
IEEE TRANSACTIONS ON MAGNETICS, VOL. 48, NO. 2, FEBRUARY 2012 335

Power Aware Parallel 3-D Finite Element Mesh Refinement
Performance Modeling and Analysis With CUDA/MPI

on GPU and Multi-Core Architecture
Da Qi Ren�, Eric Bracken�, Sergey Polstyanko�, Nancy Lambert�, Reiji Suda�, and Dennis D. Giannacopulos�

ANSYS Inc., Pittsburgh, PA 15219 USA
Department of Computer Science, the University of Tokyo, Tokyo 1130033, Japan,

Department of Electrical and Computer Engineering, McGill University, Montreal, QC H3A2A7, Canada

Software power performance tuning handles the critical design constraints of software running on hardware platforms composed
of large numbers of power-hungry components. The power dissipation of a Single Program/Instruction Multiple Data (SPMD/SIMD)
computation such as finite element method (FEM) mesh refinement is highly dependent on the underlying algorithm and the power-con-
suming features of hardware Processing Elements (PE). This contribution presents a practical methodology for modeling and analyzing
the power performance of parallel 3-D FEM mesh refinement on CUDA/MPI architecture based on detailed software prototypes and
power parameters in order to predict the power functionality and runtime behavior of the algorithm, optimize the program design and
thus achieve the best power efficiency. In detail, we have proposed approaches for GPU parallelization, dynamic CPU frequency scaling
and dynamic load scheduling among PEs. The performance improvement of our designs has been demonstrated and the results have
been validated on a real multi-core and GPU cluster.

Index Terms—FEM mesh refinement, green computing, parallel algorithms, software engineering.

I. INTRODUCTION

G ENERAL-PURPOSE computing on graphics processing
units (GPGPU) provides new, evolving solutions for

High Performance Computing (HPC) on massive parallel pro-
cessing architectures. However, the power usage of GPUs has
been continually increasing, and they may become the largest
power consumers in a modern multiprocessing system. A
CUDA Processing Element (PE) is a hardware unit comprised
of GPUs and CPUs that execute streams of CUDA kernel
instructions; several such PEs can be bus-connected where each
PE acts as a node. Multi-core processors and GPUs provide
cooperative architectures in which both SIMD and SPMD pro-
gramming models can co-exist and complement each other. The
CUDA/MPI model is becoming an important choice in various
HPC applications where MPI works as the data distributing
mechanism and CUDA/GPU as the local computing engine, as
shown in Fig. 1; however, much less research has been carried
out to improve the power performance with integrated parallel
programming paradigms. Towards power efficient HPC for
electromagnetics, we investigate software methodologies to
optimize the power utilization through algorithm design and
programming technique.

Many algorithm level design methods have been studied
based on CPU platforms. The fact that CPU and GPU com-
puting elements are involved inside one PE rather than only
CPU does not change the nature of power optimization prob-
lems, however the techniques for CPU machines have to be
upgraded according to GPGPU architectures. A typical ap-
proach in [1] introduces an integrated power model for a GPU
computer to predict execution times and calculate dynamic
power events. By integrating an analytical timing model and

Manuscript received July 03, 2011; revised October 11, 2011; accepted
November 15, 2011. Date of current version January 25, 2012. Corresponding
author: D. Q. Ren (e-mail: daqi.ren@ansys.co).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMAG.2011.2177814

Fig. 1. CUDA/MPI Programming paradigm for parallel mesh refinement: (a)
The architecture of a CUDA PE composed of Multicore and GPU components;
(b) Algorithm for CUDA/MPI implementation.

an empirical power model, power consumption of GPGPU
workloads is predicted. Higher-level models use more indirect
and approximate design parameters, such as the algorithm level
power model that we have introduced in [2]. The advantage of
the approach is that instruction mixture information, pipelining
structure and out of order processing information can be
covered in the SIMD flows that are measured. In this paper
we provide an algorithm design framework for saving SIMD
computing energy by software approach as illustrated in Fig. 2:

1) PE Power Feature Determination
CUDA algorithms restrict the behaviors of low-level code
executing on each component in a PE including core(s),
GPU(s) and memories. A large-scale SIMD program
drives a processor running the same operations repeatedly
in a streaming way. When the processor’s frequency and
temperature are invariant, and the number of executions
in one time unit is fixed, the power can be modeled
as a constant value. The energy approximation is the
summation of the products of each component power and
its execution time [2]. An overall power model can be built
up for the entire multiprocessing platform based on them.

