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Short title

Expanding the potential of infrared spectroscopy as a tool of precision dairy farming



Abstract

In this thesis, two propositions were presented to expand the capabilities of infrared (IR)
spectroscopy to monitor dairy production and milk quality. The first was to provide Canadian milk
producers with suitable cost-effective and easy-to-use instruments for on-site milk analysis. Such
instruments will help in realizing the proAction initiative of the Canadian Quality Milk Program
(CQM) of the Dairy Farmers of Canada (DFC), which aims at enabling Canadian milk producers
to self monitor fat and protein content, and other milk quality indicators through on-site milk
sampling and inspection. Implementation of infrared milk analysis with the use of a portable
Fourier transform infrared (FTIR) spectrometer equipped with a transmission cell and combined
with an ultrasonic homogenizer proved to be effective in on-site prediction of milk components.
An external validation study of the final prototype evaluated in this study yielded mean difference
(MD) values that were <0.05 for fat, protein and lactose, which comply with the stipulations of the
AOAC International official method 972.16, 33.2.31. Attenuated total reflectance (ATR) was
evaluated as an alternative sample introduction method for raw milk analysis by FTIR
spectroscopy without any homogenization. The ATR-FTIR calibration models developed by
partial-least-squares regression (PLSR) yielded prediction error values of 0.06%, 0.07% and
0.06% for lactose, protein and non-fat solids, respectively, and 0.37% for milk fat, which makes
ATR infeasible for the determination of milk fat. In addition, a linear variable filter (L\VVF) array
spectrometer, which is a novel IR spectrometer, was evaluated for milk analysis. The prediction
error values for PLSR models developed with raw milk IR spectra were 0.07%, 0.23% and 0.49%
for lactose, protein and fat, respectively. Ultrasonic treatment of milk reduced the prediction errors
for lactose and protein to 0.05% and 0.15%, respectively, but did not affect the prediction error for
milk fat. Thus, use of this LVF IR spectrometer was deemed infeasible for milk fat determination.
Nevertheless, the LVF IR spectrometer proved to be an effective tool in differentiating watered-
down milk samples from genuine ones. In some countries, fraudulent dairy farmers might add
water to increase the volume of milk. This practice can be detected by milk cryoscopy, which
measures milk freezing point depression; however, the reading of a cryoscope can be restored to
its legal values by the addition of true solutes, such as urea, ammonium sulfate and citrate. The
LVF IR spectrometer differentiated between genuine milk samples and those that contained as low
as 5% added water and different chemical adulterants. Quantitatively, PLSR detected added water

in raw milk with a prediction error of 1.85% regardless of the identity of the chemical adulterant



that was added with water to mask its addition. These promising results convinced the
manufacturer of the LVF IR spectrometer to produce a lab-in-box milk adulteration detector,
which was commissioned for a major manufacturer of milk cryoscopes in Brazil. In addition, a
transmission-based FTIR solution was developed to differentiate watered-down milk samples from
genuine ones. For raw milk, the DialPath accessory (Agilent Technologies, Santa Clara, California,
USA) with 30 um path length was used as a sample introduction method, and a multitiered
prediction workflow was elaborated in the following manner. First, a classification model was
developed to differentiate between the spectra of watered-down and genuine milk samples by
applying principal component-based quadratic discriminant analysis. Second, soft independent
modelling of class analogies (SIMCA) was employed to develop a classification model allowing
for identification of the chemical adulterant present in the sample, if any. If the chemical adulterant
IS urea, citrate or sulfate, then added water and the chemical adulterant will be quantified by
selection of the appropriate PLSR calibration models. If multiple chemical adulterants are present,
then only added water will be quantified. The prediction error value of the PLSR calibration model
for added water was 0.39 % for raw milk scanned with the DialPath accessory (Agilent
Technologies, Santa Clara, California, USA) with 30 um path length. The presence of different

chemicals in milk did not undermine the capability of the water prediction model.

The second proposition that was discussed in this thesis to expand the capabilities of milk IR
spectroscopy was the exploitation of milk FTIR spectra beyond the paradigm of predicting specific
milk components by PLSR models that will be used in the decision making process on dairy farms.
Combining principal component analysis (PCA) and mixed modeling proved to be a successful
strategy to detect trends of subtle changes in milk FTIR spectra. This approach was applied to
animal trials aimed at studying the effect of tie rail position, chain length, stall width, stall length
and manger wall height on animal welfare level in the tie stall dairy farming system. For each trial,
a spectral fingerprint was isolated, which represented changes to milk composition associated with
the significant treatment effect and was interpreted in light of the behavioural data that was
collected during the trial. Currently, animal welfare is assessed by trained technicians who visit
dairy farms to evaluate animal injuries, quality of the cow’s lifts and sets, body condition and
lameness. The hybrid approach investigated in this thesis bridged the gap between two distinct
scientific domains, namely, FTIR spectroscopy and animal behaviour science, and it will open the
door to study animal welfare from a novel angle, which will eventually help dairy herd
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improvement agencies provide new services for dairy farmers in the field of animal welfare based

on milk FTIR spectra that are routinely recorded.



Résumé

Dans cette these, deux propositions ont été présentées pour augmenter la fonctionnalité de la
spectroscopie infrarouge (IR) pour contréler la production laitiére et la qualité du lait. La premiere
était de développer des instruments rentables et faciles a utiliser pour I'analyse d’échantillons de
lait au site de collecte. De tels instruments aideront a réaliser le volet Qualité du Lait inclus au sein
de I'initiative proAction des Producteurs laitiers du Canada, en permettant aux producteurs de lait
canadiens de surveiller eux-mémes et plus étroitement la teneur en matiéres grasses et en protéines
ainsi que d'autres indicateurs de la qualité de lait. L’utilisation d'un spectrométre infrarouge
portable a transformée de Fourier (IRTF) équipé d'une cellule de transmission et combiné a un
homogéneéisateur a ultrasons s'est avérée efficace et fiable pour 1’analyse d’échantillons de lait
directement a la ferme, dans le but de déterminer leur teneur en composantes. Une étude de
validation externe du prototype final évalué dans cette étude a donné une différence moyenne
<0.05 pour la matiere grasse, la protéine et le lactose, ce qui correspond a la norme officielle de
I’AOAC International 972.16, 33.2.31. La réflectance totale atténuée (RTA) a été évaluée comme
méthode alternative d'introduction d'échantillons pour I'analyse du lait cru non homogénéisé par
spectroscopie IRTF. Les modeles d'étalonnage RTA-IRTF développés par régression des moindres
carrés partiels ont donné des valeurs d'erreur de prédiction de 0.06%, 0.07% et 0.06% pour le
lactose, la protéine et les solides non gras, respectivement, et de 0,37% pour la matiere grasse
laitiere, ce qui rend la RTA inutile pour évaluer la teneur en gras du lait. Un spectrometre a filtre
variable linéaire (FVL), qui est un nouveau type de spectrométre IR, a été aussi évalué pour
I'analyse du lait. Les valeurs d'erreur de prédiction des modeles de régression des moindres carrés
partiels développés avec des spectres IR pour le lait cru étaient de 0.07%, 0.23% et 0.49% pour le
lactose, la protéine et la matiere grasse respectivement. Le traitement du lait par ultrasons a réduit
les erreurs de prédiction du lactose et de la protéine a 0.05% et 0.15%, respectivement, mais n'a
pas affecté I'erreur de prédiction pour la matiere grasse. Ainsi, l'utilisation de ce spectrometre FVL
IR a été jugée inutile pour évaluer la teneur en matiére grasse du lait. Néanmoins, le spectromeétre
FVL IR s'est avéré un outil efficace pour différencier les échantillons de lait frelatés des
échantillons authentiques. Dans certains pays, il arrive que des producteurs laitiers frauduleux
ajoutent de I'eau pour augmenter le volume de lait expédié. Cette pratique peut étre détectée par la
cryoscopie du lait, qui mesure la dépression du point de congélation du lait ; cependant, la lecture

d'un cryoscope peut étre rétablie aux valeurs attendues via I'ajout de solutés tels que l'urée, le
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sulfate d'ammonium et le citrate. Le spectromeétre FVL IR a permis de différencier les échantillons
authentiques de lait de ceux contenant aussi peu que 5% d'eau ajoutée et divers adultérants.
Quantitativement, le modéle de régression des moindres carrés partiels a détecté 1’ajout d’eau dans
le lait cru avec une erreur de prédiction de 1.85% et ce, peu importe I'identité de I'adultérant
mélangé a I'eau pour masquer son ajout. Ces résultats prometteurs ont convaincu le fabricant du
spectrométre FVL IR de produire un détecteur d’adultération du lait, qui a ét€ commandé pour un
grand fabricant de cryoscopes a lait au Brésil. En outre, une solution basée sur la transmission
IRTF a été développée pour différencier les échantillons de lait adultérés des échantillons
authentiques. Pour le lait cru, I'accessoire DialPath (Agilent Technologies, Santa Clara, Californie,
EU) avec une longueur de trajet de 30 um a été utilisé comme méthode d'introduction d'échantillon,
et un flux de travail de prédiction a plusieurs niveaux a été élaboré. Premiérement, un modéle de
classification a été développé pour différencier les spectres d'échantillons de lait dilué et
authentique en appligquant une analyse discriminante quadratique basée sur les composantes
principales. Deuxiémement, une modélisation indépendante douce des analogies de classe
(SIMCA) a été utilisée pour développer un modeéle de classification permettant d'identifier
I'adultérant présent dans I'échantillon, le cas échéant. Si I'adultérant est l'urée, le citrate ou le
sulfate, l'eau ajoutée et l'adultérant chimique sont quantifiés en sélectionnant les modeles
d'étalonnage de moindres carrés partiels appropriés. Si plusieurs adultérants sont présents, seule
I'eau ajoutée est quantifiée. La valeur d'erreur de prédiction de I'eau ajoutée était de 0.39% pour le
lait cru analysé avec l'accessoire DialPath (Agilent Technologies, Santa Clara, Californie, EU). La
présence de différents adultérants dans le lait n'a pas affecté les résultats du modele de prédiction

de I'eau.

La deuxiéme proposition discutée dans cette thése visait a augmenter la fonctionnalité de la
spectroscopie IR du lait par I'exploitation des spectres IRTF du lait au-dela de leur utilisation
traditionnelle, soit pour la prédiction des composantes du lait, en introduisant des modéles de
moindres carrés partiels utilisables dans les processus décisionnels au sein des troupeaux laitiers.
La combinaison de I'analyse en composantes principales (ACP) et de la modélisation mixte s'est
avérée une bonne stratégie pour détecter méme les changements subtils dans les spectres IRTF du
lait. Cette approche a été appliquée aux essais sur les animaux visant a étudier I'effet de la position
de la barre d'attache, de la longueur de la chaine, de la largeur de stalle, de la longueur de stalle et

de la hauteur du muret entre la stalle et la mangeoire sur le niveau de bien-étre de vaches laitieres
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logées en stabulation entravée. Pour chaque essai, une empreinte spectrale représentant les
changements dans la composition du lait associés a I’effet significatif d’un traitement a été isolée,
puis interprétée a la lumiére des données comportementales recueillies au cours de I'essai.
Actuellement, le bien-&tre animal est évalué par des techniciens qualifiés qui visitent les fermes
laitieres pour évaluer les blessures, la qualité des levers et des couchers, la condition de chair et la
boiterie chez les vaches. L'approche hybride étudiée dans cette these se veut combler I'écart entre
deux domaines scientifiques distincts, soit la spectroscopie IRTF et la science du comportement
animal, et ainsi ouvrir la porte a I'étude du bien-étre animal sous un nouvel angle. Cette nouvelle
approche pourrait éventuellement aider les agences d'amélioration des troupeaux laitiers a fournir
aux producteurs de nouveaux services liés aux questions de bien-étre animal, en se basant sur les

spectres IRTF de ces mémes échantillons de lait qui sont déja régulierement collectés a la ferme.
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Contributions to knowledge

1. Demonstrated that major milk components and some minor ones can be determined by

portable FTIR spectrometer equipped with a transmission cell and combined with
ultrasonic processing of milk and PLS prediction models.
In this study, it has been proven that milk analysis by FTIR spectroscopy can be performed
outside central dairy laboratories. The final prototype that was tested yielded MD values that
were < 0.05 for fat, protein and lactose, which comply with the stipulations of the AOACI
official method 972.16, 33.2.31. This proof of concept opens the door for on-site milk analysis,
which will expand the applications of FTIR spectroscopy in monitoring milk compositions on
dairy farms.

2. Evaluated the potential of ATR-FTIR spectroscopy in raw milk analysis accompanied by

PLS regression models.
In this study, it has been proven that ATR-FTIR spectroscopy can be a viable option for the
determination of protein, lactose and solids non-fat in raw milk. The prediction errors for these
milk components were better than those reported in the literature so far and comparable to what
has been obtained by transmission based FTIR spectroscopy. As a sample introduction method,
ATR can eliminate issues related to pumping raw milk through transmission cell with
micrometric optical path length. Contrary to what has been reported in the literature, the study
relied on big sample size of producer raw milk (N=360) that resulted in 1080 spectra. In
addition, the study confirmed ATR-FTIR spectroscopy inability to capture sufficient chemical
information related to milk fat.

3. Evaluated the novel linear variable filter (LVF) array IR spectrometer accompanied by
PLS regression for milk analysis.

LVF array IR spectrometers do not rely on interferometry to resolve different wavelengths in
the mid-IR range, which means they do not have moving parts. This fact makes them good
candidate for on-site applications of milk analysis. In addition, they are significantly cheaper
than their FTIR counterpart and they are equipped with an ATR sample introduction accessory.
This spectrometer revealed acceptable performance in determining water content, lactose and
protein in raw milk. However, it was incapable of capturing sufficient chemical information

related to milk fat.
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4. Demonstrated that different combinations of IR spectrometers and sample introduction

methods can capture chemical information in milk containing extraneous water and
chemical adulterants.
Several combinations of IR spectrometers and sample introduction methods were used to scan
milk samples containing extraneous water and chemical adulterants. These chemicals are
intended to restore the freezing point depression reading of milk cryoscopy to its legal value.
This practice is a serious concern in some countries. All evaluated combinations revealed
reliable capabilities in detecting this practice. These combinations were ATR-LVF
spectrometer and FTIR spectrometer combined with ATR accessory, transmission cell and the
DialPath accessory (Agilent Technologies, Santa Clara, California, USA), which is a
transmission-based sample introduction method.

5. Contributed to the development of a novel lab-in-box milk adulteration detection

instrument.
The manufacturer of the LVF spectrometer built a lab-in-box instrument dedicated to the
detection of watered-down milk after proving that the LVVF spectrometer can detect this
practice. The new instrument can differentiate genuine milk samples from watered-down ones
and can estimate the percentage of added water regardless of the chemical adulterant that might
have been added to milk to restore its freezing point depression to the legal value.

6. Developed an FTIR based solution to detect watering down of milk.

A multi-tier solution was developed to detect milk that contains extraneous water and chemical
adulterants using FTIR spectroscopy combined with the DialPath accessory (Agilent
Technologies, Santa Clara, California, USA) as a sample introduction method for raw milk in
a business-oriented context. The solution included a principle component based quadratic
discriminant analysis (PC-QDA) classification model to differentiate between genuine milk
samples and watered-down ones with chemical adulterants, a soft independent modelling by
class analogy (SIMCA) classification model to determine the chemical adulterant that might
be present in the milk sample and PLS regression models to predict the percentage of added
water and chemical adulterant in case single chemical is present. The added water prediction
model performed well regardless of the type or number of chemical adulterants present in the

milk sample. This solution was the result of a capacity building project between the McGill IR
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group and PZL Industria Eletronica Ltda (Londrina, PR, Brazil), which is a lead manufacturer
of milk cryoscopy instruments in South America.

Evaluated combinations of spectral preprocessing treatments and multivariate
chemometric techniques to study the effect of housing treatments of dairy cows on milk
composition.

Principle component analysis (PCA), hierarchical cluster analysis (HCA) and partial least
squares discriminant analysis (PLS-DA) were applied to raw or preprocessed milk FTIR
spectral data collected during an animal trial designed to study the effect of the tie rail position
on welfare level of dairy cows. The objective was to study animal welfare from a novel angle,
which is the effect of animal comfort on milk composition. The merits and drawbacks of each
technique were evaluated to determine its usefulness for the purpose of such study.

Proved that PCA can isolate the spectral fingerprint that reflects changes in milk
chemical composition resulting from a systemic factor affecting milk components.

PCA was applied to milk FTIR spectral data as a variable reduction method that separated
meaningful information from noise. The isolated principal components were used as input
variables for hypothesis testing with mixed models to study the effects of housing treatments
of dairy cows on milk composition. This practice will extend the boundaries of milk FTIR
spectroscopy beyond the paradigm of predicting specific milk components by PLS regression
models to study the metabolic state of dairy cows.

Developed a hybrid approach to analyze milk FTIR spectral data in the context of
designed experiment animal trials.

PCA-mixed modeling approach was successfully applied as a data mining tool to milk FTIR
spectral data collected during animal trials aiming at studying the effect of tie rail position,
chain length, stall width, stall length and manger wall height on milk composition as an
indicator of animal comfort and welfare level. Changes to milk components were inferred from
principal components that revealed significant treatment effect in situations where numerical
data of individual milk components did not reveal such effect when tested by mixed modeling.
These changes were explained in light of behavioural data that had been collected during the

trial. This approach represents a novel angle to study animal welfare.
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Chapter 1: Introduction

1.1 General introduction

Quantitative milk analysis by mid-infrared (IR) spectroscopy was developed in the 1960s as a
rapid, cost-effective, green and non-destructive analytical method [1, 2], which does not involve
the use of hazardous chemicals or sample preparation. Absorption peaks in the mid-IR range at
5.73 um, 6.46 um, 9.6 um and 7.9 um were used to determine fat, protein, lactose and solids-non-
fat (SNF) content in milk, respectively [1]. In the 1990s, Fourier transform infrared (FTIR)
spectroscopy was proposed for the quantitative analysis of milk in combination with partial least
squares (PLS) regression [3] and later became an official method for milk analysis by IR
spectroscopy [4]. Modern FTIR milk analyzers are renowned for their high sample throughput,
which reaches 500 samples/h, fast analysis time (i.e., 6-30s), accuracy that is better than 1%
relative on the main constituents and precision that is better than 0.5% relative on the main
constituents [5]. Accuracy is the closeness of a measured value to the true or accepted value; on
the other hand, precision is the closeness of results to others obtained in exactly the same way (i.e.,
replicates) [6]. These analyzers are currently the cornerstone of the milk recording system that is
implemented in various countries to monitor milk quality and verify the commitment of dairy
producers to the standards of dairy production and industry. The information that is obtained by
the milk recording system contributes to achieve the goals of precision dairy farming (PDF), which
is defined as “the use of information and communication technologies for improved control of
fine-scale animal and physical resource variability to optimize economic, social, and
environmental dairy farm performance” [7]. The main objectives of PDF are maximizing
individual animal potential, early detection of disease, and minimizing the use of medication
through preventive health measures. Perceived benefits of PDF technologies include increased
efficiency, reduced costs, improved product quality, minimized adverse environmental impacts,

and improved animal health and well-being [8].

On May 29", 1995, the Canadian Dairy Network (CDN) was established with mandates that
included genetic evaluation services for dairy breeds in Canada and the establishment of industry
standards of milk recording services for publishable lactations and for genetic evaluation. These
standards are monitored on a herd-by-herd basis and disciplinary sanctions are imposed if these

standards are violated by dairy farmers [9]. In 2011, the latest version of the milk recording
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standard was published under the title “Dairy Herd Recording Service Standards for Herds
Qualifying for Publishable Lactations and/or Genetic Evaluations in Canada” [10]. These
standards are applied by two central dairy laboratories of the Canadian Dairy Herd Improvement
(CDHI) agency, which are Valacta and CanWest DHI.

Figure 1-1 summarizes the current business model for milk recording systems. Dairy farmers
enroll all animals of a herd that have calved at least once, and they subscribe to services offered
by the DHI agency. The herd must be tested at least 10 times within a 12-month period [10]. A
technician from the agency visits several dairy farms where he/she supervises the collection of
milk samples from all individual animals and/or bulk milk tanks. These milk samples are then
transported to the central dairy laboratory where they are analyzed by approved milk analyzers.
For example, more than 3 million milk samples are shipped to Valacta from Québec and the

Maritimes for analysis every year.
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In the central dairy laboratory, milk analyzers produce an FTIR spectrum for each milk sample.
This spectrum is used as an input for multiple PLS regression models to predict the concentrations
of specific milk components. The current list of milk components determined by Valacta includes:
fat, protein, true protein, lactose, urea, -hydroxybutyrate (BHB), myristic acid (C14:0), palmitic
acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), short-chain fatty acids (SCFA), mid-chain
fatty acids (MCFA), long-chain fatty acids (LCFA), saturated fatty acids (SFA), total unsaturated
fatty acids (TUFA), mono-unsaturated fatty acids (MUFA), poly-unsaturated fatty acids (PUFA),
trans fatty acids (TFA), free fatty acids (FFA), de novo fatty acids, mixed fatty acids and preformed
fatty acids. It must be noted that the determination of milk fatty acids is not considered standard
analysis for monitoring milk composition for the time being. Depending on the concentrations of
these milk components, different reports are generated to determine payments to dairy producers
and to support dairy producers’ decision-making process regarding the management of their herds.
Milk fat and protein are the most important milk components and their levels will dictate daily
decisions in the dairy production process. Urea is an indicator of the feed ration’s protein use
efficacy, where increased level of urea indicates a waste of the feed’s protein and high level of
nitrogen excretion in the urine. BHB is an indicator of ketosis, which is a metabolic illness that
occurs at the beginning of the lactation period as a result of transition management issues in which
cows rely on body fat reserves to fulfil increased energy needs at the beginning of the lactation for
an extended period of time. Somatic cell count (SCC) is also determined in milk samples, which
represents an indicator of udder health and milk quality. In addition to milk analysis, DHI agencies
provide consultancy and support related to feeding, forage, heifer raising, reproduction, dry off
and transition, animal comfort and welfare. Some of these services, such as the assessment of
animal welfare, do not rely on milk recording data and they require visits by trained technicians to

evaluate animal injuries, quality of the cow’s lifts and sets, body condition and lameness.

1.2 Rationale and research objectives

The overall objective of this thesis is to present two propositions that will expand the capabilities
of the milk recording system. The first is on-site milk analysis by IR spectroscopy and the second
is the exploitation of milk FTIR spectra beyond the paradigm of predicting specific milk
components by PLS regression models from those spectra.



Advances in manufacturing of FTIR spectrometers have led to the production of miniaturized
portable FTIR spectrometers with reasonable cost. The objective of the research presented in
Chapter 3 is to investigate the suitability of a portable FTIR spectrometer equipped with a
transmission cell as a sample introduction method for on-site milk analysis, since the official
method for milk analysis is currently based on transmission FTIR spectroscopy [4]. On-site
analysis of milk will provide dairy farmers with a tool for self monitoring of milk composition
without the need to increase the number of transported milk samples to the central dairy laboratory;
hence, preventing an increase in the carbon footprint of this process. Milking robots provide data
about milk composition; however, their predictions are based on near infrared (NIR) spectra which
are characterized by broad and overlapped low intensity bands, between 10 and 100 times
attenuated compared to the sharper mid-IR fundamental absorption bands produced by FTIR
spectroscopy. The broad peaks in NIR spectra cannot be directly assigned to specific chemical
compounds or interpreted in a straightforward manner as mid-IR spectra [11]. In addition, light
scattering becomes a more serious issue for electromagnetic radiation in the NIR region due to
shorter wavelengths (i.e., 2,500 to 750 nm) than the mid-IR region that are well below the diameter
of fat globules in milk, which makes predictions of milk components that are based on NIR

spectroscopy less accurate than their FTIR counterparts.

The objective of the research presented in Chapter 4 is to investigate the suitability of a linear
variable filter (LVF) array IR spectrometer and attenuated total reflectance (ATR) as sample
introduction method for on-site milk analysis. Linear variable filter arrays IR spectrometers are a
novel type of IR spectrometers that do not rely on interferometry to resolve wavelengths in the
mid-IR range. The absence of moving parts makes them good candidates for on-site milk analysis
instruments. In addition, ATR provides a practical sample introduction method, especially for raw
milk analysis. It eliminates the need to pump milk through a transmission cell with a micrometric
path length; hence, avoiding issues related to cell clogging resulting from the size of milk fat

globules in raw milk.

The objective of the research presented in Chapter 5 is to present a case study where on-site milk
analysis by IR spectroscopy can provide a solution for a major issue that faces the dairy industry
in Brazil, which is the addition of extraneous water and chemical adulterants to milk. In Brazil,

milk cryoscopy is the official method for the detection of added water to milk; however, the



addition of some chemicals with the added water restores the readings of milk cryoscopy
instruments to their legal values. IR spectroscopy combined with multivariate discriminate
algorithms provides a viable solution for differentiation of genuine milk samples from watered-

down ones.

The objective of the research in Chapters 6 and 7 is to evaluate multivariate algorithms to study
the effects of different dairy cattle housing treatments that are intended to improve animal welfare
on milk composition using milk FTIR spectral data directly without relying on predictions of
concentrations of specific milk components. Data mining milk FTIR spectra to detect and analyze
the spectral fingerprint of the welfare status of the animal on milk composition is a novel approach
that will extend the capabilities of milk FTIR spectroscopy beyond the paradigm of predicting
specific milk components by PLS regression models. Currently, milk FTIR spectra are not

employed in the assessment of animal comfort and welfare.



Chapter 2: Literature review

2.1 Introduction

Precision dairy farming (PDF) is defined as “the use of information and communication
technologies for improved control of fine-scale animal and physical resource variability to
optimize economic, social, and environmental dairy farm performance” [7]. The main objectives
of PDF are maximizing the economical return from dairy farming and minimizing cost of
production and animal distress. This approach will lead to improved milk quality, minimal

environmental impact and improved animal health and well-being [8].

Borchers and Bewley (2015) conducted a survey to assess the adoption, perception, effectiveness,
and use of PDF technology by sending a questionnaire to 90 farms in the United States of America
and 19 farms in other countries that included: Australia, Canada, India, Iran, Israel, Mexico, New
Zealand, and the United Kingdom [12]. The authors’ list of parameters monitored by PDF
technologies included: daily milk yield, milk components, step number, body temperature, milk
conductivity, automatic estrus-detection monitors, and daily body weight measurements. In
addition, the authors included proposed PDF parameters, such as jaw movements, ruminal pH,
reticular contractions, heart rate, animal positioning and activity, vaginal mucus electrical
resistance, feeding behavior, lying behavior, odor, glucose, acoustics, progesterone, individual

milk components, milk color, infrared udder surface temperatures, and respiration rates [13].

According to the results of this survey, 68.8% of respondents indicated the use of technology on
their dairy farms versus 31.2% not using technology at all. The percentages of producers
measuring parameters by the implemented technologies were: 52.3%, 41.3%, 25.7%, 24.8% and
21.1% for daily milk yield, cow activity, mastitis, milk components (e.g., fat, protein and somatic
cell count SCC) and standing estrus, respectively. In terms of parameter usefulness, the
percentages of dairy producers who perceived the following parameters as useful were: 80.7%,
79.8%, 78.7%, 74.3%, 59.4% and 53.2% for daily milk yield, standing estrus, mastitis, cow
activity, temperature and milk components (e.g., fat, protein and SCC), respectively. On the other
hand, the surveyed dairy producers considered the benefit-to-cost ratio as the most important factor
when making purchasing decisions regarding PDF technologies followed by total investment cost,

simplicity and ease of use, proven performance through independent research, availability of local



support, compatibility with existing dairy practices and systems and time involved in using the

technology [13].

2.2 Importance of monitoring milk composition

Monitoring the chemical composition of milk is currently implemented as a tool to manage dairy
herds on dairy farms. Central dairy laboratories, such as Valacta (Sainte Anne de Bellevue, QC,
Canada), are using FTIR milk analysers to determine milk fat, protein, lactose, urea, B-
hydroxybutyric acid (BHBA or BHB), acetone, milk fatty acids and somatic cell count (SCC) in
milk samples that are routinely collected from dairy farms [14]. Changes in milk composition of
individual animals can be considered as an indicator of the animal’s metabolic status or the efficacy
of the feed management system. The early detection of these changes will allow dairy farmers to
detect metabolic and management problems in early stages; hence, preventing any health disorders
that might affect the well-being and productivity of the individual animal by taking preventive
measures as early as possible.

Ketosis and mastitis are among the most economically relevant diseases in dairy cows [15]. At the
beginning of lactation, the energy demand in dairy cows increases substantially. This energy
demand is met by increasing feed intake and by fat mobilization from the cow’s adipose tissue.
When feed does not meet the increased energy demand, the cow can go through a period of
negative energy balance. Increased dependency on body fat in providing the increased body energy
needs results in increased production of major ketone bodies, such as acetone, acetoacetate and
BHB; thus, their levels are increased in blood (i.e., ketonemia), urine (i.e., ketonuria), milk (i.e.,
ketolactia) and other body fluids. This case is referred to as Ketosis and it can be classified as
clinical and subclinical, which causes economical losses to the dairy industry. Since cow blood
sampling is not a convenient procedure for farmers, determining BHBA levels in milk is a viable
alternative. In milk, BHBA concentrations that are <100 mol/L have been reported to be normal
[16]. Other researchers have indicated that negative energy balance affects the fatty acids (FA)
composition of milk fat in the early stages of lactation. Negative energy balance will increase the
proportions of Omega-9 (C18:1 cis-9) and long chain fatty acids (LCFASs), notably C16:0 and
C18:0, and will decrease the proportion of medium chain fatty acids (MCFAs) [15]. Other milk
components will also be affected by negative energy balance or ketosis. In this case, protein, fat,

milk fat-protein ratio, and lactose will be <2.9%, >4.8%, >1.4 and <4.5%, respectively [15].



However, these thresholds should be cautiously used taking into consideration the characteristics

of the herd in question.

Mastitis is another health problem that alters milk composition significantly. Milk secreted from
inflamed mammary glands is characterized with high SCC, increased free fatty acids (FAS)
concentrations, reduction in casein combined with an increase in whey protein, reduction in lactose
concentration, changes in the concentration of minerals such as sodium, chloride, potassium and
calcium, and increase in milk pH [15]. SCC can be clevated in healthy cows’ milk, where
macrophages and neutrophils constitute 66-88% and 1-11%, respectively. However, neutrophils
will increase to almost 90% in case of inflammation of mammary glands. The proposed SCC
threshold values for the Canadian Holstein population are: 500,000, 300,000 and 200,000 cells/mL
for the following days in milk (DIM) classes: 5 to 10, 11 to 30, and 31 to 305 DIM, respectively.
In addition, researchers reported an increase in bovine Lactoferrin (LTF) from 0.1-0.4 g/L up to
2.3 g/L in mature milk secreted from healthy and inflamed mammary glands, respectively [15].
Mastitis also decreases the lactose content of milk. Lactose is considered one of the most stable
components of milk with a very low day-to-day variation of 0.9% compared to 7.7%, 7.0% and
2.0% for fat content, milk yield and SCC, respectively. Hence, a sudden decrease in lactose content
that exceeds the day-to-day variation limit might be an early indication of mammary gland

inflammation [15].

Acute and subacute ruminal acidosis (SARA) is another important health issue in dairy cows. It is
associated with the accumulation of lactic acid and volatile fatty acids (VFAs), respectively, in the
rumen and the subsequent decrease in the ruminal pH for several hours per day [17] that results
from feeding high grain diets that are low in fiber to high yielding dairy cows under intensive
livestock production systems that are adapted to digesting forage diets [18, 19]. In these cases,
depressed milk fat [14, 18], reduced milk protein and increased milk non-protein nitrogen NPN
[20] have been reported. In addition, decreased ruminal pH alters the biohydrogenation pathway
of linoleic acid and increases the production of trans-10 C18:1 fatty acid; thus, more trans fatty

acids are absorbed, even if the intake of unsaturated fatty acids is not necessarily high [18, 21].

In addition to the animal’s health and metabolic state, milk composition, specifically urea content,
can provide indications about nutritional management, production, and economic variables in

commercial dairy herds. Urea in milk originates from three sources, which are protein



decomposition, the digestion of NPN and the catabolism of amino acids in the mammary glands.
True protein and NPN represent 95% and 5%, respectively, of milk protein and urea represents
30-35% of milk NPN [15]. Average herd milk urea concentrations are positively related to the
dietary crude protein and rumen degradable protein; thus, milk urea concentration provides
indication about the efficacy of nitrogen utilization in dairy cattle. Feeds high in protein lead to
higher feed costs, environmental pollution and fertility problems. On the other hand, a very low
milk urea content could indicate protein deficiencies in the diet of dairy cattle, potentially leading
to a loss of production. The acceptable range for urea concentration in milk is between 200 and
400 mg/L or 20-40 mg/dL [15].

To summarize, milk composition provides rich information about the health, metabolic and
nutritional state of cows and it can be employed as an on-site management tool for sustainable
dairy production. However, dairy producers do not perceive milk composition as an important
parameter as they do for milk yield [13], for example. One of the probable reasons for this
perception is the lack of an on-site milk analyzer that is affordable and that can rapidly analyze
milk with an acceptable accuracy and precision.

2.3 Milk analysis by infrared spectroscopy

Quantitative milk analysis by Fourier transform infrared (FTIR) spectroscopy is currently an
official method of the Association of Official Analytical Chemists (AOAC) International [4],
which is extensively used for producer payment, herd milk analysis and routine quality control in
the dairy industry [22]. In 1964, Goulden described milk analysis by infrared (IR) spectroscopy
[1]. He demonstrated that milk components absorb IR energy at specific wavelengths and that the
intensities of the absorption peaks can be used for quantitative determination of these components.
The reported wavelengths that were used to determine major milk components were 5.73 um, 6.46
um, 9.6 um and 7.9 um for fat, protein, lactose and solids-not-fat (SNF) content, respectively. In
wavenumbers”, these values are equal to 1745.20 cm™, 1547.99 cm™, 1041.67 cm™ and 1265.82
cm, respectively. Goulden demonstrated that the absorbance intensities of wavelengths assigned
to fat and lactose are a linear function of their concentrations, while the absorbance intensity of
wavelength assigned to protein has a significant contribution from fat. For this reason, a correction

equation was derived to calculate the concentration of protein at the corresponding wavelength. In

* The following equation was used to convert from wavelength to wavenumber: y cm-* = 10,000,000 / x nm.
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addition, it was demonstrated that scattering of light by fat globules is proportional to particle-size-
to-wavelength ratio. Hence, attenuation of the IR beam due to scattering can be eliminated by
decreasing fat globules size through milk homogenization. Temperature of milk samples was
another important factor that was proved to affect the IR spectra of milk samples. The optimum
reported temperature for recording milk IR spectra is 40 °C +1. Change of 1 °C led to a 1% change
in the total signal. On the other hand, transmission cells with 40 um path length and calcium

fluoride windows were found to be the optimum measurement cells [1].

In 1967, Biggs described an IR milk analyser [2]. The reported precision of measurement of milk
analysis by this analyzer is +0.03% and the standard deviations between IR and chemical methods
are £0.06%, +0.07% and +0.06% for fat, protein and lactose, respectively. IR milk analysis is rapid
and less expensive than other laboratory chemical methods that are used for the determination of
milk components. With an infrared milk analyzer (IRMA) two technicians can prepare samples
and complete analyses for fat, protein, and lactose at the rate of one sample per minute. According
to Biggs’s calculations at that time, the labor cost for three component analyses is about 7 cents
and the instrument cost per sample is less than 2 cents; thus, the cost of three component analyses
is less than 10 cents per sample. This cost is less than one-tenth the cost of the equivalent analyses
by accepted chemical methods. The IR milk analyzer, which was described by Biggs, consisted of
a double beam IR spectrometer that produced two IR beams. One beam passes through a
transmission cell containing milk and the other passes through a transmission cell containing
distilled water. Both cells share equal optical path. After going through the cells, the IR beams
enter a monochromator that includes a diffraction grating and a potassium bromide (KBr) prism,
then radiation, within a narrowly selected range of wavelengths, is focussed on to a thermocouple
detector. Biggs used wavelengths identical to those reported by Goulden. A micro-switch system
was used to automatically switch between those wavelengths to obtain results for each of milk
components. In addition, milk samples were homogenized and heated to a constant temperature
before being pumped into the measurement cell. Milk fat homogenization is considered a crucial
factor for the accurate determination of fat levels in raw milk samples. According to Biggs, raw
milk fat should be homogenized once at 3000 psi or four times at 1500 psi. Biggs also suggested
the use of sonic homogenization for this purpose. Another important factor that affects the

accuracy of the obtained signal is temperature. According to Biggs, both milk sample and distilled
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water should be heated to the same temperature, and the machine should be placed in a
temperature-controlled environment to prevent any fluctuations in signal obtained from it. In
addition, the milk cell should be flushed with at least 25 mL of the current sample in order to

completely purge the remains of the previous one to avoid signal divergence [2].

In 1991, Van de Voort and Ismail proposed the use of Mid-FTIR spectroscopy for simultaneous
multi-component proximate analysis of food to determine the levels of major food components,
such as fat, protein and carbohydrates [22]. At that time, the application of IR spectroscopy in
quantitative food analysis was limited due to the presence of water that has a tremendous IR
absorbance, the necessity to use cells of short path length to minimize IR absorption by water and
difficulties related to sample preparation and handling. FTIR spectroscopy differs from diffraction
technology in the way different wavelengths are resolved. FTIR spectroscopy is based on
interferometry, which records absorbance intensities at all wavelengths simultaneously. In an
interferometer, an IR beam is divided into two beams by a beam-splitter. One of them is reflected
to a fixed mirror and the other to a moving mirror. When the two beams recombine at the beam
splitter, they undergo constructive and destructive interferences due to the differences in the path
lengths from the two mirrors. After going through the sample, the IR energy reaches a detector,
get digitized and an interferogram is produced. Fourier transform (FT) is then applied to the
interferogram to convert the signal from time domain to frequency domain to produce a

conventional IR spectrum [22].

In general, FTIR spectroscopy has several advantages. First, the IR beam does not lose its intensity
because it does not go through a prism, grating or a slit; hence, the throughput or the Jacquinot’s
advantage is achieved [23]. Another advantage is the multiplexing or Fellgett’s advantage, in
which the signal-to-noise ratio (SNR) is improved by taking multiplexed measurements. In FTIR
spectroscopy, SNR is proportional to the square root of the number of coadded scans of a specific
spectrum [23]. Inaddition, FTIR spectrometers contain a laser that acts as an internal wavenumber
standard, which means that the precision of wavenumbers in FTIR spectrum is +0.01 cm™ and that
makes peak positions highly reproducible in FTIR spectrum [23]. This precision enables data
manipulation operations such as spectral subtraction, spectral addition, the calculation of spectral
ratios, spectral stripping, and the addition of scans [22]. Several factors might interfere with FTIR

spectroscopy, such as Tyndall scattering, reflection losses, refractive index, temperature, sample

12



non-homogeneity and detector nonlinearity [22]. These effects can be minimized by maintaining
the absorbance between 0.2 and 0.7, using environment-insensitive absorption bands, using peak

areas rather than peak height and using more wavenumbers or calibration samples [22].

The IR bands that were proposed to determine the major food components were: the triglyceride
C = 0 ester linkage band and the C — H stretching band to determine fat; the amide | and/or amide
Il bands to determine proteins; and the hydroxyl bending band to measure carbohydrates [22].
Water absorbs strongly across the IR spectrum; however, with the high spectral precision and
spectral data manipulation routines available with FTIR, water can be subtracted out of the
spectrum to reveal the spectrum associated with the other components [22]. For FTIR milk
analysis, table 2-1 summarizes wavenumbers and band assignments that can be used to determine

milk components.

Table 2-1 Band assignments in the mid-IR range for FTIR milk analysis

Associated milk

Wavenumbers cm™ Band assignment Reference
component
1400-800 Highly coupled stretching / bending Carbohydrates [24]
modes mainly lactose
1100-1060 O=P—O stretch Phosphate [25]
1280-1200 Amide Il Protein [25]
1565-1520 Amide 1l Protein [24]
1700-1600 Amide | Protein [24]
1650 H-O-H bend Water [24]
1745-1725 C=0 stretch, triglyceride ester linkage Fat [24]
T CO2 and water
vapour
2980-2800 C—H stretch Fat [24]
3007-3012 C—H stretch / cis-C=C bonds Fat [24]
3600-3200 O—H stretch Water [24]
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2.4 Multivariate regression for milk analysis by FTIR spectroscopy

Several multivariate regression algorithms have been reported to develop calibration models for
the determination of milk components’ concentrations from milk FTIR spectra. These techniques
include classical and inverse least squares regression (CLS and ILS), principal component
regression (PCR) and partial-least-squares regression (PLSR) [26]. In CLS, the overall absorbance
at a specific wavenumber is assumed to be a linear summation of absorptions of all components in

the sample. Mathematically, it can be represented as follows [26]:

Equation 2-1

l
A] = kO] +Z 1Ci kl]
i=

Where 4; is the overall absorbance at wavenumber j, c; is the concentration of component i, [ is
the number of components present in the sample, k;; is the product of the optical path length and
the absorption coefficient of component i at wavenumber j. For calibration set that consists of
multiple samples m, the formula can be represented in matrix notation as follows [26]:

Equation 2-2

A=CK
Where A is an m X n absorbance matrix, m is the number of samples or spectra, n is the number
of wavenumbers in an individual spectrum and K is an [ X n matrix of the product of the optical

path length and the absorption coefficient for component | at wavenumber n. During the calibration

process, matrix K is calculated, which requires an inversion operation for the product of C7 C [26].
Equation 2-3
K=(CTc)"cTA
During the prediction operation, matrix C is calculated, which requires an inversion operation for
the product of KKT [26].
Equation 2-4

C = AKT(KKT)™1

The dimensions of both matrices are [ x [. If the components’ concentrations are collinear, the

determinant of the matrices will become zero and they will not be invertible. Another drawback of
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this algorithm is that CLS requires that concentrations of all components contributing to the

absorbance at a specific wavenumber to be known, which cannot be achieved [26].

In ILS, which is also known as multiple linear regression (MLR), concentration of a specific milk
component is assumed to be a function of absorbances at all wavenumbers in the spectrum and it

is represented mathematically as follows [26]:

Equation 2-5

n
Ci = Pio T z Ajpij
j=1

Where ¢; is concentration of component i, A; is absorbance of wavenumber j and p;; is the

proportionality constant of component i at wavenumber j. For the calibration set, the formula can

be rewritten in matrix notation as follows [26]:

Equation 2-6

C =AP

During the calibration process, the product of AT A is inverted to calculate matrix P, which is then

used in equation 2-6 to calculate the concentration C for unknown sample [26].

Equation 2-7
P=(ATA)1ATC

This inversion operation will only be possible if the number of samples equals or exceeds the
number of wavenumbers. For this reason, ILS is not commonly used to develop prediction models
based on full FTIR spectra due to the immense number of samples required to build such a model
[26]. To overcome the obstacle of number of samples, a variable reduction method is applied to
the spectral matrix. In PCR, principal component analysis (PCA) is applied to the spectral matrix
and a new set of variables, called principal components (PCs), is calculated. These new variables
are linear combinations of the spectral wavenumbers and they describe the same variation structure
that is described by the original spectral matrix; however, only the first few PCs describe much of
the variation and they can be used as predictors in a regression model. The spectral data matrix is

decomposed into two matrices as follows [26]:
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Equation 2-8

A=TB

Where B is an h X n loading matrix of h principal components and T is an m X h scores matrix.
The loadings can be considered equivalent to regression coefficients and the scores are the new
coordinates for each sample in the new principle component space. The scores matrix T' is then
used in a regression process against milk component’s concentration that is similar to the one of

ILS to produce a prediction model for a milk component [26].

In PLS, the predictors matrix X, which is an m X n matrix, contains the spectral data where m is
the number of the spectra or samples and n is the number of spectral variable or wavenumbers.
The responses matrix Y, which is an m X k matrix, contains the concentrations of k milk
components for m samples. A variable reduction process is applied to matrix X to extract new
predictors that are referred to as latent variables, components or factors, which are linear
combinations of the spectral variables (i.e., wavenumbers) [27]. These factors represent latent
structures that maximize the covariance between X and Y; in other words, the PLS factors are
calculated based on their relevance to Y, which means that the first factor extracted from matrix
X explains the most variation in matrix Y and not necessarily the most variation in matrix X [27].
In PCR, PCs are calculated independently from the Y matrix and the first PC explains the most
variation in matrix X, and that is the main difference between PLS and PCR. In PLS prediction

model, matrix X is decomposed as follows:
Equation 2-9
X=TP
Where T is the X scores matrix and P is the X loadings matrix. The Y matrix is then modeled on
the X scores using linear regression [27]. The Y matrix can also be decomposed, if it contains
multiple responses (i.e., the concentrations of multiple milk components):
Equation 2-10
Y =TQ'
Where T is the Y scores matrix and P is the Y loadings matrix. In this case, PLS is a powerful tool

to study the relationship between the multiple responses. In FTIR spectroscopy, PLS is the

preferred multivariate regression algorithm for developing prediction models because PLS can
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deal effectively with collinear, noisy and wide data where the number of variables (i.e.,
wavenumbers in a spectrum) exceeds the number of observations (i.e., spectra of samples) [27].
However, it must be noted that PLS models are highly sensitives to systemic variations in FTIR
spectra that are not related to the chemical composition of milk samples, such as differences in
performance from one equipment manufacturer to another, homogenization -efficiency,
preservative type and concentration, and sample temperature [28]. For this reason, models are only
considered realistic if their X loadings show high correlations with the spectral features related to
the analyte of interest.

2.5 Spectral pre-treatments or preprocessing

In FTIR spectroscopy, a regression model is the inverse of Beer’s law. It can be described

mathematically as follows [29]:

Equation 2-11

n
5’\ = by + Z byxy
i=1

Where y is the predicted concentration of the analyte of interest, x,, is the absorbance of
wavenumber n and b,, is a regression coefficient that can be interpreted as a combination of the
optical path length and the molar absorptivity coefficient ¢ that is modeled from the data.
Considering this definition, spectral preprocessing can be defined as mathematical operations
aiming at enhancing the chemical information represented by & and reducing the physical effects

of the prediction process in the spectral data, such as path length variability [29].
Smoothing

Smoothing aims at reducing noise in an FTIR spectrum that results from the instrumental
measurement without reducing the number of variables (i.e., wavenumbers) in a spectrum; hence,
it is a row-oriented transformation. Common smoothing transformations include moving average
and Savitzky-Golay smoothing. In moving average smoothing, a central data point is replaced by
the average absorbance values in a selected smoothing window in an FTIR spectrum. In Savitzky-
Golay smoothing, data points in the averaging window are fitted to a polynomial and then the
central point is replaced with the fitted value [29].
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Normalisation

Normalisation is a row-oriented transformation that aims at putting all spectral variables (i.e.,
wavenumbers) on an even footing by rescaling a spectrum to a common sum, such as 1.00 or
100%. In area normalization, the sum of absolute absorbances of all spectral variables in a
spectrum is calculated, which gives the scaling factor, and then each spectral variable is divided
by it. In range scaling, the scaling factor is calculated for a specific spectral range. In peak
normalization, the entire spectrum is scaled by the height of a specific peak of a known internal
standard. In maximum normalization, the scaling factor is the maximum absorbance in the
spectrum [29]. In vector normalization, a spectrum is divided by its norm, which is the square root
of the sum of the squared values of all spectral variables. In this case, the spectrum is normalized
to unit length vector [30]. Vector normalization is useful for pattern recognition applications [30].

Normalization after derivatization reduces path length variations [29].
Baseline correction

Baseline correction aims at subtracting a common offset from spectra to better overlay each other.
The offset is an additive effect caused by path length differences of the measurement system or by
differences in sample density. In cases of sloping linear baseline, a two point baseline correction

method is applied, while the method of detrending can correct polynomial baseline shifts [29].
Derivatives

Derivatization or differentiation is calculated as the difference between the absorbance of a point
in a spectrum and the absorbance of the previous point divided by a constant centring factor. The
derivative centers the spectrum around the zero line and it measures the slope or the rate of change
of the spectral variables, which means it can reveal more details in the spectral data, especially in
regions where small peaks are present on shoulders of bigger ones. In a quadratic polynomial, the
constant term represents the intercept, or the offset, of the equation and it disappears under first
derivation, which means that the first derivative can eliminate additive effects in the spectral data.
In addition, the first derivative removes the baseline and slope effects. However, in first derivative
the maxima of an absorption band become zero, which makes the interpretation of the first
derivative difficult. Second derivative defines the curvature in the spectral data and is used to

correct for the quadratic baseline effects in near infrared spectroscopic data. Second derivative is
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sometimes preferred over first derivative because the maxima of absorption bands becomes
minima; hence, second derivative becomes easier to interpret than first derivative. In simple
difference derivative, in which the constant centring factor is 1, noise level is increased in the
spectral data. This noise originates from instrument electronics and mechanical vibrations,
especially for second derivative. To reduce the noise that results from derivatization, segment-gap
or Savitzky-Golay derivatives are used where a modified moving average or Savitzky-Golay
smoothing algorithms, respectively, are applied to a spectrum before calculating the derivative
[29].

Correcting multiplicative effects

Multiplicative effects result mainly from light scattering and they are wavelength specific, which
makes them more of a concern in near infrared spectroscopy rather than mid-IR spectroscopy. Two
algorithms are commonly used to correct for scattering effect, standard normal variate (SNV) and
multiplicative scatter correction (MSC). SNV is a row-oriented algorithm where the mean and
standard deviation are calculated for a specific spectral range, then spectral variables are centered
by the calculated mean and divided by the calculated standard deviation. Mean centering removes
the additive effects and division by the standard deviation reduce the residual scatter effect. MSC
is @ model-based scatter correction method that requires a training set to model the scatter effect
and to calculate the mean spectrum of the training spectral set by least squares fitting process. The
calculated parameters are used to modify a new spectrum to make it as similar as possible to the
calculated mean spectrum of the training set. By doing so, multiplicative and additive effects are
eliminated [29].

2.6 Calibration and validation of IR milk analyzers

Before calibrating IR milk analyzers, several procedures must be applied to verify that the
instrument is in a good working condition, mechanically and electronically, and the readings are
stable and optimized. These procedures are applied to filter based and FTIR milk analyzers and
they include checks for: flow system integrity, homogenization efficiency, water repeatability,
zero shift, linearity, primary slope, milk repeatability, purging efficiency and establishment of
inter-correction factors for filter based milk analyzers [31]. Inter-correction factors are calculated
to account for the water displacement effect on the absorption intensities in the IR spectrum and

to account for the absorption contribution of other milk components to the intensity of a
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wavelength, or a wavenumber, assigned to a specific milk component. For FTIR milk analyzers,
this step is not needed if the analyzer uses PLS prediction models to determine the concentrations

of milk components.

Among these procedures, verifying homogenization efficiency is the most crucial one. Milk fat
globules cause light scattering, which leads to increased analytical error and poor repeatability. To
reduce light scattering effect on milk fat predictions, raw milk is homogenized to reduce the size
of fat globules to 1 pum or less [31]. For milk analyzers that contain high pressure homogenizer,
raw milk is run through the milk analyzer homogenizer and the fat measurement is recorded. The
milk that exists the analyzer, which is now homogenized, is collected and passed again through
the homogenizer and the fat measurement is recorded a second time. Homogenization is
considered adequate if the difference in readings between the first and second passes of the milk
is <0.05% [31]. Another approach is the use of a laser light-scattering particle size analyzer capable
of determining particle size distribution. Homogenization efficiency is determined by the value of
D (0.9), which is the mean globule diameter below which 90% of the fat volume is contained. If
D (0.9) is greater than 2 um then homogenization is not acceptable, while D (0.9) >1.70 um

indicates wearing out of homogenizer [31].

As it was reported earlier, specific wavelengths or wavenumbers are used to determine the
concentrations of specific milk components. These wavelengths or wavenumbers are 5.723 um
(1747.34 cm™Y), 3.48 um (2873.56 cm™), 6.465 pum (1546.79 cm™) and 9.610 pm (1040.58 cm™)
and they are assigned to Fat A, Fat B, protein and lactose, respectively. The Fat A and Fat B
represents the IR bands of the carbonyl stretching in the ester linkage and the CH stretching in
milk fat, respectively. In addition, 5.6 um (1785.71 cm™), 3.6 um (2777.78 cm™), 6.7 um (1492.54
cm™), and 7.7 um (1298.70 cm™?) are used as reference wavelengths for Fat A, Fat B, protein and
lactose, respectively. Absorption intensities of each milk component are ratioed against their
respective reference wavelength to account for the effects of water absorption and light scattering
[31]. Typically, 10 to 14 milk samples are used to calibrate milk analyzers. The chemical
composition of these samples must always be determined by wet chemistry reference methods.
These reference methods are: Kjeldahl protein N; methods 991.22, 991.23, modified Mojonnier
ether extraction; method 989.05, oven dry; methods 990.20, 990.19 and by difference; method
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990.21 for milk true protein, fat, total solids, and SNF, respectively. Lactose is determined either

by difference or by spectrophotometric enzymatic analysis. Lactose by difference is calculated as

Equation 2-12 Calculating milk lactose by difference

% anhydrous lactose = %TS — (%fat + %true protein + 0.19 + %ash)

where 0.19 is the NPN factor to convert true protein to crude protein (CP) and % ash is either

directly measured (method 945.46) or indirectly calculated by the following equation:

Equation 2-13 Calculating ash in milk

%ash = (Y%true protein X 0.0596) + 0.5379

The spectrophotometric enzymatic analysis of lactose is based on AOAC method 984.15 modified
by weighing all volume additions. All these methods are AOAC final action methods [32]. A 73:27
ratio of Fat B and Fat A is suggested to be used for fat predictions to give better agreement with
reference chemistry than either Fat B or Fat A [33] for analyzers that do not use PLS calibration
models. Distilled water containing 0.01% Triton X-100 is used as a zeroing solution and all zeroing

solutions and milk samples must be maintained at 41 + 1°C [31].

Calibration milk samples should have an orthogonal matrix of fat, protein, and lactose
concentrations to eliminate high and moderate leverage samples. Leverage is an index of the
relative contribution of each point to the regression line and it is considered large if it is >2p/n and
very large if it is >3p/n, where n is the number of data points and p is the number of predictors.
For example, leverage can be considered very high, high, moderate and low if it is >1.000, >0.500,
>0.333 and <0.333, respectively. Samples with narrow range of concentration of components,
nonuniform distribution of concentrations within the range, and with positive correlation between
fat and protein content produce conditions where individual samples have significant influence on
the calibration [34]. Producer raw milk samples can be used for calibration of milk analyzers in
addition to modified milk samples. Milk components can be separated from each other and
recombined together in specific ratios to produce modified milk samples whose matrices are
orthogonal to each other to avoid having high leverage samples in the calibration set [34].
Calibration samples can be preserved by adding an aqueous 6.7% potassium dichromate solution
at a level of 3 mL per 1,000 g of milk to achieve a final concentration in milk of 0.02% potassium
dichromate [34]. It has been proved that Potassium Dichromate K>Cr.Oy7 has little or no effect on

21



mid-IR test results and a bronopol-based preservative can also be used to preserve milk calibration
samples [35]. Bronopol does not exhibit absorption bands in mid-IR regions related to milk
composition. The pasteurized modified milk calibration samples, preserved with potassium
dichromate, have 28 days shelf life and the raw producer milk calibration sets, preserved with
potassium dichromate, have 15 days shelf life at 4 °C. Chemical preservatives only inhibit the
microbial growth in milk samples, they do not inhibit the activity of milk native enzymes.
However, the influence of lipolysis and proteolysis on milk components’ predictions is either not

significant, or significant but very small [36].

Calibration models are verified by testing an independent set of validation milk samples and
comparing the predicted milk component to the chemical reference tests of these samples. The
mean difference (MD) and standard deviation of the difference (SDD) for each milk component
of the validation set is calculated. If MD is large, then the prediction model is biased. A positive
MD value indicates overprediction and a negative MD value indicates underprediction. The
official first action method for fat, lactose, protein, and solids in milk by IR spectroscopic method
using fixed-filter wavelengths (AOACI, 2000; method 972.16, 33.2.31) indicates that the MD
between instruments and reference method values should be <0.05% for fat, protein, and lactose,
and <0.09% for total solids [37].

2.7 Novel applications in milk analysis by infrared spectroscopy

Milk analysis by infrared spectroscopy is currently an active field of research. New studies have
been published on improving the predictions of milk components that are currently being
determined by commercial milk analyzers. Other studies aimed at extracting new traits from the
milk infrared data and at correlating the spectral data with indicators of interest for the dairy

industry.

2.7.1 Prediction of milk fatty acids and milk fat composition

Gas chromatography (GC) is the standard method for quantifying FAs content in milk, where FAs
are extracted, saponified and trans-methylated. Infrared analysis was developed as an alternative
cost-effective and fast method to determine FAs during milk routine analysis [38]. Currently, the
method of choice used for relating milk FAs to spectral data is PLS without any pre-treatment of
the spectral data. The spectral regions that are used are located between 1736 and 1805 cm™* and
between 2823 and 3016 cm™* [39].
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Rutten et al. (2009) concluded that increased number of samples increases predictability of milk
fat composition; however, it does not increase the predictability of FAs with low concentrations.
This can be explained by the fact that increased number of samples will model better the
relationship between milk fat and the major FAs present in milk triglycerides. In addition, it was
concluded that the effect of season on validation coefficient of determination R? was limited but
was occasionally large on prediction bias. It was also concluded that FTIR spectroscopy can be
used to predict major FAs, combined groups of fatty acids, and the ratio of saturated to unsaturated
fatty acids [40].

Afseth et al. (2010) demonstrated that the bands that are used in FTIR determination of FAs are:
around 3010 cm™ mainly relates to fatty acid unsaturation (cis =C—H stretch), region between 2800
cm? and 3000 cm™ is related to the symmetric and asymmetric C—H stretch of methyl and
methylene groups, strong band around 1745 cm™ is related to C=0 stretch, C—H deformations
constitute dominating features between 1440 cm™ and 1300 cm™, between 1200 cm™ and 1000
cm! constitute the C—O stretch vibrations and a band around 966 cm™ is related to the trans =C—
H out-of-plane stretch, which has been proven to be an important feature in the quantification of

trans contents of foods in general [41].

Soyeurt et al. (2011) investigated six mathematical approaches to improve the FA predictions in
milk collected from multiple breeds (dual-purpose Belgian Blue, Holstein, Jersey, Normande,
Montbeliarde, and Red and White), different European countries (Belgium, Ireland, UK) and
different production systems. These approaches were: raw spectra and PLS, raw spectra in
combination with PLS and repeatability file (REP), first derivative of spectral data and PLS, first
derivative and REP and PLS, second derivative of spectral data and PLS and second derivative
and REP and PLS. The repeatability file was generated by recording mid-infrared (MIR) spectra
of several milk samples provided by different spectrometers and each spectrum was centered by
subtracting the average of all spectra for the samples included in the repeatability file. The samples
in the repeatability file were then used to extend the initial calibration set. This method decreased
the repeatability error. Methods were compared using the cross-validation coefficient of
determination (R%y), the ratio of standard deviation of GC values to the standard error of cross-
validation (RPD), and the validation coefficient of determination (R?,). Methods that used first
derivative had, on average, the highest R%y, RPD, and R?,. This can be explained by the fact that
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first derivative reveals more details in the spectral data, especially in regions where small peaks
are present on shoulders of larger ones. The spectral regions that were used were 926 — 1600 cm ™2,
1712 — 1809 cm™1, and 2561 — 2989 cm ™ [39]. The best accuracy was observed for the infrared
predictions of C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, C16:0, C18:0, C18:1 trans, C18:1 cis-9,
C18:1 cis, and for some groups of FAs studied in milk (saturated, monounsaturated, unsaturated,
short-chain, medium-chain, and long-chain FAs). The study concluded that equations with R%y
greater than 95% will be useful in milk payment systems, while equations with R%, greater than
75% will be useful for animal breeding purposes [39].

Eskildsen et al. (2014) demonstrated that variation associated with total fat content and breed was
responsible for successful FTIR—based predictions of FAs in raw milk samples. The study could
not assign signals to individual FAs in the FTIR measurement when several FAs were present in
the same mixture. The study concluded that predicted concentrations of individual FAs in milk
rely on indirect correlations, which are confined to covariance structures with total fat content
rather than absorption bands directly associated with individual FAs. Since these covariance
structures cannot be conserved in future samples or samples from different breeds, biased
predictions will be obtained from such models. This conclusion was in agreement with the results
of previously mentioned studies that showed only individual FA with high concentration or groups

of FAs can be predicted from FTIR measurements [42].

