by Longstaff & Schwartz 

(1995) and Duffee (1998). Presently, no consensus prevails as to the economic 

reasoning behind this stylized facto Our results are consistent with the implication 

of structural models that an increase in the risk free rate will decrease risk-adjusted 

default probabilities. 

The amount of the variation in swap premia explained by the difference regres­

sions is higher than in existing work on corporate bond spreads. When we consider 

regressions in levels, explanatory power is quite high with R-squares ranging from 

50% to 75%. Thus variables drawn from economic theory are clearly important in 

explaining the pricing of this particular type of credit-sensitive instrument. This 

finding is reinforced by an analysis of the regression residuals, which shows that 

the evidence for a remaining common component is weaker than in the work of 

CGM on corporate bond data. We argue however that a comparison of our results 

with empirical results on corporate bond spreads should be interpreted cautiously. 

One reason is that the particular maturity structure of the CDS data is likely to 

influence our conclusions on the explanatory power of the results. 

The paper proceeds as follows. In the next section, we lay out our analytical 

7Fisher (1959), Houweling, Mentink & Vorst (2004), Longstaff et al. (2004) and Perraudin 
& Taylor (2002) document the existence of an illiquidity component in bond yield spreads. 
In addition, Elton et al. (2001) suggest that both the differential taxation of corporate and 
government bonds as weIl as compensation for systematic risk will impact bond spreads over 
and above the size of expected losses given default. 
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framework. In particular, we discuss the determinants of default swap premia 

suggested by existing theory and then present our regression equations. In section 

3, we present and discuss our empi"rical results. Section 4 concludes. 

2 Analytical Frarnework 

2.1 The Theoretical Determinants 

of Credit Default Swap Premia 

There are two different approaches to modeling credit sensitive financial instru­

ments. One approach is due to Merton (1974) and relies on a theoretical approach 

that explicitly relates the credit event to the value of the firm's assets. The firm 

is assumed to default on its obligations when the firm value falls below sorne 

threshold. These types of models are called structural models because the link 

with economic fundamentals is explicit. They can be used to price credit sensitive 

securities such as corporate bonds as weIl as credit default swaps. The second 

approach is more recent and finds its origins in the modeling of the risk free term 

structure. This approach is referred to as the reduced form approach because 

the relationship with underlying economic variables such as the firm value is not 

explicitly modeled. 

This paper analyzes CDS premia from the perspective of structural form mod­

els. FoIlowing Merton's (1974) pathbreaking work, the basic structural model 

has been extended in different ways.8 While these models typically focus on the 

importance of additional theoretical variables, or change the precise functional 

dependence of default on existing theoretical variables, they aIl have in common 

that default and therefore the value of the default sensitive security depends on 

a number of determinants that are central to the Merton (1974) approach. First, 

leverage is central to aH these models: ceteris paribus, the more levered the firm, 

the higher the probability of default. Second, the volatility of the underlying assets 

is an essential determinant of the value of the default sensitive security because 

the latter is equivalent to a credit risk free security and a short put. Volatility 

influences the value of the put option. Third, the level of the riskless rate also im-

8See Black & Cox (1976), Geske (1977), Fischer, Heinkel & Zechner (1989), Kim et al. (1993), 
Nielsen et al. (1993), Leland (1994), Longstaff & Schwartz (1995), Anderson & Sundaresan 
(1996), Leland & Toft (1996), Mella-Barral & Perraudin (1997), Zhou (1997), Leland (1998), 
Mella-Barral (1999), Duffie & Lando (2000), Collin-Dufresne & Goldstein (2001), Frariçois & 
Morellec (2004). 
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pacts the value of the option. Although the correlation between the risk free rate 

and the bond spread is strictly not part of Merton's (1974) analysis which relies 

on a constant interest rate, the framework does predict a negative relationship 

between these two variables. The reason is that the risk free rate determines the 

risk adjusted drift of firm value and thus an increase in this variable will tend to 

decrease risk adjusted default probabilities and also spreads. The same result has 

been shown in models where the dynamics of the risk free rate have been modelled 

explicitly.9 

Rather than carrying out a full structural estimation of any given model or 

set of such, we rely on what these models together suggest are the main determi­

nants of credit risk. We use these variables in simple linear regressions of default 

swap premia on the suggested factors. Note that although structural models have 

almost exclusively been used to value corporate bonds, the implied relationship 

between the theoretical variables and default swap premia is the same. This can 

be understood by considering the similarity between the payoffs of the two types 

of financial instruments. Bonds pay regular coupons and principal cash flows until 

default occurs. At that time, the bond will be worth a fraction of its original prin­

cipal amount.1° The seller of default insurance through a CDS (analogous to the 

holder of the bond) receives regular payments (approximately the coupon rate on 

the bond minus the risk free rate) until default occurs, when he makes a payment 

equivalent to the 10ss in market value of the underlying bond - thus incurring the 

same loss as the holder of the bond. ll Thus in terms of the sequence of cash flows 

and the impact of default, bonds and CDSs are very similar and structural model 

variables will have the same impact on the values of both securities. 12 

In what follows, we will study the link between theoretically motivated de­

terminants of default risk and market data on CDS premia using simple linear 

9See e.g. Longstaff & Schwartz (1995) and Collin-Dufresne & Goldstein (2001). 
loModels differ in their exact technical treatment of this payment but this is without impli­

cations for the differences between bonds and default swaps. 
Il In practice, the settlement in the event of default may be made either in cash or in kind. 

If made in cash, a third party typically determines the post credit event market value of the 
reference obligation according to a predetermined formula and the payment made will be the 
original principal minus this value. If the settlement is in kind, the buyer of insurance will put 
the bond to the seller at par. In sorne cases, there rnay be a certain amount of flexibility for the 
buyer as to which bond can be delivered, much like for government bond futures contracts. 

12In fact, in the absence of counterparty risk and market frictions, it can be shown that a CDS 
on a floating rate bond originally issued at par can be synthesized by an offsetting portfolio of 
this floater and an otherwise identical credit risk free floater. The net cash flows of this portfolio 
must equal those of the CDS in the absence of arbitrage. See Duffie & Singleton (2003) for a 
detailed discussion of this and more complex cases. 
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regression methods. In doing so, we closely parallel the approach taken by CT, 

CGM and CDMW using corporate bond data. 

2.2 Regressions 

According to theory, the premia on credit default swaps should be determined 

by the amount of leverage incurred by the underlying firm, the volatility of the 

underlying assets and the riskless spot rate. We denote the leverage of firm i at 

time t as LeVi,t and the volatility as voLi,t. We define the riskfree rate variable 

to be the lO-year yield, denoted as rio. This choice is motivated as follows. 

Theoretical models tend to be based on the dynamics of the instantaneous risk free 

rate, which is unobservable. A number of empirical studies have demonstrated 

that this unobservable short rate can be thought of as being determined by a 

number of factors, one of which is the yield on long-maturity bonds. In the 

interest of parsimony in the empirical presentation of the results, we therefore 

foeus exclusively on this one proxy for the riskless spot rate in our base case 

regression fE:JSults. The robustness of our findings with respect to a different 

choice of factor or the inclusion of additional factors is discussed in detail in 

Section 3.3. 

The regression suggested by theory consists therefore of regressing the CDS 

premium, denoted by Si,t, on these three variables. We also add a constant to this 

regression which yields 

Si,t = Œ~ + f3ileVi,t + f3~ VOLi,t + f3~ rio + Ci,t· (1) 

We also regress the premium on each of these regressors separately to get a better 

idea of the explanatory power of each regressor 

Si,t = Œ~ + f3iLeVi,t + Ci,t. (2) 

Si,t = Œ~ + f3~VOLi,t + Ci,t· (3) 

(4) 

CT and CDMW use similar regressions to investigate the importance of these 

theoretical variables for the determination of credit spreads on corporate bonds. 

CGM focus on changes in credit spreads, perhaps because differences are harder 
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to explain than levels and a regression in differences therefore should provide a 

more stringent test of the theory. We therefore also estimate regressions (1)-(4) 

in differences. 

(5) 

(6) 

b..Si,t = 0:1 + f3Y b.. VOli,t + €i,t. (7) 

(8) 

3 Empirical Analysis 

3.1 Data 

Ta investigate the regressions suggested by theory, we require data on credit de­

fault swap premia, firm leverage, volatility and riskless yields. We obtain these 

data from the following sources: 

Credit Default Swap premia: We use quotes from the CreditTrade Market 

Priees database for 1999-2002 corresponding to credit default swaps on senior 

debt. The CDS market has experieneed considerable growth over this period. 

Figure 1 depicts the evolution of the number of daily available quotes. 

Only the contracts on companies for which we have data in CRSP and COM­

PUSTAT are used in our study. The North America Industry Classification Sys­

tem (NAICS) code was obtained for each company from FISD and WRDS. Using 

the NAICS code, utilities and financial companies were excluded. Sinee there are 

very few quotes on junior debt, these quotes are excluded. The amount of quotes 

satisfying the above criteria is 53,625. Figure 2 depicts the number of quotes as a 

function of the tenor. The market is clearly concentrated on maturities around 5 

years. We therefore only retain 48,626 quotes that have tenors between 4.5 and 

5.5 years. This sample represents 90.7% of all quotes. 

