On Admissible Square Roots of

Non-negative C%2® Functions

Huangchen Zhou

A thesis submitted to McGill University
in partial fulfillment of the requirements of the degree of

Master of Science.

Department of Mathematics and Statistics
McGill University, Montreal
March 2023

(©Huangchen Zhou, 2023



Acknowledgements

[ 'am very thankful to my supervisor, Professor Pengfei Guan for his guidance and support.
The thesis will never be finished without the valuable discussions with him. I would like to
thank the Department of Mathematics and Statistics for the financial support. I am also
thankful to my friend, Yanghao Zhou for helping me translate the abstract into French.
Finally, I want to thank my parents for their infinite love. This thesis is dedicated to them.



Abstract

Motivated by an isometric embedding problem in the graph setting, we discuss the C1®

regularity of the admissible square root of a non-negative C*2* function.

Résumé

Motivé par un probleme de prolongement isométrique dans le cadre des graphes, on
discute de la régularité C'1* de la racine carrée admissible d’une fonction positive de classe
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1 Introduction

The thesis concerns a fundamental problem regarding non-negative functions: decompo-
sition of non-negative functions as sum of squares and the regularity of square root of C%2*
non-negative functions.

Sum of squares problem can be traced back to Hilbert’s seventeenth problem: Given a
non-negative real-valued polynomial, can it be represented as a sum of squares of rational
functions? Counterexample exists. The Motzkin polynomial, m(X,Y) = X1V? + X?Y* —
3X2%Y? + 1 is a non-negative polynomial, but it cannot be written as sum of squares of
elements in R[X, Y.

In 1978, Fefferman and Phong [4] stated that any non-negative C* (in fact, C*!) function
in R™ can be written as a sum of squares of C™! functions. A detailed proof was given in [6]
which was communicated by Fefferman. Guan used this decomposition to obtain C? a priori
estimates for degenerate Monge-Ampere equations.

In the same spirit, one may also ask the question of optimal regularity of square root of
non-negative functions. Nirenberg-Treves’ [14] gradient estimate for non-negative C''(R™)
functions implies square roots of these functions are Lipschitz. This estimate plays important
roles in analysis of linear and nonlinear PDEs (e.g., [8], [1]). For functions of one variable,
Glaeser [5] proved that if 0 < f € C*(R) is 2-flat on its zeroes (i.e., f(z) = 0 implies
f"(z) = 0), then f1/2 € CY(R). Mandai [13] proved that for any 0 < f € C?(R), f always
has an admissible square root g € C*(R). In [3], Bony, Broglia, Colombini and Pernazza
considered higher regularity. They found a necessary and sufficient condition for a non-
negative function f € C*(R) to have an admissible square root in C?(R), which is only
related to the non-zero local minimum points of f.

The main focus of this thesis is the optimal regularity of square roots of C%2*(R) non-
negative functions. We establish a necessary and sufficient condition for the existence of

C12(R) admissible square root g [9]. Below is the statement of the main theorem.

Theorem 1.1. Let 0 < f € C***(R) with || f||cz2«@) < 1. 0 < a < 1. Define the set
A={zg e R: f(xg) >0, f'(xg) =0, f"(x9) > 0}.
Then f = g* for some g € CY*(R) if and only if there is a constant M > 0 such that
' w0) < M - (f(x))Tra  Vag € A. (1.1)

Moreover, if (1.1) is satisfied, then ||g||c1e@) < C for some universal C > 0, depending only

on o and M.



Remark 1.2. We adopt the following notation. If1/2 < a <1, C%***(R) means C*?*~}(R).

The main theorem is motivated by the isometric embedding problem. Guan and Li [7]
showed that if g is a C* Riemannian metric on S? with Gauss curvature K > 0, then there
exists a C'M! isometric embedding X : (5%, 9) — (R?, ggua). A natural question is, can the
embedding X be improved to C%!? Jiang [12] gave positive answer in the graph setting,
under the assumption X takes the form X(z,y) = (x,y,u(z,y)) in local coordinates. [12]
relies on a square root regularity for square of monotone functions. It is a special case of

Theorem 1.1 where a« = 1 and A = &, which can be stated as follows.

Corollary 1.3. Let [ = [—1/2,1/2]. Assume 0 < f € C*Y(I) with || f||csay < 1. The zero
set of f in I is a closed interval N = [x(, x| (possibly x{, = x¢). [ is non-increasing in
[—1/2,x}) and f is non-decreasing in (x,1/2]. Then 3g € CYY(I) such that f =g* in I, g

is non-decreasing in I and ||g||c11y < C for some universal constant C' > 0.

The thesis is organized as follows. In section 2, 3, 4, we prove the main theorem 1.1,
which is developed in collaboration with Guan [9]. In section 5, we prove a sum of squares
theorem, which is a weaker version of Bony [2]. Section 6 is the conclusion. Notions of

Holder continuous functions and basic calculus theorems are included in the appendix.

2 A Calderén-Zygmund decomposition
Our approach follows [6], using a Calderén-Zygmund decomposition, a powerful tool in
harmonic analysis. See for example Stein [15].

Lemma 2.1. Let 0 < f € C***(R) with || f]|c22am) < 1.
If1/2 < a < 1, then there is a countable collection of cubes {Q,},>1 taking the form of

(a,b], whose interiors are disjoint, such that

(1) R=FU(U,Q,) and F N (U,Q,) = &, where
F={reR: fx) = Vf(zx) = V*f(x) =0}. (V*f:=fW)

(2) Let 6, = diam(Q,). Then for any v, 6, <1 and

:EGQU

3
inf (Z k= (2420) gk f(x)|> > 4. (2.1)
k=0

If 0 < a < 1/2, then there is a countable collection of cubes {Q,},>1 taking the form of

(a,b], whose interiors are disjoint, such that



(1) R=FU(U,Q,) and F N (U,Q,) = 2.