Bonfatti et al. (2016) reported that the accuracy of MIR predictions decreased when FAs were
expressed on a fat basis in Italian Simmental cows, which was consistent with the previous studies.
Predictions of individual fatty acids PLS models were high (R%y) for SFA, MUFA, short and
medium-chain fatty acids, C12:0, C14:0, C16:0, X unsaturated C18, £ C18:1, and C18:1n-7 cis-9.
Other fatty acids, namely C14:1, C18:1 trans, C18:1n-7 trans-9, ¥ CLA, C18:2 cis-9,trans-11, and
C18:3n-3, were poorly predicted by MIR spectroscopy (R%cv < 0.70) [43]. This can be explained
by the fact that milk samples from Holstein cows tend to dominate calibration sets used to develop
prediction models for milk components, since Holstein is the most relevant breed for dairy farmers.

Italian Simmental might have been underrepresented in these calibration sets.

2.7.2 Prediction of fatty acid chain length and unsaturation
Fat prediction of MIR analyzers are affected by chain length and unsaturation of fatty acids that

make up milk triglycerides. Increasing the chain length increases the difference between MIR
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prediction and reference chemistry by 0.0429% and by —0.0566% fat per unit of increase in carbon
number per 1% change in fat, for fat B and fat A, respectively. Increasing the unsaturation
decreases the difference between MIR prediction of fat and chemistry for fat B by —0.4021% and
increased fat A by 0.0291% fat per unit of increase in double bonds per 1% change in fat

concentration [44].

Wojciechowski and Barbano (2016) suggested an additional adjustment to improve the predictions
of fat levels in milk samples. It was demonstrated that sample-to-sample variation in the
differences in mean fatty acid chain length (CL) and mean unsaturation (UN) of the milk fat cause
differences between MIR predictions of fat content of milk and the laboratory chemical reference
analysis of the same sample. CL is defined as mean carbon number per fatty acid, while UN is
defined as mean double bonds per fatty acid. Variation in fatty acid CL is reflected in the fat B,
which is measured by using C-H stretch of fat, but not in fat A, which is measured by using C=0
stretch, causing error in the fat A measure. Conversely, variation in UN of fatty acids only has a
small effect on fat A measures, but causes larger errors in fat B measures of fat content of milk
[28]. To overcome this weakness, they suggested to develop PLS models to determine the CL and
UN of fatty acids for milk samples by using their MIR spectra. These values will be used to correct

the fat A and fat B measurements according to the following equations [28]:

Equation 2-14 Suggested relations to adjust fat A and fat B readings according to chain length and saturation of milk fatty acids

fat A — (((~0.1756 x CL) + 2.5591) + (0.16 X UN) + 0.0452)

fat B — ((—=0.1422 x UN) + 0.073)

The mean fatty acid CL (expressed as carbon number) was calculated by dividing the total fatty
acid concentration weighted for carbon number by the total fatty acid concentration, as determined
by gas liquid chromatography (GLC). The mean UN (expressed as double bonds per fatty acid)
was calculated by dividing the total fatty acid concentration weighted for the number of double
bonds by the total fatty acid concentration, as determined by gas liquid chromatography. The
following equations show the calculation of fatty acid concentration weighted for carbon number
and fatty acid concentration weighted for number of double bonds, respectively [28].

Equation 2-15 Calculation of fatty acid concentration weighted for carbon number and double bonds

fatty acid (mmol) X number of carbons in faty acid chain
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fatty acid (mmol) X number of double bonds in fatty acid chain

The PLS models for prediction of fatty acid CL and total UN were calculated using the spectral
ranges 3000 — 2750 cm %, 1800 — 1700 cm ™! and 1580 — 1000 cm™?, applying mean centering of
the data and 2-point baseline correction relative to average absorbance calculated over wavelength
ranges of 2650 — 2550 cm™* and 1260 — 1200 cm ™. The validation performance of the prediction
model for CL produced a relative standard deviation (RSD) of 0.43% for CL and 3.3% for UN.
[28].

2.7.3 Prediction of fat globule particle size in homogenized milk

Milk fat is present in the form of globules that range in diameters from <0.2 to >15 pm. The small
fat globules represent 80% of the total number of fat globules but they contain only 3% of the mass
of fat. On the other hand, large globules represent only 2% of the total number of fat globules but
they contain 95% of the mass of fat [45]. The size of fat globules in milk needs to be reduced
because large fat globules increase light scattering, leading to an inaccurate estimate of fat, protein
and lactose content of milk. In addition, large fat globules can cause the Christiansen light
scattering effect, which causes a change in the refraction of light at wavelengths near maximum
absorption by the carbonyl and carbon-hydrogen groups. The Christiansen effect causes a shift in
the apparent wavelength of maximum light absorption to a longer wavelength. This effect can be
reduced by decreasing the fat globule diameter [46].

Di Marzo et al. (2016) developed a PLS model to detect absorbance shifts in MIR spectra of milk
fat due to the Christiansen effect caused by systematic variations in fat globules size. This PLS
model can predict particle size distribution and the reported parameters were: particle size
distribution D (0.5), particle size distribution D (0.9), surface volume mean diameter D [3,2] (i.e.
Sauter mean diameter) and volume moment mean diameter D [4,3] (i.e. De Broucker mean
diameter). The spectral regions that were used were: 3000 — 2750 cm ™2, 1800 — 1700 and 1585 —
1000 cm ™! and a systematic shift in the region of absorbance of fat B and fat A was observed. The
mean MIR-predicted values for D (0.5), D[3,2], and D[4,3] were lower (P < 0.05) than laser light-
scattering values (i.e. the official method for determining particle size), whereas no difference in

the MIR-predicted D (0.9) versus laser light scattering was detected [46].
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To obtain accurate analytical results for milk components, the fat globule diameter of milk should
be less than one-third of the wavelength of fat B (3.48 um), which is the shortest wavelength used
for fat analysis. Particle size of the milk produced by a homogenizer within a milk analyzer should
result in a mean globule diameter D (0.9) <1.7 pum. If D (0.9) >1.7 um, then the homogenizer
performance has deteriorated and should be replaced. In addition, different types of homogenizers
have different efficiency at the same pressure. For example, one stage homogenizer will be less
efficient than double stage homogenizer. Homogenization efficiency is also affected by milk
temperature, pump speed, pump stroke length, fat content and time of usage. This prediction model
can be used to warn milk analyzer operators that the homogenizer is near failure and needs to be

replaced to ensure quality of results [46].

2.7.4 Prediction of milk protein composition and its genetic variants

Milk protein composition has been linked to cheese making properties. Associations between
increased k-casein (k-CN) content and decreased rennet coagulation time, enhanced curd firmness
and increased cheese yield have been reported in the literature. For this reason, developing a fast
method for determining milk protein fractions by MIR spectroscopy is considered feasible by the

cheese making industry [47].

Bonfatti et al. (2011) investigated the feasibility of MIR spectroscopy to predict milk protein
fractions and their genetic variants. The reference method that was used to determine milk protein
fractions was reversed phase (RP) HPLC and predictions models were built by using modified
PLS (MPLS) and first derivatives of the samples’ spectra. Whole spectrum was used and regions
from 3470 to 3040 cm™* and from 1700 to 1600 cm™* were excluded [47].

Casein and whey protein fractions showed peaks around 1650 and 1550 cm™%, which correspond
to amide | and amide 11 bands, respectively. In addition, peaks were observed between 1300 and
1000 cm™* due to ionic and covalent phosphate bonds. Sulfur amino acids were responsible for the
S-H stretch vibration occurring between 2500 and 2600 cm™2. Other vibrations, such as S-S and
C-S, were observed below 1000 cm™ and good correlation was also observed between 2800 and
3600 cm ™ due to C-H and O-H stretching [47].

The most accurate predictions were obtained for total protein, casein (CN), asi-CN, B-
lactoglobulin (LG), glycosylated x-CN, and whey protein content. The coefficients of

determination between predicted and measured values in cross-validation ranged from 0.61 to
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0.78. Less accurate results were obtained for B-CN, as2-CN and k-CN. No accurate predictions
were obtained for a-LA nor for y-CN. No feasible predictions were produced by MIR spectroscopy
for milk protein genetic variants k-CN A and B; f-CN Al, A2, and B; and B-LG A and B. The
coefficients of determination between predicted and measured values in cross-validation were
<0.15 for the content of k-CN genetic variants <0.01 for the content of B-CN variants. The best
predictions were obtained for B-LG A and B-LG B contents. In addition, Unfavorable results were
obtained when protein fraction contents were measured as percentage ratios of total protein or CN.
The study concluded that MIR cannot be used to accurately predict individual milk protein
composition; however, it can play a role as indicator traits in selective breeding to enhance milk
protein composition. The inability of MIR spectroscopy to predict milk protein fractions accurately
can be explained by the fact that protein fractions differ in the length of the amino acids chain and
in the secondary and tertiary structure, rather than in the kind of chemical bonds. In addition, the
heterogeneity within each protein fraction, such as the presence of glycosylated and
phosphorylated forms, makes the prediction based on the use of spectra difficult. Previous study

that used PLS and untreated spectra did not give better results [47].

Bonfatti et al. (2016) reported that PLS models had good predictive ability for overall protein and
casein content, for which the R%v of models were >0.80. Values of R%cy for the content of the
casein fractions ranged from 0.74 for asi-CN to 0.22 for unglycosylated k-CN. Glycosylated «-
CN was also predicted with poor accuracy (R%cv = 0.46). For whey protein fractions, as well as for
most caseins, the R%cv showed that models could only discriminate between high and low protein
values. When protein fractions were expressed on a protein basis, results were even more
unsatisfactory because prediction of protein fraction content relies indirectly on the relationship
between the content of individual proteins and total milk protein [43].

2.7.5 Prediction of milk lactoferrin as an indicator of mastitis

Lactoferrin (LTF) is an iron-binding glycoprotein that is associated with the cow immune system
and it is secreted by the mammary epithelial cells. Its normal level in milk ranges between 0.1 and
0.4 g/L of milk and it becomes higher during the later lactation stage (0.25-0.4 g/L). LTF can also
be released by polymorphonuclear neutrophils during inflammation since it has antibacterial and
antifungal properties. LTF can be involved in host defence mechanisms and it can modulate the

inflammatory process. For this reason, high concentrations of LTF in milk can be considered as an
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indicator for the presence of mastitis. In such cases LTF might reach 2.3 g/L of milk. Lindmark-
Mansson et al. (2006) reported that the highest amounts of LTF were present in udder quarter milk
samples that had the highest SCC, which agrees with previous reports in the literature. The
correlation between LTF concentration and SCC was 0.918 (P<0.001) and the increase in LTF in
the quarter milk samples started at a SCC of 5000 cells/mL. In addition, she found that the
correlation between LTF and polymorphonuclear neutrophils was weaker than the correlation
between LTF and SCC, which indicates that LTF is produced by the udder tissue too. However,
the author acknowledged that the correlation between SCC and LTF was lower (0.455, P<0.001)
in a previous study and that the cow that had high SCC quarter (i.e., 1,815,000 cells/mL) did not

show signs of mastitis [48].

Soyeurt et al. (2012) conducted a study that aimed at developing calibration model to quantify
LTF content in milk by using large number of samples collected in Belgium, Ireland and Scotland
from cows of different breeds and from different production systems. The study also aimed at
evaluating LTF predictions to identify the presence of clinical mastitis [49]. In this study, LTF was
measured by a commercial ELISA Kit and milk MIR spectra were collected by FOSS’s MilkoScan
FT6000. Six different PLS calibration models for LTF prediction were developed by using raw
spectral data, raw spectral data with repeatability file, first derivative data, first derivative data
with repeatability file, second derivative data, second derivative data with repeatability file. In
addition, logistic regression models were developed to detect the presence of mastitis. These
models included either predicted MIR LTF, somatic cell scores (SCS), whose distribution is more
normal than SCC distribution, SCS and predicted MIR LTF, or SCS, predicted MIR LTF and their
interaction. SCS was calculated by using the following formula:

Equation 2-16 Calculation of somatic cell scores

scs = (1 2( ScC ) +3
= \*°9%\100000

These models were applied to spectral data from cows that had mastitis to assess their capability
of detecting mastitis [49]. The PLS model that was built by using first derivative spectral data and
the repeatability file gave the most accurate results. The cross-validation coefficient of
determination R%y, RPD, validation coefficient of determination R?, standard error of cross
validation (SECV) and standard error of prediction (SEP) were 0.72, 1.86, 0.60, 50.55 mg/L and
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58.98 mg/L, respectively. Since SECV and SEP were relatively similar, the model was considered
robust. Three spectral regions were considered relevant to the prediction of LFT. These regions
were the region surrounding 1200 cm™, which is associated to C-O bonds, the region located
around 1300 cmt, which is related to COOH, and the region between 1700 and 1800 cm™. On the
other hand, the logistic model that only included predicted LTF could not accurately predict the
presence of mastitis despite a moderate correlation between SCS and LTF (R=50.54). Model
specificity was better when LTF was included in the regression along with SCS when compared
with SCS alone [49].

Bonfatti et al. (2016) reported that PLS models could only discriminate between high and low
values of lactoferrin, and they were not sufficiently accurate to lead to precise quantification. The
previous study produced higher R%, only when samples from 3 different countries were used.
However, when the calibration was tested in external validation on Belgian samples only, the R?%y
was consistent with the estimate obtained in the current study. In addition, the average lactoferrin
content in the current study was 128 + 96 mg/L, which was lower than the one reported in the

previous study [43].

2.7.6 Prediction of milk coagulation properties

Milk coagulation properties (MCP) directly affect the cheese-making properties, such as cheese
yield, moisture and quality [50]. MCP include good reactivity to rennet, high curd-firming
capacity, good syneresis ability, and whey drainage [43]. These properties can be assessed by
measuring milk rennet coagulation time (RCT, min), and curd firmness (aso, mm). RCT is the time
between the addition of the clotting enzyme and the beginning of the coagulation process, while
aso is curd firmness measured 31 minutes after addition of the clotting enzyme. MCP reference
values are assessed by computerized renneting meter. This technic is time consuming and requires
trained personnel; hence, it cannot be used on a large scale to determine MCP properties of milk
samples [50].

De Marchi et al. (2009) investigated the potential of MIR milk analysis as an alternative method
to predict MCP of milk samples. PLS models were developed by using untreated and pretreated
spectra to predict these properties. Spectral treatment included: normalization (N), multiplicative
scatter correction (MSC), first derivative (Savitzky-Golay, 3 data points each side), and N plus

first derivative spectra. These models were enhanced by using the following spectral regions: 1600
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to 900 cm™?, 3040 to 1700 cm™* and 4000 to 3470 cm™ . The best models were obtained by using
raw spectral data. The root mean square errors of cross-validation for RCT and azo were 2.36 min
and 6.86 mm, respectively. R? for RCT was 0.59, which indicates the ability to discriminate
between high and low values; however, it was not considered sufficiently accurate to be
implemented in industry. On the other hand, R? for as was 0.37, which was not considered

satisfactory [50].

The loading spectra of the prediction models showed peaks occurring at 968, 1115, 1146 and 1,180
cm™%, which are attributed to C-O and C-C stretching, respectively, whereas O-C-H, C-C-H, and
C-O-H bending account for peaks at 1466 and 1331 cm ™2, respectively. A peak was also observed
at 1240 cm* which may be due to amide 111 or phosphate bands. Dominant peaks are also observed
at 1589 and 1500 cm™%, which can be attributed to amide I1. Peaks associated with lipids (2935,
2839, 1763, and 1751 cm™?) were also apparent in the loadings of the RCT model. These results
can be explained by the effect of milk protein and fat content on milk coagulation. Increased
protein level decreases significantly the curd firming time [50]. The study concluded that despite
the models needed further improvement to their accuracy for any application in the industry, they
can still be used in phenotypic-based selection programs to improve MCP at herd or individual
level [50].

Dal Zotto et al. (2008) demonstrated that the assessment of MCP through computerized renneting
meter provides repeatable and reproducible measures for RCT but not for aso. In addition, adding
bronopol preservative to milk has no detrimental effects on the reliability of RCT measures by
computerized renneting meter [51].

De Marchi et al. (2012) reported an enhanced accuracy for the predictions of MCP by MIR
spectroscopy [52]. In this study, a Formagraph was used as reference method for determining MCP
values instead of computerized renneting meter and the testing-time of the analysis was set up at
60 minutes to investigate if milk not forming a curd within the conventional threshold of 30
minutes showed coagulation aptitude after this time. In addition to RCT and azo, the study included
the determination of curd-firming time k2o, which is the interval in minutes from the beginning of
coagulation to the moment the width of the graph attains 20 mm, and aso, which is curd firmness
at 60 minutes after rennet addition. The most accurate models were those for RCT, k2o and aso.

Less favorable results were obtained for aso. In addition, the study demonstrated that MCP were
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strongly influenced by dairy cooperative and herd, suggesting the existence of different feeding
and management conditions. It also showed that milk chemical composition and acidity had a large
influence on MCP, where increased values of casein and titratable acidity yielded improved MCP.
Another factor that affected MCP was season of sampling. Samples collected during the summer
had better results in terms of RCT and koo [52], which was attributed to a decrease in the content
of protein in the summer that is usually associated with a decrease in the content of casein [53].
Finally, there were differences in MCP between different breeds. Brown Swiss produced milk with
the shortest RCT and the highest aso, whereas Holstein-Friesian showed the worst technological

properties and Simmental cows were intermediate between the previously mentioned breeds [52].

Using the previously enhanced calibration equations, De Marchi et al. (2013) developed models
to detect noncoagulating milk (NC), which is defined as milk not forming a curd within 30 min
from rennet addition, in Holstein cows by using MIR spectroscopy. The reference method that was
used to determine MCP was Formagraph and the traits that were studied were rennet coagulation
time, curd-firming time, and curd firmness at 30 and 60 min after rennet addition [54]. Raw
spectral data was used to build the models and the spectral regions 3040 to 3470 cm ™! and 1600 to
1700 cm™* were excluded. The most accurate prediction model was developed for RCT, followed
by koo and azo. Models for the prediction of aso were not satisfactory. Results showed no specific
spectral information distinguishing NC from coagulating samples. However, peaks associated with
protein were found to be very dominant for RCT and k2o, whereas those associated with lipids

seem to be more dominant for curd firmness traits [54].

In another study, Cecchinato et al. (2009) developed calibration equations to estimate heritability
and genetic correlations for measured MCP and their predictions obtained from MIR spectra [55].
Studies have reported that exploitable additive genetic variation exists for RCT and azo, hence
enhancement of these traits through breeding is a viable option. Heritability is a statistic used in
breeding and genetics studies that estimates how much variation in a phenotypic trait in a
population is due to genetic variation among individuals in that population [56]. Point estimates
of heritability ranged from 0.30 to 0.34 and from 0.22 to 0.24 for RCT and aszo, respectively.
Heritability estimates for MCP predictions were larger than those obtained for measured MCP.
Estimated genetic correlations between measures and predictions of RCT were very high and

ranged from 0.91 to 0.96. Estimates of the genetic correlation between measures and predictions
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of a30 were large and ranged from 0.71 to 0.87 [55]. Genetic correlation is the proportion of
variance that two traits share due to genetic causes [57]. The study concluded that breeding
strategies for the enhancement of MCP based on MIR predictions as indicator traits could be easily
and immediately implemented for dairy cattle populations where routine acquisition of spectra

from individual milk samples is already performed [55].

Bonfatti et al. (2016) reported that prediction accuracy was satisfactory for RCT (R%,=0.69) but
poor for other MCP traits (R%cv < 0.42), which was not consistent with the literature. Such
inconsistency might be explained by the greater variability in MCP traits detected by other authors
and by the different equipment used when measuring MCP since the accuracy of the prediction
model depends on the accuracy of the reference analysis. Unsatisfactory predictions for curd
firmness at 60 min were obtained, which were consistent with the literature. Among curd yield
traits, the prediction of dry matter (DM) curd yield showed the greatest R%cy (0.85), followed by
fat, raw, water, and protein curd yield, for which the R?cv was 0.62. Considering that curd yield
partly depends on rheological property of milk, raw curd yield was predicted with relatively high
accuracy (R%cv=0.67). Curd composition was predicted with poor accuracy, with R%cy values
ranging from 0.35 for fat content to 0.61 for DM content [43].

2.7.7 Prediction of titratable acidity and pH

Titratable acidity (TA) is defined as the volume of 0.25 molar sodium hydroxide solution required
to achieve a color change of the pH indicator phenolphthalein to pink in a specific volume of milk
sample. It is a dimensionless milk index and its unit is °SH (degree Soxhlet-Henkel). TA is
different from pH, which is defined as the negative log of hydrogen ions concentration. Cheese-

ready milk must have a Soxhlet-Henkel number between 6.0 and 7.4 °SH.

TA plays a fundamental role in the aggregation rate of para-casein micelles and the reactivity of
rennet. It also influences the rate of syneresis and determines the suitability of milk for cheese
making. In the production of premium cheeses, milk with low acidity (hypo-acid milk) is generally
considered unsuitable for cheese making because of its negative effects on the rheology of the
acid-rennet curd and on the textural properties of the cheese paste. On the other hand, the pH of
milk affects both the enzymatic and aggregations reactions, which means lowering the pH

decreases the colloidal stability of milk [50].
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De Marchi et al. (2009) developed PLS models by using untreated and pretreated spectra to predict
TA and pH. Spectral treatment included: normalization (N), multiplicative scatter correction
(MSC), first derivative (Savitzky-Golay, 3 data points each side), and N plus first derivative
spectra. These models were enhanced by using the following spectral regions: 1600 to 900 cm ™,
3040 to 1700 cm™ and 4000 to 3470 cm™. The best models were obtained by using the first
derivative of the spectra. The root mean square errors of cross-validation for TA and pH were 0.25
SH°/50 mL and 0.07, respectively. The R? for the TA model was 0.66, which provides approximate
prediction, whereas for pH R? was 0.62, which discriminate between high and low values. The
study could not assign functional groups to individual peaks [50]. The study concluded that TA
and pH had the potential to be predicted by MIR spectroscopy and multivariate data analysis [50].
Bonfatti et al. (2016) reported that prediction accuracy was satisfactory for pH (R%,=0.79) [43].

2.7.8 Estimation of major mineral contents in cow milk

Soyeurt et al. (2009) investigated the possibility of predicting the content of several milk minerals
by PLS models and milk MIR spectral data. The studied minerals were Ca, K, Mg, Na and P. The
reference method that was used for determining the content of these minerals in milk was
inductively coupled plasma atomic emission spectrometry (ICP-AES). The cross-validation
coefficients of determination (R%) were 0.23 and 0.50 for K and Mg, respectively; hence, not
showing any potential application. The external validation coefficients of determination were 0.97,
0.14, and 0.88 for Ca, Na, and P, respectively, suggesting a potential application for Ca and P but
not for Na. The researchers concluded that MIR spectroscopy can only predict Ca and P content
in milk [58]. The correlations between the Ca and P MIR predictions and the known milk
components were calculated. All correlations were inferior to the correlation calculated based on
the cross-validation. Therefore, the calibration equations established to predict the contents of Ca
and P in milk were coming from real spectral absorbance. The spectral regions that were correlated
to variability in Ca content were: 1454 and 1458 cm™* and between 2831 and 2970 cm™2, while
variability in P content were correlated to the following spectral regions: 1200 and 1277 cm™,
between 2841 and 2974 cm™! with a maximum at 2974 cm™ and between 1442 and 1469 cm ™.
High correlation was observed at 1242 cm™, which is related to the P=O bond present in
phospholipids. On the other hand, the spectral regions associated with the bond between Ca and
the carboxylate group of casein at 1410 cm™ and 1575 cm™* did not show high correlation. In

addition, previously reported regions in the literature related to Ca and P in milk did not show any
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correlations in this study. These regions are 956 to 946 cm™*, which was related to the
concentration of organic P, and 980 cm™, which was related to bound Ca [58]. Bonfatti et al.
(2016) reported that low values of R%, for minerals ranged between 0.41 and 0.48. This can be
explained by reduced variability in mineral concentrations [43].

2.7.9 Prediction of acetone, p-hydroxybutyrate and citrate

It has been proved that acetone and BHB can be used as milk biomarkers to indicate ketosis. In
addition, citrate is considered as an early indicator of negative energy balance. By using FTIR milk
analysis and PLS, Grelet et al. (2016) developed equations to predict acetone, BHB and citrate
levels in raw milk samples. The coefficient of determination (R?) of cross-validation was 0.73,
0.71, and 0.90 for acetone, BHB and citrate, respectively, with root mean square error of 0.248,
0.109, and 0.70 mmol/L, respectively. The external validation R? were 0.67 for acetone, 0.63 for
BHB, and 0.86 for citrate, with respective root mean square error of validation of 0.196, 0.083,
and 0.76 mmol/L, respectively. Acetone content ranged from 0.020 to 3.355 mmol/L with an
average of 0.103 mmol/L; BHB content ranged from 0.045 to 1.596 mmol/L with an average of
0.215 mmol/L; and citrate content ranged from 3.88 to 16.12 mmol/L with an average of 9.04
mmol/L. A first derivative was obtained and the spectral regions that were used were: 968.1 to
1,577.5cm™, 1,731.8 to 1,762.6 cm ™, 1,781.9 to 1,808.9 cm™*, and 2,831.0 to 2,966.0 cm™. To
evaluate the prediction model performance, ratio performance/deviation (RPD) was calculated.
RPD is a criterion that shows simultaneously the accuracy of predictions and the global variability
of the reference values. The RPD is defined as the ratio of the standard deviation (SD) to the root
mean square error (RMSE), SD/RMSE, while RMSE can be the one calculated in cross-validation
or the one of a validation set. When the RPD is between 1.5 and 2, the model can discriminate low
from high values; an RPD between 2 and 2.5 indicates that rough quantitative predictions are
possible, and RPD between 2.5 and 3 or above corresponds to good and excellent prediction
accuracy. It was suggested to use these models for herd management, or at individual level by
using thresholds or relative values to cope with low accuracy [59].

2.7.10 Prediction of cows’ body energy status and feed efficiency
McParland et al. (2011) investigated the potential of regularly collected MIR milk spectra at
central dairy laboratories to predict body energy status and related traits in lactating dairy cows,

which included energy balance, body energy content, body condition score and energy intake. The
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energy balance was defined as a function of milk yield, fat and protein content, dry matter intake,
body weight and body condition score. On the other hand, the body energy content was defined as

a function of body weight and body condition score, predicting body lipid and protein weight [60].

The aim of the study was to directly predict body energy status of cattle from MIR milk spectra
without relying on milk composition components, such as fat-to-protein ratio or fatty acid
composition of milk fat. The importance of determining body energy status stems from the fact
that the duration of negative energy balance might be a precursor for impaired health and fertility
in dairy cows. Data on 815,129 test days from 3,151 lactations of 1,145 Holstein cows were
available to compute body energy status. These data included milk yield, milk composition, dry
matter intake, body weight, body condition score, age of calving, season of calving and parities
[60]. Random regression models were fitted to daily milk yield, fat percent, protein percent, dry
matter intake, body condition score and body weight to provide daily solutions to calculate a
lactation profile for energy balance. All random regression models were fitted within parity and
included the fixed effects of genetic line, feeding group, year of calving by season of calving, age
at calving, year of record by month of record, a fourth-order orthogonal polynomial on days post
calving, and the random effect of the interaction of cow by a fourth-order orthogonal polynomial
on days post calving. On the other hand, MIR milk spectra were collected for 6,665 milk samples
from 18 test dates of 465 lactations from 277 cows. MIR milk spectral data were converted to
absorbance and Boxcar smoothing (i.e., moving average) was applied to it by averaging the
spectral data over spectral segments of 5 data points in length. In addition, the first derivative was
calculated on both the smoothed and unsmoothed absorbance spectral data. Cows were stratified
according to selection line, feeding treatment, and season of calving, and the data split randomly
within stratum into 4 equally sized data sets. The calibration data set included 75% of the data and
25% were considered as validation set. PLS calibration models were developed to predict body
energy balance, body energy content, body condition score and energy intake using unsmoothed
and smoothed spectral data as well as the first derivative. Validation results showed that smoothing
and first derivative did not enhance predictions. Among the body energy status indicators, energy
balance was consistently the most accurately predicted one. The authors concluded that the average
accuracy of predicting body energy status from MIR spectral data was as high as 75% when energy

balance was measured across lactation. In addition, they considered predictions of body energy
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status from MIR milk spectra more accurate than predictions obtained form milk composition

indicators, such as fat-to-protein ratio in milk [60].

In a later study, McParland et al. (2014) investigated the potential of MIR milk spectroscopy to
predict individual cow energy intake and efficiency. Feed efficiency was described by residual
feed intake (RFI), which is the difference between actual energy intake and energy used, such as
milk production, maintenance, and body tissue anabolism, or supplied from body tissue
mobilization. RFI can be mathematically equivalent to energy balance. A total of 1,535 records
for energy intake, RFI, and milk MIR spectral data were available across 36 different test days
from 535 lactations on 378 cows. Data included dry matter intake and fecal analysis, which was
used to calculate the effective energy intake (EEI), milk yield, milk chemical composition, cow
body weight and cow body condition score. Using this data, RFI was calculated for each cow and
energy balance (EB) was calculated as the difference between effective energy intake and effective
energy expended through milk production and maintenance. In addition, MIR milk spectra were
recorded periodically, and PLS models were developed to predict RFI, EB and EEI form the MIR
milk spectra. The correlation coefficient r of models to predict RFI across lactation ranged from
0.48 to 0.60; however, the strongest one was obtained in early lactation r=0.65. They also found a

very strong correlation between EB and RFI r=0.85 [61].

2.7.11 Prediction of methane emissions from dairy cattle

Methane emissions, which are eructed by cattle, represent a loss of use of energy intake that
increases the feed cost and decreases profitability of dairy farms. Hence, mitigating methane
emissions will improve feed efficiency, reduce feed cost and reduce feed related costs. Few studies
investigated the potential of FTIR milk analysis as a cheap and fast method to predict dairy cattle

methane emissions [62].

During digestion in the reticulorumen, carbohydrates are degraded by microbial fermentation into
COg, CH4, H2 and volatile fatty acids (VFA), which are mostly acetic, propionic and butyric acid.
Acetic and butyric acids are the primary precursor for milk fat, while propionic acid is used in
lactose synthesis. Research shows that an increased butyrate/propionate ratio decreases lactose
content and increases fat content in milk and the rumen CHs synthesis. On the other hand, the
rumen VFA composition influences milk fat composition. Short and medium-chain fatty acids (4

to 14 carbons) are derived from de novo synthesis based on acetate and butyrate. Long-chain fatty
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acids (>16 carbons) are collected from the circulating lipids and fatty acids of 16 carbons are
obtained from the two sources. Thus, fatty acid composition of milk fat reflects the VFA produced
during ruminal fermentation and CH4 production. Since FTIR milk analysis can predict milk fat
composition, Dehareng et al. (2012) evaluated the prediction of CHs emissions from MIR milk
spectra [63]. Holstein cows of different parity (i.e. primiparous and multiparous) were offered
different diets. Diet 1 consisted of freshly cut pasture grass, dried beet pulp, soybean meal and
soybean hulls. Diet 2 consisted of: corn silage, meadow hay, cracked corn, rapeseed meal, palm
meal, soybean meal and a 50:50 mix of coconut and flaxseed oil. Diet 3 consisted of grass silage,
corn silage, cracked corn, soybean meal and dried beet pulp. Cows were given a 21 days adaptation
period, then milk spectra and CHs measurements were collected. Sulfur hexafluoride (SFe) gas
tracer technique was used to measure enteric CH4 production by the cows once a day. Milk spectra
were recorded twice a day (i.e. morning and evening). Assuming that there is a delay between the
production of fermentation products and their use to produce milk components, different ways
were used to calculate the average of two milk spectra to be related to one-day CHs measurement.

The averages were for two spectra collected on [63]:

= the same day of CH4 measurement (day 0)

= evening of the same day and morning next day (day 0.5)
= nextday (day 1)

= evening next day and morning 2 days later (day 1.5)

= 2 days later (day 2)

PLS model was developed for predicting CH4 emission from milk MIR spectra, which did not
undergo any pre-treatment. Different models were built for different milk spectral average sets.
The spectral regions used for that were: 972 to 1589 cm, 1720 to 1782 cm™ and 2746 to 2970
cm* [63]. The best predictions were achieved by PLS model built by using CH4 emission per Kg
of milk, rather than CH4 emission per day, and the milk average spectra with an interval between
the measurement of CH4 and the spectral data equal to 1.5 days. The cross-validation coefficient
of determination R%, was 0.79 and the difference between R% and R%, was the lowest (0.08),
which indicates a robust model. The study also showed that CHa predictions were not affected by
the different diets and that R2., of CHa prediction model was higher than the correlation obtained
between CH4 emissions and milk production and MIR milk components. This fact indicates that
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the prediction model is not based only on correlation between CHs production and milk
components. However, the study concluded that further research is needed to produce more

reliable prediction model [63].

Vanlierde et al. (2015) predicted CH4 emissions from milk MIR spectra by taking lactation stage
into consideration, which better reflects the metabolic status of the cow [62]. The author
hypothesized that inclusion of the stage of lactation in the prediction model might improve the
relationship between CH4 emissions and MIR spectra because milk fatty acids profile is strongly
influenced by the evolution of body tissue mobilization during lactation. The study included cows
form different countries (i.e. Belgium, Ireland), different breeds (i.e. Holstein, Jersey, Holstein-
Jersey crossbred), different parity (i.e. first, second, third and later), and different lactation stages.
In addition, different diets were used to feed the cows, such as grass or high silage diets, with or
without linseed supplementation and synchronized or not in terms of fermentable energy and
nitrogen supplies in the rumen. CH4 emissions were measured daily by the sulfur hexafluoride
(SFe) tracer gas technique and MIR milk spectra were collected twice daily for cows in two
different countries. To obtain one milk spectrum per CHs measurement, the 2 spectra were
averaged proportionally to the milk yield at each milking [62]. Two PLS calibrations models were
developed to predict CH4 emissions from MIR milk spectra after applying the first derivative and
three spectral regions were used: 968-1577 cm ™, 1720-1809 cm ™2, and 2561-2966 cm ™. The first
model was independent from lactation stage (ILS) and the second model was dependent on
lactation stage (DLS), which included the days in milking (DIM) for each cow in addition to the

MIR milk spectra. To obtain the DLS calibration equation, each first derivative value of the

spectrum was multiplied by a constant (i.e., 1), a linear (x/§><x) and a quadratic

l 5/4 x (3x% — 1)] modified Legendre polynomial where

Equation 2-17 Equation used to embed lactation stage in constants that are multiplied by the first derivative value for each
spectrum data point

v=-14+2[P =90 o]

Through this process, a modified spectral data set was generated containing 867 data points (289
data points for each constant, linear, and quadratic part) referred to as the DLS spectral data set.
The linear and the quadratic parts of these modified spectra take into account the lactation stage of
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cows. The range of application of the DLS equation was between 5 and 365 DIM given the range
of lactation covered in the definition of the Legendre polynomials [62]. After applying the two
prediction equations to an external validation spectral data set whose CH4 emissions were not
recorded, a statistical model was developed to evaluate the behaviour of the predicted CH4
emissions and to verify that they comply with the biological processes in the cow’s body. This
model reflected several effects known to influence CH4 production such as effects of herd, year

and month of test-date, lactation number, lactation stage, animal, and milk yield [62].

Equation 2-18 Statistical model that reflects several effect which influence CH4 immisions

Ypgrstu = U+ hy XYy + mo, + g X dp + ¢y + ma + (m X m)P + epqrsty

Where y, st Was the predicted CHa trait, pu was the general mean, h, X y, was the crossed fixed
effect of herd p and year of test-date q, mo,. was the fixed effect of monthr, [ X d; was the crossed
fixed effect of lactation numbers and lactation stage t, c,, was the random effect of cow u, m was
the daily milk yield (kg/d), o was the linear regression coefficient on m,  was the quadratic

regression coefficient on m and e, 451, Was the associated random residual [62].

The RZ% for the ILS and DLS calibration models were 0.77 and 0.75, respectively. The standard
error of calibration (SEC) was 63 g/d for both ILS and DLS calibration models. These parameters
show that both models had similar abilities to predict eructed CHa. In addition, CH4 emission
predictions of both ILS and DLS models were significantly affected by all studied fixed effects.
However, behavior of DLS predictions throughout the lactations was more in agreement with the
literature than the predictions of the ILS model. Increasing values of CHa4 predictions were
observed for the DLS model in the period 0-100 DIM, which accompanies an increase in feed
intake in cows postpartum, and thereafter these values decreased. On the other hand, predictions
of the ILS model showed a reversed pattern where emission predictions decreased at the beginning
of the lactation and then increased until the end of the lactation. Therefore, the DLS model seems

to better reflect biological processes that drive CH4 emissions than the ILS model [62].

2.7.12 Detecting cows’ pregnancy status

Lainé et al. (2014) investigated the potential of MIR milk spectra to detect cows’ pregnancy status.
They collected MIR milk spectra of open cows (i.e. non-pregnant cows) and they estimated all the
relevant effects by statistical modeling. Later, they collected MIR milk spectra of cows with
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unknown pregnancy status and they adjusted these spectra according to the estimated coefficients
of the relevant effects to produce new spectra, which would be the expected spectra if these cows
would have been open. The calculated spectra were then removed from the respective observed
ones for the cows with the unknown pregnancy status, and the residual spectra were used to predict
the pregnancy status. These residual spectra contained errors, pregnancy status, and unaccounted
factors [64].

Before calculating the expected spectra, first derivative was calculated on the raw spectral data
and noisy regions of the milk spectrum were removed. Outliers were flagged if samples had milk
yield, fat content and protein content outside the acceptable ranges of the International Committee
for Animal Recording (ICAR) or if they have a Mahalanobis distance greater than 3. The final
edited dataset included a total of 411,406 spectra (114,338 spectra from pregnant cows and
297,018 spectra from open cows) from 68,998 cows in 1,045 herds. A predictive discriminant
analysis was performed to produce a discriminant function that was validated using an external
validation set of 14,883 residual spectra. Results were expressed in terms of specificity and
sensitivity. Specificity is defined as the ability of the equation to predict correctly the non-event
(open cows) among all observations which are not pregnant. Sensitivity is defined as the ability of
the equation to predict correctly the event (pregnant cows) among all observations belonging to
pregnant cows. [64]. The classification error was 0.7% and 55.5% when the predictive
discriminant function was applied to the calculated residual and raw spectra, respectively, of
samples with unknows pregnancy status after 50 days of insemination. Specificity was 86.2% and
sensitivity was 99.7% for predictions based on the calculated residuals. The authors concluded that

changes in the pregnancy status of the cow can be reflected in the MIR milk spectrum [64].

2.7.13 Verification of dairy farming production system

Capuano et al. (2014) investigated the potential of MIR milk spectra to distinguish between milk
produced by fresh grass feeding, pasture grazing and organic farming by using partial least square
discriminant analysis (PLS-DA). A total of 116 tank milk samples were collected from 30 different
farms in the Netherlands. The grass intake with cut fresh grass fed indoor was estimated from the
acreage of cut land and weight of fed fresh grass. The grass intake via grazing was estimated by
the farmer through their experience from the animal energy needs minus what was fed next to the

grassland. Samples were categorized in five groups: milk samples from cows at least 19 h outdoors
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on pasture daily, milk samples from cows 6-9 h outdoors on pasture daily, milk samples from
cows indoors with fresh grass in the diet, milk samples collected in spring from cows indoors with
no fresh grass in the diet and milk samples collected in winter with no fresh grass in the daily
ration and cows were indoor all the time. Fresh grass in the cows’ daily ration was between 36%
and 94%. In addition, milk samples were collected from two certified organic farms, three certified
biodynamic farms and one farm converting to organic farming. MIR spectra were collected for all
milk samples in the range of 925-5008 cm™ and outliers were detected by principal component
analysis (PCA). The following regions were eliminated due to the lack of chemical information or
inadequate signal-to-noise ratio: 1800-2800 cm™, 3000-3600 cm™ and 4000-5000 cm™. Various
data pre-processing techniques were tested including mean-centering, auto scaling (scaling to unit
variance), Pareto scaling (scaling to square root of the variance), first and second derivatives,
smoothing and orthogonal signal correction (OSC) and a combination of them. PLS-DA was
performed to verify the cows' feeding regime (fresh grass feeding vs. no fresh grass feeding), the
housing management system (indoors vs. pasture) and the farming management system (organic
vs. conventional). The training set included 75% of records of the original data set, while 25% of
records were used as validation set [65]. The most satisfactory results in terms of number of
misclassified samples in external validation was obtained by a PLS-DA model after auto scaling,
smoothing and second derivative transformation of the raw data and the application of one OSC

component [65].

The PLS-DA model discriminated between milk from cows that had fresh grass in the daily ration
and milk from cows that had not fresh grass with sensitivity and specificity values of 88% and
83% in external validation and all the samples from cows that had no fresh grass collected in spring
were correctly classified. For pasture grazing model, 75% of samples from cows in doors in spring
were correctly classified. Discrimination of organic and conventional milk yielded 80% and 94%
correct classification, respectively, in external validation. The authors concluded that milk FTIR
spectra contain valuable information on cows' diet that can be used for authentication purposes
[65].

2.7.14 Suggested predictions of milk components by FTIR spectroscopy
De Marchi et al. (2014) suggested that further research is needed to determine whether MIR milk

spectra could be used for predicting the following constituents of milk [66]:
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Potassium, magnesium, and zinc content, which are important for transmitting nerve
impulses, for mineral structure of bones, for wound healing, and healthy immune systems
Phospholipids and acidic glycolipids, which are important for infant development
Vitamins A and B, which are important for healthy eyes and skin

Sensory features, which are important for the characterization of milk taste

Cheese yield

Whey components, such as glutathione, a-tocopherol and vitamin C
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2.8 Conclusion

Monitoring milk composition is an important management tool for dairy producers. Changes in
milk components can be an indicator of metabolic or management issues in individual cows or the
dairy herd in general. Milk analysis by FTIR spectroscopy is a rapid and cost-effective method
and it does not require the use of hazardous chemicals with no sample preparation, which qualifies
it as a green analytical method. However, dairy producers do not perceive milk composition as an
important parameter as they do for milk yield. One of the probable reasons for this perception is
the lack of an on-site milk analyzer that is affordable and that can rapidly analyze milk with an
acceptable accuracy and precision. Currently, central dairy laboratories send technicians to dairy
farms to routinely collect milk samples from individual cows and milk tanks, which are shipped
to the laboratory for analysis by FTIR commercial milk analyzers. The information about
individual animals and the dairy herd in general that is available to dairy farmers is limited by the
frequency of the analysis. Having an on-site milk analyzer will provide dairy farmer with a tool to
self monitor milk composition more frequently, especially for animals with specific health issues.
It must also be noted that the current payment system does not take into consideration elements of

fine milk composition to determine payments for dairy farmers.

In this literature review, a summary was presented about the development of milk analysis by
infrared spectroscopy and multivariate regression algorithms that are used to determine milk
components from infrared spectral data. In addition, studies that intend to improve predictions of
milk fatty acids and extract additional traits from milk spectral data were reviewed. The common
drawback of the majority of these studies has been the fact that they were focused on developing
PLS prediction models to predict fine milk composition components, such as milk fatty acids,
different milk protein fractions and milk minerals, which do not necessarily produce a distinct
signal in milk FTIR spectrum. Few studies relied on implementing classification algorithms to
extract information from milk FTIR spectra that can be implemented in herd management or by
the dairy industry. This observation suggests that the use of milk FTIR spectra can be extended
beyond the paradigm of predicting specific milk components by PLS regression models, where
classification models can be developed to predict the health and well-being status of dairy cows.
Such field has been rarely investigated up to this date.
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Chapter 3: Transmission based FTIR spectroscopy for on-site milk analysis

Abstract

Three Fourier transform infrared (FTIR) spectrometers were evaluated for transmission-based on-
site milk analysis, two of which were portable FTIR spectrometers. The three spectrometers
produced high quality milk spectra with excellent signal-to-noise ratio. Accordingly, three
analyzer prototypes were assembled employing CaF. transmission cell as a sample introduction
method with 40-50 pum path length. Pre-analyzed preserved producer raw milk samples were
obtained from Valacta Inc. (Sainte Anne de Bellevue, QC, Canada) and their mid-infrared (MIR)
spectra were collected by the assembled prototypes. Partial least squares (PLS) regression was
employed to develop calibration models for the major milk component (i.e., fat, protein and
lactose). To evaluate the goodness of fit and the prediction capability of the developed models,
root mean square error of calibration (RMSEC), root mean square error of cross validation
(RMSECV), root mean square error of prediction (RMSEP), number of factors, bias (if available),
correlation coefficient r, the ratio performance/deviation (RPD) and spectral regions were used to

compare the developed models.

In addition, several milk fat homogenization approaches before IR analysis were investigated to
reduce the effect of light scattering on the accuracy of the IR predictions. Ultrasonication before
the analysis proved to be an effective method for homogenizing milk fat and to be integrated with
an on-site IR milk analysis process. The results show that applying 3000 joules of ultrasonication
energy to 5 mL milk sample for 120s is sufficient to produce a homogenized raw milk sample in

a consistent manner.

Prediction models developed using producer raw milk spectra scanned on prototype 3 gave the
most consistent figures of merit (FOMs) (i.e., RMSEC, RMSECV and RMSEP) and RPD values
for calibration models for fat, protein and lactose indicated excellent prediction capabilities. The
inspection of the loading spectra of these PLS models revealed the conventional peaks at the
expected positions for the major milk components. This observation confirms that the adequate
FOMs obtained by prototype 3 are a result of spectral information that was captured by this
prototype; hence, a portable FTIR spectrometer can be adapted to be used as an on-site milk

analyzer.
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3.1 Introduction

Quantitative milk analysis by Fourier transform infrared (FTIR) spectroscopy is currently an
official method of the Association of Official Analytical Chemists (AOAC) [4], which is
extensively used for producer payment, herd management and routine quality control in the dairy
industry [22]. Goulden was the first to describe milk analysis by infrared (IR) spectroscopy [1].
He demonstrated that milk components absorb IR energy at specific wavelengths and that the
intensities of the absorption peaks can be used for quantitative determination of these components.
The reported wavelengths that were used to determine major milk components were 5.73 um, 6.46
um, 9.6 um and 7.9 um for fat, protein, lactose and solids-not-fat (SNF) content, respectively. In
wavenumbers®, these values are equal to 1745.20 cm™, 1547.99 cm, 1041.67 cm™ and 1265.82
cm?, respectively [1]. In addition, it was demonstrated that scattering of light by fat globules is
proportional to particle-size-to-wavelength ratio. Hence, attenuation of the IR beam due to
scattering can be eliminated by decreasing fat globules size through milk homogenization.

Modern milk analyzers in central dairy laboratories employ FTIR spectrometers and they use
specific regions in milk FTIR spectrum to predict the concentrations of major and minor milk
components (figure 3-1). These regions are 1) 1,200-900 cm™ for lactose, 2) 1,280-1,200 cm™
Amide I11 of proteins, 3) 1,500-1,200 cm different absorbance bands originating from minor milk
components 4) 1,565-1,520 cm™* Amide Il of proteins, 5) 1,745-1,725 cm™ C = O stretching in
the triglyceride ester linkage of milk fat (i.e., Fat A), 6) 2,980—-2,800 cm™ C — H stretching of the
aliphatic chain in fatty acids in milk fat (i.e., Fat B). The Amide | band of proteins is dominated
by noise from the H — O — H bending band of water at 1650 cm™ due to the immense water
absorbance of IR energy. Similarly, the O — H stretching band in water at 3600-3200 cm™ is also

dominated by noise due to the same reason.

Modern FTIR milk analyzers are renowned for their high sample throughput, which reaches 500
samples/h, fast analysis time (i.e., 6-30s), accuracy that is better than 1% relative on the main
constituents and precision that is better than 0.5% relative on the main constituents [5]. To achieve
these targets, a spectral resolution of 16 cm™ is used to obtain high signal-to-noise ratio (SNR)

since most absorption bands in aqueous solutions are quite broad. The sample introduction method

T The following equation was used to convert from wavelength to wavenumber: y cm = 10,000,000 / x nm.
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in these analyzers is a transmission cell with calcium fluoride (CaF2) windows, whose refractive
index is similar to that of milk [5], with an optimum path length of 37 um [22] and samples are
flushed at a very high velocity (i.e. 30m/s) [5] to keep the cell clean from residues buildup. Milk
fat is homogenized by two stages high pressure homogenizer, with the pressure drop over each
stage being approximately 10’ Pa. The homogenizer consists of two chambers with ruby balls
(Al203) blocking the inlet openings of each chamber. These balls are connected to a ceramic seat
(Zn02) by springs. High-pressure pump pushes the milk through the inlet and against the ruby
balls. This action generates force that breakdown fat globules and reduce their diameter [5]. Fat
globules diameter should be reduced to 1 um since the shortest wavelength that is used in milk
analysis is 3 um (3333 cm™). The high pressure within the analyzer prevent the release of dissolved
COz and air as small bubbles, which will disturb the analysis [5]. Water is used as a spectral
background and temperature fluctuations of the entire system, the sample cell and the
interferometer are kept within tight ranges to avoid the shifting of water spectrum and optical
misalignment due to thermal expansion [5]. In addition, the interferometer is sealed against
atmospheric humidity and it is equipped with rubber damper system to protect the mirror drive and
other optical components from environmental vibrations. Due to the highly overlapping and co-
linear structure of FTIR data, partial least squares (PLS) regression is used for milk calibration
models [5]. PLS models both the X (i.e., the FTIR spectral data) and Y (i.e., the reference values)
matrices simultaneously to find latent variables, or factors, in X that will best predict Y values
[27].

Constant monitoring of milk composition is an effective tool to manage dairy herds. Changes in
major milk components and some minor ones are indicators of health issues in dairy cows. In cases
of negative energy balance in dairy cows, protein, fat and lactose are <2.9%, >4.8% and <4.5%,
respectively [15]. In cases of ketosis, fat, lactose and BHB are >4.8%, <4.5% and >100 mol/L,
respectively [15]. In addition, several papers have reported the implementation of milk analysis by
FTIR to predict: milk fatty acids and milk fat composition [39-43], fatty acid chain length and
unsaturation [44], fat globule particle size in homogenized milk [46], milk protein composition
and their genetic variants [47], milk lactoferrin as an indicator of mastitis [49], milk coagulation
properties [50-52, 54, 55], milk titratable acidity and pH [50], milk major mineral content milk
[58], acetone, B-hydroxybutyrate (BHB) and citrate [59], cow’s body energy status and feed
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efficiency [60, 61], methane emission from dairy cattle [62, 63], cow status pregnancy [64] and

dairy farming production system [65].

The objective of this study was to investigate the suitability of different benchtop and portable
FTIR spectrometers for on-site milk analysis. These spectrometers have several advantages
including improved SNR for measurements acquired over a short period of time (i.e., the multiplex
or the Fellgett's advantage) and high throughput with high resolution (i.e., the Jacquinot's
advantage). We believe that providing dairy producers with an on-site tool to monitor milk
composition will help them detect issues in dairy cows in its early stages without the need to
constantly ship milk samples to centralized dairy laboratories, which will help dairy producers to
reduce their environmental footprint. The guidelines that were mentioned in this introduction will
be used to assemble prototypes for on-site milk analysis and to develop PLS calibration models
that will predict major milk components and some minor ones. It must be noted that an on-site

milk analyzer will not be used for payment purposes.

TIR Spectrum of Milk
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Figure 3-1 Mid-FTIR milk spectrum acquired on a milk analyzer.1) 1,200-900 cm lactose, 2) 1,280-1200 cm* Amide Il of
proteins, 3) 1,500-1,200 cm* different absorbance bands originating from minor milk components 4) 1,565-1,520 cm* Amide 11
of proteins, 5) 1,745-1,725 cm™ C = O stretching in the triglyceride ester linkage of milk fat (i.e., Fat A), 6) 2,980-2,800 cm!
C — H stretching of the aliphatic chain in fatty acids in milk fat (i.e., Fat B).
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3.2 Materials and Methods

3.2.1 Milk samples

Milk samples that have been used in this chapter can be divided into 3 categories. The first category
of milk samples includes industrially homogenized packed milk that was acquired from the local
supermarkets in Montreal. Fat levels that were reported on the milk packs were used as the
reference value for fat and they were 0%, 1%, 2%, 3.25% and 3.8%. The second category of milk
samples includes pre-analyzed producer raw milk samples that were collected by Valacta Inc.
(Sainte-Anne-de-Bellevue, Quebec, Canada) from different farms in Quebec. Valacta Inc.
provided 370 raw milk samples that were preserved with a bronopol-based preservative along with
their FTIR analysis results that included fat, protein, lactose, urea and B-hydroxybutyric acid
(BHB) concentrations. The preservative inhibited microbial growth in milk samples; hence, it
prevented changes to milk composition by milk microflora before analysis. These numbers were
used as reference values for building the calibration models. The third category of milk samples
includes two official calibration milk sets that were purchased from Valacta Inc. One set had
industrially homogenized milk samples, while the other set had producer raw milk samples. The

major milk components in both Kkits were determined by reference chemical methods.

3.2.2 Homogenization

Several homogenization approaches were evaluated for use in combination with the proposed on-
site analyzer. These approaches included: hand-held rotator, CO2 compression homogenizer, high-
pressure air compression homogenizer, mechanical lever homogenizer and ultrasonication.
Homogenization of raw milk was performed at room temperature for hand-held rotator, high-
pressure air compression and mechanical lever homogenizers. On the other hand, raw milk was
homogenized at room temperature and at 60 °C when the CO2 compression homogenizer was used.
For all homogenization approaches, the size of milk fat globules was visually inspected under
optical microscope with 1000x magnification power before and after homogenization, and the size
of these globules was compared with fat globules of industrially homogenized packed milk. In
addition to microscope inspection, Beckman Coulter Delsa™ Nano C (Brea, California, USA)
particle analyzer was used to measure the size of fat globules in ultra-sonicated raw milk to verify
the homogenization efficacy of the ultrasonication approach. Milk was defined as a diluent whose

refractive index (IR), viscosity (cP) and dielectric constant were set to 1.462, 0.8878 and 78.3,
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respectively. Marquardt analysis method was used since the resulting data is expected to have
multiple peaks, the lower limit for x axis was set to 195 nm to exclude the size of casein micelle
from the measurement and the upper limit for x axis was set to 10000 nm, which is the maximum
for this equipment. The measurement cell was set to disposable cell from Beckman Coulter size
A54093 and its center was adjusted by the equipment. Samples particle distribution was measured
at 25 °C in triplicates and D (0.90) (nm), the maximum diameter (hm) and its percentage from the
volume distribution were reported. D (0.90) indicates that 90% of the total fat globules volume in
the sample comes from particles with diameter that lies below the D (0.90) value. JMP 13 from
SAS Inc (Cary, North Carolina, U.S.) was used to perform analysis of variance (ANOVA) to
determine the significance of the sonication factors on the D (0.90) value. The significance level
was a = 0.05, which is the conventional level adopted in analytical chemistry and food science [6].
Two ultrasonic processors were evaluated in this study. The first was Fischer Model 500
homogenizer (115V) 750 Watts (Fisher Scientific, Hampton, New Hampshire, United States).
Table 3-1 shows the different combinations of sonication factors that were evaluated for

homogenizing raw milk.

Table 3-1 Values of ultrasonication parameters used for milk homogenization with the Fisher ultrasonic processor

Factors Levels

Time 15s, 30s, 60s, 90s
Probe temperature Not set, 50°C

Pulse Note set, 5s on:1s off
Amplitude 100%

Volume 25 mL

The second ultrasonic processor was Vibra Cell Ultrasonic Liquid Processors Model VCX 130PB
130 Watt (Sonics & Materials Newtown, Connecticut, United States). The factors that were
evaluated in this study were homogenization type (i.e., homogenization group) and storage, and
the significance level was a = 0.05. The tested homogenization types were raw milk that was
homogenized by a high-pressure homogenizer at Valacta (HM), raw milk that was not
homogenized (RM), ultra-sonicated milk for 60s (US1) and ultra-sonicated milk for 90s (US2).

Samples were sonicated and their particle size distribution was measured on day 1 (i.e. upon
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reception) and on day 2 after they were stored in the fridge for one day. In addition, the statistical
differences in fat globules diameter were tested in milk samples that contain high fat level (i.e. >4)

that were sonicated for 90s and 120s, and the significance level was a = 0.05.

3.2.3 Assembly of prototype analyzers

Three prototypes were assembled that included: FTIR spectrometers from three different vendors,
a transmission cell with CaF, windows as a sample introduction method and a pumping system to
push/pull the milk and the cleaning solution into/from the cell under constant pressure to prevent
changes in the cell path length. Prototype one (P1) had a Bomem MB150 (ABB, Montreal, Quebec,
Canada) FTIR spectrometer and a temperature-controlled high-pressure transmission cell with 46
pm path length. The cell was also equipped with a bypass valve to divert the excess milk and
cleaning solution from passing through the cell to prevent early erosion of the cell windows and
to avoid unnecessary fat and protein deposits on the cell windows. The spectrometer was
configured and operated by an inhouse software that was written by Thermal-Lube Inc (Pointe-
Claire, QC, Canada). Prototype two (P2) had a portable Cary 630 (Agilent Technologies, Santa
Clara, California, USA) FTIR spectrometer and a transmission cell with 46 um path length. The
cell was not temperature controlled or high pressure one. The spectrometer was configured and
operated by MicroLab software (Agilent Technologies, Santa Clara, California, USA). Prototype
three (P3) had a portable ALPHA 11 (Bruker, Billerica, Massachusetts, USA) FTIR spectrometer
and a transmission cell with 47 um path length. The transmission cell was connected to a pump
and the inlet to that pump was covered by a 25 um filter model X5002 (Qosina, Long Island, New
York, USA). The spectrometer was configured and operated by an inhouse software that was
written by Thermal-Lube Inc (Pointe-Claire, QC, Canada).

The CaF> windows of the transmission cell were separated by ~50 um polytetrafluoroethylene
(PTFE) spacer to create the space between the two windows (i.e. the optical path). To calculate
the path length of the transmission cell, a spectrum of the empty dry cell was collected and ratioed
against empty background. The number of fringes was counted within specific spectral range and

the path length was calculated as follows:

Equation 3-1 Calculating the path length of a transmission cell using wavenumbers and the number of fringes in an FTIR
spectrum

L= n X 10
2(W, —Ws)
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Where L = cell pathlength (in mm), W1 = starting wavenumber (cm™), W2 = ending wavenumber

(cm™), n = number of fringes between W1 and W2.

Equation 3-2 Calculating the path length of a transmission cell using wavelength and the number of fringes in an FTIR spectrum

L= n X W; xW,
— 2(W, — W,) x 1000

Where L = cell pathlength (in mm), W1= starting wavelength (in um), W2= ending wavelength
(in pm), n = number of fringes between W1 and W2.

The path length stability of the transmission cell was monitored by passing a solution that
contained 10% ethanol and 1% sodium azide at the beginning and at the end of each data collection
session. The heights of the following peaks were observed for changes in the path length: 1045
cm and 1085 cm™ for ethanol and 2048 cm™ for sodium azide. An aqueous solution of 0.01%

triton was used to clean the transmission cell.

