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AB8TRACT

AB8TRACT

This thesis presents a detailed kinematic analysis of three degree-of-freedom planar

parallel manipulator platforms possessing topological symmetry! called general planar

Stewart-Gough platforms (PSGP). A specifie super-set of topologically asymmetrie

platforms and one with actuated holonomie higher pairs are included in the analysis.

After PSGP are described and classified, the remainder of the first portion is

devoted to the review of the geometric and mathematical tools used in the analysis.

A single univariate polynomial is derived which yields the solutions to the forward

kinematics problem of every PSGP platform. Kinematic mapping is used to repre­

sent distinct displacements of the platform as diserete points in a three-dimensional

projective image space. Separate motions of each leg map to skew one-sheet hyper­

boloids, or hyperbolic paraboloids, depending on the kinematic architecture of the

leg. Mter two elimination steps the three quadric surfaces are reduced to a sixth

order univariate. The roots of this polynomial reveal ail solutions to the forward

kinematics problem. The procedure leads to a robust algorithm which can he applied

to the abovementioned super-set.

The inverse kinematics problem of these platforms is solved, in closed form, using

the same kinematic mapping. The procedure can he applied to any three-Iegged

planar platform with lower pairs, regardless of symmetry.

A workspace analysis and simple criteria for the determination of the existence of

a dextrous workspace are presented. Finally, a geometric singularity and self-motion

deteetion method, which does not employ Jacobian matrices, is discussed.
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RÉSUMÉ

, ,
RESUME

Cette thèse présente une analyse cinématique détaillée des manipulateurs parallèles

planaires à trois degrés de liberté et topologiquement symétriques, appelés plate­

formes planaires générales de Stewart-Gough (PSGP). De plus, un sur-groupe de

plate-formes topologiquement asymétriques, et un manipulateur parallèle muni de

trois articulations supérieures holonomiques et motorisées, sont inclus dans l'analyse.

Après la description et la classification des PSGP, nous rappelons les outils

mathématiques et géométriques nécessaires à l'analyse cinéœatique.

Les solutions de la cinématique directe de toutes les PSGP sont obtenues grâce

à un polynôme de degré six. Ce polynôme est obtenu après deux étapes de calcul

en utilisant une transformation cinématique. Les racines de ce polynôme sont les

points d'intersection des trois surfaces quadratiques dans l'espace cinématique. Cette

procédure conduit à un algorithme robuste qui peut être également utilisé pour le

sur-groupe mentioné ci-dessus.

Nous obtenons une solution explicite de la cinématique inverse de ces plate-formes

en utilisant la même transformation cinématique. La procedure peut être utilisée pour

toute plate-forme planaire à trois segments avec des articulations inférieures, quelle

que soit la symétrie.

Nous présentons une analyse de l'espace de travail et un critère simple pour

l'existence d'un espace de dextérité. Finalement, en utilisant des considérations

géométriques, une méthode de detection des singularités géométriques et de mou­

vement propre, qui n'utilise pas les matrices jacobiennes, est examinée.
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NOMENCLATURE

NOMENCLATURE

PSGP

DOF

FK

II(

R7 P7 U, 87 G

RRG• RPR

FA, FB , Fe

KA, K B , Ke

MA, M B , Mc

X,Y,Z

X, Y; Z

Xl, X 2 , X 3 , X 4

Ka, KI, 1C2 , 1C3

CKG

•

Planar 8tewarl-Gough platform.

Degree-of-freedom.

Forward kinematics.

Inverse kinematics.

Revolute, prismatic, universal, spherical and gear joints (kinematic

pairs, Section 2.3).

Example of a succession of three joints in a simple kinematic chain

beginning with the joint connecting the first link to the fixed base.

Example of a characteristic chain (Section 2.6.1). The underscore

indicates the actuated joint. Such chains are used te identify a

three-legged platform with topological symmetry among legs.

Fixed-base joint point coordinates (Section 2.7).

Knee-joint point coordinates (Section 2.7).

Moving-platform joint point coordinates (Section 2.7).

Point coordinates in a moving reference frame (Section 2.7).

Point coordinates in a non-moving reference frame (Section 2.7).

Image space point coordinates (Section 3.6.3).

Circle coordinates (Section 4.2).

Chebyshev-Grubler-Kutzbach formula (Section 2.4.1).
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CLAIM OF ORIGINALITY

CLAIM OF ORIGINALITY

Certain aspects of planar three-Iegged fully-parallel platforms and their kinernatic

analysis are presented herein for the first time. The following contributions are of

particular interest:

(1) The 3-legged holonomie higher pair architecture.

(2) The geometric properties of the above-rnentioned platform..

(3) The general constraint surface equation.

(4) The observation that there are two distinct types of constraint surface:

Ca) an hyperboloid of one sheet,

Cb) an hyperbolic paraboloid containing a generator on the intersection of

hyper-planes X-3 = X 4 = o.
(5) The general univariate polynomial to solve the FK problem of every general

planar Stewart-Gough platfoTm (PSGP), as herein defined, as weil as the FK

problem of sorne topologically asymmetric platforms and PSGP with active

holonomie higher pairs.

(6) Closed form solutions for the IK problem of ail PSGP, together with the

additional architectures mentioned in (5).

(7) Some general observations concerning the workspace of PSGP, together with

a novel and simple way to detect certain singularities.

Parts of these results have appeared in six refereed publications: [63, 64, 66,

67, 69, 70] .
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CHAPTER 1

Introduction

This thesis is an investigation of the kinematics of planar three-Iegged fully-parallel

platform manipulators in general, and a topologicallyl symmetric sub-class in partic­

ular. Those belonging to this sub-class are called general planar Stewart-Gough plat­

forms (PSGP). Moreover, a novel architecture is introduced where the end effector is

a circular disk which roils without slip along the straight tines of the non-grounded

links of each of three seriai legs. The kinematic analysis presented turns out to be

general enough to handle this architecture containing higher-pairs.

1.1. Thesis Subject Development

The steps leading to the procedures developed herein will be summarised below

so as to put this research in a state-of-the-art perspective. First, a few introductory

words on serial and parallel manipulators are in order.

IThe term topology is used to indicate a specific kinematic architecture, not in the mathematical
sense where it would be concerned with those properties of geometric configurations, taken as point
sets, which are invariant under elastic deformations that are homeomorphisms [47] .



•

•

1.1. THESIS SUBJECT DEVELOPMENT

FIGURE 1.1. Typical industrial seria! robot applications: weldingj packag­
ing; assembly.

1.1.1. Seriai and Parallel Manipulators. Research and development of

•

robotic systems in general is motivated by several major factors. Obviously, the

subject is rich from a theoretical standpoint because there are many unresolved prob­

lems. A more important factor is, perhaps, economic. Production methods must

be continuously improved in order to enhance the prosperity of any society, i. e., to

3
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reconclle the apparent contradiction between rising costs and dirninishing returns. It

is widely believed that processes which make use of rohotic manipulators must con­

tribute substantially to these methods aimed at producing an ever-widening variety

of goods and services: quantity and quality are ever-increasing, meanwhile incurring

ever-decreasing production costs. Clearly, all this must involve continual improve­

ments of the manipulators themselves.

Currently, most industrial rohotic manipulators have anthropomorphic architec­

ture [8, 34, 102]. These robot arms typically consist of an open, or seriai chain of

articulated rigid links connecting the manipulator hand, or end effector to a rigidly

fixed base. Figure 1.1 shows industrial serial robots engaged in various activities:

welding, packagjng and assembly tasks are commonly assigned to robotic manipula­

tors.

In general they are satisfactory to designers and users because they enjoy the

following advantages [8, 34, 49, 60, 97]:

(1) Their kinematic design is relatively simple.

(2) They generally have large workspaces.

(3) Human operators can readily identify with an open loop kinematic chain

which may he compared with the human arme This is a strong advantage in

programming the arm, training operators, etc..

(4) Each joint actuator enjoys complete independence.

(5) The forward and inverse kinematics are weil known and the dynamics have

been thoroughly analysed for many cases.

However, it is broadly acknowledged that they generally suffer from the following

disadvantages [8, 34, 49, 60, 97]:

4
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(1) Serial manipulators require an actuator for each joint. If the actuators are

Iocated at the intermediate joints, their added mass contributes to the total

inertia of the robot, Ieading to unwelcome dynamic characteristics.

(2) In the case of joint mounted actuators, the design of the links must take

into account their cantilever-like structure. Flexibility and balance are also

of concern. The links must be 'over-designed' to compensate and the vicious

circle of still more massive links continues to grow [60].

(3) Because of the cantilever Ioading of links, serial manipulators have a small

pay-Ioad ta manipulator weight ratio.

(4) If positional accuracy and precision are required, the velocity of the end­

effector is limited by the above considerations as weIl.

(5) The alternative to joint mounted actuators is ta have a set mounted at the

base, driving the distal joints through a transmission system. However, the

drive-train must be long, and is equally prone to undesired effects of fiexibility.

A tray of filled beer gIasses can always be carried by a waiter with one hand

if the goal is simply to move the tray. However, if the goal is to carry it through

a crowded room without spilling any beer then the waiter may consider using two

hands. The Ioad is distributed and greater stability is provided. This suggests that

the drawbacks associated with seriaI architecture can be mitigated by providing the

end effector with more than one seriaI connection to the fixed base. This alternative

architecture is termed parallel.

In parallel manipulators the end-effector is attached to the base, or ground, by

more than one kinematic chain; an architecture with closed-Ioops. Perceived advan­

tages of parallel architectures are cited in [34, 60, 97]:

5



•

•

•

1.1. THESIS SUBJECT DEVELOPMENT

(1) It is not necessary for each joint ta he actuated directly by individual motors,

hence a smaller contribution to the mass of the links. The links, in turn, can

be made lighter.

(2) By allowing at least sorne motors ta be base-fixed, they can be larger and

more powerful. Thus, the load-carrying capacity versus the mass of the robot

can be increased, along with the speed of operation.

(3) The ensuing reduction in gear drives and transmission systems increases the

inherent accuracy of the robot while simultaneously lowering the component

cast to make one.

A few of the shortcomings of parallel manipulators are [97J:

(1) The workspace is small.

(2) The workspace may be densely packed with a variety of singularities2 •

(3) Simultaneous control is required for some or ail of the drive motors.

(4) Long slender legs, particularly for large flight simulators, produce undesirable

flexibility and kinematic instabilities [34].

For serial manipulators the load-to-weight ratio is typically on the arder of 5%,

whereas for parallel manipulators it is not unusual ta be on the order of 500% [34, 97].

Figure 1.2 shows the CAE Electronics Airbus A310-200 flight simulator used by KLM

Airlines for pilot training. It can shake its 10000 kg pay-load at a frequency of 20

Hz with an amplitude of 50 mm [34], an unimaginable task for a seriai manipulator.

Because of the improved dynamic characteristics, parallel platforms can move with

greater velocity and acceleration than seriai counterparts [114].

2A singularity is a configuration of relative positions and orientations among the links where the
manipulator becomes uncontrollable, or the articular forces (or torques) required to balance an exter­
nally applied wrench are infinite. In the vicinity of a singularity the actuators, and the manipulator
itself, are vulnerable ta damage.

6
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FIGURE 1.2. Airbus A310-200 flight simulator (courtesy of CAE Electronics Ltd.).

A prototype for a parallel manipulator, with an architecture similar to the fiight

simulator, is shown in Figure 1.3. It was developed in a collaborative effort between

the Institut National de Recherche en Informatique et en Automatique (INRlA) in

France and the European Synchrotron Radiation Facility (ESRF). The moving plat­

form is used to manipulate a heavy X-ray apparatus with great accuracy. The total

weight of the of the manipulator is 35 kg while the experimental apparatus is carries

represents a load of 230 kg. This platform manipulator has a load-to-weight ratio of

650%, while its positioning accuracy is better than O.lj.Lm (l02]!

7
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FIGURE 1.3. The ESRF platform (courtesy of INRIA).

However, parallel architecture is not without its drawbacks. Sorne investigators

have tried to develop ideas that address varions aspects of these shortcomings. The

undesirable flexibility associated with slender legs and small workspace volume is

virtually eliminated with designs for planar, spherical and spatial double-triangular

rnanipulators put forward by Daniali [34]. This feature is achieved by pairs of pla­

nar, spherical and spatial triangles that can move relative to each other, hence the

three legs connecting the moving triangle to the relatively fixed triangle have nearly

zero-length. Earlier examples of this type of parallel architecture are those of a

double-tetrahedral mechanism [140, 147]. A working prototype was constructed by

Zsombor-Murray and Hyder in 1992 [147]. Movable pairs of platonic solid outlines

have been investigated as long ago as 1813, when Cauchy investigated an articulated

octahedron [20] .

