
Geometric Deep Learning for Electrostatics

and Magnetostatics Problems

Aishwarya Ramamurthy

Department of Electrical & Computer Engineering

McGill University

Montréal, Québec, Canada

December 2023

A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of

Master of Science (M.Sc) in Electrical Engineering.

© 2023 Aishwarya Ramamurthy

i

Abstract

Conventional numerical methods such as the Finite Element Method (FEM) and Finite

Difference Method (FDM) have been employed to solve electrostatics and magnetostatics

problems involving Partial Differential Equations (PDEs). With the recent boom in deep

learning, alternative ways to solve such PDEs subject to boundary value constraints have

been proposed and implemented, in contrast to classical numerical solvers. One such entity

is a Graph Neural Network (GNN), which precisely depicts the internodal connectivity in a

graph structure comprising nodes and edges. At the structural level, a GNN is analogous

to the tessellations (here, triangular simplices) of a finite element mesh. This thesis investi-

gates the prediction quality of a GNN model with spectral graph convolution, to learn and

approximate the solution for a time-independent, boundary value problem in the domains of

electrostatics and magnetostatics. This network is trained in a supervised manner on datasets

generated by a FEM solver with diverse shapes and charge/current non-uniformities. For the

given datasets and the GNN framework, experimental results demonstrate that introducing

mesh augmentations i.e., structural variations in the finite element meshes, enhance GNN

predictions over unseen geometries and inhomogeneities, in comparison to commonly used

regularization techniques.

ii

Abrégé

Des méthodes numériques conventionnelles telles que la méthode des éléments finis (FEM)

et la méthode des différences finies (FDM) ont été utilisées pour résoudre des problèmes

d’électrostatique et de magnétostatique impliquant des équations aux dérivées partielles

(PDE). Avec le récent boom de l’apprentissage profond, des moyens alternatifs pour résoudre

de telles PDE soumises à des contraintes de valeurs limites ont été proposés et mis en œuvre

contrairement aux solveurs numériques classiques. L’une de ces entités est un réseau neu-

ronal graphique (GNN), qui décrit précisément la connectivité internodale dans une structure

graphique comprenant des nœuds et des arêtes. Au niveau structurel, un GNN est analogue

aux pavages (ici, des simplexes triangulaires) d’un maillage d’éléments finis. Cette thèse

étudie la qualité de prédiction d’un modèle GNN avec convolution de graphe spectral, pour

apprendre et approximer la solution d’un problème de valeur limite indépendant du temps

dans les domaines de l’électrostatique et de la magnétostatique. Ce réseau est formé de

manière supervisée sur des ensembles de données, générés par un solveur FEM avec diverses

formes et non-uniformités charge/courant. Pour les ensembles de données donnés et le cadre

GNN, les résultats expérimentaux démontrent que l’introduction d’augmentations de mail-

lage, c’est-à-dire de variations structurelles dans les maillages d’éléments finis, améliore les

prédictions GNN sur des géométries et inhomogénéités invisibles, par rapport aux techniques

de régularisation couramment utilisées.

iii

Acknowledgements

I would like to express my sincere and heartfelt gratitude to my supervisor, Dr.Dennis

Giannacopoulos, for his constant guidance, encouragement and valuable time.

Further, I extend my thanks to Mr.Winfried Ripken (Merantix Momentum, AI Campus,

Berlin, Germany), for his timely help and suggestions in the course of my thesis.

This research was enabled in part by support provided by Calcul Québec (calculque-

bec.ca) and the Digital Research Alliance of Canada (alliancecan.ca).

Last but not least, I would like to thank my friends, family and teachers for their continued

support throughout my academic endeavours.

Contents iv

Contents

List of Figures vii

List of Tables ix

List of Abbreviations x

1 Introduction 1

1.1 Background and Objective . 1

1.2 Contributions . 2

1.3 Thesis Overview . 3

1.3.1 Chapter 2 . 3

1.3.2 Chapter 3 . 3

1.3.3 Chapter 4 . 4

2 Physics, PDEs and Deep Learning 5

2.1 Introduction . 5

2.2 Prerequisites . 6

2.2.1 A Boundary Value Problem . 6

2.2.2 Maxwell’s Equations . 7

2.2.3 Finite Element Method : An Overview 8

2.2.4 Towards Deep Learning . 10

2.3 Geometric Deep learning with Graphs . 11

Contents v

2.3.1 Shortcomings of CNNs . 11

2.3.1.1 Geometric Deep Learning (GDL) 12

2.3.2 Graph Neural Networks (GNNs) . 13

2.3.2.1 Neural Message Passing Model 14

2.3.2.2 Convolutional approaches 15

2.3.2.3 Attention-based approaches 16

2.4 Deep Learning for Physical Systems - A Survey 17

2.4.1 Motivation and Intuition . 17

2.4.1.1 Preliminary Neural Network Models 18

2.4.2 GNN Approaches . 19

2.4.2.1 Mesh-based Deep learning 20

2.4.2.2 Neural Operators & Physics-Informed Learning 21

2.4.3 ML/DL for Electromagnetics - A Brief Review 22

3 Solving Poisson’s Equation using Graph Neural Networks 24

3.1 Introduction . 24

3.2 The Poisson’s Equation BVP . 25

3.2.1 Variational Formulation . 25

3.3 Application : Electrostatics and Magnetostatics 28

3.4 GNN Framework . 30

3.4.1 Encoder-Processor-Decoder model . 30

3.5 Experiments . 32

3.5.1 Datasets . 32

3.5.1.1 Mesh Geometries . 32

3.5.2 Training & Testing GNN models . 36

3.5.2.1 GPU Training . 38

3.5.3 Results and Discussion . 39

3.5.3.1 Limitations and Recommendations 43

Contents vi

4 Conclusions 46

4.1 Remarks & Key Findings . 46

4.2 Future work . 47

Bibliography 48

Copyright 63

List of Figures vii

List of Figures

2.1 Mesh generation; (a) Rectangular solution domain Ω; (b) Discretized Ω (mesh);

(c) Triangular finite elements. Image adapted from [12]. 6

2.2 A fully-connected neural network. 12

2.3 GNN vs CNN; (a) Unstructured/non-Euclidean mesh (GNN input); (b) Struc-

tured/Euclidean grid (CNN input). 13

2.4 A message passing model depicting message aggregation at a single node from

its local neighbourhood. Image adapted from [28]. 15

2.5 Convolutional GNN layer; Image adapted from [28]. 15

2.6 Self-attention based GNN layer; Image adapted from [28]. 16

3.1 A block diagram depicting the Encoder-Processor-Decoder framework. 31

3.2 U-mesh with 68 vertices. Image adapted from [3]. 33

3.3 A simple triangulated L-mesh (left) and its augmented version (right). Image

adapted from [3]. 33

3.4 A mesh with square geometry (left); Augmented square mesh (right). Image

adapted from [3]. 34

3.5 Circular (Disk) mesh (left); Augmented disk mesh with varied node density

‘n’ (right). Image adapted from [3]. 34

3.6 Hollow Disk mesh (left); Augmented disk mesh with varying cutout locations

(right). Image adapted from [3]. 34

List of Figures viii

3.7 An overview of the (a) GNN model (Section 3.4) training and (b) testing

process. Mesh images adapted from [3]. 37

3.8 Sample test predictions (vs ground truth) for Electrostatics task 1;(a) Electric

potential; (b) Electric field. 42

3.9 Sample test predictions (vs ground truth) for Electrostatics task 2;(a) Electric

potential; (b) Electric field. 42

3.10 Sample test predictions (vs ground truth) for Magnetostatics task 1;(a) Mag-

netic potential; (b) Magnetic field. 43

3.11 Sample test predictions (vs ground truth) for Magnetostatics task 2;(a) Mag-

netic potential; (b) Magnetic field. 43

C.1 Copyright permission for adapting figures, dataset and GNN model from

[3],[106]. 63

C.2 Copyright permission to adapt Figure 17 from [28]. 63

List of Tables ix

List of Tables

2.1 Electromagnetic Quantities and their units. 8

3.1 Training, Validation and Test datasets. 36

3.2 Test results for Electrostatics problems with/without mesh augmentation (Mesh Aug);

(Values averaged over 5 random seeds). 40

3.3 Test results for Magnetostatics problems with/without mesh augmentation

(Mesh Aug); (Values averaged over 5 random seeds). 40

3.4 Mesh Augmentation vs conventional regularization techniques (test results

averaged over 5 random seeds). 41

List of Abbreviations x

List of Abbreviations

AI Artifical Intelligence

ANN Artificial Neural Network

BVP Boundary Value Problem

CNN Convolutional Neural Network

DL Deep Learning

EM Electromagnetics

FDM Finite Difference Method

FEM Finite Element Method

GCNN Graph Convolutional Neural Network

GDL Geometric Deep Learning

GEN Graph Elements Network

GNN Graph Neural Network

GPU Graphics Processing Unit

IDE Integrated Development Environment

IN Interaction Network

ML Machine Learning

MLP Multilayer Perceptron

MSE Mean Squared Error

PDE Partial Differential Equation

PINN Physics Informed Neural Network

Ch 1: Introduction 1

Chapter 1

Introduction

1.1 Background and Objective

Several scientific and engineering disciplines effectively use Partial Differential Equations

(PDEs) to model various physical phenomena. One such PDE chosen for this thesis work is

the Poisson’s equation. This well-known PDE arises in the areas of electromagnetics, fluid

dynamics, gravitational field problems, heat conduction, elasticity, and several other real-

world applications [1]. For decades, classical numerical approximation methods such as the

Finite Element Method (FEM) have been used to estimate solutions to such PDEs. As an

alternative, several Machine and Deep Learning (ML/DL) algorithms have been developed

to learn and predict PDE solutions, based on datasets created using standard FEM solvers.

However, the prediction capabilities of DL models such as Convolutional Neural Networks

(CNNs) are limited by the input geometry, as they can handle only regular structures.

This paved the way to consider Graph Neural Networks (GNNs) [2], with their proven

ability to handle irregular structures. Its variants include mesh-based learning [3, 4, 5], neural

operators [6, 7], and physics-informed approaches [8] for different applications. Further, GNN

models can be trained using augmentation and dropout techniques, to regularize and enhance

the approximation traits of neural networks on newer samples [9].

Ch 1: Introduction 2

The objectives of this thesis are enlisted below:

• Train and test the GNN model on a dataset comprising meshes (two-dimensional) with

various geometries and charge/current inhomogenities, so as to predict the solutions

to static Poisson’s equations for electrostatics and magnetostatics problems.

• Evaluate the ability of the GNN model with and without mesh augmentation, to predict

electric, magnetic fields and potentials over newer mesh samples varying in geometry

and current/charge distributions. Here, mesh augmentation refers to inducing geo-

metrical transformations in the training data, such as varying the mesh resolution or

trimming small portions from the original (basic) mesh.

• Analyze and report these prediction quality measures, in comparison with conventional

regularization (dropout) techniques.

1.2 Contributions

This work investigates the prediction quality of a Graph Neural Network (GNN) model

using mesh augmentations, to learn and approximate the solution to Poisson’s equation(s)

arising in electrostatics and magnetostatics. The GNN model was trained and tested on

a supercomputer GPU cluster, over datasets consisting of diverse mesh geometries and

charge/current distributions. The estimation quality of the predicted outputs (electric, mag-

netic potentials and fields) with respect to the ground truth, were measured in terms of Mean

Squared Error (MSE), for mesh augmentation and other regularization techniques. This com-

prehensive model training and testing process was automated in the GPU environment.

The test results were tabulated and visualized to analyze the impact of augmented meshes

on the model’s capability to approximate the PDE solution, with minimal prediction (test)

error. Experimental outcomes presented in this work demonstrate that, mesh augmented

training data improves the prediction quality over meshes with increased charge/current

Ch 1: Introduction 3

distributions and new structure, for the specified GNN model trained in a supervised manner.

Results obtained here are comparable to those reported in [3]. Initially, an inconsistency in

the results presented in [10] was identified and reported to its first author. Subsequent

inquiries and discussions led to a revised version [3] of [10].

1.3 Thesis Overview

The structure of this thesis is summarized below:

1.3.1 Chapter 2

Chapter 2 introduces the readers to “Geometric Deep Learning” (GDL), prefaced by pre-

requisites on the Finite Element Method (FEM), Boundary Value Problem (BVP) and

Maxwell’s equations. It discusses the limitations of Convolutional Neural Networks (CNNs),

thus motivating the choice of a GNN architecture for this work. Further, it presents a survey

on the recent advances in data-driven deep learning (GNN based) approaches, proposed in

the literature for PDE-governed physics-based problems, including electromagnetic applica-

tions.

1.3.2 Chapter 3

Chapter 3 begins with a background on Poisson’s equation and its variational formulation for

electrostatics and magnetostatics problems. Subsequently, it provides a detailed description

about the datasets (with and without mesh augmentation), the underlying GNN framework

and experiments. In addition, it presents a comprehensive set of test results, analyzes the

model’s prediction quality over various mesh geometries and charge/current inhomogeneities,

and compares the behaviour with other regularization techniques.

