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Abstract  

In this thesis, two propositions were presented to expand the capabilities of infrared (IR) 

spectroscopy to monitor dairy production and milk quality. The first was to provide Canadian milk 

producers with suitable cost-effective and easy-to-use instruments for on-site milk analysis. Such 

instruments will help in realizing the proAction initiative of the Canadian Quality Milk Program 

(CQM) of the Dairy Farmers of Canada (DFC), which aims at enabling Canadian milk producers 

to self monitor fat and protein content, and other milk quality indicators through on-site milk 

sampling and inspection. Implementation of infrared milk analysis with the use of a portable 

Fourier transform infrared (FTIR) spectrometer equipped with a transmission cell and combined 

with an ultrasonic homogenizer proved to be effective in on-site prediction of milk components. 

An external validation study of the final prototype evaluated in this study yielded mean difference 

(MD) values that were ≤0.05 for fat, protein and lactose, which comply with the stipulations of the 

AOAC International official method 972.16, 33.2.31. Attenuated total reflectance (ATR) was 

evaluated as an alternative sample introduction method for raw milk analysis by FTIR 

spectroscopy without any homogenization. The ATR-FTIR calibration models developed by 

partial-least-squares regression (PLSR) yielded prediction error values of 0.06%, 0.07% and 

0.06% for lactose, protein and non-fat solids, respectively, and 0.37% for milk fat, which makes 

ATR infeasible for the determination of milk fat. In addition, a linear variable filter (LVF) array 

spectrometer, which is a novel IR spectrometer, was evaluated for milk analysis. The prediction 

error values for PLSR models developed with raw milk IR spectra were 0.07%, 0.23% and 0.49% 

for lactose, protein and fat, respectively. Ultrasonic treatment of milk reduced the prediction errors 

for lactose and protein to 0.05% and 0.15%, respectively, but did not affect the prediction error for 

milk fat. Thus, use of this LVF IR spectrometer was deemed infeasible for milk fat determination. 

Nevertheless, the LVF IR spectrometer proved to be an effective tool in differentiating watered-

down milk samples from genuine ones. In some countries, fraudulent dairy farmers might add 

water to increase the volume of milk. This practice can be detected by milk cryoscopy, which 

measures milk freezing point depression; however, the reading of a cryoscope can be restored to 

its legal values by the addition of true solutes, such as urea, ammonium sulfate and citrate. The 

LVF IR spectrometer differentiated between genuine milk samples and those that contained as low 

as 5% added water and different chemical adulterants. Quantitatively, PLSR detected added water 

in raw milk with a prediction error of 1.85% regardless of the identity of the chemical adulterant 
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that was added with water to mask its addition. These promising results convinced the 

manufacturer of the LVF IR spectrometer to produce a lab-in-box milk adulteration detector, 

which was commissioned for a major manufacturer of milk cryoscopes in Brazil. In addition, a 

transmission-based FTIR solution was developed to differentiate watered-down milk samples from 

genuine ones. For raw milk, the DialPath accessory (Agilent Technologies, Santa Clara, California, 

USA) with 30 µm path length was used as a sample introduction method, and a multitiered 

prediction workflow was elaborated in the following manner. First, a classification model was 

developed to differentiate between the spectra of watered-down and genuine milk samples by 

applying principal component-based quadratic discriminant analysis. Second, soft independent 

modelling of class analogies (SIMCA) was employed to develop a classification model allowing 

for identification of the chemical adulterant present in the sample, if any. If the chemical adulterant 

is urea, citrate or sulfate, then added water and the chemical adulterant will be quantified by 

selection of the appropriate PLSR calibration models. If multiple chemical adulterants are present, 

then only added water will be quantified. The prediction error value of the PLSR calibration model 

for added water was 0.39 % for raw milk scanned with the DialPath accessory (Agilent 

Technologies, Santa Clara, California, USA) with 30 µm path length. The presence of different 

chemicals in milk did not undermine the capability of the water prediction model. 

The second proposition that was discussed in this thesis to expand the capabilities of milk IR 

spectroscopy was the exploitation of milk FTIR spectra beyond the paradigm of predicting specific 

milk components by PLSR models that will be used in the decision making process on dairy farms. 

Combining principal component analysis (PCA) and mixed modeling proved to be a successful 

strategy to detect trends of subtle changes in milk FTIR spectra. This approach was applied to 

animal trials aimed at studying the effect of tie rail position, chain length, stall width, stall length 

and manger wall height on animal welfare level in the tie stall dairy farming system. For each trial, 

a spectral fingerprint was isolated, which represented changes to milk composition associated with 

the significant treatment effect and was interpreted in light of the behavioural data that was 

collected during the trial. Currently, animal welfare is assessed by trained technicians who visit 

dairy farms to evaluate animal injuries, quality of the cow’s lifts and sets, body condition and 

lameness. The hybrid approach investigated in this thesis bridged the gap between two distinct 

scientific domains, namely, FTIR spectroscopy and animal behaviour science, and it will open the 

door to study animal welfare from a novel angle, which will eventually help dairy herd 
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improvement agencies provide new services for dairy farmers in the field of animal welfare based 

on milk FTIR spectra that are routinely recorded. 
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Résumé  

Dans cette thèse, deux propositions ont été présentées pour augmenter la fonctionnalité de la 

spectroscopie infrarouge (IR) pour contrôler la production laitière et la qualité du lait. La première 

était de développer des instruments rentables et faciles à utiliser pour l'analyse d’échantillons de 

lait au site de collecte. De tels instruments aideront à réaliser le volet Qualité du Lait inclus au sein 

de l'initiative proAction des Producteurs laitiers du Canada, en permettant aux producteurs de lait 

canadiens de surveiller eux-mêmes et plus étroitement la teneur en matières grasses et en protéines 

ainsi que d'autres indicateurs de la qualité de lait. L’utilisation d'un spectromètre infrarouge 

portable à transformée de Fourier (IRTF) équipé d'une cellule de transmission et combiné à un 

homogénéisateur à ultrasons s'est avérée efficace et fiable pour l’analyse d’échantillons de lait 

directement à la ferme, dans le but de déterminer leur teneur en composantes. Une étude de 

validation externe du prototype final évalué dans cette étude a donné une différence moyenne 

≤0.05 pour la matière grasse, la protéine et le lactose, ce qui correspond à la norme officielle de 

l’AOAC International 972.16, 33.2.31. La réflectance totale atténuée (RTA) a été évaluée comme 

méthode alternative d'introduction d'échantillons pour l'analyse du lait cru non homogénéisé par 

spectroscopie IRTF. Les modèles d'étalonnage RTA-IRTF développés par régression des moindres 

carrés partiels ont donné des valeurs d'erreur de prédiction de 0.06%, 0.07% et 0.06% pour le 

lactose, la protéine et les solides non gras, respectivement, et de 0,37% pour la matière grasse 

laitière, ce qui rend la RTA inutile pour évaluer la teneur en gras du lait. Un spectromètre à filtre 

variable linéaire (FVL), qui est un nouveau type de spectromètre IR, a été aussi évalué pour 

l'analyse du lait. Les valeurs d'erreur de prédiction des modèles de régression des moindres carrés 

partiels développés avec des spectres IR pour le lait cru étaient de 0.07%, 0.23% et 0.49% pour le 

lactose, la protéine et la matière grasse respectivement. Le traitement du lait par ultrasons a réduit 

les erreurs de prédiction du lactose et de la protéine à 0.05% et 0.15%, respectivement, mais n'a 

pas affecté l'erreur de prédiction pour la matière grasse. Ainsi, l'utilisation de ce spectromètre FVL 

IR a été jugée inutile pour évaluer la teneur en matière grasse du lait. Néanmoins, le spectromètre 

FVL IR s'est avéré un outil efficace pour différencier les échantillons de lait frelatés des 

échantillons authentiques. Dans certains pays, il arrive que des producteurs laitiers frauduleux 

ajoutent de l'eau pour augmenter le volume de lait expédié. Cette pratique peut être détectée par la 

cryoscopie du lait, qui mesure la dépression du point de congélation du lait ; cependant, la lecture 

d'un cryoscope peut être rétablie aux valeurs attendues via l'ajout de solutés tels que l'urée, le 
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sulfate d'ammonium et le citrate. Le spectromètre FVL IR a permis de différencier les échantillons 

authentiques de lait de ceux contenant aussi peu que 5% d'eau ajoutée et divers adultérants. 

Quantitativement, le modèle de régression des moindres carrés partiels a détecté l’ajout d’eau dans 

le lait cru avec une erreur de prédiction de 1.85% et ce, peu importe l'identité de l'adultérant 

mélangé à l'eau pour masquer son ajout. Ces résultats prometteurs ont convaincu le fabricant du 

spectromètre FVL IR de produire un détecteur d’adultération du lait, qui a été commandé pour un 

grand fabricant de cryoscopes à lait au Brésil. En outre, une solution basée sur la transmission 

IRTF a été développée pour différencier les échantillons de lait adultérés des échantillons 

authentiques. Pour le lait cru, l'accessoire DialPath (Agilent Technologies, Santa Clara, Californie, 

ÉU) avec une longueur de trajet de 30 µm a été utilisé comme méthode d'introduction d'échantillon, 

et un flux de travail de prédiction à plusieurs niveaux a été élaboré. Premièrement, un modèle de 

classification a été développé pour différencier les spectres d'échantillons de lait dilué et 

authentique en appliquant une analyse discriminante quadratique basée sur les composantes 

principales. Deuxièmement, une modélisation indépendante douce des analogies de classe 

(SIMCA) a été utilisée pour développer un modèle de classification permettant d'identifier 

l'adultérant présent dans l'échantillon, le cas échéant. Si l'adultérant est l'urée, le citrate ou le 

sulfate, l'eau ajoutée et l'adultérant chimique sont quantifiés en sélectionnant les modèles 

d'étalonnage de moindres carrés partiels appropriés. Si plusieurs adultérants sont présents, seule 

l'eau ajoutée est quantifiée. La valeur d'erreur de prédiction de l'eau ajoutée était de 0.39% pour le 

lait cru analysé avec l'accessoire DialPath (Agilent Technologies, Santa Clara, Californie, ÉU). La 

présence de différents adultérants dans le lait n'a pas affecté les résultats du modèle de prédiction 

de l'eau.  

La deuxième proposition discutée dans cette thèse visait à augmenter la fonctionnalité de la 

spectroscopie IR du lait par l'exploitation des spectres IRTF du lait au-delà de leur utilisation 

traditionnelle, soit pour la prédiction des composantes du lait, en introduisant des modèles de 

moindres carrés partiels utilisables dans les processus décisionnels au sein des troupeaux laitiers. 

La combinaison de l'analyse en composantes principales (ACP) et de la modélisation mixte s'est 

avérée une bonne stratégie pour détecter même les changements subtils dans les spectres IRTF du 

lait. Cette approche a été appliquée aux essais sur les animaux visant à étudier l'effet de la position 

de la barre d'attache, de la longueur de la chaîne, de la largeur de stalle, de la longueur de stalle et 

de la hauteur du muret entre la stalle et la mangeoire sur le niveau de bien-être de vaches laitières 
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logées en stabulation entravée. Pour chaque essai, une empreinte spectrale représentant les 

changements dans la composition du lait associés à l’effet significatif d’un traitement a été isolée, 

puis interprétée à la lumière des données comportementales recueillies au cours de l'essai. 

Actuellement, le bien-être animal est évalué par des techniciens qualifiés qui visitent les fermes 

laitières pour évaluer les blessures, la qualité des levers et des couchers, la condition de chair et la 

boiterie chez les vaches. L'approche hybride étudiée dans cette thèse se veut combler l'écart entre 

deux domaines scientifiques distincts, soit la spectroscopie IRTF et la science du comportement 

animal, et ainsi ouvrir la porte à l'étude du bien-être animal sous un nouvel angle. Cette nouvelle 

approche pourrait éventuellement aider les agences d'amélioration des troupeaux laitiers à fournir 

aux producteurs de nouveaux services liés aux questions de bien-être animal, en se basant sur les 

spectres IRTF de ces mêmes échantillons de lait qui sont déjà régulièrement collectés à la ferme. 
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Contributions to knowledge 

1. Demonstrated that major milk components and some minor ones can be determined by 

portable FTIR spectrometer equipped with a transmission cell and combined with 

ultrasonic processing of milk and PLS prediction models.  

In this study, it has been proven that milk analysis by FTIR spectroscopy can be performed 

outside central dairy laboratories. The final prototype that was tested yielded MD values that 

were ≤ 0.05 for fat, protein and lactose, which comply with the stipulations of the AOACI 

official method 972.16, 33.2.31. This proof of concept opens the door for on-site milk analysis, 

which will expand the applications of FTIR spectroscopy in monitoring milk compositions on 

dairy farms.  

2. Evaluated the potential of ATR-FTIR spectroscopy in raw milk analysis accompanied by 

PLS regression models. 

In this study, it has been proven that ATR-FTIR spectroscopy can be a viable option for the 

determination of protein, lactose and solids non-fat in raw milk. The prediction errors for these 

milk components were better than those reported in the literature so far and comparable to what 

has been obtained by transmission based FTIR spectroscopy. As a sample introduction method, 

ATR can eliminate issues related to pumping raw milk through transmission cell with 

micrometric optical path length. Contrary to what has been reported in the literature, the study 

relied on big sample size of producer raw milk (N=360) that resulted in 1080 spectra. In 

addition, the study confirmed ATR-FTIR spectroscopy inability to capture sufficient chemical 

information related to milk fat.  

3. Evaluated the novel linear variable filter (LVF) array IR spectrometer accompanied by 

PLS regression for milk analysis.  

LVF array IR spectrometers do not rely on interferometry to resolve different wavelengths in 

the mid-IR range, which means they do not have moving parts. This fact makes them good 

candidate for on-site applications of milk analysis. In addition, they are significantly cheaper 

than their FTIR counterpart and they are equipped with an ATR sample introduction accessory. 

This spectrometer revealed acceptable performance in determining water content, lactose and 

protein in raw milk. However, it was incapable of capturing sufficient chemical information 

related to milk fat.  
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4. Demonstrated that different combinations of IR spectrometers and sample introduction 

methods can capture chemical information in milk containing extraneous water and 

chemical adulterants. 

Several combinations of IR spectrometers and sample introduction methods were used to scan 

milk samples containing extraneous water and chemical adulterants. These chemicals are 

intended to restore the freezing point depression reading of milk cryoscopy to its legal value. 

This practice is a serious concern in some countries. All evaluated combinations revealed 

reliable capabilities in detecting this practice. These combinations were ATR-LVF 

spectrometer and FTIR spectrometer combined with ATR accessory, transmission cell and the 

DialPath accessory (Agilent Technologies, Santa Clara, California, USA), which is a 

transmission-based sample introduction method.  

5. Contributed to the development of a novel lab-in-box milk adulteration detection 

instrument.  

The manufacturer of the LVF spectrometer built a lab-in-box instrument dedicated to the 

detection of watered-down milk after proving that the LVF spectrometer can detect this 

practice. The new instrument can differentiate genuine milk samples from watered-down ones 

and can estimate the percentage of added water regardless of the chemical adulterant that might 

have been added to milk to restore its freezing point depression to the legal value.     

6. Developed an FTIR based solution to detect watering down of milk.  

A multi-tier solution was developed to detect milk that contains extraneous water and chemical 

adulterants using FTIR spectroscopy combined with the DialPath accessory (Agilent 

Technologies, Santa Clara, California, USA) as a sample introduction method for raw milk in 

a business-oriented context. The solution included a principle component based quadratic 

discriminant analysis (PC-QDA) classification model to differentiate between genuine milk 

samples and watered-down ones with chemical adulterants, a soft independent modelling by 

class analogy (SIMCA) classification model to determine the chemical adulterant that might 

be present in the milk sample and PLS regression models to predict the percentage of added 

water and chemical adulterant in case single chemical is present. The added water prediction 

model performed well regardless of the type or number of chemical adulterants present in the 

milk sample. This solution was the result of a capacity building project between the McGill IR 
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group and PZL Industria Eletrônica Ltda (Londrina, PR, Brazil), which is a lead manufacturer 

of milk cryoscopy instruments in South America. 

7. Evaluated combinations of spectral preprocessing treatments and multivariate 

chemometric techniques to study the effect of housing treatments of dairy cows on milk 

composition.  

Principle component analysis (PCA), hierarchical cluster analysis (HCA) and partial least 

squares discriminant analysis (PLS-DA) were applied to raw or preprocessed milk FTIR 

spectral data collected during an animal trial designed to study the effect of the tie rail position 

on welfare level of dairy cows. The objective was to study animal welfare from a novel angle, 

which is the effect of animal comfort on milk composition. The merits and drawbacks of each 

technique were evaluated to determine its usefulness for the purpose of such study.  

8. Proved that PCA can isolate the spectral fingerprint that reflects changes in milk 

chemical composition resulting from a systemic factor affecting milk components.  

PCA was applied to milk FTIR spectral data as a variable reduction method that separated 

meaningful information from noise. The isolated principal components were used as input 

variables for hypothesis testing with mixed models to study the effects of housing treatments 

of dairy cows on milk composition. This practice will extend the boundaries of milk FTIR 

spectroscopy beyond the paradigm of predicting specific milk components by PLS regression 

models to study the metabolic state of dairy cows.  

9. Developed a hybrid approach to analyze milk FTIR spectral data in the context of 

designed experiment animal trials.  

PCA-mixed modeling approach was successfully applied as a data mining tool to milk FTIR 

spectral data collected during animal trials aiming at studying the effect of tie rail position, 

chain length, stall width, stall length and manger wall height on milk composition as an 

indicator of animal comfort and welfare level. Changes to milk components were inferred from 

principal components that revealed significant treatment effect in situations where numerical 

data of individual milk components did not reveal such effect when tested by mixed modeling. 

These changes were explained in light of behavioural data that had been collected during the 

trial. This approach represents a novel angle to study animal welfare. 
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Chapter 1: Introduction 

1.1 General introduction 

Quantitative milk analysis by mid-infrared (IR) spectroscopy was developed in the 1960s as a 

rapid, cost-effective, green and non-destructive analytical method [1, 2], which does not involve 

the use of hazardous chemicals or sample preparation. Absorption peaks in the mid-IR range at 

5.73 m, 6.46 m, 9.6 m and 7.9 m were used to determine fat, protein, lactose and solids-non-

fat (SNF) content in milk, respectively [1]. In the 1990s, Fourier transform infrared (FTIR) 

spectroscopy was proposed for the quantitative analysis of milk in combination with partial least 

squares (PLS) regression [3] and later became an official method for milk analysis by IR 

spectroscopy [4]. Modern FTIR milk analyzers are renowned for their high sample throughput, 

which reaches 500 samples/h, fast analysis time (i.e., 6-30s), accuracy that is better than 1% 

relative on the main constituents and precision that is better than 0.5% relative on the main 

constituents [5]. Accuracy is the closeness of a measured value to the true or accepted value; on 

the other hand, precision is the closeness of results to others obtained in exactly the same way (i.e., 

replicates) [6]. These analyzers are currently the cornerstone of the milk recording system that is 

implemented in various countries to monitor milk quality and verify the commitment of dairy 

producers to the standards of dairy production and industry. The information that is obtained by 

the milk recording system contributes to achieve the goals of precision dairy farming (PDF), which 

is defined as “the use of information and communication technologies for improved control of 

fine-scale animal and physical resource variability to optimize economic, social, and 

environmental dairy farm performance” [7]. The main objectives of PDF are maximizing 

individual animal potential, early detection of disease, and minimizing the use of medication 

through preventive health measures. Perceived benefits of PDF technologies include increased 

efficiency, reduced costs, improved product quality, minimized adverse environmental impacts, 

and improved animal health and well-being [8]. 

On May 29th, 1995, the Canadian Dairy Network (CDN) was established with mandates that 

included genetic evaluation services for dairy breeds in Canada and the establishment of industry 

standards of milk recording services for publishable lactations and for genetic evaluation. These 

standards are monitored on a herd-by-herd basis and disciplinary sanctions are imposed if these 

standards are violated by dairy farmers [9]. In 2011, the latest version of the milk recording 
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standard was published under the title “Dairy Herd Recording Service Standards for Herds 

Qualifying for Publishable Lactations and/or Genetic Evaluations in Canada” [10]. These 

standards are applied by two central dairy laboratories of the Canadian Dairy Herd Improvement 

(CDHI) agency, which are Valacta and CanWest DHI.  

Figure 1-1 summarizes the current business model for milk recording systems. Dairy farmers 

enroll all animals of a herd that have calved at least once, and they subscribe to services offered 

by the DHI agency. The herd must be tested at least 10 times within a 12-month period [10]. A 

technician from the agency visits several dairy farms where he/she supervises the collection of 

milk samples from all individual animals and/or bulk milk tanks. These milk samples are then 

transported to the central dairy laboratory where they are analyzed by approved milk analyzers. 

For example, more than 3 million milk samples are shipped to Valacta from Québec and the 

Maritimes for analysis every year.  
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Figure 1-1 Business model of the milk recording system 
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In the central dairy laboratory, milk analyzers produce an FTIR spectrum for each milk sample. 

This spectrum is used as an input for multiple PLS regression models to predict the concentrations 

of specific milk components. The current list of milk components determined by Valacta includes: 

fat, protein, true protein, lactose, urea, β-hydroxybutyrate (BHB), myristic acid (C14:0), palmitic 

acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), short-chain fatty acids (SCFA), mid-chain 

fatty acids (MCFA), long-chain fatty acids (LCFA), saturated fatty acids (SFA), total unsaturated 

fatty acids (TUFA), mono-unsaturated fatty acids (MUFA), poly-unsaturated fatty acids (PUFA), 

trans fatty acids (TFA), free fatty acids (FFA), de novo fatty acids, mixed fatty acids and preformed 

fatty acids. It must be noted that the determination of milk fatty acids is not considered standard 

analysis for monitoring milk composition for the time being. Depending on the concentrations of 

these milk components, different reports are generated to determine payments to dairy producers 

and to support dairy producers’ decision-making process regarding the management of their herds. 

Milk fat and protein are the most important milk components and their levels will dictate daily 

decisions in the dairy production process. Urea is an indicator of the feed ration’s protein use 

efficacy, where increased level of urea indicates a waste of the feed’s protein and high level of 

nitrogen excretion in the urine. BHB is an indicator of ketosis, which is a metabolic illness that 

occurs at the beginning of the lactation period as a result of transition management issues in which 

cows rely on body fat reserves to fulfil increased energy needs at the beginning of the lactation for 

an extended period of time. Somatic cell count (SCC) is also determined in milk samples, which 

represents an indicator of udder health and milk quality. In addition to milk analysis, DHI agencies 

provide consultancy and support related to feeding, forage, heifer raising, reproduction, dry off 

and transition, animal comfort and welfare. Some of these services, such as the assessment of 

animal welfare, do not rely on milk recording data and they require visits by trained technicians to 

evaluate animal injuries, quality of the cow’s lifts and sets, body condition and lameness.  

1.2 Rationale and research objectives  

The overall objective of this thesis is to present two propositions that will expand the capabilities 

of the milk recording system. The first is on-site milk analysis by IR spectroscopy and the second 

is the exploitation of milk FTIR spectra beyond the paradigm of predicting specific milk 

components by PLS regression models from those spectra.  
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Advances in manufacturing of FTIR spectrometers have led to the production of miniaturized 

portable FTIR spectrometers with reasonable cost. The objective of the research presented in 

Chapter 3 is to investigate the suitability of a portable FTIR spectrometer equipped with a 

transmission cell as a sample introduction method for on-site milk analysis, since the official 

method for milk analysis is currently based on transmission FTIR spectroscopy [4]. On-site 

analysis of milk will provide dairy farmers with a tool for self monitoring of milk composition 

without the need to increase the number of transported milk samples to the central dairy laboratory; 

hence, preventing an increase in the carbon footprint of this process. Milking robots provide data 

about milk composition; however, their predictions are based on near infrared (NIR) spectra which 

are characterized by broad and overlapped low intensity bands, between 10 and 100 times 

attenuated compared to the sharper mid-IR fundamental absorption bands produced by FTIR 

spectroscopy. The broad peaks in NIR spectra cannot be directly assigned to specific chemical 

compounds or interpreted in a straightforward manner as mid-IR spectra  [11]. In addition, light 

scattering becomes a more serious issue for electromagnetic radiation in the NIR region due to 

shorter wavelengths (i.e., 2,500 to 750 nm) than the mid-IR region that are well below the diameter 

of fat globules in milk, which makes predictions of milk components that are based on NIR 

spectroscopy less accurate than their FTIR counterparts.  

The objective of the research presented in Chapter 4 is to investigate the suitability of a linear 

variable filter (LVF) array IR spectrometer and attenuated total reflectance (ATR) as sample 

introduction method for on-site milk analysis. Linear variable filter arrays IR spectrometers are a 

novel type of IR spectrometers that do not rely on interferometry to resolve wavelengths in the 

mid-IR range. The absence of moving parts makes them good candidates for on-site milk analysis 

instruments. In addition, ATR provides a practical sample introduction method, especially for raw 

milk analysis. It eliminates the need to pump milk through a transmission cell with a micrometric 

path length; hence, avoiding issues related to cell clogging resulting from the size of milk fat 

globules in raw milk. 

The objective of the research presented in Chapter 5 is to present a case study where on-site milk 

analysis by IR spectroscopy can provide a solution for a major issue that faces the dairy industry 

in Brazil, which is the addition of extraneous water and chemical adulterants to milk. In Brazil, 

milk cryoscopy is the official method for the detection of added water to milk; however, the 
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addition of some chemicals with the added water restores the readings of milk cryoscopy 

instruments to their legal values. IR spectroscopy combined with multivariate discriminate 

algorithms provides a viable solution for differentiation of genuine milk samples from watered-

down ones.  

The objective of the research in Chapters 6 and 7 is to evaluate multivariate algorithms to study 

the effects of different dairy cattle housing treatments that are intended to improve animal welfare 

on milk composition using milk FTIR spectral data directly without relying on predictions of 

concentrations of specific milk components. Data mining milk FTIR spectra to detect and analyze 

the spectral fingerprint of the welfare status of the animal on milk composition is a novel approach 

that will extend the capabilities of milk FTIR spectroscopy beyond the paradigm of predicting 

specific milk components by PLS regression models. Currently, milk FTIR spectra are not 

employed in the assessment of animal comfort and welfare.  
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Chapter 2: Literature review  

2.1 Introduction 

Precision dairy farming (PDF) is defined as “the use of information and communication 

technologies for improved control of fine-scale animal and physical resource variability to 

optimize economic, social, and environmental dairy farm performance” [7]. The main objectives 

of PDF are maximizing the economical return from dairy farming and minimizing cost of 

production and animal distress. This approach will lead to improved milk quality, minimal 

environmental impact and improved animal health and well-being [8]. 

Borchers and Bewley (2015) conducted a survey to assess the adoption, perception, effectiveness, 

and use of PDF technology by sending a questionnaire to 90 farms in the United States of America 

and 19 farms in other countries that included: Australia, Canada, India, Iran, Israel, Mexico, New 

Zealand, and the United Kingdom [12]. The authors’ list of parameters monitored by PDF 

technologies included: daily milk yield, milk components, step number, body temperature, milk 

conductivity, automatic estrus-detection monitors, and daily body weight measurements. In 

addition, the authors included proposed PDF parameters, such as  jaw  movements,  ruminal  pH,  

reticular  contractions,  heart  rate,  animal  positioning  and activity, vaginal mucus electrical 

resistance, feeding  behavior,  lying  behavior,  odor,  glucose,  acoustics,  progesterone, individual 

milk components, milk color, infrared udder surface temperatures, and respiration rates [13]. 

According to the results of this survey, 68.8% of respondents indicated the use of technology on 

their dairy farms versus 31.2% not using technology at all. The percentages of producers 

measuring parameters by the implemented technologies were: 52.3%, 41.3%, 25.7%, 24.8% and 

21.1% for daily milk yield, cow activity, mastitis, milk components (e.g., fat, protein and somatic 

cell count SCC) and standing estrus, respectively. In terms of parameter usefulness, the 

percentages of dairy producers who perceived the following parameters as useful were: 80.7%, 

79.8%, 78.7%, 74.3%, 59.4% and 53.2% for daily milk yield, standing estrus, mastitis, cow 

activity, temperature and milk components (e.g., fat, protein and SCC), respectively. On the other 

hand, the surveyed dairy producers considered the benefit-to-cost ratio as the most important factor 

when making purchasing decisions regarding PDF technologies followed by total investment cost, 

simplicity and ease of use, proven performance through independent research, availability of local 
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support, compatibility with existing dairy practices and systems and time involved in using the 

technology [13].  

2.2 Importance of monitoring milk composition 

Monitoring the chemical composition of milk is currently implemented as a tool to manage dairy 

herds on dairy farms. Central dairy laboratories, such as Valacta (Sainte Anne de Bellevue, QC, 

Canada), are using FTIR milk analysers to determine milk fat, protein, lactose, urea, β-

hydroxybutyric acid (BHBA or BHB), acetone, milk fatty acids and somatic cell count (SCC) in 

milk samples that are routinely collected from dairy farms [14]. Changes in milk composition of 

individual animals can be considered as an indicator of the animal’s metabolic status or the efficacy 

of the feed management system. The early detection of these changes will allow dairy farmers to 

detect metabolic and management problems in early stages; hence, preventing any health disorders 

that might affect the well-being and productivity of the individual animal by taking preventive 

measures as early as possible.  

Ketosis and mastitis are among the most economically relevant diseases in dairy cows [15]. At the 

beginning of lactation, the energy demand in dairy cows increases substantially. This energy 

demand is met by increasing feed intake and by fat mobilization from the cow’s adipose tissue. 

When feed does not meet the increased energy demand, the cow can go through a period of 

negative energy balance. Increased dependency on body fat in providing the increased body energy 

needs results in increased production of major ketone bodies, such as acetone, acetoacetate and 

BHB; thus, their levels are increased in blood (i.e., ketonemia), urine (i.e., ketonuria), milk (i.e., 

ketolactia) and other body fluids. This case is referred to as Ketosis and it can be classified as 

clinical and subclinical, which causes economical losses to the dairy industry. Since cow blood 

sampling is not a convenient procedure for farmers, determining BHBA levels in milk is a viable 

alternative. In milk, BHBA concentrations that are <100 mol/L have been reported to be normal 

[16]. Other researchers have indicated that negative energy balance affects the fatty acids (FA) 

composition of milk fat in the early stages of lactation. Negative energy balance will increase the 

proportions of Omega-9 (C18:1 cis-9) and long chain fatty acids (LCFAs), notably C16:0 and 

C18:0, and will decrease the proportion of medium chain fatty acids (MCFAs) [15]. Other milk 

components will also be affected by negative energy balance or ketosis. In this case, protein, fat, 

milk fat-protein ratio, and lactose will be <2.9%, >4.8%, >1.4 and <4.5%, respectively [15]. 
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However, these thresholds should be cautiously used taking into consideration the characteristics 

of the herd in question.  

Mastitis is another health problem that alters milk composition significantly. Milk secreted from 

inflamed mammary glands is characterized with high SCC, increased free fatty acids (FAs) 

concentrations, reduction in casein combined with an increase in whey protein, reduction in lactose 

concentration, changes in the concentration of minerals such as sodium, chloride, potassium and 

calcium, and increase in milk pH [15]. SCC can be elevated in healthy cows’ milk, where 

macrophages and neutrophils constitute 66-88% and 1-11%, respectively. However, neutrophils 

will increase to almost 90% in case of inflammation of mammary glands. The proposed SCC 

threshold values for the Canadian Holstein population are: 500,000, 300,000 and 200,000 cells/mL 

for the following days in milk (DIM) classes: 5 to 10, 11 to 30, and 31 to 305 DIM, respectively. 

In addition, researchers reported an increase in bovine Lactoferrin (LTF) from 0.1-0.4 g/L up to 

2.3 g/L in mature milk secreted from healthy and inflamed mammary glands, respectively [15]. 

Mastitis also decreases the lactose content of milk. Lactose is considered one of the most stable 

components of milk with a very low day-to-day variation of 0.9% compared to 7.7%, 7.0% and 

2.0% for fat content, milk yield and SCC, respectively. Hence, a sudden decrease in lactose content 

that exceeds the day-to-day variation limit might be an early indication of mammary gland 

inflammation [15].  

Acute and subacute ruminal acidosis (SARA) is another important health issue in dairy cows. It is 

associated with the accumulation of lactic acid and volatile fatty acids (VFAs), respectively, in the 

rumen and the subsequent decrease in the ruminal pH for several hours per day [17] that results 

from feeding high grain diets that are low in fiber to high yielding dairy cows under intensive 

livestock production systems that are adapted to digesting forage diets [18, 19]. In these cases, 

depressed milk fat [14, 18], reduced milk protein and increased milk non-protein nitrogen NPN 

[20] have been reported. In addition, decreased ruminal pH alters the biohydrogenation pathway 

of linoleic acid and increases the production of trans-10 C18:1 fatty acid; thus, more trans fatty 

acids are absorbed, even if the intake of unsaturated fatty acids is not necessarily high [18, 21]. 

In addition to the animal’s health and metabolic state, milk composition, specifically urea content, 

can provide indications about nutritional management, production, and economic variables in 

commercial dairy herds. Urea in milk originates from three sources, which are protein 
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decomposition, the digestion of NPN and the catabolism of amino acids in the mammary glands. 

True protein and NPN represent 95% and 5%, respectively, of milk protein and urea represents 

30-35% of milk NPN [15]. Average herd milk urea concentrations are positively related to the 

dietary crude protein and rumen degradable protein; thus, milk urea concentration provides 

indication about the efficacy of nitrogen utilization in dairy cattle. Feeds high in protein lead to 

higher feed costs, environmental pollution and fertility problems. On the other hand, a very low 

milk urea content could indicate protein deficiencies in the diet of dairy cattle, potentially leading 

to a loss of production. The acceptable range for urea concentration in milk is between 200 and 

400 mg/L or 20-40 mg/dL [15]. 

To summarize, milk composition provides rich information about the health, metabolic and 

nutritional state of cows and it can be employed as an on-site management tool for sustainable 

dairy production. However, dairy producers do not perceive milk composition as an important 

parameter as they do for milk yield [13], for example. One of the probable reasons for this 

perception is the lack of an on-site milk analyzer that is affordable and that can rapidly analyze 

milk with an acceptable accuracy and precision.  

2.3 Milk analysis by infrared spectroscopy  

Quantitative milk analysis by Fourier transform infrared (FTIR) spectroscopy is currently an 

official method of the Association of Official Analytical Chemists (AOAC) International [4], 

which is extensively used for producer payment, herd milk analysis and routine quality control in 

the dairy industry [22]. In 1964, Goulden described milk analysis by infrared (IR) spectroscopy 

[1]. He demonstrated that milk components absorb IR energy at specific wavelengths and that the 

intensities of the absorption peaks can be used for quantitative determination of these components. 

The reported wavelengths that were used to determine major milk components were 5.73 m, 6.46 

m, 9.6 m and 7.9 m for fat, protein, lactose and solids-not-fat (SNF) content, respectively. In 

wavenumbers*, these values are equal to 1745.20 cm-1, 1547.99 cm-1, 1041.67 cm-1 and 1265.82 

cm-1, respectively. Goulden demonstrated that the absorbance intensities of wavelengths assigned 

to fat and lactose are a linear function of their concentrations, while the absorbance intensity of 

wavelength assigned to protein has a significant contribution from fat. For this reason, a correction 

equation was derived to calculate the concentration of protein at the corresponding wavelength. In 

 
* The following equation was used to convert from wavelength to wavenumber: y cm–1 = 10,000,000 / x nm.  
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addition, it was demonstrated that scattering of light by fat globules is proportional to particle-size-

to-wavelength ratio. Hence, attenuation of the IR beam due to scattering can be eliminated by 

decreasing fat globules size through milk homogenization. Temperature of milk samples was 

another important factor that was proved to affect the IR spectra of milk samples. The optimum 

reported temperature for recording milk IR spectra is 40 C 1. Change of 1 C led to a 1% change 

in the total signal. On the other hand, transmission cells with 40 m path length and calcium 

fluoride windows were found to be the optimum measurement cells [1]. 

In 1967, Biggs described an IR milk analyser [2]. The reported precision of measurement of milk 

analysis by this analyzer is 0.03% and the standard deviations between IR and chemical methods 

are 0.06%, 0.07% and 0.06% for fat, protein and lactose, respectively. IR milk analysis is rapid 

and less expensive than other laboratory chemical methods that are used for the determination of 

milk components. With an infrared milk analyzer (IRMA) two technicians can prepare samples 

and complete analyses for fat, protein, and lactose at the rate of one sample per minute. According 

to Biggs’s calculations at that time, the labor cost for three component analyses is about 7 cents 

and the instrument cost per sample is less than 2 cents; thus, the cost of three component analyses 

is less than 10 cents per sample. This cost is less than one-tenth the cost of the equivalent analyses 

by accepted chemical methods. The IR milk analyzer, which was described by Biggs, consisted of 

a double beam IR spectrometer that produced two IR beams. One beam passes through a 

transmission cell containing milk and the other passes through a transmission cell containing 

distilled water. Both cells share equal optical path. After going through the cells, the IR beams 

enter a monochromator that includes a diffraction grating and a potassium bromide (KBr) prism, 

then radiation, within a narrowly selected range of wavelengths, is focussed on to a thermocouple 

detector. Biggs used wavelengths identical to those reported by Goulden. A micro-switch system 

was used to automatically switch between those wavelengths to obtain results for each of milk 

components. In addition, milk samples were homogenized and heated to a constant temperature 

before being pumped into the measurement cell. Milk fat homogenization is considered a crucial 

factor for the accurate determination of fat levels in raw milk samples. According to Biggs, raw 

milk fat should be homogenized once at 3000 psi or four times at 1500 psi. Biggs also suggested 

the use of sonic homogenization for this purpose. Another important factor that affects the 

accuracy of the obtained signal is temperature. According to Biggs, both milk sample and distilled 
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water should be heated to the same temperature, and the machine should be placed in a 

temperature-controlled environment to prevent any fluctuations in signal obtained from it. In 

addition, the milk cell should be flushed with at least 25 mL of the current sample in order to 

completely purge the remains of the previous one to avoid signal divergence [2].  

In 1991, Van de Voort and Ismail proposed the use of Mid-FTIR spectroscopy for simultaneous 

multi-component proximate analysis of food to determine the levels of major food components, 

such as fat, protein and carbohydrates [22]. At that time, the application of IR spectroscopy in 

quantitative food analysis was limited due to the presence of water that has a tremendous IR 

absorbance, the necessity to use cells of short path length to minimize IR absorption by water and 

difficulties related to sample preparation and handling. FTIR spectroscopy differs from diffraction 

technology in the way different wavelengths are resolved. FTIR spectroscopy is based on 

interferometry, which records absorbance intensities at all wavelengths simultaneously. In an 

interferometer, an IR beam is divided into two beams by a beam-splitter. One of them is reflected 

to a fixed mirror and the other to a moving mirror. When the two beams recombine at the beam 

splitter, they undergo constructive and destructive interferences due to the differences in the path 

lengths from the two mirrors. After going through the sample, the IR energy reaches a detector, 

get digitized and an interferogram is produced. Fourier transform (FT) is then applied to the 

interferogram to convert the signal from time domain to frequency domain to produce a 

conventional IR spectrum [22].  

In general, FTIR spectroscopy has several advantages. First, the IR beam does not lose its intensity 

because it does not go through a prism, grating or a slit; hence, the throughput or the Jacquinot’s 

advantage is achieved [23]. Another advantage is the multiplexing or Fellgett’s advantage, in 

which the signal-to-noise ratio (SNR) is improved by taking multiplexed measurements. In FTIR 

spectroscopy, SNR is proportional to the square root of the number of coadded scans of a specific 

spectrum [23].  In addition, FTIR spectrometers contain a laser that acts as an internal wavenumber 

standard, which means that the precision of wavenumbers in FTIR spectrum is ±0.01 cm-1 and that 

makes peak positions highly reproducible in FTIR spectrum [23]. This precision enables data 

manipulation operations such as spectral subtraction, spectral addition, the calculation of spectral 

ratios, spectral stripping, and the addition of scans [22]. Several factors might interfere with FTIR 

spectroscopy, such as Tyndall scattering, reflection losses, refractive index, temperature, sample 
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non-homogeneity and detector nonlinearity [22]. These effects can be minimized by maintaining 

the absorbance between 0.2 and 0.7, using environment-insensitive absorption bands, using peak 

areas rather than peak height and using more wavenumbers or calibration samples [22].  

The IR bands that were proposed to determine the major food components were: the triglyceride 

𝐶 = 𝑂 ester linkage band and the 𝐶 − 𝐻 stretching band to determine fat; the amide I and/or amide 

II bands to determine proteins; and the hydroxyl bending band to measure carbohydrates [22]. 

Water absorbs strongly across the IR spectrum; however, with the high spectral precision and 

spectral data manipulation routines available with FTIR, water can be subtracted out of the 

spectrum to reveal the spectrum associated with the other components [22]. For FTIR milk 

analysis, table 2-1 summarizes wavenumbers and band assignments that can be used to determine 

milk components.   

Table 2-1 Band assignments in the mid-IR range for FTIR milk analysis 

Wavenumbers cm−1 Band assignment 
Associated milk 

component 
Reference 

967 C=C–H bend and trans-C=C bonds Fat [24] 

1400-800 
Highly coupled stretching / bending 

modes 

Carbohydrates  

mainly lactose 
[24] 

1100-1060 O=P−O stretch Phosphate [25] 

1280-1200 Amide III Protein [25] 

1565–1520 Amide II Protein [24] 

1700–1600 Amide I Protein [24] 

1650 H–O–H bend Water [24] 

1745–1725 C=O stretch, triglyceride ester linkage Fat [24] 

2300-2400  
CO2 and water 

vapour 
 

2980–2800 C–H stretch Fat [24] 

3007–3012 C–H stretch / cis-C=C bonds Fat [24] 

3600–3200 O–H stretch Water [24] 
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2.4 Multivariate regression for milk analysis by FTIR spectroscopy 

Several multivariate regression algorithms have been reported to develop calibration models for 

the determination of milk components’ concentrations from milk FTIR spectra. These techniques 

include classical and inverse least squares regression (CLS and ILS), principal component 

regression (PCR) and partial-least-squares regression (PLSR) [26]. In CLS, the overall absorbance 

at a specific wavenumber is assumed to be a linear summation of absorptions of all components in 

the sample. Mathematically, it can be represented as follows [26]:  

Equation 2-1 

𝐴𝑗 = 𝑘0𝑗 + ∑ 𝑐𝑖

𝑙

𝑖=1
𝑘𝑖𝑗 

Where 𝐴𝑗 is the overall absorbance at wavenumber j, 𝑐𝑖 is the concentration of component i, 𝑙 is 

the number of components present in the sample, 𝑘𝑖𝑗 is the product of the optical path length and 

the absorption coefficient of component i at wavenumber j. For calibration set that consists of 

multiple samples m, the formula can be represented in matrix notation as follows [26]:  

Equation 2-2 

𝐴 = 𝐶𝐾 

Where A is an 𝑚 × 𝑛 absorbance matrix, m is the number of samples or spectra, n is the number 

of wavenumbers in an individual spectrum and K is an 𝑙 × 𝑛 matrix of the product of the optical 

path length and the absorption coefficient for component l at wavenumber n. During the calibration 

process, matrix K is calculated, which requires an inversion operation for the product of 𝐶𝑇𝐶 [26].  

Equation 2-3 

𝐾 = (𝐶𝑇𝐶)−1𝐶𝑇𝐴 

During the prediction operation, matrix C is calculated, which requires an inversion operation for 

the product of 𝐾𝐾𝑇 [26].  

Equation 2-4 

𝐶 = 𝐴𝐾𝑇(𝐾𝐾𝑇)−1 

The dimensions of both matrices are 𝑙 × 𝑙. If the components’ concentrations are collinear, the 

determinant of the matrices will become zero and they will not be invertible. Another drawback of 
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this algorithm is that CLS requires that concentrations of all components contributing to the 

absorbance at a specific wavenumber to be known, which cannot be achieved [26].  

In ILS, which is also known as multiple linear regression (MLR), concentration of a specific milk 

component is assumed to be a function of absorbances at all wavenumbers in the spectrum and it 

is represented mathematically as follows [26]:  

Equation 2-5 

𝑐𝑖 = 𝑝𝑖0 + ∑ 𝐴𝑗𝑝𝑖𝑗

𝑛

𝑗=1
 

Where 𝑐𝑖 is concentration of component i, 𝐴𝑗 is absorbance of wavenumber j and 𝑝𝑖𝑗 is the 

proportionality constant of component i at wavenumber j. For the calibration set, the formula can 

be rewritten in matrix notation as follows [26]:  

Equation 2-6 

𝐶 = 𝐴𝑃 

During the calibration process, the product of 𝐴𝑇𝐴 is inverted to calculate matrix P, which is then 

used in equation 2-6 to calculate the concentration C for unknown sample [26].  

Equation 2-7 

𝑃 = (𝐴𝑇𝐴)−1𝐴𝑇𝐶 

This inversion operation will only be possible if the number of samples equals or exceeds the 

number of wavenumbers. For this reason, ILS is not commonly used to develop prediction models 

based on full FTIR spectra due to the immense number of samples required to build such a model 

[26]. To overcome the obstacle of number of samples, a variable reduction method is applied to 

the spectral matrix. In PCR, principal component analysis (PCA) is applied to the spectral matrix 

and a new set of variables, called principal components (PCs), is calculated. These new variables 

are linear combinations of the spectral wavenumbers and they describe the same variation structure 

that is described by the original spectral matrix; however, only the first few PCs describe much of 

the variation and they can be used as predictors in a regression model. The spectral data matrix is 

decomposed into two matrices as follows [26]: 
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Equation 2-8 

𝐴 = 𝑇𝐵 

Where B is an ℎ × 𝑛 loading matrix of h principal components and T is an 𝑚 × ℎ scores matrix. 

The loadings can be considered equivalent to regression coefficients and the scores are the new 

coordinates for each sample in the new principle component space. The scores matrix 𝑇′ is then 

used in a regression process against milk component’s concentration that is similar to the one of 

ILS to produce a prediction model for a milk component [26].   

In PLS, the predictors matrix X, which is an 𝑚 × 𝑛 matrix, contains the spectral data where m is 

the number of the spectra or samples and n is the number of spectral variable or wavenumbers. 

The responses matrix Y, which is an 𝑚 × 𝑘 matrix, contains the concentrations of k milk 

components for m samples. A variable reduction process is applied to matrix X to extract new 

predictors that are referred to as latent variables, components or factors, which are linear 

combinations of the spectral variables (i.e., wavenumbers) [27]. These factors represent latent 

structures that maximize the covariance between X and Y; in other words, the PLS factors are 

calculated based on their relevance to Y, which means that the first factor extracted from matrix 

X explains the most variation in matrix Y and not necessarily the most variation in matrix X [27]. 

In PCR, PCs are calculated independently from the Y matrix and the first PC explains the most 

variation in matrix X, and that is the main difference between PLS and PCR. In PLS prediction 

model, matrix X is decomposed as follows:  

Equation 2-9 

𝑋 = 𝑇𝑃′ 

Where T is the X scores matrix and P is the X loadings matrix. The Y matrix is then modeled on 

the X scores using linear regression [27]. The Y matrix can also be decomposed, if it contains 

multiple responses (i.e., the concentrations of multiple milk components):  

Equation 2-10 

𝑌 = 𝑇𝑄′ 

Where T is the Y scores matrix and P is the Y loadings matrix. In this case, PLS is a powerful tool 

to study the relationship between the multiple responses. In FTIR spectroscopy, PLS is the 

preferred multivariate regression algorithm for developing prediction models because PLS can 
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deal effectively with collinear, noisy and wide data where the number of variables (i.e., 

wavenumbers in a spectrum) exceeds the number of observations (i.e., spectra of samples) [27]. 

However, it must be noted that PLS models are highly sensitives to systemic variations in FTIR 

spectra that are not related to the chemical composition of milk samples, such as differences in 

performance from one equipment manufacturer to another, homogenization efficiency, 

preservative type and concentration, and sample temperature [28]. For this reason, models are only 

considered realistic if their X loadings show high correlations with the spectral features related to 

the analyte of interest.  

2.5 Spectral pre-treatments or preprocessing  

In FTIR spectroscopy, a regression model is the inverse of Beer’s law. It can be described 

mathematically as follows [29]:  

Equation 2-11 

𝑦̂ = 𝑏0 + ∑ 𝑏𝑛𝑥𝑛

𝑛

𝑖=1
 

Where 𝑦̂ is the predicted concentration of the analyte of interest, 𝑥𝑛 is the absorbance of 

wavenumber n and 𝑏𝑛 is a regression coefficient that can be interpreted as a combination of the 

optical path length and the molar absorptivity coefficient ε that is modeled from the data. 

Considering this definition, spectral preprocessing can be defined as mathematical operations 

aiming at enhancing the chemical information represented by ε and reducing the physical effects 

of the prediction process in the spectral data, such as path length variability [29]. 

Smoothing 

Smoothing aims at reducing noise in an FTIR spectrum that results from the instrumental 

measurement without reducing the number of variables (i.e., wavenumbers) in a spectrum; hence, 

it is a row-oriented transformation. Common smoothing transformations include moving average 

and Savitzky-Golay smoothing. In moving average smoothing, a central data point is replaced by 

the average absorbance values in a selected smoothing window in an FTIR spectrum. In Savitzky-

Golay smoothing, data points in the averaging window are fitted to a polynomial and then the 

central point is replaced with the fitted value [29].  
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Normalisation 

Normalisation is a row-oriented transformation that aims at putting all spectral variables (i.e., 

wavenumbers) on an even footing by rescaling a spectrum to a common sum, such as 1.00 or 

100%. In area normalization, the sum of absolute absorbances of all spectral variables in a 

spectrum is calculated, which gives the scaling factor, and then each spectral variable is divided 

by it. In range scaling, the scaling factor is calculated for a specific spectral range. In peak 

normalization, the entire spectrum is scaled by the height of a specific peak of a known internal 

standard. In maximum normalization, the scaling factor is the maximum absorbance in the 

spectrum [29]. In vector normalization, a spectrum is divided by its norm, which is the square root 

of the sum of the squared values of all spectral variables. In this case, the spectrum is normalized 

to unit length vector [30]. Vector normalization is useful for pattern recognition applications [30]. 

Normalization after derivatization reduces path length variations [29].  

Baseline correction 

Baseline correction aims at subtracting a common offset from spectra to better overlay each other. 

The offset is an additive effect caused by path length differences of the measurement system or by 

differences in sample density. In cases of sloping linear baseline, a two point baseline correction 

method is applied, while the method of detrending can correct polynomial baseline shifts [29].  

Derivatives 

Derivatization or differentiation is calculated as the difference between the absorbance of a point 

in a spectrum and the absorbance of the previous point divided by a constant centring factor. The 

derivative centers the spectrum around the zero line and it measures the slope or the rate of change 

of the spectral variables, which means it can reveal more details in the spectral data, especially in 

regions where small peaks are present on shoulders of bigger ones. In a quadratic polynomial, the 

constant term represents the intercept, or the offset, of the equation and it disappears under first 

derivation, which means that the first derivative can eliminate additive effects in the spectral data. 

In addition, the first derivative removes the baseline and slope effects. However, in first derivative 

the maxima of an absorption band become zero, which makes the interpretation of the first 

derivative difficult. Second derivative defines the curvature in the spectral data and is used to 

correct for the quadratic baseline effects in near infrared spectroscopic data. Second derivative is 
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sometimes preferred over first derivative because the maxima of absorption bands becomes 

minima; hence, second derivative becomes easier to interpret than first derivative. In simple 

difference derivative, in which the constant centring factor is 1, noise level is increased in the 

spectral data. This noise originates from instrument electronics and mechanical vibrations, 

especially for second derivative. To reduce the noise that results from derivatization, segment-gap 

or Savitzky-Golay derivatives are used where a modified moving average or Savitzky-Golay 

smoothing algorithms, respectively, are applied to a spectrum before calculating the derivative 

[29]. 

Correcting multiplicative effects 

Multiplicative effects result mainly from light scattering and they are wavelength specific, which 

makes them more of a concern in near infrared spectroscopy rather than mid-IR spectroscopy. Two 

algorithms are commonly used to correct for scattering effect, standard normal variate (SNV) and 

multiplicative scatter correction (MSC). SNV is a row-oriented algorithm where the mean and 

standard deviation are calculated for a specific spectral range, then spectral variables are centered 

by the calculated mean and divided by the calculated standard deviation. Mean centering removes 

the additive effects and division by the standard deviation reduce the residual scatter effect. MSC 

is a model-based scatter correction method that requires a training set to model the scatter effect 

and to calculate the mean spectrum of the training spectral set by least squares fitting process. The 

calculated parameters are used to modify a new spectrum to make it as similar as possible to the 

calculated mean spectrum of the training set. By doing so, multiplicative and additive effects are 

eliminated [29].  

2.6 Calibration and validation of IR milk analyzers 

Before calibrating IR milk analyzers, several procedures must be applied to verify that the 

instrument is in a good working condition, mechanically and electronically, and the readings are 

stable and optimized. These procedures are applied to filter based and FTIR milk analyzers and 

they include checks for: flow system integrity, homogenization efficiency, water repeatability, 

zero shift, linearity, primary slope, milk repeatability, purging efficiency and establishment of 

inter-correction factors for filter based milk analyzers [31]. Inter-correction factors are calculated 

to account for the water displacement effect on the absorption intensities in the IR spectrum and 

to account for the absorption contribution of other milk components to the intensity of a 
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wavelength, or a wavenumber, assigned to a specific milk component. For FTIR milk analyzers, 

this step is not needed if the analyzer uses PLS prediction models to determine the concentrations 

of milk components.  

Among these procedures, verifying homogenization efficiency is the most crucial one. Milk fat 

globules cause light scattering, which leads to increased analytical error and poor repeatability. To 

reduce light scattering effect on milk fat predictions, raw milk is homogenized to reduce the size 

of fat globules to 1 µm or less [31]. For milk analyzers that contain high pressure homogenizer, 

raw milk is run through the milk analyzer homogenizer and the fat measurement is recorded. The 

milk that exists the analyzer, which is now homogenized, is collected and passed again through 

the homogenizer and the fat measurement is recorded a second time. Homogenization is 

considered adequate if the difference in readings between the first and second passes of the milk 

is <0.05% [31]. Another approach is the use of a laser light-scattering particle size analyzer capable 

of determining particle size distribution. Homogenization efficiency is determined by the value of 

D (0.9), which is the mean globule diameter below which 90% of the fat volume is contained. If 

D (0.9) is greater than 2 m then homogenization is not acceptable, while D (0.9) >1.70 m 

indicates wearing out of homogenizer [31].  

As it was reported earlier, specific wavelengths or wavenumbers are used to determine the 

concentrations of specific milk components. These wavelengths or wavenumbers are 5.723 m 

(1747.34 cm-1), 3.48 m (2873.56 cm-1), 6.465 m (1546.79 cm-1) and 9.610 m (1040.58 cm-1) 

and they are assigned to Fat A, Fat B, protein and lactose, respectively. The Fat A and Fat B 

represents the IR bands of the carbonyl stretching in the ester linkage and the CH stretching in 

milk fat, respectively. In addition, 5.6 m (1785.71 cm-1), 3.6 m (2777.78 cm-1), 6.7 m (1492.54 

cm-1), and 7.7 m (1298.70 cm-1) are used as reference wavelengths for Fat A, Fat B, protein and 

lactose, respectively. Absorption intensities of each milk component are ratioed against their 

respective reference wavelength to account for the effects of water absorption and light scattering 

[31]. Typically, 10 to 14 milk samples are used to calibrate milk analyzers. The chemical 

composition of these samples must always be determined by wet chemistry reference methods. 

These reference methods are: Kjeldahl protein N; methods 991.22, 991.23, modified Mojonnier 

ether extraction; method 989.05, oven dry; methods 990.20, 990.19 and by difference; method 
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990.21 for milk true protein, fat, total solids, and SNF, respectively. Lactose is determined either 

by difference or by spectrophotometric enzymatic analysis. Lactose by difference is calculated as  

Equation 2-12 Calculating milk lactose by difference 

% 𝑎𝑛ℎ𝑦𝑑𝑟𝑜𝑢𝑠 𝑙𝑎𝑐𝑡𝑜𝑠𝑒 = %𝑇𝑆 − (%𝑓𝑎𝑡 + %𝑡𝑟𝑢𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 + 0.19 + %𝑎𝑠ℎ) 

where 0.19 is the NPN factor to convert true protein to crude protein (CP) and % ash is either 

directly measured (method 945.46) or indirectly calculated by the following equation:  

Equation 2-13 Calculating ash in milk 

%𝑎𝑠ℎ = (%𝑡𝑟𝑢𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 × 0.0596) + 0.5379 

The spectrophotometric enzymatic analysis of lactose is based on AOAC method 984.15 modified 

by weighing all volume additions. All these methods are AOAC final action methods [32]. A 73:27 

ratio of Fat B and Fat A is suggested to be used for fat predictions to give better agreement with 

reference chemistry than either Fat B or Fat A [33] for analyzers that do not use PLS calibration 

models. Distilled water containing 0.01% Triton X-100 is used as a zeroing solution and all zeroing 

solutions and milk samples must be maintained at 41  1C [31].  

Calibration milk samples should have an orthogonal matrix of fat, protein, and lactose 

concentrations to eliminate high and moderate leverage samples. Leverage is an index of the 

relative contribution of each point to the regression line and it is considered large if it is >2p/n and 

very large if it is >3p/n, where n is the number of data points and p is the number of predictors. 

For example, leverage can be considered very high, high, moderate and low if it is >1.000, >0.500, 

>0.333 and <0.333, respectively. Samples with narrow range of concentration of components, 

nonuniform distribution of concentrations within the range, and with positive correlation between 

fat and protein content produce conditions where individual samples have significant influence on 

the calibration [34]. Producer raw milk samples can be used for calibration of milk analyzers in 

addition to modified milk samples. Milk components can be separated from each other and 

recombined together in specific ratios to produce modified milk samples whose matrices are 

orthogonal to each other to avoid having high leverage samples in the calibration set [34]. 

Calibration samples can be preserved by adding an aqueous 6.7% potassium dichromate solution 

at a level of 3 mL per 1,000 g of milk to achieve a final concentration in milk of 0.02% potassium 

dichromate [34]. It has been proved that Potassium Dichromate K2Cr2O7 has little or no effect on 
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mid-IR test results and a bronopol-based preservative can also be used to preserve milk calibration 

samples [35]. Bronopol does not exhibit absorption bands in mid-IR regions related to milk 

composition. The pasteurized modified milk calibration samples, preserved with potassium 

dichromate, have 28 days shelf life and the raw producer milk calibration sets, preserved with 

potassium dichromate, have 15 days shelf life at 4 °C. Chemical preservatives only inhibit the 

microbial growth in milk samples, they do not inhibit the activity of milk native enzymes. 

However, the influence of lipolysis and proteolysis on milk components’ predictions is either not 

significant, or significant but very small [36].  

Calibration models are verified by testing an independent set of validation milk samples and 

comparing the predicted milk component to the chemical reference tests of these samples. The 

mean difference (MD) and standard deviation of the difference (SDD) for each milk component 

of the validation set is calculated. If MD is large, then the prediction model is biased. A positive 

MD value indicates overprediction and a negative MD value indicates underprediction. The 

official first action method for fat, lactose, protein, and solids in milk by IR spectroscopic method 

using fixed-filter wavelengths (AOACI, 2000; method 972.16, 33.2.31) indicates that the MD 

between instruments and reference method values should be ≤0.05% for fat, protein, and lactose, 

and ≤0.09% for total solids [37]. 

2.7 Novel applications in milk analysis by infrared spectroscopy 

Milk analysis by infrared spectroscopy is currently an active field of research. New studies have 

been published on improving the predictions of milk components that are currently being 

determined by commercial milk analyzers. Other studies aimed at extracting new traits from the 

milk infrared data and at correlating the spectral data with indicators of interest for the dairy 

industry.  

2.7.1 Prediction of milk fatty acids and milk fat composition  

Gas chromatography (GC) is the standard method for quantifying FAs content in milk, where FAs 

are extracted, saponified and trans-methylated. Infrared analysis was developed as an alternative 

cost-effective and fast method to determine FAs during milk routine analysis [38]. Currently, the 

method of choice used for relating milk FAs to spectral data is PLS without any pre-treatment of 

the spectral data. The spectral regions that are used are located between 1736 and 1805 cm−1 and 

between 2823 and 3016 cm−1 [39].  



23 

 

Rutten et al.  (2009) concluded that increased number of samples increases predictability of milk 

fat composition; however, it does not increase the predictability of FAs with low concentrations. 

This can be explained by the fact that increased number of samples will model better the 

relationship between milk fat and the major FAs present in milk triglycerides. In addition, it was 

concluded that the effect of season on validation coefficient of determination R2 was limited but 

was occasionally large on prediction bias. It was also concluded that FTIR spectroscopy can be 

used to predict major FAs, combined groups of fatty acids, and the ratio of saturated to unsaturated 

fatty acids [40].  

Afseth et al. (2010) demonstrated that the bands that are used in FTIR determination of FAs are: 

around 3010 cm-1 mainly relates to fatty acid unsaturation (cis =C–H stretch), region between 2800 

cm-1 and 3000 cm-1 is related to the symmetric and asymmetric C–H stretch of methyl and 

methylene groups, strong band around 1745 cm-1 is related to C=O stretch, C–H deformations 

constitute dominating features between 1440 cm-1 and 1300 cm-1, between 1200 cm-1 and 1000 

cm-1 constitute the C–O stretch vibrations and a band around 966 cm-1 is related to the trans =C–

H out-of-plane stretch, which has been proven to be an important feature in the quantification of 

trans contents of foods in general [41]. 

Soyeurt et al. (2011) investigated six mathematical approaches to improve the FA predictions in 

milk collected from multiple breeds (dual-purpose Belgian Blue, Holstein, Jersey, Normande, 

Montbeliarde, and Red and White), different European countries (Belgium, Ireland, UK) and 

different production systems. These approaches were: raw spectra and PLS, raw spectra in 

combination with PLS and repeatability file (REP), first derivative of spectral data and PLS, first 

derivative and REP and PLS, second derivative of spectral data and PLS and second derivative 

and REP and PLS. The repeatability file was generated by recording mid-infrared (MIR) spectra 

of several milk samples provided by different spectrometers and each spectrum was centered by 

subtracting the average of all spectra for the samples included in the repeatability file. The samples 

in the repeatability file were then used to extend the initial calibration set. This method decreased 

the repeatability error. Methods were compared using the cross-validation coefficient of 

determination (R2
cv), the ratio of standard deviation of GC values to the standard error of cross-

validation (RPD), and the validation coefficient of determination (R2
v). Methods that used first 

derivative had, on average, the highest R2
cv, RPD, and R2

v. This can be explained by the fact that 
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first derivative reveals more details in the spectral data, especially in regions where small peaks 

are present on shoulders of larger ones. The spectral regions that were used were 926 – 1600 cm−1, 

1712 – 1809 cm−1, and 2561 – 2989 cm−1 [39]. The best accuracy was observed for the infrared 

predictions of C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, C16:0, C18:0, C18:1 trans, C18:1 cis-9, 

C18:1 cis, and for some groups of FAs studied in milk (saturated, monounsaturated, unsaturated, 

short-chain, medium-chain, and long-chain FAs). The study concluded that equations with R2
cv 

greater than 95% will be useful in milk payment systems, while equations with R2
cv greater than 

75% will be useful for animal breeding purposes [39]. 

Eskildsen et al. (2014) demonstrated that variation associated with total fat content and breed was 

responsible for successful FTIR–based predictions of FAs in raw milk samples. The study could 

not assign signals to individual FAs in the FTIR measurement when several FAs were present in 

the same mixture. The study concluded that predicted concentrations of individual FAs in milk 

rely on indirect correlations, which are confined to covariance structures with total fat content 

rather than absorption bands directly associated with individual FAs. Since these covariance 

structures cannot be conserved in future samples or samples from different breeds, biased 

predictions will be obtained from such models. This conclusion was in agreement with the results 

of previously mentioned studies that showed only individual FA with high concentration or groups 

of FAs can be predicted from FTIR measurements [42].  

Bonfatti et al. (2016) reported that the accuracy of MIR predictions decreased when FAs were 

expressed on a fat basis in Italian Simmental cows, which was consistent with the previous studies. 

Predictions of individual fatty acids PLS models were high (R2
cv) for SFA, MUFA, short and 

medium-chain fatty acids, C12:0, C14:0, C16:0, Σ unsaturated C18, Σ C18:1, and C18:1n-7 cis-9. 

Other fatty acids, namely C14:1, C18:1 trans, C18:1n-7 trans-9, Σ CLA, C18:2 cis-9,trans-11, and 

C18:3n-3, were poorly predicted by MIR spectroscopy (R2
CV < 0.70)  [43]. This can be explained 

by the fact that milk samples from Holstein cows tend to dominate calibration sets used to develop 

prediction models for milk components, since Holstein is the most relevant breed for dairy farmers. 

Italian Simmental might have been underrepresented in these calibration sets.   