(27) Let 9, = diam(Q,). Then for any v, §, <1 and

2
inf o2 R £ ()] ) > 3. 2.2
mer<; v [VEf ()] (2.2)
Proof. We prove first for the case where 1/2 < a < 1. We decompose R into a mesh of equal

cubes (a,, b,|, whose interiors are disjoint, and whose common diameter is so large that

nf (Z(dz’am(@’))k*“m|ka<x>r> <4

6/
7€'\ i

for every cube @' in this mesh. Note || f||c224() < 1, so the common diameter can be chosen
to be 1.
Let Q" be a fixed cube in this mesh. By bisecting each of the sides of @', we divide @’

into 2 congruent cubes. Let Q" be one of these new cubes.
(i) If
3
& <Z<dmm<@">>k<2+2a>rka<x>l) >4

xeQ”
@ k=0

then we don’t sub-divide Q" any further, and Q" is selected as one of the cubes @, .
(ii) If

zeQ"
@ k=0

inf (Z(dz’am(@”))k—@“a)\v’“ﬂx)|> <4,

then we proceed with the sub-division of ), and repeat this process until we are forced

to the case (i).
If 0 < a < 1/2, the stopping condition is then (2.2). O
Let N(a) =2if0<a<1/2, N(o) =3if1/2 < a < 1.

Lemma 2.2. Let C' = 1000. Let 3Q, be the cube of diameter 36,, with the same center at

Q., then
N(a)

D oECRVEf(2)| < C Vo €3Q,. (2.3)
k=0

Proof. We prove first for the case where 1/2 < o < 1.



Let QV be the step before we get ),. Then ), C Q,, and diameter of QV is 20,,. Since we
didn’t stop at Q,, there is 2o € Q, C 3Q, such that 375 _ (26, )*~ 2| V* f(x)| < 4. That
is

V¥ f(z0)] < 4(26,)2297F k£ =0,1,2,3. (2.4)

Using || f||c22emy < 1 and dist(x, zo) < 30, we get

V3 ()] < |V f(xo)| + 1|z — mo)**F < 4(26,)°T2 7% 4 (36,)°* 1 < 11621 Va € 3Q,.
(2.5)
Using (2.4) and (2.5), we get

V2 f(2)] < Sup V3 f|- |z —zo| +|V2f (20)| < 116227136, +4(20,) %2972 < 4967 Yz € 3Q,.

Going backwards, we get |V f(z)| < 1796172* and | f(x)| < 6016*T2* Vz € 3Q,.

If 0 < a < 1/2, similarly, let Q, be the step before we get Q,. Then @, C Q, and
diameter of Q, is 26,. Since we didn’t stop at Q,, there is 2o € Q, C 3Q, such that
S (20,)F 2|7k £(24)] < 3. That is

IVFf(z0)| < 3(26,)%2)% k=0,1,2. (2.6)
Using || f||c22e®) < 1 and dist(x, zo) < 30, we get
(V2f(2)] < |V2f(x0)] + 1+ |2 — m0|** < 3(26,)*2°72 +(36,)** < 902* Vo €3Q,. (2.7)
Using (2.6) and (2.7), we get

IV f(z)] < sup |V2f| - o — xo| 4+ |V f(z0)] < 952 - 38, +3(26,) 2201 < 3951+2 vz € 3Q,.
3Qu

Going backwards, we get |f(z)| < 1415272 Vz € 3Q,.
[

Lemma 2.3. Let g = (755)/®* Y if 1/2 < a < 1, g = (755)® if 0 < a < 1/2. Let

co = 1/10. Let QF be the cube of diameter (1 + €)d,, with the same center at Q,, then

N(a)
inf (Z §l=(2+20) |7k f(a:)\) > ¢, (2.8)
k=0

TEQS

Proof. We first deal with the case where 1/2 < a < 1.
Assume not, then 3zy € Q% such that 75 _, 55_(2+20‘)|ka($0)| <cg. Let B:={reR:
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dist(x, o) < €90y }. Using || f|lc22emr) < 1 and mean value theorem, we get
(V3 f(2)] < VP f(xo)| +1-]x —20]** ' < (co+1)62*" Vo€ B.

V(@) < sup [V*f] - o = o] + [V2F(@0)] < (20 + 15 Vo € B

Going backwards, we get |V f(z)] < (3co+1)0172* and | f(z)] < [(3co + 1)eo + o]0, Note
€0 < 155, so for any z € B, S, 5’;7(2“&)\ka(:€)| < 4, contradicting with (2.1).
If 0 < a < 1/2, assume that 3z, € Q} such that Y7, 5]5_(2+2a)|ka(x0)| < ¢p. Let

B = {x € R:dist(x,x0) < €ob,}. Using || f]|c220@) < 1 and mean value theorem, we get
(V2f(2)] < |V2f(xo)] + 1|2 — 20|** < (co +1)62% Vax € B.
VF()] < sup [V2f] - |2 = @] + [V f(20)] < (200 +1)8,* Yz € B.
|f(z)] < Sl;p IVF| - |z — 20| + | f(z0)| < [(2¢0 + 1)eg + )62 Vo € B.

Note € < 1i5, so for any @ € B, 35, ShmET2 17k £ ()| < 3, contradicting with (2.2).
[
Lemma 2.4. Let A\ = ¢ /2. Let Q) be the cube of diameter of (1 + \)J,, with the same

center at Q).
Then for z € Q}, either

(i)
f(z) = &6,7, (2.9)
or (ii)
f(2) < @22 and |V2f(2)| > ¢62, (2.10)
where ¢ = 155 - (55)Y 2D if a > 1/2, ¢ = 5 - (35)¥ @) if a < 1)2.
Proof. We prove the case where 1/2 < a < 1.

By translation we assume z = 0. Assume that
f(0) < &2 and |VZf(0)| < é62“. (2.11)

Then by Taylor expansion of f near 0,

L f"(§) = f(0) 201, 3
5 T —op 1€ — 0P 12, (2.12)

£() = J(0) + PO + "0 + £ f"(0)2 +

where ¢ lies in between 0 and .