Even though the CDS market is a worldwide market, the majority of the quotes 

fall within New York trading hours. This finding is to a large extent due to our 

selection criteria, because CRSP and COMPUSTAT mainly contain data on US 
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companies. From the 48,626 quotes, we selected, for each day and reference entity, 

the quote closest to 4PM NY time. More precisely, we filter the quotes according 

to the following criteria: 

• Either the time stamp is after 3PM 

• or the time stamp is between 12 noon and 3PM and the time stamp on the 

previous available quote is more than two trading days old 

• or the time stamp is between 9AM and 12 noon and the time stamp on the 

previous available quote is more than three trading days old 

• or the time stamp is between 6AM and 9AM and the time stamp on the 

previous available quote is more than four trading days old 

• or the time stamp is between 3AM and 6AM and the time stamp on the 

previous available quote is more than five trading days old. 

This rule is motivated by consideration for the difference regressions. To com­

pute the differences in the premia, we ideally want quotes at the exact same time 

of the day. This is not possible and because of sample size considerations, it 

is also not possible to limit ourselves to time stamps after 3PM. By including 

quotes with time stamps further removed from 4PM, the potential for biases in 

the computed premium differences increases. However, by only selecting quotes 

farther removed from 4PM if the previous quote is further removed in time, we 

ensure that the potential bias from time stamps at different parts of the day is 

reduced. 

Bid and offer quotes are treated separately. As a final filter, we only retain 

firms with at least 25 quotes or changes in quotes, depending on the regression 

specification. It should be noted that the number of observations in any given 

regression will depend on whether it is run on levels or differences and on whether 

bids or offers are used. This leaves us with 4813 bid and 5436 offer quotes over the 

whole sample period, with slightly fewer observations for regressions in differences. 

The Appendix lists the companies that are included in the sample for the different 

regressions. 

The data for the theoretical determinants of the CDS premia (the explanatory 

variables in the regressions) are constructed as follows: 
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Leverage: The leverage ratio is defined as 

Book Value of Debt + Book Value of Preferred Equity 

Market Value of Equity + Book Value of Debt + Book Value of Preferred Equity 
(9) 

The Market Value of Equity was obtained from CRSP, and the Book Value of 

Debt and the Book Value of Preferred Equity from COMPUSTAT. Since book 

values are only available at the quarterly level, we linearly interpolate in order to 

obtain daily figures. 

Volatility: A time series of equity volatility was computed for each company 

using an exponentiaIly weighted moving average model on daily returns obtained 

from CRSp. 13 In the empirical literature on the determinants of corporate bond 

spreads, our approach is closest to that of CT, who construct historical volatil­

ity based on 180 days of returns in their base case regressions. CGM use the 

VIX data, which represents option-implied volatility based on S&P 100 index op­

tions. CDMW use both volatility implied by individual equity options as weIl as 

historical volatility. 

Treasury Bond Yields: Daily data on 100year Treasury bond yields were 

collected from DataStream. We use the appropriate constant maturity index 

constructed by the US Treasury based on the most actively traded issues in that 

maturity segment. 

Table 1 and Figure 3 provide descriptive statistics and visual summaries of 

the CDS premia and the explanatory variables used in the main regressions. The 

CDS premium is 180 basis points on average with a large standard deviation. 

The explanatory variables seem to be less variable than the CDS premium and 

especiaIly the 100year yield is tightly centered around the mean. From Figure 3 it 

would seem that the high variability of the CDS premium is partly due to the fact 

that the premium has been increasing over time, regardless of the rating of the 

reference obligation, and that the premium differs considerably across reference 

obligations with different ratings. Figure 3 also clearly indicates that the number 

of available datapoints is very different for different reference obligations. 

Because the data set has a cross~sectional as weIl as a time-series dimension, 

several aspects of the relationship between the theoretical variables and the credit 

spreads can in principle be investigated. Cross-sectional correlations indicate 

13For each reference entity, volatility ht was generated according to ht = r; (1 - .À) + ht-1.À, 

with rt denoting daily returns. In order to obtain a more precise estimate of .À, we constrain 
this parameter to be the same across firms in the estimation. 
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how credit spreads differ between companies because of differences in leverage 

and volatility. Time-series correlations indicate how credit spreads change for a 

given company as the company's leverage ratio and equity volatility change. Table 

1 presents sorne initial insight into these correlations and the differences between 

the cross-section al and time-series patterns. Time-series as weIl as cross-sectional 

correlations between the CDS premia and the theoretical variables have the ex­

pected sign, and interestingly for both volatility and lever age the cross-sectional 

correlation is not very different from the time-series correlation. Figures 4 through 

7 provide additional insight into this issue. Figures 4 and 5 graphically illustrate 

the time-series relationship with the CDS premia for lever age and volatility re­

spectively by averaging the variables across firms at a point in time. Because our 

data are unevenly spaced, we use weekly averages. The figures clearly suggest a 

positive time-series relationship between either theoretical variable and the CDS 

premium. Figures 6 and 7 graphically illustrate the cross-sectional relationship 

between the variables and the CDS premia by averaging the data across time for 

a given firm. While the figures suggest a positive relationship for volatility as 

weIl as leverage, they clearly confirm the result in Table 1 that the correlation is 

higher for volatility. 

3.2 Regression Results 

Because the regressions (1)-(8) have a cross-section al as weIl as a time-series di­

mension, they can be implemented in different ways. We first follow CGM and 

present results on average regression coefficients obtained by running a series of 

time-series regressions for every different company, emphasizing time-series corre­

lations between CDS premia and theoretical variables. From a managerial per­

spective, these regressions are of most interest because they indicate how credit 

spreads change for a given company as the company's leverage ratio and equity 

volatility change. Subsequently, for the levels regressions (1)-(4) we also present 

results obtained using a number of different panel data techniques. Regarding the 

implementation of the regressions, note that the constant in the difference regres­

sions is obviously different (at a theoretical level) from the constant in the levels 

regressions, which is why it is indexed with a superscript lord, respectively. The 

constant is also indexed by a subscript i, because in the implementation using 

time-series regression it is different for every company. In the panel data impIe­

mentation, this is the case when estimating fixed-effects but not for the OLS panel 
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data regression which constrains the constant to be the same for aIl companies. 

Table 2 presents the results of the levels regression (1) and the difference 

regression (5). For both regressions, we report results obtained with bid quotes 

as weIl as results obtained with offer quotes. In each case, we report results 

obtained using data on aIl companies, and we also report results for a sample of 

companies with below median rating and another sam pie of companies with above 

median rating. The number of companies included in each analysis is listed in the 

third row from the bottom. The next to last row indicates the average number of 

observations included in the time-series regressions, and the last row indicates on 

average how much time elapses between different quotes for the same underlying. 

For each case, the top four rows list the average regression coefficients obtained 

from the time-series regressions. Rows 5 through 8 present the t-statistics obtained 

by computing standard errors on the estimated regression coefficients. 

A number of important conclusions obtain. First, the estimated sign for the 

coefficient on leverage is always positive, as expected a priori. Second, the es­

timated sign for the coefficient on volatility is also always positive, as expected. 

Third, the coefficient on the 10-year yield also conforms to theoretical expecta­

tions because it is estimated with a negative sign. What is even more encouraging 

is that the t-statistics almost uniformly indicate statistical significance at con­

ventional significance levels. Interestingly, the few exceptions occur for the levels 

regressions, not for the (more challenging) difference regressions. 

The point estimates for the coefficients are remarkably similar across the levels 

and difference regressions, least so for the coefficients on the lO-year yield. Not 

surprisingly, there are sorne differences in the point estimates across ratings. For 

lower rated firms, the point estimates for leverage and volatility are bigger than 

for higher rated firms. These effects are perfectly intuitive and consistent with 

the predictions of any structural credit risk model. We also find that CDS premia 

for lower rated firms are more sensitive to interest rates. Again, this is consistent 

with the theory. It is also consistent with the empirical findings of Duffee (1998) 

on corporate bond yield spreads. 14 

A final statistic of interest is the adjusted R2 • First and foremost, the ex­

planatory power of the levels regressions is of course much higher than that of the 

difference regressions. For the levels regressions, the theoretical variables explain 

14In a structural model, the risk adjusted probability of default is decreasing in the risk free 
interest rate. Intuitively, a higher risk free rate entails a higher drift rate for the firm's asset 
value and allows it to grow its way away from financial distress. See also Longstaff & Schwartz 
(1995). 
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approximately 60% of the variation in the premium. For the difference regres­

sions, the theoretical variables explain approximately 23%. The R-squares for the 

lower ratings are always a bit higher than those for the higher ratings, as expected. 

It may also be of interest that in the level regressions the R-squares for the bid 

quotes are a bit higher than the R-squares for the offer quotes, even though this 

pattern does not show up in the difference regressions. 

While the effects of a change in the yield curve somewhat depend on whether 

one estimates in levels or differences, the results for volatility and leverage are 

robust across specifications. This renders the economic interpretation of the point 

estimates of significant interest. Using the estimation results for an companies, a 

1 % increase in (annualized) equity volatility raises the CDS premium on average 

by approximately 0.8-1.5 basis point. For companies with lower ratings, the effect 

is estimated to be between 1.1 and 2.3 basis points. The leverage effect is also 

stronger for lowly rated companies: a 1% change in the leverage ratio increases 

their CDS premium by approximately 6-10 basis points, whereas this effect is 

between 4.8 and 7.3 basis points when considering all companies. 