2.7.2 Prediction of fatty acid chain length and unsaturation  

Fat prediction of MIR analyzers are affected by chain length and unsaturation of fatty acids that 

make up milk triglycerides. Increasing the chain length increases the difference between MIR 
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prediction and reference chemistry by 0.0429% and by −0.0566% fat per unit of increase in carbon 

number per 1% change in fat, for fat B and fat A, respectively. Increasing the unsaturation 

decreases the difference between MIR prediction of fat and chemistry for fat B by −0.4021% and 

increased fat A by 0.0291% fat per unit of increase in double bonds per 1% change in fat 

concentration [44].  

Wojciechowski and Barbano (2016) suggested an additional adjustment to improve the predictions 

of fat levels in milk samples. It was demonstrated that sample-to-sample variation in the 

differences in mean fatty acid chain length (CL) and mean unsaturation (UN) of the milk fat cause 

differences between MIR predictions of fat content of milk and the laboratory chemical reference 

analysis of the same sample. CL is defined as mean carbon number per fatty acid, while UN is 

defined as mean double bonds per fatty acid. Variation in fatty acid CL is reflected in the fat B, 

which is measured by using C–H stretch of fat, but not in fat A, which is measured by using C=O 

stretch, causing error in the fat A measure. Conversely, variation in UN of fatty acids only has a 

small effect on fat A measures, but causes larger errors in fat B measures of fat content of milk 

[28]. To overcome this weakness, they suggested to develop PLS models to determine the CL and 

UN of fatty acids for milk samples by using their MIR spectra. These values will be used to correct 

the fat A and fat B measurements according to the following equations [28]:  

Equation 2-14 Suggested relations to adjust fat A and fat B readings according to chain length and saturation of milk fatty acids 

𝑓𝑎𝑡 𝐴 − (((−0.1756 × 𝐶𝐿) + 2.5591) + (0.16 × 𝑈𝑁) + 0.0452) 

𝑓𝑎𝑡 𝐵 − ((−0.1422 × 𝑈𝑁) + 0.073) 

The mean fatty acid CL (expressed as carbon number) was calculated by dividing the total fatty 

acid concentration weighted for carbon number by the total fatty acid concentration, as determined 

by gas liquid chromatography (GLC). The mean UN (expressed as double bonds per fatty acid) 

was calculated by dividing the total fatty acid concentration weighted for the number of double 

bonds by the total fatty acid concentration, as determined by gas liquid chromatography. The 

following equations show the calculation of fatty acid concentration weighted for carbon number 

and fatty acid concentration weighted for number of double bonds, respectively [28].  

Equation 2-15 Calculation of fatty acid concentration weighted for carbon number and double bonds 

𝑓𝑎𝑡𝑡𝑦 𝑎𝑐𝑖𝑑 (𝑚𝑚𝑜𝑙) × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑟𝑏𝑜𝑛𝑠 𝑖𝑛 𝑓𝑎𝑡𝑦 𝑎𝑐𝑖𝑑 𝑐ℎ𝑎𝑖𝑛 
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𝑓𝑎𝑡𝑡𝑦 𝑎𝑐𝑖𝑑 (𝑚𝑚𝑜𝑙) × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑢𝑏𝑙𝑒 𝑏𝑜𝑛𝑑𝑠 𝑖𝑛 𝑓𝑎𝑡𝑡𝑦 𝑎𝑐𝑖𝑑 𝑐ℎ𝑎𝑖𝑛 

The PLS models for prediction of fatty acid CL and total UN were calculated using the spectral 

ranges 3000 – 2750 cm−1, 1800 – 1700 cm−1 and 1580 – 1000 cm−1, applying mean centering of 

the data and 2-point baseline correction relative to average absorbance calculated over wavelength 

ranges of 2650 – 2550 cm−1 and 1260 – 1200 cm−1. The validation performance of the prediction 

model for CL produced a relative standard deviation (RSD) of 0.43% for CL and 3.3% for UN. 

[28]. 

2.7.3 Prediction of fat globule particle size in homogenized milk 

Milk fat is present in the form of globules that range in diameters from <0.2 to >15 µm. The small 

fat globules represent 80% of the total number of fat globules but they contain only 3% of the mass 

of fat. On the other hand, large globules represent only 2% of the total number of fat globules but 

they contain 95% of the mass of fat [45]. The size of fat globules in milk needs to be reduced 

because large fat globules increase light scattering, leading to an inaccurate estimate of fat, protein 

and lactose content of milk. In addition, large fat globules can cause the Christiansen light 

scattering effect, which causes a change in the refraction of light at wavelengths near maximum 

absorption by the carbonyl and carbon-hydrogen groups. The Christiansen effect causes a shift in 

the apparent wavelength of maximum light absorption to a longer wavelength. This effect can be 

reduced by decreasing the fat globule diameter [46].  

Di Marzo et al. (2016) developed a PLS model to detect absorbance shifts in MIR spectra of milk 

fat due to the Christiansen effect caused by systematic variations in fat globules size. This PLS 

model can predict particle size distribution and the reported parameters were: particle size 

distribution D (0.5), particle size distribution D (0.9), surface volume mean diameter D [3,2] (i.e. 

Sauter mean diameter) and volume moment mean diameter D [4,3] (i.e. De Broucker mean 

diameter). The spectral regions that were used were: 3000 – 2750 cm−1, 1800 – 1700 and 1585 – 

1000 cm−1 and a systematic shift in the region of absorbance of fat B and fat A was observed. The 

mean MIR-predicted values for D (0.5), D[3,2], and D[4,3] were lower (P < 0.05) than laser light-

scattering values (i.e. the official method for determining particle size), whereas no difference in 

the MIR-predicted D (0.9) versus laser light scattering was detected [46]. 
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To obtain accurate analytical results for milk components, the fat globule diameter of milk should 

be less than one-third of the wavelength of fat B (3.48 µm), which is the shortest wavelength used 

for fat analysis. Particle size of the milk produced by a homogenizer within a milk analyzer should 

result in a mean globule diameter D (0.9) <1.7 µm. If D (0.9) ≥1.7 µm, then the homogenizer 

performance has deteriorated and should be replaced. In addition, different types of homogenizers 

have different efficiency at the same pressure. For example, one stage homogenizer will be less 

efficient than double stage homogenizer. Homogenization efficiency is also affected by milk 

temperature, pump speed, pump stroke length, fat content and time of usage. This prediction model 

can be used to warn milk analyzer operators that the homogenizer is near failure and needs to be 

replaced to ensure quality of results [46].  

2.7.4 Prediction of milk protein composition and its genetic variants 

Milk protein composition has been linked to cheese making properties. Associations between 

increased κ-casein (κ-CN) content and decreased rennet coagulation time, enhanced curd firmness 

and increased cheese yield have been reported in the literature. For this reason, developing a fast 

method for determining milk protein fractions by MIR spectroscopy is considered feasible by the 

cheese making industry [47].  

Bonfatti et al. (2011) investigated the feasibility of MIR spectroscopy to predict milk protein 

fractions and their genetic variants. The reference method that was used to determine milk protein 

fractions was reversed phase (RP) HPLC and predictions models were built by using modified 

PLS (MPLS) and first derivatives of the samples’ spectra. Whole spectrum was used and regions 

from 3470 to 3040 cm−1 and from 1700 to 1600 cm−1 were excluded [47].  

Casein and whey protein fractions showed peaks around 1650 and 1550 cm−1, which correspond 

to amide I and amide II bands, respectively. In addition, peaks were observed between 1300 and 

1000 cm−1 due to ionic and covalent phosphate bonds. Sulfur amino acids were responsible for the 

S-H stretch vibration occurring between 2500 and 2600 cm−1. Other vibrations, such as S-S and 

C-S, were observed below 1000 cm−1 and good correlation was also observed between 2800 and 

3600 cm−1 due to C-H and O-H stretching [47]. 

The most accurate predictions were obtained for total protein, casein (CN), αS1-CN, β-

lactoglobulin (LG), glycosylated κ-CN, and whey protein content. The coefficients of 

determination between predicted and measured values in cross-validation ranged from 0.61 to 
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0.78. Less accurate results were obtained for β-CN, αS2-CN and κ-CN. No accurate predictions 

were obtained for α-LA nor for γ-CN. No feasible predictions were produced by MIR spectroscopy 

for milk protein genetic variants κ-CN A and B; β-CN A1, A2, and B; and β-LG A and B.  The 

coefficients of determination between predicted and measured values in cross-validation were 

<0.15 for the content of κ-CN genetic variants <0.01 for the content of β-CN variants. The best 

predictions were obtained for β-LG A and β-LG B contents. In addition, Unfavorable results were 

obtained when protein fraction contents were measured as percentage ratios of total protein or CN. 

The study concluded that MIR cannot be used to accurately predict individual milk protein 

composition; however, it can play a role as indicator traits in selective breeding to enhance milk 

protein composition. The inability of MIR spectroscopy to predict milk protein fractions accurately 

can be explained by the fact that protein fractions differ in the length of the amino acids chain and 

in the secondary and tertiary structure, rather than in the kind of chemical bonds. In addition, the 

heterogeneity within each protein fraction, such as the presence of glycosylated and 

phosphorylated forms, makes the prediction based on the use of spectra difficult. Previous study 

that used PLS and untreated spectra did not give better results [47]. 

Bonfatti et al. (2016) reported that PLS models had good predictive ability for overall protein and 

casein content, for which the R2
CV of models were >0.80. Values of R2

CV for the content of the 

casein fractions ranged from 0.74 for αS1-CN to 0.22 for unglycosylated κ-CN. Glycosylated κ-

CN was also predicted with poor accuracy (R2
CV = 0.46). For whey protein fractions, as well as for 

most caseins, the R2
CV showed that models could only discriminate between high and low protein 

values. When protein fractions were expressed on a protein basis, results were even more 

unsatisfactory because prediction of protein fraction content relies indirectly on the relationship 

between the content of individual proteins and total milk protein [43]. 

2.7.5 Prediction of milk lactoferrin as an indicator of mastitis  

Lactoferrin (LTF) is an iron-binding glycoprotein that is associated with the cow immune system 

and it is secreted by the mammary epithelial cells. Its normal level in milk ranges between 0.1 and 

0.4 g/L of milk and it becomes higher during the later lactation stage (0.25-0.4 g/L). LTF can also 

be released by polymorphonuclear neutrophils during inflammation since it has antibacterial and 

antifungal properties. LTF can be involved in host defence mechanisms and it can modulate the 

inflammatory process. For this reason, high concentrations of LTF in milk can be considered as an 



29 

 

indicator for the presence of mastitis. In such cases LTF might reach 2.3 g/L of milk. Lindmark-

Månsson et al. (2006) reported that the highest amounts of LTF were present in udder quarter milk 

samples that had the highest SCC, which agrees with previous reports in the literature.  The 

correlation between LTF concentration and SCC was 0.918 (P<0.001) and the increase in LTF in 

the quarter milk samples started at a SCC of 5000 cells/mL. In addition, she found that the 

correlation between LTF and polymorphonuclear neutrophils was weaker than the correlation 

between LTF and SCC, which indicates that LTF is produced by the udder tissue too. However, 

the author acknowledged that the correlation between SCC and LTF was lower (0.455, P<0.001) 

in a previous study and that the cow that had high SCC quarter (i.e., 1,815,000 cells/mL) did not 

show signs of mastitis [48]. 

Soyeurt et al. (2012) conducted a study that aimed at developing calibration model to quantify 

LTF content in milk by using large number of samples collected in Belgium, Ireland and Scotland 

from cows of different breeds and from different production systems. The study also aimed at 

evaluating LTF predictions to identify the presence of clinical mastitis [49]. In this study, LTF was 

measured by a commercial ELISA kit and milk MIR spectra were collected by FOSS’s MilkoScan 

FT6000. Six different PLS calibration models for LTF prediction were developed by using raw 

spectral data, raw spectral data with repeatability file, first derivative data, first derivative data 

with repeatability file, second derivative data, second derivative data with repeatability file. In 

addition, logistic regression models were developed to detect the presence of mastitis. These 

models included either predicted MIR LTF, somatic cell scores (SCS), whose distribution is more 

normal than SCC distribution, SCS and predicted MIR LTF, or SCS, predicted MIR LTF and their 

interaction. SCS was calculated by using the following formula:  

Equation 2-16 Calculation of somatic cell scores 

𝑆𝐶𝑆 = (𝑙𝑜𝑔2 (
𝑆𝐶𝐶

100000
)) + 3 

These models were applied to spectral data from cows that had mastitis to assess their capability 

of detecting mastitis [49]. The PLS model that was built by using first derivative spectral data and 

the repeatability file gave the most accurate results. The cross-validation coefficient of 

determination R2
cv, RPD, validation coefficient of determination R2

v, standard error of cross 

validation (SECV) and standard error of prediction (SEP) were 0.72, 1.86, 0.60, 50.55 mg/L and 
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58.98 mg/L, respectively. Since SECV and SEP were relatively similar, the model was considered 

robust. Three spectral regions were considered relevant to the prediction of LFT. These regions 

were the region surrounding 1200 cm-1, which is associated to C-O bonds, the region located 

around 1300 cm-1, which is related to COOH, and the region between 1700 and 1800 cm-1. On the 

other hand, the logistic model that only included predicted LTF could not accurately predict the 

presence of mastitis despite a moderate correlation between SCS and LTF (R=50.54). Model 

specificity was better when LTF was included in the regression along with SCS when compared 

with SCS alone [49]. 

Bonfatti et al. (2016) reported that PLS models could only discriminate between high and low 

values of lactoferrin, and they were not sufficiently accurate to lead to precise quantification. The 

previous study produced higher R2
cv only when samples from 3 different countries were used.  

However, when the calibration was tested in external validation on Belgian samples only, the R2
cv 

was consistent with the estimate obtained in the current study. In addition, the average lactoferrin 

content in the current study was 128 ± 96 mg/L, which was lower than the one reported in the 

previous study [43].  

2.7.6 Prediction of milk coagulation properties  

Milk coagulation properties (MCP) directly affect the cheese-making properties, such as cheese 

yield, moisture and quality [50]. MCP include good reactivity to rennet, high curd-firming 

capacity, good syneresis ability, and whey drainage [43].  These properties can be assessed by 

measuring milk rennet coagulation time (RCT, min), and curd firmness (a30, mm). RCT is the time 

between the addition of the clotting enzyme and the beginning of the coagulation process, while 

a30 is curd firmness measured 31 minutes after addition of the clotting enzyme. MCP reference 

values are assessed by computerized renneting meter. This technic is time consuming and requires 

trained personnel; hence, it cannot be used on a large scale to determine MCP properties of milk 

samples [50].  

De Marchi et al. (2009) investigated the potential of MIR milk analysis as an alternative method 

to predict MCP of milk samples. PLS models were developed by using untreated and pretreated 

spectra to predict these properties. Spectral treatment included: normalization (N), multiplicative 

scatter correction (MSC), first derivative (Savitzky-Golay, 3 data points each side), and N plus 

first derivative spectra. These models were enhanced by using the following spectral regions: 1600 
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to 900 cm−1, 3040 to 1700 cm−1 and 4000 to 3470 cm−1. The best models were obtained by using 

raw spectral data. The root mean square errors of cross-validation for RCT and a30 were 2.36 min 

and 6.86 mm, respectively. R2 for RCT was 0.59, which indicates the ability to discriminate 

between high and low values; however, it was not considered sufficiently accurate to be 

implemented in industry. On the other hand, R2 for a30 was 0.37, which was not considered 

satisfactory [50].  

The loading spectra of the prediction models showed peaks occurring at 968, 1115, 1146 and 1,180 

cm−1, which are attributed to C-O and C-C stretching, respectively, whereas O-C-H, C-C-H, and 

C-O-H bending account for peaks at 1466 and 1331 cm−1, respectively. A peak was also observed 

at 1240 cm−1 which may be due to amide III or phosphate bands. Dominant peaks are also observed 

at 1589 and 1500 cm−1, which can be attributed to amide II. Peaks associated with lipids (2935, 

2839, 1763, and 1751 cm−1) were also apparent in the loadings of the RCT model. These results 

can be explained by the effect of milk protein and fat content on milk coagulation. Increased 

protein level decreases significantly the curd firming time [50]. The study concluded that despite 

the models needed further improvement to their accuracy for any application in the industry, they 

can still be used in phenotypic-based selection programs to improve MCP at herd or individual 

level [50].  

Dal Zotto et al. (2008) demonstrated that the assessment of MCP through computerized renneting 

meter provides repeatable and reproducible measures for RCT but not for a30. In addition, adding 

bronopol preservative to milk has no detrimental effects on the reliability of RCT measures by 

computerized renneting meter [51].  

De Marchi et al. (2012) reported an enhanced accuracy for the predictions of MCP by MIR 

spectroscopy [52]. In this study, a Formagraph was used as reference method for determining MCP 

values instead of computerized renneting meter and the testing-time of the analysis was set up at 

60 minutes to investigate if milk not forming a curd within the conventional threshold of 30 

minutes showed coagulation aptitude after this time. In addition to RCT and a30, the study included 

the determination of curd-firming time k20, which is the interval in minutes from the beginning of 

coagulation to the moment the width of the graph attains 20 mm, and a60, which is curd firmness 

at 60 minutes after rennet addition. The most accurate models were those for RCT, k20 and a30. 

Less favorable results were obtained for a60. In addition, the study demonstrated that MCP were 
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strongly influenced by dairy cooperative and herd, suggesting the existence of different feeding 

and management conditions. It also showed that milk chemical composition and acidity had a large 

influence on MCP, where increased values of casein and titratable acidity yielded improved MCP. 

Another factor that affected MCP was season of sampling. Samples collected during the summer 

had better results in terms of RCT and k20 [52], which was attributed to a decrease in the content 

of protein in the summer that is usually associated with a decrease in the content of casein [53]. 

Finally, there were differences in MCP between different breeds. Brown Swiss produced milk with 

the shortest RCT and the highest a30, whereas Holstein-Friesian showed the worst technological 

properties and Simmental cows were intermediate between the previously mentioned breeds [52]. 

Using the previously enhanced calibration equations, De Marchi et al. (2013) developed models 

to detect noncoagulating milk (NC), which is defined as milk not forming a curd within 30 min 

from rennet addition, in Holstein cows by using MIR spectroscopy. The reference method that was 

used to determine MCP was Formagraph and the traits that were studied were rennet coagulation 

time, curd-firming time, and curd firmness at 30 and 60 min after rennet addition [54]. Raw 

spectral data was used to build the models and the spectral regions 3040 to 3470 cm−1 and 1600 to 

1700 cm−1 were excluded. The most accurate prediction model was developed for RCT, followed 

by k20 and a30. Models for the prediction of a60 were not satisfactory. Results showed no specific 

spectral information distinguishing NC from coagulating samples. However, peaks associated with 

protein were found to be very dominant for RCT and k20, whereas those associated with lipids 

seem to be more dominant for curd firmness traits [54].  

In another study, Cecchinato et al. (2009) developed calibration equations to estimate heritability 

and genetic correlations for measured MCP and their predictions obtained from MIR spectra [55]. 

Studies have reported that exploitable additive genetic variation exists for RCT and a30, hence 

enhancement of these traits through breeding is a viable option. Heritability is a statistic used in 

breeding and genetics studies that estimates how much variation in a phenotypic trait in a 

population is due to genetic variation among individuals in that population [56]. Point estimates 

of heritability ranged from 0.30 to 0.34 and from 0.22 to 0.24 for RCT and a30, respectively. 

Heritability estimates for MCP predictions were larger than those obtained for measured MCP. 

Estimated genetic correlations between measures and predictions of RCT were very high and 

ranged from 0.91 to 0.96. Estimates of the genetic correlation between measures and predictions 
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of a30 were large and ranged from 0.71 to 0.87 [55]. Genetic correlation is the proportion of 

variance that two traits share due to genetic causes [57]. The study concluded that breeding 

strategies for the enhancement of MCP based on MIR predictions as indicator traits could be easily 

and immediately implemented for dairy cattle populations where routine acquisition of spectra 

from individual milk samples is already performed [55]. 

Bonfatti et al. (2016) reported that prediction accuracy was satisfactory for RCT (R2
cv=0.69) but 

poor for other MCP traits (R2
CV < 0.42), which was not consistent with the literature. Such 

inconsistency might be explained by the greater variability in MCP traits detected by other authors 

and by the different equipment used when measuring MCP since the accuracy of the prediction 

model depends on the accuracy of the reference analysis. Unsatisfactory predictions for curd 

firmness at 60 min were obtained, which were consistent with the literature. Among curd yield 

traits, the prediction of dry matter (DM) curd yield showed the greatest R2
CV (0.85), followed by 

fat, raw, water, and protein curd yield, for which the R2
CV was 0.62. Considering that curd yield 

partly depends on rheological property of milk, raw curd yield was predicted with relatively high 

accuracy (R2
CV=0.67). Curd composition was predicted with poor accuracy, with R2

CV values 

ranging from 0.35 for fat content to 0.61 for DM content [43]. 

2.7.7 Prediction of titratable acidity and pH  

Titratable acidity (TA) is defined as the volume of 0.25 molar sodium hydroxide solution required 

to achieve a color change of the pH indicator phenolphthalein to pink in a specific volume of milk 

sample. It is a dimensionless milk index and its unit is °SH (degree Soxhlet-Henkel). TA is 

different from pH, which is defined as the negative log of hydrogen ions concentration. Cheese-

ready milk must have a Soxhlet-Henkel number between 6.0 and 7.4 °SH. 

TA plays a fundamental role in the aggregation rate of para-casein micelles and the reactivity of 

rennet. It also influences the rate of syneresis and determines the suitability of milk for cheese 

making. In the production of premium cheeses, milk with low acidity (hypo-acid milk) is generally 

considered unsuitable for cheese making because of its negative effects on the rheology of the 

acid-rennet curd and on the textural properties of the cheese paste. On the other hand, the pH of 

milk affects both the enzymatic and aggregations reactions, which means lowering the pH 

decreases the colloidal stability of milk [50].  
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De Marchi et al. (2009) developed PLS models by using untreated and pretreated spectra to predict 

TA and pH. Spectral treatment included: normalization (N), multiplicative scatter correction 

(MSC), first derivative (Savitzky-Golay, 3 data points each side), and N plus first derivative 

spectra. These models were enhanced by using the following spectral regions: 1600 to 900 cm−1, 

3040 to 1700 cm−1 and 4000 to 3470 cm−1. The best models were obtained by using the first 

derivative of the spectra. The root mean square errors of cross-validation for TA and pH were 0.25 

SH°/50 mL and 0.07, respectively. The R2 for the TA model was 0.66, which provides approximate 

prediction, whereas for pH R2 was 0.62, which discriminate between high and low values. The 

study could not assign functional groups to individual peaks [50]. The study concluded that TA 

and pH had the potential to be predicted by MIR spectroscopy and multivariate data analysis [50]. 

Bonfatti et al. (2016) reported that prediction accuracy was satisfactory for pH (R2
cv=0.79) [43].  

2.7.8 Estimation of major mineral contents in cow milk  

Soyeurt et al. (2009) investigated the possibility of predicting the content of several milk minerals 

by PLS models and milk MIR spectral data. The studied minerals were Ca, K, Mg, Na and P. The 

reference method that was used for determining the content of these minerals in milk was 

inductively coupled plasma atomic emission spectrometry (ICP-AES). The cross-validation 

coefficients of determination (R2
cv) were 0.23 and 0.50 for K and Mg, respectively; hence, not 

showing any potential application. The external validation coefficients of determination were 0.97, 

0.14, and 0.88 for Ca, Na, and P, respectively, suggesting a potential application for Ca and P but 

not for Na. The researchers concluded that MIR spectroscopy can only predict Ca and P content 

in milk [58]. The correlations between the Ca and P MIR predictions and the known milk 

components were calculated. All correlations were inferior to the correlation calculated based on 

the cross-validation. Therefore, the calibration equations established to predict the contents of Ca 

and P in milk were coming from real spectral absorbance. The spectral regions that were correlated 

to variability in Ca content were: 1454 and 1458 cm−1 and between 2831 and 2970 cm−1, while 

variability in P content were correlated to the following spectral regions: 1200 and 1277 cm−1, 

between 2841 and 2974 cm−1 with a maximum at 2974 cm−1 and between 1442 and 1469 cm−1. 

High correlation was observed at 1242 cm−1, which is related to the P=O bond present in 

phospholipids. On the other hand, the spectral regions associated with the bond between Ca and 

the carboxylate group of casein at 1410 cm−1 and 1575 cm−1 did not show high correlation. In 

addition, previously reported regions in the literature related to Ca and P in milk did not show any 
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correlations in this study. These regions are 956 to 946 cm−1, which was related to the 

concentration of organic P, and 980 cm-1, which was related to bound Ca [58]. Bonfatti et al. 

(2016) reported that low values of R2
cv for minerals ranged between 0.41 and 0.48. This can be 

explained by reduced variability in mineral concentrations [43].  

2.7.9 Prediction of acetone, β-hydroxybutyrate and citrate  

It has been proved that acetone and BHB can be used as milk biomarkers to indicate ketosis. In 

addition, citrate is considered as an early indicator of negative energy balance. By using FTIR milk 

analysis and PLS, Grelet et al. (2016) developed equations to predict acetone, BHB and citrate 

levels in raw milk samples. The coefficient of determination (R2) of cross-validation was 0.73, 

0.71, and 0.90 for acetone, BHB and citrate, respectively, with root mean square error of 0.248, 

0.109, and 0.70 mmol/L, respectively. The external validation R2 were 0.67 for acetone, 0.63 for 

BHB, and 0.86 for citrate, with respective root mean square error of validation of 0.196, 0.083, 

and 0.76 mmol/L, respectively. Acetone content ranged from 0.020 to 3.355 mmol/L with an 

average of 0.103 mmol/L; BHB content ranged from 0.045 to 1.596 mmol/L with an average of 

0.215 mmol/L; and citrate content ranged from 3.88 to 16.12 mmol/L with an average of 9.04 

mmol/L. A first derivative was obtained and the spectral regions that were used were: 968.1 to 

1,577.5 cm−1, 1,731.8 to 1,762.6 cm−1, 1,781.9 to 1,808.9 cm−1, and 2,831.0 to 2,966.0 cm−1. To 

evaluate the prediction model performance, ratio performance/deviation (RPD) was calculated. 

RPD is a criterion that shows simultaneously the accuracy of predictions and the global variability 

of the reference values. The RPD is defined as the ratio of the standard deviation (SD) to the root 

mean square error (RMSE), SD/RMSE, while RMSE can be the one calculated in cross-validation 

or the one of a validation set. When the RPD is between 1.5 and 2, the model can discriminate low 

from high values; an RPD between 2 and 2.5 indicates that rough quantitative predictions are 

possible, and RPD between 2.5 and 3 or above corresponds to good and excellent prediction 

accuracy. It was suggested to use these models for herd management, or at individual level by 

using thresholds or relative values to cope with low accuracy [59]. 

2.7.10 Prediction of cows’ body energy status and feed efficiency  

McParland et al. (2011) investigated the potential of regularly collected MIR milk spectra at 

central dairy laboratories to predict body energy status and related traits in lactating dairy cows, 

which included energy balance, body energy content, body condition score and energy intake. The 
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energy balance was defined as a function of milk yield, fat and protein content, dry matter intake, 

body weight and body condition score. On the other hand, the body energy content was defined as 

a function of body weight and body condition score, predicting body lipid and protein weight [60].  

The aim of the study was to directly predict body energy status of cattle from MIR milk spectra 

without relying on milk composition components, such as fat-to-protein ratio or fatty acid 

composition of milk fat. The importance of determining body energy status stems from the fact 

that the duration of negative energy balance might be a precursor for impaired health and fertility 

in dairy cows. Data on 815,129 test days from 3,151 lactations of 1,145 Holstein cows were 

available to compute body energy status. These data included milk yield, milk composition, dry 

matter intake, body weight, body condition score, age of calving, season of calving and parities 

[60]. Random regression models were fitted to daily milk yield, fat percent, protein percent, dry 

matter intake, body condition score and body weight to provide daily solutions to calculate a 

lactation profile for energy balance. All random regression models were fitted within parity and 

included the fixed effects of genetic line, feeding group, year of calving by season of calving, age 

at calving, year of record by month of record, a fourth-order orthogonal polynomial on days post 

calving, and the random effect of the interaction of cow by a fourth-order orthogonal polynomial 

on days post calving. On the other hand, MIR milk spectra were collected for 6,665 milk samples 

from 18 test dates of 465 lactations from 277 cows. MIR milk spectral data were converted to 

absorbance and Boxcar smoothing (i.e., moving average) was applied to it by averaging the 

spectral data over spectral segments of 5 data points in length. In addition, the first derivative was 

calculated on both the smoothed and unsmoothed absorbance spectral data. Cows were stratified 

according to selection line, feeding treatment, and season of calving, and the data split randomly 

within stratum into 4 equally sized data sets. The calibration data set included 75% of the data and 

25% were considered as validation set. PLS calibration models were developed to predict body 

energy balance, body energy content, body condition score and energy intake using unsmoothed 

and smoothed spectral data as well as the first derivative. Validation results showed that smoothing 

and first derivative did not enhance predictions. Among the body energy status indicators, energy 

balance was consistently the most accurately predicted one. The authors concluded that the average 

accuracy of predicting body energy status from MIR spectral data was as high as 75% when energy 

balance was measured across lactation. In addition, they considered predictions of body energy 
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status from MIR milk spectra more accurate than predictions obtained form milk composition 

indicators, such as fat-to-protein ratio in milk [60]. 

In a later study, McParland et al. (2014) investigated the potential of MIR milk spectroscopy to 

predict individual cow energy intake and efficiency. Feed efficiency was described by residual 

feed intake (RFI), which is the difference between actual energy intake and energy used, such as 

milk production, maintenance, and body tissue anabolism, or supplied from body tissue 

mobilization. RFI can be mathematically equivalent to energy balance. A total of 1,535 records 

for energy intake, RFI, and milk MIR spectral data were available across 36 different test days 

from 535 lactations on 378 cows. Data included dry matter intake and fecal analysis, which was 

used to calculate the effective energy intake (EEI), milk yield, milk chemical composition, cow 

body weight and cow body condition score. Using this data, RFI was calculated for each cow and 

energy balance (EB) was calculated as the difference between effective energy intake and effective 

energy expended through milk production and maintenance. In addition, MIR milk spectra were 

recorded periodically, and PLS models were developed to predict RFI, EB and EEI form the MIR 

milk spectra. The correlation coefficient r of models to predict RFI across lactation ranged from 

0.48 to 0.60; however, the strongest one was obtained in early lactation r=0.65. They also found a 

very strong correlation between EB and RFI r=0.85 [61].  

2.7.11 Prediction of methane emissions from dairy cattle  

Methane emissions, which are eructed by cattle, represent a loss of use of energy intake that 

increases the feed cost and decreases profitability of dairy farms. Hence, mitigating methane 

emissions will improve feed efficiency, reduce feed cost and reduce feed related costs. Few studies 

investigated the potential of FTIR milk analysis as a cheap and fast method to predict dairy cattle 

methane emissions [62].  

During digestion in the reticulorumen, carbohydrates are degraded by microbial fermentation into 

CO2, CH4, H2 and volatile fatty acids (VFA), which are mostly acetic, propionic and butyric acid. 

Acetic and butyric acids are the primary precursor for milk fat, while propionic acid is used in 

lactose synthesis. Research shows that an increased butyrate/propionate ratio decreases lactose 

content and increases fat content in milk and the rumen CH4 synthesis. On the other hand, the 

rumen VFA composition influences milk fat composition. Short and medium-chain fatty acids (4 

to 14 carbons) are derived from de novo synthesis based on acetate and butyrate. Long-chain fatty 



38 

 

acids (>16 carbons) are collected from the circulating lipids and fatty acids of 16 carbons are 

obtained from the two sources. Thus, fatty acid composition of milk fat reflects the VFA produced 

during ruminal fermentation and CH4 production. Since FTIR milk analysis can predict milk fat 

composition, Dehareng et al. (2012) evaluated the prediction of CH4 emissions from MIR milk 

spectra [63]. Holstein cows of different parity (i.e. primiparous and multiparous) were offered 

different diets. Diet 1 consisted of freshly cut pasture grass, dried beet pulp, soybean meal and 

soybean hulls. Diet 2 consisted of: corn silage, meadow hay, cracked corn, rapeseed meal, palm 

meal, soybean meal and a 50:50 mix of coconut and flaxseed oil. Diet 3 consisted of grass silage, 

corn silage, cracked corn, soybean meal and dried beet pulp. Cows were given a 21 days adaptation 

period, then milk spectra and CH4 measurements were collected. Sulfur hexafluoride (SF6) gas 

tracer technique was used to measure enteric CH4 production by the cows once a day. Milk spectra 

were recorded twice a day (i.e. morning and evening). Assuming that there is a delay between the 

production of fermentation products and their use to produce milk components, different ways 

were used to calculate the average of two milk spectra to be related to one-day CH4 measurement. 

The averages were for two spectra collected on [63]:  

▪ the same day of CH4 measurement (day 0) 

▪ evening of the same day and morning next day (day 0.5) 

▪ next day (day 1) 

▪ evening next day and morning 2 days later (day 1.5) 

▪ 2 days later (day 2) 

PLS model was developed for predicting CH4 emission from milk MIR spectra, which did not 

undergo any pre-treatment. Different models were built for different milk spectral average sets. 

The spectral regions used for that were: 972 to 1589 cm-1, 1720 to 1782 cm-1 and 2746 to 2970 

cm-1 [63]. The best predictions were achieved by PLS model built by using CH4 emission per Kg 

of milk, rather than CH4 emission per day, and the milk average spectra with an interval between 

the measurement of CH4 and the spectral data equal to 1.5 days. The cross-validation coefficient 

of determination R2
cv was 0.79 and the difference between R2

c and R2
cv was the lowest (0.08), 

which indicates a robust model. The study also showed that CH4 predictions were not affected by 

the different diets and that R2
cv of CH4 prediction model was higher than the correlation obtained 

between CH4 emissions and milk production and MIR milk components. This fact indicates that 
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the prediction model is not based only on correlation between CH4 production and milk 

components. However, the study concluded that further research is needed to produce more 

reliable prediction model [63].  

Vanlierde et al. (2015) predicted CH4 emissions from milk MIR spectra by taking lactation stage 

into consideration, which better reflects the metabolic status of the cow [62]. The author 

hypothesized that inclusion of the stage of lactation in the prediction model might improve the 

relationship between CH4 emissions and MIR spectra because milk fatty acids profile is strongly 

influenced by the evolution of body tissue mobilization during lactation. The study included cows 

form different countries (i.e. Belgium, Ireland), different breeds (i.e. Holstein, Jersey, Holstein-

Jersey crossbred), different parity (i.e. first, second, third and later), and different lactation stages. 

In addition, different diets were used to feed the cows, such as grass or high silage diets, with or 

without linseed supplementation and synchronized or not in terms of fermentable energy and 

nitrogen supplies in the rumen. CH4 emissions were measured daily by the sulfur hexafluoride 

(SF6) tracer gas technique and MIR milk spectra were collected twice daily for cows in two 

different countries. To obtain one milk spectrum per CH4 measurement, the 2 spectra were 

averaged proportionally to the milk yield at each milking [62]. Two PLS calibrations models were 

developed to predict CH4 emissions from MIR milk spectra after applying the first derivative and 

three spectral regions were used: 968-1577 cm−1, 1720-1809 cm−1, and 2561-2966 cm−1. The first 

model was independent from lactation stage (ILS) and the second model was dependent on 

lactation stage (DLS), which included the days in milking (DIM) for each cow in addition to the 

MIR milk spectra. To obtain the DLS calibration equation, each first derivative value of the 

spectrum was multiplied by a constant (i.e., 1), a linear (√3 × 𝑥) and a quadratic 

[√5
4⁄ × (3𝑥2 − 1)] modified Legendre polynomial where 

Equation 2-17 Equation used to embed lactation stage in constants that are multiplied by the first derivative value for each 

spectrum data point 

𝑥 = −1 + 2 [
(𝐷𝐼𝑀 − 5)

(365 − 5)⁄ ] 

Through this process, a modified spectral data set was generated containing 867 data points (289 

data points for each constant, linear, and quadratic part) referred to as the DLS spectral data set. 

The linear and the quadratic parts of these modified spectra take into account the lactation stage of 
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cows. The range of application of the DLS equation was between 5 and 365 DIM given the range 

of lactation covered in the definition of the Legendre polynomials [62]. After applying the two 

prediction equations to an external validation spectral data set whose CH4 emissions were not 

recorded, a statistical model was developed to evaluate the behaviour of the predicted CH4 

emissions and to verify that they comply with the biological processes in the cow’s body. This 

model reflected several effects known to influence CH4 production such as effects of herd, year 

and month of test-date, lactation number, lactation stage, animal, and milk yield [62]. 

Equation 2-18 Statistical model that reflects several effect which influence CH4 immisions 

𝑦𝑝𝑞𝑟𝑠𝑡𝑢 = 𝜇 + ℎ𝑝 × 𝑦𝑞 + 𝑚𝑜𝑟 + 𝑙𝑠 × 𝑑𝑡 + 𝑐𝑢 + 𝑚𝛼 + (𝑚 × 𝑚)𝛽 + 𝑒𝑝𝑞𝑟𝑠𝑡𝑢 

Where 𝑦𝑝𝑞𝑟𝑠𝑡𝑢 was the predicted CH4 trait, μ was the general mean, ℎ𝑝 × 𝑦𝑞 was the crossed fixed 

effect of herd p and year of test-date q, 𝑚𝑜𝑟 was the fixed effect of month r, 𝑙𝑠 × 𝑑𝑡 was the crossed 

fixed effect of lactation numbers and lactation stage t, 𝑐𝑢 was the random effect of cow u, m was 

the daily milk yield (kg/d), α was the linear regression coefficient on m, β was the quadratic 

regression coefficient on m and 𝑒𝑝𝑞𝑟𝑠𝑡𝑢 was the associated random residual [62]. 

The R2
c for the ILS and DLS calibration models were 0.77 and 0.75, respectively. The standard 

error of calibration (SEC) was 63 g/d for both ILS and DLS calibration models. These parameters 

show that both models had similar abilities to predict eructed CH4. In addition, CH4 emission 

predictions of both ILS and DLS models were significantly affected by all studied fixed effects. 

However, behavior of DLS predictions throughout the lactations was more in agreement with the 

literature than the predictions of the ILS model. Increasing values of CH4 predictions were 

observed for the DLS model in the period 0-100 DIM, which accompanies an increase in feed 

intake in cows postpartum, and thereafter these values decreased. On the other hand, predictions 

of the ILS model showed a reversed pattern where emission predictions decreased at the beginning 

of the lactation and then increased until the end of the lactation. Therefore, the DLS model seems 

to better reflect biological processes that drive CH4 emissions than the ILS model [62]. 

2.7.12 Detecting cows’ pregnancy status 

Lainé et al. (2014) investigated the potential of MIR milk spectra to detect cows’ pregnancy status. 

They collected MIR milk spectra of open cows (i.e. non-pregnant cows) and they estimated all the 

relevant effects by statistical modeling. Later, they collected MIR milk spectra of cows with 
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unknown pregnancy status and they adjusted these spectra according to the estimated coefficients 

of the relevant effects to produce new spectra, which would be the expected spectra if these cows 

would have been open. The calculated spectra were then removed from the respective observed 

ones for the cows with the unknown pregnancy status, and the residual spectra were used to predict 

the pregnancy status. These residual spectra contained errors, pregnancy status, and unaccounted 

factors [64].  

Before calculating the expected spectra, first derivative was calculated on the raw spectral data 

and noisy regions of the milk spectrum were removed. Outliers were flagged if samples had milk 

yield, fat content and protein content outside the acceptable ranges of the International Committee 

for Animal Recording (ICAR) or if they have a Mahalanobis distance greater than 3.  The final 

edited dataset included a total of 411,406 spectra (114,338 spectra from pregnant cows and 

297,018 spectra from open cows) from 68,998 cows in 1,045 herds. A predictive discriminant 

analysis was performed to produce a discriminant function that was validated using an external 

validation set of 14,883 residual spectra. Results were expressed in terms of specificity and 

sensitivity. Specificity is defined as the ability of the equation to predict correctly the non-event 

(open cows) among all observations which are not pregnant. Sensitivity is defined as the ability of 

the equation to predict correctly the event (pregnant cows) among all observations belonging to 

pregnant cows.  [64]. The classification error was 0.7% and 55.5% when the predictive 

discriminant function was applied to the calculated residual and raw spectra, respectively, of 

samples with unknows pregnancy status after 50 days of insemination. Specificity was 86.2% and 

sensitivity was 99.7% for predictions based on the calculated residuals. The authors concluded that 

changes in the pregnancy status of the cow can be reflected in the MIR milk spectrum [64].  

2.7.13 Verification of dairy farming production system  

Capuano et al. (2014) investigated the potential of MIR milk spectra to distinguish between milk 

produced by fresh grass feeding, pasture grazing and organic farming by using partial least square 

discriminant analysis (PLS-DA). A total of 116 tank milk samples were collected from 30 different 

farms in the Netherlands. The grass intake with cut fresh grass fed indoor was estimated from the 

acreage of cut land and weight of fed fresh grass. The grass intake via grazing was estimated by 

the farmer through their experience from the animal energy needs minus what was fed next to the 

grassland. Samples were categorized in five groups: milk samples from cows at least 19 h outdoors 
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on pasture daily, milk samples from cows 6–9 h outdoors on pasture daily, milk samples from 

cows indoors with fresh grass in the diet, milk samples collected in spring from cows indoors with 

no fresh grass in the diet and milk samples collected in winter with no fresh grass in the daily 

ration and cows were indoor all the time. Fresh grass in the cows’ daily ration was between 36% 

and 94%. In addition, milk samples were collected from two certified organic farms, three certified 

biodynamic farms and one farm converting to organic farming. MIR spectra were collected for all 

milk samples in the range of 925-5008 cm-1 and outliers were detected by principal component 

analysis (PCA). The following regions were eliminated due to the lack of chemical information or 

inadequate signal-to-noise ratio: 1800-2800 cm-1, 3000-3600 cm-1 and 4000-5000 cm-1. Various 

data pre-processing techniques were tested including mean-centering, auto scaling (scaling to unit 

variance), Pareto scaling (scaling to square root of the variance), first and second derivatives, 

smoothing and orthogonal signal correction (OSC) and a combination of them. PLS-DA was 

performed to verify the cows' feeding regime (fresh grass feeding vs. no fresh grass feeding), the 

housing management system (indoors vs. pasture) and the farming management system (organic 

vs. conventional). The training set included 75% of records of the original data set, while 25% of 

records were used as validation set [65]. The most satisfactory results in terms of number of 

misclassified samples in external validation was obtained by a PLS-DA model after auto scaling, 

smoothing and second derivative transformation of the raw data and the application of one OSC 

component [65].  

The PLS-DA model discriminated between milk from cows that had fresh grass in the daily ration 

and milk from cows that had not fresh grass with sensitivity and specificity values of 88% and 

83% in external validation and all the samples from cows that had no fresh grass collected in spring 

were correctly classified. For pasture grazing model, 75% of samples from cows in doors in spring 

were correctly classified. Discrimination of organic and conventional milk yielded 80% and 94% 

correct classification, respectively, in external validation. The authors concluded that milk FTIR 

spectra contain valuable information on cows' diet that can be used for authentication purposes 

[65]. 

2.7.14 Suggested predictions of milk components by FTIR spectroscopy 

De Marchi et al. (2014) suggested that further research is needed to determine whether MIR milk 

spectra could be used for predicting the following constituents of milk [66]:  
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1. Potassium, magnesium, and zinc content, which are important for transmitting nerve 

impulses, for mineral structure of bones, for wound healing, and healthy immune systems 

2. Phospholipids and acidic glycolipids, which are important for infant development 

3. Vitamins A and B, which are important for healthy eyes and skin 

4. Sensory features, which are important for the characterization of milk taste 

5. Cheese yield 

6. Whey components, such as glutathione, α-tocopherol and vitamin C 
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2.8 Conclusion 

Monitoring milk composition is an important management tool for dairy producers. Changes in 

milk components can be an indicator of metabolic or management issues in individual cows or the 

dairy herd in general. Milk analysis by FTIR spectroscopy is a rapid and cost-effective method 

and it does not require the use of hazardous chemicals with no sample preparation, which qualifies 

it as a green analytical method. However, dairy producers do not perceive milk composition as an 

important parameter as they do for milk yield. One of the probable reasons for this perception is 

the lack of an on-site milk analyzer that is affordable and that can rapidly analyze milk with an 

acceptable accuracy and precision. Currently, central dairy laboratories send technicians to dairy 

farms to routinely collect milk samples from individual cows and milk tanks, which are shipped 

to the laboratory for analysis by FTIR commercial milk analyzers. The information about 

individual animals and the dairy herd in general that is available to dairy farmers is limited by the 

frequency of the analysis. Having an on-site milk analyzer will provide dairy farmer with a tool to 

self monitor milk composition more frequently, especially for animals with specific health issues. 

It must also be noted that the current payment system does not take into consideration elements of 

fine milk composition to determine payments for dairy farmers.   

In this literature review, a summary was presented about the development of milk analysis by 

infrared spectroscopy and multivariate regression algorithms that are used to determine milk 

components from infrared spectral data. In addition, studies that intend to improve predictions of 

milk fatty acids and extract additional traits from milk spectral data were reviewed. The common 

drawback of the majority of these studies has been the fact that they were focused on developing 

PLS prediction models to predict fine milk composition components, such as milk fatty acids, 

different milk protein fractions and milk minerals, which do not necessarily produce a distinct 

signal in milk FTIR spectrum. Few studies relied on implementing classification algorithms to 

extract information from milk FTIR spectra that can be implemented in herd management or by 

the dairy industry. This observation suggests that the use of milk FTIR spectra can be extended 

beyond the paradigm of predicting specific milk components by PLS regression models, where 

classification models can be developed to predict the health and well-being status of dairy cows. 

Such field has been rarely investigated up to this date.  

  



45 

 

Chapter 3: Transmission based FTIR spectroscopy for on-site milk analysis 

Abstract 

Three Fourier transform infrared (FTIR) spectrometers were evaluated for transmission-based on-

site milk analysis, two of which were portable FTIR spectrometers. The three spectrometers 

produced high quality milk spectra with excellent signal-to-noise ratio. Accordingly, three 

analyzer prototypes were assembled employing CaF2 transmission cell as a sample introduction 

method with 40-50 µm path length. Pre-analyzed preserved producer raw milk samples were 

obtained from Valacta Inc. (Sainte Anne de Bellevue, QC, Canada) and their mid-infrared (MIR) 

spectra were collected by the assembled prototypes. Partial least squares (PLS) regression was 

employed to develop calibration models for the major milk component (i.e., fat, protein and 

lactose). To evaluate the goodness of fit and the prediction capability of the developed models, 

root mean square error of calibration (RMSEC), root mean square error of cross validation 

(RMSECV), root mean square error of prediction (RMSEP), number of factors, bias (if available), 

correlation coefficient r, the ratio performance/deviation (RPD) and spectral regions were used to 

compare the developed models. 

In addition, several milk fat homogenization approaches before IR analysis were investigated to 

reduce the effect of light scattering on the accuracy of the IR predictions. Ultrasonication before 

the analysis proved to be an effective method for homogenizing milk fat and to be integrated with 

an on-site IR milk analysis process. The results show that applying 3000 joules of ultrasonication 

energy to 5 mL milk sample for 120s is sufficient to produce a homogenized raw milk sample in 

a consistent manner.  

Prediction models developed using producer raw milk spectra scanned on prototype 3 gave the 

most consistent figures of merit (FOMs) (i.e., RMSEC, RMSECV and RMSEP) and RPD values 

for calibration models for fat, protein and lactose indicated excellent prediction capabilities. The 

inspection of the loading spectra of these PLS models revealed the conventional peaks at the 

expected positions for the major milk components. This observation confirms that the adequate 

FOMs obtained by prototype 3 are a result of spectral information that was captured by this 

prototype; hence, a portable FTIR spectrometer can be adapted to be used as an on-site milk 

analyzer. 



46 

 

3.1 Introduction 

Quantitative milk analysis by Fourier transform infrared (FTIR) spectroscopy is currently an 

official method of the Association of Official Analytical Chemists (AOAC) [4], which is 

extensively used for producer payment, herd management and routine quality control in the dairy 

industry [22]. Goulden was the first to describe milk analysis by infrared (IR) spectroscopy [1]. 

He demonstrated that milk components absorb IR energy at specific wavelengths and that the 

intensities of the absorption peaks can be used for quantitative determination of these components. 

The reported wavelengths that were used to determine major milk components were 5.73 m, 6.46 

m, 9.6 m and 7.9 m for fat, protein, lactose and solids-not-fat (SNF) content, respectively. In 

wavenumbers†, these values are equal to 1745.20 cm-1, 1547.99 cm-1, 1041.67 cm-1 and 1265.82 

cm-1, respectively [1]. In addition, it was demonstrated that scattering of light by fat globules is 

proportional to particle-size-to-wavelength ratio. Hence, attenuation of the IR beam due to 

scattering can be eliminated by decreasing fat globules size through milk homogenization.  

Modern milk analyzers in central dairy laboratories employ FTIR spectrometers and they use 

specific regions in milk FTIR spectrum to predict the concentrations of major and minor milk 

components (figure 3-1). These regions are 1) 1,200-900 cm-1 for lactose, 2) 1,280-1,200 cm-1 

Amide III of proteins, 3) 1,500-1,200 cm-1 different absorbance bands originating from minor milk 

components 4) 1,565–1,520 cm-1 Amide II of proteins, 5) 1,745–1,725 cm-1 𝐶 = 𝑂 stretching in 

the triglyceride ester linkage of milk fat (i.e., Fat A), 6) 2,980–2,800 cm-1 𝐶 − 𝐻 stretching of the 

aliphatic chain in fatty acids in milk fat (i.e., Fat B). The Amide I band of proteins is dominated 

by noise from the H − O − H bending band of water at 1650 cm-1 due to the immense water 

absorbance of IR energy. Similarly, the O − H stretching band in water at 3600–3200 cm-1 is also 

dominated by noise due to the same reason.  

Modern FTIR milk analyzers are renowned for their high sample throughput, which reaches 500 

samples/h, fast analysis time (i.e., 6-30s), accuracy that is better than 1% relative on the main 

constituents and precision that is better than 0.5% relative on the main constituents [5]. To achieve 

these targets, a spectral resolution of 16 cm-1 is used to obtain high signal-to-noise ratio (SNR) 

since most absorption bands in aqueous solutions are quite broad. The sample introduction method 

 
† The following equation was used to convert from wavelength to wavenumber: y cm–1 = 10,000,000 / x nm.  
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in these analyzers is a transmission cell with calcium fluoride (CaF2) windows, whose refractive 

index is similar to that of milk  [5], with an optimum path length of 37 µm [22] and samples are 

flushed at a very high velocity (i.e. 30m/s) [5] to keep the cell clean from residues buildup. Milk 

fat is homogenized by two stages high pressure homogenizer, with the pressure drop over each 

stage being approximately 107 Pa. The homogenizer consists of two chambers with ruby balls 

(Al2O3) blocking the inlet openings of each chamber. These balls are connected to a ceramic seat 

(ZnO2) by springs. High-pressure pump pushes the milk through the inlet and against the ruby 

balls. This action generates force that breakdown fat globules and reduce their diameter [5]. Fat 

globules diameter should be reduced to 1 µm since the shortest wavelength that is used in milk 

analysis is 3 µm (3333 cm-1). The high pressure within the analyzer prevent the release of dissolved 

CO2 and air as small bubbles, which will disturb the analysis [5]. Water is used as a spectral 

background and temperature fluctuations of the entire system, the sample cell and the 

interferometer are kept within tight ranges to avoid the shifting of water spectrum and optical 

misalignment due to thermal expansion [5]. In addition, the interferometer is sealed against 

atmospheric humidity and it is equipped with rubber damper system to protect the mirror drive and 

other optical components from environmental vibrations. Due to the highly overlapping and co-

linear structure of FTIR data, partial least squares (PLS) regression is used for milk calibration 

models [5]. PLS models both the X (i.e., the FTIR spectral data) and Y (i.e., the reference values) 

matrices simultaneously to find latent variables, or factors, in X that will best predict Y values 

[27]. 

Constant monitoring of milk composition is an effective tool to manage dairy herds. Changes in 

major milk components and some minor ones are indicators of health issues in dairy cows. In cases 

of negative energy balance in dairy cows, protein, fat and lactose are <2.9%, >4.8% and <4.5%, 

respectively [15]. In cases of ketosis, fat, lactose and BHB are >4.8%, <4.5% and >100 mol/L, 

respectively [15]. In addition, several papers have reported the implementation of milk analysis by 

FTIR to predict: milk fatty acids and milk fat composition [39-43], fatty acid chain length and 

unsaturation [44], fat globule particle size in homogenized milk [46], milk protein composition 

and their genetic variants [47], milk lactoferrin as an indicator of mastitis [49], milk coagulation 

properties [50-52, 54, 55], milk titratable acidity and pH [50], milk major mineral content milk 

[58], acetone, β-hydroxybutyrate (BHB) and citrate [59], cow’s body energy status and feed 
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efficiency [60, 61], methane emission from dairy cattle [62, 63], cow status pregnancy [64] and 

dairy farming production system [65]. 

The objective of this study was to investigate the suitability of different benchtop and portable 

FTIR spectrometers for on-site milk analysis. These spectrometers have several advantages 

including improved SNR for measurements acquired over a short period of time (i.e., the multiplex 

or the Fellgett's advantage) and high throughput with high resolution (i.e., the Jacquinot's 

advantage). We believe that providing dairy producers with an on-site tool to monitor milk 

composition will help them detect issues in dairy cows in its early stages without the need to 

constantly ship milk samples to centralized dairy laboratories, which will help dairy producers to 

reduce their environmental footprint. The guidelines that were mentioned in this introduction will 

be used to assemble prototypes for on-site milk analysis and to develop PLS calibration models 

that will predict major milk components and some minor ones. It must be noted that an on-site 

milk analyzer will not be used for payment purposes.  

 

Figure 3-1 Mid-FTIR milk spectrum acquired on a milk analyzer.1) 1,200-900 cm-1 lactose, 2) 1,280-1200 cm-1 Amide III of 

proteins, 3) 1,500-1,200 cm-1 different absorbance bands originating from minor milk components 4) 1,565–1,520 cm-1 Amide II 

of proteins, 5) 1,745–1,725 cm-1 𝐶 = 𝑂 stretching in the triglyceride ester linkage of milk fat (i.e., Fat A), 6) 2,980–2,800 cm-1 

𝐶 − 𝐻 stretching of the aliphatic chain in fatty acids in milk fat (i.e., Fat B).   
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3.2 Materials and Methods 

3.2.1 Milk samples 

Milk samples that have been used in this chapter can be divided into 3 categories. The first category 

of milk samples includes industrially homogenized packed milk that was acquired from the local 

supermarkets in Montreal. Fat levels that were reported on the milk packs were used as the 

reference value for fat and they were 0%, 1%, 2%, 3.25% and 3.8%. The second category of milk 

samples includes pre-analyzed producer raw milk samples that were collected by Valacta Inc. 

(Sainte-Anne-de-Bellevue, Quebec, Canada) from different farms in Quebec. Valacta Inc. 

provided 370 raw milk samples that were preserved with a bronopol-based preservative along with 

their FTIR analysis results that included fat, protein, lactose, urea and β-hydroxybutyric acid 

(BHB) concentrations. The preservative inhibited microbial growth in milk samples; hence, it 

prevented changes to milk composition by milk microflora before analysis. These numbers were 

used as reference values for building the calibration models. The third category of milk samples 

includes two official calibration milk sets that were purchased from Valacta Inc. One set had 

industrially homogenized milk samples, while the other set had producer raw milk samples. The 

major milk components in both kits were determined by reference chemical methods.  

3.2.2 Homogenization  

Several homogenization approaches were evaluated for use in combination with the proposed on-

site analyzer. These approaches included: hand-held rotator, CO2 compression homogenizer, high-

pressure air compression homogenizer, mechanical lever homogenizer and ultrasonication. 

Homogenization of raw milk was performed at room temperature for hand-held rotator, high-

pressure air compression and mechanical lever homogenizers. On the other hand, raw milk was 

homogenized at room temperature and at 60 °C when the CO2 compression homogenizer was used. 

For all homogenization approaches, the size of milk fat globules was visually inspected under 

optical microscope with 1000x magnification power before and after homogenization, and the size 

of these globules was compared with fat globules of industrially homogenized packed milk. In 

addition to microscope inspection, Beckman Coulter Delsa™ Nano C (Brea, California, USA) 

particle analyzer was used to measure the size of fat globules in ultra-sonicated raw milk to verify 

the homogenization efficacy of the ultrasonication approach. Milk was defined as a diluent whose 

refractive index (IR), viscosity (cP) and dielectric constant were set to 1.462, 0.8878 and 78.3, 
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respectively. Marquardt analysis method was used since the resulting data is expected to have 

multiple peaks, the lower limit for x axis was set to 195 nm to exclude the size of casein micelle 

from the measurement and the upper limit for x axis was set to 10000 nm, which is the maximum 

for this equipment. The measurement cell was set to disposable cell from Beckman Coulter size 

A54093 and its center was adjusted by the equipment. Samples particle distribution was measured 

at 25 °C in triplicates and D (0.90) (nm), the maximum diameter (nm) and its percentage from the 

volume distribution were reported. D (0.90) indicates that 90% of the total fat globules volume in 

the sample comes from particles with diameter that lies below the D (0.90) value. JMP 13 from 

SAS Inc (Cary, North Carolina, U.S.) was used to perform analysis of variance (ANOVA) to 

determine the significance of the sonication factors on the D (0.90) value. The significance level 

was α = 0.05, which is the conventional level adopted in analytical chemistry and food science [6]. 

Two ultrasonic processors were evaluated in this study. The first was Fischer Model 500 

homogenizer (115V) 750 Watts (Fisher Scientific, Hampton, New Hampshire, United States). 

Table 3-1 shows the different combinations of sonication factors that were evaluated for 

homogenizing raw milk.  

Table 3-1 Values of ultrasonication parameters used for milk homogenization with the Fisher ultrasonic processor 

Factors Levels 

Time 15s, 30s, 60s, 90s 

Probe temperature Not set, 50°C 

Pulse Note set, 5s on:1s off 

Amplitude 100% 

Volume 25 mL 

 

The second ultrasonic processor was Vibra Cell Ultrasonic Liquid Processors Model VCX 130PB 

130 Watt (Sonics & Materials Newtown, Connecticut, United States). The factors that were 

evaluated in this study were homogenization type (i.e., homogenization group) and storage, and 

the significance level was α = 0.05. The tested homogenization types were raw milk that was 

homogenized by a high-pressure homogenizer at Valacta (HM), raw milk that was not 

homogenized (RM), ultra-sonicated milk for 60s (US1) and ultra-sonicated milk for 90s (US2). 

Samples were sonicated and their particle size distribution was measured on day 1 (i.e. upon 
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reception) and on day 2 after they were stored in the fridge for one day. In addition, the statistical 

differences in fat globules diameter were tested in milk samples that contain high fat level (i.e. >4) 

that were sonicated for 90s and 120s, and the significance level was α = 0.05. 

3.2.3 Assembly of prototype analyzers 

Three prototypes were assembled that included: FTIR spectrometers from three different vendors, 

a transmission cell with CaF2 windows as a sample introduction method and a pumping system to 

push/pull the milk and the cleaning solution into/from the cell under constant pressure to prevent 

changes in the cell path length. Prototype one (P1) had a Bomem MB150 (ABB, Montreal, Quebec, 

Canada) FTIR spectrometer and a temperature-controlled high-pressure transmission cell with 46 

µm path length. The cell was also equipped with a bypass valve to divert the excess milk and 

cleaning solution from passing through the cell to prevent early erosion of the cell windows and 

to avoid unnecessary fat and protein deposits on the cell windows. The spectrometer was 

configured and operated by an inhouse software that was written by Thermal-Lube Inc (Pointe-

Claire, QC, Canada). Prototype two (P2) had a portable Cary 630 (Agilent Technologies, Santa 

Clara, California, USA) FTIR spectrometer and a transmission cell with 46 µm path length. The 

cell was not temperature controlled or high pressure one. The spectrometer was configured and 

operated by MicroLab software (Agilent Technologies, Santa Clara, California, USA). Prototype 

three (P3) had a portable ALPHA II (Bruker, Billerica, Massachusetts, USA) FTIR spectrometer 

and a transmission cell with 47 µm path length. The transmission cell was connected to a pump 

and the inlet to that pump was covered by a 25 µm filter model X5002 (Qosina, Long Island, New 

York, USA). The spectrometer was configured and operated by an inhouse software that was 

written by Thermal-Lube Inc (Pointe-Claire, QC, Canada). 

The CaF2 windows of the transmission cell were separated by ~50 µm polytetrafluoroethylene 

(PTFE) spacer to create the space between the two windows (i.e. the optical path). To calculate 

the path length of the transmission cell, a spectrum of the empty dry cell was collected and ratioed 

against empty background. The number of fringes was counted within specific spectral range and 

the path length was calculated as follows:  

Equation 3-1 Calculating the path length of a transmission cell using wavenumbers and  the number of fringes in an FTIR 

spectrum 

𝐿 =
𝑛 × 10

2(𝑊1 − 𝑊2)
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Where L = cell pathlength (in mm), W1 = starting wavenumber (cm-1), W2 = ending wavenumber 

(cm-1), n = number of fringes between W1 and W2.  

Equation 3-2 Calculating the path length of a transmission cell using wavelength and  the number of fringes in an FTIR spectrum 

𝐿 =  
𝑛 × 𝑊1 × 𝑊2

2(𝑊1 − 𝑊2) × 1000
 

Where L = cell pathlength (in mm), W1= starting wavelength (in µm), W2= ending wavelength 

(in µm), n = number of fringes between W1 and W2.   

The path length stability of the transmission cell was monitored by passing a solution that 

contained 10% ethanol and 1% sodium azide at the beginning and at the end of each data collection 

session. The heights of the following peaks were observed for changes in the path length: 1045 

cm-1 and 1085 cm-1 for ethanol and 2048 cm-1 for sodium azide. An aqueous solution of 0.01% 

triton was used to clean the transmission cell.  

3.2.4 Evaluation of the spectral quality of the assembled prototypes 

Several aspects were considered as indictors of spectral quality of FTIR spectra collected by the 

assembled prototypes. SNR was determined by the Analyze Noise functionality in Omnic 7.3 

(Thermo Electron Corporation, Waltham, Massachusetts, USA) after selecting the spectral region 

1920-1900 cm-1. This spectral region did not contain any information related to milk components. 

SNR of spectra of homogenized packed milk collected on the assembled prototypes were 

compared to SNR of milk spectrum collected on a commercial milk analyzer (Foss, Hillerød, 

Denmark). To assess the potential of an FTIR spectrometer for milk fat analysis, a PLS calibration 

model was developed using spectra of homogenized packed milk with different fat levels (i.e. 0%, 

1%, 2%, 3.25%, 3.8%), which were collected on P1. The sample set was scanned three times and 

the order of sample scanning was reversed each time. TQ Analyst Professional Edition 7.2.0.161 

(Thermo Electron Corporation, Waltham, Massachusetts, USA) was used to build the PLS models 

and no spectral pre-treatment was applied to the spectra. Spectra of the same skim milk sample 

were collected before and after each sample set run. These spectra were subtracted from each other 

to verify the absence of deposition buildup of milk components on the transmission cell windows, 

specifically milk fat and protein, after several milk samples were passed through the transmission 

cell.  
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3.2.5 Spectral acquisition 

To acquire milk FTIR spectra, the spectrometers of P1 and P2 were set up as follows: resolution 

16 cm-1, the number of scans for background acquisition was 256, the number of scans for sample 

acquisition was 64 and milk spectra were ratioed against the spectrum of distilled water. Milk 

samples were heated in a water bath for 15 minutes at 50 °C before acquiring the spectra. Warm 

solution of 0.01% triton in distilled water was passed through the cell before pumping the milk 

samples to condition the CaF2 windows of the cell and to avoid the formation of air bubbles on 

these windows. The same solution was passed through the cell after the spectral acquisition to 

avoid the buildup of milk fat and protein depositions. The temperature of the transmission cell for 

P1 was set at 50 °C. P1 and P2 were moved to Valacta (Sainte-Anne-de-Bellevue, Quebec, 

Canada), one at a time, and spectra of producer raw milk samples were collected there. Two 

homogenization approaches were applied to raw milk samples prior to recording the spectra, 

ultrasonication and mechanical homogenization. Since the particle analyzer was not available at 

that time, determination of ultrasonication parameters was based on visual observation of fat 

globules under the optical microscope. Milk was ultrasonicated by a probe from Fisher Scientific 

(Hampton, New Hampshire, United States) Model 500 (115V) 750 Watts using the following 

settings: amplitude 100%, temperature 50 °C, sonication time 60s and pulse 5s on 1s off. The 

spectrometer of P3 was set up as follows: resolution 16 cm-1, the number of scans for background 

acquisition was 32, the number of scans for sample acquisition was 32 and milk spectra were 

ratioed against the spectrum of distilled water. Warm solution of 0.01% triton in distilled water 

was passed through the cell before and after pumping the milk samples through the cell. Raw milk 

samples were homogenized by ultrasonic processor Vibra Cell Ultrasonic Liquid Processors 

Model VCX 130PB 130 Watt (Sonics & Materials Newtown, Connecticut, United States) for 90-

120s. By the end of this treatment, the temperature of the milk was ~50 °C, which eliminated the 

need for the water bath preheating treatment. All milk samples were scanned in triplicates and the 

total number of spectra was 1110.  