Ch 1: Introduction 4

1.3.3 Chapter 4

This concluding chapter summarizes this work with key findings, and suggests directions for

future work.

Ch 2: Physics, PDEs and Deep Learning 5

Chapter 2

Physics, PDEs and Deep Learning

2.1 Introduction

The Finite Element Method (FEM) is a numerical solution paradigm, widely used to

solve real-world problems rooted in numerous scientific and engineering disciplines. Having

revolutionized the process of engineering design, it also proves to be a robust method in

modelling a variety of scientific/physical processes involving Partial Differential Equations

(PDEs) [1].

Contrary to the classical numerical approximations, machine learning has paved an al-

ternate way to solve the underlying PDEs – more often expressed as boundary value prob-

lems (BVPs), skipping the conventional matrix computations. This chapter begins with

discussing the fundamentals of FEM and BVPs. Subsequently, we introduce the concept

of Geometric Deep Learning (GDL) with graphs, alongside addressing the limitations of

Convolutional Neural Networks (CNNs). This is followed by a discussion on Graph Neural

Networks (GNNs) and its variants as categorized in the literature. Further, we present an

overview of data-driven deep learning methods, proposed and implemented for physics-based

problems governed by and described using PDEs. We also survey deep learning techniques

for electromagnetics (with brevity) in line with this thesis work.

Ch 2: Physics, PDEs and Deep Learning 6

2.2 Prerequisites

2.2.1 A Boundary Value Problem

In the past decades, several numerical methods have been proposed and employed by

numerous scientists and engineers to solve problems involving partial differential equations

subject to boundary constraints, widely known as boundary-value problems (BVPs). A few

examples of BVPs include the Poisson’s equation defined for electrostatics and magnetostat-

ics problems, Laplace Equation, heat equation, elasticity (stress/strain displacement), wave

equations, etc [11]. The conditions defined and imposed on the boundary ∂Ω of the domain

Ω are referred to as boundary conditions. Commonly defined boundary conditions include

Dirichlet, Neumann or a combination of both (Robin, mixed).

(a) (b)

(c)

Figure 2.1: Mesh generation; (a) Rectangular solution domain Ω; (b) Discretized Ω
(mesh); (c) Triangular finite elements. Image adapted from [12].

For an unknown function u = u(x, y) and a bounded domain Ω1 (Figure 2.1a), specifying

its value on the boundary ∂Ω refers to the Dirichlet boundary condition. Specifying the nor-

mal derivative2 of u on the boundary (using a unit normal vector n̂) indicates the Neumann

boundary condition.

1 Domain Ω can be arbitrarily-shaped; not restricted to rectangular geometries.
2 Normal derivative ∂u/∂n̂ ⊥ Ω.

Ch 2: Physics, PDEs and Deep Learning 7

A typical definition of a BVP (2D PDE) is as follows:

∇2u+ u = 0, ∀x, y ∈ Ω (2.1)

u(x, y) = f(x, y), ∀x, y ∈ ∂Ω (Dirichlet) (2.2)

∂u

∂n̂
= g(x, y), ∀x, y ∈ ∂Ω (Neumann) (2.3)

Here, the gradient operator ∇ is a column vector of partial derivatives in two dimensions

given by
(
∂/∂x; ∂/∂y

)
. The Laplacian operator ∇2 is defined as ∇2 = ∇·∇. Let ∇u denote

the gradient of scalar u. Then, the Laplcian of u can be redefined as the divergence (∇·) of

gradient of u:

∇ =

∂
∂x

∂
∂y

 ,∇u =

∂u
∂x

∂u
∂y

 ;∇2u =

∂
∂x

∂
∂y

T

·

∂u
∂x

∂u
∂y

 =
∂2u

∂x
+
∂2u

∂y
(2.4)

2.2.2 Maxwell’s Equations

A classical electromagnetics problem is governed by a powerful set of partial differential

equations, famously known as Maxwell’s equations. This mathematical framework imparts

an insightful description relating the electric and magnetic fields with charges, currents and

their sources. As taken from [13], following are the four equations in their point forms:

∇ ·D = ρv (2.5)

∇ ·B = 0 (2.6)

∇× E = −∂B

∂t
(2.7)

∇×H = J +
∂D

∂t
(2.8)

Table 2.1 enlists key electromagnetic quantities and their respective units [13]. Equation

Ch 2: Physics, PDEs and Deep Learning 8

2.5, also known as point form of Gauss’s law, states that divergence of electric flux density

D, i.e. the electric flux per unit volume leaving an infinitesimally small volume, equals

the enfolded volume charge density ρv . Equation 2.6 is the point form of Gauss’s law for

magnetism, signifying that magnetic monopoles do not exist. In other words, divergence of

magnetic flux density B equals zero. The point form of Faraday’s law as shown in equation

2.7 implicitly states that a time-varying magnetic field generates an electric field E. Further,

curl of E emphasizes the rotational nature of the field. Equation 2.8, better known as point

form of Ampere’s circuital law, implicitly describes the generation of magnetic field H by a

time-varying electric field. In other words, the current density J and displacement current

density ∂D
∂t

attribute to a rotational magnetic field. Given the conductivity σ of a material,

J = σE. Equations 2.5 - 2.8 in their integral form are stated in [13].

Table 2.1: Electromagnetic Quantities and their units.

Symbol Unit Symbol Unit

ρv Coulomb/meter3; C/m3 σ Siemens/meter; S/m

µ Henry/meter; H/m ε Farad/meter; F/m

φ Volt; V Az Ampere; A

J Ampere/meter2; A/m2 A Weber/meter; Wb/m

D Coulomb/meter2; C/m2 E Volt/meter; V/m

B Tesla (Weber/meter2); T (Wb/m2) H Ampere/meter; A/m

2.2.3 Finite Element Method : An Overview

The term “Finite Element Method” was first coined by a structural engineer named

Ray W. Clough in his paper at the Proceedings of 2 nd ASEC Conference on Electronic

Computation in 1960. Alongside his landmark contribution towards FEM, the development

Ch 2: Physics, PDEs and Deep Learning 9

of FEM can be traced back to the early 1940s with seminal works by A.Hrennikoff [14],

Douglas McHenry [15], R.Courant [16], John H. Argyris [17], M. J. Turner [18], O. C.

Zienkiewicz [19]. FEM, though originally developed for structural analysis arising in civil

and aerospace engineering, has had its application extended to several other scientific fields

such as electromagnetics, optics, fluid dynamics and so on. In general, a typical finite element

analysis of boundary-value problems (described in section 2.2.1) comprise the following steps

[12]:

1. Discretization of the PDE defined over a domain Ω. This refers to the division of

Ω into subdomains or finite elements (mesh generation). The shape of these finite

elements include simplices such as triangles, quadrilaterals in 2D, tetrahedrons (3D)

and higher-order simplicial configurations for multi-dimensional domains.

2. Choosing appropriate basis or interpolation functions, which are later expressed as a

weighted linear combination to approximate the solution corresponding to each finite

element.

3. Transformation of the defined PDE into a set of linear equations for each element i.e.

element equations.

4. Assembling the element equations to form a global set or a system equation. Such

formulations are presented using the Rayleigh-Ritz method, Galerkin weighted residual

method and other approaches.

5. Solving the linear system equation of the form Au = b using efficient solvers such as

the Conjugate Gradient method, Cholesky/LU decompositions, etc.

For a rectangular solution domain Ω shown in Figure 2.1a, the process of mesh generation

can yield a set of triangular (Figure 2.1b) or rectangular (or any general quadrilateral)

elements. Further, the first four simplices in Figure 2.1c illustrate a set of right triangular

elements whereas the fifth simplex denotes a general triangular finite mesh element.

Ch 2: Physics, PDEs and Deep Learning 10

2.2.4 Towards Deep Learning

It is important to note that Au = b solved using linear algebraic methods (exact or

iterative), require large computational resources. Despite them yielding optimal results, op-

erations such as matrix inversion prove to be numerically expensive. Further, tuning certain

parameters in the code may mandate multiple reruns - hinting towards an increased re-

source requirement. To tackle this infeasibility, data-driven methods pave an alternate way

to obtain solutions to several such boundary value problems, that are implicitly defined by

partial differential equations. This leads us into the world of Artificial Intelligence (famously

abbreviated as AI), wherein tasks are accomplished with minimal or no human intervention.

Two subdivisions of AI - Machine Learning (ML) and Deep Learning (DL), constitute nu-

merous techniques that are capable of learning patterns and approximating solutions to the

“problem under consideration”, solely based on the input data samples [20].

Machine learning techniques are broadly classified into supervised and unsupervised. Fur-

ther, such predictions are made based on a set of “features”, and the outcomes are either

categorical (classification) or quantitative (regression). The supervised learning process is

guided by a “labelled” training dataset, where “labelled” refers to each input sample or ob-

servation (tuple) in the training dataset having a corresponding class variable (outcome). On

the other hand, unsupervised learning models train and predict on an unlabelled dataset.

Examples of ML models include Decision Trees, Naive Bayes classifier, Linear Regression

models, Random forests, Support Vector Machine, Artificial Neural Networks (ANNs), etc

[21]. Other learning regimes include Semi-supervised [22] and Reinforcement learning [23].

The former class of algorithms learn and predict on a partly labelled training dataset and the

latter deal with “reinforcement agent” that learns through its experiences and takes appro-

priate actions to maximize the reward signal, unlike learning the hidden mapping/patterns

in ML/DL methods.

Although such ML algorithms find vast applications in areas such as image recognition

Ch 2: Physics, PDEs and Deep Learning 11

and text classification, they require the raw input data be transformed into a suitable feature

vector representation for training purposes and predictions, making it a strenuous manual

process. In this prospect, a new class of techniques known as Deep Learning (DL) emerged

to cater to an escalation of day-to-day applications. Unlike the basic ML models, DL algo-

rithms aim to self-learn the key features (auto feature extraction) required for detection or

classification tasks in various learning settings as described for ML models above. Specifi-

cally, artificial neural networks for deep learning are multilayered (has several hidden layers)

to deduce a non-linear input-output mapping, justifying the term “deep” in its true sense.

2.3 Geometric Deep learning with Graphs

2.3.1 Shortcomings of CNNs

Training a typical fully-connected neural network (Figure 2.2) involves a feedforward

pass and a backpropagation mechanism. In the feedforward step, the training data is prop-

agated through the network model from the input layer to output layer, and the model

weights/parameters are computed on passing through consecutive hidden layers. In order

to minimize the cost function (e.g. Mean Squared Error (MSE)), the neural network model

parameters are backpropagated from the output layer to the input layer, so as to compute

the gradients of the cost function with respect to the underlying network weights at each

layer. In this manner, the model weights are updated until convergence or sufficient model

iterations [24]. Essentially, a machine learning task boils down to an optimization problem.

Convolutional Neural Network (CNN) [25, 26] is one such class of deep neural feedfoward

networks that gained popularity with its applications in image and document recognition.

Typically, a CNN uses a convolutional operator (kernel) that slides over a structured grid,

aggregates information from the underlying nodes and neighbours (e.g. pixels in an image)

and yields an updated pixel value. In an effort to use CNN as a PDE solver, Özbay et al.

Ch 2: Physics, PDEs and Deep Learning 12

Figure 2.2: A fully-connected neural network.

in [27] propose a CNN to solve the Poisson’s equation on a two-dimensional Cartesian grid.

2.3.1.1 Geometric Deep Learning (GDL)

Despite deep learning networks such as CNNs having demonstrated remarkable perfor-

mances (high accuracies) for various applications, such models are useful only on grid struc-

tured data in Euclidean spaces (2D grids/lattices) and text sequences (1D) as opposed to the

requirement of processing arbitrary meshes (or) networks. This necessitates a newer deep

learning architecture to extend the idea of convolution onto the graph domain and analyze

complex patterns in general graph networks. Bronstein et al. in [28, 29] term this process of

generalizing deep neural models (such as CNNs) onto non-Euclidean domain geometric data

as Geometric Deep Learning. They focus on a broad class of neural network architectures

proposed to analyze grids, groups, graphs and manifolds, unstructured sets, geodesics and

gauges, and demonstrate their unification with regards to first geometric principles of struc-

tural symmetry and invariance. Leveraging such geometric priors aids in encoding stable

and multsicale geometric representations and thereby, the quality of information learned by

the neural model.

Further, the intuition behind generalization is not only to derive non-Euclidean counter-

parts for pooling and convolutional layers, but generalize across various domains. The latter

is an essential requirement for large scale applications such as computer vision and graphics

Ch 2: Physics, PDEs and Deep Learning 13

[30, 31], physics [32], recommender systems [33], etc. The reader is referred to [28, 29] for an

in-depth understanding and analysis of geometric deep learning concepts, applications and

relevant approaches with key reference publications.

(a) (b)

Figure 2.3: GNN vs CNN; (a) Unstructured/non-Euclidean mesh (GNN input); (b)
Structured/Euclidean grid (CNN input).