Tables 3, 4 and 5 further explore these results. Table 3 presents results for 

regressions (2) and (6), Table 4 for regressions (3) and (7), and Table 5 for regres­

sions (4) and (8). The tables are structured in the same way as Table 2. It must 

be noted that, in a sense, the point estimates in these tables are of somewhat 

less interest than those in Table 2, because the regression in Table 2 is the one 

suggested by the theory. It is therefore entirely possible that in the univariate 

regressions in Tables 3 through 5, coefficients are biased because of an omitted 

variable argument. 

Interestingly however, the signs of the point estimates are the same as in Table 

2 and the t-statistics for the time-varying regressors are significant at conventional 

significance levels. Table 3 indicates that when leverage is the only explanatory 

variable, its economic effect is always estimated to be larger than in Table 2, and 

the same is true for volatility in Table 4, but the effects are roughly of the same 

order of magnitude. A comparison of the R-squares in Tables 3-5 with those in 

Table 2 indicates to what extent each of the theoretical variables contributes to 

the explanatory power of the regression. It can be seen that each of the three 

variables has sorne explanatory power, even though the leverage variable clearly 

dominates the other two regressors. The leverage variable alone explains between 

37.1 % and 45.7% of the variation in CDS premia in the levels regressions, but only 

about 13% on average in the difference regressions. Volatility explains between 
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23.9% and 29.7% in the levels regressions, but only between 6.9% and 14.4% in 

the difference regressions. Interestingly, the 10-year yield variable has a higher 

R-square than the volatility variable in the levels regression, but its explanatory 

power in the difference regressions is decidedly modest. 

Note that the negative correlation between CDS premia and the risk free rate 

discussed above has also been documented for bond yield spreads by Longstaff 

& Schwartz (1995) and Duffee (1998). Presently, no consensus prevails as to the 

economic reasoning behind this stylized facto Duffie & Singleton (2003) state 

that one possible explanation for the negative correlation is the existence of st ale 

corporate bond priees. The spreads are measured by taking the difference between 

the corporate and the Treasury yield curves; therefore, an increase in Treasury 

yields might be associated with a decrease in spreads until the recorded corporate 

bond price accounts for the change. Our results rule out the latter explanation 

because default swap premia are not given by the difference of two yields as bond 

spreads are. However, our results are consistent with the implication of structural 

models that an increase in the risk free rate will decrease risk-adjusted default 

probabilities.15 

In summary, we conclude that there are sorne interesting differences between 

the levels and difference regressions in Tables 3-5. 

3.3 Robustness Analysis 

This Section further investigates the robustness of the regression results presented 

in Section 3.2. In a first step, we estimate the regression proposed by CGM. Their 

base case regression includes the explanatory variables leVi,t, voli,t and riO included 

in (1) but adds a number of other explanatory variables including 

Treasury Bond Yields: We collected daily series of 2-year and lO-year bond 

yields from DataStream. 

The Slope of the Yield Curve: Defined as the difference between the 10-

year Treasury bond yield used in regression (2) and 2-year Treasury bond yields 

also obtained from DataStream. We use the 2-year Treasury bond yield as the 

level of the yield curve in order to make the interpretation of the slope more 

straightforward. 

The square of the 2-year yield. 

The return on the S&P 500: Daily data on the return on the S&P 500 was 

15See Longstaff & Schwartz (1995) for a discussion. 
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obtained from DataStream. 

The slope of the smirk: We estimate the slope of the smirk on equity options 

using out-of-the-money S&P 500 American futures put options from the CME Fu­

tures and Options Database. A number of choices have to be made as regards 

these calculations. First, implied volatilities are computed using the American 

options analytical approximation technique proposed by Whaley (1986). Second, 

we cannot simply compute the smirk using one particular maturity because the 

same maturity is not available on every trading day. To take into account the 

dependence of the smirk on maturity, we define moneyness as In( K / F) / sqrt(T), 

were K is the strike priee, F is the futures priee, and T is the time to expi­

ration. Standardizing moneyness by sqrt{T) makes the slope of the smirk (on 

a given trading day) remarkably similar across expirations. Third, we estimate 

a linear relation between moneyness and implied volatility.16 Robustness tests 

demonstrate that adding a quadratic term does not change the results. Fourth, 

we arbitrarily choose 45 days as a benchmark maturity. The slope of the 45-day 

smirk is then obtained from linearly interpolating the coefficients corresponding 

to the nearest available expirations. 

The motivation for including these variables is as follows. The interest rate 

variable directly modeled by most of the theory is the instantaneous spot rate. 

It has been shown empirically that the instantaneous rate can be explained by 

a number of term structure variables. The yield on long maturities used in 

regression (1) is one of these variables. Alternatively, one can use the yield on short 

maturity bonds or the differenee in yield between short and long maturities, which 

is what is proposed here. The square of the 2-year yield is a convenient attempt 

to exploit nonlinearities in the relationship between term structure variables and 

credit default swap premia. CGM (2001) use the return on the S&P 500 to proxy 

for the overall state of the economy and the slope of the smirk to proxy for jumps 

in firm value. It is clear that sorne of these variables are more loosely related 

to theory compared to the regressors in (1). For additional motivation see CGM. 

Including these explanatory variables leads to the levels regression 

Si,t = a~+,B~levi,t+,Byvoli,t+,B~ r;+,B~2(r;?+,B~3tssloPt+,B? S&Pt+,B:m smslopt+Ei,t 

(10) 

16To circumvent the noise in very cleep out-of-the-money options, we ignore options whose 
moneyness was lower than the median across time of the lowest moneyness of each trading clay. 

79 



and the difference regression 

b.Si,t = exf + f3~b.leVi,t + f3~ b.vOli,t + f3~ b.r; + f3~2(b.r;)2 
+f3~3 b.tsslopt + f3? b.S&Pt + f3:m b.smslopt + Ci,t (11) 

Table 6, which presents the results of these regressions, has the same format 

as Table 2. The t-statistics were computed in the same fashion. One objective 

of this table is to verify by means of the R-squares if the addition of these vari­

ables increases the explanatory power of the theory. For the difference regressions, 

the extra variables increase the R-square by roughly 7.5%, whereas for the lev­

els regressions the increase in the R-square is approximately 14%. Interestingly, 

the increase in R-square is larger for the regressions that use offer quotes. The 

term structure variables are often insignificantly estimated, perhaps suggesting 

sorne multicollinearity between them, or high correlation with another explana­

tory variable. The return on the S&P 500 has a significantly estimated negative 

impact on the CDS premium, indicating that in times with high returns (good 

times), the premium narrows. This finding is consistent with the findings in CGM 

for spreads on corporate bonds. The slope of the smirk seems to have a minor 

impact on the CDS premium. Finally and perhaps most importantly, the point 

estimates for leverage and volatility are very similar to the ones in Table 2. We 

therefore conclude that the magnitude of the effects discussed before is robust to 

the inclusion of a number of other variables. This is remarkable if one consid­

ers that the R-square increases considerably, and that in the levels regression we 

have a specification in Table 6 that explains a large part of the variation in CDS 

premia. These results therefore inspire confidence in our estimates. 

It could be argued that the t-statistics in Tables 2 through 6 are hard to inter­

pret because they are computed based on the variation in regression coefficients 

for time-series regressions. An alternative approach is to treat the empirical prob­

lem as a full-fiedged panel data problem. Tables 7 and 8 present the results of this 

procedure for the levels regressions. We do not report panel estimation for the 

difference regressions because we need a number of additional assumptions regard­

ing cross-sectional correlation patterns and autocorrelations to compute standard 

errors, and the levels regressions are sufficient to make the point. 

For all three panels in Tables 7 and 8, columns 1-4 report results for estimation 

of regressions (1), (2), (3) and (4). Table 7 reports results for offer quotes and 

Table 8 for bid quotes. Panel A reports results for the basic OLS panel regression, 
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Panel B allows for reference entity fixed effects and Panel C includes quarter 

dummies. In Panel A, each observation is treated independently and the regression 

constant is assumed to be the same across companies. 

The point estimates in Panel A again have the signs predicted by theory, al­

though their magnitudes differ from the firm by firm time-series regressions in 

Tables 2-6. The coefficient for leverage tends to be smaller while equity volatility 

enters with a larger coefficient. When, as in Panel B, fixed effects for the ref­

erence entities are included, the parameter estimates faU back in line with what 

was found in Tables 2-6, while the R-squares increase substantially. This clearly 

indicates that there is a large amount of cross-sectional variation that cannot be 

captured by the theoretical variables. The main effect of including quarter dum­

mies (Panel C) is a slight increase in the R-square of the regression relative to the 

base case in Panel A. This can be interpreted as suggesting that the theoretical 

variables explain most of the time-series variation in the data, but the results of 

this regression may be hard to interpret. The results will be affected by inserting 

more time dummies into the equation, and the choice of quarterly dummies is ad 

hoc. Note however that because we have daily data and an unbalanced panel, 

there is no natural choice for the frequency of the time dummies: quarterly dum­

mies are as good a choice as any. The t-statistics are much higher in Tables 7 

and 8, which is not necessarily surprising because the t-statistics in Tables 2-6 are 

essentially computed on the variation in the regression coefficients and therefore 

hard to relate to the more conventional t-statistics in Tables 7 and 8. 