8



•

•

•

1.1. THESrS SUBJECT DEVELOPMENT

~~~~HfZ:\:.~
~;.;..~... : ~~- '

FIGURE 1.4. The Gough universal rig [53]. A tire test-stand from 1956!

1.1.2. Stewart-Gough Platforms. In 1965 D. Stewart [137] first suggested

that flight simulators, like the one shown in Figure 1.2, could be built on fully-parallel

platform type manipulators with six DOF. In subsequent years snch manipulators

came to he known as Stewart platforms. However, a design for a tire test-stand shown

in Figure 1.4, with the same architecture of a modern flight simulator, virtually iden­

tical to that proposed by Stewart, had aIready been contributed by V.E. Gough and

staff at Cornell nine years earlier [53]. Indeed, the development for Gough's universal

rig began in 1949 [102]. The term Stewart-Gough platform (SGP) is therefore used

in an attempt to correct this historical oversight. It is quickly becoming standard ter­

minology in the literature, see Angeles [8], Dietmaier [40], Husty [81], Merlet [101],

and Nielsen and Roth [108], for exarnple. Indeed, sorne propose that the term Gough

platform is more appropriate [102] .

9
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Although interesting, and possibly critical, theoretical problems connected with

SGP remain unsolved, the current state-of-the-art has enabled prototypes and com­

mercial manipulators to be designed, built and solde For instance, the flight simulator

architecture has been adapted for a wide variety of uses. The ESRF platform is but

one example. A couple of others include a virtual reality platform shown in Figure 1.5

used to train athletes in equestrian skills, and an antenna positioning device for satel­

lite tracking, also shown in Figure 1.5. Both prototypes were developed at INRIA

[102]. There are, however, risks attached to patenting designs while related theo­

retical problems are unresolved. For example, there is a 1993 patent for a parallel

manipulator [55], intended for use as a flight simulator. Subsequent investigation [85]

shows that every assembly configuration within its workspace is singular and permits

uncontrollable platform motions.

•

•

FIGURE 1.5. Equestrian simu1ator and antenna positioning device (courtesy
of INRIA).

The platforms possessing topological symmetry considered in this thesis can be

considered as three DOF planar versions of the six DOF SGP. We therefore call them

planar Stewart-Gough platforms (PSGP). Figure 1.6 shows a typical example.

10
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FIGURE 1.6. A typical planar parallel manipulator.

1.2. Motivation

The body of literature is thkk with many kinematic analyses of SGP. In par­

ticular, the FK problem of PSGP has received attention. Due to the nature of

the FK problem, much of the earlier research concentrated on numerical solutions

[122, 123, 124, 133]. While numerical methods are often useful, they yield no in­

sight into theoretical issues, such as the size of the solution space, i.e., the number of

assembly modes. Furthermore, these methods rely on an initial guess which must be

fairly close to the solution in order to converge [124, 50].

Many efforts have been made to provide some theoretical insight by viewing the

problem from a different perspective. It was established by Hunt [76] that PSGP with

3 RRR (or, when the middle joint is activated, the kinematically equivalent RPR)3

legs admit at most six real assembly configurations for a given set of activated joint

inputs. General solution procedures using elimination theory to derive a 6th degree

univariate polynomial, which leads to aH assembly configurations, were developed

by Gosselin and Sefrioui [50] and Wohlhart [142]. The FK problem is solved for

3 R stands for revolute joint; P stands for prismatic joint, see Section 2.3.

Il
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all permutations of three-Iegged planar Iower-pair-jointed SGP in Merlet [100]. The

univariate polynomial was again derived by Pennock and Kassner [111], but the

work was extended to include an investigation of the workspace [112]. Earlier work

by Gosselin [49] provides a useful workspace optimisation scheme for planar, spherieal

and spatial platform-type parallel manipulators. A detailed enumeration of assembly

configurations of planar SGP ean be found in Rooney and Earie [122]. Synthesis

issues are addressed using a straightforward geometric approach by Shirkhodaie and

Soni [133], while Murray and Pierrot [107] give an extremely elegant n-position

synthesis algorithm, based on quaternions, for the design of PSGP with three RPR

legs. What appears ta be lacking is a derivation of the general univariate to solve the

FK of any lower pair jointed PSGP. This, then, is the primary goal of this thesis. But,

it did not start out that way. The original research proposal was for an investigation

of planar three-Iegged parallel platforms with active holonomie higher pairs.

The success of most of the methods mentioned above depends largely on the fact

that the platforms are jointed with lower pairs. This allows the platform geometry

to be readiIy determined. This is a critical point, since all the above methods require

knowledge of the platform geometry. However, when the end-effector is replaced with

a disk (pinion gear) and the three revolutes joining the end-effeetor to the legs are

replaced with racks which remain engaged with the pinion, the geometry suddenly

becomes difficult, making the level of complexity of the II< and FK problems equal.

This is in contrast to the general observation that the IK problem for lower pair

jointed parallel problems is trivial [49], while the same problem for serial manipulators

is typically complicated. Similarly, the FK problem of parallel platforms is generally

more complex than that of serial manipulators. In fact there is a strange duality

hetween parallel and seriaI manipulators: a diflicult prohlem for one is usually a

simple problem for the other. This duality has yet ta he fullyexplained, although

several attempts have been made [141, 146J.
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The literature, however, appears to be all but devoid of work investigating fully­

parallel platforms whose joints include holonomie higher kinematie pairs. This omis­

sion is unfortunate because such platforms offer distinct advantages over their lower­

pair-jointed cousins in two respects. First, the locations of the attachment points

connecting each of the three legs to the platform are continuously variable with re­

spect to each other during platform motions, i. e., the platform has a continuously

variable geometry. This means that a general procedure for the kinematic analysis of

this type of platform can be applied to multiple-arm cooperating robots because any

such procedure is necessarily dependent on the initial assembly configuration (IAC)

of the platform [3, 4, 63}. This leads directly to the second advantage, in that these

platforms can be designed as fully parallel, eooperating, or hybrid devices.

A good deal of attention has been given ta rolling-without-slip in the context of

grasp and fine control. Mimura and Funahashi [104}looked at grasping and fine­

motion manipulation by multi-fingered robotic hands, the Utah/MIT dextrous hand

being an example. Hui and Goldenberg [74} considered a hybrid control architecture

using rolling constraints between a dextrous hand and the rigid abject it manipulates.

Yun et al. [145} investigated control issues of multiple arms with pure rolling contacts.

Various types of contact between hand and objeet have been studied extensively by

Salisbury and Roth [128]. But, even here the robotic hands are jointed with lower.
pairs only. The rolling contact is merely an approximation of contact between the

end-effector and workpiece. Particular attention is given to grasp and its effect on the

workspace by Chen and Kumar [23]. Continuing in this vein, the kinematics ofrolling

contact for two surfaces of arbitrary shape were examined by Cole et al [25}. Rolling

systems are not peculiar to robotic hands. Automatie Guided Vehicles (AGV) are an

important class for industrial applications, dangerous materials handling, etc.. The

kinematics and dynamics of a three wheeled 2 DOF AGV were studied in great detail

in [127]. However, in the case of the AGV, continuous rolling contact is a by-product

13
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of constraints imposed by the operating environment. It is not a design parameter

affecting control (except to detect wheel slip) or kinematic synthesis.

The common thread in the multiple arm and AGV literature cited above is that

the contact between robot and object, or environment, is pure rolling. Grasp and fine­

motion manipulation by multi-fingered robotic hands are issues closely connected to

contact type. Work in this area is still open, hence we feel justified in examining the

kinematic analysis of a three-legged PSGP with holonomie higher paiIs. However, ta

maintain a reasonable scope for this thesis, the device will be treated as a fully-parallel

planar manipulator.

°Recently, it has been shown that kinematic mapping has important applications

in planar robot kinematics. A particular mapping [14, 57] is used by De Sa [36]

and De Sa and Roth [37, 38] to classify one parameter planar algebraic motions.

Ravani [119] and Ravani and Roth [120, 121] employed it to to study planar motion

synthesis. Husty [79] used the same mapping in a novel FK solution procedure for

planar three-Iegged SGP. He then used it to analyse the workspace of the same type

of platform [80]. The particular mapping used is weil suited to manipulators with

holonomic higher pairs, as in Figure 1.7, since it is independent of the geometry of the

platform [79]. However, it has never, to the best of our knowledge, been applied with

complete success to the FK problem of our platform. Indeed, no practical solution

procedure for the IK nor FK problems can be found in the literatllIe. Thus the

secondary goal of this thesis, but one of primary interest, is to present a practical

solution procedure that employs kinematic mapping for the IK and FK problem of

planar three-Iegged platforms with holonomic higher pairs.

It appears that aIl previous work directly related to fully-parailel PSGP with

holonomic higher pairs is contained in two publications, by the same authors [3, 4] .
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Because of the serendipitous way in which the main theme of the thesis developed

from the study of these two papers, its chronology shall now be presented.

FIGURE 1.7. An RRG platform.

1.2.1. Variation on a Theme. The research trail began in 1995 with my

M.Eng. thesis [65] which aimed ta correct a conceptual flaw found in a procedure [3]

for solving the inverse kinematics (IK) problem of a novel planar parallel manipula­

tor suggested by Vijay Kumar at the University of Pennsylvania. The manipulator

consists of a circular disk which rolls without slip along the straight lines of the non­

grounded rigid links of two 2R seriallegs. Its kinematics are deceptively complicated

because of the rolling contact. A three legged version is illustrated in Figure 1.7. The

p01nts of contact between each leg and the disk are holonomic higher pairs. These

G-pairs are modelled as a pinion gear meshing with three racks. With the excep­

tion of cams and gears, which are not considered to be robotic mechanical devices,
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research on mechanisms containing higher pairs is rare. Gears are common, efficient

and reliable machine elements but they are unusual as robotic joints.

The Il( procedure, developed by Agrawal and Pandravada [3], used the relative

angle between the two rack-pinion normals to indicate the absolute orientation of the

pinion. If the pinion undergoes a pure translation there is obviously no change in its

absolute orientation, yet the angle between the normals must change. This means

the output of the IK algorithm has limited applications.

A thorough literature review revealed only one other paper, by the same authors,

dealing with the kinematics of fully parallel planar platforms with holonomie higher

pairs. The second paper [4] dealt with the workspace analysis of the same two­

legged platform. However the analysis was based on the earlier, flawed IK algorithme

Absolutely no other publications dealing with this type of fully paraUel platform were

found. The initial motivation, then, was to solve the IK and FK problem for a three

legged version of the manipulator. The third leg was added to make the platform

topologically symmetric. That is, the pinion has three degrees of freedom (DOF) and

therefore needs three motors to fuUy control it. The two-Iegged version requires one

leg to have at least two activated joints.

The problem common to aU three legged planar platforms with 3 nüF is that,

unless redundant actuators are used, only three joint inputs can be specified. The

problem unique to the pure roUing contact platform is how the change in location of

the contact point between each rack and the pinion effects the displacement. If the

pinion remains stationary while a rack moves, it must be that the rack roUs on the

disk. Conversely, the pinion can roU on a stationary rack. In the above situations, if

the change in location of the contact point along the rack is identical, the displacement

of the disk centre will be different. In the first case, the location of the pinion centre

remains fixed. In the second case, it translates along a line parallel to the stationary
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racle Most displacements, however, require a combination of the two types of relative

rolling. Keeping track of the proportions is critical to both the IK and FK problems.

It also appears to be a formidable task.

Our first attempt at solving the the IK problem [63, 65] made use of the loop

closure equations and the fact that arhitrary pinion displacements can be decomposed

into the commutative product of a single translation and a single rotation about the

pinion centre. Given the desired pose and initial assembly configuration (IAC) l a

set of intermediate joint variables are calculated for the pure translation component.

Then, using this intermediate set as a new IAC, solutions are generated for a fixed axis

rotation. Unfortunately, the direct algebraic result of the displacement decomposition

is that the upper hound on the number of IK solutions is 64. It is weil known that

for a three-Iegged, three DOF planar platform with passive lower pairs there can he

at most 8 [49, 97]. The 56 spurious solutions indicate the procedure is not optimal.

Nonetheless, it was the first published correct Il( solution procedure for this type of

platform. Moreover, since the algorithm solves for one leg at a time, it can he used

on platforms with any number of closed kinematic loops.

The next step was ta develop an FI< solution procedure. This proved to he

somewhat more challengin~ than expected. Again, this was due to the unexpected

complications imposed by the holonomic higher pairs. It was decided to use Husty's

kinematic mapping procedure [79] because it is independent of the geometry of the

platform. This feature is very useful because the platform_ attachment points (i.e.,

the contact points between the pinion and racks) l which really define the platform

geometry, change their relative positions continuously during platform motions.

The procedure that was first developed [64] relied on the position of the non­

grounded R-pairs (called knee joints Ki, i E {A, E, Cl, see Figure 1.7) in the pinion­

fixed reference frame, E, as inputs to the kinematic mapping procedure. They were
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called pseudo inputs because the actual inputs are the change in rack tangent angle.

This was rather an academic exercise because there was no obvious way to relate the

knee joint positions to the change in rack tangent angles until the pinion orientation

was known. Since the FK problem involves the determination of the position and

orientation of the platform given the active joint inputs, this was a cart-before-horse

scenario, to be sure. Even-though it was not entirely practical, it was a start: it was

the first attempt at solving the FK problem of this type of manipulator. Indeed,

reworking the IK and FK solution procedures formed the basis of my Ph.D. research

proposal.

In September 1996 Manfred Husty made the incisive observation that if the pinion

is considered to be fixed then contact points on the rack move on involutes of the

pinion [82]. This means there is a bijective (one-to-one and onto) correspondence

between the change in rack tangent angle, which determines the change in location of

any rack point on a pinion involute and the location of the corresponding knee joint

in the pinion-fixed frame, E. Employing these involute inputs and sorne additional

coordinate transformations the kinematic mapping procedure can be used [66, 69].

Next, the lI( problem was revisited. Using the involute inputs, mentioned above,

a simple procedure was developed to extract the active joint inputs from the pre­

image of a point in the kinematic mapping image space (which abstractly represents

a platform pose as a point in a three-dimensional (3-D) homogeneous projective space)

[67].

It was then decided to attempt to obtain a symbolic univariate, in terms of an

image space coordinate, whose roots would reveal aU FK solutions for any arbitrary

three-Iegged platform with active holonomie higher pairs. With the aid of the sym­

bolic computer algebra software Maple ~ it turned out to be quite simple to derive

the univariate. It is a sixth order polynomial, confirming the results of Hunt [76J,
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Gosselin [49], and Merlet (97). Its coefficients contain 5201 sum.s ofproducts of design

constants and joint inputs.

Finally, in another communication with Husty [84J, it was realised that the uni­

variate polynomial could be used on any topologically symmetric planar three-Iegged

platform with three nOF. In fact, the univariate turned out to he applicable to the

FK (and IK) problem of a wide range of topologically asymmetric platforms as well.

With sorne clever substitutions [84] the number of terms for the general case drops

from 5201 to 3613. When the platform. architecture is fully specified the number drops

to 694 for one sub-class, and drops again to 30 for the remaining two sub-classes. A

detailed derivation of the univariate and enurneration of the coefficient terms is given

in Chapter 4. This is, in essence, the story to be played out in the following pages.

1.3. Thesis Overview

Optimal trajectory planning and obstacle avoidance in a crowded workspace re­

quires fast computation of FK solutions. Control of the robot requires the availability

of IK solutions. Hence, the main goal of this thesis is to address these issues in detail.

The solution procedures developed are general, and can be used to solve the IK and

FK problems of any topologically symmetric PSGP, including planar platforms with

active holonomie higher pairs.

In Chapter 2 sorne elementary concepts are recalled and necessary definitions and

nomenclature are stated. Planar three-legged fully-parallel manipulators with 3 nOF

are classified and those possessing topological symmetry are defined to be PSGP.

The manipulators of this class are described together with the holonomie higher pair

architecture. Geometric properties and applications of the higher pair platforms are

discussed. A mobility analysis is presented.
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Chapter 3 is a discussion of the geometric and algebraic tools and concepts used

in the subsequent kinematic analysis of PSGP. It commences with a brief summary

of the projective extension of the Euclidean plane and space. Then Klein's Erlangen

Programme is detailed leading to a discussion of geometry from the Gayley-Klein

perspective. Various representations of planar displacements are reviewed. Lastly,

kinematic mapping is discussed.

The FK problem of PSGP and those with holonomie higher pairs is the focus

of Chapter 4. The kinematic constraints in the displacement space are examined.

Then, in order to apply the kinematic mapping, the image of these constraints must

be studied. Mer establishing the nature of these constraints, it is a simple matter to

derive the general univariate. Finally, upper bounds on the number of FK solutions

are given and rationalised in terms of the constraints.

Chapter 5 details application of the univariate to the FK problem. Procedures

for determining the coefficients for ail PSGP are described. The solution procedure

for the higher pair platform is included. In addition, procedures for topologically

asymmetric platforms are discussed.

The IK problem is considered in Chapter 6. Closed form solutions, in terms of

the coordinates of the kinematic mapping image space, are given. These solutions are

valid for every three-Iegged, three DOF planar platform jointed with lower pairs. The

kinematic mapping IK solution procedure for the higher pair platform is developed

in detai1.

Chapter 7 presents a workspace analysis as weIl as simple criteria for the determi­

nation of the existence of a de>..'"trous workspace. Singularity and self-motion detection

are also discussed."

Finally, Chapter 8 cantains conclusions and suggestions for future research.
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CHAPTER 2

General Planar Stewart-Gough PlatforlllS

General planar three-legged fully-parallel manipulators with three degrees-of-freedoID

are described and classified in this chapter. Those possessing topological symmetry:,

including position of activated joints, are defined to be general planar Stewart-Gough

platforms (PSGP). First, sorne elementary concepts are recalled and some necessary

definitions and nomenclature stated.

2.1. Kinematic Chains

A kinematic chain is a set of rigid bodies coupled by mechanical constraints such.

that there can be relative motion between them [8J. The individual rigid bodies are

called links in the chain. The chains are classified according to how the links are
,

connected.

2.1.1. Simple Kinematic Chains. A kinematic chain is simple if each link

in the chain is coupled to at most two other links [7]. The degree of connectivity

(DOC) [7J of a link indicates the number of rigid bodies joined 'to it. If aH the

links are binary, having a DOC of two, the chain is closed. For example, a four-bar
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mechanism. AIternately, the chain is open with the first and Iast links having a DOC

of one.

2.1.2. Complex Kinematic Chains. A kinematic chain is complexif at least

one of its links has a DOC greater-than-or-equal to three [7]. A complex chain may

always be decomposed into simple kinematic sub..chains. Due to the three connection

points between their base and platform, PSGP are complex chains [49]. The analysis

presented subsequently relies on decomposing complex chains into simple ones.

2.2. Degree-of-Freedom

The degree-of-freedom (DüF) of a kinematic chain is defined to be an integer

value corresponding to the minimum number of independent coordinates required to

fully describe, geometrically, an arbitrary configuration of the chain [6J. There is one

coordinate, usually defined on the field of real numbers, associated with each DOF.

Since any one of these coordinates can change without necessitating a change in the

others they are aIl independent. Such coordinates are historically called generalised

coordinates [10]. For the study of robot kinematics, generalised coordinates usually

represent measures of distance and angle. A kinematic chain constitutes a mechanism

if its DüF is a positive value; a statically determinate structure if the DOF is zero; a

hyper-static (statically under-determined, or over-constrained) structure if the DüF

is a negative value [6].

A rigid body free ta move in three dimensional space has six DOF. The DüF are

generally taken to he three translations parallel to three linearly independent basis

directions and three rotations about three linearly independent axes, although any

system of six generalised coordinates is sufficient. That is, the six numbers need

not be three distances and three angles [75J. While it is not necessary that the
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rotation axes be the same as the translation directions, it is usually convenient to use

a three-dimensional orthogonal reference frame to describe the space of the motion,

the rotation axes being respectively parallel to the coordinate axes [136]. Mechanical

constraints are imposed on rigid bodies to limit their motion as required. In this

sense, constraints are the complements of DOF. For instance, if a rigid body has two

DOF in Euclidean space, indicated by E 3 , four constraints must be imposed.

2.3. Kinematic Pairs

The term kinematic pair indicates a joint between two links, hence the use of

the word pair [7]. They are mechanical constraints imposed on the links. Joints

involving surface contact are called lower pairs. Those involving nominal point, line,

or curve contact are higher pairs. Lower pairs enjoy innate practical advantages over

higher pairs. First, applied loads are spread continuously over the contacting surfaces.

Second, they can be, in general, easily and accurately manufactured.

2.3.1. Lower Pairs.

follows:

There are six types of lower pair [75], classified as

•

1. S-pair: The spherical S-pair consists of a convex, or soUd sphere which

exactly conforms with a spherical shell of identical radius. In other words, a

balI-joint. S-pairs permit three rotational DOF.

2. E-pair: The planar E-pair (E stands for the German word Ebene, which

means plane) is a special S-pair comprising two concentric spheres of infinite

radius. To fix one plane relative to the other requires three generalised coor­

dinates, usually determined by two translations and one rotation. Regardless,

the E-pair allows three DOF.
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3. C-pair: The cylindrical C-pair consists of mating convex and concave cir­

cular cylinders. They can rotate relative to one another, about their common

axis, and they can translate relative to each other in a direction parallel to the

axis. Hence, there are two DüF: one rotational and the other translational.

4. R-pair: The revolute R-pair is made up of two congruent mating surfaces

of revolution. It has one rotational DüF about its axis.

s. P-pair: The prismatic P-pair comprises two congruent non-circular cylin­

ders, or prisms. It has one translational DüF.

6. H-pair: The helical H-pair, or screw, consists of two congruent helicoidal

surfaces whose elements are a convex screw and a concave nut. For an angle f)

of relative rotation about the screw axis there is a translation of distance h in

a direction parallel to the screw axis. The sense of the translation depends on

the hand of the screw threads and on the sense of the rotation. The distance

h is the pitch. When h = 0, the H-pair becomes an R-paÎr; when h = 00 it

becomes a P-pair. The H-pair has one DüF which is either specified as a

translation or a rotation, coupied by the pitch, h.

ünly planar platforms are considered herein. The only relevant lower pairs are

p- and R-pairs. Moreover, aIl six of the lower pairs listed above can be produced

from combinations of these two [8]. Figure 2.1 (i) and (ii) show bodies joined by R­

and P-pairs, respectively.

(i) (ii) (iii)

•
FIGURE 2.1. The three pairs used: Ci) R-pair j Cii) P-pair j (iii) G-pair.
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2.3.2. Higher Pairs. Higher pairs are important because they often offer

the most direct means of achieving complex motions. The main drawback is that

they are typically more complicated, implying that they are more expensive to design

and manufacture. A few examples are mating spur gears, rack and pinion, cam and

follower. The higher pairs may be classified according to the nature of the relative

motion hetween the jointed links:

1. Pure sliding: The relative motion is pure translation as in, for example, a

reciprocating cam activating a knife-edge or mushroom head follower, or the

finger tip of a robot hand sliding along a fiat surface.

2. Pure rolling: The relative motion involves rolling without slip. Such as

the tangential pitch circles of mating sets of spur gears, or rack and pinion

systems.

3. Combination of sliding and rolling: In rotating cam and follower sys­

tems the tip of the follower slides along any constant radius of curvature

portions of the cam surface. As the cam rotates and, relative to the follower,

its radius of curvature changes, the follower rotates about sorne axis. As this

occurs, the follower tip will also roll on the cam surface.

2.3.3. Holonomie and Non-holonomie Constraints: G-Pairs. The term

holonomie is derived from the Greek word holos meaning integer. It describes con­

straints that may he expressed in integral form, i.e., in terms of displacements, as

opposed to differential form, i.e., in terms of linear and angular velocities [7]. Differ­

entiaI form kinematic constraints involving link angular velocities are non-holonomie

unless the motion is planar and occurs without slip [7, 48].

The subject of this thesis includes the kinematic analysis of PSGP with holonomie

higher pairs that involve rolling without slip on a straight line, like rack and pinion

gear sets. This type of higher pair, illustrated in Figure 2.1 (iii), is abbreviated as
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aG-pair (G for gear). Since the platforms examined herein, inc1uding the special

architectures, are all planar and there is no slip between the higher pairs, all the

kinematic constraints in this thesis are holonomic.

A very detailed discussion of relevant conditions that make a constraint holonomie

can be found in [48], which is briefly summarised now for reference. The constraint

equations confining the motion of a rigid body can be written as functions

(2.1)

•

where the q's are constrained generalised coordinates, t stands for time and the sub­

script i denotes a particular constraint equation. Any limitation placed on the gener­

alised coordinates restricts the position of the rigid body, and hence these are called

position constraintsl. Position constraints impose restrictions on the velocity as weIl.

The velocity constraints are obtained by differentiating Equation (2.1) with respect

to time:

where the q's are called generalised velocities. Equations (2.1) and (2.2) are equivalent

in the limitations they impose as long as the initial position is specified.

A more general form for the velocity constraint equations is obtained by replacing

the derivatives by arbitrary coefficients that are functions of only the generalised

coordinates and time:

m

L aij(Ql' q2,· .. ,qm, t)(Ïi + bi (Ql, Q2,·· . ,Qm, t) - o.
j=l

(2.3)

•
Equations (2.2) and (2.3) represent equivalent constraints if the corresponding co­

efficients of each generalised velocity and of the velocity-independent term are the

1In [48) these are termed configuration constraints.
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same up to a multiplicative factor, which may itself he a function of the generalised

coordinates and time, 9i = 9i(q1, Q2, •.• ,qm, t). A velocity constraint is derivahle from

a position constraint, and vice-versa, if, and only if

afi
aij9i = -a'qj

The velocity constraint equations are holonomic (meaning integrable) if they satisfy

Equation (2.4), otherwise they are non-holonomic.

This terminology actually refers to the differential form, called the Pfaffian form,

of a constraint equation [56]. The Pfaffian form is ohtained from Equation (2.3) by

multiplYing it through by dt, giving:

m

E ~;(q1' q2,· .. ,qm, t)dqj + bi (q1 , q2, ... ,qm, t)dt - O. (2.5)
;=1

When Equation (2.4) is satisfied, multiplying Equation (2.5) by the function 9i trans­

forms the Pfaffian form to a perfect differential of the function fi. This leads to the

following definition [48]:

DEFINITION 2.3.1. A velocity constraint is holonomie if there exists an integrat­

ing factor gi for which the Pfaffian form of the constraint equation becomes a perfect

differential. In this case, it may be integrated yielding the position constraint on the

generalised coordinates.

The concept of a holonomie eonstraint may be viewed from a geometric perspec­

tive. The generalised coordinates, Qi, may he taken to he the basis (qr, q2,' .. ,qm) of

an m-dimensional (m-D) constraint spaee. The constrained motion in the eonstraint

space is the locus of points as the motion evolves in time. Consider a holonomie

constraint f(qr, Q2,' .. ,qm, t) = O. At any instant t the position of the rigid body is