3.2.4 Evaluation of the spectral quality of the assembled prototypes

Several aspects were considered as indictors of spectral quality of FTIR spectra collected by the
assembled prototypes. SNR was determined by the Analyze Noise functionality in Omnic 7.3
(Thermo Electron Corporation, Waltham, Massachusetts, USA) after selecting the spectral region
1920-1900 cm*. This spectral region did not contain any information related to milk components.
SNR of spectra of homogenized packed milk collected on the assembled prototypes were
compared to SNR of milk spectrum collected on a commercial milk analyzer (Foss, Hillerad,
Denmark). To assess the potential of an FTIR spectrometer for milk fat analysis, a PLS calibration
model was developed using spectra of homogenized packed milk with different fat levels (i.e. 0%,
1%, 2%, 3.25%, 3.8%), which were collected on P1. The sample set was scanned three times and
the order of sample scanning was reversed each time. TQ Analyst Professional Edition 7.2.0.161
(Thermo Electron Corporation, Waltham, Massachusetts, USA) was used to build the PLS models
and no spectral pre-treatment was applied to the spectra. Spectra of the same skim milk sample
were collected before and after each sample set run. These spectra were subtracted from each other
to verify the absence of deposition buildup of milk components on the transmission cell windows,
specifically milk fat and protein, after several milk samples were passed through the transmission

cell.
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3.2.5 Spectral acquisition

To acquire milk FTIR spectra, the spectrometers of P1 and P2 were set up as follows: resolution
16 cm?, the number of scans for background acquisition was 256, the number of scans for sample
acquisition was 64 and milk spectra were ratioed against the spectrum of distilled water. Milk
samples were heated in a water bath for 15 minutes at 50 °C before acquiring the spectra. Warm
solution of 0.01% triton in distilled water was passed through the cell before pumping the milk
samples to condition the CaF, windows of the cell and to avoid the formation of air bubbles on
these windows. The same solution was passed through the cell after the spectral acquisition to
avoid the buildup of milk fat and protein depositions. The temperature of the transmission cell for
P1 was set at 50 °C. P1 and P2 were moved to Valacta (Sainte-Anne-de-Bellevue, Quebec,
Canada), one at a time, and spectra of producer raw milk samples were collected there. Two
homogenization approaches were applied to raw milk samples prior to recording the spectra,
ultrasonication and mechanical homogenization. Since the particle analyzer was not available at
that time, determination of ultrasonication parameters was based on visual observation of fat
globules under the optical microscope. Milk was ultrasonicated by a probe from Fisher Scientific
(Hampton, New Hampshire, United States) Model 500 (115V) 750 Watts using the following
settings: amplitude 100%, temperature 50 °C, sonication time 60s and pulse 5s on 1s off. The
spectrometer of P3 was set up as follows: resolution 16 cm™, the number of scans for background
acquisition was 32, the number of scans for sample acquisition was 32 and milk spectra were
ratioed against the spectrum of distilled water. Warm solution of 0.01% triton in distilled water
was passed through the cell before and after pumping the milk samples through the cell. Raw milk
samples were homogenized by ultrasonic processor Vibra Cell Ultrasonic Liquid Processors
Model VCX 130PB 130 Watt (Sonics & Materials Newtown, Connecticut, United States) for 90-
120s. By the end of this treatment, the temperature of the milk was ~50 °C, which eliminated the
need for the water bath preheating treatment. All milk samples were scanned in triplicates and the

total number of spectra was 1110.

3.2.6 Development of PLS calibration models for milk components

TQ Analyst Professional Edition 7.2.0.161 (Thermo Electron Corporation, Waltham,
Massachusetts, USA) was used to build PLS calibration models for major and some minor milk
components using FTIR spectra of milk samples and their corresponding reference values for each

milk component. The FTIR spectra were either kept raw, without applying any mathematical pre-
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treatment, or they were subjected to the Savitzky—Golay first derivative (SG FD) algorithm prior
to calibrating the model. The window size was 7 and the polynomial order was 3. After the raw
spectra were loaded into the software, the Spectrum Outlier functionality in TQ Analyst was used
to exclude all the spectra that were considered as spectral outliers. The refinement of each model
went through several iterations. The first iteration was performed on the full FTIR spectrum. The
loading spectra that resulted from this iteration were examined and the spectral regions that showed
high loadings were kept for the subsequent iteration. The spectral regions that will be included in
the model must be relevant to the milk component for which a calibration model is being
developed. This process was repeated until a stable calibration model was obtained. For each
iteration, cross-validation was performed in TQ Analyst using leave-one-out approach. In addition,
Valacta provided spectra of a milk sample set along with the corresponding reference values for
each sample. These spectra, which were collected on a commercial milk analyzer (Foss, Hillerad,
Denmark), were used to build PLS calibration models for milk components. The figures of merit
(FOMs) yielded by these models were considered as reference values to which FOMs produced

by the PLS models that were developed for the prototypes were compared.

3.2.7 External validation of the prototype analyzers

The external validation of the assembled prototypes was performed on new milk sample sets,
which were not part of the calibration sets that were used to develop the prediction models. The
locations for the external validation for P1, P2 and P3 were the Macdonald Campus dairy farm,
the McGill IR lab in Macdonald Campus and Léothé dairy farm (Saguenay, QC, Canada),
respectively. The number of raw milk samples that were scanned by P1, P2 and P3 were 75, 40
and 40, respectively. For P1, milk samples were scanned over 2 days (D1 and D2). The raw milk
samples were homogenized by ultrasonication, and the same procedures for ultrasonication and
spectral acquisition were used for the respective prototypes. Major milk components and BHB
were predicted by the PLS calibration models that were developed for each prototype. Urea was
predicted for spectra collected on P2 and P3. For P3, principal component analysis was used to
detect spectral outliers that were excluded from the external validation study. In addition, milk
samples for the external validation sets were analyzed by Valacta and their analysis results were
used as reference values. The prediction results of the prototypes were regressed against the
reference values and the mean differences (MD) and the standard deviation of the differences

(SDD) were calculated for each milk component within each external validation set.
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3.3 Results and Discussion

3.3.1 Homogenization

Several milk homogenization approaches were evaluated with different conditions for each
approach. The hand-held rotation homogenizer did not show any potential for effective
homogenization. It was not powerful enough and when milk was tested at room temperature the
homogenizer did not affect the size of fat globules. In addition, the CO, compression homogenizer
did not show any potential for effective homogenization, it caused milk splashing and it was not
practical for on-site analysis. Mechanical homogenization was the third approach that was
evaluated. The homogenizer had a similar design to high pressure industrial homogenizers except
that it had only one homogenization chamber instead of two. The high pressure was provided by
either a mechanical lever that was operated manually or by compressed air. Fat globules size was
reduced using this approach; however, it raised several concerns. First, the pressure that was
generated by the compressed air was too high and it cracked the CaF, window of the transmission
cell. Second, the high pressure generated by the mechanical lever might increase the path length
of the transmission cell over time, which will significantly affect the accuracy of milk
measurements. Third, this homogenizer had a weak design. The internal spring in the
homogenization head broke under the generated pressure and the homogenizer started to leak from
several points after using it for several weeks. Eventually, this approach was deemed impractical

for on-site analysis.

Ultrasonication was the most effective homogenization approach. Microscopic inspection revealed
that the size of milk fat globules was reduced when milk samples were sonicated for 60s by the
Fisher processor. In addition, this approach has the potential to be properly integrated with an on-
site milk analysis process. To determine the optimum parameters to adequately homogenize milk,
fat globules diameter was measured by a particle analyzer. For the Fisher processor, full factorial
ANOVA was applied to the log-transformed measurements of D (0.90) after excluding raw milk
and homogenized packed milk measurements. Significant differences were revealed between the
treatments that represented different combinations of sonication period, probe temperature and
pulse cycle, F (15, 32) = 3.8867; P = 0.0006. Only the sonication period had a significant effect
on the reduction of milk fat globules diameter (P < 0.0001), while the other factors and their

interactions did not have any significant effect on the values of D (0.90) measurements. Sonication
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for 60s and 90s achieved the least mean value for D (0.90), which means that 60s and 90s were

the optimum sonication time for the Fisher processor without using a pulse cycle or a heated probe.

Table 3-2 Mean values of D (0.90) from volume distribution of fat globules diameters in raw milk sonicated by the Fisher
processor for 15, 30, 60 and 90s.

Times Mean D (0.90) Lower 95% Upper 95%
15 4762 3036 7471
30 1250 797 1962
60 1118 713 1754
90 1068 681 1675

For the Vibra Cell processor, table 3-3 presents the mean D (0.90) for raw milk samples (RM),
high-pressure homogenized milk samples at Valacta (HM), sonicated milk for 60s (US1) and
sonicated milk for 90s (US2), whose particle size distribution was measured upon reception and
after one-day storage in the fridge. ANOVA tested the differences in fat globules diameter among
the four homogenization groups and the effect of refrigerated storage of samples for one day.
Significant differences were revealed among the tested groups, F (7,80) = 6.1157; P <0.0001.
Homogenization type had a significant effect (P = 0.0003) on D (0.90) mean values, while the
testing day and their interactions did not reveal any significant effect on D (0.90) mean value. This
can be interpreted that cold storage of milk samples will not undermine the effectiveness of the
sonication treatment in reducing the diameter of milk fat globules. The mean values for D (0.90)
were ~1291 nm and ~906 nm for US2 and HM, respectively. This observation indicates that US2
treatment produced fat globules diameters close to that of HM group. In addition, one-tailed t test
was performed on the log transformed values of D (0.90) to compare the means of HM group
against the means of US1 and US2 groups. The alternative hypothesis of the first and second tests
Were Uysy > Ugm and uysy > Uy, respectively. The first t test revealed that the mean D (0.90)
value for US1 group was significantly greater than the mean D (0.90) value for HM group, t(58)
= 2.5832; P = 0.0062; assuming equal variances according to Levene’s test F (1, 58) = 1.3553; P
= 0.2491. The second t test revealed that the mean D (0.90) value for US2 group was not
significantly greater than the mean D (0.90) value for HM group, t(58) = 0.7610; P = 0.2249;
assuming equal variances according to Levene’s test F (1, 58) = 2.2948; P = 0.1352. These
observations indicate that sonicating milk for 90s with the Vibra Cell processor produced particle

56



size distribution of fat globules similar to the high-pressure homogenization treatment applied to

raw milk samples at Valacta.

Table 3-3 Mena values of D (0.90) from volume distribution of fat globules diameters in raw milk sonicated by the Vibra Cell
processor for 60 and 90s, raw milk and high-pressure homogenized milk

Treatment Mean D (0.90) Lower 95% Upper 95%
HM 906 584 1407
RM 5590 2891 10808
US1 1762 946 3280
uS2 1291 693 2403

The correlation was not strong between the fat content of milk samples and their D (0.90) values
(R? = 0.15). Nevertheless, milk samples with high fat levels (i.e., >4%) were sonicated by the
Vibra Cell processor for 90s and 120s and the means of D (0.90) values were tested for significant
differences. Levene’s test revealed that there are significant differences between the variances of
the two treatments, F (1, 16) = 7.6991; P = 0.0135. For this reason, Welch test was performed, and
it did not reveal any significant differences between the mean values of D (0.90) for the two
treatments, F (1, 9) = 2.9151; P = 0.1216. This observation indicates that sonicating milk samples
with high fat content for 90s or 120s will yield statistically similar mean values for the fat globules’
diameters. The mean D (0.90) values were ~2252 nm and ~1296 nm for the 90s and 120s,
respectively. On the other hand, the standard deviations of the D (0.90) values of the two treatments
were 1626 nm and 423 nm for the 90s and 120s, respectively. Since Levene’s test revealed that
the variances are significantly different, it can be concluded that sonicating milk samples for 120s
(i.e., 3000 joules) will yield a particle size distribution of fat globules that is more uniform than

sonicating for 90s.

Table 3-4 Mean D (0.90) values for high fat milk samples >4% sonicated for 90s and 120s with the Vibra Cell processor

Times Mean D (0.90) Std. Dev. Lower 95% Upper 95%
90 2252 1626 1002 3501
120 1296 423 971 1621
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Figure 3-2 Volume distribution of fat globules diameters in ultrasonicated raw milk by the Fisher processor. A: raw milk, B:
homogenized milk, C: Raw milk ultra sonicated for 15s at 50 °C with pulsing cycle of 5s on and 1s off, D: Raw milk ultra
sonicated for 90s at 50 °C with pulsing cycle of 5s on and 1s off, E: Raw milk ultra sonicated for 90s with pulsing cycle of 5s on
and 1s off with no heating
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3.3.2 Evaluation of the spectral quality of the assembled prototypes

Noise was expressed as Peak-to-Peak noise and root mean square (RMS) noise [67]. Peak-to-peak
noise is the difference between the corrected intensities of the highest and lowest noise peaks in
the selected spectral region, which does not contain information related to the chemical
composition of milk. On the other hand, RMS noise is a statistical analysis of the noise variation,
which is equal to the square root of the average of the squares of the data points in the selected
spectral region. It is mathematically expressed as follows:

RMS = /M
n

Where i, is the intensity at the wavenumber v, T is the mean intensity in the selected spectral region
and n is the number of analyzed wavenumbers. Smaller values for both indicators mean lower level
of noise in the FTIR spectrum. The RMS noise values were: 0.00004481, 0.000111, 0.000126 and
0.00001603 for spectra collected on the commercial milk analyzer, P1, P2 and P3, respectively
(Table 3-5). These numbers indicate that the ALPHA 11 (Bruker, Billerica, Massachusetts, USA)
spectrometer produced spectra with the highest spectral quality among the three spectrometers that
were evaluated in this study and that its SNR ratio was at the same level as that of the commercial
milk analyzer. Milk spectra collected on all prototypes revealed the typical spectral regions that
will be used in PLS models to predict the concentrations of major and some minor milk

components (Figure 3-3).

Figure 3-4 presents the subtraction results of skim milk spectra that were collected at the beginning
and at the end of each cycle of milk spectra acquisition that was performed to assess the potential
of FTIR spectrometer for milk fat analysis. No peaks are observed in Fat A, Fat B, Amide Il and
Amide 11l regions, which confirms the absence of milk fat and protein depositions. This
observation proves that the above-mentioned sample scanning procedure is not causing fat and

protein build-up on the CaF, windows of the transmission cell in the short-term.

Table 3-6 and Table 3-7 present a comparison of the calibration and cross-validation FOMs for fat
PLS models that were developed using spectra of homogenized packed milk collected on P1. Milk
fat calibration models gave excellent FOMs for fat predictions by these models. The cross-
validation correlation coefficients (r) were 0.99, 0.99 and 0.99 when Fat A, Fat B and Fat A&B
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spectral regions were used in these models, respectively. The root mean square error of calibration
(RMSEC), root mean square error of prediction (RMSEP) and root mean square error of cross
validation (RMSECV) were 0.02%, 0.02%, 0.04% and 0.03%, 0.04%, 0.05% and 0.06%, 0.06%,
0.6% for Fat A, Fat B and Fat A&B models, respectively. These numbers indicate that an FTIR
spectrometer can capture information related to the chemical composition of milk. In addition, it
can be concluded that the model that used Fat A spectral region produced the most robust

prediction model since its RMSEP was the lowest and almost equal to the RMSECV of that model.

Table 3-5 SNR ratio comparison of spectra collected on a FOSS analyzer, prototype 1, prototype 2 and prototype 3

Spectrometer Spectral Range Peak-to-Peak Au RMS

FOSS 1920-1900 0.00009151 0.00004481

P1 1920-1900 0.0002092 0.000111

P2 1920-1900 0.0003006 0.000126

P3 1920-1900 0.00003911 0.00001603
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Figure 3-3 Milk FTIR spectrum acquired on P3 with a transmission cell. It reveals the same regions as in milk spectrum
collected on commercial milk analyzer with matching spectral quality. 1) 1,200-900 cm'! lactose, 2) 1,280-1200 cm* Amide 111 of
proteins, 3) 1,500-1,200 cm* different absorbance bands originating from minor milk components 4) 1,565-1,520 cm™* Amide 11
of proteins, 5) 1,745-1,725 cm C = O stretching in the triglyceride ester linkage of milk fat (i.e., Fat A), 6) 2,980-2,800 cm!
C — H stretching of the aliphatic chain in fatty acids in milk fat (i.e., Fat B),
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Figure 3-4 Subtraction spectra of multiple measurements of homogenized packed skim milk before and after passing whole milk
into the transmission cell. The subtraction spectra do not show any milk fat or protein build up on the cell windows

Table 3-6 Comparison of FOMs of prototype 1 calibration models for homogenized packed milk

Component Region r RMSEC% RMSEP% Factors  Bias

Fat (Fat A) 1,778.64-1,735.15 0.99 0.02 0.02 3 -
2,955.00-2,892.70

Fat (Fat B) 0.99 0.03 0.04 4 -

2,884.62-2,846.52
1,735.15- 1,735.15

Fat (Fat A& B) 2,955.00- 2,892.70 0.99 0.06 0.06 2 -
2,884.62- 2,846.52

Table 3-7 Comparison of prototype 1 cross validation FOMs for homogenized packed milk

Component r RMSECV % Factors Bias

Fat (Fat A) 0.99969 0.04 3 -

Fat (Fat B) 0.99939 0.05 4 -
Fat (Fat A & B) 0.99910 0.06 2 -
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Figure 3-7 Prototype 3 at the McGill IR group lab
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3.3.3 PLS calibration models for milk components

Inspection of loading spectra obtained from the initial calibration models revealed high loadings
for spectral regions whose absorbance intensities strongly correlate with the corresponding
covalent bonds in the analyte of interest. All PLS calibration models for milk fat revealed high
loadings for regions 3,000-2,800 cm™ and 1,765-1,725 cm™. The first region is known as Fat B
and it is assigned to the asymmetrical stretching (v,sCH,) and symmetrical stretching (v{CH,) of
the methylene group in milk fat [24]. The second region is known as Fat A and it is assigned to
the C = O stretching vibration of the ester linkage in milk fat [24]. All PLS calibration models for
milk protein revealed high loadings for regions 1,580-1,500 cm™ and 1,400-1,200 cm™*. The Amide
Il band and the Amide 111 band of milk proteins are located at 1,565-1,520 cm™ [24] and at 1,280-
1,200 cm™ [25]. All PLS calibration models for lactose revealed high loadings for region 1,200-
1,000 cm™ that is assigned to carbohydrates coupled stretching and bending [24].

Several FOMs were used to compare the performance of the calibration models that were
developed for milk components. These FOMs included: correlation coefficient (r) for calibration
and cross-validation, root mean square error of calibration (RMSEC), root mean square error of
prediction (RMSEP), root mean square error of cross validation (RMSECV), predicted residual
sums of squares (PRESS) and number of factors used, bias (if available) and the spectral regions
that were used for each model. The root mean square errors (RMSE) of calibration, prediction and
cross validation are measures of error for the prediction model. In other words, they represent the
average uncertainty that can be expected when predicting the output values for new samples
expressed in the same units as the response variable [29]. Mathematically, they are expressed as

follows:

Equation 3-3

~ 2
RMSEC = \/Zév—l(yi,cal - yi,cal)
N

~ 2
RMSEP = \/Zliv—l(yi,val B yi,val)
N
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2
4 2 (vij = 9ij)
N

RMSECV =\/

Where y; .4, is the reference value for sample i in the calibration set, ¥; .4, is the predicted value
for sample i in the calibration set, y; ,,4; is the reference value for sample i in the validation set,
Vival is the predicted value for sample i in the validation set, N is the number of samples [29], y; ;
the reference value for sample i in the cross validation group j, ; ; the predicted value for sample
I in the cross validation group j and Z is the number of cross validation groups [39]. The closer the
values of RMSEC, RMSEP and RMSECYV to each other, the more robust the model will be. Larger
differences between these values indicate that the calibration model is overfitting. PRESS is an

additional measure of error [29] and it is mathematically expressed as follows:

Equation 3-4
N
PRESS = ) (y; = 9"
i=1

Where y; is the reference value for sample i and y; is the predicted value for sample i. PRESS is
calculated for the PLS calibration model for each iteration when an additional PLS factor or latent
variable is added to the model. A satisfactory model should yield a decreasing PRESS for the first
few PLS factors. To avoid overfitting, only the minimum number of PLS factors that achieve a
significant reduction in PRESS will be eventually included in the final model. Bias is the average
value of the differences between the reference and predicted values for a set of replicated sample

measurements [29]. Mathematically, it is expressed as follows:

Equation 3-5

Z?’=1(J’i - yi)z
N

BIAS =

Once the calibration model has been finalized for a specific milk component, the ratio
performance/deviation (RPD) was calculated for that model as follows and models with RPD >3
were considered having excellent prediction capability [59].
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Equation 3-6 Calculating the ratio performance/deviation RPD

SD

RPD = osEcy

Where SD is the standard deviation of the reference values for the samples that are used to develop
the calibration model. A value close to 1 indicates that the model is not capturing the variation
related to the chemical information of the analyte of interest and the model is only describing the
standard deviation of the calibration set, which means it will have a poor prediction power. Table
3-8 and table 3-9 present the FOMs of calibration models for milk fat, protein and lactose that
were developed using milk spectra collected on the prototypes using Valacta’s analysis results as
reference values. Raw milk samples that were scanned on P1 were homogenized either
mechanically or by ultrasonication, while those that were scanned on P2 and P3 were only

ultrasonicated.

Regarding milk fat, all 3 prototypes produced good calibration correlation coefficients r >0.96,
which indicates a strong statistical relationship between samples’ fat level and the spectral signal.
However, the model that was developed using ultra-sonicated Valacta’s raw milk calibration kit
spectra collected on P3 (Alpha Il spectrometer, Bruker, Billerica, Massachusetts, USA) produced
the most consistent FOMs. RMSEC, SMSEP and RMSECV were 0.01%, 0.01% and 0.02%,
respectively. The small difference between RMSEC and RMSECYV indicates a low leverage for
the samples that were used in developing the model and the small difference between RMSEC and
RMSEP indicates the robustness of this model. The low RMSEP and high RPD values (RPD =
53.18) for this model confirm its excellent prediction capability. By comparing the FOMs of fat
calibration models that were developed for P1, it can be noticed that ultrasonication produced more
consistent FOMs (RMSEC, RMSEP and RMSECV) than mechanical homogenisation, even
though the transmission cell temperature was controlled when mechanical homogenisation was
used. These observations emphasise the importance of proper milk fat homogenization for milk
FTIR analysis.

Regarding milk protein, P3 with ultrasonicated producer raw milk samples gave the most
consistent FOMs in comparison to the other models. The values for calibration correlation
coefficient, RMSEC, RMSECV and RMSEP were >0.96, 0.08%, 0.07% and 0.09%, respectively.
The small difference between RMSEC and RMSECYV indicates a low leverage for the samples that
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were used in developing the model and the small difference between RMSEC and RMSEP
indicates the robustness of this model. In addition, the RPD of this model is >3, which indicates
an excellent prediction capability. The calibration model that were developed using the spectra of
milk samples of Valacta official calibration kits gave inconsistent FOMs. While the RMSEC,
RMSEP and RMSECYV were all acceptable, the values of the correlation coefficient of the cross-
validation models were not acceptable. This can be explained by the interference of atmospheric
water vapor on the Amide Il band in milk FTIR spectrum, which is close to the OH bending band
that is located at ~1650 cm™. To verify the effect of water vapor suppression on milk protein PLS
calibration model, a new set of milk samples were scanned on the Nicolet iS5 FTIR spectrometer
(Thermo Fisher Scientific, Waltham, Massachusetts, USA) that is equipped with a function to
suppress the interference of water vapor. The resulting PLS model for milk protein yielded
improved FOMs. The values for calibration correlation coefficient, RMSEC, RMSEP and the
number of factors were 0.96, 0.03%, 0.01% and 7. The values for cross validation correlation
coefficient, RMSECV and the number of factors were 0.93, 0.03% and 7. This observation
suggests that the IR measurement chamber in an on-site milk analyzer must be hermetically sealed

against the surrounding environment.

Regarding milk lactose, the calibration model that was developed using spectra of milk samples
of the industrially homogenized Valacta calibration kit gave the most consistent FOMs. Its
correlation coefficient was >0.97 and the values of RMSEC, RMSEP and RMSECV were 0.02%,
0.02% and 0.02%, respectively. In addition, its RPD value confirms its excellent prediction
capability. By taking all the calibration and cross-validation FOMs for the three main components

of milk, P3 proved to be a good candidate for a portable FTIR milk analyzer.

Regarding urea and BHB, the PLS calibration models did not yield excellent FOMs. The
correlation coefficients were 0.63 and 0.76 and the RMSEP values were 1.14 mg/dL and 0.03

mmol/L for urea and BHB, respectively.

To summarize, three FTIR spectrometers were evaluated in this study for on-site milk analysis.
The ALPHA 11 (Bruker, Billerica, Massachusetts, USA) FTIR spectrometer had the best SNR,
which was at the same magnitude as the SNR of a commercial FTIR milk analyzer. This
observation explains its superior performance to the other spectrometers in this study. Industrial

two stages homogenization and ultrasonication were the most effective methods to reduce the size
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of fat globules and to eliminate light scattering. Ultrasonicating raw milk samples for 90-120s gave
the same particle size profile as that of industrial two stages homogenization. The results of this
study show that a portable FTIR spectrometer can be used for on-site milk analysis to determine
major milk components. The PLS calibration models for major milk components that were
developed using milk FTIR spectra collected on the ALPHA Il (Bruker, Billerica, Massachusetts,
USA) and iS5 (Thermo Fisher Scientific, Waltham, Massachusetts, USA) spectrometers gave
calibration FOMs that were similar to those obtained from models that were developed using milk
spectra collected on commercial milk FTIR analyzers. Eliminating the water vapor interference

will enhance the performance of these spectrometers for on-site milk analysis.
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Table 3-8 Comparison of calibration FOMs for milk components’ PLS models developed using milk spectra collected on P1, P2, P3 and a FOSS milk analyzer

Milk Samples System  Component Region r RMSEC RMSEP Factors
Fat % 1,766- 1,735; 2,877- 2,846; 2,962- 2,908 0.97 0.17 0.31 2
Producer raw milk P1
. L Protein % 1,581- 1,511 0.91 0.21 0.17 2
Mechanical homogenization
Lactose % 1,200-1,009 0.67 0.10 0.13 1
) Fat % 1,766-1,735; 2,876-2,846; 2,954-2,915 0.96 0.17 0.15 3
Producer raw milk ,
. o P1 Protein % 1,589-1,400 0.94 0.15 0.17 3
Ultrasonic homogenization
Lactose % 1,172-1,018 0.39 0.11 0.23 1
Fat % 1,759-1,734; 2,860-2,846; 2,929-2,921 0.96 0.16 0.17 4
Producer raw milk _ : _
) o P2 Protein % 1,577-1,200 Baseline: linear removed 0.98 0.09 0.11 5
Ultrasonic homogenization S _
Lactose % 1,176-1,018 Baseline: fixed two points 0.70 0.17 0.18 3
Fat % 1,766- 1,727;2,974- 2,834 0.99 0.02 0.03 3
Valacta milk calibration set _ _ :
) o P3 Protein % 1,450- 1,199 Baseline: linear removed 0.93 0.03 0.04 2
Industrial homogenization
Lactose % 1,200- 1,000 0.97 0.02 0.02 1
Fat % 1,761- 1,732; 2,948- 2,838 0.99 0.01 0.01 3
Valacta raw milk calibration set . . .
. L P3 Protein % 1,457- 1,199 Baseline: linear removed 0.99 0.01 0.05 4
Ultrasonic homogenization
Lactose % 1,200- 1,000 0.81 0.04 0.04 2
Fat % 1,766-1,727; 2,950-2,834 Baseline: Fixed two points 0.99 0.06 0.06 2
Protein % 1,585- 1,504 Baseline: Fixed two points 0.97 0.08 0.07 2
Producer raw milk . . i
. o P3 Lactose % 1,200- 1,006 Baseline: Fixed two points 0.95 0.04 0.07 5
Ultrasonic homogenization
Urea mg/dL 1488-1454 SG FD 0.63 2.35 1.14 2
BHB mmol/L  1500-1000 SG FD 0.76 0.01 0.03 2
Fat % 2,971-2,823 0.99 0.01 0.02 7
Producer raw milk FOSS Protein % 1,577-1,498 0.99 0.01 0.01 8
Lactose % 1,200-960 0.99 0.02 0.03 7




Table 3-9 Comparison of cross-validation FOMs for milk components’ PLS models developed using milk spectra collected on Pl, P2, P3 and a FOSS milk analyzer

Milk Samples System Component r RMSECV %  Factors RPD
Fat % 0.95 0.22 2 3.45
Producer raw milk
. L P1 Protein % 0.78 0.33 2 1.64
Mechanical homogenization
Lactose % 0.18 0.15 1 0.96
) Fat % 0.92 0.25 3 2.61
Producer raw milk _
) o P1 Protein % 0.84 0.24 3 2.09
Ultrasonic homogenization
Lactose % 0.01 0.14 1 2.14
Fat % 0.95 0.18 4 3.28
Producer raw milk _
) o P2 Protein % 0.97 0.10 5 4.02
Ultrasonic homogenization
Lactose % 0.63 0.18 3 1.28
Fat % 0.99 0.06 3 24.73
Valacta milk calibration set _
) o P3 Protein % 0.70 0.07 2 1.39
Industrial homogenization
Lactose % 0.94 0.02 1 3.09
Valacta raw milk calibration set Fat % 0.99 0.02 3 53.18
Ultrasonic homogenization P3 Protein % 0.48 0.05 4 1.07
Lactose % 0.56 0.05 2 1.20
Fat % 0.99 0.07 2 8.63
Protein % 0.95 0.09 2 3.33
Producer raw milk
. o P3 Lactose % 0.88 0.06 5 2.15
Ultrasonic homogenization
Urea mg/dL 0.32 3.09 4 -
BHB mmol/L 0.52 0.02 2 -
Fat % 0.99 0.02 7 39.41
Producer raw milk FOSS Protein % 0.99 0.01 8 38.60
Lactose % 0.99 0.02 7 6.67




3.3.4 External validation of the prototype analyzers

External validation of the assembled prototypes revealed that P3 had the best analytical
performance (Table 3-10). The MD values for fat, protein and lactose were < 0.05, which comply
with the stipulations of the AOACI official method 972.16, 33.2.31 [37]. Fat and protein
predictions agreed very well with the reference values provided for the samples (Figure 3-8 and
Figure 3-9). This level of performance for P3 can be attributed to the high SNR ratio of the Alpha
Il (Bruker, Billerica, Massachusetts, USA) spectrometer that was comparable to the SNR ratio of
the commercial milk analyzer. In addition, the homogenization procedure by the ultrasonic probe
was fine tuned when it was applied to milk samples scanned by P3. On the other hand, the PLS
prediction model for urea had the least accuracy, which was not surprising considering that the
calibration and cross validation indictors of the urea prediction model were the poorest.

Table 3-10 Mean differences and standard deviation of the difference for the external validation sets for the assembled

prototypes
FOM Milk i P2 P3
Component D1 D2

MD Fat 0.139 0.239 0.140 -0.001
Protein -0.287 -0.523 0.048 -0.008
Lactose 0.062 0.036 0.047 0.047
Urea - - 0.935 -2.992
BHB 0.007 0.010 -0.006 -0.008
SDD Fat 0.345 0.345 0.174 0.105
Protein 0.214 0.237 0.111 0.073
Lactose 0.226 0.292 0.170 0.091
Urea - - 0.857 3.407
BHB 0.042 0.048 0.033 0.041
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External Validation for Fat Model of P3
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Figure 3-8 Predicted values vs. Valacta analysis values of milk fat for spectra collected on P3 for the external validation set

External Validation for Protein Model of P3
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Figure 3-9 Predicted values vs. Valacta analysis values of milk proteins for spectra collected on P3 for the external validation set
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3.4 Conclusion

Three FTIR spectrometers were evaluated for potential use for on-site milk analysis. All
spectrometers produced high quality milk spectra with adequate SNR; hence, three prototypes
were assembled using these spectrometers, which were Bomem MB150 (ABB, Montreal, Quebec,
Canada), portable Cary 630 (Agilent Technologies, Santa Clara, California, USA) and portable
Alpha Il (Bruker, Billerica, Massachusetts, USA). PLS calibration models were developed using
spectra of producer raw milk samples collected on P3, which had the Alpha Il (Bruker, Billerica,
Massachusetts, USA) as a spectrometer. These models revealed excellent prediction capabilities
for major milk components and acceptable prediction capabilities for some minor components.
The external validation study of P3 revealed that MD values for fat, protein and lactose were -
0.001%, -0.008% and 0.047%, respectively. These numbers comply with the stipulations of the
AOACI official method 972.16, 33.2.31.

On the other hand, evaluation of different homogenization approaches revealed that the two stages
high pressure homogenization and ultrasonication were the most effective methods to reduce the
diameter of fat globules. Ultrasonication had the potential to homogenize milk and be integrated
within on-site IR milk analysis process. The results showed that applying 3000 joules of
ultrasonication energy to 5 mL milk sample for 120s would be sufficient to produce a consistent
particle size profile for raw milk samples that was similar to the one obtained by industrial

homogenizers.

This study represents a proof of concept that miniaturized FTIR spectrometers can be implemented

for on-site milk analysis. The expected benefits of such approach are as follows:

1- It will increase the frequency of the determination of milk components using the same
technology that is implemented in central dairy laboratories without the need to increase
the number of shipped samples to those laboratories.

2- The increased frequency of milk analysis on dairy farms will provide more details about
the nutrition, health and metabolic state of the cow, which will make herd management
decision-making closer to a real time process. This approach will help dairy farmers adopt

proactive strategies in managing their herds rather than reacting to emerging issues.
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3- Increasing the amount of information about milk components using FTIR spectroscopy,
which is the same technology implemented in milk analyzers in central dairy laboratories,
will better reflect the compliance of dairy farmers with industry standards.

4- Finally, having an on-site milk analyzer will guarantee the continuation of the milk analysis
process during times when sample shipments might stop for prolonged period, such as the

lockdown period of the province of Québec due to the Covid-19 pandemic.
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Connecting statement

In the previous chapter, it was proven that milk analysis by FTIR spectroscopy can be performed
by a portable FTIR spectrometer equipped with a transmission cell in combination with ultrasonic
homogenization of raw milk. It was also proven that this setup can be utilized for on-site milk
analysis, which reduces the need to constantly ship milk samples to central dairy laboratories.
However, the cost of portable FTIR spectrometers and ultrasonic probes is significant. In this
chapter, attenuated total reflectance (ATR) will be evaluated as an alternative to transmission cells
as a sample introduction method for raw milk analysis by FTIR spectroscopy. ATR will eliminate
the issue of cell clogging that is encountered when passing raw milk through a transmission cell
with micrometric optical path length. In addition, a new type of IR spectrometers, linear variable
filter (LVF) array spectrometers, will be evaluated for milk analysis. The cost of this IR
spectrometer is significantly less than its FTIR counterpart and it does not contain moving parts,

which makes it more suitable for a portable on-site analyzer.
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Chapter 4: Evaluation of ATR-FTIR spectroscopy and ATR-LVF IR
spectrometer for on-site milk analysis

Abstract

Attenuated total reflectance (ATR) is a sample introduction method that is currently used with IR
spectrometers in research due to its practicality. The objective of this study was to evaluate the
performance of ATR as a sample introduction method with an FTIR spectrometer for on-site milk
analysis. In addition, the study aimed at evaluating the potential of a novel miniaturized infrared
(IR) spectrometer that does not use interferometry to resolve the different wavelengths for on-site
milk analysis. The major advantage of this type of spectrometer is that it has no moving parts due
to the absence of an interferometer, which makes it a good candidate for on-site applications of
milk analysis. Additional advantages include small size, reduced energy consumption and low
cost, which makes it a strong candidate for the mass production of on-site milk analyzers.
Drawbacks of this IR spectrometer include limited spectral range, decreased signal-to-noise ratio
and reduced resolution, which is 36 cm™ or 18 cm™ at 1800 cm™, which might decrease the number
of milk components that can be determined. ATR-FTIR spectroscopy yielded accurate prediction
models for water soluble and colloidal components of milk. RMSECYV values for PLS prediction
models of lactose and protein were 0.06% and 0.07% respectively, in raw milk samples.
Concerning water, ATR-FTIR spectroscopy showed acceptable results with RMSECV of 0.5%.
Due to the high percentage of water in raw milk, the prediction error was deemed satisfactory.
However, ATR-FTIR spectroscopy gave poor results for the determination of milk fat in raw milk.
RMSECYV value was 0.39%, which is not acceptable for milk fat determination. The miniaturized
IR spectrometer gave an acceptable performance in analyzing milk and it could capture chemical
information related to milk lactose, water and protein. Among the four major components of milk,
lactose gave the most accurate results with both raw and homogenized milk. The prediction error
of lactose was 0.06%. For water, the prediction error was 0.5%, which will not be problematic for
applications, such as the determination of extraneous added water to milk. For milk protein,
processing raw milk samples with an ultra-sonic probe prior to spectral acquisition produced
predication models with reasonable accuracy. The prediction error was 0.16%. On the other hand,
the miniaturized IR spectrometer proved to be completely inefficient in capturing chemical

information related to milk fat. The prediction error of milk fat varied between 0.2% and 0.5%.
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4.1 Introduction

Attenuated total reflectance (ATR) is a sample introduction method that is currently used with IR
spectrometers in research due to its practicality. In this method, the sample, liquid or solid, is
simply deposited on the measurement surface for spectral acquisition, which simplifies sample
preparation procedure prior to the IR measurement. ATR is a phenomenon that results from the
effect of the angle of incidence of a light beam on its reflection from a surface. When the angle of
incidence is small, partial reflection and partial refraction occurs. However, if the angle of
incidence exceeds a critical value, total internal reflection occurs at the surface [22]. In this sample
introduction method, the IR radiation does not pass through the sample itself; instead, it is directed
through a crystal with a high refractive index that is in contact with the sample (Figure 4-1). Inside
the crystal, the beam is reflected multiple times before reaching the detector [25]. The number of
reflections that the light will undergo is controlled by the thickness and the length of the crystal

and the actual angle of incidence, as shown in Equation 4-1 [68].

Equation 4-1 Calculation of the number of reflections that an IR beam will undergo in an ATR crystal

_ ( length of ATR crystal

t t(6
thickness of ATR crystal) cotangent(6)

An evanescent wave is generated when the IR beam hits the reflecting surface. This wave
penetrates the sample up to a depth of approximately 0.1A, where A is the wavelength of the IR
radiation. For mid-IR, the penetration depth is less than 10 um, which is similar to transmission
cells with thin optical path length, and by comparison to transmission cells, repeatability is
enhanced because the optical path of the evanescent wave is a function of the wavelength of the
IR radiation and it is not affected by the sample dimension or the sampling system settings [25].
Having said that, ATR can be considered as an alternative sample introduction method to
transmission cell for milk analysis by mid-IR. The advantages of using ATR in milk analysis can
be summarized in the following points: 1) the stability of the optical path will enhance the
accuracy of milk analysis due to elimination of path length fluctuations, 2) reduced noise that
results from the immense water absorbance of IR energy due to the thin optical path length of the
evanescent wave, specially for IR bands that are close to the O — H stretching and O — H bending
bands of water, 3) ATR vyields a spectrum that closely resembles the transmission spectrum of a
milk sample [22]. Major milk components are assigned to the same IR bands as in milk FTIR
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spectrum obtained by a transmission cell. These assignments are as follows: 1200-900 cm™ for
carbohydrates (i.e., mainly lactose) [24], 1100-1060 cm™ for phosphate O = P — O stretching
[25], 1280-1200 cm™* for Amide 111 of proteins [25], 1565-1520 cm™ for Amide 11 of proteins [24],
1700-1600 cm™* for Amide | of proteins [24], 1650 cm™ for H — 0 — H bending of water [24],
1745-1725 cm™* for C = 0 stretching in the triglyceride ester linkage of milk fat (i.e., Fat A) [24],
2400-2300 cm* for C0,, 29802800 cm™ for C — H stretching of the aliphatic chain in fatty acids
in milk fat (i.e., Fat B) [24] and 36003200 cm™ for O — H stretching in water [24] (Figure 4-2).
However, there might be one concern when using ATR in milk analysis and that is milk fat. Fat in
milk is present in the form of globules that range in diameters from <0.2 to >15 pum. The small fat
globules represent 80% of the total number of fat globules but they contain only 3% of the mass
of fat. On the other hand, large globules represent only 2% of the total number of fat globules but
they contain 95% of the mass of fat [45]. Taking into consideration that the path length of the
evanescent wave at the ATR crystal surface can be as small as 1 um, less than 20% of a large fat
globule will be probed by the evanescent wave, which might make the accurate determination of
milk fat challenging using ATR as a sample introduction method. Reduction of fat globules

diameter through homogenization might be a solution to overcome this obstacle.

Few studies have been reported in the literature on the use of ATR for milk analysis. They are
mainly focused on determination of fat and protein in milk. One objective of this study is to
investigate the potential of ATR as a sample introduction method for on-site milk analysis using
FTIR spectroscopy. In such an application, ATR will eliminate the need for pumping accessories,
avoid clogging of transmission cells with thin path length and simplify sample handling since one
drop of milk on the ATR surface will suffice for the analysis. On the other hand, the major
disadvantage of ATR is surface contamination, which will introduce interferences to the sample
spectrum. This issue might be addressed by collecting a background before each sample

measurement; however, this procedure will double the time needed for analysis.

Another objective of this study was to evaluate the potential of a novel miniaturized infrared (IR)
spectrometer that does not use interferometry to resolve the different wavelengths for on-site milk
analysis. Recently, the McGill IR group received a miniaturized filter-based IR spectrometer, the
IRSphinx (Comline Elektronik Elektrotechnik GmbH, Germany) (Figure 4-3). This miniaturized

spectrometer is based on a linear variable filter (LVF) as a dispersive element mounted on top of
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a pyroelectric line sensor. LVFs are small wedged Fabry-Pérot etalons that filter mid-IR radiation
at specific wavelengths and that lay on standard detector of 128-pixel pyroelectric line array [69].
This spectrometer is equipped with zinc selenide (ZnSe) ATR crystal as a sample introduction
method (Figure 4-4). This spectrometer will be referred to as ATR-IR spectrometer in this study.

The major advantage of the ATR-IR spectrometer over ATR-FTIR ones is that it has no moving
parts due to the absence of an interferometer, which makes it a good candidate for on-site
applications of milk analysis. Additional advantages of this type of spectrometer include small
size, reduced energy consumption and low cost, which makes it a strong candidate for the mass
production of on-site milk analyzers. However, the ATR-IR spectrometer operates in the spectral
range of 1800-900 cm™, which might reduce its efficacy in milk fat determination due to the
absence of Fat B region from its spectra. Compared to ATR-FTIR spectrometers, the main
disadvantages of this type of spectrometers are limited spectral range, decreased signal-to-noise

ratio and reduced resolution, which is 36 cm™ or 18 cm™ at 1800 cm™.
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Figure 4-1 Design of an ATR measurement surface [22]

ik Spiked with Whey Protein
filk Spiked with

0.38
0.36
8 7 6 543 21
0.32 \
0.30
028
0.26
024

0.22

Absorbance

= ,./-/\\\i/
4000 3500 3000 2500 2000 1500 1000
Wavenumbers (cm-1)

Figure 4-2 Mid-IR ATR-FTIR milk spectrum. 1) 1200-900 cm™ lactose, 2) 1280-1200 cm* Amide 111 of proteins, 3) 1565-1520
cm* Amide 11 of proteins, 4) 1700-1600 cm* for Amide I of proteins, 1650 cm™ for H — 0 — H bending of water, 5) 1745-1725
cm C = 0 stretching in the triglyceride ester linkage of milk fat (i.e., Fat A), 6) 2400-2300 cm™ C0,, 7) 2980-2800 cm™ C — H

stretching of the aliphatic chain in fatty acids in milk fat (i.e., Fat B), 8) 3600-3200 cm™ O — H stretching in water. Blue: milk

spiked with whey protein leads to increased intensities at Amide | and Amide 11 bands, red: milk spiked with cream leads to
increased intensities at Fat A and Fat B bands
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Figure 4-3 IRSphinx (Comline Elektronik Elektrotechnik GmbH, Germany) ATR-IR spectrometer. It does not rely on
interferometry to generate different wavelengths. Instead it relies on linear variable filter and pyroelectric line sensor to detect
the different IR wavelengths.
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Figure 4-4 Schematic of an LVF ATR-IR spectrometer
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4.2 Materials and Methods
4.2.1 Milk samples

Pre-analyzed bovine raw milk samples were received from Valacta Inc (Sainte Anne de Bellevue,
Quebec, Canada) along with their milk composition data. We received 11 batches of samples and
each batch contained 40 milk samples. The total number of milk samples was 440. These samples
were preserved with a bronopol-based preservative and each batch was kept in the fridge till the
IR measurement was acquired. For ATR-FTIR measurements, samples of the first four batches
were heated to 35 °C before the IR measurement. Samples of the fifth batch were sonicated for 10
minutes at 35 °C in a sonication bath Branson 5200 (Branson Ultrasonics, Danbury, Connecticut,
USA). Samples of the sixth batch were homogenized using a laboratory high pressure
homogenizer. Each sample was heated to 40 °C prior to IR measurement. Samples of the seventh
batch were also homogenized the same way as the previous batch but they were heated to 60 °C
prior to IR measurement. Samples of the eighth batch were not homogenized and they were heated
to 60 °C prior to IR measurement. Samples of the ninth batch were heated to 60 °C prior to high

pressure homogenization, then they were heated to 35 °C before recording the spectra.

For ATR-IR measurements, samples were kept at 40-50 °C in a water bath before the measurement
process. After each measurement, the milk was wiped off the ATR surface and it was cleaned with
soup solution and water and then wiped dry with a paper towel. Samples of batch ten were kept
raw, while samples of batch eleven were homogenized by an ultra-sonic probe from Fisher
Scientific Model 500. Fat globules were examined under conventional laboratory microscope with
1000x magnification power.

In addition to the Valacta samples, homogenized packed milk (i.e., 1%, 2%, 3.25% and 3.8%),
skimmed milk and 10% cream were purchased from the local market in Montreal. Different
mixtures of skimmed milk and 10% cream were prepared to produce homogenized milk mixtures
that contained the following fat levels: 0%, 1%, 2%, 3%, 4%, 5%, 6% and 7%. In addition, skim
milk was mixed with whole milk 3.8% to produce the following fat levels: 0.76%, 1.14%, 1.52%,
1.9%, 2.28%, 2.66%, 3.04%, 3.23%, 3.42% and 3.8%. Whole milk was added to skim milk by the
following percentages (v/v): 20, 30, 40, 50, 60, 70, 80, 85 and 90%.
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4.2.2 Spectral acquisition

For the first eight batches of samples, ATR-FTIR spectra were recorded using FTIR Excalibur
3000 spectrometer (Agilent Technologies, California, USA) equipped with single bounce diamond
ATR (Specac, UK). The spectra of the ninth batch of Valacta’s samples were recorded using Alpha
ATR-FTIR equipped with a single bounce diamond ATR (Bruker, Germany) and on a transmission
cell CaF2 windows with 50 um spacer COAT system (Thermal Lube, Montreal, Quebec, Canada).
For ATR-FTIR measurements, mid-IR range of 4000-700 cm™ was used and a total of 64 scans at
8 cm! resolution were acquired and ratioed against a background of the clean ATR crystal. One
background scan was performed each day before starting the measuring process. A milk droplet
was deposited on the ATR measurement surface and the droplet size was fixed at 50 pL using a
micropipette. After each measure, the drop of milk was wiped off and the crystal surface was
cleaned with soup solution and water and then wiped dry with a paper towel. For the COAT

system, the resolution was 16 cm™ for the transmission cell measurements at Thermal Lube.

For batches ten and eleven, the IR spectra were recorded by IRSphinx (Comline Elektronik
Elektrotechnik GmbH, Wackersdorf, Germany) equipped with ZnSe ATR crystal. Mid-IR range
of 1794-919 cm™ was used and a total of 300 scans were collected and ratioed against a background
of the clean ATR crystal. One background with 500 scans was collected each day before starting
the measuring process. The recorded spectra were converted to absorbance and they were exported
to comma-separated-values (CSV) file format. The spectra of the first four batches were collected
in triplicates, while the rest of the spectra were collected in duplicates. A total of 1040 spectra were

collected for the quantitative calibration models of milk components.

4.2.3 Development of PLS calibration models for milk components

TQ Analyst Professional Edition 7.2.0.161 (Thermo Electron Corporation, Waltham,
Massachusetts, USA) was used to build PLS calibration models for major milk components using
FTIR spectra of milk samples and their corresponding reference values for each milk component.
The FTIR spectra were either kept raw, without applying any mathematical pre-treatment, or they
were subjected to the Savitzky—Golay first derivative (SG FD) algorithm prior to calibrating the
model. The window size was 7 and the polynomial order was 3. After the raw spectra were loaded
into the software, the Spectrum Outlier functionality in TQ Analyst was used to exclude all the

spectra that were considered as spectral outliers. The refinement of each model went through
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several iterations. The first iteration was performed on the full FTIR spectrum. The loading spectra
that resulted from this iteration were examined and the spectral regions that showed high loadings
were kept for the subsequent iteration. The spectral regions that will be included in the model must
be relevant to the milk component for which a calibration model is being developed. This process
was repeated until a stable calibration model was obtained. For each iteration, cross-validation was
performed in TQ Analyst using leave-one-out approach. Several figures of merit (FOMs) were
used to compare the performance of the calibration models that were developed for milk
components. These FOMs included: correlation coefficient (r) for calibration and cross-validation,
root mean square error of calibration (RMSEC), root mean square error of prediction (RMSEP),
root mean square error of cross validation (RMSECV), predicted residual sums of squares
(PRESS) and number of factors used, bias (if available) and the spectral regions that were used for
each model.

For the first four batches of ATR-FTIR spectra, calibration models were developed for lactose,
protein, fat, water, non-fatty solids, total solids, all-but-fat. For batches number five, six, seven,
eight and nine, only fat calibration models were developed. For ATR-IR spectra, models for fat,

protein, lactose and water were developed.
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4.3 Results and Discussion

4.3.1 Mid ATR-FTIR milk analysis

Using the ATR-FTIR spectra of the first four batches of the Valacta’s samples, PLS models were
developed for the following milk components: lactose, protein, fat, water, non-fatty solids, total
solids and all-but-fat (Table 4-1 and Table 4-2). Milk fat was not homogenized in these samples.
The rational behind this approach is to evaluate whether an ATR sample interface will produce
approximate numbers for milk components. An ATR sample interface will be convenient for on-
site analysis applications because it will not require a pumping system to introduce the milk sample
to the spectrometer. In addition, eliminating the homogenization process of milk fat will be more
convenient for on-site milk analysis applications. It must be mentioned that this type of on-site
analyzer will not be used for payment purposes. All spectral regions that are reported in this study
showed high loadings in the initial PLS models that were developed for the majority of the

respective milk components.

For milk fat, the best model was obtained using raw spectra (Table 4-1 and Table 4-2). Additional
spectral pre-treatments (i.e., SG FD) did not enhance the prediction power of the model. The
correlation coefficient, RMSEC and RMSEP for the calibration model were 0.85, 0.29% and
0.39%, respectively. The correlation coefficient and RMSECYV for cross validation were 0.75 and
0.37%, respectively. Despite the close values that were obtained for the measurements of error (i.e.
RMSEC, RMSEP and RMSECV), which is usually a good indicator of model’s stability, the model
prediction power was undermined by the spectral regions that showed high loadings. These regions
were 2,707-3,833 cm™ and 1,820-795 cm™, which do not represent the regions where milk fat
shows the strongest IR absorbance (i.e., Fat A and Fat B). The baselines of these two regions were
corrected using two points and one point for the first and the second regions, respectively. The use
of such wide spectral regions to produce close values for the measurements of error might be an

indicator of overfitting.

Water soluble and colloidal components gave high correlation coefficients for models developed
using producer raw milk spectra (Table 4-1 and Table 4-2). The correlation coefficients values of
cross validation were 0.95, 0.98 and 0.98, and RMSECYV values were 0.06%, 0.07% and 0.06%
for lactose, protein and non-fatty solids, respectively. Among the three measurements of error,
RMSECYV is the most realistic because it represents the average RMSE calculated over several

85



iterations of model validation. In each iteration, one sample is held out of the calibration set, the
model is calculated, the held-out sample is predicted by the model and then RMSE is calculated
for that iteration. RMSECYV values for lactose and protein are comparable to those reported in the
previous chapter and that were obtained by PLS models developed using spectra collected on FTIR
spectrometer equipped with transmission cell. The spectral regions that showed the highest
loadings for lactose and protein models were 1,141-1,010 cm™ and 1,701-1,484 cm™, respectively.
For non-fatty solids, two spectral regions showed high loadings, which were 1,202-974 cm™ and
1,706-1,476 cm™*. All these regions contain the IR bands that show the maximum IR absorbance
by the respective milk component, which means that an ATR-FTIR spectrometer can capture the
chemical information related to the water soluble and colloidal components of milk. On the other
hand, the water prediction model (Table 4-1 and Table 4-2) gave less accurate results where the
correlation coefficient of cross validation and RMSECYV values were 0.76 and 0.60%, respectively.
Due to the high percentage of water in milk, this error can be acceptable. The spectral region in
the water model that gave the highest loadings was 3,370-2,800 cm™, which spans the OH
stretching band of water and the milk fat CH stretching region located at 3000-2800 cm™. This
observation suggests that an ATR-FTIR spectrometer will not be capable of capturing chemical
informational from the CH stretching region that is located at the shoulder of the broad OH
stretching band of water, which might explain the unsatisfactory performance of the fat PLS
model. The high variability in water content prediction and the incapability of an ATR-FTIR
spectrometer to capture information related to CH stretching might explain the high RMSECV
values for all-but-fat and total solids prediction models, which were 0.45% and 0.45%,

respectively.

These results show that FTIR spectrometers equipped with ATR accessory can be implemented to
determine the non-fatty solids in raw milk samples without any prior treatment. In addition, these
spectrometers can approximately determine the water content in raw milk samples. The least
satisfactory FOMs were obtained from the raw milk fat calibration model. The correlation
coefficient and RMSECYV for cross validation values were 0.75 and 0.37%, respectively. The low
accuracy of the fat model has also affected the accuracy of the total solids model. Such an error
would mean that a sample with 3% fat might be predicted to contain 2.63% - 3.37% fat, which is
not an acceptable range of error. This variability of the fat model can be explained by the fact that
fat in milk is present in the form of globules that range in diameters from <0.2 to >15 yum. The

86



small fat globules represent 80% of the total number of fat globules but they contain only 3% of
the mass of fat. On the other hand, large globules represent only 2% of the total number of fat
globules but they contain 95% of the mass of fat [45]. Taking into consideration that the path
length of the evanescent wave at the ATR crystal is only 2-3 um [70], almost 20% of a large fat
globule is probed by that wave. For this reason, reducing the size of fat globules might improve
the fat ATR measurement and the accuracy of the PLS fat model. Because of the unsatisfactory
calibration model that was obtained for raw milk fat, Valacta’s raw milk samples were subjected
to different treatments to investigate the effects of these treatments on milk fat predictions.
Samples of the fifth batch were sonicated, while samples of the sixth batch were homogenized and
scanned by an ATR-FTIR spectrometer and by FTIR COAT system (Thermal Lube, Quebec,
Canada) with a 50 um CaF> transmission cell. It must be mentioned that the COAT system was
not designed for milk analysis. In addition, different temperatures were used to pre-heat milk
samples to convert milk fat into liquid state to minimize light scattering.

Table 4-2 shows that none of these treatments could achieve a RMSECYV value comparable to that
obtained by FTIR spectrometer and a transmission cell that was reported in the previous chapter.
Bath sonication demonstrated a weak linear relationship between spectral intensities and fat levels
in milk samples where the cross-validation correlation coefficient was 0.52. Similarly,
homogenization alone was not enough to improve the accuracy of fat predictions as demonstrated
by the homogenized fat treatment. This treatment produced a weak linear relationship where the
cross-validation correlation coefficient and RMSECYV values were 0.59 and 0.45%, respectively.
The results of both treatments prove that the size of fat globules in raw milk samples is not
compatible with the ATR optical path length. The only treatment that showed a significant
improvement of the linear relationship between fat levels in milk and spectral data were the
transmission cell measurement of homogenized milk fat and the ATR measurements of cream-
skimmed milk mixture, in which the cross-validation correlation coefficients were 0.91 and 0.99,
respectively. This improvement can be explained by the fact that homogenized fat globules are
completely probed by the IR beam in the transmission cell setting and that two stages industrial
homogenization of milk fat reduces the size of fat globules to levels compatible with the ATR

effective pathlength.
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To summarize, an ATR-FTIR spectrometer can capture the chemical information related to water
soluble and colloidal components and water but not milk fat in raw milk. PLS calibration models
developed for lactose and protein revealed FOMs that were close to those FOMs obtained from
calibration models for the same milk components of prototype 3 that was evaluated in the previous
chapter, which had a transmission cell as a sample introduction method. For predictions of milk
fat, FTIR spectrometer equipped with a transmission cell and ultra-sonic probe proved to be
superior to an ATR-FTIR spectrometer. RMSEP for prototype 3 from the previous chapter was
0.01%, while it is 0.39% for the ATR-FTIR spectrometer that was evaluated in this study. Ultra-

sonication can reduce fat globules size to a size that is as small as 0.725 um [71].

88



Table 4-1 Comparison of calibration models’ FOMs for milk components. Calibration models were developed using milk spectra
scanned by FTIR spectrometer equipped with ATR sample introduction accessory

Component Component r RMSEC RMSEP Factors
% %
Lactose 0.96 0.06 0.10 6
Protein 0.98 0.06 0.11 8
Solids Non-Fat 0.99 0.05 0.11 8
Producer raw milk - ATR Water 0.86 0.47 0.85 8
Fat 0.85 0.29 0.39 7
Total Solids 0.89 0.40 0.58 7
All-but-Fat 0.77 0.39 0.48 6
Sonicated producer raw milk - ATR Fat 0.64 0.42 0.43 2
Homogenized producer milk — ATR Fat 0.77 0.34 0.46 3
Homogenized producer milk - Fat 0.95 0.16 0.14 )

Transmission Cell

Cream-Skim milk mix - ATR Fat 0.99 0.24 0.17 2

Table 4-2 Comparison of cross-validation FOMSs for milk components’ models developed using milk spectra collected on FTIR
spectrometer equipped with ATR sample introduction accessory

Milk — FTIR Measurement Component r RMSECV% Factors
Lactose 0.95 0.06 6
Protein 0.98 0.07 8
Solids Non-Fat ~ 0.98 0.06 8
Producer raw milk - ATR Water 0.76 0.60 8
Fat 0.75 0.37 7
Total Solids 0.85 0.45 7
All-but-Fat 0.68 0.45 6
Sonicated producer raw milk - ATR Fat 0.52 0.47 -
Homogenized producer milk — ATR Fat 0.59 0.45 -
Homogenized producer milk - Transmission Cell  Fat 0.91 0.23 -
Cream-Skim milk mix - ATR Fat 0.99 0.33 -
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4.3.2 Comparisons with previous ATR-FTIR studies for milk analysis
There have been several reports in the literature concerning the use of ATR-FTIR for the
determination of milk components. The following section will discuss the main differences

between these reports and the current study in terms of methodology and results.

Etzion et al. (2004) investigated the determination of protein concentration in raw milk by mid
FTIR combined with ATR as a sample introduction method [25]. The two main differences
between our study and theirs are: 1) our study investigated the determination of all major milk
components, while theirs was focusing on determining milk protein 2) the type of milk samples
that were used to develop the prediction model. Our study relied on 360 producer raw milk samples
from different farms across Quebec that resulted in 1080 spectra, while theirs relied on 26 milk
standards that were mixed in the laboratory that resulted in 235 spectra. Due to the number of
samples that we covered; we can say that our models were more capable of capturing the realistic
variation in milk components. In addition, our study focused on PLS, which is the algorithm that
is employed in commercial milk analyzers for determining milk components, while in Etzion study
they used PLS and Artificial Neural Networks (ANNSs) that had PCA scores of the decomposed
milk spectra as an input in addition to fat and lactose levels in their samples. ANNSs are used to
model non-linear relationships between predictors (i.e., spectral data) and responses (i.e., milk
component concentrations) and they have two drawbacks. First, it is a black box algorithm, which
means if it works it does not provide any tools to explain how it does so. By using information
related to milk protein, fat and lactose, the author might have been modeling the relationship
between these different components. The author did not mention the statistical approach that was
used to randomize those mixes, which means any non-linear relations between these three
components might have been modeled by the ANNSs algorithm. Second, ANNs are highly
susceptible to overfitting, which requires using a large data set to produce a realistic model and
that was not the case with the Etzion study. The root mean square prediction error values for the
PLS model and the ANNs model that was combined with fat and lactose concentrations were
0.22% and 0.08%, respectively. In our study, RMSEC, RMSEP and RMSECYV values were 0.06%,
0.10% and 0.06%, respectively, for raw milk protein PLS model. All these values are less than the
reported PLS prediction error for the Etzion study. Regarding their PLS model, the author did not
analyze the loading spectra produced by the PLS algorithm, which are extremely important in

determining whether the model is capturing the information from the correct spectral regions.
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Nevertheless, both studies agreed that ATR-FTIR has a potential for determining protein in raw

milk samples.