Let ¢ > 0 small such that 2¢, < (diam(Q%) — diam(Q;))/2. By (2.11), (2.12) and

HfHCQ,za(R) <1, for any ‘$| < 2¢0,,
~ 242 / 1~ 20,2 1 " 3 1 242
0< f(a) < 2% 4 [/(0)x + 3e0200” + (0" + ol
Taking z and —z in (2.13), for any |z| < 2¢d,,
! 1 " 3 ~ 242 1~ 2a,,.2 1 24+2a
|f(0)x-|—6f (0)z°] < éo +§c5l, T +6|x| .
In particular, for any |z| < ¢d,,
! 1 " 3 ~24+2a 1 ~ 2« 2 1 242 24+2a
|f'(0)x + Ef (0)x?| < ed ™= + §céy (cd,)” + 6\06,,\ = A§ .
On the other hand, by substituting x with 2z in (2.14), for any |z| < ¢d,,

1 oron 1o 1 N
F1(0)(22) + ¢ f"(0)(20)] < @577 4 Jan (20)? + |20
1 1
< cortEe 4 56556“(2@@)2 + 6|2c5,,|2+2°“

= BAe,
Combining (2.15) and (2.16), we obtain for any |z| < ¢,,

(8A + B)6Z,

D~

'(0)z] <

1 1
7700 < 24+ Bz

Thus |f/(0)] < 32 and [ f"(0)] < 2242, If ¢ = /10, & = ¢*, then

c3

8A+ B 1
P _ [9¢* + 6¢° + — ! T2(8 4 22129)] /6 < 0.01,
6c 6
2A+ B 1
; = 3c+3¢7 4 LT (24 277) < 0.07.

3
8A+ B 2A+ B
Y okmCRvEF0) <+ L ;r
— 6¢ c

contradicting with (2.8).

(2.13)

(2.14)

(2.15)

(2.16)

< 0.01* 4+ 0.01 4+ 0.01* 4+ 0.07 < ¢,



If 0 < @ < 1/2, by translation we assume z = 0, with
f(0) < &2 and |VZf(0)| < éo2e. (2.17)

Then by Taylor expansion of f near 0,

o / 1 " 2 1f”(§)_f”(0) 2ac,,2
f(z) = f(0) + f1(0)a + 5 f*(0)x +§|§——0l20‘|§_0| %, (2.18)

where ¢ lies in between 0 and x.
Let ¢ > 0 small such that 2¢, < (diam(Q}) — diam(Q;}))/2. By (2.17), (2.18) and
| fllc220m) < 1, for any |z| < 2¢6,,

1 1
0 < f(z) < et + f(0)x + 5653%2 + §|x|2+2a. (2.19)
If c = €/10, ¢ = 3, setting & = +¢d, in (2.19) yields

1 1
|f’(0)‘ < (02 + 5C4 + §Cl+2a)5i+2a < 0.015?2&.

Hence

D " SEERR TR £(0)] < @+ 0.01 4 & < 0.01° 4 0.01 +0.01° < ¢,
k=0

contradicting with (2.8).
[

Next we prove a version of Fefferman-Phong’s lemma(see [4] and Lemma 18.6.9 of [10]).

Lemma 2.5. Let C' = 1000 and I = [—1/2,1/2], with N(«) and ¢ defined as before. If
0 < ¢ e C?**(I) such that

o™ ()| <C Vel fork=0,1,---,N(a), [lozzam <1 (2.20)

and max{¢(0),]s"(0)|} > ¢. (2.21)

Then there is a universal small constant rg > 0 and a universal small constant co > 0
such that, fort € (—rg,ro), either

(D)
¢y < ot) < C, (2.22)

and \/¢(t) is in CH*((—ro,10)), or

10



(1I)
o < '(t) < C, (2.23)

6(t) = 6(T) + (t — T)? /0 &'(t+ s(T — 1))s ds, (2.24)

where t =T is the unique strict local minimum point of the function ¢ in (—rog, o).
Moreover, g(t) == (t — T)(fo1 ¢"(t + s(T —t))sds)"/? is in CH((—ro,70)).

Remark 2.6. If1/2 < a <1, [¢]c22a() < 1 means [¢]esza-1(p < 1.

Proof. We first prove the case for 1/2 < o < 1.
(i)If ¢(0) > ¢, by Taylor expansion and (2.20) , for [¢| < p, p = 55,

) 1 1 1 .

o) 2e=Cop—5C- @2 =2C > =2 1y
U SO B O O S O T (2.25)
C— —C— .. 6—-Z.2¢>—¢ .
=73 723763 63 73

So by (2.20), (2.25), and mean value theorem, for |t;| < p and |t3] < p, t1 # to,

(VoY) = - o ©

_ < — b 2.26
| |2 ¢(t1)|_2 ic (220

/ N / 4 la _ (b,(tl) N ¢/(t2) L — o]
2/(V0)' (1) = (Vo) (ta)l /Ity — ta |\/¢(t1) \/¢(t2)|/lt ts]
') ¢(t2)

/(tl . )
= - b= t" + - t—t
<| o) ¢(t1)|/|1 2 | O ¢(t2)|/|1 5|
L 19"(E)[[ts — 1 |/ (Sa)l1t1 — ta
ST l-ulr T RIS
3
1 . o
S O+ O g ()T = G (2.27)
3

where b, C; > 0 are universal constants.
(ii) Assume |¢”(0)| > é.
(a) If ¢”(0) < —¢, then by Taylor expansion of ¢” € C1?*~1(]) near 0, we get,

1 — "0
¢ éfj O’ig ) € — 021t (2.28)

¢”(t) — ¢//(0) +¢/”(0)t+

11



Hence for [t| < p, p = 55,
1 ~ 2 1.
O'(t) < —e+Crp+1-[u™ < —3e

For any |to| < % i, by Taylor expansion of ¢ near t,

0< Blto + 1) < Blto) + & (w)h + 5 - (~30) 7 + <o (1)h® + SR>,

3
/ 1 1~ 2 1 11 3 1 2+2c
0 < oty — h) < P(to) — ¢'(to)h + 5 (—gc) ~hT— 6¢ (to)h” + 6|h| :

Combing the above two equations, and letting h = %,u, we get, for |to] < %u,

1,

1. 1 N
b(to) = eh* — S|[T > Zpe

Similar to case (i), we have v/ € CY((—p/2, 1/2)).
(b) If ¢"(0) > ¢ and ¢(0) < ¢;, where ¢; > 0 is a small and universal constant to be
determined, then by Taylor expansion of ¢/ € C%2*~1(I) near 0, we get