3.2.6 Development of PLS calibration models for milk components   

TQ Analyst Professional Edition 7.2.0.161 (Thermo Electron Corporation, Waltham, 

Massachusetts, USA) was used to build PLS calibration models for major and some minor milk 

components using FTIR spectra of milk samples and their corresponding reference values for each 

milk component. The FTIR spectra were either kept raw, without applying any mathematical pre-
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treatment, or they were subjected to the Savitzky–Golay first derivative (SG FD) algorithm prior 

to calibrating the model. The window size was 7 and the polynomial order was 3. After the raw 

spectra were loaded into the software, the Spectrum Outlier functionality in TQ Analyst was used 

to exclude all the spectra that were considered as spectral outliers. The refinement of each model 

went through several iterations. The first iteration was performed on the full FTIR spectrum. The 

loading spectra that resulted from this iteration were examined and the spectral regions that showed 

high loadings were kept for the subsequent iteration. The spectral regions that will be included in 

the model must be relevant to the milk component for which a calibration model is being 

developed. This process was repeated until a stable calibration model was obtained. For each 

iteration, cross-validation was performed in TQ Analyst using leave-one-out approach. In addition, 

Valacta provided spectra of a milk sample set along with the corresponding reference values for 

each sample. These spectra, which were collected on a commercial milk analyzer (Foss, Hillerød, 

Denmark), were used to build PLS calibration models for milk components. The figures of merit 

(FOMs) yielded by these models were considered as reference values to which FOMs produced 

by the PLS models that were developed for the prototypes were compared.  

3.2.7 External validation of the prototype analyzers 

The external validation of the assembled prototypes was performed on new milk sample sets, 

which were not part of the calibration sets that were used to develop the prediction models. The 

locations for the external validation for P1, P2 and P3 were the Macdonald Campus dairy farm, 

the McGill IR lab in Macdonald Campus and Léothé dairy farm (Saguenay, QC, Canada), 

respectively. The number of raw milk samples that were scanned by P1, P2 and P3 were 75, 40 

and 40, respectively. For P1, milk samples were scanned over 2 days (D1 and D2). The raw milk 

samples were homogenized by ultrasonication, and the same procedures for ultrasonication and 

spectral acquisition were used for the respective prototypes. Major milk components and BHB 

were predicted by the PLS calibration models that were developed for each prototype. Urea was 

predicted for spectra collected on P2 and P3. For P3, principal component analysis was used to 

detect spectral outliers that were excluded from the external validation study. In addition, milk 

samples for the external validation sets were analyzed by Valacta and their analysis results were 

used as reference values. The prediction results of the prototypes were regressed against the 

reference values and the mean differences (MD) and the standard deviation of the differences 

(SDD) were calculated for each milk component within each external validation set.  
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3.3 Results and Discussion 

3.3.1 Homogenization 

Several milk homogenization approaches were evaluated with different conditions for each 

approach. The hand-held rotation homogenizer did not show any potential for effective 

homogenization. It was not powerful enough and when milk was tested at room temperature the 

homogenizer did not affect the size of fat globules. In addition, the CO2 compression homogenizer 

did not show any potential for effective homogenization, it caused milk splashing and it was not 

practical for on-site analysis. Mechanical homogenization was the third approach that was 

evaluated. The homogenizer had a similar design to high pressure industrial homogenizers except 

that it had only one homogenization chamber instead of two. The high pressure was provided by 

either a mechanical lever that was operated manually or by compressed air. Fat globules size was 

reduced using this approach; however, it raised several concerns. First, the pressure that was 

generated by the compressed air was too high and it cracked the CaF2 window of the transmission 

cell. Second, the high pressure generated by the mechanical lever might increase the path length 

of the transmission cell over time, which will significantly affect the accuracy of milk 

measurements. Third, this homogenizer had a weak design. The internal spring in the 

homogenization head broke under the generated pressure and the homogenizer started to leak from 

several points after using it for several weeks. Eventually, this approach was deemed impractical 

for on-site analysis.  

Ultrasonication was the most effective homogenization approach. Microscopic inspection revealed 

that the size of milk fat globules was reduced when milk samples were sonicated for 60s by the 

Fisher processor. In addition, this approach has the potential to be properly integrated with an on-

site milk analysis process. To determine the optimum parameters to adequately homogenize milk, 

fat globules diameter was measured by a particle analyzer. For the Fisher processor, full factorial 

ANOVA was applied to the log-transformed measurements of D (0.90) after excluding raw milk 

and homogenized packed milk measurements. Significant differences were revealed between the 

treatments that represented different combinations of sonication period, probe temperature and 

pulse cycle, F (15, 32) = 3.8867; P = 0.0006. Only the sonication period had a significant effect 

on the reduction of milk fat globules diameter (P < 0.0001), while the other factors and their 

interactions did not have any significant effect on the values of D (0.90) measurements. Sonication 
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for 60s and 90s achieved the least mean value for D (0.90), which means that 60s and 90s were 

the optimum sonication time for the Fisher processor without using a pulse cycle or a heated probe.  

Table 3-2 Mean values of D (0.90) from volume distribution of fat globules diameters in raw milk sonicated by the Fisher 

processor for 15, 30, 60 and 90s.  

Time s Mean D (0.90) Lower 95% Upper 95% 

15 4762 3036 7471 

30 1250 797 1962 

60 1118 713 1754 

90 1068 681 1675 

 

For the Vibra Cell processor, table 3-3 presents the mean D (0.90) for raw milk samples (RM), 

high-pressure homogenized milk samples at Valacta (HM), sonicated milk for 60s (US1) and 

sonicated milk for 90s (US2), whose particle size distribution was measured upon reception and 

after one-day storage in the fridge. ANOVA tested the differences in fat globules diameter among 

the four homogenization groups and the effect of refrigerated storage of samples for one day. 

Significant differences were revealed among the tested groups, F (7,80) = 6.1157; P <0.0001. 

Homogenization type had a significant effect (P = 0.0003) on D (0.90) mean values, while the 

testing day and their interactions did not reveal any significant effect on D (0.90) mean value. This 

can be interpreted that cold storage of milk samples will not undermine the effectiveness of the 

sonication treatment in reducing the diameter of milk fat globules. The mean values for D (0.90) 

were ~1291 nm and ~906 nm for US2 and HM, respectively. This observation indicates that US2 

treatment produced fat globules diameters close to that of HM group. In addition, one-tailed t test 

was performed on the log transformed values of D (0.90) to compare the means of HM group 

against the means of US1 and US2 groups. The alternative hypothesis of the first and second tests 

were 𝜇𝑈𝑆1 > 𝜇𝐻𝑀 and 𝜇𝑈𝑆2 > 𝜇𝐻𝑀, respectively. The first t test revealed that the mean D (0.90) 

value for US1 group was significantly greater than the mean D (0.90) value for HM group, t(58) 

= 2.5832; P = 0.0062; assuming equal variances according to Levene’s test F (1, 58) = 1.3553; P 

= 0.2491. The second t test revealed that the mean D (0.90) value for US2 group was not 

significantly greater than the mean D (0.90) value for HM group, t(58) = 0.7610; P = 0.2249; 

assuming equal variances according to Levene’s test F (1, 58) = 2.2948; P = 0.1352. These 

observations indicate that sonicating milk for 90s with the Vibra Cell processor produced particle 
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size distribution of fat globules similar to the high-pressure homogenization treatment applied to 

raw milk samples at Valacta. 

Table 3-3 Mena values of D (0.90)  from volume distribution of fat globules diameters in raw milk sonicated by the Vibra Cell 

processor for 60 and 90s, raw milk and high-pressure homogenized milk 

Treatment Mean D (0.90) Lower 95% Upper 95% 

HM 906 584 1407 

RM 5590 2891 10808 

US1 1762 946 3280 

US2 1291 693 2403 

 

The correlation was not strong between the fat content of milk samples and their D (0.90) values 

(R2 = 0.15). Nevertheless, milk samples with high fat levels (i.e., >4%) were sonicated by the 

Vibra Cell processor for 90s and 120s and the means of D (0.90) values were tested for significant 

differences. Levene’s test revealed that there are significant differences between the variances of 

the two treatments, F (1, 16) = 7.6991; P = 0.0135. For this reason, Welch test was performed, and 

it did not reveal any significant differences between the mean values of D (0.90) for the two 

treatments, F (1, 9) = 2.9151; P = 0.1216. This observation indicates that sonicating milk samples 

with high fat content for 90s or 120s will yield statistically similar mean values for the fat globules’ 

diameters. The mean D (0.90) values were ~2252 nm and ~1296 nm for the 90s and 120s, 

respectively. On the other hand, the standard deviations of the D (0.90) values of the two treatments 

were 1626 nm and 423 nm for the 90s and 120s, respectively. Since Levene’s test revealed that 

the variances are significantly different, it can be concluded that sonicating milk samples for 120s 

(i.e., 3000 joules) will yield a particle size distribution of fat globules that is more uniform than 

sonicating for 90s.  

Table 3-4 Mean D (0.90)  values for high fat milk samples >4% sonicated for 90s and 120s with the Vibra Cell processor 

Time s Mean D (0.90) Std. Dev. Lower 95% Upper 95% 

90 2252 1626 1002 3501 

120 1296 423 971 1621 
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Figure 3-2 Volume distribution of fat globules diameters in ultrasonicated raw milk by the Fisher processor. A: raw milk, B: 

homogenized milk, C: Raw milk ultra sonicated for 15s at 50 °C with pulsing cycle of 5s on and 1s off, D: Raw milk ultra 

sonicated for 90s at 50 °C with pulsing cycle of 5s on and 1s off, E: Raw milk ultra sonicated for 90s with pulsing cycle of 5s on 

and 1s off with no heating 
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3.3.2 Evaluation of the spectral quality of the assembled prototypes  

Noise was expressed as Peak-to-Peak noise and root mean square (RMS) noise [67]. Peak-to-peak 

noise is the difference between the corrected intensities of the highest and lowest noise peaks in 

the selected spectral region, which does not contain information related to the chemical 

composition of milk. On the other hand, RMS noise is a statistical analysis of the noise variation, 

which is equal to the square root of the average of the squares of the data points in the selected 

spectral region. It is mathematically expressed as follows:  

𝑅𝑀𝑆 = √
∑(𝑖𝑣 − 𝑖)̅2

𝑛
 

Where 𝑖𝑣 is the intensity at the wavenumber v, 𝑖 ̅is the mean intensity in the selected spectral region 

and n is the number of analyzed wavenumbers. Smaller values for both indicators mean lower level 

of noise in the FTIR spectrum. The RMS noise values were: 0.00004481, 0.000111, 0.000126 and 

0.00001603 for spectra collected on the commercial milk analyzer, P1, P2 and P3, respectively 

(Table 3-5). These numbers indicate that the ALPHA II (Bruker, Billerica, Massachusetts, USA) 

spectrometer produced spectra with the highest spectral quality among the three spectrometers that 

were evaluated in this study and that its SNR ratio was at the same level as that of the commercial 

milk analyzer. Milk spectra collected on all prototypes revealed the typical spectral regions that 

will be used in PLS models to predict the concentrations of major and some minor milk 

components (Figure 3-3).  

Figure 3-4 presents the subtraction results of skim milk spectra that were collected at the beginning 

and at the end of each cycle of milk spectra acquisition that was performed to assess the potential 

of FTIR spectrometer for milk fat analysis. No peaks are observed in Fat A, Fat B, Amide II and 

Amide III regions, which confirms the absence of milk fat and protein depositions. This 

observation proves that the above-mentioned sample scanning procedure is not causing fat and 

protein build-up on the CaF2 windows of the transmission cell in the short-term.  

Table 3-6 and Table 3-7 present a comparison of the calibration and cross-validation FOMs for fat 

PLS models that were developed using spectra of homogenized packed milk collected on P1. Milk 

fat calibration models gave excellent FOMs for fat predictions by these models. The cross-

validation correlation coefficients (r) were 0.99, 0.99 and 0.99 when Fat A, Fat B and Fat A&B 
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spectral regions were used in these models, respectively. The root mean square error of calibration 

(RMSEC), root mean square error of prediction (RMSEP) and root mean square error of cross 

validation (RMSECV) were 0.02%, 0.02%, 0.04% and 0.03%, 0.04%, 0.05% and 0.06%, 0.06%, 

0.6% for Fat A, Fat B and Fat A&B models, respectively. These numbers indicate that an FTIR 

spectrometer can capture information related to the chemical composition of milk. In addition, it 

can be concluded that the model that used Fat A spectral region produced the most robust 

prediction model since its RMSEP was the lowest and almost equal to the RMSECV of that model. 

Table 3-5 SNR ratio comparison of spectra collected on a FOSS analyzer, prototype 1, prototype 2 and prototype 3 

Spectrometer Spectral Range Peak-to-Peak Au RMS 

FOSS 1920-1900 0.00009151 0.00004481 

P1 1920-1900 0.0002092 0.000111 

P2 1920-1900 0.0003006 0.000126 

P3 1920-1900 0.00003911 0.00001603 

 

 

Figure 3-3 Milk FTIR spectrum acquired on P3 with a transmission cell. It reveals the same regions as in milk spectrum 

collected on commercial milk analyzer with matching spectral quality. 1) 1,200-900 cm-1 lactose, 2) 1,280-1200 cm-1 Amide III of 

proteins, 3) 1,500-1,200 cm-1 different absorbance bands originating from minor milk components 4) 1,565–1,520 cm-1 Amide II 

of proteins, 5) 1,745–1,725 cm-1 𝐶 = 𝑂 stretching in the triglyceride ester linkage of milk fat (i.e., Fat A), 6) 2,980–2,800 cm-1 

𝐶 − 𝐻 stretching of the aliphatic chain in fatty acids in milk fat (i.e., Fat B), 
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Figure 3-4 Subtraction spectra of multiple measurements of homogenized packed skim milk before and after passing whole milk 

into the transmission cell. The subtraction spectra do not show any milk fat or protein build up on the cell windows 

Table 3-6 Comparison of FOMs of prototype 1 calibration models for homogenized packed milk 

Component Region r RMSEC% RMSEP% Factors Bias 

Fat (Fat A) 1,778.64-1,735.15 0.99 0.02 0.02 3 - 

Fat (Fat B) 
2,955.00-2,892.70 

0.99 0.03 0.04 4 - 
2,884.62-2,846.52 

Fat (Fat A & B) 

1,735.15- 1,735.15 

0.99 0.06 0.06 2 - 2,955.00- 2,892.70 

2,884.62- 2,846.52 

 

Table 3-7 Comparison of prototype 1 cross validation FOMs for homogenized packed milk 

Component r RMSECV % Factors Bias 

Fat (Fat A) 0.99969 0.04 3 - 

Fat (Fat B) 0.99939 0.05 4 - 

Fat (Fat A & B) 0.99910 0.06 2 - 
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Figure 3-5 Prototype 1 at the McGill IR group lab and Valacta 

                   

Figure 3-6 Prototype 2 at Valacta  

 

Figure 3-7 Prototype 3 at the McGill IR group lab 
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3.3.3 PLS calibration models for milk components  

Inspection of loading spectra obtained from the initial calibration models revealed high loadings 

for spectral regions whose absorbance intensities strongly correlate with the corresponding 

covalent bonds in the analyte of interest. All PLS calibration models for milk fat revealed high 

loadings for regions 3,000-2,800 cm-1 and 1,765-1,725 cm-1. The first region is known as Fat B 

and it is assigned to the asymmetrical stretching (𝜈𝑎𝑠𝐶𝐻2) and symmetrical stretching (𝜈𝑠𝐶𝐻2) of 

the methylene group in milk fat [24]. The second region is known as Fat A and it is assigned to 

the 𝐶 = 𝑂 stretching vibration of the ester linkage in milk fat [24]. All PLS calibration models for 

milk protein revealed high loadings for regions 1,580-1,500 cm-1 and 1,400-1,200 cm-1. The Amide 

II band and the Amide III band of milk proteins are located at 1,565-1,520 cm-1 [24] and at 1,280-

1,200 cm-1 [25]. All PLS calibration models for lactose revealed high loadings for region 1,200-

1,000 cm-1 that is assigned to carbohydrates coupled stretching and bending [24].  

Several FOMs were used to compare the performance of the calibration models that were 

developed for milk components. These FOMs included: correlation coefficient (r) for calibration 

and cross-validation, root mean square error of calibration (RMSEC), root mean square error of 

prediction (RMSEP), root mean square error of cross validation (RMSECV), predicted residual 

sums of squares (PRESS) and number of factors used, bias (if available) and the spectral regions 

that were used for each model. The root mean square errors (RMSE) of calibration, prediction and 

cross validation are measures of error for the prediction model. In other words, they represent the 

average uncertainty that can be expected when predicting the output values for new samples 

expressed in the same units as the response variable [29]. Mathematically, they are expressed as 

follows:  

Equation 3-3 

𝑅𝑀𝑆𝐸𝐶 = √∑ (𝑦𝑖,𝑐𝑎𝑙 − 𝑦̂𝑖,𝑐𝑎𝑙)
2𝑁

𝑖=1

𝑁
 

𝑅𝑀𝑆𝐸𝑃 =  √∑ (𝑦𝑖,𝑣𝑎𝑙 − 𝑦̂𝑖,𝑣𝑎𝑙)
2𝑁

𝑖=1

𝑁
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𝑅𝑀𝑆𝐸𝐶𝑉 = √
∑ ∑ (𝑦𝑖,𝑗 − 𝑦̂𝑖,𝑗)

2𝑁
𝑖=1

𝑍
𝑗=1

𝑁
 

 Where 𝑦𝑖,𝑐𝑎𝑙 is the reference value for sample i in the calibration set, 𝑦̂𝑖,𝑐𝑎𝑙 is the predicted value 

for sample i in the calibration set, 𝑦𝑖,𝑣𝑎𝑙 is the reference value for sample i in the validation set, 

𝑦̂𝑖,𝑣𝑎𝑙 is the predicted value for sample i in the validation set, N is the number of samples [29], 𝑦𝑖,𝑗 

the reference value for sample i in the cross validation group j, 𝑦̂𝑖,𝑗 the predicted value for sample 

i in the cross validation group j and Z is the number of cross validation groups [39]. The closer the 

values of RMSEC, RMSEP and RMSECV to each other, the more robust the model will be. Larger 

differences between these values indicate that the calibration model is overfitting. PRESS is an 

additional measure of error [29] and it is mathematically expressed as follows:  

Equation 3-4 

𝑃𝑅𝐸𝑆𝑆 = ∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑁

𝑖=1

 

Where 𝑦𝑖 is the reference value for sample i and 𝑦̂𝑖 is the predicted value for sample i. PRESS is 

calculated for the PLS calibration model for each iteration when an additional PLS factor or latent 

variable is added to the model. A satisfactory model should yield a decreasing PRESS for the first 

few PLS factors. To avoid overfitting, only the minimum number of PLS factors that achieve a 

significant reduction in PRESS will be eventually included in the final model. Bias is the average 

value of the differences between the reference and predicted values for a set of replicated sample 

measurements [29]. Mathematically, it is expressed as follows:  

Equation 3-5 

𝐵𝐼𝐴𝑆 =
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑁

𝑖=1

𝑁
 

Once the calibration model has been finalized for a specific milk component, the ratio 

performance/deviation (RPD) was calculated for that model as follows and models with RPD >3 

were considered having excellent prediction capability [59].  
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Equation 3-6 Calculating the ratio performance/deviation RPD 

𝑅𝑃𝐷 =
𝑆𝐷

𝑅𝑀𝑆𝐸𝐶𝑉
 

Where SD is the standard deviation of the reference values for the samples that are used to develop 

the calibration model. A value close to 1 indicates that the model is not capturing the variation 

related to the chemical information of the analyte of interest and the model is only describing the 

standard deviation of the calibration set, which means it will have a poor prediction power. Table 

3-8 and table 3-9 present the FOMs of calibration models for milk fat, protein and lactose that 

were developed using milk spectra collected on the prototypes using Valacta’s analysis results as 

reference values. Raw milk samples that were scanned on P1 were homogenized either 

mechanically or by ultrasonication, while those that were scanned on P2 and P3 were only 

ultrasonicated.  

Regarding milk fat, all 3 prototypes produced good calibration correlation coefficients r >0.96, 

which indicates a strong statistical relationship between samples’ fat level and the spectral signal. 

However, the model that was developed using ultra-sonicated Valacta’s raw milk calibration kit 

spectra collected on P3 (Alpha II spectrometer, Bruker, Billerica, Massachusetts, USA) produced 

the most consistent FOMs.  RMSEC, SMSEP and RMSECV were 0.01%, 0.01% and 0.02%, 

respectively. The small difference between RMSEC and RMSECV indicates a low leverage for 

the samples that were used in developing the model and the small difference between RMSEC and 

RMSEP indicates the robustness of this model. The low RMSEP and high RPD values (RPD = 

53.18) for this model confirm its excellent prediction capability. By comparing the FOMs of fat 

calibration models that were developed for P1, it can be noticed that ultrasonication produced more 

consistent FOMs (RMSEC, RMSEP and RMSECV) than mechanical homogenisation, even 

though the transmission cell temperature was controlled when mechanical homogenisation was 

used. These observations emphasise the importance of proper milk fat homogenization for milk 

FTIR analysis. 

Regarding milk protein, P3 with ultrasonicated producer raw milk samples gave the most 

consistent FOMs in comparison to the other models. The values for calibration correlation 

coefficient, RMSEC, RMSECV and RMSEP were >0.96, 0.08%, 0.07% and 0.09%, respectively. 

The small difference between RMSEC and RMSECV indicates a low leverage for the samples that 
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were used in developing the model and the small difference between RMSEC and RMSEP 

indicates the robustness of this model. In addition, the RPD of this model is >3, which indicates 

an excellent prediction capability. The calibration model that were developed using the spectra of 

milk samples of Valacta official calibration kits gave inconsistent FOMs. While the RMSEC, 

RMSEP and RMSECV were all acceptable, the values of the correlation coefficient of the cross-

validation models were not acceptable. This can be explained by the interference of atmospheric 

water vapor on the Amide II band in milk FTIR spectrum, which is close to the OH bending band 

that is located at ~1650 cm-1. To verify the effect of water vapor suppression on milk protein PLS 

calibration model, a new set of milk samples were scanned on the Nicolet iS5 FTIR spectrometer 

(Thermo Fisher Scientific, Waltham, Massachusetts, USA) that is equipped with a function to 

suppress the interference of water vapor. The resulting PLS model for milk protein yielded 

improved FOMs. The values for calibration correlation coefficient, RMSEC, RMSEP and the 

number of factors were 0.96, 0.03%, 0.01% and 7. The values for cross validation correlation 

coefficient, RMSECV and the number of factors were 0.93, 0.03% and 7. This observation 

suggests that the IR measurement chamber in an on-site milk analyzer must be hermetically sealed 

against the surrounding environment.  

Regarding milk lactose, the calibration model that was developed using spectra of milk samples 

of the industrially homogenized Valacta calibration kit gave the most consistent FOMs. Its 

correlation coefficient was >0.97 and the values of RMSEC, RMSEP and RMSECV were 0.02%, 

0.02% and 0.02%, respectively. In addition, its RPD value confirms its excellent prediction 

capability. By taking all the calibration and cross-validation FOMs for the three main components 

of milk, P3 proved to be a good candidate for a portable FTIR milk analyzer.  

Regarding urea and BHB, the PLS calibration models did not yield excellent FOMs. The 

correlation coefficients were 0.63 and 0.76 and the RMSEP values were 1.14 mg/dL and 0.03 

mmol/L for urea and BHB, respectively.  

To summarize, three FTIR spectrometers were evaluated in this study for on-site milk analysis. 

The ALPHA II (Bruker, Billerica, Massachusetts, USA) FTIR spectrometer had the best SNR, 

which was at the same magnitude as the SNR of a commercial FTIR milk analyzer. This 

observation explains its superior performance to the other spectrometers in this study. Industrial 

two stages homogenization and ultrasonication were the most effective methods to reduce the size 
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of fat globules and to eliminate light scattering. Ultrasonicating raw milk samples for 90-120s gave 

the same particle size profile as that of industrial two stages homogenization. The results of this 

study show that a portable FTIR spectrometer can be used for on-site milk analysis to determine 

major milk components. The PLS calibration models for major milk components that were 

developed using milk FTIR spectra collected on the ALPHA II (Bruker, Billerica, Massachusetts, 

USA) and iS5 (Thermo Fisher Scientific, Waltham, Massachusetts, USA) spectrometers gave 

calibration FOMs that were similar to those obtained from models that were developed using milk 

spectra collected on commercial milk FTIR analyzers. Eliminating the water vapor interference 

will enhance the performance of these spectrometers for on-site milk analysis. 

 



 

 

Table 3-8 Comparison of calibration FOMs for milk components’ PLS models developed using milk spectra collected on P1, P2, P3 and a FOSS milk analyzer 

Milk Samples System Component Region r RMSEC RMSEP Factors 

Producer raw milk   

Mechanical homogenization 

P1 

 

Fat % 1,766- 1,735; 2,877- 2,846; 2,962- 2,908 0.97 0.17 0.31 2 

Protein % 1,581- 1,511 0.91 0.21 0.17 2 

Lactose % 1,200-1,009 0.67 0.10 0.13 1 

Producer raw milk 

Ultrasonic homogenization 
P1 

Fat % 1,766-1,735; 2,876-2,846; 2,954-2,915 0.96 0.17 0.15 3 

Protein % 1,589-1,400 0.94 0.15 0.17 3 

Lactose % 1,172-1,018 0.39 0.11 0.23 1 

Producer raw milk 

Ultrasonic homogenization 
P2 

Fat % 1,759-1,734; 2,860-2,846; 2,929-2,921 0.96 0.16 0.17 4 

Protein % 1,577-1,200 Baseline: linear removed 0.98 0.09 0.11 5 

Lactose % 1,176-1,018 Baseline: fixed two points 0.70 0.17 0.18 3 

Valacta milk calibration set 

Industrial homogenization 
P3 

Fat % 1,766- 1,727; 2,974- 2,834 0.99 0.02 0.03 3 

Protein % 1,450- 1,199 Baseline: linear removed 0.93 0.03 0.04 2 

Lactose % 1,200- 1,000 0.97 0.02 0.02 1 

Valacta raw milk calibration set 

Ultrasonic homogenization  
P3 

Fat % 1,761- 1,732; 2,948- 2,838 0.99 0.01 0.01 3 

Protein % 1,457- 1,199 Baseline: linear removed 0.99 0.01 0.05 4 

Lactose % 1,200- 1,000 0.81 0.04 0.04 2 

Producer raw milk 

Ultrasonic homogenization 
P3 

Fat % 1,766-1,727; 2,950-2,834 Baseline: Fixed two points 0.99 0.06 0.06 2 

Protein % 1,585- 1,504 Baseline: Fixed two points 0.97 0.08 0.07 2 

Lactose % 1,200- 1,006 Baseline: Fixed two points 0.95 0.04 0.07 5 

Urea mg/dL 1488-1454 SG FD 0.63 2.35 1.14 2 

BHB mmol/L 1500-1000 SG FD 0.76 0.01 0.03 2 

Producer raw milk FOSS 

Fat % 2,971-2,823 0.99 0.01 0.02 7 

Protein % 1,577-1,498 0.99 0.01 0.01 8 

Lactose % 1,200-960 0.99 0.02 0.03 7 

 



 

 

Table 3-9 Comparison of cross-validation FOMs for milk components’ PLS models developed using milk spectra collected on P1, P2, P3 and a FOSS milk analyzer 

Milk Samples System Component r RMSECV % Factors RPD 

Producer raw milk 

Mechanical homogenization 
P1 

Fat % 0.95 0.22 2 3.45 

Protein % 0.78 0.33 2 1.64 

Lactose % 0.18 0.15 1 0.96 

Producer raw milk 

Ultrasonic homogenization 
P1 

Fat % 0.92 0.25 3 2.61 

Protein % 0.84 0.24 3 2.09 

Lactose % 0.01 0.14 1 2.14 

Producer raw milk 

Ultrasonic homogenization 
P2 

Fat % 0.95 0.18 4 3.28 

Protein % 0.97 0.10 5 4.02 

Lactose % 0.63 0.18 3 1.28 

Valacta milk calibration set 

Industrial homogenization 
P3 

Fat % 0.99 0.06 3 24.73 

Protein % 0.70 0.07 2 1.39 

Lactose % 0.94 0.02 1 3.09 

Valacta raw milk calibration set 

Ultrasonic homogenization 

 

P3 

Fat % 0.99 0.02 3 53.18 

Protein % 0.48 0.05 4 1.07 

Lactose % 0.56 0.05 2 1.20 

Producer raw milk 

Ultrasonic homogenization 
P3 

Fat % 0.99 0.07 2 8.63 

Protein % 0.95 0.09 2 3.33 

Lactose % 0.88 0.06 5 2.15 

Urea mg/dL 0.32 3.09 4 - 

BHB mmol/L 0.52 0.02 2 - 

Producer raw milk FOSS 

Fat % 0.99 0.02 7 39.41 

Protein % 0.99 0.01 8 38.60 

Lactose % 0.99 0.02 7 6.67 
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3.3.4 External validation of the prototype analyzers 

External validation of the assembled prototypes revealed that P3 had the best analytical 

performance (Table 3-10). The MD values for fat, protein and lactose were ≤ 0.05, which comply 

with the stipulations of the AOACI official method 972.16, 33.2.31 [37]. Fat and protein 

predictions agreed very well with the reference values provided for the samples (Figure 3-8 and 

Figure 3-9). This level of performance for P3 can be attributed to the high SNR ratio of the Alpha 

II (Bruker, Billerica, Massachusetts, USA) spectrometer that was comparable to the SNR ratio of 

the commercial milk analyzer. In addition, the homogenization procedure by the ultrasonic probe 

was fine tuned when it was applied to milk samples scanned by P3. On the other hand, the PLS 

prediction model for urea had the least accuracy, which was not surprising considering that the 

calibration and cross validation indictors of the urea prediction model were the poorest. 

Table 3-10 Mean differences and standard deviation of the difference for the external validation sets for the assembled 

prototypes 

FOM 
Milk 

Component 

P1 
P2 P3 

D1 D2 

MD Fat 0.139 0.239 0.140 -0.001 

 Protein -0.287 -0.523 0.048 -0.008 

 Lactose 0.062 0.036 0.047 0.047 

 Urea - - 0.935 -2.992 

 BHB 0.007 0.010 -0.006 -0.008 

SDD Fat 0.345 0.345 0.174 0.105 

 Protein 0.214 0.237 0.111 0.073 

 Lactose 0.226 0.292 0.170 0.091 

 Urea - - 0.857 3.407 

 BHB 0.042 0.048 0.033 0.041 
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Figure 3-8 Predicted values vs. Valacta analysis values of milk fat for spectra collected on P3 for the external validation set 

 

Figure 3-9 Predicted values vs. Valacta analysis values of milk proteins for spectra collected on P3 for the external validation set 
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3.4 Conclusion  

Three FTIR spectrometers were evaluated for potential use for on-site milk analysis. All 

spectrometers produced high quality milk spectra with adequate SNR; hence, three prototypes 

were assembled using these spectrometers, which were Bomem MB150 (ABB, Montreal, Quebec, 

Canada), portable Cary 630 (Agilent Technologies, Santa Clara, California, USA) and portable 

Alpha II (Bruker, Billerica, Massachusetts, USA). PLS calibration models were developed using 

spectra of producer raw milk samples collected on P3, which had the Alpha II (Bruker, Billerica, 

Massachusetts, USA) as a spectrometer. These models revealed excellent prediction capabilities 

for major milk components and acceptable prediction capabilities for some minor components. 

The external validation study of P3 revealed that MD values for fat, protein and lactose were -

0.001%, -0.008% and 0.047%, respectively. These numbers comply with the stipulations of the 

AOACI official method 972.16, 33.2.31.  

On the other hand, evaluation of different homogenization approaches revealed that the two stages 

high pressure homogenization and ultrasonication were the most effective methods to reduce the 

diameter of fat globules. Ultrasonication had the potential to homogenize milk and be integrated 

within on-site IR milk analysis process. The results showed that applying 3000 joules of 

ultrasonication energy to 5 mL milk sample for 120s would be sufficient to produce a consistent 

particle size profile for raw milk samples that was similar to the one obtained by industrial 

homogenizers.  

This study represents a proof of concept that miniaturized FTIR spectrometers can be implemented 

for on-site milk analysis. The expected benefits of such approach are as follows:  

1- It will increase the frequency of the determination of milk components using the same 

technology that is implemented in central dairy laboratories without the need to increase 

the number of shipped samples to those laboratories. 

2- The increased frequency of milk analysis on dairy farms will provide more details about 

the nutrition, health and metabolic state of the cow, which will make herd management 

decision-making closer to a real time process. This approach will help dairy farmers adopt 

proactive strategies in managing their herds rather than reacting to emerging issues.  
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3- Increasing the amount of information about milk components using FTIR spectroscopy, 

which is the same technology implemented in milk analyzers in central dairy laboratories, 

will better reflect the compliance of dairy farmers with industry standards.  

4- Finally, having an on-site milk analyzer will guarantee the continuation of the milk analysis 

process during times when sample shipments might stop for prolonged period, such as the 

lockdown period of the province of Québec due to the Covid-19 pandemic.  
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Connecting statement 

In the previous chapter, it was proven that milk analysis by FTIR spectroscopy can be performed 

by a portable FTIR spectrometer equipped with a transmission cell in combination with ultrasonic 

homogenization of raw milk. It was also proven that this setup can be utilized for on-site milk 

analysis, which reduces the need to constantly ship milk samples to central dairy laboratories. 

However, the cost of portable FTIR spectrometers and ultrasonic probes is significant. In this 

chapter, attenuated total reflectance (ATR) will be evaluated as an alternative to transmission cells 

as a sample introduction method for raw milk analysis by FTIR spectroscopy. ATR will eliminate 

the issue of cell clogging that is encountered when passing raw milk through a transmission cell 

with micrometric optical path length. In addition, a new type of IR spectrometers, linear variable 

filter (LVF) array spectrometers, will be evaluated for milk analysis. The cost of this IR 

spectrometer is significantly less than its FTIR counterpart and it does not contain moving parts, 

which makes it more suitable for a portable on-site analyzer. 
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Chapter 4: Evaluation of ATR-FTIR spectroscopy and ATR-LVF IR 

spectrometer for on-site milk analysis  

Abstract 

Attenuated total reflectance (ATR) is a sample introduction method that is currently used with IR 

spectrometers in research due to its practicality. The objective of this study was to evaluate the 

performance of ATR as a sample introduction method with an FTIR spectrometer for on-site milk 

analysis. In addition, the study aimed at evaluating the potential of a novel miniaturized infrared 

(IR) spectrometer that does not use interferometry to resolve the different wavelengths for on-site 

milk analysis. The major advantage of this type of spectrometer is that it has no moving parts due 

to the absence of an interferometer, which makes it a good candidate for on-site applications of 

milk analysis. Additional advantages include small size, reduced energy consumption and low 

cost, which makes it a strong candidate for the mass production of on-site milk analyzers. 

Drawbacks of this IR spectrometer include limited spectral range, decreased signal-to-noise ratio 

and reduced resolution, which is 36 cm-1 or 18 cm-1 at 1800 cm-1, which might decrease the number 

of milk components that can be determined. ATR-FTIR spectroscopy yielded accurate prediction 

models for water soluble and colloidal components of milk. RMSECV values for PLS prediction 

models of lactose and protein were 0.06% and 0.07% respectively, in raw milk samples. 

Concerning water, ATR-FTIR spectroscopy showed acceptable results with RMSECV of 0.5%. 

Due to the high percentage of water in raw milk, the prediction error was deemed satisfactory. 

However, ATR-FTIR spectroscopy gave poor results for the determination of milk fat in raw milk. 

RMSECV value was 0.39%, which is not acceptable for milk fat determination. The miniaturized 

IR spectrometer gave an acceptable performance in analyzing milk and it could capture chemical 

information related to milk lactose, water and protein. Among the four major components of milk, 

lactose gave the most accurate results with both raw and homogenized milk. The prediction error 

of lactose was 0.06%. For water, the prediction error was 0.5%, which will not be problematic for 

applications, such as the determination of extraneous added water to milk. For milk protein, 

processing raw milk samples with an ultra-sonic probe prior to spectral acquisition produced 

predication models with reasonable accuracy. The prediction error was 0.16%. On the other hand, 

the miniaturized IR spectrometer proved to be completely inefficient in capturing chemical 

information related to milk fat. The prediction error of milk fat varied between 0.2% and 0.5%.   
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4.1 Introduction 

Attenuated total reflectance (ATR) is a sample introduction method that is currently used with IR 

spectrometers in research due to its practicality. In this method, the sample, liquid or solid, is 

simply deposited on the measurement surface for spectral acquisition, which simplifies sample 

preparation procedure prior to the IR measurement. ATR is a phenomenon that results from the 

effect of the angle of incidence of a light beam on its reflection from a surface. When the angle of 

incidence is small, partial reflection and partial refraction occurs. However, if the angle of 

incidence exceeds a critical value, total internal reflection occurs at the surface [22]. In this sample 

introduction method, the IR radiation does not pass through the sample itself; instead, it is directed 

through a crystal with a high refractive index that is in contact with the sample (Figure 4-1). Inside 

the crystal, the beam is reflected multiple times before reaching the detector [25]. The number of 

reflections that the light will undergo is controlled by the thickness and the length of the crystal 

and the actual angle of incidence, as shown in Equation 4-1 [68].  

Equation 4-1 Calculation of the number of reflections that an IR beam will undergo in an ATR crystal 

𝑁 = (
𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝐴𝑇𝑅 𝑐𝑟𝑦𝑠𝑡𝑎𝑙

𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝐴𝑇𝑅 𝑐𝑟𝑦𝑠𝑡𝑎𝑙
) 𝑐𝑜𝑡𝑎𝑛𝑔𝑒𝑛𝑡(𝜃) 

An evanescent wave is generated when the IR beam hits the reflecting surface. This wave 

penetrates the sample up to a depth of approximately 0.1λ, where λ is the wavelength of the IR 

radiation. For mid-IR, the penetration depth is less than 10 µm, which is similar to transmission 

cells with thin optical path length, and by comparison to transmission cells, repeatability is 

enhanced because the optical path of the evanescent wave is a function of the wavelength of the 

IR radiation and it is not affected by the sample dimension or the sampling system settings [25]. 

Having said that, ATR can be considered as an alternative sample introduction method to 

transmission cell for milk analysis by mid-IR. The advantages of using ATR in milk analysis can 

be summarized in the following points:  1) the stability of the optical path will enhance the 

accuracy of milk analysis due to elimination of path length fluctuations, 2) reduced noise that 

results from the immense water absorbance of IR energy due to the thin optical path length of the 

evanescent wave, specially for IR bands that are close to the 𝑂 − 𝐻 stretching and 𝑂 − 𝐻 bending 

bands of water, 3) ATR yields a spectrum that closely resembles the transmission spectrum of a 

milk sample [22]. Major milk components are assigned to the same IR bands as in milk FTIR 
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spectrum obtained by a transmission cell. These assignments are as follows: 1200-900 cm-1 for 

carbohydrates (i.e., mainly lactose) [24], 1100-1060 cm-1 for phosphate 𝑂 = 𝑃 − 𝑂 stretching 

[25], 1280-1200 cm-1 for Amide III of proteins [25], 1565–1520 cm-1 for Amide II of proteins [24], 

1700–1600 cm-1 for Amide I of proteins [24], 1650 cm-1 for 𝐻 − 𝑂 − 𝐻 bending of water [24], 

1745–1725 cm-1 for 𝐶 = 𝑂 stretching in the triglyceride ester linkage of milk fat (i.e., Fat A) [24], 

2400-2300 cm-1 for 𝐶𝑂2, 2980–2800 cm-1 for 𝐶 − 𝐻 stretching of the aliphatic chain in fatty acids 

in milk fat (i.e., Fat B) [24] and 3600–3200 cm-1 for 𝑂 − 𝐻 stretching in water [24] (Figure 4-2). 

However, there might be one concern when using ATR in milk analysis and that is milk fat. Fat in 

milk is present in the form of globules that range in diameters from <0.2 to >15 m. The small fat 

globules represent 80% of the total number of fat globules but they contain only 3% of the mass 

of fat. On the other hand, large globules represent only 2% of the total number of fat globules but 

they contain 95% of the mass of fat [45]. Taking into consideration that the path length of the 

evanescent wave at the ATR crystal surface can be as small as 1 m, less than 20% of a large fat 

globule will be probed by the evanescent wave, which might make the accurate determination of 

milk fat challenging using ATR as a sample introduction method. Reduction of fat globules 

diameter through homogenization might be a solution to overcome this obstacle.  

Few studies have been reported in the literature on the use of ATR for milk analysis. They are 

mainly focused on determination of fat and protein in milk. One objective of this study is to 

investigate the potential of ATR as a sample introduction method for on-site milk analysis using 

FTIR spectroscopy. In such an application, ATR will eliminate the need for pumping accessories, 

avoid clogging of transmission cells with thin path length and simplify sample handling since one 

drop of milk on the ATR surface will suffice for the analysis. On the other hand, the major 

disadvantage of ATR is surface contamination, which will introduce interferences to the sample 

spectrum. This issue might be addressed by collecting a background before each sample 

measurement; however, this procedure will double the time needed for analysis.  

Another objective of this study was to evaluate the potential of a novel miniaturized infrared (IR) 

spectrometer that does not use interferometry to resolve the different wavelengths for on-site milk 

analysis. Recently, the McGill IR group received a miniaturized filter-based IR spectrometer, the 

IRSphinx (Comline Elektronik Elektrotechnik GmbH, Germany) (Figure 4-3). This miniaturized 

spectrometer is based on a linear variable filter (LVF) as a dispersive element mounted on top of 
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a pyroelectric line sensor. LVFs are small wedged Fabry-Pérot etalons that filter mid-IR radiation 

at specific wavelengths and that lay on standard detector of 128-pixel pyroelectric line array [69]. 

This spectrometer is equipped with zinc selenide (ZnSe) ATR crystal as a sample introduction 

method (Figure 4-4). This spectrometer will be referred to as ATR-IR spectrometer in this study.  

The major advantage of the ATR-IR spectrometer over ATR-FTIR ones is that it has no moving 

parts due to the absence of an interferometer, which makes it a good candidate for on-site 

applications of milk analysis. Additional advantages of this type of spectrometer include small 

size, reduced energy consumption and low cost, which makes it a strong candidate for the mass 

production of on-site milk analyzers. However, the ATR-IR spectrometer operates in the spectral 

range of 1800-900 cm-1, which might reduce its efficacy in milk fat determination due to the 

absence of Fat B region from its spectra. Compared to ATR-FTIR spectrometers, the main 

disadvantages of this type of spectrometers are limited spectral range, decreased signal-to-noise 

ratio and reduced resolution, which is 36 cm-1 or 18 cm-1 at 1800 cm-1.  
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Figure 4-1 Design of an ATR measurement surface  [22] 

 

 

Figure 4-2 Mid-IR ATR-FTIR milk spectrum. 1) 1200-900 cm-1 lactose, 2) 1280-1200 cm-1 Amide III of proteins, 3) 1565–1520 

cm-1 Amide II of proteins, 4) 1700–1600 cm-1 for Amide I of proteins, 1650 cm-1 for 𝐻 − 𝑂 − 𝐻 bending of water, 5) 1745–1725 

cm-1 𝐶 = 𝑂 stretching in the triglyceride ester linkage of milk fat (i.e., Fat A), 6) 2400-2300 cm-1 𝐶𝑂2, 7) 2980–2800 cm-1 𝐶 − 𝐻 

stretching of the aliphatic chain in fatty acids in milk fat (i.e., Fat B), 8) 3600–3200 cm-1 𝑂 − 𝐻 stretching in water. Blue: milk 

spiked with whey protein leads to increased intensities at Amide I and Amide II bands, red: milk spiked with cream leads to 

increased intensities at Fat A and Fat B bands 
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Figure 4-3 IRSphinx (Comline Elektronik Elektrotechnik GmbH, Germany) ATR-IR spectrometer. It does not rely on 

interferometry to generate different wavelengths. Instead it relies on linear variable filter and pyroelectric line sensor to detect 

the different IR wavelengths.  

 

 

Figure 4-4 Schematic of an LVF ATR-IR spectrometer 
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4.2   Materials and Methods 

4.2.1 Milk samples 

Pre-analyzed bovine raw milk samples were received from Valacta Inc (Sainte Anne de Bellevue, 

Quebec, Canada) along with their milk composition data. We received 11 batches of samples and 

each batch contained 40 milk samples. The total number of milk samples was 440. These samples 

were preserved with a bronopol-based preservative and each batch was kept in the fridge till the 

IR measurement was acquired. For ATR-FTIR measurements, samples of the first four batches 

were heated to 35 C before the IR measurement. Samples of the fifth batch were sonicated for 10 

minutes at 35 C in a sonication bath Branson 5200 (Branson Ultrasonics, Danbury, Connecticut, 

USA). Samples of the sixth batch were homogenized using a laboratory high pressure 

homogenizer. Each sample was heated to 40 C prior to IR measurement. Samples of the seventh 

batch were also homogenized the same way as the previous batch but they were heated to 60 C 

prior to IR measurement. Samples of the eighth batch were not homogenized and they were heated 

to 60 C prior to IR measurement. Samples of the ninth batch were heated to 60 C prior to high 

pressure homogenization, then they were heated to 35 C before recording the spectra.  

For ATR-IR measurements, samples were kept at 40-50 C in a water bath before the measurement 

process. After each measurement, the milk was wiped off the ATR surface and it was cleaned with 

soup solution and water and then wiped dry with a paper towel. Samples of batch ten were kept 

raw, while samples of batch eleven were homogenized by an ultra-sonic probe from Fisher 

Scientific Model 500. Fat globules were examined under conventional laboratory microscope with 

1000x magnification power. 

In addition to the Valacta samples, homogenized packed milk (i.e., 1%, 2%, 3.25% and 3.8%), 

skimmed milk and 10% cream were purchased from the local market in Montreal. Different 

mixtures of skimmed milk and 10% cream were prepared to produce homogenized milk mixtures 

that contained the following fat levels: 0%, 1%, 2%, 3%, 4%, 5%, 6% and 7%. In addition, skim 

milk was mixed with whole milk 3.8% to produce the following fat levels: 0.76%, 1.14%, 1.52%, 

1.9%, 2.28%, 2.66%, 3.04%, 3.23%, 3.42% and 3.8%. Whole milk was added to skim milk by the 

following percentages (v/v): 20, 30, 40, 50, 60, 70, 80, 85 and 90%. 
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4.2.2 Spectral acquisition 

For the first eight batches of samples, ATR-FTIR spectra were recorded using FTIR Excalibur 

3000 spectrometer (Agilent Technologies, California, USA) equipped with single bounce diamond 

ATR (Specac, UK). The spectra of the ninth batch of Valacta’s samples were recorded using Alpha 

ATR-FTIR equipped with a single bounce diamond ATR (Bruker, Germany) and on a transmission 

cell CaF2 windows with 50 µm spacer COAT system (Thermal Lube, Montreal, Quebec, Canada). 

For ATR-FTIR measurements, mid-IR range of 4000-700 cm-1 was used and a total of 64 scans at 

8 cm-1 resolution were acquired and ratioed against a background of the clean ATR crystal. One 

background scan was performed each day before starting the measuring process. A milk droplet 

was deposited on the ATR measurement surface and the droplet size was fixed at 50 µL using a 

micropipette. After each measure, the drop of milk was wiped off and the crystal surface was 

cleaned with soup solution and water and then wiped dry with a paper towel. For the COAT 

system, the resolution was 16 cm-1 for the transmission cell measurements at Thermal Lube.  

For batches ten and eleven, the IR spectra were recorded by IRSphinx (Comline Elektronik 

Elektrotechnik GmbH, Wackersdorf, Germany) equipped with ZnSe ATR crystal. Mid-IR range 

of 1794-919 cm-1 was used and a total of 300 scans were collected and ratioed against a background 

of the clean ATR crystal. One background with 500 scans was collected each day before starting 

the measuring process. The recorded spectra were converted to absorbance and they were exported 

to comma-separated-values (CSV) file format. The spectra of the first four batches were collected 

in triplicates, while the rest of the spectra were collected in duplicates. A total of 1040 spectra were 

collected for the quantitative calibration models of milk components. 

4.2.3 Development of PLS calibration models for milk components   

TQ Analyst Professional Edition 7.2.0.161 (Thermo Electron Corporation, Waltham, 

Massachusetts, USA) was used to build PLS calibration models for major milk components using 

FTIR spectra of milk samples and their corresponding reference values for each milk component. 

The FTIR spectra were either kept raw, without applying any mathematical pre-treatment, or they 

were subjected to the Savitzky–Golay first derivative (SG FD) algorithm prior to calibrating the 

model. The window size was 7 and the polynomial order was 3. After the raw spectra were loaded 

into the software, the Spectrum Outlier functionality in TQ Analyst was used to exclude all the 

spectra that were considered as spectral outliers. The refinement of each model went through 
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several iterations. The first iteration was performed on the full FTIR spectrum. The loading spectra 

that resulted from this iteration were examined and the spectral regions that showed high loadings 

were kept for the subsequent iteration. The spectral regions that will be included in the model must 

be relevant to the milk component for which a calibration model is being developed. This process 

was repeated until a stable calibration model was obtained. For each iteration, cross-validation was 

performed in TQ Analyst using leave-one-out approach. Several figures of merit (FOMs) were 

used to compare the performance of the calibration models that were developed for milk 

components. These FOMs included: correlation coefficient (r) for calibration and cross-validation, 

root mean square error of calibration (RMSEC), root mean square error of prediction (RMSEP), 

root mean square error of cross validation (RMSECV), predicted residual sums of squares 

(PRESS) and number of factors used, bias (if available) and the spectral regions that were used for 

each model. 

For the first four batches of ATR-FTIR spectra, calibration models were developed for lactose, 

protein, fat, water, non-fatty solids, total solids, all-but-fat. For batches number five, six, seven, 

eight and nine, only fat calibration models were developed.  For ATR-IR spectra, models for fat, 

protein, lactose and water were developed.  
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4.3 Results and Discussion 

4.3.1 Mid ATR-FTIR milk analysis 

Using the ATR-FTIR spectra of the first four batches of the Valacta’s samples, PLS models were 

developed for the following milk components: lactose, protein, fat, water, non-fatty solids, total 

solids and all-but-fat (Table 4-1 and Table 4-2). Milk fat was not homogenized in these samples. 

The rational behind this approach is to evaluate whether an ATR sample interface will produce 

approximate numbers for milk components. An ATR sample interface will be convenient for on-

site analysis applications because it will not require a pumping system to introduce the milk sample 

to the spectrometer. In addition, eliminating the homogenization process of milk fat will be more 

convenient for on-site milk analysis applications. It must be mentioned that this type of on-site 

analyzer will not be used for payment purposes. All spectral regions that are reported in this study 

showed high loadings in the initial PLS models that were developed for the majority of the 

respective milk components.  

For milk fat, the best model was obtained using raw spectra (Table 4-1 and Table 4-2). Additional 

spectral pre-treatments (i.e., SG FD) did not enhance the prediction power of the model. The 

correlation coefficient, RMSEC and RMSEP for the calibration model were 0.85, 0.29% and 

0.39%, respectively. The correlation coefficient and RMSECV for cross validation were 0.75 and 

0.37%, respectively. Despite the close values that were obtained for the measurements of error (i.e. 

RMSEC, RMSEP and RMSECV), which is usually a good indicator of model’s stability, the model 

prediction power was undermined by the spectral regions that showed high loadings. These regions 

were 2,707-3,833 cm-1 and 1,820-795 cm-1, which do not represent the regions where milk fat 

shows the strongest IR absorbance (i.e., Fat A and Fat B). The baselines of these two regions were 

corrected using two points and one point for the first and the second regions, respectively. The use 

of such wide spectral regions to produce close values for the measurements of error might be an 

indicator of overfitting.  

Water soluble and colloidal components gave high correlation coefficients for models developed 

using producer raw milk spectra (Table 4-1 and Table 4-2). The correlation coefficients values of 

cross validation were 0.95, 0.98 and 0.98, and RMSECV values were 0.06%, 0.07% and 0.06% 

for lactose, protein and non-fatty solids, respectively. Among the three measurements of error, 

RMSECV is the most realistic because it represents the average RMSE calculated over several 
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iterations of model validation. In each iteration, one sample is held out of the calibration set, the 

model is calculated, the held-out sample is predicted by the model and then RMSE is calculated 

for that iteration. RMSECV values for lactose and protein are comparable to those reported in the 

previous chapter and that were obtained by PLS models developed using spectra collected on FTIR 

spectrometer equipped with transmission cell. The spectral regions that showed the highest 

loadings for lactose and protein models were 1,141-1,010 cm-1 and 1,701-1,484 cm-1, respectively. 

For non-fatty solids, two spectral regions showed high loadings, which were 1,202-974 cm-1 and 

1,706-1,476 cm-1. All these regions contain the IR bands that show the maximum IR absorbance 

by the respective milk component, which means that an ATR-FTIR spectrometer can capture the 

chemical information related to the water soluble and colloidal components of milk. On the other 

hand, the water prediction model (Table 4-1 and Table 4-2) gave less accurate results where the 

correlation coefficient of cross validation and RMSECV values were 0.76 and 0.60%, respectively. 

Due to the high percentage of water in milk, this error can be acceptable. The spectral region in 

the water model that gave the highest loadings was 3,370-2,800 cm-1, which spans the OH 

stretching band of water and the milk fat CH stretching region located at 3000-2800 cm-1. This 

observation suggests that an ATR-FTIR spectrometer will not be capable of capturing chemical 

informational from the CH stretching region that is located at the shoulder of the broad OH 

stretching band of water, which might explain the unsatisfactory performance of the fat PLS 

model. The high variability in water content prediction and the incapability of an ATR-FTIR 

spectrometer to capture information related to CH stretching might explain the high RMSECV 

values for all-but-fat and total solids prediction models, which were 0.45% and 0.45%, 

respectively.  

These results show that FTIR spectrometers equipped with ATR accessory can be implemented to 

determine the non-fatty solids in raw milk samples without any prior treatment. In addition, these 

spectrometers can approximately determine the water content in raw milk samples. The least 

satisfactory FOMs were obtained from the raw milk fat calibration model. The correlation 

coefficient and RMSECV for cross validation values were 0.75 and 0.37%, respectively. The low 

accuracy of the fat model has also affected the accuracy of the total solids model. Such an error 

would mean that a sample with 3% fat might be predicted to contain 2.63% - 3.37% fat, which is 

not an acceptable range of error. This variability of the fat model can be explained by the fact that 

fat in milk is present in the form of globules that range in diameters from <0.2 to >15 µm. The 
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small fat globules represent 80% of the total number of fat globules but they contain only 3% of 

the mass of fat. On the other hand, large globules represent only 2% of the total number of fat 

globules but they contain 95% of the mass of fat [45]. Taking into consideration that the path 

length of the evanescent wave at the ATR crystal is only 2-3 µm [70], almost 20% of a large fat 

globule is probed by that wave. For this reason, reducing the size of fat globules might improve 

the fat ATR measurement and the accuracy of the PLS fat model. Because of the unsatisfactory 

calibration model that was obtained for raw milk fat, Valacta’s raw milk samples were subjected 

to different treatments to investigate the effects of these treatments on milk fat predictions. 

Samples of the fifth batch were sonicated, while samples of the sixth batch were homogenized and 

scanned by an ATR-FTIR spectrometer and by FTIR COAT system (Thermal Lube, Quebec, 

Canada) with a 50 m CaF2 transmission cell. It must be mentioned that the COAT system was 

not designed for milk analysis. In addition, different temperatures were used to pre-heat milk 

samples to convert milk fat into liquid state to minimize light scattering.  

Table 4-2 shows that none of these treatments could achieve a RMSECV value comparable to that 

obtained by FTIR spectrometer and a transmission cell that was reported in the previous chapter. 

Bath sonication demonstrated a weak linear relationship between spectral intensities and fat levels 

in milk samples where the cross-validation correlation coefficient was 0.52. Similarly, 

homogenization alone was not enough to improve the accuracy of fat predictions as demonstrated 

by the homogenized fat treatment. This treatment produced a weak linear relationship where the 

cross-validation correlation coefficient and RMSECV values were 0.59 and 0.45%, respectively. 

The results of both treatments prove that the size of fat globules in raw milk samples is not 

compatible with the ATR optical path length. The only treatment that showed a significant 

improvement of the linear relationship between fat levels in milk and spectral data were the 

transmission cell measurement of homogenized milk fat and the ATR measurements of cream-

skimmed milk mixture, in which the cross-validation correlation coefficients were 0.91 and 0.99, 

respectively. This improvement can be explained by the fact that homogenized fat globules are 

completely probed by the IR beam in the transmission cell setting and that two stages industrial 

homogenization of milk fat reduces the size of fat globules to levels compatible with the ATR 

effective pathlength.  
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To summarize, an ATR-FTIR spectrometer can capture the chemical information related to water 

soluble and colloidal components and water but not milk fat in raw milk. PLS calibration models 

developed for lactose and protein revealed FOMs that were close to those FOMs obtained from 

calibration models for the same milk components of prototype 3 that was evaluated in the previous 

chapter, which had a transmission cell as a sample introduction method. For predictions of milk 

fat, FTIR spectrometer equipped with a transmission cell and ultra-sonic probe proved to be 

superior to an ATR-FTIR spectrometer. RMSEP for prototype 3 from the previous chapter was 

0.01%, while it is 0.39% for the ATR-FTIR spectrometer that was evaluated in this study. Ultra-

sonication can reduce fat globules size to a size that is as small as 0.725 µm [71]. 
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Table 4-1 Comparison of calibration models’ FOMs for milk components. Calibration models were developed using milk spectra 

scanned by FTIR spectrometer equipped with ATR sample introduction accessory 

Component   Component r RMSEC 

% 

RMSEP 

% 

Factors 

Producer raw milk - ATR 

Lactose 0.96 0.06 0.10 6 

Protein 0.98 0.06 0.11 8 

Solids Non-Fat 0.99 0.05 0.11 8 

Water 0.86 0.47 0.85 8 

Fat 0.85 0.29 0.39 7 

Total Solids 0.89 0.40 0.58 7 

All-but-Fat 0.77 0.39 0.48 6 

Sonicated producer raw milk - ATR Fat 0.64 0.42 0.43 2 

Homogenized producer milk – ATR Fat 0.77 0.34 0.46 3 

Homogenized producer milk - 

Transmission Cell 

Fat 
0.96 0.16 0.14 2 

Cream-Skim milk mix - ATR Fat 0.99 0.24 0.17 2 

 

Table 4-2 Comparison of cross-validation FOMs for milk components’ models developed using milk spectra collected on FTIR 

spectrometer equipped with ATR sample introduction accessory 

Milk – FTIR Measurement  Component r RMSECV% Factors 

Producer raw milk - ATR 

Lactose 0.95 0.06 6 

Protein 0.98 0.07 8 

Solids Non-Fat 0.98 0.06 8 

Water 0.76 0.60 8 

Fat 0.75 0.37 7 

Total Solids 0.85 0.45 7 

All-but-Fat 0.68 0.45 6 

Sonicated producer raw milk - ATR Fat 0.52 0.47 - 

Homogenized producer milk – ATR Fat 0.59 0.45 - 

Homogenized producer milk - Transmission Cell Fat 0.91 0.23 - 

Cream-Skim milk mix - ATR Fat 0.99 0.33 - 
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4.3.2 Comparisons with previous ATR-FTIR studies for milk analysis 

There have been several reports in the literature concerning the use of ATR-FTIR for the 

determination of milk components. The following section will discuss the main differences 

between these reports and the current study in terms of methodology and results.  

Etzion et al. (2004) investigated the determination of protein concentration in raw milk by mid 

FTIR combined with ATR as a sample introduction method [25]. The two main differences 

between our study and theirs are: 1) our study investigated the determination of all major milk 

components, while theirs was focusing on determining milk protein 2) the type of milk samples 

that were used to develop the prediction model. Our study relied on 360 producer raw milk samples 

from different farms across Quebec that resulted in 1080 spectra, while theirs relied on 26 milk 

standards that were mixed in the laboratory that resulted in 235 spectra. Due to the number of 

samples that we covered; we can say that our models were more capable of capturing the realistic 

variation in milk components. In addition, our study focused on PLS, which is the algorithm that 

is employed in commercial milk analyzers for determining milk components, while in Etzion study 

they used PLS and Artificial Neural Networks (ANNs) that had PCA scores of the decomposed 

milk spectra as an input in addition to fat and lactose levels in their samples. ANNs are used to 

model non-linear relationships between predictors (i.e., spectral data) and responses (i.e., milk 

component concentrations) and they have two drawbacks.  First, it is a black box algorithm, which 

means if it works it does not provide any tools to explain how it does so. By using information 

related to milk protein, fat and lactose, the author might have been modeling the relationship 

between these different components. The author did not mention the statistical approach that was 

used to randomize those mixes, which means any non-linear relations between these three 

components might have been modeled by the ANNs algorithm. Second, ANNs are highly 

susceptible to overfitting, which requires using a large data set to produce a realistic model and 

that was not the case with the Etzion study. The root mean square prediction error values for the 

PLS model and the ANNs model that was combined with fat and lactose concentrations were 

0.22% and 0.08%, respectively. In our study, RMSEC, RMSEP and RMSECV values were 0.06%, 

0.10% and 0.06%, respectively, for raw milk protein PLS model. All these values are less than the 

reported PLS prediction error for the Etzion study. Regarding their PLS model, the author did not 

analyze the loading spectra produced by the PLS algorithm, which are extremely important in 

determining whether the model is capturing the information from the correct spectral regions. 
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Nevertheless, both studies agreed that ATR-FTIR has a potential for determining protein in raw 

milk samples.  

Iñón et al. (2004) investigated the predictive capability of milk ATR-FTIR spectra in PLS models 

for predicting total fat, total protein, total carbohydrates, calories and calcium [72]. Their study 

was focused on determining milk components in commercially packed milk, which is 

homogenized by a two-stage homogenizer, while our study was focused on determining these 

components in raw milk. Theoretically, milk fat homogenization will reduce light scattering and 

that should improve the predictive performance of the PLS models. Their reported values for 

RMSECV were 0.47%, 0.18%, and 0.5% for fat, protein and lactose, respectively, for PLS models 

that employed variable selection algorithm to determine the spectral regions to include as an input 

for the model. Our results reported in table 4-2 show that we achieved lower RMSECV without 

homogenizing our samples. In addition, Iñón did not report the correlation coefficients of their 

models, which makes it difficult to assess how well these models were fitting the data and 

undermines the reliability of their reported RMSECVs. In addition, the number of their samples 

was limited to 83 that included all types of milk that were available in the local market, while our 

study included 360 raw milk samples. Iñón also compared the predictive performance of PLS1 vs. 

PLS2. In the first algorithm, the Y matrix include the reference values for one component; on the 

other hand, the Y matrix for PLS2 include the reference values for more than one milk component. 

In this case, the PLS algorithm will decompose the Y matrix and produce a second set of latent 

variables and the prediction model will be fitting the latent variables of the Y matrix against those 

of the X matrix. The problem with this approach is that the latent variables of the Y matrix will be 

based on the correlations between milk components. These correlations are affected by several 

factors, such as the breed of the cow, the lactation stage and the age of the animal, to mention few, 

and none of these factors were controlled in their study.  

Linker and Etzion (2009) investigated the potential of ATR-FTIR for real-time analysis of raw 

milk in milking lines by collecting 189 milk samples from 70 cows over a duration of 18 moths 

[73]. The focus of their study was online determination of milk fat and protein during the milking 

process, while our focus was on determining those two components in an offline setting. In 

addition, they did not use PLS to build the prediction models. Instead, they used PCA and discrete 

wavelet to decompose the spectral data in regions where the milk component of interest shows the 
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most intense absorbance in order to reduce the dimensionality of the data and then they used the 

PCA scores and the wavelet coefficients as input to build feedforward neural networks (NN) with 

sigmoid activation functions prediction models for fat and protein. For some protein models, they 

also included fat concentration as input. The author did not give a compelling explanation for this 

unusual approach to develop these prediction models. NN are useful for non-linear relationships 

between predictors (i.e., spectral data) and responses (i.e., milk component concentrations); 

however, the relationship between absorbance and the concentration of the analyte of interest is 

linear according to Beer’s law, which does not justify their approach. The protein NN models that 

included fat concentrations as input might have been modeling the correlations between these two 

components and that might explain the variable prediction errors that they obtained for models 

developed for different seasons. In general, their prediction error for milk protein was between 

0.27% and 0.32%, while our RMSECV for raw milk protein was 0.07%. On the other hand, the 

prediction error for milk fat varied between 0.1% and 0.8%. Both our studies concluded that ATR-

FTIR is not applicable for the determination of milk fat in raw milk samples; however, our study 

showed promising results for the offline determination of milk protein in raw milk samples. 