Ifion et al. (2004) investigated the predictive capability of milk ATR-FTIR spectra in PLS models
for predicting total fat, total protein, total carbohydrates, calories and calcium [72]. Their study
was focused on determining milk components in commercially packed milk, which is
homogenized by a two-stage homogenizer, while our study was focused on determining these
components in raw milk. Theoretically, milk fat homogenization will reduce light scattering and
that should improve the predictive performance of the PLS models. Their reported values for
RMSECV were 0.47%, 0.18%, and 0.5% for fat, protein and lactose, respectively, for PLS models
that employed variable selection algorithm to determine the spectral regions to include as an input
for the model. Our results reported in table 4-2 show that we achieved lower RMSECV without
homogenizing our samples. In addition, Ifion did not report the correlation coefficients of their
models, which makes it difficult to assess how well these models were fitting the data and
undermines the reliability of their reported RMSECVs. In addition, the number of their samples
was limited to 83 that included all types of milk that were available in the local market, while our
study included 360 raw milk samples. Ifion also compared the predictive performance of PLS1 vs.
PLS2. In the first algorithm, the Y matrix include the reference values for one component; on the
other hand, the Y matrix for PLS2 include the reference values for more than one milk component.
In this case, the PLS algorithm will decompose the Y matrix and produce a second set of latent
variables and the prediction model will be fitting the latent variables of the Y matrix against those
of the X matrix. The problem with this approach is that the latent variables of the Y matrix will be
based on the correlations between milk components. These correlations are affected by several
factors, such as the breed of the cow, the lactation stage and the age of the animal, to mention few,

and none of these factors were controlled in their study.

Linker and Etzion (2009) investigated the potential of ATR-FTIR for real-time analysis of raw
milk in milking lines by collecting 189 milk samples from 70 cows over a duration of 18 moths
[73]. The focus of their study was online determination of milk fat and protein during the milking
process, while our focus was on determining those two components in an offline setting. In
addition, they did not use PLS to build the prediction models. Instead, they used PCA and discrete
wavelet to decompose the spectral data in regions where the milk component of interest shows the
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most intense absorbance in order to reduce the dimensionality of the data and then they used the
PCA scores and the wavelet coefficients as input to build feedforward neural networks (NN) with
sigmoid activation functions prediction models for fat and protein. For some protein models, they
also included fat concentration as input. The author did not give a compelling explanation for this
unusual approach to develop these prediction models. NN are useful for non-linear relationships
between predictors (i.e., spectral data) and responses (i.e., milk component concentrations);
however, the relationship between absorbance and the concentration of the analyte of interest is
linear according to Beer’s law, which does not justify their approach. The protein NN models that
included fat concentrations as input might have been modeling the correlations between these two
components and that might explain the variable prediction errors that they obtained for models
developed for different seasons. In general, their prediction error for milk protein was between
0.27% and 0.32%, while our RMSECV for raw milk protein was 0.07%. On the other hand, the
prediction error for milk fat varied between 0.1% and 0.8%. Both our studies concluded that ATR-
FTIR is not applicable for the determination of milk fat in raw milk samples; however, our study

showed promising results for the offline determination of milk protein in raw milk samples.

Bassbasi et al. (2014) investigated the potential of ATR-FTIR for determining solid non-fat (SNF)
in raw milk using partial least squares (PLS) and support vector machine (SVM), which might be
helpful for the current payment system. Their study included 56 milk samples. For PLS, the
reported RMSEC and RMSEP values were 0.20%-0.46% and 0.24%-0.51%, respectively, while
in our study, RMSEC and RMSEP values for SNF were 0.05% and 0.11%, respectively. This
observation suggests that increased number of milk samples is needed to capture the natural
variability in SNF in raw milk samples by the PLS prediction model. On the other hand, the
reported RMSEC and RMSEP values were 0.18%-0.26% and 0.25%-0.33%, respectively, for the
SVM model. However, SVM is appropriate for cases where the relationship between the predictors
(i.e., spectral data) and responses (i.e., milk component concentrations) is nonlinear, which is not
the case with ATR-FTIR spectroscopy. In addition, SVM did not dramatically reduce the
prediction error; hence, SVM is not justified for this application. Nevertheless, both of our studies

agree that ATR-FTIR has the potential for the determination of SNF in raw milk samples.

To summarize, the prediction models that were developed during this study using milk ATR-FTIR
spectra to predict lactose, protein and SNF gave better prediction errors with raw milk samples in
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comparison to what have been reported in the literature so far. As for milk fat, the results of our
study agreed with the literature that ATR-FTIR is not appropriate for milk fat analysis due to the
limited optical path length of the evanescent wave at the ATR surface, which is shorter than the
diameter of raw milk fat globules.

Table 4-3 Summary of reported literature on the application of ATR-FTIR spectroscopy in the determination of milk components.
Our study yielded better prediction errors for lactose, protein and SNF in raw milk samples. Our study agreed with these reports

that ATR-FTIR spectroscopy is not suitable for milk fat determination in raw milk samples.

Algorithm Milk Prediction
Ref. Samples No. Component
Samples Error
PLS Remixed 0.22-0.29%
[25] milk 26 Protein
ANNs 0.08-0.29%
standards
) ) ) Fat 0.35%
PLS with variable Commercial i
[72] _ ) 83 Protein 0.27%
selection packed milk
Carbohydrate 0.34%
Feedforward neural Fat 0.1-0.8%
networks (NN) with
sigmoid activation _
[73] ] ] Raw milk 189 )
functions with PCA Protein 0.27-0.32%
scores or wavelet
coefficients as input
PLS _ 0.24-0.51%
[74] Raw milk 56 SNF
SVM 0.25-0.33%

93



4.3.3 Mid ATR-IR milk analysis

The milk spectrum obtained from the ATR-IR spectrometer shows two main regions of IR
absorbance (Figure 4-5). The first region is at 1,200-950 cm™ that can be attributed to lactose and
the second one is at 1,700-1,600 cm™, which contains the Amide | band of proteins and the H —
0 — H bending band of water at 1,650 cm™. We can notice that the second absorbance region
overlaps with the Amide I1 band of proteins at 1,565-1,520 cm™, which is not clearly observed.
The ATR-IR spectrum of milk completely lacks absorbance band at the Fat A region located at
1,745-1,725 cm™* that originates from the C = O stretching in the triglyceride ester linkage of milk
fat. This observation suggest that the ATR-IR spectrometer might not be capable of capturing
chemical information related to milk fat. In addition, the spectrum data spacing is not consistent
within the spectral range of the detectors used in this spectrometer. The difference between two
consecutive wavenumbers was 13-9, 9-6 and 6-3 for spectral ranges 1,800-1,500 cm*, 1,500-1,200
cm* and 1,200-920 cm?, respectively. This observation suggests that this spectrometer might not
produce enough data points in key spectral ranges, such as Fat A, required for the determination
of milk fat.

Using Valacta’s raw milk samples, PLS models were developed for the following milk
components: lactose, protein, water and fat. Raw spectra were used to develop these models and
no baseline correction was applied. Table 4-4 and Table 4-5 summarizes the calibration and the
cross-validation FOMs of the developed models, respectively. It can be noticed that lactose, which
is a water-soluble component, gave the most consistent calibration and cross-validation FOMs.
For raw milk samples, the calibration correlation coefficient, RMSEC, RMSEP, the cross-
validation correlation coefficient and RMSECV values were: 0.97, 0.05%, 0.07%, 0.95, and
0.07%, respectively. For ultra-sonicated milk samples, the calibration correlation coefficient,
RMSEC, RMSEP, the cross-validation correlation coefficient and RMSECV values were: 0.98,
0.04%, 0.07%, 0.96, and 0.05%, respectively (Table 4-4 and Table 4-5). The loading spectra of
both lactose calibration models revealed high loadings for spectral region 1,299-987 cm™, which
is assigned to carbohydrates in milk IR spectrum. This observation confirms the fact that ATR-IR
spectrometer could capture the chemical information related to lactose in milk that was
demonstrated in absorbance bands between 1,200 cm™ and 950 cm™ in the ATR-IR spectrum of
milk. The measurements of error (i.e., RMSEC, RMSEP and RMSECV) are comparable to those

obtained from lactose prediction model that was developed using ATR-FTIR milk spectra, which
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means that this type of spectrometer might be a good candidate for on-site applications that require

the determination of water soluble components.

Milk protein, which is a colloidal component, gave greater values for the measurements of error
than those of the lactose models; however, the calibration and cross-validation FOMs were
consistent, which can be considered as a sign of model stability (Table 4-4 and Table 4-5). The
calibration correlation coefficient, RMSEC, RMSEP, the cross-validation correlation coefficient
and RMSECYV values were: 0.86, 0.21%, 0.25%, 0.81 and 0.23%, respectively. RMSECV that is
equal to 0.2% is considered relatively high when compared to RMSECYV obtained from calibration
models developed with milk FTIR spectra obtained by a transmission cell. In addition, the loading
spectra revealed high loadings for spectral region 1,600-1,500 cm™, which includes the Amide I
band that is used for determining milk proteins. Ultra-sonication of raw milk samples enhanced
the linearity and improved the prediction capability of the milk protein model and led to a reduction
in the measurements of error (Table 4-4 and Table 4-5). The calibration correlation coefficient,
RMSEC, RMSEP, the cross-validation correlation coefficient and RMSECV values were: 0.96,
0.10%, 0.16%, 0.91 and 0.15%, respectively. It can be noticed that these FOMs are consistent;
however, the prediction error in this case is still higher than that obtained from spectra collected
with an ATR-FTIR spectrometer or with FTIR spectrometer equipped with a transmission cell.
The loading spectra revealed high loadings for the spectral region 1,658-1,241 cm, which
includes the Amide Il and Amide Il bands of protein. This observation suggest that ultra-
sonication helped the ATR-IR spectrometer capture more chemical information related to milk
proteins. As a result, ATR-IR spectrometer can be used for applications that require the
determination of milk protein with reasonable accuracy. The accuracy of the predictions can be
enhanced by ultra-sonicating the milk samples.

Water calibration models revealed acceptable performance (Table 4-4 and Table 4-5). For raw
milk samples, the calibration correlation coefficient, RMSEC, RMSEP, the cross-validation
correlation coefficient and RMSECV values were: 0.98, 0.14%, 0.55%, 0.75 and 0.51%,
respectively. It can be noticed that RMSEP and RMSECV are similar, which suggest that the
prediction error for water is going to be around 0.5% for the ATR-IR spectrometer. Ultra-
sonication of milk samples made the linearity and the FOMs of calibration and cross-validation

more consistent; however, it did not reduce the prediction error. The calibration correlation
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coefficient, RMSEC, RMSEP, the cross-validation correlation coefficient and RMSECV values
were: 0.93, 0.36%, 0.45%, 0.90 and 0.42%, respectively. It must be noted that the entire spectrum
that spanned the spectral region 1,780-1000 cm™ was used to develop these models, which means
that these models were indirectly modeling water content information by using information related
to other milk components. Water is not a component that determine milk value except in cases of
adulteration where extraneous water is added to increase the volume of milk. In such scenario,
water must be added with amounts that exceed 10% to generate substantial economic gain, which
means a prediction error of 0.5% might be acceptable for detecting this fraudulent practice. Having
said that, ATR-IR spectrometer might be a viable option for on-site determination of added water

to milk.

Among the four major milk components, fat gave the least satisfactory prediction models (Table
4-4 Table 4-5). For raw milk samples, the calibration correlation coefficient, RMSEC, RMSEP,
the cross-validation correlation coefficient and RMSECV values were: 0.39, 0.45%, 0.46%, 0.20
and 0.49%, respectively. This model shows lack of linearity and high values for measurements of
error for both calibration and cross-validation data sets. In addition, the loading spectrum did not
detect the correct spectral region whose absorbance intensity is correlated with fat content (i.e.,
Fat A). The spectral region that showed high loadings was 1,639-1,376 cm™. This observation
suggests that the ATR-IR spectrometer under investigation was not capable of capturing any
chemical information related to milk fat. This can be explained by the limited spectral range of
this spectrometer, which only contains the Fat A region, or the ester linkage stretching band
centered at 1745 cm™. This region did not show any absorbance in milk spectrum due to the limited
number of data points that were recorded by the spectrometer (Figure 4-5). In addition, the spectral
range of this spectrometer lacks the Fat B region, or the CH stretching bands located at 3000-2800
cm, which is a significant contributor to the correct prediction of milk fat in PLS models
dedicated for this purpose. For milk samples that were homogenized with ultrasonic probe, the
calibration correlation coefficient, RMSEC, RMSEP, the cross-validation correlation coefficient
and RMSECYV values were: 0.80, 0.42%, 0.59%, 0.69, 0.51%, respectively. Ultrasonic processing
of milk samples prior to acquisition of the ATR-IR spectra improved the linearity of the model
and the loading spectrum showed high loadings for spectral region 1,754-1,241 cm™. This spectral
region in the loading spectrum is still considered very wide and overlaps with IR bands assigned

to other milk components, such as protein. Most importantly, the values of the measurements of
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error remain high, which indicates that ultrasonic homogenization did not improve the predictive
power of the fat PLS model. The stability and the prediction power of the model were not improved
when spectra of industrially homogenized milks samples were used to develop the model. The
RMSECV was 0.75% and the model exhibited linearity only when the full spectrum (i.e., 1,770-
950 cm™) was used as an input for the calibration model. We can conclude that the ATR-IR

spectrometer under investigation is not a viable option for milk fat determination.

To summarize, the ATR-IR spectrometer that was evaluated in this study could capture chemical
information related to milk lactose, water and protein. For lactose, the measurements of error (i.e.,
RMSEC, RMSEP and RMSECYV) that were obtained for the PLS models were either identical or
close to those obtained from models developed using ATR-FTIR spectra or FTIR spectra collected
with a transmission cell. For water, a prediction error of 0.5% will not be problematic for
applications, such as the determination of extraneous added water to milk, that will require the
addition of 10% or more of water to generate substantial economic gain. For milk protein,
processing raw milk samples with an ultra-sonic probe prior to spectral acquisition will produce
predication models with reasonable accuracy. For this component, the ATR-FTIR spectrometer
produced better prediction models for milk protein using raw milk samples. The RMSECV values
were 0.07% and 0.23% for protein PLS models that were developed using spectra of raw milk
samples collected on ATR-FTIR and ATR-IR spectrometers, respectively. On the other hand, this
type of spectrometer proved to be completely inefficient in capturing chemical information related
to milk fat; hence, it cannot be considered for applications that require milk fat predictions. The
main reason for this conclusion regarding milk fat was the anemic number of data points that the

spectrometer recorded in the Fat A region.
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Figure 4-5 Mid ATR-IR milk spectrum. 1) 1200-900 cm™ lactose, 2) 1700-1600 cm™ for Amide I of proteins, 1650 cm! for H —
0 — H bending of water. We can notice the absence of absorbance band at 1745-1725 cm™ that originates from the C = 0
stretching in the triglyceride ester linkage of milk fat (i.e., Fat A).
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Table 4-4 Comparison of calibration FOMs for milk components’ models developed using milk spectra collected on portable
ATR-IR spectrometer

Milk Component  Corr. Coeff. RMSEC% RMSEP% Factors
Lactose 0.97 0.05 0.07 4
Protein 0.86 0.21 0.25 2
Producer raw milk
Water 0.98 0.14 0.55 8
Fat 0.39 0.45 0.46 1
Lactose 0.98 0.04 0.07 3
Protein 0.96 0.10 0.16 3
Ultrasonicated raw milk
Water 0.93 0.36 0.45 3
Fat 0.80 0.42 0.59 2
Packed milk Fat 0.98 0.25 0.36 2
Whole milk & skim milk mixture Fat 0.99 0.12 0.19 3

Table 4-5 Comparison of cross-validation FOMs for milk components’ models developed using milk spectra collected on
portable ATR-IR spectrometer

Milk Component Corr. Coeff. RMSECV% Factors
Lactose 0.95 0.07 4
Protein 0.81 0.23 2
Producer raw milk
Water 0.75 0.51 8
Fat 0.20 0.49 1
Lactose 0.96 0.05 3
Protein 0.91 0.15 3
Ultrasonicated raw milk
Water 0.90 0.42 3
Fat 0.69 0.51 2
Packed milk Fat 0.92 0.75 2
Whole milk & skim milk mixture Fat 0.98 0.19 3
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4.4 Conclusion

ATR-FTIR spectroscopy yielded accurate prediction models for water soluble and colloidal
components of milk. RMSECV values for PLS prediction models of lactose and protein were
0.06% and 0.07% respectively, in raw milk samples. These measurements of error were similar to
those that were obtained from PLS models developed using milk spectra collected on FTIR
spectrometer equipped with a transmission cell as a sample introduction method that was evaluated
in the previous chapter. Concerning water, ATR-FTIR spectroscopy showed acceptable results
with an acceptable RMSECV of 0.5%. On the other hand, ATR-FTIR spectroscopy gave poor
results for the determination of milk fat in raw milk. RMSECV value was 0.39%, which is not
acceptable for milk fat determination. This error is due to fat globules size that is considerably
larger than the path length of the evanescent wave at the ATR crystal surface. Homogenization did
not improve the fat prediction model. For predictions of milk fat, FTIR spectrometer equipped
with a transmission cell and ultra-sonic probe proved to be superior to an ATR-FTIR spectrometer.
RMSEP for prototype 3 from the previous chapter was 0.01%, while it is 0.39% for the ATR-FTIR

spectrometer that was evaluated in this chapter.

The prediction models that were developed during this study using milk ATR-FTIR spectra to
predict lactose, protein and SNF gave better prediction errors with raw milk samples in comparison
to what have been reported in the literature so far. As for milk fat, the results of our study agreed
with the literature that ATR-FTIR is not appropriate for milk fat analysis due to the limited optical
path length of the evanescent wave at the ATR surface, which is shorter than the diameter of raw
milk fat globules. The main advantage of our study was the large number of raw milk samples
whose ATR-FTIR spectra were acquired during this study.

The ATR-IRSphinx spectrometer (Comline Elektronik Elektrotechnik GmbH, Germany) gave an
acceptable performance in analyzing milk and it could capture chemical information related to
milk lactose, water and protein. Among the four major components of milk, lactose gave the most
accurate results with both raw and homogenized milk. The prediction error of lactose was 0.06%.
For water, the prediction error was 0.5%, which will not be problematic for applications, such as
the determination of extraneous added water to milk, that will require the addition of significant
amounts of water to milk to generate substantial economic gain. For milk protein, processing raw

milk samples with an ultra-sonic probe prior to spectral acquisition produced predication models
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with reasonable accuracy. For this component, the ATR-FTIR spectrometer produced better
prediction models for milk protein using raw milk samples. The RMSECV values were 0.07% and
0.23% for protein PLS models that were developed using spectra of raw milk samples collected
on ATR-FTIR and ATR-IR spectrometers, respectively. On the other hand, this type of
spectrometer proved to be completely inefficient in capturing chemical information related to milk
fat; hence, it cannot be considered for applications that require milk fat predictions. The prediction

error of milk fat varied between 0.2% and 0.5%.
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Appendix
Calculated vs. Reference values for PLS calibration models for major milk components developed

using spectra collected on FTIR spectrometer equipped with ATR sampling accessory.
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Calculated vs. Reference values for PLS calibration models for major milk components developed

using spectra collected on LVF IR spectrometer equipped with ATR sampling accessory.
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Connecting statement

In chapter 3, portable FTIR spectrometers equipped with transmission cell revealed excellent
analytical performance for on-site determination of major milk components. In the previous
chapter, the novel LFV ATR-IR spectrometer proved to be an effective instrument in capturing
chemical information related to water content, true solutes and colloidal components in milk. In
this chapter, FTIR and LVF IR spectrometers along with ATR and two transmission-based sample
introduction methods (i.e., transmission cell and DialPaht) will be evaluated for the detection of
extraneous water and chemical adulterants that are added to milk to mask the addition of water. In
some countries, such as Brazil where milk cryoscopy is the official method to detect added water,
fraudulent dairy farmers add chemicals to watered-down milk to restore the milk freezing point
depression reading of a cryoscope to its legal value. Having a portable IR based instrument that
can confirm the authenticity of a milk sample is a crucial solution for the dairy industry in these
countries. This solution will employ classification models to differentiate genuine milk samples
from watered-down ones and quantitative models to determine added water and chemical

adulterants.
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Chapter 5: Case study of on-site milk analysis infrared spectroscopic
methods for detection of added water and chemical adulterants in
Brazilian milk

Abstract

Milk has always been a valuable commodity and the target of fraudulent practices aiming to
achieve greater economic gains. Adding water is the most common form of milk adulteration,
which can be detected by measuring the freezing point depression using milk cryoscopy. However,
the readings of cryoscopy instruments can easily be manipulated by adding water and then
dissolving a chemical compound that will compensate for the change in milk freezing point, which
is directly related to the concentration of dissolved solids. In this study, it has been proven that the
addition of aqueous solution of urea 1.75%, sodium citrate 2.75%, ammonium sulfate 1.5% or
sodium carbonate 1.25% to raw milk will maintain its freezing point within the accepted legal
limits, even when the addition of the adulteration solution is as high as 50%. To authenticate the
milk freezing point readings, multiple combinations of IR spectrometers, sample introduction
methods and chemometric algorithms were investigated to detect the addition of water and
chemical adulterants to milk. ATR-FTIR spectroscopy combined with PCA and HCA could detect
as low as 5% added water, 25 mg/dL added ammonium sulfate, and sodium citrate and 100 mg/dL

added urea in raw milk.

In addition, a novel filter-based IR spectrometer equipped with ZnSe ATR crystal was proven to
capture chemical information related to the authenticity of milk samples. PCA revealed that the
cut off limit for detecting raw milk samples with adulteration solutions was 5%. Its spectra were
used to develop PLS model to predict the percentage of extraneous water in milk regardless of the
identity of the chemical adulterant that was present in milk with a prediction error of 1.85%.

Homogenizing milk and the use of a transmission cell as a sample introduction method gave the
best performance for the classification and quantitative models employed to detect milk
adulteration by the addition of water and chemical adulterants. Nevertheless, the use of the
DialPath sample introduction accessory (Agilent Technologies, Santa Clara, California, USA)
with raw milk gave satisfactory results especially when the path length was set at 30 um. For raw

milk, PCA-QDA classification algorithm with no covariance shrinkage developed using first
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derivative spectral data collected with the DialPath accessory (Agilent Technologies, Santa Clara,
California, USA) gave the best accuracy and error rate. The accuracy values were 98.84% and
100% and the error rate values were 1.16% and 0% for the training and validation sets,
respectively. This model yielded perfect specificity for differentiation of adulterated milk samples
from genuine ones for the training and the validation set. Sensitivity was 0.99 for the training set.
SIMCA algorithm successfully classified adulterated samples into groups according to the
chemical adulterant present in these samples. The accuracy for the raw milk SIMCA classification
model was 89.90% when first derivative was used. Quantitatively, PLS prediction errors values
were 0.39 %, 6.73 mg/dL, 10.3 mg/dL, 4.50 mg/dL and 0.014% for water, urea, citrate, ammonium
sulfate and carbonate, respectively, for raw milk scanned with the DialPath accessory (Agilent

Technologies, Santa Clara, California, USA) with 30 um path length.
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5.1 Introduction

Milk has always been a valuable commodity. According to the Food and Agriculture Organization
(FAO) dairy market review [75], global milk output has increased 2.2% in 2018 and it was
estimated at 843 million tonnes of milk. Milk output increased in all regions of the world with Asia
registering the highest output expansion followed by Europe, North America and South America.
In addition, world trade in dairy products expanded 2.9% in 2018 with North America being the
largest contributor to dairy products export expansion followed by South America, Central
America and the Caribbean [75]. Taking into consideration its economical importance, milk has
always been the target of fraudulent practices aiming to achieve greater economic gains. According
to the scholarly records of the Food Fraud Database of the United States Pharmacopeial
Convention (USP), milk is ranked third among food commodities targeted by fraud [76]. Milk
adulteration represents 11.5% of scholarly articles reporting fraud while adulteration of dairy
products represents 2.6% [76]. In the economically motivated adulteration (EMA) incident
database of the National Center for Food Protection and Defense (NCFPD), cases of dairy products
adulteration represent 5.6% of the recorded cases and they are ranked fifth among reported food
fraud incidents [76]. According to the same database, the most two common practices of food
adulteration are “substitution and dilution” and “unapproved additives”, which represent 65% and

13.4% of recorded cases, respectively [76].

Adding water is the most common form of milk adulteration. It is usually added to increase the
volume of milk to achieve greater profits. Addition of water will alter milk composition and
reduces its specific gravity, foamy appearance and its nutritional value and it will increase the
freezing point of milk [77]. In 1921, Julius Hortvet investigated the effect of adding different
amounts of water on the freezing point of milk. He concluded that the addition of 1% of water will
increase the freezing point of milk by ~0.005 °C and that the measurement of milk freezing point
depression (FPD), or cryoscopy of milk, will accurately detect as low as 3% added water [78]. In
1990, the International Journal of Dairy Technology (IDT) published a procedure for detecting
extraneous water by measuring the FPD of milk [79]. Currently, FPD of milk is measured by using
the thermistor cryoscopic method, which relies on the following principle. When an aqueous
solution is cooled without stirring to below the freezing point (i.e., super-cooling), the temperature
of the solution initially is reduced to induce nucleation and then reaches a point when enough

nuclei become available to trigger auto-crystallization. As a result, the temperature rises rapidly
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from the super-cooling temperature to a plateau of relatively constant temperature level that
corresponds to the freezing point of the sample. The highest temperature which occurs at the
plateau of this freezing curve is known as the solution’s freezing point [80]. Since milk contains

salts and lactose, the freezing point of its water is depressed by a little over 0.5°C [79].

Milk cryoscopy has its limitations. For example, the freezing point of milk can be affected by
several factors, such as breed, lactation and interaction of year and period. The differences in the
freezing point of milk due to these factors are 0.0022 °C, 0.0032 °C and 0.0053 °C, respectively
[81]. The most significant drawback of this method is that the readings of a cryoscope can easily
be manipulated by adding water and then dissolving a chemical compound that will compensate
for the change in milk’s FPD because the freezing point of milk is directly related to the
concentration of dissolved solids [78, 80, 82]. For example, the increase of urea content in milk by
20 mg/L will decrease the freezing point of milk by 0.0003 — 0.0004 °C [81]. For this reason,

determination of freezing point of milk is not enough to judge the authenticity of milk.

In 2015, a major manufacturer of milk cryoscopy instruments in South America, PZL Industria
Eletronica LTDA (Londrina, PR, Brazil), contacted the McGill IR group requesting an infrared
(IR) based solution to authenticate milk FPD readings and the corresponding added water reported
by their instruments. According to senior officials at PZL, the main chemicals used to tamper with
their instruments’ readings of added water are urea, ammonium sulfate and citrate. Urea is used as
an adulterant in milk because it is relatively cheap, easily available, rich in nitrogen and it is
naturally present in milk. It represents 55% of the non-protein nitrogenous (NPN) content of milk.
Its typical concentration in milk is 18-40 mg/dL and the upper limit is 70 mg/dL. Urea is added to
milk to provide whiteness, increase the consistency and shelf life of milk, and for standardizing
the content of non-fatty solids present in natural milk. In addition, such type of adulterated milk
remains intact for 2 or more days [83]. Ammonium sulfate is generally recognized as safe (GRAS)
compound by the US Food and Drug Administration and it is a certified food additive in Japan and
the European Union. However, its addition to milk is considered as adulteration. It is a water-
soluble nitrogenous compound and is used as a milk adulterant to mask the effects of dilution of
added water and to increase the apparent protein content of milk. When added to milk, it increases
the lactometer reading and thus the density of milk [83]. Citrate is naturally present in milk [84],

it is not routinely determined by dairy control laboratories and its presence in milk only affects its
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freezing point [85]. In addition to added water, PZL officials wanted to detect another practice,
which is the addition of carbonate or bicarbonate to neutralize milk acidity. Sodium
carbonate/bicarbonates are used to neutralize the natural acidity of milk and developed acidity by
bacteria responsible for milk spoilage. Sodium bicarbonate is a GRAS food compound and can be
used in food at levels up to 2%. According to the Codex Alimentarius, sodium carbonate can be
used in all dairy products and it is the only legally permitted preservative, and it is used (<0.3%)

as a stabilizer in condensed, evaporated, or powdered milk [83].

Several studies have investigated the potential of FTIR spectroscopy in detecting milk adulteration.
Santos et al. (2013) investigated the potential of different mid and near IR spectrometers to identify
and quantify milk adulteration by the addition of tap water, whey, hydrogen peroxide, synthetic
urine, urea, and synthetic milk in different concentrations. The concentration of adulterant in milk
samples ranged from 1.87 to 30 g/L for whey, from 0.78 to 12.5 g/L (i.e., 78 — 1250 mg/dL) urea
for synthetic urine and urea, from 0.05 to 0.8 g/L urea for synthetic milk, and from 0.009 to 0.15
g/L for hydrogen peroxide. They developed classification models using soft independent modeling
of class analogy (SIMCA) for detecting adulterated milk samples, and PLS models to
quantitatively predict the adulterant of interest [86]. Jha et al. (2015) investigated the potential of
ATR-FTIR for detection and quantification of added urea in milk with the following
concentrations: 100 ppm, 500 ppm, 700 ppm, 900 ppm, 1300 ppm, and 2000 ppm. Their SIMCA
classification model yielded well-separated clusters, which were pure milk, urea<900 ppm and
urea>900 ppm. The RMSEP value for the urea quantification model was 254.23 ppm (i.e., 25.423
mg/dL) [87]. Botelho et al. (2015) investigated the potential of ATR-FTIR spectroscopy in the
simultaneous detection of five adulterants in raw milk using partial least squares discriminant
analysis (PLS-DA). These adulterants were water, starch, sodium citrate, formaldehyde and
sucrose in the range of 0.5-10% w/v (i.e., 500 — 10000 mg/dL) [88].

The objective of this chapter is to develop an IR-based solution to authenticate milk FPD readings
by differentiating adulterated milk from genuine one and quantifying the added chemical
adulterant, if possible, in a business-oriented context. The focus of this work will be on milk
containing added water and urea, ammonium sulfate and citrate as masking agent for the addition

of water. In addition, the scope of this work will include milk containing carbonate as an acidity
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masking agent. This IR-based solution will be highly appreciated by the Brazilian dairy section

since Brazil is the wold’s fifth largest producer of milk [75].

5.2 Materials and Methods

5.2.1 Detection of extraneous water and added chemicals by ATR-FTIR
5.2.1.1 Mid-IR bands of chemical adulterants

A 10% solution in water (w/w) was prepared for the following adulterants: ammonium sulfate
(AS), sodium bicarbonate (SbC), sodium citrate (SC) and urea (U). In addition, raw milk samples
were spiked with the dry form of the previously mentioned adulterants at 10% (w/w). In addition,

a 6% (w/w) whey in water solution and whey in raw milk was prepared.

IR spectra were recorded in the mid-IR range of 4000-700 cm™ and a total of 64 scans at 8 cm™
resolution were acquired and ratioed against a background of the clean ATR crystal. A spectrum
of water was also recorded, and it was subtracted from the spectra of the water solutions of the
above-mentioned adulterants. Omnic 7.3 (Thermo Electron Corporation, Waltham, Massachusetts,
USA) was used to determine the bands of each adulterant in the spectra of the water solution,

spiked milk and the subtraction result spectrum.

5.2.1.2 Qualitative detection of chemically adulterated milk

5.2.1.2.1 Samples preparation

A stock solution of 10% (w/w) was prepared for the following adulterants: sodium bicarbonate,
sodium citrate, urea and ammonium sulfate. Table 5-1 shows volumes of stock solution that were
added to milk samples in order to prepare each level of adulteration for each compound. For each

level, the sample’s volume was complemented to 10 ml of milk.

In addition, whey and water were also used to adulterate milk samples at the following levels:
whey 5%, 10% and 20% (w/w), and water 5%, 10%, 15%, 20%, 25%, 30% and 40% (v/v). For
each adulterant, two sets of adulterated samples were prepared using raw milk that was obtained
from the Macdonald campus dairy farm and homogenized whole milk 3.25% acquired from local
supermarkets. In addition, pure milk samples (raw and homogenized) were used as controls.
Samples were refrigerated till the IR measurement time. All milk samples did not contain

preservatives.
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Table 5-1 Volumes of stock solution used to prepare different levels of chemically adulterated milk samples

Adulterant level in milk sample % Volume of stock solution pl

0.025 25
0.05 50
0.10 100
0.25 250

1 1000
2 2000

5.2.1.2.2 Spectral acquisition

Samples were heated to 35°C before recording the spectra. ATR-FTIR spectra of raw and
homogenized milk samples were recorded using FTIR Excalibur 3000 spectrometer (Agilent
Technologies, California, USA) equipped with single bounce diamond ATR (Specac, UK). Raw
milk samples ATR-FTIR spectra were also recorded on Alpha ATR-FTIR equipped with a single
bounce diamond ATR (Bruker Germany). The mid-IR range of 4000-700 cm™ was used and a
total of 64 scans at 8 cm™ resolution were acquired and ratioed against a background of the clean
ATR crystal. One background scan was performed each day before starting the measuring process.
The milk droplet volume was fixed at 20 uL using a micropipette. After each measure, the drop of
milk was wiped off and the crystal surface was cleaned with soup and water and then wiped dry
with a paper towel. Homogenized adulterated milk spectra were collected in triplicates, while raw
adulterated milk spectra were collected in quadruplicates on the Agilent spectrometer. Raw milk
adulterated samples were collected in triplicates on the Alpha spectrometer. A total of 643 spectra

were collected for the qualitative detection of chemical milk adulterants by ATR-FTIR.

5.2.1.2.3 Spectral analysis

An inhouse written software at the McGill IR group, DataAnalysis [89], was used to analyze the
collected spectra. Hierarchical cluster analysis (HCA) was employed to create dendrograms to
differentiate between pure milk, and adulterated samples. In addition, principal component
analysis (PCA) was used to detect clustering trends of samples into groups according to their
authenticity and to their adulteration level. Forward search feature selection algorithm was applied
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to the spectral data to determine the spectral regions that will enhance the clustering trends.

Outliers were visually detected on the PCA scores plot and excluded from the analysis.

5.2.2 Effect of extraneous water and chemical adulterants on milk freezing point
depression
Agqueous solutions of urea, sodium citrate (i.e., trisodium citrate), ammonium sulfate and sodium
carbonate were prepared with concentrations from 1% (w/w) to 3% (w/w) with 0.25% increments.
The freezing points of these aqueous solutions were measured by the thermistor cryoscope PZL-
7000 (PZL, Parand, Brazil) and the solutions that gave freezing points between -0.500 °C to -0.540
°C were tested on milk. The chosen solutions were added to milk as follows (v/v): 10%, 20% and
30%. The solutions that gave consistent freezing point close to that of the genuine milk sample for
the three tested levels were further investigated. The final concentration that was chosen for each
chemical adulterant was used to prepare the adulteration solution that was added to milk samples
as follows: 0-50% (v/v) with an increment of 5% and 60-90% with an increment of 10%. The

freezing points of these preparations were measured by the PZL cryoscope.

5.2.3 Detection of extraneous water and added chemicals by ATR-IR

5.2.3.1 Spectral acquisition

ATR-IR spectra were collected by the IRSphinx spectrometer (Comline Elektronik Elektrotechnik
GmbH, Germany) equipped with a zinc selenide (ZnSe) ATR crystal. The mid-IR range 1794-919
cm* was used and 300 scans were collected and ratioed against a background of the clean ATR
crystal. One background with 500 scans was collected each day before starting the measurement
process. The recorded spectra were converted to absorbance and they were exported to comma-
separated-values (CSV) file format. Milk samples and aqueous solutions were kept at room
temperature 20-23 C° and after each measurement, the milk was wiped off the crystal surface and
it was cleaned with soup and water and then wiped dry with a paper towel. A total of 542 spectra

were collected for this part of the study.

5.2.3.2 Mid-IR bands of chemical adulterants

Aqueous solutions of urea, sodium citrate (i.e., trisodium citrate), sodium carbonate and
ammonium sulfate were prepared. The concentrations of these solutions were 10% (w/v). In
addition, homogenized milk samples were spiked with 10% (w/v) of the dry form of these
chemicals. The IR spectra of these preparations were recorded by IRSphinx spectrometer (Comline
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Elektronik Elektrotechnik GmbH, Germany) equipped with a zinc selenide (ZnSe) 9 bounces ATR
crystal. The spectra of genuine milk and pure water were also recorded. The spectra of these
preparations were collected in duplicates. Omnic 7.3 (Thermo Electron Corporation, Waltham,
Massachusetts, USA) was used to average the duplicate spectra and to subtract the genuine milk
and water spectra from the spectra of the spiked milk samples and the agqueous solution of the
chemical adulterants, respectively. The Find Peak functionality in Omnic 7.3 (Thermo Electron
Corporation, Waltham, Massachusetts, USA) was used to locate the centers of the characteristic

IR absorption bands for each chemical adulterant.

5.2.3.3 Preparation of adulterated milk samples

Bags of homogenized 3% milk were obtained from Cativa - Cooperativa Agroindustrial de
Londrina (Parana, Brazil) and batches of raw milk were obtained from farms in the vicinity of the
city of Londrina (Parand, Brazil). Adulteration solutions of 1.75% (w/w) urea, 2.75% (w/w)
trisodium citrate, 1.5% (w/w) ammonium sulfate and 1.25% (w/w) sodium carbonate were
prepared and mixed with raw and homogenized milk as follows (v/v): 5, 10, 15, 20, 25, 30, 35, 40,
45, 50, 60, 70, 80, 90%. In addition, different combinations of two adulteration solutions (1:1) and
three adulteration solutions (1:1:1) were mixed and used to prepare raw and homogenized

adulterated milk samples. All milk samples did not contain preservatives.

5.2.3.3.1 Spectral analysis and added water quantification model

An inhouse written software at the McGill IR group, DataAnalysis [89], was used to analyze the
collected raw spectra. Principal component analysis (PCA) was used to detect clustering trends of
samples into groups according to their authenticity and to their adulteration level. Outliers were

visually detected and excluded from the analysis.

TQ Analyst Professional Edition 7.2.0.161 (Thermo Electron Corporation, Waltham,
Massachusetts, USA) was used to build PLS calibration models to predict added water in
adulterated raw and homogenized milk samples. The percentage of the added solution was used as
the reference value of added water in these models. The spectra were raw, raw with Savitzky—
Golay (SG) smoothing or they were subjected to the Savitzky—Golay first derivative (SG FD)
algorithm prior to calibrating the model. The window size was 11 and the polynomial order was
3. After the raw spectra were loaded into the software, the Spectrum QOutlier functionality in TQ

Analyst was used to exclude all the spectra that were considered as spectral outliers. The entire
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spectral region was used since the addition of water will have a diluting effect on all milk
components, which is a source of variation that can be captured by the PLS algorithm. The models

were cross-validated using one-leave-out approach.

5.2.4 Detection of extraneous water and added chemicals by transmission based
FTIR
5.2.4.1 Mid-IR bands of chemical adulterants

Homogenized milk samples were spiked with urea, trisodium citrate, ammonium sulfate and
sodium carbonate with levels ranged from 1% to 10% and aqueous solutions of these chemicals
with similar concentrations were prepared. The FTIR spectra of these preparations were collected
by a portable FTIR spectrometer Cary 630 (Agilent Technologies, Santa Clara, California, USA)
equipped with a transmission cell with 46-50 um path length at room temperature. The spectra
were ratioed against water background, the resolution was 16 cm™ and the number of coadded
scans was 32 scans. The Find Peak functionality in Omnic 7.3 (Thermo Electron Corporation,
Waltham, Massachusetts, USA) was used to determine the centers of the characteristic IR
absorption bands of the chemical adulterants. This functionality was applied to raw spectra and to
the subtraction spectra of pure milk and water from spiked samples and aqueous solutions,

respectively.

5.2.4.2 Preparation of adulterated milk samples

Bags of homogenized 3% milk were obtained from Cativa - Cooperativa Agroindustrial de
Londrina (Parana, Brazil) and batches of raw milk were obtained from farms in the vicinity of the
city of Londrina (Parand, Brazil). Adulteration solutions of 1.75% (w/w) urea, 2.75% (w/w)
trisodium citrate and 1.25% (w/w) ammonium sulfate were prepared and mixed with raw and
homogenized milk as follows (v/v): 2, 4, 5, 6, 8, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 24, 26,
28, 29 and 30%. For ammonium sulfate, a solution of 1.25% was used instead of 1.50% because
the addition of this solution at low percentage maintained the freezing point of a milk sample
within accepted legal limits. The percentage of added water was 2-30% and the concentration of
added chemicals were 35-528 mg/dL, 25-373 mg/dL and 56-791 mg/dL for urea, ammonium
sulfate and trisodium citrate, respectively. Sodium carbonate was added in dry form as follows
(w/w): 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.7, 0.8%. The sodium

carbonate was added in dry form because it is mainly used to neutralize milk acidity and not to
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mask the addition of water to milk. Each set of samples for each adulterant was divided into two
subsets, a training or calibration set and a validation set. The training or calibration set included
samples with the following levels of the adulteration solution: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22,
24, 26, 28 and 30% , while the validation set included samples with 5, 9, 13, 16, 19, 23, 26 and
29% adulteration solution. In addition, a mixture was prepared from the three adulteration
solutions (1:1:1) and it was added to milk samples at 10%, 20% and 30% (v/v). These samples

were included in the validation set. All milk samples did not contain preservative.

5.2.4.3 Spectral acquisition

A portable FTIR spectrometer Cary 630 (Agilent Technologies, Santa Clara, California, USA) was
used to collect the spectra of adulterated milk samples and genuine ones using two transmission-
based sample introduction methods: a transmission cell with 46-50 um path length, which was
used with homogenized milk samples, and the DialPath accessory (Agilent Technologies, Santa
Clara, California, USA) with a path length set at 50 or 30 um, which was used with raw milk
samples. Samples were scanned at room temperature, the spectra were ratioed against water
background, the resolution was 16 cm™ and the number of coadded scans was 32 scans. An
aqueous solution of 0.01% triton was used to clean the transmission cell and the measurement
surface of the DialPath accessory (Agilent Technologies, Santa Clara, California, USA) between
samples. Samples were scanned in triplicates and the total number of collected spectra was 1319
for this study.

5.2.4.4 Classification models for differentiation of adulterated milk samples

Two-tier approach was used to differentiate adulterated milk samples from genuine ones. In the
first step, a classification model was developed to determine whether a milk sample was genuine
or adulterated. In the second step, another classification model was developed to determine the
type of chemical adulterant that was added to the sample, if any. MATLAB codes were written to
calculate differential first derivative (FD) of the spectra with a derivative window of 1, to vector
normalize (VN) the spectra and to load individual spectra into a matrix. The spectral region that
was retained for the classification models was 1600-950 cm™. For each step, classification models

were developed using raw, VN raw, FD and VN FD spectral datasets.

For the first step, principal component-based discriminant analysis (PC-DA) algorithms were

chosen to differentiate genuine milk samples from adulterated ones. Principal component analysis
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(PCA) was applied to each spectral dataset and principal components (PCs) with eigenvalue > 1
and that explained > 1% of the variation were considered meaningful and were used as predictors
for the classification model. The response was either Adulterated (AD) or Not Adulterated (NA).
Linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA) with or without
covariance shrinkage were used to develop models for the first step differentiation. Entropy R?,
sensitivity (Sn) or true positive rate (TPR), specificity (Sp), false positive rate (FPR), accuracy,
error rate (ER) and receiver operating characteristic (ROC) curve were used to compare the
performance of the different combinations of spectral pre-treatments and classification algorithms.
AD was considered the positive outcome while NA was the negative one. JMP Pro 13.2.1 was

used to develop the classification models for the first step.

For the second step, soft independent modelling of class analogies (SIMCA) algorithm was used
to determine the type of chemical adulterant that was present in the adulterated milk sample, if
any. To implement this algorithm, a separate PCA model was created for milk samples that
contained specific chemical adulterant after eliminating spectral outliers that were detected by
Hotelling's T2 distribution at 5% significance level. The Unscrambler X (Camo Software, Oslo,
Norway) was used to develop the classification model for the second step. All models for both

steps were evaluated by the validation dataset.

5.2.4.5 Quantification models for extraneous water and added chemical adulterants

TQ Analyst Professional Edition 7.2.0.161 (Thermo Electron Corporation, Waltham,
Massachusetts, USA) was used to build PLS calibration models for extraneous water and added
chemical adulterants using FTIR spectra of adulterated milk samples. The reference values were
calculated based on the weights of the prepared samples. The FTIR spectra were either kept raw,
without applying any mathematical pre-treatment, or they were subjected to the Savitzky—Golay
first derivative (SG FD) algorithm prior to calibrating the model. The window size was 7 and the
polynomial order was 3. After the raw spectra were loaded into the software, the Spectrum Outlier
functionality in TQ Analyst was used to exclude all the spectra that were considered as spectral
outliers. For quantification of added water, all spectral regions containing information related to
milk composition were used, which included 3000-2800 cm™, 1800-1700 cm™ and 1600-950 cm
!, For quantification of chemical adulterants, each model went through several iterations of
refinement. The first iteration was performed on the full FTIR spectrum. The loading spectra that
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resulted from this iteration were examined and the spectral regions that showed high loadings were
kept for the subsequent iteration. The spectral regions that will be included in the final model must
be relevant to the chemical adulterant for which a calibration model is being developed. This
process was repeated until a stable calibration model was obtained. For each iteration, cross-
validation was performed in TQ Analyst using leave-one-out approach. Several figures of merit
(FOMs) were used to compare the performance of the calibration models that were developed for
milk components. These FOMs included: correlation coefficient (r) for calibration and cross-
validation, root mean square error of calibration (RMSEC), root mean square error of prediction
(RMSEP), root mean square error of cross validation (RMSECV), predicted residual sums of
squares (PRESS) and number of factors used, bias (if available) and the spectral regions that were
used for each model. In addition, the models were externally validated using the validation set’s
samples. The predictions of the analyte of interest were regressed against the reference values and

the slop and the coefficient of determination (R?) were reported.
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5.3 Results and Discussion

5.3.1 Detection of extraneous water and added chemicals by ATR-FTIR

Table 5-2 summarizes the characteristic IR absorption bands for ammonium sulfate, sodium
bicarbonate, sodium citrate, urea and milk whey protein in ATR-FTIR spectra of spiked milk
samples. All these chemicals, except whey protein, show absorption bands in regions not related
to major milk components (Figure 5-1), which means that ATR-FTIR should theoretically be able
to detect milk samples that are adulterated by these chemicals. Milk samples spiked with whey
protein show increased absorption intensity at ~1548 cm™, which is the Amide 11 band that is used

for the quantification of milk protein by IR.

PCA and HCA were applied to ATR-FTIR spectra of raw and homogenized milk samples that
were adulterated by the addition of milk whey, extraneous water and aqueous solutions of the
above-mentioned chemicals. The adulterant levels in milk samples were 0.025%, 0.05%, 0.1%,
0.25%, 1% and 2%. The spectral region 2800-1800 cm™ was excluded from the analysis because
it does not contain information related to the chemical composition of milk and it contains
information related to environmental interferences, such as C0O,. For homogenized milk, the PCA
scores plot and the HCA dendrogram show a complete separation between genuine and adulterated
milk samples in general (Figure 5-2 and Figure 5-3). This observation confirms that ATR-FTIR
can detect the differences in chemical composition resulting from adulteration in homogenized
milk. However, the PCA scores plot and the HCA dendrogram of raw milk spectra did not reveal
a similar clear separation between spectra of adulterated and genuine milk samples (Figure 5-4
and Figure 5-5). The reason behind the different clustering trends of raw and homogenized milk
might be light scattering that is caused by large milk fat globules in raw milk. On the PCA scores
plot, milk samples with 5% extraneous water created an intersection between the clusters of
adulterated and genuine milk samples (Figure 5-4). On the HCA dendrogram, two replicates of
milk sample that contained 5% extraneous water fell in the lower boundary of the arm of genuine
raw milk, while the rest of the replicates of the 5% added water milk samples fell in the adulterated
samples arm (Figure 5-5). This observation might suggest that 5% added water may represent a
cut off limit for detection of added water in raw milk by ATR-FTIR. Such an addition will not be
a tempting margin of profit for committing fraud and a fraudulent producer might add more than

10% of extraneous water for this practice to be economically lucrative. Having said that, ATR-
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FTIR can be a viable option for differentiating raw milk samples with added water in a business
context. On the other hand, milk samples adulterated with milk whey revealed a distinct cluster
and a distinct arm from the remaining samples on the PCA scores plot and the HCA dendrogram,
respectively, which can be explained by the increased intensity at the Amide Il band (Figure 5-4
Figure 5-5).

Raw milk samples with added water and chemical adulterants showed different separation trends
on the PCA scores plot and the HCA dendrogram depending on whether the adulterant is an
endogenous component of milk or not. Raw milk samples adulterated with ammonium sulfate,
sodium bicarbonate and sodium citrate solutions revealed a clear cluster on the PCA scores plot
(Figure 5-6). On the HCA dendrogram, two replicates of raw milk samples adulterated with
0.025% sodium citrate fell in the arm of genuine raw milk (Figure 5-7). These two replicates might
be considered as outliers or 0.025% might be considered as a cut off limit for differentiating milk
samples adulterated with added water and sodium citrate. On the other hand, milk samples
adulterated with added water and urea, which is a minor milk component, were more challenging
to differentiate. Raw milk samples that contained less than 0.25% added urea were intercepting
with genuine milk samples on the PCA scores plot (Figure 5-6). On the HCA dendrogram, raw
milk samples that contained less than 0.1% added urea fell in the genuine raw milk arm. This
observation suggests that ATR-FTIR might be capable of detecting raw milk samples with added
water and >0.1% added urea or 100 mg/dL added urea. In a business-oriented context, a fraudulent
user would need to add at least 10% water to achieve lucrative profit margin. The addition of 10%
added water to one liter of milk will increase its freezing point by 0.054 °C [79]. Since the addition
of 20 mg/L urea will decrease the freezing point of milk by 0.0003 — 0.0004 °C [81], 2.7-3.6 g of
added urea are needed to compensate for the addition of 10% water to one litre of milk. This
amount represents 0.27-0.36% or 270-360 mg/dL of added urea and it is already above the cut off
limit for PCA which was 0.25%. Having said that, ATR-FTIR spectroscopy can be a viable option
for differentiating chemically adulterated samples in a business-oriented context. It must be
mentioned that these results were obtained after applying the forward search variable selection
algorithm to the spectral data, which restricted the spectral regions that were used in PCA and
HCA to 1022-1061, 1065-1084, 1119-1138, 2801-2839, 3657-3676, 3707-3726 and 3977-3996
cm. These spectral regions are related more to the major milk components than the characteristic

IR bands of the chemical adulterants. This observation suggests that the dilution of major milk
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components by added water might be the main factor for the previously mentioned clustering

trends.

To summarize, ATR-FTIR spectroscopy can be used to detect added water and chemicals to raw
milk. The minimum detection limit of added water is 5%. Raw milk that contains chemical
adulterants, which are not chemical components of milk, can be differentiated at levels as low as
0.025% or 25 mg/dL. For urea, which is a minor milk component, the cut off limit for
differentiating milk samples with added urea is 0.1% or 100 mg/dL. However, taking into
consideration the cost of acquiring an ATR-FTIR spectrometer and that it contains moving parts,
it might not be an appropriate candidate for on-site milk adulteration detection instrument. For this
reason, a cheaper alternative will be investigated for on-site detection of milk adulteration and
transmission-based FTIR spectroscopy will be investigated for in-lab detection of milk

adulteration.

Table 5-2 Detected absorption bands in cm* for different chemical adulterants in milk and water solutions

Adulterants Water subtraction In water In milk
Ammonium Sulfate 1093, 1450 1093, 1450 1090, 1450
Sodium Bicarbonate 1359 1359 1359

Sodium Citrate 1279, 1389, 1569 1279, 1389, 1569 1279, 1389, 1569
Urea 1157, 1464 1158, 1465 1156, 1463
Whey 1548 1548 1548
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Figure 5-1 ATR-FTIR spectra of homogenized milk spiked with chemical adulterants. Blue ammonium sulfate, purple sodium
bicarbonate, green sodium citrate, red urea, pink whey
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Figure 5-2 Principal component scores showing the separation of genuine (red) and adulterated (blue) homogenized milk
samples
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Figure 5-3 HCA dendrogram showing a separate arm for genuine homogenized milk samples
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Figure 5-4 Principle component scores showing a separate cluster for whey adulterated raw milk samples (green) and
intercepting genuine raw milk cluster (red) with water adulterated raw milk samples (blue) at the 5% added water level
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Figure 5-5 HCA dendrogram showing a separate arm for genuine raw milk samples (red-marked) which also contains two
replicates of the 5% added water sample (blue-marked)
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Figure 5-6 Principle component scores showing a cluster with raw milk samples and those that have less than 0.25% added urea
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Figure 5-7 HCA dendrogram showing the arm of raw milk samples (red-marked) with chemically adulterated ones. 0.025%
added urea (purple-marked), 0.05% added urea (blue-marked) and 0.025% added sodium citrate (brown-marked)

5.3.2 Effect of extraneous water and chemical adulterants on milk freezing point
depression
According to the director of PZL Tecnologia, the chemicals that are frequently used to tamper with
their cryoscope readings of milk freezing point are urea, sodium citrate and ammonium sulfate.
These chemicals are added to compensate for the increase in milk freezing point as a result of
adding extraneous water. They also suspected that sodium carbonate may have been used for the
same purpose in addition to neutralizing milk acidity. For this reason, this study will be focusing
on detecting raw milk adulterated with added water and these chemicals. It must be noted that milk
adulteration is done in a way to avoid detection; hence, the exact practice will not be known. We
had to assume probable scenarios that fraudulent milk producers might be using to adulterate milk.
The premise of these scenarios is that a fraudulent producer would prepare an adulteration solution
whose freezing point is greater than -0.500 °C using one of the above-mentioned chemicals with
a concentration that will keep the freezing point of raw milk within the legally accepted levels
regardless of the amount of added solution to milk. It might be difficult to control the final freezing

point of raw milk by adding water and the chemical adulterant separately.
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The theoretical freezing point depression values were calculated for the proposed adulteration
solutions, which are aqueous solutions of urea, sodium citrate, ammonium sulfate and sodium
carbonate with concentrations ranging from 1% to 3%. The following equations were used to
calculate these values

AT = XKb AT = X'K
a) =~ ,b) = Ml

Where AT is the freezing point depression value of the aqueous solution, X is the concentration of
ionic or non-ionic substance g/Kg, M molecular weight of the substance, K is the cryoscopic
constant for water, which equals to 1.853 and i is the number of ions produced when the substance
is dissolved [90]. For example, the theoretical freezing point depression of 1.75% urea solution is
-0.539 °C, which is close to the experimentally measured value of -0.534 °C (Table 5-3).

Table 5-3 Calculated freezing point depression values for aqueous urea solutions with different concentrations

Urea Solution Concentration % Theoretical Freezing Point Depression
1.75 -0.539
2 -0.617
2.25 -0.694
2.5 -0.771
3 -0.926

The initial screening of adulteration solutions with different concentrations revealed that solutions
of urea, sodium citrate, ammonium sulfate and sodium carbonate with concentrations of 1.75%,
2.75%, 1.5% and 1.25%, respectively, had freezing points between -0.500 °C to -0.540 °C and that
mixing of raw milk with 10-30% of these solutions maintained the freezing point of raw milk
within legal limits. In fact, Table 5-4 shows that these solutions can be added to raw milk with a
percentage up to 40% without noticing any visible changes on milk while maintaining the freezing
point within legal limits. However, high concentrations of sodium carbonate caused changes in
milk consistency, which undermined the claim that sodium carbonate is used to compensate the
change in freezing point of milk resulting from extraneous water. In this case, neutralizing milk
acidity would be the plausible reason for the presence of sodium carbonate in adulterated milk
samples that are described by PZL director.
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Table 5-4 Freezing point of raw milk adulterated with different adulteration solutions. Freezing point of genuine milk is between -0.520 °C and -0.550 °C (depending on the
jurisdiction). In Brazil, added water is tolerated up to 2% = F.P. -0.510 °C
Concentration of adulteration solutions: a 1.75 g urea/dL; b 2.75 g sodium citrate/dL; ¢ 1.5 g ammonium sulfate/dL; d 1.25 g sodium bicarbonate/dL

Percentage Freezing points (F.P.) and adulterant concentrations (mg/dL milk) of raw milk adulterated with

Of W t . a . . b . c . d
ater Urea solution Citrate solution Sulfate solution Carbonate solution

adulteration

solution
added to raw F.P. (°C) F.P. (°C) mg/dL F.P. (°C) mg/dL F.P. (°C) mg/dL F.P. (°C) mg/dL
milk

0 -0.518 -0.553 - -0.599 - -0.519 - -0.651 -
5 -0.485 -0.545 87.5 -0.590 137.5 -0.520 75 -0.626 62.5
10 -0.437 -0.545 175 -0.588 275 -0.520 150 -0.606 125
15 -0.431 -0.545 262.5 -0.585 4125 -0.519 225 -0.594 1875
20 -0.405 -0.543 350 -0.584 550 -0.519 300 -0.589 250
25 -0.379 -0.540 4375 -0.579 687.5 -0.516 375 -0.587 3125
30 -0.353 -0.539 525 -0.576 825 -0.517 450 -0.593 375
35 -0.325 -0.539 612.5 -0.570 962.5 -0.515 525 -0.590 4375
40 -0.312 -0.540 700 -0.561 1100 -0.512 600 -0.584 500
45 -0.277 -0.540 7875 -0.556 12375 -0.511 675 -0.577 562.5
50 -0.247 -0.536 875 -0.546 1375 -0.510 750 -0.570 625
60 -0.199 -0.534 1050 -0.534 1650 -0.502 900 -0.557 750
70 -0.147 -0.536 1225 -0.526 1925 -0.501 1050 -0.550 875
80 -0.100 -0.536 1400 -0.515 2200 -0.502 1200 -0.540 1000

90 -0.054 -0.536 1575 -0.507 2475 -0.494 1350 -0.531 1125




5.3.3 Detection of extraneous water and added chemicals by ATR-IR

The discussion in section 5.3.1 concluded that ATR-FTIR spectrometers might not be appropriate
candidate for the on-site detection of added water and chemical adulterants in milk by IR due to
the presence of an interferometer that contains moving parts and due to its substantial cost. In
addition, the previous chapter concluded that linear variable filter (LVF) IR spectrometer can
predict water and soluble components in milk with acceptable accuracy and it would be an
appropriate candidate for applications that require on-site analysis of milk, such as the current
scenario in this study. This type of spectrometers provides enough data points in the mid-IR range
1500-950 cm™, which is considered the fingerprint region in mid-IR. For these reasons, this part
of the study will investigate the capabilities of the LVVF spectrometer in the qualitative and
quantitative detection of watered-down milk samples. In addition to the acronym “LVE”, ATR-IR

will be used to refer to this type of spectrometer throughout this study.

5.3.3.1 Mid-IR bands of chemical adulterants

The subtraction spectra of spiked milk samples and the aqueous solutions of the chemical
adulterants revealed their characteristic IR absorption bands (Figure 5-8). These bands were
centered at ~ 1586, 1474 and 1167 cm™ for urea, at ~ 1567, 1408 and 1289 cm™ for sodium citrate,
at ~ 1463 and 1095 cm* for ammonium sulfate and at ~ 1377 cm™ for sodium carbonate (Table
5-5). This observation suggests that the ATR-IR spectrometer can detect changes in milk
composition resulting from the addition of these chemicals, which makes it a good candidate for
an on-site milk adulteration detection instrument. It must be noted that the position of some IR
absorption bands of the chemical adulterants are shifted when compared with their FTIR
counterparts (Table 5-5). Nevertheless, we do not expect this issue to undermine the functionality
of the ATR-IR spectrometer for this application since its spectra will not be used for research

purposes.
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Figure 5-8 Subtraction spectra of homogenized milk samples spiked with sodium carbonate (blue), sodium citrate (purple), urea
(green), ammonium sulfate (red). The spectrum of genuine milk was subtracted from the spectra of the spiked milk samples.