14"(€) = ¢"(0)

1 -
510 = $10)+ O+ 300 + 57T e~ o (22
Using (2.29) and (2.20), we obtain
/ / " 1 2 1 2a+1 1

|¢'(t) — ¢’ (0) — ¢"(0)t] < §Ct + 3 L-Jg*e™, V|t < 3 (2.30)

In particular, (2.30) shows that ¢'(r) > 0 and ¢'(—7r) < 0 if

" / 1 2 1 2a+1

0] (0)7” > |¢ (O)’ + 50’/” + 57’ . (2.31)

Fix 7 > 0 so small (r = 55 would work) that $ér > $Cr? + $r?*™. We expand ¢ €

C129=1(]) near 0. By (2.28) and (2.20), for |t| <7,
. (2.32)

On the other hand, following the idea of Nirenberg-Tréves [14] (see also Lemma 7.7.2 of [11]),

near 0,

0<¢(0)+¢'(0)t + %@R <c+¢'(0)t+ %Ctz.

12



Letting ¢ = +4/c1/C, we have [¢/(0)] < 21/C - ¢;. Hence (2.32) and (2.31) hold for ¢; =

& _ &
ColLEe] and r = 35,

in B,. By Taylor expansion of ¢ near t = T', we obtain in B,

and by intermediate value theorem, ¢'(t) = 0 has a unique solution t = T’

1
¢@%:MT)%U—TY/‘W@+SU¥¢»MB. (2.33)
0
We note ¢t = T is the unique strict local minimum point of the function ¢ in B,.

We will estimate Holder seminorm of ¢’. Assume without loss of generality that ¢(7") = 0.
Then in B,, g(t) = \/¢(t) if t > T and g(t) = —+/¢(t) if t <T. By Taylor expansion,

. 2/ ()t~ 17 + Ot — 1) ~ V0
i 2020y, V = =3

We obtain the same value for the left limit and then ¢'(T) = {/5¢"(T).
If t # T, then by Taylor expansion, for some &, &, &3 lying in between ¢t and T,

8(t) = 50" (T)(t = TV + c6"(&)(t ~ T = A+ B, (2.34)
§(0) = ¢ (1)t = T) + 36" (@)t TV = B+ F, (2.35)
§'(1) = () + 6" (&)t ~ ). (2.30)

By (2.32), (2.20) and |t — T| < 2r,
2
|B| < §A and |F| < |E|. (2.37)

By (2.34), (2.35), (2.37) and ¢"(t) ~ 1 in B,, there exists a universal b > 0 such that, for
any t € B,,
' (T) =g (D) <b-|T -t (2.38)

13



Below is the proof for the case ¢ > T'. Proof is the same for ¢ <T. We won’t repeat.

19'(T) = ¢'(t)| = %(ﬁ”(T) _ 9@
P O OO
< |\/3¢"(T) ) NN

B

—30"(&)(t—=T) )
\/_.\/A+B-(\/A+B+\/Z)

2¢"(T)

C/2
2

< T — |2E|

1z
3¢

<b-|T —t| <b-|T —t|* since |T—t|<1.

By (2.34), (2.35), (2.36), and ¢"(t) ~ 1 in B,, there exists a universal ¢ > 0 such that, for
any t € B,,

6(6) - 6(0) — 50/(t7] = O(ft ~ TP,

L ¢"(t) - ¢(t) — 5¢'(t)°

19" ()] = ) o(t)3/?

1
< =
-2

O(lt—TF)
G4

(2.39)

Let ti1,to € Br, t1 < 1.
If t1 =T (ty = T is similar), then |¢'(t;) — ¢'(t2)| < b |t1 — t2|* by (2.38).
Ift, <T < to, then by (238),

19'(t1) = g'(L2)| < [g'(t1) = ' (D) + |g'(T) = g'(t2)| < blts = T|* + b|T — ta|* < 2b- [t1 — 1o

T <ty <ty (ty < tog < T is similar), then by mean value theorem, (2.39) and
|t1 — t2| S ]_, E]f € (tl,tg) such that

19'(t1) — g (t2)| = " (E)||tr —ta] S c- [ty —ta] < - |tn — 1]

(c) If ¢; < ¢(0) < ¢, then similar to case (i), we have /¢ € CH*((—55, £5)).

To summarize, case (i), (ii)(a) and (ii)(c) lead to (I). Case (ii)(b) leads to (II).

Next, we prove the case where 0 < a < 1/2.

14



(") If ¢(0) > ¢, by Taylor expansion and (2.20), for [t| < p, p = 5,

Following the computation of (2.26) and (2.27), /o € C**((—r,7)).
(i) Assume [¢(0)] = ¢
(a) If ¢”(0) < —¢, then for |t| < ug, po = (5)%7

2
(b//<t) S QS//(O) + 1 . |t — O’Qa S _é+ ,uga S —367 Since [(b]CQ,Qa(I) S 1
For any [to| < 3ue2, by Taylor expansion of ¢ near ¢,

DS 6to+ ) < 0(t0) + & (w)h + 5 - (—50) - 12+ S[H,

0< 6ty — h) < 6(ts) = (to)h+ 5 (=30 - 2 + S|,

Combing the above two equations, and letting h = %ug, we get, for |t] < %ug,

1y 1, ion 1.1, 1.1 é 1 5
¢(t0) 2 §Ch2 — 5|h‘2+2 2 hz(gc— é‘h‘z ) Z h2(§c— - —) > —[Lg - C.

Similar to case (i’), we have /¢ € C1*((—pug/2, pa/2)).
(b) If ¢"(0) > ¢ and ¢(0) < c¢1, where ¢; > 0 is a small and universal constant to be
determined, then by Taylor expansion of ¢/ € C?*(I) near 0, we get

¢"(§) — ¢"(0)

0(0) = 60) + " O+ T e — o (2.40)
Using (2.40) and (2.20), we obtain
6(0) — &/(0) — " (0)t] < 1- 1P, Wle] < 1 (2.41)
In particular, (2.41) shows that ¢/(r) > 0 and ¢/(—r) < 0 if
¢"(0)r > |¢'(0)] + r***+'. (2.42)

15



Fix r > 0 so small (r = %(g)% would work) that 1ér > r?**1. By [¢]czzay < 1, for [¢] <,

¢'(t) 2 ¢"(0) = 1|t — 0P 2 & - 2i >

[GVRI

. (2.43)

Ll —

On the other hand, near 0,

¢//<€>

0.2 6(0) + (0 +

1
2 <+ ¢ (0)t + §Ct2.