Bassbasi et al. (2014) investigated the potential of ATR-FTIR for determining solid non-fat (SNF) 

in raw milk using partial least squares (PLS) and support vector machine (SVM), which might be 

helpful for the current payment system. Their study included 56 milk samples. For PLS, the 

reported RMSEC and RMSEP values were 0.20%-0.46% and 0.24%-0.51%, respectively, while 

in our study, RMSEC and RMSEP values for SNF were 0.05% and 0.11%, respectively. This 

observation suggests that increased number of milk samples is needed to capture the natural 

variability in SNF in raw milk samples by the PLS prediction model. On the other hand, the 

reported RMSEC and RMSEP values were 0.18%-0.26% and 0.25%-0.33%, respectively, for the 

SVM model. However, SVM is appropriate for cases where the relationship between the predictors 

(i.e., spectral data) and responses (i.e., milk component concentrations) is nonlinear, which is not 

the case with ATR-FTIR spectroscopy. In addition, SVM did not dramatically reduce the 

prediction error; hence, SVM is not justified for this application. Nevertheless, both of our studies 

agree that ATR-FTIR has the potential for the determination of SNF in raw milk samples. 

To summarize, the prediction models that were developed during this study using milk ATR-FTIR 

spectra to predict lactose, protein and SNF gave better prediction errors with raw milk samples in 
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comparison to what have been reported in the literature so far. As for milk fat, the results of our 

study agreed with the literature that ATR-FTIR is not appropriate for milk fat analysis due to the 

limited optical path length of the evanescent wave at the ATR surface, which is shorter than the 

diameter of raw milk fat globules.  

Table 4-3 Summary of reported literature on the application of ATR-FTIR spectroscopy in the determination of milk components. 

Our study yielded better prediction errors for lactose, protein and SNF in raw milk samples. Our study agreed with these reports 

that ATR-FTIR spectroscopy is not suitable for milk fat determination in raw milk samples.  

Ref. 
Algorithm 

 

Milk 

Samples 
Samples No. Component 

Prediction 

Error 

[25] 

PLS Remixed 

milk 

standards 

26 Protein 

0.22-0.29% 

ANNs 0.08-0.29% 

[72] 
PLS with variable 

selection 

Commercial 

packed milk 
83 

Fat 0.35% 

Protein 0.27% 

Carbohydrate 0.34% 

[73] 

Feedforward neural 

networks (NN) with 

sigmoid activation 

functions with PCA 

scores or wavelet 

coefficients as input 

Raw milk 189 

Fat 0.1-0.8% 

Protein 0.27-0.32% 

[74] 
PLS 

Raw milk 56 SNF 
0.24-0.51% 

SVM 0.25-0.33% 
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4.3.3 Mid ATR-IR milk analysis 

The milk spectrum obtained from the ATR-IR spectrometer shows two main regions of IR 

absorbance (Figure 4-5). The first region is at 1,200-950 cm-1 that can be attributed to lactose and 

the second one is at 1,700–1,600 cm-1, which contains the Amide I band of proteins and the H −

O − H bending band of water at 1,650 cm-1. We can notice that the second absorbance region 

overlaps with the Amide II band of proteins at 1,565–1,520 cm-1, which is not clearly observed. 

The ATR-IR spectrum of milk completely lacks absorbance band at the Fat A region located at 

1,745–1,725 cm-1 that originates from the C = O stretching in the triglyceride ester linkage of milk 

fat. This observation suggest that the ATR-IR spectrometer might not be capable of capturing 

chemical information related to milk fat. In addition, the spectrum data spacing is not consistent 

within the spectral range of the detectors used in this spectrometer. The difference between two 

consecutive wavenumbers was 13-9, 9-6 and 6-3 for spectral ranges 1,800-1,500 cm-1, 1,500-1,200 

cm-1 and 1,200-920 cm-1, respectively. This observation suggests that this spectrometer might not 

produce enough data points in key spectral ranges, such as Fat A, required for the determination 

of milk fat.  

Using Valacta’s raw milk samples, PLS models were developed for the following milk 

components: lactose, protein, water and fat. Raw spectra were used to develop these models and 

no baseline correction was applied. Table 4-4 and Table 4-5 summarizes the calibration and the 

cross-validation FOMs of the developed models, respectively. It can be noticed that lactose, which 

is a water-soluble component, gave the most consistent calibration and cross-validation FOMs. 

For raw milk samples, the calibration correlation coefficient, RMSEC, RMSEP, the cross-

validation correlation coefficient and RMSECV values were: 0.97, 0.05%, 0.07%, 0.95, and 

0.07%, respectively. For ultra-sonicated milk samples, the calibration correlation coefficient, 

RMSEC, RMSEP, the cross-validation correlation coefficient and RMSECV values were: 0.98, 

0.04%, 0.07%, 0.96, and 0.05%, respectively (Table 4-4 and Table 4-5). The loading spectra of 

both lactose calibration models revealed high loadings for spectral region 1,299-987 cm-1, which 

is assigned to carbohydrates in milk IR spectrum. This observation confirms the fact that ATR-IR 

spectrometer could capture the chemical information related to lactose in milk that was 

demonstrated in absorbance bands between 1,200 cm-1 and 950 cm-1 in the ATR-IR spectrum of 

milk. The measurements of error (i.e., RMSEC, RMSEP and RMSECV) are  comparable to those 

obtained from lactose prediction model that was developed using ATR-FTIR milk spectra, which 



95 

 

means that this type of spectrometer might be a good candidate for on-site applications that require 

the determination of water soluble components.  

Milk protein, which is a colloidal component, gave greater values for the measurements of error 

than those of the lactose models; however, the calibration and cross-validation FOMs were 

consistent, which can be considered as a sign of model stability (Table 4-4 and Table 4-5). The 

calibration correlation coefficient, RMSEC, RMSEP, the cross-validation correlation coefficient 

and RMSECV values were: 0.86, 0.21%, 0.25%, 0.81 and 0.23%, respectively. RMSECV that is 

equal to 0.2% is considered relatively high when compared to RMSECV obtained from calibration 

models developed with milk FTIR spectra obtained by a transmission cell. In addition, the loading 

spectra revealed high loadings for spectral region 1,600-1,500 cm-1, which includes the Amide II 

band that is used for determining milk proteins. Ultra-sonication of raw milk samples enhanced 

the linearity and improved the prediction capability of the milk protein model and led to a reduction 

in the measurements of error (Table 4-4 and Table 4-5). The calibration correlation coefficient, 

RMSEC, RMSEP, the cross-validation correlation coefficient and RMSECV values were: 0.96, 

0.10%, 0.16%, 0.91 and 0.15%, respectively. It can be noticed that these FOMs are consistent; 

however, the prediction error in this case is still higher than that obtained from spectra collected 

with an ATR-FTIR spectrometer or with FTIR spectrometer equipped with a transmission cell. 

The loading spectra revealed high loadings for the spectral region 1,658-1,241 cm-1, which 

includes the Amide II and Amide III bands of protein. This observation suggest that ultra-

sonication helped the ATR-IR spectrometer capture more chemical information related to milk 

proteins. As a result, ATR-IR spectrometer can be used for applications that require the 

determination of milk protein with reasonable accuracy. The accuracy of the predictions can be 

enhanced by ultra-sonicating the milk samples.  

Water calibration models revealed acceptable performance (Table 4-4 and Table 4-5). For raw 

milk samples, the calibration correlation coefficient, RMSEC, RMSEP, the cross-validation 

correlation coefficient and RMSECV values were: 0.98, 0.14%, 0.55%, 0.75 and 0.51%, 

respectively. It can be noticed that RMSEP and RMSECV are similar, which suggest that the 

prediction error for water is going to be around 0.5% for the ATR-IR spectrometer. Ultra-

sonication of milk samples made the linearity and the FOMs of calibration and cross-validation 

more consistent; however, it did not reduce the prediction error. The calibration correlation 
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coefficient, RMSEC, RMSEP, the cross-validation correlation coefficient and RMSECV values 

were: 0.93, 0.36%, 0.45%, 0.90 and 0.42%, respectively. It must be noted that the entire spectrum 

that spanned the spectral region 1,780-1000 cm-1 was used to develop these models, which means 

that these models were indirectly modeling water content information by using information related 

to other milk components. Water is not a component that determine milk value except in cases of 

adulteration where extraneous water is added to increase the volume of milk. In such scenario, 

water must be added with amounts that exceed 10% to generate substantial economic gain, which 

means a prediction error of 0.5% might be acceptable for detecting this fraudulent practice. Having 

said that, ATR-IR spectrometer might be a viable option for on-site determination of added water 

to milk.  

Among the four major milk components, fat gave the least satisfactory prediction models (Table 

4-4 Table 4-5). For raw milk samples, the calibration correlation coefficient, RMSEC, RMSEP, 

the cross-validation correlation coefficient and RMSECV values were: 0.39, 0.45%, 0.46%, 0.20 

and 0.49%, respectively. This model shows lack of linearity and high values for measurements of 

error for both calibration and cross-validation data sets. In addition, the loading spectrum did not 

detect the correct spectral region whose absorbance intensity is correlated with fat content (i.e., 

Fat A). The spectral region that showed high loadings was 1,639-1,376 cm-1. This observation 

suggests that the ATR-IR spectrometer under investigation was not capable of capturing any 

chemical information related to milk fat. This can be explained by the limited spectral range of 

this spectrometer, which only contains the Fat A region, or the ester linkage stretching band 

centered at 1745 cm-1. This region did not show any absorbance in milk spectrum due to the limited 

number of data points that were recorded by the spectrometer (Figure 4-5). In addition, the spectral 

range of this spectrometer lacks the Fat B region, or the CH stretching bands located at 3000-2800 

cm-1, which is a significant contributor to the correct prediction of milk fat in PLS models 

dedicated for this purpose. For milk samples that were homogenized with ultrasonic probe, the 

calibration correlation coefficient, RMSEC, RMSEP, the cross-validation correlation coefficient 

and RMSECV values were: 0.80, 0.42%, 0.59%, 0.69, 0.51%, respectively. Ultrasonic processing 

of milk samples prior to acquisition of the ATR-IR spectra improved the linearity of the model 

and the loading spectrum showed high loadings for spectral region 1,754-1,241 cm-1. This spectral 

region in the loading spectrum is still considered very wide and overlaps with IR bands assigned 

to other milk components, such as protein. Most importantly, the values of the measurements of 
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error remain high, which indicates that ultrasonic homogenization did not improve the predictive 

power of the fat PLS model. The stability and the prediction power of the model were not improved 

when spectra of industrially homogenized milks samples were used to develop the model. The 

RMSECV was 0.75% and the model exhibited linearity only when the full spectrum (i.e., 1,770-

950 cm-1) was used as an input for the calibration model. We can conclude that the ATR-IR 

spectrometer under investigation is not a viable option for milk fat determination.  

To summarize, the ATR-IR spectrometer that was evaluated in this study could capture chemical 

information related to milk lactose, water and protein. For lactose, the measurements of error (i.e., 

RMSEC, RMSEP and RMSECV) that were obtained for the PLS models were either identical or 

close to those obtained from models developed using ATR-FTIR spectra or FTIR spectra collected 

with a transmission cell. For water, a prediction error of 0.5% will not be problematic for 

applications, such as the determination of extraneous added water to milk, that will require the 

addition of 10% or more of water to generate substantial economic gain. For milk protein, 

processing raw milk samples with an ultra-sonic probe prior to spectral acquisition will produce 

predication models with reasonable accuracy. For this component, the ATR-FTIR spectrometer 

produced better prediction models for milk protein using raw milk samples. The RMSECV values 

were 0.07% and 0.23% for protein PLS models that were developed using spectra of raw milk 

samples collected on ATR-FTIR and ATR-IR spectrometers, respectively. On the other hand, this 

type of spectrometer proved to be completely inefficient in capturing chemical information related 

to milk fat; hence, it cannot be considered for applications that require milk fat predictions. The 

main reason for this conclusion regarding milk fat was the anemic number of data points that the 

spectrometer recorded in the Fat A region.  
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Figure 4-5 Mid ATR-IR milk spectrum. 1) 1200-900 cm-1 lactose, 2) 1700–1600 cm-1 for Amide I of proteins, 1650 cm-1 for 𝐻 −
𝑂 − 𝐻 bending of water. We can notice the absence of absorbance band at 1745–1725 cm-1 that originates from the 𝐶 = 𝑂 

stretching in the triglyceride ester linkage of milk fat (i.e., Fat A). 
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Table 4-4 Comparison of calibration FOMs for milk components’ models developed using milk spectra collected on portable 

ATR-IR spectrometer 

Milk  Component Corr. Coeff. RMSEC% RMSEP% Factors 

Producer raw milk 

Lactose 0.97 0.05 0.07 4 

Protein 0.86 0.21 0.25 2 

Water 0.98 0.14 0.55 8 

Fat 0.39 0.45 0.46 1 

Ultrasonicated raw milk 

Lactose 0.98 0.04 0.07 3 

Protein 0.96 0.10 0.16 3 

Water 0.93 0.36 0.45 3 

Fat 0.80 0.42 0.59 2 

Packed milk Fat 0.98 0.25 0.36 2 

Whole milk & skim milk mixture Fat 0.99 0.12 0.19 3 

 

Table 4-5 Comparison of cross-validation FOMs for milk components’ models developed using milk spectra collected on 

portable ATR-IR spectrometer 

Milk Component Corr. Coeff.  RMSECV% Factors 

Producer raw milk 

Lactose 0.95 0.07 4 

Protein 0.81 0.23 2 

Water 0.75 0.51 8 

Fat 0.20 0.49 1 

Ultrasonicated raw milk  

Lactose 0.96 0.05 3 

Protein 0.91 0.15 3 

Water 0.90 0.42 3 

Fat 0.69 0.51 2 

Packed milk Fat 0.92 0.75 2 

Whole milk & skim milk mixture Fat 0.98 0.19 3 
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4.4 Conclusion  

ATR-FTIR spectroscopy yielded accurate prediction models for water soluble and colloidal 

components of milk. RMSECV values for PLS prediction models of lactose and protein were 

0.06% and 0.07% respectively, in raw milk samples. These measurements of error were similar to 

those that were obtained from PLS models developed using milk spectra collected on FTIR 

spectrometer equipped with a transmission cell as a sample introduction method that was evaluated 

in the previous chapter. Concerning water, ATR-FTIR spectroscopy showed acceptable results 

with an acceptable RMSECV of 0.5%. On the other hand, ATR-FTIR spectroscopy gave poor 

results for the determination of milk fat in raw milk. RMSECV value was 0.39%, which is not 

acceptable for milk fat determination. This error is due to fat globules size that is considerably 

larger than the path length of the evanescent wave at the ATR crystal surface. Homogenization did 

not improve the fat prediction model. For predictions of milk fat, FTIR spectrometer equipped 

with a transmission cell and ultra-sonic probe proved to be superior to an ATR-FTIR spectrometer. 

RMSEP for prototype 3 from the previous chapter was 0.01%, while it is 0.39% for the ATR-FTIR 

spectrometer that was evaluated in this chapter. 

The prediction models that were developed during this study using milk ATR-FTIR spectra to 

predict lactose, protein and SNF gave better prediction errors with raw milk samples in comparison 

to what have been reported in the literature so far. As for milk fat, the results of our study agreed 

with the literature that ATR-FTIR is not appropriate for milk fat analysis due to the limited optical 

path length of the evanescent wave at the ATR surface, which is shorter than the diameter of raw 

milk fat globules. The main advantage of our study was the large number of raw milk samples 

whose ATR-FTIR spectra were acquired during this study. 

The ATR-IRSphinx spectrometer (Comline Elektronik Elektrotechnik GmbH, Germany) gave an 

acceptable performance in analyzing milk and it could capture chemical information related to 

milk lactose, water and protein. Among the four major components of milk, lactose gave the most 

accurate results with both raw and homogenized milk. The prediction error of lactose was 0.06%. 

For water, the prediction error was 0.5%, which will not be problematic for applications, such as 

the determination of extraneous added water to milk, that will require the addition of significant 

amounts of water to milk to generate substantial economic gain. For milk protein, processing raw 

milk samples with an ultra-sonic probe prior to spectral acquisition produced predication models 
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with reasonable accuracy. For this component, the ATR-FTIR spectrometer produced better 

prediction models for milk protein using raw milk samples. The RMSECV values were 0.07% and 

0.23% for protein PLS models that were developed using spectra of raw milk samples collected 

on ATR-FTIR and ATR-IR spectrometers, respectively. On the other hand, this type of 

spectrometer proved to be completely inefficient in capturing chemical information related to milk 

fat; hence, it cannot be considered for applications that require milk fat predictions. The prediction 

error of milk fat varied between 0.2% and 0.5%.  
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Appendix  

Calculated vs. Reference values for PLS calibration models for major milk components developed 

using spectra collected on FTIR spectrometer equipped with ATR sampling accessory.  

 

Lactose 

 

Protein 
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Water 

 

Fat 
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 All-but-fat  
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Calculated vs. Reference values for PLS calibration models for major milk components developed 

using spectra collected on LVF IR spectrometer equipped with ATR sampling accessory.  

 

Lactose 

 

Protein 
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Connecting statement 

In chapter 3, portable FTIR spectrometers equipped with transmission cell revealed excellent 

analytical performance for on-site determination of major milk components. In the previous 

chapter, the novel LFV ATR-IR spectrometer proved to be an effective instrument in capturing 

chemical information related to water content, true solutes and colloidal components in milk. In 

this chapter, FTIR and LVF IR spectrometers along with ATR and two transmission-based sample 

introduction methods (i.e., transmission cell and DialPaht) will be evaluated for the detection of 

extraneous water and chemical adulterants that are added to milk to mask the addition of water. In 

some countries, such as Brazil where milk cryoscopy is the official method to detect added water, 

fraudulent dairy farmers add chemicals to watered-down milk to restore the milk freezing point 

depression reading of a cryoscope to its legal value. Having a portable IR based instrument that 

can confirm the authenticity of a milk sample is a crucial solution for the dairy industry in these 

countries. This solution will employ classification models to differentiate genuine milk samples 

from watered-down ones and quantitative models to determine added water and chemical 

adulterants.  
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Chapter 5: Case study of on-site milk analysis infrared spectroscopic 

methods for detection of added water and chemical adulterants in 

Brazilian milk  

Abstract   

Milk has always been a valuable commodity and the target of fraudulent practices aiming to 

achieve greater economic gains. Adding water is the most common form of milk adulteration, 

which can be detected by measuring the freezing point depression using milk cryoscopy. However, 

the readings of cryoscopy instruments can easily be manipulated by adding water and then 

dissolving a chemical compound that will compensate for the change in milk freezing point, which 

is directly related to the concentration of dissolved solids. In this study, it has been proven that the 

addition of aqueous solution of urea 1.75%, sodium citrate 2.75%, ammonium sulfate 1.5% or 

sodium carbonate 1.25% to raw milk will maintain its freezing point within the accepted legal 

limits, even when the addition of the adulteration solution is as high as 50%. To authenticate the 

milk freezing point readings, multiple combinations of IR spectrometers, sample introduction 

methods and chemometric algorithms were investigated to detect the addition of water and 

chemical adulterants to milk. ATR-FTIR spectroscopy combined with PCA and HCA could detect 

as low as 5% added water, 25 mg/dL added ammonium sulfate, and sodium citrate and 100 mg/dL 

added urea in raw milk.  

In addition, a novel filter-based IR spectrometer equipped with ZnSe ATR crystal was proven to 

capture chemical information related to the authenticity of milk samples. PCA revealed that the 

cut off limit for detecting raw milk samples with adulteration solutions was 5%. Its spectra were 

used to develop PLS model to predict the percentage of extraneous water in milk regardless of the 

identity of the chemical adulterant that was present in milk with a prediction error of 1.85%.  

Homogenizing milk and the use of a transmission cell as a sample introduction method gave the 

best performance for the classification and quantitative models employed to detect milk 

adulteration by the addition of water and chemical adulterants. Nevertheless, the use of the 

DialPath sample introduction accessory (Agilent Technologies, Santa Clara, California, USA) 

with raw milk gave satisfactory results especially when the path length was set at 30 µm. For raw 

milk, PCA-QDA classification algorithm with no covariance shrinkage developed using first 
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derivative spectral data collected with the DialPath accessory (Agilent Technologies, Santa Clara, 

California, USA) gave the best accuracy and error rate. The accuracy values were 98.84% and 

100% and the error rate values were 1.16% and 0% for the training and validation sets, 

respectively. This model yielded perfect specificity for differentiation of adulterated milk samples 

from genuine ones for the training and the validation set. Sensitivity was 0.99 for the training set. 

SIMCA algorithm successfully classified adulterated samples into groups according to the 

chemical adulterant present in these samples. The accuracy for the raw milk SIMCA classification 

model was 89.90% when first derivative was used. Quantitatively, PLS prediction errors values 

were 0.39 %, 6.73 mg/dL, 10.3 mg/dL, 4.50 mg/dL and 0.014% for water, urea, citrate, ammonium 

sulfate and carbonate, respectively, for raw milk scanned with the DialPath accessory (Agilent 

Technologies, Santa Clara, California, USA) with 30 µm path length.  
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5.1 Introduction 

Milk has always been a valuable commodity. According to the Food and Agriculture Organization 

(FAO) dairy market review [75], global milk output has increased 2.2% in 2018 and it was 

estimated at 843 million tonnes of milk. Milk output increased in all regions of the world with Asia 

registering the highest output expansion followed by Europe, North America and South America. 

In addition, world trade in dairy products expanded 2.9% in 2018 with North America being the 

largest contributor to dairy products export expansion followed by South America, Central 

America and the Caribbean [75]. Taking into consideration its economical importance, milk has 

always been the target of fraudulent practices aiming to achieve greater economic gains. According 

to the scholarly records of the Food Fraud Database of the United States Pharmacopeial 

Convention (USP), milk is ranked third among food commodities targeted by fraud [76]. Milk 

adulteration represents 11.5% of scholarly articles reporting fraud while adulteration of dairy 

products represents 2.6% [76]. In the economically motivated adulteration (EMA) incident 

database of the National Center for Food Protection and Defense (NCFPD), cases of dairy products 

adulteration represent 5.6% of the recorded cases and they are ranked fifth among reported food 

fraud incidents [76]. According to the same database, the most two common practices of food 

adulteration are “substitution and dilution” and “unapproved additives”, which represent 65% and 

13.4% of recorded cases, respectively [76].  

Adding water is the most common form of milk adulteration. It is usually added to increase the 

volume of milk to achieve greater profits. Addition of water will alter milk composition and 

reduces its specific gravity, foamy appearance and its nutritional value and it will increase the 

freezing point of milk [77]. In 1921, Julius Hortvet investigated the effect of adding different 

amounts of water on the freezing point of milk. He concluded that the addition of 1% of water will 

increase the freezing point of milk by ~0.005 C and that the measurement of milk freezing point 

depression (FPD), or cryoscopy of milk, will accurately detect as low as 3% added water [78]. In 

1990, the International Journal of Dairy Technology (IDT) published a procedure for detecting 

extraneous water by measuring the FPD of milk [79]. Currently, FPD of milk is measured by using 

the thermistor cryoscopic method, which relies on the following principle. When an aqueous 

solution is cooled without stirring to below the freezing point (i.e., super-cooling), the temperature 

of the solution initially is reduced to induce nucleation and then reaches a point when enough 

nuclei become available to trigger auto-crystallization. As a result, the temperature rises rapidly 
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from the super-cooling temperature to a plateau of relatively constant temperature level that 

corresponds to the freezing point of the sample. The highest temperature which occurs at the 

plateau of this freezing curve is known as the solution’s freezing point [80]. Since milk contains 

salts and lactose, the freezing point of its water is depressed by a little over 0.5C [79].  

Milk cryoscopy has its limitations. For example, the freezing point of milk can be affected by 

several factors, such as breed, lactation and interaction of year and period. The differences in the 

freezing point of milk due to these factors are 0.0022 °C, 0.0032 °C and 0.0053 °C, respectively 

[81]. The most significant drawback of this method is that the readings of a cryoscope can easily 

be manipulated by adding water and then dissolving a chemical compound that will compensate 

for the change in milk’s FPD because the freezing point of milk is directly related to the 

concentration of dissolved solids [78, 80, 82]. For example, the increase of urea content in milk by 

20 mg/L will decrease the freezing point of milk by 0.0003 – 0.0004 C [81]. For this reason, 

determination of freezing point of milk is not enough to judge the authenticity of milk.  

In 2015, a major manufacturer of milk cryoscopy instruments in South America, PZL Industria 

Eletrônica LTDA (Londrina, PR, Brazil), contacted the McGill IR group requesting an infrared 

(IR) based solution to authenticate milk FPD readings and the corresponding added water reported 

by their instruments. According to senior officials at PZL, the main chemicals used to tamper with 

their instruments’ readings of added water are urea, ammonium sulfate and citrate. Urea is used as 

an adulterant in milk because it is relatively cheap, easily available, rich in nitrogen and it is 

naturally present in milk. It represents 55% of the non-protein nitrogenous (NPN) content of milk. 

Its typical concentration in milk is 18-40 mg/dL and the upper limit is 70 mg/dL. Urea is added to 

milk to provide whiteness, increase the consistency and shelf life of milk, and for standardizing 

the content of non-fatty solids present in natural milk. In addition, such type of adulterated milk 

remains intact for 2 or more days [83]. Ammonium sulfate is generally recognized as safe (GRAS) 

compound by the US Food and Drug Administration and it is a certified food additive in Japan and 

the European Union. However, its addition to milk is considered as adulteration. It is a water-

soluble nitrogenous compound and is used as a milk adulterant to mask the effects of dilution of 

added water and to increase the apparent protein content of milk. When added to milk, it increases 

the lactometer reading and thus the density of milk [83]. Citrate is naturally present in milk [84], 

it is not routinely determined by dairy control laboratories and its presence in milk only affects its 



112 

 

freezing point [85]. In addition to added water, PZL officials wanted to detect another practice, 

which is the addition of carbonate or bicarbonate to neutralize milk acidity. Sodium 

carbonate/bicarbonates are used to neutralize the natural acidity of milk and developed acidity by 

bacteria responsible for milk spoilage. Sodium bicarbonate is a GRAS food compound and can be 

used in food at levels up to 2%. According to the Codex Alimentarius, sodium carbonate can be 

used in all dairy products and it is the only legally permitted preservative, and it is used (<0.3%) 

as a stabilizer in condensed, evaporated, or powdered milk [83].  

Several studies have investigated the potential of FTIR spectroscopy in detecting milk adulteration. 

Santos et al. (2013) investigated the potential of different mid and near IR spectrometers to identify 

and quantify milk adulteration by the addition of tap water, whey, hydrogen peroxide, synthetic 

urine, urea, and synthetic milk in different concentrations. The concentration of adulterant in milk 

samples ranged from 1.87 to 30 g/L for whey, from 0.78 to 12.5 g/L (i.e., 78 – 1250 mg/dL) urea 

for synthetic urine and urea, from 0.05 to 0.8 g/L urea for synthetic milk, and from 0.009 to 0.15 

g/L for hydrogen peroxide. They developed classification models using soft independent modeling 

of class analogy (SIMCA) for detecting adulterated milk samples, and PLS models to 

quantitatively predict the adulterant of interest [86]. Jha et al. (2015) investigated the potential of 

ATR-FTIR for detection and quantification of added urea in milk with the following 

concentrations: 100 ppm, 500 ppm, 700 ppm, 900 ppm, 1300 ppm, and 2000 ppm. Their SIMCA 

classification model yielded well-separated clusters, which were pure milk, urea<900 ppm and 

urea>900 ppm. The RMSEP value for the urea quantification model was 254.23 ppm (i.e., 25.423 

mg/dL) [87]. Botelho et al. (2015) investigated the potential of ATR-FTIR spectroscopy in the 

simultaneous detection of five adulterants in raw milk using partial least squares discriminant 

analysis (PLS-DA). These adulterants were water, starch, sodium citrate, formaldehyde and 

sucrose in the range of 0.5–10% w/v (i.e., 500 – 10000 mg/dL) [88].  

The objective of this chapter is to develop an IR-based solution to authenticate milk FPD readings 

by differentiating adulterated milk from genuine one and quantifying the added chemical 

adulterant, if possible, in a business-oriented context. The focus of this work will be on milk 

containing added water and urea, ammonium sulfate and citrate as masking agent for the addition 

of water. In addition, the scope of this work will include milk containing carbonate as an acidity 
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masking agent. This IR-based solution will be highly appreciated by the Brazilian dairy section 

since Brazil is the wold’s fifth largest producer of milk [75].   

5.2 Materials and Methods 

5.2.1 Detection of extraneous water and added chemicals by ATR-FTIR 

5.2.1.1 Mid-IR bands of chemical adulterants  

A 10% solution in water (w/w) was prepared for the following adulterants: ammonium sulfate 

(AS), sodium bicarbonate (SbC), sodium citrate (SC) and urea (U). In addition, raw milk samples 

were spiked with the dry form of the previously mentioned adulterants at 10% (w/w). In addition, 

a 6% (w/w) whey in water solution and whey in raw milk was prepared.  

IR spectra were recorded in the mid-IR range of 4000-700 cm-1 and a total of 64 scans at 8 cm-1 

resolution were acquired and ratioed against a background of the clean ATR crystal.  A spectrum 

of water was also recorded, and it was subtracted from the spectra of the water solutions of the 

above-mentioned adulterants. Omnic 7.3 (Thermo Electron Corporation, Waltham, Massachusetts, 

USA) was used to determine the bands of each adulterant in the spectra of the water solution, 

spiked milk and the subtraction result spectrum.   

5.2.1.2 Qualitative detection of chemically adulterated milk 

5.2.1.2.1  Samples preparation 

A stock solution of 10% (w/w) was prepared for the following adulterants: sodium bicarbonate, 

sodium citrate, urea and ammonium sulfate. Table 5-1 shows volumes of stock solution that were 

added to milk samples in order to prepare each level of adulteration for each compound. For each 

level, the sample’s volume was complemented to 10 ml of milk.  

In addition, whey and water were also used to adulterate milk samples at the following levels: 

whey 5%, 10% and 20% (w/w), and water 5%, 10%, 15%, 20%, 25%, 30% and 40% (v/v). For 

each adulterant, two sets of adulterated samples were prepared using raw milk that was obtained 

from the Macdonald campus dairy farm and homogenized whole milk 3.25% acquired from local 

supermarkets. In addition, pure milk samples (raw and homogenized) were used as controls. 

Samples were refrigerated till the IR measurement time. All milk samples did not contain 

preservatives.  
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Table 5-1 Volumes of stock solution used to prepare different levels of chemically adulterated milk samples 

Adulterant level in milk sample % Volume of stock solution l 

0.025 25 

0.05 50 

0.10 100 

0.25 250 

1 1000 

2 2000 

 

5.2.1.2.2 Spectral acquisition  

Samples were heated to 35C before recording the spectra. ATR-FTIR spectra of raw and 

homogenized milk samples were recorded using FTIR Excalibur 3000 spectrometer (Agilent 

Technologies, California, USA) equipped with single bounce diamond ATR (Specac, UK). Raw 

milk samples ATR-FTIR spectra were also recorded on Alpha ATR-FTIR equipped with a single 

bounce diamond ATR (Bruker Germany). The mid-IR range of 4000-700 cm-1 was used and a 

total of 64 scans at 8 cm-1 resolution were acquired and ratioed against a background of the clean 

ATR crystal. One background scan was performed each day before starting the measuring process. 

The milk droplet volume was fixed at 20 L using a micropipette. After each measure, the drop of 

milk was wiped off and the crystal surface was cleaned with soup and water and then wiped dry 

with a paper towel. Homogenized adulterated milk spectra were collected in triplicates, while raw 

adulterated milk spectra were collected in quadruplicates on the Agilent spectrometer. Raw milk 

adulterated samples were collected in triplicates on the Alpha spectrometer. A total of 643 spectra 

were collected for the qualitative detection of chemical milk adulterants by ATR-FTIR.  

5.2.1.2.3 Spectral analysis 

An inhouse written software at the McGill IR group, DataAnalysis [89], was used to analyze the 

collected spectra. Hierarchical cluster analysis (HCA) was employed to create dendrograms to 

differentiate between pure milk, and adulterated samples. In addition, principal component 

analysis (PCA) was used to detect clustering trends of samples into groups according to their 

authenticity and to their adulteration level. Forward search feature selection algorithm was applied 
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to the spectral data to determine the spectral regions that will enhance the clustering trends. 

Outliers were visually detected on the PCA scores plot and excluded from the analysis. 

5.2.2 Effect of extraneous water and chemical adulterants on milk freezing point 

depression  

Aqueous solutions of urea, sodium citrate (i.e., trisodium citrate), ammonium sulfate and sodium 

carbonate were prepared with concentrations from 1% (w/w) to 3% (w/w) with 0.25% increments. 

The freezing points of these aqueous solutions were measured by the thermistor cryoscope PZL-

7000 (PZL, Paraná, Brazil) and the solutions that gave freezing points between -0.500 °C to -0.540 

°C were tested on milk. The chosen solutions were added to milk as follows (v/v): 10%, 20% and 

30%. The solutions that gave consistent freezing point close to that of the genuine milk sample for 

the three tested levels were further investigated. The final concentration that was chosen for each 

chemical adulterant was used to prepare the adulteration solution that was added to milk samples 

as follows: 0-50% (v/v) with an increment of 5% and 60-90% with an increment of 10%. The 

freezing points of these preparations were measured by the PZL cryoscope.  

5.2.3 Detection of extraneous water and added chemicals by ATR-IR 

5.2.3.1 Spectral acquisition  

ATR-IR spectra were collected by the IRSphinx spectrometer (Comline Elektronik Elektrotechnik 

GmbH, Germany) equipped with a zinc selenide (ZnSe) ATR crystal. The mid-IR range 1794-919 

cm-1 was used and 300 scans were collected and ratioed against a background of the clean ATR 

crystal. One background with 500 scans was collected each day before starting the measurement 

process. The recorded spectra were converted to absorbance and they were exported to comma-

separated-values (CSV) file format. Milk samples and aqueous solutions were kept at room 

temperature 20-23 C and after each measurement, the milk was wiped off the crystal surface and 

it was cleaned with soup and water and then wiped dry with a paper towel. A total of 542 spectra 

were collected for this part of the study.   

5.2.3.2 Mid-IR bands of chemical adulterants 

Aqueous solutions of urea, sodium citrate (i.e., trisodium citrate), sodium carbonate and 

ammonium sulfate were prepared. The concentrations of these solutions were 10% (w/v). In 

addition, homogenized milk samples were spiked with 10% (w/v) of the dry form of these 

chemicals. The IR spectra of these preparations were recorded by IRSphinx spectrometer (Comline 



116 

 

Elektronik Elektrotechnik GmbH, Germany) equipped with a zinc selenide (ZnSe) 9 bounces ATR 

crystal. The spectra of genuine milk and pure water were also recorded. The spectra of these 

preparations were collected in duplicates. Omnic 7.3 (Thermo Electron Corporation, Waltham, 

Massachusetts, USA) was used to average the duplicate spectra and to subtract the genuine milk 

and water spectra from the spectra of the spiked milk samples and the aqueous solution of the 

chemical adulterants, respectively. The Find Peak functionality in Omnic 7.3 (Thermo Electron 

Corporation, Waltham, Massachusetts, USA) was used to locate the centers of the characteristic 

IR absorption bands for each chemical adulterant.  

5.2.3.3 Preparation of adulterated milk samples 

Bags of homogenized 3% milk were obtained from Cativa - Cooperativa Agroindustrial de 

Londrina (Paraná, Brazil) and batches of raw milk were obtained from farms in the vicinity of the 

city of Londrina (Paraná, Brazil). Adulteration solutions of 1.75% (w/w) urea, 2.75% (w/w) 

trisodium citrate, 1.5% (w/w) ammonium sulfate and 1.25% (w/w) sodium carbonate were 

prepared and mixed with raw and homogenized milk as follows (v/v): 5, 10, 15, 20, 25, 30, 35, 40, 

45, 50, 60, 70, 80, 90%. In addition, different combinations of two adulteration solutions (1:1) and 

three adulteration solutions (1:1:1) were mixed and used to prepare raw and homogenized 

adulterated milk samples. All milk samples did not contain preservatives.  

5.2.3.3.1 Spectral analysis and added water quantification model 

An inhouse written software at the McGill IR group, DataAnalysis [89], was used to analyze the 

collected raw spectra. Principal component analysis (PCA) was used to detect clustering trends of 

samples into groups according to their authenticity and to their adulteration level. Outliers were 

visually detected and excluded from the analysis. 

TQ Analyst Professional Edition 7.2.0.161 (Thermo Electron Corporation, Waltham, 

Massachusetts, USA) was used to build PLS calibration models to predict added water in 

adulterated raw and homogenized milk samples. The percentage of the added solution was used as 

the reference value of added water in these models. The spectra were raw, raw with Savitzky–

Golay (SG) smoothing or they were subjected to the Savitzky–Golay first derivative (SG FD) 

algorithm prior to calibrating the model. The window size was 11 and the polynomial order was 

3. After the raw spectra were loaded into the software, the Spectrum Outlier functionality in TQ 

Analyst was used to exclude all the spectra that were considered as spectral outliers. The entire 
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spectral region was used since the addition of water will have a diluting effect on all milk 

components, which is a source of variation that can be captured by the PLS algorithm. The models 

were cross-validated using one-leave-out approach. 

5.2.4 Detection of extraneous water and added chemicals by transmission based 

FTIR 

5.2.4.1 Mid-IR bands of chemical adulterants 

Homogenized milk samples were spiked with urea, trisodium citrate, ammonium sulfate and 

sodium carbonate with levels ranged from 1% to 10% and aqueous solutions of these chemicals 

with similar concentrations were prepared. The FTIR spectra of these preparations were collected 

by a portable FTIR spectrometer Cary 630 (Agilent Technologies, Santa Clara, California, USA) 

equipped with a transmission cell with 46-50 µm path length at room temperature. The spectra 

were ratioed against water background, the resolution was 16 cm-1 and the number of coadded 

scans was 32 scans. The Find Peak functionality in Omnic 7.3 (Thermo Electron Corporation, 

Waltham, Massachusetts, USA) was used to determine the centers of the characteristic IR 

absorption bands of the chemical adulterants. This functionality was applied to raw spectra and to 

the subtraction spectra of pure milk and water from spiked samples and aqueous solutions, 

respectively.  

5.2.4.2 Preparation of adulterated milk samples 

Bags of homogenized 3% milk were obtained from Cativa - Cooperativa Agroindustrial de 

Londrina (Paraná, Brazil) and batches of raw milk were obtained from farms in the vicinity of the 

city of Londrina (Paraná, Brazil). Adulteration solutions of 1.75% (w/w) urea, 2.75% (w/w) 

trisodium citrate and 1.25% (w/w) ammonium sulfate were prepared and mixed with raw and 

homogenized milk as follows (v/v): 2, 4, 5, 6, 8, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 24, 26, 

28, 29 and 30%. For ammonium sulfate, a solution of 1.25% was used instead of 1.50% because 

the addition of this solution at low percentage maintained the freezing point of a milk sample 

within accepted legal limits. The percentage of added water was 2-30% and the concentration of 

added chemicals were 35-528 mg/dL, 25-373 mg/dL and 56-791 mg/dL for urea, ammonium 

sulfate and trisodium citrate, respectively. Sodium carbonate was added in dry form as follows 

(w/w): 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.7, 0.8%. The sodium 

carbonate was added in dry form because it is mainly used to neutralize milk acidity and not to 
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mask the addition of water to milk. Each set of samples for each adulterant was divided into two 

subsets, a training or calibration set and a validation set. The training or calibration set included 

samples with the following levels of the adulteration solution: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 

24, 26, 28 and 30% , while the validation set included samples with 5, 9, 13, 16, 19, 23, 26 and 

29% adulteration solution. In addition, a mixture was prepared from the three adulteration 

solutions (1:1:1) and it was added to milk samples at 10%, 20% and 30% (v/v). These samples 

were included in the validation set. All milk samples did not contain preservative.  

5.2.4.3 Spectral acquisition  

A portable FTIR spectrometer Cary 630 (Agilent Technologies, Santa Clara, California, USA) was 

used to collect the spectra of adulterated milk samples and genuine ones using two transmission-

based sample introduction methods: a transmission cell with 46-50 µm path length, which was 

used with homogenized milk samples, and the DialPath accessory (Agilent Technologies, Santa 

Clara, California, USA) with a path length set at 50 or 30 µm, which was used with raw milk 

samples. Samples were scanned at room temperature, the spectra were ratioed against water 

background, the resolution was 16 cm-1 and the number of coadded scans was 32 scans. An 

aqueous solution of 0.01% triton was used to clean the transmission cell and the measurement 

surface of the DialPath accessory (Agilent Technologies, Santa Clara, California, USA) between 

samples. Samples were scanned in triplicates and the total number of collected spectra was 1319 

for this study.  

5.2.4.4 Classification models for differentiation of adulterated milk samples 

Two-tier approach was used to differentiate adulterated milk samples from genuine ones. In the 

first step, a classification model was developed to determine whether a milk sample was genuine 

or adulterated. In the second step, another classification model was developed to determine the 

type of chemical adulterant that was added to the sample, if any. MATLAB codes were written to 

calculate differential first derivative (FD) of the spectra with a derivative window of 1, to vector 

normalize (VN) the spectra and to load individual spectra into a matrix. The spectral region that 

was retained for the classification models was 1600-950 cm-1. For each step, classification models 

were developed using raw, VN raw, FD and VN FD spectral datasets.  

For the first step, principal component-based discriminant analysis (PC-DA) algorithms were 

chosen to differentiate genuine milk samples from adulterated ones. Principal component analysis 
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(PCA) was applied to each spectral dataset and principal components (PCs) with eigenvalue ≥ 1 

and that explained ≥ 1% of the variation were considered meaningful and were used as predictors 

for the classification model. The response was either Adulterated (AD) or Not Adulterated (NA). 

Linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA) with or without 

covariance shrinkage were used to develop models for the first step differentiation. Entropy R2, 

sensitivity (Sn) or true positive rate (TPR), specificity (Sp), false positive rate (FPR), accuracy, 

error rate (ER) and receiver operating characteristic (ROC) curve were used to compare the 

performance of the different combinations of spectral pre-treatments and classification algorithms. 

AD was considered the positive outcome while NA was the negative one. JMP Pro 13.2.1 was 

used to develop the classification models for the first step.  

For the second step, soft independent modelling of class analogies (SIMCA) algorithm was used 

to determine the type of chemical adulterant that was present in the adulterated milk sample, if 

any. To implement this algorithm, a separate PCA model was created for milk samples that 

contained specific chemical adulterant after eliminating spectral outliers that were detected by 

Hotelling's T2 distribution at 5% significance level. The Unscrambler X (Camo Software, Oslo, 

Norway) was used to develop the classification model for the second step. All models for both 

steps were evaluated by the validation dataset.  

5.2.4.5 Quantification models for extraneous water and added chemical adulterants 

TQ Analyst Professional Edition 7.2.0.161 (Thermo Electron Corporation, Waltham, 

Massachusetts, USA) was used to build PLS calibration models for extraneous water and added 

chemical adulterants using FTIR spectra of adulterated milk samples. The reference values were 

calculated based on the weights of the prepared samples. The FTIR spectra were either kept raw, 

without applying any mathematical pre-treatment, or they were subjected to the Savitzky–Golay 

first derivative (SG FD) algorithm prior to calibrating the model. The window size was 7 and the 

polynomial order was 3. After the raw spectra were loaded into the software, the Spectrum Outlier 

functionality in TQ Analyst was used to exclude all the spectra that were considered as spectral 

outliers. For quantification of added water, all spectral regions containing information related to 

milk composition were used, which included 3000-2800 cm-1, 1800-1700 cm-1 and 1600-950 cm-

1. For quantification of chemical adulterants, each model went through several iterations of 

refinement. The first iteration was performed on the full FTIR spectrum. The loading spectra that 
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resulted from this iteration were examined and the spectral regions that showed high loadings were 

kept for the subsequent iteration. The spectral regions that will be included in the final model must 

be relevant to the chemical adulterant for which a calibration model is being developed. This 

process was repeated until a stable calibration model was obtained. For each iteration, cross-

validation was performed in TQ Analyst using leave-one-out approach. Several figures of merit 

(FOMs) were used to compare the performance of the calibration models that were developed for 

milk components. These FOMs included: correlation coefficient (r) for calibration and cross-

validation, root mean square error of calibration (RMSEC), root mean square error of prediction 

(RMSEP), root mean square error of cross validation (RMSECV), predicted residual sums of 

squares (PRESS) and number of factors used, bias (if available) and the spectral regions that were 

used for each model. In addition, the models were externally validated using the validation set’s 

samples. The predictions of the analyte of interest were regressed against the reference values and 

the slop and the coefficient of determination (R2) were reported.  
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5.3 Results and Discussion 

5.3.1 Detection of extraneous water and added chemicals by ATR-FTIR  

Table 5-2 summarizes the characteristic IR absorption bands for ammonium sulfate, sodium 

bicarbonate, sodium citrate, urea and milk whey protein in ATR-FTIR spectra of spiked milk 

samples. All these chemicals, except whey protein, show absorption bands in regions not related 

to major milk components (Figure 5-1), which means that ATR-FTIR should theoretically be able 

to detect milk samples that are adulterated by these chemicals. Milk samples spiked with whey 

protein show increased absorption intensity at ~1548 cm-1, which is the Amide II band that is used 

for the quantification of milk protein by IR.  

PCA and HCA were applied to ATR-FTIR spectra of raw and homogenized milk samples that 

were adulterated by the addition of milk whey, extraneous water and aqueous solutions of the 

above-mentioned chemicals. The adulterant levels in milk samples were 0.025%, 0.05%, 0.1%, 

0.25%, 1% and 2%. The spectral region 2800-1800 cm-1 was excluded from the analysis because 

it does not contain information related to the chemical composition of milk and it contains 

information related to environmental interferences, such as 𝐶𝑂2. For homogenized milk, the PCA 

scores plot and the HCA dendrogram show a complete separation between genuine and adulterated 

milk samples in general (Figure 5-2 and Figure 5-3). This observation confirms that ATR-FTIR 

can detect the differences in chemical composition resulting from adulteration in homogenized 

milk. However, the PCA scores plot and the HCA dendrogram of raw milk spectra did not reveal 

a similar clear separation between spectra of adulterated and genuine milk samples (Figure 5-4 

and Figure 5-5).  The reason behind the different clustering trends of raw and homogenized milk 

might be light scattering that is caused by large milk fat globules in raw milk. On the PCA scores 

plot, milk samples with 5% extraneous water created an intersection between the clusters of 

adulterated and genuine milk samples (Figure 5-4). On the HCA dendrogram, two replicates of 

milk sample that contained 5% extraneous water fell in the lower boundary of the arm of genuine 

raw milk, while the rest of the replicates of the 5% added water milk samples fell in the adulterated 

samples arm (Figure 5-5). This observation might suggest that 5% added water may represent a 

cut off limit for detection of added water in raw milk by ATR-FTIR. Such an addition will not be 

a tempting margin of profit for committing fraud and a fraudulent producer might add more than 

10% of extraneous water for this practice to be economically lucrative. Having said that, ATR-
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FTIR can be a viable option for differentiating raw milk samples with added water in a business 

context. On the other hand, milk samples adulterated with milk whey revealed a distinct cluster 

and a distinct arm from the remaining samples on the PCA scores plot and the HCA dendrogram, 

respectively, which can be explained by the increased intensity at the Amide II band (Figure 5-4 

Figure 5-5).  

Raw milk samples with added water and chemical adulterants showed different separation trends 

on the PCA scores plot and the HCA dendrogram depending on whether the adulterant is an 

endogenous component of milk or not. Raw milk samples adulterated with ammonium sulfate, 

sodium bicarbonate and sodium citrate solutions revealed a clear cluster on the PCA scores plot 

(Figure 5-6). On the HCA dendrogram, two replicates of raw milk samples adulterated with 

0.025% sodium citrate fell in the arm of genuine raw milk (Figure 5-7). These two replicates might 

be considered as outliers or 0.025% might be considered as a cut off limit for differentiating milk 

samples adulterated with added water and sodium citrate. On the other hand, milk samples 

adulterated with added water and urea, which is a minor milk component, were more challenging 

to differentiate. Raw milk samples that contained less than 0.25% added urea were intercepting 

with genuine milk samples on the PCA scores plot (Figure 5-6). On the HCA dendrogram, raw 

milk samples that contained less than 0.1% added urea fell in the genuine raw milk arm. This 

observation suggests that ATR-FTIR might be capable of detecting raw milk samples with added 

water and >0.1% added urea or 100 mg/dL added urea. In a business-oriented context, a fraudulent 

user would need to add at least 10% water to achieve lucrative profit margin. The addition of 10% 

added water to one liter of milk will increase its freezing point by 0.054 C [79]. Since the addition 

of 20 mg/L urea will decrease the freezing point of milk by 0.0003 – 0.0004 C [81], 2.7-3.6 g of 

added urea are needed to compensate for the addition of 10% water to one litre of milk. This 

amount represents 0.27-0.36% or 270-360 mg/dL of added urea and it is already above the cut off 

limit for PCA which was 0.25%. Having said that, ATR-FTIR spectroscopy can be a viable option 

for differentiating chemically adulterated samples in a business-oriented context. It must be 

mentioned that these results were obtained after applying the forward search variable selection 

algorithm to the spectral data, which restricted the spectral regions that were used in PCA and 

HCA to 1022-1061, 1065-1084, 1119-1138, 2801-2839, 3657-3676, 3707-3726 and 3977-3996 

cm-1. These spectral regions are related more to the major milk components than the characteristic 

IR bands of the chemical adulterants. This observation suggests that the dilution of major milk 
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components by added water might be the main factor for the previously mentioned clustering 

trends.  

To summarize, ATR-FTIR spectroscopy can be used to detect added water and chemicals to raw 

milk. The minimum detection limit of added water is 5%. Raw milk that contains chemical 

adulterants, which are not chemical components of milk, can be differentiated at levels as low as 

0.025% or 25 mg/dL. For urea, which is a minor milk component, the cut off limit for 

differentiating milk samples with added urea is 0.1% or 100 mg/dL. However, taking into 

consideration the cost of acquiring an ATR-FTIR spectrometer and that it contains moving parts, 

it might not be an appropriate candidate for on-site milk adulteration detection instrument. For this 

reason, a cheaper alternative will be investigated for on-site detection of milk adulteration and 

transmission-based FTIR spectroscopy will be investigated for in-lab detection of milk 

adulteration.  

Table 5-2 Detected absorption bands in cm-1 for different chemical adulterants in milk and water solutions 

Adulterants Water subtraction In water In milk 

Ammonium Sulfate 1093, 1450 1093, 1450 1090, 1450 

Sodium Bicarbonate 1359 1359 1359 

Sodium Citrate 1279, 1389, 1569 1279, 1389, 1569 1279, 1389, 1569 

Urea 1157, 1464 1158, 1465 1156, 1463 

Whey 1548 1548 1548 
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Figure 5-1 ATR-FTIR spectra of homogenized milk spiked with chemical adulterants. Blue ammonium sulfate, purple sodium 

bicarbonate, green sodium citrate, red urea, pink whey 

 

Figure 5-2 Principal component scores showing the separation of genuine (red) and adulterated (blue) homogenized milk 

samples 
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Figure 5-3 HCA dendrogram showing a separate arm for genuine homogenized milk samples 

 

 

Figure 5-4 Principle component scores showing a separate cluster for whey adulterated raw milk samples (green) and 

intercepting genuine raw milk cluster (red) with water adulterated raw milk samples (blue) at the 5% added water level 
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Figure 5-5 HCA dendrogram showing a separate arm for genuine raw milk samples (red-marked) which also contains two 

replicates of the 5% added water sample (blue-marked) 

 

 

Figure 5-6 Principle component scores showing a cluster with raw milk samples and those that have less than 0.25% added urea 
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Figure 5-7 HCA dendrogram showing the arm of raw milk samples (red-marked) with chemically adulterated ones. 0.025% 

added urea (purple-marked), 0.05% added urea (blue-marked) and 0.025% added sodium citrate (brown-marked) 

 

5.3.2 Effect of extraneous water and chemical adulterants on milk freezing point 

depression 

According to the director of PZL Tecnologia, the chemicals that are frequently used to tamper with 

their cryoscope readings of milk freezing point are urea, sodium citrate and ammonium sulfate. 

These chemicals are added to compensate for the increase in milk freezing point as a result of 

adding extraneous water. They also suspected that sodium carbonate may have been used for the 

same purpose in addition to neutralizing milk acidity. For this reason, this study will be focusing 

on detecting raw milk adulterated with added water and these chemicals. It must be noted that milk 

adulteration is done in a way to avoid detection; hence, the exact practice will not be known. We 

had to assume probable scenarios that fraudulent milk producers might be using to adulterate milk. 

The premise of these scenarios is that a fraudulent producer would prepare an adulteration solution 

whose freezing point is greater than -0.500 °C using one of the above-mentioned chemicals with 

a concentration that will keep the freezing point of raw milk within the legally accepted levels 

regardless of the amount of added solution to milk. It might be difficult to control the final freezing 

point of raw milk by adding water and the chemical adulterant separately.  
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The theoretical freezing point depression values were calculated for the proposed adulteration 

solutions, which are aqueous solutions of urea, sodium citrate, ammonium sulfate and sodium 

carbonate with concentrations ranging from 1% to 3%. The following equations were used to 

calculate these values 

𝑎) ∆𝑇 = −
𝑋

𝑀
𝐾, 𝑏) ∆𝑇 = −

𝑋

𝑀
𝑖𝐾 

Where ∆𝑇 is the freezing point depression value of the aqueous solution, X is the concentration of 

ionic or non-ionic substance g/Kg, M molecular weight of the substance, K is the cryoscopic 

constant for water, which equals to 1.853 and i is the number of ions produced when the substance 

is dissolved [90]. For example, the theoretical freezing point depression of 1.75% urea solution is 

-0.539 °C, which is close to the experimentally measured value of -0.534 °C (Table 5-3).  

Table 5-3 Calculated freezing point depression values for aqueous urea solutions with different concentrations 

Urea Solution Concentration % Theoretical Freezing Point Depression  

1.5 -0.463 

1.75 -0.539 

2 -0.617 

2.25 -0.694 

2.5 -0.771 

3 -0.926 

The initial screening of adulteration solutions with different concentrations revealed that solutions 

of urea, sodium citrate, ammonium sulfate and sodium carbonate with concentrations of 1.75%, 

2.75%, 1.5% and 1.25%, respectively, had freezing points between -0.500 °C to -0.540 °C and that 

mixing of raw milk with 10-30% of these solutions maintained the freezing point of raw milk 

within legal limits. In fact, Table 5-4 shows that these solutions can be added to raw milk with a 

percentage up to 40% without noticing any visible changes on milk while maintaining the freezing 

point within legal limits. However, high concentrations of sodium carbonate caused changes in 

milk consistency, which undermined the claim that sodium carbonate is used to compensate the 

change in freezing point of milk resulting from extraneous water. In this case, neutralizing milk 

acidity would be the plausible reason for the presence of sodium carbonate in adulterated milk 

samples that are described by PZL director.  



 

 

Table 5-4 Freezing point of raw milk adulterated with different adulteration solutions.  Freezing point of genuine milk is between -0.520 °C and -0.550 °C (depending on the 

jurisdiction). In Brazil, added water is tolerated up to 2% = F.P. -0.510 °C 

Concentration of adulteration solutions: a 1.75 g urea/dL; b 2.75 g sodium citrate/dL; c 1.5 g ammonium sulfate/dL; d 1.25 g sodium bicarbonate/dL 

Percentage 

of 

adulteration 

solution 

added to raw 

milk 

 

Freezing points (F.P.) and adulterant concentrations (mg/dL milk) of raw milk adulterated with 

Water Urea solution 
a

 Citrate solution 
b

 Sulfate solution 
c

 Carbonate solution 
d

 

F.P. (°C) F.P. (°C) mg/dL F.P. (°C) mg/dL F.P. (°C) mg/dL F.P. (°C) mg/dL 

0 -0.518 -0.553 - -0.599 - -0.519 - -0.651 - 

5 -0.485 -0.545 87.5 -0.590 137.5 -0.520 75 -0.626 62.5 

10 -0.437 -0.545 175 -0.588 275 -0.520 150 -0.606 125 

15 -0.431 -0.545 262.5 -0.585 412.5 -0.519 225 -0.594 187.5 

20 -0.405 -0.543 350 -0.584 550 -0.519 300 -0.589 250 

25 -0.379 -0.540 437.5 -0.579 687.5 -0.516 375 -0.587 312.5 

30 -0.353 -0.539 525 -0.576 825 -0.517 450 -0.593 375 

35 -0.325 -0.539 612.5 -0.570 962.5 -0.515 525 -0.590 437.5 

40 -0.312 -0.540 700 -0.561 1100 -0.512 600 -0.584 500 

45 -0.277 -0.540 787.5 -0.556 1237.5 -0.511 675 -0.577 562.5 

50 -0.247 -0.536 875 -0.546 1375 -0.510 750 -0.570 625 

60 -0.199 -0.534 1050 -0.534 1650 -0.502 900 -0.557 750 

70 -0.147 -0.536 1225 -0.526 1925 -0.501 1050 -0.550 875 

80 -0.100 -0.536 1400 -0.515 2200 -0.502 1200 -0.540 1000 

90 -0.054 -0.536 1575 -0.507 2475 -0.494 1350 -0.531 1125 
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5.3.3 Detection of extraneous water and added chemicals by ATR-IR 

The discussion in section 5.3.1 concluded  that ATR-FTIR spectrometers might not be appropriate 

candidate for the on-site detection of added water and chemical adulterants in milk by IR due to 

the presence of an interferometer that contains moving parts and due to its substantial cost. In 

addition, the previous chapter concluded that linear variable filter (LVF) IR spectrometer can 

predict water and soluble components in milk with acceptable accuracy and it would be an 

appropriate candidate for applications that require on-site analysis of milk, such as the current 

scenario in this study. This type of spectrometers provides enough data points in the mid-IR range 

1500-950 cm-1, which is considered the fingerprint region in mid-IR. For these reasons, this part 

of the study will investigate the capabilities of the LVF spectrometer in the qualitative and 

quantitative detection of watered-down milk samples. In addition to the acronym “LVF”, ATR-IR 

will be used to refer to this type of spectrometer throughout this study.  

5.3.3.1 Mid-IR bands of chemical adulterants 

The subtraction spectra of spiked milk samples and the aqueous solutions of the chemical 

adulterants revealed their characteristic IR absorption bands (Figure 5-8). These bands were 

centered at ~ 1586, 1474 and 1167 cm-1 for urea, at ~ 1567, 1408 and 1289 cm-1 for sodium citrate, 

at ~ 1463 and 1095 cm-1 for ammonium sulfate and at ~ 1377 cm-1 for sodium carbonate (Table 

5-5). This observation suggests that the ATR-IR spectrometer can detect changes in milk 

composition resulting from the addition of these chemicals, which makes it a good candidate for 

an on-site milk adulteration detection instrument. It must be noted that the position of some IR 

absorption bands of the chemical adulterants are shifted when compared with their FTIR 

counterparts (Table 5-5). Nevertheless, we do not expect this issue to undermine the functionality 

of the ATR-IR spectrometer for this application since its spectra will not be used for research 

purposes.  
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Figure 5-8 Subtraction spectra of homogenized milk samples spiked with sodium carbonate (blue), sodium citrate (purple), urea 

(green), ammonium sulfate (red). The spectrum of genuine milk was subtracted from the spectra of the spiked milk samples.  

 

Table 5-5 Comparison of characteristic IR absorbance bands of chemical adulterants in milk and water observed in spectra 

collected on ATR-IR (LVF) and ATR-FTIR spectrometers. Spectra of genuine milk and pure water were subtracted from spectra 

of spike milk samples and aqueous solutions of these adulterants.  

Adulterant In Water - LVF  In Water - FTIR In Milk - LVF In Milk - FTIR 

Urea 1166, 1477, 1581 1157, 1464 1167, 1474, 1586  1156, 1463 

Sodium citrate 1288, 1398, 1563 1279, 1389 1289, 1408, 1567  1278, 1390, 1576 

Sodium carbonate  1388 1359 1377 1359 

Ammonium sulfate 1098, 1457 1093, 1450 1095, 1463 1090, 1450 
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5.3.3.2 Spectral analysis and added water quantification model 

Principal component score plots show two clear clusters, one for genuine milk samples and another 

for the adulterated ones when PCA was applied to the raw full spectral range of the collected 

spectra. However, a minor intersection is observed between genuine milk samples and those that 

contained 5% adulteration solution. This intersecting region was more evident with raw milk 

samples. No specific trend was observed in the intersection region that is related to the identity of 

the chemical adulterant. The separation between the two clusters was enhanced when PCA was 

restricted to the spectral region 1100-1000 cm-1 (Figure 5-9 and Figure 5-10), which can be 

explained by the dilution effect that added water had on milk lactose. For homogenized milk, the 

separation between the two clusters was complete; on the other hand, the two clusters were 

adjacent to each other for raw milk. It must be noted that the number of spectral mathematical 

treatments was kept at a minimum to avoid creating mathematical artifacts, which will 

overestimate the capabilities of the LVF spectrometer. In addition, the freezing point values of 

some authentic milk samples were already low. Comparing the Brazilian legislation [91] with the 

standard procedure for determining added water by measuring milk freezing point [79], we notice 

that the accepted Brazilian freezing point for milk is below its counterpart in the standard 

procedure by 0.02 C. This difference indicates a 4-5% added water in milk. Some raw milk 

samples had a freezing point below -0.512 C, which indicates 2% added water according to 

Brazilian legislations.  

The spectra of the adulterated milk samples that were collected on the ATR-IR spectrometer were 

used to develop PLS models to predict the percentage of added water. In addition to added water, 

these samples contained one, two or three chemical adulterants to compensate for the change in 

the freezing point of milk. The entire spectral region was used since the addition of water will 

dilute all milk components, which is a source of variation that can be captured by the PLS 

algorithm. All models gave excellent correlation coefficients (i.e., r = 0.99), which indicates that 

the presence of the chemical adulterants did not significantly interfere with the modeling capability 

of the PLS algorithm for added water (Table 5-6 and Table 5-7). SG smoothing and derivatization 

did not improve the predictive capability of the PLS model. In general, homogenized milk gave 

lower values for the measurements of error; nevertheless, models developed for raw milk samples 

revealed excellent predictive performance. The model that gave the most consistent FOMs was the 

one that used raw spectra. The values of RMSEC, RMSEP and RMSECV were 1.41%, 1.85% and 
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1.85%, respectively. All these values of the measurements of error are less than 2%, which is the 

tolerated level of added water in milk according to the Brazilian legislation. It must be noted that 

cryoscopy can detect a minimum of 3% added water [78]. In addition, these models were 

developed using the percentage of added water as the reference values because the actual water 

content in these samples was not known. The accuracy of the added water model can be enhanced 

by accurately determining the water content in the calibration sample set. In light of these 

promising results, the German manufacturer of the LVF ATR-IR spectrometer produced a 

prototype of a lab-in-box milk adulteration detector (Figure 5-11). The spectrometer was 

controlled by a tablet and it was connected to a portable printer that produced printouts of the 

analysis results.  

To summarize, the LVF spectrometer has the potential to capture chemical information related to 

the authenticity of milk samples; hence, the LVF spectrometer can be used for on-site detection of 

extraneous water and chemical adulterants in milk using a proper classification algorithm. In 

addition, its spectra can be used to develop PLS model to predict the percentage of extraneous 

water in milk regardless of the identity of the chemical adulterant that might have been added to 

milk to compensate for the change in the freezing point of milk.  

 

Figure 5-9 Principal component scores of homogenized genuine milk samples and adulterated milk samples with solutions of 

urea, sodium citrate, sodium carbonate, ammonium sulfate and  different combinations of these solutions – genuine milk is in red 
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Figure 5-10 Principal component scores of raw genuine milk samples and adulterated milk samples with solutions of urea, 

sodium citrate, sodium carbonate, ammonium sulfate and  different combinations of these solutions – genuine milk is in red 

Table 5-6 Calibration FOMs of the added water PLS prediction models. In addition to added water, milk samples contained one, 

two or three chemical adulterants to compensate for the change in freezing point.  

Milk Spectrum Region Corr. Coeff. RMSEC % RMSEP % Factors 

Homogenized Raw 1770-980 0.99 1.18 1.52 3 

Raw Raw 1770-980 0.99 1.41 1.85 7 

Homogenized Raw with SG smoothing 1770-980 0.99 1.18 1.52 3 

Raw Raw with SG smoothing 1770-980 0.99 1.56 1.93 7 

Homogenized SG FD 1770-980 0.99 1.04 1.91 4 

Raw SG FD 1770-980 0.99 1.84 2.02 3 

 

Table 5-7 Cross-validation FOMs of the added water PLS prediction models. In addition to added water, milk samples contained 

one, two or three chemical adulterants to compensate for the change in freezing point. 

Milk Spectrum Corr. Coeff.  RMSECV % Factors 

Homogenized Raw 0.99 1.23 3 

Raw Raw 0.99 1.85 7 

Homogenized Raw with SG smoothing 0.99 1.21 3 

Raw Raw with SG smoothing 0.99 2.05 7 

Homogenized SG FD 0.99 1.54 4 

Raw SG FD 0.99 2.32 3 
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Figure 5-11 Lab-in-Box milk adulteration detector built using LVF ATR-IR spectrometer 
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5.3.4 Detection of extraneous water and added chemicals by transmission based 

FTIR 

5.3.4.1 Mid-IR bands of chemical adulterants 

Table 5-8 summarizes the centers of the characteristic IR absorption bands that are observed in the 

aqueous solutions and milk samples spiked with urea, trisodium citrate, ammonium sulfate and 

sodium carbonate. These bands are not overlapping with absorption bands of major milk 

components except for 1557 cm-1 and 1092 cm-1 that are observed in milk samples spiked with 

citrate and sulfate and that overlaps with the Amide II band of proteins and lactose absorption 

band, respectively. This observation suggests that FTIR spectra of milk samples adulterated with 

these chemicals should contain additional features in comparison to genuine milk samples that will 

facilitate differentiation between genuine and adulterated milk samples. In addition, these 

absorption bands will be used to verify the performance of qualitative and quantitative models that 

will be used to detect added water and chemical adulterants in milk. For example, if the loading 

spectra of a PCA model show increased loadings in spectral regions that contain these centers then 

the model is capturing the correct chemical information and the model is not overfitting the data.   