2) PE Computation Capability
Computation capability of a parallel processing
component, i.e., CPU and GPU is determined by

0018-9464/$31.00 © 2012 IEEE

336 IEEE TRANSACTIONS ON MAGNETICS, VOL. 48, NO. 2, FEBRUARY 2012

Fig. 2. The framework for power-aware algorithm optimization.

its micro-architecture, programming language and
characteristics of the computation performed on it [3].

3) Algorithm and Code Optimization Strategies
Algorithms and coding strategies are chosen based on
the power model and computation capability of each
component. Therefore, performance tuning approaches
such as domain partitioning, load parallelization, dynamic
frequency scaling and workload scheduling are considered
in order to reach the best overall power efficiency.

4) Verification and Validation
The performance improvement procedure usually consists
of several incremental steps. The result of each step will
be checked with original design objectives, then according
to the improvement satisfaction to decide the necessity of
further refinement until the required power performance
is reached.

The methodology imports hardware power parameters to the
software algorithm study then estimates power consumption
with CUDA/MPI program analysis. One of the advantages
is that it allows obtaining design characteristic values at the
early programming stage, thus benefiting programmers by
providing necessary environment information for choosing the
best power-efficient alternative. In this paper we have imple-
mented 3D Hierarchical Tetrahedral and Octahedral (HTO)
mesh refinement on a CUDA/MPI architecture. The above
power-aware algorithm design method has been applied to it.

II. CUDA/MPI HARDWARE ARCHITECTURE AND POWER

AWARE DESIGN APPROACHES

The CUDA PEs used in this work include Intel QX9650 mul-
ticore and NVIDIA GeForce 8800GTS/512 GPUs. The GPU
has 16 MPs (multi-processors), each MP has 8 SPs (streaming
processors). GPU, multicore and main board (including memo-
ries and PCI bus on the main board) are the major power con-
suming components. The total power is defined in (1):

(1)
where and represents the number of CPUs and GPUs in-
volved in the computing, and and represent the workloads
assigned to and , respectively [4]. The method to

measure and evaluate the CUDA PE’s power/energy consump-
tions has been introduced in our previous work in [2]. Here we
provide the following methods in power aware algorithm de-
sign:

1) Scale Down CPU Frequency
During the execution of a CUDA kernel on GPU, its
host CPU’s time clocks are used for polling the running
kernel and to give correct responses to the kernel calls.
This requires that the CPU frequency has to be greater
than or equal to the frequency of kernel calls in order
not to decrease the GPU’s computing speed. In general a
CPU’s selectable frequencies are all higher than a CUDA
kernel calls’ need. This makes it possible to scale down
the CPU frequency without compromising the PE’s
performance [5]. This property will benefit designers to
select a lower CPU frequency because the power will
decrease accordingly. The minimum CPU frequency
needs to be greater than or equal to the frequency of the
PCI bus between the GPU and CPU.
The performance improvement procedure usually consists
of several incremental steps. The result of each step will
be checked with original design objectives, then according
to the improvement satisfaction to decide the necessity of
further refinement until the required power performance
is reached.

2) GPU Device Parallelization
Using parallel GPUs is another practical way to enhance
a CUDA PE’s power efficiency. Multi-GPU devices
sharing one CPU host will maximize the CPU’s usage by
multithreading, thus the CPU responds to multiple CUDA
kernels on different GPU devices with different threads
[6]. By multithreading, a CPU can work with two GPUs
together to achieve speedup in kernel execution time. The
total energy consumption will decrease compared with
pairing one CPU and one GPU.

III. POWER AWARE ALGORITHM DESIGN IN 3-D
HTO MESH REFINEMENT

In 3-D electromagnetic FEM, tetrahedral elements are
commonly used to represent the geometric discretization of
the problem. In HTO subdivision of a tetrahedron illustrated
by Fig. 3, the refinement rule involves three steps: first, the
tetrahedron is broken down into four scaled duplicate tetra-
hedra (one for each corner) and one octahedron (remainder)
as shown in Fig. 3(a), left. Second, the resultant octahedron is
then subdivided into six octahedral as given in Fig. 3(a), right
[6]. The recursive application of the HTO refinement rules
generates elements that belong to two congruence classes: one
consisting of all generated tetrahedra, and one consisting of all
generated octahedra. This refinement property is intentional,
and it is useful for subsequent FEM computations [6]. HTO
refinement can also be applied for creating efficient, interactive
mesh hierarchies on volume visualization applications such
as iso-surface extraction and direct volume rending [7]. An
algorithm designed to implement HTO refinement on CUDA
PEs uses only coarse meshblocks on CPU, since a coarse mesh
can be efficiently updated and transmitted, to distribute the
blocks to different GPU devices. According to the viewing pa-
rameters, refinement process is performed on GPUs to compute
appropriate details. In each CUDA PE, the initial mesh blocks