confined to sorne surface in the constraint space. The corresponding Pfaffian form of

27



•

•

•

2.4. RIGID BODY DISPLACEMENTS: THE ISOMETRY GROUP

the velocity constraint states that infinitesimal displacements must he in the corre­

sponding tangent plane to the eonstraint surface [109].

When the eonstraint is non-holonomie, the constraint surface cannot be defined.

Hence, the velocity constraint cannot be integrated. In this case the Pfaffian form of

the constraint equation restricts infinitesimal displacements to lie on a tangent plane

that can only be defined by the CUITent state of the motion [48].

2.4. Rigid Body Displacements: The Isometry Group

A rigjd body displacement can be described geometrically as an isometry: a

bijective mapping of Euclidean space E3 onto itself which leaves the distance hetween

any two points invariant. Although a motion is clearly associated with an isometry,

the isometry does not represent the motion: it is the correspondence between an

initial and a final position of a set of points. A motion is a continuons series of

infinitesimal displacements. Because an isometry maps collinear points into collinear

points, it transforms lines into lines, and hence is a collineation. The invariance of

distance also ensures that triangle vertices are transformed into congruent triangle

vertices. Thus, isometries preserve angle and are also conformaI transformations [71].

The word set has so far been used to mean a collection of geometric objects,

snch as points, or lines. It may, however, be nsed more broadly to mean a collection

of any sort. The set of isometries includes the following transformations: rotation;

translation; screw; reflection (in a plane); central inversion (reflection in a point)

[30]. It is easy to show that the set of isometries, together with a hinary operator

which combines them, called product, defined on the set, constitutes a group, g. The

elements of g, {x, y, z, ... } and the product operator satisfy the following axioms

[13]:
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• i. [closureJ xyE9 'ri x,y E g

iL [associativity] (xy)z = x(yz) 'ri x, y,z E 9

ili. [identity] :3 1 E g: Ix = xl = x, 'ri xE 9

iVe [inverse] :3 x-l E 9 : xx- l = X-lX = I, 'ri x E 9

•

•

The isometry group of the Euclidean plane E 2 is a sub-group of the isometry

group of E3 • Every isometry is the product of at most four reflections, in E 2 four

is replaced by three [30]. Since a refiection reverses sense, an isometry is direct or

opposite according to whether it is the product ofan even or odd number of refiections.

The set of direct isometries form a sub-group. This is because any product of direct

isometries is another direct isometry. Whereas, the same does not hold for the set

of opposite isometries: the product of two opposite isometries is a direct isometry,

violating the dosure axiome This is why opposite isometries do not farm a sub­

group. The sub-group of direct isometries is also lmown as the group of Euclidean

displacements, 96 [30, 71, 90]. The subscript 6 refers to the number of generalised

coordinates required to specify a displacement. In turn, the isometries are a sub­

group of the Euclidean similarity transformations, also termed the principal group, 97

[30, 71, 90]. Seven parameters determine a similarity transformation, the additional

one being a magnification factor to uniformly scale distances. The 97 transformations

are also conformaI collineations, but the distance between two points is not, in general,

invariant.

2.4.1. DOF by Group: Chebyshev-Grübler-Kutzbach Formula. The

relative motion associated with each of the lower pairs listed in Section 2.3 constitute

a sub-group of 96 under the binary product operator (i. e., the composition of two

displacements). The dimension of these sub-groups is defined to he the nOF of

the relative motion permitted hy the lower pair [7]. It is indicated by dim(9s),
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where gs C Q6· These sub-groups, together with their corresponding dimension, are

identified in Table 2.1.

Lower pair Qs dim(Qs)

S S 3

E e 3

C C 2

R R 1

P P 1

H 1l 1

TABLE 2.1. Lower pair sub-groups and their dimension.

Let the product of two sub-groups, indicated by Ç}' = gl * Y2, be the composition

of the displacements they represent. If the product is also a sub-group of Q6 then

the dimension of this new sub-group will be d.im(Q') < 6. Let the product of the

sub-groups of a trivial 2 kinematic chain with l links be y' C Q6. Furthermore, let

d.im(Q') = d. The i th kinematic pair imposes Ui constraints on the two links it couples.

Clearly, l unconstrained rigid links have d(l - 1) relative DüF, given that one of the

rigid links is designated as a non-moving reference link. Any joint connecting two

neighbouring rigid boclies removes at least one relative DüF. If the joint removes

no DüF then the bodies are not connected. If the joint removes three DüF in the

plane, or six DüF in space the two bodies are a rigid structure. Summarising this

discussion, the DüF of a trivial chain can be expressed as

j

d(l-l) - LUi -m = DüF,
i=l

(2.6)

•

where d = dim(y'), l is the number of links, Ui is the number of constraints imposed

by the ith joint, j is the number of joints, and m represents the number of idle DüF3

2Trivial kinematic chains are those whose kinematic pairs have a.ssociated sub-groups whose product
is a sub-group of g6 [7]. For example, the 8-, E-, C-, R-, P- and H-pairs are all trivial.
3The idle DOF of a chain are the number of independent single DOF motions that do not affect
the transmission of motion from the input to output links of the chain. However, i<ile DOF have no
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of the chain. This equation is known as the Chebyshev-Grübler-Kutzbach (CGK)

formula [7].

2.5. General Planar Stewart-Gough Platforms Defined

A general planar Stewart-Gough platform (PSGP) is defined to be a moving

planar platform connected to a fixed base by three identicalopen kinematic chains,

called legs. Each of the three legs is connected by three independent one DOF joints,

one of which is actuated. Therefore, each independent chain has three DOF. Since

aIl three legs are identical the actuated joint must be the same one and the same

type in each leg. This definition is the logical reduction to the plane of the following

definition of the general six DOF spatial SGP.

These six DOF platforms consist of a mobile platform connected to a fixed rigid

base by six articulated legs of variable length [81], see Figure 2.2. Each of the P-pair

legs, see Figure 2.3, is joined to the base by a universal joint4 CU-pair) and to the

moving platform byanS-pair [8]. This architecture is described topologically by the

sequence of joints of one of six legs connecting the fixed base to the moving platform:

universal-prismatic-spherical, indicated by UP S. While this architecture is arguably

the most well known, it is not the most general [83]. From a geometric perspective, the

general SGP consists of six arbitrary points in a particular reference frame that can

move in constrained relative motion with respect to six arbitrary points in another.

The one condition is that the points of connection between the mobile platform and

each leg move on fixed spheres [81].

direct bearing on the material presented herein and need not be discussed further. The interested
reader is referred ta [6, 7] where this concept is discussed in great detail.
4There are a number of types of universal joint, the one used on SGP is but one of the lot. It
comprises two R-pairs whose axes intersect at a fixed angle, see Figure 2.3. The term has its origin
in the ability of a joint to transmit motion between two intersecting, but non-collïnear shafts. Such
a universal joint is called a Hooke, or a Cardan joint, although neither Hooke nor Cardan invented
it [61] .
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•

Ca)

~··:V·

Cb)

•

•

FIGURE 2.2. A UPS-SGP: Ca) layout; Cb) platform and base geometry
(courtesy of Prof. .J. Angeles) .

FIGURE 2.3. Leg architecture of the UPS-SGP (courtesy of Prof. J. Angeles).

If the platform and hase points are aIl coplanar and if the motion is restricted to

the plane of these points, the SGP loses at least three DOF. Three of the legs, and

hence, three pairs of platform-base points, along with three joints in each of the legs

become redundant. Thus, the general PSGP can he viewed as three arbitrary points

in a particular plane that move relative to three arbitrary points in another plane,
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parallel to the first. For the planar analogue of the UPS-SGP, the base U-pairs and

platform S-pairs become R-pairs whose rotation axes are perpendicular to the plane

of motion. The moving platform can be connected to the fixed base by three variable

length legs. Each leg can be modeHed as a simple kinematic chain.

Indeed, the only lower pairs used in planar mechanisms are R- and P-pairs.

This, together with the fact that PSGP have only three legs with three joints each,

suggests that the complexity of the kinematic analysis of these platforms should be,

more or less, independent of architecture. This is not the case, as yet, for SGP. For

instance, the FK problem of a SGP type platform with six 6-R legs is computationally

• prohibitive [8].

It is to be seen in the literature, [43, 76, 77, 81, 101] for example, that general

SGP are topologically symmetric. That is, the platform is connected to the base by

six identical kinematic chains. Moreover, the actuated joint in each chain is the same.

In this sense the general PSGP shaH be considered as topologically symmetric, but

with three legs of arbitrary though identical architecture. This symmetry, however,

does not necessarily include link lengths and offset angles.

2.6. Classifying Lower Pair PSGP Using Characteristic Chains

2.6.1. Characteristic Chains. The possible combinations of R- and P-pairs

constraining the independent open kinematic chains, consisting of successions of three

joints starting from the fixed base, in a PSGP are [34, 100]:

RRR, RPR, RRP, RPP, PRR, PPR, PRP, PPP.

We must, however, exclude the PPP chain because no combination of pure planar

translations can cause a change in orientation. Moreover, there are a maximum of

two independent translations in the plane, hence a ppp chain has at mast two DOF.
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•

RRR

RRP

PRR

RPR

RPP

PPR

•
PRP

FIGURE 2.4. The seven possible topologies for the PSGP.
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Sïnce this is less than the required three, a symmetric platform consisting of three

ppp legs can not be considered as a PSGP by our definition. Thus, there are seven

possible PSGP topologies, illustrated in Figure 2.4, each characterised hy one of the

seven aIlowahle simple chains. They are referred ta as characteristic chains.

It is important ta note that in arder for legs containing two P -pairs ta possess

three DOF it is necessary for the two translation directions ta he non-parallel.

2.6.2. Characteristic Passive Sub-chains. The leg actuation scheme con­

traIs the three DOF of the moving platform. The active joint in a leg shall be identified

with an underscore. Since any one of the three joints in any of the seven characteristic

chains may he actuated there are twenty-one possible topologically symmetric PSGP.

When the value of the activated joint coordinate is specified, the joint is locked

and may he effectively removed from the characteristic chain. Examining Figure 2.4

it is ta he seen that the resulting passive sub..chain is one of only four types: either

RR, P R, RP, or PP. These are called characteristic passive sub-chains. However,

PP-type architecture must he rejected as not useful [100] hecause such a platform

either moves uncontrollahly or is not assemblable when the actuated joint variables

are specified, see Section 7.2.3. This reduces the numher of passible PSGP to eighteen.

They are listed, according ta characteristic passive sub..chain, in Table 2.2.

RR-type PR-type RP-type

RRR RPR RRP

RRR PRR RRP

RRR PRR RPR

PRR PPR PRP

RPR PPR RPP

RRP PRP RPP

TABLE 2.2. The 18 possible PSGP.
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FIGURE 2.5. Reference frames and points if base and platform joints are R-pairs.

2.7. Manipulator Descriptions

The planar platforms considered in this thesis can be represented as complex

kinematic chains consisting of three c1o~ed sub-chains (FAFB1 FAFe , FCFB) , as in

Figure 2.5, for instance. In general, they consist of seven articulated rigid elements

which move with constrained relative motion, all grounded to a rigid fixed base. These

eight members are joined by combinations of nine lower R- and P-pairs. The three

simple kinematic sub-chains connecting the base to the platform, here termed legs,

each contain two intermediate links. No PSGP leg is joined exc1usively with P-pairs.

2.7.1. Lower-Pair PSGP Reference Frames and Points. To geometri-

cally describe a PSGP six arbitrary points, three in each of two arbitrary reference

frames, must be defined. It is convenient to represent the displacements of the moving

platform with respect to the base by describing the pose of a reference frame attached

to the platform in a stationary reference frame fixed to the base. Referring to Figure
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2.5 the fixed base and the moving platforrn frames are orthogonal and right-handed.

They are labelled E and E, respectively. Each of the three legs are identified as A,

B and O. Figure 2.5 illustrates an RPR platform, but the reference frames together

with the fixed and moving points are labelled identically for aIl eighteen PSGP. The

moving platform is defined by the triangle whose vertices are Mi, i E {A, B, C},

while the fixed base is defined by the triangle whose vertices are Fi, i E {A, B, C}.

Figure 2.6 illustrates both triangles, the sides of the fixed one shown as dashed lines.

The three fixed base points are coupled to the three moving platform points by iden­

tical kinematic suh-chains.

The manipulator parameters5 that are independent of topology are the locations

of the origins of frames E and E, indicated by OE and 0 E, along with those of the

three fixed base points and those of the three moving platform points. Selection

of these origins and points requires sorne elaboration. Each of the three legs are

connected to the base by either revolute or prismatic joints. If the base joints are

revolutes, as in Figure 2.5, the three fixed base points are selected to be the centres

of the three base R-pairs. These are the piercing points of the revolute axes with

the platform plane of motion. Then OE is chosen to be incident on FA so that the

Cartesian coordinates of FA / E , i.e., the coordinates of FA in frame E, are (0,0). The

basis directions of reference frame E are chosen such that F B / E = (Bl, 0). That is,

the orientation of E is selected so that FB is on the positive xE-axis. The Cartesian

coordinates of Fe/E = (Cb O2 ) are then, generally, nonzero.

Normally the Fi are expressed in terms of the coordinates in E. Points in E have

Cartesian coordinates represented symbolically by the uppercase letter pairs (X, Y)

and homogeneous coordinates by the triples of ratios (X : Y : Z). Platform points

SIt is important to emphasise that the kinematic analysis used herein is completely independent of
platform geometry. Therefore, the choice of coordinate reference frames is irrelevant. We select the
ones that simplify the computations.
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Mi are typically expressed in both frames, E and E. Their coordinates in E are

indicated symbolically by lowercase letter pairs (x, y) and homogeneous coordinates

by the triples of ratios (x : y : z). It is worthwhile to point out that the forward

kinematics problem reduces to finding MilE given MilE, FilE and the active joint

inputs. Moreover, the inverse kinematic problem involves determining the active

joint inputs gÏven the Mi/ E •

If the platform joints are R-pairs, an identical procedure is followed to select the

location for DE, the orientation of E and the coordinates of MilE, i E {A, B, Cl.

The centre of the platform R-pair in leg A is taken to be both DE and MA. The

remaining two points, M B and Mc, are chosen analogously to FB and Fe, giving:

MAIE = (0,0); MBIE = (bl, 0); MelE = (Cl, C2)'

•

•

FIGURE 2.6. Reference frames and points where platformjoints are P-pairs;
axis associated with a particular P-pair.

Considering the alternate situation, if the base joints and/or platformjoints are P­

pairs, as illustrated by Figure 2.6, the procedure seems to become less straightforward.

This is partly because it does not IL.ake sense, from a mechanical engineering point

of view, to speak of the axis of a prismatic joint. These joints permit translations

parallel to one direction. One such translation, indicated by T, is shown in Figure
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2.6. Mathematically, the axis of a prismatic joint could he described as the line at

infinity, Noo , of all planes normal to the direction of T. This is illustrated in Figure

2.6, where E is the plane containing the P-pair, T is a particular translation effected

by the P-pair, NI and N 2 are normals to E, and n is the plane at infinity. The two

planes E and n intersect in .coo • Lines in the direction of T intersect .coo in the point

Pl' Lines normal to T in plane E, indicated hy "l, intersect .coo in the point P2 • The

line N 00 is the intersection of all planes normal to E and parallel to Tl. Moreover,

ail normals to E, NI and N 2 being two of them, intersect Noe in the point P3 • The

join of P2 and P3 is N 00' which is the axis of the particular prismatic joint. In other

words, the axis of a P-pair is the absolute polar line to the point at infinity of the

direction of translation.

Regardless, P-pairs would be impossible to manufacture if they had no longitu­

dinal axis of symmetry to establish the direction of translation, i. e., no longitudinal

centre lîne. We will use these centre lines to establish relevant Fi (ankle), J(i (lrnee)

and Mi (hip) points. One must not confuse this centre line with the joint axis, which

is, for mechanical reasons, inaccessible.

The process for selecting the origins and reference points is identical to the R-pair

case with the exception that GE and 0 E are selected to be any convenient points on

the appropriate centre lines. The basis directions of E and respective base points are

selected so that their coordinates are: FA / E = (D, D); FB / E = (BI, D); Fe/E = (Cl' C2 ).

Meanwhile, the basis directions of E and respective platform. points are selected so

that their coordinates are: MAIE = (D,O); M B / E = (bI, D); MelE = (Cl, C2). Figure

2.6 illustrates a P RP platform showing the centre lines and the respective reference

frames and points. For topologically asymmetric fully-parallel three-Iegged planar

manipulators the appropriate procedure is followed leg-by-Ieg depending on whether

the relevant joints are revolutes or prismatics.
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2.7.2. PSGP with Holonomie Higher Pairs. A novel RR-type platform

containing active holonomie G-pairs shall now be introduced. It is described by an

RRG characteristic chain, illustrated in Figure 2.7. Because of the special topology

extra attention is gÏven to its description. lt is based on the design proposed by

Agrawal and Pandravada in [3, 4], wherein the kinematics of two 2R links manip­

ulating a disk in the plane are examined. When tangential contact is maintained

between the disk and legs it is an RRGGRR single loop platform. When a third

2R leg is added and the G-pairs are active, the result is a special RR-type platform,

provided tangential contact is maintained.

The circular disk roils without slip on each of the three lines tangent to it. This

rolling system is modelled as a pinion meshing with three racks. Each of the three

legs, A, B and C, connect a rack to a base point via two R-pairs. A rack is rigidly

attached to the disk end of each second link. The racks are constrained to remain in

contact with the pinion. Tangential contact can be maintained mechanically using

passive joints [4], the higher pairs can then be activated via a transmission with no

additional active joints. The group of motions associated with G-pairs has the same

dimension as those of R- and P-pairs: dim(g) = 1.

What really distinguishes this manipulator from PSGP, which are jointed ex­

clusively with lower pairs, is that the initial assembly configuration (lAC) of the

platform must be included in the analysis due to the roll-without-slip condition. If

only displacements are considered, then any lAC may he used as the reference posi­

tion. Activating the higher pairs gives some control over the relative rolling which is

essential for the kinematic analysis presented herein. Moreover, this means it may be

considered as an RR-type PSGP, although a special one.

The R-pairs connecting two links in a leg are referred to as knee joints KA, K B , K c ,

and are constrained to move on circles centred on the three fixed points FA, FB, Fc·
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FIGURE 2.7. A PSGP with holonomie higher pairs.

The position and orientation of the pinion are described by reference frame E, which

has its origin on the disk centre and moves with it. Frame E has its origin at the

base of leg A and is fixed. In the reference position shawn in Figure 2.7, the basis

directions of E and E are identical.

The three fixed base points are the centres of the three base R-pairs (see Figure

2.7). However, the three platform points are the points of contact between the pinion

and racks. The platform points are not fixed relative to each other, but change from

pose to pose. It will be seen that the variable platform points are not problematic

and that the kinematic analysis is essentially the same as for any RR-type platform.

2.7.3. Special Geometrie Properties. This mechanicai system has sorne

interesting geometric properties which Iead to some unique practical applications.

The general motion of the disk in the plane invoives relative motion between the disk

and each seriaI 2R leg. Each rack can roll on the pinion, the pinion can roll on the
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racks, or there can be a combination of the two motions. For general planar motion

the system, illustrated in Figure 2.7, has the following properties:

(1) If the pinion rolls on one rack, then it must roll on ail.

(2) As a consequence of (1) if one of the higher G-pairs is locked the pinion can

not rotate about its centre.

(3) Any, or all of the racks may roll on the pinion.

(4) Consider leg A, for example. Suppose that its higher pair is locked but the

other two are note During a general motion, the pinion will he stationary

with respect ta rack A while the other racks are free ta roll on the pinion.

Then there are two possibilities:

(a) If the relative angle hetween i IA and i 2A changes, the motion of the

pinion is either a translation, or a rotation about a centre other than

its own axis by an angle equal to the change in angle of i 2A measured

in ~.

(h) If the relative angle between flA and f 2A is constant during the motion,

then the pinion rotates about the leg base by an angle equal to the

change in the angle hetween i IA and ~. Regardless, in bath cases there

can he no rotation of the disk about its centre, since one of the higher

pairs is locked. Sucb a motion would violate (2).

(5) Let ~'Ti, i E {A, B, Cl, be the change in rack tangent angle in a particular

leg with counter cIock-wise rotation considered positive. If .6.'TA has the same

magnitude but opposite sense as either ~'TB or .6.rc, then the motion of the

pinion is pure rectilinear translation of its centre. Pure curvilinear translation

can also occur if the magnitude condition is violated however, the opposite

sense condition must be met.

(6) If ~rA, Â'TB, and ~rc have the same magnitude and sense, then the motion

of the pinion is pure fixed axis rotation about its centre.
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FIGURE 2.8. A cycloid and an involute of a disk.

•

The the relative rolling between rack and pinion pairs also leads to an interesting

observation. Consider the following two curve definitions, see Figure 2.8:

(1) Cycloid: Locus of a point on a circ1e that roUs without slip on a tine.

(2) Involute: Locus of a point on a line that roUs without slip on a circle.

These two definitions tell us that the circle and line are kinematic inversions, or duaIs,

since each definition can be obtained from the other simply by exchanging the words

circle and line. This may seem like a trivial observation, but it turns out to be of

sorne importance for the classification of constraint-related surfaces in a quasi-elliptic

geometry, ta be discussed Iater, in the following sense: a model of the elliptic plane

is the surface of a sphere on which straight lines are taken ta be great circles.

2.7.4. Tangency Condition. By virtue of the pure rolling constraints, the

straight lines along which the disk roIls must always remain tangent ta the disk.

Consider a line and a circle in the Euclidean plane. The equation of the line can be
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represented by the linear equation

ax+by+c=o, (2.7)

for constant coefficients a, b, c, and variable points (x, y). A circle with centre (xc, Yc)

and radius r is given by

(2.8)

Equation (2.7) can be solved for y to give the familiar slope-intercept form of the

line, and the expression is substituted into Equation (2.8). The result is expanded in

powers of x which yields a quadratic:

•
where:

Ax2 + Bx + C = 0,

a2

A - b2 +1,

(
ac ayc )

B. - 2 -xc + b2 + b '

C x~ - r 2 + «c/b) + Yc)2 .

(2.9)

To satisfy the tangency condition, the discriminant of the quadratic must vanish:

.../B2 - 4AC = o.

The discriminant itself is a quadratic in terms of the constant a:

(2.10)

•

This condition is necessary, but not suflicient to guarantee pure rolling contact.

However, ail solutions to the FK and Il( problems must satisfy this condition. FK

and lI{ algorithms can use this condition as a check on the validity of solutions.
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2.8. Applications for RRG-Type Platforms

The applications for RRG-type platforms are a super-set of those of the lower

pair jointed PSGP. That is, they are essentially the same with some notable additions.

Because of its ability to grasp objects while rotating them it can be used for accurate

centring operations. For example, it could be designed to replace a standard four-jaw

chuck in lathe tuming operations, thus eliminating costly set-up time. The details

of the forced tangential contact could be set such that rack could disengage from

the pinion in a controlled manner allowing for a reachable workspace with dynamic

boundaries. The RRG-type platform could also be used in situations requiring ad­

justable, variable coupler length four-bar mechanisms that can be changed to Grashof,

change-point, or non-Grashof kinematics. Not only can the coupler curve shape pa­

rameters be adjusted, the curve itself can be made uni- or bicursal, to suit the needs

of the design at hand. This makes for some welcome flexibility regarding function

generation, rigid body guidance and path generation synthesis problems [68].

Changing the rack tangent angles changes the assembly configuration of the plat­

forro. Each distinct set of inputs yields a distinct s\~t of distances between the knee

joints. Referring to Fig. 2.7, we can lock the racks in two legs so that there is a

desired distance between corresponding knee joints. With no loss in generality we

can select legs A and B. Since two of the actuators are locked, the platforro loses 2

nOF. Furthermore, the ungrounded links in legs A and B, together with the pinion

are a temporary rigid body with an effective length corresponding to the distance

between the two knee joints KA and K B . The resulting four-bar mechanism (see

Figure 2.9) can be driven with rack G. If the link lengths are suitably chosen, it will

be a convertible Grashof-Change-Point-Non-Grashofmechanism.

Fig. 2.9 illustrates the most general situation, where the grounded links in legs

A and B have different lengths. Cases (i) through (iii) show the mechanisms that
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(i)

~i-\; ~
.......! /

•

•

(ii)

(iii)

FIGURE 2.9. Application to planar four-bar mechanisms: Ci) Grashof; (ii)
change-point; (iii) non-Grashof. The excursion arcs and singular positions
of the small and large arm crank pins for each of the three cases are shawn
on the right.

result as the effective coupler length, b, given in generic units, varies between 15, 14,

and 12. The other lengths are constant: l = 16, S = 2, and a = 4. The SUIn of

the longest (l) and shortest (s) link lengths is less than, equal to, and greater than

the SUIn of the other two (a and b) giving Grashof, change-point, and non-Grashof

mechanisms, respectively [110].

Ci) Lengths: l = 16, S = 2, a = 4, b = 15

l + S = 18 < a + b = 19

=? Grashof crank-rocker.
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(ii) Lengths: l = 16, S = 2, a = 4, b = 14

l + S = 18 - a + b = 18

=> Change Point.

(iii) Lengths: l = 16, S = 2, a = 4, b = 12

l + s = 18 > a + b = 16

=> Non-Grashof double rocker.

Recall the characteristics of these three variants of a four-bar mechanism: a

Grashofmechanism can be a crank-crank, crank-rocker, or double-rocker mechanism,

depending on which link is fixed; whereas all inversions of a non-Grashof mechanism

are double-rockers. As a reminder, the excursion arcs and singular positions of the

small and large arm crank pins for each of the three cases are shown on the right

of Figure 2.9. For this application the link lengths in the driving leg, C, and the

disk radius are unimportant provided they allow for the desired coupler lengths and

output error tolerance.

2.9. Nomenclature and Link Reference Frames

One of the main contributions of this thesis is the derivation of a single univariate

polynomial whose zeros represent the solutions to the FK problem for every PSGP,

as defined in Section 2.5. The single variable is a special displacement parameter in

a certain kinematic image space. The coefficients of the polynomial are products of

the design constants and input variables, which have a fixed, constant value for any

given pose of the manipulator. Care must he taken to use portable notation. That is,

notation that can be unamhiguously used ta fully describe any PSGP, regardless of

topology, in arder that the univariate can be used in the kinematic analysis.
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2.9.1. Position Vectors. Position veçtors shall: in general, be described

with lowercase bold letters. The points they represent shall be described with the

corresponding uppercase letter. For instance, consider the knee joint:

• Point: K.

• Homogeneous point coordinates: (Kx : Ky : K z ).

• Position vector: k.

2.9.2. Platform. Pose Variables. The pose of the platform is described by

the position of the moving frame E, together with its orientation, aIl expressed in the

fixed frame E, see Figure 2.10.

• (a, b) are the Cartesian coordinates of the origin of EinE, GElE.

• cp is the orientation expressed as the angle between the x- and X-axis, the

positive sense being counterclockwise.

• y

~o~~
(a, b)

•

FIGURE 2.10. Platform. pose variables.

2.9.3. Link Reference Frames. Link reference frames are, with the excep-

tion of E, E and R (discussed below), in the case of RRG platforms, assigned using

the weIl known procedure developed by Denavit and Hartenberg [39] and elaborated

on by Angeles [8] and Craig [33]. These frames are usually called D-H reference

frames. D-H frames are usually assigned so that D-H parameters can be used to

characterise a manipulator. Since aIl platforms dealt with herein are planar, neither

are really required. Regardless, the D-H frames are assigned because the procedure
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is weIl defined, systematic and weIl known. Moreover, if this work is to be extended

to non-planar platforms, the D-H frames wililikely be used. For ail PSGP, the fixed

base, and the fixed frame at the leg attachment point (the fixed base point Fi) are

enumerated as link 0 and frame 0, respectively. The orientation of frame 0 in each leg

is arbitrary, and is selected to he parallel to the fixed base frame E. Thus, the base

reference frame in each leg is indicated simply hy E. The platform, and the moving

frame at the attachment point (the moving platform point Mi) are enumerated as link