Despite sorne of the problems with the interpretation of the time dummies, 

the relative increases in explanatory power resulting from including fixed effects 

and time dummies respectively suggests that the variables determined by theory 

may have more explanatory power in a time series than a cross-sectional sense. 

In this respect, it is interesting to note that the ranking of the R-squares for the 

univariate regressions on lever age and volatility (in Tables 3, 4, 7 and 8) differs 

depending on whether the data is treated as a collection of time series or as a 

panel. In the time series case, the R-squares are higher when lever age is used 

as regressor compared to equity volatility. In Panels A of Tables 7 and 8, the 

equity volatilities appear ta be more successful in explaining the variation in CDS 

premia. This is consistent with lever age having more explanatory power in the 

time series, whereas volatility is relatively speaking better at explaining the cross 

section. Returning to Table 1, we can see that the reported cross-sectional and 

time series correlations are consistent with this observation. For leverage, the 
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cross-sectional correlation is lower than the time-series correlation, while it is the 

opposite for volatility. One possible explanation is that theoreticaIly, leverage 

does not provide sufficient information about the likelihood of financial distress 

since it does not convey information about business risk. Equity volatility, on the 

other hand, provides information about both asset risk and leverage, and can thus 

be better used to discriminate between the credit risk of different firms. 

Finally, note that the cross-section al and time-series correlations in Table 1 

also help to explain the differences in the point estimates between Panel A of 

Tables 7 and 8 on the one hand and Panel B (as weIl as Tables 2-4) on the other 

hand. The fixed effects regressions in Panel B capture the time-series correlation. 

Because the results in Panel A capture a mixture of time-series and cross-sectional 

correlation, the point estimate for leverage goes down and that for volatility goes 

up, consistent with the relative strength of the effects documented in Table 1. It 

is interesting to note that the small differences between the time-series and cross­

sectional correlations documented in Table 1 leads to relatively large changes in 

point estimates. 

3.4 Discussion 

It is interesting to compare these results with the results obtained for spreads on 

corporate bonds by CT, CGM and CDMW. The most important observation is 

that our results confirm the results in these papers that the theoretical determi­

nants of credit risk are empirically relevant and estimated with the sign predicted 

by theory. With respect to the explanatory power of these theoretical variables, a 

comparison is unfortunately less straightforward. CGM use a market-wide mea­

sure of volatility. They estimate difference regressions and their base-case regres­

sions are the ones in Table 6. The R-squares in CGM are considerably lower. 

They also obtain much lower R-squares than we do when studying the effects of 

leverage in isolation. Our point estimates for the effects of leverage and volatility 

are larger than theirs, but it must of course be noted that our measure of volatility 

is very different. CT investigate level regressions and focus mainly on the effect 

of volatility. They also use a historical measure of volatility and because they 

use panel regressions their results are most closely related to those of Tables 7 

and 8. In general they obtain higher R-squares than we do, but this finding must 

be interpreted with caution because they include a number of control variables 

which explain approximately 25% of aIl variation. The estimate of a 1% change 
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in annualized volatility in CT is 14 basis points, considerably higher than our 

estimate. 

Sorne of the empirical results in CDMW are closely related to the ones in 

this paper because they investigate the explanatory power of volatility in the 

absence of other explanatory variables. However, they do not consider the impact 

of leverage. CDMW use panel regressions and the R-squares and point estimates 

in their base-case regressions ought to be compared to the ones in Tables 7 and 

8. It is noteworthy that their point estimates for the firm implied volatility are 

very similar to the ones we obtain using historical volatility. This is likely due to 

the fact that we compute volatility as an exponentially weighted moving average, 

which like implied volatility is more variable than a 180 day historical average. 

In summary, the explanatory power of the theoretical variables in our analysis 

differs from the results in the literature on corporate bond spreads, which itself 

contains sorne divergent results. It must be noted that it may be problematic to 

try to relate the explanatory power of regressions for corporate bond spreads to 

those for CDS premia. The reason is that the explanatory power of the regressions 

depends on maturity (see CT, CGM and CDMW). Because the maturity of the 

Credit Default Swaps in our sample (roughly five years) may be very different from 

the average maturity for corporate bonds, this may compromise a comparison of 

R-squares between the two markets. 

3.5 Analyzing the Regression Residuals 

One robust conclusion from Tables 2-8 is that the theoretical determinants of CDS 

premia are estimated statistically significantly with signs that confirm our intu­

ition and that the magnitude of these effects is also intuitively plausible. However, 

it is difficult to determine how successful theory is in explaining the variation in 

CDS premia. The R-squares of the explanatory regressions vary considerably de­

pendent on whether one analyzes levels or differences, and on whether one uses 

panel data or time series techniques. Moreover, we do not necessarily have good 

benchmarks for the R-squares, because comparisons with empirical results for the 

corporate bond market are subject to problems. 

We therefore attempt to provide more intuition for the explanatory power of 

the theoretical determinants of CDS premia. To understand the structure of the 

remaining variation in the data after controlling for the theoretical determinants 

of CDS premia, we analyze the regression residuals from the levels regression (1) 
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and the difference regression (5) using principal components analysis (PCA). By 

analyzing the correlation matrix of the errors of the time-series regressions, we 

investigate if there exists an unidentified common factor that explains a signifi­

cant portion of the variation of the errors. The structure of the data somewhat 

complicates the analysis, and we performed a number of different analyses in order 

to investigate the robustness of our conclusions. There are two types of complica­

tions in the data. First, the data are non-synchronous. Second, the number of 

observations differs considerably by company. The first complication causes sorne 

difficulties at a technical level. The second complication forces us to make sorne 

choices regarding the use of the data. 

We first report on an analysis of the levels regression (1), using the correlation 

matrix of the regression errors for the 15 companies with the highest number of 

observations. We limit ourselves to a small number of companies to obtain results 

that are based on as much time-series information as possible. We also analyze 

the correlation matrix of the CDSpremia Si,t. For premia and errors from the 

levels regressions, a simple approach to the non-synchronicity problem is available. 

We artificially construct observations every 7 calendar days, by linearly interpo­

lating from the closest (in time) two observations. This results in a balanced 

panel of errors. Panel A of Table 9 shows that for the bid quote levels, the first 

principal component is fairly important, explaining 58.7% of the variation. The 

first eigenvector has mostly positive elements of similar magnitude, with a few 

exceptions. The first principal component of the errors has more diverse weights, 

and it explains only 32.5% of the variation of the errors. The results for offer 

quotes in Panel B support those from Panel A. The first principal component 

for the errors explains only 31.0% or the error variation. The difference between 

the explanatory power of the first principal component of the premium difference 

and that of the errors is approximately 25%, similar to the difference in Panel 

A. A comparison between these R-squares suggests that a substantial part of the 

common variation of the premia is explained by the regressors. 

Table 10 repeats the analysis of Table 9, using the 15 companies with the 

highest number of observations, but uses the errors of the time-series regressions 

in differences (5). For differences, a simple interpolation does not work because 

there is more than one time index. Instead, each element of the correlation matrix 

has to be estimated individually. We do so by using the procedure of de Jong 

& Nijman (1997).17 Because the estimated correlation matrix is not generally 

17Martens (2003) reviews and compares different methods for computing covariance matrices 
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positive semidefinite, we compute the positive semidefinite matrix dosest to the 

estimated correlation matrix according to the Frobenius-norm using a numerical 

algorithm due to Sharapov (1997) and also used by Ledoit, Santa-Clara & Wolf 

(2003). 

Panel A of Table 10 shows that for the differences in bid quotes the first 

principal component is fairly important, explaining 50.2% of the variation, with 

a first eigenvector that has only positive elements. In contrast, the first principal 

component of the errors has positive and negative elements, and it explains only 

24.5% of the variation of the errors. The results for offer quotes in Panel B 

are a bit weaker but support those from Panel A. In this case the first principal 

component of the errors contains only one negative element, but the weights of the 

first principal component of the differences in offer quotes are remarkably more 

homogeneous. Most importantly, the first principal component for the errors 

explains only 30.8% or the error variation. 

Our third PCA is doser in spirit to the one in CGM, although it is slightly 

different because of data constraints. CGM perform a PCA by distributing the 

errors of all the companies in the sample in bins according to the maturity of 

the bonds and the leverage of the issuing companies. With a balanced panel, 

it is straightforward to do this analysis for differences. In our case, we do not 

observe the premia at fixed intervals. As a result, changes in premia and the 

corresponding errors carry a double time index, and it is not feasible to assign 

them to bins. We therefore limit ourselves to a PCA using bins for the levels 

regressions (1). 