REN et al.: POWER AWARE PARALLEL 3-D FINITE ELEMENT MESH REFINEMENT PERFORMANCE MODELING 337

Fig. 3. Parallel HTO mesh refinement and mapping the computation: (a) Mesh
refinement model: tetrahedron subdivision; primary octahedron subdivision and
secondary octahedron subdivision; (b) mesh flow is executed by GPU threads.

on main memory are not completely loaded into GPU memory
all at one time, these geometries are restored in data flows and
executed in a streaming way, as shown in Fig. 3(b).

The efficiency of power aware CUDA/MPI program design
methods is investigated using the 3-D rectangular resonant
cavity model illustrated in Fig. 4. The cavity was initially
discretized into four smaller rectangular blocks (A-D); each of
these blocks was subdivided into 6 tetrahedra. The resulting
24 tetrahedra mesh contains the sub-domains to be assigned to
CUDAPEs in the parallel system. MPI is a platform-indepen-
dent library that is used to manage inter-node communications.
After receiving the mesh assignments, each CUDA PE operates
independently. Based on the geometry properties of the initial
problem and the number of GPUs devices, we define four task
pools using stack structures. Each pool contains a 6 tetrahedra
mesh located inside one smaller rectangular block (A-D), as
shown in Table I. We design a CUDA kernel to compute the
coordinates of new generation element vertices that include 6
add/divide operations for each tetrahedron and 12 add/divide
operations for each octahedron, as shown in Fig. 4. Shared
edges and faces between any two adjacent tetrahedral sub-do-
mains are refined by the host CPU in order to save the inter CPU
communication also decrease the amount of data transmission
between parallel GPUs. The task pools can be used exclusively,
race conditions are avoided and the possibility of bottlenecks
when the number of CUDA PEs increases is decreased.

We apply a centralized dynamic load-balancing algorithm for
workload scheduling because the initial mesh domains contain
a small size of data. Note that even though the number of task
assignments is same to each PE, the workload of each mesh may
take a different amount of time because of the different viewing
parameters. We design our algorithm to: locate all task pools on
one master PE; when a slave PE finishes the tasks inits own task
pool, it will poll the master PE to ask for new tasks. The master
PE will then check the remaining tasks from other non-empty
task pools in order to schedule new tasks for the polling PE. Note

Fig. 4. Resonant cavity discretization in four smaller rectangular blocks (A-D);
each of these blocks was subdivided into 6 tetrahedra. The resulting 24 tetra-
hedra mesh are the sub-domains to be assigned to CUDA PEs.

TABLE I
SUB-DOMAIN PARTITIONING AND TASK POOL STRUCTURE

that the original random pooling dynamic balancing method
specifies to split half of the remaining tasks for the polling PE.
We formulate in this work that a target non-empty task pool
transfers only one task at a time to the polling PE [6]. In the
above 3-D FEM problem the total number of sub-domains is
limited but the mesh refinement process in each sub-domain
takes longer to complete.

Performance per watt is used in this work as the measure of
energy efficiency for CUDA PEs. HTO mesh refinement is a
SIMD program that performs the same operations repeatedly
in a streaming way. The power feature can be described in

that measures the rate of computation that can
be delivered by the PE for every watt of power consumed. When
a multiprocessing system contains different PEs, i.e.,
(for PE) power aware algorithm design needs to em-
ploy a load scheduling protocol to achieve the best power perfor-
mance. Assuming a work load consumes power
on whose power feature is , the
needs to satisfy with the following conditions in order to achieve
the optimized energy consumption: Total energy

(2)

and satisfies the minima of :

(3)

IV. RESULTS

Three power aware algorithm designs introduced in Section II
have been implemented in three different HTO mesh refinement
implementations in solving the same resonant cavity problem.