Table 5-8 Centers of characteristic IR absorption bands of four chemicals in aqueous solutions and in milk that are used to mask 

the addition of water or to neutralize milk acidity.  

Adulterant Aqueous solution cm-1 Milk cm-1 

Urea 1466, 1158 1465, 1158 

Citrate 1554, 1391, 1280 1557, 1392, 1279 

Sulfate 1455, 1093 1455, 1092 

Carbonate 1394 1377 

Mix of 4 adulterants - 1462, 1394, 1279, 1097 

 

5.3.4.2 Classification models for differentiation of adulterated milk samples 

In this part of the study, we used transmission-based sample introduction methods because the 

official FTIR milk analysis method relies on transmission cell. However, transmission cell is only 

compatible with homogenized milk. For on-site detection of milk adulteration, homogenization 

might not be an available option. For this reason, we tested another transmission accessory that is 

offered by Agilent, which is the DialPath (Agilent Technologies, Santa Clara, California, USA). 
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It consists of two parts, the lower one is a fixed flat surface that contains a ZnSe window. The 

upper one is a rotating part that contains 3 ZnSe windows. After placing a droplet of milk on the 

window of the flat surface, the upper part is rotated and one of its windows faces the window of 

the lower part at a fixed distance that constitutes the optical path length. The IR beam will pass 

through the sample from the upper window to the lower one and then hits the detector in the 

spectrometer. The upper part can be rotated manually to create a 30, 50 or 100 µm path length. In 

addition of being a transmission-based accessory, the advantages of this sample introduction 

method are similar to ATR, mainly, it does not require pumping accessory, raw milk does not 

cause any clogging issues and it is easy to clean. These features make this accessory a good 

candidate for on-site raw milk analysis. In this study, the transmission cell was used for the 

homogenized milk and the DialPath accessory (Agilent Technologies, Santa Clara, California, 

USA) was used for raw milk.  

In addition, a two-tier approach was used to differentiate adulterated milk samples from genuine 

ones. In the first step, a classification model was developed to determine whether a milk sample 

was genuine or adulterated. In the second step, another classification model was developed to 

determine the type of chemical adulterant that was added to the sample, if any. Unlike  what has 

been reported in the literature [86-88], we kept the crucial step of determining the authenticity of 

the milk sample within the scope of a binary classification model. Increasing the number of classes 

or groups in one classification model usually reduces its stability. The spectral range that was used 

to develop the classification models was limited to 1600-950 cm-1 because this region contains the 

characteristic IR absorption bands of milk proteins, lactose and the chemical adulterants. Spectral 

regions associated with milk fat were excluded due to milk fat variability, which might be an 

unnecessary confounding factor in this application.  

For the first step, a binary classification algorithm that gives an answer to a closed question was 

needed. In this case, the algorithm must classify the milk sample as either Adulterated (AD) or Not 

Adulterated (NA). There are several algorithms that have been reported in the literature for 

developing multivariate classification models, such as discriminant analysis (DA), partial least 

squares discriminant analysis (PLS-DA), support vector machines (SVM) and artificial neural 

networks (ANN) [92]. SVM and ANN are applicable to situations where the relationship between 

class membership and the predictors (i.e., the spectra) is not linear. In the case of milk adulteration, 
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class membership will be the result of changes in concentrations of milk components that result 

from the dilution effect of added water or increased concentration of added chemical adulterants. 

According to Beer’s law, the relationship between concentration and absorbance is a linear one, 

which eliminate the need for SVM and ANN for this application. PLS-DA is a powerful 

multivariate classification algorithm that maximizes the separation of observations according to 

their class membership to achieve maximum class separation. As a result, any sources of variation 

in milk composition that are not related to milk authenticity might contribute to class separation, 

which makes this algorithm prone to overfitting. DA represents a more realistic option in terms of 

modeling power; however, DA requires orthogonal predictors whose number is less than the 

number of observations used to create the model, which is not necessary the case with spectral 

data. To overcome these issues, PCA is applied to the spectral data and PC scores can be used as 

predictors for DA. PCA decomposes the variance in the dataset into a number of new variables 

that is equal to the number of observed variables (i.e., wavenumbers) called principle components 

(PCs) [93]. These PCs are orthogonal to each other, which means that the correlation is 0 between 

any two PCs, and they describe the same variance structure as the original variables in the dataset 

(i.e., the spectra). Each PC is a linear combination of optimally weighted observed variables (i.e., 

wavenumbers). However, only the few first PCs account for a significant portion of the variability 

in the original dataset. In this case, PCs with eigenvalue ≥ 1 and that explained 1% of the variation 

or more were included in the model; hence, PCA reduced the number of predictors and eliminated 

collinearity among them.  

DA employs different discrimination methods. In this study, LDA and QDA were considered for 

developing classification models for the first step. LDA uses the same covariance matrix for all 

classes, while QDA uses a different covariance matrix for each class [94]. In addition, DA can 

employ covariance shrinkage that improves the stability of underrepresented classes and reduces 

their prediction variance. This option is recommended when some classes have a small number of 

observations, such as the NA class in comparison to the AD class [95].  

Table 5-11 and table 5-12 summarize the performance FOMs of milk authenticity classification 

models that were developed using different combinations of sample introduction methods, milk 

type (i.e., raw and homogenized), spectral pre-treatments and discrimination methods of DA. Table 

5-11 and Table 5-12 summarizes FOMs of classification models developed using FTIR spectra 
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collected by a transmission cell and the DialPath accessory (Agilent Technologies, Santa Clara, 

California, USA), respectively. Entropy R2 is a measure of fit that takes values between 0 and 1 

where larger values indicate better fit and 1 indicates perfect prediction power. These values can 

be negative. Table 5-11 and table 5-12 show that PCA-QDA classification models with no 

covariance shrinkage that were developed using VN raw spectral data of homogenized and raw 

milk and FD spectral data of raw milk yielded the best fit. Entropy R2 values were 0.99 and 0.77 

for homogenized and raw milk, respectively, for the training set. Accuracy is the simplest measure 

of the quality of a classification model and it represents the percentage of correctly assigned 

observations. Error rate (ER) is the complementary index for accuracy and it is the percentage of 

wrongly assigned observations [92]. For homogenized milk, the PCA-QDA model with no 

covariance shrinkage developed using VN raw spectral data gave the best accuracy and error rate, 

which were 100% and 0%, respectively, for the training and the validation sets. For raw milk, the 

PCA-QDA model with no covariance shrinkage developed using FD spectral data gave the best 

accuracy and error rate. The accuracy values were 98.84% and 100% and the error rate values were 

1.16% and 0% for the training and validation sets, respectively.  

In addition, there are indicators that are related to the classification quality of a single class and 

that can be calculated from the confusion matrix that is produced by the DA algorithm (Table 5-9). 

In this scenario, the adulterated samples (AD) and genuine milk samples (NA) were considered 

the positive and the negative outcomes, respectively. Sensitivity (Sn) or true positive rate (TPR) 

describes the model ability to correctly recognize objects belonging to a specific class (Equation 

5-1), which is AD in this case. If all observations are correctly assigned to a specific class, then 

Sn=1 [92]. On the other hand, specificity (Sp) characterizes the ability of a specific class to reject 

observations belonging to all other classes (Equation 5-2). If observations not belonging to a 

specific class are never assigned to that class then Sp=1 [92]. False positive rate (FPR) is a 

complementary indicator for specificity (Equation 5-3). These indicators can be presented in the 

receiver operating characteristic (i.e., ROC) curve, which plots TPR against FPR on y and x axes, 

respectively, for a specific class in a classification model (Figure 5-14). The calculated area under 

the curve (AUC) summarizes the predictive capability of the model for a specific class [92]. If the 

ROC curve is higher than the diagonal line, then it will perform better than a random classifier and 

the best performance is obtained when the upper left corner is reached by the ROC curve.  
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Table 5-9 Confusion matrix of PCA-QDA classification model with no covariance shrinkage developed using VN raw spectral 

data of homogenized milk samples. AD and NA are the positive and negative outcomes, respectively.  

Actual Predicted 

Milk Type AD (+) NA (-) 

AD (+) 230 (TP) 0 (FN) 

NA (-) 0 (FP) 12 (TN) 

 

Equation 5-1 

𝑆𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Equation 5-2 

𝑆𝑝 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 

Equation 5-3 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
= 1 − 𝑆𝑝 

So far, three models have yielded good fit and high accuracy. These models are: PCA-QDA with 

no covariance shrinkage developed using VN raw spectral data of homogenized milk (M1), PCA-

QDA with no covariance shrinkage developed using VN raw spectral data of raw milk (M2) and 

PCA-QDA with no covariance shrinkage developed using FD spectral data of raw milk (M3). 

Among these, M1 and M3 yielded perfect specificity for differentiation of adulterated milk 

samples for the training and the validation set. For M2, specificity values of the AD class were 1 

and 0.80 for the training and the validation sets, respectively. On the other hand, sensitivity values 

of the AD class were 1, 0.98 and 0.99 for M1, M2 and M3, respectively, for the training sets and 

the AUC values for the AD class were 1, 0.9971 and 1 for M1, M2 and M3, respectively. We can 

conclude from these observations that PCA-QDA with no covariance shrinkage is an effective 

algorithm to differentiate adulterated milk samples from genuine ones with high sensitivity and 

specificity. First derivative can be applied to the spectral data of raw milk to improve the prediction 

power of this model. Running forward stepwise feature selection in DA revealed that PC3 (P < 

0.0001), PC1 (P < 0.0001) and PC2 (P < 0.0001) were the most significant predictors for M1, M2 

and M3, respectively. Inspection of the loading spectra of these principal components revealed the 



141 

 

influential spectral features that are mainly responsible for the discrimination power of these 

models. For example, PC3 loading spectrum revealed increased loadings in the regions 1527-1246 

cm-1 and 1155-1080 cm-1 that include the characteristic IR absorption bands of the chemical 

adulterants and decreased loadings in the regions 1600-1527 cm-1 and 1080-1000 cm-1, which 

include the Amide II and lactose absorption regions, respectively (Figure 5-12). This loading 

spectrum reflects the fact that chemical adulterants’ concentrations are increasing, while milk 

protein and lactose concentrations are decreasing as a result of water addition. We can conclude 

that PCA was successful in decomposing the variation in the spectral dataset and isolating the 

spectral fingerprint that reflects the changes in milk chemical composition resulting from the 

adulteration process. This successful decomposition helped the DA algorithm capture the correct 

chemical information related to the status of the milk sample; hence, avoid overfitting.   

The second step of this classification process will be applied to adulterated samples, in which the 

sample will be assigned to a group that corresponds to the chemical adulterant that might be present 

in it. For this purpose, soft independent modelling of class analogies (SIMCA) algorithm was 

considered the optimum choice because the predictions produced by this algorithm are not 

restricted to one class. SIMCA has already been reported in the literature as an effective algorithm 

to classify adulterated samples into groups according to the chemical adulterant [86, 87, 96]. In 

SIMCA, a PCA model is developed independently for each class, then an unknown sample is 

projected in each subspace and a distance from the class model is calculated. The sample 

assignment is determined by comparing its distances from the classes’ PCA models. As a result, 

an unknown sample might be assigned to one class, multiple classes or none (Table 5-13). For 

example, spectrum 26 from the validation set was not assigned to any class; on the other hand, 

spectra 17, 18, 29, 30, 41, 42 and 43 were assigned to two classes, the correct chemical adulterant 

and the mix class. For homogenized milk, five classes were included in the SIMCA model, which 

are carbonate, citrate, sulfate, urea and mix. The accuracy for unique classification considered only 

samples that were assigned to one group that corresponded to the correct adulterant. The accuracy 

for correct classification considered samples that were correctly assigned to the chemical 

adulterant group regardless of whether the sample was also assigned to the mix group or not. Since 

the mix contained all chemical adulterants, this situation was considered as a correct classification. 

For raw milk samples, the mix group was eliminated; hence, only samples assigned to their 

corresponding chemical adulterant group were considered correctly classified. Table 5-10 reveals 
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that raw spectral data yielded good performance with homogenized milk, while first derivative 

enhanced the accuracy of SIMCA predictions for raw milk samples.  

 
Figure 5-12 PC3 loading spectrum isolated from the VN raw spectral data of homogenized milk samples collected by a 

transmission cell 

Table 5-10 Classification accuracy of SIMCA models developed using spectral data of raw and homogenized adulterated milk 

samples to classify adulterated samples according to the chemical adulterant that they contain. TC: transmission cell, DP: dial 

path, FD: first derivative, VN: vector normalized.  

Accessory Spectra Accuracy % for unique classification Accuracy % for correct classification 

TC 

Raw 81.40 97.67 

VN Raw 81.40 97.67 

FD 25.58 97.67 

VN FD 25.58 97.67 

DP 

Raw - 81.63 

VN Raw - 79.59 

FD - 89.80 

VN FD - 89.80 

 

5.3.4.3 Quantification models for extraneous water and added chemical adulterants 

PLS models that were developed to quantify chemical adulterants used spectral regions that 

showed high loadings in the PLS loading spectra during the first iteration of model development. 

These regions corresponded to the characteristic IR absorption bands of the analyte of interest 

(Table 5-8), which indicates that the models were capturing information related to the analyte of 
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interest and they were not overfitting the data. For added water prediction models, region 1,600-

950 cm-1 was mostly used. In general, water and chemical adulterants prediction models relied on 

raw and FD spectral data, respectively. FD derivative helps in resolving overlapping bands and 

enhance small absorption bands on shoulders of bigger ones; hence, exposing more details in the 

spectral data [29].  

All PLS models that are developed to predict added water in milk revealed excellent prediction 

capabilities. These models were developed using FTIR spectra of adulterated milk samples that 

contained added water and different added chemical adulterants, which means that the presence of 

the chemical adulterant did not undermine the predictive capabilities of the added water PLS 

models. The prediction error (i.e., RMSEP) values were 0.28%, 0.55%, 0.33% and 0.39 % for 

homogenized milk scanned with a transmission cell (Table 5-14 and Table 5-15), for homogenized 

milk scanned with the DialPaht set at 50 µm path length (Table 5-16 and Table 5-17), for 

homogenized milk scanned with the DialPaht set at 30 µm path length (Table 5-16 and Table 5-17) 

and for raw milk scanned with the DialPaht set at 30 µm path length (Table 5-18 and Table 5-19), 

respectively. The transmission cell yielded the lowest prediction error, which might be explained 

by the fact that the windows of the transmission cell are CaF2, while the transmission window of 

the DialPath accessory (Agilent Technologies, Santa Clara, California, USA) are ZnSe, which has 

a refractive index higher than that of milk; hence, light refraction might be contributing to the 

prediction error. However, the difference between the prediction error of the models of the 

transmission cell and the DialPaht accessory becomes minimal when the path length of the 

DialPaht is set at 30 µm. This reduced path length yielded similar prediction errors for models 

developed using spectra of homogenized and raw adulterated milk samples.  

For the added chemical adulterants, a similar trend has been observed for the prediction errors of 

the PLS models of these adulterants. Models developed with spectra of homogenized milk scanned 

with the transmission cell yielded the least prediction error. This error increased when the DialPath 

(Agilent Technologies, Santa Clara, California, USA) was set at 50 µm path length with 

homogenized milk and it was similar or close to that of the transmission cell when the path length 

was set at 30 µm with homogenized milk. A minor increase in the prediction error was observed 

when the DialPath (Agilent Technologies, Santa Clara, California, USA) was set at 30 µm with 

raw milk.  
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For urea, the prediction error values were 7.57 mg/dL, 8.62 mg/dL, 2.95 mg/dL and 6.73 mg/dL 

for homogenized milk scanned with a transmission cell (Table 5-14 and Table 5-15), for 

homogenized milk scanned with the DialPaht set at 50 µm path length (Table 5-16 and Table 5-17), 

for homogenized milk scanned with the DialPaht set at 30 µm path length (Table 5-16 and Table 

5-17) and for raw milk scanned with the DialPaht set at 30 µm path length (Table 5-18 and Table 

5-19), respectively. All these prediction errors are lower than the prediction error reported by 

Santos et al. (2013), which was 0.232 g/L (i.e., 23.2 mg/dL) for urea in raw milk obtained with 

Cary 630 (Agilent Technologies, Santa Clara, California, USA) FTIR spectrometer equipped with 

DialPaht accessory set at 30 µm path length.  

For citrate, the prediction error values were 6.32 mg/dL, 9.63 mg/dL, 5.43 mg/dL and 10.3 mg/dL 

for homogenized milk scanned with a transmission cell (Table 5-14 and Table 5-15), for 

homogenized milk scanned with the DialPaht set at 50 µm path length (Table 5-16 and Table 5-17), 

for homogenized milk scanned with the DialPaht set at 30 µm path length (Table 5-16 and Table 

5-17) and for raw milk scanned with the DialPaht set at 30 µm path length (Table 5-18 and Table 

5-19), respectively. 

For sulfate, the prediction error values were 2.14 mg/dL, 2.79 mg/dL, 1.72 mg/dL and 4.50 mg/dL 

for homogenized milk scanned with a transmission cell (Table 5-14 and Table 5-15), for 

homogenized milk scanned with the DialPaht set at 50 µm path length (Table 5-16 and Table 5-17), 

for homogenized milk scanned with the DialPaht set at 30 µm path length (Table 5-16 and Table 

5-17) and for raw milk scanned with the DialPaht set at 30 µm path length (Table 5-18 and Table 

5-19), respectively. 

For carbonate, the prediction error values were 0.009%, 0.004%, 0.005% and 0.014% for 

homogenized milk scanned with a transmission cell (Table 5-14 and Table 5-15), for homogenized 

milk scanned with the DialPaht set at 50 µm path length (Table 5-16 and Table 5-17), for 

homogenized milk scanned with the DialPaht set at 30 µm path length (Table 5-16 and Table 5-17) 

and for raw milk scanned with the DialPaht set at 30 µm path length (Table 5-18 and Table 5-19), 

respectively. It must be mentioned that the predictions of carbonate were not affected by the 

presence of added water or other chemical adulterants; on the other hand, the predictions of urea, 

citrate and sulfate were not accurate when more than one chemical adulterant was present in the 

milk sample.  
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To summarize, homogenizing milk and using a transmission cell as a sample introduction method 

gave the best performance for the classification and quantitative models employed to detect milk 

adulteration by the addition of water and chemical adulterants. Nevertheless, the use of the 

DialPath sample introduction accessory (Agilent Technologies, Santa Clara, California, USA) 

with raw milk gave satisfactory results especially when the path length was set at 30 µm. As a 

result, a decision-making workflow has been proposed to differentiate milk adulterated with added 

water and chemical adulterants from genuine one (Figure 5-13). After collecting the FTIR 

spectrum of an unknown sample, a DA classification model will determine the authenticity of the 

sample. If the sample is adulterated, then a SIMCA model will determine the chemical adulterant 

that is present in the sample, if any. If the chemical adulterant is carbonate, then most probably the 

sample does not contain added water and carbonate has been added to neutralize milk acidity, 

which means only carbonate will be quantified. If the milk sample contains urea, citrate or sulfate 

then added water and the chemical adulterant will be quantified. If multiple chemical adulterants 

are present, then only added water will be quantified. 

  



146 

 

 

Figure 5-13 Decision-making workflow for authenticating milk sample freezing point depression by transmission based FTIR 

spectroscopy 
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5.4 Conclusion  

In this study, multiple combinations of IR spectrometers, sample introduction methods and 

chemometric algorithms were investigated to detect the addition of water and chemical adulterants 

to milk. ATR-FTIR spectroscopy combined with PCA and HCA can be used to detect added water 

and chemicals to raw milk. The minimum detection limit of added water is 5%. Raw milk that 

contains chemical adulterants, such as ammonium sulfate, sodium bicarbonate and sodium citrate, 

can be differentiated at levels as low as 0.025% or 25 mg/dL. For urea, which is a minor milk 

component, the cut off limit for differentiating milk samples with added urea is 0.1% or 100 

mg/dL.  

A cheaper alternative was investigated for on-site detection of milk adulteration, which was LVF 

spectrometer equipped with ZnSe ATR crystal. This spectrometer has the potential to capture 

chemical information related to the authenticity of milk samples. PCA revealed that the cut off 

limit for detecting raw milk samples with adulteration solutions was 5%. In addition, its spectra 

can be used to develop PLS model to predict the percentage of extraneous water in milk regardless 

of the identity of the chemical adulterant that might have been added to milk to compensate for 

the change in the freezing point. Using the raw spectra of this spectrometer gave a model with the 

most consistent FOMs. The values of RMSEC, RMSEP and RMSECV were 1.41%, 1.85% and 

1.85%, respectively.  

Since the official FTIR milk analysis method is based on transmission, a portable FTIR 

spectrometer with a transmission cell and the DialPath (Agilent Technologies, Santa Clara, 

California, USA) accessory were evaluated for this application. Homogenizing milk and using a 

transmission cell as a sample introduction method gave the best performance for the classification 

and quantitative models employed to detect milk adulteration by the addition of water and 

chemical adulterants. Nevertheless, the use of the DialPath sample introduction accessory (Agilent 

Technologies, Santa Clara, California, USA) with raw milk gave satisfactory results especially 

when the path length was set at 30 µm. For raw milk, PCA-QDA classification algorithm with no 

covariance shrinkage developed using FD spectral data collected with the DialPath accessory 

(Agilent Technologies, Santa Clara, California, USA) gave the best accuracy and error rate. The 

accuracy values were 98.84% and 100% and the error rate values were 1.16% and 0% for the 

training and validation sets, respectively. This model yielded perfect specificity for differentiation 
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of adulterated milk samples for the training and the validation set. Sensitivity was 0.99 for the 

training set. PCA was successful in decomposing the variation in the spectral dataset and isolating 

the spectral fingerprint that reflected the changes in milk chemical composition resulting from the 

adulteration process. This successful decomposition helped the DA algorithm capture the correct 

chemical information related to the status of the milk sample; hence, avoiding overfitting. SIMCA 

algorithm successfully classified adulterated samples into groups according to the chemical 

adulterant present in these samples. The accuracy for the raw milk SIMCA classification model 

was 89.90% when FD was used. Quantitatively, PLS prediction errors values were 0.39 %, 6.73 

mg/dL, 10.3 mg/dL, 4.50 mg/dL and 0.014% for water, urea, citrate, ammonium sulfate and 

carbonate, respectively, for raw milk scanned with the DialPath accessory (Agilent Technologies, 

Santa Clara, California, USA) set at 30 µm.  
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Table 5-11 Comparison of performance FOM of classification models for differentiating genuine milk samples from those 

containing extraneous water and chemical adulterants using milk FTIR spectra collected by a transmission cell. Sn: sensitivity, 

TPR: true positive rate, Sp: specificity, FPR: false positive rate, ER: error rate, AUC: area under the curve, AD: adulterated, 

NA: not adulterated. FD: first derivative, VN: vector normalized, T: training dataset, V: validation dataset. 

Transmission cell 

Spectra Algorithm 
Shrink 

Covariance 
Dataset 

Entropy 

R2 

Sn 

(TPR) 
Sp FPR Accuracy ER 

AUC 

AD 

AUC 

NA 

Raw 

PCA-LDA No T -0.73 0.80 1.00 0.00 81.41 18.60 
0.9761 0.9761 

PCA-LDA No V -0.95 0.79 1.00 0.00 80.43 19.57 

PCA-LDA Yes T -0.71 0.79 1.00 0.00 80.17 19.83 
0.9822 0.9822 

PCA-LDA Yes V -0.83 0.79 1.00 0.00 80.43 19.57 

PCA-QDA No T 0.99 1.00 1.00 0.00 100.00 0.00 
1.0000 1.0000 

PCA-QDA No V 1.00 1.00 1.00 0.00 100.00 0.00 

PCA-QDA Yes T 0.57 0.98 1.00 0.00 98.35 1.65 
1.0000 1.0000 

PCA-QDA Yes V 1.00 1.00 1.00 0.00 100.00 0.00 

Raw 

VN 

PCA-LDA No T -0.73 0.80 1.00 0.00 81.41 18.60 
0.9761 0.9761 

PCA-LDA No V -0.95 0.79 1.00 0.00 80.43 19.57 

PCA-LDA Yes T -0.71 0.79 1.00 0.00 80.17 19.83 
0.9822 0.9822 

PCA-LDA Yes V -0.83 0.79 1.00 0.00 80.43 19.57 

PCA-QDA No T 0.99 1.00 1.00 0.00 100.00 0.00 
1.0000 1.0000 

PCA-QDA No V 1.00 1.00 1.00 0.00 100.00 0.00 

PCA-QDA Yes T 0.57 0.98 1.00 0.00 98.35 1.65 
1.0000 1.0000 

PCA-QDA Yes V 1.00 1.00 1.00 0.00 100.00 0.00 

FD 

PCA-LDA No T -0.81 0.80 1.00 0.00 80.58 19.42 
0.9773 0.9773 

PCA-LDA No V -0.71 0.81 1.00 0.00 82.61 17.39 

PCA-LDA Yes T -0.81 0.80 1.00 0.00 80.58 19.42 
0.9773 0.9773 

PCA-LDA Yes V -0.71 0.81 1.00 0.00 82.61 17.39 

PCA-QDA No T 1.00 1.00 1.00 0.00 100.00 0.00 
1.0000 1.0000 

PCA-QDA No V 0.60 1.00 0.67 0.33 97.83 2.17 

PCA-QDA Yes T 0.88 1.00 1.00 0.00 99.59 0.41 
1.0000 1.0000 

PCA-QDA Yes V 1.00 1.00 1.00 0.00 100.00 0.00 

FD VN 

PCA-LDA No T -0.82 0.80 1.00 0.00 80.58 19.42 
0.9773 0.9773 

PCA-LDA No V -0.73 0.81 1.00 0.00 82.61 17.39 

PCA-LDA Yes T -0.81 0.80 1.00 0.00 80.58 19.42 
0.9773 0.9773 

PCA-LDA Yes V -0.71 0.81 1.00 0.00 82.61 17.39 

PCA-QDA No T 1.00 1.00 1.00 0.00 100.00 0.00 
1.0000 1.0000 

PCA-QDA No V 0.60 1.00 0.67 0.33 97.83 2.17 

PCA-QDA Yes T 0.88 1.00 1.00 0.00 99.59 0.41 
1.0000 1.0000 

PCA-QDA Yes V 1.00 1.00 1.00 0.00 100.00 0.00 

 

  



150 

 

Table 5-12 Comparison of performance FOM of classification models for differentiating genuine milk samples from those 

containing extraneous water and chemical adulterants using milk FTIR spectra collected by the DialPath accessory 30µm. Sn: 

sensitivity, TPR: true positive rate, Sp: specificity, FPR: false positive rate, ER: error rate, AUC: area under the curve, AD: 

adulterated, NA: not adulterated. FD: first derivative, VN: vector normalized, T: training dataset, V: validation dataset. 

DialPath accessory 

Spectra Algorithm 
Shrink 

Covariance 
Dataset 

Entropy 

R2 

Sn 

(TPR) 
Sp FPR Accuracy ER 

AUC -

AD 

AUC -

NA 

Raw 

PCA-LDA No T 0.48 0.99 0.69 0.31 96.88 3.13 
0.9809 0.9809 

PCA-LDA No V 0.42 0.92 0.40 0.60 85.71 14.29 

PCA-LDA Yes T 0.57 0.99 0.69 0.31 96.88 3.13 
0.9802 0.9802 

PCA-LDA Yes V 0.49 0.92 0.40 0.60 85.71 14.29 

PCA-QDA No T 0.44 0.96 1.00 0.00 96.09 3.91 
0.9998 0.9998 

PCA-QDA No V 1.00 1.00 1.00 0.00 100.00 0.00 

PCA-QDA Yes T -0.42 0.89 1.00 0.00 89.84 10.16 
0.9971 0.9971 

PCA-QDA Yes V -0.01 0.86 1.00 0.00 88.10 11.90 

Raw 

VN 

PCA-LDA No T 0.07 0.98 0.63 0.38 95.37 4.63 
0.9655 0.9655 

PCA-LDA No V 0.32 0.92 0.40 0.60 85.71 14.29 

PCA-LDA Yes T 0.20 0.98 0.63 0.38 95.37 4.63 
0.9636 0.9636 

PCA-LDA Yes V 0.37 0.92 0.40 0.60 85.71 14.29 

PCA-QDA No T 0.77 0.98 1.00 0.00 98.46 1.54 
0.9971 0.9971 

PCA-QDA No V 0.64 1.00 0.80 0.20 97.62 2.38 

PCA-QDA Yes T -0.51 0.87 1.00 0.00 88.03 11.97 
1.0000 1.0000 

PCA-QDA Yes V 0.52 0.95 1.00 0.00 95.24 4.76 

FD 

PCA-LDA No T 0.34 0.99 0.69 0.31 96.91 3.09 
0.9869 0.9869 

PCA-LDA No V 0.41 0.92 0.80 0.20 90.48 9.52 

PCA-LDA Yes T 0.41 0.99 0.69 0.31 96.91 3.09 
0.9832 0.9832 

PCA-LDA Yes V 0.46 0.92 0.80 0.20 90.48 9.52 

PCA-QDA No T 0.77 0.99 1.00 0.00 98.84 1.16 
1.0000 1.0000 

PCA-QDA No V 1.00 1.00 1.00 0.00 100.00 0.00 

PCA-QDA Yes T -0.29 0.92 1.00 0.00 92.66 7.34 
1.0000 1.0000 

PCA-QDA Yes V 0.99 1.00 1.00 0.00 100.00 0.00 

FD VN 

PCA-LDA No T 0.20 0.96 0.69 0.31 94.21 5.79 
0.9626 0.9626 

PCA-LDA No V -0.19 0.92 0.40 0.60 85.71 14.29 

PCA-LDA Yes T 0.26 0.96 0.69 0.31 94.21 5.79 
0.9617 0.9617 

PCA-LDA Yes V 0.05 0.92 0.40 0.60 85.71 14.29 

PCA-QDA No T 0.65 0.98 1.00 0.00 97.68 2.32 
1.0000 1.0000 

PCA-QDA No V 1.00 1.00 1.00 0.00 100.00 0.00 

PCA-QDA Yes T -0.77 0.90 1.00 0.00 90.73 9.27 
0.9985 0.9985 

PCA-QDA Yes V -0.10 0.78 1.00 0.00 80.95 19.05 
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Figure 5-14 ROC curves for classification models to differentiate genuine milk samples from those containing extraneous water 

and chemical adulterants. A) PCA-QDA developed using vector normalized raw spectra of homogenized milk samples collected 

with a transmission cell AUC=1.0000, B) PCA-QDA developed using vector normalized raw spectra of raw milk samples 

collected with Dial Path accessory AUC=0.9971, C) PCA-LDA developed using vector normalized raw spectra of raw milk 

samples collected with Dial Path accessory AUC=0.9655. 
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Table 5-13 Example of SIMCA output for classification of adulterated milk samples according to the added chemical. SIMCA can 

assign unknown sample to one class, multiple classes or no class. Class membership at 5% significance level.  

Spectrum Actual Adulterant ‡ Carbonate Citrate Ammonium sulfate Urea Mix 

1.  CARBONATE0P7 *     

2.  CARBONATE0P7 *     

3.  CARBONATE0P7 *     

4.  CARBONATE0P5 *     

5.  CARBONATE0P5 *     

6.  CARBONATE0P5 *     

7.  CARBONATE0P2 *     

8.  CARBONATE0P2 *     

9.  CARBONATE0P2 *     

10.  CITRATE22P  *    

11.  CITRATE22P  *    

12.  CITRATE22P  *    

13.  CITRATE22P  *    

14.  CITRATE14P  *    

15.  CITRATE14P  *    

16.  CITRATE14P  *    

17.  CITRATE6P  *   * 

18.  CITRATE6P  *   * 

19.  CITRATE6P  *    

20.  MIX20P     * 

21.  MIX20P     * 

22.  MIX20P     * 

23.  SULFATE18P   *   

24.  SULFATE18P   *   

25.  SULFATE18P   *   

26.  SULFATE12P      

27.  SULFATE12P   *   

28.  SULFATE12P   *   

29.  SULFATE4P   *  * 

30.  SULFATE4P   *  * 

31.  SULFATE4P   *   

32.  UREA28P    *  

33.  UREA28P    *  

34.  UREA28P    *  

35.  UREA18P    *  

36.  UREA18P    *  

37.  UREA18P    *  

38.  UREA12P    *  

39.  UREA12P    *  

40.  UREA12P    *  

41.  UREA4P    * * 

42.  UREA4P    * * 

43.  UREA4P    * * 

 

 
‡ Carbonate is added in dry form while urea, sulfate, citrate and mix are added as an adulteration solution.  



 

 

 

Table 5-14 Comparison of calibration models’ FOMs for milk chemical adulterants and extraneous water. Calibration models were built using homogenized milk spectra scanned 

by Cary 630 (Agilent Technologies, Santa Clara, California, USA) spectrometer with transmission cell. 

Milk System Adulterant 
Region cm-1  

Pre-treatment 
r RMSEC RMSEP Factors 

H. Milk 

Cary 630 – transmission cell 
Sulfate  

mg/dL 

1,461-1,446 

SG (window 7, polynomial 3) FD 

1,114-1,069 

SG (window 7, polynomial 3) FD 

0.99 1.61 2.14 8 

H. Milk 

Cary 630 – transmission cell 
Citrate  

mg/dL 

1,384-1,354 

SG (window 7, polynomial 3) FD 
0.99 3.78 6.32 8 

1,191-1,159 

SG (window 7, polynomial 3) FD 

H. Milk 

Cary 630 – transmission cell 
Urea  

mg/dL 

1,195-1,153 

SG (window 7, polynomial 3) FD 
0.99 4.14 7.57 9 

1,484-1,458  

SG (window 7, polynomial 3) FD 

H. Milk 

Cary 630 – transmission cell 
Carbonate  

% 

1,372-1,332 

SG (window 7, polynomial 3) FD 
0.99 0.008 0.009 4 

H. Milk 

Cary 630 – transmission cell 
Water  

% 

1,544-1,010 

1,796- 1,707 

2,943-2,835 

Raw 

0.99 0.16 0.28 8 

 

 



 

 

 

Table 5-15 Comparison of cross-validation FOMs for milk adulterants models developed using milk spectra collected on Cary 630 (Agilent Technologies, Santa Clara, California, 

USA) with transmission cell. 

Milk Samples System Adulterant 
Cross-validation External validation 

r RMSECV Factors R2 Slope 

H. Milk Cary 630 – transmission cell Sulfate mg/dL 0.99 2.27 8 0.99 0.99 

H. Milk Cary 630 – transmission cell Citrate mg/dL 0.99 5.84 8 0.99 0.99 

H. Milk Cary 630 – transmission cell Urea mg/dL 0.99 6.93 9 0.99 1.03 

H. Milk Cary 630 – transmission cell Carbonate % 0.99 0.009 4 0.99 0.98 

H. Milk Cary 630 – transmission cell Water % 0.99 0.21 8 0.99 1.00 

 

  



 

 

 

Table 5-16 Comparison of calibration models’ FOMs for milk chemical adulterants and extraneous water. Calibration models were built using homogenized milk spectra scanned 

by Cary 630 (Agilent Technologies, Santa Clara, California, USA) spectrometer with Dial Path accessory. The same sample sets were scanned at 30 and 50 µm pathlength. a) 

milk samples contain added water and chemical adulterant, b) milk samples contain added water and urea only. 

Milk Samples System Adulterant Region cm-1 / Pre-treatment r RMSEC RMSEP Factors 

H. Milk Cary 630 - Dial Path Accessory – 50 µm pathlength Water %a 1,581-960 Raw 0.99 0.66 0.55 6 

H. Milk Cary 630 - Dial Path Accessory – 30 µm pathlength Water %a 1,581-960 Raw 0.99 0.26 0.33 9 

Raw Milk Cary 630 - Dial Path Accessory – 50 µm pathlength Water %b 1,500-960 FD 0.99 0.59 0.55 1 

Raw Milk Cary 630 - Dial Path Accessory – 30 µm pathlength Water %b 1,500-960 Raw 0.99 0.64 0.72 2 

H. Milk Cary 630 - Dial Path Accessory – 50 µm pathlength Urea mg/dL 1,484-1,457, 1,191-1,153 FD 0.99 6.4 8.62 3 

H. Milk Cary 630 - Dial Path Accessory – 30 µm pathlength Urea mg/dL 1,481-1,454, 1,191-1,137 Raw 0.99 2.76 2.95 7 

Raw Milk Cary 630 - Dial Path Accessory – 50 µm pathlength Urea mg/dL 1,481-1,427, 1,191-1,138 Raw 0.99 3.06 7.63 6 

Raw Milk Cary 630 - Dial Path Accessory – 30 µm pathlength Urea mg/dL 1,485-1,453, 1,195-1,141 FD 0.99 4.28 4.88 8 

H. Milk Cary 630 - Dial Path Accessory – 50 µm pathlength Sulfate mg/dL 1,454-1,442, 1,192-1,149 FD 0.99 2.65 2.79 9 

H. Milk Cary 630 - Dial Path Accessory – 30 µm pathlength Sulfate mg/dL 1,461-1,446, 1,114-1,069 Raw 0.99 1.99 1.72 5 

H. Milk Cary 630 - Dial Path Accessory – 50 µm pathlength Citrate mg/dL 1,380-1,350, 1,288-1,261 FD 0.99 6.77 9.63 6 

H. Milk Cary 630 - Dial Path Accessory – 30 µm pathlength Citrate mg/dL 1,399-1,369, 1,284-1,261 FD 0.99 5.90 5.43 2 

H. Milk Cary 630 - Dial Path Accessory – 50 µm pathlength Carbonate % 1,381-1,326 FD 0.99 0.009 0.004 2 

H. Milk Cary 630 - Dial Path Accessory – 30 µm pathlength Carbonate % 1,380-1,326 FD 0.99 0.009 0.005 2 

 

  



 

 

 

Table 5-17 Comparison of cross-validation FMOs for milk adulterants models developed using milk spectra collected on Cary 630 Dial Path accessory (Agilent Technologies, 

Santa Clara, California, USA). a) milk samples contain added water and chemical adulterant, b) milk samples contain added water and urea. 

Milk Samples System Adulterant 
Cross-validation External validation 

r RMSECV Factors R2 Slope 

H. Milk Cary 630 - Dial Path Accessory – 50 µm pathlength Water %a 0.99 0.749 6 0.99 0.97 

H. Milk Cary 630 - Dial Path Accessory – 30 µm pathlength Water %a 0.99 0.347 9 0.99 0.99 

Raw Milk Cary 630 - Dial Path Accessory – 50 µm pathlength Water %b 0.99 0.757 1 - - 

Raw Milk Cary 630 - Dial Path Accessory – 30 µm pathlength Water %b 0.99 0.968 2 - - 

H. Milk Cary 630 - Dial Path Accessory – 50 µm pathlength Urea mg/dL 0.99 9.90 3 0.99 1.05 

H. Milk Cary 630 - Dial Path Accessory – 30 µm pathlength Urea mg/dL 0.99 5.43 7 0.99 0.98 

Raw Milk Cary 630 - Dial Path Accessory – 50 µm pathlength Urea mg/dL 0.99 5.06 6 0.99 1.00 

Raw Milk Cary 630 - Dial Path Accessory – 30 µm pathlength Urea mg/dL 0.99 7.23 8 0.99 1.00 

H. Milk Cary 630 - Dial Path Accessory – 50 µm pathlength Sulfate mg/dL 0.99 3.76 9 0.99 0.99 

H. Milk Cary 630 - Dial Path Accessory – 30 µm pathlength Sulfate mg/dL 0.99 3.35 5 0.99 1.00 

H. Milk Cary 630 - Dial Path Accessory – 50 µm pathlength Citrate mg/dL 0.99 12.3 6 0.98 0.98 

H. Milk Cary 630 - Dial Path Accessory – 30 µm pathlength Citrate mg/dL 0.99 8.90 2 0.98 0.97 

H. Milk Cary 630 - Dial Path Accessory – 50 µm pathlength Carbonate % 0.99 0.013 2 - - 

H. Milk Cary 630 - Dial Path Accessory – 30 µm pathlength Carbonate % 0.99 0.013 2 - - 

 

  



 

 

 

Table 5-18 Comparison of calibration models’ FOMs for milk chemical adulterants and extraneous water. Calibration models were built using raw milk spectra scanned by Cary 

630 spectrometer with Dial Path accessory (Agilent Technologies, Santa Clara, California, USA). 

Milk System Adulterant 
Region cm-1 

Pre-treatment 
r RMSEC RMSEP Factors 

Raw Milk 
Cary 630 - Dial Path Accessory 

30 µm pathlength 

Sulfate  

mg/dL 

1,484-1,457 

1,190-1,126 

SG (window 7, polynomial 3) FD 

0.99 2.48 4.50 5 

Raw Milk 
Cary 630 - Dial Path Accessory  

30 µm pathlength 

Citrate  

mg/dL 

1,445-1,347 

SG (window 7, polynomial 3) FD 
0.99 5.97 10.3 6 

Raw Milk 
Cary 630 - Dial Path Accessory 

30 µm pathlength 

Urea  

mg/dL 

1,485-1,457  

SG (window 7, polynomial 3) FD 
0.99 4.77 6.73 8 

Raw Milk 
Cary 630 - Dial Path Accessory  

30 µm pathlength 

Carbonate  

% 

1,380-1,322 

SG (window 7, polynomial 3) FD 
0.99 0.012 0.014 2 

Raw Milk 
Cary 630 - Dial Path Accessory  

30 µm pathlength 

Water  

% 

1,575-1,010 

1,762-1,728 

2,949-2,834 

Raw 

0.99 0.25 0.39 9 

 

  



 

 

 

Table 5-19 Comparison of cross-validation FMOs for milk adulterants models developed using milk spectra collected on Cary 630 Dial Path accessory (Agilent Technologies, 

Santa Clara, California, USA).  

Milk Samples System Adulterant 
Cross-validation External validation 

r RMSECV Factors R2 Slope 

Raw Milk  Cary 630 - Dial Path Accessory – 30 µm pathlength Sulfate mg/dL 0.99 8.65 5 0.99 0.99 

Raw Milk  Cary 630 - Dial Path Accessory – 30 µm pathlength Citrate mg/dL 0.99 11.6 6 0.99 0.99 

Raw Milk  Cary 630 - Dial Path Accessory – 30 µm pathlength Urea mg/dL 0.99 7.22 8 0.99 0.98 

Raw Milk  Cary 630 - Dial Path Accessory – 30 µm pathlength Carbonate % 0.99 0.019 2 0.99 0.94 

Raw Milk  Cary 630 - Dial Path Accessory – 30 µm pathlength Water % 0.99 0.36 9 0.99 1.02 
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Connecting Statement 

In the previous chapter, principle component analysis (PCA) successfully isolated the spectral 

fingerprint from milk FTIR data that reflected the changes in milk chemical composition resulting 

from a systemic factor that altered milk composition, which was adulteration. In addition, PCA 

reduced the dimensionality of the milk FTIR spectral data and produced a new set of variables 

(i.e., principal components) that were used as predictors for classification models and as input 

variables to a model to test the significance of the systemic factor effect on milk spectral data. In 

this chapter, several multivariate analysis techniques, including PCA, will be evaluated as data 

mining tools to isolate the spectral fingerprint that reflects the effect of a housing treatment of 

dairy cattle on milk FTIR spectral data in the context of animal controlled-design trials.  
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Chapter 6: Evaluation of data analysis approaches of chemical milk 

composition and FTIR spectral data in the context of controlled-

design trials testing dairy cattle housing welfare improvements  

Abstract 

Milk is a complex biological fluid whose components are synthesized from building blocks that 

are obtained from the blood plasma. These precursor molecules are either originated from diet or 

they are produced by metabolic processes in the cow’s body. Several studies have demonstrated 

that milk composition reflects the concentrations of key blood plasma metabolites, the nutritional 

state of the cow and health conditions that might affect the cow’s productivity. Some of these 

studies have relied on the numerical values of the concentrations of the studied milk components, 

others have directly relied on the FTIR spectrum of studied milk samples without using an 

intermediate prediction model to produce a specific number for a specific milk component.  

The objective of this chapter is to evaluate the suitability of different data analysis approaches of 

milk composition data to detect the effect of tie rail (TR) configuration on milk composition. A 

TR is the pipe used as the attachment for the tie chain, which controls the forward location of each 

cow in her stall and facilitates or obstructs the cow movement in her stall while changing positions 

as well as cow access to feed; hence, affecting the cow’s intake of key nutritional precursors 

required for the biosynthesis of different milk components. The evaluated data analysis approaches 

are categorized into two groups: univariate and multivariate approaches, which were applied to 

milk components’ concentrations and milk FTIR spectral data. For the univariate approach, mixed 

modeling was employed, which is a powerful statistical tool that allows fitting mixed linear 

models. The multivariate approach employed principal component analysis (PCA) and 

hierarchical cluster analysis (HCA), which are unsupervised techniques, and partial least squares 

– discriminant analysis, (PLS-DA), which is a supervised technique.  

The milk composition numerical data did not reveal significant treatment effect when analyzed by 

the mixed model, and PCA revealed that the predictions of minor milk components might have 

been biased by spectral contribution of major milk components. PLS-DA did not consider the 

repeated measurement structure of this study and it was limited to the milk components that were 

reported by the FTIR milk analyzer. On the other hand, PLS-DA analysis of the full milk FTIR 
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spectra revealed more details pertaining to the TR treatment effect on milk composition than PLS-

DA analysis of the numerical dataset of milk composition. However, PLS-DA was not capable of 

testing the hypothesis or producing statistics regarding the significance of all the effects included 

in the statistical model of the study. In addition, unsupervised analysis of the full milk FTIR spectra 

revealed only the strongest effect on milk composition, which was the time effect (i.e., increased 

in cow days in milk and/or environmental changes such as ambient temperature as the trial was 

conducted over 20 weeks). 

A hybrid approach was successfully applied to the FTIR spectral data, which retained the 

multivariate structure of the FTIR spectral data, while at the same time, accommodated the 

utilization of the mixed model to test fixed and random effects on the FTIR spectral data according 

to the statistical model that was defined by the experimental design of the trial with a repeated 

measurement structure and enabled hypothesis testing.  
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6.1 Introduction 

Milk is a complex biological mixture of a solution of salts and carbohydrates, dispersed proteins, 

casein micelles and fat globules. Major milk components and some minor ones are synthesized in 

multiple organelles in the alveolar cells of the mammary glands. Milk proteins are synthesized in 

the rough endoplasmic reticulum from free amino acids or peptides that are absorbed from the 

bloodstream through the basolateral cell membrane of the alveolar cells. After that, milk proteins 

are transported to the Golgi apparatus where they undergo posttranslational modifications. The 

Golgi apparatus is also responsible for the synthesis of lactose from glucose, which is absorbed 

from the bloodstream. Synthesized milk proteins, lactose and other milk components, such as 

citrate, calcium and water, are packed into secretory vesicles that release these components through 

exocytosis into milk accumulating in the alveolar lumen. Fatty acids are the building blocks for 

milk triglycerides. Half of these fatty acids are derived from diet, which include most of C18 fatty 

acids (i.e., stearic, oleic and linoleic acids) and 30% of C16 fatty acids (i.e., palmitic acid). The 

other half includes shorter chain fatty acids, which are derived from de novo synthesis in the 

cytoplasm of the mammary glands using acetate and β-hydroxybutyric acid as precursors that are 

absorbed from the bloodstream. Milk fat droplets form near the rough endoplasmic reticulum, 

enlarge in size and make their way towards the apical membrane of the alveolar cell where they 

protrude from the cell into the alveolar lumen surrounded by portions of the cell membrane. Other 

milk components cross from the bloodstream through the basolateral membrane of the alveolar 

cells, traverse the cell and pass across the apical membrane into milk accumulated in the alveolar 

lumen. Such components include water, urea, glucose and some ions [97]. Several studies have 

demonstrated that milk composition reflects the concentrations of key blood plasma metabolites, 

such as non esterified fatty acids (NEFA) [98] and β-hydroxybutyric acid [99], the nutritional state 

of the cow [61, 100] and health conditions [15] that might affect the cow’s productivity. Some of 

these studies have relied on the numerical values of the concentrations of the studied milk 

components that are determined by different analytical techniques, such as FTIR and gas 

chromatography, others have directly relied on the FTIR spectrum of studied milk samples without 

going through an intermediate prediction model to produce a specific number for a specific milk 

component.  

The objective of this chapter is to evaluate the suitability of different data analysis approaches of 

milk composition data to detect the effect of tie rail (TR) configuration on milk composition. A 
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TR is the pipe used as the attachment for the tie chain, which controls the forward location of each 

cow in her stall and facilitates or obstructs the cow movement in her stall while changing positions 

as well as cow access to feed; hence, affecting the cow’s intake of key nutritional precursors 

required for the biosynthesis of different milk components. Figure 6-1 summarizes the data 

analysis approaches of milk composition that will be covered in this chapter and that can be 

categorized into two groups: univariate and multivariate approaches, which will be applied to milk 

components’ concentrations and milk FTIR spectral data. For the univariate approach, mixed 

modeling will be employed, which is a powerful statistical tool that allows fitting mixed linear 

models [101]. Mixed models are a generalization of the standard linear model. Mathematically, 

they are described as follows:  

𝑦 = 𝑋𝛽 + 𝑍𝛾 + 𝜖 

Where y is a vector of observed data, β is an unknown vector of fixed-effects parameters with 

known design matrix X, γ is an unknown vector of random-effects parameters with known design 

matrix Z and ϵ is an unknown random error vector.  

Mixed models allow the modeling of the mean response that is described by fixed-effects 

parameters, in addition to the variance and covariance of the mean that are described by random-

effects parameters. Fixed effects represent studied factors that are controlled in the trial with 

specific levels, such as different TR configurations. On the other hand, random effects represent 

factors that might affect the variability of the studied response but cannot be controlled during the 

trial, such as the cow. Fitting mixed models allows drawing statistical inferences and generating 

suitable statistics for hypothesis testing. However, mixed modeling can be applied to only one 

response at a time, while in fact, major and minor milk components are synthesized through 

biochemical pathways that are governed by the metabolic, nutritional and health state of the cow. 

For this reason, a multivariate approach might be more appropriate, in this case, because it can 

detect trends in the dataset based on changes in observed variables as a holistic unit. 

The multivariate approach will employ principal component analysis (PCA) and hierarchical 

cluster analysis (HCA), which are unsupervised techniques, and partial least squares – discriminant 

analysis, (PLS-DA), which is a supervised technique. PCA assess the correlation among the 

studied variables by defining a smaller set of variables that are called principal components that 

eliminate unnecessary correlation between the original variables and that describe the unique 
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sources of variations in the original dataset. Hence, it can be used as a method to explore the 

structure in the relationships between the variables and to reduce the dimensionality of big data. 

HCA is an exploratory multivariate technique that aims at uncovering natural groupings of 

observations in a data set where the observations within each group are relatively homogeneous, 

yet the groups are unlike each other. However, both techniques do not provide suitable statistics 

for hypothesis testing and they do not take into consideration the statistical model of the 

experimental design under which the data is generated. PLS-DA is a supervised multivariate 

technique that aims at maximizing the separation of observations according to their class 

membership (i.e., treatment membership) to achieve maximum class separation. However, PLS-

DA does not take into consideration the repeated measurement structure of the data collected from 

the same subjects over a specific period of time.  

 

Figure 6-1 Data analysis approaches that are considered to detect the tie rail position effect on milk composition numerical and 

spectral data. 
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6.2 Materials and Methods 

6.2.1 The data 

The data used in this chapter was collected during an animal trial to test the effect of one element 

of stall configuration (i.e., tie rail) on cow’s behaviour and welfare [102], which was conducted at 

the Dairy Research Complex, Macdonald Campus, McGill University (Ste. Anne-de-Bellevue, 

QC, Canada). A tie rail (TR) is the pipe used as the attachment for the tie chain, which controls 

the forward location of each cow in her stall. In this study, 48 cows were assigned to 4 TR 

configurations, which were defined by the height and the forward position of TR. TR heights were 

122, 122, 112 and 102 cm and forward positions were 18 cm, 36 cm, 18 cm and 36 cm for 

treatments T1, T2, T3 and T4, respectively. Treatments T1 and T2 are TR configurations that are 

recommended and commonly found on dairy farms, respectively. On the other hand, treatments 

T3 and T4 are new TR configurations designed to increase the opportunity of movements of the 

cow at her stall; hence, improve cow behavior and welfare. Cows were assigned to 6 different 

blocks to account for age of the cow, days in milk within current lactation and location in the barn 

effects. Half the cows underwent the trial during summer 2016 and the other half during fall 2016. 

Each period lasted 10 weeks (i.e., period 1: from July 25th to October 3rd, period 2: from October 

10th to December 19th). The data of this trial was analyzed under the following statistical model:   

𝑌𝑖𝑗𝑘𝑙𝑚 = 𝜇 + 𝑡𝑟𝑡𝑖 + 𝑠𝑡𝑎𝑟𝑡𝑗 + 𝑏𝑙𝑜𝑐𝑘𝑘𝑗𝑖 + 𝑐𝑜𝑤𝑙𝑘𝑗𝑖 + 𝑤𝑒𝑒𝑘𝑚 + 𝑡𝑟𝑡𝑖 × 𝑤𝑒𝑒𝑘𝑚 + 𝑒𝑖𝑗𝑘𝑙𝑚 

Where 𝑌𝑖𝑗𝑘𝑙𝑚 was the dependent variable; the outcome measure of the 𝑙𝑡ℎ cow from the 𝑘𝑡ℎ block 

(parity, DIM and location in the barn) and the 𝑗𝑡ℎ start date on the combination of the 𝑖𝑡ℎ tie-rail 

configuration and 𝑚𝑡ℎ week. 𝑡𝑟𝑡𝑖 was the fixed effect of the 𝑖𝑡ℎ tie-rail configuration. 𝑠𝑡𝑎𝑟𝑡𝑗 was 

the fixed effect of the 𝑗𝑡ℎ start date. 𝑏𝑙𝑜𝑐𝑘𝑘𝑗𝑖 was the fixed effect of 𝑘𝑡ℎ parity, DIM and location 

in the barn from the 𝑗𝑡ℎ start date on the 𝑖𝑡ℎ tie-rail configuration treatment. 𝑐𝑜𝑤𝑙𝑘𝑗𝑖 was the 

random effect of the 𝑙𝑡ℎ cow from the 𝑗𝑡ℎ start date and the 𝑘𝑡ℎ block on the 𝑖𝑡ℎ tie-rail 

configuration treatment. 𝑤𝑒𝑒𝑘𝑚 was the fixed effect of the 𝑚𝑡ℎ week. 𝑡𝑟𝑡𝑖 × 𝑤𝑒𝑒𝑘𝑚 is the 

interaction effect of the individual combination of the 𝑖𝑡ℎ tie-rail configuration treatment with the 

𝑚𝑡ℎ week.  𝑒𝑖𝑗𝑘𝑙𝑚 was the random residual associated with the outcome measure of the 𝑙𝑡ℎ cow 

from 𝑗𝑡ℎ start date and 𝑘𝑡ℎ block on the combination of the 𝑖𝑡ℎ tie-rail configuration treatment and 

the 𝑚𝑡ℎ week [102].   
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Milk samples were collected weekly and they were analyzed by Valacta Inc. lab (Ste., Anne-de-

Bellevue, QC, Canada) to determine major and minor milk components using commercial FTIR 

milk analyzer. A total of 19 milk components were included in this study. These components are 

fat, protein, lactose, total solids (TS), urea, β-hydroxybutyrate (BHB), palmitic acid (C16:0), 

stearic acid (C18:0), oleic acid (C18:1), short-chain fatty acids (SCFA), mid-chain fatty acids 

(MCFA), long-chain fatty acids (LCFA), saturated fatty acids (SFA), total unsaturated fatty acids 

(TUFA), mono-unsaturated fatty acids (MUFA), poly-unsaturated fatty acids (PUFA), trans fatty 

acids (TFA), free fatty acids (FFA) and fat-to- protein ratio (FP ratio). The total number of samples 

that were analyzed is 626. Two sets of data were received from Valacta. The first dataset comprised 

the concentrations of milk components that were determined by the commercial FTIR milk 

analyzer for individual milk samples. This dataset will be referred to as the numerical dataset. The 

second dataset contained FTIR spectra recorded for individual milk samples collected during the 

trial. This dataset will be referred to as the spectral dataset. Each FTIR spectrum consisted of 1060 

spectral variables between 5008 cm-1 and 925 cm-1.  

6.2.2 Analysis of milk composition numerical dataset  

Two approaches were applied to the analysis of the numerical dataset: a univariate and a 

multivariate approach. The Mixed procedure in SAS 9.4 (SAS Institute, Cary, NC, USA) was 

utilized to detect the treatment effect (i.e., TR configuration effect) on individual milk components. 

This procedure allows fitting of mixed linear models, which are a generalization of the standard 

linear model. A mixed linear model allows the modeling of variances and covariances in addition 

to the means of the dataset. The probability distribution of the data in a mixed linear model can be 

described by two sets of parameters. The fixed-effects parameters describe the mean of the model, 

while the random-effects parameters describe the variance-covariance of the model [101].  

Alternatively, two multivariate techniques were used to analyse the numerical dataset. These 

techniques are principal component analysis (PCA), which is an unsupervised method, and partial 

least squares discriminant analysis (PLS-DA), which is a supervised method. PCA decomposes 

the variance in the dataset into a number of new variables that is equal to the number of observed 

variables (i.e., milk components) called principle components (PCs) [93]. These PCs are 

orthogonal to each other, which means that the correlation is 0 between any two PCs, and they 

describe the same variance structure as the original variables in the dataset. Each PC is a linear 
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combination of optimally weighted observed variables. However, only the few first PCs account 

for a significant portion of the variability in the original dataset. PCA loading plot reveals the main 

set of variables that drive variation in the dataset; on the other hand, PCA scores plot unveils 

tendencies toward clustering of samples.  

PLS-DA is used for exploratory purpose in this study and not to build predictive models. It requires 

two matrices. The first is the X matrix that contains the observed variables, or the predictors, which 

are the concentrations of milk components for the observations. The second is the Y matrix that 

contains dummy variables that describe treatment membership of observations in the X matrix. 

PLS-DA performs a decomposition process on the X matrix (i.e., the numeric dataset) similar to 

that of PCA; however, this process is guided by observations’ treatment membership described in 

the Y matrix [27]. The resulting new variables in PLS-DA are called latent variables or factors and 

they are calculated in a way to maximize observations’ separation according to treatment. To 

construct a PLS-DA model, the X matrix data was centered and scaled. Statistically Inspired 

Modification of the PLS Method algorithm (SIMPLS) was used to build the PLS-DA model and 

it was validated by leave-one-out cross-validation approach. This algorithm was chosen because 

treatment has multiple levels [27]. Initially, all predictors were included in the PLS-DA model. 

The Variable Importance for the Projection (VIP) score was used to eliminate predictors that did 

not contribute to the modeling of the response (i.e., treatment membership) to comply with the 

parsimony principle. Only predictors with VIP score >0.8 were retained in the model. This process 

was repeated multiple times until a final model was obtained with the least number of predictors 

modeling the treatment membership of observations. JMP Pro 13.2.1 (SAS Institute, Cary, NC, 

USA) was used to perform PCA and PLS-DA on the numeric dataset.  

6.2.3 Analysis of milk spectral dataset 

Omnic 7.3 (Thermo Electron Corporation, Waltham, MA, USA) was used to visualize the milk 

FTIR spectra and to calculate average spectra by treatment and week. Only spectral regions 

containing information related to milk composition were retained for spectral analysis. These 

regions were 1612-925 cm-1, 1797-1681 cm-1 and 3061-2803 cm-1. The total number of spectral 

variables that were retained for analysis was 278 wavenumbers. MATLAB codes were written to 

calculate differential first derivative (FD) of the spectra with a derivative window of 1, to vector 

normalize (VN) the spectra [29] and to load individual spectra into a matrix for analysis by JMP 
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Pro 13.2.1. The FD will eliminate the offset of the spectral baseline, if present, and it will enhance 

small peaks that are especially present on the shoulder of larger peaks. VN will eliminate 

variability in the spectra that is not related to chemical composition of milk samples and that is 

originated from instrumentation, such as variability in the IR source intensity. Spectral analysis 

was performed on raw, VN raw, FD, VN FD spectral datasets. The four versions of the spectral 

dataset were analyzed by Hierarchical Cluster Analysis (HCA) and PCA. Forward search feature 

selection algorithm [103] was applied to the spectral datasets to pick up the relevant regions for 

classification according to the studied factors. This algorithm is implemented in DataAnalysis [89], 

which is an inhouse written software at the McGill IR group in the food science department. In 

addition, PLS-DA models were developed for the four versions of the milk spectral dataset using 

the same methodology that was used with the milk numeric dataset except that the models were 

validated by K-Fold (K=10) cross-validation approach for computational considerations. JMP Pro 

13.2.1 (SAS Institute, Cary, NC, USA) was used to perform HCA, PCA and PLS-DA on the 

spectral datasets. On the other hand, a univariate approach was applied to the four versions of the 

milk FTIR spectral datasets. In this approach, the mixed model was applied to the individual 

spectral variables through a loop that iterated over these variables in the retained spectral regions 

using SAS 9.4 (SAS Institute, Cary, NC, USA). It must be noted, that Proc Mixed in SAS can test 

different effects on one response (i.e., the spectral variable) at a time.  

6.2.4 Hybrid approach for milk spectral dataset analysis 

A new approach has been developed to analyze the milk spectral dataset (Figure 6-15). This new 

approach combines multivariate analysis with mixed modeling to test specific treatment effect. 

This approach was first tested on milk samples spiked with lactose before applying it to the four 

versions of the spectral dataset of TR trial. For this purpose, skim milk packs were purchased from 

the local market and eleven samples were spiked with 1% lactose and another eleven samples were 

spiked with 5% lactose. Cary 630 (Agilent Technologies, Santa Clara, California, USA) 

spectrometer was used to record the FTIR spectra of these samples with a resolution of 16 cm-1 

and 32 co-added scans. The spectral regions that were retained for spectral analysis were 1612-

925 cm-1, 1797-1681 cm-1 and 3061-2803 cm-1 with a total of 278 spectral variables. Inhouse 

MATLAB codes were written to calculate differential FD of the spectra, to VN the spectra and to 

load individual spectra into a matrix for analysis by JMP Pro 13.2.1. 
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In JMP Pro, PCA was applied to the four versions of the spiked milk samples spectral dataset (i.e., 

raw, FD, VN raw, VN FD) as a dimension reduction method to produce a new set of orthogonal 

variables that explain the variance in the original dataset and to reduce the number of responses 

that will be tested by the mixed model [104]. PCs with eigenvalue ≥ 1 and that explained ≥ 1% of 

the variation were considered meaningful and were retained for testing by the mixed model with a 

significance level α=0.05. It must be noted that PCA was not used to model or to test any effect in 

this case.  

In the mixed model, the effect of spiked lactose concentration was tested on retained PCs and 

labels “High” and “Low” were used to categorized samples with 5% and 1% spiked lactose, 

respectively. The PCA scores of the raw and FD spectral data were compared to understand the 

effect of FD on the PCA scores behaviour and their interpretation in each case. The same 

comparison was also applied to the means estimates of the mixed model for the retained PCs of 

the raw and FD spectral dataset to correctly interpret the differences in the means estimates in each 

case.  

In case a PC revealed a significant treatment effect, then its loading spectrum was interpreted. A 

loading spectrum extracted from raw spectral dataset can be interpreted directly. On the other hand, 

loading spectrum extracted from a FD spectral dataset needs to be integrated to restore the actual 

peaks of the influential FTIR bands that became zeros when the first derivative was calculated. 

The cumulative trapezoidal numerical integration function in MATLAB was used to calculate the 

spectral integral for the loading spectrum in question. This function performs numerical integration 

via the trapezoidal method and preserves the intermediate integration values, which results in a 

spectrum that approximates the raw absorption spectrum prior to the FD calculation. The spectral 

integral will be missing the baseline, which is not an issue since the spectral integral will not be 

used for quantitative determinations. If the integrated loading spectrum produced wide humps with 

no clear peaks, the Peak Resolve feature in Omnic 7.3 (Thermo Electron Corporation, Waltham, 

MA, USA) was used to fit the integrated loading spectrum for probable peaks. To do so, the Voigt 

function [105] with low sensitivity was used and the baseline was set to none. The noise and the 

full width at half height (FWHH) of the narrowest peak in the region of interest were determined 

by the software. The fitting process was repeated several times until an acceptable residual 

spectrum was obtained.  
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The same approach was applied to the spectral datasets of the TR trial spectral dataset. The Mixed 

procedure in SAS 9.4 (SAS Institute, Cary, NC, USA) was utilized to test the TR treatment effect 

on the meaningful PCs extracted from the raw, FD, VN raw and VN FD spectral datasets. First, 

the dataset was sorted by treatment, start, block, cow and week. Then, a SAS macro was utilized 

to iterate over the meaningful PCs extracted from the spectral dataset in question and to test the 

treatment effect according to the statistical model that was defined by the experimental design. 