3 and frame 3, respectively. The orientation of these frames is selected to be parallel

to the moving platform frame E. Similarly, the platform reference frame in each leg

is indicated by E. The intermediate links, and their frames, are enumerated as 1 and

2 in each leg. The frames are, of course, fixed relative to the link they represent. The

D-H frames for leg A in an RRR manipulator are sho'\\rn in Figure 2.11 (i).

Figure 2.12 (i) shows the D-H reference frames for leg B in an RPR platform.

Frames 0 (~) and 3 CE) have their origins on the base and platform R-pairs. The

origin of frame 1 is incident with the origin of frame 0 (indicated by E), but moves

with the base revolute. The origin of frame 2 is incident with the orig;in of frame 3

(indicated hy E), but moves \Vith the platform revolute.

When the base joints are prismatic the basis directions of frame 1 depend on the

angle between 'the X-axis and the direction of translation (represented as the centre

line of the P-pair). This is called the angular offset of the particular frame with

respect to frame 0 (E). A similar angular offset occurs when the platform joints are

P-pairs, except they are described in terms of the platform frame E. The angular

offsets are shown for leg B of a P RP manipulator in Figure 2.13.

The D-H reference frame assignment procedure is only valid for kinematic chains

whose joints are alliower pairs [39]. To define the G-pair reference frames a variation

on the procedure in [65] is used. This involves taking the axis of the G-pair to
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(i) (ii)

•
FIGURE 2.11. (i) D-H reference frames in an RRR platform: leg A; (ii) joint parameters.

(~+---- X o

(i) (ii)

•

FIGURE 2.12. Ci) D-H ref~rence frames in an RPR platform: leg Bj (ii) joint parameters.

be normal to both the direction of translation of the pinion centre relative to the

corresponding rack and to the plane of motion. The positive sense of this axis,

defined as the z-axis of a three dimensional Cartesian reference frame, is out of the

page. If the y-axis points towards the pinion centre, the x-axis direction is assigned

to complete a right-handed reference frame. Two frames are assigned in this way: the

rack-fixed frame R and the rack frame 3 that translates with the contact point along

50



•
2.9. NOMENCLATURE AND LINK REFERENCE FRAMES

t~ ~ I~-'~XO

(i) (ii)

•

•

FIGURE 2.13. (i) D-H reference frames in an PRP platform: leg B; (ii) joint parameters.

the rack. The origin of R, indicated by OR, is on the contact point between rack

and pinion when the platform is in its reference position (see Figure 2.14 (i) and 2.7

showing the reference position used throughout this thesis), which can always be used

as a feasible IAC. Thus, it is selected ta be that position where the distance between

GE and O2 is minimum in each leg. Figure 2.14 shows the frame assignments for leg

C in an RRG manipulator. It is important to note that for the RRG platforms the

basis directions of E and E are parallel in the reference position shown in Figure 2.7,

but reference frame 3i is, in general, not parallel to E.

2.9.4. Fixed Link Design Parameters.

• f!ij is the length of link i, i E {1,2}, in leg i, j E {A, B, C}. See Figures

2.7 and 2.11 (ii), for example.

• ai/j, Pi/j, 'Yi/j, i, j E {E, 1, 2, E} i =1= j, are the angular offsets of P-pair refer­

ence frame i with respect to reference frame j for legs A, B, C, respectively.

See Figure 2.13.
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Yo

FIGURE 2.14. Ci) D-H reference frames in an RRG platform: leg Cj (ii) joint parameters.•
(i) (ii)

•

• r is the radius of the disk in RRG platforms, see Figure 2.7.

2.9.5. Joint Variables.

• dij is the Iength of prismatic joint i, i E {1, 2, 3}, in leg j, j E {A, B, Cl,

examples are illustrated in Figures 2.12 and 2.13. Tt is also used ta describe the

change in contact point along the rack for the higher pairs in RRG platforms,

see Figure 2.14 .

• (Xi/j, Pi/j, 'Yifj are the joint angles of link i with respect to reference frame j,

i,j E {E, 1,2, E}, i 1= j, for legs A, B, C, respectively. Examples are shown

in Figures 2.11-2.14. These are the same symbols used to describe fixed joint

angular.offsets, however bath the context (i.e., leg type) and the subscripts

should eliminate any confusion.
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The three variable joint angles for leg A of an RRR manipulator are illustrated

in Figure 2.11 (ii). The angles shawn are O'.l/E (which is identical to 0'.1/0), 0'.2/1 and

O'.E/2 (which is identical to 0'.3/2), which represent the relative angles that the Xl-, X2­

and xE-axes (or X3-axes) make with the XE- (or Xo- ), Xl- and X2-axes, respectively.

Figure 2.12 (ii) shows the three variable joint parameters for leg B of an RPR

platform. The length d2B gives the distance between the origin of frame 2 and the

origin of frame 1. The angles {Jl/E and {JE/2 give the relative angles of the Xl- and XE­

axes measured against the XE- and X2-axes, respectively. The P RP platform, shown

in Figure 2.13 (ii), illustrates the variable prismatic lengths dlB and d2B together with

the variable revolute angle, {J2/b and the two P-pair angular offsets, 131/E and 132/E.

The RRG platform, in Figure 2.14 (ii), shows the two variable angles, 'YlIE and 'Y2/l'

Also shown is the position of the contact point between the pinion and rack measured

relative to its reference position.

If a leg possesses an intermediate R-pair it will be called a knee joint and labelled

Ki, i E {A, B, Cl. Completing the anthropomorphism, the Mi platform points will

occasionally be referred to as hip points, and the Fi as ankle points.

2.10. Mobility Analysis

Any planar platform connected to three grounded legs, each joined with three

independent 1 DOF joints can be characterised in the following way: each leg contains

two intermediate links between the base and platform, giving a total of 8 links. The

9 joints are either R- or P-pairs (or G-pairs for the RRG-type legs), each imposing 2

constraints. Under the condition that no one leg is joined exclusively with P-pairs,

it can be shown that the dimension of the associated sub-group is d = 3. Using the

CGK formula, Equation (2.6), gives

•
3(8 - 1) - 9(2) - a 3 nOF. (2.11)
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It is worthwhile to note that the platform has 3 DOF regardless of the numher

of grounded 2-link legs to which it is connected by R- and P-pairs (or G-pairs, as the

case may be). The proofis obtained hy showing the left hand side (LHS) of Equation

(2.6) is always equal to 3.

For l links and j joints Equation 2.6 may he re-expressed as:

3(1 - 1) - 2j = DOF, (2.12)

since each joint removes two DOF. The hase and platform always count as two links

and each of the n legs contains two intermediate links. Thus for n legs the numher

of links is

•
1= 2n + 2.

Furthermore, each leg has three joints, sa:

j =3n.

(2.13)

(2.14)

Substituting Equations (2.13) and (2.14) into the LHS of Equation (2.12) gives

3(2n + 2 - 1) - 2(3n) = 6n + 3 - 6n 3 (2.15)

•

Therefore, n can be any integer. Moreover, this result is valid for any arbitrary

architecture of combinations of the 18 types of characteristic chains plus the RRG­

type.
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CHAPTER 3

Kinelllatic Mappings of Displacelllents

In this chapter the geometric and algebraic tools used in the kinematic analysis of

PSGP shall be discussed. Collectively, they are a fabric woven frOID fine threads

contained in the great classic works of Plücker [115, 116, 117, 118], Grassmann [54],

Klein [89, 90], Study [138], Grünwald [57], Blaschke [14], Sommerville [135, 136],

and the relatively new, but nonetheless landmark, contributions of Bottema and Roth

[17], De Sa [36], Ravani [119], Husty [81,83].

It may be argued that the study of robot kinematics is essentially the study of

isometry. Both are primarily concemed with the group of Euclidean displacements:

96 in E3 and 93 in E2 • Since these concepts form the backbone of this thesis, sorne

discussion is in order. The aim is to begin with general3-D Euclidean displacements,

and treat planar displacements as a special case of the former. Thus, it is to be

hoped that the techniques employed in this thesis may then be generaIised to spatial

six DOF parallel platforms. The Isometry group was described in Section 2.4. The

following sections will build on that discussion by recalling some pertinent concepts

regarding projective, metric and non-metric geometries.
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3.1. Homogeneous Coordinates

y

/-LY 1----------.

y 1-----.

FIGURE 3.1. Cartesian coordinates in E2 .

•
o x /.LX

x

Let 0 be the origin of the Cartesian coordinate system, shown in Figure 3.1. Let

8 he a distinct point in the plane. The ray passing through 0 and 8 is described

by the coordinate pair (x, y). Another distinct point Q i= 0, on ray 08 is described

by the pair (J.lX, J.LY), where Ji. E 1?, (ie., a real number). As J.L ~ ±oo the seemingly

meaningless pair (00,00) is obtained [126].

Ta remedy this representational problem, the point pairs may be represented by

two ratios, given by ordered triples (Xo, Xl, X2)' If Xo 1= 0, then the point S can be

uniquely described as:

Xl
x=­

Xo

X2
, y=-.

Xo
(3.1)

•
Then any triple of the form (Àxo, ÀXl, ÀX2) (for À f; 0) describes exactly the same

point S. In other words, two real points are equal if the triples representing them are
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proportional. This is because

ÀXl Xl ÀX2

Àxo = Xo = X, and Àxo = y.

The coordinates (xo : Xl : X2) are called homogeneous coordinates. When Xo = 1 the

Cartesian coordinate pair (x, y) is recovered.

The Cartesian coordinates (f.LX, f.Ly), f.L #= 0, of the family of points on the ray

through Q in Figure 3.1 can be expressed in homogeneous coordinates as ratios:

In E2, as f.L -+ ±oo the homogeneous coordinates (0 : Xl : X2) are obtained. There is

no point on the line OS to which this triple can correspond because E 2 is unbounded.

However, in the projective extension of the Euclidean planel the triple (0 : Xl : X2)

describes the point at infinity (ideal point) on the line OS. Since the same triple is

obtained regardless if f.L -+ +00 or f.L -+ -00, a unique point at infinity is associated

with the line OS in E2 • Renee, an ordinary line adjoined by its point at infinity is a

closed curve [31].

The triple (0 : 0 : 0) describes neither an ideal point nor a real point on OS.

(x : y : 0) = (0 : 0 : 0) seems ta imply that S = 0, which is a contradiction in the

construction of the ray OS. The trivial triple (0 : 0 : 0) is therefore not included in

the point set comprising the projective extension of E 2 •

Alilines in E 2 which are extended ta their points at infinity have the homogenising

coordinate Xo = o. The totality of aU the existing points at infinity (with the exception

of (0 : 0 : 0)) are described by Xo = o. The extended Euclidean plane which includes

IThe projective plane, P2' can be thought of as the Euclidean plane, Eh, to which the line at infinity
has been added. The generalisation of this concept of extension is attributed ta Herman Grassmann
[54] .
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all the points at infinity is called the projective plane P2. Since Xo = 0 is a linear

equation, it represents the line at infinity.

z

x

FIGURE 3.2. Cartesian coordinates in E3 .

Entirely analogous statements can he made for the 3-D Euclidean space, E 3 •

This space is covered hya Cartesian coordinate system with origin 0 and axes x, y, z.

The axes are usua11y defined as orthogonal. Such an orthogonal Cartesian system is

illustrated in Figure 3.2. The homogeneous coordinates (xQ : Xl : X2 : X3) of the point

S E E 3 are defined as:

Xl X2 X3
X = -, y = -, z = - , Xo # o.

Xo Xo Xo
(3.2)

•

As in two dimensional projective space, when Xo = 1 the Cartesian coordinate triple

(x, y, z) is recovered.

It should he noted that in general the choice of homogenising coordinate is arhi­

trary. Over the course of time the following conventions have developed.
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(1) In North America and the British Commonwealth the homogenising coordi­

nate is taken to be the last one. The coordinate indices begin with 1. In

the plane, (Xl: X2 : X3) represent the coordinates of a point, with X3 the ho­

mogenising coordinate. In space, a point is described with (Xl : X2 : X3 : X4),

X4 being the homogenising coordinate. In general, the homogenising coordi­

nate in an n-D space has the index n + 1.

(2) In Europe the first coordinate, given the index 0, is taken to be the ho­

mogenising one. Thus, Xo represents the homogenising coordinate regardless

of the dimension of the coordinate space.

Both conventions shall he employed henceforth. This is to underscore the idea

that such a restriction is arbitrary and unnecessary in the context of projective geom­

etry, discussed in Section 3.4. However, where required the homogenîsing coordinate

shall be explicitly identified.

3.2. Duality

In the Euclidean plane a general Hne has the equation

Ax+By+C = 0, (3.3)

where A, B and C are arbitrary constants defining the slope and intercepts with the

coordinate axes. The x and y that satisfy the equation are points on the line. Using

homogeneous coordinates this linear equation hecomes

(3.4)

•
where the Xi characterise lines (i.e., Xl = A, X 2 = B, X3 = C) and the Xi char­

acterise points. Now Equation (3.3) is represented by an equation that is linear in

the Xi as weIl as the Xi. Every term in Equation (3.4) is bilinear, or homogeneously
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linear. This should explain the etymology of the term homogeneous coordinates. The

Xi are substituted for the A, B and C ta underscore the bilinearity and symmetry.

Equation (3.4) may be viewed as a locus of variable points on a fixed line, or

as a pencil of variable lines on a fixed point. The Xi define the line and are hence

termed line coordinates, indicated by the ratios [Xl: X 2 : X 3 ]; whereas the Xi define

the point and bear the name point coordinates, indicated by the ratios (Xl: X2 : X3).

Note the distinction that Hne coordinates are contained in square brackets, [ ], while

point coordinates have parentheses for delimiters, (). Equation (3.4) is a bilinear

equation describing the mutuaI incidence of point and line in the plane. Thus, point

and line are considered as dual elements in the projective plane P2. The importance of

this concept is that any valid theorem concerning points and lines yields another valid

theorem by simply exchanging these two words [11]. For example, the proposition

(1) Any two distinct points determine one and only one line

is dualised by exchanging the words point and line giving a different proposition,

(2) Any two distinct lines determine one and only one point.

In space the mutual incidence of point and plane is given by the bilinear equation

(3.5)

•

where the Xi remain point coordinates, however the Xi are now plane coordinates, the

dual elements of 3-D projective space P3 being point and plane. Because of the duaIity,

the roles of coefficient and variable are interchangeable. For instance, Equation (3.5)

can represent the family points on a fixed plane, or the family planes on a fixed point.

The importance of the principle of duality as a conceptual tool can not be over­

emphasised. It shall be employed frequently in the analysis presented in subsequent

chapters.
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3.3. Line, Point and Plane Coordinates

A necessary and sufficient condition that three distinct points in the plane, repre­

sented by the homogeneous coordinates as (Xl: X2 : X3), (YI: Y2 : Y3) and (Zl : Z2 : Z3),

be collinear is that [11, 19, 28, 44]

YI Y2 Y3 o.

It then follows that the line determined by two distinct points (YI : Y2 : Y3) and

(Zl : Z2 : Z3) has an equation that is easily obtained employing the Grassmannian

expansion [54, 90, 150]:

Xl X2 X3

Y2 Y3 Y3 YI YI Y2
0,YI Y2 Y3 - Xl + X2 + X3 -

• Z2 Z3 Z3 ZI Zl Z2
ZI Z2 Z3

where a variable point on a fixed line has point coordinates (Xl: X2 : X3) and, dually,

a variable line on a fixed point has line coordinates

Y3 YI YI Y2
(3.6)

•

Comparing the coordinates, it is to he seen that equation (3.4) represents this exact

duality.

A similar relation exists when the equation of a plane is written using homo­

geneous coordinates. In E 3 a necessary and sufficient condition that four points,

whose homogeneous point coordinates are (Xl : X2 : X3 : X4), (YI : Y2 : Y3 : Y4),

(Zl : Z2 : Z3 : Z4) and (Wl : W2 : W3 : W4), he coplanar is that [11, 31]
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• Xl X2 Xs X4

YI Y2 Ys Y4. o.-
Zl Z2 Zs Z4

WI W2 Ws W4

It follows that the plane determined by three distinct points has an equation,

again obtained with the Grassmannian expansion, given by Equation (3.5). A variable

point on a fixed plane has point coordinates (Xl: X2 : X3 : X4), while the principle of

duality means that a variable plane on a fixed point has plane coordinates

3.4. Geometry

•

Every geometryof space whose group of transformations are collineations which

contain the suh-group g7 can he derived from projective geometry. This geometry

has the smallest set of invariants. Tt is also the most general. This means that every

theorem valid in projective geometry is also valid in the sub-geometries defined by

less general collineations. The sub-geometries usually have a larger set of invariants.

Tt was Arthur Cayley who first realised that "projective geometry is ail geometry"

[21] however, it was Felix Klein who provided the means to systematically derive the

sub-geometries [90] .
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In 1872 Felix Klein gave ms famous in-

•

•

augural address at the Friedrich-Alexander University in Erlangen, Germany, the text

of wmch is now known as the Erlangen Programme [89]. Relying on the earlier work

of Arthur Cayley [21], it was intended to show how Euclidean and non-Euclidean ge­

ometry could be established from projective geometry. However, Klein's contributions

turned out to be more general, leading to a whole series of new geometries. Today,

they are known as Cayley-Klein2 geometries and the spaces in which they are valid

are Cayley-Klein spaces [143] (discussed in Section 3.4.5). The following summary of

the Erlangen Programme was provided by Klein, himself, in [90]:

Given any group of transformations3 in space wmch includes the prin­

cipal group, Q7, as a sub-group, then the invariant theory of this group

gives a defiiùte kind of geometry, and every possible geometry can be

obtained in this way.

According to the Erlangen Programme, the following dual propositions are always

valid [36]:

(1) A geometry on a space defines a group of linear transformations4 in that

space.

(2) A group oflinear transformations in a space defines a geometry on that space.

2This term is attributed to Sommerville[134, 144].
3The terms transformation and linear transformation shall be used interchangeably throughout this
thesis. This is beeause all transformations used in this work are linear.
4The modern understanding of linear transformation is limited to those defined on metrie vector
spaees. However, in this thesis the term. linear transformation refers to any non-singular injective
collineation (i.e., a one-to-one transformation that maps eollinear points enta collinear points), in
any space. We use the transformations as n x n matrix operators, but eare must be taken because
they operate on n x 1 matrices, and not veetors. For instance, a veetor space can not be defined on
P3 using 4-D vectors, whose elements are composed of homogeneous coordinates, beeause there is
no 0 element, which, when added to any other element v leaves v unchanged: v + 0 = v. In P3 the
point (0 : 0 : 0 : 0) is not defined. Henee, the more general definition must be used. The interested
reader is directed to [45, 130, 136].
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Moreover, the character of a geometry is determined by the relations which remain

invariant under the associated group of linear transformations.

These linear transformations are of the form

Ax = kb, (3.7)

where x and b are the n+1 homogeneous coordinates of two points in an n dimensional

space, A is a nonsingular (n + 1) x (n + 1) matrix and k is a proportionality constant

arising from the use of the homogeneous coordinates.

An invariant is defined [73, 90, 130] as a function of the coordinates under the

transformation such that

(3.8)

•

•

where ~ is the determinant of the matrbc A (which is, by definition, nonsingular)

and p is a weighting factor. If p = a then 4J is an absolute invariant, otherwise it

is a relative invariant with weight p [130]. Klein's definition of a geometry involves

absolute invariants, i.e., functions of the coordinates which remain unchanged by the

associated group of transformations [36].

3.4.2. Transformation Groups. The projective transformations in projec-

tive space P3 may be thought of as 4 x 4 matrix operators that are col1ineations (it

is important to note that an (n + l)-D homogeneous coordinate space is required to

analytical1y describe the elements of an n-D projective space). These matrices are

non-singular by definition. They are sometimes referred to as structure matrices [22]

since changing the structure of the matrix changes the character of the geometry it
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represents. A transformation of Pa may be written as

p -

al a2 aa a4

bl b2 ba b4
(3.9)

•

•

Cl C2 Ca C4

dl d'l da d4

where the 16 elements are arbitrary, but ail contain a common factor owing to the use

of homogeneous coordinates. Because there are no restrictions on the elements, with

the exception that the determinant of the matrix never vanishes, they are the most

general geometric transformations in 3-D space. Hence, the projective group of all

collineations in Pa has fifteen parameters, and is termed gl5 [90]. The fundamental

invariant of gl5 in particular, and n-dimensional projective geometry in general, is

the cross ratio of four collinear points.

The concept of cross ratio is one of the oldest now known to be part of projective

geometry. It is believed that the theory was known to Pappus of Alexandria (A.D

290-350) [29, 44, 135]. It is defined as follows [44]:

DEFINITION 3.4.1. If the collinear points A, B, C, and D, at least three of which

are distinct, on a projective line have coordinates (al: a2), (bl : b2 ), (Cl: C2) and

(dl: d2), respectively, then the real number

al a2 bl b2

Cl C2 dl d2
R(A,B,C,D) - (3.10)

bl b2 al a2

Cl C2 dl d2

if it exists is the cross ratio of the four points in the order A, B, C, D. If the number

does not exist, the cross ratio is said to be infinite.

65



•
3.4.GEOMETRY

The equations of general affine transformations in affine space A 3 contain twelve

arhitrary coefficients. Thus, the affine group is indicated by g12. It should he apparent

that QI2 c gIS. This transformation group of A 3 is typically expressed as:

A -

al a2 aa a4

bl b2 ba b4

o 0 0 1

(3.11)

Affine geometry can he considered as more rich than projective geometry hecause

its set of invariants includes more than just the cross ratio. For example, affine

transformations leave the plane at infinity, X4 = 0, invariant, which is not the case

for projective transformations, in general.

The group of Euclidean transformations of E3 , also a suhgroup of gIS, are repre-

• sented by

al a2 a3 a4

E
bl b2 b3 b4

(3.12)-
Cl C2 Ca C4

0 0 0 1

However, E contains a 3 x 3 proper orthogonal sub-matrix (i.e., having a determi­

nant of +1) [33]. The principal group, g7l represents the most general Euclidean

collineations [45]. The Euclidean displacement group 96 is characterised by the prop­

erty that both distance and sense are invariant under 96 [30].

3.4.3. Invariants. Recall that an absolute invariant is defined to he a func-

•
tion of the coordinates of an element in the given geometry which remains invariant

under the associated linear transformation group [44, 90]. The Euclidean displace­

ment group Q6 is defined in a metric space (see Section 3.4.4). In addition to the

66



•
3.4. GEOMETRY

preservation of distance and sense, its set of invariants contains a special imaginary

quadratic form. First consider Q3 C Q6. The equation of an arbitrary circle, k, in E2

with radius r and centre CCxc, Yc) is:

(3.13)

Expressing Equation (3.13) using homogeneous coordinates x = ~, y = ~ produces

The intersection with the Hne at infinity X3 = 0 is given by the equations

xî + x~ = 0, X3 = o.

(3.14)

(3.15)

•
The constants r, Xc and Yc which characterise the circle do not appear in the result.

Thus, every circle in the plane intersects the line at infinity in exactly the same two

points, namely,

(3.16)

They are widely called the imaginary, or absolute circle points [17, 31, 90, 136]. It

can be shown, in the same way, that every sphere cuts the plane at infinity in the

imaginary conic:

(3.17)

•

which is called the imaginary, or absolute sphere circle.

These absolute quantities account for the apparent deficiency of Bezout's theorem

[75, 130] for the intersections of algebraic curves and surfaces. That is, two curves

of order n and m will intersect in at most nm points ; similarly, two surfaces of order

n and m will intersect in a curve of, at most, order nm. Clearly, two circles intersect

in at most two points, while two spheres intersect in a circle (a second order curve) .
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Since every circle contains Il and 12 , two circles intersect in at most four points, and

Bezout's theorem is seen to he true. The same applies for spheres; they intersect in

a curve which splits into a real and an ïmaginary conic.

To summarise, the invariants of g3 include those of the projective and affine

planes, but additionally include the line at infinity and two imaginary conjugate

points on it, namely Il and [2. The invariants of 96 include those of projective and

affine 3-D space, including the plane at infinity and an imaginary conie on it: the

imaginary sphere circle.

3.4.4. Metric Spaees. Metric and non metric geometries may he looked

upon as special cases of projective geometry. Before continuing, som.e definitions are

required.

DEFINITION 3.4.2. The Cartesian Product of any two sets, S and T, denoted

S x T, is the set of aU ordered pairs (s, t) such that sES and t E T .

DEFINITION 3.4.3. Let S be any set. A function d mapping S x S into'R (the

set of real numbers) is a metrie on S iff [58]

(1) dS1S2 = 0 iff Sl = S2;

(2) dS1S2 > 0, "il Si E S;

(3) dS1S2 = dS2S1 ' "il Si ES;

(4) dS1S2 + dS2S3 > dS1S3 ' "il Sb 82, 83 E S.

A metric space is a set S, together with a metric d defined on S. A metric

geometry on that space is defined by the group of linear transformations which leave

the metric invariant. For example, Euclidean space is a metric SJ>ace because it

contains the set P of aIl points. The metric defined on P is Euclidean distance,

(3.18)
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which is an invariant of Q6. Thus, Euclidean geometry is a metric geometry. Tt

is important to note that a rule to measure distance in a space is not sufficient to

make the space metric. AlI four conditions in Definition 3.4.3 must be satisfied.

An example of a geometry containing a distance rule and distinct points with zero

distance between them is Isotropie Geometry. The transformations associated with

the isotropie plane are [5]

1

X

Y

100

a 1 0

bel

1

x

y

(3.19)

•

•

Distance in this geometry is measured by the difference of the x-coordinates of two

points: d = X2 - Xl. The distance between two points is clearly invariant under

the transformation in Equation 3.19, but it is also clear that there exist an infinite

number of distinct points possessing the same x-coordinate and therefore have zero

distance between them. The complete enumeration of aIl such degenerate geometries

was given by Sommerville in [134].

3.4.5. Cayley-Klein Spaces and Geometries. Projective geometry can be

developed from the fundamental elements of point, line, plane and Hilbert's axioms

[72] of incidence, order and continuity independently of the concept of metric. Thus,

in projective geometry there is no rule to measure and the only absolute invariant is

the cross ratio of four points [29]. In defining a Cayley-Klein space one could start

with projective geometry and define a role to measure distance. Usually this is done

by introducing a quadratic form. For instance, Euclidean geometry can be developed

from projective geometry by building upon the foundation of Cayley's principle [21]

that projective geometry is aU geometry using Klein's Erlangen Programme, i.e., the

theory of algebraic invariants. Euclidean geometry can be obtained by adjoining, or
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constraining, P3 with the special quadratic form. [90]

(3.20)

(3.21)

•

which represents the absolute sphere circle. It is an imaginary quadric containing

aIl points with a vanishing norm. This quadratic form is induced by the Euclidean

distance function between the homogeneous coordinates of points (Xl: X2 : X3 : X4)

and (YI : Y2 : Y3 : Y4)

d = V(XIY4 - YIX4)2 + (X2Y4 - Y2 X 4)2 + (X3Y4 - Y3 X 4)2 •

X4Y4

The quadratic form, or nOrTn, belonging to this rule is

Equations (3.20) and (3.21) are fundamental invariants of 96. However, Equation

(3.20) is independent of X4. An entirely different quadratic form in P3 cau he obtained

by adding x~ to Equation (3.20):

(3.22)

ChangÏng the quadratic form changes the rule for measuring magnitudes. For in­

stance, the signs could be changed as follows:

(3.23)

•

Each new rule gives a different form of space. These are the Cayley-Klein spaces. The

first quadratic form, equation (3.20) gives Euclidean, or parabolic space. Equation

(3.22) gives Riemann non-Euclidean, or elliptic space, while Equation (3.23) gives

Lobachevskii non-Euclidean, or hyperbolic space [90, 143]. In each of these spaces

there is a group of transformations that leaves the norm invariant. These characterise

the corresponding geometries [46].
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Equation (3.20) may he viewed as sphere with no volume. The distance between

two distinct points on this virtual quadric vanishes. The term virtual means that

only complex points lie on it. Similarly, equation (3.22) may he viewed as a virtual

ellipsoid. Whereas, Equation (3.23) represents a real hyperboloid of two sheets.

The non-Euclidean geometries were serendipitously discovered by efforts ta prove

Euclid's parallel axiom: given a line 9 and a point P, not on g, there is one, and only

one line p through P that does not intersect g. The Euclidean model of Riemann's

elliptical plane is a unit sphere. Straight lines on a sphere are geodesics, i.e., great

circles. Ail great circles intersect in two anti-podal points. If the they are taken to

he the same point, then there are no parallel lines in the elliptic plane, because all

lines intersect in a point [71].

The Euclidean model for Lobachevskii's hyperholie plane is the points contained

in a unit cir~le, excluding points on the circumference. Straight lines are chords of

the circ1e, the end points exc1uded. Thus, given a Hne 9 and a point P not on 9 in the

hyperholic plane there are an infinite number of lines through P that do not intersect

9 [71].

Klein was the first to make use of the terms elliptie, parabolic and hyperbolic ta

c1assify these geometries [90]. The use of these names implies no direct connection

with the corresponding conic sections, rather they mean the following. A central

conie is an ellipse or hyperbola according as it has no asymptote or two asymptotes.

Analogously, a non-Euclidean plane is elliptic or hyperbolic according as each of its

lines contains no point at infinity, or two [30].

However, many other possibilities exist. For instance 4-D Minkowskian geometry

[103] is weIl known for its application to Einstein's Special Theory of Relativity [29].

It differs from the other geometries in that time differentials are among its set of
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elements. In the following hierarchy, each geometry can he derived from the one

above it hy sorne kind of condition imposed on the transformation group [29].

1
Minkowskian

1
Elliptic

1
Euclidean

Projective

1
Affine

1

1
Hyperholic

•

3.5. Representations of Displacements

As mentioned in Chapter 2, it is convenient to think of the relative displacement

of two rigid-bodies in E 3 as the displacement of a Cartesian reference coordinate frame

E attached to one of the bodies with respect to a Cartesian reference coordinate framp.