Letting ¢ = +4/c1/C, we have [¢/(0)] < 23/C - ¢;. Hence (2.43) and (2.42) hold for ¢; =
ol (g)“i and r = 3 - (%)i, and by intermediate value theorem, ¢'(t) = 0 has a unique
solution t = T in B,. By Taylor expansion of ¢ near t = T', we obtain in B,,

o(t) = o(T) + (t —T)? /O ¢"(t+ s(T —t))sds. (2.44)

We note t = T is the unique strict local minimum point of the function ¢ in B,.

We will estimate Holder seminorm of ¢’. Assume without loss of generality that ¢(7") = 0.

Then in B,, g(t) = v/é(t) if t > T and g(t) = —\/¢(t) if t < T. By Taylor expansion,
g1 A AME=TZO(t - TP -V

lim =—————= = lim =/ =¢"(T).
t—T+ t—T t—>T+ t—T 2

We obtain the same value for the left limit and then ¢'(T') = {/5¢"(T).
If t # T, then by Taylor expansion,

o(t) = %qﬁ”(T)(t S T2 4 Oy(|t - T2 = A+ B, (2.45)
¢'(t)=¢"(T)t —T)+ Ot —T|'*) = E+F, (2.46)
¢"(t) = ¢"(T) + Os(|t — T|**). (2.47)

By (2.43), (2.20) and |t — T| < 2r,
1 1
|B| < §A and |F| < §|E\ (2.48)

By (2.45), (2.46), (2.48) and ¢"(t) ~ 1 in B,, there exists a universal b > 0 such that, for
any t € B,,
' (T) =g () <b-|T —t*. (2.49)
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Below is the proof for the case ¢ > T'. Proof is the same for ¢ <T. We won’t repeat.

9(T) = ¢'(t) = <b”
< ¢,, ¢’() cb’(t)
VA A+ B
_ _ 2 |1+2a) | B
2¢~( )-(t—T) VA VAT B-(VA+ B+ VA)
Oy(|t —T)>) 1 3 B
< ————"+-.|2F
T.ga 5 I5E ‘

| \/Z'\/;A'( 1A+ VA

<b-|T—tP** <b-|T —t|* since |T —t| < 1.

By (2.45), (2.46), (2.47), and ¢"(t) ~ 1 near 0, for any ¢ € B, there exists a universal
¢ > 0 such that

1
¢"(t) - o(t) — §¢>’(t)2| = O(|t = T|***%),
oy = L]F0-00 = 3o
g 2 o(t)3/?
Let ti,t2 € Br, t1 < to.
If t1 =T (ty =T is similar), then |¢'(t1) — ¢'(t2)| < b |t1 — t2|* by (2.49).
T <t <ty (t; <ty <T issimilar) and |ty — t1| > %|t1 — T, then

O(|t _ T|2+2a>
eIk

<c-|T -t (2.50)

lty — T| < |[ta — ta] + |t — T| < |ts — t1] + 2[ts — t1] = 3|ts — t]. (2.51)
By (2.49) and (2.51)

1g'(t1) — g'(t2)| < |g'(t1) = g (D) + |g'(T) = g'(t2)| S b- |ty = T|* + b |T — to]*
b (2lta — t1))* + b~ (3|ta — t1)* < 5b - |ta — 1] (2.52)

T <ty <ty (t1 <ty <T issimilar) and |ts — 1| < %]tl — T, then by mean value
theorem and (2.50), 3¢ € (¢4, t2) such that

g/ (t1) — g'(t2)| = |g"(O)|tr — to] < e+ |E =T |ty — to
|ty — o]

:C‘|§—T|a'|t1—t2|a'(|§_T|

Y <ty — t]® (2.53)
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If t; < T < tq, then by (2.49),
‘gl(tl) _ gl(t2)| < ‘g/(tl) i g/(T)| + |g/(T) _ g’(t2)| < b’tl — T‘a + b’T — t2|a < 2b - ‘tl - t?’a'

(¢)If ¢; < ¢(0) < ¢, then similar to case (i"), we have /¢ € CV*((—3%, 55)).
[

For any z € @}, we apply the above lemma to the function ¢(t) = 5, F2e) . f(z+td,).

Corollary 2.7. Let C = 1000. For z € Q, there is a universal constant ro > 0 and a

universal small constant ca > 0 such that, for x € (z — ¢,z + rod,), either

(D

622 < f(x) < O, (2.54)
and \/ f(x) is in CY*((z — rod,, 2 +100,)), or
(1I)
002 < f(z) < C62, (2.55)
1
F@) = F(X) + (- X)?/ Fl(@ + HX — @)t dt, (2.56)
0

where x = X is the unique strict local minimum point of the function f in (z—1rgd,, z+1ed,).
Moreover, g(x) == (x — X)(fo1 "z +t(X —2))tdt)'? is in CY*((z — 190y, 2 +100,)).

3 Proof of sufficiency

Let 0 < f € C***(R) with || f||c22e®) < 1.

3.1 Construction of ¢

F={r eR: f(x) = Vf(xr) = V2f(z) = 0} is a closed set in R. We write R\ F
as a countable union of disjoint open intervals, so that R \ F = U2,I;. Note if Jzy € I
with f(xg) = 0, then f"(x¢) # 0. (If 0 < o < 1/2, by Lemma 7.6, |f(xo)| and |f" ()]
dominate |f'(x)|. If 1/2 < a < 1, by Lemma 7.7, |f(xo)| and |f”(zo)| dominate |f’(zo)]
and |f”(z0)].) For each m,k € N, we define I, = {& € I : dist(z,F) > L} and
B={xeR: f(z)=0,f"(x)# 0}, then

Lemma 3.1. [, N B is at most countable for each k, and

IkmB:{"'[If,2<$,1<]§'0<[I§'1<£IZ’2"'}.
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Proof. YN > 0, we claim that [ ,, N B N[N, N] is finite for each m,k € N. Assume
Ity m NBN[—N, N] is infinite, then 3z € R such that z, is an accumulation point of Iy, N B.
So there is a sequence {x,} in B such that lim,_, x, = o, and f(zg) = lim, o f(x,) = 0.
Note f >0, so f'(xg) = 0.