2.3.2 Graph Neural Networks (GNNs)

Graph Neural Networks belong to a class of node embedding techniques, that aim to

encode the graph nodes as low-dimensional vectors onto a hidden space and decode these

node embeddings to reconstruct information about its local neighbourhood in the original

graph [2]. A sample set of mesh inputs handled by GNN and CNN are shown in Figure 2.3.

Interestingly, the fundamental GNN model was motivated by and proposed in multiple

ways, distinguishable on the basis of underlying message passing (update) and aggregating

functions. In view of these formulations, authors in [28] with brevity, categorize a section of

literature proposed in the context of GNN, into three “flavours” – convolutional, attentional

and message passing. Such approaches with diverse parameter sharing strategies across the

network emphasizes the inductive learning characteristic of GNN, to generalize better over

unseen data by leveraging a deep learning architecture satisfying permutation equivariance3

or permutation invariance4 [28, 2].

3 For a permutation matrix P and node feature matrix X, function f is permutation equivariant if
f(PX,PAPT) = Pf(X,A).

4 f is permutation invariant if f(PX,PAPT) = f(X,A). PAPT is the representation of permutation group
acting on the graph-associated matrices. f is defined analogous to Equation 2.9.

Ch 2: Physics, PDEs and Deep Learning 14

2.3.2.1 Neural Message Passing Model

In general, a graph is defined by G = (V , E) with a set of vertices or nodes V and a set

of edges E connecting the vertices. This nodal interconnectivity is often expressed through

an adjacency matrix A ∈ R|V|×|V|, where each entry Auv denotes the presence (Auv = 1) or

absence (Auv = 0) of an edge (u, v) ∈ E between node u ∈ V and v ∈ V . Given a node

feature matrix X ∈ Rd×|V|, each GNN layer is updated in the following manner [2]:

h(k)
u = UPDATE(k)

(
h(k−1)
u ,AGGREGATE(k)({h(k−1)

v ,∀v ∈ N (u)})
)

(2.9)

where hu and hv denote the node (hidden) embeddings for nodes u and v respectively.5

Neighbourhood of node u is denoted by N (u) with the AGGREGATE (
⊕

acting on message

ψ) and UPDATE (φ) functions being arbitrary differentiable (i.e., neural networks). For

each iteration (GNN layer) k, the hidden embeddings in the graph neighbourhood of u

from the previous iteration – h(k−1)
v are aggregated to form a message, which is further

combined with an embedding of node u from the previous iteration – h(k−1)
u , to generate an

updated embedding h(k)
u [2]. Note that the initial input to the GNN is a set of node features

corresponding to all the nodes i.e., h(0)
u = xu. After K iterations, the node embedding

(output layer) for each node would be zu = h(K)
u ∀k ∈ {1, ..., K}. Figure 2.4, 2.5 and 2.6 are

adapted with permission from the original figure creator (also an author) of [28], © Petar

Veličković, Google). Alternatively, given the node feature vectors xu,xv, the aggregated

message can be expressed as muv = ψ(xu,xv). Then,6,7

hu = φ

(
xu,

⊕
v∈Nu

ψ(xu,xv)

)
(2.10)

5 Equations 2.9 and 2.10 are taken from [2] and [28] respectively.
6 Permutation invariant operator

⊕
can be sum, mean, max, etc.

7 Examples of ψ, φ : ψ(x) = Wx+b, φ(x,m) = σ(Wx+Um+b), where σ is a non-linear activation function
(such as ReLU) and {W, U, b} are trainable parameters.

Ch 2: Physics, PDEs and Deep Learning 15

Figure 2.4: A message passing model depicting message aggregation at a single node from
its local neighbourhood. Image adapted from [28].

Relevant GNN models derived using the “message passing” mechanism can be found in [34,

35, 36, 37].

2.3.2.2 Convolutional approaches

In accordance with certain convolutional aggregation layers proposed in [38, 39, 40], the

node features in the neighbourhood Nu are aggregated as a weighted linear combination

shown below:

hu = φ

(
xu,

⊕
v∈Nu

cuvψ(xv)

)
(2.11)

where coefficient cuv (dependent on adjacency matrix A entries) enumerates to node u’s

Figure 2.5: Convolutional GNN layer; Image adapted from [28].

Ch 2: Physics, PDEs and Deep Learning 16

representation, the importance of node v. Alongside
⊕

denoting the summation operation,

it can generalize the notion of convolution when considered as a diffusion or a node-wise

local filter (linear) operator. Generalizing convolutions onto non-Euclidean data such as

graphs involve key principles from graph signal processing theory [41]. Such convolutional

deep learning frameworks involving eigenvalues, eigenvectors, graph Fourier transforms are

often termed “spectral-based approaches”. Convolutions expressed directly on the vertex

(graph) domain by aggregating information in the local node neighbourhood are referred to

as “spatial approaches” [42, 43].

2.3.2.3 Attention-based approaches

Attention-based (Attentional) graph neural network models learn and enable implicit in-

teractions by leveraging a self-attention mechanism [44, 45, 46]. Coefficients αuv = a(xu,xv)

are inherently computed, followed by a softmax-normalization across all its neighbours [45].

Mathematically, interactions in each GNN layer are modelled as:

hu = φ

(
xu,

⊕
v∈Nu

αuvψ(xv)

)
(2.12)

While
⊕

denotes summation, the aggregation of messages is still a weighted linear combi-

nation of features in Nu. However, the importance coefficients αuv are feature-dependent.

Figure 2.6: Self-attention based GNN layer; Image adapted from [28].

Ch 2: Physics, PDEs and Deep Learning 17

Implications: It is remarkable to note the hierarchical transformation among the three

graph approaches in the order : convolutional ⊆ attentional ⊆ neural message-passing. In

other words, the self-attention and convolutional GNNs can be termed special cases of the

message passing GNN variant. Consequently, their weighted message functions can be trans-

formed as shown below:

ψ(xu,xv) = cuvψ(xv) → Convolutional⇔ message-passing (2.13)

ψ(xu,xv) = αuvψ(xv) → Attentional⇔ message-passing (2.14)

The aforementioned categorization may seem comprehensive, it however excludes certain

GNN models such as k -GNN introduced on the grounds of Weisfeiler-Lehman hierarchy [47],

spectral GNNs requiring an explicit computation of graph signal processing entities such as

Graph Fourier Transform. For other comprehensive surveys on GNN taxonomy, approaches

and relevant literature (in different settings), the reader can refer to the material presented

in [42, 43, 48, 49, 50, 51, 52].

2.4 Deep Learning for Physical Systems - A Survey

2.4.1 Motivation and Intuition

A fundamental aspect of perceiving and mastering the intuition behind human intelli-

gence is to model real-world physical systems mathematically described by partial differential

equations (PDEs). In order to learn and make predictions, simulating such real-world sys-

tems mandates the model to rightly understand and regard the governing principles or laws.

Several such physical systems can be modelled as system objects (nodes) with pair-wise in-

teractions. This course of physical system modelling using nodes and pair-wise connections

is analogous to a well-known geometric datatype – graphs [42].

Early attempts to formulate deep learning on graphs (rather, generalize neural networks

Ch 2: Physics, PDEs and Deep Learning 18

to graphs) were presented by Scarselli, F., Gori, M., et al [34, 35]. This work introduced

the eminent Graph Neural Network (GNN) framework, based on recurrent neural networks

and random walk models. A surge in the application of GNNs in recent years is attributed

to the ubiquitous graph structured data generated across several engineering and science

disciplines. A variety of GNN models have been proposed in the literature to efficiently

handle arbitrarily sized topographical networks, skip the conventional numerical method

approximations of PDEs and train on large datasets with growing computational resources

such as Graphics Processing Units (GPUs).

2.4.1.1 Preliminary Neural Network Models

Initial endeavours to learn the physical dynamics explored the potential of primary ma-

chine learning algorithms such as feedforward neural networks (ANNs). In their seminal

work, Lagaris et al. [53] and Chiaramonte et al. [54] trained ANNs to learn the solu-

tions of ordinary and partial differential equations. This boosted several other researchers

to train and test various machine learning frameworks to learn the solutions for PDEs, as

discussed in [55, 56, 57, 58, 59, 60]. CNNs, having gained wide popularity in text/image

processing applications, was a potent candidate to approximate PDE solutions. This line of

work includes PDE-Net [61] proposed to learn evolutions PDEs through convolutional filters

(differential operators) and non-linear responses; the model was experimented on convection-

diffusion equations. Analogous to the conventional convolutional neural networks, MeshCNN

by Hanocka et al.[62] learns for shape classification and segmentation tasks, by integrating

specialized pooling and convolutional layers, and leveraging implicit geodesic connectivity

in mesh edges (obtained from a highly non-uniform meshed data). In an attempt to solve

elliptic PDEs using deep learning, proponents in [63, 64, 65] solve Poisson’s equations using

CNNs under varied boundary conditions.

However, structured data-based tasks form relatively a small portion in comparison to

those dealing with highly unstructured data. Analyzing unstructured meshes using CNNs

Ch 2: Physics, PDEs and Deep Learning 19

seem a non-trivial task due to its constrained requirement of regular shapes. Efforts to solve

parametric PDEs using a physics-informed CNN for irregular geometries in an unsupervised

learning setting is proposed in [66]. This structural limitation opened doors to analyze

commonly found, yet complex topological networks, thus demanding advanced deep learning

architectures.

2.4.2 GNN Approaches

Battaglia et al. in [32] introduce the first learnable physics engine in the form of interac-

tion networks (INs) using deep neural network building blocks (MLPs [67], for an in-depth

reasoning about relations among objects modelled for challenging physical problems such as

rigid-body collision. They learn the root dynamics and infer the system’s abstract properties

using graph-based data generated by real-time physical system(s) simulations. Addressing

the drawbacks of inferior interactions scalability in [32], Hoshen et al. in [68] introduce a

vertex attention IN (VAIN) for multi-agent prediction domain tasks.

Motivated by the work done in [32], Chang et al. [69] propose a Neural Physics En-

gine to learn the simulator dynamics and generalize across different object count and scene

configurations. In view of understanding complex rigid deformable bodies, Mrowca et al.

[70] present a graph convolutional neural network (hierarchical) to learn the physics pre-

dictions, based on a cognitive-science inspired hierarchical graph-based representation of

objects. Extending the approach of INs, Sanchez-Gonzalez et al. in [71] introduce a Graph

Network model, go on to generalize it in [4] by proposing “Graph Network-based Simula-

tors”(GNS) to learn the complex dynamics from simulated data acquired across a wide range

of physical systems (rigid solids, deformable bodies, fluid dynamics). With an introduction

of “Encoder-Processor-Decoder” architecture in their work, particle-based simulations are

carried out wherein, each particle represents a graph node and simulations are viewed as

message-passing on graphs.

Ch 2: Physics, PDEs and Deep Learning 20

2.4.2.1 Mesh-based Deep learning

Besides the aforementioned learnable physics simulator approaches, there has been sig-

nificant research in the literature in context with physics-based simulations focusing on

geometric aspects of input data such as meshes. These frameworks are often termed “mesh-

based” processing/learning techniques. This indeed, refers to approaches categorized under

the umbrella term “Geometric Deep Learning”, coined by Bronstein et al. [28, 29]. A brief

introduction to GDL was previously presented in Section 2.3.1.1. Following the line of work

discussed in [4], Pfaff et al. [5] introduce a GNN-based framework to learn mesh-based simu-

lations for time-dependent problems called “MeshGraphNets”. Their framework is designed

to learn resolution-independent dynamics from meshed data (triangular), yielding high ac-

curacies (with 11x-290x simulation speedup) in physical systems such as fabrics (cloth),

fluid dynamics and structural mechanics. Scaling the MeshGraphNets to a 3.1 million-node

mesh to capture computational fluid dynamics simulations, Bartoldson et al. [72] demon-

strate the possibilities to train such GNN-mesh-based physics models on three-dimensional

meshes. Alet et al. [73] implement a Graph Element Network (GEN) to learn the solution to

a PDE, given its initial states (based on FEM numerical simulations). They demonstrate the

optimization of a FEM mesh using GEN, with key focus on the non-linear section of the so-

lution space. A survey on deep-learning techniques for mesh-based data can be found in [74].

A novel neural network architecture – “Simplicial Attention Networks” (SAT) was intro-

duced in [75] that dynamically weighs interactions among neighbouring simplices leveraged

by attention-mechanisms, and generalize to unseen simplicial networks. From a scalabil-

ity perspective, several works investigate multi-level GNNs for physics-simulations [76, 77],

wherein such multi-scale graph neural models process and learn on meshes with varied gran-

ularity levels such as fine and coarse. A detailed survey of deep learning algorithms proposed

as PDE solvers is discussed in [78, 79, 80].