E attached to the other [17J. Without 10ss of generality, E may be considered as fixed

while E is free to move. Then the position of a point in E in terms of the basis of ~

can be expressed cornpactlyas

p' = Ap+d, (3.24)

•

where, p is the 3 x 1 position vector of a point in E, p' is the position vector of the

same point in E, d is the position vector of the origin of frame E in E, and A is a

3 x 3 proper orthogonal rotation matrix (i. e., its determinant is +1).

It is clear from Equation (3.24) that a general displacement can be decornposed

into a pure rotation and a pure translation. The representation of the translation

is straightforward: it is given hy the position vector in ~ of DE. However, there

are many ways to represent the orientation. For example fixed angle or Euler angle

representations may he used. There are twelve distinct ways to specify an orientation

in each representation. This is because the rotation is decomposed into the product
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of three rotations about the coordinate axes in a certain order, with twelve distinct

permutations. The axes of the fixed frame are used in the fixed angle representation

(aIso called roll, pitch, yawangles [33J), while the axes of the moving frame are used

for the Euler angle representation.

3.5.1. Orientation: Euler-Rodrigues Param.eters. An invariant repre-

sentation for rotations is given by the Euler-Rodrigues parameters [8]. Using Cayleys

formula for proper orthogonal matrices [17, 33], matrix A in equation (3.24) can be

rewritten in the following forro [17]:

•
c5 + cI - ~ - ~ 2(C1C2 - CoC3) 2(C1C3 + CoC2)

A - Â -1 2(C1C2 + Co C3) c5 - ci + ~ - ~ 2(C2C3 - CaC1)

where

and the Ci, called Euler-Rodrigues parameters [7, 17], are defined as

Co CJ!.- cos 2'

Cl • CJ!.sx sm 2'

C2 • CJ!.- sysm 2'

C3 • CJ!.- szsm 2'

, (3.25)

•
The Ci may be normalised such that Â = 1, in which case s = [sx, SY' sz]T is a unit

direction vector parallel to the axis and cp is the angular measure of a given rotation.

The Euler-Rodrigues parameters are quadratic invariants of a given rotation [7] .
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Since sis a unit vector, it is immediately apparent that the Ci are not independent,

but related by

c~+cî+~+c~ = 1.

The geometric interpretation of the four Euler-Rodrigues parameters is that an orien­

tation may be viewed as a point on a unit hyper-sphere in a four-dimensional space.

Assembled into a 4 xl array, the Euler-Rodrigues parameters are the unit quaternions

invented by Sir William Hamilton [8]. ~he group of spherical displacements, 80(3),

are elegantly represented with unit quaternions.

3.5.2. Displacements as Points in Study's Soma Space. In 1903 Eduard

Study showed [139] that Euclidean displacements may be represented by eight pa­

rameters, or coordinates in a seven dimensional homogeneous projective space. Thus,

displacements can be represented as points; fundamental elements in this space. His

work was undoubtedly inspired by that of Julius Plücker and Felix Klein. Klein's Er­

langen Programme gave rise to a systematic method for constructing new geometries

based on the algebraic invariants of the associated transformation groups. However,

it was Plücker who first suggested the idea of taking the line as the fundamental

element of space [117]. Various types of line coordinates were introduced by Cayley

and Grassmann [87]; Plücker adopted a coordinate system which is a special form of

these. The success of Plücker's work was hindered by the Cartesian analysis that he

employed [115, 116, 117]. Klein, Plücker's student, introduced the system of coor­

dinates determined by six linear complexes in mutual involution: on any Hne common

to two linear complexes a one-to-one correspondence of points is determined by the

planes through the line by taking the poles of each plane for the complexes. If a cer­

tain condition is satisfied connecting the coefficients of the two complexes, then these
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pairs of points form an involution [87]1 Moreover, Klein's observation that the line

geometry of Plücker is point geometry on a quadric contained in a five dimensional

space was of critical importance in the conceptualisation of the soma space [144].

Plücker and soma coordinates are analogons in that the set of alllines, in the

case of Plücker coordinates, and the set of ail displacements, in the case of soma

coordinates both exist as the set ·of points covering special quadric surfaces in higher

dimensional spaces. Points not on the respective quadrics represent neither lines

nor displacements. Since bath quadrics have identical forms, it is instructive to first

examine how Plücker coardinates come about, and the nature of their constraint

surface, before moving on to Study's soma.

3.5.3. Plücker Coordinates. Plücker developed tine coordinates [115, 116]

to address the need of describing lines as the fundamental elements of bis neue

Geometrie [117]. Line coordinates may be obtained from Cartesian coordinates by

considering the following: a tine on the intersection of two planes, or dualiy the ray

on two points. In the former case, the Plücker coordinates specify the linear pencil of

planes and are generally called axial Plücker coordinates. In the latter case, they are

called ray Plücker coordinates. If X(xo : Xl : X2 : X3) and Y(yo : YI : Y2 : Y3) are the

homogeneous coordinates of two different points on a line, the Grassmannian sub­

determinants [90] of the associated 2 x 4 matrix composed of the point coordinates,

comprise the homogeneous Plücker coordinates of the tine [83]:

•
Pik =

Yi Yk

i, k E {D, ... ,3}, i t= k.
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Of the twelve possible Grassmannians, only six are independent, since Pik = -Pki.

Traditionally, the following six are used

POl : P02 : P03 : P23 : P31 : P12-

These six coordinates collected in a 6 x 1 matrix are called the Plücker array.

Aline, however, is uniquely determined by a point and three direction cosines.

The Plücker coordinates are super-abundant by two, hence there are two constraints

on the six parameters. First, because the coordinates are homogeneous, there are

only five independent ratios. It necessarily follows that

(POL: P02 : P03 : P23 : P31 : P12) =1- (0: 0 : 0 : 0 : 0 : 0).

•
Second, the six numhers must ohey the following quadratic condition:

POIP23 + P02P31 + P03P12 = o. (3.26)

•

The quadric condition represented hy Equation (3.26) is called the Plücker iden­

tity [87]. Geometrically, it represents a four-dimensional quadric hyper-surface in

a five-dimensional projective homogeneous space, called Plücker's quadric, Pl [29,

135]. Distinct lines in Euclidean space are distinct points on Pl.

The Plücker quadric can be derived in the following way [83]. Consider the fol­

lowing determinant, ~, of a matrix composed of the homogeneous coordinates of two

points X(Xi) and Y(Yi) , i E {O, 1, 2, 3}, counted twice. Obviously, the determinant

vanishes because of the linear dependence between rows 1, 3 and 2, 4. This determi­

nant can he expanded using 2 x 2 suh-determinants (Grassmannians) along the first

two rows, according to the Laplacian expansion theorem [45]. That is, multiply the

compliment of the minor hy (-1)\ where h is the sum of the numbers denoting the
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rows and columns in which the minor appears. This gives

Xo Xl X2 X3

0 ~
Yo YI Y2 Y3 (_1)3+(1+2) Xa Xl X2 X3

- - - +
Xo Xl X2 X3 Ya YI Y2 Y3

Ya YI Y2 Y3

(_1)3+(1+3) Xo X2 1 Xl X3 + (_1)3+(1+4) Xo X3 Xl X2

1 YI
+

Ya Y2 Y3 Ya Y3 YI Y2

(-1)3+(2+3) Xl X2 Xo X3 + (_1)3+(2+4) Xl X3 Xo X2
+

YI Y2 Ya Y3 YI Y3 Yo Y2

(_1?+(3+4) X2 X3 Xo Xl
2 (POlP23 - P02P13 + P03PI2) (3.27)-

Y2 Y3 Yo YI

Since Pl3 = -P31, Equation 3.27 simplifies to Equation 3.26.

Now attention is turned towards determining the structure of the quadric hyper­

surface Pl. The important observation is that Equation (3.26) contains only bilinear

cross-terms. This implies that the quadric has been rotated out of its standard posi­

tion, or normal form [42J. The quadratic form associated with Pi, can be represented

using a 6 x 6 symmetric matrix, M [9J:

0 0 0 1/2 0 0

0 0 0 0 1/2 0

pTMp
0 0 0 0 0 1/2

- [POL' •• ,P12]
1/2 0 0 0 0 0

0 1/2 0 0 0 0

0 0 1/2 0 0 0

•

POL

Pl2
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This quadratic form can be orthogonally diagonalised with another 6 x 6 matrix P,

constructed with the eigenvectors of M. The matrix P is easily found ta be

1 0 0 -1 a 0

0 1 0 0 -1 0

0 2) 0 0 1 0 0 -1
P -

2 1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

Now, pre-multiplying M with the transpose of P and post-multiplying with P itself

gives the diagonalised matrix, D, i.e., pTMP = D:

1 0 0 0 0 a
0 1 0 0 0 0

1 0 0 1 0 a 0• D - -
2 0 0 0 -1 a a

0 0 0 0 -1 a
0 0 0 0 0 -1

Matrix D reveals the normal form of pl in canonical form [42] from the matrix

multiplication pTDp = pT(pTMP)p:

(3.28)

•

Observing the signs on these six pure quadratic terms, one immediately sees that the

Plücker quadric, pl, has the form of an hyperboloid in the five dimensional space. In

this space, only the points on Pl represent lines.

78



•

•

3.5. REPRESENTATIONS OF DISPLACEMENTS

3.5.4. Study's Soma. A general Euclidean displacement of reference frame

E with respect to ~, as given by equation (3.24), depends on six independent param­

eters: three are required for the orientation of E and three for the position of OE'

Regarding this situation geometrically, distinct Euclidean displacements of E may be

represented as distinct points in a six-dimensional space. Hence, a displacement is

an element of a six-dimensional geometry. However, Study showed [139] that a co­

ordinate space of dimension eight is necessary to ensure that all the relations among

the entries of equation (3.25) are fulfilled. Thus, an array of eight numbers can rep­

resent a displacement as a fundamental element in a seven dimensional homogeneous

projective space. These eight numbers were termed soma by Study [138]. Similar ta

the Plücker array, Study's soma are

The first four of Study's soma coordinates are the Euler parameters, Ci, defined

in Section 3.5.1. The remaining four, gi i E {O, ... ,3}, are linear combinations of

the elements of cl, from Equation (3.24), and the Ci such that the following quadratic

condition is satisfied:

(3.29)

Study defined these four parameters to be

90 -

91

(3.30)
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üwing to the homogeneity of the Euler-Rodrigues parameters there is an addi­

tional quadratic constraint on the soma, sternrning from the denominator of Equation

(3.25), which is similar to the non-zero condition for the Plücker coordinates:

(3.31)

•

Thus, of the eight soma coordinates only six are independent, but all eight are required

to uniquely descrihe a displacement [139].

Equation (3.29) represents a six-dimensional quadric hyper-surface in a seven­

dimensional space. It is caIled Study's quadric, S~ [81]. Its form can be determined

in a way analogous to that used for Pl. After applying the same procedure, the

normal form of S~ is revealed to he:

We see immediately that S~ has the form of an hyperboloid in the soma space. Of

aIl the points in the soma space, only those on S~ represent clisplacements.

3.5.5. Vectors in a Dual Projective Three-Space. Another way of look-

•

ing at the eight soma coordinates is to consider them as two sets of four param­

eters, each of which can represent a vector in a four-dimensional coordinate space

[119, 121]. A spatial Euclidean displacement can then be mapped into the set oftwo

Study vectors in the four-dimensional space in an analogous way that a line in Eu­

clidean space can he mapped to sets of two Plücker vectors. Employing this concept,

Ravani [119] introduced the idea of representing a Euclidean displacement as a point

in a dual projective three-space. This, however, leads directly to the representation

of displacements in terms of dual quaternions, see Blaschke [15], Bottema and Roth

[17], or McCarthy [95] for example.
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Although this representation and that of Study are analytically identical, they

represent completely different geometric interpretations. In the latter case, displace­

ments are represented by points on Study's quadric in its seven-dimensional projective

space, while the former represents displacements by two vectors in a dual projective

three-space.

3.5.6. Transfer Principle. A representation identical to the one discussed

in the last section can be obtained using the trans/er principle (Bottema and Roth

[17], Ravani and Roth [121]). Spherical displacements are readily represented using

the four Euler-Rodrigues parameters. That is, if a spherical displacement is mapped

into the points of a real three-dimensional projective space where the coordinates

are four-tupples of Euler-Rodrigues parameters, then spatial displacements can be

mapped into a similar, but dual, space. In other words, the representation of a spatial

displacement is obtained simply by dualising the corresponding spherical displacement

(Ravani and Roth [121]).

3.6. Kinematic Mappings of Displacements

So far in this chapter we have discussed various ways to represent displacements.

In an of them, at least six independent numbers are required. This led Study, in 1903

[138], to the idea of mapping distinct displacements in Euclidean space to the points

of a seven-dimensional projective image space. The homogeneous coordinates of the

image space are the eight soma. As mentioned eartier, these eight coordinates are not

independent. They are super-abundant by two. However, two quadratic constraints

must be satisfied. The non-zero condition, equation (3.31), and the displacement

must be a point on Sg, Equation (3.29). It is natura! to expect that a six-dimensional

image space would suffice. However, as previously mentioned, Study [139] showed

that an 8-D coordinate space is required.
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3.6.1. General Euclidean Displacem.ents. Study's kinematic mapping of

general Euclidean displacements is given by the following equations in terms of the

eight Study soma {Ci : 9i}

( ) (
91' 92 93 90 )

Xl : X2 : X3 : X4 : YI : Y2 : Y3 : Y4 = Cl: C2 : C3 : Co : 2" : "2 : 2" : "2 . (3.32)

Equation (3.24) can always be represented as a linear transformation by making

it homogeneous (see McCarthy [95], for example). Let the homogeneous coordinates

of points in the fixed frame E be the ratios [X : Y : Z: W], and those.ofpoints in the

moving frame E be the ratios [x : y : z : w]. Then Equation (3.24) can be rewritten

as

X x

y y
- Q (3.33)

Z z

• W w

where

C5+C~-~-~ 2(CIC2 - Coca) 2(CIC3 + COC2) dl

2(CIC2 + CoCa) c2-d+~-C2 2(C2C3 - COCl) d2
Q=~-l

013 (3.34)
2(CICa - Co C2) 2(C2C3 + CcCl) c6-ci-~+~ da

0 0 0 ~

with ~ = C5 + ci + ~ +~, and the di are the components of the position vector of

GElE.

•

Let the transformation matrix T be the image of the elements of Q under the

kinematic mapping. Since.6. f.= 0 by one of the quadratic constraints, it's value is

arbitrary and represents a scaling factor whose value is meaningless in a projective

space. Recall, the homogeneous coordinates of [Àx : Ày : Àz] and of ['T'x: 7Y : 'T'z]
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represent the same point in the projective plane for any non-zero scalar constants À

and ,. Then we may write

T=

e

(3.35)

This transforms the coordinates of points in frame E to coordinates of the same

points in frame E (assuming that the two frames are initially coincident) after a

given displacement in terms of the coordinates of a point on S~.

3.6.2. Planar Displacem.ents. The transformation matrix T simplifies con­

siderably when we consider displacements that are restricted to the plane. Three

DOF are lost and hence four Study parameters vanish. The displacements may be

restricted to any plane. Without loss in generality, we may select one of the principal

planes in E. Thus, we arbitrarily select the plane Z = O. Sïnce E and E are assumed

to be initïally coïncident, this means

x
y

o
vV

T

x

y

o
w

(3.36)

e·

This requires that d3 = 0 (since Z = z = 0, E can translate in neither the Z nor z

directions), Sx = Sy = 0, and Sz = 1 (the equivalent rotation axis is parallel to the Z

83



3.6. KINEMATIC MAPPINGS OF DISPLACEMENTS

• and z axes). This, in turn, means

Cl - 0,

C2 0,

C3 - sincp/2,

Co - cos cp/2,

91 - -dICO - d2 C3,

92 - -d2Co + d1C3,

93 - 0,

90 - o.

•
This leaves us with only four soma coordinates to map:

( ) 91 92)
X3 : X4 : YI : Y2 = (C3: Co : "2 : "2 .

The homogeneous linear transformation matrix reduces to

(3.37)

2 2
- 2X3 X 4 0 2(Y2X 3 - YIX4)X 4 - X 3

2X3X4
2 2 a -2(YIX3 + Y2 X 4)X4 -x3

T - (3.38)
0 0 x 2 +x2 a3 4

0 a 0 x~ +x~

We may eliminate the third row and column because they only provide multiples

of the trivial equation

•
z = z - O. (3.39)
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Thus, T reduces to a 3 x 3 matrix,

r 2 2
- 2X3 X 4 2(Y2X 3 - YIX4)X 4 -X3

T - 2X3X4
2 2

-2(YIX3 + Y2 X 4)X 4 -X3

L 0 0 x~ +X~

(3.40)

•

•

Planar displacements still map to points on S~, but we need only consider a

special sub-set of these points. In fact, we may change our geometric interpretation

altogether. We see that planar displacements can he represented by points in a three­

dimensional projective homogeneous image space. The coordinates of the points are

the four Study parameters (X3 : X4 : YI : Y2). In this sub-space, the points are not

restricted to a special quadric. They can take on any value with the exception that X3

and X4 are not simultaneously zero. Points on the realline defined by X3 = X4 = 0 are

not the images of real planar displacements because this sub-space is still contained in

the soma space, where the non-zero quadratic condition requires xî +x~+x~+x~ =1= o.
Tt is easy ta see that if Xl = X2 = 0 the quadratic non-zero condition can only be

violated if X3 = X4 = O. This condition is of little interest since we are only interested

in real displacements.

3.6.3. The Grünwald-Blaschke Mapping of Plane Kinematics. An-

other mapping of planar displacements, which is seen to be isomorphic ta the Study

mapping, can be derived in a somewhat more intuitive way. Very detailed accounts

may be found in Bottema and Roth [17], De Sa [36] and Ravani [119]. Tt was in­

troduced in 1911 simultaneously, and independently, by Grünwald [57] and Blaschke

[14].

The idea is to map the three independent quantities that describe a displacement

ta the points of a 3-D image space called ~/. A general displacement in the plane

requires three independent parameters to fully characterise it. The position of a point
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in E relative to E can be given by the homogeneous linear transformation

x
y

Z

cos cp - sin cp a

sin cp cos cp b

o 0 1

x

y

z

(3.41)

where the ratios (x : y : z) represent the homogeneous coordinates of a point in E,

(X : Y : Z) are those of the same point in E. The Cartesian coordinates of the

origin of E measured in E are (a, b), while cp is the rotation angle measured from the

X-axis to the x-axis, the positive sense being counter-clockwise. Clearly, in Equation

(3.41) the three characteristic displacement parameters are (a, b, cp). Image points

(points in the 3-D homogeneous projective image space) are defined in terms of the

displacement parameters (a, b, cp) as

•
(Xl: X 2 : X 3 : X 4 ) - «a sin (cp/2) - bcos (cp/2) :

(a cos (cp / 2) + bsin (cp / 2) :

2 sin (cp/2) : 2 cos (cp/2)) . (3.42)

By virtue of the relationships expressed in Equation (3.42), the transformation

matrix from Equation (3.41) may he expressed in terms of the homogeneous coor­

dinates of the image space, E'. This yields a linear transformation to express a

displacement of E with respect to E in terms of the image point:

x
y

Z

-2X3X 4

(Xl- Xj)

o

2(X1X3 + X 2 X 4 )

2(X2X 3 - X 1X 4 )

(X! + Xi)

x

y

z

(3.43)

•
Comparing the elements of the 3 x 3 transformation matrix in Equation (3.43)

with the one in Equation (3.40) it is a simple matter to show that the homogeneous

coordinates of the image space E' and those of the soma space are related in the
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following way:

(3.44)

Comparing Equation (3.42) with Equation (3.37) it is evident that the two transfor-

mations are isomorphic.

Since each distinct displacement described by (a, b, cp) has a corresponding unique

image point, the inverse mapping can be obtained from Equation (3.42): for a given

point of the image space, the displacement parameters are

a

tan (cp/2) - X 3/X4 ,

2(X1X 3 + X 2X 4 )/(Xi + xi), (3.45)

•

•

Equations (3.45) give correct results when either X 3 or X 4 is zero. Caution is in order,

however, because the mapping is injective, not bijective: there is at most one pre­

image for each image point [24}. Thus, not every point in the image space represents.
a displacement. It is easy to see that any image point on the real line X 3 = X 4 = 0

has no pre-image and therefore does not correspond to a real displacement of E.

From Equation (3.45), this condition renders cp indeterminate and places a and b on

the line at infinity.

3.7. Geometry of the Im.age Space

As mentioned in Section 3.4.5, the group of col1ineations leaving the absolute

quadric invariant gives rise to hyperbolic and elliptic geometry. The geometry is

hyperbolic when the absolute quadric is real and elliptic when it is complexe The

kinematic mapping image space is determined by a group of linear transformations,
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and hence collineations, having the form of Equation (3.43). It is shown in [17, 36]

that the invariants of this transformation group are

(1) Two complex conjugate planes: Vi.2 = X 3 ± iX4= o.
(2) The realline /!, given by the equations X 3 = X 4 = 0, which is the intersection

of Vi and 112: /!, = Vi n 112.

(3) The complex conjugate points JI = (1 : i : 0 : 0) and J2 = (1 : -i : 0 : 0),

which are contained on /!': {JI, J2 } E /!'.

Note that JI and J2 are on the Creal) Hne /!" and the planes Vi and 112 intersect

in /!,. The planes Vi and V2 comprise a degenerate imaginary quadric given by the

equation

(3.46)

Blaschke [14] observed that this is really a special limiting case of the elliptic

absolute quadric expressed by

p(X; + Xi) + xi + X~ = o. (3.47)

•

As p ~ 0 the degenerate invariant quadric of the image space is obtained. Since this

is a limiting case, the geometry of the image space is termed quasi-elliptic [14, 36J.

The term quasi-elliptic owes its existence to Blaschke [5].

Furthermore, the metric concepts of the distance between two points, the angle

between two planes, and the parallelism of two lines are defined [14, 36]. Finally, sets

of transformations in E' are comparable to rotations and translations of Euclidean

geometry. Of interest are two special cases:

(1) X 3 =f= 0, X 4 = 0 => 4J = 'Ir: These are the 1800 half-turns in the Euclidean

plane.
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(2) (a) X 3 = 0, X 4 =1= 0 ~ if> = 0: These are the pure rectilinear and curvilinear

translations in the Euclidean plane.

(h) X 3 = constant, =? X 4 = constant: These are aIso rectilinear and

curvilinear translations in the Euclidean plane, but the moving frame

E maintains a constant angle non-zero angle with respect to the fixed

frame E .
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The Forward Kinelllatics ProbleIll

The forward kinematics (FK) problem, also termed the direct kinematics [8J, or direct

position analysis [81J involves determining all possible poses of the moving platform

when the actuated joints are locked with specifie input values. Referring to Fig.

4.1, the FK problem of a general PSGP can he stated in the following way: given

three base points FA, FB , Fe in an arbitrary fixed coordinate system, E, tQgether

with three platform points MA, M B , Mc in an arbitrary moving platform coordinate

system, E, and given the three actuated joint input values that effectively represent

line segment lengths FAMA , FBMB , FcMe, find the positions of E sa that the points

MA, M B , Mc can be joined to the points FA, FB , Fe by line segments whose lengths

and directions are related ta the specified input values.

This subject has been the focus of a tremendous volume of research. _A.. brief

sampling of the main contributions, as far as PSGP go, is represented by Peysah

[113], Gosselin, et al. [49, 50, 51J, Hunt [76J, Hunt and Prirnrose [77], Husty [79]

and Merlet [97, 100J. With the exception of the method put forward by Husty in [79],

ail of the analysis depends on the geometry and architecture of the platform. Only

Merlet [100J addresses the FK problem of all possible three-legged lower-pair-jointed

planar platforms. However, because plane trigonornetry is used to forrnulate the
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FIGURE 4.1. The FK problem.

constraint equations, distinct architectures require distinct sets of equations, which

are further dependent on the platform geometry. While Merlet's approach can be

used for every architecture employing lower pairs, it fails for RRG types because the

platform geometry is not constant.

How many distinct three-Iegged lower-pair-jointed planar platforms with three

DOF are there? This number is arrived at by considering that there are 18 possible

kinematic chains ta choose from for each leg. A selection of r different elements taken

from a set of n elements, without regard to arder, is a combination of the n elements

taken r at a time [41]. If the elements are allowed to be counted more than once the

number of possible combinations is given by

C(n, r)

G(18,3)

(n+r -l)!
r!(n - 1)! '

- 1140.

(4.1)

(4.2)

•
When topological symmetry is a requirement, the number is, of course, 18, those

enumerated in Table 2.2, reproduced here in Table 4.1.
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Husty's approach [79] is independent of the platform geometry. He formulates

the FK problem using geometric conditions of the kinematic constraints rather than

the platform geometry. The main contribution of this thesis is the generalisation of

that approach. That is, a single univariate sextic po~ynomial is derived and used ta

solve the FK problem for aIl PSGP, as weil as some platforms with certain mixed leg

types, and including sorne special topologies incorporating holonomie higher G-pairs.

The coefficients of the univariate are products of given design parameters and the

single variable is a coordinate in the kinematic mapping image space. It turns out

the image space coordinates corresponding ta the six roots of the univariate are linear

functions of each root, yielding the solutions to the FK problem. This should prove

to be an important tool for designers because the general univariate gives symbolic,

not numeric solutions. This means the effects of changing design parameters on the

platform kinematies, and by extension dynamics, can be directly evaluated.

RR-type PR-type RP-type

RRR RPR RRP

RRR PRR RRP

RRR PRR RPR

PRR PPR PRP

RPR PPR RPP

RRP PRP RPP

TABLE 4.1. The 18 characteristic chams.

As mentioned above, the application of the univariate is not restricted to PSGP.

Some mixed leg types can he accommodated. Due to a limitation imposed hy the

derivation of the univariate, discussed in Section 4.3, leg combinations must all helong

to one of the three types in Table 4.1. This being the case, the univariate may be

applied to the FK problem of 3[C(6, 3)] = 3(56) = 168 different platforms. Addition­

aIly, some architectures containing higher pairs can he analysed, which appears to he

missing in aIl existing literature.
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We can solve the FK for some mixed leg type platforms by using the kinematic

mapping procedure, determining the intersections of the three quadrics numerically.

Rowever, even this approach can not be used for platforms containing any mix of P R­

and RP-type legs. The FK problem formulation becomes computationally singular

because the fixed and moving frames for each of these leg types are different. To put

a number on those we can solve, we first compute the number of combinations there

are choosing one leg from each type, i.e., one RR-, one PR- and one RP-type leg:

63 = 216.

Next, determine the forbidden P R-RP-type combinations taken three at a time:

C(12, 3) - 2(C(6, 3)] = 356 - 112 = 252.

The 2(C(6, 3)] pure P R-types and RP-types are allowed, as are RR-PR-types and

RR-RP-types. We can exchange the raIes of E and E in RR-type legs without

changing the physical description of the kinematic constraints. Rence, there are

216 + 252 = 468 forbidden combinations. This means that the FK problem of the

672 remaining combinations can be solved: 168 platforms by using the univariate;

504 by finding the intersection points of their associated constraint surfaces. This

process amounts ta numerically computing the univariate. However, the univariate

with numerical coefficients is architecture and input specific and can only be used

for one specifie platform and input set, whereas the general univariate has symbolic

coefficients and is nat 50 restrieted.

From a basic researeh point-of-view, the solution procedure presented here is

incomplete. Ali 1140 different architectures must be included in a eompletely general

aigorithm for solving the FK problem which, regretfully, shaH not be found directly

in the contents of these pages. For now, the daim of generality can only be applied

ta PSGP as herein defined.
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4.1. Kinematic Constraints

Husty observed that RPR platform motions are governed by the geometric con­

dition that points with fixed positions in E are bound to move on fixed circles in E

[79]. This kinematic constraint is represented by a quadratic condition in the image

space which is a surface whose points are the possible poses of the platform. In order

to generalise his approach to all PSGP similar kinematic constraints must be found

for all 18 RR-, P R- and RP-type platforms.

Consider an arbitrary RR-type PSGP. The characteristic chain can be any of the

six listed in Table 4.1. When the active joint in each leg is locked the sub-chain that

remains has two passive R-pairs, this is obviously always the case. Regardless of the

characteristic chain, once the active joint is locked one of the remaining R-pairs is

fixed in E and the other moves on a circle of fixed radius centred on the stationary

R-pair. Thus, the motions of an RR-type platform are constrained by the fact that

three points with fixed positions in E move on the circumferences of three constant

radii, fixed-centred circles in E.

Now, consider an arbitrary P R-type platform. When the active joint in each leg

is locked the passive R-pair is constrained to move on a line with fixed tine coordinates

in E. This linear constraint may, however, be thought of as one that is a degenerate

quadratic, i.e., a circle whose centre lies on a point on the line at infinity. In a

projective sense the three lines are three degenerate circles. In this sense the RR­

and P R-type platform displacements are governed by the same constraint.

Finally, consider an arbitrary RP-type platform. When the active joint in each

leg is locked the passive P-pair is constrained to move on a point with fixed point

coordinates in E. The kinematic constraint is represented by a planar pencH of lines

on a point. When considered projectively, this constraint is nothing but the dual of
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the constraint for PR-type platforms: a planar pendl of points on a line. Moreover,

if E is considered as the fixed and E as the moving frame, the kinematic constraints

for RP-type platforms are identical to those of P R- and RR-type. In this sense

RF-type legs can be considered as kinematic inversions of corresponding P R-type

legs. Hence, the displacements of all PSGP are governed by projectively identical

kinematic constraints. The next goal is to find a useful algebraic representation of

the corresponding constraint surface in the image space.

4.2. Equation of the Image Space Constraint Manifold

Moving points bound to the circumference of a fixed circle represent the most

general displacement constraint for all PSGP because the line constraints are degen­

erate cases of the former. For this reason the general image space constraint manifold

of displacements for individual legs of a PSGP can be derived by considering circle­

bound points in the displacement space.

The ungrounded R-pair in an RR-type leg is forced to move on a circle with a

fixed centre. Meanwhile, the platform can rotate about the moving R-pair. This twa

parameter family of displacements corresponds to a two parameter family of image