CGM construct fifteen bins by classifying the companies in 5 leverage groups 

and the bonds in three maturity ranges. However, because aIl CDSs in our sample 

have (roughly) a 5-year maturity, it is not feasible to use maturity as a classi­

fication variable. Also, we have only one kind of CDS per company, and not 

a collection of bonds. Therefore we construct our bins using only the lever age 

dimension, so that we have 5 bins delimited by the quintiles of the distribution 

of lever age of the different companies. The time interval defining the bins is 15 

days. Table Il reports on this analysis. The first principal component for the bid 

(offer) errors explains only 35.6% (36.4%) of the variation of the bins, compared 

to 68.6% (66.1%) for the bid (offer) quotes. 

for non-synchronous data. His simulations show that the de Jong & Nijman (1997) method is 
the most reliable in the absence of a bid-offer spread. Given that we work with either bids or 
offers, we choose this method. 
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Overall, the three tables allow for a remarkably robust conclusion. The PCAs 

for the levels and differences suggest that the theoretical determinants of default 

swap premia do explain a significant part of the common variation. Regarding 

the percent age of the variance explained by the first principal component in the 

error analysis, it varies dependent on whether one uses bins and whether one 

uses differences or levels, but it varies between 20% and 36%. A high percent age 

in this case would indicate that there is a lot of common variation left which 

cannot be explained by the theoretical variables. However, we find it difficult 

to draw strong conclusions from this range of numbers as to the validity of the 

theoretical variables, because it is not clear what the benchmark is. Compared 

with the findings in CGM, the percent age variation explained by the first principal 

component in the errors is certainly low. It must also be taken into account that 

the largest eigenvalues are in general severely biased upward, as observed by Ledoit 

& Wolf (2004). 

To further understand the nature of the residuals, we also ran regressions (1) 

and (5) with a CDS market index included. One would expect such an index 

to have substantial explanatory power for residual CDS premia if the variables 

suggested by theory are inadequate. Unfortunately no index is available for the 

CDS market over our entire sample. We use the TRACERS index, which is avail­

able from September 2001 to the end of our sample and we repeat our estimation 

exercise with the CDS data available for this period (not reported).18 It must 

be noted that although this covers less than half of the time period of our CDS 

sample, it covers the majority of the datapoints because the number of quotes 

increases through time. Interestingly, we find that including the market index 

does not noticeably affect the explanatory power of the regression. We there­

fore conclude that these results confirm those from Tables 9-11: the theoretical 

variables perform adequately in explaining CDS spreads. 

4 Conclusion 

Using a new dataset of bid and offer quotes for credit default swaps, we investigate 

the relationship between theoretical determinants of default risk and actual market 

premia. These determinants are firm leverage, volatility and the riskless interest 

rate. We find that these variables are statistically significantly estimated and that 

18Morgan Stanley's TRACERS index is a synthetic index of US investment grade credit based 
on a selection of the most liquid reference entities. 
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their effect is economically important as weIl as intuitively plausible. Moreover, 

the estimates of the economic effects of leverage and volatility are very similar 

regardless of whether one estimates on levels or differences and regardless of the 

econometric methodology. A 1% increase in annualized equity volatility rais es the 

CDS premium by 1 to 2 basis points. A 1% change in the leverage ratio raises the 

CDS premium by approximately 5 to 10 basis points. These effects are not out 

of line with sorne of the estimates available in the literature on corporate bond 

spreads, even though Campbell and Taksler (2003) estimate a stronger effect of a 

change in volatility. 

While these estimated effects are very robust and intuitively plausible, it is 

difficult to determine how successful the theory is in explaining the variation in 

the sample of CDS premia. The explanatory power of the theoretical variables 

depends on the econometric method and on whether one uses levels or differences. 

Using time series regressions the R-square for changes in default swap premia is 

approximately 23%, and the explanatory power for the levels of the premia is 

approximately 60%. The R-square for levels regressions goes up to more than 

70% if we add in other explanatory variables as in Collin-Dufresne et al. (2001). 

For a number of reasons it is difficult to relate these numbers to the available 

literature on other securities such as corporate bonds. However, our analysis of 

the residuals, coupled with the high R-squares for most of the levels regressions, 

leads us to cautiously conclude that the theory is successful in explaining the 

variation in CDS premia. 

These results suggest a number of interesting questions. First, given that the 

variables critical for structural models of credit risk seem to be important for ex­

plaining CDS premia, how successful are structural models in explaining the data? 

One can think of the linear regressions in this paper as a first-order approxima­

tion to any structural model, suggesting that structural models may work weIl, 

but CT find that this logic does not extend to the Merton model when explaining 

corporate bond spreads. Second, an analysis of the effects of volatility based on 

individual equity options as in CDMW may prove worthwhile. Third, given that 

sorne of the estimated effects are very similar to those estimated in the corporate 

bond market, a further exploration of the interactions between the corporate bond 

market and the CDS market may prove worthwhile. Houweling and Vorst (2001) 

and Longstaff et al. (2004) document sorne of these interactions using a reduced­

form approach. It may prove worthwhile to explore the interactions between these 

markets by focusing on structural variables. 
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Appendix: Companies Used in Regressions 

Issuer Names Differences Levels 
Bid Offer Bid Offer 

ABITIBI-CONSOLIDATED INC 1 0 1 0 
ALBERTSONS INC 1 1 1 
ALCOAINC 1 
AMRCORP 0 
AOL TlME WARNER INC 
ARROW ELECTRONICS INC 
AT&T WlRELESS SERVICES INC 1 1 
AUTOZONE INC 0 0 
BELLSOUTH CORPORATION 1 1 
BLACK AND DECKER CORP 1 1 
BOEINGCO 1 
BORGWARNER INC 0 0 
BOSTON SCIENTIFIC CORP 0 0 
BURLINGTON NORTHERN SANTA FE CORP 
CAMPBELL SOUP CO 
CARNIVAL CORP 
CA TERPILLAR INC 
CENDANT CORP 
CENTEXCORP 0 0 
CENTURYTEL INC 0 1 0 
CITIZENS COMMUNICATIONS CO. 1 1 1 
CLEAR CHANNEL COMMUNICATIONS INC 1 1 1 
COCA-COLA ENTERPRISES INC 1 1 1 
COMPAQ COMPUTER CORP 1 1 1 1 
COMPUTER ASSOCIATES INTERNATIONAL INC 0 1 0 1 
CONAGRA FOODS INC 1 0 1 0 
COX COMMUNICATIONS INC 1 
CSXCORP 
CVSCORP 
DANACORP 
DEEREANDCO 
DELPHI AUTOMOTIVE SYSTEMS CORP 
DELTA AIRLINES INC 0 1 
DILLARDS INC 1 0 0 
DOW CHEMICAL CO. THE 1 1 
DUPONT DE NEMOURS CO 0 0 
EASTMAN KODAK CO 
EL PASO CORP 
ELECTRONIC DATA SYSTEMS CORP 
ENRONCORP 
FEDERAL EXPRESS CORP 0 0 
FEDERATED DEPARTMENT STORES INC 1 
GAPINC. THE 1 1 
GENERAL MOTORS CORP 0 0 
GEORGIA-PACIFIC CORP 1 1 
GOODRICH CORP 
GOODYEAR TIRE AND RUBBER CO. THE 1 1 
HEWLETI-PACKARD CO 1 1 1 
HILTON HOTELS CORP 1 1 1 
HJ HEINZ CO 0 0 0 
INGERSOLL-RAND CO 0 0 
INTERNATIONAL BUSINESS MACHINES CORP 1 
INTERNATIONAL PAPER CO 1 
INTERPUBLIC GROUP COS. INC 1 1 1 
JC PENNEY CO INC 1 1 1 1 
KROGER 1 0 1 0 
LENNARCORP 0 1 0 1 
LlMITED BRANDS 0 0 0 1 
LOCKHEED MARTIN CORP 1 1 1 1 
LUCENT TECHNOLOGIES INC 1 1 1 
MASCOCORP 1 1 1 
MATTELINC 0 1 0 
MAY DEPARTMENT STORES CO 1 1 1 
MAYTAGCORP 1 1 1 
MCDONALDS CORP 1 1 1 
MCKESSON CORP 0 0 0 
MGM MIRAGE INC 1 1 
MOTOROLA INC 1 
NEWELL RUBBERMAID INC 
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Appendix: Companies Used in Regressions 

Issuer Names 
Differences Levels 

Bid Offer Bid Offer 
NEXTEL COMMUNICATIONS INC 1 1 1 1 
NORDSTROM INC 1 1 1 
NORFOLK SOUTHERN CORP 1 1 
NORTHROP GRUMMAN CORP 0 0 
OMNICOM GROUP 1 
PARK PLACE ENTERTAINMENT CORP 1 1 
PRIDE INTERNATIONAL INC 0 0 1 0 
PROCTER AND GAMBLE CO, THE 0 1 0 1 
ROYAL CARIBBEAN CRUISES LTD 0 
RYDER SYSTEM INC 0 0 
SBC COMMUNICATIONS INC 
SEARS ROEBUCK AND CO 
SOLECTRON CORP 
SOUTHWEST AIRLINES CO 
SPRINTCORP 
SUN MICROSYSTEMS INC 
TARGETCORP 
TENET HEAL THCARE CORP 1 0 1 0 
T JX COMPANIES INC 0 1 0 1 
TOYSRUSINC 1 1 1 
TRIBUNE CO 0 0 
TRWINC 1 1 
TYCO INTERNATIONAL LTO 
VIACOM INC 
VISTEON CORP 1 
WAL-MART STORES INC 1 
WALT DISNEY CO, THE 1 1 
WEYERHAEUSER CO 0 0 
WHIRLPOOL CORP 1 1 
WILLIAMS COMPANIES INC 1 1 
WYETH (AMERICAN HOME PRODUCTS CORP) 1 
XEROXCORP 
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Table 1 
Summary statistics 

This table presents descriptive statistics for the regression variables. It also includes numerical S&P and Moody's credit ratings. 
Numerical ratings in the sample range from 1 (Aaa) to 20 (Ca) for Moody's and from 1 (AAA) to 25 (in default) for S&P. 

mean stdev. 