Ch 2: Physics, PDEs and Deep Learning 21

2.4.2.2 Neural Operators & Physics-Informed Learning

Neural Operators, a novel class of neural networks introduced by Li et al. [6, 7], learns

the PDE’s solution operator through an input-output mapping among infinite-dimensional

spaces in both semi-supervised and supervised settings. This way, the proposed data-driven

approach predicts the solution with no prior knowledge about the PDE being solved. Brand-

stetter et al. [81] extend the work presented in [6] by introducing an end-to-end neural

message passing PDE solver. They generalize across various PDEs and implement methods

to express classical numerical PDE solvers as versions of autoregressive GNN models.

Recent trends in deep learning speak of Physics-Informed Neural Networks (PINNs),

proposed as an efficient solution to address the limitation of low, benchmarked training data

availabilty and yield state-of-the-art accuracies for several physical phenomena. This novel

class of neural networks introduced by Raissi et al. [82, 83, 84], learn the partial differential

equation solution and underlying non-linear dynamics, with prior embedded knowledge of

governing physical laws (spatio-temporal PDE data). Their two-part treatise of data-driven

solutions and data-driven discovery have paved the way ahead to solve PDEs for varied com-

plex physical systems. As a predecessor to PINNs, Aarts et al. [85] employ a feedforward

neural network incorporated with prior information about PDEs (a geohydrological and a

physical process) and its initial-boundary conditions. Several such physics-embedded data

driven approaches have been summarized by Pateras et al. in [8].

Reflecting on the deep learning approaches discussed above, an alternate categorization of

these techniques would be on the basis of input data structure – regular (structured) meshes,

irregular (unstructured) or mesh-less (mesh-free). Mesh-free methods often include particles

and point cloud (set of 3D points) data representations, thus eliminating a computationally

exhaustive processing of meshes for learning purposes. Relevant works include the Graph

Network Simulator proposed in [4], Lagrangian fluid simulations [86], non-linear BVPs [87],

3D solid mechanics [88], diffusion maps based PDE solver [89].

Ch 2: Physics, PDEs and Deep Learning 22

2.4.3 ML/DL for Electromagnetics - A Brief Review

Besides extensive deep learning research done in the fields of computer vision, recom-

mender systems, a key branch of physics — “Electromagnetics” (EM) has gained popularity

among a wide community of researchers in the recent years. Preliminary machine learning

and deep learning models exist in the literature studying smart metamaterials [90], antenna

systems [91] and several other aspects of EM surveyed in [92, 93]. A comprehensive state-

of-the-art research in electromagnetics (simulation, optics, radio frequency device modelling,

inverse problems) have been reviewed and presented by Campbell et al. in [94].

Regardless of the system complexity, solving the Poisson’s equation (which can be ob-

tained from the powerful set of Maxwell’s equations), form an integral part of electromagnetic

analysis. Conventionally, solutions to these PDEs are approximated using classical numerical

solvers such as the Finite Element Method. In recent years, successful attempts in adopting

deep learning methodologies for such boundary value problems have been demonstrated us-

ing a finite-element neural network [95], a CNN-based architecture [96, 97], a spectral graph

convolutional layer in a GNN model [10, 3] and an attention-based Operator Transformer

[98].

Early ideas to use physics-informed neural networks as a potential EM solver via transfer

learning is presented by Khan et al. [99]. They investigate the behaviour of PINNs (with and

without labelled training data) and achieve accurate steady-state solutions for well-posed

electrostatics and magnetostatics problems. Physics-embedded approaches for other EM

problems such as magnetic/magnetostatic field estimation are reviewed in [100],[101],[102].

Further, key efforts to solve inverse problems arising in electromagnetics include the hyper-

network proposed by Lowther et al. [103] for an optimal coil design, a 3D meshless DNN

and a contrastive learning-based subspace optimization and semantic segmentation-assisted

reconstruction (CLSO-SSR) model for EM inverse scattering in [104] and [105] respectively.

Ch 2: Physics, PDEs and Deep Learning 23

Such ground-breaking scientific research has certainly brought to our attention various

ways to generate highly accurate and reliable outcomes. However, it is equally important for

these data-driven approaches to be considered not a replacement to the classical numerical

methods (FDM, FEM), but only an alternative set of methodologies to approximate solutions

to PDEs.

Ch 3: Poisson BVP solution with GNN 24

Chapter 3

Solving Poisson’s Equation using

Graph Neural Networks

3.1 Introduction

Previously, we were introduced to various deep learning methodologies adopted to solve

a partial differential equation arising in scientific and engineering problems. Specifically,

Graph Neural Networks seem to be the parent model heading a broad class of message-

passing frameworks, serving as an alternative to conventional numerical PDE approximation

methods.

This chapter focuses on one such GNN model implemented to learn on meshes and solve

the Poisson’s equation for electrostatics and magnetostatics problems. A comprehensive

description of the GNN model, its GPU implementation and results, supported by the vari-

ational formulation of Poisson’s equation boundary value problem (2D) are presented in the

following sections. Experiments presented in the following sections are based on the material

proposed by Lötzsch et al. in [3, 106].

Ch 3: Poisson BVP solution with GNN 25

3.2 The Poisson’s Equation BVP

The steady-state time-independent Poisson’s equation with a homogenous Dirichlet bound-

ary condition in the spatial domain Ω ∈ R2 is given by:

−∇2u(g) = f ∀ g ∈ Ω (3.1a)

u(g) = 0 ∀ g ∈ ∂Ω (3.1b)

where g denotes the two-dimensional spatial coordinate vector i.e. g = (x, y) : gi ∈ R in an

open planar domain Ω bounded by ∂Ω. Further, ∇2u(g) = ∂2u
∂2x

+ ∂2u
∂2y

, where the trial function

u(g) = u(x, y) denotes the solution to the aforementioned BVP (Equation 3.1a and 3.1b).

Classical solution to the strong formulation of the Poisson BVP described above will be u, a

twice differentiable function in the continuous solution space C2(Ω) satisying the Dirichlet

boundary condition at all points g ∈ ∂Ω. However, there may be practical scenarios limiting

the differentiability of u (discontinuous or non-existent derivatives). Thus, we opt for a “weak

formulation” of the boundary value problem defined over an appropriate solution space, as

discussed in section 3.2.1.

3.2.1 Variational Formulation

As a first step in transforming a strong form BVP into a “weak” or “variational” problem,

we multiply the second-order PDE by a test function v and integrate over Ω [107]:

−
∫

Ω

(∇2u)v dg =

∫
Ω

fv dg (3.2)

Equation 3.2 can be expanded as : −
∫

Ω
(∇2u)v dxdy =

∫
Ω
fv dxdy, where dg = dxdy

represents a differentiable element integrable over Ω. Integrating equation 3.2 by parts, its

Ch 3: Poisson BVP solution with GNN 26

left-hand side can be rewritten as:

∫
Ω

∇u · ∇v dg =

∫
∂Ω

v
∂u

∂n
ds−

∫
Ω

(∇2u)v dg (3.3)∫
Ω

∇u · ∇v dg =

∫
Ω

fv dg (3.4)

where ds is a differentiable element integrable on ∂Ω and ∂u
∂n

denotes the normal derivative

(outwardly orthogonal to ∂Ω). Further, Equation 3.3 refers to the “Green’s identity” or

“Green’s formula”. Requiring the test function to vanish on parts of ∂Ω where u is known,

i.e., v = 0 on ∂Ω, Equation 3.3 reduces to a dot product of gradients (∇u,∇v) integrated

over Ω as shown in Equation 3.4 [108]. Given the homogenous Dirichlet boundary condition,

a suitable trial and test function space for Eq. 3.4 is a Hilbertian Sobolev space H1
0 (Ω). This

space consists of (continuous) functions and their weak first order derivatives that vanish on

the boundary and are square-integrable [109]. Mathematically,
∫

Ω
v2dΩ <∞,

∫
Ω
|∇v2|dΩ <

∞ and v|∂Ω = 0. Consider the source function f ∈ L2(Ω), where L2(Ω) denotes the

Lebesgue space containing a set of square-integrable functions (continuous, unbounded and

discontinuous). For convenience, let the trial and test function spaces be denoted by V and

V̂ respectively1. Subsequently, we define our variational problem as to find a solution u ∈ V

such that:

∫
Ω

∇u · ∇v dg =

∫
Ω

fv dg ∀v ∈ V̂ (3.5a)

a(u, v) = b(v) ∀v ∈ V̂ (3.5b)

where u, v ∈ H1
0 (Ω) implicitly satisfy the homogenous Dirchlet boundary condition. How-

ever, for a non-homogenous Dirichlet boundary problem, the trial function space changes to

an affine space [109]. Note that the weak formulation in Equation 3.5a is still a continuous

1 Trial space V ⊂ H1
0 (Ω), Test space V̂ ⊂ H1

0 (Ω).

Ch 3: Poisson BVP solution with GNN 27

problem with solution u in an infinite-dimensional trial space V . Equation 3.5b represents

the abstract variational formulation2 of the boundary value problem.

Revisiting the first step of FEM - discretization of the spatial domain, triangulation

of Ω would result in K triangular (non-overlapping) finite elements whose solution u is

approximated in a finite-dimensional subspace Vh ⊂ V (trial) and V̂h ⊂ V̂ (test). This leads

to a discrete version of the variational problem stated to find uh ∈ Vh such that:

∫
Ω

∇uh · ∇vh dg =

∫
Ω

fvh dg ∀vh ∈ V̂h (3.6a)

a(uh, vh) = b(vh) ∀vh ∈ V̂h (3.6b)

Each triangular element Ke, e ∈ 1 : |K| has a diameter hKe = max
x,y∈Ke

|x − y|, pointing

to the longest side of element Ke. Thus, the subscript ‘h’ refers to the largest diameter in

this set, i.e., h = max
e
hKe . Intuitively, each node Nj in Ke can be associated with a basis

function3 φi spanning the subspace Vh (equivalent to a Kronecker delta function δij) as:

φi(x, y) = φi(Nj) =

1, i = j

0, i 6= j

(3.7)

Let ui and vj denote the values of uh and vh at node Nj respectively. Then, uh and vh

can be expressed as a (weighted) linear combination of basis function(s) defined above in

Equation 3.7:

uh =
3∑
i=1

uiφi(x, y) ; vh =
3∑
j=1

vjφj(x, y) (3.8)

where i, j = 1, 2, 3 represent the three nodes/vertices of a triangle. Implictly, the domain of

2 In Equation 3.5b, a(·, ·) is a continuous bilinear functional on V × V → R and l(·) is a continuous linear
functional on V → R.

3 Here, φi(x, y) is a first-order Lagrangian interpolation function : ax+ by + c.

Ch 3: Poisson BVP solution with GNN 28

integration changes from Ω to area over Ke. Combining Equations 3.6a, 3.6b and 3.8 results

in an elemental equation corresponding to element Ke:

∫
Ke

[
∇
(3∑

i=1

uiφi(x, y)

)
· ∇
(3∑

j=1

viφj(x, y)

)]
dxdy =

∫
Ke

f

3∑
j=1

vjφj(x, y) dxdy (3.9)

which holds good for all vh ∈ V̂h and can be chosen arbitrarily such that:

3∑
i=1

ui

∫
Ke

∇φi∇φj dxdy︸ ︷︷ ︸
AKe

i,j

=

∫
Ke

fφj dxdy︸ ︷︷ ︸
bKe
j

(3.10)

Here, AKe
i,j and bKe

j denote the entries of the local stiffness matrix and load vector cor-

responding to finite element Ke. Augmenting these entries for all triangular elements in Ω

yields the global stiffness matrix A and load vector b expressed as a linear system equation:

Au = b ; u = (ui)
T , i = 1, 2, ..n. (3.11)

Discussing the mathematics behind the aforementioned solution spaces is beyond the

scope of this thesis. Thus, the reader is referred to [107, 109, 110] for supplementary infor-

mation.

3.3 Application : Electrostatics and Magnetostatics

Electrostatics deals with static electric fields and stationary charges, whereas magneto-

statics explores constant magnetic fields with steady currents. In this context, the Maxwell’s

equations in the absence of time-varying electric and magnetic fields can be restated as [13]:

Ch 3: Poisson BVP solution with GNN 29

(Refer to Table 2.1 for units of the electric and magnetic parameters discussed in this section.)

∇ ·D = ρv (3.12)

∇× E = 0 (3.13)

∇ ·B = 0 (3.14)

∇×H = J (3.15)

In other words, ∂B
∂t

(µ∂H
∂t

) in Equation 2.7 and ∂D
∂t

(ε∂E
∂t

) in Equation 2.8 equals zero4. Using

D = εE in Equation 3.12 results in ∇·E = ρv/ε. Further, the electric field E is expressed as

the negative gradient of electrostatic potential φ. Combining these mathematical expressions

results in the Poisson’s equation for Electrostatics:

E = −∇φ ; −∇2φ =
ρv
ε

(3.16)

Analogous to electrostatics, the magnetic vector potential A associated with the magnetic

field H = B/µ is given by B = ∇×A =⇒ µH = ∇×A. Substituting this expression

in Equation 3.15 yields the Poisson’s equation for magnetostatics5:

∇× (∇×A) = µJ (3.17)

∇× (∇×A) = ∇(∇ ·A) − ∇2A (3.18)

∇2A = −µJ (∵ ∇ ·A = 0) (3.19)

For experimental purposes, we consider Jx = Jy = 0 and currents directed only along the

z -axis (perpendicular to the 2D mesh). This implies the existence of Az component alone,

resulting in a magnetic scalar potential. Further, computing the curl of A will simplify into

4 Propagation medium/material properties – Permittivity ε, Permeability µ.
5 ∇ ·A = 0 in Equation 3.19 refers to the Coulomb gauge [111].