338 IEEE TRANSACTIONS ON MAGNETICS, VOL. 48, NO. 2, FEBRUARY 2012

TABLE II
MEASUREMENT RESULTS OF THREE POWER AWARE HTO MESH REFINEMENT

PROGRAMS

Fig. 5. The result power charts of frequency scheduling approach on 3-D HTO
mesh refinement: (left) CPU runs at 2 GHz; (right) CPU runs at 3 GHz.

Fig. 6 The result power charts of parallel GPU on 3-D HTO mesh refinement:
(left) CPU runs at 2 GHz; (right) CPU runs at 3 GHz.

Fig. 7. The result power charts of parallel GPU with enhanced random polling
dynamic load balancing on 3-D HTO mesh refinement: (left) CPU runs at 2
GHz; (right) CPU runs at 3 GHz.

The performance and energy efficiency improvement by each
program has been validated through examining the measure-
ment results on real CUDA/MPI platform when 603 million
HTO tetrahedral elements are produced, as illustrated in Table II
and Figs. 5–7.

In Fig. 5, one CPU and one GPU are used to demonstrate
the difference in overall energy efficiency when the CPU fre-

quency increases from 2 GHz (left) to 3 GHz (right). A com-
putation speedup of 1.07 is obtained because as the frequency
increase, the speed of the serial part of the program that is used
for building up graphical files becomes faster. However because
the CPU power increases with its frequency too, the overall en-
ergy consumption is increased 10.3%, as shown in Fig. 5.

In addition to the above CPU frequency scaling approach,
parallel algorithms on multiple GPUs have been implemented
with and without load balancing functions; their results are
shown in Fig. 6 and Fig. 7, respectively. In Fig. 6 each GPU
device works on its initial sub-domain individually without
load balancing. The parallel computation speedup is 1.13
(CPU at 2 GHz) and 1.20 (CPU at 3 GHz) compared with the
corresponding single GPU programs in Fig. 5 (left) and (right).
The overall energy consumption is increased 39.5% (CPU at
2 GHz) and 40.2% (CPU at 3 GHz) because one additional
GPU is involved in the computation, which brings additional
power cost. In Fig. 7 an enhanced dynamic load balancing
function has been implemented. The new parallel computation
speedup is 1.57 (CPU at 2 GHz) and 1.71 (CPU at 3GHz, best
speedup); and the overall energy consumption improvement is
4.4% (CPU at 2 GHz, best energy efficiency) and 4.4% (CPU
at 3 GHz) compared with the corresponding value of single
GPU program in Fig. 5 (left) and (right). This demonstrates that
the load balancing function is extremely important for GPU
parallelization and will significantly enhance the computation
performance and thus reduce the energy consumption even
when there is one additional power-consuming device involved.

V. CONCLUSION

A power-aware CUDA/MPI algorithm design framework has
been introduced. Utilizing power parameters captured from the
real system, modeling and evaluation for the power features of
each PE in the target multi-core and GPU platform is formu-
lated. Based on it, we have introduced GPU parallelization, CPU
frequency scaling and power aware load scheduling methods
to optimize the overall power consumption through tuning the
number and usage of the CPU and GPU components. The power
efficiency improvement of the designs has been validated by
measuring the implemented program running on real systems.

REFERENCES

[1] S. Hong and H. Kim, “An integrated GPU power and perfor-
mance model,” presented at the Int. Symp. Computer Architecture,
Saint-Malo, 2010.

[2] D. Q. Ren and R. Suda, “Power aware SIMD algorithm design on GPU
and multicore architectures,” in Handbook of Energy-Aware and Green
Computing. London, U.K.: Chapman and Hall/CRC Press, 2012, 10:
1439850402.

[3] NVIDIA, CUDA Programming Guide ver. 2.3.1, 2009.
[4] J. M. Rabaey, Digital Integrated Circuits. Englewood Cliffs, NJ:

Prentice Hall, 1996.
[5] Intel, Intel 64 and IA-32 Architectures Software Developer’s Manuals,

2010.
[6] D. Q. Ren and D. D. Giannacopoulos, “Parallel mesh refinement for

3D finite element electromagnetics with tetrahedra: Strategies for op-
timizing system communication,” IEEE Trans. Magn., vol. 42, no. 4,
pp. 1251–1254, 2006.

[7] G. Greiner and R. Grosso, “Hierarchical tetrahedral-octahedral subdi-
vision for volume visualization,” Vis. Comput., vol. 16, pp. 357–369,
Oct. 2000.