CDS premium (%) 1.80 1.73 
Leverage (%) 51.57 17.71 
Volatility (%) 48.80 20.39 
10 year yield (%) 4.92 0.66 

S&P Rating 7.9 2.1 
Moody's Rating 8.1 2.2 

Siope (%) 1.45 0.82 
2 year yield (%) 3.47 1.39 
S&P 500 1,111.84 180.87 
Smirk si ope (%) 0.59 0.07 
VIX (%) 29.60 7.19 

5th percentile 

0.28 
22.75 
25.46 

3.85 

4 
4 

-0.51 
1.80 

847.76 
0.49 

21.11 

90 

95th percentile 

5.30 
79.85 
84.09 

6.11 

11 
11 

2.37 
6.33 

1,436.51 
0.70 

43.86 

Correlation with CDS premium 
Time series Cross-sectional 

0.28 
0.65 

-0.69 

0.59 
-0.68 
-0.70 
-0.20 
0.52 

0.23 
0.70 



Table 2 
Regression Using Variables Suggested by Theory 

This table presents descriptive statistics and regression results for linear regressions using the three explanatory variables suggested by theory: 
leverage, volatility and the riskless interest rate. Reported coefficients are averages for regression coefficients from time-series regressions using ail 
observations on a given underlying company. T-statistics are computed based on the time-series regression coefficients as in Collin-Dufresne, Goldstein 
and Martin (2001). 

Coefficients Constant 

T-stats 

R1 

Leverage 
Equity Volatility 

10-Year Yield 
Constant 
Leverage 

Equity Volatility 
10-Year Yield 

N. of Companies 
Avg. N. of Observ. 
Avg. Day Btw. Quotes 

Regressions in Differences Regressions in Levels 
Bid Quotes Offer Quotes Bid Quotes Offer Quotes 

Low High Ali Low High Ali Low High Ali Low High 
Rating Rating Rating Rating. Rating Rating Rating Rating 

0.007 0.003 0.005 0.019 0.000 0.010 0.104 -1.072 -0.492 -2.242 -0.783 
0.072 0.041 0.056 0.060 0.035 0.048 0.076 0.051 0.063 0.100 0.046 
0.011 0.004 0.008 0.023 0.006 0.014 0.017 0.004 0.010 0.023 0.007 

-0.307 -0.118 -0.212 -0.387 -0.169 -0.278 -0.596 -0.100 -0.345 -0.342 -0.057 
0.87 0.64 1.09 1.56 0.04 1.47 0.09 -1.81 -0.78 -1.66 -1.62 
6.00 4.82 7.52 4.97 4.85 6.66 5.48 5.86 7.72 6.30 5.69 
4.58 2.97 5.24 5.19 3.61 5.72 3.64 1.97 3.99 3.56 3.39 

-4.49 -2.49 -4.97 -3.13 -2.35 -3.86 -4.27 -1.29 -4.13 -2.28 -0.74 
23.3% 

39 
60.0 
19.7 

21.3% 
39 

59.5 
19.6 

22.3% 
78 

59.7 
19.7 

24.2% 
45 

55.6 
20.1 

23.3% 
45 

61.0 
19.1 

91 

23.7% 
90 

58.3 
19.6 

65.5% 
40 

58.3 
20.9 

57.3% 
41 

60.5 
19.3 

61.4% 
81 

59.4 
20.1 

59.6% 
47 

55.2 
20.5 

52.6% 
47 

60.4 
19.6 

Ali 

-1.513 
0.073 
0.015 

-0.200 
-2.11 
7.87 
4.34 

-2.35 
56.1% 

94 
57.8 
20.1 



Table 3 
Regression Using Leverage Only 

This table presents descriptive statistics and regression results for linear regressions using one of the explanatory variables suggested by theory, 
leverage. Reported coefficients are averages for regression coefficients from time-series regressions using ail observations on a given underlying 
company. T-statistics are computed based on the time-series regression coefficients as in Collin-Dufresne, Goldstein and Martin (2001). 

Coefficients Constant 
Leverage 

T-stats Constant 
Leverage 

R2 

N. of Companies 
Avg. N. of Observ. 
Avg. Day Btw. Quotes 

Regressions in Differences Regressions in Levels 
Bid Quotes Offer Quotes Bid Quotes Offer Quotes 

Low High Ali Low High Ali Low High Ali Low High Ali 
Ratinil Rating _ _ _RatiIlgRa!ill~_ Rating Rating Rating Rating 

0.017 0.006 0.012 0.024 0.002 0.013 -5.810 -2.298 -4.032 -7.058 -1.358 -4.208 
0.087 0.045 0.066 0.103 0.045 0.074 0.132 0.066 0.099 0.160 0.057 0.109 

2.40 1.22 2.65 1.70 0.40 1.73 -4.44 -2.78 -5.11 -4.10 -4.63 -4.59 
7.63 5.92 9.14 7.07 7.56 8.82 6.78 5.90 8.44 6.63 6.81 7.88 

14.2% 
39 

60.0 
19.7 

13.7% 
39 

59.5 
19.6 

14.0% 
78 

59.7 
19.7 

12.4% 
45 

55.6 
20.1 

13.7% 
45 

61.0 
19.1 

92 

13.0% 
90 

58.3 
19.6 

44.0% 
40 

58.3 
20.9 

45.7% 
41 

60.5 
19.3 

44.8% 
81 

59.4 
20.1 

40.7% 
47 

55.2 
20.5 

37.1% 
47 

60.4 
19.6 

38.9% 
94 

57.8 
20.1 



Table 4 
Regression Using Equity Volatility Only 

This table presents descriptive statistics and regression results for linear regressions using one of the explanatory variables suggested by theory, 
equity volatility. Reported coefficients are averages for regression coefficients from time-series regressions using ail observations on a given 
underlying company. T-statistics are computed based on the time-series regression coefficients as in Collin-Dufresne, Goldstein and Martin (2001). 

Coefficients Constant 
Equity Volatility 

T-stats Constant 
Equily Volatility 

RZ 

N. of Companles 
Avg. N. of Observ. 
Avg. Day Btw. Quotes 

Law 
Rating 

0.041 
0.016 

5.59 
6.25 

10.1% 
39 

60.0 
19.7 

Regressions ln Differences Regressions in Levels 
Sid Quotes Offer Quotes Sid Quotes Offer Quotes 

High Ali Law High Ali Law High Ali Law High 
Rating Ratlng~atlng_ Ratlng Rating Rating Rating 

0.018 0.030 0.052 0.015 0.033 0.356 0.120 0.237 0.705 0.156 
0.007 0.011 0.027 0.010 0.018 0.038 0.016 0.027 0.037 0.017 

2.47 5.57 3.63 1.92 4.01 0.92 1.02 1.19 1.60 0.95 
5.25 7.62 6.00 4.94 7.00 5.25 5.01 6.62 4.40 4.73 

6.9% 
39 

59.5 
19.6 

8.5% 
78 

59.7 
19.7 

14.4% 
45 

55.6 
20.1 

11.0% 
45 

61.0 
19.1 

93 

12.7% 
90 

58.3 
19.6 

29.7% 
40 

58.3 
20.9 

24.3% 
41 

60.5 
19.3 

27.0% 
81 

59.4 
20.1 

26.9% 
47 

55.2 
20.5 

23.9% 
47 

60.4 
19.6 

Ali 

0.430 
0.027 

1.83 
5.82 

25.4% 
94 

57.8 
20.1 



Table 5 
Regression Using 10-Year US Treasury Bond Yields Only 

This table presents descriptive statistics and regression results for linear regressions using one of the explanatory variables suggested by theory, the 
riskless interest rate. Reported coefficients are averages for regression coefficients from time-series regressions using ail observations on a given 
underlying company. T-statistics are computed based on the time-series regression coefficients as in Collin-Dufresne, Goldstein and Martin (2001). 

Coefficients Constant 

T-stats 

R2 

10-YearYield 
Constant 

10-Year Yield 

N. of Companles 
Avg. N. of Observ. 
Avg. Day Btw. Quotes 

Regressions in Differences Regressions ln Levels 
Bld Quotes Offer Quotes Bld Quotes Offer Quotes 

Low High Ali Low High Ali Low High Ali Low High 
RatinIL RatiIl9__ .. ~1I!i1!9 .RaliIl9 ___ .. __ Ratlng Rat!1l9__ ~a_ting Rating 

0.030 0.014 0.022 0.036 0.010 0.023 8.848 3.943 6.365 8.608 3.591 
-0.486 -0.285 -0.386 -0.661 -0.356 -0.509 -1.306 -0.596 -0.947 -1.192 -0.500 

5.20 1.99 4.77 2.60 1.35 2.90 9.12 5.17 9.50 6.81 5.32 
-5.53 -5.79 -7.51 -5.03 -4.63 -6.57 -7.86 -4.57 -8.46 -5.38 -4.24 
6.3% 

39 
60.0 
19.7 

7.5% 
39 

59.5 
19.6 

6.9% 
78 

59.7 
19.7 

4.7% 
45 

55.6 
20.1 

7.9% 
45 

61.0 
19.1 

94 

6.3% 
90 

58.3 
19.6 

40.1% 
40 

58.3 
20.9 

32.6% 
41 

60.5 
19.3 

36.3% 
81 

59.4 
20.1 

28.4% 
47 

55.2 
20.5 

27.9% 
47 

60.4 
19.6 

Ali 

6.099 
-0.846 

8.04 
-6.52 

28.2% 
94 

57.8 
20.1 



Table 6 
Regression Using the Regressors from Collin-Dufresne, Goldstein and Martin (2001) 

This table presents descriptive statistics and regression results for linear regressions using the benchmark specification in Collin-Dufresne, Goldstein 
and Martin (2001). Reported coefficients are averages for regression coefficients from time-series regressions using ail observations on a given 
underlying company. T-statistics are computed based on the time-series regression coefficients as in Collin-Dufresne, Goldstein and Martin (2001). 