Ch 3: Poisson BVP solution with GNN 30

curl of Az, yielding magnetic field components along the x (Hx) and y (Hy) axes:

H =
1

µ

(
∇×

[
0, 0, Az

])
=⇒ (Hx, Hy) =

1

µ

(
∂Az
∂y

,−∂Az
∂x

)
(3.20)

In fact, Hz = 0 can be justified with the reason of symmetry, as this problem can be

visualized as a set of infinitely long wires whose cross-section is independent of the z-axis

(z-coordinate) [3]. Besides such static (linear) problems, one can also address and analyze

the non-linearity arising in media such as ferromagnetic materials, whose properties are

principally quantified by µ, σ and ε (future work).

3.4 GNN Framework

3.4.1 Encoder-Processor-Decoder model

As previously discussed, structured grids are majorly defined in the Euclidean domain.

However, the experiments in this thesis deal with non-square geometries such as a hollow

disk, L-shaped and U-shaped meshes. From the literature, it is evident that CNNs are

incapable of handling such irregular structures. Inherently, as we are progressing towards

irregular geometric surfaces with triangular tessellations (meshes), we require a much more

complex deep learning architecture such as GNNs. In the context of Geometric Deep Learn-

ing, proponents in [28, 29] classify these structured, undirected graphs under a combination

of graphs and manifolds (2D).

For simulations, we adopt the GNN model in [3], employing an Encoder-Processor-

Decoder architecture for learning mesh-based simulations, originally proposed by Pfaff et

al. in [5].

• Encoder: The encoder consists of a multilayer perceptron (MLP), resembling a fully-

connected ANN depicted in Figure 2.2. The encoder MLP has two linear layers inter-

Ch 3: Poisson BVP solution with GNN 31

Figure 3.1: A block diagram depicting the Encoder-Processor-Decoder framework.

leaved with non-linear activation functions - Rectified Linear Unit6 (ReLU) [112] and

128 hidden layers.

• Processor: The processor block encompasses a spectral graph convolutional layer

proposed by Defferrard et al. [38], more often cited as a predecessor to the Graph

Convolution Network (GCN) introduced in [39]. They generalize CNNs onto the graph

domain by leveraging spectral graph theory and relevant graph signal processing tools

[41] to design graph convolutional filters (fast localized). Similar to the convolutional

kernel/filter defined on a CNN, the spectral graph convolution kernel is given by [38]:

gθ(Λ) =
K−1∑
k=0

θkTk(Λ̃) (3.21)

where θ ∈ RK represents the Chebyshev polynomial coefficients vector and Λ de-

notes the diagonal matrix of 7 eigenvalues. Tk(Λ̃) ∈ Rn×n is the kth order Cheby-

shev polynomial, expressed as function of the diagonal matrix of scaled eigenvalues{
Λ̃ = 2Λ/λmax − In ∈ [−1, 1]

}
. Further, K represents the maximum number of hops

in the neighbourhood for convolution on graphs, indexed by variable k. Note that,

the term “spectral” associates itself with the eigenvalues used to define the kernel

(Equation 3.21).

• Decoder: Analogous to the encoder, the decoder is designed as a two-layer MLP with

6 ReLU activation: f(x) = max{0, x}.
7 Here, the Laplacian defined on a graph with n nodes, degree matrix D and weighted adjacency matrix W

is L = D −W [38].

Ch 3: Poisson BVP solution with GNN 32

128 hidden layers. The ReLU non-linearity is applied to all its hidden layers except

the decoder’s output layer.

3.5 Experiments

3.5.1 Datasets

For electrostatics and magnetostatics problems discussed in Section 3.3, we use the

dataset provided in [106]8. The dataset consists of 5 different meshes with square, disk,

hollow disk, inverted L-shaped and U-shaped geometries, created using an open-source FEM

solver - FEniCS (FEniCSx) library [113, 114, 115, 116]. Each mesh and its configuration

data (such as resolution, boundary conditions) is appended with the associated PDE solution

(potential and field values obtained using the FEM solver), and saved as a single instance in

the generated dataset.

3.5.1.1 Mesh Geometries

Following are the five different mesh geometries encompassing the entire dataset with nor-

malized coordinates in the range [0,1] (no units expressed). The outer layer of all the 5

meshes and the inner circle in the hollow disk geometry, represent the boundary nodes.

1. U-mesh: Figure 3.2 depicts a regular U-mesh obtained by deleting a U-shaped portion

from a unit square. This 68-node mesh is an example of an instance in the test dataset

(Table 3.1), and is untouched for mesh augmentation. (Note: Meshes shown in Figures

3.2 - 3.7 have been adapted with permission from the first author of [3], © Winfried

Ripken (Winfried Lötzsch), Merantix Momentum AI).

8 A copy of an email from the author of [3], granting copyrights permission for content re-use can be found
in the “Copyright” chapter, towards the end of this document.

Ch 3: Poisson BVP solution with GNN 33

Figure 3.2: U-mesh with 68 vertices. Image adapted from [3].

2. L-mesh: Trimming the area of an unit square mesh by 25% (from any corner) yields

a L-mesh with 80 vertices as shown in Figure 3.3. Augmenting the L-mesh involves

varying the location, its breadth and height of the interior rectangular portion in the

range [0.2, 0.8].

Figure 3.3: A simple triangulated L-mesh (left) and its augmented version
(right). Image adapted from [3].

3. Square: A 16×16 unit square mesh yields 256 nodes. Its augmented versions (altering

the mesh resolution) includes regular grids with nodes in the range 64 - 441. An

augmented mesh with the 16×16 mesh is shown in Figure 3.4.

4. Disk: A circular mesh, also a disk with 252 nodes is shown in Figure 3.5. Similar

to the square mesh, inducing variability in this structure involves varying the node

density ‘n’ (number of nodes spanning the geometry) in the range [63, 411].

5. Hollow Disk: The 82-node hollow disk mesh visualized in Figure 3.6, is constructed

using a disk (similar to Figure 3.5) with a 0.5-unit radius, centered at (0.5, 0.5). A

Ch 3: Poisson BVP solution with GNN 34

Figure 3.4: A mesh with square geometry (left); Augmented square mesh
(right). Image adapted from [3].

Figure 3.5: Circular (Disk) mesh (left); Augmented disk mesh with varied node
density ‘n’ (right). Image adapted from [3].

hollow circular portion with 0.24-unit diameter, centered at (0.5, 0.5) is cut out from

the disk to generate a hollow disk mesh. The spatial coordinates (x, y) and the hole

diameter (hole dia) of the hollow circular cutout are varied in the range [0.35, 0.65]

and [0.1, 0.5] respectively.

Figure 3.6: Hollow Disk mesh (left); Augmented disk mesh with varying cutout
locations (right). Image adapted from [3].

Ch 3: Poisson BVP solution with GNN 35

In the context of electrostatics problems, the charge distribution ranges from 1-3 cir-

cular, randomly distributed positive charges9 (with constant permittivity ε), generated for

each instance in the dataset. In the case of magnetosatics, the dataset consists of meshes

with current distribution, ranging from 1-3 randomly distributed electric currents10 (with

constant permeability µ). Both these datasets were generated with (Group 1) and without

mesh augmentation(s) (Group 2). “Mesh augmentation” (mesh aug) essentially refers to the

technique of introducing geometrical variations in the meshes for training purposes. The

dataset also contains meshes with higher charge (current) inhomogeneities such as 4 or 5

electric charges/electric currents for electrostatics(magnetostatics) problems without mesh

augmentation (Group 3).

Alongside learning the PDE solution(s) on 2D meshes, we aim to evaluate the capabilities

of the GNN model through the following tasks [3]:

• Task 1 —To train and test across diverse mesh shapes and predict the physical quan-

tities on unobserved geometries during the training phase such as a U-shaped mesh

(task 1);

• Task 2 —To learn and approximate PDE solution(s) for varied levels of inhomogeneities

such as higher current/charge distributions introduced in the meshes (task 2).

In order to perform these tasks effectively, the generated dataset is divided into three sub-

sets namely - training, validation and test datasets. There exists 2500 samples corresponding

to each mesh implying, 2500∗5 = 12500 samples per group described above. Thus, the total

number of dataset instances across all the three groups sums up to 12500∗3 = 37500. Details

pertinent to this dataset partitioning is summarized in Table 3.1.

9 Stationary electric charges.
10 Steady electric currents.

Ch 3: Poisson BVP solution with GNN 36

Table 3.1: Training, Validation and Test datasets.

Dataset Type Characteristics Mesh Geometries

Training

80% samples from Group 1: 8000
samples (mesh aug);

80% samples from Group 2: 8000
samples (without mesh aug)

Disk, Hollow disk, Square and L-
mesh.

Validation

20% samples from Group 1: 2000
samples (mesh aug);

20% samples from Group 2: 2000
samples (without mesh aug)

Disk, Hollow disk, Square and L-
mesh.

Test

task 1: 20% samples (=2500)
from Group 2 (only 1 shape);

task 2: 25% samples (=2500)
from Group 3 (excluding U-mesh)

task 1: U-mesh;

task 2: Disk, Hollow disk, Square
and L-mesh.

3.5.2 Training & Testing GNN models

Based on the structural analogy between a mesh and the graph, we can easily recast a

triangulated mesh onto a graph comprising a finite set of nodes and edges. As a data pre-

processing step, the Delaunay triangulated mesh (generated using FEniCS) is characterized

by a set of input and output mesh features x. Further, x is made up of node attributes

n and edge attributes E , whose parameters vary in accordance with the PDE domain cho-

sen. For electrostatics problems, the node attributes consist of a boundary condition value

bci ∈ 0, 1 denoting the position of node ni (either inside the mesh or at the boundary),

distance from ni to the nearest boundary node (dx, dy), and a charge inhomogeneity (es-

sentially, the charge density ρv). On the other hand, Eij denotes the relative distance(s)

between nodes i, j, constituting the edge attributes. The associated output features (ob-

tained through a FEM solver) refers to the electric potential (U) and the time-independent

electric field E = (Ex, Ey). Similarly, magnetostatics problems require as node attributes:

Ch 3: Poisson BVP solution with GNN 37

Eij, bci, current inhomogeneity (current density J, essentially Jz) and distances (dx, dy). Its

output feature set includes the magnetic potential Az and the magnetic field H = (Hx, Hy).

For convenience, the training data is normalized to values in the range [−1, 1], yielding

unitless quantities.

(a)

(b)

Figure 3.7: An overview of the (a) GNN model (Section 3.4) training and (b) testing
process. Mesh images adapted from [3].

These input and output attributes are fed to the GNN model (described in Section 3.4.1)

as (training/validation/test) inputs. Following the 128-hidden layered encoder MLP, the

processor layer with 128-dimensional hidden attributes is configured with K = 5 graph

Ch 3: Poisson BVP solution with GNN 38

convolutional hops. The model employs 3 graph convolutions consecutively, interleaved

with a nonlinear ReLU activation after every step. Its parametric outputs are passed onto a

decoder MLP, after which we obtain the prediction model. The entire GNN model, developed

using PyTorch based frameworks - PyTorch Lightning [117] and PyG (PyTorch Geometric)

[118], learns nearly 0.28 million parameters with stepsize α = 0.001 and exponential decay

rates of the rolling average (moment estimates) β1 = 0.9, β2 = 0.999. The learning rate

α and the betas are hyperparameters offered by the Adaptive Moment Estimates (Adam)

optimization algorithm [119], used here to optimize the network parameters. Each PDE task

(Table 3.4 was trained for 150 epochs11 with batch size=32, followed by a validation after

every epoch. Following the training phase, the prediction model with the lowest validation

loss was chosen for testing purposes.

3.5.2.1 GPU Training

In view of accelerating the deep learning processes, the GNN models were trained for

both electrostatics and magnetostatics problems on a heterogenous supercomputer cluster12,

using a 4× NVIDIA P100 Pascal with a 16GB high bandwidth random-access memory. A

virtual environment was manually setup with relevant Python-based library installations for

parallelization on GPU [120].

Training, Testing and Logging: Each task was submitted as a “SLURM job” (using

a job script) on the GPU cluster. The job script enlisted parameters such as the GPU-CPU

configuration, memory requirements and was submitted using the sbatch command. Fur-

ther, Weights & Biases (WandB) [121] , an AI cloud platform was used to log both training

and test runs (offline/online mode), track experiments and analyze their results. Each train-

ing task generated multiple versions of prediction models (WandB artifact) with a unique

11 Epoch refers to the number of times the model iterates through the entire dataset.
12 Digital Research Alliance of Canada: Cedar cluster.