Finally, the least squares mean were tested for the PC that revealed a significant treatment effect. 
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6.3 Results and Discussion 

6.3.1 Analysis of milk composition numerical dataset 

The univariate approach that employed mixed modeling did not reveal significant treatment effect 

on any milk component that was determined by Valacta’s FTIR milk analyzer (Table 6-1). The 

strongest significant effect was observed for week on almost all milk components followed by the 

block effect. The main drawback of this type of analysis is that it tests the treatment effect on each 

milk component separately, while in fact, major and minor milk components are synthesized 

through biochemical pathways that are governed by the metabolic, health and nutritional state of 

the cow. For example, lactose and minerals are the least variable milk components [106]. They 

maintain the osmolarity of milk at ~300 mOsm, which is equal to the osmolarity of blood, to 

facilitate secretion of milk. In addition, lactose synthesis in mammary glands consumes 85% of 

circulating glucose in the plasma, which is mainly provided by carbohydrate intake from feed 

[107]. Since the osmolarity of blood is stable in healthy cows, decreased lactose concentration in 

milk results from reduced plasma glucose concentration due to reduced carbohydrate intake [100], 

which can be an indicator of elevated body fat mobilization, or it can be an indicator of health 

issues, such as ketosis and mastitis [15]. In all cases, decreased lactose concentration is 

accompanied by changes in concentrations of other milk components. In the case of elevated body 

fat mobilization, increased fat metabolism is characterized by increased non-esterified fatty acids 

(NEFA), BHB and reduced glucose concentration in the plasma, and decreased protein and 

increased acetone, BHB, C18:1 and C16:0 in milk [98, 100]. Having said that, milk composition 

represents a snapshot of the metabolic and nutritional state of the cow, and changes to a single 

milk component cannot be considered as an indicator of the nutritional or metabolic state of the 

cow resulting from a specific treatment effect. This observation indicates that multivariate analysis 

might be a sound alternative approach to analyze this type of data. These techniques can detect 

trends in the data based on changes in observed variables as a holistic unit.  
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Table 6-1 P values of different effects on milk components for the TR configuration trial. No significant effect was detected for 

treatment. Week has the strongest significant effect on almost all milk components followed by Block. 

Milk 

Component 

Treatment Start Block 

(Start) 

Week Treatment*Week 

Fat 0.3385 0.8329 0.1515 0.0691 0.5137 

Protein 0.7165 0.2317 <.0001 <.0001 0.8060 

Lactose 0.9320 0.0077 0.0031 <.0001 0.6973 

TS 0.3143 0.2409 0.0164 <.0001 0.4894 

Urea 0.5993 0.0254 0.5723 <.0001 0.9296 

BHB 0.1614 0.1955 0.0707 <.0001 0.8236 

C16_0 0.3812 0.2291 0.0483 0.0013 0.2456 

C18_0 0.4320 0.1892 0.0191 0.0191 0.7989 

C18_1 0.1873 0.0148 0.5218 0.0029 0.7582 

SCFA 0.4203 0.0481 0.2833 0.0091 0.5678 

MCFA 0.2875 0.9795 0.0205 <.0001 0.2449 

LCFA 0.2099 0.9406 0.2570 0.1617 0.8289 

SFA 0.3893 0.7455 0.1214 0.0417 0.3384 

TUFA 0.4630 0.0895 0.6194 0.1189 0.8820 

MUFA 0.3452 0.2299 0.5414 0.0093 0.7976 

PUFA 0.4009 0.6416 0.9775 <.0001 0.5060 

Trans FA 0.6415 0.3226 0.0486 <.0001 0.1055 

FFA 0.5427 0.7243 0.0178 0.0007 0.9452 

FP Ratio 0.5177 0.5930 0.5109 0.0086 0.5780 

 

PCA revealed four meaningful PCs that explain 80.77% of the variation described by the observed 

variables, which are milk components’ concentrations (Table 6-2). Two criteria were considered 

to extract meaningful PCs, which are eigenvalue ≥ 1 and explained variation ≥ 1% [93]. PC1, PC2, 

PC3 and PC4 accounted for 50.46%, 16.53%, 7.42% and 6.53% of the total variation, respectively. 

The PCA scores plot (PC1 vs. PC2) shows that milk samples cluster at the origin of the PCA space 

and it did not reveal any clustering trends according to treatment, which suggests the absence of 

treatment effect (Figure 6-2). However, PCA is an unsupervised multivariate method that does not 
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take into consideration the statistical model under which the data was generated. This fact 

undermines the capabilities of PCA alone in detecting a treatment effect in the presence of other 

strong effects, such as week and block. On the other hand, the PCA loadings plot (PC1 vs. PC2) 

reveals an important observation (Figure 6-3). Milk components, which are determined by FTIR 

milk analyzer, are clustering into four groups that correspond to the spectral regions that are used 

to predict the concentrations of major milk components by PLS calibration models. The first group 

corresponds to the 1200-900 cm-1 spectral region in milk FTIR spectrum and it includes lactose 

and trans fatty acids, whose main FTIR bands in milk are centered at ~1080 cm-1 and ~967 cm-1, 

respectively. In this group, we also notice the presence of BHB, which has a minor absorption peak 

centered at ~1080 cm-1 in milk FTIR spectrum. However, the prominent absorption band of BHB 

is centered at ~ 1405 cm-1 in milk FTIR spectrum that is not affected by lactose absorption of IR 

energy, which means that changes in lactose and BHB might originate from the same source of 

variation. The second group corresponds to the C=O triglyceride ester linkage stretching band or 

Fat A region located at ~1745-1725 cm-1 and it includes C18:0, C18:1, TUFA, MUFA, PUFA, 

LCFA and FP ratio. The third group corresponds to the C–H stretching band or Fat B region located 

at ~2980–2800 cm-1 and it includes fat, TS, C16:0, SCFA, MCFA and SFA. The reports that were 

received from Valacta expressed fat as Fat B, based on this, the distinction between the two groups 

was made. The last group corresponds to the 1580-1200 cm-1 spectral region and it includes protein 

and urea that have characteristic bands in milk at ~1565–1520 cm-1 (i.e., Amide II) and ~1465 cm-

1, respectively. It must be noted that urea and milk proteins share FTIR absorption band located at 

~1600-1700 cm-1 that is overwhelmed by the immense water absorption of IR energy. This 

observation suggests that the concentrations of minor milk components that are predicted by the 

PLS calibration models of the FTIR milk analyzer might have been biased by the spectral 

contribution of major milk components, which undermines the potential of predicated minor milk 

components of exposing subtle differences related to changes in housing design (i.e., TR 

treatments) over a short period of time especially when a univariate approach is used to analyze 

this type of data.  
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Table 6-2 Principal components extracted from the numerical dataset of milk analysis for the TR configuration trial. 

PC Eigenvalue Variation % Explained Cum. Variation % Explained 

PC1 9.5878 50.462 50.462 

PC2 3.1071 16.353 66.815 

PC3 1.4106 7.424 74.240 

PC4 1.2406 6.529 80.769 

PC5 0.9652 5.080 85.849 

PC6 0.8242 4.338 90.187 

PC7 0.7133 3.754 93.941 

PC8 0.3734 1.965 95.907 

PC9 0.3332 1.753 97.660 

PC10 0.1819 0.957 98.617 

 

 

Figure 6-2 PCA scores plot projecting milk samples’ scores for PC1 vs. PC2 for the TR configuration trial. 
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Figure 6-3 PCA loading plot (PC1 vs. PC2) projecting the main groups of milk components that explains the majority of the 

variation in the milk numerical dataset of the TR configuration trial. 

PLS-DA was the second multivariate technique that was used to analyze the milk numerical 

dataset. A parsimonious PLS-DA model was obtained after eliminating predictors that did not 

contribute to the modeling of treatment membership of observations. The eliminated predictors 

were fat, protein, TS, C18_0, LCFA, SFA, TUFA, FFA and FP ratio. Only 10 milk components 

had a VIP score greater than 0.8 (Table 6-3). Inspection of the coefficients of these milk 

components for the classification of observations according to treatment reveals that only T3 

shows a pattern that might be in agreement with elevated body fat mobilization, which includes 

increased BHB and C16:0, which is a long chain fatty acid, and decreased lactose (Figure 6-4) [98, 

100]. However, this PLS-DA model explained only 10.79% of the variation related to treatment 

membership of observations, which suggests that the treatment effect on milk composition was 

negligible or the period of exposure to treatment was not sufficient to produce a significant 

treatment effect on milk composition, which explains the lack of effect on other milk components, 

such as protein and  C18:1. PLS-DA was the only technique that provided some insight into the 

effect of treatment on milk composition. However, the conclusions drawn from PLS-DA might be 

undermined by the fact that it does not consider the repeated measurement structure of this study 
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and the effects other than treatment that are included in the statistical model under which the data 

was generated.  

Table 6-3 VIP scores of predictors of the parsimonious PLS-DA classification model according to treatment. 

Milk Component VIP Score 

C18_1 1.2096 

SCFA 1.1330 

BHB 1.0890 

MUFA 1.0364 

Urea 1.0016 

PUFA 0.9785 

MCFA 0.9590 

Trans FA 0.8626 

Lactose 0.8310 

C16_0 0.8237 
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Figure 6-4 Coefficients of important milk components for classification of observations according to treatment by the 

parsimonious PLS-DA model. T3 shows signs of elevated body fat mobilization similar to what has been reported in the 

literature, such as increased BHB and C16:0, a long chain fatty acid, and decreased lactose.   

6.3.2 Analysis of milk Spectral dataset 

The analysis of the milk composition numerical dataset was limited to milk components that were 

provided by Valacta. However, there are other minor milk components that have been reported in 

the literature as biomarkers for the cow’s metabolic state, such as citrate, acetone and acetoacetate 

[59], which are not included in this dataset and which might have provided better insight about the 

treatment effect on milk composition. On the other hand, milk FTIR spectra have information 

about all molecules that contain covalent bonds present in milk, which means that the milk spectral 

dataset contains more details about milk composition of samples collected during this study. 

Having said that, several approaches were evaluated for analysing the spectral dataset of milk. The 

first approach was to visually inspect the average treatment spectra calculated for week 3 and 10. 

For example, Figure 6-5 shows that the average raw spectra for week 3 and 10 of T1 during season 

1 of the trial have more intense absorption bands than those of T3 at ~ 1745 cm-1, or Fat A region, 

which suggests that milk samples of cows assigned to T1 had higher fat content than milk samples 

of cows assigned to T3 during the first season of the trial. In addition, it can be noticed that the fat 
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content decreased and increased for T1 and T3, respectively, between weeks 3 and 10 in the first 

season of the trial. By visually inspecting the average raw spectra, only general remarks could have 

been stated about changes to the major milk components’ FTIR bands. This method is incapable 

of testing any treatment effect; hence, visualizing spectra is not an appropriate approach to detect 

or test a treatment effect on milk FTIR spectra.  

 
Figure 6-5 Spectral averages comparison. Blue: average spectrum of T1 week 3, purple: average spectrum of T1 week 10, red: 

average spectrum of T3 week 10, green: average spectrum of T3 week 3. T1 has more intense absorption band than T3 at ~ 1745 

cm-1. In addition, the intensity of the band decreased and increased for T1 and T3, respectively, between weeks 3 and 10 in the 

first season of the trial. 

The second approach was to apply HCA to the four versions of the milk spectral dataset (i.e. raw, 

FD, VN raw, VN FD). HCA is an unsupervised classification method that aims at uncovering of 

natural groups or clusters that are present in a dataset where observations are relatively 

homogenous within a cluster and different from other observations in other clusters. To achieve 

this goal, a specific distance measure, such as Euclidian distance, is calculated between pairs of all 

observations, then a linkage algorithm is used to determine the similarity between observations 
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and eventually their cluster membership. The result of this analysis is projected in a dendrogram, 

which is a tree like graph that visualizes the similarities between different clusters and observations 

[94]. In this case, the HCA dendrogram revealed that spectra of milk samples tend to cluster 

according to season. The trend was most notable in the raw spectral dataset (Figure 6-6). This 

observation suggests that season has the strongest effect on the spectral data, which agrees with 

the findings of the univariate analysis of the mixed procedure of milk components in the previous 

section. The tendency to cluster by season became more evident after applying the forward search 

feature selection algorithm to the raw spectral dataset, which aims at selecting the significant 

features or wavenumbers that are responsible for the main sources of variation in the spectral 

dataset. This algorithm found that regions 1134-1095 cm-1 and 1330-1292 cm-1 were the most 

significant for clustering according to season (Figure 6-7). In the dendrogram, most of the samples 

with the red color, which represent season 1, fell in the upper arm. On the other hand, most of the 

samples with the blue color, which represent season 2, fell in the lower arm. Since HCA is an 

unsupervised classification method, the data did not show any tendency to cluster according to any 

other studied factor, which renders HCA functionality limited in this context of spectral analysis.  

The findings of the third approach, PCA, were consistent with those of HCA. The PCA score plot 

shows that samples tend to cluster according to season in the raw spectral dataset (Figure 6-8) 

when all spectral regions that contain information related to milk chemical composition were used 

(i.e., 3061-2803 cm-1, 1797-1681 cm-1 and 1612-925 cm-1). This trend became more evident when 

PCA was restricted to regions 1134-1095 cm-1 and 1330-1292 cm-1, which were detected by the 

forward search feature selection algorithm. In the first case, seven meaningful PCs, whose 

eigenvalue is ≥1 and the percentage of explained variation is ≥1%, were observed and they 

explained 98.40% of the variation in the raw spectral dataset. PC1, PC2 and PC3 explained 

47.33%, 35.46% and 11.19% of the variation in the raw spectral dataset, respectively. In the second 

case, only two meaningful PCs were observed that explained 99.02% of the variation in the raw 

spectral dataset. PC1 and PC2 explained 76.22% and 22.80% of the variation in the raw spectral 

dataset, respectively. This low number of meaningful PCs suggests that the trend that have been 

observed in the raw spectral dataset (i.e., clustering according to time) might be an artifact resulting 

from variability of instruments or the application of the analytical procedure at Valacta. When 

contacted about this regard, Valacta confirmed that all milk samples were analyzed by the same 

analyzer (i.e., line E), which was frequently standardized according to the standard operational 
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procedure (SOP) in effect. Nevertheless, trends observed only in the raw spectral dataset should 

be interpreted with caution since they might be a result of procedural systematic factors that are 

not controlled during the trial. However, if the signal, which is detected at regions 1134-1095 cm-

1 and 1330-1292 cm-1 by the forward search feature selection algorithm, is true then it can be 

assigned to one or more of the following IR bands: 𝐶𝐻3 wagging of fatty acids at ~1123 cm-1, 𝑁 −

𝐻 wagging of the Amide III band of proteins at ~1300 cm-1, bending of symmetric bond (𝐻𝐶𝐻) 

and of 𝐶𝐻2𝑂𝐻 of carbohydrates between 1500 cm-1 and 1200 cm-1, or C–O bond and C–C bond 

stretching of carbohydrates between 1200 cm-1 and 950 cm-1 [108]. No specific assignment can be 

made in this case due to the fact that the forward search feature selection algorithm does not 

provide a loading spectrum as PCA does; hence, the exact position of the significant FTIR bands 

will not be known. The only conclusion that can be drawn in this case is that fat, protein and lactose 

concentrations might have been changing over the trial period, which does not prove any treatment 

effect. This conclusion is consistent with the findings of the spectral visual inspection.  

PLS-DA was the fourth approach that was used to analyze the milk spectral dataset. The VN FD 

spectral dataset resulted in a parsimonious model with 54 significant spectral features that 

explained 96.56% and 20.49% of the variation in the X and Y matrices, respectively (Table 6-4). 

The spectral dataset explains more variation related to the treatment membership (i.e., variation in 

the Y matrix) than the milk composition numerical dataset. The spectral and the numerical datasets 

explain 20.49% and 10.79% of the variation in the Y matrix, respectively. This observation 

confirms that the full milk FTIR spectrum contains more details related to effects of TR 

configuration treatments on milk composition than numbers reported by FTIR analyzers. Hence, 

analysis of full milk FTIR spectrum is preferred over analysis of few selected milk components 

that are reported in this type of studies.  

The variable importance plot for the PLS-DA model for the VN FD spectral dataset reveals that 

the most influential spectral variables that explain the treatment membership of milk samples are 

1400 cm-1, 1076 cm-1, 1053 cm-1, 2822 cm-1, 2926 cm-1 and 1280 cm-1 (Figure 6-9). It must be 

noted that these wavenumbers represent the band limits and not the actual peaks of the significant 

FTIR bands. In the case of first derivative, the band peak becomes zero and band limits become 

maxima and minima. In addition, the fact that the VN FD spectral dataset was more efficient in 

modeling the treatment membership with a smaller number of spectral variables than the VN raw 
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spectral dataset indicates that the differences in milk composition between treatments are more 

probably reflected in minor milk components. For example, the wavenumber 1400 cm-1 could be 

the limit for the 1370 cm-1 band of acetone in milk FTIR spectrum [109] that can be assigned to 

the bending vibration of the C-H bond [108]. Acetone is a biomarker related to elevated body fat 

mobilization [100]. This observation is consistent with the findings of the PLS-DA analysis of the 

milk numerical dataset which concluded that minor milk components mostly reflect the treatment 

effect. However, no further conclusions could have been drawn from this analysis, such as which 

treatment was significantly different form the others in terms of acetone concentration, which 

keeps the main question of this study unanswered.  

None of the previous approaches could incorporate the statistical model of the experimental design 

of this study to test the TR treatment effect on the spectral dataset. For this reason, a univariate 

approach was applied to the four versions of the milk FTIR spectral dataset. It could test the 

different effects defined in the statistical model and provided P values for each tested spectral 

variable (Table 6-5). This approach revealed a significant season, time and block effects on 

multiple spectral variables, but no significant treatment effect was detected. Four spectral variables 

in the FD spectral dataset revealed significant interactions between time and treatment. These 

spectral variables were 1558 cm-1, 1554 cm-1, 1361 cm-1 and 1357 cm-1. However, it was not 

possible to interpret these results from a spectroscopic point of view because this approach does 

not test the studied effects on the spectrum as a wholistic entity.  

To summarize, different approaches have been evaluated to detect TR configuration effect on milk 

composition. None of them proved to be adequate in answering the questions of the current 

problem. As a result, a new approach had to be developed to test a TR treatment effect on milk 

composition that will address the following points:  

1- The new approach must be a multivariate one because treatments affecting milk 

composition will probably affect multiple components in milk.  

2- The analysis must be performed on the FTIR spectral data of milk because this data 

contains more details about milk composition than numbers reported by a commercial 

analyzer. The PLS-DA models that were previously discussed showed that the spectral 

dataset explained more variation in the Y matrix (i.e., the treatment membership) than the 
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numerical dataset. The spectral and the numerical datasets explained 20.49% and 10.79% 

of the variation in the Y matrix, respectively.  

3- The new multivariate approach must be tweaked to accommodate powerful univariate 

statistical tools, such as mixed modeling, that will test the effects of different factors and 

that will produce indicators about the significance of these factors (e.g., P values) while 

retaining the multivariate structure of the spectral data.  
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Figure 6-6 HCA dendrogram of raw spectral data. Samples tend to cluster according to season red is season 1, blue is season 2.  
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Figure 6-7 HCA dendrogram of raw spectral data after forward feature selection. The spectral regions that are used are 1134-

1095 cm-1 and 1330-1292 cm-1. Clustering according to season becomes more evident. Upper arm is season 1 (red), lower arm is 

season 2 (blue). 
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Figure 6-8 PCA scores of the raw spectral dataset. Samples tend to cluster according to season. A: the spectral regions used are 

3061-2803 cm-1, 1797-1681 cm-1, 1612-925 cm-1, B: the separation became more evident when PCA was restricted to spectral 

regions detected by forward search feature selection algorithm 1134-1095 cm-1 and 1330-1292 cm-1. 

Table 6-4 Model comparison summary of PLS-DA models developed for the four spectral dataset of milk samples. The vector 

normalized first derivative spectral dataset resulted in the most parsimonious model.  

Spectral 

Dataset 
Model 

Number of 

factors 

Percent 

variation 

explained for X 

matrix 

Percent 

variation 

explained for 

Y matrix 

Number of 

VIP>0.8 

Raw 
Initial 14 99.48 21.24 179 

Parsimonious 14 99.63 20.88 118 

FD 
Initial 14 94.05 20.96 155 

Parsimonious 11 96.78 21.13 83 

VN Raw 
Initial 13 99.04 21.87 148 

Parsimonious 12 99.35 19.83 94 

VN FD 
Initial 13 92.03 22.10 150 

Parsimonious 10 96.56 20.49 54 
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Figure 6-9 Variable importance plot for the PLS-DA model for the vector normalized first derivative spectra dataset. The most 

influential variables that explain the treatment membership for milk samples are centered at ~1400 cm-1, 1076 cm-1, 1053 cm-1, 

2822 cm-1, 2926 cm-1 and 1280 cm-1. It must be noted that these wavenumbers represent the band limits in the case of first 

derivative and not the actual peaks of the IR bands.  

Table 6-5 P values obtained from the mixed procedure that was applied to individual spectral variables in the raw, FD, VN raw 

and VN FD spectral datasets of milk. 

  Treatment Start Block (Start) Week Treatment*Week 

Raw 
Min. P value 0.2082 < 0.0001 0.0001 < 0.0001 0.4267 

Max. P value 0.9730 0.9849 0.7882 0.6444 0.9994 

FD 
Min. P value 0.0797 < 0.0001 0.0001 < 0.0001 0.0231 

Max. P value 0.9995 0.9868 0.9010 0.8877 0.9993 

VN Raw 
Min P value 0.1533 0.0004 < 0.0001 < 0.0001 0.2901 

Max P value 0.9955 0.9686 0.7298 0.6991 0.9831 

VN FD 
Min P value 0.0829 < 0.0001 < 0.0001 < 0.0001 0.0528 

Max P value 0.9965 0.9979 0.9983 0.7778 0.9937 
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6.3.3 Hybrid approach for milk spectral dataset analysis 

Before applying the hybrid approach to the TR trial’s spectral data, milk samples were spiked with 

lactose at two levels, 5% and 1%, to test the feasibility of this approach in detecting a treatment’s 

effect on milk composition FTIR spectral data.  

PCA was applied to the spectral regions 3061-2803 cm-1, 1797-1681 cm-1 and 1612-925 cm-1 of 

the spiked milk samples. The VN raw and VN FD spectral datasets produced 6 and 9 meaningful 

PCs (i.e., eigenvalue ≥1 and percent of explained variation ≥1%) that explained 94.91% and 

95.91% of the variation in the dataset, respectively (Table 6-6). For the VN raw spectral data, PC1 

and PC2 explained 79.15% and 9.10% of the variation, respectively. For the VN FD spectral data, 

PC1 and PC2 explained 73.80% and 8.83% of the variation, respectively. 

First, the effect of the spiked lactose concentration was tested by the mixed model that was applied 

to the meaningful PCs that were isolated from each spectral dataset. The spiked lactose 

concentration, which is considered as the treatment, showed significant effect on PC1 and PC2 in 

VN raw and VN FD spectral datasets, respectively. This step provided a clear answer to one of the 

questions in this problem, which is “Does the treatment have a significant effect on the FTIR 

spectral data of milk composition?”. Another question that needed to be answered is “Which 

treatment level did significantly change milk components’ concentrations?”. The answer to this 

question lies in the estimates of the least squares means of the significant PC scores for each 

treatment level that are produced by the mixed model. Table 6-7 shows that these estimates 

increase with increased lactose concentration in the VN raw spectral dataset, on the other hand, 

they decrease with increased lactose concentration in the VN FD spectral dataset. The same 

experiment was repeated with three levels of lactose in aqueous solutions, 1% 2% and 5%, and the 

same observation was revealed. In this case, the increased lactose concentration will linearly 

increase the intensities of the spectral variables between 1200 cm-1 and 950 cm-1, which will 

produce PCA scores with increasing and decreasing values in the VN raw and VN FD spectral 

dataset, respectively. In addition, the differences of the least squares means will reveal the 

significant differences among different treatment levels (Table 6-8).  
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Table 6-6 Meaningful principal components isolated from the VN raw and VN FD spectral datasets of milk samples spiked with 

two levels of lactose. The spiked lactose concentration yielded a significant effect on PC1 and PC2 for VN raw and VN FD 

spectral datasets, respectively, when tested with the mixed procedure.  

PC 
Eigenvalue Explained Variation % P value 

VN Raw VN FD VN Raw VN FD VN Raw VN FD 

PC1 111.6042 104.0581 79.152 73.800 <0.0001* 0.1367 

PC2 12.8309 12.4435 9.100 8.825 0.8326 <0.0001* 

PC3 3.3335 3.8386 2.364 2.722 0.9660 0.9894 

PC4 2.3771 3.5680 1.686 2.531 0.9825 0.9928 

PC5 1.9246 3.1382 1.365 2.226 0.9960 0.7790 

PC6 1.7584 2.8542 1.247 2.024 0.9932 0.8690 

PC7 - 2.1694 - 1.539 - 0.7830 

PC8 - 1.7054 - 1.209 - 0.9790 

PC9 - 1.4517 - 1.030 - 0.7728 

 

Table 6-7 Estimates of the least squares means of the significant PC scores produced by the mixed model for lactose spiked milk 

samples and aqueous solutions for the VN raw and VN FD spectral datasets. These means increase and decrease with increased 

lactose concentration in the VN raw and VN FD spectral datasets, respectively.  

Sample 
Spectral 

dataset 

Significant 

PC 
Category Estimate 

Standard 

Error 
P Value 

Milk 

VN Raw PC1 
High 12.3584 0.3117 <.0001 

Low -8.5558 0.2593 <.0001 

VN FD PC2 
High -3.7315 0.5230 <.0001 

Low 2.5833 0.4352 <.0001 

Water 

VN Raw PC1 

High 14.5585 0.09661 <.0001 

Mid -4.7313 0.09661 <.0001 

Low -9.8272 0.09661 <.0001 

VN FD PC1 

High -13.4298 0.1958 <.0001 

Mid 4.4075 0.1958 <.0001 

Low 9.0223 0.1958 <.0001 
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Table 6-8 Differences of least squares means of PC scores produced by the mixed model for lactose spiked milk samples and 

aqueous solutions for the VN raw and VN FD spectral datasets. Significant differences among treatment levels are revealed by P 

values. 

Sample 
Spectral 

dataset 
Significant PC Category Estimate 

Standard 

Error 
P Value 

Milk 
VN Raw PC1 High vs. Low 20.9142 0.4055 <.0001 

VN FD PC2 High vs. Low -6.3148 0.6804 <.0001 

Water 

VN Raw PC1 

High vs. Low 24.3857 0.1366 <.0001 

High vs. Mid 19.2899 0.1366 <.0001 

Low vs. Mid -5.0958 0.1366 <.0001 

VN FD PC1 

High vs. Low -22.4521 0.2769 <.0001 

High vs. Mid -17.8373 0.2769 <.0001 

Low vs. Mid 4.6148 0.2769 <.0001 

 

Second, differences in the behaviour of the PCA scores had to be understood in cases of raw and 

FD spectral data. Inspection of the PCA score plots (Figure 6-10) reveals that samples with high 

lactose concentration load positively on the PC that was extracted from the VN raw spectral dataset 

and that showed significant treatment effect (i.e., PC1). On the other hand, the PCA scores of 

samples with high lactose concentrations load negatively on the PC that was extracted from the 

VN FD spectral dataset and that showed significant treatment effect (i.e., PC2). This observation 

proves that PCA scores of the FD spectral data behave in an opposite way to PCA scores obtained 

from raw spectral data.  
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Figure 6-10 PCA scores of milk samples spiked with two levels of lactose. A: samples spiked with high lactose concentration are 

loading positively on PC1 that showed significant effect for spike level in the VN raw spectral dataset. B: samples spiked with 

high lactose concentration are loading negatively on PC2 that showed significant effect for spike level in the VN FD spectral 

dataset. 

The third question that this approach answers is “What are the spectral variables that were affected 

by changing milk components’ concentrations?”. This question can be answered by inspecting the 

loading spectrum of the PC that showed a treatment significant effect. The loadings represent the 

weights that linearly combines the spectral variables to calculate the scores for every sample for 

this specific PC, in other words, they represent the contribution of each spectral variable to this 

specific PC scores. In case the loading spectrum was obtained from raw spectral dataset, then it 

can be interpreted directly and conclusion about influential spectral variables can be drawn. For 

example, the loading spectrum of PC1, which was extracted from VN raw spectral dataset and that 

showed significant treatment effect, positively correlates with wavenumbers that had increased 

spectral intensities as a result of lactose spiking (Figure 6-11). These wavenumbers are located 

between 1466 cm-1 and 989 cm-1. The strongest correlation was observed between 1175 cm-1 and 

989 cm-1, which is dominated by lactose spectral contribution in milk FTIR spectrum. On the other 

hand, this loading spectrum negatively correlates with spectral variables whose intensities 

decreased with lactose spiking, especially in the spectral region from 1582 cm-1 to 1511 cm-1, 

which is dominated by milk protein spectral contribution in milk FTIR spectrum.  

In case the loading spectrum was obtained from FD spectral dataset (i.e., PC2), it cannot be 

interpreted directly because the maximum of an FTIR band peak becomes zero when FD is 

calculated (Figure 6-12). Hence, the spectral integral of the loading spectrum obtained from FD 

spectral dataset must be calculated before interpretation to restore back the influential spectral 
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peaks in the loading spectrum. The cumulative trapezoidal numerical integration function in 

MATLAB was used to calculate the spectral integral of the loading spectrum obtained from FD 

spectral dataset. The spectral integral reveals clear positive correlations with spectral variables 

from 1200 cm-1 to 950 cm-1 which are dominated by lactose spectral contribution (Figure 6-13). It 

must be noted that when calculating the FD, the baseline is lost, and integration will never restore 

it back. This issue is not problematic because the loading spectrum is only used to detect increased 

or decreased correlations with wavenumbers and to locate peaks that corresponds to influential 

spectral variables for the PC in question. The loading spectrum will never be used for quantitative 

determinations. The integration process of the loading spectrum was followed by peak fitting to 

determine the spectral variables that represent the centers of influential FTIR bands. This process 

located the most prominent peak in the positively correlating portion of the integrated PC2 loading 

spectrum at 1086 cm-1 (Table 6-9), which had the greatest peak height and peak area. The band 

centered around 1086 cm-1 has been reported in the literature as the band with the most intense 

absorption for D-(+)-lactose [110]. In addition, all detected peaks, 1086 cm-1 and 1139 cm-1, fall 

within the region of lactose absorption from 1200 cm-1 to 950 cm-1.  
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Figure 6-11 Comparison between FTIR spectra of milk samples spiked with lactose and the principal component extracted from 

raw spectra that revealed significant effect for lactose concentration. Red: FTIR spectrum of milk sample spiked with 1% lactose, 

purple: FTIR spectrum of milk spectrum spiked with 5% lactose, blue: loading spectrum of PC1, which is the principle 

component that showed significant treatment effect (i.e., lactose spiking). Spectral variables with increased spectral intensities 

correlate positively with PC1 and vice versa.  
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Figure 6-12 Comparison between FTIR spectra of milk samples spiked with lactose and the principal component extracted from 

first derivative spectra that revealed significant effect for lactose concentration. Green: FTIR spectrum of milk sample spiked 

with 1% lactose, purple: FTIR spectrum of milk spectrum spiked with 5% lactose, red: loading spectrum of PC2 isolated from VN 

FD spectral dataset of milk samples spiked with lactose before integration. No conclusions regarding influential spectral 

variables can be drawn in this case.  
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Figure 6-13 Comparison of loading spectrum of PC2 obtained from VN FD spectral dataset of milk samples spiked with different 

levels of lactose (red) and the spectral integral of loading spectrum of PC2 (blue). The spectral integral shows clear positive 

correlation with spectral variables from 1200 cm-1 to 950 cm-1 which are dominated by lactose spectral contribution. 

 

Table 6-9 Peak fitting results for PC2 integrated loading spectrum that was extracted from VN FD spectral dataset of milk 

samples spiked with lactose. The most prominent peak is at 1086 cm-1, which is very close to lactose peak at 1076 cm-1. 

Peak # Peak Type Center X Height FWHH Area 

1 Voigt 1039.88 0 23.4975 0 

2 Voigt 1086.787 4.7302 23.0564 271.6144 

3 Voigt 1113.078 0 28.4228 0 

4 Voigt 1139.808 0.9093 25.6215 50.244 

5 Voigt 1184.314 0 28.0263 0 

6 Voigt 1238.561 0 26.3452 0 
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The final question that this approach answers is “What molecules in milk can be assigned to the 

detected peaks in the loading spectrum?”. To answer this question, several approaches will be 

employed. First, milk samples will be spiked with minor milk components, such as urea, citrate 

and acetone, to detect their peaks in milk FITR spectrum. Second, the literature will be reviewed 

for any milk FTIR peaks that will be detected by the hybrid approach and that will not be assigned 

to any molecule by the spiking experiments. Third, FTIR reference spectra of minor milk 

components will be reviewed for possible candidate molecules that can be assigned to any 

unknown peaks in milk FTIR spectrum. These reference spectra will be downloaded from the 

National Institute of Standards and Technology (NIST) [111]. It must be noted that peaks extracted 

from a loading spectrum will not be treated as band centers because the hybrid approach 

approximate the influential FTIR peaks in a loading spectrum that are related to a treatment effect. 

If they fall within FTIR band of a specific bond of a molecule then they will be assigned to that 

molecule. The detected peaks in the loading spectrum need not be an exact match of FTIR band 

center of a specific bond in a molecule in milk.   

When the hybrid approach was applied to the spectral datasets of the TR trial, PCA yielded five, 

ten, six and twelve meaningful PCs from the raw, FD, VN raw and VN FD spectral datasets that 

explained 97.13%, 93.72%, 97.07% and 93.97% of the variation in the spectral dataset, 

respectively (Table 6-10). Only PC5 isolated from the VN raw spectral dataset revealed a 

significant treatment effect (P = 0.0478). The loading spectrum of this PC shows strong 

correlations at 2833 cm-1, 1775 cm-1, 1720 cm-1 and 1206 cm-1 (Figure 6-14). These wavenumbers 

fall on the limits of the FTIR bands of Fat B, Fat A, carboxylic group and Amide III bands in the 

FTIR spectra of the trial’s milk samples, which might imply that the treatment influenced fat, fatty 

acids and protein levels in the collected milk samples. However, PC5 also reveals significant 

effects for the season (P = 0.0481), the block (P = 0.0030) and the week (P < 0.0001) effects. In 

addition, the least squares means output of the mixed procedure shows significant interactions 

between some weeks and treatments (Table 6-11). These observations undermine the significance 

of the treatment effect; hence, the loading spectrum will not be interpreted any further.  
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To summarize, the hybrid approach was successfully applied to the FTIR spectral data of milk 

samples collected during the TR trial, which retained the multivariate structure of the FTIR spectral 

data and allowed the utilization of the mixed model as a powerful tool to test the treatment effect 

on the FTIR spectral data of collected milk samples according to the statistical model that was 

defined by the experimental design of the trial with a repeated measurement structure that included 

fixed and random effects. In addition, the hybrid approach highlighted the need to alter the 

statistical model in order to eliminate the strong week effect, which might overshadow any 

treatment effect. In the next chapter, the statistical model will be altered to eliminate the week 

effect and the hybrid approach, that was developed in this chapter, will be applied to the FTIR data 

of the TR trial.  
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Table 6-10 The hybrid analysis approach applied to meaningful PCs extracted from raw, FD, VN raw and VN FD spectral 

datasets. PC5 extracted from VN raw dataset reveals significant treatment effect (P = 0.0478) in addition to a strong significant 

week effect (P <0.0001).  

Spectral 

Dataset 

Meaningful 

PC 
Eigenvalue 

Explained 

Variation 

% 

Cumulative 

Explained 

Variation 

% 

P Values 

Treatment Start 
Block 

(Start) 
Week Treatment*Week 

Raw 

PC1 131.58 47.33 47.33 0.3650 0.4918 0.1384 0.0129 0.5465 

PC2 98.57 35.46 82.79 0.7025 <0.0001 0.0063 <0.0001 0.9963 

PC3 31.11 11.19 93.98 0.9527 0.0003 0.0001 <0.0001 0.7137 

PC4 5.24 1.89 95.86 0.5947 0.4105 0.3527 <0.0001 0.5595 

PC5 3.53 1.27 97.13 0.1990 0.1050 0.1891 <0.0001 0.2675 

FD 

PC1 147.73 53.14 53.14 0.3516 0.3079 0.0778 0.0006 0.4919 

PC2 43.03 15.48 68.62 0.9454 0.0077 0.0012 <0.0001 0.9664 

PC3 29.38 10.57 79.18 0.5440 0.0002 0.0104 0.0008 0.1017 

PC4 12.94 4.66 83.84 0.1885 0.0172 0.0212 0.0421 0.6272 

PC5 6.60 2.37 86.21 0.9179 0.0565 0.1188 <0.0001 0.6114 

PC6 5.84 2.10 88.31 0.4658 0.1925 0.0411 <0.0001 0.6197 

PC7 4.55 1.64 89.95 0.7516 0.0003 0.0002 <0.0001 0.7027 

PC8 4.03 1.45 91.40 0.5454 0.5727 0.0614 <0.0001 0.9560 

PC9 3.38 1.22 92.62 0.9286 0.0020 0.6008 <0.0001 0.5458 

PC10 3.07 1.11 93.72 0.8729 0.3596 0.0344 <0.0001 0.5593 

VN 

Raw 

PC1 188.05 67.64 67.64 0.4479 0.5917 0.2798 0.2537 0.6130 

PC2 55.76 20.06 87.70 0.9279 0.7324 <0.0001 <0.0001 0.9827 

PC3 14.19 5.11 92.80 0.5406 0.0009 0.0445 <0.0001 0.8577 

PC4 5.72 2.06 94.86 0.1824 0.1428 0.2127 <0.0001 0.5590 

PC5 3.54 1.27 96.14 0.0478 0.0481 0.0030 <0.0001 0.6112 

PC6 2.59 0.93 97.07 0.2151 0.0121 0.0316 <0.0001 0.6463 

VN FD 

PC1 158.87 57.15 57.15 0.4527 0.8100 0.3782 0.4379 0.5152 

PC2 45.17 16.25 73.40 0.7708 0.8727 0.0002 <0.0001 0.3095 

PC3 13.96 5.02 78.42 0.1848 0.3740 0.0326 0.0019 0.5701 

PC4 8.89 3.20 81.62 0.9806 0.0002 0.0897 <0.0001 0.5731 

PC5 6.41 2.31 83.93 0.5798 0.0007 0.0362 <0.0001 0.5042 

PC6 5.00 1.80 85.73 0.8833 0.0016 0.0041 <0.0001 0.8177 

PC7 4.61 1.66 87.38 0.1836 0.1060 0.0037 <0.0001 0.6829 

PC8 4.36 1.57 88.95 0.8591 0.0044 0.0032 <0.0001 0.7012 

PC9 4.06 1.46 90.41 0.3142 0.1344 0.0915 0.0001 0.7577 

PC10 3.73 1.34 91.75 0.3109 0.0474 0.0137 <0.0001 0.7254 

PC11 3.26 1.17 92.92 0.4412 0.6319 0.0768 <0.0001 0.4111 

PC12 2.90 1.04 93.97 0.1575 0.7255 0.1740 0.0009 0.1174 
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Figure 6-14 The loading spectrum of PC5 that was extracted from the VN raw spectral dataset of the TR trial. This PC reveals 

significant treatment effect (P = 0.0478) and it shows strong correlations at 2833 cm-1, 1775 cm-1, 1720 cm-1 and 1206 cm-1 
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Table 6-11 The least squares means output of the mixed procedure that was applied to PC5 of the VN raw spectral dataset of the 

TR trial. It reveals significant interactions between some weeks and treatments. 

Effect Treatment Week Estimate STD Error DF t Value P Value 

Treatment 1  0.234 0.1661 41.8 1.41 0.1662 

Treatment 2  0.3784 0.1757 41.5 2.15 0.0371 

Treatment 3  0.0614 0.1562 42.6 0.39 0.6962 

Treatment 4  -0.267 0.1562 42.6 -1.71 0.0946 

Week  1 -0.7108 0.1561 331 -4.55 <.0001 

Week  2 0.2929 0.1567 336 1.87 0.0624 

Week  3 0.212 0.2648 564 0.8 0.4238 

Week  4 0.8318 0.2648 564 3.14 0.0018 

Week  5 -0.5412 0.2648 564 -2.04 0.0415 

Week  6 0.9179 0.2621 563 3.5 0.0005 

Week  7 -0.00878 0.2648 564 -0.03 0.9735 

Week  8 0.1348 0.2648 564 0.51 0.6109 

Week  9 0.4452 0.2648 564 1.68 0.0932 

Week  10 -0.5568 0.2648 564 -2.1 0.0359 

Treatment*Week 1 1 -0.9092 0.3333 354 -2.73 0.0067 

Treatment*Week 1 2 0.2851 0.3277 344 0.87 0.385 

Treatment*Week 1 3 0.5123 0.5339 565 0.96 0.3377 

Treatment*Week 1 4 0.9947 0.5339 565 1.86 0.063 

Treatment*Week 1 5 -0.1088 0.5339 565 -0.2 0.8386 

Treatment*Week 1 6 1.6543 0.512 557 3.23 0.0013 

Treatment*Week 1 7 0.1829 0.5339 565 0.34 0.7321 

Treatment*Week 1 8 -0.3702 0.5339 565 -0.69 0.4883 

Treatment*Week 1 9 0.5806 0.5339 565 1.09 0.2773 

Treatment*Week 1 10 -0.4819 0.5339 565 -0.9 0.3671 

Treatment*Week 2 1 -0.5497 0.318 304 -1.73 0.0849 

Treatment*Week 2 2 0.1528 0.3278 329 0.47 0.6414 

Treatment*Week 2 3 0.8766 0.5605 564 1.56 0.1184 

Treatment*Week 2 4 1.046 0.5605 564 1.87 0.0625 

Treatment*Week 2 5 0.1597 0.5605 564 0.28 0.7758 

Treatment*Week 2 6 1.0781 0.5605 564 1.92 0.0549 

Treatment*Week 2 7 -0.1244 0.5605 564 -0.22 0.8245 

Treatment*Week 2 8 1.0727 0.5605 564 1.91 0.0562 

Treatment*Week 2 9 0.5122 0.5605 564 0.91 0.3612 

Treatment*Week 2 10 -0.4395 0.5605 564 -0.78 0.4333 

Treatment*Week 3 1 -0.7019 0.2969 347 -2.36 0.0186 

Treatment*Week 3 2 0.1299 0.2969 347 0.44 0.6619 

Treatment*Week 3 3 0.331 0.5103 567 0.65 0.5168 

Treatment*Week 3 4 0.4616 0.5103 567 0.9 0.3661 

Treatment*Week 3 5 -1.3314 0.5103 567 -2.61 0.0093 

Treatment*Week 3 6 0.614 0.5103 567 1.2 0.2294 

Treatment*Week 3 7 0.147 0.5103 567 0.29 0.7735 

Treatment*Week 3 8 0.08745 0.5103 567 0.17 0.864 

Treatment*Week 3 9 0.8144 0.5103 567 1.6 0.1111 

Treatment*Week 3 10 0.06197 0.5103 567 0.12 0.9034 

Treatment*Week 4 1 -0.6825 0.2969 347 -2.3 0.0221 

Treatment*Week 4 2 0.604 0.2969 347 2.03 0.0427 

Treatment*Week 4 3 -0.8721 0.5103 567 -1.71 0.088 

Treatment*Week 4 4 0.825 0.5103 567 1.62 0.1065 

Treatment*Week 4 5 -0.8841 0.5103 567 -1.73 0.0837 

Treatment*Week 4 6 0.325 0.5103 567 0.64 0.5245 

Treatment*Week 4 7 -0.2406 0.5103 567 -0.47 0.6375 

Treatment*Week 4 8 -0.2507 0.5103 567 -0.49 0.6234 

Treatment*Week 4 9 -0.1262 0.5103 567 -0.25 0.8048 

Treatment*Week 4 10 -1.3679 0.5103 567 -2.68 0.0076 
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6.4 Conclusion  

Several approaches have been evaluated to detect the effect of TR configuration on milk 

composition. The numerical milk composition data did not reveal significant treatment effect when 

analyzed by the mixed procedure, which is a univariate hypothesis testing approach. On the other 

hand, PCA revealed that the predictions of the minor milk components might have been biased by 

the spectral contributions of the major milk components and it did not provide any insight on the 

treatment effect on milk composition. Only PLS-DA provided such insight; however, the 

conclusions drawn from this analysis were undermined by the fact that it does not take into account 

the repeated measurement structure of this study and the effects other than the treatment (e.g., 

block, week, season) that are included in the statistical model under which the data was generated. 

In addition, this analysis was limited to milk components that were reported by the FTIR milk 

analyzer, which did not include all important biomarkers in dairy cows, such as citrate, acetone 

and acetoacetate.  

Unsupervised analysis of the full milk FTIR spectrum revealed only the strongest effect on milk 

composition, which was the time effect. Techniques, such as HCA and PCA, could not test or 

reveal the TR treatment effect in the presence of an overwhelming effect, such as the week or the 

season effect. On the other hand, supervised analysis of the full milk FTIR spectrum by PLS-DA 

revealed more details pertaining to the TR treatment effect on milk composition than PLS-DA 

analysis of the numerical dataset of milk composition. However, PLS-DA was not capable of 

answering the main questions of the current problem.  

A new hybrid approach was developed for assessing a treatment effect on FTIR milk spectral data 

that could answer all the questions related to the current problem. These questions are:   

▪ Does a treatment have a significant effect on the FTIR spectral data of milk composition? 

▪ Which treatment level did significantly change milk components’ concentrations? 

▪ What are the spectral variables that were affected by changing milk components’ 

concentrations? 

▪ What molecules in milk can be assigned to FTIR peaks that are significantly affected by 

the treatment? 
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This hybrid approach was successfully applied to the FTIR spectral data of milk samples 

collected during the TR trial, which retained the multivariate structure of the FTIR spectral 

data, while at the same time, accommodated the utilization of the mixed model as a powerful 

tool to test fixed and random effects on the FTIR spectral data of collected milk samples 

according to the statistical model that was defined by the experimental design of the trial with 

a repeated measurement structure and enabled hypothesis testing.  
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Figure 6-15 Workflow of the hybrid data analysis approach of FTIR milk spectral data to detect a treatment effect. 
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Connecting statement  

In the previous chapter, a hybrid analysis approach of milk FTIR data was developed by combining 

principle component analysis (PCA) and mixed modeling as a data mining tool to isolate the 

spectral fingerprint that reflects the effect of a housing treatment of dairy cattle on milk FTIR 

spectral data in the context of controlled-design trials without relying on predictions of milk 

components from the FTIR spectral data. This hybrid approach will push milk FTIR spectroscopy 

beyond the paradigm of predicting specific milk components by PLS regression models to make 

inferences about the metabolic state of the animal. In this chapter, the hybrid analysis approach 

will be applied to milk FTIR spectra collected for animal trials that aim at studying the effects of 

tie rail position, chain length, stall width, stall length and manger wall height on animal welfare in 

the tie stall dairy farming system. The spectral fingerprint that represents the changes in milk 

composition related to the housing treatment effect will be interpreted in light of behavioural and 

welfare data collected for the trials’ subjects. The hybrid approach will provide a novel angle to 

study animal welfare.  
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Chapter 7: Data mining of milk FTIR spectral data by combining 

mixed modeling and multivariate analysis to study the effects of 

housing treatments on cow welfare  

Abstract  

Principal component analysis and mixed modeling were successfully combined in a hybrid 

approach to analyze milk FTIR spectral data. This approach was applied to milk FTIR spectral 

data of 4 animal trials designed to study the effects of different housing treatments on the chemical 

composition of milk. In the tie rail trial, PC7 extracted from long-term VN FD spectral average 

dataset revealed significant effect on milk composition (P = 0.0106) for T3, which is the treatment 

that had the tie rail height at 112 cm and its forward position at 18 cm. The loading spectrum of 

this principal component revealed features that could be attributed to molecules in milk associated 

with elevated body fat mobilization, which indicated that T3 tie rail configuration was probably 

obstructing the cow access to feed. In the chain length trial, PC6 (P = 0.0323) extracted from long-

term VN FD spectral average dataset revealed significant effect of the tie chain length on milk 

composition. The loading spectrum of this principal component revealed features that could be 

attributed to molecules in milk associated with increased incidents of acidotic rumen insults. The 

findings suggest that cows enrolled in the longer chain treatment had increased saliva production 

that stabilized the ruminal pH. In the stall width trial, PC5 extracted from long-term VN Raw 

spectral dataset revealed significant effect (P = 0.0423) for the single width treatment and a 

significant block effect (P = 0.0008). The loading spectrum of this principle component revealed 

milk samples collected from cows enrolled in the single width treatment (i.e., T1) had higher milk 

fat triglycerides, milk fatty acids and BHB. However, this effect was the result of a missing milk 

sample for the double width treatment (i.e., T2) that rendered the median parity of cows of T2 

greater than that of T1, which are 3 and 2, respectively. Hence, the cows of T2 were older and one 

lactation higher than those of T1. In the manger wall height and stall length trial, PC6 extracted 

from long-term FD spectral dataset revealed significant stall length effect (P = 0.0355) on milk 

composition, which was due to higher incidents of mastitis in cow enrolled in the shorter stall 

length. The SCC average for stall length treatments confirmed this observation. 
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7.1 Introduction 

Milk analysis by FTIR spectroscopy is currently being used to determine major milk components, 

milk fatty acids and minor milk components, such as urea, BHB and acetone. This technology can 

be implemented as a precision dairy monitoring technology that can identify individual cows with 

health or physiological issues through exception reporting of parameters that are significantly 

deviating from regular baselines recorded for individual animals [112]. Several milk components 

that are determined by FTIR milk analyzers are used to detect health and wellbeing disorders in 

dairy cows. For example, LeBlanc et al., (2005) found a strong association between displaced 

abomasum incidence and BHB levels in milk >200 µmol/L [113]. Toni et al., (2011) reported that 

increased fat-to-protein ratio is an indicator of elevated lipid mobilization and increased risk of 

ketosis, displaced abomasum, lameness and mastitis [113]. Geishauser et al., (2001) reported 

thresholds for the following molecules in milk for diagnosis of subclinical ketosis:  100 µmol/L of 

BHB, 100 µmol/L of acetoacetate or 250 µmol/L of acetone [113]. Enemark (2008) reported 

depressed milk fat percentage as an indicator of increased risk of subacute ruminal acidosis 

(SARA) incidence in dairy cows; however, the author also acknowledge the difficulty in relying 

on this indicator alone to diagnose SARA due to high variability in milk fat overtime [113]. 

Forsbäck et al., (2010) observed little day-to-day variations in milk components and milk somatic 

cell count (SCC) in healthy lactating cows compared with cows diagnosed with mastitis or 

subclinical mastitis [113]. Nielsen et al., (2005) reported consistent lactose concentration of 4.7% 

or higher was associated with lower SCC and reduced risk of intramammary infections [113]. 

However, by the time the animal exhibits clinical signs of stress or illness, it might be too late to 

intervene [112]. On the other hand, the above-mentioned health issues are also associated with 

behavioural changes that precede the clinical diagnosis. For example, cows that were diagnosed 

with a left displaced abomasum showed increased step activity in comparison to healthy animals 

during the week prior to the clinical diagnosis [113].  Goldhawk et al., (2009) observed that cows 

at risk of subclinical ketosis had fewer feeding visits and 18% less dry matter intake in comparison 

with healthy controls in the week leading up to calving. The authors also acknowledged that 

measuring feed intake is difficult on commercial farms and that changes in feeding behavior, milk 

composition and milk yield are affected by multitude of factors; hence, undermining their 

reliability in diagnosing diseases and disorders in dairy cows [113]. Yeiser (2011) observed that 

rest time was greater and average daily steps were significantly lower five days before cows were 
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diagnosed with mastitis [113]. He also noticed that 2 days before onset rest time decreased 

compared with that of healthy cows [113].  

One of the multiple benefits of milk analysis by FTIR is that its implementation does not require 

an invasive procedure or extensive labor. Increased frequency of the acquisition of milk mid-

infrared spectra by existing dairy control laboratories has the potential to provide more information 

regarding the efficiency of feed management, health, reproduction and wellbeing of individual 

cows [112]. This approach will allow the producers to adopt proactive practices and help them 

intervene at the early stages of probable issues when actual milk components diverge from 

expected levels for individual animals [112]. However, commercial milk FTIR analyzers rely on 

partial least squares (PLS) models to predict milk components’ levels from milk mid-infrared 

spectra. The accuracy of these PLS models is a function of the accuracy of the reference method 

that was used to determine the actual levels of the analyte of interest in milk samples that were 

used to calibrate the PLS model.  

The objective of this chapter is to evaluate the potential of combined mixed modeling and 

multivariate analysis of milk mid-IR spectra in detecting changes in milk chemical composition 

resulting from physiological conditions that can be related to different housing treatments intended 

to improve the level of comfort and welfare of individual cows, without relying on determining 

intermediate values for specific milk components. In other words, the capability of the hybrid 

analysis approach will be evaluated for its potential to capture the spectral fingerprint of specific 

trend of changing milk components that can later be used to build prediction models of the health 

and welfare condition of individual cows. Animal behavioural data will also be used to support 

any trends detected by the hybrid analysis approach of spectral data.  
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7.2 Materials and Methods 

7.2.1 The data 

For each trial, milk samples were collected weekly and they were analyzed in Valacta Inc. lab 

(Ste., Anne-de-Bellevue, QC, Canada) to determine major and minor milk components using 

commercial FTIR milk analyzer. Two sets of data were received from Valacta. The first dataset 

comprised the concentrations of milk components that were determined by the commercial FTIR 

milk analyzer for individual milk samples. This dataset will be referred to as the numerical dataset. 

The second dataset contained FTIR spectra recorded for individual milk samples collected during 

the trial. This dataset will be referred to as the spectral dataset. Each FTIR spectrum consisted of 

1060 spectral variables between 5008 cm-1 and 925 cm-1. 

A total of 19 milk components were included in the numerical dataset for the tie rail, chain length 

and stall width trials. For the manger wall and stall length, a total of 22 milk components were 

included. For all the trials, milk numeric data included concentrations of the following milk 

components: fat, protein, lactose, urea, beta-hydroxybutyrate (BHB), palmitic acid (C16:0), stearic 

acid (C18:0), oleic acid (C18:1), short-chain fatty acids (SCFA), mid-chain fatty acids (MCFA), 

long-chain fatty acids (LCFA), saturated fatty acids (SFA), total unsaturated fatty acids (TUFA), 

mono-unsaturated fatty acids (MUFA), poly-unsaturated fatty acids (PUFA), trans fatty acids 

(TFA), free fatty acids (FFA). All trials’ milk numeric data included total solids (TS) except for 

the manger wall and stall length trial; on the other hand, all trials’ milk numeric data included 

myristic acid (C14:0) except for the tie rail trial. In addition, the tie rail trial’s milk numeric data 

included fat-to-protein ratio and the manger wall and stall length trial’s milk numeric data included 

de novo fatty acids, mixed fatty acids, preformed fatty acids and true protein. These numerical 

datasets will be used to confirm observations that were concluded from the application of the 

hybrid spectral analysis, when possible. The total number of samples that were analyzed were 626, 

355, 175, 476 for the tie rail, chain length, stall width and the manger wall and stall length trials, 

respectively. 
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7.2.2 Experimental design and statistical model  

7.2.2.1 Tie rail trial  

The objective of this trial was to study the effect of the tie rail height and forward position on 

cow’s behaviour and welfare [102], which was conducted at the Dairy Research Complex, 

Macdonald Campus, McGill University (Ste. Anne-de-Bellevue, QC, Canada). A tie rail (TR) is 

the pipe used as the attachment for the tie chain, which controls the forward location of each cow 

in her stall. In this study, 48 cows were assigned to 4 TR configurations, which were defined by 

the height and the forward position of TR. TR heights were 122, 122, 112 and 102 cm and forward 

positions were 18 cm, 36 cm, 18 cm and 36 cm for treatments T1, T2, T3 and T4, respectively. 

Treatments T1 and T2 are TR configurations that are recommended and commonly found on dairy 

farms, respectively. On the other hand, treatments T3 and T4 are new TR configurations designed 

to increase the opportunity of movements of the cow at her stall; hence, improve cow behavior and 

welfare. Cows were assigned to 6 different blocks to account for age of the cow, days in milk 

within current lactation and location in the barn effects. Half the cows underwent the trial during 

summer 2016 and the other half during fall 2016. Each period lasted 10 weeks (i.e., period 1: from 

July 25th to October 3rd, period 2: from October 10th to December 19th). The original statistical 

model of this trial was:    

𝑌𝑖𝑗𝑘𝑙𝑚 = 𝜇 + 𝑡𝑟𝑡𝑖 + 𝑠𝑡𝑎𝑟𝑡𝑗 + 𝑏𝑙𝑜𝑐𝑘𝑘𝑗𝑖 + 𝑐𝑜𝑤𝑙𝑘𝑗𝑖 + 𝑤𝑒𝑒𝑘𝑚 + 𝑡𝑟𝑡𝑖 × 𝑤𝑒𝑒𝑘𝑚 + 𝑒𝑖𝑗𝑘𝑙𝑚 

Where 𝑌𝑖𝑗𝑘𝑙𝑚 was the dependent variable; the outcome measure of the 𝑙𝑡ℎ cow from the 𝑘𝑡ℎ block 

(parity, DIM and location in the barn) and the 𝑗𝑡ℎ start date on the combination of the 𝑖𝑡ℎ tie-rail 

configuration and 𝑚𝑡ℎ week. 𝑡𝑟𝑡𝑖 was the fixed effect of the 𝑖𝑡ℎ tie-rail configuration. 𝑠𝑡𝑎𝑟𝑡𝑗 was 

the fixed effect of the 𝑗𝑡ℎ start date. 𝑏𝑙𝑜𝑐𝑘𝑘𝑗𝑖 was the fixed effect of 𝑘𝑡ℎ parity, DIM and location 

in the barn from the 𝑗𝑡ℎ start date on the 𝑖𝑡ℎ tie-rail configuration treatment. 𝑐𝑜𝑤𝑙𝑘𝑗𝑖 was the 

random effect of the 𝑙𝑡ℎ cow from the 𝑗𝑡ℎ start date and the 𝑘𝑡ℎ block on the 𝑖𝑡ℎ tie-rail 

configuration treatment. 𝑤𝑒𝑒𝑘𝑚 was the fixed effect of the 𝑚𝑡ℎ week. 𝑡𝑟𝑡𝑖 × 𝑤𝑒𝑒𝑘𝑚 is the 

interaction effect of the individual combination of the 𝑖𝑡ℎ tie-rail configuration treatment with the 

𝑚𝑡ℎ week.  𝑒𝑖𝑗𝑘𝑙𝑚 was the random residual associated with the outcome measure of the 𝑙𝑡ℎ cow 

from 𝑗𝑡ℎ start date and 𝑘𝑡ℎ block on the combination of the 𝑖𝑡ℎ tie-rail configuration treatment and 

the 𝑚𝑡ℎ week [102]. 
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To eliminate the week effect, short-term and long-term averages were calculated for each cow for 

FTIR spectra and milk composition data that included samples collected from week 1 to week 3 

and from week 8 to week 10, respectively. As a result, the statistical model was modified to become 

as follows:  

𝑌𝑖𝑗𝑘 = 𝜇 + 𝑡𝑟𝑡𝑖 + 𝑠𝑡𝑎𝑟𝑡𝑗 + 𝑏𝑙𝑜𝑐𝑘𝑘𝑗 + 𝑒𝑖𝑗𝑘 

Where 𝑌𝑖𝑗𝑘 was the dependent variable; the outcome measure of the cow of the 𝑖𝑡ℎ tie-rail 

configuration from the 𝑘𝑡ℎ block (parity, DIM and location in the barn) and the 𝑗𝑡ℎ start date. 𝑡𝑟𝑡𝑖 

was the fixed effect of the 𝑖𝑡ℎ tie-rail configuration. 𝑠𝑡𝑎𝑟𝑡𝑗 was the fixed effect of the 𝑗𝑡ℎ start date. 

𝑏𝑙𝑜𝑐𝑘𝑘𝑗 was the fixed effect of 𝑘𝑡ℎ parity, DIM and location in the barn from the 𝑗𝑡ℎ start date. 

𝑒𝑖𝑗𝑘 was the random residual associated with the outcome measure of the cow from 𝑗𝑡ℎ start date 

and 𝑘𝑡ℎ block on the 𝑖𝑡ℎ tie-rail configuration treatment.  

7.2.2.2 Chain length trial 

The objective of this animal trial was to study the effect of the tie chain length (TCL) on cow’s 

behaviour and welfare [114]. The trial was conducted at the Dairy Research Complex, Macdonald 

Campus, McGill University (Ste. Anne-de-Bellevue, QC, Canada). A tie chain confines a cow to 

her stall space and allows for ease of lunging, resting in the head back position, or grooming. In 

this study, 24 cows were assigned to 2 TCL treatments. T1, which is the control, had a chain length 

of 1 m. On the other hand, T2, which is a suggested treatment, had a chain length of 1.4 m that 

intends to increase the cow’s movement ability in her stall. Cows were assigned to 12 different 

blocks to account for age of the cow (i.e., parity and stage of lactation) and days in milk within 

current lactation, they were placed evenly into two rows within the barn (i.e., row 1 and 4). The 

trial lasted for 10 weeks from February 20th, 2017 to May 1st, 2017. The original statistical model 

of this trial was: 

𝑌𝑖𝑗𝑘𝑙 = 𝜇 + 𝑡𝑟𝑡𝑖 + 𝑏𝑙𝑜𝑐𝑘𝑗 + 𝑐𝑜𝑤𝑖𝑗 + 𝑟𝑜𝑤𝑘 + 𝑤𝑒𝑒𝑘𝑙 + 𝑡𝑟𝑡𝑖 × 𝑤𝑒𝑒𝑘𝑙 + 𝑒𝑖𝑗𝑘𝑙 

Where: 𝑌𝑖𝑗𝑘𝑙 was the dependant variable; the outcome measure of the cow from the 𝑗𝑡ℎ block 

(parity and lactation stage) in the 𝑘𝑡ℎ row on the combination of the 𝑖𝑡ℎ chain length and the 𝑙𝑡ℎ 

week; 𝑡𝑟𝑡𝑖  is the fixed effect of the 𝑖𝑡ℎchain length; 𝑏𝑙𝑜𝑐𝑘𝑗  is the fixed effect of the 𝑗𝑡ℎ
 parity and 

lactation stage combination; 𝑐𝑜𝑤𝑖𝑗  is the random effect of the cow from the 𝑗𝑡ℎ block on the 𝑖𝑡ℎ 
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chain length; 𝑟𝑜𝑤𝑘  is the random effect of the 𝑘𝑡ℎ
 row in the barn; 𝑤𝑒𝑒𝑘𝑙  is the fixed effect of the 

𝑙𝑡ℎ week; 𝑡𝑟𝑡𝑖 × 𝑤𝑒𝑒𝑘𝑙  is the fixed effect of the interaction, the specific effect of the combination 

of the 𝑖𝑡ℎ chain length and the 𝑙𝑡ℎ week; 𝑒𝑖𝑗𝑘𝑙  is the random residual associated with the outcome 

measure of the cow from the 𝑗𝑡ℎ block in the 𝑘𝑡ℎ row on the combination of the 𝑖𝑡ℎ chain length 

and the 𝑙𝑡ℎ week [114]. 

To eliminate the week effect, short-term and long-term averages were calculated for each cow for 

FTIR spectra and milk composition data that included samples collected from week 1 to week 3 

and from week 8 to week 10, respectively. As a result, the statistical model was modified to become 

as follows:  

𝑌𝑖𝑗𝑘 = 𝜇 + 𝑡𝑟𝑡𝑖 + 𝑏𝑙𝑜𝑐𝑘𝑗 + 𝑟𝑜𝑤𝑘 + 𝑒𝑖𝑗𝑘 

Where: 𝑌𝑖𝑗𝑘𝑙 was the dependant variable; the outcome measure of the cow from the 𝑗𝑡ℎ block 

(parity and lactation stage) in the 𝑘𝑡ℎ row on the 𝑖𝑡ℎ chain length; 𝑡𝑟𝑡𝑖  is the fixed effect of the 

𝑖𝑡ℎchain length; 𝑏𝑙𝑜𝑐𝑘𝑗  is the fixed effect of the 𝑗𝑡ℎ
 parity and lactation stage combination; 𝑟𝑜𝑤𝑘  

is the random effect of the 𝑘𝑡ℎ
 row in the barn; 𝑒𝑖𝑗𝑘  is the random residual associated with the 

outcome measure of the cow from the 𝑗𝑡ℎ block in the 𝑘𝑡ℎ row on the 𝑖𝑡ℎ chain length.  