points. The family of image points constitute a hyper-surface [17]. Its expression can

be obtained in the following way: Consider the motion of a fixed point in E that is

constrained to move on a fixed circle in E, with radius r, centred on the hamogeneous

coordinates (Xc : ~ : Z) and having the equation

•
which, when expanded becomes

X 2 + y2 _ 2XXcZ - 2Y~Z +X~Z2 + ~2Z2 - r 2 Z 2 - o.

(4.3)

(4.4)
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It is convenient to express Equation 4.4 in the following homogeneous form:

(4.5)

•

where

K.a - arbitrary homogenising constant,

. K.I - Xc,

!C2 - ~,

!C3 - ICi + IC~ - r 2
•

Equation (4.5) is homogeneously quadratic in the variables X, Y, Z, and homo­

geneously linear in the constants /Ci, i E {D, 1, 2, 3} (with IC standing for kreis, the

German word for circle). There is then a dual relationship between the constants

and the variables, in that Equation (4.5) could represent the locus of variable point~

(X : Y : Z) on a fixed circle with circle coordinates [/Co : ICI : IC2 : IC3}, or dually

as a family of variable circles on a fixed point with point coordinates (X : Y : Z).

Thus, the four ICü i E {D, 1,2, 3} are defined to be homogeneous circle coordinates,

while X, Y, Z are the homogeneous point coordinates of the circle's point locus. Note

that four circle coordinates are required since three independent ratios are necessary

to uniquely determine a circle, whereas two independent ratios uniquely determine

a point in the same plane of the circle. If /Co = DEquation (4.5) represents a line,

which is a real degenerate circle, with line coordinatesl

(4.6)

•
where the Li are defined to be planar-point dnaIs, as in eqnation (3.6), and not as

Plücker Hne coordinates.

IHere we have changed the coordinates from [Xl : X 2 : X 3 ], as defined in Equation (3.6), to
[LI: L 2 : L 31so they will no he confused with the image space coordinates [Xl: X 2 : X 3 : X 4 ]•
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Recall Equation (3.43) from the previous chapter, reproduced here for reference:

x
y

Z o

-2X3X 4

(Xl- Xi)

o

2(X1X 3 + X 2X 4 )

2(X2X 3 - X 1X4 )

(Xl + Xl)

x

y

z

(4.7)

•

•

This linear transformation gives the coordinates of points in the fixed frame E in

terms of the points in the moving frame E and the kinematic mapping image points

corresponding to a particular displacement. An algebraic expression of the image

space constraint manifold emerges when the expressions for (X : Y : Z) frOID Equation

(4.7) are substituted into Equation (4.5):

(Koz2(Xi + Xi) + (1/4) [Ko(l - z2)(x2 + y2) + 2z(K1x + K2y) + Rz:2] xi +

(1/4) [Rz2 + Ko(l - z2)(x2 + y2) - 2z(JC1x + K2Y)] xl- (1C1z2 + 1CoXZ)X1X3 +

(JC2Z2
- KOYZ)X1X4 - (Koyz + 1C2z2)X2X3 + (Koxz -1CIZ2)X2X4 +

(4.8)

where the substitution lC3 = R-lCo(X2 +y2), R = lCi+lC~-r2+lCo(x2+y2) has been

made. The R term is used as an ingenious collection of constants, proposed by Husty

[84], which reduces the number of flops required to solve the FK problem by about

30%. Equation (4.8) is a quartic in the image space variables Xi, i E {l, 2, 3, 4}, but

dually linear in the circle (or line) coordinates /Ci, i E {O, 1, 2}. Note that if /Co = 0,

then R is simply lC3 •

Closer inspection of this quartic reveals that it contains two quadratic factors in

Xi. The factor 1/4(Xi+xl) is exactly the non-zero condition of the planar kinematic

mapping, which must be satisfied for a point to he the image of a real displacement.

Since only the images of real displaeements are eonsidered, this factor is non-zero and

may he safely eliminated. What remains is a quadratic in the Xi. The quantities x,

y, Z, R, and /Ci, i E {O, l, 2, 3} are aIl design constants. Henee, the fust factor in
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Equation (4.8) is the point Equation of a quadric surface in the 3-D projective image

space. This general quadric is the geometric image of the kinematic constraint that

a point in E moves on either a circle, or a line, in E.

4.2.1. Identifying the Quadric Constraint Manifold. After the non-zero

condition factor is eliminated, equation (4.8) becomes

K:oz2(xl + x~) + (1/4) [K:o(l- z2)(x2 + y2
) + 2Z(K:lx + K:2y) + Rz2]xj +

(1/4) [Rz2 + K:o(l- z2)(x2 + y 2) - 2Z(K:lx + K:2Y)] xl- (IC1z2 + ICoXZ)X1X3 +

(IC2z2 - ICOYZ)XI X 4 - (ICoyz + IC2z2)X2X 3 + (JCoxz - JC1Z2)X2X 4 +

(4.9)

•

•

This general equation is greatly simplified under the following assumptions:

(1) No platform of practical significance will have a point at infinity, so it is safe

to set z = 1.

(2) Platform rotations of if> = 1r (half-turns) have images in the plane X 4 = O. It

is easy to verify that three constraint surfaces intersect the plane X 4 = 0 in

the complex conjugate points (1 : ±i : 0 : 0). Because the Xi are implicitly

defined by Equation (3.42), setting if> = 1r gives

Xl - a,

X 2 - b,

X 3 - 2,

X4 - O. (4.10)

The displacement parameters can be determined by substituting the quanti­

ties from Equation (4.10) into Equation (4.9) giving three constraint equa­

tions in terms of a and b. After checking for these solutions, the image space

coordinates may be normalised by setting X 4 = 1.
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(3) Without loss of generality the special coordinate systems of Figure 4.6 can

be used because our approach does not depend on platform geometry (this

assumption will be applied in section 4.3).

Applying the first two assumptions to Equation (4.9) gives the simplified constraint

surface (CS) equation:

cs: /Co(Xf + Xi) + (1/4) [2(ICl x + /C2y) + RJ X~ + (1/4) [R - 2(/Cl x + /C2y)J ­

(/Cl + /COX)XI X 3 - (/COy + /C2)X2 X 3 + (/C2 - K.Oy)Xl(/COX -ICI )X2 +

(/ClY -/C2X)X3 = O. (4.11)

The constraint surface can be identified in many ways. For instance, the quadratic

form could be diagonalised using weIl established methods from linear algebra [9], to

remove the cross terms, then remove the linear offsets. Another, somewhat more

elegant, approach is to employ the Grassmannian method found in Zsombor-Murray

and Hayes [150]. A third way is to proceed in a less obvious, but intuitive way by

employing some careful geometric thinking [148]. In what foIlows, this third approach

shaH be used to identify the quadrics. There are two cases to consider: 1) if the

platform is RR-type, the /Ci are circle coordinates and one may set Ko = 1; and 2)

if the platform is P R- or RP-type, the ~ are line coordinates and it is necessary to

set /Co = o.

4.2.2. RR-type: Hyperboloid of One Sheet. Setting Ka = 1 in Equation

(4.11) gives the foHowing:

H: Xr + xi + (1/4) [2(/C1x + /C2 y) + RJ xi - (/Cl + X)XI X 3 - (y + IC2 )X2X 3 +

(/C2 - y)XI + (x - ICl )X2 + (/Cly - /C2X)X3 + (1/4) [R - 2(IC1 x + IC2y)]

= O. (4.12)
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This surface is seen to be an hyperboloid of one sheet, hence indicated by H,

after the subsequent arguments are considered. Equation (4.12) resemhles a circle in

that it contains the squares of two variables with identical coefficients, xi and Xi,
together with a constant term when the value of X 3 is held constant. This suggests

investigating intersections of the quadric with planes where X 3 =constant. Collect

Xl and X 2 terms on i;he left and constant terms, including X 3 terrns, on the right­

hand side of the equation, then complete the squares in Xl and X 2 [129]. After sorne

algebra, the fol1owing equation is obtained:

2
= ~ (l+Xj). (4.13)

•
Equation (4.13) represents a circle in the planes where X 3 is a constant. The

circle centre has coordinates

(4.14)

and radius

(4.15)

As X 3 is varied, the locus of circle centres defines a curve whose parametric eqllation

can be obtained as fol1ows. Take an arhitrary circle in the plane X 3 = t and set its

radius to R X3 = 0:

(4.16)

•
Since the term 1+t2 can never vanish for real values of X 3 , zero can only he obtained

by setting r = 0, i.e., the constraint circle upon which the platform point maves
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must collapse to the fixed revolute centre so that the fixed and moving points are

coincident. Making these substitutions in Equation (4.13) gives

[Xl-~(Y -/C2 + (/Cl +X)t)r + [X2 - }(/Cl -x+(/C2 +Y)t)' = O. (4.17)

Because the two terms are squared and added the only way to satisfy Equation

(4.17) over the real field is if the quantities within the square brackets vanish. This

immediately gives the parametric equation

1
2

y -IC2

o

t
+­

2
(4.18)

•

•

Equation (4.18) is linear in the single parameter t and is clearly the equation of a

line. This leads to the conclusion that the quadric surface is a family of generally non­

concentric circles whose centre points are ail collinear. Furthermore, it is apparent

from Equation (4.13) that the smallest circle of the family occurs when X 3 = o. As

X 3 increases in value the drcles become larger regardless of the sign of X 3 • The only

possible quadric surface that fits this geometric description is an hyperboloid of one

sheet. The hyperboloid axis is given by Equation (4.18). Note that the axis is not

necessarily perpendicular to the circles. The axis belongs to the hyperboloid and the

curves to which it is perpendicular are, in general, ellipses. However, the hyperboloid

always intersects the planes parallel to X 3 = constant in circles. Thus, the X 3-axis

is perpendicular to the circles. If, however, /Cl = ICI = X = Y = 0 the axis of the

hyperboloid is the X 3-axis, and the circles, one in each plane X 3 = a constant, are

coaxial. Note ifX 3 is a constant then X 4 must also be a constant (recall X 3 = 2 sin cp/2

and X 4 = 2 cos ep/2). Points in the planes X 3 = constant represent positions of the,

platform having the same orientation. Curves in these planes represent curvilinear

planar motions.
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4.2.3. Param.etric Equation of the Constraint Hyperboloid. If com­

puter generated images of the constraint hyperboloid are required then a parametrisa­

tion is necessary. The parametric equation of a second order surface requires two pa­

rameters. The implicitform. of the constraint hyperboloid, Equation (4.12), represents

a circle in the projection of the intersection of the two hyper-planes X 3 =constant

and X 4 = 1. An arhitrary hyperboloid circle can be parametrised with an angle (, see

Figure 4.2. The radius of the circle can then be changed by varying the parameter t.

Referring to Figure 4.2, the hyperholoid circle equation may he written as

(4.19)

•

•

where (Xlc, X 2c) are the coordinates of the circ1e centre and RXa is its radius.

FIGURE 4.2. An arbitrary hyperboloid circle.

The locus of points satisfying Equation (4.19) can be generated parametrically

with the angle ( such that the following vector equation, illustrated in Figure 4.2, is

fulfilled:

(4.20)
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Writing Equation (4.20) in component form gives

[
XIe + R Xa cos ( ] .

X 2c + RXa sin (
(4.21)

Using the expressions in Equation (4.13) with X 3 = t, Equation (4.21) can be rewrit­

ten, giving the parametric form of the constraint hyperboloid in terms of the two

parameters t and (:

1
-

2

[(KI + x)t - IC2 + y] + (r"ft2 + 1) cos (

[(K2 + y)t + KI - xJ + (r"ft2 + 1) sin (

2t

( E {O, . .. ,21r},

tE {-CXJ, ... ,CXJ}.

(4.22)

•

•

Figure 4.3 is a parametric representation of a constraint hyperboloid where ICI =

IC2 = 0, r = 4, and the moving platform points have the coordinates x = y = o.

FIGURE 4.3. A projection of H in the hyper-plane X4 = 1.
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4.2.4. P R- and RP-type: Hyperbolic Paraboloid. A very different COD­

straint manifold is ohtained when the displacement condition is changed so that a

fixed point in the moving frame E is constrained to move on a fixed line in the nOD­

moving frame E. This condition requires the /Ci to represent planar line coordinates.

Rence, it is necessary to set ICo = O. Equation (4.5) becomes

(4.23)

•

•

The factor Z = 0 represents the line at infinity in P2' while the factor in paren­

theses is the equation of a line where the first two line coordinates are multiplied b>y

-2. The fact that the second degree equation splits into two linear factors is th.e

rationalisation for saying that the line is a degenerate circle. The -2 can be treate<i

as a proportionality factor arising from the original circie formulation of the equatio:n

of constraint. The trivial factor Z = 0 can he ignored because only ordinary lines

(non-ideallines) need be considered for practical designs. The circle coordinates, K,zl

are simply obtained from the line coordinates Li, see Equation (4.6).

Transformingthe point coordinates (X : Y : Z) in Equation (4.23) using Equation

(4.7), and setting X 4 = Z = 1 gives an hyperbolic paraboloid, indicated by HP:

HP: (/C2 -/C1X 3)XI - (/Cl + IC2X 3 )X2 +~ [/C3 + 2(/C1x + /C2Y)] xi+
1

(/C1Y -/C2X)X3 + 4 [/C3 - 2(/C1x + 1C2y)] = O. (4.24)

This is seen to be true after the following argument is considered. Equation

(4.24) is a quadric in the Xi, but very different in form from Equation (4.12). Ta

compare them, Equation (4.24) too, may be intersected by planes where X 3 is a

constant, together with X 4 = 1. As X 3 is varied, a family of mutually skew lines is

obtained wherein aU common normals between line pairs are parallel. This means

that Equation (4.24) describes a family of mutually skew lines that are ail paraUel ta
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a plane, but not to each other. Thus, the family of lines is a regulus of an hyperbolic

paraboloid.

Clearly, a line is not a circle. However, lines in P2 are closed by a point at infinity

just as a circ1e is closed by any finite point on it. In a projective sense, lines and

circ1es are both c10sed curves (ail circ1es contain J1 and J2 , but the circ1e itself is

continuous). In this way, a line may be considered a degenerate circ1e whose centre

is on the Iille at infinity. Given this projective geometric connection between these

kinematic constraints, it is not unreasonable to expect similar connections between

the corresponding constraint manifolds in the kinematic mapping image space.

The hyperboloid of one sheet (as weIl as the cylinder and cone, which, are degen­

erate hyperboloids) and the hyperbolic paraboloid are the only quadrics ruled with

real lines. These are doubly ruled while cones and cylinders, which appear singly

ruled, contain degenerate double rulings [71]. In the same way that a line can be

considered a degenerate circle, the hyperbolic paraboloid may be considered a degen­

erate hyperboloid. This is due to the geometric distinction between the two quadrics:

three mutually skew lines, not parallel to any plane, determine an hyperboloid of one

sheet; whereas, three mutually skew Hnes that are parallel to some plane determine an

hyperbolic paraboloid [136]. Furthermore, there is no special case of the hyperbolic

paraboloid which is a surface of revolution [71], unless one argues that a plane is a

degenerate cylinder of revolution c10sed by a line at infinity. Still, there is no dilata­

tion2 that can transform an hyperbolic paraboloid into a surface of revolution [27].

It is apparent on inspection that every real plane intersects the hyperbolic paraboloid

in either a parabola or an hyperbola. Both types of curve are closed only by the

line at infinity so that the intersection can never be an ellipse or circle without real

2 A dilatation is a similarity transformation that applies a positive, non-zero scaling factor with
respect to an invariant point, or line in such a way that all points in space change in a fixed ratio.
These transformations change circles into ellipses (or circles), lines into lines, planes into planes, and
aIl second-order curves and surfaces into second-arder curves and surfaces, respectively [30] .
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points at infinity. Consequently the hyperbolic paraboloid cannot be obtained from

any surface of revolution by a dilatation because there are circles on every surface of

revolution. These circles would be transformed into ellipses by a dilatation [71].

4.2.5. Parametric Equation of the Constraint Hyperbolic Paraboloid.

The general hyperboloid of one sheet, i.e., not one of revolution, can be constructed

geometrically by rotating a line which joins pairs of points with constant difference of

eccentric angle on two equal and similarly placed ellipses in parallel planes [136J. The

hyperbolic paraboloid can also be constructed with a moving line. Let ABA'B' be the

vertices of a regular tetrahedron; Q and Q' are variable points on AB and A'B' such

that AQ = A'Q'. The moving line QQ' generates an hyperbolic paraboloid [136]. The

quadric surface is covered by two systems of generating lines. Each system is called

a regulus. In this construction two distinct lines in one regulus are used to generate

the lines in the other. Using this approach, Equation (4.24) can be parametrised.

However, knowing the plane equation to which the lines of one regulus are parallel,

only one line in the opposite regulus is required. This line can be used as the directrix

of the opposite regulus.

FIGURE 4.4. Construction of the hyperbolic paraboloïde
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When X 3 = 0 then Equation (4.24) represents a line, .co, which is contained in

the plane X 3 = 0, indicated by 1iX3 = o. Now, consider the plane 1r that also contains

.co, but is perpendicular to 1rX3 = 0, see Figure 4.4. The X 3-axis is parallel ta 1r.

Each line in one regulus, 'R, intersects every Hne in the opposite regulus, no. Let the

line 1:,0 be one line in regulus 1lo. There is one and only one line .c contained in the

intersection of regulus n and plane 1r: 1:, E n E 1r. Clearly, .c intersects .co: .c n 1:.0 •

Moreover, it intersects every line in 'Ra: .c n 'Ro. The two lines .co and .c are unique

in their respective planes, 1rX3 = a and 1r.

Every distinct point on 1:, represents an intersection with a distinct line in no.
For the parametrisation we observe that unique values of X 3 give unique points on .c.
Every different line in no, which can be called .ci since it is uniquely determined by

the plane X 3 = Ci, has a direction different from all other lines in no because alllines

in this regulus are parallel ta the plane 'lrX 3 = a but not to each other. Furthermore,

.ci intersects 1:. in a point that must also be contained in X 3 = Ci, because the quadric

is covered by the intersection points of the generating lines in opposite reguli.

The locus of points on .c is a function of the parameter X 3 = t. This is because

there is one and only one distinct line contained in each plane X 3 = t that is contained

in no and intersects .c in a point. The points of 1:, are determined by the piercing

points of I:,i E 'Ra n'Ir. This family of piercing points trace 1:, E 'R. Thus, 1:, may be

expressed parametrically in terms of X 3 = t by the three simultaneous equations:

.c -
J(t)

g(t)

t

(4.25)

•
A generalline in space can be described by a fixed point on the line along with a

direction. For every value of t there is a a unique point on .c, which is a point on the
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corresponding line .ci E 'Ro. The direction of Cï is also a function of t since it must

be parallel to 1rX3 = 0 which is, itself, parallel to 1rX3 = t, but to no other line in 'Ro•

The locus of points on .ci can be obtained by stepping in the direction of .ci on a line

through the unique point on 1:" which is obtained by varying a second parameter, s:

J(t) a(t)

g(t) + s b(t)

t 0

(4.26)

•

This collection of lines is a quadric by virtue of the mixed second order quantities

sa(t) and sb(t). It is, in fact, the parametric equation of the constraint hyperbolic

paraboloid (HP). Determining the functions J(t), g(t), a(t) and b(t) will yield the

parametrisation.

The first step is to determine the plane 1r. The condition is that 1r is perpendicular

to 1rX3 = O. This being the case, the variable X 3 can have any value in 1r. After setting

X 3 = 0 in Equation (4.24), the equation for .co is obtained:

o. (4.27)

The line .co is the line of intersection of the two planes: 1rX3 = 0 n 1r. The plane 1r

is perpendicular to 7fX3 = 0 and must also contain .co. Due to this, 1r can be described

by solving Equation (4.27) for either Xl or X 2 and allowing X 3 to take on any value.

Solving for Xl we obtain

{
Xl -

1r =
i z (1CI X 2 - i (1C3 - 2(1Cl x + K:2 y)))

X 3 = X 3

(4.28)

•
H 1C2 is less than sorne predetermined tolerance, i.e., close te zero, then Equation

(4.27) is solved for X 2 , giving
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•
1r = {X2 = il (K:2X I + t (.K:3 - 2(.K:lx + K:2y))) .

X3 = X 3

(4.29)

•

•

Note that K:I and K:2 cannat both vanish since.K:I = ksin(J and JC2 = kcos(J, with k

being a non-zero real number.

In what follows either representation of the plane 1r, Equation (4.28) or Equation

(4.29), may be used yielding identical results. Without loss in generality JC2 can be

assumed sufficiently large for this derivation. Equations (4.28) mean that any point

[Xl : X 2 : X 3 ] E 1r is given by choosing values for X 2 and X 3 and then solving

Equation (4.27) for Xl (i.e., the first of equations (4.28)). Thus, the plane 1r, which

is perpendicular ta 'lrxs = 0, is completely described by the first of equations (4.28),

since X 2 and X 3 are arbitrary, and independent.

The next step is ta find an expression for C E R. This is done by finding the line

of intersection of 'Ir and the implicit equation of the hyperbolic paraboloid, Equation

(4.24). This is the unique line in R contained in 'Ir which intersects Co E Ra. This

equation is obtained by substituting the first of first of equations (4.28) into Equation

(4.24), yielding

1rnHP:

X3 [ 2 2 (1 z ) z 1 z ]IC
z

-(ICI + ICz)Xz + 2(lC2 y + ICIIC2x) + JC2 IC3 X3 + JCIJC3 + (JCz - 2JCI)x = 0,

(4.30)

assuming.K:2 is sufficiently large. This intersection cantains twa factors, X 3 = 0, and

the line

.c: -(JCt + IC~)Xz + (t(JC~y + JCIJC2X) + ICZJ(3) X3 + JCIJC3 + (JC~ - tJCi)x = o.

(4.31)
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This agrees with the fact that a plane intersecting with a quadric must produce a

second order curve. Here the conie degenerates into two lines. This second factor

must be an expression for /:', since it is a tine contained in the intersection of 7r and

HP that is not .co. Since.co and /:, intersect, and because they are both in HP, these

lines are in the opposite reguli 'Ra and 'R..

Now, solve Equation (4.31) for X 2 • After setting X 3 = t the following expression

is ohtained:

( )
_ [(~(K:IK:2x + K:~y) + 1C21C3) t - î(K:i + K:~)x + ~ICIIC2Y + 1C11C3]

9 t - JC2 J(2 •
1 + 2

g(t) represents the X 2 coordinate of a point on the line .c E 'R. for a particular value

of t. The Xl coordinate is obtained by substituting the expression for X 2 = g(t) into

Equation (4.28) which yields another function of only t:

J( )
- [(~(K:IK:2Y + ICrx ) + ICIJ(3) t + î(JCr + 1C~)y - î JCI lC2 X - K 2 K3]

t - 1C2 1C2 •
1 + 2

This gives Equation (4.25), which is the desired parametric equation for .c in terms

of X 3 = t. Note that the denorninators of the rational functions J(t) and g(t) are

identical: ICr + K:~. Moreover, the denominator is non-vanishing because K:i and }(~

are, for the linear kinematic constraints, line coordinates and cannat simultaneously

be zero. AIl distinct lines in no must contain a point on.c. Furthermore, every

distinct plane 7rX3 = t contains a distinct line of no and every unique plane 7rX3 = t

intersects 1:, in a unique point.

Now, direction vectors for the .ci are required. The coefficients in Equation (4.24)

are constants, and may he collected giving

•
aXl + bX2 + cxi + dX3 + e - 0, (4.34)
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where a and b are both functions of X 3 = t. In an arbitrary plane 1rX3 = t the

direction of the corresponding line is gÏven by the coefficient ratio -b/ a, i. e., the

slope of the line in the given plane. In other words, the line Li is parallel to the

direction given by

a(t)XI + b(t)X2 = 0, (4.35)

where a(t) = IC2 -ICl t and b(t) = -(/Cl + IC2t). Non-trivial solutions of Equation

(4.35) require

or,

a(t) = -X2 , b(t) = Xl,

(4.36)

(4.37)

•
which are equivalent conditions because the linear SUffi vanishes. Thus, the locus of

points on a line in the direction of Li is

-b(t)

- s a(t)

o

(4.38)

where -00 < s < 00. These are the projections of the lines in no onto the plane

1rX3 = o.

Combining equations (4.25) and (4.38) gives the desired parametrisation of the

constraint hyperbolic paraboloid (HP):

HP:

J(t) -b(t)

g(t) + s a(t)

t 0

-00 < t < 00,

-00 < s < 00.

(4.39)
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Figure 4.5 il1ustrates a parametric representation of a constraint hyperbolic pa­

raboloid with circle coordinates /Co = 0, ICI = 1, IC2 = IC3 = 0, and fixed platform

point coordinates x = y = o.

100 10

FIGURE 4.5. A projection of HP in the hyper-plane X 4 = 1.

4.3. Obtaining the General Univariate Polynomial in X 3

The constraint manifold for PSGP is determined by the circle coordinate Ka.

If /Co = 1 the projection of the manifold into the image sub-space X 4 = 1 is an

hyperboloid of one sheet; on the other hand, if /Co = 0 it is an hyperbolic paraboloid.

Expressions for both are embedded in the general constraint surface (CS) equation

given in Equation (4.11), reproduced below as Equation (4.40):

cs: Ko(X? + X~) + (1/4) (2(K1x + K2y) + RJ xi + (1/4) (R - 2(KIX + K2Y)] ­

(KI + KOX)X1 X 3 - (KoY + K2 )X2X 3 + (IC2 - KoY)XI(ICOX - Kr)X2 +

(4.40)
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The points on this constraint surface represent ail possible displacements of the

platform when two of the three legs are disconnected from the platform. In other

words, they represent the possible displacements of E about the base point to which

the platform is still connected. Three such constraint surfaces are obtained, one

corresponding to each leg, CSA, C SB and CSc.

FIGURE 4.6. Convenient reference frames .

Without 10ss in generality, the special coordinate frames in Figure 4.6 can be

used (see assumption 3 from subsection 4.2.1). In the most general case (i.e., for any

PSGP, regardless of leg type) the fixed points in the frame E have the homogeneous

coordinates

FA / E - (0: 0 : 1),

FBIE (XBi : 0 : 1),

FCIE - (XCi: X C2 : 1);

while those of the points fixed in the frame E are

MAIE - (0:0:1),

MBIE - (b l : 0 : 1),

M CIE - (Cl: C2 : 1).
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Note that we have not explicitly stated which frame is fixed since they are different

for P R-types and RF-types. The circle coordinates determined from the Fi are:

lCAi - (ICo : Al : A 2 : A 3 ),

lCBi - (lCo : BI : B 2 : B 3 ),

lCCi - (/Co: Cl : C2 : C3 ),

where the ICo coordinate is the same in all legs. Here it is important to state the

CUITent limitation of this approach: the /Co coordinate must be the same value for each

of the three legs in any one PSGP. If this is not done the subsequent system of surface

equations can not be reduced to a univariate because the number of computations

involved becomes too large. There are two ways to resolve this problem: the first

is to somehow simplify the constraint equations through better understanding of the

geometry of the image space; the second is to wait until faster computers are available.

This being the case, the use of the univariate is limited to PSGP and architectures

comprising arbitrary legs, but aIl being either RR-, P R-, or RP-type. This is why

the univariate is only applicable to the FK problem of 3(C(6, 3)] = 168 different

platforms.

Substituting the MilE and the /Ci into Equation (4.40) gives the three specifie

constraint surfaces, CSA , CSB, CSc:

2 2 1 2 1
CSA: /CO(XI + X 2 ) + 4R1X3 + (A2 - A l X 3 )Xl - (Al + A 2X 3)X2 + 4R1 = 0, (4.41)

2 2 1 2CSB : /CO(XI + X 2 ) + 4(R2 + 2Bl bl )X3 + (B2 - (/COb l + B I )X3 )Xl +

1
(!Cob l - BI - B2X 3)X2 - B2bl X 3 + 4(R2 - 2B1 b1 ) = 0, (4.42)

2 2
1

)2 »CSc : /Co(XI + X 2 ) + 4(R3 + 2C1Cl + 2C2C2 X3 + (C2 - lCOC2 - (lCOCI + Cl X3 Xl +
1

(lCOCI - Cl - (C2 + lCOC2)X3)X2 + (C1C2 - C2Cr) X 3 + =.1(R3 - 2C1 Cl - C2C2)

= O. (4.43)
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There are a wide variety of ways to obtain a univariate polynomial from these

three surface equations using symbolic computer algebra systems- These include

extension methods, such as homotopy or polynomial continuation [1()6] and elirnina­

tion methods, such as Sylvester's dialytic elimination [124, 130]. Additionally, the

Buchberger algorithm [2], which exploits David Hilbert's Nullstellensatz3 and Basis

Theorem4, can be used to obtain the reduced minimal Grôbner bases [2, 12, 27].

For a particular ordering on the power products one of the Gr6bner bases will be the

univariate, if it exists. However, for this particular variety, the univariate in X 3 can

be easily obtained in two elimination steps [130]. The first step is ta subtract CSB

from CSA and CSc from CSA , giving two equations, CSAB and CSAC' which are

linear in Xl and X 2 :

1 2 [CSAB : :;t(Rl - R2 - 2Bl bl )X3 + (Kobl + BI - A l )X3 ) - B 2 + A 2 ] Xl +
1

[(B2 - A 2 )X3 - Al - Kabl + BI] X2 + B 2bl X 3 + :;t(Rl - R2 + 2Bl br) = 0, (4.44)

1 2
CSAC : :;t(Rl - R 3 - 2Cl Cl - 2C2C2)X3 + [(KaCl + Cl - Al)X3 + Kac2 - C2 + A2) Xl +

[(KOC2 + C2 - A2 )X3 -/CaCl + Cl - Al) X2 + (C2Cl - C l C2)X3 +
1
:;t(Rl - R3 + 2ClCl + 2C2C2) = O. (4.45)

Equations (4.44) and (4.45) are solved simultaneously for Xl and X 2 • The resulting

expressions are then substituted into Equation (4.43), yielding a univariate sextie

polynomial in X 3 • In this most general case, i.e., leaving ICa arbitrary, the univariate

has 3613 terms. Here the use of the word term requires some explanation. Of course,

3This theorem, which translates from German as the Zero Theorem [1], or Zero-Point Theorem
[27), states that the polynomials of any non-unit ideal [1] whose coefficients are defined over an
algehraically closed field [59] will always have common zeros, i.e. solutions.
4This theorem essentially guarantees that every polynomial ideal can he generated with a finite set
of polynomials, which aIso means that the variety of the ideal can be expressed by a finite set of
polynomial equations [1, 2]. In other words, the common solution for the infinite set of polynomials
of a polynomial ideal can always be represented hy a finite set of polynomials. Thû; finite set actually
generates the ideal. The Nullstellensatz and Basis Theorem were proved by Hilbert around 1890 [1] .
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a sextic univariate polynomial has 7 terms:

(4.46)

•

•

Each term has a constant coefficient, but the G.i change as the inputs change. What

3613 terrns means is that the 7 ai are collectively composed of 3613 surns of products

of design constants and inputs (see Appendix C).

When the circlè coordinates are appropriately defined, the zeros, or roots, of

this sextic represent the solutions to the FK problem of any PSGP together with the

asymmetric and special architecture platforms mentioned at the outset of this chapter.

The roots of the polynomial give the values of the image space coordinate X 3 with

X 4 = 1. The remaining coordinates, Xl and X 2 are linearly dependent on X 3 • Their

respective values are obtained from the simultaneous solution of equations (4.44)

and (4.45). These coordinates are the points of intersection of the three constraint

surfaces. Each point of intersection represents a pose of the moving platform such

that the platform points are on their respective circ1es, or lines, representing solutions

to the FK problem. Real intersections occur in pairs, because the complex solutions

always come in conjugate pairs. Hence, there are 2, 4, 6, or 0 real solutions for a

given FK problem.

Examining Figure 4.6, it is easy to see that RR-type platforms require three fixed

points in E to move on three fixed non-degenerate real circles in~. Setting ICo = 1

in the constraint surface equations gives three hyperboloid equations, which reduces

the number of terms in the univariate to 694, aU listed in Appendix C.

The P R-types require fixed points in E to move on fixed lines in E, and the

RP-types require fixed lines in E to move on fixed points in E. These two types are

inversions: one can be obtained from the other by changing the roles of E and E. We

set /Co = 0 and use /Cl, 1C2 , 1C3 as images of the line coordinates [LI: L 2 : L 3 ]. The
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• number of terms in the univariate then reduces to 30. They are:

( 1 ) ~~x~ _ 0,
AIB2 -A2BI-A1C2 +A2C1 + B 1C2 -B2Gl ~

where a6 = as = a4 = a3 = 0, leaving the rational factor and

(4.47)

•

•

a2 = 2(A1B2GICl + AIB2G2c2 - A 1B 1 b1 G2 + A 2B 1b1G1 - AiB1C1Cl - A2B1G2C2) +