Ch 3: Poisson BVP solution with GNN 39

identifier. Each artifact marked as “best k” (lowest validation loss) on the WandB cloud

server had to be manually passed as an argument to the srun test command in the SLURM

job script (for testing purposes).

Reproducibility: For better representation and enhanced reproducibility of the results,

each experiment was conducted and averaged over 5 random seeds. Performance compar-

ison of mesh augmentation with other regularization techniques for each PDE task yields

5 ∗ 4 = 20 model versions per seed, and 100 versions in total for 5 random seeds (Table

3.4). Thus, each seed with 20 models were submitted as a “job array”. Bash scripts were

developed to automate such manual preprocessing steps, additionally involving WandB arti-

fact(s) download (from the cloud server) corresponding to each of the 20 models, preparing

a text file with task names (input for job arrays) and WandB logging (training and test

runs) through a bash command line interface in a Visual Studio Integrated Development

Environment (IDE).

3.5.3 Results and Discussion

Results presented in this work are unitless and use the mean squared error metric over

all the predicted potential and field quantities (with respect to the ground truth), across all

learning tasks. As indicated by the results reported in Table 3.2 and 3.3, mesh augmen-

tation, in comparison to the baseline model (without augmented data), relatively enhances

the prediction quality over unseen data (U-mesh for task 1), and higher current/charge in-

homogeneities (task 2). Specifically, we observe a substantial improvement upto a factor of

10 (order of magnitude) for potentials (φ,Az).

Further, this analysis is extended with a comparison over conventional regularization

(dropout) approaches. Referring to Table 3.4, it enlists a comprehensive set of results gen-

erated by training and testing the same GNN framework (discussed in Section 3.4) for all

PDE tasks, with/without mesh augmentation (mesh aug/mesh no aug), dropout of nodes

Ch 3: Poisson BVP solution with GNN 40

Table 3.2: Test results for Electrostatics problems with/without mesh
augmentation (Mesh Aug); (Values averaged over 5 random seeds).

PDE task Mesh Aug MSEelec potential MSEelec field

task 1 Yes 1.4707E-05 2.2011E-03

task 1 No 1.3317E-04 2.5311E-03

task 2 Yes 1.6095E-04 4.3788E-04

task 2 No 2.7048E-04 7.8656E-04

Table 3.3: Test results for Magnetostatics problems with/without mesh
augmentation (Mesh Aug); (Values averaged over 5 random seeds).

PDE task Mesh Aug MSEmag potential MSEmag field

task 1 Yes 1.3629E-05 1.772E-03

task 1 No 1.2402E-04 2.4251E-03

task 2 Yes 1.7529E-04 4.6735E-04

task 2 No 2.3381E-04 6.0364E-04

(p = 0.1), edges (p = 0.2) and embeddings (node features, p = 0.2) respectively. Here, p

refers to the dropout probability. The “drop nodes” and “drop edges” approaches do aug-

ment the input graph topology by randomly dropping their nodes or edges, thereby learning

an effective input-output mapping and enhancing the model’s approximation quality on un-

seen samples. The “embedding dropout” method emerges with the highest mean squared

error over all PDE tasks. With the given dataset and the adapted GNN implementation,

mesh augmentation seem to considerably boost the model’s prediction quality with respect to

the potential and field values, in both electrostatics and magnetostatics problems. Besides

the enhanced solution learning ability through geometric transformations in the training

Ch 3: Poisson BVP solution with GNN 41

Table 3.4: Mesh Augmentation vs conventional regularization
techniques (test results averaged over 5 random seeds).

PDE task Regularizer MSEpotential MSEfield

mesh aug 1.4708E-05 2.2012E-03

Electrostatics mesh no aug 1.3317E-04 2.5311E-03

task 1 drop nodes 5.9198E-05 2.6705E-03

drop edges 1.0155E-04 3.1018E-03

embedding dropout 1.1272E-03 3.8800E-03

mesh aug 1.6095E-04 4.3788E-04

Electrostatics mesh no aug 2.7048E-04 7.8656E-04

task 2 drop nodes 1.2031E-03 9.5001E-04

drop edges 5.6847E-04 6.8198E-04

embedding dropout 1.5451E-03 1.5555E-03

mesh aug 1.3629E-05 1.7720E-03

Magnetostatics mesh no aug 1.2402E-04 2.4251E-03

task 1 drop nodes 6.1227E-05 2.0600E-03

drop edges 6.9059E-05 2.5726E-03

embedding dropout 1.4316E-03 3.6265E-03

mesh aug 1.7529E-04 4.6735E-04

Magnetostatics mesh no aug 2.3381E-04 6.0364E-04

task 2 drop nodes 9.1714E-04 6.6237E-04

drop edges 5.1015E-04 5.2734E-04

embedding dropout 1.7525E-03 1.2243E-03

data, the prediction behaviour can also be attributed to the underlying spectral graph con-

volutional processor layer (Section 3.4.1). Its graph pooling strategy with fast, K-localized,

polynomial-based convolutional kernels (filters) enable node-wise feature learning, with edge

weights passed on to consecutive layers. In addition, it is interesting to note that, the ag-

gregation behaviour demonstrated by these kernels, further enable the model to predict the

resulting potential and field, in the presence of multiple charges/currents on various geome-

Ch 3: Poisson BVP solution with GNN 42

tries. Results organized in Table 3.4 are comparable to the prediction error estimates (MSEs)

reported in Table 8 of [3]. Sample visualizations for both task 1 and task 2 are shown in

Figures 3.8 - 3.11, wherein the left column denotes the set of predicted values (magnitude of

potentials and field; arrows denote the orientation of the electric(magnetic field)), and the

right column denotes the ground truth.

(a)

(b)

Figure 3.8: Sample test predictions (vs ground truth) for Electrostatics task 1;(a)
Electric potential; (b) Electric field.

(a)

(b)

Figure 3.9: Sample test predictions (vs ground truth) for Electrostatics task 2;(a)
Electric potential; (b) Electric field.

Ch 3: Poisson BVP solution with GNN 43

(a)

(b)

Figure 3.10: Sample test predictions (vs ground truth) for Magnetostatics task 1;(a)
Magnetic potential; (b) Magnetic field.

(a)

(b)

Figure 3.11: Sample test predictions (vs ground truth) for Magnetostatics task 2;(a)
Magnetic potential; (b) Magnetic field.

3.5.3.1 Limitations and Recommendations

In comparison to the predictions obtained for task 2 (Table 3.4), we find the mean

squared errors on field values, majorly in the order of 10−4. The magnitude of MSE for

predicted electric and magnetic fields on U-shaped meshes (task 1) are in the order of 10−3.

The gap in the performance possibly arises due to random initialization of weights, method

of sampling instances for dataset split, the dependency of model performance on random

Ch 3: Poisson BVP solution with GNN 44

seeds for reproducibility. With regards to the model, the number of hops set to K = 5,

may have limited the node-wise feature learning in a relatively wider neighbourhood, which

implicitly refers to detecting new mesh structural boundaries and making predictions.

However, such errors affecting the model’s prediction performance can possibly be ac-

commodated for or minimized by considering the following approaches:

• Previously, it was observed that incorporating mesh augmentation introduces diversity

in the training data and brings along a certain level of regularization in the deep neu-

ral network model, thereby enhancing prediction quality (electric/magnetic potential

and field values) on newer samples. As an extension, one may use mesh augmentation

in conjunction with commonly used dropout techniques such as dropping of nodes or

edges with a dropout probability p, during the training phase. This will introduce an

additional effect of regularization in the neural network, and may prove beneficial as

the random dropping of graph entities (nodes/edges) minimizes their interdependency

across the network layers (co-adaptation), and aid in learning more useful features

[122]. Exploring this combination of training data diversity and efficient feature learn-

ing brought in by mesh augmentation and dropout techniques respectively, may yield

better predictions over unobserved samples (newer geometry or higher charge/current

distributions).

• In view of learning effective node-wise features in a wider graph neighbourhood, one

may adopt a self-attention based network (discussed in Section 2.3.2.3) for the proces-

sor layer, replacing the spectral graph convolutional processor layer in the GNN model.

Considering nodes in the same neighbourhood but not connected by an edge, may pro-

vide insights on key features in the input mesh, during the learning process. This can

be achieved using a Multi-hop Attention Graph Neural Network (MAGNA) proposed

in [123]. By assigning and propagating the attention scores through the deep neu-

ral network, it widens the receptive field (graph node neighbourhood), thus efficiently

Ch 3: Poisson BVP solution with GNN 45

accounting for all possible paths between a pair of nodes with no edges/connections.

Thus, for a pair of nodes that are many hops away from each other, such a wide recep-

tive field may enable better potential and field predictions on a given mesh geometry.

Ch 4: Conclusions 46

Chapter 4

Conclusions

4.1 Remarks & Key Findings

This thesis presented a comprehensive survey of GNN approaches proposed in the liter-

ature to solve PDEs for electromagnetics and other physics-based problems. A GNN model

with spectral graph convolution was implemented to predict the electric, magnetic potential

and field values closer to the ground truth, for time-independent Poisson’s equations in elec-

trostatics and magnetostatics. The model was trained and tested on datasets comprising 2D

meshes with multiple geometries and current/charge distributions. The prediction quality

of the GNN model with and without mesh augmentation were analyzed and compared with

conventional regularization methods.

The results show that mesh augmentation incorporated in the training phase, improves

GNN predictions over previously unseen samples, in comparison to the model trained with

other regularizers and unaugmented meshes. It is observed that the mean squared errors

in the case of predicted potentials are comparatively lower than that of fields, for U-shaped

meshes. This performance gap can be addressed with adopting a combination of regularizers

such as mesh augmentation with dropout of node/edges during the training phase, or a

self-attention based network processor layer in the GNN model.

Ch 4: Conclusions 47

4.2 Future work

Directions for future work include:

• Training a different GNN model, such as a Graph Nets based architecture – Mesh-

GraphNets [5] using the datasets described in Section 3.5.1;

• Implementing the GNN model discussed in Section 3.4 to estimate solutions for Pois-

son’s equations defined under different boundary conditions (Neumann, mixed);

• Incorporating adaptive mesh refinement in the existing GNN implementation;

• Using physics-informed neural networks to estimate electric, magnetic fields and po-

tentials for static PDEs.

Bibliography 48

Bibliography

[1] Wing Liu, Shaofan Li, and Harold Park. “Correction to: Eighty Years of the Finite El-

ement Method: Birth, Evolution, and Future”. In: Archives of Computational Methods

in Engineering 30 (June 2022), pp. 1–1. doi: 10.1007/s11831-022-09784-x.

[2] William L. Hamilton. “Graph Representation Learning”. In: Synthesis Lectures on

Artificial Intelligence and Machine Learning 14.3 (), pp. 1–159.

[3] Winfried Lötzsch, Simon Ohler, and Johannes S. Otterbach. Learning the Solution

Operator of Boundary Value Problems using Graph Neural Networks. 2023. arXiv:

2206.14092 [cs.LG].

[4] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec,

and Peter Battaglia. “Learning to Simulate Complex Physics with Graph Networks”.

In: Proceedings of the 37th International Conference on Machine Learning. Ed. by

Hal Daumé III and Aarti Singh. Vol. 119. Proceedings of Machine Learning Research.

PMLR, 2020, pp. 8459–8468.

[5] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W. Battaglia.

Learning Mesh-Based Simulation with Graph Networks. 2021. arXiv: 2010.03409

[cs.LG].

[6] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhat-

tacharya, Andrew Stuart, and Anima Anandkumar. “Neural operator: Graph ker-

Bibliography 49

nel network for partial differential equations”. In: arXiv preprint arXiv:2003.03485

(2020).

[7] Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhat-

tacharya, Andrew Stuart, and Anima Anandkumar. “Neural operator: Learning maps

between function spaces”. In: arXiv preprint arXiv:2108.08481 (2021).

[8] Joseph Pateras, Pratip Rana, and Preetam Ghosh. “A Taxonomic Survey of Physics-

Informed Machine Learning”. In: Applied Sciences 13.12 (2023). issn: 2076-3417. doi:

10.3390/app13126892.

[9] Jan Kukačka, Vladimir Golkov, and Daniel Cremers. Regularization for Deep Learn-

ing: A Taxonomy. 2017. arXiv: 1710.10686 [cs.LG].

[10] Winfried Lötzsch, Simon Ohler, and Johannes S Otterbach. “Learning the solution

operator of boundary value problems using graph neural networks”. In: arXiv preprint

arXiv:2206.14092 (2022).

[11] R. Haberman. Applied Partial Differential Equations: With Fourier Series and Bound-

ary Value Problems. Featured Titles for Partial Differential Equations. Pearson, 2013.

isbn: 9780321797056.