If f"(zo) # 0, then = x is a strict local minimum point of f. However, by construction,
near o there is a point x; € B, so that f(z1) = 0 contradicting with strict local minimality.

If f"(x¢) =0, then zq € F. However, (zg — T+ 5 ) N I m = 9, contradiction.

Now since [, is an interval and Iy, C Ijmt1- Pomts in I mi1 \ Ikm is either on the
left or right of Iy ,,. The points in I, N BN [N, N] can be ordered. The lemma follows by
letting N — oo. ]

2m’

We define the function g as follows. If x € F, set g(z) = 0. For each k, if [, N B = @ in
Iy, then define g(z) =/ f(x) for = € I;. Otherwise,

IkﬁB:{"'$72<l’71<$0<l’1<%’2"-}.

Define g(z) == (—1)"\/f(z) for x € [x;_1,z;]. Note that g changes sign when crossing each

x; in 1.

3.2 (Y C! regularity of g

g is continuous in each I = (ag,bx). It suffices to discuss the continuity at o € F. By
Taylor expansion of f near zg, f(z) = O(|z—x0|*T%), so that |[£+/f(z)] = O(|Jz—z0|* ™) — 0
as * — xo and lim,_,,, g(x) = 0.

We discuss the C! regularity of g.
Lemma 3.2. g € C*(I},) for each k.

Proof. If [, N B = @, then ¢ = % e C%I},). If I, N B # @, then for each x; € I, N B,
x; € Q, for some v = v(z;). By Corollary 2.7, only (II) holds and near z;, f can locally be

written as

f(@) = (@ — 21)? / P+t — o)) dt,

with fol f"(x + t(x; — x))tdt ~ §2“. By definition of g, near z;, g(z) = +(x — xi)(fol f(x+
t(x; — x))t dt)/?(the sign depends only on the choice of sign of g near ), so that g changes

sign when crossing x;. By Corollary 2.7, ¢’ is continuous at x;. O]

The next is a key lemma to obtain uniform estiamte for ¢’ under (1.1).
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Lemma 3.3. Assume condition (1.1) is satisfied. There exists a universal constant Cy > 0

such that, for any xo € Ij, with xq € Q, for some v = v(xy), then
19/ (20)] < Cady. (3.1)

Proof. By Corollary 2.7, if (I) holds, then by (2.54) and (2.3),

f'(z0) o,

ILL'Q = < 5 v
(V) (o) 5 T%)Kz a0

If (IT) holds, then for x € (zg — rod,, o + 100,), f"(x) ~ §>* and

F@) = F(X) + (z — X)2/0 P+ HX — 2)tdt, (3.2)

where x = X is the unique strict local minimum point of the function f in (xq—r¢d,, xo+7ed, ).
If f(X) =0, then g(z) = +(z — X)([) f"(z +t(X — x))tdt)"/%. By (2.55), local Holder
continuity of ¢, and ¢/(X) = /1 f”(X), there is universal b > 0 such that,

1
19/ ()] <19 (X)]| 4+ blz — X|* <4/ 50530‘ + 060 < Cyoy, YV € (xg — 1rody, To + T00y,).
If f(X) #0, then by (1.1) and (2.55),
M- (FX)TE > F1(X) > o™

So that (3.2) reads
f@) 2 f(X) = (55 - a2,

By (2.3), f(x) ~ 6272* and computation is reduced to case (I). O

Corollary 3.4. Assume I, = (ay, by), where by < +oo. Then

lim ¢'(x) = 0.
T—b,

Similarly, if ap, > —oo, then limgHOL;r g (z) =0.

Proof. By Corollary 2.7, for each @ € Iy, (€ —ro6u(z), £ +700y(z)) C Ir. Hence limr_ﬂ,; Ou(z) =
0. By (3.1),
9 ()| < Cabpyy — 0 as x— by

v(z
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Corollary 3.5. For any ¢ € F, ¢'(x) is continuous at xo, with

lim ¢'(z) = g'(xo) = 0.

T—T0

Proof. By Taylor expansion of f near zg, f(z) = O(]x — x¢|*"?*), so that

g(x) — g(xo) _ i\/ﬂ@ = O(|x — 20|*) = 0 as x — xo.
xr — X T — To

If x¢ has a neighbourhood which is contained in F, then the result is trivial. Otherwise, xg
is the boundary point of some interval I = (ay,by). Without loss of generality we assume
To = by, < +o00.

If x¢ is discrete, then x( is the boundary point of two consecutive intervals I, and Ij.q,

with ap < by = ¢ = agy1 < bgy1. By Corollary 3.4,

lim ¢'(x) = lim g (x)=0.

T—b, T—ag,

Otherwise, xy € [z, ag1] C F for some ap,1. By Corollary 3.4 again,

lim ¢'(z) = lim ¢'(z) =0.

— +
T—b, Ty

To summarize, g € C*(R), with |¢'(z)| < Cy, Vx € R, since §, < 1.

3.3 Global Holder estimate

Let z,y € R with = # .

1. If 3z € R\ F such that x and y are both contained in (2 — r¢0y(2), 2 + 700, (2)), then
by Corollary 2.7, the Holder estimate is trivial if case (I) holds or case (II) holds with
f(X) = 0. If case (II) holds with f(X) # 0, then by (1.1) and (2.55),

M- (f(X)Ta > f(X) > 622
So that (2.56) reads

C2 | lta

F@) > () > ()5 0242 = K2 and f(y) > K822 (33)
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So by (2.3), (3.3), and mean value theorem, 3¢;, &, lying in between z,y such that

AT () — (VY @)/l — i = | ¢% - j%\/@ g

< s~ e =l + 1~ Ty

< mE O SR

< ﬁ e v ose O =

which is a constant depending only on M and a.
2. Assume fz € R\ F such that x and y are both contained in (z — T00u(2)s 2 + 700 (2))-

(a) If z € F and y € F, then by Corollary 3.5, |¢'(z) — ¢'(y)| = |0 — 0] = 0.