Table 5-5 Comparison of characteristic IR absorbance bands of chemical adulterants in milk and water observed in spectra
collected on ATR-IR (LVF) and ATR-FTIR spectrometers. Spectra of genuine milk and pure water were subtracted from spectra
of spike milk samples and aqueous solutions of these adulterants.

Adulterant In Water - LVF In Water - FTIR In Milk - LVF In Milk - FTIR
Urea 1166, 1477, 1581 1157, 1464 1167, 1474, 1586 1156, 1463
Sodium citrate 1288, 1398, 1563 1279, 1389 1289, 1408, 1567 1278, 1390, 1576
Sodium carbonate 1388 1359 1377 1359
Ammonium sulfate 1098, 1457 1093, 1450 1095, 1463 1090, 1450
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5.3.3.2 Spectral analysis and added water quantification model

Principal component score plots show two clear clusters, one for genuine milk samples and another
for the adulterated ones when PCA was applied to the raw full spectral range of the collected
spectra. However, a minor intersection is observed between genuine milk samples and those that
contained 5% adulteration solution. This intersecting region was more evident with raw milk
samples. No specific trend was observed in the intersection region that is related to the identity of
the chemical adulterant. The separation between the two clusters was enhanced when PCA was
restricted to the spectral region 1100-1000 cm™ (Figure 5-9 and Figure 5-10), which can be
explained by the dilution effect that added water had on milk lactose. For homogenized milk, the
separation between the two clusters was complete; on the other hand, the two clusters were
adjacent to each other for raw milk. It must be noted that the number of spectral mathematical
treatments was kept at a minimum to avoid creating mathematical artifacts, which will
overestimate the capabilities of the LVF spectrometer. In addition, the freezing point values of
some authentic milk samples were already low. Comparing the Brazilian legislation [91] with the
standard procedure for determining added water by measuring milk freezing point [79], we notice
that the accepted Brazilian freezing point for milk is below its counterpart in the standard
procedure by 0.02 °C. This difference indicates a 4-5% added water in milk. Some raw milk
samples had a freezing point below -0.512 °C, which indicates 2% added water according to

Brazilian legislations.

The spectra of the adulterated milk samples that were collected on the ATR-IR spectrometer were
used to develop PLS models to predict the percentage of added water. In addition to added water,
these samples contained one, two or three chemical adulterants to compensate for the change in
the freezing point of milk. The entire spectral region was used since the addition of water will
dilute all milk components, which is a source of variation that can be captured by the PLS
algorithm. All models gave excellent correlation coefficients (i.e., r = 0.99), which indicates that
the presence of the chemical adulterants did not significantly interfere with the modeling capability
of the PLS algorithm for added water (Table 5-6 and Table 5-7). SG smoothing and derivatization
did not improve the predictive capability of the PLS model. In general, homogenized milk gave
lower values for the measurements of error; nevertheless, models developed for raw milk samples
revealed excellent predictive performance. The model that gave the most consistent FOMs was the
one that used raw spectra. The values of RMSEC, RMSEP and RMSECV were 1.41%, 1.85% and
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1.85%, respectively. All these values of the measurements of error are less than 2%, which is the
tolerated level of added water in milk according to the Brazilian legislation. It must be noted that
cryoscopy can detect a minimum of 3% added water [78]. In addition, these models were
developed using the percentage of added water as the reference values because the actual water
content in these samples was not known. The accuracy of the added water model can be enhanced
by accurately determining the water content in the calibration sample set. In light of these
promising results, the German manufacturer of the LVF ATR-IR spectrometer produced a
prototype of a lab-in-box milk adulteration detector (Figure 5-11). The spectrometer was
controlled by a tablet and it was connected to a portable printer that produced printouts of the

analysis results.

To summarize, the LVF spectrometer has the potential to capture chemical information related to
the authenticity of milk samples; hence, the LVF spectrometer can be used for on-site detection of
extraneous water and chemical adulterants in milk using a proper classification algorithm. In
addition, its spectra can be used to develop PLS model to predict the percentage of extraneous
water in milk regardless of the identity of the chemical adulterant that might have been added to

milk to compensate for the change in the freezing point of milk.
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Figure 5-9 Principal component scores of homogenized genuine milk samples and adulterated milk samples with solutions of
urea, sodium citrate, sodium carbonate, ammonium sulfate and different combinations of these solutions — genuine milk is in red
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Figure 5-10 Principal component scores of raw genuine milk samples and adulterated milk samples with solutions of urea,
sodium citrate, sodium carbonate, ammonium sulfate and different combinations of these solutions — genuine milk is in red

Table 5-6 Calibration FOMs of the added water PLS prediction models. In addition to added water, milk samples contained one,
two or three chemical adulterants to compensate for the change in freezing point.

Milk Spectrum Region Corr. Coeff. RMSEC % RMSEP %  Factors
Homogenized Raw 1770-980 0.99 1.18 1.52 3
Raw Raw 1770-980 0.99 141 1.85 7
Homogenized Raw with SG smoothing  1770-980 0.99 1.18 1.52 3
Raw Raw with SG smoothing  1770-980 0.99 1.56 1.93 7
Homogenized SG FD 1770-980 0.99 1.04 1.91 4
Raw SGFD 1770-980 0.99 1.84 2.02 3

Table 5-7 Cross-validation FOMs of the added water PLS prediction models. In addition to added water, milk samples contained
one, two or three chemical adulterants to compensate for the change in freezing point.

Milk Spectrum Corr. Coeff. RMSECV % Factors
Homogenized Raw 0.99 1.23 3
Raw Raw 0.99 1.85 7
Homogenized Raw with SG smoothing 0.99 1.21 3
Raw Raw with SG smoothing 0.99 2.05 7
Homogenized SG FD 0.99 1.54 4
Raw SGFD 0.99 2.32 3

134



Figure 5-11 Lab-in-Box milk adulteration detector built using LVF ATR-IR spectrometer
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5.3.4 Detection of extraneous water and added chemicals by transmission based
FTIR

5.3.4.1 Mid-IR bands of chemical adulterants

Table 5-8 summarizes the centers of the characteristic IR absorption bands that are observed in the
aqueous solutions and milk samples spiked with urea, trisodium citrate, ammonium sulfate and
sodium carbonate. These bands are not overlapping with absorption bands of major milk
components except for 1557 cm™ and 1092 cm™ that are observed in milk samples spiked with
citrate and sulfate and that overlaps with the Amide Il band of proteins and lactose absorption
band, respectively. This observation suggests that FTIR spectra of milk samples adulterated with
these chemicals should contain additional features in comparison to genuine milk samples that will
facilitate differentiation between genuine and adulterated milk samples. In addition, these
absorption bands will be used to verify the performance of qualitative and quantitative models that
will be used to detect added water and chemical adulterants in milk. For example, if the loading
spectra of a PCA model show increased loadings in spectral regions that contain these centers then

the model is capturing the correct chemical information and the model is not overfitting the data.

Table 5-8 Centers of characteristic IR absorption bands of four chemicals in aqueous solutions and in milk that are used to mask
the addition of water or to neutralize milk acidity.

Adulterant Aqueous solution cm-! Milk cm-t

Urea 1466, 1158 1465, 1158

Citrate 1554, 1391, 1280 1557, 1392, 1279
Sulfate 1455, 1093 1455, 1092

Carbonate 1394 1377

Mix of 4 adulterants - 1462, 1394, 1279, 1097

5.3.4.2 Classification models for differentiation of adulterated milk samples

In this part of the study, we used transmission-based sample introduction methods because the
official FTIR milk analysis method relies on transmission cell. However, transmission cell is only
compatible with homogenized milk. For on-site detection of milk adulteration, homogenization
might not be an available option. For this reason, we tested another transmission accessory that is
offered by Agilent, which is the DialPath (Agilent Technologies, Santa Clara, California, USA).
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It consists of two parts, the lower one is a fixed flat surface that contains a ZnSe window. The
upper one is a rotating part that contains 3 ZnSe windows. After placing a droplet of milk on the
window of the flat surface, the upper part is rotated and one of its windows faces the window of
the lower part at a fixed distance that constitutes the optical path length. The IR beam will pass
through the sample from the upper window to the lower one and then hits the detector in the
spectrometer. The upper part can be rotated manually to create a 30, 50 or 100 pum path length. In
addition of being a transmission-based accessory, the advantages of this sample introduction
method are similar to ATR, mainly, it does not require pumping accessory, raw milk does not
cause any clogging issues and it is easy to clean. These features make this accessory a good
candidate for on-site raw milk analysis. In this study, the transmission cell was used for the
homogenized milk and the DialPath accessory (Agilent Technologies, Santa Clara, California,

USA) was used for raw milk.

In addition, a two-tier approach was used to differentiate adulterated milk samples from genuine
ones. In the first step, a classification model was developed to determine whether a milk sample
was genuine or adulterated. In the second step, another classification model was developed to
determine the type of chemical adulterant that was added to the sample, if any. Unlike what has
been reported in the literature [86-88], we kept the crucial step of determining the authenticity of
the milk sample within the scope of a binary classification model. Increasing the number of classes
or groups in one classification model usually reduces its stability. The spectral range that was used
to develop the classification models was limited to 1600-950 cm™ because this region contains the
characteristic IR absorption bands of milk proteins, lactose and the chemical adulterants. Spectral
regions associated with milk fat were excluded due to milk fat variability, which might be an
unnecessary confounding factor in this application.

For the first step, a binary classification algorithm that gives an answer to a closed question was
needed. In this case, the algorithm must classify the milk sample as either Adulterated (AD) or Not
Adulterated (NA). There are several algorithms that have been reported in the literature for
developing multivariate classification models, such as discriminant analysis (DA), partial least
squares discriminant analysis (PLS-DA), support vector machines (SVM) and artificial neural
networks (ANN) [92]. SVM and ANN are applicable to situations where the relationship between

class membership and the predictors (i.e., the spectra) is not linear. In the case of milk adulteration,
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class membership will be the result of changes in concentrations of milk components that result
from the dilution effect of added water or increased concentration of added chemical adulterants.
According to Beer’s law, the relationship between concentration and absorbance is a linear one,
which eliminate the need for SVM and ANN for this application. PLS-DA is a powerful
multivariate classification algorithm that maximizes the separation of observations according to
their class membership to achieve maximum class separation. As a result, any sources of variation
in milk composition that are not related to milk authenticity might contribute to class separation,
which makes this algorithm prone to overfitting. DA represents a more realistic option in terms of
modeling power; however, DA requires orthogonal predictors whose number is less than the
number of observations used to create the model, which is not necessary the case with spectral
data. To overcome these issues, PCA is applied to the spectral data and PC scores can be used as
predictors for DA. PCA decomposes the variance in the dataset into a number of new variables
that is equal to the number of observed variables (i.e., wavenumbers) called principle components
(PCs) [93]. These PCs are orthogonal to each other, which means that the correlation is 0 between
any two PCs, and they describe the same variance structure as the original variables in the dataset
(i.e., the spectra). Each PC is a linear combination of optimally weighted observed variables (i.e.,
wavenumbers). However, only the few first PCs account for a significant portion of the variability
in the original dataset. In this case, PCs with eigenvalue > 1 and that explained 1% of the variation
or more were included in the model; hence, PCA reduced the number of predictors and eliminated
collinearity among them.

DA employs different discrimination methods. In this study, LDA and QDA were considered for
developing classification models for the first step. LDA uses the same covariance matrix for all
classes, while QDA uses a different covariance matrix for each class [94]. In addition, DA can
employ covariance shrinkage that improves the stability of underrepresented classes and reduces
their prediction variance. This option is recommended when some classes have a small number of

observations, such as the NA class in comparison to the AD class [95].

Table 5-11 and table 5-12 summarize the performance FOMs of milk authenticity classification
models that were developed using different combinations of sample introduction methods, milk
type (i.e., raw and homogenized), spectral pre-treatments and discrimination methods of DA. Table
5-11 and Table 5-12 summarizes FOMs of classification models developed using FTIR spectra
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collected by a transmission cell and the DialPath accessory (Agilent Technologies, Santa Clara,
California, USA), respectively. Entropy R? is a measure of fit that takes values between 0 and 1
where larger values indicate better fit and 1 indicates perfect prediction power. These values can
be negative. Table 5-11 and table 5-12 show that PCA-QDA classification models with no
covariance shrinkage that were developed using VN raw spectral data of homogenized and raw
milk and FD spectral data of raw milk yielded the best fit. Entropy R? values were 0.99 and 0.77
for homogenized and raw milk, respectively, for the training set. Accuracy is the simplest measure
of the quality of a classification model and it represents the percentage of correctly assigned
observations. Error rate (ER) is the complementary index for accuracy and it is the percentage of
wrongly assigned observations [92]. For homogenized milk, the PCA-QDA model with no
covariance shrinkage developed using VN raw spectral data gave the best accuracy and error rate,
which were 100% and 0%, respectively, for the training and the validation sets. For raw milk, the
PCA-QDA model with no covariance shrinkage developed using FD spectral data gave the best
accuracy and error rate. The accuracy values were 98.84% and 100% and the error rate values were

1.16% and 0% for the training and validation sets, respectively.

In addition, there are indicators that are related to the classification quality of a single class and
that can be calculated from the confusion matrix that is produced by the DA algorithm (Table 5-9).
In this scenario, the adulterated samples (AD) and genuine milk samples (NA) were considered
the positive and the negative outcomes, respectively. Sensitivity (Sn) or true positive rate (TPR)
describes the model ability to correctly recognize objects belonging to a specific class (Equation
5-1), which is AD in this case. If all observations are correctly assigned to a specific class, then
Sn=1[92]. On the other hand, specificity (Sp) characterizes the ability of a specific class to reject
observations belonging to all other classes (Equation 5-2). If observations not belonging to a
specific class are never assigned to that class then Sp=1 [92]. False positive rate (FPR) is a
complementary indicator for specificity (Equation 5-3). These indicators can be presented in the
receiver operating characteristic (i.e., ROC) curve, which plots TPR against FPR on y and x axes,
respectively, for a specific class in a classification model (Figure 5-14). The calculated area under
the curve (AUC) summarizes the predictive capability of the model for a specific class [92]. If the
ROC curve is higher than the diagonal line, then it will perform better than a random classifier and

the best performance is obtained when the upper left corner is reached by the ROC curve.
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Table 5-9 Confusion matrix of PCA-QDA classification model with no covariance shrinkage developed using VN raw spectral
data of homogenized milk samples. AD and NA are the positive and negative outcomes, respectively.

Actual Predicted

Milk Type AD (+) NA (-)
AD (+) 230 (TP) 0 (FN)
NA () 0 (FP) 12 (TN)

Equation 5-1

TP

Sn= TP T EN

Equation 5-2

TN

SP=Ep TN

Equation 5-3

FPR=—1F __4_ g
“FP+TN p

So far, three models have yielded good fit and high accuracy. These models are: PCA-QDA with
no covariance shrinkage developed using VN raw spectral data of homogenized milk (M1), PCA-
QDA with no covariance shrinkage developed using VN raw spectral data of raw milk (M2) and
PCA-QDA with no covariance shrinkage developed using FD spectral data of raw milk (M3).
Among these, M1 and M3 yielded perfect specificity for differentiation of adulterated milk
samples for the training and the validation set. For M2, specificity values of the AD class were 1
and 0.80 for the training and the validation sets, respectively. On the other hand, sensitivity values
of the AD class were 1, 0.98 and 0.99 for M1, M2 and M3, respectively, for the training sets and
the AUC values for the AD class were 1, 0.9971 and 1 for M1, M2 and M3, respectively. We can
conclude from these observations that PCA-QDA with no covariance shrinkage is an effective
algorithm to differentiate adulterated milk samples from genuine ones with high sensitivity and
specificity. First derivative can be applied to the spectral data of raw milk to improve the prediction
power of this model. Running forward stepwise feature selection in DA revealed that PC3 (P <
0.0001), PC1 (P < 0.0001) and PC2 (P < 0.0001) were the most significant predictors for M1, M2
and M3, respectively. Inspection of the loading spectra of these principal components revealed the
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influential spectral features that are mainly responsible for the discrimination power of these
models. For example, PC3 loading spectrum revealed increased loadings in the regions 1527-1246
cm™? and 1155-1080 cm™ that include the characteristic IR absorption bands of the chemical
adulterants and decreased loadings in the regions 1600-1527 cm™ and 1080-1000 cm™, which
include the Amide 11 and lactose absorption regions, respectively (Figure 5-12). This loading
spectrum reflects the fact that chemical adulterants’ concentrations are increasing, while milk
protein and lactose concentrations are decreasing as a result of water addition. We can conclude
that PCA was successful in decomposing the variation in the spectral dataset and isolating the
spectral fingerprint that reflects the changes in milk chemical composition resulting from the
adulteration process. This successful decomposition helped the DA algorithm capture the correct

chemical information related to the status of the milk sample; hence, avoid overfitting.

The second step of this classification process will be applied to adulterated samples, in which the
sample will be assigned to a group that corresponds to the chemical adulterant that might be present
in it. For this purpose, soft independent modelling of class analogies (SIMCA) algorithm was
considered the optimum choice because the predictions produced by this algorithm are not
restricted to one class. SIMCA has already been reported in the literature as an effective algorithm
to classify adulterated samples into groups according to the chemical adulterant [86, 87, 96]. In
SIMCA, a PCA model is developed independently for each class, then an unknown sample is
projected in each subspace and a distance from the class model is calculated. The sample
assignment is determined by comparing its distances from the classes’ PCA models. As a result,
an unknown sample might be assigned to one class, multiple classes or none (Table 5-13). For
example, spectrum 26 from the validation set was not assigned to any class; on the other hand,
spectra 17, 18, 29, 30, 41, 42 and 43 were assigned to two classes, the correct chemical adulterant
and the mix class. For homogenized milk, five classes were included in the SIMCA model, which
are carbonate, citrate, sulfate, urea and mix. The accuracy for unique classification considered only
samples that were assigned to one group that corresponded to the correct adulterant. The accuracy
for correct classification considered samples that were correctly assigned to the chemical
adulterant group regardless of whether the sample was also assigned to the mix group or not. Since
the mix contained all chemical adulterants, this situation was considered as a correct classification.
For raw milk samples, the mix group was eliminated; hence, only samples assigned to their

corresponding chemical adulterant group were considered correctly classified. Table 5-10 reveals
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that raw spectral data yielded good performance with homogenized milk, while first derivative

enhanced the accuracy of SIMCA predictions for raw milk samples.

1.1FCaesy

Absorbance

1600 1500 1400 1300 1200 1100 1000
Wavenumbers (cm-1)

Figure 5-12 PC3 loading spectrum isolated from the VN raw spectral data of homogenized milk samples collected by a
transmission cell

Table 5-10 Classification accuracy of SIMCA models developed using spectral data of raw and homogenized adulterated milk
samples to classify adulterated samples according to the chemical adulterant that they contain. TC: transmission cell, DP: dial
path, FD: first derivative, VN: vector normalized.

Accessory Spectra Accuracy % for unique classification Accuracy % for correct classification
Raw 81.40 97.67
VN Raw 81.40 97.67
TC
FD 25.58 97.67
VN FD 25.58 97.67
Raw - 81.63
VN Raw - 79.59
DP
FD - 89.80
VN FD - 89.80

5.3.4.3 Quantification models for extraneous water and added chemical adulterants

PLS models that were developed to quantify chemical adulterants used spectral regions that
showed high loadings in the PLS loading spectra during the first iteration of model development.
These regions corresponded to the characteristic IR absorption bands of the analyte of interest
(Table 5-8), which indicates that the models were capturing information related to the analyte of
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interest and they were not overfitting the data. For added water prediction models, region 1,600-
950 cm* was mostly used. In general, water and chemical adulterants prediction models relied on
raw and FD spectral data, respectively. FD derivative helps in resolving overlapping bands and
enhance small absorption bands on shoulders of bigger ones; hence, exposing more details in the
spectral data [29].

All PLS models that are developed to predict added water in milk revealed excellent prediction
capabilities. These models were developed using FTIR spectra of adulterated milk samples that
contained added water and different added chemical adulterants, which means that the presence of
the chemical adulterant did not undermine the predictive capabilities of the added water PLS
models. The prediction error (i.e., RMSEP) values were 0.28%, 0.55%, 0.33% and 0.39 % for
homogenized milk scanned with a transmission cell (Table 5-14 and Table 5-15), for homogenized
milk scanned with the DialPaht set at 50 um path length (Table 5-16 and Table 5-17), for
homogenized milk scanned with the DialPaht set at 30 um path length (Table 5-16 and Table 5-17)
and for raw milk scanned with the DialPaht set at 30 pum path length (Table 5-18 and Table 5-19),
respectively. The transmission cell yielded the lowest prediction error, which might be explained
by the fact that the windows of the transmission cell are CaF2, while the transmission window of
the DialPath accessory (Agilent Technologies, Santa Clara, California, USA) are ZnSe, which has
a refractive index higher than that of milk; hence, light refraction might be contributing to the
prediction error. However, the difference between the prediction error of the models of the
transmission cell and the DialPaht accessory becomes minimal when the path length of the
DialPaht is set at 30 um. This reduced path length yielded similar prediction errors for models

developed using spectra of homogenized and raw adulterated milk samples.

For the added chemical adulterants, a similar trend has been observed for the prediction errors of
the PLS models of these adulterants. Models developed with spectra of homogenized milk scanned
with the transmission cell yielded the least prediction error. This error increased when the DialPath
(Agilent Technologies, Santa Clara, California, USA) was set at 50 um path length with
homogenized milk and it was similar or close to that of the transmission cell when the path length
was set at 30 um with homogenized milk. A minor increase in the prediction error was observed
when the DialPath (Agilent Technologies, Santa Clara, California, USA) was set at 30 um with

raw milk.
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For urea, the prediction error values were 7.57 mg/dL, 8.62 mg/dL, 2.95 mg/dL and 6.73 mg/dL
for homogenized milk scanned with a transmission cell (Table 5-14 and Table 5-15), for
homogenized milk scanned with the DialPaht set at 50 um path length (Table 5-16 and Table 5-17),
for homogenized milk scanned with the DialPaht set at 30 um path length (Table 5-16 and Table
5-17) and for raw milk scanned with the DialPaht set at 30 um path length (Table 5-18 and Table
5-19), respectively. All these prediction errors are lower than the prediction error reported by
Santos et al. (2013), which was 0.232 g/L (i.e., 23.2 mg/dL) for urea in raw milk obtained with
Cary 630 (Agilent Technologies, Santa Clara, California, USA) FTIR spectrometer equipped with
DialPaht accessory set at 30 um path length.

For citrate, the prediction error values were 6.32 mg/dL, 9.63 mg/dL, 5.43 mg/dL and 10.3 mg/dL
for homogenized milk scanned with a transmission cell (Table 5-14 and Table 5-15), for
homogenized milk scanned with the DialPaht set at 50 um path length (Table 5-16 and Table 5-17),
for homogenized milk scanned with the DialPaht set at 30 um path length (Table 5-16 and Table
5-17) and for raw milk scanned with the DialPaht set at 30 um path length (Table 5-18 and Table
5-19), respectively.

For sulfate, the prediction error values were 2.14 mg/dL, 2.79 mg/dL, 1.72 mg/dL and 4.50 mg/dL
for homogenized milk scanned with a transmission cell (Table 5-14 and Table 5-15), for
homogenized milk scanned with the DialPaht set at 50 um path length (Table 5-16 and Table 5-17),
for homogenized milk scanned with the DialPaht set at 30 um path length (Table 5-16 and Table
5-17) and for raw milk scanned with the DialPaht set at 30 um path length (Table 5-18 and Table
5-19), respectively.

For carbonate, the prediction error values were 0.009%, 0.004%, 0.005% and 0.014% for
homogenized milk scanned with a transmission cell (Table 5-14 and Table 5-15), for homogenized
milk scanned with the DialPaht set at 50 um path length (Table 5-16 and Table 5-17), for
homogenized milk scanned with the DialPaht set at 30 um path length (Table 5-16 and Table 5-17)
and for raw milk scanned with the DialPaht set at 30 um path length (Table 5-18 and Table 5-19),
respectively. It must be mentioned that the predictions of carbonate were not affected by the
presence of added water or other chemical adulterants; on the other hand, the predictions of urea,
citrate and sulfate were not accurate when more than one chemical adulterant was present in the

milk sample.
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To summarize, homogenizing milk and using a transmission cell as a sample introduction method
gave the best performance for the classification and quantitative models employed to detect milk
adulteration by the addition of water and chemical adulterants. Nevertheless, the use of the
DialPath sample introduction accessory (Agilent Technologies, Santa Clara, California, USA)
with raw milk gave satisfactory results especially when the path length was set at 30 um. As a
result, a decision-making workflow has been proposed to differentiate milk adulterated with added
water and chemical adulterants from genuine one (Figure 5-13). After collecting the FTIR
spectrum of an unknown sample, a DA classification model will determine the authenticity of the
sample. If the sample is adulterated, then a SIMCA model will determine the chemical adulterant
that is present in the sample, if any. If the chemical adulterant is carbonate, then most probably the
sample does not contain added water and carbonate has been added to neutralize milk acidity,
which means only carbonate will be quantified. If the milk sample contains urea, citrate or sulfate
then added water and the chemical adulterant will be quantified. If multiple chemical adulterants

are present, then only added water will be quantified.

145



Scan milk sample
with IR spectrometer

* PC-QDA: principal component based
quadratic discriminant analysis

Invoke PC-QDA classification
model to determine
authenticity

s SIMCA: soft independent modeling of
class analogies

e PLS: partial least squares regression

Is milk sample
genuine?

No

l

Invoke SIMCA classification
madel to determine specific
added chemicals

Does milk sample
contain carbonates?

Yes

¥

Invoke PLS regression model
to quantify carbonate

Does milk sample
contain single chemical
adulterant?

Invoke PLS regression model to
—| quantify added urea, citrate or
sulfate

Y

Invoke PLS regression model ta
quantify added water

h 4

s )

Report results

Fy

Figure 5-13 Decision-making workflow for authenticating milk sample freezing point depression by transmission based FTIR
spectroscopy
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5.4 Conclusion

In this study, multiple combinations of IR spectrometers, sample introduction methods and
chemometric algorithms were investigated to detect the addition of water and chemical adulterants
to milk. ATR-FTIR spectroscopy combined with PCA and HCA can be used to detect added water
and chemicals to raw milk. The minimum detection limit of added water is 5%. Raw milk that
contains chemical adulterants, such as ammonium sulfate, sodium bicarbonate and sodium citrate,
can be differentiated at levels as low as 0.025% or 25 mg/dL. For urea, which is a minor milk
component, the cut off limit for differentiating milk samples with added urea is 0.1% or 100
mg/dL.

A cheaper alternative was investigated for on-site detection of milk adulteration, which was LVF
spectrometer equipped with ZnSe ATR crystal. This spectrometer has the potential to capture
chemical information related to the authenticity of milk samples. PCA revealed that the cut off
limit for detecting raw milk samples with adulteration solutions was 5%. In addition, its spectra
can be used to develop PLS model to predict the percentage of extraneous water in milk regardless
of the identity of the chemical adulterant that might have been added to milk to compensate for
the change in the freezing point. Using the raw spectra of this spectrometer gave a model with the
most consistent FOMs. The values of RMSEC, RMSEP and RMSECV were 1.41%, 1.85% and
1.85%, respectively.

Since the official FTIR milk analysis method is based on transmission, a portable FTIR
spectrometer with a transmission cell and the DialPath (Agilent Technologies, Santa Clara,
California, USA) accessory were evaluated for this application. Homogenizing milk and using a
transmission cell as a sample introduction method gave the best performance for the classification
and quantitative models employed to detect milk adulteration by the addition of water and
chemical adulterants. Nevertheless, the use of the DialPath sample introduction accessory (Agilent
Technologies, Santa Clara, California, USA) with raw milk gave satisfactory results especially
when the path length was set at 30 um. For raw milk, PCA-QDA classification algorithm with no
covariance shrinkage developed using FD spectral data collected with the DialPath accessory
(Agilent Technologies, Santa Clara, California, USA) gave the best accuracy and error rate. The
accuracy values were 98.84% and 100% and the error rate values were 1.16% and 0% for the

training and validation sets, respectively. This model yielded perfect specificity for differentiation
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of adulterated milk samples for the training and the validation set. Sensitivity was 0.99 for the
training set. PCA was successful in decomposing the variation in the spectral dataset and isolating
the spectral fingerprint that reflected the changes in milk chemical composition resulting from the
adulteration process. This successful decomposition helped the DA algorithm capture the correct
chemical information related to the status of the milk sample; hence, avoiding overfitting. SIMCA
algorithm successfully classified adulterated samples into groups according to the chemical
adulterant present in these samples. The accuracy for the raw milk SIMCA classification model
was 89.90% when FD was used. Quantitatively, PLS prediction errors values were 0.39 %, 6.73
mg/dL, 10.3 mg/dL, 4.50 mg/dL and 0.014% for water, urea, citrate, ammonium sulfate and
carbonate, respectively, for raw milk scanned with the DialPath accessory (Agilent Technologies,
Santa Clara, California, USA) set at 30 pum.
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Table 5-11 Comparison of performance FOM of classification models for differentiating genuine milk samples from those
containing extraneous water and chemical adulterants using milk FTIR spectra collected by a transmission cell. Sn: sensitivity,
TPR: true positive rate, Sp: specificity, FPR: false positive rate, ER: error rate, AUC: area under the curve, AD: adulterated,
NA: not adulterated. FD: first derivative, VN: vector normalized, T: training dataset, V: validation dataset.

Transmission cell

. Shrink Entropy Sn AUC AUC
Spectra  Algorithm . Dataset Sp  FPR Accuracy ER
Covariance R? (TPR) AD NA

PCA-LDA No T -0.73 0.80 1.00 0.00 81.41 18.60

0.9761 0.9761
PCA-LDA No \% -0.95 0.79 1.00 0.00 80.43 19.57
PCA-LDA Yes T -0.71 0.79 1.00 0.00 80.17 19.83

0.9822 0.9822
R PCA-LDA Yes \% -0.83 0.79 1.00 0.00 80.43 19.57

aw

PCA-QDA No T 0.99 1.00 1.00 0.00 100.00 0.00

1.0000 1.0000
PCA-QDA No \% 1.00 1.00 1.00 0.00 100.00 0.00
PCA-QDA Yes T 0.57 0.98 1.00 0.00 98.35 1.65

1.0000 1.0000
PCA-QDA Yes \% 1.00 1.00 1.00 0.00 100.00 0.00
PCA-LDA No T -0.73 0.80 1.00 0.00 81.41 18.60

0.9761 0.9761
PCA-LDA No \% -0.95 0.79 1.00 0.00 80.43 19.57
PCA-LDA Yes T -0.71 0.79 1.00 0.00 80.17 19.83

0.9822 0.9822
Raw PCA-LDA Yes \% -0.83 0.79 1.00 0.00 80.43 19.57
VN PCA-QDA No T 0.99 1.00 1.00 0.00 100.00 0.00

1.0000 1.0000
PCA-QDA No \Y 1.00 1.00 1.00 0.00 100.00 0.00
PCA-QDA Yes T 0.57 0.98 1.00 0.00 98.35 1.65

1.0000 1.0000
PCA-QDA Yes \Y 1.00 1.00 1.00 0.00 100.00 0.00
PCA-LDA No T -0.81 0.80 1.00 0.00 80.58 19.42

0.9773 0.9773
PCA-LDA No \% -0.71 0.81 1.00 0.00 82.61 17.39
PCA-LDA Yes T -0.81 0.80 1.00 0.00 80.58 19.42

0.9773 0.9773
b PCA-LDA Yes \% -0.71 0.81 1.00 0.00 82.61 17.39
PCA-QDA No T 1.00 1.00 1.00 0.00 100.00 0.00

1.0000 1.0000
PCA-QDA No \% 0.60 1.00 0.67 0.33 97.83 2.17
PCA-QDA Yes T 0.88 1.00 1.00 0.00 99.59 0.41

1.0000 1.0000
PCA-QDA Yes \% 1.00 1.00 1.00 0.00 100.00 0.00
PCA-LDA No T -0.82 0.80 1.00 0.00 80.58 19.42

0.9773 0.9773
PCA-LDA No \% -0.73 0.81 1.00 0.00 82.61 17.39
PCA-LDA Yes T -0.81 0.80 1.00 0.00 80.58 19.42

0.9773 0.9773
£DUN PCA-LDA Yes \% -0.71 0.81 1.00 0.00 82.61 17.39
PCA-QDA No T 1.00 1.00 1.00 0.00 100.00 0.00

1.0000 1.0000
PCA-QDA No \% 0.60 1.00 0.67 0.33 97.83 2.17
PCA-QDA Yes T 0.88 1.00 1.00 0.00 99.59 0.41

1.0000 1.0000
PCA-QDA Yes \% 1.00 1.00 1.00 0.00 100.00 0.00
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Table 5-12 Comparison of performance FOM of classification models for differentiating genuine milk samples from those
containing extraneous water and chemical adulterants using milk FTIR spectra collected by the DialPath accessory 30um. Sn:
sensitivity, TPR: true positive rate, Sp: specificity, FPR: false positive rate, ER: error rate, AUC: area under the curve, AD:
adulterated, NA: not adulterated. FD: first derivative, VN: vector normalized, T: training dataset, V: validation dataset.

DialPath accessory

. Shrink Entropy Sn AUC- AUC-

Spectra  Algorithm . Dataset Sp FPR Accuracy ER
Covariance R? (TPR) AD NA

PCA-LDA No T 0.48 0.99 069 031 96.88 3.13

0.9809  0.9809
PCA-LDA No \% 0.42 0.92 0.40 0.60 85.71 14.29
PCA-LDA Yes T 0.57 0.99 069 031 96.88 3.13

0.9802  0.9802
R PCA-LDA Yes \% 0.49 0.92 0.40 0.60 85.71 14.29

aw

PCA-QDA No T 0.44 0.96 1.00 0.00 96.09 391

0.9998  0.9998
PCA-QDA No \% 1.00 1.00 1.00 0.00 100.00 0.00
PCA-QDA Yes T -0.42 0.89 1.00 0.00 89.84 10.16

0.9971  0.9971
PCA-QDA Yes \% -0.01 0.86 1.00 0.00 88.10 11.90
PCA-LDA No T 0.07 0.98 0.63 0.38 95.37 4.63

0.9655  0.9655
PCA-LDA No \% 0.32 0.92 0.40 0.60 85.71 14.29
PCA-LDA Yes T 0.20 0.98 0.63 0.38 95.37 4.63

0.9636  0.9636
Raw PCA-LDA Yes \% 0.37 0.92 0.40 0.60 85.71 14.29
VN PCA-QDA No T 0.77 0.98 1.00 0.00 98.46 1.54

0.9971  0.9971
PCA-QDA No \Y 0.64 1.00 0.80 0.20 97.62 2.38
PCA-QDA Yes T -0.51 0.87 1.00 0.00 88.03 11.97

1.0000  1.0000
PCA-QDA Yes \Y 0.52 0.95 1.00 0.00 95.24 4.76
PCA-LDA No T 0.34 0.99 069 031 96.91 3.09

0.9869  0.9869
PCA-LDA No \% 041 0.92 0.80 0.20 90.48 9.52
PCA-LDA Yes T 041 0.99 0.69 0.31 96.91 3.09

0.9832  0.9832
D PCA-LDA Yes \% 0.46 0.92 0.80 0.20 90.48 9.52
PCA-QDA No T 0.77 0.99 1.00 0.00 98.84 1.16

1.0000  1.0000
PCA-QDA No \% 1.00 1.00 1.00 0.00 100.00 0.00
PCA-QDA Yes T -0.29 0.92 1.00 0.00 92.66 7.34

1.0000  1.0000
PCA-QDA Yes \% 0.99 1.00 1.00 0.00 100.00 0.00
PCA-LDA No T 0.20 0.96 069 031 94.21 5.79

0.9626  0.9626
PCA-LDA No \% -0.19 0.92 0.40 0.60 85.71 14.29
PCA-LDA Yes T 0.26 0.96 069 031 94.21 5.79

0.9617  0.9617
FD YN PCA-LDA Yes \Y 0.05 0.92 0.40 0.60 85.71 14.29
PCA-QDA No T 0.65 0.98 1.00 0.00 97.68 2.32

1.0000  1.0000
PCA-QDA No \% 1.00 1.00 1.00 0.00 100.00 0.00
PCA-QDA Yes T -0.77 0.90 1.00 0.00 90.73 9.27

0.9985  0.9985
PCA-QDA Yes \% -0.10 0.78 1.00 0.00 80.95 19.05
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Figure 5-14 ROC curves for classification models to differentiate genuine milk samples from those containing extraneous water
and chemical adulterants. A) PCA-QDA developed using vector normalized raw spectra of homogenized milk samples collected
with a transmission cell AUC=1.0000, B) PCA-QDA developed using vector normalized raw spectra of raw milk samples
collected with Dial Path accessory AUC=0.9971, C) PCA-LDA developed using vector normalized raw spectra of raw milk

samples collected with Dial Path accessory AUC=0.9655.
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Table 5-13 Example of SIMCA output for classification of adulterated milk samples according to the added chemical. SIMCA can
assign unknown sample to one class, multiple classes or no class. Class membership at 5% significance level.

Spectrum Actual Adulterant Carbonate Citrate Ammonium sulfate
1. CARBONATEOP7 *
2. CARBONATEOP7 *
& CARBONATEOP7 *
4, CARBONATEOP5 *
5. CARBONATEOP5 =
6. CARBONATEOP5 *
7. CARBONATEOP2 =
8. CARBONATEOP2 *
9. CARBONATEOP2 *
10. CITRATE22P *
11. CITRATE22P 5
12. CITRATE22P *
13. CITRATE22P 5
14. CITRATE14P *
15. CITRATE14P =
16. CITRATE14P *
17. CITRATE6P = =
18. CITRATE6P * *
19. CITRATEGP 5
20. MIX20P *
21. MIX20P =
22. MIX20P *
23, SULFATE18P =
24, SULFATE18P *
25, SULFATE18P =
26. SULFATE12P
27. SULFATE12P =
28. SULFATE12P *
29. SULFATE4P = =
30. SULFATE4P * *
31. SULFATE4P =
32. UREA28P *
33. UREA28P =
34, UREA28P *
35, UREA18P =
36. UREA18P *
37. UREA18P =
38. UREA12P *
39. UREA12P =
40. UREA12P *
41. UREA4P * *
42, UREA4P * *
43. UREA4P * *

t Carbonate is added in dry form while urea, sulfate, citrate and mix are added as an adulteration solution.
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Table 5-14 Comparison of calibration models’ FOMs for milk chemical adulterants and extraneous water. Calibration models were built using homogenized milk spectra scanned
by Cary 630 (Agilent Technologies, Santa Clara, California, USA) spectrometer with transmission cell.

_ Region cm™?
Milk System Adulterant r RMSEC RMSEP  Factors
Pre-treatment
H. Milk 1,461-1,446
o Sulfate SG (window 7, polynomial 3) FD
Cary 630 — transmission cell 0.99 1.61 214 8
mg/dL 1,114-1,069
SG (window 7, polynomial 3) FD
H. Milk 1,384-1,354
L Citrate SG (window 7, polynomial 3) FD
Cary 630 — transmission cell 0.99 3.78 6.32 8
mg/dL 1,191-1,159
SG (window 7, polynomial 3) FD
H. Milk 1,195-1,153
o Urea SG (window 7, polynomial 3) FD
Cary 630 — transmission cell 0.99 4.14 7.57 9
mg/dL 1,484-1,458
SG (window 7, polynomial 3) FD
H. Milk . Carbonate 1,372-1,332
Cary 630 — transmission cell ) ) 0.99 0.008 0.009 4
% SG (window 7, polynomial 3) FD
H. Milk 1,544-1,010
o Water 1,796- 1,707
Cary 630 — transmission cell 0.99 0.16 0.28 8
% 2,943-2,835

Raw




Table 5-15 Comparison of cross-validation FOMs for milk adulterants models developed using milk spectra collected on Cary 630 (Agilent Technologies, Santa Clara, California,
USA) with transmission cell.

Cross-validation External validation
Milk Samples System Adulterant

r RMSECV Factors R? Slope

H. Milk Cary 630 — transmission cell Sulfate mg/dL 0.99 2.27 8 0.99 0.99

H. Milk Cary 630 — transmission cell Citrate mg/dL 0.99 5.84 8 0.99 0.99

H. Milk Cary 630 — transmission cell Urea mg/dL 0.99 6.93 9 0.99 1.03

H. Milk Cary 630 — transmission cell Carbonate % 0.99 0.009 4 0.99 0.98

H. Milk Cary 630 — transmission cell Water % 0.99 0.21 8 0.99 1.00




Table 5-16 Comparison of calibration models’ FOMs for milk chemical adulterants and extraneous water. Calibration models were built using homogenized milk spectra scanned
by Cary 630 (Agilent Technologies, Santa Clara, California, USA) spectrometer with Dial Path accessory. The same sample sets were scanned at 30 and 50 um pathlength. a)
milk samples contain added water and chemical adulterant, b) milk samples contain added water and urea only.

Milk Samples System Adulterant Region cm/ Pre-treatment r RMSEC RMSEP Factors
H. Milk Cary 630 - Dial Path Accessory — 50 pm pathlength Water %2 1,581-960 Raw 0.99 0.66 0.55 6
H. Milk Cary 630 - Dial Path Accessory — 30 um pathlength Water %2 1,581-960 Raw 0.99 0.26 0.33 9

Raw Milk Cary 630 - Dial Path Accessory — 50 um pathlength Water %P 1,500-960 FD 0.99 0.59 0.55 1
Raw Milk Cary 630 - Dial Path Accessory — 30 pm pathlength Water %" 1,500-960 Raw 0.99 0.64 0.72 2
H. Milk Cary 630 - Dial Path Accessory — 50 pm pathlength Urea mg/dL 1,484-1,457, 1,191-1,153 FD 0.99 6.4 8.62 3
H. Milk Cary 630 - Dial Path Accessory — 30 um pathlength ~ Urea mg/dL 1,481-1,454, 1,191-1,137 Raw 0.99 2.76 2.95 7
Raw Milk Cary 630 - Dial Path Accessory —50 um pathlength ~ Urea mg/dL 1,481-1,427, 1,191-1,138 Raw 0.99 3.06 7.63 6
Raw Milk Cary 630 - Dial Path Accessory — 30 um pathlength Urea mg/dL 1,485-1,453, 1,195-1,141 FD 0.99 4.28 4.88 8
H. Milk Cary 630 - Dial Path Accessory — 50 um pathlength  Sulfate mg/dL 1,454-1,442,1,192-1,149 FD 0.99 2.65 2.79 9
H. Milk Cary 630 - Dial Path Accessory — 30 um pathlength ~ Sulfate mg/dL 1,461-1,446, 1,114-1,069 Raw 0.99 1.99 1.72 5
H. Milk Cary 630 - Dial Path Accessory —50 pm pathlength  Citrate mg/dL 1,380-1,350, 1,288-1,261 FD 0.99 6.77 9.63 6
H. Milk Cary 630 - Dial Path Accessory — 30 pm pathlength  Citrate mg/dL 1,399-1,369, 1,284-1,261 FD 0.99 5.90 5.43 2
H. Milk Cary 630 - Dial Path Accessory — 50 um pathlength  Carbonate % 1,381-1,326 FD 0.99 0.009 0.004 2
H. Milk Cary 630 - Dial Path Accessory — 30 um pathlength  Carbonate % 1,380-1,326 FD 0.99 0.009 0.005 2




Table 5-17 Comparison of cross-validation FMOs for milk adulterants models developed using milk spectra collected on Cary 630 Dial Path accessory (Agilent Technologies,
Santa Clara, California, USA). a) milk samples contain added water and chemical adulterant, b) milk samples contain added water and urea.

Cross-validation

External validation

Milk Samples System Adulterant
r RMSECV Factors R? Slope
H. Milk Cary 630 - Dial Path Accessory — 50 um pathlength Water %? 0.99 0.749 6 0.99 0.97
H. Milk Cary 630 - Dial Path Accessory — 30 um pathlength Water %? 0.99 0.347 9 0.99 0.99
Raw Milk Cary 630 - Dial Path Accessory — 50 um pathlength Water %P 0.99 0.757 1 - -
Raw Milk Cary 630 - Dial Path Accessory — 30 um pathlength Water %° 0.99 0.968 2 - -
H. Milk Cary 630 - Dial Path Accessory — 50 um pathlength Urea mg/dL 0.99 9.90 3 0.99 1.05
H. Milk Cary 630 - Dial Path Accessory — 30 um pathlength Urea mg/dL 0.99 5.43 7 0.99 0.98
Raw Milk Cary 630 - Dial Path Accessory — 50 um pathlength Urea mg/dL 0.99 5.06 6 0.99 1.00
Raw Milk Cary 630 - Dial Path Accessory — 30 um pathlength Urea mg/dL 0.99 7.23 8 0.99 1.00
H. Milk Cary 630 - Dial Path Accessory — 50 um pathlength Sulfate mg/dL 0.99 3.76 9 0.99 0.99
H. Milk Cary 630 - Dial Path Accessory — 30 um pathlength Sulfate mg/dL 0.99 3.35 5 0.99 1.00
H. Milk Cary 630 - Dial Path Accessory — 50 um pathlength Citrate mg/dL 0.99 12.3 6 0.98 0.98
H. Milk Cary 630 - Dial Path Accessory — 30 um pathlength Citrate mg/dL 0.99 8.90 2 0.98 0.97
H. Milk Cary 630 - Dial Path Accessory — 50 um pathlength Carbonate % 0.99 0.013 2 - -
H. Milk Cary 630 - Dial Path Accessory — 30 um pathlength Carbonate % 0.99 0.013 2 - -




Table 5-18 Comparison of calibration models’ FOMs for milk chemical adulterants and extraneous water. Calibration models were built using raw milk spectra scanned by Cary
630 spectrometer with Dial Path accessory (Agilent Technologies, Santa Clara, California, USA).

_ Region cm™?
Milk System Adulterant r RMSEC RMSEP  Factors
Pre-treatment
) 1,484-1,457
) Cary 630 - Dial Path Accessory Sulfate
Raw Milk 1,190-1,126 0.99 2.48 4.50 5
30 um pathlength mg/dL ] )
SG (window 7, polynomial 3) FD
. Cary 630 - Dial Path Accessory Citrate 1,445-1,347
Raw Milk ) . 0.99 5.97 10.3 6
30 pm pathlength mg/dL SG (window 7, polynomial 3) FD
) Cary 630 - Dial Path Accessory Urea 1,485-1,457
Raw Milk ) ) 0.99 4.77 6.73 8
30 um pathlength mg/dL SG (window 7, polynomial 3) FD
. Cary 630 - Dial Path Accessory Carbonate 1,380-1,322
Raw Milk ) . 0.99 0.012 0.014 2
30 um pathlength % SG (window 7, polynomial 3) FD
1,575-1,010
. Cary 630 - Dial Path Accessory Water 1,762-1,728
Raw Milk 0.99 0.25 0.39 9
30 um pathlength % 2,949-2,834

Raw




Table 5-19 Comparison of cross-validation FMOs for milk adulterants models developed using milk spectra collected on Cary 630 Dial Path accessory (Agilent Technologies,
Santa Clara, California, USA).

Cross-validation

External validation

Milk Samples System Adulterant
r RMSECV Factors R? Slope
Raw Milk Cary 630 - Dial Path Accessory — 30 um pathlength Sulfate mg/dL 0.99 8.65 5 0.99 0.99
Raw Milk Cary 630 - Dial Path Accessory — 30 um pathlength Citrate mg/dL 0.99 11.6 6 0.99 0.99
Raw Milk Cary 630 - Dial Path Accessory — 30 um pathlength Urea mg/dL 0.99 7.22 8 0.99 0.98
Raw Milk Cary 630 - Dial Path Accessory — 30 um pathlength Carbonate % 0.99 0.019 2 0.99 0.94
Raw Milk Cary 630 - Dial Path Accessory — 30 um pathlength Water % 0.99 0.36 9 0.99 1.02
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Connecting Statement

In the previous chapter, principle component analysis (PCA) successfully isolated the spectral
fingerprint from milk FTIR data that reflected the changes in milk chemical composition resulting
from a systemic factor that altered milk composition, which was adulteration. In addition, PCA
reduced the dimensionality of the milk FTIR spectral data and produced a new set of variables
(i.e., principal components) that were used as predictors for classification models and as input
variables to a model to test the significance of the systemic factor effect on milk spectral data. In
this chapter, several multivariate analysis techniques, including PCA, will be evaluated as data
mining tools to isolate the spectral fingerprint that reflects the effect of a housing treatment of

dairy cattle on milk FTIR spectral data in the context of animal controlled-design trials.
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Chapter 6: Evaluation of data analysis approaches of chemical milk
composition and FTIR spectral data in the context of controlled-
design trials testing dairy cattle housing welfare improvements

Abstract

Milk is a complex biological fluid whose components are synthesized from building blocks that
are obtained from the blood plasma. These precursor molecules are either originated from diet or
they are produced by metabolic processes in the cow’s body. Several studies have demonstrated
that milk composition reflects the concentrations of key blood plasma metabolites, the nutritional
state of the cow and health conditions that might affect the cow’s productivity. Some of these
studies have relied on the numerical values of the concentrations of the studied milk components,
others have directly relied on the FTIR spectrum of studied milk samples without using an

intermediate prediction model to produce a specific number for a specific milk component.

The objective of this chapter is to evaluate the suitability of different data analysis approaches of
milk composition data to detect the effect of tie rail (TR) configuration on milk composition. A
TR is the pipe used as the attachment for the tie chain, which controls the forward location of each
cow in her stall and facilitates or obstructs the cow movement in her stall while changing positions
as well as cow access to feed; hence, affecting the cow’s intake of key nutritional precursors
required for the biosynthesis of different milk components. The evaluated data analysis approaches
are categorized into two groups: univariate and multivariate approaches, which were applied to
milk components’ concentrations and milk FTIR spectral data. For the univariate approach, mixed
modeling was employed, which is a powerful statistical tool that allows fitting mixed linear
models. The multivariate approach employed principal component analysis (PCA) and
hierarchical cluster analysis (HCA), which are unsupervised techniques, and partial least squares

— discriminant analysis, (PLS-DA), which is a supervised technique.

The milk composition numerical data did not reveal significant treatment effect when analyzed by
the mixed model, and PCA revealed that the predictions of minor milk components might have
been biased by spectral contribution of major milk components. PLS-DA did not consider the
repeated measurement structure of this study and it was limited to the milk components that were
reported by the FTIR milk analyzer. On the other hand, PLS-DA analysis of the full milk FTIR
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spectra revealed more details pertaining to the TR treatment effect on milk composition than PLS-
DA analysis of the numerical dataset of milk composition. However, PLS-DA was not capable of
testing the hypothesis or producing statistics regarding the significance of all the effects included
in the statistical model of the study. In addition, unsupervised analysis of the full milk FTIR spectra
revealed only the strongest effect on milk composition, which was the time effect (i.e., increased
in cow days in milk and/or environmental changes such as ambient temperature as the trial was

conducted over 20 weeks).

A hybrid approach was successfully applied to the FTIR spectral data, which retained the
multivariate structure of the FTIR spectral data, while at the same time, accommodated the
utilization of the mixed model to test fixed and random effects on the FTIR spectral data according
to the statistical model that was defined by the experimental design of the trial with a repeated

measurement structure and enabled hypothesis testing.
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6.1 Introduction

Milk is a complex biological mixture of a solution of salts and carbohydrates, dispersed proteins,
casein micelles and fat globules. Major milk components and some minor ones are synthesized in
multiple organelles in the alveolar cells of the mammary glands. Milk proteins are synthesized in
the rough endoplasmic reticulum from free amino acids or peptides that are absorbed from the
bloodstream through the basolateral cell membrane of the alveolar cells. After that, milk proteins
are transported to the Golgi apparatus where they undergo posttranslational modifications. The
Golgi apparatus is also responsible for the synthesis of lactose from glucose, which is absorbed
from the bloodstream. Synthesized milk proteins, lactose and other milk components, such as
citrate, calcium and water, are packed into secretory vesicles that release these components through
exocytosis into milk accumulating in the alveolar lumen. Fatty acids are the building blocks for
milk triglycerides. Half of these fatty acids are derived from diet, which include most of C18 fatty
acids (i.e., stearic, oleic and linoleic acids) and 30% of C16 fatty acids (i.e., palmitic acid). The
other half includes shorter chain fatty acids, which are derived from de novo synthesis in the
cytoplasm of the mammary glands using acetate and -hydroxybutyric acid as precursors that are
absorbed from the bloodstream. Milk fat droplets form near the rough endoplasmic reticulum,
enlarge in size and make their way towards the apical membrane of the alveolar cell where they
protrude from the cell into the alveolar lumen surrounded by portions of the cell membrane. Other
milk components cross from the bloodstream through the basolateral membrane of the alveolar
cells, traverse the cell and pass across the apical membrane into milk accumulated in the alveolar
lumen. Such components include water, urea, glucose and some ions [97]. Several studies have
demonstrated that milk composition reflects the concentrations of key blood plasma metabolites,
such as non esterified fatty acids (NEFA) [98] and B-hydroxybutyric acid [99], the nutritional state
of the cow [61, 100] and health conditions [15] that might affect the cow’s productivity. Some of
these studies have relied on the numerical values of the concentrations of the studied milk
components that are determined by different analytical techniques, such as FTIR and gas
chromatography, others have directly relied on the FTIR spectrum of studied milk samples without
going through an intermediate prediction model to produce a specific number for a specific milk

component.

The objective of this chapter is to evaluate the suitability of different data analysis approaches of

milk composition data to detect the effect of tie rail (TR) configuration on milk composition. A
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TR is the pipe used as the attachment for the tie chain, which controls the forward location of each
cow in her stall and facilitates or obstructs the cow movement in her stall while changing positions
as well as cow access to feed; hence, affecting the cow’s intake of key nutritional precursors
required for the biosynthesis of different milk components. Figure 6-1 summarizes the data
analysis approaches of milk composition that will be covered in this chapter and that can be
categorized into two groups: univariate and multivariate approaches, which will be applied to milk
components’ concentrations and milk FTIR spectral data. For the univariate approach, mixed
modeling will be employed, which is a powerful statistical tool that allows fitting mixed linear
models [101]. Mixed models are a generalization of the standard linear model. Mathematically,

they are described as follows:
y=Xp+Zy+e

Where y is a vector of observed data, 8 is an unknown vector of fixed-effects parameters with
known design matrix X, vy is an unknown vector of random-effects parameters with known design

matrix Z and € is an unknown random error vector.

Mixed models allow the modeling of the mean response that is described by fixed-effects
parameters, in addition to the variance and covariance of the mean that are described by random-
effects parameters. Fixed effects represent studied factors that are controlled in the trial with
specific levels, such as different TR configurations. On the other hand, random effects represent
factors that might affect the variability of the studied response but cannot be controlled during the
trial, such as the cow. Fitting mixed models allows drawing statistical inferences and generating
suitable statistics for hypothesis testing. However, mixed modeling can be applied to only one
response at a time, while in fact, major and minor milk components are synthesized through
biochemical pathways that are governed by the metabolic, nutritional and health state of the cow.
For this reason, a multivariate approach might be more appropriate, in this case, because it can
detect trends in the dataset based on changes in observed variables as a holistic unit.

The multivariate approach will employ principal component analysis (PCA) and hierarchical
cluster analysis (HCA), which are unsupervised techniques, and partial least squares — discriminant
analysis, (PLS-DA), which is a supervised technique. PCA assess the correlation among the
studied variables by defining a smaller set of variables that are called principal components that

eliminate unnecessary correlation between the original variables and that describe the unique
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sources of variations in the original dataset. Hence, it can be used as a method to explore the
structure in the relationships between the variables and to reduce the dimensionality of big data.
HCA is an exploratory multivariate technique that aims at uncovering natural groupings of
observations in a data set where the observations within each group are relatively homogeneous,
yet the groups are unlike each other. However, both techniques do not provide suitable statistics
for hypothesis testing and they do not take into consideration the statistical model of the
experimental design under which the data is generated. PLS-DA is a supervised multivariate
technique that aims at maximizing the separation of observations according to their class
membership (i.e., treatment membership) to achieve maximum class separation. However, PLS-
DA does not take into consideration the repeated measurement structure of the data collected from

the same subjects over a specific period of time.

Data analysis approaches
|
I 1
Milk FTIR spectral dataset Hybrid approach for milk FTIR spectral dataset
Combined PCA and mixed model
approach

Milk composition numerical dataset

I_I_I

Univariate Multivariate
approach appraoch

Multivariate
approach

Mixed model
applied to
individual milk
components

J
PLS-DA

Spectral averages il
comparison

HCA

PCA

PLS-DA —

L

Mixed model
applied to
individual

wavenumbers

Figure 6-1 Data analysis approaches that are considered to detect the tie rail position effect on milk composition numerical and
spectral data.
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6.2 Materials and Methods

6.2.1 The data

The data used in this chapter was collected during an animal trial to test the effect of one element
of stall configuration (i.e., tie rail) on cow’s behaviour and welfare [102], which was conducted at
the Dairy Research Complex, Macdonald Campus, McGill University (Ste. Anne-de-Bellevue,
QC, Canada). A tie rail (TR) is the pipe used as the attachment for the tie chain, which controls
the forward location of each cow in her stall. In this study, 48 cows were assigned to 4 TR
configurations, which were defined by the height and the forward position of TR. TR heights were
122, 122, 112 and 102 cm and forward positions were 18 cm, 36 cm, 18 cm and 36 cm for
treatments T1, T2, T3 and T4, respectively. Treatments T1 and T2 are TR configurations that are
recommended and commonly found on dairy farms, respectively. On the other hand, treatments
T3 and T4 are new TR configurations designed to increase the opportunity of movements of the
cow at her stall; hence, improve cow behavior and welfare. Cows were assigned to 6 different
blocks to account for age of the cow, days in milk within current lactation and location in the barn
effects. Half the cows underwent the trial during summer 2016 and the other half during fall 2016.
Each period lasted 10 weeks (i.e., period 1: from July 25" to October 3, period 2: from October

10" to December 19™). The data of this trial was analyzed under the following statistical model:
Yijkim = 4 + trt; + start; + blockyj; + cowyj; + weeky, + trt; X week,, + €;jkim

Where Y; . Was the dependent variable; the outcome measure of the 1" cow from the k" block
(parity, DIM and location in the barn) and the j* start date on the combination of the i*"* tie-rail
configuration and m‘" week. trt; was the fixed effect of the i*" tie-rail configuration. start; was
the fixed effect of the j¢" start date. block,, ji was the fixed effect of k" parity, DIM and location
in the barn from the j* start date on the i" tie-rail configuration treatment. cowyj; Was the
random effect of the [** cow from the j* start date and the k" block on the it" tie-rail
configuration treatment. week,,, was the fixed effect of the m!"* week. trt; X week,, is the
interaction effect of the individual combination of the it" tie-rail configuration treatment with the
mth week. e;jkim Was the random residual associated with the outcome measure of the " cow
from jt" start date and k" block on the combination of the i‘" tie-rail configuration treatment and

the m*" week [102].
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Milk samples were collected weekly and they were analyzed by Valacta Inc. lab (Ste., Anne-de-
Bellevue, QC, Canada) to determine major and minor milk components using commercial FTIR
milk analyzer. A total of 19 milk components were included in this study. These components are
fat, protein, lactose, total solids (TS), urea, B-hydroxybutyrate (BHB), palmitic acid (C16:0),
stearic acid (C18:0), oleic acid (C18:1), short-chain fatty acids (SCFA), mid-chain fatty acids
(MCFA), long-chain fatty acids (LCFA), saturated fatty acids (SFA), total unsaturated fatty acids
(TUFA), mono-unsaturated fatty acids (MUFA), poly-unsaturated fatty acids (PUFA), trans fatty
acids (TFA), free fatty acids (FFA) and fat-to- protein ratio (FP ratio). The total number of samples
that were analyzed is 626. Two sets of data were received from Valacta. The first dataset comprised
the concentrations of milk components that were determined by the commercial FTIR milk
analyzer for individual milk samples. This dataset will be referred to as the numerical dataset. The
second dataset contained FTIR spectra recorded for individual milk samples collected during the
trial. This dataset will be referred to as the spectral dataset. Each FTIR spectrum consisted of 1060

spectral variables between 5008 cm™ and 925 cm™.