~~~-~~~+~~~-~~~+~~~-k~~,

ao - 2(A1 B 1b1G2 - A1B2Glcl - A1B2C2C2 +A2B1G1cl +A2BIC2C2 - A 2B 1 b1Cr) +

A 1B 2 C3 - A 1B 3C2 +A2B 3C 1 - A2B I C3 +A3 B 1G2 - A3B 2C1·

Conditions for the vanishing of the rational factor, and what they mean, are discussed

in Chapter 7, Section 7.2.4.

Finally, we must deal with the fact that the solution for RP-type platforms

gives the pose (a', b', 4>') of the base frame, E, with respect to the moving frame, E.

However, we require the pose (a, b, ifJ) of E in E. It is easy to show that q; = -cfl.

We then obtain (a, b) with a coordinate transformation using ifJ as the rotation angle.

See Equation (5.8) in Chapter 5, Section 5.1.1.

4.4. Upper Bounds on the FK Solutions

The geometry of the image of the FK problem indicates that for each PSGP

there should be a maximum of eight solutions. That is, three quadrics can intersect

in, at most, eight real points. However, the general univariate, whose roots indicate

coordinates of the images of all possible solutions is of degree six, which is in agreement

with the broadly accepted findings of Hunt [76], Gosselin [49], Merlet [97], among

others. The natural question is how to account for the missing intersection points?
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4.4.1. RR-Type PSGP. This over-abundance is easily accounted for in the

case of RR-type platforms. AIl constraint hyperboloids pass through the imaginary

conjugate points J I (l: i: 0: 0) and J2 (1 : -i : 0 : 0) on the line of intersection of the

planes X 3 = 0 and X 4 = O. This is so because of the special structure of these con­

straint surfaces: the planes described by X 3 = constant intersect all the hyperboloids

in circles; al1 circles contain JI and J2. This is demonstrated by generating three ar­

bitrary constraint hyperboloids using Equation (4.9) and intersecting them with the

plane X 4 = o. In that equation set X 4 = 0, Ko = 1 and z = 1. Then, HA, HB and

H B are obtained with the following substitutions: for HA set /Cl = K,2 = X = Y = 0

and R = RI; for H B set /Cl = BI, X = bl , /C2 = Y = 0, and R = R2 ; for He set

/Cl = Cb 1C2 = C2 , X = Cl, Y = C2, and R = R 3 • This gives the three hyperboloids

intersected with the plane X 4 = 0:

C4.48)

•

•

HB: xl + xi + tCR2 + 2Bl bl )Xl- (BI + b2).X"3XI = 0, (4.49)

He: xl + xi + tCR3 + 2CCICI + C2c2»Xl- CCCl + Cr)XI - (C2 + C2)X2)X3 = O. (4.50)

Equations (4.48), (4.49) and (4.50) represent the intersections with X 4 = 0 of

every possible set of constraint hyperboloids. It is easy to verify that these three

surfaces and the plane X 4 = 0 intersect in the two imaginary conjugate points

JI - (l:i:O:O),

J2 - (1: -i : 0 : 0).

These points have no pre-image and do not correspond to any possible displacement

of the platform with respect to the base (see Section 3.6.3). Thus, two of the hy­

perboloids intersect in a fourth order eurve which intersects the third hyperboloid in

eight points. However, the two complex conjugate points JI and J2 are common to

every hyperboloid and account for two of the intersection points. Renee, there are,
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at most, six real intersections each representing a solution to the FK problem. This

explanation does not hold when the constraint surfaces are hyperbolic paraboloids,

because these quadrics contain no circles that can lie evenly on them [71].

4.4.2. P R- and HP-Type PSGP. The following three constraint equations

are obtained after setting X 4 = 0, ICo = 0 and z = 1 in Equation (4.9) then making

the three sets of substitutions: for HPA set ICI = Ab IC2 = A 2 , R = 0, and x = y = 0;

for HPB set ICI = BI, IC2 = B 2 , R = B 3 , X = bl , and y = 0; for HPc set ICI = Cl,

1C2 = C2 , R = C3 , X = Cl, and y = C2. This gives the intersection of every possible

set of three constraint hyperbolic paraboloids with the plane X 4 = 0:

It is easily verified that these equations are satisfied by the following image space

point coordinates:•

HPA : A IX 3Xl + A2X3X2 - !A3Xj = 0,

HPB : BIX3Xl + B 2 X 3X 2 - !(B3 + 2B1br)Xj = 0,

HPc: CIX 3 X 1 + C2X 3X 2 - !(G3 + 2(C1CI + G2C2»Xj = o.

(4.51)

(4.52)

(4.53)

•

This means that every set of three constraint hyperbolic paraboloids contains the line

of intersection of planes X 3 = X 4 = O. In other words, this Hne is a generator for all

possible constraint hyperbolic paraboloids. But, points on this line have no pre-image

and, therefore, do nat represent valid platform poses.

Consider the curve of intersection between any two constraint hyperbolic parabo­

laids. This curve must be a degenerate 4th arder curve that splits into the line

X 3 = X 4 = 0 and a twisted cubic. The twisted cubic is the locus of common

intersection points of every line in each regulus of bath surfaces. Since the line

X 3 = X 4 = 0 is a generator of both hyperbolic paraboloids, the twisted cubic must

intersect it in two points. This stems from the fact that X 3 = X 4 = 0 is a projective

119



•

•

•

4.4. UPPER BOUNDS ON THE FK SOLUTIONS

generator that closes each surface. As with a line in the opposite regulus, the twisted

cubic will intersect the generator from two different directions. Taking any set of

three distinct constraint hyperbolic paraboloids we can form three distinct twisted

cubic curves of intersection together with the generator X 3 = X 4 = o. The common

intersections of the three surfaces will certainly be the points of intersection of the

three twisted cubics and the line. Each cubic meets the line twice. This accounts

for six points shared by the three surfaces. Ever.r set of three distinct constraint

hyperbolic paraboloids contains six such points on the line X 3 = X 4 = 0, none of

which represents a valid platform pose. However, according to Bézout's theorem,

there must he two additional intersection points which may, or may not, he valid

poses. Thus, there are at most two real solutions to the FK problem for P R- and

RP-type platforms.