Coefficients Constant 
Leverage 

Equilly Volatilily 
2-Year Yield 

Yield Curve Siope 
S&P 500 

Smirk Siope 
Sq. 10-Year Yield 

T-stats Constant 

R2 

Leverage 
Equilly Volatility 

2-Year Yield 
Yield Curve Siope 

S&P 500 
Smlrk Siope 

Sq. 10-Year Yield 

Number of Companles 
Avg. Number of Observ. 
Avg. Days Btw. Quotes 

Regressions ln Differences Regressions ln Levels 
Bid Quotes Offer Quotes Bid Quotes Offer Quotes 

Low High A" Low High A" Low High A" Low High 
Ratlng Rating Ratlng Ratlng Ratlng Ratlng Ratlng Ratlng 

0.014 0.Q10 0.012 -0.002 -0.007 -0.004 12.046 2.678 7.304 6.201 2.771 
0.063 0.033 0.048 0.059 0.033 0.046 0.075 0.033 0.054 0.073 0.034 
0.010 0.004 0.007 0.020 0.006 0.013 0.018 0.005 0.012 0.022 0.007 

-0.115 -0.121 -0.118 -0.256 -0.143 -0.200 -1.051 -0.209 -0.625 -0.348 -0.340 
0.005 -0.116 -0.055 0.003 -0.104 -0.050 -0.051 -0.077 -0.064 0.150 -0.020 

-1.924 -0.284 -1.104 -1.301 -0.034 -0.667 -1.851 -0.411 -1.122 -1.150 -0.453 
0.144 -0.150 -0.003 -0.524 0.148 -0.188 0.904 0.364 0.631 0.613 0.862 

-0.115 -0.117 -0.116 0.009 0.076 0.042 0.114 0.016 0.064 0.013 0.049 
1.12 1.61 1.74 -0.18 -2.23 -0.74 1.64 1.11 1.90 0.96 1.05 
5.28 3.48 6.18 4.22 4.87 5.88 4.79 4.50 6.09 4.64 5.55 
4.28 2.48 4.81 4.79 3.54 5.48 3.81 2.47 4.36 4.62 3.80 

-0.99 -2.88 -1.93 -1.79 -3.35 -2.67 -1.37 -1.35 -1.62 -0.50 -1.59 
0.03 -1.57 -0.61 0.02 -1.21 -0.49 -0.18 -0.84 -0.43 0.61 -0.20 

-2.72 -0.90 -2.79 -1.34 -0.15 -1.33 -1.47 -1.11 -1.72 -1.10 -1.08 
0.26 -0.97 -0.01 -1.04 0.66 -0.68 1.07 1.02 1.39 0.76 2.29 

-0.66 -1.48 -1.23 0.04 1.47 0.39 1.59 0.64 1.71 0.19 1.46 
31.1% 

39 
60.0 
19.7 

27.9% 
39 

59.4 
19.6 

29.5% 
78 

59.7 
19.7 

34.1% 
45 

55.6 
20.1 

30.5% 
45 

61.0 
19.1 

32.3% 
90 

58.3 
19.6 

95 

76.1% 
40 

58.3 
20.9 

70.6% 
41 

60.4 
19.3 

73.3% 
81 

59.4 
20.1 

75.6% 
47 

55.2 
20.5 

68.6% 
47 

60.4 
19.6 

A" 
4.486 
0.054 
0.015 

-0.344 
0.065 

-0.802 
0.738 
0.031 

1.30 
6.21 
5.51 

-0.95 
0.48 

-1.42 
1.66 
0.84 

72.1% 
94 

57.8 
20.1 



Table 7 
Panel regressions - offer quotes 

This table reports our findings for panel versions of regression (1) and the three univariate 
regressions (2)-(4). Panels A-C report results for simple OLS regressions with 
Huber/White/Sandwich variance estimates. Panel B & C report results for regressions with fixed 
effects and quarter dummies, respectively. The panel contains 5436 offer quotes for 94 different 
reference en titi es with at least 25 quotes each. 

Coefficients Constant 
Leverage 

Equity Volatility 
10-Year Yield 

T -stats Constant 
Leverage 

Equity Volatility 
10-Year Yield 

Coefficients Constant 
Leverage 

Equity Volatility 
10-Year Yield 

T -stats Constant 
Leverage 

Equity Volatility 
10-YearYield 

Coefficients Constant 
Leverage 

Equity Volatility 
10-Year Yield 

T -stats Constant 
Leverage 

Equity Volatility 
10-YearYield 

Panel A 
(1 ) 

1.118 
0.025 
0.044 

-0.532 

6.310 
21.610 
26.550 

-18.430 

0.418 

PanelB 

-1.416 
0.082 
0.021 

-0.376 

(2) 

0.285 
0.031 

4.480 
21.910 

0.096 

-4.361 
0.123 

-6.030 -26.810 
24.080 37.010 
11.600 

-13.370 

0.698 

PanelC 

-3.575 
0.027 
0.049 
0.162 

0.659 

-0.841 
0.031 

(3) 

-0.608 

0.052 

-8.030 

28.890 

0.326 

-0.015 

0.039 

-0.190 

22.340 

0.605 

-1.686 

0.052 

-7.570 -11.470 -16.880 
23.080 22.520 
26.770 26.190 

1.990 

p.460 0.220 0.395 

96 

(4) 

6.209 

-0.879 

33.910 

-25.520 

0.106 

6.264 

-0.890 

37.890 

-27.560 

0.572 

1.876 

-0.261 

3.220 

-2.520 

0.130 



Table 8 
Panel regressions - bid quotes 

This table reports our findings for panel versions of regression (1) and the three univariate 
regressions (2)-(4). Panels A-C report results for simple OLS regressions with 
Huber/White/Sandwich variance estimates. Panel B & C report results for regressions with 
fixed effects and quarter dummies, respectively. The panel contains 4813 bid quotes for 81 
different reference entities with at least 25 quotes each. 

Coefficients Constant 
Leverage 

Equity Volatility 
10-Year Yield 

T-stats Constant 
Leverage 

Equity Volatility 
10-Year Yield 

Coefficients Constant 
Leverage 

Equity Volatility 
10-Year Yield 

T -stats Constant 
Leverage 

Equity Volatility 
10-Year Yield 

Coefficients Constant 
Leverage 

Equity Volatility 
10-Year Yield 

T -stats Constant 
Leverage 

Equity Volatility 
10-Year Yield 

Panel A 
(1 ) 

1.350 
0.023 
0.039 

-0.560 

8.120 
22.330 
28.280 

-20.140 

0.442 

PanelS 

-0.733 
0.074 
0.016 

-0.463 

-2.990 
21.430 
11.960 

-16.660 

0.727 

PanelC 

-3.406 
0.024 
0.042 
0.130 

-6.830 
23.750 
27.910 

1.660 

0.484 

97 

(2) 

0.264 
0.027 

4.440 
21.930 

0.088 

-4.269 
0.113 

-26.410 
36.020 

0.682 

-0.854 
0.026 

-10.510 
22.440 

0.249 

(3) (4) 

-0.538 6.211 

0.045 
-0.917 

-8.500 34.850 

31.040 
-27.080 

0.336 0.136 

-0.074 6.534 

0.036 
-0.983 

-1.150 41.640 

26.120 
-31.930 

0.611 0.600 

-1.347 2.275 

0.043 
-0.279 

-12.690 3.840 

27.160 
-2.880 

0.420 0.175 



Table 9 
Principal Component Analysis for Levels using Data on 15 Companies 

This table presents results of a principal component analysis using data on 
the 15 most quoted companies. Principal components is applied either to 
the levels of the CDS premia or the errors from regression (5) explaining the 
levels of CDS premia. For each exercise the first two vectors and the 

Panel A: Bid Levels 

Regression errors Premia 
First Component Second Component First Component Second Component 

0.27 -0.15 0.30 -0.01 
0.39 -0.01 0.32 0.09 

-0.02 -0.49 0.15 -0.38 
0.34 0.27 0.31 0.15 
0.32 0.03 0.27 0.24 
0.20 -0.08 0.25 -0.27 
0.04 -0.47 -0.03 -0.51 
0.33 -0.01 0.31 0.04 
0.00 -0.40 -0.03 -0.36 
0.39 0.07 0.27 0.05 
0.29 -0.12 0.32 0.15 
0.23 -0.31 0.23 -0.33 
0.33 0.18 0.32 -0.04 
0.05 -0.34 0.17 -0.38 
0.08 0.09 0.31 0.15 