6.2.2 Analysis of milk composition numerical dataset

Two approaches were applied to the analysis of the numerical dataset: a univariate and a
multivariate approach. The Mixed procedure in SAS 9.4 (SAS Institute, Cary, NC, USA) was
utilized to detect the treatment effect (i.e., TR configuration effect) on individual milk components.
This procedure allows fitting of mixed linear models, which are a generalization of the standard
linear model. A mixed linear model allows the modeling of variances and covariances in addition
to the means of the dataset. The probability distribution of the data in a mixed linear model can be
described by two sets of parameters. The fixed-effects parameters describe the mean of the model,

while the random-effects parameters describe the variance-covariance of the model [101].

Alternatively, two multivariate techniques were used to analyse the numerical dataset. These
techniques are principal component analysis (PCA), which is an unsupervised method, and partial
least squares discriminant analysis (PLS-DA), which is a supervised method. PCA decomposes
the variance in the dataset into a number of new variables that is equal to the number of observed
variables (i.e., milk components) called principle components (PCs) [93]. These PCs are
orthogonal to each other, which means that the correlation is 0 between any two PCs, and they

describe the same variance structure as the original variables in the dataset. Each PC is a linear
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combination of optimally weighted observed variables. However, only the few first PCs account
for a significant portion of the variability in the original dataset. PCA loading plot reveals the main
set of variables that drive variation in the dataset; on the other hand, PCA scores plot unveils
tendencies toward clustering of samples.

PLS-DA is used for exploratory purpose in this study and not to build predictive models. It requires
two matrices. The first is the X matrix that contains the observed variables, or the predictors, which
are the concentrations of milk components for the observations. The second is the Y matrix that
contains dummy variables that describe treatment membership of observations in the X matrix.
PLS-DA performs a decomposition process on the X matrix (i.e., the numeric dataset) similar to
that of PCA; however, this process is guided by observations’ treatment membership described in
the Y matrix [27]. The resulting new variables in PLS-DA are called latent variables or factors and
they are calculated in a way to maximize observations’ separation according to treatment. To
construct a PLS-DA model, the X matrix data was centered and scaled. Statistically Inspired
Modification of the PLS Method algorithm (SIMPLS) was used to build the PLS-DA model and
it was validated by leave-one-out cross-validation approach. This algorithm was chosen because
treatment has multiple levels [27]. Initially, all predictors were included in the PLS-DA model.
The Variable Importance for the Projection (VIP) score was used to eliminate predictors that did
not contribute to the modeling of the response (i.e., treatment membership) to comply with the
parsimony principle. Only predictors with VIP score >0.8 were retained in the model. This process
was repeated multiple times until a final model was obtained with the least number of predictors
modeling the treatment membership of observations. JMP Pro 13.2.1 (SAS Institute, Cary, NC,
USA) was used to perform PCA and PLS-DA on the numeric dataset.

6.2.3 Analysis of milk spectral dataset

Omnic 7.3 (Thermo Electron Corporation, Waltham, MA, USA) was used to visualize the milk
FTIR spectra and to calculate average spectra by treatment and week. Only spectral regions
containing information related to milk composition were retained for spectral analysis. These
regions were 1612-925 cm™, 1797-1681 cm™ and 3061-2803 cm™. The total number of spectral
variables that were retained for analysis was 278 wavenumbers. MATLAB codes were written to
calculate differential first derivative (FD) of the spectra with a derivative window of 1, to vector

normalize (VN) the spectra [29] and to load individual spectra into a matrix for analysis by JMP
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Pro 13.2.1. The FD will eliminate the offset of the spectral baseline, if present, and it will enhance
small peaks that are especially present on the shoulder of larger peaks. VN will eliminate
variability in the spectra that is not related to chemical composition of milk samples and that is
originated from instrumentation, such as variability in the IR source intensity. Spectral analysis
was performed on raw, VN raw, FD, VN FD spectral datasets. The four versions of the spectral
dataset were analyzed by Hierarchical Cluster Analysis (HCA) and PCA. Forward search feature
selection algorithm [103] was applied to the spectral datasets to pick up the relevant regions for
classification according to the studied factors. This algorithm is implemented in DataAnalysis [89],
which is an inhouse written software at the McGill IR group in the food science department. In
addition, PLS-DA models were developed for the four versions of the milk spectral dataset using
the same methodology that was used with the milk numeric dataset except that the models were
validated by K-Fold (K=10) cross-validation approach for computational considerations. JMP Pro
13.2.1 (SAS Institute, Cary, NC, USA) was used to perform HCA, PCA and PLS-DA on the
spectral datasets. On the other hand, a univariate approach was applied to the four versions of the
milk FTIR spectral datasets. In this approach, the mixed model was applied to the individual
spectral variables through a loop that iterated over these variables in the retained spectral regions
using SAS 9.4 (SAS Institute, Cary, NC, USA). It must be noted, that Proc Mixed in SAS can test

different effects on one response (i.e., the spectral variable) at a time.

6.2.4 Hybrid approach for milk spectral dataset analysis

A new approach has been developed to analyze the milk spectral dataset (Figure 6-15). This new
approach combines multivariate analysis with mixed modeling to test specific treatment effect.
This approach was first tested on milk samples spiked with lactose before applying it to the four
versions of the spectral dataset of TR trial. For this purpose, skim milk packs were purchased from
the local market and eleven samples were spiked with 1% lactose and another eleven samples were
spiked with 5% lactose. Cary 630 (Agilent Technologies, Santa Clara, California, USA)
spectrometer was used to record the FTIR spectra of these samples with a resolution of 16 cm™
and 32 co-added scans. The spectral regions that were retained for spectral analysis were 1612-
925 cm?, 1797-1681 cm™ and 3061-2803 cm™ with a total of 278 spectral variables. Inhouse
MATLAB codes were written to calculate differential FD of the spectra, to VN the spectra and to
load individual spectra into a matrix for analysis by JMP Pro 13.2.1.

169



In JMP Pro, PCA was applied to the four versions of the spiked milk samples spectral dataset (i.e.,
raw, FD, VN raw, VN FD) as a dimension reduction method to produce a new set of orthogonal
variables that explain the variance in the original dataset and to reduce the number of responses
that will be tested by the mixed model [104]. PCs with eigenvalue > 1 and that explained > 1% of
the variation were considered meaningful and were retained for testing by the mixed model with a
significance level 0=0.05. It must be noted that PCA was not used to model or to test any effect in

this case.

In the mixed model, the effect of spiked lactose concentration was tested on retained PCs and
labels “High” and “Low” were used to categorized samples with 5% and 1% spiked lactose,
respectively. The PCA scores of the raw and FD spectral data were compared to understand the
effect of FD on the PCA scores behaviour and their interpretation in each case. The same
comparison was also applied to the means estimates of the mixed model for the retained PCs of
the raw and FD spectral dataset to correctly interpret the differences in the means estimates in each

case.

In case a PC revealed a significant treatment effect, then its loading spectrum was interpreted. A
loading spectrum extracted from raw spectral dataset can be interpreted directly. On the other hand,
loading spectrum extracted from a FD spectral dataset needs to be integrated to restore the actual
peaks of the influential FTIR bands that became zeros when the first derivative was calculated.
The cumulative trapezoidal numerical integration function in MATLAB was used to calculate the
spectral integral for the loading spectrum in question. This function performs numerical integration
via the trapezoidal method and preserves the intermediate integration values, which results in a
spectrum that approximates the raw absorption spectrum prior to the FD calculation. The spectral
integral will be missing the baseline, which is not an issue since the spectral integral will not be
used for quantitative determinations. If the integrated loading spectrum produced wide humps with
no clear peaks, the Peak Resolve feature in Omnic 7.3 (Thermo Electron Corporation, Waltham,
MA, USA) was used to fit the integrated loading spectrum for probable peaks. To do so, the Voigt
function [105] with low sensitivity was used and the baseline was set to none. The noise and the
full width at half height (FWHH) of the narrowest peak in the region of interest were determined
by the software. The fitting process was repeated several times until an acceptable residual

spectrum was obtained.
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The same approach was applied to the spectral datasets of the TR trial spectral dataset. The Mixed
procedure in SAS 9.4 (SAS Institute, Cary, NC, USA) was utilized to test the TR treatment effect
on the meaningful PCs extracted from the raw, FD, VN raw and VN FD spectral datasets. First,
the dataset was sorted by treatment, start, block, cow and week. Then, a SAS macro was utilized
to iterate over the meaningful PCs extracted from the spectral dataset in question and to test the
treatment effect according to the statistical model that was defined by the experimental design.

Finally, the least squares mean were tested for the PC that revealed a significant treatment effect.
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6.3 Results and Discussion

6.3.1 Analysis of milk composition numerical dataset

The univariate approach that employed mixed modeling did not reveal significant treatment effect
on any milk component that was determined by Valacta’s FTIR milk analyzer (Table 6-1). The
strongest significant effect was observed for week on almost all milk components followed by the
block effect. The main drawback of this type of analysis is that it tests the treatment effect on each
milk component separately, while in fact, major and minor milk components are synthesized
through biochemical pathways that are governed by the metabolic, health and nutritional state of
the cow. For example, lactose and minerals are the least variable milk components [106]. They
maintain the osmolarity of milk at ~300 mOsm, which is equal to the osmolarity of blood, to
facilitate secretion of milk. In addition, lactose synthesis in mammary glands consumes 85% of
circulating glucose in the plasma, which is mainly provided by carbohydrate intake from feed
[107]. Since the osmolarity of blood is stable in healthy cows, decreased lactose concentration in
milk results from reduced plasma glucose concentration due to reduced carbohydrate intake [100],
which can be an indicator of elevated body fat mobilization, or it can be an indicator of health
issues, such as ketosis and mastitis [15]. In all cases, decreased lactose concentration is
accompanied by changes in concentrations of other milk components. In the case of elevated body
fat mobilization, increased fat metabolism is characterized by increased non-esterified fatty acids
(NEFA), BHB and reduced glucose concentration in the plasma, and decreased protein and
increased acetone, BHB, C18:1 and C16:0 in milk [98, 100]. Having said that, milk composition
represents a snapshot of the metabolic and nutritional state of the cow, and changes to a single
milk component cannot be considered as an indicator of the nutritional or metabolic state of the
cow resulting from a specific treatment effect. This observation indicates that multivariate analysis
might be a sound alternative approach to analyze this type of data. These techniques can detect
trends in the data based on changes in observed variables as a holistic unit.
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Table 6-1 P values of different effects on milk components for the TR configuration trial. No significant effect was detected for
treatment. Week has the strongest significant effect on almost all milk components followed by Block.

Milk Treatment Start Block Week  Treatment*Week
Component (Start)

Fat 0.3385 0.8329 0.1515 0.0691 0.5137
Protein 0.7165 0.2317 <.0001 <.0001 0.8060
Lactose 0.9320 0.0077 0.0031 <.0001 0.6973
TS 0.3143 0.2409 0.0164 <.0001 0.4894
Urea 0.5993 0.0254 0.5723 <.0001 0.9296
BHB 0.1614 0.1955 0.0707 <.0001 0.8236
Cl16 0 0.3812 0.2291 0.0483 0.0013 0.2456
C18 0 0.4320 0.1892 0.0191 0.0191 0.7989
Cl8 1 0.1873 0.0148 0.5218 0.0029 0.7582
SCFA 0.4203 0.0481 0.2833 0.0091 0.5678
MCFA 0.2875 0.9795 0.0205 <.0001 0.2449
LCFA 0.2099 0.9406 0.2570 0.1617 0.8289
SFA 0.3893 0.7455 0.1214 0.0417 0.3384
TUFA 0.4630 0.0895 0.6194 0.1189 0.8820
MUFA 0.3452 0.2299 0.5414 0.0093 0.7976
PUFA 0.4009 0.6416 0.9775 <.0001 0.5060
Trans FA 0.6415 0.3226 0.0486 <.0001 0.1055
FFA 0.5427 0.7243 0.0178 0.0007 0.9452
FP Ratio 0.5177 0.5930 0.5109 0.0086 0.5780

PCA revealed four meaningful PCs that explain 80.77% of the variation described by the observed
variables, which are milk components’ concentrations (Table 6-2). Two criteria were considered
to extract meaningful PCs, which are eigenvalue > 1 and explained variation > 1% [93]. PC1, PC2,
PC3 and PC4 accounted for 50.46%, 16.53%, 7.42% and 6.53% of the total variation, respectively.
The PCA scores plot (PC1 vs. PC2) shows that milk samples cluster at the origin of the PCA space
and it did not reveal any clustering trends according to treatment, which suggests the absence of

treatment effect (Figure 6-2). However, PCA is an unsupervised multivariate method that does not
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take into consideration the statistical model under which the data was generated. This fact
undermines the capabilities of PCA alone in detecting a treatment effect in the presence of other
strong effects, such as week and block. On the other hand, the PCA loadings plot (PC1 vs. PC2)
reveals an important observation (Figure 6-3). Milk components, which are determined by FTIR
milk analyzer, are clustering into four groups that correspond to the spectral regions that are used
to predict the concentrations of major milk components by PLS calibration models. The first group
corresponds to the 1200-900 cm™ spectral region in milk FTIR spectrum and it includes lactose
and trans fatty acids, whose main FTIR bands in milk are centered at ~1080 cm™ and ~967 cm™,
respectively. In this group, we also notice the presence of BHB, which has a minor absorption peak
centered at ~1080 cm™ in milk FTIR spectrum. However, the prominent absorption band of BHB
is centered at ~ 1405 cm™ in milk FTIR spectrum that is not affected by lactose absorption of IR
energy, which means that changes in lactose and BHB might originate from the same source of
variation. The second group corresponds to the C=0 triglyceride ester linkage stretching band or
Fat A region located at ~1745-1725 cm™ and it includes C18:0, C18:1, TUFA, MUFA, PUFA,
LCFA and FP ratio. The third group corresponds to the C—H stretching band or Fat B region located
at ~2980-2800 cm™ and it includes fat, TS, C16:0, SCFA, MCFA and SFA. The reports that were
received from Valacta expressed fat as Fat B, based on this, the distinction between the two groups
was made. The last group corresponds to the 1580-1200 cm* spectral region and it includes protein
and urea that have characteristic bands in milk at ~1565-1520 cm™ (i.e., Amide I1) and ~1465 cm’
! respectively. It must be noted that urea and milk proteins share FTIR absorption band located at
~1600-1700 cm™ that is overwhelmed by the immense water absorption of IR energy. This
observation suggests that the concentrations of minor milk components that are predicted by the
PLS calibration models of the FTIR milk analyzer might have been biased by the spectral
contribution of major milk components, which undermines the potential of predicated minor milk
components of exposing subtle differences related to changes in housing design (i.e., TR
treatments) over a short period of time especially when a univariate approach is used to analyze

this type of data.
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Table 6-2 Principal components extracted from the numerical dataset of milk analysis for the TR configuration trial.

Eigenvalue  Variation % Explained  Cum. Variation % Explained

PC1 9.5878 50.462 50.462
PC2 3.1071 16.353 66.815
PC3 1.4106 7.424 74.240
PC4 1.2406 6.529 80.769
PC5 0.9652 5.080 85.849
PC6 0.8242 4,338 90.187
PC7 0.7133 3.754 93.941
PC8 0.3734 1.965 95.907
PC9 0.3332 1.753 97.660
PC10 0.1819 0.957 98.617
Treatment
® 1
20 °:
® 3
® 4
= 10
£
]
Y o0
-20

.
-20 -10 0 10 20
Compenent 1 (30,5 %)

Figure 6-2 PCA scores plot projecting milk samples’ scores for PC1 vs. PC2 for the TR configuration trial.
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Figure 6-3 PCA loading plot (PC1 vs. PC2) projecting the main groups of milk components that explains the majority of the
variation in the milk numerical dataset of the TR configuration trial.

PLS-DA was the second multivariate technique that was used to analyze the milk numerical
dataset. A parsimonious PLS-DA model was obtained after eliminating predictors that did not
contribute to the modeling of treatment membership of observations. The eliminated predictors
were fat, protein, TS, C18 0, LCFA, SFA, TUFA, FFA and FP ratio. Only 10 milk components
had a VIP score greater than 0.8 (Table 6-3). Inspection of the coefficients of these milk
components for the classification of observations according to treatment reveals that only T3
shows a pattern that might be in agreement with elevated body fat mobilization, which includes
increased BHB and C16:0, which is a long chain fatty acid, and decreased lactose (Figure 6-4) [98,
100]. However, this PLS-DA model explained only 10.79% of the variation related to treatment
membership of observations, which suggests that the treatment effect on milk composition was
negligible or the period of exposure to treatment was not sufficient to produce a significant
treatment effect on milk composition, which explains the lack of effect on other milk components,
such as protein and C18:1. PLS-DA was the only technique that provided some insight into the
effect of treatment on milk composition. However, the conclusions drawn from PLS-DA might be

undermined by the fact that it does not consider the repeated measurement structure of this study
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and the effects other than treatment that are included in the statistical model under which the data

was generated.

Table 6-3 VIP scores of predictors of the parsimonious PLS-DA classification model according to treatment.

Milk Component VIP Score

C18 1 1.2096
SCFA 1.1330
BHB 1.0890
MUFA 1.0364
Urea 1.0016
PUFA 0.9785
MCFA 0.9590
Trans FA 0.8626
Lactose 0.8310
Cl16 0 0.8237
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Figure 6-4 Coefficients of important milk components for classification of observations according to treatment by the
parsimonious PLS-DA model. T3 shows signs of elevated body fat mobilization similar to what has been reported in the
literature, such as increased BHB and C16:0, a long chain fatty acid, and decreased lactose.

6.3.2 Analysis of milk Spectral dataset

The analysis of the milk composition numerical dataset was limited to milk components that were
provided by Valacta. However, there are other minor milk components that have been reported in
the literature as biomarkers for the cow’s metabolic state, such as citrate, acetone and acetoacetate
[59], which are not included in this dataset and which might have provided better insight about the
treatment effect on milk composition. On the other hand, milk FTIR spectra have information
about all molecules that contain covalent bonds present in milk, which means that the milk spectral
dataset contains more details about milk composition of samples collected during this study.
Having said that, several approaches were evaluated for analysing the spectral dataset of milk. The
first approach was to visually inspect the average treatment spectra calculated for week 3 and 10.
For example, Figure 6-5 shows that the average raw spectra for week 3 and 10 of T1 during season
1 of the trial have more intense absorption bands than those of T3 at ~ 1745 cm™, or Fat A region,
which suggests that milk samples of cows assigned to T1 had higher fat content than milk samples
of cows assigned to T3 during the first season of the trial. In addition, it can be noticed that the fat
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content decreased and increased for T1 and T3, respectively, between weeks 3 and 10 in the first
season of the trial. By visually inspecting the average raw spectra, only general remarks could have
been stated about changes to the major milk components’ FTIR bands. This method is incapable
of testing any treatment effect; hence, visualizing spectra is not an appropriate approach to detect

or test a treatment effect on milk FTIR spectra.
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Figure 6-5 Spectral averages comparison. Blue: average spectrum of T1 week 3, purple: average spectrum of T1 week 10, red:
average spectrum of T3 week 10, green: average spectrum of T3 week 3. T1 has more intense absorption band than T3 at ~ 1745
cmL, In addition, the intensity of the band decreased and increased for T1 and T3, respectively, between weeks 3 and 10 in the
first season of the trial.

The second approach was to apply HCA to the four versions of the milk spectral dataset (i.e. raw,
FD, VN raw, VN FD). HCA is an unsupervised classification method that aims at uncovering of
natural groups or clusters that are present in a dataset where observations are relatively
homogenous within a cluster and different from other observations in other clusters. To achieve
this goal, a specific distance measure, such as Euclidian distance, is calculated between pairs of all

observations, then a linkage algorithm is used to determine the similarity between observations
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and eventually their cluster membership. The result of this analysis is projected in a dendrogram,
which is a tree like graph that visualizes the similarities between different clusters and observations
[94]. In this case, the HCA dendrogram revealed that spectra of milk samples tend to cluster
according to season. The trend was most notable in the raw spectral dataset (Figure 6-6). This
observation suggests that season has the strongest effect on the spectral data, which agrees with
the findings of the univariate analysis of the mixed procedure of milk components in the previous
section. The tendency to cluster by season became more evident after applying the forward search
feature selection algorithm to the raw spectral dataset, which aims at selecting the significant
features or wavenumbers that are responsible for the main sources of variation in the spectral
dataset. This algorithm found that regions 1134-1095 cm™ and 1330-1292 cm™ were the most
significant for clustering according to season (Figure 6-7). In the dendrogram, most of the samples
with the red color, which represent season 1, fell in the upper arm. On the other hand, most of the
samples with the blue color, which represent season 2, fell in the lower arm. Since HCA is an
unsupervised classification method, the data did not show any tendency to cluster according to any

other studied factor, which renders HCA functionality limited in this context of spectral analysis.

The findings of the third approach, PCA, were consistent with those of HCA. The PCA score plot
shows that samples tend to cluster according to season in the raw spectral dataset (Figure 6-8)
when all spectral regions that contain information related to milk chemical composition were used
(i.e., 3061-2803 cm™, 1797-1681 cm™ and 1612-925 cm™). This trend became more evident when
PCA was restricted to regions 1134-1095 cm™ and 1330-1292 cm™, which were detected by the
forward search feature selection algorithm. In the first case, seven meaningful PCs, whose
eigenvalue is >1 and the percentage of explained variation is >1%, were observed and they
explained 98.40% of the variation in the raw spectral dataset. PC1, PC2 and PC3 explained
47.33%, 35.46% and 11.19% of the variation in the raw spectral dataset, respectively. In the second
case, only two meaningful PCs were observed that explained 99.02% of the variation in the raw
spectral dataset. PC1 and PC2 explained 76.22% and 22.80% of the variation in the raw spectral
dataset, respectively. This low number of meaningful PCs suggests that the trend that have been
observed in the raw spectral dataset (i.e., clustering according to time) might be an artifact resulting
from variability of instruments or the application of the analytical procedure at Valacta. When
contacted about this regard, Valacta confirmed that all milk samples were analyzed by the same
analyzer (i.e., line E), which was frequently standardized according to the standard operational
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procedure (SOP) in effect. Nevertheless, trends observed only in the raw spectral dataset should
be interpreted with caution since they might be a result of procedural systematic factors that are
not controlled during the trial. However, if the signal, which is detected at regions 1134-1095 cm’
1 and 1330-1292 cm™ by the forward search feature selection algorithm, is true then it can be
assigned to one or more of the following IR bands: CH; wagging of fatty acids at ~1123 cm™, N —
H wagging of the Amide 111 band of proteins at ~1300 cm™, bending of symmetric bond (HCH)
and of CH,OH of carbohydrates between 1500 cm™ and 1200 cm, or C—O bond and C—C bond
stretching of carbohydrates between 1200 cm™ and 950 cm™ [108]. No specific assignment can be
made in this case due to the fact that the forward search feature selection algorithm does not
provide a loading spectrum as PCA does; hence, the exact position of the significant FTIR bands
will not be known. The only conclusion that can be drawn in this case is that fat, protein and lactose
concentrations might have been changing over the trial period, which does not prove any treatment

effect. This conclusion is consistent with the findings of the spectral visual inspection.

PLS-DA was the fourth approach that was used to analyze the milk spectral dataset. The VN FD
spectral dataset resulted in a parsimonious model with 54 significant spectral features that
explained 96.56% and 20.49% of the variation in the X and Y matrices, respectively (Table 6-4).
The spectral dataset explains more variation related to the treatment membership (i.e., variation in
the Y matrix) than the milk composition numerical dataset. The spectral and the numerical datasets
explain 20.49% and 10.79% of the variation in the Y matrix, respectively. This observation
confirms that the full milk FTIR spectrum contains more details related to effects of TR
configuration treatments on milk composition than numbers reported by FTIR analyzers. Hence,
analysis of full milk FTIR spectrum is preferred over analysis of few selected milk components
that are reported in this type of studies.

The variable importance plot for the PLS-DA model for the VN FD spectral dataset reveals that
the most influential spectral variables that explain the treatment membership of milk samples are
1400 cm?, 1076 cm™, 1053 cm™, 2822 cm™, 2926 cm™ and 1280 cm™ (Figure 6-9). It must be
noted that these wavenumbers represent the band limits and not the actual peaks of the significant
FTIR bands. In the case of first derivative, the band peak becomes zero and band limits become
maxima and minima. In addition, the fact that the VN FD spectral dataset was more efficient in

modeling the treatment membership with a smaller number of spectral variables than the VN raw
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spectral dataset indicates that the differences in milk composition between treatments are more
probably reflected in minor milk components. For example, the wavenumber 1400 cm™ could be
the limit for the 1370 cm™ band of acetone in milk FTIR spectrum [109] that can be assigned to
the bending vibration of the C-H bond [108]. Acetone is a biomarker related to elevated body fat
mobilization [100]. This observation is consistent with the findings of the PLS-DA analysis of the
milk numerical dataset which concluded that minor milk components mostly reflect the treatment
effect. However, no further conclusions could have been drawn from this analysis, such as which
treatment was significantly different form the others in terms of acetone concentration, which

keeps the main question of this study unanswered.

None of the previous approaches could incorporate the statistical model of the experimental design
of this study to test the TR treatment effect on the spectral dataset. For this reason, a univariate
approach was applied to the four versions of the milk FTIR spectral dataset. It could test the
different effects defined in the statistical model and provided P values for each tested spectral
variable (Table 6-5). This approach revealed a significant season, time and block effects on
multiple spectral variables, but no significant treatment effect was detected. Four spectral variables
in the FD spectral dataset revealed significant interactions between time and treatment. These
spectral variables were 1558 cm™, 1554 cm™, 1361 cm™ and 1357 cm™. However, it was not
possible to interpret these results from a spectroscopic point of view because this approach does
not test the studied effects on the spectrum as a wholistic entity.

To summarize, different approaches have been evaluated to detect TR configuration effect on milk
composition. None of them proved to be adequate in answering the questions of the current
problem. As a result, a new approach had to be developed to test a TR treatment effect on milk

composition that will address the following points:

1- The new approach must be a multivariate one because treatments affecting milk
composition will probably affect multiple components in milk.

2- The analysis must be performed on the FTIR spectral data of milk because this data
contains more details about milk composition than numbers reported by a commercial
analyzer. The PLS-DA models that were previously discussed showed that the spectral

dataset explained more variation in the Y matrix (i.e., the treatment membership) than the
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numerical dataset. The spectral and the numerical datasets explained 20.49% and 10.79%
of the variation in the Y matrix, respectively.

The new multivariate approach must be tweaked to accommodate powerful univariate
statistical tools, such as mixed modeling, that will test the effects of different factors and
that will produce indicators about the significance of these factors (e.g., P values) while

retaining the multivariate structure of the spectral data.
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Figure 6-6 HCA dendrogram of raw spectral data. Samples tend to cluster according to season red is season 1, blue is season 2.
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Figure 6-7 HCA dendrogram of raw spectral data after forward feature selection. The spectral regions that are used are 1134-
1095 cm* and 1330-1292 cm™*. Clustering according to season becomes more evident. Upper arm is season 1 (red), lower arm is
season 2 (blue).
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Figure 6-8 PCA scores of the raw spectral dataset. Samples tend to cluster according to season. A: the spectral regions used are
3061-2803 cm™, 1797-1681 cm, 1612-925 cm!, B: the separation became more evident when PCA was restricted to spectral
regions detected by forward search feature selection algorithm 1134-1095 cm and 1330-1292 cm™.

Table 6-4 Model comparison summary of PLS-DA models developed for the four spectral dataset of milk samples. The vector
normalized first derivative spectral dataset resulted in the most parsimonious model.

Percent Percent
Spectral Model Number of variation variation Number of
ode
Dataset factors explained for X  explained for VIP>0.8
matrix Y matrix
Initial 14 99.48 21.24 179
Raw
Parsimonious 14 99.63 20.88 118
D Initial 14 94.05 20.96 155
Parsimonious 11 96.78 21.13 83
Initial 13 99.04 21.87 148
VN Raw
Parsimonious 12 99.35 19.83 94
Initial 13 92.03 22.10 150
VN FD
Parsimonious 10 96.56 20.49 54
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Figure 6-9 Variable importance plot for the PLS-DA model for the vector normalized first derivative spectra dataset. The most
influential variables that explain the treatment membership for milk samples are centered at ~1400 cm-t, 1076 cm™, 1053 cm?,
2822 cm'l, 2926 cm! and 1280 cm-L. It must be noted that these wavenumbers represent the band limits in the case of first
derivative and not the actual peaks of the IR bands.

Table 6-5 P values obtained from the mixed procedure that was applied to individual spectral variables in the raw, FD, VN raw
and VN FD spectral datasets of milk.

Treatment Start Block (Start) Week Treatment*Week

Min. P value 0.2082 < 0.0001 0.0001 < 0.0001 0.4267

Raw Max. P value 0.9730 0.9849 0.7882 0.6444 0.9994
Min. P value 0.0797 < 0.0001 0.0001 <0.0001 0.0231

i Max. P value 0.9995 0.9868 0.9010 0.8877 0.9993
Min P value 0.1533 0.0004 <0.0001 < 0.0001 0.2901

VN Raw Max P value 0.9955 0.9686 0.7298 0.6991 0.9831
Min P value 0.0829 < 0.0001 < 0.0001 < 0.0001 0.0528

VNFD Max P value 0.9965 0.9979 0.9983 0.7778 0.9937
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6.3.3 Hybrid approach for milk spectral dataset analysis
Before applying the hybrid approach to the TR trial’s spectral data, milk samples were spiked with
lactose at two levels, 5% and 1%, to test the feasibility of this approach in detecting a treatment’s

effect on milk composition FTIR spectral data.

PCA was applied to the spectral regions 3061-2803 cm™, 1797-1681 cm™ and 1612-925 cm™ of
the spiked milk samples. The VN raw and VN FD spectral datasets produced 6 and 9 meaningful
PCs (i.e., eigenvalue >1 and percent of explained variation >1%) that explained 94.91% and
95.91% of the variation in the dataset, respectively (Table 6-6). For the VN raw spectral data, PC1
and PC2 explained 79.15% and 9.10% of the variation, respectively. For the VN FD spectral data,
PC1 and PC2 explained 73.80% and 8.83% of the variation, respectively.

First, the effect of the spiked lactose concentration was tested by the mixed model that was applied
to the meaningful PCs that were isolated from each spectral dataset. The spiked lactose
concentration, which is considered as the treatment, showed significant effect on PC1 and PC2 in
VN raw and VN FD spectral datasets, respectively. This step provided a clear answer to one of the
questions in this problem, which is “Does the treatment have a significant effect on the FTIR
spectral data of milk composition?”. Another question that needed to be answered is “Which
treatment level did significantly change milk components’ concentrations?”. The answer to this
question lies in the estimates of the least squares means of the significant PC scores for each
treatment level that are produced by the mixed model. Table 6-7 shows that these estimates
increase with increased lactose concentration in the VN raw spectral dataset, on the other hand,
they decrease with increased lactose concentration in the VN FD spectral dataset. The same
experiment was repeated with three levels of lactose in aqueous solutions, 1% 2% and 5%, and the
same observation was revealed. In this case, the increased lactose concentration will linearly
increase the intensities of the spectral variables between 1200 cm™ and 950 cm™, which will
produce PCA scores with increasing and decreasing values in the VN raw and VN FD spectral
dataset, respectively. In addition, the differences of the least squares means will reveal the

significant differences among different treatment levels (Table 6-8).
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Table 6-6 Meaningful principal components isolated from the VN raw and VN FD spectral datasets of milk samples spiked with
two levels of lactose. The spiked lactose concentration yielded a significant effect on PC1 and PC2 for VN raw and VN FD
spectral datasets, respectively, when tested with the mixed procedure.

Eigenvalue Explained Variation % P value

VN Raw VN FD VN Raw VN FD
PC1 111.6042 104.0581 79.152 73.800 <0.0001* 0.1367
PC2 12.8309 12.4435 9.100 8.825 0.8326 <0.0001*
PC3 3.3335 3.8386 2.364 2.722 0.9660 0.9894
PC4 2.3771 3.5680 1.686 2.531 0.9825 0.9928
PC5 1.9246 3.1382 1.365 2.226 0.9960 0.7790
PC6 1.7584 2.8542 1.247 2.024 0.9932 0.8690
PC7 - 2.1694 - 1.539 - 0.7830
PC8 - 1.7054 - 1.209 - 0.9790
PC9 - 1.4517 - 1.030 - 0.7728

Table 6-7 Estimates of the least squares means of the significant PC scores produced by the mixed model for lactose spiked milk
samples and aqueous solutions for the VN raw and VN FD spectral datasets. These means increase and decrease with increased
lactose concentration in the VN raw and VN FD spectral datasets, respectively.

Spectral Significant ) Standard
Sample Category Estimate P Value
dataset PC Error
High 12.3584 0.3117 <.0001
VN Raw PC1
Milk Low -8.5558 0.2593 <.0001
[
High -3.7315 0.5230 <.0001
VN FD PC2
Low 2.5833 0.4352 <.0001
High 14,5585 0.09661  <.0001
VN Raw PC1 Mid -4.7313 0.09661 <.0001
Low -9.8272 0.09661  <.0001
Water
High -13.4298 0.1958 <.0001
VN FD PC1 Mid 4.4075 0.1958 <.0001
Low 9.0223 0.1958 <.0001
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Table 6-8 Differences of least squares means of PC scores produced by the mixed model for lactose spiked milk samples and
aqueous solutions for the VN raw and VN FD spectral datasets. Significant differences among treatment levels are revealed by P
values.

Spectral o ) Standard
Sample Significant PC Category Estimate P Value
dataset Error
Milk VN Raw PC1 High vs. Low 20.9142 0.4055 <.0001
[
VN FD PC2 Highvs. Low  -6.3148 0.6804 <.0001
High vs. Low  24.3857 0.1366 <.0001
VN Raw PC1 High vs. Mid 19.2899 0.1366 <.0001
Low vs. Mid -5.0958 0.1366 <.0001
Water

High vs. Low  -22.4521 0.2769 <.0001
VN FD PC1 Highvs. Mid  -17.8373 0.2769 <.0001
Low vs. Mid 4.6148 0.2769 <.0001

Second, differences in the behaviour of the PCA scores had to be understood in cases of raw and
FD spectral data. Inspection of the PCA score plots (Figure 6-10) reveals that samples with high
lactose concentration load positively on the PC that was extracted from the VN raw spectral dataset
and that showed significant treatment effect (i.e., PC1). On the other hand, the PCA scores of
samples with high lactose concentrations load negatively on the PC that was extracted from the
VN FD spectral dataset and that showed significant treatment effect (i.e., PC2). This observation
proves that PCA scores of the FD spectral data behave in an opposite way to PCA scores obtained
from raw spectral data.
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Figure 6-10 PCA scores of milk samples spiked with two levels of lactose. A: samples spiked with high lactose concentration are
loading positively on PC1 that showed significant effect for spike level in the VN raw spectral dataset. B: samples spiked with
high lactose concentration are loading negatively on PC2 that showed significant effect for spike level in the VN FD spectral

dataset.

The third question that this approach answers is “What are the spectral variables that were affected
by changing milk components’ concentrations?”. This question can be answered by inspecting the
loading spectrum of the PC that showed a treatment significant effect. The loadings represent the
weights that linearly combines the spectral variables to calculate the scores for every sample for
this specific PC, in other words, they represent the contribution of each spectral variable to this
specific PC scores. In case the loading spectrum was obtained from raw spectral dataset, then it
can be interpreted directly and conclusion about influential spectral variables can be drawn. For
example, the loading spectrum of PC1, which was extracted from VN raw spectral dataset and that
showed significant treatment effect, positively correlates with wavenumbers that had increased
spectral intensities as a result of lactose spiking (Figure 6-11). These wavenumbers are located
between 1466 cm™ and 989 cm™. The strongest correlation was observed between 1175 cm™ and
989 cm?, which is dominated by lactose spectral contribution in milk FTIR spectrum. On the other
hand, this loading spectrum negatively correlates with spectral variables whose intensities
decreased with lactose spiking, especially in the spectral region from 1582 cm™ to 1511 cm™,

which is dominated by milk protein spectral contribution in milk FTIR spectrum.

In case the loading spectrum was obtained from FD spectral dataset (i.e., PC2), it cannot be
interpreted directly because the maximum of an FTIR band peak becomes zero when FD is
calculated (Figure 6-12). Hence, the spectral integral of the loading spectrum obtained from FD
spectral dataset must be calculated before interpretation to restore back the influential spectral
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peaks in the loading spectrum. The cumulative trapezoidal numerical integration function in
MATLAB was used to calculate the spectral integral of the loading spectrum obtained from FD
spectral dataset. The spectral integral reveals clear positive correlations with spectral variables
from 1200 cm™ to 950 cm™ which are dominated by lactose spectral contribution (Figure 6-13). It
must be noted that when calculating the FD, the baseline is lost, and integration will never restore
it back. This issue is not problematic because the loading spectrum is only used to detect increased
or decreased correlations with wavenumbers and to locate peaks that corresponds to influential
spectral variables for the PC in question. The loading spectrum will never be used for quantitative
determinations. The integration process of the loading spectrum was followed by peak fitting to
determine the spectral variables that represent the centers of influential FTIR bands. This process
located the most prominent peak in the positively correlating portion of the integrated PC2 loading
spectrum at 1086 cm™ (Table 6-9), which had the greatest peak height and peak area. The band
centered around 1086 cm™ has been reported in the literature as the band with the most intense
absorption for D-(+)-lactose [110]. In addition, all detected peaks, 1086 cm™ and 1139 cm™, fall

within the region of lactose absorption from 1200 cm™ to 950 cm™.
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Figure 6-11 Comparison between FTIR spectra of milk samples spiked with lactose and the principal component extracted from
raw spectra that revealed significant effect for lactose concentration. Red: FTIR spectrum of milk sample spiked with 1% lactose,
purple: FTIR spectrum of milk spectrum spiked with 5% lactose, blue: loading spectrum of PC1, which is the principle
component that showed significant treatment effect (i.e., lactose spiking). Spectral variables with increased spectral intensities
correlate positively with PC1 and vice versa.
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Figure 6-12 Comparison between FTIR spectra of milk samples spiked with lactose and the principal component extracted from
first derivative spectra that revealed significant effect for lactose concentration. Green: FTIR spectrum of milk sample spiked
with 1% lactose, purple: FTIR spectrum of milk spectrum spiked with 5% lactose, red: loading spectrum of PC2 isolated from VN
FD spectral dataset of milk samples spiked with lactose before integration. No conclusions regarding influential spectral
variables can be drawn in this case.
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Figure 6-13 Comparison of loading spectrum of PC2 obtained from VN FD spectral dataset of milk samples spiked with different
levels of lactose (red) and the spectral integral of loading spectrum of PC2 (blue). The spectral integral shows clear positive
correlation with spectral variables from 1200 cm to 950 cm™* which are dominated by lactose spectral contribution.

Table 6-9 Peak fitting results for PC2 integrated loading spectrum that was extracted from VN FD spectral dataset of milk
samples spiked with lactose. The most prominent peak is at 1086 cm, which is very close to lactose peak at 1076 cm.

Peak Type

Peak #

Center X Height
1 Voigt 1039.88 0 23.4975 0
2 Voigt 1086.787 4.7302 23.0564 271.6144
3 Voigt 1113.078 0 28.4228 0
4 Voigt 1139.808 0.9093 25.6215 50.244
5 Voigt 1184.314 0 28.0263 0
6 Voigt 1238.561 0 26.3452 0
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The final question that this approach answers is “What molecules in milk can be assigned to the
detected peaks in the loading spectrum?”. To answer this question, several approaches will be
employed. First, milk samples will be spiked with minor milk components, such as urea, citrate
and acetone, to detect their peaks in milk FITR spectrum. Second, the literature will be reviewed
for any milk FTIR peaks that will be detected by the hybrid approach and that will not be assigned
to any molecule by the spiking experiments. Third, FTIR reference spectra of minor milk
components will be reviewed for possible candidate molecules that can be assigned to any
unknown peaks in milk FTIR spectrum. These reference spectra will be downloaded from the
National Institute of Standards and Technology (NIST) [111]. It must be noted that peaks extracted
from a loading spectrum will not be treated as band centers because the hybrid approach
approximate the influential FTIR peaks in a loading spectrum that are related to a treatment effect.
If they fall within FTIR band of a specific bond of a molecule then they will be assigned to that
molecule. The detected peaks in the loading spectrum need not be an exact match of FTIR band

center of a specific bond in a molecule in milk.

When the hybrid approach was applied to the spectral datasets of the TR trial, PCA yielded five,
ten, six and twelve meaningful PCs from the raw, FD, VN raw and VN FD spectral datasets that
explained 97.13%, 93.72%, 97.07% and 93.97% of the variation in the spectral dataset,
respectively (Table 6-10). Only PC5 isolated from the VN raw spectral dataset revealed a
significant treatment effect (P = 0.0478). The loading spectrum of this PC shows strong
correlations at 2833 cm™, 1775 cm™, 1720 cm™ and 1206 cm™ (Figure 6-14). These wavenumbers
fall on the limits of the FTIR bands of Fat B, Fat A, carboxylic group and Amide 11l bands in the
FTIR spectra of the trial’s milk samples, which might imply that the treatment influenced fat, fatty
acids and protein levels in the collected milk samples. However, PC5 also reveals significant
effects for the season (P = 0.0481), the block (P = 0.0030) and the week (P < 0.0001) effects. In
addition, the least squares means output of the mixed procedure shows significant interactions
between some weeks and treatments (Table 6-11). These observations undermine the significance
of the treatment effect; hence, the loading spectrum will not be interpreted any further.
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To summarize, the hybrid approach was successfully applied to the FTIR spectral data of milk
samples collected during the TR trial, which retained the multivariate structure of the FTIR spectral
data and allowed the utilization of the mixed model as a powerful tool to test the treatment effect
on the FTIR spectral data of collected milk samples according to the statistical model that was
defined by the experimental design of the trial with a repeated measurement structure that included
fixed and random effects. In addition, the hybrid approach highlighted the need to alter the
statistical model in order to eliminate the strong week effect, which might overshadow any
treatment effect. In the next chapter, the statistical model will be altered to eliminate the week
effect and the hybrid approach, that was developed in this chapter, will be applied to the FTIR data
of the TR trial.
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Table 6-10 The hybrid analysis approach applied to meaningful PCs extracted from raw, FD, VN raw and VN FD spectral
datasets. PC5 extracted from VN raw dataset reveals significant treatment effect (P = 0.0478) in addition to a strong significant

week effect (P <0.0001).
. Cumulative P Values
Spectral  Meaningful . Expl'alr?ed Explained
Dataset PC Figenvalue - Variation Variation  Treatment Start Block Week Treatment*Week
% % (Start)
PC1 131.58 47.33 47.33 0.3650 0.4918 0.1384 0.0129 0.5465
pC2 98.57 35.46 82.79 0.7025 <0.0001  0.0063 <0.0001 0.9963
Raw PC3 31.11 11.19 93.98 0.9527 0.0003 0.0001 <0.0001 0.7137
PC4 5.24 1.89 95.86 0.5947 0.4105 0.3527 <0.0001 0.5595
PC5 3.53 1.27 97.13 0.1990 0.1050 0.1891 <0.0001 0.2675
PC1 147.73 53.14 53.14 0.3516 0.3079 0.0778 0.0006 0.4919
pPC2 43.03 15.48 68.62 0.9454 0.0077 0.0012 <0.0001 0.9664
PC3 29.38 10.57 79.18 0.5440 0.0002 0.0104 0.0008 0.1017
pPC4 12.94 4.66 83.84 0.1885 0.0172 0.0212 0.0421 0.6272
PC5 6.60 2.37 86.21 0.9179 0.0565 0.1188 <0.0001 0.6114
FP PC6 5.84 2.10 88.31 0.4658 0.1925 0.0411 <0.0001 0.6197
PC7 4.55 1.64 89.95 0.7516 0.0003 0.0002 <0.0001 0.7027
PC8 4.03 1.45 91.40 0.5454 0.5727 0.0614 <0.0001 0.9560
PC9 3.38 1.22 92.62 0.9286 0.0020 0.6008 <0.0001 0.5458
PC10 3.07 111 93.72 0.8729 0.3596 0.0344 <0.0001 0.5593
PC1 188.05 67.64 67.64 0.4479 0.5917 0.2798 0.2537 0.6130
pPC2 55.76 20.06 87.70 0.9279 0.7324 <0.0001 <0.0001 0.9827
VN PC3 14.19 511 92.80 0.5406 0.0009 0.0445 <0.0001 0.8577
Raw PC4 5.72 2.06 94.86 0.1824 0.1428 0.2127 <0.0001 0.5590
PC5 354 1.27 96.14 0.0478 0.0481 0.0030 <0.0001 0.6112
PC6 2.59 0.93 97.07 0.2151 0.0121 0.0316 <0.0001 0.6463
PC1 158.87 57.15 57.15 0.4527 0.8100 0.3782 0.4379 0.5152
pC2 45.17 16.25 73.40 0.7708 0.8727 0.0002 <0.0001 0.3095
PC3 13.96 5.02 78.42 0.1848 0.3740 0.0326 0.0019 0.5701
PC4 8.89 3.20 81.62 0.9806 0.0002 0.0897 <0.0001 0.5731
PC5 6.41 231 83.93 0.5798 0.0007 0.0362 <0.0001 0.5042
PC6 5.00 1.80 85.73 0.8833 0.0016 0.0041 <0.0001 0.8177
VNFD PC7 4.61 1.66 87.38 0.1836 0.1060 0.0037 <0.0001 0.6829
PC8 4.36 157 88.95 0.8591 0.0044 0.0032 <0.0001 0.7012
PC9 4.06 1.46 90.41 0.3142 0.1344 0.0915 0.0001 0.7577
PC10 3.73 1.34 91.75 0.3109 0.0474 0.0137 <0.0001 0.7254
PC11 3.26 1.17 92.92 0.4412 0.6319 0.0768 <0.0001 0.4111
PC12 2.90 1.04 93.97 0.1575 0.7255 0.1740 0.0009 0.1174
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Figure 6-14 The loading spectrum of PC5 that was extracted from the VN raw spectral dataset of the TR trial. This PC reveals
significant treatment effect (P = 0.0478) and it shows strong correlations at 2833 cm, 1775 cm%, 1720 cm* and 1206 cm!
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Table 6-11 The least squares means output of the mixed procedure that was applied to PC5 of the VN raw spectral dataset of the
TR trial. It reveals significant interactions between some weeks and treatments.

Effect Treatment Week Estimate STD Error DF t Value P Value
Treatment 1 0.234 0.1661 41.8 141 0.1662
Treatment 2 0.3784 0.1757 415 215 0.0371
Treatment 3 0.0614 0.1562 42.6 0.39 0.6962
Treatment 4 -0.267 0.1562 42.6 -1.71 0.0946

Week 1 -0.7108 0.1561 331 -4.55 <.0001

Week 2 0.2929 0.1567 336 1.87 0.0624

Week 3 0.212 0.2648 564 0.8 0.4238

Week 4 0.8318 0.2648 564 3.14 0.0018

Week 5 -0.5412 0.2648 564 -2.04 0.0415

Week 6 0.9179 0.2621 563 35 0.0005

Week 7 -0.00878 0.2648 564 -0.03 0.9735

Week 8 0.1348 0.2648 564 0.51 0.6109

Week 9 0.4452 0.2648 564 1.68 0.0932

Week 10 -0.5568 0.2648 564 -2.1 0.0359

Treatment*Week 1 1 -0.9092 0.3333 354 -2.73 0.0067
Treatment*Week 1 2 0.2851 0.3277 344 0.87 0.385
Treatment*Week 1 3 0.5123 0.5339 565 0.96 0.3377
Treatment*Week 1 4 0.9947 0.5339 565 1.86 0.063
Treatment*Week 1 5 -0.1088 0.5339 565 -0.2 0.8386
Treatment*Week 1 6 1.6543 0.512 557 3.23 0.0013
Treatment*Week 1 7 0.1829 0.5339 565 0.34 0.7321
Treatment*Week 1 8 -0.3702 0.5339 565 -0.69 0.4883
Treatment*Week 1 9 0.5806 0.5339 565 1.09 0.2773
Treatment*Week 1 10 -0.4819 0.5339 565 -0.9 0.3671
Treatment*Week 2 1 -0.5497 0.318 304 -1.73 0.0849
Treatment*Week 2 2 0.1528 0.3278 329 0.47 0.6414
Treatment*Week 2 3 0.8766 0.5605 564 1.56 0.1184
Treatment*Week 2 4 1.046 0.5605 564 1.87 0.0625
Treatment*Week 2 5 0.1597 0.5605 564 0.28 0.7758
Treatment*Week 2 6 1.0781 0.5605 564 1.92 0.0549
Treatment*Week 2 7 -0.1244 0.5605 564 -0.22 0.8245
Treatment*Week 2 8 1.0727 0.5605 564 191 0.0562
Treatment*Week 2 9 0.5122 0.5605 564 0.91 0.3612
Treatment*Week 2 10 -0.4395 0.5605 564 -0.78 0.4333
Treatment*Week 3 1 -0.7019 0.2969 347 -2.36 0.0186
Treatment*Week 3 2 0.1299 0.2969 347 0.44 0.6619
Treatment*Week 3 3 0.331 0.5103 567 0.65 0.5168
Treatment*Week 3 4 0.4616 0.5103 567 0.9 0.3661
Treatment*Week 3 5 -1.3314 0.5103 567 -2.61 0.0093
Treatment*Week 3 6 0.614 0.5103 567 1.2 0.2294
Treatment*Week 3 7 0.147 0.5103 567 0.29 0.7735
Treatment*Week 3 8 0.08745 0.5103 567 0.17 0.864
Treatment*Week 3 9 0.8144 0.5103 567 1.6 0.1111
Treatment*Week 3 10 0.06197 0.5103 567 0.12 0.9034
Treatment*Week 4 1 -0.6825 0.2969 347 -2.3 0.0221
Treatment*Week 4 2 0.604 0.2969 347 2.03 0.0427
Treatment*Week 4 8 -0.8721 0.5103 567 -1.71 0.088
Treatment*Week 4 4 0.825 0.5103 567 1.62 0.1065
Treatment*Week 4 5 -0.8841 0.5103 567 -1.73 0.0837
Treatment*Week 4 6 0.325 0.5103 567 0.64 0.5245
Treatment*Week 4 7 -0.2406 0.5103 567 -0.47 0.6375
Treatment*Week 4 8 -0.2507 0.5103 567 -0.49 0.6234
Treatment*Week 4 9 -0.1262 0.5103 567 -0.25 0.8048
Treatment*Week 4 10 -1.3679 0.5103 567 -2.68 0.0076
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6.4 Conclusion

Several approaches have been evaluated to detect the effect of TR configuration on milk
composition. The numerical milk composition data did not reveal significant treatment effect when
analyzed by the mixed procedure, which is a univariate hypothesis testing approach. On the other
hand, PCA revealed that the predictions of the minor milk components might have been biased by
the spectral contributions of the major milk components and it did not provide any insight on the
treatment effect on milk composition. Only PLS-DA provided such insight; however, the
conclusions drawn from this analysis were undermined by the fact that it does not take into account
the repeated measurement structure of this study and the effects other than the treatment (e.g.,
block, week, season) that are included in the statistical model under which the data was generated.
In addition, this analysis was limited to milk components that were reported by the FTIR milk
analyzer, which did not include all important biomarkers in dairy cows, such as citrate, acetone

and acetoacetate.

Unsupervised analysis of the full milk FTIR spectrum revealed only the strongest effect on milk
composition, which was the time effect. Techniques, such as HCA and PCA, could not test or
reveal the TR treatment effect in the presence of an overwhelming effect, such as the week or the
season effect. On the other hand, supervised analysis of the full milk FTIR spectrum by PLS-DA
revealed more details pertaining to the TR treatment effect on milk composition than PLS-DA
analysis of the numerical dataset of milk composition. However, PLS-DA was not capable of

answering the main questions of the current problem.

A new hybrid approach was developed for assessing a treatment effect on FTIR milk spectral data

that could answer all the questions related to the current problem. These questions are:

= Does a treatment have a significant effect on the FTIR spectral data of milk composition?

=  Which treatment level did significantly change milk components’ concentrations?

= What are the spectral variables that were affected by changing milk components’
concentrations?

= What molecules in milk can be assigned to FTIR peaks that are significantly affected by

the treatment?
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This hybrid approach was successfully applied to the FTIR spectral data of milk samples
collected during the TR trial, which retained the multivariate structure of the FTIR spectral
data, while at the same time, accommodated the utilization of the mixed model as a powerful
tool to test fixed and random effects on the FTIR spectral data of collected milk samples
according to the statistical model that was defined by the experimental design of the trial with

a repeated measurement structure and enabled hypothesis testing.
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Connecting statement

In the previous chapter, a hybrid analysis approach of milk FTIR data was developed by combining
principle component analysis (PCA) and mixed modeling as a data mining tool to isolate the
spectral fingerprint that reflects the effect of a housing treatment of dairy cattle on milk FTIR
spectral data in the context of controlled-design trials without relying on predictions of milk
components from the FTIR spectral data. This hybrid approach will push milk FTIR spectroscopy
beyond the paradigm of predicting specific milk components by PLS regression models to make
inferences about the metabolic state of the animal. In this chapter, the hybrid analysis approach
will be applied to milk FTIR spectra collected for animal trials that aim at studying the effects of
tie rail position, chain length, stall width, stall length and manger wall height on animal welfare in
the tie stall dairy farming system. The spectral fingerprint that represents the changes in milk
composition related to the housing treatment effect will be interpreted in light of behavioural and
welfare data collected for the trials’ subjects. The hybrid approach will provide a novel angle to

study animal welfare.
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Chapter 7: Data mining of milk FTIR spectral data by combining
mixed modeling and multivariate analysis to study the effects of
housing treatments on cow welfare

Abstract

Principal component analysis and mixed modeling were successfully combined in a hybrid
approach to analyze milk FTIR spectral data. This approach was applied to milk FTIR spectral
data of 4 animal trials designed to study the effects of different housing treatments on the chemical
composition of milk. In the tie rail trial, PC7 extracted from long-term VN FD spectral average
dataset revealed significant effect on milk composition (P = 0.0106) for T3, which is the treatment
that had the tie rail height at 112 cm and its forward position at 18 cm. The loading spectrum of
this principal component revealed features that could be attributed to molecules in milk associated
with elevated body fat mobilization, which indicated that T3 tie rail configuration was probably
obstructing the cow access to feed. In the chain length trial, PC6 (P = 0.0323) extracted from long-
term VN FD spectral average dataset revealed significant effect of the tie chain length on milk
composition. The loading spectrum of this principal component revealed features that could be
attributed to molecules in milk associated with increased incidents of acidotic rumen insults. The
findings suggest that cows enrolled in the longer chain treatment had increased saliva production
that stabilized the ruminal pH. In the stall width trial, PC5 extracted from long-term VN Raw
spectral dataset revealed significant effect (P = 0.0423) for the single width treatment and a
significant block effect (P = 0.0008). The loading spectrum of this principle component revealed
milk samples collected from cows enrolled in the single width treatment (i.e., T1) had higher milk
fat triglycerides, milk fatty acids and BHB. However, this effect was the result of a missing milk
sample for the double width treatment (i.e., T2) that rendered the median parity of cows of T2
greater than that of T1, which are 3 and 2, respectively. Hence, the cows of T2 were older and one
lactation higher than those of T1. In the manger wall height and stall length trial, PC6 extracted
from long-term FD spectral dataset revealed significant stall length effect (P = 0.0355) on milk
composition, which was due to higher incidents of mastitis in cow enrolled in the shorter stall

length. The SCC average for stall length treatments confirmed this observation.
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7.1 Introduction

Milk analysis by FTIR spectroscopy is currently being used to determine major milk components,
milk fatty acids and minor milk components, such as urea, BHB and acetone. This technology can
be implemented as a precision dairy monitoring technology that can identify individual cows with
health or physiological issues through exception reporting of parameters that are significantly
deviating from regular baselines recorded for individual animals [112]. Several milk components
that are determined by FTIR milk analyzers are used to detect health and wellbeing disorders in
dairy cows. For example, LeBlanc et al., (2005) found a strong association between displaced
abomasum incidence and BHB levels in milk >200 pmol/L [113]. Toni et al., (2011) reported that
increased fat-to-protein ratio is an indicator of elevated lipid mobilization and increased risk of
ketosis, displaced abomasum, lameness and mastitis [113]. Geishauser et al., (2001) reported
thresholds for the following molecules in milk for diagnosis of subclinical ketosis: 100 umol/L of
BHB, 100 pmol/L of acetoacetate or 250 umol/L of acetone [113]. Enemark (2008) reported
depressed milk fat percentage as an indicator of increased risk of subacute ruminal acidosis
(SARA) incidence in dairy cows; however, the author also acknowledge the difficulty in relying
on this indicator alone to diagnose SARA due to high variability in milk fat overtime [113].
Forsbéck et al., (2010) observed little day-to-day variations in milk components and milk somatic
cell count (SCC) in healthy lactating cows compared with cows diagnosed with mastitis or
subclinical mastitis [113]. Nielsen et al., (2005) reported consistent lactose concentration of 4.7%
or higher was associated with lower SCC and reduced risk of intramammary infections [113].
However, by the time the animal exhibits clinical signs of stress or illness, it might be too late to
intervene [112]. On the other hand, the above-mentioned health issues are also associated with
behavioural changes that precede the clinical diagnosis. For example, cows that were diagnosed
with a left displaced abomasum showed increased step activity in comparison to healthy animals
during the week prior to the clinical diagnosis [113]. Goldhawk et al., (2009) observed that cows
at risk of subclinical ketosis had fewer feeding visits and 18% less dry matter intake in comparison
with healthy controls in the week leading up to calving. The authors also acknowledged that
measuring feed intake is difficult on commercial farms and that changes in feeding behavior, milk
composition and milk yield are affected by multitude of factors; hence, undermining their
reliability in diagnosing diseases and disorders in dairy cows [113]. Yeiser (2011) observed that

rest time was greater and average daily steps were significantly lower five days before cows were
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diagnosed with mastitis [113]. He also noticed that 2 days before onset rest time decreased

compared with that of healthy cows [113].

One of the multiple benefits of milk analysis by FTIR is that its implementation does not require
an invasive procedure or extensive labor. Increased frequency of the acquisition of milk mid-
infrared spectra by existing dairy control laboratories has the potential to provide more information
regarding the efficiency of feed management, health, reproduction and wellbeing of individual
cows [112]. This approach will allow the producers to adopt proactive practices and help them
intervene at the early stages of probable issues when actual milk components diverge from
expected levels for individual animals [112]. However, commercial milk FTIR analyzers rely on
partial least squares (PLS) models to predict milk components’ levels from milk mid-infrared
spectra. The accuracy of these PLS models is a function of the accuracy of the reference method
that was used to determine the actual levels of the analyte of interest in milk samples that were
used to calibrate the PLS model.

The objective of this chapter is to evaluate the potential of combined mixed modeling and
multivariate analysis of milk mid-IR spectra in detecting changes in milk chemical composition
resulting from physiological conditions that can be related to different housing treatments intended
to improve the level of comfort and welfare of individual cows, without relying on determining
intermediate values for specific milk components. In other words, the capability of the hybrid
analysis approach will be evaluated for its potential to capture the spectral fingerprint of specific
trend of changing milk components that can later be used to build prediction models of the health
and welfare condition of individual cows. Animal behavioural data will also be used to support

any trends detected by the hybrid analysis approach of spectral data.
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7.2 Materials and Methods
7.2.1 The data

For each trial, milk samples were collected weekly and they were analyzed in Valacta Inc. lab
(Ste., Anne-de-Bellevue, QC, Canada) to determine major and minor milk components using
commercial FTIR milk analyzer. Two sets of data were received from Valacta. The first dataset
comprised the concentrations of milk components that were determined by the commercial FTIR
milk analyzer for individual milk samples. This dataset will be referred to as the numerical dataset.
The second dataset contained FTIR spectra recorded for individual milk samples collected during
the trial. This dataset will be referred to as the spectral dataset. Each FTIR spectrum consisted of

1060 spectral variables between 5008 cm™ and 925 cm™.