7.2.2.3 Stall width trial  

The objective of this animal trial was to study the effect of the stall width (SW) on cow’s behaviour 

and welfare [114]. The stall width allows the cows to rest in wider positions. The trial was 

conducted at the Dairy Research Complex, Macdonald Campus, McGill University (Ste. Anne-

de-Bellevue, QC, Canada). In this study, 16 cows were assigned to 2 SW treatments. T1, which is 

the control, had a single width stall that was calculated as follows: 2x (width of cow at hips) + 2 

inches. On the other hand, T2, which is a suggested treatment, had a double width stall that intends 

to increase the cow’s comfort in her stall. The stall width for this treatment was calculated as 

follows: 2x (2x (width of cow at hips) + 2 inches). Cows were assigned to 8 different blocks to 

account for age of the cow (i.e., parity and stage of lactation) and days in milk within current 

lactation and they were placed evenly into two rows within the barn (i.e., row 1 and 4). The trial 

lasted for 6 weeks from June 5th, 2017 to July 14th, 2017. The original statistical model of this trial 

was: 
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𝑌𝑖𝑗𝑘𝑙 = 𝜇 + 𝑡𝑟𝑡𝑖 + 𝑏𝑙𝑜𝑐𝑘𝑗 + 𝑐𝑜𝑤𝑖𝑗 + 𝑟𝑜𝑤𝑘 + 𝑤𝑒𝑒𝑘𝑙 + 𝑡𝑟𝑡𝑖 × 𝑤𝑒𝑒𝑘𝑙 + 𝑒𝑖𝑗𝑘𝑙 

 

Where: 𝑌𝑖𝑗𝑘𝑙  was the dependant variable; the outcome measure of the cow from the 𝑗𝑡ℎ block (parity 

and lactation stage) in the 𝑘𝑡ℎ row on the combination of the 𝑖𝑡ℎ stall width and the 𝑙𝑡ℎ week; 𝑡𝑟𝑡𝑖  is 

the fixed effect of the 𝑖𝑡ℎ stall width; 𝑏𝑙𝑜𝑐𝑘𝑗  is the fixed effect of the 𝑗𝑡ℎ parity and lactation stage 

combination; 𝑐𝑜𝑤𝑖𝑗  is the random effect of the cow from the 𝑗𝑡ℎ block on the 𝑖𝑡ℎ stall width; 𝑟𝑜𝑤𝑘  is 

the random effect of the 𝑘𝑡ℎ row in the barn; 𝑤𝑒𝑒𝑘𝑙 is the fixed effect of the 𝑙𝑡ℎ week; 𝑡𝑟𝑡𝑖 × 𝑤𝑒𝑒𝑘𝑙  

is the fixed effect of the interaction, the specific effect of the combination of the 𝑖𝑡ℎ stall width and the 

𝑙𝑡ℎ week; 𝑒𝑖𝑗𝑘𝑙 is the random residual associated with the outcome measure of the cow from the 𝑗𝑡ℎ 

block in the 𝑘𝑡ℎ row on the combination of the 𝑖𝑡ℎ stall width and the 𝑙𝑡ℎ week [114]. 

To eliminate the week effect, data of weeks 1 and 6 were used as short-term and long-term datasets 

for data analysis. As a result, the statistical model was modified to become as follows:  

𝑌𝑖𝑗𝑘 = 𝜇 + 𝑡𝑟𝑡𝑖 + 𝑏𝑙𝑜𝑐𝑘𝑗 + 𝑟𝑜𝑤𝑘 + 𝑒𝑖𝑗𝑘 

Where: 𝑌𝑖𝑗𝑘  was the dependant variable; the outcome measure of the cow from the 𝑗𝑡ℎ block (parity 

and lactation stage) in the 𝑘𝑡ℎ row on the 𝑖𝑡ℎ stall width; 𝑡𝑟𝑡𝑖  is the fixed effect of the 𝑖𝑡ℎ stall width; 

𝑏𝑙𝑜𝑐𝑘𝑗  is the fixed effect of the 𝑗𝑡ℎ parity and lactation stage combination; 𝑟𝑜𝑤𝑘  is the random effect 

of the 𝑘𝑡ℎ row in the barn; 𝑒𝑖𝑗𝑘 is the random residual associated with the outcome measure of the cow 

from the 𝑗𝑡ℎ block in the 𝑘𝑡ℎ row on the 𝑖𝑡ℎ stall width. 

7.2.2.4 Manger wall and stall length trial 

The objective of this animal trial was to study the combined effect of the stall length and manger 

wall height on cow’s behaviour and welfare [115]. The trial was conducted at the Dairy Research 

Complex, Macdonald Campus, McGill University (Ste. Anne-de-Bellevue, QC, Canada). The 

length of two rows in the barn were modified as follows: row 1 was 178 cm (i.e., short or L1), 

which is commonly found on Quebec’s farm, and row 4 was 188 cm (i.e., long or L2), which is a 

suggested modification. Two manger wall heights were applied randomly to stalls within each 

row: 20 cm (i.e., regular or T1), which is the upper limit of recommendation and 5 cm (i.e., low or 

T2). In this study, 24 cows were randomly divided into 4 groups. Two groups were assigned to 

each row and subjected to both manger wall treatments in a crossover design (1 week for 
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habituation, 6 weeks of data collection/treatment). Cows were assigned to 6 different blocks to 

account for age of the cow (i.e., parity and stage of lactation) and days in milk within current 

lactation. Increasing the stall length and reducing the manger wall will increase the space available 

for the cow, which will ease its movement and lying; thus, reducing its susceptibility to injuries. 

The trial lasted for 14 weeks from February 26th, 2018 to June 4th, 2018. The original statistical 

model of this trial was: 

𝑌𝑖𝑗𝑘𝑚𝑛𝑝𝑞 = 𝜇 + 𝑙𝑒𝑛𝑔𝑡ℎ𝑖 + 𝑠𝑒𝑞𝑖𝑗 + 𝑏𝑙𝑜𝑐𝑘𝑘 + 𝑐𝑜𝑤𝑖𝑗𝑘𝑚 + 𝑝𝑒𝑟𝑖𝑜𝑑𝑛 + 𝑤𝑒𝑒𝑘𝑝 + 𝑡𝑟𝑡𝑖𝑞 + 𝑡𝑟𝑡𝑖𝑞 × 𝑤𝑒𝑒𝑘𝑝 + 𝑒𝑖𝑗𝑘𝑚𝑛𝑝𝑞 

Where: 𝑌𝑖𝑗𝑘𝑚𝑛𝑝𝑞  was the dependent variable; the outcome measure of the 𝑚𝑡ℎ cow of the 𝑘𝑡ℎ block 

in the 𝑗𝑡ℎ seq of the 𝑖𝑡ℎ length, the 𝑞𝑡ℎ trt of the 𝑖𝑡ℎ length, and the 𝑛𝑡ℎ period and 𝑝𝑡ℎ week; 𝑙𝑒𝑛𝑔𝑡ℎ𝑖  

is the fixed effect of the 𝑖𝑡ℎ
 stall length; 𝑠𝑒𝑞𝑖𝑗 is the fixed effect of the 𝑗𝑡ℎ sequence on the 𝑖𝑡ℎ stall 

length; 𝑏𝑙𝑜𝑐𝑘𝑘 is the fixed effect of the 𝑘𝑡ℎ parity and stage of lactation combination; 𝑐𝑜𝑤𝑖𝑗𝑘𝑚 is the 

random effect of the cow from the 𝑘𝑡ℎ block on the 𝑗𝑡ℎ sequence of the 𝑖𝑡ℎ stall length; 𝑝𝑒𝑟𝑖𝑜𝑑𝑛 is 

the fixed effect of the 𝑛𝑡ℎ period; 𝑤𝑒𝑒𝑘𝑝 is the fixed effect of the 𝑝𝑡ℎ week; 𝑡𝑟𝑡𝑖𝑞  is the fixed effect 

of the 𝑞𝑡ℎ manger wall height treatment on the 𝑖𝑡ℎ
 stall length treatment; 𝑡𝑟𝑡𝑖𝑞 × 𝑤𝑒𝑒𝑘𝑝 is the fixed 

effect of the interaction, the specific effect of the combination of the 𝑝𝑡ℎ week and the 𝑞𝑡ℎ manger 

wall height on the 𝑖𝑡ℎ stall length; and 𝑒𝑖𝑗𝑘𝑚𝑛𝑝𝑞  is the random residual associated with the outcome 

measure of the cow from the 𝑘𝑡ℎ block on the 𝑗𝑡ℎ
 seq of the 𝑖𝑡ℎ length, the 𝑞𝑡ℎ manger wall height 

(on the 𝑖𝑡ℎ stall length) and on the 𝑝𝑡ℎ week of the 𝑛𝑡ℎ period [115]. 

To eliminate the week effect, data of weeks 1 and 6 were used as short-term and long-term datasets 

for data analysis. As a result, the statistical model was modified to become as follows:  

𝑌𝑖𝑗𝑘𝑚𝑛𝑞 = 𝜇 + 𝑙𝑒𝑛𝑔𝑡ℎ𝑖 + 𝑠𝑒𝑞𝑖𝑗 + 𝑏𝑙𝑜𝑐𝑘𝑘 + 𝑐𝑜𝑤𝑖𝑗𝑘𝑚 + 𝑝𝑒𝑟𝑖𝑜𝑑𝑛 + 𝑡𝑟𝑡𝑖𝑞 + 𝑒𝑖𝑗𝑘𝑚𝑛𝑞 

Where: 𝑌𝑖𝑗𝑘𝑚𝑛𝑞  was the dependent variable; the outcome measure of the 𝑚𝑡ℎ cow of the 𝑘𝑡ℎ block 

in the 𝑗𝑡ℎ seq of the 𝑖𝑡ℎ length, the 𝑞𝑡ℎ trt of the 𝑖𝑡ℎ length, and the 𝑛𝑡ℎ period; 𝑙𝑒𝑛𝑔𝑡ℎ𝑖  is the fixed 

effect of the 𝑖𝑡ℎ
 stall length; 𝑠𝑒𝑞𝑖𝑗 is the fixed effect of the 𝑗𝑡ℎ sequence on the 𝑖𝑡ℎ stall length; 

𝑏𝑙𝑜𝑐𝑘𝑘 is the fixed effect of the 𝑘𝑡ℎ parity and stage of lactation combination; 𝑐𝑜𝑤𝑖𝑗𝑘𝑚 is the random 

effect of the cow from the 𝑘𝑡ℎ block on the 𝑗𝑡ℎ sequence of the 𝑖𝑡ℎ stall length; 𝑝𝑒𝑟𝑖𝑜𝑑𝑛 is the fixed 

effect of the 𝑛𝑡ℎ period; 𝑡𝑟𝑡𝑖𝑞  is the fixed effect of the 𝑞𝑡ℎ manger wall height treatment on the 𝑖𝑡ℎ
 

stall length treatment; and 𝑒𝑖𝑗𝑘𝑚𝑛𝑞  is the random residual associated with the outcome measure of 
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the cow from the 𝑘𝑡ℎ block on the 𝑗𝑡ℎ
 seq of the 𝑖𝑡ℎ length, the 𝑞𝑡ℎ manger wall height (on the 𝑖𝑡ℎ 

stall length) and of the 𝑛𝑡ℎ period.   

7.2.3 Spectral data analysis 

The hybrid approach that was developed in the previous chapter was applied to the short-term and 

long-term spectral datasets that were calculated for each trial. The spectral regions that were 

retained for spectral analysis were 1612-925 cm-1, 1797-1681 cm-1 and 3061-2803 cm-1 with a total 

of 278 spectral variables. These spectral regions were considered because they contain the 

information related to milk chemical composition. Inhouse MATLAB codes were written to 

calculate differential FD of the spectra, to VN the spectra and to load individual spectra into a 

matrix. These spectral pre-treatments were applied to spectra of individual samples prior to 

calculating the short-term and long-term averages. In JMP Pro 13.2.1., PCA was applied to the 

four versions of the short-term and long-term spectral datasets (i.e., raw, FD, VN raw, VN FD) as 

a dimension reduction method to reduce the number of responses to be tested by the mixed model. 

PCs with eigenvalue ≥ 1 and that explained 1% of the variation or more were considered 

meaningful and were retained for testing by the mixed model. The Mixed procedure in SAS 9.4 

(SAS Institute, Cary, NC, USA) was utilized to test for the treatment effect at significance level 

α=0.05. If a PC revealed a significant treatment effect, then the least squares means of its scores 

were examined to determine the treatment levels that are significantly different from the other 

levels using a Scheffé adjustment for multiple comparisons. The influential spectral features can 

be directly extracted from the loading spectrum of the PC that revealed the significant treatment 

effect, if it was extracted from raw spectral dataset. If this PC was obtained from FD spectral 

dataset, then the spectral integral of the PC’s loading spectrum must be calculated before extracting 

the influential spectral features. The cumulative trapezoidal numerical integration function in 

MATLAB was used to calculate the spectral integral for the loading spectrum in question. If the 

integrated loading spectrum had produced wide humps with no clear peaks, the Peak Resolve 

feature in Omnic 7.3 (Thermo Electron Corporation, Waltham, MA, USA) was used to fit the 

integrated loading spectrum for probable peaks. To do so, the Voigt function with low or high 

sensitivity was used and the baseline was set to none. The noise and the full width at half height 

(FWHH) of the narrowest peak in the region of interest was determined by the software. The fitting 

process was repeated several times until an acceptable residual spectrum was obtained. Milk 
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numerical dataset will be used to confirm observations from the spectral analysis related to 

determined milk components.  

In addition, parsimonious PLS-DA model was developed for the tie rail trial for the averaged 

numerical milk composition data for exploratory purposes according to the method described in 

the previous chapter.  

7.2.4 Interpretation of spectral features in loading spectra 

Bulk tank raw milk was obtained from the Dairy Research Complex, Macdonald Campus, McGill 

University (Ste. Anne-de-Bellevue, QC, Canada). Milk samples of 35 mL were spiked with minor 

milk components and aqueous solutions of these chemicals were prepared. Their FTIR spectra 

were recorded at Valacta by their milk analyzers. Urea, β-hydroxybutyric acid (BHBA or BHB) 

and acetone were chosen because they are routinely determined by dairy control laboratories. 

Linoleic acid was chosen as an example of unsaturated fatty acid. It must be noted that different 

fatty acids do not produce distinct FTIR signals from each other, specially when they are present 

in a mixture of fatty acids [42]. In addition to urea, other nonprotein nitrogen (NPN) compounds 

that are present in milk were used to spike milk samples. These compounds are ammonium, 

creatine, histamine, orotic acid and hippuric acid [84]. In addition to BHB and acetone, citrate and 

acetate are also markers for energy intake related issues in dairy cows [59]. In addition, phosphate, 

lactose, glucose and galactose were also chosen. For compounds that do not have solubility limits 

in water, 1% (w/v) and 0.5% (w/v) were used for sample and solution preparations; otherwise, 

solubility in water was used as the maximum concentration for the preparations (Table 7-1). 

Additional milk samples were prepared by spiking them with the mean quantity found in milk for 

compounds that are naturally present in low concentrations in milk [84]. The following chemicals 

were obtained from Sigma-Aldrich: BHB (i.e., DL- β-Hydroxybutyric acid sodium salt ~98%), 

citrate (i.e., citric acid trisodium salt dihydrate), phosphate (i.e., sodium phosphate monobasic 

monohydrate 𝐻2𝑁𝑎𝑂4𝑃 𝐻2𝑂), α-D glucose, D-Galactose, α-D-Lactose monohydrate, linoleic acid 

(i.e., linoleic acid sodium salt 99%), creatine anhydrous, histamine, orotic acid monohydrate (i.e., 

6-Carboxy-2,4-dihydroxypyrimidine) and hippuric acid (i.e., benzoylaminoacetic acid sodium salt 

99%). Urea and acetone were obtained from Fisher scientific. Acetate (i.e., sodium acetate 

anhydrous 𝑁𝑎𝐶2𝐻3𝑂2) and ammonium chloride were obtained from Mallinckrodt and VWR, 

respectively. 
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Omnic 7.3 (Thermo Electron Corporation, Waltham, MA, USA) was used to calculate variance 

spectra and the second derivative for the collected spectra, and the Find Peaks functionality was 

used to determine IR peaks’ positions in milk and in the aqueous solution for each compound.  

Table 7-1 Concentrations of spiked milk samples and aqueous solutions of milk minor components 

Compound Concentrations (w/v) 

Urea 1%, 0.5% 

BHB 1%, 0.5% 

Acetone 1%, 0.5% 

Citrate 1%, 0.5% 

Acetate 1%, 0.5% 

Phosphate 1%, 0.5% 

Glucose 1%, 0.5% 

Galactose 1%, 0.5% 

Lactose 1%, 0.5% 

Ammonium 1%, 0.5%, 0.002% (milk mean) 

Linoleic acid 0.14% 

Creatine 1%, 0.5%, 0.002% (milk mean) 

Histamine 0.28% 

Orotic acid 0.14% (solubility), 0.002% (milk mean) 

Hippuric acid 0.3% (solubility), 0.0006% (milk mean) 
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7.3 Results and Discussion 

7.3.1 Interpretation of spectral features in loading spectra 

Table 7-2 summarizes the spectral features of minor milk components observed in the second 

derivative of FTIR spectra of milk samples spiked with these molecules and their respective 

aqueous solutions. These observed features will be used to identify the influential features and 

their respective molecules in the loading spectra of principal components that will reveal 

significant treatment effect in the studies covered in this chapter.  

Urea is a primary amide (Figure 7-7) that has a carbonyl (𝐶 = 𝑂) and two amino (−𝑁𝐻2) 

functional groups. The spectra of milk samples spiked with increasing amounts of urea (Figure 

7-8) reveal increased absorbance intensity at peaks centered around ~ 1457 and 1156 cm-1. These 

peaks are assigned to the 𝐶 − 𝑁 stretching band and 𝐶 − 𝑁  stretching coupled with the stretching 

of adjacent bond in the molecule, respectively [116]. The amide I band at 1650 cm-1 that results 

from 𝐶 = 𝑂 stretching is not observable in aqueous samples because it overlaps with the 𝑂 − 𝐻 

bending vibration band of water, which is considered as a noisy region. 

β-hydroxybutyric acid is a β-hydroxy acid (Figure 7-9) that has carboxyl and hydroxy functional 

groups separated by two carbon atoms, in addition to methyl and methylene groups. The spectra 

of milk samples spiked with increasing amounts of β-hydroxybutyric acid (Figure 7-10) reveal 

increased absorbance intensity at peaks centered around ~ 2926, 1554, 1405, 1316, 1077 cm-1. The 

peak at 2926 is assigned to the asymmetrical stretching (𝜈𝑎𝑠𝐶𝐻2) of the methylene group, which 

overlaps with the signal of the 𝐶 − 𝐻 stretching of milk fat or the Fat B region [116]. The peak at 

1316 cm-1 is assigned to the 𝐶 − 𝑂 stretching [116]. On the other hand, the peak at 1077 cm-1 is 

assigned to and 𝐶 − 𝐻 bending vibrations [117], and the 𝐶 − 𝑂/𝐶 − 𝐶 bond stretching [110], 

which overlaps with the signal coming from lactose. The carboxylate ion gives rise to two bands: 

a strong asymmetrical stretching at 1554 cm-1 and a weaker symmetrical stretching at 1405 cm-1. 

This band can also be assigned to the 𝐶 − 𝑂 − 𝐻 bending [116]. 

Acetone is a ketone (Figure 7-11) that has a carbonyl functional group (𝐶 = 𝑂) and two methyl 

(𝐶𝐻3) groups. The spectra of milk samples spiked with increasing amounts of acetone (Figure 

7-12) reveal increased absorbance intensity at peaks centered around ~ 1690, 1414, 1373 and 1239 

cm-1. The peak at 1690 cm-1 is assigned to the carbonyl group (𝐶 = 𝑂) stretching [116]. Normally, 
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carbonyl group exhibit absorbance band at 1715 cm-1, but in this case the position of the carbonyl 

band has shifted into a reduced wavenumber because of the polarity of water in milk. The peaks 

at 1414 and 1373 cm-1 are assigned to the asymmetrical (𝛿𝑎𝑠𝐶𝐻3) and symmetrical (𝛿𝑠𝐶𝐻3) 

bending vibration of the methyl group, respectively [116]. The peak at 1239 cm-1 is assigned to 

the stretching of 𝐶 − 𝐶 − 𝐶 group and the bending of 𝐶 − 𝐶(= 𝑂) − 𝐶 in the 𝐶 − 𝐶 − 𝐶 group 

[116]. 

Citrate is a derivative of citric acid (Figure 7-13), which is a week organic acid. It has three 

carboxyl function groups and one hydroxy functional group. The spectra of milk samples spiked 

with increasing amounts of citrate (Figure 7-14) reveal increased absorbance intensity at peaks 

centered around ~ 2926, 1557, 1394, 1248, 1078 cm-1. The peak at 2926 is assigned to the 

asymmetrical stretching (𝜈𝑎𝑠𝐶𝐻2) of the methylene group, which overlaps with the signal of the 

𝐶 − 𝐻 stretching of milk fat or the Fat B region [116]. The peaks at 1557, 1394 and 1248 cm-1 are 

assigned to the strong symmetrical stretching of the carboxylate ion, the 𝐶 − 𝑂 − 𝐻 bending and 

the 𝐶 − 𝑂 stretching [116]. The peak at 1078 cm-1 is assigned to the 𝐶 − 𝐻 bending vibrations 

[117] and the 𝐶 − 𝑂/𝐶 − 𝐶 bond stretching [110], which overlaps with the signal coming from 

lactose. 

Acetate is a derivative of acetic acid (Figure 7-15), which is a week organic acid. Acetate has one 

carboxyl and one methyl functional group. The spectra of milk samples spiked with increasing 

amounts of acetate (Figure 7-16) reveal increased absorbance intensity at peaks centered around ~ 

1551 and 1414 cm-1. The peaks at 1551 and 1414 cm-1 are assigned to the strong symmetrical 

stretching of the carboxylate ion [116] and 𝐶 − 𝑂 stretching [118], respectively. 

Phosphate is a derivative of phosphoric acid (Figure 7-17), which is a week acid. It contains one 

phosphoryl group. The spectra of milk samples spiked with increasing amounts of phosphate 

(Figure 7-18) reveal increased absorbance intensity at peaks centered around ~ 1156, 1077 and 

940 cm-1. The peaks at 1156 and 1077 cm-1 are assigned to the asymmetric and symmetric 

stretching of the phosphoryl group (𝑃 = 𝑂) [119]. The peak at 940 cm-1 is assigned to the 

stretching of 𝑃 − 𝑂 − 𝐻 [116, 119]. 

Glucose, galactose and lactose are carbohydrates (Figure 7-19). Glucose and galactose are 

classified as aldohexoses monosaccharides. They consist of six carbon atoms backbone and an 
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aldehyde functional group on carbon atom number 1. Galactose is an epimer of glucose. They 

differ in their stereochemistry at carbon atom number 4. Lactose is a disaccharide that consists of 

galactose and glucose subunits linked by a 𝛽 1 → 4 glycosidic bond. The spectra of milk samples 

spiked with increasing amounts of glucose, galactose and lactose (Figure 7-20) reveal increased 

absorbance intensity at a peak centered around ~ 1076 cm-1. In addition, a distinct increased 

absorbance intensity is observed at ~ 1043 and 1154 cm-1 for glucose and galactose, respectively. 

In an aqueous solution of glucose, the distinct peak appears at 1033 cm-1, which has been reported 

as an IR marker peak for glucose in the literature [110, 120]. All peaks observed in the region 

1200-800 cm-1 are assigned to the 𝐶 − 𝑂/𝐶 − 𝐶 bond stretching [110]. 

Ammonium results from the protonation of ammonia, which is an azane that consists of a single 

nitrogen atom covalently bonded to three hydrogen atoms (Figure 7-21). The spectra of milk 

samples spiked with increasing amounts of ammonium chloride (Figure 7-22) reveal increased 

absorbance intensity at peak centered around ~ 1457 cm-1. This broad band is assigned to the 𝑁 −

𝐻 bending of the 𝑁𝐻4
+ ion [116]. 

Linoleic acid is an octadecadienoic acid with long aliphatic unsaturated chain and carboxylic 

functional group in which the two double bonds are at positions 9 and 12 and have cis 

stereochemistry (Figure 7-23) [121]. The spectra of milk samples spiked with linoleic acid (Figure 

7-24) reveal increased absorbance intensity at peaks centered around ~ 3012, 2927, 2857, 1705, 

1581, 1554, 1458, 1408 and 987 cm-1. The peak at 3012 cm-1 is assigned to the 𝐶 − 𝐻 stretching 

in the alkene (olefinic) bond (𝐶 = 𝐶 − 𝐻) [116]. The peaks at 2926 and 2857 cm-1 are assigned to 

the asymmetrical stretching (𝜈𝑎𝑠𝐶𝐻2) and symmetrical stretching (𝜈𝑠𝐶𝐻2) of the methylene group, 

which overlaps with the signal of the 𝐶 − 𝐻 stretching of milk fat or the Fat B region [116]. The 

peak at 1705 cm-1 is assigned to the 𝐶 = 𝑂 stretching vibration in the carboxyl functional group 

[116]. The carboxylate ion gives rise to two bands: a strong asymmetrical stretching at 1554 cm-1 

and a weaker symmetrical stretching at 1408 cm-1. The peak at 1408 cm-1 also results from the 

𝐶 − 𝑂 − 𝐻 bending in the protonated carboxylic functional group [116]. The peak at 1458 cm-1 

can be assigned either to the asymmetrical bending vibration of the methyl group (𝛿𝑎𝑠𝐶𝐻3) or to 

the scissoring band of the methylene group (𝛿𝑠𝐶𝐻2) [116]. The peak at 987 cm-1 is assigned to the 

out-of-plane alkene 𝐶 − 𝐻 bending vibration, which is a characteristic band for alkenes [116]. 
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Creatine is an organic compound that is derived from the amino acid glycine. It contains 

carboxylic, methyl and amidine (−𝐶(= 𝑁𝐻)𝑁𝐻2) functional groups (Figure 7-25) [122]. The 

spectra of milk samples spiked with increasing amounts of creatine (Figure 7-26) reveal increased 

absorbance intensity at peaks centered around ~ 1538, 1396, 1311, 1106, 980 cm-1. The peak 

centered at 1396 cm-1 can be assigned to the 𝐶 − 𝑂 − 𝐻 bending band of the carboxylic functional 

group, to the symmetrical stretching of the carboxylate ion or to the 𝐶 − 𝑁 stretching band [116]. 

The peaks centered at 1538, 1311, 1106 and 980 cm-1 are assigned to the deformation vibration 

band of (= 𝑁𝐻2) in the amidine functional group [123], to the 𝐶 − 𝑂 stretching band of the 

carboxylic functional group, to the 𝐶 − 𝑁 stretching band coupled with stretching of adjacent 

bonds in the molecule and to the out-of-plane bending of the bonded 𝑂 − 𝐻 in dimeric carboxylic 

acids, respectively [116]. 

Histamine is an organic compound that is derived from the amino acid histidine. It is an 1H-

imidazole substituted at position C-4 by a 2-aminoethyl group (Figure 7-27) [124]. The spectra of 

milk samples spiked with increasing amounts of histamine (Figure 7-28) reveal increased 

absorbance intensity at peaks centered around ~ 3012, 2857, 1581, 1457, 1315, 1033, 987 cm-1. 

These peaks are assigned to 𝑁𝐻3
+ stretching (𝜈𝑁𝐻3

+), 𝐶𝐻2 symmetrical stretching (𝜈𝑠𝐶𝐻2) of the 

methylene group of the side chain, stretching of the imidazole ring which appears in the aqueous 

solution at 1573 and 1488 cm-1, 𝑁𝐻3
+ symmetrical bending (𝛿𝑠𝑁𝐻3

+), 𝐶𝐻2 wagging (𝜔𝐶𝐻2), 𝐶 −

𝑁 stretching (𝜈𝐶𝑁) and 𝐶 − 𝐻 out-of-plane bending (𝛾𝐶𝐻), respectively [125]. 

Orotic acid is a pyrimidine monocarboxylic acid that is uracil bearing a carboxy substituent at 

position C-6 (Figure 7-29) [126]. The spectra of milk samples spiked with increasing amounts of 

orotic acid (Figure 7-30) reveal increased absorbance intensity at peaks centered around ~ 1700, 

1500, 1377 and 1033 cm-1. The peak at 1700 cm-1 is assigned to 𝐶 = 𝑂 stretching [127]. The peaks 

at 1500 and 1377 cm-1 are assigned to the heteroaromatic ring stretching vibration [116]. The peak 

at 1033 cm-1 is assigned to the ring in-plane deformation and stretching [127]. 

Hippuric acid is an N-acylglycine in which the acyl group is specified as benzoyl (Figure 7-31) 

[128]. The spectra of milk samples spiked with increasing amounts of hippuric acid (Figure 7-32) 

reveal increased absorbance intensity at peaks centered around ~ 1581, 1400 and 1307 cm-1. These 

peaks are assigned to the bending vibration (𝛿𝑁𝐻) of 𝑁 − 𝐻, in-plane bending (𝛿𝐶𝐻2) of the 

methylene group, and the bending vibration (𝛿𝐶𝐻2) of the methylene group [129], respectively. 
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Table 7-2 IR peaks of minor milk components detected in FTIR spectra of spiked milk samples and aqueous solutions of the 

respective molecules.  

Molecule Peaks in milk cm-1 (2nd derivative) Peaks in water cm-1 (2nd derivative) 

Urea 1457, 1156 1461, 1160 

β-Hydroxybutyric acid 

(BHB) 

2926, 1554, 1405, 1316, 1077 2981, 1559, 1404, 1311, 1269, 1207, 

1130, 1060, 948 

Acetone 1690, 1414, 1373, 1239 1689, 1424, 1370, 1239, 1096 

Citrate 2926, 1557, 1394, 1248, 1078 2923, 1581-1566, 1390, 1288, 1093 

Acetate 1551, 1414 1554, 1416, 1348, 1060, 1021, 933 

Phosphate  1156, 1077, 940 1261, 1236, 1160, 1077, 941 

Ammonium chloride 1457 1454 

Linoleic acid (fatty acid) 3012, 2927, 2857, 1705, 1581, 1554, 1458, 1408, 

987 

3011, 2929, 2861, 1597, 1554, 1458, 

1405 

Creatine 1538, 1396, 1311, 1106, 980 2950, 2835, 1538, 1431, 1396, 1307, 

1168, 1107, 1049, 976 

Histamine 3012, 2857, 1581, 1457, 1315, 1033, 987 3008, 2888, 1573, 1488, 1310, 1033, 

987, 941 

Orotic acid 1700, 1500, 1377, 1033 1700, 1497, 1377, 1014 

Hippuric acid 1581, 1400, 1307 1584, 1489, 1396, 1301 

 

7.3.2 Tie rail trial 

Table 7-3 and Table 7-4 summarize the meaningful PCs that were extracted from the raw, FD, VN 

raw and VN FD spectral datasets of the long-term and short-term milk samples spectral averages 

of the tie rail trial, respectively. PCA yielded five, seven, four and nine meaningful PCs from the 

raw, FD, VN raw and VN FD long-term spectral average datasets that explained 97.35%, 94.92%, 

96.99% and 95.44% of the variation in the spectral datasets, respectively. These PCs, whose 

eigenvalue and percentage of explained variation ≥1, represent the sources of variation in their 

respective spectral datasets that were separated from the noise and that were tested for the 

treatment, start (i.e. season) and block effects by the SAS Mixed procedure. PC6 (P = 0.0371), 

PC4 (P = 0.0462) and PC7 (P = 0.0106) extracted from long-term FD, VN raw, VN FD spectral 

average datasets, respectively, revealed significant treatment effect. The calculation of the spectral 

averages was successful in eliminating the strong week effect that was noticed in all analysis 

approaches evaluated in the previous chapter. Among the three PCs that revealed significant 

treatment effect, PC7 (P = 0.0106) isolated from the long-term VN FD spectral dataset revealed 

the strongest treatment effect, and unlike the other two PCs, start (P = 0.5590) and block (P = 
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0.0600) had insignificant effects on it. This observation can be explained by the fact that FD 

exposed more details in the spectral dataset and VN eliminated procedural variability not related 

to chemical composition of milk samples, which facilitated the isolation of the treatment effect 

from the other two studied effects. For these reasons, PC7 isolated from the long-term VN FD 

spectral dataset will be subjected to further analysis to determine the treatment levels that are 

significantly different from each other and the spectral features that are responsible for these 

differences. PC 7 explains 1.37% of the variation in its respective dataset, which suggests that the 

treatment effect is limited, and it was detect in an early stage. 

Table 7-5 and Table 7-6 summarize the least squares means and their differences produced by the 

Mixed procedure for the scores of PC7 extracted from long-term VN FD spectral average dataset 

that revealed a significant treatment effect. These tables show that T3 PC7 scores were 

significantly different from the scores of other treatments (P = 0.0038) and the Scheffé adjusted P 

value shows that T3 is significantly different from T1 (P = 0.0332).  

Inspection of the integral of PC7 loading spectrum (Figure 7-1) revealed clear peaks at the 

following wavenumbers: 3008, 2919, 2851, 1716, and 1407, which can be assigned to the 

following IR bands: the 𝐶 − 𝐻 stretching in the alkene (olefinic) bond (𝐶 = 𝐶 − 𝐻) in unsaturated 

fatty acids, the asymmetrical stretching (𝜈𝑎𝑠𝐶𝐻2) of the methylene group in fatty acids,  

symmetrical stretching (𝜈𝑠𝐶𝐻2) of the methylene group in fatty acids, the 𝐶 = 𝑂 stretching 

vibration in the carboxyl functional group in free fatty acids and the symmetrical stretching of the 

carboxylate ion or the 𝐶 − 𝑂 − 𝐻 bending in BHB, respectively (Table 7-2).  

Table 7-7 summarizes the results of the peak fitting process for regions 1250-1180 cm-1, 1390-

1250 cm-1 and 1618-1424 cm-1, which did not show any clear peaks. In the first region, a peak was 

detected at 1237 cm-1, which can be assigned to the stretching of 𝐶 − 𝐶 − 𝐶 group and the bending 

of 𝐶 − 𝐶(= 𝑂) − 𝐶 in the 𝐶 − 𝐶 − 𝐶 group in acetone. In the second region, peaks were detected 

at 1287, 1317 and 1372 cm-1, which can be assigned to the 𝐶 − 𝑂 stretching that appears in the 

FTIR spectrum of the aqueous solution of citrate, the 𝐶 − 𝑂 stretching in BHB and the symmetrical 

(𝛿𝑠𝐶𝐻3) bending vibration of the methyl group in acetone, respectively. In the third region, peaks 

were detected at 1460 and 1541 cm-1. The 1460 cm-1 peak can be assigned to the asymmetrical 

bending vibration of the methyl group (𝛿𝑎𝑠𝐶𝐻3) or to the scissoring band of the methylene group 
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(𝛿𝑠𝐶𝐻2) in fatty acids. On the other hand, the 1541 cm-1 peak can be assigned to the symmetrical 

stretching of the carboxylate ion that is found in citrate, BHB, free fatty acids and acetate.  

In addition, an upward trend is noticed between ~950 cm-1 and ~1040 cm-1, with a small bump at 

~967 cm-1. Subsequently, a downward trend is noticed between ~1040 cm-1 and ~1100 cm-1 

followed by another upward trend that peaks at 1130 cm-1, which corresponds to a band present in 

the FTIR spectrum of the aqueous solution of BHB. These trends can be interpreted that milk 

samples collected from cows assigned to T3 in the last 3 weeks of the trial had a higher content of 

trans fatty acids and BHB and lower content of lactose in comparison to samples collected from 

cows assigned to T1 during the same period. Trans fatty acids, lactose and BHB have absorption 

IR bands centered at ~967 cm-1 [130], ~1076 cm-1 [130] and 1130 cm-1, respectively. It can be 

noticed that the PCA decomposition process of variation in the spectral dataset allowed the 

detection of minor milk components’ IR bands that are overwhelmed by major milk components’ 

absorption bands.  

The spectral analysis concludes that milk samples collected from cows assigned to T3 had higher 

levels of BHB, acetone, citrate, acetate and trans fatty acids and lower levels of lactose during the 

last three weeks of the trial. All these molecules, except for trans fatty acids, are considered  

markers of elevated body fat mobilization or negative energy balance [15, 59]. Milk composition 

numerical data only included levels of BHB, lactose and trans fatty acids. Inspection of milk 

composition numerical data confirms the observations of the spectral analysis (Table 7-9 and Table 

7-10). During the last 3 weeks, average lactose content was 4.62% and 4.60% for T1 and T3, 

respectively, and average BHB content was 0.05 mmol/L and 0.06% mmol/L for T1 and T3, 

respectively. For week 9, average lactose content was 4.63% and 4.59% for T1 and T3, 

respectively. For week 10, average BHB content was 0.05 mmol/L and 0.07 mmol/L for T1 and 

T3, respectively. Reduced lactose concentrations and increased BHB in milk suggest that cows 

assigned to T3 might have been experiencing higher level of body fat mobilization in comparison 

to cows assigned to T1 during the last 3 weeks of the trial [100]. Reduced protein concentration in 

milk is another indicator of increased body fat mobilization [100]. The long-term average protein 

concentration was 3.44% and 3.34% for T1 and T3, respectively, and a downward trend between 

1550 cm-1 and 1600 cm-1 was noticed in the integral of PC7 loading spectrum. In addition, the 
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average trans fatty acids content during the last 3 weeks was 0.09% and 0.10% for T1 and T3, 

respectively, which agrees with the findings of the spectral analysis.  

A parsimonious PLS-DA model of the milk composition numerical dataset for weeks 8-10 to 

classify milk samples according to treatment revealed that BHB was the most significant variable 

to discriminate milk samples by treatment (Table 7-8). In addition, it revealed that lactose and 

protein were not significant variables for such discrimination. This observation might explain the 

absence of a clear peak at 1076 cm-1 and around the Amide II or Amide III bands in the integral of 

PC7 loading spectrum. The VIP scores also show that differences in milk composition according 

to treatment are reflected in minor milk component rather than major ones, which explains why 

PC7 extracted from VN FD spectral dataset revealed a strong treatment effect. It must be noted 

that this PLS-DA model explained only 13.68% of the variation related to treatment membership 

of milk samples, which implies that the treatment effect on milk composition was limited and it 

agrees with the fact that PC7 explained 1.3% of the variation in the long-term VN FD averaged 

spectral dataset.  

The conclusion that cows assigned to T3 might have been experiencing increased body fat 

mobilization in comparison to cows assigned to T1 could be somehow corroborated by the neck 

injuries that were recorded during the trial. While both T1 and T3 show increased injuries on the 

proximal area of the cow’s neck (higher portion, closest to the body), T3 (i.e., Neckline1 in the 

original thesis) was the only treatment out of the 4 tested to show increased injury on 2 locations 

of the cow’s neck; indeed, T3 had an additional increase in injuries on the medial area of the cow’s 

neck (lower portion, closest to the head). These injuries results from the cows putting pressure on 

their neck through repeated contact with the tie-rail, while transitioning from lying to standing 

positions and, possibly in an attempt to reach feed [102]. However, no difference in eating-

rumination time was found between tie-rail treatments at any time point of the trial (51.5, 50, 45.8, 

49.6 % of time eating-ruminating per h in the long-term for T1, T2, T3 and T4, respectively) [102]. 

Appearance of neck injuries at two locations of the neck indicates that T3 tie rail configuration 

was probably obstructing the cow access to feed, which may have resulted in possible reduced 

feed intake (not measured in the trial) that led to an elevated body fat mobilization. It must be 

noted that the effect was limited, and the milk numerical data did not indicate any clinical issues 
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with the cows assigned to T3, which means that the hybrid spectral analysis approach could detect 

the trend in an early stage before it becomes problematic. 

Table 7-3 Principal components extracted from the raw, FD, VN raw, VN FD spectral datasets of the long-term milk spectral 

averages for the tie rail trial. The table also lists P values obtained from the SAS Mixed Procedure for the treatment, start and 

block effects that are tested in this trial.  

Long-term 

Spectral 

Dataset 

Meaningful 

PC 
Eigenvalue 

Explained 

Variation 

% 

Cumulative 

Explained 

Variation 

% 

P Values 

Treatment Start 
Block 

(Start) 

Raw 

PC1 144.01 51.61 51.62 0.2897 0.0768 0.0081 

PC2 83.97 30.10 81.71 0.9753 0.2931 0.1052 

PC3 38.26 13.71 95.43 0.7750 0.0013 0.0001 

PC4 5.36 1.92 97.35 0.0836 0.7465 0.2169 

PC5 2.70 0.97 98.31 0.3495 0.1821 0.0859 

FD 

PC1 161.77 58.19 58.19 0.3120 0.1375 0.0091 

PC2 39.03 14.04 72.23 0.4568 0.0130 0.0010 

PC3 33.63 12.10 84.33 0.7935 0.0307 0.0388 

PC4 12.46 4.48 88.81 0.0519 0.0817 0.0071 

PC5 7.31 2.63 91.44 0.6068 0.0001 0.4963 

PC6 5.39 1.94 93.38 0.0371 0.0238 0.0464 

PC7 4.27 1.54 94.92 0.8602 0.7468 0.7219 

VN Raw 

PC1 189.23 68.07 68.07 0.4486 0.3247 0.0941 

PC2 62.68 22.55 90.62 0.9549 0.1570 0.0003 

PC3 11.23 4.04 94.66 0.6285 0.6290 0.1392 

PC4 6.49 2.34 96.99 0.0462 0.0695 0.0223 

VN FD 

PC1 161.38 58.05 58.05 0.4429 0.2729 0.1311 

PC2 52.76 18.98 77.30 0.3412 0.0794 0.0001 

PC3 17.70 6.37 83.40 0.0698 0.2443 0.0145 

PC4 10.96 3.94 87.34 0.4485 0.0001 0.0513 

PC5 7.23 2.60 89.94 0.1883 0.0031 0.1370 

PC6 5.10 1.84 91.77 0.6687 0.2201 0.8147 

PC7 3.82 1.37 93.15 0.0106 0.5590 0.0600 

PC8 3.32 1.20 94.34 0.1827 0.1467 0.3407 

PC9 3.05 1.10 95.44 0.5853 0.9014 0.3648 
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Table 7-4 Principal components extracted from the raw, FD, VN raw, VN FD spectral datasets of the short-term milk spectral 

averages for the tie rail trial. The table also lists P values obtained from the SAS Mixed Procedure for the treatment, start and 

block effects that are tested in this trial. 

Short-term 

Spectral 

Dataset 

Meaningful 

PC 
Eigenvalue 

Explained 

Variation % 

Cumulative 

Explained 

Variation % 

P Values 

Treatment Start Block (Start) 

Raw 

PC1 120.20 43.24 43.24 0.8027 0.2834 0.3742 

PC2 116.59 41.94 85.17 0.4505 <0.0001 0.0024 

PC3 28.43 10.23 95.40 0.9673 0.0022 0.0005 

PC4 4.70 1.69 97.09 0.7538 0.5885 0.2833 

PC5 3.42 1.23 98.32 0.4750 0.0667 0.1672 

FD 

PC1 143.72 51.70 51.70 0.7183 0.8642 0.2918 

PC2 53.42 19.22 70.916 0.8662 <0.0001 0.0028 

PC3 30.73 11.05 81.97 0.7711 0.0011 0.0509 

PC4 14.51 5.22 87.19 0.5312 0.0157 0.0699 

PC5 8.54 3.07 90.26 0.4634 0.0012 0.0001 

PC6 7.12 2.56 92.82 0.9830 0.4151 0.0185 

PC7 4.03 1.45 94.27 0.6678 0.1466 0.0445 

PC8 3.38 1.22 95.49 0.9792 0.2750 0.7527 

VN Raw 

PC1 184.33 66.305 66.305 0.8430 0.0835 0.4132 

PC2 59.13 21.27 87.57 0.8334 0.2707 0.0002 

PC3 18.65 6.70 94.28 0.3532 0.0001 0.0252 

PC4 6.05 2.18 96.46 0.3044 0.0524 0.2503 

PC5 3.00 1.08 97.54 0.5695 0.0047 0.1282 

PC6 2.14 0.77 98.31 0.3011 0.1517 0.0000 

PC7 1.42 0.51 98.82 0.2854 0.0331 0.2038 

VN FD 

PC1 157.19 56.54 56.54 0.8203 0.1957 0.5475 

PC2 53.57 19.26 75.80 0.9078 0.4261 0.0057 

PC3 15.28 5.50 81.30 0.6044 0.0272 0.0968 

PC4 11.74 4.22 85.52 0.3441 <0.0001 0.0070 

PC5 7.86 2.83 88.35 0.3957 0.3243 <0.0001 

PC6 6.25 2.25 90.60 0.6979 0.0064 0.1319 

PC7 5.70 2.05 92.64 0.7479 0.9305 0.9583 

PC8 4.20 1.51 94.15 0.9162 0.5622 0.9332 

PC9 2.99 1.08 95.23 0.2639 0.8408 0.2663 

PC10 2.89 1.04 96.27 0.6651 0.2540 0.3726 
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Table 7-5 Least squares means produced by the Mixed procedure for the scores of PC7 extracted from long-term VN FD spectral 

average dataset and that revealed a significant treatment effect. This table shows that T3 scores were significantly different from 

the other treatments.  

Treatment Estimate Standard 

Error 

DF t Value P Value 

1 0.6846 0.4959 30 1.38 0.1776 

2 0.5001 0.5267 30 0.95 0.3499 

3 -1.4596 0.4652 30 -3.14 0.0038 

4 0.4188 0.4652 30 0.9 0.3752 

 

Table 7-6 Differences of least squares means for PC7’s scores. The Scheffé adjusted P values show that T3 is significantly 

different from T1.  

Treatment Treatment Estimate 
Standard 

Error 
DF t Value P Value 

Scheffé 

Adj. P 

Value 

1 2 0.1845 0.7097 30 0.26 0.7967 0.9953 

1 3 2.1442 0.68 30 3.15 0.0037 0.0332 

1 4 0.2658 0.68 30 0.39 0.6986 0.9845 

2 3 1.9597 0.7027 30 2.79 0.0091 0.0711 

2 4 0.08133 0.7027 30 0.12 0.9086 0.9996 

3 4 -1.8784 0.6579 30 -2.86 0.0077 0.0622 
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Figure 7-1 The spectral integral of PC7 loading spectrum extracted from long-term VN FD spectral average dataset for the TR 

trial. Shaded regions can be assigned to: 1) lactose 1200-1000 cm-1, 2) acetone ~1237 cm-1, 3) citrate, BHB and acetone  1390-

1250 cm-1, 4) BHB ~1404 cm-1, 5) fatty acids and carboxylate ion in citrate, BHB, free fatty acids and acetate 1618-1424 cm-1, 6) 

Carboxylic group of free fatty acids ~ 1716 cm-1, 7) CH stretching of fatty acids 3000-2800 cm-1, 8)  =C-H stretching of fatty 

acids ~3008 cm-1.   

Table 7-7 Results of peak fitting of lumpy regions in the integral of the loading spectrum of PC7 and probable molecules that can 

be assigned to the resulting peaks.  

Range cm-1 Peak Type Center X Height Area Probable molecule 

1250-1180 Voigt 1237.178 0.0228 1.6199 Acetone 

1390 -1250 

Voigt 1287.064 0.2825 26.7635 Citrate 

Voigt 1317.459 6.6918 738.564 BHB 

Voigt 1372.16 1.5591 204.3213 Acetone 

1618-1424 

Voigt 1460.422 4.1669 674.6262 Fatty acids 

Voigt 1541.455 4.2489 490.2986 
Carboxylate ion in citrate, BHB, 

free fatty acids and acetate 
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Table 7-8 Variable importance for the projection scores of significant milk components obtained from parsimonious PLS-DA 

model for milk composition numerical data for weeks 8-10 to classify milk samples by tie rail treatment.  

Milk Component VIP Score 

BHB 1.1430 

C16_0 1.0903 

FP Ratio 1.0418 

Trans FA 1.0128 

Urea 1.0006 

C18_1 0.9324 

MUFA 0.8762 

PUFA 0.8690 
 

 



 

 

Table 7-9 Milk composition data ± SD for weeks 8-10 for the tie rail trial with T1 and T2 averages by treatment.  

Treatment T1 T2 

Week 8 9 10 Avg. 8 9 10 Avg. 

Fat % 4.22 ± 0.70 4.16 ± 0.71 4.10 ± 0.46 4.16 ± 0.62 4.20 ± 0.57 4.28 ± 0.63 4.16 ± 0.64 4.21 ± 0.59 

Protein % 3.44 ± 0.32 3.44 ± 0.27 3.44 ± 0.26 3.44 ± 0.27 3.37 ± 0.33 3.38 ± 0.31 3.44 ± 0.31 3.39 ± 0.31 

Lactose % 4.62 ± 0.12 4.63 ± 0.17 4.61 ± 0.18 4.62 ± 0.15 4.65 ± 0.16 4.65 ± 0.16 4.61 ± 0.19 4.64 ± 0.17 

TS % 13.26 ± 0.77 13.20 ± 0.76 13.12 ± 0.58 13.19 ± 0.69 13.19 ± 0.70 13.29 ± 0.70 13.18 ± 0.79 13.22 ± 0.71 

Urea mg/dL 14.29 ± 2.46 14.71 ± 2.90 13.90 ± 2.72 14.30 ± 2.63 14.03 ± 2.07 14.50 ± 3.50 13.54 ± 2.57 14.02 ± 2.71 

BHB mmol/L 0.05 ± 0.03 0.05 ± 0.03 0.05 ± 0.03 0.05 ± 0.03 0.07 ± 0.03 0.06 ± 0.04 0.08 ± 0.03 0.07 ± 0.03 

C16:0 % 1.105 ± 0.198 1.108 ± 0.197 1.081 ± 0.147 1.098 ± 0.177 1.118 ± 0.164 1.157 ± 0.231 1.105 ± 0.198 1.127 ± 0.194 

C18:0 % 0.406 ± 0.071 0.379 ± 0.064 0.389 ± 0.045 0.391 ± 0.060 0.391 ± 0.046 0.392 ± 0.039 0.391 ± 0.055 0.391 ± 0.045 

C18:1 % 0.912 ± 0.144 0.932 ± 0.150 0.930 ± 0.093 0.925 ± 0.127 0.864 ± 0.123 0.907 ± 0.095 0.905 ± 0.156 0.892 ± 0.124 

SCFA % 0.508 ± 0.121 0.500 ± 0.127 0.485 ± 0.099 0.497 ± 0.113 0.487 ± 0.085 0.482 ± 0.082 0.477 ± 0.093 0.482 ± 0.084 

MCFA % 2.013 ± 0.459 1.920 ± 0.505 1.912 ± 0.339 1.948 ± 0.428 2.062 ± 0.467 2.047 ± 0.621 2.021 ± 0.530 2.043 ± 0.524 

LCFA % 1.565 ± 0.247 1.525 ± 0.236 1.542 ± 0.138 1.544 ± 0.206 1.541 ± 0.170 1.552 ± 0.141 1.550 ± 0.231 1.548 ± 0.178 

SFA % 2.807 ± 0.503 2.736 ± 0.504 2.656 ± 0.330 2.733 ± 0.443 2.795 ± 0.421 2.797 ± 0.491 2.702 ± 0.434 2.764 ± 0.436 

TUFA % 1.236 ± 0.180 1.209 ± 0.185 1.196 ± 0.122 1.214 ± 0.160 1.207 ± 0.146 1.214 ± 0.121 1.206 ± 0.189 1.209 ± 0.149 

MUFA % 1.040 ± 0.143 1.035 ± 0.152 1.026 ± 0.110 1.033 ± 0.132 1.004 ± 0.136 1.034 ± 0.106 1.032 ± 0.158 1.023 ± 0.131 

PUFA % 0.158 ± 0.031 0.150 ± 0.043 0.163 ± 0.027 0.157 ± 0.034 0.132 ± 0.040 0.144 ± 0.045 0.147 ± 0.032 0.141 ± 0.039 

Trans FA % 0.094 ± 0.015 0.092 ± 0.018 0.098 ± 0.020 0.095 ± 0.017 0.104 ± 0.017 0.102 ± 0.019 0.102 ± 0.017 0.103 ± 0.017 

FFA % 6.983 ± 1.744 6.678 ± 1.666 7.162 ± 1.418 6.941 ± 1.577 6.869 ± 1.374 7.076 ± 2.111 6.788 ± 1.673 6.911 ± 1.689 

FP Ratio 1.23 ± 0.20 1.21 ± 0.17 1.19 ± 0.10 1.21 ± 0.16 1.25 ± 0.16 1.27 ± 0.17 1.21 ± 0.14 1.24 ± 0.15 

 

 



 

 

Table 7-10 Milk composition data ± SD for weeks 8-10 for the tie rail trial with T3 and T4 averages by treatment 

Treatment T3 T4 

Week 8 9 10 Avg. 8 9 10 Avg. 

Fat % 3.89 ± 0.45 3.94 ± 0.54 3.92 ± 0.49 3.91 ± 0.48 3.73 ± 0.64 3.90 ± 0.60 4.11 ± 0.56 3.91 ± 0.60 

Protein % 3.34 ± 0.27 3.33 ± 0.29 3.36 ± 0.31 3.34 ± 0.28 3.41 ± 0.29 3.39 ± 0.30 3.42 ± 0.31 3.41 ± 0.29 

Lactose % 4.63 ± 0.16 4.59 ± 0.20 4.59 ± 0.21 4.60 ± 0.18 4.61 ± 0.10 4.60 ± 0.11 4.59 ± 0.13 4.60 ± 0.11 

TS % 12.83 ± 0.59 12.83 ± 0.70 12.85 ± 0.63 12.84 ± 0.62 12.73 ± 0.83 12.86 ± 0.84 13.09 ± 0.80 12.90 ± 0.82 

Urea mg/dL 12.84 ± 2.77 13.05 ± 2.15 12.59 ± 2.13 12.83 ± 2.31 13.35 ± 1.74 14.48 ± 2.37 14.57 ± 2.34 14.13 ± 2.18 

BHB mmol/L 0.06 ± 0.02 0.06 ± 0.02 0.07 ± 0.02 0.06 ± 0.02 0.06 ± 0.02 0.05 ± 0.03 0.07 ± 0.02 0.06 ± 0.03 

C16:0 % 1.015 ± 0.139 1.037 ± 0.188 1.027 ± 0.174 1.026 ± 0.164 0.965 ± 0.152 1.001 ± 0.165 1.053 ± 0.167 1.006 ± 0.161 

C18:0 % 0.371 ± 0.044 0.369 ± 0.051 0.378 ± 0.045 0.373 ± 0.046 0.357 ± 0.071 0.372 ± 0.068 0.404 ± 0.066 0.378 ± 0.069 

C18:1 % 0.846 ± 0.074 0.896 ± 0.069 0.858 ± 0.080 0.867 ± 0.075 0.841 ± 0.140 0.935 ± 0.138 0.966 ± 0.117 0.914 ± 0.139 

SCFA % 0.447 ± 0.086 0.449 ± 0.099 0.454 ± 0.083 0.450 ± 0.087 0.423 ± 0.112 0.436 ± 0.102 0.466 ± 0.099 0.442 ± 0.103 

MCFA % 1.783 ± 0.374 1.786 ± 0.436 1.818 ± 0.362 1.796 ± 0.381 1.724 ± 0.517 1.710 ± 0.461 1.930 ± 0.426 1.788 ± 0.467 

LCFA % 1.455 ± 0.144 1.460 ± 0.144 1.447 ± 0.148 1.454 ± 0.141 1.421 ± 0.259 1.511 ± 0.238 1.603 ± 0.214 1.512 ± 0.243 

SFA % 2.570 ± 0.347 2.554 ± 0.409 2.559 ± 0.357 2.561 ± 0.361 2.465 ± 0.448 2.487 ± 0.419 2.627 ± 0.380 2.526 ± 0.411 

TUFA % 1.161 ± 0.091 1.168 ± 0.102 1.156 ± 0.095 1.162 ± 0.093 1.143 ± 0.194 1.210 ± 0.169 1.261 ± 0.163 1.205 ± 0.177 

MUFA % 0.962 ± 0.076 1.003 ± 0.093 0.966 ± 0.089 0.977 ± 0.086 0.958 ± 0.167 1.048 ± 0.169 1.074 ± 0.143 1.027 ± 0.163 

PUFA % 0.139 ± 0.022 0.152 ± 0.038 0.142 ± 0.023 0.144 ± 0.029 0.129 ± 0.016 0.157 ± 0.037 0.156 ± 0.029 0.147 ± 0.031 

Trans FA % 0.099 ± 0.016 0.096 ± 0.023 0.097 ± 0.023 0.097 ± 0.020 0.088 ± 0.020 0.092 ± 0.020 0.094 ± 0.019 0.091 ± 0.019 

FFA % 6.665 ± 1.275 6.514 ± 1.171 6.527 ± 0.939 6.569 ± 1.106 6.234 ± 1.371 6.841 ± 1.831 7.279 ± 1.311 6.785 ± 1.541 

FP Ratio 1.17 ± 0.16 1.18 ± 0.14 1.17 ± 0.17 1.17 ± 0.15 1.09 ± 0.17 1.15 ± 0.13 1.20 ± 0.14 1.15 ± 0.15 
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7.3.3 Tie chain length trial 

Table 7-11 and Table 7-12 summarize the meaningful PCs that were extracted from the raw, FD, 

VN raw and VN FD spectral datasets of the long-term and short-term milk samples spectral 

averages of the tie chain length trial, respectively. PCA yielded four, seven, four and eight 

meaningful PCs from the raw, FD, VN raw and VN FD long-term spectral average datasets that 

explained 98.76%, 97.53%, 98.47% and 96.74% of the variation in the spectral datasets, 

respectively. These PCs, whose eigenvalue and percentage of explained variation ≥1, represent the 

sources of variation in their respective spectral datasets that were separated from the noise and that 

were tested for the treatment and block effects by the SAS Mixed procedure. PC6 (P = 0.0337) 

and PC6 (P = 0.0323) extracted from long-term FD, and VN FD spectral average datasets, 

respectively, revealed significant treatment effect. The later PC will be interpreted because it 

yielded a smaller P value and it was extracted from VN spectra. VN eliminates procedural 

variability not related to chemical composition of milk samples. PC 6 extracted from the long-term 

VN FD spectral average dataset explains 1.70% of the variation in its respective dataset, which 

suggests that the treatment effect is limited, and it was detect in an early stage. In addition, this PC 

did not reveal a significant block effect (P = 0.0882).  

Table 7-13 and Table 7-14 summarize the least squares means and their differences produced by 

the Mixed procedure for the scores of PC6 extracted from long-term VN FD spectral average 

dataset that revealed a significant treatment effect. These tables show that the estimates of the 

mean scores of PC6 for T1 and T2 are negative and positive values, respectively, which means 

that the influential spectral features in the loading spectrum of this PC have more intense 

absorbance in spectra collected for milk samples of cows assigned to T1. It was proven in the 

previous chapter that spectral features with more intense absorbances yield greater negative scores 

when PCA is applied to the FD of the spectral data. This observation means that molecules affected 

by the treatment are present in higher concentrations in milk samples collected from cows assigned 

to T1, which is the control treatment (i.e., the shorter chain length).  

Inspection of the integral of PC6 loading spectrum (Figure 7-2) revealed several peaks at the 

following wavenumbers: 2919, 2851, 1715, 1576, 1541, 1461, 1419 and 968 cm-1. The peaks 2919, 

2851, 1715, 1541, 1419 and 968 cm-1 can be assigned to the following IR bands: the asymmetrical 

stretching (𝜈𝑎𝑠𝐶𝐻2) of the methylene group in fatty acids,  the symmetrical stretching (𝜈𝑠𝐶𝐻2) of 
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the methylene group in fatty acids and histamine, the 𝐶 = 𝑂 stretching vibration in the carboxyl 

functional group in free fatty acids, the deformation vibration band of (= 𝑁𝐻2) in the amidine 

functional group in creatine, the 𝐶 − 𝑂 stretching band in acetate, the alkene trans double bond in 

trans fatty acids, respectively. The peak at 1576 cm-1 can be assigned to: the stretching of the 

imidazole ring in histamine, the bending vibration (𝛿𝑁𝐻) of 𝑁 − 𝐻 in hippuric acid and the 

symmetrical stretching of the carboxylate ion in citrate and fatty acids. The peak at 1461 cm-1 can 

be assigned to: the 𝐶 − 𝑁 stretching band in urea, the 𝑁 − 𝐻 bending of the 𝑁𝐻4
+ ion and 𝑁𝐻3

+ 

symmetrical bending (𝛿𝑠𝑁𝐻3
+) in histamine. Table 7-15 summarizes the results of the peak fitting 

process for regions 1365-1160 cm-1, which revealed peaks at 1347, 1299 and 1249 cm-1, which 

can be assigned to the 𝐶𝐻3 deformation band [118] that appears in the FTIR spectrum of the 

aqueous solution of acetate, the bending vibration (𝛿𝐶𝐻2) of the methylene group in hippuric acid 

and the 𝐶 − 𝑂 stretching band in citrate, respectively.  

The spectral analysis concludes that milk samples collected from cows assigned to T1, which is 

the control treatment, had higher levels of trans fatty acids, acetate, citrate and non protein nitrogen 

compounds (NPNs), which are urea, ammonium, hippuric acid, creatine and histamine, during the 

last three weeks of the trial. All these molecules, and histamine in specific, are markers of 

decreased pH in the rumen [17-20, 131]. This observation suggests that cows assigned to the longer 

chain length treatment had more stable ruminal pH and less incidences of acidotic insults in the 

rumen.  

Acute and subacute ruminal acidosis (SARA) are associated with the accumulation of lactic acid 

and volatile fatty acids (VFAs), respectively, in the rumen and the subsequent decrease in the 

ruminal pH for several hours per day [17] that results from feeding high grain diets that are low in 

fiber to high yielding dairy cows under intensive livestock production systems that are adapted to 

digesting forage diets [18, 19]. Grain in the diet increases ammonia, VFAs, acetate, butyrate, 

propionate, and valerate concentrations in the rumen [17]. The decrease of the ruminal pH induces 

changes in the microbial flora profile of the rumen. Microorganisms that synthesize lactic acid 

(i.e., Streptococcus bovis and lactobacilli) outnumber those that utilize lactic acid (Megasphera 

elsdenii and Selenomonas ruminantium) [20]. In addition, high concentrations of short-chain fatty 

acids (SCFA), mainly acetate, propionate, and butyrate, damage the epithelial barrier of the rumen 

during an acidotic insult. This damage is not immediately reversible upon the removal of the 
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acidotic insult, which leads to leakage of rumen metabolites to the blood serum [131]. In addition, 

these conditions liberates Fusiformis necrophorus [20] into the portal circulation, predisposing the 

cow to liver abscesses. The degeneration process associated with this chain of events cause release 

of histamine. Histamine, which has been hypothesized to have an important role in acidosis, is also 

produced by the decarboxylation of the amino acid histidine at low ruminal pH by the bacteria 

Allisonella histaminiformans [17]. In addition, histamine and endotoxins are released during the 

decline of the ruminal pH as a result of bacteriolysis and tissue degradation [20].  

Changes to milk composition are reported in cases of reduced ruminal pH. These changes include 

depressed milk fat [18], reduced protein and increased milk NPNs [20], such as ammonium, urea, 

histamine, creatine and hippuric acid [84]. In addition, decreased ruminal pH alters the 

biohydrogenation pathway of linoleic acid and increases the production of trans-10 C18:1 fatty 

acid. Thus, more trans fatty acids are absorbed, even if the intake of unsaturated fatty acids is not 

necessarily high [18, 21]. In fact, the milk numerical dataset (Table 7-16) shows that long-term 

average of trans fatty acids for T1, which is 0.06%, is higher than the average for T2, which is 

0.05%. The difference between the two averages revealed a significant treatment effect (P = 

0.0445) when tested by the Mixed procedure. We also notice an increase and a decrease in the 

long-term average of urea and protein for T1 and T2, respectively. These averages were 12.28 

mg/dL and 12.14 mg/dL for urea, and 3.28% and 3.34% for protein for T1 and T2, respectively. 

Milk fat depression is also noticed for T1 milk samples during the last week of the trial. The 

average fat levels for T1 and T2 were 4.01% and 4.32%, respectively, during that period. In 

addition, the long-term averages of SCFA were 0.35% and 0.33% for T1 and T2, respectively. The 

increase in SCFA, which are de novo synthesized in the mammary glands, might require increased 

amounts of the cofactor nicotinamide adenine dinucleotide phosphate (NADPH) that results from 

the oxidation of isocitrate to α-ketoglutaric acid in the Krebs cycle, which might explain an 

increase in citrate in milk samples collected from cows assigned to T1 [97].  