[12] J.D. Hoffman and S. Frankel. Numerical Methods for Engineers and Scientists. CRC

Press, 2018. isbn: 9781482270600.

[13] J.A. Buck and W.H. Hayt. Engineering Electromagnetics. McGraw-Hill Education,

2011. isbn: 9780073380667.

[14] A. Hrennikoff. “Solution of Problems of Elasticity by the Framework Method”. In:

Journal of Applied Mechanics 8.4 (Dec. 1941), A169–A175. doi: 10.1115/1.4009129.

[15] Douglas McHenry. “A LATTICE ANALOGY FOR THE SOLUTION OF STRESS

PROBLEMS.” In: Journal of the Institution of Civil Engineers 21.2 (1943), pp. 59–

82.

Bibliography 50

[16] R Courant. “Variational methods for the solution of problems of equilibrium and

vibrations”. In: Bulletin of the American Mathematical Society 49.1 (1943), pp. 1–23.

[17] John H Argyris. “Energy Theorems and Structural Analysis: A Generalized Discourse

with Applications on Energy Principles of Structural Analysis Including the Effects of

Temperature and Non-Linear Stress-Strain Relations”. In: Aircraft Engineering and

Aerospace Technology 26.10 (1954), pp. 347–356.

[18] M Jon Turner, Ray W Clough, Harold C Martin, and LJ Topp. “Stiffness and de-

flection analysis of complex structures”. In: Journal of the Aeronautical Sciences 23.9

(1956), pp. 805–823.

[19] Olek C Zienkiewicz and Robert L Taylor. The Finite Element Method: Its Basis and

Fundamentals. Elsevier, 2005.

[20] Wikipedia contributors. Artificial intelligence — Wikipedia, The Free Encyclopedia.

https://en.wikipedia.org/w/index.php?title=Artificial_intelligence&

oldid=1181810241. 2023.

[21] T. Hastie, R. Tibshirani, and J.H. Friedman. The Elements of Statistical Learning:

Data Mining, Inference, and Prediction. Springer series in statistics. Springer, 2009.

isbn: 9780387848846.

[22] Diederik P. Kingma, Danilo J. Rezende, Shakir Mohamed, and Max Welling. Semi-

Supervised Learning with Deep Generative Models. 2014. arXiv: 1406.5298 [cs.LG].

[23] R.S. Sutton and A.G. Barto. Reinforcement Learning, second edition: An Introduc-

tion. Adaptive Computation and Machine Learning series. MIT Press, 2018. isbn:

9780262352703.

[24] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.

deeplearningbook.org. MIT Press, 2016.

Bibliography 51

[25] Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson, R. Howard, Wayne

Hubbard, and Lawrence Jackel. “Handwritten Digit Recognition with a Back-Propagation

Network”. In: Advances in Neural Information Processing Systems. Ed. by D. Touret-

zky. Vol. 2. Morgan-Kaufmann, 1989.

[26] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied

to document recognition”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

doi: 10.1109/5.726791.

[27] Ali Girayhan Özbay, Arash Hamzehloo, Sylvain Laizet, Panagiotis Tzirakis, Georgios

Rizos, and Björn Schuller. “Poisson CNN: Convolutional neural networks for the

solution of the Poisson equation on a Cartesian mesh”. In: Data-Centric Engineering

2 (2021), e6.

[28] Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric

Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges. 2021. arXiv: 2104.

13478 [cs.LG].

[29] Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-

dergheynst. “Geometric Deep Learning: Going beyond Euclidean data”. In: IEEE Sig-

nal Processing Magazine 34.4 (2017), pp. 18–42. doi: 10.1109/MSP.2017.2693418.

[30] Yann LeCun, Koray Kavukcuoglu, and Clement Farabet. “Convolutional networks

and applications in vision”. In: Proceedings of 2010 IEEE International Symposium

on Circuits and Systems. 2010, pp. 253–256. doi: 10.1109/ISCAS.2010.5537907.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual Learning

for Image Recognition”. In: 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 2016, pp. 770–778. doi: 10.1109/CVPR.2016.90.

[32] Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, and Koray

Kavukcuoglu. Interaction Networks for Learning about Objects, Relations and Physics.

2016. arXiv: 1612.00222 [cs.AI].

Bibliography 52

[33] Federico Monti, Michael M. Bronstein, and Xavier Bresson. Geometric Matrix Com-

pletion with Recurrent Multi-Graph Neural Networks. 2017. arXiv: 1704.06803 [cs.LG].

[34] M. Gori, G. Monfardini, and F. Scarselli. “A new model for learning in graph do-

mains”. In: Proceedings. 2005 IEEE International Joint Conference on Neural Net-

works, 2005. Vol. 2. 2005, 729–734 vol. 2. doi: 10.1109/IJCNN.2005.1555942.

[35] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele

Monfardini. “The Graph Neural Network Model”. In: IEEE Transactions on Neural

Networks 20.1 (2009), pp. 61–80. doi: 10.1109/TNN.2008.2005605.

[36] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.

Dahl. Neural Message Passing for Quantum Chemistry. 2017. arXiv: 1704.01212

[cs.LG].

[37] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vińıcius

Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro,

Ryan Faulkner, Çaglar Gülçehre, H. Francis Song, Andrew J. Ballard, Justin Gilmer,

George E. Dahl, Ashish Vaswani, Kelsey R. Allen, Charles Nash, Victoria Langston,

Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli, Matthew M. Botvinick,

Oriol Vinyals, Yujia Li, and Razvan Pascanu. “Relational inductive biases, deep learn-

ing, and graph networks”. In: arXiv preprint arXiv:1806.01261 (2018).

[38] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional Neural

Networks on Graphs with Fast Localized Spectral Filtering. 2017. arXiv: 1606.09375

[cs.LG].

[39] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Con-

volutional Networks. 2017. arXiv: 1609.02907 [cs.LG].

[40] Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr. au2, Christopher Fifty, Tao Yu,

and Kilian Q. Weinberger. Simplifying Graph Convolutional Networks. 2019. arXiv:

1902.07153 [cs.LG].

Bibliography 53

[41] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre Van-

dergheynst. “The emerging field of signal processing on graphs: Extending high-

dimensional data analysis to networks and other irregular domains”. In: IEEE signal

processing magazine 30.3 (2013), pp. 83–98.

[42] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,

Lifeng Wang, Changcheng Li, and Maosong Sun. “Graph neural networks: A review

of methods and applications”. In: AI open 1 (2020), pp. 57–81.

[43] Deyu Bo, Xiao Wang, Yang Liu, Yuan Fang, Yawen Li, and Chuan Shi. A Survey on

Spectral Graph Neural Networks. 2023. arXiv: 2302.05631 [cs.LG].

[44] Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit-Yan Yeung.

GaAN: Gated Attention Networks for Learning on Large and Spatiotemporal Graphs.

2018. arXiv: 1803.07294 [cs.LG].

[45] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò,

and Yoshua Bengio. Graph Attention Networks. 2018. arXiv: 1710.10903 [stat.ML].

[46] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Jan Svoboda,

and Michael M. Bronstein. Geometric deep learning on graphs and manifolds using

mixture model CNNs. 2016. arXiv: 1611.08402 [cs.CV].

[47] Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric

Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and Leman Go Neural: Higher-

order Graph Neural Networks. 2021. arXiv: 1810.02244 [cs.LG].

[48] Sergi Abadal, Akshay Jain, Robert Guirado, Jorge López-Alonso, and Eduard Alarcón.

Computing Graph Neural Networks: A Survey from Algorithms to Accelerators. 2021.

arXiv: 2010.00130 [cs.LG].

[49] Ryoma Sato. A Survey on The Expressive Power of Graph Neural Networks. 2020.

arXiv: 2003.04078 [cs.LG].

Bibliography 54

[50] Lilapati Waikhom and Ripon Patgiri. “A survey of graph neural networks in various

learning paradigms: methods, applications, and challenges”. In: Artificial Intelligence

Review 56.7 (2023), pp. 6295–6364.

[51] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip

S. Yu. “A Comprehensive Survey on Graph Neural Networks”. In: IEEE Transactions

on Neural Networks and Learning Systems 32.1 (2021), pp. 4–24. doi: 10.1109/

TNNLS.2020.2978386.

[52] Ziwei Zhang, Peng Cui, and Wenwu Zhu. “Deep Learning on Graphs: A Survey”. In:

IEEE Trans. on Knowl. and Data Eng. 34.1 (2022), 249–270. issn: 1041-4347. doi:

10.1109/TKDE.2020.2981333.

[53] Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. “Artificial neural networks

for solving ordinary and partial differential equations”. In: IEEE transactions on

neural networks 9.5 (1998), pp. 987–1000.

[54] M Chiaramonte, M Kiener, et al. “Solving differential equations using neural net-

works”. In: Machine Learning Project 1 (2013).

[55] Yuehaw Khoo, Jianfeng Lu, and Lexing Ying. “Solving parametric PDE problems

with artificial neural networks”. In: European Journal of Applied Mathematics 32.3

(2021), pp. 421–435.

[56] Zhiqiang Cai, Jingshuang Chen, Min Liu, and Xinyu Liu. “Deep least-squares meth-

ods: An unsupervised learning-based numerical method for solving elliptic PDEs”. In:

Journal of Computational Physics 420 (2020), p. 109707.

[57] Radek Grzeszczuk, Demetri Terzopoulos, and Geoffrey Hinton. “NeuroAnimator: Fast

Neural Network Emulation and Control of Physics-Based Models”. In: Proceedings

of the 25th Annual Conference on Computer Graphics and Interactive Techniques.

SIGGRAPH ’98. New York, NY, USA: Association for Computing Machinery, 1998,

9–20. isbn: 0897919998. doi: 10.1145/280814.280816.

Bibliography 55

[58] Lubor Ladicky, Sohyeon Jeong, Barbara Solenthaler, Marc Pollefeys, and Markus H.

Gross. “Data-driven fluid simulations using regression forests”. In: ACM Transactions

on Graphics (TOG) 34 (2015), pp. 1 –9.

[59] Roozbeh Mottaghi, Hessam Bagherinezhad, Mohammad Rastegari, and Ali Farhadi.

Newtonian Image Understanding: Unfolding the Dynamics of Objects in Static Im-

ages. 2015. arXiv: 1511.04048 [cs.CV].

[60] Jiajun Wu, Ilker Yildirim, Joseph J Lim, Bill Freeman, and Josh Tenenbaum. “Galileo:

Perceiving Physical Object Properties by Integrating a Physics Engine with Deep

Learning”. In: Advances in Neural Information Processing Systems. Ed. by C. Cortes,

N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett. Vol. 28. Curran Associates, Inc.,

2015.

[61] Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. PDE-Net: Learning PDEs

from Data. 2018. arXiv: 1710.09668 [math.NA].

[62] Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman, and Daniel

Cohen-Or. “MeshCNN”. In: ACM Transactions on Graphics 38.4 (2019), pp. 1–12.

doi: 10.1145/3306346.3322959.

[63] Riya Aggarwal and Hassan Ugail. “On the Solution of Poisson’s Equation using

Deep Learning”. In: 2019 13th International Conference on Software, Knowledge,

Information Management and Applications (SKIMA). 2019, pp. 1–8. doi: 10.1109/

SKIMA47702.2019.8982518.

[64] Lionel Cheng, Ekhi Ajuria Illarramendi, Guillaume Bogopolsky, Michael Bauerheim,

and Benedicte Cuenot. Using neural networks to solve the 2D Poisson equation for

electric field computation in plasma fluid simulations. 2021. arXiv: 2109.13076 [cs.LG].

[65] Zhongyang Zhang, Ling Zhang, Ze Sun, Nicholas Erickson, Ryan From, and Jun

Fan. Solving Poisson’s Equation using Deep Learning in Particle Simulation of PN

Junction. 2018. arXiv: 1810.10192 [physics.comp-ph].

Bibliography 56

[66] Han Gao, Luning Sun, and Jian-Xun Wang. “PhyGeoNet: Physics-informed geometry-

adaptive convolutional neural networks for solving parameterized steady-state PDEs

on irregular domain”. In: Journal of Computational Physics 428 (2021), p. 110079.

[67] Frank Rosenblatt and Cornell Aeronautical Lab Inc Buffalo NY. “PRINCIPLES OF

NEURODYNAMICS. PERCEPTRONS AND THE THEORY OF BRAIN MECHA-

NISMS”. In: (1961).

[68] Yedid Hoshen. “Vain: Attentional multi-agent predictive modeling”. In: Advances in

neural information processing systems 30 (2017).

[69] Michael B. Chang, Tomer Ullman, Antonio Torralba, and Joshua B. Tenenbaum. A

Compositional Object-Based Approach to Learning Physical Dynamics. 2017. arXiv:

1612.00341 [cs.AI].

[70] Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Li Fei-Fei, Joshua B.

Tenenbaum, and Daniel L. K. Yamins. Flexible Neural Representation for Physics

Prediction. 2018. arXiv: 1806.08047 [cs.AI].