(b) If x ¢ F and y € F, then x € Q, for some v = v(z) and |z — y| > r¢d,. By (3.1)
and Corollary 3.5,

/ ! / o C (03
' (z) = ¢'(y)| = |g'(z)] < Co6 §7§-|x—y| :
0

(c) If ¢ Fand y ¢ F, then x € Qu») and x € Q,(y), With |z — y| > 790,(») and
|z —y| > 100y(y). By (3.1),

/ (0% o 20 o
19'(x) = ' (W) < lg'(@)] + |9 (y)] < Cadpyyy + Cadyy,y < —rf o —y|®.
0

Remark 3.6. In fact, if the condition (1.1) is satisfied, then the C* estimate of g doesn’t

depend on the choice of sign of g in each interval Iy.

4 Proof of necessity

We prove the necessity of Theorem 1.1.

Proof. Assume (1.1) doesn’t hold and f = g¢? for some g € C1%(R), then there is a sequence
x, in A such that
f(zn) > nfta(z,) VYneN. (4.1)

f(z,) >0, so x, € Q, for some v = v(n).
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In case (i) of Lemma 2.4, f(x,) > ¢d272* and f"(x,) < C§2*. By (4.1),
6% > p(e62+2e)Tia, (4.2)

so that d, get cancelled. Letting n — oo in (4.2), contradiction.
In case (i) of Lemma 2.4, f(x,) < ¢622* and f"(z,) > ¢0°“. Define s,, = f’i,((xx”:). By
(4.1) and 0, <1,

If 1/2 < a < 1, by Taylor expansion and || f||c22e®) < 1,

1
I (wn)lsh = gt

Flont50) = Flan) + 5 F" ()52 = 3

1 1
_|f///(xn>|8 4+ = 2+204‘

P+ 52) < fla) + 57" (@) + s

By (2.3) and (4.3),

|ﬂhMi=uw%mwﬁﬁﬂgc&%*fﬁwj%{$j<f@@mm@m
)

1
n Sn f/,< ) 5204 - 2
So 4f(xn) > f(xn + sn) > f(x,) > 0 for large n. By mean value theorem,

(x,) for large n.

209/ + 52) — g/ ()] = rﬁ:-l%§%§}i§$§23 y fiﬁjgl_
_ et ) = Pa)  E] s
f(xn + Sn) f(xn + Sn)7

where &, € (x,, T, + s,). By Taylor expansion of f”, for large n,

F1(60) 2 1) = 11" (n)lsn — 520 = 5" n).

If 0 < o <1/2, by expansion to the second order and || f||c22r) < 1, we have

Floa) + 58 @)s5+ 5555 > [+ 50) 2 flea) + 5 (@)sh - 557
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By (4.3),

no
+
Do
Q
Do
Q
~
~—~
S
3
N—
2
-
>,
<
N—
[\~
Q
Ny
—~
)
3
N~—
—_

n =S8y () n . G < 2f(3:n) for large n.

So 4f(xn) > f(xn + sn) > f(x,) > 0 for large n. By mean value theorem,

|+ f/(xn + Sn) + f'(xn)

V f(xn + sn) \/f(xn))|

2|g/(:)3n + 55) — g’(:(:n)| =

= |f (Tn + 8n) — f/(zn)| _ |f"(&n)] - sn
fwn+ 52) (@ +sn)
where &, € (T, Tn, + 5). By ||f|lc220m) < 1, for large n,
F(60) 2 ") = 522 3 1),
Therefore, for any 0 < o < 1, by (4.1),
’ Y _ |f”(£n)| " Sn %f”(x”) “Sn_ 1 7
Aten o) =gt = Vit 1Y)
/2
L @) 1 () W)
BEE <f(xn)a ) )
e (e
“i\ T ) A
Hence
9+ 50) = ¢ (@)l/55 > SV = 00 a5 m = 0o,
Contradiction. 0

5 A sum of squares theorem

Theorem 5.1. Let 0 < f € C***(R) with ||f||c22e®) < 1. 0 < a < 1. Then there is a
positive integer N, depending only on «, and there are functions g1, - -+ , gy with ||g;||crem) <

C, such that f = Zjvzl gjz, where C' > 0 1s a universal constant, depending only on «.

Proof. The proof exactly follows Guan [6], with slightly more details. We prove the case
a>1/2, and a < 1/2 is the same.
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By Corollary 2.7, for any z € Q,
f = giz + g%,z in (Z - 7/‘05117 z+ 7'051/),

with g; . € CY*((z — 190y, 2 + 706,)), and |g; .| < 6,7, |gi .| S 05 for i =1,2.
Choosing a (finite) partition of unity for @}, denoted by {p,.,,j = 1,--- ,N(a)}, such
that

N(a)
Z p,izj =1in Q}, with supp(py,:,) C (2 — 100y, 2 + 700y),
j=1

we can write

N(a) ]\7(01) N
f = f ' (Z pz%,zj) - Z(gl,zj ' pl/,zj)2 + (92,zj . pz/,z]-)2 = Zgg,j n Qj? (51>
j=1 j=1 Jj=1

where N := 2N (a). Then g,; € CV*(Q}), with |g, ;| < 51+, 9,51 S 65
By (2.3) and (2.8), if the boundaries of @), and @,/ touch, then

° 6 ¢
VYV N2+2a—k > _0 5.9
;( )Tt 2 7 (5.2)
which implies
O
5 A. (5.3)

Similarly, g—”, < 1/A. Therefore, we conclude, for each @, there are only finite (universal)

number of Q, intersecting with it. Let p(z) € C§°(R), p(z) such that p(z) > 0, p(z) =0

outside of the cube (1 + \)@, where @ is the unit cube in R™ centered at the origin. Define
T—xy Py

pv(z) = p(£5%), where z, is the center of Q,. Let p2 = - We produce a partition of
unity p? of U,Q;, such that

sz =1in U, Q}, and suppp, C Q} C Q*.