A total of 19 milk components were included in the numerical dataset for the tie rail, chain length
and stall width trials. For the manger wall and stall length, a total of 22 milk components were
included. For all the trials, milk numeric data included concentrations of the following milk
components: fat, protein, lactose, urea, beta-hydroxybutyrate (BHB), palmitic acid (C16:0), stearic
acid (C18:0), oleic acid (C18:1), short-chain fatty acids (SCFA), mid-chain fatty acids (MCFA),
long-chain fatty acids (LCFA), saturated fatty acids (SFA), total unsaturated fatty acids (TUFA),
mono-unsaturated fatty acids (MUFA), poly-unsaturated fatty acids (PUFA), trans fatty acids
(TFA), free fatty acids (FFA). All trials’ milk numeric data included total solids (TS) except for
the manger wall and stall length trial; on the other hand, all trials’ milk numeric data included
myristic acid (C14:0) except for the tie rail trial. In addition, the tie rail trial’s milk numeric data
included fat-to-protein ratio and the manger wall and stall length trial’s milk numeric data included
de novo fatty acids, mixed fatty acids, preformed fatty acids and true protein. These numerical
datasets will be used to confirm observations that were concluded from the application of the
hybrid spectral analysis, when possible. The total number of samples that were analyzed were 626,
355, 175, 476 for the tie rail, chain length, stall width and the manger wall and stall length trials,

respectively.
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7.2.2 Experimental design and statistical model

7.2.2.1 Tie rail trial

The objective of this trial was to study the effect of the tie rail height and forward position on
cow’s behaviour and welfare [102], which was conducted at the Dairy Research Complex,
Macdonald Campus, McGill University (Ste. Anne-de-Bellevue, QC, Canada). A tie rail (TR) is
the pipe used as the attachment for the tie chain, which controls the forward location of each cow
in her stall. In this study, 48 cows were assigned to 4 TR configurations, which were defined by
the height and the forward position of TR. TR heights were 122, 122, 112 and 102 cm and forward
positions were 18 cm, 36 cm, 18 cm and 36 cm for treatments T1, T2, T3 and T4, respectively.
Treatments T1 and T2 are TR configurations that are recommended and commonly found on dairy
farms, respectively. On the other hand, treatments T3 and T4 are new TR configurations designed
to increase the opportunity of movements of the cow at her stall; hence, improve cow behavior and
welfare. Cows were assigned to 6 different blocks to account for age of the cow, days in milk
within current lactation and location in the barn effects. Half the cows underwent the trial during
summer 2016 and the other half during fall 2016. Each period lasted 10 weeks (i.e., period 1: from
July 25" to October 3", period 2: from October 10" to December 19"). The original statistical

model of this trial was:
Yijkim = 1 + trt; + start; + blocky;; + cowyj; + weeky, + trt; X week, + €;jkim

Where Y; i, Was the dependent variable; the outcome measure of the I** cow from the k" block
(parity, DIM and location in the barn) and the j* start date on the combination of the i*" tie-rail
configuration and m" week. trt; was the fixed effect of the i tie-rail configuration. start; was
the fixed effect of the j¢" start date. block,, ji was the fixed effect of k" parity, DIM and location
in the barn from the j* start date on the i" tie-rail configuration treatment. cowyj; Was the
random effect of the (" cow from the j* start date and the k" block on the it" tie-rail
configuration treatment. week,, was the fixed effect of the mt™ week. trt; x week,, is the
interaction effect of the individual combination of the it" tie-rail configuration treatment with the
m*" week. e;jkim Was the random residual associated with the outcome measure of the [*" cow
from j¢" start date and k" block on the combination of the i*" tie-rail configuration treatment and
the m*" week [102].
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To eliminate the week effect, short-term and long-term averages were calculated for each cow for
FTIR spectra and milk composition data that included samples collected from week 1 to week 3
and from week 8 to week 10, respectively. As a result, the statistical model was modified to become

as follows:
Yijk = 1+ trt; + start; + blocky; + e;ji

Where Y;;, was the dependent variable; the outcome measure of the cow of the it" tie-rail
configuration from the k" block (parity, DIM and location in the barn) and the j*" start date. trt;
was the fixed effect of the i" tie-rail configuration. start; was the fixed effect of the j th start date.
blocky; was the fixed effect of kt" parity, DIM and location in the barn from the j* start date.
e;j, Was the random residual associated with the outcome measure of the cow from jth start date

and k" block on the i*" tie-rail configuration treatment.

7.2.2.2 Chain length trial

The objective of this animal trial was to study the effect of the tie chain length (TCL) on cow’s
behaviour and welfare [114]. The trial was conducted at the Dairy Research Complex, Macdonald
Campus, McGill University (Ste. Anne-de-Bellevue, QC, Canada). A tie chain confines a cow to
her stall space and allows for ease of lunging, resting in the head back position, or grooming. In
this study, 24 cows were assigned to 2 TCL treatments. T1, which is the control, had a chain length
of 1 m. On the other hand, T2, which is a suggested treatment, had a chain length of 1.4 m that
intends to increase the cow’s movement ability in her stall. Cows were assigned to 12 different
blocks to account for age of the cow (i.e., parity and stage of lactation) and days in milk within
current lactation, they were placed evenly into two rows within the barn (i.e., row 1 and 4). The
trial lasted for 10 weeks from February 20", 2017 to May 1%, 2017. The original statistical model
of this trial was:

Yijii = u+ trt; + block; + cow;; + rowy, + week, + trt; X week; + e;jy,

Where: Y;j; was the dependant variable; the outcome measure of the cow from the jt" block
(parity and lactation stage) in the k" row on the combination of the it" chain length and the [*"
week; trt; is the fixed effect of the i**chain length; block; is the fixed effect of the jt" parity and

lactation stage combination; cow;; is the random effect of the cow from the jt" block on the it"
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chain length; row, is the random effect of the k*"* row in the barn; week; is the fixed effect of the
Ith week; trt; X week; is the fixed effect of the interaction, the specific effect of the combination

of the i*" chain length and the 1*"* week; e;ji. 1S the random residual associated with the outcome

measure of the cow from the j** block in the k" row on the combination of the i** chain length
and the [*" week [114].

To eliminate the week effect, short-term and long-term averages were calculated for each cow for
FTIR spectra and milk composition data that included samples collected from week 1 to week 3
and from week 8 to week 10, respectively. As a result, the statistical model was modified to become

as follows:
Yijk = u+ trt; + block; + rowy + e

Where: Y;j,; was the dependant variable; the outcome measure of the cow from the j** block

(parity and lactation stage) in the k" row on the i*"® chain length; trt; is the fixed effect of the

it"chain length; block; is the fixed effect of the jt" parity and lactation stage combination; row,
is the random effect of the k" row in the barn; e;jx is the random residual associated with the

outcome measure of the cow from the jt* block in the k" row on the it"* chain length.

7.2.2.3 Stall width trial

The objective of this animal trial was to study the effect of the stall width (SW) on cow’s behaviour
and welfare [114]. The stall width allows the cows to rest in wider positions. The trial was
conducted at the Dairy Research Complex, Macdonald Campus, McGill University (Ste. Anne-
de-Bellevue, QC, Canada). In this study, 16 cows were assigned to 2 SW treatments. T1, which is
the control, had a single width stall that was calculated as follows: 2x (width of cow at hips) + 2
inches. On the other hand, T2, which is a suggested treatment, had a double width stall that intends
to increase the cow’s comfort in her stall. The stall width for this treatment was calculated as
follows: 2x (2x (width of cow at hips) + 2 inches). Cows were assigned to 8 different blocks to
account for age of the cow (i.e., parity and stage of lactation) and days in milk within current
lactation and they were placed evenly into two rows within the barn (i.e., row 1 and 4). The trial
lasted for 6 weeks from June 5, 2017 to July 14", 2017. The original statistical model of this trial

was:
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Yijii = u+ trt; + block; + cow;; + rowy + week, + trt; X week; + e;jy,

Where: Y;x; was the dependant variable; the outcome measure of the cow from the jt" block (parity
and lactation stage) in the k" row on the combination of the i stall width and the I** week; trt; is
the fixed effect of the i" stall width; block; is the fixed effect of the jt" parity and lactation stage
combination; cow;; is the random effect of the cow from the j** block on the i*" stall width; row, is
the random effect of the k" row in the barn; week; is the fixed effect of the [*"* week; trt; X week;
is the fixed effect of the interaction, the specific effect of the combination of the i" stall width and the
" week; e; jkt 1s the random residual associated with the outcome measure of the cow from the j th

block in the k" row on the combination of the i*" stall width and the I*"* week [114].

To eliminate the week effect, data of weeks 1 and 6 were used as short-term and long-term datasets

for data analysis. As a result, the statistical model was modified to become as follows:
Yijk = p+trt; + block; + rowy + ey

Where: Y;;;, was the dependant variable; the outcome measure of the cow from the jt" block (parity
and lactation stage) in the k" row on the i*" stall width; trt; is the fixed effect of the i*" stall width;
block; is the fixed effect of the j th parity and lactation stage combination; rowy is the random effect
of the k" row in the barn; e; j, is the random residual associated with the outcome measure of the cow

from the j* block in the k" row on the i*" stall width.

7.2.2.4 Manger wall and stall length trial

The objective of this animal trial was to study the combined effect of the stall length and manger
wall height on cow’s behaviour and welfare [115]. The trial was conducted at the Dairy Research
Complex, Macdonald Campus, McGill University (Ste. Anne-de-Bellevue, QC, Canada). The
length of two rows in the barn were modified as follows: row 1 was 178 cm (i.e., short or L1),
which is commonly found on Quebec’s farm, and row 4 was 188 cm (i.e., long or L2), which is a
suggested modification. Two manger wall heights were applied randomly to stalls within each
row: 20 cm (i.e., regular or T1), which is the upper limit of recommendation and 5 cm (i.e., low or
T2). In this study, 24 cows were randomly divided into 4 groups. Two groups were assigned to

each row and subjected to both manger wall treatments in a crossover design (1 week for
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habituation, 6 weeks of data collection/treatment). Cows were assigned to 6 different blocks to
account for age of the cow (i.e., parity and stage of lactation) and days in milk within current
lactation. Increasing the stall length and reducing the manger wall will increase the space available
for the cow, which will ease its movement and lying; thus, reducing its susceptibility to injuries.
The trial lasted for 14 weeks from February 26", 2018 to June 4", 2018. The original statistical

model of this trial was:
Yijkmnpq = U + length; + seq;j + blocky + cow; iy, + period, + week, + trty, + trt;; X weeky, + €;jxmnpq

Where: Y, ,mnpq Was the dependent variable; the outcome measure of the mt" cow of the k" block
in the j¢" seq of the i*" length, the g™ trt of the i*" length, and the nt" period and p*"* week; length;
is the fixed effect of the i*" stall length; seq;; is the fixed effect of the j*" sequence on the i*" stall
length; block, is the fixed effect of the k" parity and stage of lactation combination; cowj., is the
random effect of the cow from the k" block on the jt* sequence of the i*" stall length; period,, is
the fixed effect of the n'"* period; week,, is the fixed effect of the p"* week; trt,, is the fixed effect
of the ¢*" manger wall height treatment on the it" stall length treatment; trt;, x week, is the fixed
effect of the interaction, the specific effect of the combination of the pt" week and the g* manger
wall height on the i*" stall length; and e;jumnpq iS the random residual associated with the outcome
measure of the cow from the k" block on the j* seq of the i*" length, the g** manger wall height

(on the i*" stall length) and on the p** week of the nt" period [115].

To eliminate the week effect, data of weeks 1 and 6 were used as short-term and long-term datasets

for data analysis. As a result, the statistical model was modified to become as follows:
Vijkmng = U + length; + seq;; + blocky, + cow;jiy, + period, + trtyg + €;jxmng

Where: Y, j,mnq Was the dependent variable; the outcome measure of the mt" cow of the k" block
in the j¢" seq of the i*" length, the g" trt of the i length, and the n‘" period; length, is the fixed
effect of the i*" stall length; seq,; is the fixed effect of the j** sequence on the i*" stall length;
block, is the fixed effect of the k" parity and stage of lactation combination; cow,j, is the random
effect of the cow from the k" block on the j* sequence of the it" stall length; period,, is the fixed
effect of the nt" period; trt,, is the fixed effect of the gt manger wall height treatment on the i*"

stall length treatment; and e; ., IS the random residual associated with the outcome measure of
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the cow from the k" block on the j¢" seq of the i*" length, the g** manger wall height (on the i*"

stall length) and of the n*" period.

7.2.3 Spectral data analysis

The hybrid approach that was developed in the previous chapter was applied to the short-term and
long-term spectral datasets that were calculated for each trial. The spectral regions that were
retained for spectral analysis were 1612-925 cm™, 1797-1681 cm™ and 3061-2803 cm* with a total
of 278 spectral variables. These spectral regions were considered because they contain the
information related to milk chemical composition. Inhouse MATLAB codes were written to
calculate differential FD of the spectra, to VN the spectra and to load individual spectra into a
matrix. These spectral pre-treatments were applied to spectra of individual samples prior to
calculating the short-term and long-term averages. In JMP Pro 13.2.1., PCA was applied to the
four versions of the short-term and long-term spectral datasets (i.e., raw, FD, VN raw, VN FD) as
a dimension reduction method to reduce the number of responses to be tested by the mixed model.
PCs with eigenvalue > 1 and that explained 1% of the variation or more were considered
meaningful and were retained for testing by the mixed model. The Mixed procedure in SAS 9.4
(SAS Institute, Cary, NC, USA) was utilized to test for the treatment effect at significance level
a=0.05. If a PC revealed a significant treatment effect, then the least squares means of its scores
were examined to determine the treatment levels that are significantly different from the other
levels using a Scheffé adjustment for multiple comparisons. The influential spectral features can
be directly extracted from the loading spectrum of the PC that revealed the significant treatment
effect, if it was extracted from raw spectral dataset. If this PC was obtained from FD spectral
dataset, then the spectral integral of the PC’s loading spectrum must be calculated before extracting
the influential spectral features. The cumulative trapezoidal numerical integration function in
MATLAB was used to calculate the spectral integral for the loading spectrum in question. If the
integrated loading spectrum had produced wide humps with no clear peaks, the Peak Resolve
feature in Omnic 7.3 (Thermo Electron Corporation, Waltham, MA, USA) was used to fit the
integrated loading spectrum for probable peaks. To do so, the Voigt function with low or high
sensitivity was used and the baseline was set to none. The noise and the full width at half height
(FWHH) of the narrowest peak in the region of interest was determined by the software. The fitting

process was repeated several times until an acceptable residual spectrum was obtained. Milk
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numerical dataset will be used to confirm observations from the spectral analysis related to

determined milk components.

In addition, parsimonious PLS-DA model was developed for the tie rail trial for the averaged
numerical milk composition data for exploratory purposes according to the method described in

the previous chapter.

7.2.4 Interpretation of spectral features in loading spectra

Bulk tank raw milk was obtained from the Dairy Research Complex, Macdonald Campus, McGill
University (Ste. Anne-de-Bellevue, QC, Canada). Milk samples of 35 mL were spiked with minor
milk components and aqueous solutions of these chemicals were prepared. Their FTIR spectra
were recorded at Valacta by their milk analyzers. Urea, B-hydroxybutyric acid (BHBA or BHB)
and acetone were chosen because they are routinely determined by dairy control laboratories.
Linoleic acid was chosen as an example of unsaturated fatty acid. It must be noted that different
fatty acids do not produce distinct FTIR signals from each other, specially when they are present
in a mixture of fatty acids [42]. In addition to urea, other nonprotein nitrogen (NPN) compounds
that are present in milk were used to spike milk samples. These compounds are ammonium,
creatine, histamine, orotic acid and hippuric acid [84]. In addition to BHB and acetone, citrate and
acetate are also markers for energy intake related issues in dairy cows [59]. In addition, phosphate,
lactose, glucose and galactose were also chosen. For compounds that do not have solubility limits
in water, 1% (w/v) and 0.5% (w/v) were used for sample and solution preparations; otherwise,
solubility in water was used as the maximum concentration for the preparations (Table 7-1).
Additional milk samples were prepared by spiking them with the mean quantity found in milk for
compounds that are naturally present in low concentrations in milk [84]. The following chemicals
were obtained from Sigma-Aldrich: BHB (i.e., DL- B-Hydroxybutyric acid sodium salt ~98%),
citrate (i.e., citric acid trisodium salt dihydrate), phosphate (i.e., sodium phosphate monobasic
monohydrate H,NaO,P H,0), a-D glucose, D-Galactose, a-D-Lactose monohydrate, linoleic acid
(i.e., linoleic acid sodium salt 99%), creatine anhydrous, histamine, orotic acid monohydrate (i.e.,
6-Carboxy-2,4-dihydroxypyrimidine) and hippuric acid (i.e., benzoylaminoacetic acid sodium salt
99%). Urea and acetone were obtained from Fisher scientific. Acetate (i.e., sodium acetate
anhydrous NaC,H;0,) and ammonium chloride were obtained from Mallinckrodt and VWR,

respectively.
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Omnic 7.3 (Thermo Electron Corporation, Waltham, MA, USA) was used to calculate variance
spectra and the second derivative for the collected spectra, and the Find Peaks functionality was

used to determine IR peaks’ positions in milk and in the aqueous solution for each compound.

Table 7-1 Concentrations of spiked milk samples and aqueous solutions of milk minor components

Compound Concentrations (w/v)

Urea 1%, 0.5%
BHB 1%, 0.5%
Acetone 1%, 0.5%
Citrate 1%, 0.5%
Acetate 1%, 0.5%
Phosphate 1%, 0.5%
Glucose 1%, 0.5%
Galactose 1%, 0.5%
Lactose 1%, 0.5%
Ammonium 1%, 0.5%, 0.002% (milk mean)
Linoleic acid 0.14%
Creatine 1%, 0.5%, 0.002% (milk mean)
Histamine 0.28%
Orotic acid 0.14% (solubility), 0.002% (milk mean)
Hippuric acid 0.3% (solubility), 0.0006% (milk mean)
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7.3 Results and Discussion

7.3.1 Interpretation of spectral features in loading spectra

Table 7-2 summarizes the spectral features of minor milk components observed in the second
derivative of FTIR spectra of milk samples spiked with these molecules and their respective
aqueous solutions. These observed features will be used to identify the influential features and
their respective molecules in the loading spectra of principal components that will reveal

significant treatment effect in the studies covered in this chapter.

Urea is a primary amide (Figure 7-7) that has a carbonyl (C = 0) and two amino (—NH,)
functional groups. The spectra of milk samples spiked with increasing amounts of urea (Figure
7-8) reveal increased absorbance intensity at peaks centered around ~ 1457 and 1156 cm™. These
peaks are assigned to the C — N stretching band and € — N stretching coupled with the stretching
of adjacent bond in the molecule, respectively [116]. The amide | band at 1650 cm™ that results
from C = O stretching is not observable in aqueous samples because it overlaps with the 0 — H

bending vibration band of water, which is considered as a noisy region.

B-hydroxybutyric acid is a B-hydroxy acid (Figure 7-9) that has carboxyl and hydroxy functional
groups separated by two carbon atoms, in addition to methyl and methylene groups. The spectra
of milk samples spiked with increasing amounts of p-hydroxybutyric acid (Figure 7-10) reveal
increased absorbance intensity at peaks centered around ~ 2926, 1554, 1405, 1316, 1077 cm™. The
peak at 2926 is assigned to the asymmetrical stretching (v,sCH,) of the methylene group, which
overlaps with the signal of the C — H stretching of milk fat or the Fat B region [116]. The peak at
1316 cmis assigned to the C — O stretching [116]. On the other hand, the peak at 1077 cm™ is
assigned to and C — H bending vibrations [117], and the C — 0/C — C bond stretching [110],
which overlaps with the signal coming from lactose. The carboxylate ion gives rise to two bands:
a strong asymmetrical stretching at 1554 cm™ and a weaker symmetrical stretching at 1405 cm™.
This band can also be assigned to the C — 0 — H bending [116].

Acetone is a ketone (Figure 7-11) that has a carbonyl functional group (C = 0) and two methyl
(CH3) groups. The spectra of milk samples spiked with increasing amounts of acetone (Figure
7-12) reveal increased absorbance intensity at peaks centered around ~ 1690, 1414, 1373 and 1239
cm™t. The peak at 1690 cm™ is assigned to the carbonyl group (C = 0) stretching [116]. Normally,
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carbonyl group exhibit absorbance band at 1715 cm™, but in this case the position of the carbonyl
band has shifted into a reduced wavenumber because of the polarity of water in milk. The peaks
at 1414 and 1373 cm™ are assigned to the asymmetrical (6,,CH;) and symmetrical (6,CH3)
bending vibration of the methyl group, respectively [116]. The peak at 1239 cm™ is assigned to
the stretching of C — C — C group and the bending of C — C(= 0) — C in the C — C — C group
[116].

Citrate is a derivative of citric acid (Figure 7-13), which is a week organic acid. It has three
carboxyl function groups and one hydroxy functional group. The spectra of milk samples spiked
with increasing amounts of citrate (Figure 7-14) reveal increased absorbance intensity at peaks
centered around ~ 2926, 1557, 1394, 1248, 1078 cm™. The peak at 2926 is assigned to the
asymmetrical stretching (v,4CH,) of the methylene group, which overlaps with the signal of the
C — H stretching of milk fat or the Fat B region [116]. The peaks at 1557, 1394 and 1248 cm™ are
assigned to the strong symmetrical stretching of the carboxylate ion, the C — O — H bending and
the C — O stretching [116]. The peak at 1078 cm™ is assigned to the € — H bending vibrations
[117] and the C — O/C — C bond stretching [110], which overlaps with the signal coming from

lactose.

Acetate is a derivative of acetic acid (Figure 7-15), which is a week organic acid. Acetate has one
carboxyl and one methyl functional group. The spectra of milk samples spiked with increasing
amounts of acetate (Figure 7-16) reveal increased absorbance intensity at peaks centered around ~
1551 and 1414 cm™. The peaks at 1551 and 1414 cm™ are assigned to the strong symmetrical
stretching of the carboxylate ion [116] and C — O stretching [118], respectively.

Phosphate is a derivative of phosphoric acid (Figure 7-17), which is a week acid. It contains one
phosphoryl group. The spectra of milk samples spiked with increasing amounts of phosphate
(Figure 7-18) reveal increased absorbance intensity at peaks centered around ~ 1156, 1077 and
940 cm™. The peaks at 1156 and 1077 cm™ are assigned to the asymmetric and symmetric
stretching of the phosphoryl group (P = 0) [119]. The peak at 940 cm™ is assigned to the
stretching of P — O — H [116, 119].

Glucose, galactose and lactose are carbohydrates (Figure 7-19). Glucose and galactose are

classified as aldohexoses monosaccharides. They consist of six carbon atoms backbone and an
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aldehyde functional group on carbon atom number 1. Galactose is an epimer of glucose. They
differ in their stereochemistry at carbon atom number 4. Lactose is a disaccharide that consists of
galactose and glucose subunits linked by a 1 — 4 glycosidic bond. The spectra of milk samples
spiked with increasing amounts of glucose, galactose and lactose (Figure 7-20) reveal increased
absorbance intensity at a peak centered around ~ 1076 cm™. In addition, a distinct increased
absorbance intensity is observed at ~ 1043 and 1154 cm™ for glucose and galactose, respectively.
In an aqueous solution of glucose, the distinct peak appears at 1033 cm™, which has been reported
as an IR marker peak for glucose in the literature [110, 120]. All peaks observed in the region
1200-800 cm™ are assigned to the C — 0/C — C bond stretching [110].

Ammonium results from the protonation of ammonia, which is an azane that consists of a single
nitrogen atom covalently bonded to three hydrogen atoms (Figure 7-21). The spectra of milk
samples spiked with increasing amounts of ammonium chloride (Figure 7-22) reveal increased
absorbance intensity at peak centered around ~ 1457 cm™. This broad band is assigned to the N —
H bending of the NH;" ion [116].

Linoleic acid is an octadecadienoic acid with long aliphatic unsaturated chain and carboxylic
functional group in which the two double bonds are at positions 9 and 12 and have cis
stereochemistry (Figure 7-23) [121]. The spectra of milk samples spiked with linoleic acid (Figure
7-24) reveal increased absorbance intensity at peaks centered around ~ 3012, 2927, 2857, 1705,
1581, 1554, 1458, 1408 and 987 cm™. The peak at 3012 cm™ is assigned to the C — H stretching
in the alkene (olefinic) bond (C = € — H) [116]. The peaks at 2926 and 2857 cm™ are assigned to
the asymmetrical stretching (v,4CH,) and symmetrical stretching (v;CH,) of the methylene group,
which overlaps with the signal of the C — H stretching of milk fat or the Fat B region [116]. The
peak at 1705 cm™ is assigned to the C = O stretching vibration in the carboxyl functional group
[116]. The carboxylate ion gives rise to two bands: a strong asymmetrical stretching at 1554 cm™
and a weaker symmetrical stretching at 1408 cm™. The peak at 1408 cm™ also results from the
C — 0 — H bending in the protonated carboxylic functional group [116]. The peak at 1458 cm™
can be assigned either to the asymmetrical bending vibration of the methyl group (8,,CHs3) or to
the scissoring band of the methylene group (6;CH,) [116]. The peak at 987 cm™ is assigned to the

out-of-plane alkene C — H bending vibration, which is a characteristic band for alkenes [116].
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Creatine is an organic compound that is derived from the amino acid glycine. It contains
carboxylic, methyl and amidine (—C(= NH)NH,) functional groups (Figure 7-25) [122]. The
spectra of milk samples spiked with increasing amounts of creatine (Figure 7-26) reveal increased
absorbance intensity at peaks centered around ~ 1538, 1396, 1311, 1106, 980 cm™. The peak
centered at 1396 cm™ can be assigned to the C — O — H bending band of the carboxylic functional
group, to the symmetrical stretching of the carboxylate ion or to the C — N stretching band [116].
The peaks centered at 1538, 1311, 1106 and 980 cm™ are assigned to the deformation vibration
band of (= NH,) in the amidine functional group [123], to the C — O stretching band of the
carboxylic functional group, to the C — N stretching band coupled with stretching of adjacent
bonds in the molecule and to the out-of-plane bending of the bonded O — H in dimeric carboxylic

acids, respectively [116].

Histamine is an organic compound that is derived from the amino acid histidine. It is an 1H-
imidazole substituted at position C-4 by a 2-aminoethyl group (Figure 7-27) [124]. The spectra of
milk samples spiked with increasing amounts of histamine (Figure 7-28) reveal increased
absorbance intensity at peaks centered around ~ 3012, 2857, 1581, 1457, 1315, 1033, 987 cm™.
These peaks are assigned to NH3 stretching (vNHJ ), CH, symmetrical stretching (v,CH,) of the
methylene group of the side chain, stretching of the imidazole ring which appears in the aqueous
solution at 1573 and 1488 cm™*, NHS symmetrical bending (§,NH3), CH, wagging (wCH,), C —
N stretching (vCN) and C — H out-of-plane bending (yCH), respectively [125].

Orotic acid is a pyrimidine monocarboxylic acid that is uracil bearing a carboxy substituent at
position C-6 (Figure 7-29) [126]. The spectra of milk samples spiked with increasing amounts of
orotic acid (Figure 7-30) reveal increased absorbance intensity at peaks centered around ~ 1700,
1500, 1377 and 1033 cm™. The peak at 1700 cm™ is assigned to C = O stretching [127]. The peaks
at 1500 and 1377 cm™ are assigned to the heteroaromatic ring stretching vibration [116]. The peak
at 1033 cm™ is assigned to the ring in-plane deformation and stretching [127].

Hippuric acid is an N-acylglycine in which the acyl group is specified as benzoyl (Figure 7-31)
[128]. The spectra of milk samples spiked with increasing amounts of hippuric acid (Figure 7-32)
reveal increased absorbance intensity at peaks centered around ~ 1581, 1400 and 1307 cm™. These
peaks are assigned to the bending vibration (§NH) of N — H, in-plane bending (6§CH,) of the
methylene group, and the bending vibration (§ CH,) of the methylene group [129], respectively.
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Table 7-2 IR peaks of minor milk components detected in FTIR spectra of spiked milk samples and aqueous solutions of the

respective molecules.

Molecule

Peaks in milk cm™ (2" derivative)

Peaks in water cm (2" derivative)

Urea

1457, 1156

1461, 1160

B-Hydroxybutyric acid

2926, 1554, 1405, 1316, 1077

2981, 1559, 1404, 1311, 1269, 1207,

(BHB) 1130, 1060, 948

Acetone 1690, 1414, 1373, 1239 1689, 1424, 1370, 1239, 1096
Citrate 2926, 1557, 1394, 1248, 1078 2923, 1581-1566, 1390, 1288, 1093
Acetate 1551, 1414 1554, 1416, 1348, 1060, 1021, 933
Phosphate 1156, 1077, 940 1261, 1236, 1160, 1077, 941
Ammonium chloride 1457 1454

Linoleic acid (fatty acid)

3012, 2927, 2857, 1705, 1581, 1554, 1458, 1408,
987

3011, 2929, 2861, 1597, 1554, 1458,
1405

Creatine 1538, 1396, 1311, 1106, 980 2950, 2835, 1538, 1431, 1396, 1307,
1168, 1107, 1049, 976

Histamine 3012, 2857, 1581, 1457, 1315, 1033, 987 3008, 2888, 1573, 1488, 1310, 1033,
987,941

Orotic acid 1700, 1500, 1377, 1033 1700, 1497, 1377, 1014

Hippuric acid 1581, 1400, 1307 1584, 1489, 1396, 1301

7.3.2 Tie rail trial

Table 7-3 and Table 7-4 summarize the meaningful PCs that were extracted from the raw, FD, VN
raw and VN FD spectral datasets of the long-term and short-term milk samples spectral averages
of the tie rail trial, respectively. PCA vyielded five, seven, four and nine meaningful PCs from the
raw, FD, VN raw and VN FD long-term spectral average datasets that explained 97.35%, 94.92%,
96.99% and 95.44% of the variation in the spectral datasets, respectively. These PCs, whose
eigenvalue and percentage of explained variation >1, represent the sources of variation in their
respective spectral datasets that were separated from the noise and that were tested for the
treatment, start (i.e. season) and block effects by the SAS Mixed procedure. PC6 (P = 0.0371),
PC4 (P = 0.0462) and PC7 (P = 0.0106) extracted from long-term FD, VN raw, VN FD spectral
average datasets, respectively, revealed significant treatment effect. The calculation of the spectral
averages was successful in eliminating the strong week effect that was noticed in all analysis
approaches evaluated in the previous chapter. Among the three PCs that revealed significant
treatment effect, PC7 (P = 0.0106) isolated from the long-term VN FD spectral dataset revealed
the strongest treatment effect, and unlike the other two PCs, start (P = 0.5590) and block (P =
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0.0600) had insignificant effects on it. This observation can be explained by the fact that FD
exposed more details in the spectral dataset and VN eliminated procedural variability not related
to chemical composition of milk samples, which facilitated the isolation of the treatment effect
from the other two studied effects. For these reasons, PC7 isolated from the long-term VN FD
spectral dataset will be subjected to further analysis to determine the treatment levels that are
significantly different from each other and the spectral features that are responsible for these
differences. PC 7 explains 1.37% of the variation in its respective dataset, which suggests that the
treatment effect is limited, and it was detect in an early stage.

Table 7-5 and Table 7-6 summarize the least squares means and their differences produced by the
Mixed procedure for the scores of PC7 extracted from long-term VN FD spectral average dataset
that revealed a significant treatment effect. These tables show that T3 PC7 scores were
significantly different from the scores of other treatments (P = 0.0038) and the Scheffé adjusted P
value shows that T3 is significantly different from T1 (P = 0.0332).

Inspection of the integral of PC7 loading spectrum (Figure 7-1) revealed clear peaks at the
following wavenumbers: 3008, 2919, 2851, 1716, and 1407, which can be assigned to the
following IR bands: the C — H stretching in the alkene (olefinic) bond (C = C — H) in unsaturated
fatty acids, the asymmetrical stretching (v,,CH,) of the methylene group in fatty acids,
symmetrical stretching (v¢CH,) of the methylene group in fatty acids, the C = O stretching
vibration in the carboxyl functional group in free fatty acids and the symmetrical stretching of the

carboxylate ion or the C — O — H bending in BHB, respectively (Table 7-2).

Table 7-7 summarizes the results of the peak fitting process for regions 1250-1180 cm™, 1390-
1250 cm™ and 1618-1424 cmt, which did not show any clear peaks. In the first region, a peak was
detected at 1237 cm™, which can be assigned to the stretching of C — C — C group and the bending
of C — C(=0)—Cinthe C — C — C group in acetone. In the second region, peaks were detected
at 1287, 1317 and 1372 cm™, which can be assigned to the C — O stretching that appears in the
FTIR spectrum of the aqueous solution of citrate, the C — O stretching in BHB and the symmetrical
(65,CH3) bending vibration of the methyl group in acetone, respectively. In the third region, peaks
were detected at 1460 and 1541 cm™. The 1460 cm™ peak can be assigned to the asymmetrical

bending vibration of the methyl group (8,,CHs) or to the scissoring band of the methylene group
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(86,CH,) in fatty acids. On the other hand, the 1541 cm™ peak can be assigned to the symmetrical

stretching of the carboxylate ion that is found in citrate, BHB, free fatty acids and acetate.

In addition, an upward trend is noticed between ~950 cm™ and ~1040 cm, with a small bump at
~967 cm. Subsequently, a downward trend is noticed between ~1040 cm™ and ~1100 cm™
followed by another upward trend that peaks at 1130 cm™, which corresponds to a band present in
the FTIR spectrum of the aqueous solution of BHB. These trends can be interpreted that milk
samples collected from cows assigned to T3 in the last 3 weeks of the trial had a higher content of
trans fatty acids and BHB and lower content of lactose in comparison to samples collected from
cows assigned to T1 during the same period. Trans fatty acids, lactose and BHB have absorption
IR bands centered at ~967 cm™ [130], ~1076 cm™ [130] and 1130 cm™, respectively. It can be
noticed that the PCA decomposition process of variation in the spectral dataset allowed the
detection of minor milk components’ IR bands that are overwhelmed by major milk components’

absorption bands.

The spectral analysis concludes that milk samples collected from cows assigned to T3 had higher
levels of BHB, acetone, citrate, acetate and trans fatty acids and lower levels of lactose during the
last three weeks of the trial. All these molecules, except for trans fatty acids, are considered
markers of elevated body fat mobilization or negative energy balance [15, 59]. Milk composition
numerical data only included levels of BHB, lactose and trans fatty acids. Inspection of milk
composition numerical data confirms the observations of the spectral analysis (Table 7-9 and Table
7-10). During the last 3 weeks, average lactose content was 4.62% and 4.60% for T1 and T3,
respectively, and average BHB content was 0.05 mmol/L and 0.06% mmol/L for T1 and T3,
respectively. For week 9, average lactose content was 4.63% and 4.59% for T1 and T3,
respectively. For week 10, average BHB content was 0.05 mmol/L and 0.07 mmol/L for T1 and
T3, respectively. Reduced lactose concentrations and increased BHB in milk suggest that cows
assigned to T3 might have been experiencing higher level of body fat mobilization in comparison
to cows assigned to T1 during the last 3 weeks of the trial [100]. Reduced protein concentration in
milk is another indicator of increased body fat mobilization [100]. The long-term average protein
concentration was 3.44% and 3.34% for T1 and T3, respectively, and a downward trend between

1550 cm™ and 1600 cm™ was noticed in the integral of PC7 loading spectrum. In addition, the
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average trans fatty acids content during the last 3 weeks was 0.09% and 0.10% for T1 and T3,

respectively, which agrees with the findings of the spectral analysis.

A parsimonious PLS-DA model of the milk composition numerical dataset for weeks 8-10 to
classify milk samples according to treatment revealed that BHB was the most significant variable
to discriminate milk samples by treatment (Table 7-8). In addition, it revealed that lactose and
protein were not significant variables for such discrimination. This observation might explain the
absence of a clear peak at 1076 cm™ and around the Amide Il or Amide I11 bands in the integral of
PC7 loading spectrum. The VIP scores also show that differences in milk composition according
to treatment are reflected in minor milk component rather than major ones, which explains why
PC7 extracted from VN FD spectral dataset revealed a strong treatment effect. It must be noted
that this PLS-DA model explained only 13.68% of the variation related to treatment membership
of milk samples, which implies that the treatment effect on milk composition was limited and it
agrees with the fact that PC7 explained 1.3% of the variation in the long-term VN FD averaged

spectral dataset.

The conclusion that cows assigned to T3 might have been experiencing increased body fat
mobilization in comparison to cows assigned to T1 could be somehow corroborated by the neck
injuries that were recorded during the trial. While both T1 and T3 show increased injuries on the
proximal area of the cow’s neck (higher portion, closest to the body), T3 (i.e., Necklinel in the
original thesis) was the only treatment out of the 4 tested to show increased injury on 2 locations
of the cow’s neck; indeed, T3 had an additional increase in injuries on the medial area of the cow’s
neck (lower portion, closest to the head). These injuries results from the cows putting pressure on
their neck through repeated contact with the tie-rail, while transitioning from lying to standing
positions and, possibly in an attempt to reach feed [102]. However, no difference in eating-
rumination time was found between tie-rail treatments at any time point of the trial (51.5, 50, 45.8,
49.6 % of time eating-ruminating per h in the long-term for T1, T2, T3 and T4, respectively) [102].
Appearance of neck injuries at two locations of the neck indicates that T3 tie rail configuration
was probably obstructing the cow access to feed, which may have resulted in possible reduced
feed intake (not measured in the trial) that led to an elevated body fat mobilization. It must be

noted that the effect was limited, and the milk numerical data did not indicate any clinical issues
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with the cows assigned to T3, which means that the hybrid spectral analysis approach could detect

the trend in an early stage before it becomes problematic.

Table 7-3 Principal components extracted from the raw, FD, VN raw, VN FD spectral datasets of the long-term milk spectral
averages for the tie rail trial. The table also lists P values obtained from the SAS Mixed Procedure for the treatment, start and
block effects that are tested in this trial.

Long-term
] Cumulative P Values

Spectral Meaningful . EXpI_thEd Explained
Dataset PC Eigenvalue  Variation Variation ~ Treatment Start Block
% % (Start)
PC1 144.01 51.61 51.62 0.2897 0.0768 0.0081
PC2 83.97 30.10 81.71 0.9753 0.2931 0.1052
Raw PC3 38.26 13.71 95.43 0.7750 0.0013 0.0001
PC4 5.36 1.92 97.35 0.0836 0.7465 0.2169
PC5 2.70 0.97 98.31 0.3495 0.1821 0.0859
PC1 161.77 58.19 58.19 0.3120 0.1375 0.0091
PC2 39.03 14.04 72.23 0.4568 0.0130 0.0010
PC3 33.63 12.10 84.33 0.7935 0.0307 0.0388
FD PC4 12.46 4.48 88.81 0.0519 0.0817 0.0071
PC5 7.31 2.63 91.44 0.6068 0.0001 0.4963
PC6 5.39 1.94 93.38 0.0371 0.0238 0.0464
PC7 4.27 1.54 94.92 0.8602 0.7468 0.7219
PC1 189.23 68.07 68.07 0.4486 0.3247 0.0941
VN Raw PC2 62.68 22.55 90.62 0.9549 0.1570 0.0003
PC3 11.23 4.04 94.66 0.6285 0.6290 0.1392
PC4 6.49 2.34 96.99 0.0462 0.0695 0.0223
PC1 161.38 58.05 58.05 0.4429 0.2729 0.1311
PC2 52.76 18.98 77.30 0.3412 0.0794 0.0001
PC3 17.70 6.37 83.40 0.0698 0.2443 0.0145
PC4 10.96 3.94 87.34 0.4485 0.0001 0.0513
VN FD PC5 7.23 2.60 89.94 0.1883 0.0031 0.1370
PC6 5.10 1.84 91.77 0.6687 0.2201 0.8147
PC7 3.82 1.37 93.15 0.0106 0.5590 0.0600
PC8 3.32 1.20 94.34 0.1827 0.1467 0.3407
PC9 3.05 1.10 95.44 0.5853 0.9014 0.3648
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Table 7-4 Principal components extracted from the raw, FD, VN raw, VN FD spectral datasets of the short-term milk spectral
averages for the tie rail trial. The table also lists P values obtained from the SAS Mixed Procedure for the treatment, start and
block effects that are tested in this trial.

Short-term
Spectral Meaningful . Explained Cumul.ative P Values
Dataset PC Eigenvalue Variation % EXPIaTmEd Treatment Start Block (Start)
Variation %
PC1 120.20 43.24 43.24 0.8027 0.2834 0.3742
pPC2 116.59 41.94 85.17 0.4505 <0.0001 0.0024
Raw PC3 28.43 10.23 95.40 0.9673 0.0022 0.0005
PC4 4.70 1.69 97.09 0.7538 0.5885 0.2833
PC5 3.42 1.23 98.32 0.4750 0.0667 0.1672
PC1 143.72 51.70 51.70 0.7183 0.8642 0.2918
PC2 53.42 19.22 70.916 0.8662 <0.0001 0.0028
PC3 30.73 11.05 81.97 0.7711 0.0011 0.0509
PC4 14,51 5.22 87.19 0.5312 0.0157 0.0699
i PC5 8.54 3.07 90.26 0.4634 0.0012 0.0001
PC6 7.12 2.56 92.82 0.9830 0.4151 0.0185
PC7 4.03 1.45 94.27 0.6678 0.1466 0.0445
PC8 3.38 1.22 95.49 0.9792 0.2750 0.7527
PC1 184.33 66.305 66.305 0.8430 0.0835 0.4132
PC2 59.13 21.27 87.57 0.8334 0.2707 0.0002
PC3 18.65 6.70 94.28 0.3532 0.0001 0.0252
VN Raw PC4 6.05 2.18 96.46 0.3044 0.0524 0.2503
PC5 3.00 1.08 97.54 0.5695 0.0047 0.1282
PC6 2.14 0.77 98.31 0.3011 0.1517 0.0000
PC7 1.42 0.51 98.82 0.2854 0.0331 0.2038
PC1 157.19 56.54 56.54 0.8203 0.1957 0.5475
PC2 53.57 19.26 75.80 0.9078 0.4261 0.0057
PC3 15.28 5.50 81.30 0.6044 0.0272 0.0968
PC4 11.74 4.22 85.52 0.3441 <0.0001 0.0070
VN ED PC5 7.86 2.83 88.35 0.3957 0.3243 <0.0001
PC6 6.25 2.25 90.60 0.6979 0.0064 0.1319
PC7 5.70 2.05 92.64 0.7479 0.9305 0.9583
PC8 4.20 151 94.15 0.9162 0.5622 0.9332
PC9 2.99 1.08 95.23 0.2639 0.8408 0.2663
PC10 2.89 1.04 96.27 0.6651 0.2540 0.3726
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Table 7-5 Least squares means produced by the Mixed procedure for the scores of PC7 extracted from long-term VN FD spectral
average dataset and that revealed a significant treatment effect. This table shows that T3 scores were significantly different from
the other treatments.

Treatment Estimate Standard DF t Value P Value
Error
1 0.6846 0.4959 30 1.38 0.1776
2 0.5001 0.5267 30 0.95 0.3499
3 -1.4596 0.4652 30 -3.14 0.0038
4 0.4188 0.4652 30 0.9 0.3752

Table 7-6 Differences of least squares means for PC7’s scores. The Scheffé adjusted P values show that T3 is significantly
different from T1.

Scheffé
) Standard
Treatment Treatment Estimate DF tValue P Value Adj. P
Error

Value
1 2 0.1845 0.7097 30 0.26 0.7967 0.9953
1 3 2.1442 0.68 30 3.15 0.0037 0.0332
1 4 0.2658 0.68 30 0.39 0.6986 0.9845
2 3 1.9597 0.7027 30 2.79 0.0091 0.0711
2 4 0.08133 0.7027 30 0.12 0.9086 0.9996
3 4 -1.8784 0.6579 30 -2.86 0.0077 0.0622
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Figure 7-1 The spectral integral of PC7 loading spectrum extracted from long-term VN FD spectral average dataset for the TR
trial. Shaded regions can be assigned to: 1) lactose 1200-1000 cm, 2) acetone ~1237 c¢cm?, 3) citrate, BHB and acetone 1390-
1250 cmL, 4) BHB ~1404 cm?, 5) fatty acids and carboxylate ion in citrate, BHB, free fatty acids and acetate 1618-1424 cm, 6)
Carboxylic group of free fatty acids ~ 1716 cm™, 7) CH stretching of fatty acids 3000-2800 cm, 8) =C-H stretching of fatty
acids ~3008 cm™.

Table 7-7 Results of peak fitting of lumpy regions in the integral of the loading spectrum of PC7 and probable molecules that can
be assigned to the resulting peaks.

Rangecm™®  Peak Type Center X Height Area Probable molecule
1250-1180 Voigt 1237.178 0.0228 1.6199 Acetone
Voigt 1287.064 0.2825 26.7635 Citrate
1390 -1250 Voigt 1317.459 6.6918 738.564 BHB
Voigt 1372.16 1.5591 204.3213 Acetone
Voigt 1460.422 4.1669 674.6262 Fatty acids
1618-1424 Carboxylate ion in citrate, BHB,
Voigt 1541.455 4.2489 490.2986

free fatty acids and acetate
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Table 7-8 Variable importance for the projection scores of significant milk components obtained from parsimonious PLS-DA
model for milk composition numerical data for weeks 8-10 to classify milk samples by tie rail treatment.

Milk Component VIP Score

BHB 1.1430

C16 0 1.0903

FP Ratio 1.0418
Trans FA 1.0128
Urea 1.0006

C18 1 0.9324
MUFA 0.8762
PUFA 0.8690
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Table 7-9 Milk composition data + SD for weeks 8-10 for the tie rail trial with T1 and T2 averages by treatment.

Treatment T1 T2

Week 8 9 10 Avg. 8 9 10 Avg.

Fat % 422+0.70 416+0.71 4.10+0.46 4.16 +0.62 4.20+0.57 4.28 +0.63 4.16+0.64 4.21+0.59
Protein % 3.44+0.32 3.44+0.27 3.44+0.26 3.44+0.27 3.37+0.33 3.38+0.31 3.44+0.31 3.39£0.31
Lactose % 4.62+0.12 4.63+0.17 4.61+0.18 4.62+0.15 4.65+0.16 4.65+0.16 461+0.19 4.64+0.17

TS % 13.26 £ 0.77 13.20+0.76 13.12+0.58 13.19 + 0.69 13.19+0.70 13.29+0.70 13.18 £ 0.79 13.22+0.71

Urea mg/dL 14.29 £ 2.46 14.71 £ 2.90 13.90+ 2.72 14.30 £ 2.63 14.03 + 2.07 14.50 + 3.50 13.54 + 2.57 14.02+2.71

BHB mmol/L 0.05 +0.03 0.05 +0.03 0.05 £ 0.03 0.05 £ 0.03 0.07 £0.03 0.06 £ 0.04 0.08 £ 0.03 0.07 £ 0.03
C16:0 % 1.105+0.198 1.108+0.197 1.081+0.147 1.098+0.177 1.118+0.164 1.157+0.231 1.105+0.198 1.127+0.194
C18:0 % 0.406 £0.071  0.379+0.064 0.389+0.045 0.391+0.060 0.391+0.046  0.392+0.039  0.391+0.055 0.391+0.045
C18:1 % 0.912+0.144  0.932+0.150 0.930+0.093 0.925+0.127 0.864+0.123  0.907+0.095 0.905+0.156  0.892+0.124
SCFA % 0.508 £0.121  0.500+0.127  0.485+0.099  0.497+0.113 0.487+0.085 0.482+0.082 0.477+0.093  0.482+0.084
MCFA % 2.013+0.459 1.920+0.505 1.912+0.339 1.948+0.428 2.062+0.467 2.047+0.621 2.021+0.530 2.043+0.524
LCFA % 1565+0.247 1525+0.236  1542+0.138 1544+0.206 1541+0.170 1.552+0.141 1550+0.231 1.548+0.178

SFA % 2.807£0.503 2.736+0.504 2.656+0.330 2.733+0.443  2.795+0.421 2.797+0.491 2702+0.434 2.764+0.436
TUFA % 1.236+0.180 1.209+0.185  1.196+0.122 1.214+0.160 1.207+0.146  1.214+0.121 1.206+0.189  1.209 +0.149
MUFA % 1.040+0.143 1.035+0.152 1.026£0.110 1.033+0.132 1.004+0.136  1.034+0.106 1.032+0.158  1.023+0.131

PUFA % 0.158+0.031  0.150+0.043  0.163+0.027 0.157+0.034  0.132+0.040 0.144+0.045 0.147+0.032  0.141+0.039

TransFA%  0.094+0.015 0.092+0.018 0.098+0.020 0.095+0.017  0.104+0.017 0.102+0.019  0.102+0.017  0.103+0.017

FFA % 6.983+1.744 6.678+1.666 7.162+1418 6941+1577 6.869+1374 7.076+2111 6.788+1.673  6.911+1.689
FP Ratio 1.23+0.20 1.21+0.17 1.19+0.10 1.21+0.16 1.25+0.16 1.27+0.17 121+0.14 1.24 +0.15




Table 7-10 Milk composition data + SD for weeks 8-10 for the tie rail trial with T3 and T4 averages by treatment

Treatment T3

Week 8 9 10 Avg. 8 9 10 Avg.

Fat % 3.89+045 3.94 +0.54 3.92+0.49 3.91+048 3.73+0.64 3.90 £ 0.60 4.11+0.56 3.91£0.60
Protein % 3.34+0.27 3.33+0.29 3.36+0.31 3.34+0.28 3.41+0.29 3.39+0.30 3.42+0.31 3.41+0.29
Lactose % 4.63+0.16 459+0.20 459+0.21 460+0.18 461+0.10 460+0.11 459+0.13 460+0.11

TS % 12.83 +£0.59 12.83+0.70 12.85+ 0.63 12.84 + 0.62 12.73£0.83 12.86 + 0.84 13.09 £ 0.80 12.90 + 0.82

Urea mg/dL 12.84 £ 2.77 13.05+2.15 12.59 + 2.13 12.83+2.31 13.35+1.74 14.48 + 2.37 1457 +2.34 1413 +2.18

BHB mmol/L 0.06 £ 0.02 0.06 £ 0.02 0.07 £0.02 0.06 £ 0.02 0.06 £ 0.02 0.05 £ 0.03 0.07 £ 0.02 0.06 £ 0.03
C16:0 % 1.015+0.139  1.037+0.188  1.027+0.174 1.026+0.164 0.965+0.152  1.001+0.165 1.053+0.167  1.006 + 0.161
C18:0 % 0.371+0.044  0.369+0.051 0.378+0.045 0.373+0.046 0.357+0.071 0.372+0.068 0.404+0.066  0.378 + 0.069
C18:1 % 0.846 £0.074  0.896+0.069 0.858+0.080 0.867+0.075 0.841+0.140 0.935+0.138 0.966+0.117  0.914+0.139
SCFA % 0.447+£0.086  0.449+0.099 0.454+0.083 0.450+0.087 0.423+0.112 0.436+0.102 0.466+0.099  0.442+0.103
MCFA % 1.783+0.374 1.786+0.436 1.818+0.362 1.796+0.381 1.724+0.517 1.710+0.461 1.930+0.426  1.788+0.467
LCFA % 1455+0.144  1.460+0.144 1.447+0.148 1454+0.141 142140259 1511+0.238 1.603+0.214  1.512+0.243

SFA % 2570+0.347 2554+0409 2559+0.357 2.561+0.361 2.465+0.448 2.487+0.419 2627+0.380 2.526+0.411
TUFA % 1.161+0.091 1.168+0.102 1.156+0.095 1.162+0.093 1.143+0.194 1.210+0.169 1.261+0.163  1.205+0.177
MUFA % 0.962+0.076  1.003+0.093  0.966+0.089  0.977+0.086 0.958+0.167 1.048+0.169 1.074+0.143  1.027 £+ 0.163

PUFA % 0.139+0.022 0.152+0.038  0.142+0.023  0.144+0.029 0.129+0.016  0.157+0.037 0.156+0.029  0.147 £0.031

TransFA%  0.099+0.016 0.096 +£0.023  0.097 +£0.023  0.097 £0.020  0.088+0.020  0.092+0.020  0.094 +£0.019  0.091+0.019

FFA % 6.665 + 1.275 6.514 +1.171 6.527 £ 0.939 6.569 + 1.106 6.234 £ 1.371 6.841 +1.831 7.279 +1.311 6.785 + 1.541
FP Ratio 1.17+£0.16 1.18+0.14 1.17+£0.17 1.17+£0.15 1.09+0.17 1.15+0.13 1.20+£0.14 1.15+0.15




7.3.3 Tie chain length trial

Table 7-11 and Table 7-12 summarize the meaningful PCs that were extracted from the raw, FD,
VN raw and VN FD spectral datasets of the long-term and short-term milk samples spectral
averages of the tie chain length trial, respectively. PCA vyielded four, seven, four and eight
meaningful PCs from the raw, FD, VN raw and VN FD long-term spectral average datasets that
explained 98.76%, 97.53%, 98.47% and 96.74% of the variation in the spectral datasets,
respectively. These PCs, whose eigenvalue and percentage of explained variation >1, represent the
sources of variation in their respective spectral datasets that were separated from the noise and that
were tested for the treatment and block effects by the SAS Mixed procedure. PC6 (P = 0.0337)
and PC6 (P = 0.0323) extracted from long-term FD, and VN FD spectral average datasets,
respectively, revealed significant treatment effect. The later PC will be interpreted because it
yielded a smaller P value and it was extracted from VN spectra. VN eliminates procedural
variability not related to chemical composition of milk samples. PC 6 extracted from the long-term
VN FD spectral average dataset explains 1.70% of the variation in its respective dataset, which
suggests that the treatment effect is limited, and it was detect in an early stage. In addition, this PC
did not reveal a significant block effect (P = 0.0882).

Table 7-13 and Table 7-14 summarize the least squares means and their differences produced by
the Mixed procedure for the scores of PC6 extracted from long-term VN FD spectral average
dataset that revealed a significant treatment effect. These tables show that the estimates of the
mean scores of PC6 for T1 and T2 are negative and positive values, respectively, which means
that the influential spectral features in the loading spectrum of this PC have more intense
absorbance in spectra collected for milk samples of cows assigned to T1. It was proven in the
previous chapter that spectral features with more intense absorbances yield greater negative scores
when PCA is applied to the FD of the spectral data. This observation means that molecules affected
by the treatment are present in higher concentrations in milk samples collected from cows assigned

to T1, which is the control treatment (i.e., the shorter chain length).

Inspection of the integral of PC6 loading spectrum (Figure 7-2) revealed several peaks at the
following wavenumbers: 2919, 2851, 1715, 1576, 1541, 1461, 1419 and 968 cm™*. The peaks 2919,
2851, 1715, 1541, 1419 and 968 cm* can be assigned to the following IR bands: the asymmetrical
stretching (v,4CH,) of the methylene group in fatty acids, the symmetrical stretching (v;CH,) of
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the methylene group in fatty acids and histamine, the C = O stretching vibration in the carboxyl
functional group in free fatty acids, the deformation vibration band of (= NH,) in the amidine
functional group in creatine, the C — O stretching band in acetate, the alkene trans double bond in
trans fatty acids, respectively. The peak at 1576 cm™ can be assigned to: the stretching of the
imidazole ring in histamine, the bending vibration (§NH) of N — H in hippuric acid and the
symmetrical stretching of the carboxylate ion in citrate and fatty acids. The peak at 1461 cm™ can
be assigned to: the C — N stretching band in urea, the N — H bending of the NH; ion and NHS
symmetrical bending (6;NHZ) in histamine. Table 7-15 summarizes the results of the peak fitting
process for regions 1365-1160 cm™, which revealed peaks at 1347, 1299 and 1249 cm™, which
can be assigned to the CH; deformation band [118] that appears in the FTIR spectrum of the
aqueous solution of acetate, the bending vibration (§ CH,) of the methylene group in hippuric acid

and the C — O stretching band in citrate, respectively.

The spectral analysis concludes that milk samples collected from cows assigned to T1, which is
the control treatment, had higher levels of trans fatty acids, acetate, citrate and non protein nitrogen
compounds (NPNSs), which are urea, ammonium, hippuric acid, creatine and histamine, during the
last three weeks of the trial. All these molecules, and histamine in specific, are markers of
decreased pH in the rumen [17-20, 131]. This observation suggests that cows assigned to the longer
chain length treatment had more stable ruminal pH and less incidences of acidotic insults in the

rumen.

Acute and subacute ruminal acidosis (SARA) are associated with the accumulation of lactic acid
and volatile fatty acids (VFAS), respectively, in the rumen and the subsequent decrease in the
ruminal pH for several hours per day [17] that results from feeding high grain diets that are low in
fiber to high yielding dairy cows under intensive livestock production systems that are adapted to
digesting forage diets [18, 19]. Grain in the diet increases ammonia, VFAs, acetate, butyrate,
propionate, and valerate concentrations in the rumen [17]. The decrease of the ruminal pH induces
changes in the microbial flora profile of the rumen. Microorganisms that synthesize lactic acid
(i.e., Streptococcus bovis and lactobacilli) outnumber those that utilize lactic acid (Megasphera
elsdenii and Selenomonas ruminantium) [20]. In addition, high concentrations of short-chain fatty
acids (SCFA), mainly acetate, propionate, and butyrate, damage the epithelial barrier of the rumen

during an acidotic insult. This damage is not immediately reversible upon the removal of the
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acidotic insult, which leads to leakage of rumen metabolites to the blood serum [131]. In addition,
these conditions liberates Fusiformis necrophorus [20] into the portal circulation, predisposing the
cow to liver abscesses. The degeneration process associated with this chain of events cause release
of histamine. Histamine, which has been hypothesized to have an important role in acidosis, is also
produced by the decarboxylation of the amino acid histidine at low ruminal pH by the bacteria
Allisonella histaminiformans [17]. In addition, histamine and endotoxins are released during the

decline of the ruminal pH as a result of bacteriolysis and tissue degradation [20].

Changes to milk composition are reported in cases of reduced ruminal pH. These changes include
depressed milk fat [18], reduced protein and increased milk NPNs [20], such as ammonium, urea,
histamine, creatine and hippuric acid [84]. In addition, decreased ruminal pH alters the
biohydrogenation pathway of linoleic acid and increases the production of trans-10 C18:1 fatty
acid. Thus, more trans fatty acids are absorbed, even if the intake of unsaturated fatty acids is not
necessarily high [18, 21]. In fact, the milk numerical dataset (Table 7-16) shows that long-term
average of trans fatty acids for T1, which is 0.06%, is higher than the average for T2, which is
0.05%. The difference between the two averages revealed a significant treatment effect (P =
0.0445) when tested by the Mixed procedure. We also notice an increase and a decrease in the
long-term average of urea and protein for T1 and T2, respectively. These averages were 12.28
mg/dL and 12.14 mg/dL for urea, and 3.28% and 3.34% for protein for T1 and T2, respectively.
Milk fat depression is also noticed for T1 milk samples during the last week of the trial. The
average fat levels for T1 and T2 were 4.01% and 4.32%, respectively, during that period. In
addition, the long-term averages of SCFA were 0.35% and 0.33% for T1 and T2, respectively. The
increase in SCFA, which are de novo synthesized in the mammary glands, might require increased
amounts of the cofactor nicotinamide adenine dinucleotide phosphate (NADPH) that results from
the oxidation of isocitrate to a-ketoglutaric acid in the Krebs cycle, which might explain an

increase in citrate in milk samples collected from cows assigned to T1 [97].

Ruminal pH is a result of the balance between acid production from carbohydrates in the rumen
and the buffering action of sodium bicarbonate that are present in saliva, which are produced
during chewing or rumination [18-20]. Hence, enhanced chewing or rumination activity by the
cow reduces the risk of an acidotic insult. In the tie chain length trial, the time spent outside of the

stall by the withers of the cows assigned to the longer chain treatment was significantly greater in
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comparison to cows assigned to the recommended length (11 £ 1.1 vs 7 £ 1.1 % of daily time; P
= 0.05) [114], and it significantly increased between short- and long-term measurements (+ 3 %
of daily time; P < 0.05) [114]. This measurement indicates that cows assigned to longer chains
were spending more time outside the stall perimeter in the manger area. In addition, the distance
outside of stall perimeter for the withers, which represents the average distance outside of the stall
in the manger area, increased significantly between the short- and long-term (+ 0.9 cm; P < 0.05)
for both treatments [114]; however, this measurement did not differ between treatments. These
observations suggest that cows assigned to the longer chain treatment were spending more time at
the manger. Since feeding is the assumed usage of that area, we may assume that cows assigned
to longer chain treatment might have been chewing more; hence, they were producing more saliva
to balance the ruminal pH, which reduces the risk of an acidotic insult. It must be noted that no
detailed measures for the manger space usage were collected for this trial. In addition, the
combined “eating/rumination time” measurement did not reveal significant differences among the
treatments. However, the device that was used for this measurement was not capable of recording
the times of the two actions separately. Currently, the only diagnostic test for subclinical acidosis
is ruminal pH [20]. In this trial, milk FTIR spectroscopy showed promising results in rapidly

detecting metabolites in milk related to rumen acidotic insults in their early stages.
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Table 7-11 Principal components extracted from the raw, FD, VN raw, VN FD spectral datasets of the long-term milk spectral
averages for the tie chain length trial. The table also lists P values obtained from the SAS Mixed Procedure for the treatment and
block effects that are tested in this trial.