[71] Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Mar-

tin Riedmiller, Raia Hadsell, and Peter Battaglia. Graph networks as learnable physics

engines for inference and control. 2018. arXiv: 1806.01242 [cs.LG].

[72] Brian R. Bartoldson, Yeping Hu, Amar Saini, Jose Cadena, Yucheng Fu, Jie Bao,

Zhijie Xu, Brenda Ng, and Phan Nguyen. Scientific Computing Algorithms to Learn

Enhanced Scalable Surrogates for Mesh Physics. 2023. arXiv: 2304.00338 [cs.LG].

[73] Ferran Alet, Adarsh Keshav Jeewajee, Maria Bauza Villalonga, Alberto Rodriguez,

Tomas Lozano-Perez, and Leslie Kaelbling. “Graph element networks: adaptive, struc-

tured computation and memory”. In: International Conference on Machine Learning.

PMLR. 2019, pp. 212–222.

[74] He Wang and Juyong Zhang. “A survey of deep learning-based mesh processing”. In:

Communications in Mathematics and Statistics 10.1 (2022), pp. 163–194.

Bibliography 57

[75] Christopher Wei Jin Goh, Cristian Bodnar, and Pietro Liò. Simplicial Attention Net-

works. 2022. arXiv: 2204.09455 [cs.LG].

[76] Meire Fortunato, Tobias Pfaff, Peter Wirnsberger, Alexander Pritzel, and Peter Battaglia.

MultiScale MeshGraphNets. 2022. arXiv: 2210.00612 [cs.LG].

[77] Wenzhuo Liu, Mouadh Yagoubi, and Marc Schoenauer. “Multi-resolution graph neu-

ral networks for pde approximation”. In: Artificial Neural Networks and Machine

Learning–ICANN 2021: 30th International Conference on Artificial Neural Networks,

Bratislava, Slovakia, September 14–17, 2021, Proceedings, Part III 30. Springer. 2021,

pp. 151–163.

[78] Christian Beck, Martin Hutzenthaler, Arnulf Jentzen, and Benno Kuckuck. “An

overview on deep learning-based approximation methods for partial differential equa-

tions”. In: arXiv preprint arXiv:2012.12348 (2020).

[79] Harender Kumar and Neha Yadav. “Deep learning algorithms for solving differential

equations: a survey”. In: Journal of Experimental & Theoretical Artificial Intelligence

(2023), pp. 1–40.

[80] Derick Nganyu Tanyu, Jianfeng Ning, Tom Freudenberg, Nick Heilenkötter, Andreas

Rademacher, Uwe Iben, and Peter Maass. “Deep learning methods for partial differ-

ential equations and related parameter identification problems”. In: Inverse Problems

39.10 (2023), p. 103001.

[81] Johannes Brandstetter, Daniel Worrall, and Max Welling. “Message passing neural

PDE solvers”. In: arXiv preprint arXiv:2202.03376 (2022).

[82] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics Informed Deep

Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations.

2017. arXiv: 1711.10561 [cs.AI].

Bibliography 58

[83] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics Informed Deep

Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equa-

tions. 2017. arXiv: 1711.10566 [cs.AI].

[84] Maziar Raissi. Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Dif-

ferential Equations. 2018. arXiv: 1801.06637 [stat.ML].

[85] Lucie P Aarts and Peter Van Der Veer. “Neural network method for solving partial

differential equations”. In: Neural Processing Letters 14 (2001), pp. 261–271.

[86] Benjamin Ummenhofer, Lukas Prantl, Nils Thuerey, and Vladlen Koltun. “Lagrangian

fluid simulation with continuous convolutions”. In: International Conference on Learn-

ing Representations. 2019.

[87] Riya Aggarwal, Hassan Ugail, and Ravi Kumar Jha. “A deep artificial neural net-

work architecture for mesh free solutions of nonlinear boundary value problems”. In:

Applied Intelligence 52.1 (2022), pp. 916–926.

[88] Diab W Abueidda, Qiyue Lu, and Seid Koric. “Meshless physics-informed deep learn-

ing method for three-dimensional solid mechanics”. In: International Journal for Nu-

merical Methods in Engineering 122.23 (2021), pp. 7182–7201.

[89] Senwei Liang, Shixiao W. Jiang, John Harlim, and Haizhao Yang. Solving PDEs on

Unknown Manifolds with Machine Learning. 2022. arXiv: 2106.06682 [math.NA].

[90] Yongju Zheng, Huajie Dai, Junyi Wu, Chuanping Zhou, Zhiwen Wang, Rougang Zhou,

and Wenxin Li. “Research progress and development trend of smart metamaterials”.

In: Frontiers in Physics 10 (2022), p. 1191.

[91] Andrea Massa, Davide Marcantonio, Xudong Chen, Maokun Li, and Marco Salucci.

“DNNs as Applied to Electromagnetics, Antennas, and Propagation—A Review”. In:

IEEE Antennas and Wireless Propagation Letters 18.11 (2019), pp. 2225–2229. doi:

10.1109/LAWP.2019.2916369.

Bibliography 59

[92] Rajendran Ramasamy and Maria Anto Bennet. “An Efficient Antenna Parameters

Estimation Using Machine Learning Algorithms”. In: Progress In Electromagnetics

Research C 130 (2023), pp. 169–181.

[93] Danilo Erricolo, Pai-Yen Chen, Anastasiia Rozhkova, Elahehsadat Torabi, Hakan

Bagci, Atif Shamim, and Xianglian Zhang. “Machine Learning in Electromagnet-

ics: A Review and Some Perspectives for Future Research”. In: 2019 International

Conference on Electromagnetics in Advanced Applications (ICEAA). 2019, pp. 1377–

1380. doi: 10.1109/ICEAA.2019.8879110.

[94] S.D. Campbell and D.H. Werner. Advances in Electromagnetics Empowered by Ar-

tificial Intelligence and Deep Learning. IEEE Press Series on Electromagnetic Wave

Theory. Wiley, 2023. isbn: 9781119853893.

[95] P. Ramuhalli, L. Udpa, and S.S. Udpa. “Finite-element neural networks for solv-

ing differential equations”. In: IEEE Transactions on Neural Networks 16.6 (2005),

pp. 1381–1392. doi: 10.1109/TNN.2005.857945.

[96] Arbaaz Khan, Vahid Ghorbanian, and David Lowther. “Deep Learning for Magnetic

Field Estimation”. In: IEEE Transactions on Magnetics 55.6 (2019), pp. 1–4. doi:

10.1109/TMAG.2019.2899304.

[97] Wei Tang, Tao Shan, Xunwang Dang, Maokun Li, Fan Yang, Shenheng Xu, and Ji

Wu. “Study on a Poisson’s equation solver based on deep learning technique”. In: 2017

IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS).

2017, pp. 1–3. doi: 10.1109/EDAPS.2017.8277017.

[98] Zijie Li, Kazem Meidani, and Amir Barati Farimani. Transformer for Partial Differ-

ential Equations’ Operator Learning. 2023. arXiv: 2205.13671 [cs.LG].

[99] Arbaaz Khan and David A. Lowther. “Physics Informed Neural Networks for Electro-

magnetic Analysis”. In: IEEE Transactions on Magnetics 58.9 (2022), pp. 1–4. doi:

10.1109/TMAG.2022.3161814.

Bibliography 60

[100] Mohammad Mushfiqur Rahman, Arbaaz Khan, David Lowther, and Dennis Gianna-

copoulos. “Evaluating magnetic fields using deep learning”. In: COMPEL-The inter-

national journal for computation and mathematics in electrical and electronic engi-

neering (2023).

[101] Zhi Gong, Yang Chu, and Shiyou Yang. “Physics-Informed Neural Networks for Solv-

ing Two-Dimensional Magnetostatic Fields”. In: IEEE Transactions on Magnetics

(2023), pp. 1–1. doi: 10.1109/TMAG.2023.3281863.

[102] Andrés Beltrán-Pulido, Ilias Bilionis, and Dionysios Aliprantis. “Physics-Informed

Neural Networks for Solving Parametric Magnetostatic Problems”. In: IEEE Trans-

actions on Energy Conversion 37.4 (2022), pp. 2678–2689. doi: 10.1109/TEC.2022.

3180295.

[103] Marco Baldan, Paolo Di Barba, and David A. Lowther. “Physics-Informed Neural

Networks for Inverse Electromagnetic Problems”. In: IEEE Transactions on Magnet-

ics 59.5 (2023), pp. 1–5. doi: 10.1109/TMAG.2023.3247023.

[104] Yanjin Chen, Hongrui Zhang, Tie Jun Cui, Fernando L. Teixeira, and Lianlin Li.

“A Mesh-Free 3-D Deep Learning Electromagnetic Inversion Method Based on Point

Clouds”. In: IEEE Transactions on Microwave Theory and Techniques 71.8 (2023),

pp. 3530–3539. doi: 10.1109/TMTT.2023.3248174.

[105] Zeyang Wu, Yuexing Peng, Peng Wang, Wenbo Wang, and Wei Xiang. “A Physics-

Induced Deep Learning Scheme for Electromagnetic Inverse Scattering”. In: IEEE

Transactions on Microwave Theory and Techniques (2023), pp. 1–21. doi: 10.1109/

TMTT.2023.3300185.

[106] Winfried Lötzsch, Simon Ohler, and Johannes S Otterbach. gnn-bvp-solver. GitHub

Source Code Repository. 2022. url: https://github.com/merantix-momentum/

gnn-bvp-solver.

Bibliography 61

[107] C. Johnson. Numerical Solution of Partial Differential Equations by the Finite Ele-

ment Method. Dover Books on Mathematics Series. Dover Publications, Incorporated,

2012. isbn: 9780486131597.

[108] Hans Petter Langtangen and Kent-Andre Mardal. Introduction to numerical methods

for variational problems. Vol. 21. Springer Nature, 2019.

[109] Masayuki Yano. AER1418: Variational Methods for PDEs Lecture Notes. 2018-2022.

[110] Benyam Mebrate, Purnachandra Rao Koya, et al. “Numerical solution of a two dimen-

sional poisson equation with dirichlet boundary conditions”. In: American Journal of

Applied Mathematics 3.6 (2015), pp. 297–304.

[111] J.D. Jackson. Classical Electrodynamics. Wiley, 1962. isbn: 9780471431312.

[112] Kunihiko Fukushima. “Visual Feature Extraction by a Multilayered Network of Ana-

log Threshold Elements”. In: IEEE Transactions on Systems Science and Cybernetics

5.4 (1969), pp. 322–333. doi: 10.1109/TSSC.1969.300225.

[113] M. W. Scroggs, J. S. Dokken, C. N. Richardson, and G. N. Wells. “Construction of

arbitrary order finite element degree-of-freedom maps on polygonal and polyhedral

cell meshes”. In: ACM Transactions on Mathematical Software 48.2 (2022), 18:1–

18:23. doi: 10.1145/3524456. url: https://fenicsproject.org/.

[114] M. S. Alnaes, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J.

Ring, M. E. Rognes, and G. N. Wells. “The FEniCS Project Version 1.5”. In: Archive

of Numerical Software 3 (2015). doi: 10.11588/ans.2015.100.20553.

[115] A. Logg, K.-A. Mardal, G. N. Wells, et al. Automated Solution of Differential Equa-

tions by the Finite Element Method. Springer, 2012. doi: 10.1007/978- 3- 642-

23099-8.

[116] A. Logg and G. N. Wells. “DOLFIN: Automated Finite Element Computing”. In:

ACM Transactions on Mathematical Software 37 (2010). doi: 10.1145/1731022.

1731030.

Bibliography 62

[117] William Falcon and The PyTorch Lightning team. PyTorch Lightning. Version 1.4.

Mar. 2019. doi: 10.5281/zenodo.3828935. url: https://github.com/Lightning-

AI/lightning.

[118] Matthias Fey and Jan Eric Lenssen. Fast Graph Representation Learning with Py-

Torch Geometric. 2019. arXiv: 1903.02428 [cs.LG].

[119] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.

2017. arXiv: 1412.6980 [cs.LG].

[120] Compute Canada. Python. 2023. url: https : / / docs . alliancecan . ca / wiki /

Python.

[121] Lukas Biewald. Experiment Tracking with Weights and Biases. Software available

from wandb.com. 2020. url: https://www.wandb.com/.

[122] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. “Dropout: A Simple Way to Prevent Neural Networks from Over-

fitting”. In: Journal of Machine Learning Research 15.56 (2014), pp. 1929–1958. url:

http://jmlr.org/papers/v15/srivastava14a.html.

[123] Guangtao Wang, Rex Ying, Jing Huang, and Jure Leskovec. Multi-hop Attention

Graph Neural Network. 2021. arXiv: 2009.14332 [cs.LG].

Copyright 63

Copyright

Following are the copies of relevant copyright permissions acquired from original author(s)

through email:

Figure C.1: Copyright permission for adapting figures, dataset and GNN model from
[3],[106].

Figure C.2: Copyright permission to adapt Figure 17 from [28].