We will group @),. Let A; be the collection of cubes (), with diameter §; = 2% Choose
m > 0 large enough such that o < (755)"@*™ (If 0 < a < 1/2, choose m > 0 such that

o < (155)V3)). By (2.3) and (2.8), if Q,, € Aj,, Qu, € Aj, with |j; — jo| > m, then

Q,NQ;, =2. (5.4)
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For any j, we can divide 4; into two collections
A; = .A]l- U A?
such that if Q,,,Q,, € AY, k € {1,2} and if Q,, # Q,,, then
Q,NQ;, 2. (5.5)

Let . .
By =JAl . By =JAL,, k=12
j=1 j=1

By (5.4) and (5.5), VQ,,, Q., € BF, if Q,, # Q,,, then
Q,,NQ,, =92 (5.6)

Therefore, by (5.1) and (5.6),

ZQueBk pugyj is in CH*(R) for fixed i, j, k. The result follows. a

6 Conclusion

Starting with a Calderéon-Zygmund decomposition, we proved an adapted version of
Fefferman-Phong’s lemma, which shows the local C%* regularity of admissible square root.
The sufficiency is given by a globalization argument based on this local lemma, and the
sum of squares theorem is a natural consequence. With a proper choice of the step s, the

necessity of the main theorem 1.1 is established.
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We are wondering if such Fefferman-Phong type lemma also exists for C*® non-negative
functions in R, where 0 < a@ < 1. Then we have to consider the case where the fourth order
derivative dominates. This might be a totally different problem, since we don’t have a nice
theory for non-negative polynomials of degree four. We are also seeking for applications of

the main theorem 1.1, especially in isometric embedding problems.

7 Appendix

Definition 7.1 (Big-oh notation). We write
f=0(g) asxz— x,

if there exists a constant C' > 0 such that

|f(2)] < Clg(z)]

for all z sufficiently close to xg.

Definition 7.2 (Vinogradov notation). We write X <Y if there exists a constant C' > 0
such that
X<COWY.

We write X ~Y if X <Y and Y < X.

Definition 7.3. Let £ > 0 be an integer and 0 < a < 1. We say a function f: Q C R —- R
is in C*(Q) if f/, f",---, f* all exist and are continuous over €.

The Holder space C**(Q) consists of all functions f € C*(Q) for which the norm

k
I fllcroqy = (ZHfHCi(Q)) + [flema(a
=1

- (isup|f(“(:c)|>+ up L0 = SHW)N

— 1€ 2yeQaty |z —yl|*
is finite.

Theorem 7.4 (Mean Value theorem). If f is continuous on [a,b] and differentiable on (a,b),

then there is a number & in (a,b) such that



Theorem 7.5 (Taylor’s theorem). Suppose that f', f",---, f™*Y are defined on [a, z], and
that R, .(x) is defined by

™ (q
f(z) = fla)+ fla)(x —a) +--- + f n'( )(:1: —a)" + Ry q(z).
Then
(n+1)
R, .(z) = fn—'(g)(x —&)"(x — a) for some & in (a,x).
(n+1)
R,.(z) = f—(f)(x —a)"*t for some € in (a, ).

 (n+ 1)

Moreover, if f"*V is integrable on [a, x], then
z f(ntl) (¢
Roa(z) = / 0 e
" n!

The following two lemmas follow Tataru [16].

Lemma 7.6 (Even dominate odd, C*®). Let 0 < a < 1. Let f : R — R be a C* non-negative
function such that [f]ceem) < 1. Then

14+

7@ < SF@IE 4 S| @) f@)m 4 [T @) YeeR (1)

Proof. 1t f(x) =0, then f'(x) = 0 since f > 0. Otherwise, by Taylor expansion, Vx € R,

0% flo 1) = fa) + Flht y @+ 3O E g

/ 1 1! 1 [0}
< F(@) + F@h+ S @+ Sl
So by replacing h with +h,

F/(@)h] < f(o) + Gl @R+ A &)

f@)FEa

1 1
f(@)2Fa+[f"(z)|=

Setting h = in (7.2) and using h < f(:c)%%a, we obtain (7.1).

]

Lemma 7.7 (Even dominate odd, C*%). Let 0 < a < 1. Let f : R — R be a C® non-negative
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function such that [f]csem) < 1. Then

].3 2+«

7@ < 2 F@FR + 2 f@)F @)+ @) ), Ve e R

[£"(@)] < 6f(2)75 +6f"(x)[ 7 Vo €R.
Proof. By Taylor expansion, Vx € R,
/ 1 " 2 1 " 3 1 3+«
0 fla+h) < J@)+ F @b+ 3 @+ =@+ 2|,
So by replacing h with £h,
1 1 1
7@+ =P @] < Fl) + 51 @)+ B = A
Replacing h by 2h in (7.6), we have
/ 1 /// 3 1 " 2 1 3+a
[2- f@)h+8- o fP(@)l7] < f(2) + 5 (@)I(2h)" + £[2h]7* = B.

Combining (7.6) and (7.7), we have

S8A+ B

7@kl < 22

2A+ B

1 "
@] <

If f(x) =0, then f'(z) = 0 since f > 0. Otherwise, setting h = f@) s

f(2) 548 4| (z)| THe

and using h < f(x)?s%a, we have

! 1 f($) " 24«
F(@)] < 6(9-T+6-|f ()l +4-|h] )

—_

=5
Thus (7.3) holds.
If f(x) = f"(z) =0, then f”(x) =0 by (7.5).

(7.6)

(7.8)

(7.9)

n (7.8)

(9 f@)55% (f@) 7= + |f" (@) %) + 6+ |f(2)] - f ()= +4- f<x>?¢3>.

Otherwise, setting h to be max{f(:v)s‘%a, \f”(m)|1+%} and using max{a, b} < a+bin (7.9),
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we obtain

3 3|1 1 1
|f”/(l')’ < J;l(f) + |fh<x>| + (§ + 6 . 23+a) . |h|a

«

< 3f(x)3%a 4 3|f"(x)| 7% +3- | f(x)Fa + | f"(z)| 7=

< 3f(2)a 43| (@) + 3 (f(:c)si‘a + \f”(m)lu%).

(Note (a +b)* < a®*+b* for a,b >0 and 0 < a < 1.) Thus (7.4) holds. O
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