Long-term
Spectral Meaningful . Explained Cumulative Explained P Values
Dataset PC Eigenvalue Variation % Variation % Treatment Block
PC1 158.97 57.19 57.19 0.9253 0.0955
PC2 80.81 29.07 86.25 0.1965 0.2271
Raw PC3 32.06 11.53 97.78 0.4082 0.5837
PC4 2.70 0.97 98.76 0.3985 0.0461
PC1 188.03 67.64 67.64 0.9370 0.0788
PC2 33.77 12.15 79.79 0.3728 0.5928
PC3 28.94 10.41 90.20 0.2021 0.1266
FD PC4 8.67 3.19 93.31 0.9431 0.6860
PC5 5.63 2.03 95.34 0.3739 0.0198
PC6 3.76 1.35 96.69 0.0337 0.0679
PC7 2.33 0.84 97.53 0.6143 0.2491
PC1 210.88 75.86 75.86 0.7279 0.1006
PC2 51.15 18.40 94.26 0.6815 0.3665
VN Raw
PC3 8.54 3.07 97.33 0.3112 0.3810
PC4 3.18 1.14 98.47 0.4405 0.1283
PC1 188.40 67.77 67.77 0.8630 0.1848
PC2 43.33 15.59 83.36 0.6391 0.2985
PC3 12.88 4.63 87.99 0.3567 0.1941
PC4 8.05 2.90 90.89 0.9436 0.0205
VN FD
PC5 5.17 1.86 92.75 0.7679 0.3388
PC6 4.75 1.70 94.46 0.0323 0.0882
PC7 3.40 1.22 95.68 0.2885 0.1233
PC8 2.96 1.06 96.74 0.8024 0.4088
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Table 7-12 Principal components extracted from the raw, FD, VN raw, VN FD spectral datasets of the short-term milk spectral
averages for the tie chain length trial. The table also lists P values obtained from the SAS Mixed Procedure for the treatment and
block effects that are tested in this trial.

Short-term
Spectral Meaningful . Explained Cumulative Explained P Values
Dataset PC Eigenvalue Variation % Variation % Treatment Block
PC1 149.34 53.72 53.72 0.3465 0.1303
PC2 88.36 31.79 85.50 0.7148 0.0335
Raw PC3 34.31 12.34 97.84 0.3370 0.4137
PC4 3.05 1.20 98.94 0.5802 0.5166
PC1 179.27 64.49 64.49 0.3585 0.0959
PC2 36.08 12.98 77.47 0.2820 0.4186
PC3 35.44 12.75 90.21 0.7909 0.0741
FD PC4 10.16 3.65 93.87 0.8219 0.9010
PC5 4.47 1.61 95.48 0.9004 0.4182
PC6 2.83 1.02 96.50 0.0731 0.5845
PC7 2.70 0.97 97.47 0.1404 0.5390
PC1 204.06 73.67 73.67 0.4274 0.2042
VN Raw PC2 60.05 21.68 95.35 0.3757 0.0510
PC3 6.13 2.22 97.56 0.4904 0.2932
PC1 184.41 66.34 66.33 0.5209 0.2876
PC2 52.02 18.71 85.05 0.2414 0.0613
PC3 9.26 3.33 88.37 0.1178 0.2708
PC4 7.50 2.70 91.07 0.3463 0.2496
VN FD
PC5 5.37 1.93 93.00 0.9029 0.9686
PC6 4.09 1.47 94.48 0.0543 0.7157
PC7 3.33 1.20 95.67 0.5632 0.2725
PC8 3.03 1.09 96.76 0.4896 0.0189
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Table 7-13 Least squares means produced by the Mixed procedure for the scores of PC6 extracted from long-term VN FD
spectral average dataset and that revealed a significant treatment effect.

Treatment Estimate Standard DF t Value P Value
Error
1 -0.8393 0.4293 9 -1.96 0.0823
2 0.8426 0.5079 9 1.66 0.1315

Table 7-14 Differences of least squares means for PC6’s scores. The Scheffé adjusted P value shows that T1 is significantly
different from T2.

Scheffé
) Standard

Treatment Treatment Estimate DF tValue P Value Adj. P
Error

Value

1 2 -1.6819 0.6650 9 -2.53 0.0323 0.0323
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Figure 7-2 The spectral integral of PC6 loading spectrum extracted from long-term VN FD spectral average dataset for the TCL
trial. Shaded regions can be assigned to: 1) trans fatty acids 968 cm™, 2) citrate, hippuric acid and acetate 1365-1160 cm™, 3)
acetate 1419 cm', fatty acids and NPN (i.e., urea, ammonium and histamine)1461 cm, 4) creatine 1541 cm2, histamine,
hippuric acid, citrate and fatty acids 1576 cm, 5) Carboxylic group of free fatty acids ~ 1715 cm™, 7) CH stretching of fatty
acids 3000-2800 cm'L.

Table 7-15 Results of peak fitting of region 1365-1160 cm! in the integral of the loading spectrum of PC6 and probable
molecules that can be assigned to the resulting peaks.

Rangecm Peak Type Center X Height Area Probable molecule
Voigt 1249.745 3.5993 50.9682 Citrate

1365-1160 Voigt 1299.439 7.107 60.9523 Hippuric acid
Voigt 1347.338 10.3636 65.2514 Acetate
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Table 7-16 Milk composition data + SD for weeks 8-10 for the tie chain trial with long-term averages by treatment.

Treatment T1 T2
Week 8 9 10 Avg. 8 9 10 Avg.
Fat % 3.70£0.68 3.88+0.71 401+056 3.86£0.65 3.69+0.61 3.70+0.64 432+156 3.87£0.99
Protein % 3.25+0.36 3.33+0.36 327+0.38 3.28+0.36 3.31+0.29 3.34+0.32 3.36+048 3.34+035
Lactose % 461+0.15 463+0.16 464+0.18 462+0.16 458+0.21 459019 454+0.20 457+0.19
TS % 12.53+0.93 12.81+0.99 12.89+0.84 12.75+0.91 12.56 +0.90 12.61+0.96 13.19+1.92 12.76 +1.27
Urea mg/dL 11.96 +2.35 12.62 +1.73 12.27 +1.76 12.28 +1.93 11.72 +1.47 12.24 +2.02 12.53 +2.40 1214 +1.92
BHB mmol/L 0.11+0.01 0.08+0.02 0.09 +0.02 0.09 +0.02 0.12+0.02 0.10 +0.02 0.13+0.09 0.11+0.05
C14:0 % 0.431+0.094 0.463 +0.104 0.457 +£0.078 0.450 +0.091 0.434 +0.097 0.455 + 0.095 0.469 +0.144 0.451 +0.109
C16:0 % 1.321 +0.287 1.406 + 0.329 1.430 +0.253 1.386 +0.287 1.357 +0.301 1.379 £ 0.295 1.545 + 0.562 1.419 + 0.384
C18:0 % 0.366 + 0.045 0.384 +0.044 0.414 +0.042 0.388 +0.047 0.362 +0.041 0.361 % 0.060 0.448 +0.170 0.386 +0.104
C18:1 % 0.697 +0.108 0.749 + 0.086 0.788 + 0.101 0.745 + 0.103 0.672 +0.093 0.686 + 0.091 0.916 + 0.488 0.747 +0.282
SCFA % 0.341 +0.100 0.349 +0.105 0.357 +0.090 0.349 + 0.096 0.327 +0.087 0.327 +0.094 0.330 +0.111 0.328 +0.093
MCFA % 1.673 £0.447 1.726 + 0.460 1.753 £0.374 1.717 £0.418 1.706 + 0.358 1.646 + 0.405 1.949 +0.943 1.754 + 0.587
LCFA % 1.269 +0.197 1.341 +0.169 1.429 +£0.176 1.346 +0.188 1.233+£0.143 1.214 +0.167 1.508 +0.763 1.330 + 0.444
Saturated FA % 2,522 +0.493 2.614 + 0.552 2.667 +0.429 2.601 + 0.484 2.506 +0.474 2511 +0.475 2.746 +0.828 2,576 +0.583
Total Unsaturated FA %  0.828+0.137 0.854 +0.120 0.911+0.127 0.864 % 0.129 0.821 +0.109 0.789+0.116 1.065 + 0.553 0.879 +0.320
Monounsaturated FA % 0.684 +0.114 0.720 + 0.097 0.757 £ 0.109 0.720 +0.108 0.663 + 0.096 0.657 + 0.098 0.850 + 0.424 0.715 + 0.246
Polyunsaturated FA % 0.086 +0.028 0.118 +£0.023 0.124 +£0.022 0.110 £ 0.029 0.084 +0.027 0.115 + 0.030 0.121 £ 0.047 0.106 + 0.037
Trans FA % 0.058 +0.014 0.059 +0.010 0.064 +0.014 0.060 + 0.013 0.049 +0.010 0.050 + 0.012 0.048 + 0.020 0.049 +0.014
FFA % 5.958 +1.217 7.563 +1.432 7.555 +1.067 7.025 +1.433 8.254 + 3.089 9.138+3.327  12835+10514  9.879+6.269

241



7.3.4 Stall width trial

Table 7-17 and Table 7-18 summarize the meaningful PCs that were extracted from the raw, FD,
VN raw and VN FD spectral datasets of the long-term and short-term milk samples spectral
datasets of the stall width trial, respectively. PCA yielded five, nine, five and nine meaningful PCs
from the raw, FD, VN raw and VN FD long-term spectral datasets that explained 98.45%, 98.21,
98.28% and 98.08% of the variation in the spectral datasets, respectively. These PCs, whose
eigenvalue and percentage of explained variation >1, represent the sources of variation in their
respective spectral datasets that were separated from the noise and that were tested for the
treatment and block effects by the SAS Mixed procedure. PC5 (P = 0.0423) extracted from long-
term VN Raw spectral dataset revealed significant treatment effect; however, it also revealed a
significant block effect (P = 0.0008). For this reason, the interpretation of the loading spectrum of
this PC should take into consideration all factors accounted for by the blocking variable, which are
parity and days in milking (DIM). PC 5 extracted from the long-term VN Raw spectral dataset
explains 1.13% of the variation in its respective dataset, which suggests that the treatment and the
block effects are limited. In addition, this PC will be interpreted directly without being integrated
because it was extracted from a raw spectral dataset. This fact implies that the treatment and the

block effects are mostly related to changes in major milk components.

Table 7-20 and Table 7-21 summarize the least squares means and their differences produced by
the Mixed procedure for the scores of PC5 extracted from long-term VN Raw spectral dataset that
revealed significant treatment and block effects. These tables show that the estimates of the mean
scores of PC5 for T1 and T2 are positive and negative values, respectively, which means that the
influential spectral features in the loading spectrum of this PC have more intense absorbance in
spectra collected for milk samples of cows assigned to T1. It was proven in the previous chapter
that spectral features with more intense absorbances yield greater positive scores when PCA is
applied to the raw spectral data. This observation means that molecules affected by the treatment
and block effects are present in higher concentrations in milk samples collected from cows

assigned to T1, which is the control treatment (i.e., the single width stall).

Inspection of PC5 loading spectrum (Figure 7-3) revealed peaks at the following wavenumbers:
2920, 2855, 1721 and 1205 cm™. The peaks 2920, 2855 and 1721 cm™ are assigned to the

asymmetrical stretching (v,;CH,) of the methylene group in fatty acids of milk fat, the
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symmetrical stretching (v¢CH,) of the methylene group in fatty acids of milk fat and the C = 0
stretching vibration of ester linkage in milk fat, respectively. The region that shows the greatest
loadings is between ~1250 cm™ and ~1140 cm™ with a peak centered at ~1205 cm™. This region
can be assigned to the methylene twisting and wagging vibrations of fatty acids, esters [116] and
BHB, whose FTIR spectrum of the aqueous solution shows an absorption band centered at 1207
cm™ (Figure 7-4). In addition, the C — O stretching vibration of the ¢ — C(= 0) — 0 band of
saturated esters shows strong absorption in the 1210 cm™ to 1163 cm™ region [116], which is
observed in the spectra of milk samples with increasing fat content (Figure 7-5). Milk fat is

predominantly triglycerides, which are esters derived from glycerol and three fatty acids.

Table 7-22 summarizes the results of the peak fitting process for region 1100-940 cm™, which
revealed peaks at 1063 and 940 cm™ that appears in the FTIR spectrum of the aqueous solution of
BHB (Table 7-2).

The spectral analysis concludes that milk samples collected from cows assigned to T1, which is
the control treatment, had higher levels of milk fat triglycerides, milk fatty acids and BHB, which
is a precursor for the de novo synthesis of fatty acids in the mammary glands [97]. In this case,
BHB is not considered as an indicator of negative energy balance due to the absence of features in
PC5 loading spectrum that can be assigned to other markers of this metabolic issue. This
observation suggests that cows assigned to T1 were synthesizing more fatty acids and milk fat over
the long-term of the trial. This conclusion is supported by the numerical data set of milk
components during the last week of the trial (Table 7-23). The average of all reported milk

components was higher for T1 during that period except for urea and trans fatty acids.

In addition to nutrition and herd management practices, several factors affect milk composition.
These factors are region, season, breed, individuality, age, disease, diurnal rhythm, stage of
lactation and parity [132]. The trial was conducted in the same premises during one season, all
cows were of the same breed, which was Holstein, and collected milk samples combined portions
of morning and evening milking to eliminate the variations in milk composition related to diurnal
rhythm. Blocking was implemented in the experimental design of the trial to account for variations
related to the remaining factors, which are stage of lactation, parity and age (Table 7-24). However,
milk sample of cow 2057 from block 8 in T2 was missing on week 6 of the trial. This cow was the

only primiparous one in T2. In addition, T2 had a cow in its seventh parity (i.e., cow 7097); while
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the greatest parity in T1 was the fifth (i.e., cow 419). The missed milk sample of cow 2057 rendered
the median parity of cows of T2 greater than that of T1, which are 3 and 2, respectively. Hence,
cows of T2 were older and one lactation higher than those of T1. Milk fat and protein decline as
the animal becomes older. Milk fat falls about 0.2% each year from the first to fifth lactation as a
result of higher production and more udder infections; while protein decreases 0.02 to 0.05% each
lactation as animals age [133]. This fact is reflected in the numerical milk data where the averages
of fat were 3.96% and 3.76% and the averages of protein were 3.34% and 3.28% for T1 and T2,
respectively. In fact, the loading spectrum of PC5 extracted from long-term VN Raw spectral
dataset shows increased loadings between 1565 cm™ and 1520 cm™ which corresponds to the
Amide Il band of proteins in milk FTIR spectrum [22]. This observation explains the strong block
effect (P = 0.0008) and the treatment effect (P = 0.0423) on PC5. In this case, the treatment effect
might have originated from the imbalance of age and parity in blocks of T1 and T2 that resulted
from the missing milk sample of cow 2057 from the long-term dataset. The effect of a greater age
and parity in T2 might have overshadowed any effect on milk composition related to the stall
width. The hybrid spectral analysis was applied to the spectral datasets of week 5 and none of the
extracted PCs revealed a significant treatment effect (Table 7-19). In this trial, the hybrid spectral
analysis could detect effects of multiple factors on the FTIR spectra of milk samples and provided

explanation related to specific experimental details of the trial.
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Table 7-17 Principal components extracted from the raw, FD, VN raw, VN FD spectral datasets of the long-term milk spectral
datasets for the stall width trial. The table also lists P values obtained from the SAS Mixed Procedure for the treatment and block
effects that are tested in this trial.

Long-term

Spectral Meaningful . Explained Cumulative Explained P Values
Dataset PC Eigenvalue Variation % Variation % Treatment Block
PC1 146.50 52.70 52.70 0.6103 0.3639
PC2 76.97 27.69 80.39 0.5711 0.2751
Raw PC3 40.09 14.42 94.81 0.5856 0.1811
PC4 6.78 2.44 97.25 0.7496 0.7710
PC5 3.36 121 98.45 0.5696 0.3811
PC1 148.33 53.36 53.36 0.4548 0.3200
PC2 46.01 16.55 69.91 0.5975 0.1332
PC3 30.35 10.92 80.83 0.6819 0.6276
PC4 20.25 7.29 88.11 0.9316 0.5952
FD PC5 10.42 3.75 91.86 0.6152 0.0134
PC6 6.76 2.43 94.29 0.2942 0.8353
PC7 4.72 1.70 95.99 0.2918 0.6883
PC8 3.56 1.28 97.27 0.1399 0.5155
PC9 2.62 0.94 98.21 0.6917 0.7075
PC1 199.72 71.84 71.84 0.6957 0.4815
PC2 50.71 18.24 90.08 0.5269 0.2258
VN Raw PC3 14.78 5.32 95.40 0.4743 0.4272
PC4 4.87 1.75 97.15 0.4372 0.2245
PC5 3.13 1.13 98.28 0.0423 0.0008
PC1 175.90 63.27 63.27 0.6769 0.4643
PC2 38.64 13.90 77.17 0.6043 0.1012
PC3 21.69 7.80 84.98 0.6936 0.7748
PC4 13.90 5.00 89.98 0.1414 0.0035
VN FD PC5 6.340 2.28 92.26 0.2300 0.6657
PC6 5.20 1.87 94.13 0.9493 0.9771
PC7 4.64 1.67 95.80 0.0916 0.5014
PC8 3.61 1.30 97.09 0.6612 0.1740
PC9 2.74 0.99 98.08 0.3364 0.2808
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Table 7-18 Principal components extracted from the raw, FD, VN raw, VN FD spectral datasets of the short-term milk spectral
datasets for the stall width trial. The table also lists P values obtained from the SAS Mixed Procedure for the treatment and block
effects that are tested in this trial.

Short-term
Spectral Meaningful . Explained Cumulative Explained P Values
Dataset PC Eigenvalue Variation % Variation % Treatment Block
PC1 150.38 54.09 54.09 0.3546 0.0176
PC2 92.18 33.16 87.25 0.8075 0.2866
Raw PC3 23.83 8.57 95.82 0.3476 0.1208
PC4 6.54 2.35 98.18 0.3555 0.3405
PC5 3.13 1.13 99.30 0.4765 0.9212
PC1 167.78 60.35 60.35 0.4435 0.0196
PC2 35.34 12.71 73.07 0.5139 0.2447
PC3 30.83 11.09 84.16 0.3807 0.4828
FD PC4 18.35 6.60 90.76 0.2811 0.3418
PC5 8.10 291 93.67 0.7191 0.6465
PC6 5.33 1.91 95.59 0.1686 0.8037
PC7 4.09 1.47 97.06 0.1488 0.1938
PC1 213.76 76.89 76.89 0.4997 0.0614
PC2 37.90 13.63 90.53 0.4937 0.2029
VN Raw PC3 15.46 5.56 96.09 0.3052 0.2461
PC4 4.74 1.70 97.79 0.0743 0.0171
PC5 3.27 1.18 98.97 0.3028 0.9457
PC1 191.97 69.05 69.05 0.4677 0.0563
PC2 30.13 10.84 79.89 0.1613 0.3021
PC3 18.44 6.63 86.52 0.8666 0.3497
PC4 11.05 3.98 90.50 0.3685 0.2558
VN FD
PC5 7.58 2.73 93.23 0.2124 0.8537
PC6 5.48 1.97 95.20 0.2010 0.5612
PC7 3.33 1.20 96.40 0.7711 0.8458
PC8 2.78 1.00 97.40 0.1893 0.8713
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Table 7-19 Principal components extracted from the raw, FD, VN raw, VN FD spectral datasets of week 5 milk spectral datasets
for the stall width trial. The table also lists P values obtained from the SAS Mixed Procedure for the treatment and block effects
that are tested in this trial

Week 5

Spectral Meaningful . Explained Cumulative Explained P Values
Dataset PC Eigenvalue Variation % Variation % Treatment Block
PC1 177.50 63.85 63.85 0.2285 0.0800
PC2 57.88 20.82 84.67 0.1899 0.0630
Raw PC3 34.32 12.35 97.01 0.2589 0.1503
PC4 5.26 1.89 98.91 0.9269 0.7909
PC1 167.09 60.10 60.10 0.4310 0.0898
PC2 44.69 16.08 76.18 0.2321 0.2646
PC3 29.51 10.61 86.79 0.2594 0.2298
FD PC4 17.97 6.47 93.26 0.6512 0.7352
PC5 4.58 1.65 94.91 0.1013 0.5006
PC6 3.49 1.25 96.16 0.9563 0.5699
PC7 2.92 1.05 97.21 0.8166 0.7843
PC1 224.92 80.91 80.91 0.2122 0.0704
PC2 36.82 13.24 94.15 0.2888 0.2928
VN Raw PC3 7.45 2.68 96.82 0.9588 0.5065
PC4 4.39 1.58 98.41 0.9383 0.4886
PC1 195.07 70.17 70.17 0.2110 0.0756
PC2 35.07 12.61 82.78 0.2931 0.3356
PC3 16.10 5.79 88.57 0.9989 0.5778
PC4 7.311 2.63 91.20 0.8035 0.8637
VNFD PC5 6.98 2,51 93.72 0.1216 0.0818
PC6 5.07 1.82 95.54 0.1011 0.3773
PC7 3.29 1.18 96.72 0.0645 0.7708
PC8 2.75 0.99 97.71 0.2212 0.5114
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Table 7-20 Least squares means produced by the Mixed procedure for the scores of PC5 extracted from long-term VN Raw
spectral average dataset and that revealed a significant treatment effect.

Treatment Estimate Standard DF t Value P Value
Error
1 0.2842 1.1704 1 0.24 0.8483
2 -0.3179 1.1740 1 -0.27 0.8317

Table 7-21 Differences of least squares means for PC5’s scores. The Scheffé adjusted P value shows that T1 is significantly
different from T2.

Scheffé
) Standard

Treatment Treatment Estimate DF tValue P Value Adj. P
Error

Value

1 2 0.6021 0.2224 5.01 2.71 0.0423 0.0423
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Figure 7-3 The loading spectrum of PC5 extracted from long-term VN Raw spectral dataset for the stall width trial. Shaded
regions can be assigned as follows: 1) 1250-1140 cm- to the methylene twisting and wagging vibrations of fatty acids, esters and
BHB, and to the C — 0 stretching vibration of the C — C(= 0) — 0 band of saturated esters, 2) 1565-1520 cm™* to the Amide |1
band of milk proteins, 3) 1721 cm™ to the C = O stretching vibration of ester linkage in milk fat, 4) 3000-2840 cm™ to the
asymmetrical stretching (v,sCH,) and the symmetrical stretching (v;CH,) of the methylene group in fatty acids of milk fat.
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Figure 7-4 FTIR spectra of BHB aqueous solutions. Red: water, blue: 0.5% aqueous solution of BHB, purple: 1% aqueous
solution of BHB. The spectra show an absorption band centred at 1207 cm?, which can be assigned to the methylene twisting
and wagging vibrations.
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Figure 7-5 FTIR spectra of Milk samples with different fat concentrations. Blue: skim milk, purple: 1% fat, green: 2% fat, red:
3.25% fat. The C — O stretching vibration of the C — C(= 0) — 0 band of saturated esters shows strong absorption in the 1210
cm to 1163 cm™ region.

Table 7-22 Results of peak fitting of region 1100-940 cm! in the loading spectrum of PC5 and probable molecules that can be
assigned to the resulting peaks.

Range cm™ Peak Type Center X Height Area Probable molecule
Voigt 944.001 0.0773 11.105 BHB
1100-940 _
Voigt 1063.754 0.0058 0.8025 BHB
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Table 7-23 Average = SD milk composition data for week 6 for the stall width trial.

Treatment T1 T2

Fat % 3.96 + 0.54 3.76 £ 0.37

Protein % 3.34+£0.22 3.28+0.18

Lactose % 457+0.11 456 +0.19

TS % 12.85 + 0.64 12.57 +0.43

Urea mg/dL 12.85+1.22 13.07 £1.76

BHB mmol/L 0.13+0.02 0.13+0.04
C14:0 % 0.450 + 0.084 0.417 £0.083
C16:0 % 1.074 £ 0.183 1.005 + 0.159
C18:0 % 0.377 £ 0.054 0.357 £0.016
C18:1% 0.805+0.134 0.804 + 0.064
SCFA % 0.349 £ 0.054 0.314 £ 0.040
MCFA % 1.860 + 0.219 1.700 + 0.152
LCFA % 1.086 + 0.156 1.061 + 0.066
Saturated FA % 2.577 £ 0.407 2.410 + 0.309
Total unsaturated FA % 1.135+0.148 1.095 £ 0.082
Monounsaturated FA % 0.944 +0.142 0.894 +0.076
Polyunsaturated FA % 0.157 £ 0.023 0.149 + 0.025
Trans FA % 0.056 + 0.017 0.058 £ 0.012
FFA % 8.725 £ 2.402 8.366 + 2.800
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Table 7-24 Block design on week 6 of the stall width trial. E: early lactation stage 0-100 days in milk, M: mid lactation stage
100-200 days in milk. 2 Oldest cow among subjects of T2. ® cow with a missing milk sample.

) Lactation  Median lactations
Treatment Block Cow ID Lactation
stage per treatment

E

5322
5300
419
5275
5294
6294
5308
2063
2029
5296
70972
5327
5283
5258
5279
2057

T1 2.00

3.00
T2

o N o o s W N R o N o g s N e
Plw W w NN NN RN RN oo NN
mII 22 mMmmZI 22 L5

7.3.5 Manger wall and stall length trial

The manger wall and stall length trial was conducted under a crossover design in which each
subject was exposed to the two treatment levels within each row (i.e., T1 and T2), which means
each subject contributed two observations to the collected data. However, this fact did not prevent
the application of PCA as a dimensionality reduction method to the collected data in crossover
experimental design because PCA will not be used to model any effects. There have been published
studies in which PCA was applied as a dimensionality reduction method to experimental data
collected with a crossover experimental design [134, 135]. In this trial, the hybrid spectral analysis
approach that was developed in the previous chapter proved to be compatible with different
experimental designs that can be analyzed by mixed models that include randomized complete
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block designs, repeated measures and crossover designs, which makes this approach a versatile

tool for spectral analysis in controlled-design trials.

Table 7-25 and Table 7-26 summarize the meaningful PCs that were extracted from the raw, FD,
VN raw and VN FD spectral datasets of the long-term and short-term milk samples spectral
datasets of the stall length and manger wall trial, respectively. PCA yielded five, eight, four and
eight meaningful PCs from the raw, FD, VN raw and VN FD long-term spectral datasets that
explained 98.47%, 95.53%, 97.01% and 94.24% of the variation in the spectral datasets,
respectively. These PCs, whose eigenvalue and percentage of explained variation >1, represent the
sources of variation in their respective spectral datasets that were separated from the noise and that
were tested for the stall length, sequence, block, manger wall height treatment on the stall length
treatment and period effects by the SAS Mixed procedure. The manger wall height treatment and
its combined effect with the stall length did not reveal any significant effect on the short-term and
long-term spectral datasets, which means that the manger wall and stall length treatment did not
affect milk composition during the trial. On the other hand, PC6 (P = 0.0355) extracted from long-
term FD spectral dataset revealed significant length effect, which means that the stall length had a
significant effect on milk composition over the long-term of the trial. This PC explains 1.77% of
the variation in its respective dataset, which suggests that the length effect is limited. The loading
spectrum of PC6 had to be integrated before interpretation because it was isolated from FD spectral
dataset. In the following discussion, we will refer to the short and long stalls as L1 and L2,
respectively, to distinguish them from the two treatments (i.e., T1 and T2), which represent the

combined effect of the stall length and manger wall height.

Table 7-27 and Table 7-28 summarize the least squares means and their differences produced by
the Mixed procedure for the scores of PC6 extracted from long-term FD spectral dataset that
revealed a significant length effect. These tables show that the estimates of the mean scores of PC6
for L1 and L2 are negative and positive values, respectively, which means that the influential
spectral features in the loading spectrum of this PC have more intense absorbance in spectra
collected for milk samples of cows assigned to L1. It was proven in the previous chapter that
spectral features with more intense absorbances yield greater negative scores when PCA is applied

to the FD of the spectral data. This observation means that molecules affected by the stall length
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are present in higher concentrations in milk samples collected from cows assigned to L1, which is

the shorter stall length.

Inspection of the spectral integral of PC6 loading spectrum (Figure 7-6) revealed peaks at the
following wavenumbers: 1575, 1460, 1408, 1033, 980 and 946 cm™. The peak at ~1575 cm™ is
observed in the FTIR spectrum of histamine aqueous solution and it can be assigned to the
stretching of the imidazole ring. The peak at ~1460 cm™ is observed in the FTIR spectra of milk
samples spiked with urea and ammonium; hence, it can be assigned to the C — N stretching band
in urea or to the N — H bending band in ammonium. The peak at ~1408 cm™ is observed in milk
samples spiked with BHB and it can be assigned to the ¢ — O — H bending band or the
symmetrical stretching of carboxylate ion. The peaks at ~1033 and 980 cm™ are observed in the
FTIR spectra of milk samples spiked with histamine. The peak at ~ 946 cm™ is observed in FTIR
spectra of aqueous solutions of histamine and BHB. In addition, 980 cm™ and 946 cm™ has already

been assigned to bound Ca and organic P in milk [58].

The spectral analysis concludes that milk samples collected from cows assigned to L1 (i.e., the
short length row) had higher levels of BHB, urea, ammonium and histamine during the long-term
of each period of the trial. The last three compounds are considered milk NPNs. Milk numeric data
supports the conclusion regarding BHB and urea. Over the long-term, the averages for period 1 of
BHB content were 0.06 mmol/L and 0.05 mmol/L for L1 and L2, respectively, and 0.05 mmol/L
and 0.04 mmol/L for L1 and L2, respectively, for period 2. The averages for period 1 of urea
content were 13.02 mg/dL and 11.79 mg/dL for L1 and L2, respectively, and 14.01 mg/dL and
12.43 mg/dL for L1 and L2, respectively, for period 2.

Histamine in milk originates from the blood serum [84] and its elevated levels may be attributed
to the corium tissue breakdown (i.e., resulting in skin lesions or injuries) or stress [20]. Injury
severity decreased at several different locations on the cows over time, regardless of treatment. It
has been found that cows had 4-8 times less contacts with the tie-rail while they were rising in
long stalls regardless of the manger height but only while comparing to short stalls with low
manger, which may have led to possible reduction of injuries on the cow’s neck [115]. However,
reduction in injuries on the cow’s neck was greater for cows in short stalls with high manger while
compared to low manger. The key finding on the outcome measures of welfare comparing long

stalls to short stalls is the drastic increase of 1 h per day in lying time [115]. Increased lying time
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of 1 h per day for cows assigned to L2 (i.e., the longer stalls) indicates a more comfortable

environment; thus, may explain the reduced histamine levels in the blood.

Another source of elevated histamine in the blood is protein degradation that is associated with
necrotic diseases such as mastitis and metritis [20]. The averages of somatic cell count (SCC) for
L1 and L2 were 281,435 and 133,136 cells/mL, respectively, in milk samples collected during the
long-term of both periods. In Canadian Holstein cows, SCC greater than 200,000 cells/mL is
considered a sign of mastitis for cows that are more than 30 DIM [15]. In addition, the average
SCC for L1 (i.e., 281,435 cells/mL) exceeds the geometric mean of SCC for the province of
Quebec, which is 215,000 cells/mL [136]. If these numbers are broken down by period, the
averages of SCC for L1 and L2 become 528,273 cells/mL and 203,700 cells/mL, respectively, for
period 2. This observation indicates that cows assigned to shorter stalls were releasing more
histamine due to udder inflammation into the blood than those assigned to longer stalls, which
corroborates the findings of the spectral analysis. Nevertheless, no solid conclusion can be made
regarding the relationship between the stall length, milk composition and susceptibility to mastitis
in this trial. In fact, due to a strict maintenance of stall and bedding, no difference in stall
cleanliness or dryness, or in udder health were found between treatments and overtime [115].
While the literature reports experimental studies that find that longer stalls increase udder dirtiness
[137], observational ones did not confirm this relationship [138-140]. The dynamics of infectious
microorganisms’ proliferation on dairy farms is complex and the stall length and manger wall trial
was not designed to consider factors that have significant effect on the proliferation of mastitis,

such as management practices [137].
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Table 7-25 Principal components extracted from the raw, FD, VN raw, VN FD spectral datasets of long-term milk spectral datasets for the stall length and manger wall trial. The
table also lists P values obtained from the SAS Mixed Procedure for the effects that were tested in this trial.

Long-term
Spectral Meaningful PC Eigenvalue Explained Variation % Cumulati-ve- Explained P Values
Dataset Variation % length seq(length) block trt(length) period
PC1 158.84 57.14 57.14 0.4466 0.9078 0.1115 0.7793 0.1256
pC2 71.90 25.86 83.00 0.4065 0.6420 0.0131 0.4777 <0.0001
Raw pPC3 35.59 12.80 95.80 0.5914 0.7760 0.0934 0.4070 0.0004
PC4 4.03 1.45 97.25 0.6814 0.2743 0.5259 0.5997 0.0001
PC5 3.39 1.22 98.47 0.0590 0.1678 0.1449 0.5110 <0.0001
PC1 172.42 62.02 62.02 0.3954 0.9197 0.1148 0.8642 0.5032
pC2 46.40 16.69 78.71 0.3227 0.5131 0.0241 0.1711 <0.0001
pPC3 2243 8.07 86.78 0.7148 0.9572 0.0801 0.7467 <0.0001
PC4 7.87 2.83 89.61 0.7260 0.1368 0.1738 0.8487 <0.0001
Fo PC5 5.60 2.01 91.62 0.6060 0.4096 0.9410 0.7316 0.0119
PC6 4.92 1.77 93.39 0.0355 0.0375 0.3748 0.2756 0.9115
pC7 3.10 1.12 94.51 0.4702 0.8323 0.9112 0.6305 0.5355
PC8 2.84 1.02 95.53 0.8848 0.0693 0.0389 0.1293 0.8755
PC1 210.37 75.67 75.67 0.3895 0.9458 0.0986 0.9735 0.6202
VN Raw pC2 45.96 16.53 92.20 0.6187 0.5421 0.0906 0.2465 <0.0001
PC3 9.65 347 95.68 0.2230 0.4455 0.3281 0.5177 <0.0001
pC4 3.70 1.33 97.01 0.1589 0.1703 0.6535 0.7369 0.0004
PC1 187.51 67.45 67.45 0.4192 0.9179 0.1040 0.9781 0.0414
pC2 35.97 12.94 80.39 0.3945 0.6005 0.0570 0.6406 0.0001
PC3 11.32 4.07 84.46 0.1020 0.2641 0.0631 0.8256 <0.0001
pPC4 8.02 2.89 87.34 0.5462 0.4502 0.1249 0.4358 0.5410
VNFD PC5 6.69 241 89.75 0.7541 0.0830 0.9953 0.6990 0.2240
PC6 5.28 1.90 91.65 0.3356 0.8266 0.7761 0.2235 0.1408
pPC7 3.84 1.38 93.03 0.5208 0.5644 0.9576 0.3690 0.2010
PC8 3.35 121 94.24 0.1591 0.0027 0.0480 0.0581 0.5281




Table 7-26 Principal components extracted from the raw, FD, VN raw, VN FD spectral datasets of the short-term milk spectral datasets for the stall length and manger wall trial.
The table also lists P values obtained from the SAS Mixed Procedure for the effects that were tested in this trial.

Short-term

Spectral Meaningful PC Eigenvalue Explained Variation % Cumulati-ve- Explained P Values

Dataset Variation % length seq(length) block trt(length) period
PC1 144.33 51.92 51.92 0.2579 0.9280 0.1675 0.8666 0.0023
pC2 92.20 33.17 85.08 0.5433 0.9861 0.0220 0.4867 <0.0001

Raw pPC3 33.65 12.11 97.19 0.2322 0.7154 0.0460 0.9156 0.0001
PC4 2.81 1.01 98.20 0.5377 0.0816 0.7792 0.2083 0.5328
PC1 166.18 59.78 59.78 0.2150 0.9438 0.1940 0.8597 0.0435
PC2 48.58 17.47 77.25 0.0822 0.5589 0.0026 0.8058 <0.0001
pPC3 32.09 11.54 88.79 0.4677 0.8917 0.0544 0.4873 0.0112
Fo pc4 8.40 3.02 91.82 0.2212 0.3661 0.8604 0.9767 0.6371

PC5 6.43 231 94.13 0.6158 0.2777 0.0890 0.8287 <0.0001
pPC6 377 1.36 95.49 0.0894 0.9774 0.4045 0.6288 0.6860
PC1 204.74 73.65 73.65 0.2443 0.9570 0.2631 0.5677 0.1116
pC2 56.44 20.30 93.95 0.2362 0.7380 0.0399 0.8788 0.0041

VN Raw PC3 6.43 231 96.27 0.9240 0.1253 0.9148 0.0894 <0.0001
PC4 3.64 131 97.57 0.2230 0.1684 0.1441 0.5018 <0.0001
PC1 179.34 64.51 64.51 0.2171 0.9720 0.2728 0.4520 0.0042
pPC2 45.02 16.19 80.70 0.1509 0.8364 0.0400 0.7609 0.0857
PC3 16.05 5.77 86.48 0.9141 0.2355 0.4883 0.9741 <0.0001

VN ED PC4 8.68 3.12 89.60 0.2601 0.6865 0.8022 0.9715 0.1621
PC5 6.10 2.19 91.80 0.2197 0.9643 0.1640 0.4886 0.8574
PC6 4.62 1.66 93.46 0.1530 0.0150 0.0799 0.9530 0.0932
PC7 3.23 1.16 94.62 0.1905 0.0663 0.2297 0.7606 0.2904
pPC8 291 1.05 95.67 0.9910 0.4457 0.2886 0.2040 0.3811




Table 7-27 Least squares means produced by the Mixed procedure for the scores of PC6 extracted from long-term FD spectral
average dataset and that revealed a significant length effect.

Length Estimate Standard DF t Value P Value
Error
L1 -0.6226 0.4187 33 -1.49 0.1465
L2 0.6924 0.4339 33 1.60 0.1201

Table 7-28 Differences of least squares means for PC6’s scores. The Scheffé adjusted P value shows that L1 is significantly
different from L2

Scheffé
) Standard

Length Length Estimate DF tValue PValue Adj.P
Error

Value

L1 L2 -1.3150 0.5998 33 -2.19 0.0355 0.0355
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Figure 7-6 The loading spectrum of PC6 extracted from long-term FD spectral dataset for the stall length and manger wall trial.
Shaded regions can be assigned as follows: 1-3) peaks at ~1033, 980 and 946 cmare found in FTIR spectra of milk samples
spiked with histamine and BHB and their aqueous solutions, 4) peak at ~1408 cm is observed in FTIR spectra of milk samples
spiked with BHB, 5) peak at ~1460 cm™! is observed in FTIR spectra of milk samples spiked with urea and ammonium, 6) peak at
~1575 cmlis observed in FTIR spectrum of histamine aqueous solution.
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Table 7-29 Milk composition average + SD data for week 6 for the stall length and manger wall trial.

Row L1 L2 Average by length
Period P1 P2 P1 P2 L1 L2
Fat % 3.85+0.87 3.92+0.71 4.06+0.75 4.44+0.48 3.89+0.78 4.23 +0.66

Protein % 3.34£0.29 3.45+0.26 3.45+0.28 3.65+0.22 3.39+0.27 354+0.27
Lactose % 4670.11 4.65+0.19 461+0.18 460+0.21 466 £0.15 4.60£0.19
Urea mg/dL 13.03+1.72 14.01+£2.21 11.79£3.32 12.43 £ 2.46 13.50 +1.99 12.08 £2.91
BHB mmol/L 0.06 +0.02 0.05 0.01 0.05 +0.02 0.04 +£0.02 0.06 +0.02 0.05 +0.02

C14:0% 0.444 £0.132 0.464 +0.109 0.468 + 0.099 0515+0.053  0.453+0.119 0.489 + 0.083
C16:0 % 1.114 £0.349 1.224 £ 0.254 1.236 +0.288 1.401 £0.170 1.167 £ 0.305 1.311 +£0.251
C18:0% 0.299 £0.054  0.263+0.035 0.309 + 0.054 0.294 + 0.049 0.281 +0.048 0.302 £ 0.051
C18:1 % 0.791 +0.093 0.701 +0.106 0.811+0.144 0.800 +0.126 0.748 +0.107 0.806 +0.133
SCFA % 0.377£0.110  0.354%0.073 0.377 £0.079 0.392 + 0.059 0.366 + 0.093 0.384 + 0.069
MCFA % 1.736 + 0.540 1.909 + 0.441 1.925 +0.411 2.171+0.252 1.819 +0.492 2.037 +£0.362
LCFA % 1.109 +0.148 1.049 +0.159 1.125+0.163 1.154 +0.145 1.080 +0.153 1.138 +0.152
SFA % 2.611+0.689 2.664 + 0511 2.752 +0.533 2.978 +0.319 2.636 + 0.597 2.855 +0.453
UFA % 1.051+0.151 1.059 +0.189 1.102 +0.213 1.235+0.169 1.055 + 0.166 1.163 +0.202
MUFA % 0.897 +0.120 0.810 +0.127 0.920 +0.155 0.933+0.134 0.855 +0.128 0.926 +0.143
PUFA % 0.149+0.026  0.167 +0.015 0.149 + 0.025 0.178 +£0.022 0.158 +0.023 0.162 +0.027
TFA % 0.027 £0.020  0.086+0.031 0.023 +0.026 0.094+0.025  0.0550.039 0.055 + 0.044
FFA % 5.912 +1.742 4618 + 1.565 5.572 + 1.068 4770 £1.070 5.293 +1.751 5.207 + 1.120
De novo FA % 1.029 + 0.304 1.028 +0.219 1.076 + 0.237 1.173+0.142 1.029 + 0.260 1.120 £ 0.201
Mixed FA % 1.308 £ 0.379 1.354£0.271 1.404 + 0.334 1.525+0.185 1.330 £ 0.326 1.459 +0.277
Preformed FA % 1.158 £ 0.151 0.940 £ 0.174 1.190 £ 0.183 1.091+0.163 1.054 +0.194 1.145 +0.177
True Pro % 3.12+0.29 3.25+0.26 3.24+0.29 3.45+0.21 3.18+0.28 3.33+0.27
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7.4 Conclusion

A hybrid spectral analysis approach was developed to be applied to milk FTIR spectral data that
combined PCA and mixed modeling to detect a treatment effect in the context of controlled-design
dairy cattle welfare trials. This approach retained the multivariate structure of the FTIR data and
was applicable to different experimental designs that can be analyzed by mixed models, such as
randomized complete block designs, repeated measures and crossover designs. In the tie-rail and
chain length trials, the experimental design isolated the treatment effect (i.e., housing
modification) from the effects of other factors in the trial and the hybrid spectral analysis approach
determined the sources of variation in milk composition that related to treatment effect. In the tie
rail and chain length trials, PCs explaining 1.37% and 1.70% of the variation in milk FTIR data,
respectively, revealed significant treatment effects. The loading spectra of these PCs revealed
spectral features of molecules related to elevated body fat mobilization and reduced ruminal pH in
the tie rail and chain length trials, respectively. These findings were corroborated by the data that
was collected during the trials (i.e., behavioural data) and by the milk numeric data, which did not
include all the molecules revealed by the spectral features in the loading spectrum of the PCs in
question. In the stall width trial, a missing milk sample had a detrimental effect on the balance of
the blocking factor, which rendered the median parity of cows of the double width stall treatment
greater by one lactation cycle than that of the single width treatment. This imbalance in the
blocking factor was mainly reflected on milk fat and other milk components in milk numerical
data and the loading spectrum of the PC that revealed the block and treatment effect. In this case,
the hybrid spectral analysis approach could detect effects of multiple factors on the FTIR spectra
of milk samples and provided explanation related to specific experimental details of the trial. The
stall length and manger wall trial had a crossover experimental design. The hybrid approach
revealed that cows on longer stalls had less histamine in their milk samples which resulted from
an increase in lying time which states a great improvement in cow comfort at her stall. It can be
concluded that the hybrid approach for spectral analysis provides an innovative tool for studying
animal welfare from a novel prospective that focuses on the repercussions of animal comfort on

its biochemical process and their effects on milk synthesis and its fine composition.
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Figure 7-7 Urea [141]
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Figure 7-8 Raw milk spiked with urea. Blue: raw milk, purple: raw milk spiked with 0.5% urea, red: raw milk spiked with 1%
urea.
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Figure 7-9 p-Hydroxybutyric acid (BHBA or BHB) [142]
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Figure 7-10 Raw milk spiked with BHB standard. Red: raw milk, blue: raw milk spiked with 0.5% BHB, purple: raw milk spiked
with 1% BHB.
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Figure 7-11 Acetone [143]
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Figure 7-12 Raw milk spiked with acetone. Red: raw milk, blue: raw milk spiked with 0.5% acetone, purple: raw milk spiked with
1% acetone.
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Figure 7-13 Citrate [144]
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Figure 7-14 Raw milk spiked with citrate. Red: raw milk, blue: raw milk spiked with 0.5% citrate, purple: raw milk spiked with
1% citrate.

267



O

Figure 7-15 Acetate [145]
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Figure 7-16 Raw milk spiked with acetate. Red: raw milk, blue: raw milk spiked with 0.5% acetate, purple: raw milk spiked with
1% acetate.
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Figure 7-17 Phosphate [146]
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Figure 7-18 Raw milk spiked with phosphate. Red: raw milk, blue: raw milk spiked with 0.5% phosphate, purple: raw milk spiked
with 1% phosphate.
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Figure 7-19 From left to right: D-(+)-glucose, D-(+)-galactose, S-lactose [147-149]

0.40 V_Galactose_1P_S8 cav
—M_Glucoge_1P_S10.cav
M _Lactosge 1P_S12.csv
_pM_S0.ce
0.35+
0.30
0.254
0.20
(7 .
o
= 4
fud
2 0154
=1
2 ]
o
=z ]
0.10
0.05
0.00
-0.05]
-0.10]
3000 2500 2000 1500 1000
Wavenumbers (cm-1)

Figure 7-20 Red: raw milk, blue: raw milk spiked with 1% galactose, purple: raw milk spiked with 1% glucose, green: raw milk
spiked with 1% lactose.
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Figure 7-21 Ammonium ion [150]
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Figure 7-22 Raw milk spiked with ammonium chloride. Red: raw milk, blue: raw milk spiked with 0.5% ammonium chloride,
purple: raw milk spiked with 1% ammonium chloride.
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Figure 7-23 Linoleic acid C18:2 cis 9,12 [121]
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Figure 7-24 Raw milk spiked with linoleic acid. Red: raw milk, blue: raw milk spiked with linoleic acid 0.14%.
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Figure 7-25 Creatine [122]
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Figure 7-26 Raw milk spiked with creatine. Red: raw milk, blue: raw milk spiked with 0.5% creatine, purple: raw milk spiked
with 1% creatine, green: raw milk spiked with 0.002% (milk mean) creatine.
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Figure 7-27 Histamine [124]
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Figure 7-28 Raw milk spiked with histamine. Red: raw milk, blue: raw milk spiked with histamine 0.28%.
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Figure 7-29 Orotic acid [126]
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Figure 7-30 Raw milk spiked with orotic acid. Red: raw milk, blue: raw milk spiked with orotic acid 0.14%.
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Figure 7-31 Hippuric acid [128]
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Figure 7-32 Raw milk spiked with hippuric acid. Red: raw milk, blue: raw milk spiked with hippuric acid 0.3%.
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Chapter 8: General discussion and conclusion

8.1 Discussion

In this thesis, two propositions were argued for expanding the capabilities of the milk recording
system. The first was on-site milk analysis. The current system relies on collecting milk samples
from farms enrolled in the milk recording system and then shipping those samples to the central
dairy laboratory of a dairy herd improvement agency (DHI), such as Valacta. The current system
stipulates 10 analyses within 12 months period, which results in an estimated 3 million samples
being shipped annually to the central dairy laboratory. In addition, monitoring milk composition
has been proved to be an effective tool in managing the production process on dairy farms to
monitor animal health or nutritional status [14, 15], as it was presented in the literature review in
chapter 2. Modern milk analyzers are state-of-the-art instruments that are renowned for their
throughput, accuracy and precision [5]. However, those instruments are expensive, and they are
designed to operate under specific conditions, which makes on-site analysis of milk infeasible. If
a dairy farmer wishes to adopt a proactive approach and follow a self monitoring program of milk
composition, then there are currently two available options. The first option is to ship more samples
from the dairy farm to the central dairy laboratory; hence, increasing the carbon footprint of dairy
farming, which is already a concern. The second option is to rely on analyzers of milking robots;
however, those analyzers use near infrared (NIR) detectors that produce milk spectra with broad,
overlapping and low intensity bands [11]. Electromagnetic radiation in the NIR region (i.e., 2,500
to 750 nm) has a shorter wavelength than the mid-IR region (i.e., 10 to 2.5 um), which causes
greater light scattering that makes predictions of milk components less accurate than those
produced by analyzers built with mid-IR detectors, especially for minor milk components. For
these reasons, we consider that having an on-site milk analyzer based on mid-IR sensor will be a
valuable tool for dairy farmers who wish to self monitor milk composition of their cows more
frequently to adopt a proactive decision-making process rather than being reactive to issues that
have already become problematic.

For this purpose, two types of infrared (IR) spectrometers have been evaluated for on-site milk
analysis in combination with two sample introduction methods. In chapter 3, the first combination
was a portable Fourier transform infrared (FTIR) spectrometer with a transmission cell as a sample

introduction method. This combination is the basis of the official method for milk analysis by IR
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spectroscopy [4] and it is already implemented in commercial milk analyzers [5]. This combination
requires milk fat to be homogenized to reduce light scattering; hence, increasing the accuracy of
the analysis, and to facilitate the passage of milk through the transmission cell with the micrometric
optical path. Ultrasonic processing proved to be successful in achieving this goal. Applying 3000
joules of ultrasonic energy to 5 mL milk sample for 120s yielded a consistent particle distribution
profile of milk fat that was similar to that of industrially homogenized milk with a two-stage high
pressure homogenizer. In addition, the ultrasonic treatment degassed the milk sample and heated
it to a temperature appropriate for the analysis. Partial least squares (PLS) regression models were
developed to predict major milk components and some minor ones from FTIR milk spectra. The
external validation study of the final prototype that was evaluated in this study yielded mean
differences (MD) values that were < 0.05 for fat, protein and lactose, which comply with the
stipulations of the AOACI official method 972.16, 33.2.31 [37]. This proof of concept lay the
foundations for the design of a dedicated FTIR on-site milk analyzer. Nevertheless, it is
recommended to investigate the potential of implementing microfluidics as a sample delivery
system. A microfluidic system will reduce the volume of milk sample required for the analysis,
which will reduce the amount of ultrasonic energy and time required to homogenize milk fat. In
addition, it will reduce the amount of energy that is needed to drive the milk sample through the

analyzer.

In chapter 4, attenuated total reflectance (ATR) was evaluated as an alternative sample
introduction method for the analysis of raw milk. It goes without saying that the accuracy of the
analysis will not be as accurate as it is with homogenized milk. ATR will eliminate the need for a
pumping accessory to deliver liquid milk for analysis and it will avoid all mechanical issues that
might result from the clogging of the micrometric path length of the transmission cell by raw milk.
Contrary to what has been reported in the literature so far, the study relied on large sample size of
producer raw milk, which helped model the chemical information related to milk composition in
a more realistic manner that lead to reduced prediction errors, especially for milk protein. The
correlation coefficients values of cross validation of PLS regression models were 0.95, 0.98 and
0.98, and RMSECYV values were 0.06%, 0.07% and 0.06% for lactose, protein and non-fatty solids,
respectively. As for milk fat, the correlation coefficient and RMSECV for cross validation were
0.75 and 0.37%, respectively. Milk fat is present in the form of globules that range in diameters
from <0.2 to >15 pm. The small fat globules represent 80% of the total number of fat globules but
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they contain only 3% of the mass of fat. On the other hand, large globules represent only 2% of
the total number of fat globules but they contain 95% of the mass of fat [5]. Taking into
consideration that the path length of the evanescent wave at the ATR surface is only 2-3 pum [7],
most of the fat in milk deposited on the ATR surface is not probed by the evanescent wave. This
observation proves that ATR can be used as a sample introduction method for milk analysis for
applications where milk fat is not required to be determined. However, most herd management

decisions rely heavily on fat levels in milk, which renders ATR infeasible for such applications.

In addition, a novel type of IR spectrometers was evaluated for milk analysis in chapter 4, which
relies on a linear variable filter (LVF) as a dispersive element mounted on top of a pyroelectric
line sensor to resolve different wavelength in the IR spectrum rather than interferometry, which
means it does not contain any moving parts. This type of spectrometer is significantly cheaper than
its FTIR counterpart, which will reduce the cost of an on-site analyzer. It is also equipped with an
ATR sample introduction method, which will eliminate the need for pumping accessory. This
spectrometer yielded an acceptable analytical performance for the determination of lactose, protein
and water in milk, and prediction errors were improved when milk was homogenized with an
ultrasonic probe. However, this spectrometer did not reveal acceptable analytical performance with
milk fat. Milk spectra obtained by this spectrometer had uneven data spacing and the number of
data points in the Fat A region was too low to adequately capture the chemical information related
to milk fat, which makes it suitable for applications that do not require the determination of milk
fat.

In chapter 5, a case study was presented in which on-site milk analysis by IR spectroscopy
provided a solution for a serious issue that faces the dairy industry in Brazil. There, water addition
to milk is a rampant practice that can be detected by milk cryoscopy [79], which is the official
method in Brazil to prove that milk is not watered-down. However, milk cryoscopy readings of
freezing point depression of milk can be manipulated and restored to its legal value by the addition
of some chemicals with the added water. To overcome this problem, a lab-in-box instrument was
developed using the LVF spectrometer, which was tested in the previous chapter. This detector
could differentiate genuine milk samples from watered-down ones, and it could predict the
percentage of added water regardless of the chemical that was added to restore the freezing point
depression of milk to its legal value. In addition, an IR-based solution was developed that relied
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on portable FTIR spectrometer combined with two tiers classification model and PLS regression
models to differentiate watered-down milk samples from genuine ones and to identify and quantify
the added chemical. In this case, the crucial decision was dependent on the outcome of the first
classification model, which was a principal component based quadratic discriminant analysis
model that determines the authenticity of the milk sample, rather than a PLS regression model that
played a secondary role in this application. At the moment, PLS regression is the prevailing
algorithm that is implemented with milk analyzers. This case study demonstrated that an on-site
milk analyzer based on mid-IR spectroscopy combined with multivariate classification algorithms
can be a valuable tool to support the dairy industry in combating problems related to milk

production.

The second proposition that was discussed in this thesis to expand the capabilities of the milk
recording system is the exploitation of milk FTIR spectra beyond the paradigm of predicting
specific milk components by PLS regression models that will be used in the decision-making
process on dairy farms. DHI agencies provide services that do not necessarily rely on data
generated by the milk recording system, such as the assessment of animal welfare. For this purpose,
trained technicians visit dairy farms to evaluate animal injuries, quality of the cow’s lifts and sets,
body condition and lameness. However, some conditions related to animal welfare, such as
laminitis, cause physiological changes in the animal’s body that might lead to increased
concentrations of some metabolites in the blood serum [20]. Since precursors of milk components
are obtained from the blood, we hypothesize that the animal welfare state might affect milk
composition, which might be reflected in the milk FTIR spectrum. It might be difficult to detect
such changes in milk components that are currently determined by central dairy laboratories
because they might not be affected by the animal welfare state. Alternatively, data mining
techniques were applied to milk FTIR spectra to determine the spectral fingerprint associated with

the animal welfare state.

In chapter 6, several multivariate data analysis algorithms were evaluated as data mining tools to
detect the spectral fingerprint in milk FTIR spectra that reflects changes in milk composition
associated with the effects of different housing treatments that aim at improving animal welfare in
animal trials with controlled experimental design. Data mining is broadly defined as the process
of finding patterns in data to improve the decision-making process in a specific domain [93]. To
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achieve this goal, it combines tools from statistics, artificial intelligence (Al) and machine
learning, which include hypothesis testing, clustering, classification and regression algorithms. In
chapter 6, hierarchical cluster analysis (HCA), principal component analysis (PCA) and partial
least squares discriminant analysis (PLS-DA) were evaluated as tools for data mining of milk FTIR
spectra. The major drawback of the three algorithms was their inability of hypothesis testing for
fixed and random effects that had been defined in the statistical model that was used to generate
the data in the animal trial with the controlled experimental design. To overcome this obstacle,
PCA was used as a dimensionality reduction method for the spectral data that created a new dataset
with smaller number of variables. These variables were used as input for hypothesis testing by
mixed modeling to test the different effects that were considered in the statistical model of the
animal trial. The “PCA-mixed modeling” hybrid approach maintained the multivariate structure
of milk FTIR data and accommodated a powerful hypothesis testing tool that proved to be

successful in answering the following questions:

= Does a treatment have a significant effect on the FTIR spectral data of milk composition?

=  Which treatment level did significantly change milk components’ concentrations?

= What are the spectral variables that were affected by changing milk components’
concentrations?

= What molecules in milk can be assigned to FTIR peaks that are significantly affected by
the treatment?

In chapter 7, the “PCA-mixed modeling” hybrid approach was successfully applied to milk FTIR
data collected during animal trials designed to study the effects of tie rail position, chain length,
stall width, stall length and manger wall height on dairy cows’ welfare state in the tie stall dairy
system. For each trial, the isolated spectral fingerprint represented changes to milk composition
associated with the significant treatment effect and it was interpreted in light of the behavioural
data that was collected during the trial. This hybrid approach bridged the gap between two different
domains, which are milk FTIR spectroscopy and behavioral animal science, and provided a tool
to study animal welfare from a novel angle. The hybrid approach detected the trend of subtle
changes in milk composition before the appearance of any problematic clinical signs on the trials’
subjects. On the other hand, testing of individual milk components, which were predicted by PLS
regression models, for treatment effect by mixed modeling did not reveal any trends in the changes
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of milk composition. This observation proves that milk FTIR data can be used directly in
applications beyond the paradigm of predicting specific milk components by PLS regression
models. For future studies, it is recommended to add a milk metabolomics component to better
understand the changes in milk chemical composition as a function of the animal welfare state.

This metabolic component will verify the findings of the hybrid spectral analysis.

8.2 Conclusion

Milk recording system is a valuable tool for enforcing the standards of the dairy industry on milk
producers and for providing support for dairy farmers to constantly improve their herd
management practices. In this thesis, we presented two propositions to expand the capabilities of
the milk recording system. The first was on-site analysis, which can be achieved by having portable
transmission based FTIR milk analyzer. It was proved in this thesis that portable FTIR
spectrometer equipped with a transmission cell and combined with PLS regression can accurately
predict milk components, which included major ones and some minor ones. Such a tool will enable
dairy farmers to implement a self monitoring program of milk composition without increasing the
number of samples that need to be shipped to central dairy laboratories for analysis; hence, avoid
increasing the carbon footprint of this process. On the other hand, the novel LVF-IR spectrometer
proved to be effective in determining milk water, lactose and protein, which made it a good
candidate for on-site analysis for applications that do not rely on determining milk fat, such as
differentiation of watered-down milk from genuine one. An IR-based solution for detecting this
practice was highly appreciated by dairy industry stakeholders in countries where this practice is

a serious problem.

The second proposition was to exploit milk FTIR data directly in data mining process to detect
trends of changes in milk composition without relying on prediction of specific milk components
by PLS regression models. Combining PCA and mixed modeling proved to a be a successful
strategy for achieving this goal that helped bridge the gap between two different scientific domains,
which are milk FTIR spectroscopy and animal behaviour science. This strategy will open the door
to study animal welfare from a novel angle, which will eventually help DHI agencies to provide
new services for dairy farmers in the field of animal welfare based on milk FTIR data that is

routinely collected.
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