Explained by PC: 

32.5% 21.6% 58.7% 20.3% 

Panel B: Offer levels 

Regression errors Premia 
First Component Second Component First Component Second Component 

0.33 -0.08 0.32 -0.09 
0.29 -0.26 0.17 0.36 
0.04 -0.44 0.20 0.34 
0.21 -0.12 0.32 0.03 
0.37 0.05 0.32 -0.08 
0.33 0.30 0.31 -0.12 
0.35 0.06 0.30 -0.18 
0.27 -0.03 0.33 -0.14 
0.02 -0.39 -0.08 0.34 
0.19 -0.28 0.20 0.37 
0.05 -0.47 -0.03 0.48 
0.35 0.13 0.28 -0.09 

-0.13 0.00 0.27 -0.16 
-0.05 -0.37 0.17 0.39 
0.38 0.10 0.32 0.07 

Explained by PC: 

31.0% 25.1% 55.1% 24.2% 
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Table 10 
Principal Component Analysis for Differences using Data on 15 Companies 

This table presents results of a principal component analysis using data on the 
15 most quoted companies. Principal components is applied either to the 
differences of the CDS premia or the errors trom regression (5) explaining the 
differences of CDS premia. For each exercise the first two vectors and the 
percentage of the variance explained by each factor are reported. 

Panel A: Bid Differences 

Regression errors Premia 
First Component Second Component First Component Second Component 

-0.47 0.19 0.12 0.53 
0.41 -0.14 0.17 -0.50 

-0.18 0.35 0.11 0.07 
0.15 0.42 0.22 0.07 

-0.17 -0.52 0.33 -0.08 
-0.32 -0.16 0.18 0.43 
-0.06 -0.18 0.35 -0.06 
-0.37 -0.09 0.30 0.13 
0.17 -0.37 0.32 -0.23 

-0.27 -0.04 0.33 0.17 
0.04 -0.39 0.27 -0.05 

-0.12 -0.07 0.28 0.25 
-0.31 -0.11 0.30 -0.23 
-0.19 0.07 0.21 -0.21 
0.19 0.01 0.22 0.00 

Explained by PC: 

24.5% 19.8% 50.2% 18.4% 

Panel B: Offer Differences 

Regression errors Premia 
First Component Second Component First Component Second Component 

0.41 0.03 0.28 -0.36 
0.45 -0.04 0.30 -0.32 
0.43 0.04 0.32 -0.24 
0.36 -0.33 0.33 -0.08 
0.04 0.48 0.26 0.28 
0.18 0.10 0.18 0.07 
0.37 -0.07 0.19 -0.30 
0.23 -0.06 0.30 0.22 
0.17 0.26 0.31 0.25 
0.06 0.51 0.25 0.43 

-0.09 0.28 0.27 -0.04 
0.14 0.03 0.21 0.24 
0.06 0.13 0.02 -0.04 
0.08 -0.04 0.25 -0.31 
0.11 0.45 0.21 0.29 

Explained by PC: 

30.8% 19.1% 56.5% 15.5% 

99 



Table 11 
Principal Component Analysis for Levels using Data in Leverage Bins 

This table presents results of a principal component analysis using data on ail companies grouped in tive 
leverage bins. Principal components is applied either to the levels of the CDS premia or the errors from 
regression (1) on the levels of CDS premia. For each exercise the tirst two vectors and the percentage of 
the variance explained by each factor are reported. 

Panel A: Bid Levels 

Leverage (%) Regressions errors Premia 
Ouintile From To First Component Second Component Flrst Compone nt Second Component 

1st 17.3 36.8 0.41 -0.08 0.46 0.19 
2nd 36.8 47.8 0.48 -0.25 0.48 0.05 
3rd 47.8 59.6 0.33 -0.60 0.27 -0.96 
4th 59.6 70.1 0.61 0.13 0.49 0.17 
5th 70.1 91.0 0.36 0.74 0.49 0.13 

Explained by PC: 

35.6% 20.8% 68.6% 16.2% 

Panel B: Offer Levels 

Leverage (%) Regression errors Premia 
Ouintile From To Flrst Component Second Component First Component Second Component 

1st 15.1 34.0 0.24 0.77 0.39 -0.65 
2nd 34.0 44.4 0.39 -0.62 0.47 -0.11 
3rd 44.4 55.5 0.39 -0.09 0.39 0.70 
4th 55.5 65.8 0.60 0.10 0.49 0.21 
5th 65.8 81.4 0.52 0.06 0.49 -0.15 

Explained by PC: 

'-----
36.4% 24.0% 66.1% 13.2% 
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Figure 1: This figure depicts the daily frequency of bid and offer quotes for the 
CDS premium data during the period January 1999 to December 2002. 
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Figure 2: This figure reports a histogram of the maturities of the credit default 
swaps in our dataset. The figure indicates that the 5 year maturity segment 
represents the bulk of the market. 
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Figure 3: This figure depicts the levels of CDS premia over time and according to 
rating categories. Data includes bid and offer quotes for an maturities. 
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Figure 4: This figure plots CDS premia and firm leverage, both averaged across 
reference entities on a weekly basis. 
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Figure 5: This figure plots CDS premia and equity volatilities, bath averaged 
across reference entities on a weekly basis. 
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Figure 6: This figure plots the firm-specific (time-series) average of the CDS 
premia vs. average leverage. 
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Figure 7: This figure plots the firm-specific (time series) average CDS premia vs. 
average equity volatility. 
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Summary and Conclusions 

The first essay proves the following for pure futures options (PFO): put-calI parity, 

equality of the time value of caUs and puts with the same strike and expiration, 

positivity of the time value and suboptimality of early exercise. First, l prove 

these four results assuming frictionless markets but allow for arbitrary dynamics 

of the underlying futures price and of interest rates. Second, l demonstrate how the 

suboptimality of early exercise is robust to transaction costs, illiquidity constraints 

and to collateral requirements by the exchanges. 

To prove suboptimality in an imperfect market, l apply an original dominance 

criterion based on the gain pro cesses of the option premium, the underlying futures 

price and portfolios composed of these derivatives. FUture research can, in my 

opinion, gain from considering the gains pro cess as an important tool for modeling 

PFO. In traditional-style options, the theory usually searches for a self-financing 

portfolio (SFP) whose value replicates the priee (and value) of the option prior to 

expiration or exercise. A replieating SFP offers the following characteristics: i) it 

has the same value as the option at expiration or exercise, ii) it has the same gains 

process as the option's value process. iii) like the replicated option, it does not 

pay dividends during the life of the option. Pricing the option entails computing 

the cost of the replieating SFP. In contrast, assuming continuous resettlements, 

the value of pure futures options and their underlying futures is always zero and 

there is continuous distribution of dividends (the variation margins). To ensure 

that the replicating portfolio, comprising only futures, pays the same dividends, it 

need only replieate the gains process of the pure futures option. The equilibrium 

priee of the option is the one that allows such replication. Note that it is more 

straightforward to replicate the gains pro cess and assume that dividends are for 

immediate consumption than to require equality, at expiration, of two money 

market accounts where dividends of the PFO and of the replicating portfolio are 

reinvested for future consumption. The latter construction makes unnecessary use 

of the interest rate market in replieating a PFO. Because the value of the pure 

futures option and of its underlying futures is always zero, funding costs need not 

be considered. This explains why the interest rate does not appear in the pricing 

formulae, just as it did not figure in the put-call parity of the first essay. 

The second essay proposed a new algorithm, the True Notional Bond System 

(TNBS) , to compute futures invoice priees of the bonds eligible for delivery by 

the short of a treasury bond futures contract. The TNBS brings futures invoice 
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prices of eligible bonds doser to their corresponding market prices than the current 

conversion factor system (CFS). For the relevant alternatives to the cheapest to 

deliver, the difference between market value and invoice future price in the CFS 

is around 400% that of the TNBS. 

1 leave for future research an empirical study on selected modalities of the 

refined version of the TNBS. For example, calibrating the TNBS to consider the 

predictable portion of the shape of the yield curve could be of value. The refined 

version also offers flexibility to rationally designate bonds with differing levels 

of perceived default risk, liquidity or tax treatment to the basket of deliverable 

bonds. For example, bonds issued by distinct Euro area governments, or corporate 

bonds issued by distinct commercial banks, may be induded in the basket of 

deliverable bonds. Finally, an empirical study could confirm the hypothesized 

superior hedging performance of a futures contract using the TNBS over one 

using the CFS. 

The third essay, coauthored with Prof. Jan Ericsson and Prof. Kris Jacobs, 

studies the determinants of credit default swap premia. Using a linear econometric 

model, we found that leverage, volatility and interest rates are critical variables in 

explaining such premia. Their coefficients are both economically and statistically 

significant, thus supporting the predictions of structural models of credit risk. 

Principal component analysis of the residuals do not indicate the existence of an 

omitted common "market" factor in CDS premia. The result contrasts with 

findings by CGM in corporate bond spreads. To the extent that a simple linear 

model captures the dependence of default swap premia on variables suggested 

by structural models, an interesting experiment would involve fitting different 

structural models, on the premise that credit swap premia be better explained by 

structural models than corporate bond spreads. 
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