Ruminal pH is a result of the balance between acid production from carbohydrates in the rumen 

and the buffering action of sodium bicarbonate that are present in saliva, which are produced 

during chewing or rumination [18-20]. Hence, enhanced chewing or rumination activity by the 

cow reduces the risk of an acidotic insult. In the tie chain length trial, the time spent outside of the 

stall by the withers of the cows assigned to the longer chain treatment was significantly greater in 
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comparison to cows assigned to the recommended length (11 ± 1.1 vs 7 ± 1.1 % of daily time; P 

= 0.05) [114], and it significantly increased between short- and long-term measurements (+ 3 % 

of daily time; P ≤ 0.05) [114]. This measurement indicates that cows assigned to longer chains 

were spending more time outside the stall perimeter in the manger area. In addition, the distance 

outside of stall perimeter for the withers, which represents the average distance outside of the stall 

in the manger area, increased significantly between the short- and long-term (+ 0.9 cm; P ≤ 0.05) 

for both treatments [114]; however, this measurement did not differ between treatments. These 

observations suggest that cows assigned to the longer chain treatment were spending more time at 

the manger. Since feeding is the assumed usage of that area, we may assume that cows assigned 

to longer chain treatment might have been chewing more; hence, they were producing more saliva 

to balance the ruminal pH, which reduces the risk of an acidotic insult. It must be noted that no 

detailed measures for the manger space usage were collected for this trial. In addition, the 

combined “eating/rumination time” measurement did not reveal significant differences among the 

treatments. However, the device that was used for this measurement was not capable of recording 

the times of the two actions separately. Currently, the only diagnostic test for subclinical acidosis 

is ruminal pH [20]. In this trial, milk FTIR spectroscopy showed promising results in rapidly 

detecting metabolites in milk related to rumen acidotic insults in their early stages.  
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Table 7-11 Principal components extracted from the raw, FD, VN raw, VN FD spectral datasets of the long-term milk spectral 

averages for the tie chain length trial. The table also lists P values obtained from the SAS Mixed Procedure for the treatment and 

block effects that are tested in this trial. 

Long-term 

Spectral 

Dataset 

Meaningful 

PC 
Eigenvalue 

Explained 

Variation % 

Cumulative Explained 

Variation % 

P Values 

Treatment Block 

Raw 

PC1 158.97 57.19 57.19 0.9253 0.0955 

PC2 80.81 29.07 86.25 0.1965 0.2271 

PC3 32.06 11.53 97.78 0.4082 0.5837 

PC4 2.70 0.97 98.76 0.3985 0.0461 

FD 

PC1 188.03 67.64 67.64 0.9370 0.0788 

PC2 33.77 12.15 79.79 0.3728 0.5928 

PC3 28.94 10.41 90.20 0.2021 0.1266 

PC4 8.67 3.19 93.31 0.9431 0.6860 

PC5 5.63 2.03 95.34 0.3739 0.0198 

PC6 3.76 1.35 96.69 0.0337 0.0679 

PC7 2.33 0.84 97.53 0.6143 0.2491 

VN Raw 

PC1 210.88 75.86 75.86 0.7279 0.1006 

PC2 51.15 18.40 94.26 0.6815 0.3665 

PC3 8.54 3.07 97.33 0.3112 0.3810 

PC4 3.18 1.14 98.47 0.4405 0.1283 

VN FD 

PC1 188.40 67.77 67.77 0.8630 0.1848 

PC2 43.33 15.59 83.36 0.6391 0.2985 

PC3 12.88 4.63 87.99 0.3567 0.1941 

PC4 8.05 2.90 90.89 0.9436 0.0205 

PC5 5.17 1.86 92.75 0.7679 0.3388 

PC6 4.75 1.70 94.46 0.0323 0.0882 

PC7 3.40 1.22 95.68 0.2885 0.1233 

PC8 2.96 1.06 96.74 0.8024 0.4088 
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Table 7-12 Principal components extracted from the raw, FD, VN raw, VN FD spectral datasets of the short-term milk spectral 

averages for the tie chain length trial. The table also lists P values obtained from the SAS Mixed Procedure for the treatment and 

block effects that are tested in this trial. 

Short-term 

Spectral 

Dataset 

Meaningful 

PC 
Eigenvalue 

Explained 

Variation % 

Cumulative Explained 

Variation % 

P Values 

Treatment Block 

Raw 

PC1 149.34 53.72 53.72 0.3465 0.1303 

PC2 88.36 31.79 85.50 0.7148 0.0335 

PC3 34.31 12.34 97.84 0.3370 0.4137 

PC4 3.05 1.20 98.94 0.5802 0.5166 

FD 

PC1 179.27 64.49 64.49 0.3585 0.0959 

PC2 36.08 12.98 77.47 0.2820 0.4186 

PC3 35.44 12.75 90.21 0.7909 0.0741 

PC4 10.16 3.65 93.87 0.8219 0.9010 

PC5 4.47 1.61 95.48 0.9004 0.4182 

PC6 2.83 1.02 96.50 0.0731 0.5845 

PC7 2.70 0.97 97.47 0.1404 0.5390 

VN Raw 

PC1 204.06 73.67 73.67 0.4274 0.2042 

PC2 60.05 21.68 95.35 0.3757 0.0510 

PC3 6.13 2.22 97.56 0.4904 0.2932 

VN FD 

PC1 184.41 66.34 66.33 0.5209 0.2876 

PC2 52.02 18.71 85.05 0.2414 0.0613 

PC3 9.26 3.33 88.37 0.1178 0.2708 

PC4 7.50 2.70 91.07 0.3463 0.2496 

PC5 5.37 1.93 93.00 0.9029 0.9686 

PC6 4.09 1.47 94.48 0.0543 0.7157 

PC7 3.33 1.20 95.67 0.5632 0.2725 

PC8 3.03 1.09 96.76 0.4896 0.0189 
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Table 7-13 Least squares means produced by the Mixed procedure for the scores of PC6 extracted from long-term VN FD 

spectral average dataset and that revealed a significant treatment effect.  

Treatment Estimate Standard 

Error 

DF t Value P Value 

1 -0.8393 0.4293 9 -1.96 0.0823 

2 0.8426 0.5079 9 1.66 0.1315 

 

Table 7-14 Differences of least squares means for PC6’s scores. The Scheffé adjusted P value shows that T1 is significantly 

different from T2. 

Treatment Treatment Estimate 
Standard 

Error 
DF t Value P Value 

Scheffé 

Adj. P 

Value 

1 2 -1.6819 0.6650 9 -2.53 0.0323 0.0323 
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Figure 7-2 The spectral integral of PC6 loading spectrum extracted from long-term VN FD spectral average dataset for the TCL 

trial. Shaded regions can be assigned to: 1) trans fatty acids 968 cm-1, 2) citrate, hippuric acid and acetate 1365-1160 cm-1, 3) 

acetate 1419 cm-1, fatty acids and NPN (i.e., urea, ammonium and histamine)1461 cm-1, 4) creatine 1541 cm-1, histamine, 

hippuric acid, citrate and fatty acids 1576 cm-1, 5) Carboxylic group of free fatty acids ~ 1715 cm-1, 7) CH stretching of fatty 

acids 3000-2800 cm-1.  

Table 7-15 Results of peak fitting of region 1365-1160 cm-1 in the integral of the loading spectrum of PC6 and probable 

molecules that can be assigned to the resulting peaks. 

Rangecm-1 Peak Type Center X Height Area Probable molecule 

1365-1160 

Voigt 1249.745 3.5993 50.9682 Citrate 

Voigt 1299.439 7.107 60.9523 Hippuric acid 

Voigt 1347.338 10.3636 65.2514 Acetate 
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Table 7-16 Milk composition data ± SD for weeks 8-10 for the tie chain trial with long-term averages by treatment. 

Treatment T1 T2 

Week 8 9 10 Avg. 8 9 10 Avg. 

Fat % 3.70 ± 0.68 3.88 ± 0.71 4.01 ± 0.56 3.86 ± 0.65 3.69 ± 0.61 3.70 ± 0.64 4.32 ± 1.56 3.87 ± 0.99 

Protein % 3.25 ± 0.36 3.33 ± 0.36 3.27 ± 0.38 3.28 ± 0.36 3.31 ± 0.29 3.34 ± 0.32 3.36 ± 0.48 3.34 ± 0.35 

Lactose % 4.61 ± 0.15 4.63 ± 0.16 4.64 ± 0.18 4.62 ± 0.16 4.58 ± 0.21 4.59 ± 0.19 4.54 ± 0.20 4.57 ± 0.19 

TS % 12.53 ± 0.93 12.81 ± 0.99 12.89 ± 0.84 12.75 ± 0.91 12.56 ± 0.90 12.61 ± 0.96 13.19 ± 1.92 12.76 ± 1.27 

Urea mg/dL 11.96 ± 2.35 12.62 ± 1.73 12.27 ± 1.76 12.28 ± 1.93 11.72 ± 1.47 12.24 ± 2.02 12.53 ± 2.40 12.14 ± 1.92 

BHB mmol/L 0.11 ± 0.01 0.08 ± 0.02 0.09 ± 0.02 0.09 ± 0.02 0.12 ± 0.02 0.10 ± 0.02 0.13 ± 0.09 0.11 ± 0.05 

C14:0 % 0.431 ± 0.094 0.463 ± 0.104 0.457 ± 0.078 0.450 ± 0.091 0.434 ± 0.097 0.455 ± 0.095 0.469 ± 0.144 0.451 ± 0.109 

C16:0 % 1.321 ± 0.287 1.406 ± 0.329 1.430 ± 0.253 1.386 ± 0.287 1.357 ± 0.301 1.379 ± 0.295 1.545 ± 0.562 1.419 ± 0.384 

C18:0 % 0.366 ± 0.045 0.384 ± 0.044 0.414 ± 0.042 0.388 ± 0.047 0.362 ± 0.041 0.361 ± 0.060 0.448 ± 0.170 0.386 ± 0.104 

C18:1 % 0.697 ± 0.108 0.749 ± 0.086 0.788 ± 0.101 0.745 ± 0.103 0.672 ± 0.093 0.686 ± 0.091 0.916 ± 0.488 0.747 ± 0.282 

SCFA % 0.341 ± 0.100 0.349 ± 0.105 0.357 ± 0.090 0.349 ± 0.096 0.327 ± 0.087 0.327 ± 0.094 0.330 ± 0.111 0.328 ± 0.093 

MCFA % 1.673 ± 0.447 1.726 ± 0.460 1.753 ± 0.374 1.717 ± 0.418 1.706 ± 0.358 1.646 ± 0.405 1.949 ± 0.943 1.754 ± 0.587 

LCFA % 1.269 ± 0.197 1.341 ± 0.169 1.429 ± 0.176 1.346 ± 0.188 1.233 ± 0.143 1.214 ± 0.167 1.598 ± 0.763 1.330 ± 0.444 

Saturated FA % 2.522 ± 0.493 2.614 ± 0.552 2.667 ± 0.429 2.601 ± 0.484 2.506 ± 0.474 2.511 ± 0.475 2.746 ± 0.828 2.576 ± 0.583 

Total Unsaturated FA % 0.828 ± 0.137 0.854 ± 0.120 0.911 ± 0.127 0.864 ± 0.129 0.821 ± 0.109 0.789 ± 0.116 1.065 ± 0.553 0.879 ± 0.320 

Monounsaturated FA % 0.684 ± 0.114 0.720 ± 0.097 0.757 ± 0.109 0.720 ± 0.108 0.663 ± 0.096 0.657 ± 0.098 0.850 ± 0.424 0.715 ± 0.246 

Polyunsaturated FA % 0.086 ± 0.028 0.118 ± 0.023 0.124 ± 0.022 0.110 ± 0.029 0.084 ± 0.027 0.115 ± 0.030 0.121 ± 0.047 0.106 ± 0.037 

Trans FA % 0.058 ± 0.014 0.059 ± 0.010 0.064 ± 0.014 0.060 ± 0.013 0.049 ± 0.010 0.050 ± 0.012 0.048 ± 0.020 0.049 ± 0.014 

FFA % 5.958 ± 1.217 7.563 ± 1.432 7.555 ± 1.067 7.025 ± 1.433 8.254 ± 3.089 9.138 ± 3.327 12.835 ± 10.514 9.879 ± 6.269 
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7.3.4 Stall width trial  

Table 7-17 and Table 7-18 summarize the meaningful PCs that were extracted from the raw, FD, 

VN raw and VN FD spectral datasets of the long-term and short-term milk samples spectral 

datasets of the stall width trial, respectively. PCA yielded five, nine, five and nine meaningful PCs 

from the raw, FD, VN raw and VN FD long-term spectral datasets that explained 98.45%, 98.21, 

98.28% and 98.08% of the variation in the spectral datasets, respectively. These PCs, whose 

eigenvalue and percentage of explained variation ≥1, represent the sources of variation in their 

respective spectral datasets that were separated from the noise and that were tested for the 

treatment and block effects by the SAS Mixed procedure. PC5 (P = 0.0423) extracted from long-

term VN Raw spectral dataset revealed significant treatment effect; however, it also revealed a 

significant block effect (P = 0.0008). For this reason, the interpretation of the loading spectrum of 

this PC should take into consideration all factors accounted for by the blocking variable, which are 

parity and days in milking (DIM). PC 5 extracted from the long-term VN Raw spectral dataset 

explains 1.13% of the variation in its respective dataset, which suggests that the treatment and the 

block effects are limited. In addition, this PC will be interpreted directly without being integrated 

because it was extracted from a raw spectral dataset. This fact implies that the treatment and the 

block effects are mostly related to changes in major milk components.  

Table 7-20 and Table 7-21 summarize the least squares means and their differences produced by 

the Mixed procedure for the scores of PC5 extracted from long-term VN Raw spectral dataset that 

revealed significant treatment and block effects. These tables show that the estimates of the mean 

scores of PC5 for T1 and T2 are positive and negative values, respectively, which means that the 

influential spectral features in the loading spectrum of this PC have more intense absorbance in 

spectra collected for milk samples of cows assigned to T1. It was proven in the previous chapter 

that spectral features with more intense absorbances yield greater positive scores when PCA is 

applied to the raw spectral data. This observation means that molecules affected by the treatment 

and block effects are present in higher concentrations in milk samples collected from cows 

assigned to T1, which is the control treatment (i.e., the single width stall). 

Inspection of PC5 loading spectrum (Figure 7-3) revealed peaks at the following wavenumbers: 

2920, 2855, 1721 and 1205 cm-1. The peaks 2920, 2855 and 1721 cm-1 are assigned to the 

asymmetrical stretching (𝜈𝑎𝑠𝐶𝐻2) of the methylene group in fatty acids of milk fat,  the 
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symmetrical stretching (𝜈𝑠𝐶𝐻2) of the methylene group in fatty acids of milk fat and the 𝐶 = 𝑂 

stretching vibration of ester linkage in milk fat, respectively. The region that shows the greatest 

loadings is between ~1250 cm-1 and ~1140 cm-1 with a peak centered at ~1205 cm-1. This region 

can be assigned to the methylene twisting and wagging vibrations of fatty acids, esters [116] and 

BHB, whose FTIR spectrum of the aqueous solution shows an absorption band centered at 1207 

cm-1 (Figure 7-4). In addition, the 𝐶 − 𝑂 stretching vibration of the 𝐶 − 𝐶(= 𝑂) − 𝑂 band of 

saturated esters shows strong absorption in the 1210 cm-1 to 1163 cm-1 region [116], which is 

observed in the spectra of milk samples with increasing fat content (Figure 7-5). Milk fat is 

predominantly triglycerides, which are esters derived from glycerol and three fatty acids.  

Table 7-22 summarizes the results of the peak fitting process for region 1100-940 cm-1, which 

revealed peaks at 1063 and 940 cm-1 that appears in the FTIR spectrum of the aqueous solution of 

BHB (Table 7-2).  

The spectral analysis concludes that milk samples collected from cows assigned to T1, which is 

the control treatment, had higher levels of milk fat triglycerides, milk fatty acids and BHB, which 

is a precursor for the de novo synthesis of fatty acids in the mammary glands [97]. In this case, 

BHB is not considered as an indicator of negative energy balance due to the absence of features in 

PC5 loading spectrum that can be assigned to other markers of this metabolic issue. This 

observation suggests that cows assigned to T1 were synthesizing more fatty acids and milk fat over 

the long-term of the trial. This conclusion is supported by the numerical data set of milk 

components during the last week of the trial (Table 7-23). The average of all reported milk 

components was higher for T1 during that period except for urea and trans fatty acids.  

In addition to nutrition and herd management practices, several factors affect milk composition. 

These factors are region, season, breed, individuality, age, disease, diurnal rhythm, stage of 

lactation and parity [132]. The trial was conducted in the same premises during one season, all 

cows were of the same breed, which was Holstein, and collected milk samples combined portions 

of morning and evening milking to eliminate the variations in milk composition related to diurnal 

rhythm. Blocking was implemented in the experimental design of the trial to account for variations 

related to the remaining factors, which are stage of lactation, parity and age (Table 7-24). However, 

milk sample of cow 2057 from block 8 in T2 was missing on week 6 of the trial. This cow was the 

only primiparous one in T2. In addition, T2 had a cow in its seventh parity (i.e., cow 7097); while 
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the greatest parity in T1 was the fifth (i.e., cow 419). The missed milk sample of cow 2057 rendered 

the median parity of cows of T2 greater than that of T1, which are 3 and 2, respectively. Hence, 

cows of T2 were older and one lactation higher than those of T1. Milk fat and protein decline as 

the animal becomes older. Milk fat falls about 0.2% each year from the first to fifth lactation as a 

result of higher production and more udder infections; while protein decreases 0.02 to 0.05% each 

lactation as animals age [133]. This fact is reflected in the numerical milk data where the averages 

of fat were 3.96% and 3.76% and the averages of protein were 3.34% and 3.28% for T1 and T2, 

respectively. In fact, the loading spectrum of PC5 extracted from long-term VN Raw spectral 

dataset shows increased loadings between 1565 cm-1 and 1520 cm-1 which corresponds to the 

Amide II band of proteins in milk FTIR spectrum [22]. This observation explains the strong block 

effect (P = 0.0008) and the treatment effect (P = 0.0423) on PC5. In this case, the treatment effect 

might have originated from the imbalance of age and parity in blocks of T1 and T2 that resulted 

from the missing milk sample of cow 2057 from the long-term dataset. The effect of a greater age 

and parity in T2 might have overshadowed any effect on milk composition related to the stall 

width. The hybrid spectral analysis was applied to the spectral datasets of week 5 and none of the 

extracted PCs revealed a significant treatment effect (Table 7-19). In this trial, the hybrid spectral 

analysis could detect effects of multiple factors on the FTIR spectra of milk samples and provided 

explanation related to specific experimental details of the trial.  
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Table 7-17 Principal components extracted from the raw, FD, VN raw, VN FD spectral datasets of the long-term milk spectral 

datasets for the stall width trial. The table also lists P values obtained from the SAS Mixed Procedure for the treatment and block 

effects that are tested in this trial. 

Long-term 

Spectral 

Dataset 

Meaningful 

PC 
Eigenvalue 

Explained 

Variation % 

Cumulative Explained 

Variation % 

P Values 

Treatment Block 

Raw 

PC1 146.50 52.70 52.70 0.6103 0.3639 

PC2 76.97 27.69 80.39 0.5711 0.2751 

PC3 40.09 14.42 94.81 0.5856 0.1811 

PC4 6.78 2.44 97.25 0.7496 0.7710 

PC5 3.36 1.21 98.45 0.5696 0.3811 

FD 

PC1 148.33 53.36 53.36 0.4548 0.3200 

PC2 46.01 16.55 69.91 0.5975 0.1332 

PC3 30.35 10.92 80.83 0.6819 0.6276 

PC4 20.25 7.29 88.11 0.9316 0.5952 

PC5 10.42 3.75 91.86 0.6152 0.0134 

PC6 6.76 2.43 94.29 0.2942 0.8353 

PC7 4.72 1.70 95.99 0.2918 0.6883 

PC8 3.56 1.28 97.27 0.1399 0.5155 

PC9 2.62 0.94 98.21 0.6917 0.7075 

VN Raw 

PC1 199.72 71.84 71.84 0.6957 0.4815 

PC2 50.71 18.24 90.08 0.5269 0.2258 

PC3 14.78 5.32 95.40 0.4743 0.4272 

PC4 4.87 1.75 97.15 0.4372 0.2245 

PC5 3.13 1.13 98.28 0.0423 0.0008 

VN FD 

PC1 175.90 63.27 63.27 0.6769 0.4643 

PC2 38.64 13.90 77.17 0.6043 0.1012 

PC3 21.69 7.80 84.98 0.6936 0.7748 

PC4 13.90 5.00 89.98 0.1414 0.0035 

PC5 6.340 2.28 92.26 0.2300 0.6657 

PC6 5.20 1.87 94.13 0.9493 0.9771 

PC7 4.64 1.67 95.80 0.0916 0.5014 

PC8 3.61 1.30 97.09 0.6612 0.1740 

PC9 2.74 0.99 98.08 0.3364 0.2808 

 

  



 

246 

 

Table 7-18 Principal components extracted from the raw, FD, VN raw, VN FD spectral datasets of the short-term milk spectral 

datasets for the stall width trial. The table also lists P values obtained from the SAS Mixed Procedure for the treatment and block 

effects that are tested in this trial. 

Short-term 

Spectral 

Dataset 

Meaningful 

PC 
Eigenvalue 

Explained 

Variation % 

Cumulative Explained 

Variation % 

P Values 

Treatment Block 

Raw 

PC1 150.38 54.09 54.09 0.3546 0.0176 

PC2 92.18 33.16 87.25 0.8075 0.2866 

PC3 23.83 8.57 95.82 0.3476 0.1208 

PC4 6.54 2.35 98.18 0.3555 0.3405 

PC5 3.13 1.13 99.30 0.4765 0.9212 

FD 

PC1 167.78 60.35 60.35 0.4435 0.0196 

PC2 35.34 12.71 73.07 0.5139 0.2447 

PC3 30.83 11.09 84.16 0.3807 0.4828 

PC4 18.35 6.60 90.76 0.2811 0.3418 

PC5 8.10 2.91 93.67 0.7191 0.6465 

PC6 5.33 1.91 95.59 0.1686 0.8037 

PC7 4.09 1.47 97.06 0.1488 0.1938 

VN Raw 

PC1 213.76 76.89 76.89 0.4997 0.0614 

PC2 37.90 13.63 90.53 0.4937 0.2029 

PC3 15.46 5.56 96.09 0.3052 0.2461 

PC4 4.74 1.70 97.79 0.0743 0.0171 

PC5 3.27 1.18 98.97 0.3028 0.9457 

VN FD 

PC1 191.97 69.05 69.05 0.4677 0.0563 

PC2 30.13 10.84 79.89 0.1613 0.3021 

PC3 18.44 6.63 86.52 0.8666 0.3497 

PC4 11.05 3.98 90.50 0.3685 0.2558 

PC5 7.58 2.73 93.23 0.2124 0.8537 

PC6 5.48 1.97 95.20 0.2010 0.5612 

PC7 3.33 1.20 96.40 0.7711 0.8458 

PC8 2.78 1.00 97.40 0.1893 0.8713 
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Table 7-19 Principal components extracted from the raw, FD, VN raw, VN FD spectral datasets of week 5 milk spectral datasets 

for the stall width trial. The table also lists P values obtained from the SAS Mixed Procedure for the treatment and block effects 

that are tested in this trial 

Week 5 

Spectral 

Dataset 

Meaningful 

PC 
Eigenvalue 

Explained 

Variation % 

Cumulative Explained 

Variation % 

P Values 

Treatment Block 

Raw 

PC1 177.50 63.85 63.85 0.2285 0.0800 

PC2 57.88 20.82 84.67 0.1899 0.0630 

PC3 34.32 12.35 97.01 0.2589 0.1503 

PC4 5.26 1.89 98.91 0.9269 0.7909 

FD 

PC1 167.09 60.10 60.10 0.4310 0.0898 

PC2 44.69 16.08 76.18 0.2321 0.2646 

PC3 29.51 10.61 86.79 0.2594 0.2298 

PC4 17.97 6.47 93.26 0.6512 0.7352 

PC5 4.58 1.65 94.91 0.1013 0.5006 

PC6 3.49 1.25 96.16 0.9563 0.5699 

PC7 2.92 1.05 97.21 0.8166 0.7843 

VN Raw 

PC1 224.92 80.91 80.91 0.2122 0.0704 

PC2 36.82 13.24 94.15 0.2888 0.2928 

PC3 7.45 2.68 96.82 0.9588 0.5065 

PC4 4.39 1.58 98.41 0.9383 0.4886 

VN FD 

PC1 195.07 70.17 70.17 0.2110 0.0756 

PC2 35.07 12.61 82.78 0.2931 0.3356 

PC3 16.10 5.79 88.57 0.9989 0.5778 

PC4 7.311 2.63 91.20 0.8035 0.8637 

PC5 6.98 2.51 93.72 0.1216 0.0818 

PC6 5.07 1.82 95.54 0.1011 0.3773 

PC7 3.29 1.18 96.72 0.0645 0.7708 

PC8 2.75 0.99 97.71 0.2212 0.5114 
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Table 7-20 Least squares means produced by the Mixed procedure for the scores of PC5 extracted from long-term VN Raw 

spectral average dataset and that revealed a significant treatment effect. 

Treatment Estimate Standard 

Error 

DF t Value P Value 

1 0.2842 1.1704 1 0.24 0.8483 

2 -0.3179 1.1740 1 -0.27 0.8317 

 

Table 7-21 Differences of least squares means for PC5’s scores. The Scheffé adjusted P value shows that T1 is significantly 

different from T2. 

Treatment Treatment Estimate 
Standard 

Error 
DF t Value P Value 

Scheffé 

Adj. P 

Value 

1 2 0.6021 0.2224 5.01 2.71 0.0423 0.0423 
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Figure 7-3 The loading spectrum of PC5 extracted from long-term VN Raw spectral dataset for the stall width trial. Shaded 

regions can be assigned as follows: 1) 1250-1140 cm-1 to the methylene twisting and wagging vibrations of fatty acids, esters and 

BHB, and to the 𝐶 − 𝑂 stretching vibration of the 𝐶 − 𝐶(= 𝑂) − 𝑂 band of saturated esters, 2) 1565-1520 cm-1 to the Amide II 

band of milk proteins, 3) 1721 cm-1 to the 𝐶 = 𝑂 stretching vibration of ester linkage in milk fat, 4) 3000-2840 cm-1 to the 

asymmetrical stretching (𝜈𝑎𝑠𝐶𝐻2) and the symmetrical stretching (𝜈𝑠𝐶𝐻2) of the methylene group in fatty acids of milk fat.  
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Figure 7-4 FTIR spectra of BHB aqueous solutions. Red: water, blue: 0.5% aqueous solution of BHB, purple: 1% aqueous 

solution of BHB. The spectra show an absorption band centred at 1207 cm-1, which can be assigned to the methylene twisting 

and wagging vibrations.  
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Figure 7-5 FTIR spectra of Milk samples with different fat concentrations. Blue: skim milk, purple: 1% fat, green: 2% fat, red: 

3.25% fat. The 𝐶 − 𝑂 stretching vibration of the 𝐶 − 𝐶(= 𝑂) − 𝑂 band of saturated esters shows strong absorption in the 1210 

cm-1 to 1163 cm-1 region.  

Table 7-22 Results of peak fitting of region 1100-940 cm-1 in the loading spectrum of PC5 and probable molecules that can be 

assigned to the resulting peaks. 

Range cm-1 Peak Type Center X Height Area Probable molecule 

1100-940 
Voigt 944.001 0.0773 11.105 BHB 

Voigt 1063.754 0.0058 0.8025 BHB 
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Table 7-23 Average ± SD milk composition data for week 6 for the stall width trial. 

Treatment T1 T2 

Fat % 3.96 ± 0.54 3.76 ± 0.37 

Protein %  3.34 ± 0.22 3.28 ± 0.18 

Lactose % 4.57 ± 0.11 4.56 ± 0.19 

TS % 12.85 ± 0.64 12.57 ± 0.43 

Urea mg/dL 12.85 ± 1.22 13.07 ± 1.76 

BHB mmol/L 0.13 ± 0.02 0.13 ± 0.04 

C14:0 % 0.450 ± 0.084 0.417 ± 0.083 

C16:0 % 1.074 ± 0.183 1.005 ± 0.159 

C18:0 % 0.377 ± 0.054 0.357 ± 0.016 

C18:1 % 0.805 ± 0.134 0.804 ± 0.064 

SCFA % 0.349 ± 0.054 0.314 ± 0.040 

MCFA % 1.860 ± 0.219 1.700 ± 0.152 

LCFA % 1.086 ± 0.156 1.061 ± 0.066 

Saturated FA % 2.577 ± 0.407 2.410 ± 0.309 

Total unsaturated FA % 1.135 ± 0.148 1.095 ± 0.082 

Monounsaturated FA % 0.944 ± 0.142 0.894 ± 0.076 

Polyunsaturated FA % 0.157 ± 0.023 0.149 ± 0.025 

Trans FA % 0.056 ± 0.017 0.058 ± 0.012 

FFA % 8.725 ± 2.402 8.366 ± 2.800 
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Table 7-24 Block design on week 6 of the stall width trial. E: early lactation stage 0-100 days in milk, M: mid lactation stage 

100-200 days in milk. a Oldest cow among subjects of T2. b cow with a missing milk sample.  

Treatment Block Cow ID Lactation 
Lactation 

stage 

Median lactations 

per treatment 

T1 

1 5322 2 E 

2.00 

2 5300 2 M 

3 419 5 M 

4 5275 3 M 

5 5294 2 M 

6 6294 4 M 

7 5308 2 M 

8 2063 1 E 

T2 

1 2029 2 E 

3.00 

2 5296 2 M 

3 7097a 7 M 

4 5327 2 M 

5 5283 3 M 

6 5258 3 M 

7 5279 3 M 

8 2057b 1 E  

 

7.3.5 Manger wall and stall length trial 

The manger wall and stall length trial was conducted under a crossover design in which each 

subject was exposed to the two treatment levels within each row (i.e., T1 and T2), which means 

each subject contributed two observations to the collected data. However, this fact did not prevent 

the application of PCA as a dimensionality reduction method to the collected data in crossover 

experimental design because PCA will not be used to model any effects. There have been published 

studies in which PCA was applied as a dimensionality reduction method to experimental data 

collected with a crossover experimental design [134, 135]. In this trial, the hybrid spectral analysis 

approach that was developed in the previous chapter proved to be compatible with different 

experimental designs that can be analyzed by mixed models that include randomized complete 
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block designs, repeated measures and crossover designs, which makes this approach a versatile 

tool for spectral analysis in controlled-design trials.  

Table 7-25 and Table 7-26 summarize the meaningful PCs that were extracted from the raw, FD, 

VN raw and VN FD spectral datasets of the long-term and short-term milk samples spectral 

datasets of the stall length and manger wall trial, respectively. PCA yielded five, eight, four and 

eight meaningful PCs from the raw, FD, VN raw and VN FD long-term spectral datasets that 

explained 98.47%, 95.53%, 97.01% and 94.24% of the variation in the spectral datasets, 

respectively. These PCs, whose eigenvalue and percentage of explained variation ≥1, represent the 

sources of variation in their respective spectral datasets that were separated from the noise and that 

were tested for the stall length, sequence, block, manger wall height treatment on the stall length 

treatment and period effects by the SAS Mixed procedure. The manger wall height treatment and 

its combined effect with the stall length did not reveal any significant effect on the short-term and 

long-term spectral datasets, which means that the manger wall and stall length treatment did not 

affect milk composition during the trial. On the other hand, PC6 (P = 0.0355) extracted from long-

term FD spectral dataset revealed significant length effect, which means that the stall length had a 

significant effect on milk composition over the long-term of the trial. This PC explains 1.77% of 

the variation in its respective dataset, which suggests that the length effect is limited. The loading 

spectrum of PC6 had to be integrated before interpretation because it was isolated from FD spectral 

dataset. In the following discussion, we will refer to the short and long stalls as L1 and L2, 

respectively, to distinguish them from the two treatments (i.e., T1 and T2), which represent the 

combined effect of the stall length and manger wall height. 

Table 7-27 and Table 7-28 summarize the least squares means and their differences produced by 

the Mixed procedure for the scores of PC6 extracted from long-term FD spectral dataset that 

revealed a significant length effect. These tables show that the estimates of the mean scores of PC6 

for L1 and L2 are negative and positive values, respectively, which means that the influential 

spectral features in the loading spectrum of this PC have more intense absorbance in spectra 

collected for milk samples of cows assigned to L1. It was proven in the previous chapter that 

spectral features with more intense absorbances yield greater negative scores when PCA is applied 

to the FD of the spectral data. This observation means that molecules affected by the stall length 
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are present in higher concentrations in milk samples collected from cows assigned to L1, which is 

the shorter stall length. 

Inspection of the spectral integral of PC6 loading spectrum (Figure 7-6) revealed peaks at the 

following wavenumbers: 1575, 1460, 1408, 1033, 980 and 946 cm-1. The peak at ~1575 cm-1 is 

observed in the FTIR spectrum of histamine aqueous solution and it can be assigned to the 

stretching of the imidazole ring. The peak at ~1460 cm-1 is observed in the FTIR spectra of milk 

samples spiked with urea and ammonium; hence, it can be assigned to the 𝐶 − 𝑁 stretching band 

in urea or to the 𝑁 − 𝐻 bending band in ammonium. The peak at ~1408 cm-1 is observed in milk 

samples spiked with BHB and it can be assigned to the 𝐶 − 𝑂 − 𝐻 bending band or the 

symmetrical stretching of carboxylate ion. The peaks at ~1033 and 980 cm-1 are observed in the 

FTIR spectra of milk samples spiked with histamine. The peak at ~ 946 cm-1 is observed in FTIR 

spectra of aqueous solutions of histamine and BHB. In addition, 980 cm-1 and 946 cm-1 has already 

been assigned to bound Ca and organic P in milk [58].  

The spectral analysis concludes that milk samples collected from cows assigned to L1 (i.e., the 

short length row) had higher levels of BHB, urea, ammonium and histamine during the long-term 

of each period of the trial. The last three compounds are considered milk NPNs. Milk numeric data 

supports the conclusion regarding BHB and urea. Over the long-term, the averages for period 1 of 

BHB content were 0.06 mmol/L and 0.05 mmol/L for L1 and L2, respectively, and 0.05 mmol/L 

and 0.04 mmol/L for L1 and L2, respectively, for period 2. The averages for period 1 of urea 

content were 13.02 mg/dL and 11.79 mg/dL for L1 and L2, respectively, and 14.01 mg/dL and 

12.43 mg/dL for L1 and L2, respectively, for period 2. 

Histamine in milk originates from the blood serum [84] and its elevated levels may be attributed 

to the corium tissue breakdown (i.e., resulting in skin lesions or injuries) or stress [20]. Injury 

severity decreased at several different locations on the cows over time, regardless of treatment. It 

has been found that cows had 4-8 times less contacts with the tie-rail while they were rising in 

long stalls regardless of the manger height but only while comparing to short stalls with low 

manger, which may have led to possible reduction of injuries on the cow’s neck [115]. However, 

reduction in injuries on the cow’s neck was greater for cows in short stalls with high manger while 

compared to low manger. The key finding on the outcome measures of welfare comparing long 

stalls to short stalls is the drastic increase of 1 h per day in lying time [115]. Increased lying time 
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of 1 h per day for cows assigned to L2 (i.e., the longer stalls) indicates a more comfortable 

environment; thus, may explain the reduced histamine levels in the blood.  

Another source of elevated histamine in the blood is protein degradation that is associated with 

necrotic diseases such as mastitis and metritis [20]. The averages of somatic cell count (SCC) for 

L1 and L2 were 281,435 and 133,136 cells/mL, respectively, in milk samples collected during the 

long-term of both periods. In Canadian Holstein cows, SCC greater than 200,000 cells/mL is 

considered a sign of mastitis for cows that are more than 30 DIM [15]. In addition, the average 

SCC for L1 (i.e., 281,435 cells/mL) exceeds the geometric mean of SCC for the province of 

Quebec, which is 215,000 cells/mL [136]. If these numbers are broken down by period, the 

averages of SCC for L1 and L2 become 528,273 cells/mL and 203,700 cells/mL, respectively, for 

period 2. This observation indicates that cows assigned to shorter stalls were releasing more 

histamine due to udder inflammation into the blood than those assigned to longer stalls, which 

corroborates the findings of the spectral analysis. Nevertheless, no solid conclusion can be made 

regarding the relationship between the stall length, milk composition and susceptibility to mastitis 

in this trial. In fact, due to a strict maintenance of stall and bedding, no difference in stall 

cleanliness or dryness, or in udder health were found between treatments and overtime [115]. 

While the literature reports experimental studies that find that longer stalls increase udder dirtiness 

[137], observational ones did not confirm this relationship [138-140]. The dynamics of infectious 

microorganisms’ proliferation on dairy farms is complex and the stall length and manger wall trial 

was not designed to consider factors that have significant effect on the proliferation of mastitis, 

such as management practices [137].  

    



 

 

 

Table 7-25 Principal components extracted from the raw, FD, VN raw, VN FD spectral datasets of long-term milk spectral datasets for the stall length and manger wall trial. The 

table also lists P values obtained from the SAS Mixed Procedure for the effects that were tested in this trial. 

Long-term 

Spectral 

Dataset 
Meaningful PC Eigenvalue Explained Variation % 

Cumulative Explained 

Variation % 

P Values 

length seq(length) block trt(length) period 

Raw 

PC1 158.84 57.14 57.14 0.4466 0.9078 0.1115 0.7793 0.1256 

PC2 71.90 25.86 83.00 0.4065 0.6420 0.0131 0.4777 <0.0001 

PC3 35.59 12.80 95.80 0.5914 0.7760 0.0934 0.4070 0.0004 

PC4 4.03 1.45 97.25 0.6814 0.2743 0.5259 0.5997 0.0001 

PC5 3.39 1.22 98.47 0.0590 0.1678 0.1449 0.5110 <0.0001 

FD 

PC1 172.42 62.02 62.02 0.3954 0.9197 0.1148 0.8642 0.5032 

PC2 46.40 16.69 78.71 0.3227 0.5131 0.0241 0.1711 <0.0001 

PC3 22.43 8.07 86.78 0.7148 0.9572 0.0801 0.7467 <0.0001 

PC4 7.87 2.83 89.61 0.7260 0.1368 0.1738 0.8487 <0.0001 

PC5 5.60 2.01 91.62 0.6060 0.4096 0.9410 0.7316 0.0119 

PC6 4.92 1.77 93.39 0.0355 0.0375 0.3748 0.2756 0.9115 

PC7 3.10 1.12 94.51 0.4702 0.8323 0.9112 0.6305 0.5355 

PC8 2.84 1.02 95.53 0.8848 0.0693 0.0389 0.1293 0.8755 

VN Raw 

PC1 210.37 75.67 75.67 0.3895 0.9458 0.0986 0.9735 0.6202 

PC2 45.96 16.53 92.20 0.6187 0.5421 0.0906 0.2465 <0.0001 

PC3 9.65 3.47 95.68 0.2230 0.4455 0.3281 0.5177 <0.0001 

PC4 3.70 1.33 97.01 0.1589 0.1703 0.6535 0.7369 0.0004 

VN FD 

PC1 187.51 67.45 67.45 0.4192 0.9179 0.1040 0.9781 0.0414 

PC2 35.97 12.94 80.39 0.3945 0.6005 0.0570 0.6406 0.0001 

PC3 11.32 4.07 84.46 0.1020 0.2641 0.0631 0.8256 <0.0001 

PC4 8.02 2.89 87.34 0.5462 0.4502 0.1249 0.4358 0.5410 

PC5 6.69 2.41 89.75 0.7541 0.0830 0.9953 0.6990 0.2240 

PC6 5.28 1.90 91.65 0.3356 0.8266 0.7761 0.2235 0.1408 

PC7 3.84 1.38 93.03 0.5208 0.5644 0.9576 0.3690 0.2010 

PC8 3.35 1.21 94.24 0.1591 0.0027 0.0480 0.0581 0.5281 

 



 

 

 

Table 7-26 Principal components extracted from the raw, FD, VN raw, VN FD spectral datasets of the short-term milk spectral datasets for the stall length and manger wall trial. 

The table also lists P values obtained from the SAS Mixed Procedure for the effects that were tested in this trial. 

Short-term 

Spectral 

Dataset 
Meaningful PC Eigenvalue Explained Variation % 

Cumulative Explained 

Variation % 

P Values 

length seq(length) block trt(length) period 

Raw 

PC1 144.33 51.92 51.92 0.2579 0.9280 0.1675 0.8666 0.0023 

PC2 92.20 33.17 85.08 0.5433 0.9861 0.0220 0.4867 <0.0001 

PC3 33.65 12.11 97.19 0.2322 0.7154 0.0460 0.9156 0.0001 

PC4 2.81 1.01 98.20 0.5377 0.0816 0.7792 0.2083 0.5328 

FD 

PC1 166.18 59.78 59.78 0.2150 0.9438 0.1940 0.8597 0.0435 

PC2 48.58 17.47 77.25 0.0822 0.5589 0.0026 0.8058 <0.0001 

PC3 32.09 11.54 88.79 0.4677 0.8917 0.0544 0.4873 0.0112 

PC4 8.40 3.02 91.82 0.2212 0.3661 0.8604 0.9767 0.6371 

PC5 6.43 2.31 94.13 0.6158 0.2777 0.0890 0.8287 <0.0001 

PC6 3.77 1.36 95.49 0.0894 0.9774 0.4045 0.6288 0.6860 

VN Raw 

PC1 204.74 73.65 73.65 0.2443 0.9570 0.2631 0.5677 0.1116 

PC2 56.44 20.30 93.95 0.2362 0.7380 0.0399 0.8788 0.0041 

PC3 6.43 2.31 96.27 0.9240 0.1253 0.9148 0.0894 <0.0001 

PC4 3.64 1.31 97.57 0.2230 0.1684 0.1441 0.5018 <0.0001 

VN FD 

PC1 179.34 64.51 64.51 0.2171 0.9720 0.2728 0.4520 0.0042 

PC2 45.02 16.19 80.70 0.1509 0.8364 0.0400 0.7609 0.0857 

PC3 16.05 5.77 86.48 0.9141 0.2355 0.4883 0.9741 <0.0001 

PC4 8.68 3.12 89.60 0.2601 0.6865 0.8022 0.9715 0.1621 

PC5 6.10 2.19 91.80 0.2197 0.9643 0.1640 0.4886 0.8574 

PC6 4.62 1.66 93.46 0.1530 0.0150 0.0799 0.9530 0.0932 

PC7 3.23 1.16 94.62 0.1905 0.0663 0.2297 0.7606 0.2904 

PC8 2.91 1.05 95.67 0.9910 0.4457 0.2886 0.2040 0.3811 
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Table 7-27 Least squares means produced by the Mixed procedure for the scores of PC6 extracted from long-term FD spectral 

average dataset and that revealed a significant length effect. 

Length Estimate Standard 

Error 

DF t Value P Value 

L1 -0.6226 0.4187 33 -1.49 0.1465 

L2 0.6924 0.4339 33 1.60 0.1201 

 

Table 7-28 Differences of least squares means for PC6’s scores. The Scheffé adjusted P value shows that L1 is significantly 

different from L2 

Length Length Estimate 
Standard 

Error 
DF t Value P Value 

Scheffé 

Adj. P 

Value 

L1 L2 -1.3150 0.5998 33 -2.19 0.0355 0.0355 
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Figure 7-6 The loading spectrum of PC6 extracted from long-term FD spectral dataset for the stall length and manger wall trial. 

Shaded regions can be assigned as follows: 1-3) peaks at ~1033, 980 and 946 cm-1are found in FTIR spectra of milk samples 

spiked with histamine and BHB and their aqueous solutions, 4) peak at ~1408 cm-1 is observed in FTIR spectra of milk samples 

spiked with BHB, 5) peak at ~1460 cm-1 is observed in FTIR spectra of milk samples spiked with urea and ammonium, 6) peak at 

~1575 cm-1is observed in FTIR spectrum of histamine aqueous solution.  
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Table 7-29 Milk composition average ± SD data for week 6 for the stall length and manger wall trial. 

Row L1 L2 Average by length 

Period P1 P2 P1 P2 L1 L2 

Fat % 3.85 ± 0.87 3.92 ± 0.71 4.06 ± 0.75 4.44 ± 0.48 3.89 ± 0.78 4.23 ± 0.66 

Protein % 3.34 ± 0.29 3.45 ± 0.26 3.45 ± 0.28 3.65 ± 0.22 3.39 ± 0.27 3.54 ± 0.27 

Lactose % 4.67 ± 0.11 4.65 ± 0.19 4.61 ± 0.18 4.60 ± 0.21 4.66 ± 0.15 4.60 ± 0.19 

Urea mg/dL 13.03 ± 1.72 14.01 ± 2.21 11.79 ± 3.32 12.43 ± 2.46 13.50 ± 1.99 12.08 ± 2.91 

BHB mmol/L 0.06 ± 0.02 0.05 ± 0.01 0.05 ± 0.02 0.04 ± 0.02 0.06 ± 0.02 0.05 ± 0.02 

C14:0 % 0.444 ± 0.132 0.464 ± 0.109 0.468 ± 0.099 0.515 ± 0.053 0.453 ± 0.119 0.489 ± 0.083 

C16:0 % 1.114 ± 0.349 1.224 ± 0.254 1.236 ± 0.288 1.401 ± 0.170 1.167 ± 0.305 1.311 ± 0.251 

C18:0 % 0.299 ± 0.054 0.263 ± 0.035 0.309 ± 0.054 0.294 ± 0.049 0.281 ± 0.048 0.302 ± 0.051 

C18:1 % 0.791 ± 0.093 0.701 ± 0.106 0.811 ± 0.144 0.800 ± 0.126 0.748 ± 0.107 0.806 ± 0.133 

SCFA % 0.377 ± 0.110 0.354 ± 0.073 0.377 ± 0.079 0.392 ± 0.059 0.366 ± 0.093 0.384 ± 0.069 

MCFA % 1.736 ± 0.540 1.909 ± 0.441 1.925 ± 0.411 2.171 ± 0.252 1.819 ± 0.492 2.037 ± 0.362 

LCFA % 1.109 ± 0.148 1.049 ± 0.159 1.125 ± 0.163 1.154 ± 0.145 1.080 ± 0.153 1.138 ± 0.152 

SFA % 2.611 ± 0.689 2.664 ± 0.511 2.752 ± 0.533 2.978 ± 0.319 2.636 ± 0.597 2.855 ± 0.453 

UFA % 1.051 ± 0.151 1.059 ± 0.189 1.102 ± 0.213 1.235 ± 0.169 1.055 ± 0.166 1.163 ± 0.202 

MUFA % 0.897 ± 0.120 0.810 ± 0.127 0.920 ± 0.155 0.933 ± 0.134 0.855 ± 0.128 0.926 ± 0.143 

PUFA % 0.149 ± 0.026 0.167 ± 0.015 0.149 ± 0.025 0.178 ± 0.022 0.158 ± 0.023 0.162 ± 0.027 

TFA % 0.027 ± 0.020 0.086 ± 0.031 0.023 ± 0.026 0.094 ± 0.025 0.055 ± 0.039 0.055 ± 0.044 

FFA % 5.912 ± 1.742 4.618 ± 1.565 5.572 ± 1.068 4.770 ± 1.070 5.293 ± 1.751 5.207 ± 1.120 

De novo FA % 1.029 ± 0.304 1.028 ± 0.219 1.076 ± 0.237 1.173 ± 0.142 1.029 ± 0.260 1.120 ± 0.201 

Mixed FA % 1.308 ± 0.379 1.354 ± 0.271 1.404 ± 0.334 1.525 ± 0.185 1.330 ± 0.326 1.459 ± 0.277 

Preformed FA % 1.158 ± 0.151 0.940 ± 0.174 1.190 ± 0.183 1.091 ± 0.163 1.054 ± 0.194 1.145 ± 0.177 

True Pro % 3.12 ± 0.29 3.25 ± 0.26 3.24 ± 0.29 3.45 ± 0.21 3.18 ± 0.28 3.33 ± 0.27 
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7.4 Conclusion  

A hybrid spectral analysis approach was developed to be applied to milk FTIR spectral data that 

combined PCA and mixed modeling to detect a treatment effect in the context of controlled-design 

dairy cattle welfare trials. This approach retained the multivariate structure of the FTIR data and 

was applicable to different experimental designs that can be analyzed by mixed models, such as 

randomized complete block designs, repeated measures and crossover designs. In the tie-rail and 

chain length trials, the experimental design isolated the treatment effect (i.e., housing 

modification) from the effects of other factors in the trial and the hybrid spectral analysis approach 

determined the sources of variation in milk composition that related to treatment effect. In the tie 

rail and chain length trials, PCs explaining 1.37% and 1.70% of the variation in milk FTIR data, 

respectively, revealed significant treatment effects. The loading spectra of these PCs revealed 

spectral features of molecules related to elevated body fat mobilization and reduced ruminal pH in 

the tie rail and chain length trials, respectively. These findings were corroborated by the data that 

was collected during the trials (i.e., behavioural data) and by the milk numeric data, which did not 

include all the molecules revealed by the spectral features in the loading spectrum of the PCs in 

question. In the stall width trial, a missing milk sample had a detrimental effect on the balance of 

the blocking factor, which rendered the median parity of cows of the double width stall treatment 

greater by one lactation cycle than that of the single width treatment. This imbalance in the 

blocking factor was mainly reflected on milk fat and other milk components in milk numerical 

data and the loading spectrum of the PC that revealed the block and treatment effect. In this case, 

the hybrid spectral analysis approach could detect effects of multiple factors on the FTIR spectra 

of milk samples and provided explanation related to specific experimental details of the trial. The 

stall length and manger wall trial had a crossover experimental design. The hybrid approach 

revealed that cows on longer stalls had less histamine in their milk samples which resulted from 

an increase in lying time which states a great improvement in cow comfort at her stall. It can be 

concluded that the hybrid approach for spectral analysis provides an innovative tool for studying 

animal welfare from a novel prospective that focuses on the repercussions of animal comfort on 

its biochemical process and their effects on milk synthesis and its fine composition. 
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Appendix  

 

Figure 7-7 Urea [141] 

 

 

Figure 7-8 Raw milk spiked with urea. Blue: raw milk, purple: raw milk spiked with 0.5% urea, red: raw milk spiked with 1% 

urea. 
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Figure 7-9 β-Hydroxybutyric acid (BHBA or BHB) [142] 

 

Figure 7-10 Raw milk spiked with BHB standard. Red: raw milk, blue: raw milk spiked with 0.5% BHB, purple: raw milk spiked 

with 1% BHB. 
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Figure 7-11 Acetone [143] 

 

Figure 7-12 Raw milk spiked with acetone. Red: raw milk, blue: raw milk spiked with 0.5% acetone, purple: raw milk spiked with 

1% acetone. 
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Figure 7-13 Citrate [144] 

 

Figure 7-14 Raw milk spiked with citrate. Red: raw milk, blue: raw milk spiked with 0.5% citrate, purple: raw milk spiked with 

1% citrate. 
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Figure 7-15 Acetate [145] 

 

Figure 7-16 Raw milk spiked with acetate. Red: raw milk, blue: raw milk spiked with 0.5% acetate, purple: raw milk spiked with 

1% acetate. 
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Figure 7-17 Phosphate [146] 

 

Figure 7-18 Raw milk spiked with phosphate. Red: raw milk, blue: raw milk spiked with 0.5% phosphate, purple: raw milk spiked 

with 1% phosphate. 
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Figure 7-19 From left to right: D-(+)-glucose, D-(+)-galactose, β-lactose [147-149] 

 

Figure 7-20 Red: raw milk, blue: raw milk spiked with 1% galactose, purple: raw milk spiked with 1% glucose, green: raw milk 

spiked with 1% lactose. 
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Figure 7-21 Ammonium ion [150] 

 

Figure 7-22 Raw milk spiked with ammonium chloride. Red: raw milk, blue: raw milk spiked with 0.5% ammonium chloride, 

purple: raw milk spiked with 1% ammonium chloride. 
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Figure 7-23 Linoleic acid C18:2 cis 9,12 [121] 

 

Figure 7-24 Raw milk spiked with linoleic acid. Red: raw milk, blue: raw milk spiked with linoleic acid 0.14%.  
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Figure 7-25 Creatine [122] 

 

Figure 7-26 Raw milk spiked with creatine. Red: raw milk, blue: raw milk spiked with 0.5% creatine, purple: raw milk spiked 

with 1% creatine, green: raw milk spiked with 0.002% (milk mean) creatine. 
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Figure 7-27 Histamine [124] 

 

Figure 7-28 Raw milk spiked with histamine. Red: raw milk, blue: raw milk spiked with histamine 0.28%.  
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Figure 7-29 Orotic acid [126] 

 

Figure 7-30 Raw milk spiked with orotic acid. Red: raw milk, blue: raw milk spiked with orotic acid 0.14%. 
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Figure 7-31 Hippuric acid [128] 

 

Figure 7-32 Raw milk spiked with hippuric acid. Red: raw milk, blue: raw milk spiked with hippuric acid 0.3%. 
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Chapter 8: General discussion and conclusion  

8.1 Discussion 

In this thesis, two propositions were argued for expanding the capabilities of the milk recording 

system. The first was on-site milk analysis. The current system relies on collecting milk samples 

from farms enrolled in the milk recording system and then shipping those samples to the central 

dairy laboratory of a dairy herd improvement agency (DHI), such as Valacta. The current system 

stipulates 10 analyses within 12 months period, which results in an estimated 3 million samples 

being shipped annually to the central dairy laboratory. In addition, monitoring milk composition 

has been proved to be an effective tool in managing the production process on dairy farms to 

monitor animal health or nutritional status [14, 15], as it was presented in the literature review in 

chapter 2. Modern milk analyzers are state-of-the-art instruments that are renowned for their 

throughput, accuracy and precision [5]. However, those instruments are expensive, and they are 

designed to operate under specific conditions, which makes on-site analysis of milk infeasible. If 

a dairy farmer wishes to adopt a proactive approach and follow a self monitoring program of milk 

composition, then there are currently two available options. The first option is to ship more samples 

from the dairy farm to the central dairy laboratory; hence, increasing the carbon footprint of dairy 

farming, which is already a concern. The second option is to rely on analyzers of milking robots; 

however, those analyzers use near infrared (NIR) detectors that produce milk spectra with broad, 

overlapping and low intensity bands [11]. Electromagnetic radiation in the NIR region (i.e., 2,500 

to 750 nm) has a shorter wavelength than the mid-IR region (i.e., 10 to 2.5 µm), which causes 

greater light scattering that makes predictions of milk components less accurate than those 

produced by analyzers built with mid-IR detectors, especially for minor milk components. For 

these reasons, we consider that having an on-site milk analyzer based on mid-IR sensor will be a 

valuable tool for dairy farmers who wish to self monitor milk composition of their cows more 

frequently to adopt a proactive decision-making process rather than being reactive to issues that 

have already become problematic.  

For this purpose, two types of infrared (IR) spectrometers have been evaluated for on-site milk 

analysis in combination with two sample introduction methods. In chapter 3, the first combination 

was a portable Fourier transform infrared (FTIR) spectrometer with a transmission cell as a sample 

introduction method. This combination is the basis of the official method for milk analysis by IR 
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spectroscopy [4] and it is already implemented in commercial milk analyzers [5]. This combination 

requires milk fat to be homogenized to reduce light scattering; hence, increasing the accuracy of 

the analysis, and to facilitate the passage of milk through the transmission cell with the micrometric 

optical path. Ultrasonic processing proved to be successful in achieving this goal. Applying 3000 

joules of ultrasonic energy to 5 mL milk sample for 120s yielded a consistent particle distribution 

profile of milk fat that was similar to that of industrially homogenized milk with a two-stage high 

pressure homogenizer. In addition, the ultrasonic treatment degassed the milk sample and heated 

it to a temperature appropriate for the analysis. Partial least squares (PLS) regression models were 

developed to predict major milk components and some minor ones from FTIR milk spectra. The 

external validation study of the final prototype that was evaluated in this study yielded mean 

differences (MD) values that were ≤ 0.05 for fat, protein and lactose, which comply with the 

stipulations of the AOACI official method 972.16, 33.2.31 [37]. This proof of concept lay the 

foundations for the design of a dedicated FTIR on-site milk analyzer. Nevertheless, it is 

recommended to investigate the potential of implementing microfluidics as a sample delivery 

system. A microfluidic system will reduce the volume of milk sample required for the analysis, 

which will reduce the amount of ultrasonic energy and time required to homogenize milk fat. In 

addition, it will reduce the amount of energy that is needed to drive the milk sample through the 

analyzer.  

In chapter 4, attenuated total reflectance (ATR) was evaluated as an alternative sample 

introduction method for the analysis of raw milk. It goes without saying that the accuracy of the 

analysis will not be as accurate as it is with homogenized milk. ATR will eliminate the need for a 

pumping accessory to deliver liquid milk for analysis and it will avoid all mechanical issues that 

might result from the clogging of the micrometric path length of the transmission cell by raw milk. 

Contrary to what has been reported in the literature so far, the study relied on large sample size of 

producer raw milk, which helped model the chemical information related to milk composition in 

a more realistic manner that lead to reduced prediction errors, especially for milk protein. The 

correlation coefficients values of cross validation of PLS regression models were 0.95, 0.98 and 

0.98, and RMSECV values were 0.06%, 0.07% and 0.06% for lactose, protein and non-fatty solids, 

respectively. As for milk fat, the correlation coefficient and RMSECV for cross validation were 

0.75 and 0.37%, respectively. Milk fat is present in the form of globules that range in diameters 

from <0.2 to >15 µm. The small fat globules represent 80% of the total number of fat globules but 
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they contain only 3% of the mass of fat. On the other hand, large globules represent only 2% of 

the total number of fat globules but they contain 95% of the mass of fat [5]. Taking into 

consideration that the path length of the evanescent wave at the ATR surface is only 2-3 µm [7], 

most of the fat in milk deposited on the ATR surface is not probed by the evanescent wave. This 

observation proves that ATR can be used as a sample introduction method for milk analysis for 

applications where milk fat is not required to be determined. However, most herd management 

decisions rely heavily on fat levels in milk, which renders ATR infeasible for such applications.  

In addition, a novel type of IR spectrometers was evaluated for milk analysis in chapter 4, which 

relies on a linear variable filter (LVF) as a dispersive element mounted on top of a pyroelectric 

line sensor to resolve different wavelength in the IR spectrum rather than interferometry, which 

means it does not contain any moving parts. This type of spectrometer is significantly cheaper than 

its FTIR counterpart, which will reduce the cost of an on-site analyzer. It is also equipped with an 

ATR sample introduction method, which will eliminate the need for pumping accessory. This 

spectrometer yielded an acceptable analytical performance for the determination of lactose, protein 

and water in milk, and prediction errors were improved when milk was homogenized with an 

ultrasonic probe. However, this spectrometer did not reveal acceptable analytical performance with 

milk fat. Milk spectra obtained by this spectrometer had uneven data spacing and the number of 

data points in the Fat A region was too low to adequately capture the chemical information related 

to milk fat, which makes it suitable for applications that do not require the determination of milk 

fat.  

In chapter 5, a case study was presented in which on-site milk analysis by IR spectroscopy 

provided a solution for a serious issue that faces the dairy industry in Brazil. There, water addition 

to milk is a rampant practice that can be detected by milk cryoscopy [79], which is the official 

method in Brazil to prove that milk is not watered-down. However, milk cryoscopy readings of 

freezing point depression of milk can be manipulated and restored to its legal value by the addition 

of some chemicals with the added water. To overcome this problem, a lab-in-box instrument was 

developed using the LVF spectrometer, which was tested in the previous chapter. This detector 

could differentiate genuine milk samples from watered-down ones, and it could predict the 

percentage of added water regardless of the chemical that was added to restore the freezing point 

depression of milk to its legal value. In addition, an IR-based solution was developed that relied 
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on portable FTIR spectrometer combined with two tiers classification model and PLS regression 

models to differentiate watered-down milk samples from genuine ones and to identify and quantify 

the added chemical. In this case, the crucial decision was dependent on the outcome of the first 

classification model, which was a principal component based quadratic discriminant analysis 

model that determines the authenticity of the milk sample, rather than a PLS regression model that 

played a secondary role in this application. At the moment, PLS regression is the prevailing 

algorithm that is implemented with milk analyzers. This case study demonstrated that an on-site 

milk analyzer based on mid-IR spectroscopy combined with multivariate classification algorithms 

can be a valuable tool to support the dairy industry in combating problems related to milk 

production.  

The second proposition that was discussed in this thesis to expand the capabilities of the milk 

recording system is the exploitation of milk FTIR spectra beyond the paradigm of predicting 

specific milk components by PLS regression models that will be used in the decision-making 

process on dairy farms. DHI agencies provide services that do not necessarily rely on data 

generated by the milk recording system, such as the assessment of animal welfare. For this purpose, 

trained technicians visit dairy farms to evaluate animal injuries, quality of the cow’s lifts and sets, 

body condition and lameness. However, some conditions related to animal welfare, such as 

laminitis, cause physiological changes in the animal’s body that might lead to increased 

concentrations of some metabolites in the blood serum [20]. Since precursors of milk components 

are obtained from the blood, we hypothesize that the animal welfare state might affect milk 

composition, which might be reflected in the milk FTIR spectrum. It might be difficult to detect 

such changes in milk components that are currently determined by central dairy laboratories 

because they might not be affected by the animal welfare state. Alternatively, data mining 

techniques were applied to milk FTIR spectra to determine the spectral fingerprint associated with 

the animal welfare state.  

In chapter 6, several multivariate data analysis algorithms were evaluated as data mining tools to 

detect the spectral fingerprint in milk FTIR spectra that reflects changes in milk composition 

associated with the effects of different housing treatments that aim at improving animal welfare in 

animal trials with controlled experimental design. Data mining is broadly defined as the process 

of finding patterns in data to improve the decision-making process in a specific domain [93]. To 
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achieve this goal, it combines tools from statistics, artificial intelligence (AI) and machine 

learning, which include hypothesis testing, clustering, classification and regression algorithms. In 

chapter 6, hierarchical cluster analysis (HCA), principal component analysis (PCA) and partial 

least squares discriminant analysis (PLS-DA) were evaluated as tools for data mining of milk FTIR 

spectra. The major drawback of the three algorithms was their inability of hypothesis testing for 

fixed and random effects that had been defined in the statistical model that was used to generate 

the data in the animal trial with the controlled experimental design. To overcome this obstacle, 

PCA was used as a dimensionality reduction method for the spectral data that created a new dataset 

with smaller number of variables. These variables were used as input for hypothesis testing by 

mixed modeling to test the different effects that were considered in the statistical model of the 

animal trial. The “PCA-mixed modeling” hybrid approach maintained the multivariate structure 

of milk FTIR data and accommodated a powerful hypothesis testing tool that proved to be 

successful in answering the following questions:  

▪ Does a treatment have a significant effect on the FTIR spectral data of milk composition? 

▪ Which treatment level did significantly change milk components’ concentrations? 

▪ What are the spectral variables that were affected by changing milk components’ 

concentrations? 

▪ What molecules in milk can be assigned to FTIR peaks that are significantly affected by 

the treatment? 

In chapter 7, the “PCA-mixed modeling” hybrid approach was successfully applied to milk FTIR 

data collected during animal trials designed to study the effects of tie rail position, chain length, 

stall width, stall length and manger wall height on dairy cows’ welfare state in the tie stall dairy 

system. For each trial, the isolated spectral fingerprint represented changes to milk composition 

associated with the significant treatment effect and it was interpreted in light of the behavioural 

data that was collected during the trial. This hybrid approach bridged the gap between two different 

domains, which are milk FTIR spectroscopy and behavioral animal science, and provided a tool 

to study animal welfare from a novel angle. The hybrid approach detected the trend of subtle 

changes in milk composition before the appearance of any problematic clinical signs on the trials’ 

subjects. On the other hand, testing of individual milk components, which were predicted by PLS 

regression models, for treatment effect by mixed modeling did not reveal any trends in the changes 



 

282 

 

of milk composition. This observation proves that milk FTIR data can be used directly in 

applications beyond the paradigm of predicting specific milk components by PLS regression 

models. For future studies, it is recommended to add a milk metabolomics component to better 

understand the changes in milk chemical composition as a function of the animal welfare state. 

This metabolic component will verify the findings of the hybrid spectral analysis.  

8.2 Conclusion 

Milk recording system is a valuable tool for enforcing the standards of the dairy industry on milk 

producers and for providing support for dairy farmers to constantly improve their herd 

management practices. In this thesis, we presented two propositions to expand the capabilities of 

the milk recording system. The first was on-site analysis, which can be achieved by having portable 

transmission based FTIR milk analyzer. It was proved in this thesis that portable FTIR 

spectrometer equipped with a transmission cell and combined with PLS regression can accurately 

predict milk components, which included major ones and some minor ones. Such a tool will enable 

dairy farmers to implement a self monitoring program of milk composition without increasing the 

number of samples that need to be shipped to central dairy laboratories for analysis; hence, avoid 

increasing the carbon footprint of this process. On the other hand, the novel LVF-IR spectrometer 

proved to be effective in determining milk water, lactose and protein, which made it a good 

candidate for on-site analysis for applications that do not rely on determining milk fat, such as 

differentiation of watered-down milk from genuine one. An IR-based solution for detecting this 

practice was highly appreciated by dairy industry stakeholders in countries where this practice is 

a serious problem.  

The second proposition was to exploit milk FTIR data directly in data mining process to detect 

trends of changes in milk composition without relying on prediction of specific milk components 

by PLS regression models. Combining PCA and mixed modeling proved to a be a successful 

strategy for achieving this goal that helped bridge the gap between two different scientific domains, 

which are milk FTIR spectroscopy and animal behaviour science. This strategy will open the door 

to study animal welfare from a novel angle, which will eventually help DHI agencies to provide 

new services for dairy farmers in the field of animal welfare based on milk FTIR data that is 

routinely collected.  
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