This agrees with the fact that the univariate in this case is 2nd order. It must be

a 2nd order curve for the following physical reason. Consider a P R-type PSGP with

active base revolutes: locking the input joints and removing the platform connection

of one of the legs gives a douhle-slider elliptical trammel mechanism. The coupler

curve is, in general, elliptical. If the coupler point is the platform connection point

of the third leg, the line of the third leg can intersect the elliptic coupler curve in at

most two points.
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CHAPTER 5

FK Solution Procedures

5.1. Application of the Univariate to the FK ProbleIIl

Solving the FK problem using the roots of the univariate polynorniaIs developed in

Chapter 4 requires three platform points with fixed positions in the moving frame that

remain on curves with fixed coordinates in the non-moving frame. Detailed numerical

examples of the procedures developed in this chapter can be found in Appendix A.

The FK problem can be expressed in geometric terms as follows:

RH-type: Place the vertices of a rigid movable triangle on three non-moving

circles respecting an initial pairing of vertex and circle.

P R-type: Place the vertices of a rigid movable triangle on three non-moving

lines respecting an initial pairing of vertex and line.

HP-type: Place three movable, but relatively fixed lines on the vertices of a

rigid non-moving triangle. If the triangle is considered as movable and the

three Hnes as non-moving, the phrasing is identical to the that of the PR-type.

The points, i. e., triangle vertices, are labelled Mi for RRR, RPRand RPR

platforms with E considered fixed and E as moving. These points are the Fi for

RPR with E moving and E fixed. The curves for these four platforms are circles
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centred on the base revolutes for the first two and the lines of the axes of symmetry

of the intermediate prismatic for the last two. In order to establish these points

and curves for some of the remaining 14 platform types same additional geometric

specifications are required. These are the virtualline (YL), virtual base (VB) and the

virtual platform (VP), discussed below. They allow the kinematic constraints to be

described in exactly the same way for aIl PSGP, and hence the same univariate can

be applied to the FK problem of aIl PSGP. This entire discussion is summarised in

Tables 5.8, 5.9, 5.10. In addition, a detailed procedure for RRG platforms is given in

Section 5.4.

5.1.1. Regular FK Solution Procedure. The following procedure is termed

regular because the platform architecture allows either hip or ankle points ta lie on

the triangle vertices. The curves are excursion arcs of fixed length links connected

ta ground, or platform, by R-pairs, or they are the longitudinal axes of symmetry of

P-pairs.

The regular solution procedure can be used for RRR, RPR, RPR and RPR

platforms. The following discussion is an explanation of how this solution procedure

works..

RRR Platforms. The hip points, Mi, with fixed positions in E, move on fixed

circles centred on stationary ankle points, Fi, in E. The circ1e radii are determined by

the intermediate R-pair angular inputs indicated by t2{1, t E {Q, {3, ï}, see Figure

5.1 (i) showing leg A with 1, = Q. Figure 5.1 (i) illustrates the inputs which are

required by the univariate, the pre-image of the output being the pose of frame E

relative to frame E. Table 5.1 lists the input information required to evaluate the

coefficients of the univariate. In general none of the coefficients vanish and the sixth

arder univariate must be solved numerically.
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(i) RRR (ii) RPR

•

•

FIGURE 5.1. Parameters for (i) an RRR and (ii) an RPR platform.

Regular RRR and RPR Platforms

Fixed frame E

Moving frame E

RRR Active joint inputs /-2/1

RPR Active joint inputs d2i

Moving points on circle M i / E

Circle centres Fi/E
l

RRR Circle radii Ti = [Ce1i + e 2i cos [,2/r)2 + (e2i sin 1,2/r)2] 2

RPR Circle radü Ti = d2i

Circle coordinates (/COi: /C1i : /C2i : /C3J = (1 : FXiE : FYiE : Il;. - (x~ + Yf)),

where Rï = Kl + /Cii - Tf + /COi (x~ + Yi)

TABLE 5.1. RRR and RPR reference frames and univariate constants.
Note: i E {A, B, C} and L E {œ, t', 'Y}

HPR Platforms. These platforms are kinematically equivalent to the RRR

ones from the previons paragraph, see Figure 5.1 (ii) showing leg B with [, = {J. The

only difference in the input definitions is that the circle radü simplify to Ti = d2i .

Table 5.1lists the required input.
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• RPR Platforms. For these platforms the line coordinates of each leg are

determined by the base R-pair inputs and the corresponding ankle point, Fi. For

each leg the direction, given by the base R-pair inputs, together with the location of

a point, the fixed ankle point Fi, on the line are known. The line equation is obtained

from the Grassmannian expansion:

x y z

•

cos [,l/E sin [,l/E a

The line coordinates (L1i : L2i : L3i ), given by the coefficients of X, Y and Z

respectively, are transformed, according to the relations and equations derived in

Section 4.2, to circle coordinates as

(5.2)

The non-zero circle coordinates that determine the univariate coefficients are

Table 5.2 lists ail the information required to evaluate the univariate coefficients.

RPR Platforms. These platforms are considered as inversions of the RPR

•

platforms. Hence, the roles of E and E are reversed: the platform is fixed and the

base moves relative to it. In this regard the FK problems of RPR and RFR platforms

are isomorphic. Recall that the order of the joints is given starting from those fixed

to the non-moving base and continues sequentially to the moving platform. Thus, the

orders for RPR and RFRare identical, however the FK solution procedure requires

some additional computations.
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The FK solutions extracted from the intersections of the constraint surfaces in

the image space give the pose of the hase frame ~ with respect to the platform frame

E. The resulting displacement parameters must be transformed to give the pose of

the the platform frame E with respect to the base frame~. This is accomplished

with a coordinate transformation which can he derived in the following way. The

coordinate transformation of an arhitrary point from ~ to E is:

COS'PE/'E sin 'PElE -(aEIE cos 'PElE + bEIE sinCPEIE)

-sin'PEIE COS 'PElE a EIE sinCPEIE - bEIE cos CPEIE (5.4)

o o 1

The transformation in Equation (5.4) can be used to operate on any point in ~.

Certainly the origin of~, GE, is a point in ~. This point has coordinates [0 : 0 : l]T.

The image of this point under TElE is

• -(aEIE cos CPEIE + bEIE sin 'PElE)

a EIE sinCPEIE - bEIE cos <PElE

1

(5.5)

Note the subscripts indicate the following: a EIE and bEIE are the x- and y-coordinates

of the origin of coordinate system ~ expressed in E; while the transformation TElE

transforms coordinates from ~ to E. The system ofequations represented by Equation

(5.5) is linear in a EIE and bEIE , which are the position of the platform frame expressed

in the base frame, the two remaining quantities that are needed to complete the FK

solution.

Solving the system gives, after making the substitution 'PElE = -cpEIE (because

the univariate reveals 'PElE):

125•
(5.6)

(5.7)



•
5.1. APPLICATION OF THE UNIVARIATE Tû THE FK PROBLEM

These relations can ail be conveniently expressed as a special transformation used to

operate on the univariate output giving the desired FK solutions:

- cos CP~/E - sin CP~/E 0

- COSCP~/E 0 (5.8)

o o -1

•

•

The information required to evaluate the univariate coefficients for RPR plat­

fOrfis is compared with that of RPR in Table 5.2 (i). Relevant parameters are

illustrated in Figure 5.1 .

Regular RPR Platforms RPR Platforms

Fixed frame E E

Moving frame E E

Active joint inputs [,l/~ (,21E

Moving points on line MilE Fi/~

Fixed points on line Fi/~ MilE

Circle coordinates:

K,Oi 0 0

K,li
1 F . lM .2' Zi/E sm (,l/E 2' Zi/E sm (,21E

K,2i -~Fzi/E cos (,l/E -îMzilE cos (,21E

K,3i FXi/E sin LllE - F YilE cos tl/E M XilE sin L21E - M YilE cos [,21E

TABLE 5.2. RPR and RPR reference frames and univariate constants.

5.1.2. Virtual Line FK Solution Procedure. The virtualline CYL) is one

that is parallel to the direction of the base-fixed or platform-fixed prismatic joints,

but contains either the hip, Mi, or ankle point, Fi (see Figure 5.2). Tt is the line along

which a reference point, of a P R- or RP-type platform with an active intermediate

joint, moves with respect to the fixed frame. These lines replace the circular arcs of

point motion. The VL is required for P RR, P PR, RRP and RPP type platforms.
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Note that the VL is used only when intermediate joints are active and that it is not

needed for any RR-type platform.

•
(i) PRR

FIGURE 5.2. VL parameters for (i) a PRR and (ii) a RRP platform.

PRR Platforms. For these platforms the VL contains the Mi' However, the

location of M i / E is not known a priori. Examining Figure 5.2, it is to be seen that

a finite point on the VL can be determined from the known design constants and

inputs t2i , "l/E, [,2/E and Fi/E:

Fi7;/E + t 2i cos [,2/E

Fi1l / E + t 2i sin [,2/E

Fi :/E

(5.9)

Because it is parallel to the direction of the corresponding base P-pair, the point at

infinity on this VL has coordinates:

•
cos "l/E

sin "liE

o

(5.10)
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After determining the VL line coordinates with a Grassmannian e..xpansion, then

transforming them to the required circle coordinates, the following is 0 btained:

(/Co, : ICl, : IC2, : IC3i ) = (0: i-Fiz,,, sin"IE : - ~Fiz'" cos 'lIE : (5.11)

(Fix!E + l2i cos (,2/r.) sïnl.1/'E - (FiJl!E + l2i SinL2/E) cos L1/E) .

PPR Platforms. For this platform the active pair is a prismatic. Thus, the

active input is d2i and the angle {,2/r. is a design constant. The only difference is that

P.2i = d2i in the VL line coordinates, and hence

(ICa. : 1C,•:IC2, : IC3,) = (0: ~Fiz," sin 'lIE : -~Fiz,,, cos 'lIE: (5.12)

(Fix!E + d2i cos 1.2/E) sïnl.1/ E - (FiJl!E + d 2i sin1.2/ E ) cos L1/E) .

Otherwise, the quantities listed in Table 5.3 apply to these platforms.

P RR and PPR platforms. Thus, for computational purposes frame E is considered

fixed and frame E as moving, and the design constants and variable inputs are labelled

accordingly. The angular R-pair inputs for RRP platforms are "2/1, with" E {a, (3, l},

while the P-pair inputs for RPP platforms are d2i , with i E {A, B, Cl. The angle

{,l/E, required for computing the univariate coefficients, is determined easily enough

frOID two known angles, the design constant /"2/E and input angle /"2/1:

• RRP and RPP Platforms. These platforms are kinematic inversions of the

[,l/E = {,2/E - {,2/1· (5.13)

•

The circle coordinates for these two platforms differ only in that the lengths of

the intermediate links in each leg, P.2i , are "fixed in RRP platforms and variable, d2i ,

in RPP platforms. Table 5.3 lists the quantities required to compute the univariate
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coefficients for these platforms. Note that 1!.2i must be replaced with d2i for RFP

platforms.

Virtual Line P RR Platforms RRP Platforms

Fixed frame E E

Moving frame E E

Active joint inputs 1,2/1 {,2/1

Moving points on VL Mi/E Fi/'E.
Circle coordinates:

/COi 0 0

/Cii
IF . lM •2' zi/E SIn /'I/~ 2' zi/E SlllL2/E

/C2i -!FZi/ E cos Ll/~ -îMzi/E cos f.2/E

/CS i (FXi/ E + 1.2i cos 1,2/E ) sin Ll/~ - (MXi/ E +lli COSL1/E)sinL2/E-

(FYi/E + l2i sin 1,2/E) cos /'l/~ (MYi/E + lli sin Ll/E) cos f.2/E

TABLE 5.3. PRR and RRP reference frames and univariate constants.

formed by the triangle whose vertices are the points of intersection of the links directly

connected ta the base and those directly connected to the platform. It is required

to constrain points with fixed positions in a moving frame to fixed curves in a non­

moving frame sa the special coordinate systems, similar to those shawn in Figure 2.5,

ean be used.

• 5.1.3. Virtual Base FK Solution Procedure. The virtual base (VB) is

•

It is input specifie: that is, for every distinct set of variable joint inputs there

is a distinct YB. The VB reference frame, indieated by EVB for RR- and P R-type

platforms and EVB for RP-platforms, may be considered as fixed for a given FK

problem. It is used for the FK of RRR, PRR, PPR and RPP platforms. For a

given set of joint inputs the virtual base points (VBP) are fixed points in the non­

moving frame. For RR- and P R-type platforms the non-moving frame is E. The

non-moving frame for RP-type platforms is frame E, since these are thought of as

the kinematic inversion of P R-type platforms. The VB is used when certain base
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joints are active. Figure 5.3 shows the varions parameters, fixed and variable, for

PPR and RPP platforms.

(i) PPR (ii) RPP

•

•

FIGURE 5.3. VB parameters for (i) a PPR and (ii) an RPP platform.

RRR and P RR Platforms. For these platforms the VB reference frame is

~VB because its pose is known in~. Recalling sub-section 2.9, the origin of ~VB,

indicated by DEvB , is located on KA. The orientation of EVB is selected so that K B

is on the positive xEvB-axis. The variable joint inputs determine the locations of the

knee joints in E, K A / E , K S / E and K C / E • A simple coordinate transformation reveals

the coordinates K A / EvB , K B / EvB and K C / EvB •

Performing the transformation requires the position and orientation of EVB rel­

ative to E. The position, given by OEVB' is determined by the input of leg A. The

orientation, fJEVB / E ' requit'es sorne manipulation. Referring to Figure 5.4, consider

the quadrilateral defined by the four points FA, KA, K B and FB , frorn which the

vector equation is easily obtained:

(5.14)
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The orientation can he determined using the components of Equation (5.14), yielding

•

where

iJEyslE = atan2(y, x),

FIGURE 5.4. Determining the YB pose for RR- and PR-type platforms.

(5.15)

This information can he used to transforril the coordinates of the knee joints from

E to E VB :

where,

(5.16)

•
o

sin1JEVS / E

cos 1JEyB /,E

o

-(OXEYB/E cos1JEyB / E + 0YEVB/E Sin'19EvsIE)

OXI;VB/E sin'19EVB / E - 0YEYS/E cos 19EvB / E

1
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Virtual Base RRR and PRR Platforms

Fixed frame EVB

Moving frame E

RRR Active joint inputs [,l/E

PRR Active joint inputs dli

Moving points on circle M i/E

Circle centres K i/EvB

RRR Circle radü ri = f..2i

PRR Circle radii ri = 12i

Circle coordinates (lCoi : "lCli : 1C2i : JC3J =
(1 : KXi/'EvB : KYi/'EvB : ~ - (x; + yi)),

where Il;. = lC~i + Kt - ri + /COi (x; + yl)

TABLE 5.4. RRR and PRR reference frames and univariate constants.

After the inputs are suitably transformed the univariate coefficients can he de­

termined and used to ohtain the FK solutions. But, the solutions are expressed in

the VB frame and must he transformed back to the fixed base frame E. That is, the

univariate yields the pose of the platform as

a' 0 XE/EVB

b' - 0 YE/EVB

cp'
CPE/EVB

The orientation in E is easily determined:

cp = cp +19 .EIE E/EVB EVB/E

(5.17)

(5.18)

•
A quick examination of the VB geometry (see Figure 5.5 where dIA = lIA) reveals

the following FK solutions in the fixed base frame E:
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• a OXE/~ COSiJEVB/~ - sinf}~VB/~ 0 a'
x~VB/E

b -
°YE/E

- sin iJEVS / E cosiJEVB/~ 0 b' (5.19)
YEVB/~

1 1 0 0 1 1

•

PPR Platforms. The PPR platforms need a little more work than the

platforms cliscussed so far. Their constraint surfaces are hyperbolic paraboloids, hence

/COi = O. The YB is determined as for RRR and PRR platforms. However, the

intermecliate joint in each leg is a P-pair. Determining the coordinates of the lines

upon which the platform points move requires the summation of known angles. We

proceed in a way that is similar ta haw the VL coordinates are determined. The lines

that contain the knee joints are fixed relative to the base frame when a set of joint

inputs are specified. Their directions are determined by the translation directions of

the intermediate P-pairs. The line coordinates are

(5.20)

Examining Figure 5.5 one immecliately sees that for any leg, the direction of the

fixed line in the VB frame, EvB is determined by the angle

(5.21)

•

The line equation is obtained from two points on each lïne. The first is the

knee joint centre of the corresponding leg, while the second is the point at infinity

determined by the translation direction of the intermediate P-pair::l aIl expressed in
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FIGURE 5.5. Determining the YB pose for PPR platforms.

EvB . The Grassmannian expansion yields

•
-(Kz-/~ sin {,2/~ )x + (Kz./~ cos L2/~ )y+

1 "'VB "'VB 1 "'VB "'VB

(Kx-/~ sin{,2/~ - Ky./~ cos {,2/... )z = o.
1 "'VB "VB 1 "'VB "'VB

(5.22)

•

The corresponding circle coordinates are easily determined (using Equation (5.2)),

and are listed, together with the other information required to evaluate the univariate

coefficients in Table 5.5.

The roots of the univariate give the FK solutions relative to the YB frame, ~VB,

which must be transformed back to the fixed base frame, ~, with Equations (5.17),

(5.18) and (5.19).

HPP Platforms. This platform is simply the kinematic inversion of the PPR

platform, however the FK solution procedure requires some additional computations,

similar to those of the RPR platforms. These involve determining the pose of the

YB, transforming the relevant parameters to that frame, computing the univariate

coefficients and roots, then transforming the solutions to the fixed base frame, ~.

The complication arises from the assignment of E as the non-moving frame and
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Virtual Base PPR Platforms RPP Platforms

Fixed frame I;VB E VB

Moving frame E ~

Active joint inputs dli d3i

Moving points on line M i / E Fi / E

Circle coordinates:

/(,Oi 0 0

/(,.li
lK . IK .
"2 Zi/EvB sm '-2/EvB "2 Zi/EVB Sill(,I/EvB

JC2i -tKzi/EvB cos '-2/EvB -tKziIEVB cos '-1/EvB

/(,3i (Kxi/EVB sin '-2/Ev B - (Kxi/EVB sin '-1/EvB-

KYi/EVB cos (,/EVB) KYi/EVB cos '-1/EvB)

TABLE 5.5. PPR and RPP reference frames and univariate constants.

deterroining the pose of I; relative to it. The required solution steps are discussed in

the following paragraphs.

Referring to Figure 5.6, the active joints are the platform-fixed P-pairs, indicated

by d3i . Once these three lengths are specified the vertices of the YB, the knee joint

coordinates, are computed. The YB reference frame, EvB is defined analogously to

I;VB: the origin, OEVB' is located on KA and the orientation is selected such that K B

is located on the positive XEVB-axis.

Next, consider the quadrilateral defined by the four points MA, KA, KB and MB,

from which the following vector equation is obtained:

The orientation of EVB can be determined using the components of Equation (5.23),

yielding

•
{)EVB/E - atan2(y, x),

(5.23)

(5.24)
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~~~~Mc
~""",,~-- - __ K

--_ B

FIGURE 5.6. Determining the VB pose for RPP platforms.

where

With this information the knee joints can be transformed from the platform frame

E, in which they are known by virtue of the architecture, to the VB frame, EvB, using

where,

ki/EYB = TE/EYBki/E' (5.25)

cos {)EYB/E sin {)EYB/E -(OXEYB/E cos {) EYB/E + 0YEYB/E sin {)EYB/E)

TE/E = sm- {) cos {) 0 sm·v' - 0 cos {)
YB - EYB/E EYB/E XEyB/E SYB/E YEyBIE EVB/E

o o 1

•
The Hnes that contain the kneejoints are fixed relative to the platform frame when

a set of joint inputs are specified. Their directions are determined by the translation
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FIGURE 5.7. Determining the VB pose for RPP platforms.

directions of the platform-fixed P-pairs. The line coordinates are

(5.26)

Examining Figure 5.7 one immediately sees that for any leg, the direction of the

fixed Hne in the VB frame, EvB, is determined by the angle

(5.27)

The data in Table 5.5 cao now be used ta compute the univariate coefficients.

The FK solutions obtained frOID the roots of the univariate give the pose of the base

frame, E, expressed in the VB frame, EvB :

137•
a' 0 XE/EYB

b' - 0
YE/EYB

cp' 'PE / EYB

(5.28)
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However, what is required is the pose of the platform frame, E, expressed in the fixed

base frame, ~.

The orientation of frame E in ~ is easily determined (see Figure 5.7):

(5.29)

where tJEyslE is computed from the variable joint inputs and design constants, as in

Equation (5.24), and 'PEIEYB is computed from the univariate output.

Next, the origin ofE expressed in E, GElE, is determined with the transformation:

sin1JEYBIE

o
COS1JEYSIE

o
oYEVBIE

1

a'

b'

1

(5.30)

• Transformation Equation 5.30 is derived analogously to Equation (5.19). Its

validity can be confirmed with a close examination of Figure 5.7. Finally, the desired

pose of the moving platform frame E in the fixed base frame E is computed using

the transformation gÏven in EG.uation 5.8, reproduced here as Equation 5.31:

a EIE -cos 'PElE -sin'PEIE 0

bE / E - sin 'PElE - cos <PElE 0

'PE / E 0 0 -1 <PElE

(5.31)

5.1.4. Virtual Platform FK Solution Procedure. The virtual platform

•

(VP), like the VB, is formed by the triangle whose vertices are the points of intersec­

tion of the links directly connected to the base and those directly connected to the

platform. The difference being that for a gÏven set of joint inputs the virtual platform

points (VPP) are fixed points in the moving frame. The moving frame is E for RR­

and P R-type platforms and is frame E for RP-type platforms. VPP are required for
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(i) RRR (ii) FRF

•
FIGURE 5.8. VP parameters for (i) an RRR and (ii) a PRP platform.

RRE, RRP, PRR, PRP, PRP and RRP platforms. The main difference from the

VB is that here certain types of platform joints are active.

RRR and RRP Platforms. For these platforms, as weIl as for the P R-type,

the VP reference frame is indicated by Evp , because its pose is known with respect

to the platform frame, E. It is similar to the VP illustrated in Figure 5.8. The origin

of this frame, OEvp, is on the knee joint in leg A, KA. The orientation of Evp is

defined so that K B is on the positive xEvp-axis. The position of OEvPIE is determined

by the input of leg A. Analogous to the determination of the YB orientation, vector

arguments are used to obtain:

The orientation can be determined with the two argument inverse tangent func­

tion using the components of Equation (5.32), yielding

•
{JEVp/E = atan2(y, x),

(5.32)

(5.33)
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FIGURE 5.9. Determining the VP for PR-type platforms.

where

x - MB%/E + .e2s cos {32/E - .e2A cos a2/El

y - .e2s sin/32/E - .e2A sin a2/E·

The knee joint coordinates expressed in the VP frame are determined using this

information in the transformation:

where,

TE/Evpki/El (5.34)

TE/Evp =
cos {}Evp/E

- sin {}Evp/E

o

sin{} EVp/E

cos {} Evp/E

o

-(OXEVp/E cos {}Evp/E + 0YEvp/E sin{}Evp/E)

OXEvp/E sin{}Evp/E - 0YEvp/E cos {}EVp/E

1

•
Next, the transformed knee joint coordinates are used, together with the rest of

the information listed in Table 5.6, to evaluate the univariate coefficients and compute
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Virtual Platform RRR and RRP Platforms

Fixed frame E

Moving frame Evp

RRR Active joint inputs '-2/E

RRP Active joint inputs d3i

Moving points on circle K i / Evp

Circle centres Fi / E

Circle radü ri = .eli

Circle coordinates

ICOi 1

ICli F%iIE

IC2i F
lIilE

IC3i ~ - (K;. + K;. ), where
~/Evp -IEvp

~ = J(2 + IC2
- ? + J( (K2 + K 2

)li 2i r~ Oi Xi/EvD Yi/EvD

TABLE 5.6. RRR and RRP reference frames and univariate constants.

the roots. The roots represent the FK solutions, but they yield the pose of the VP

frame, E vp , in the fixed base frame, E:

•

However, what is required is

a'

b'

cp'

a

b

cp

oYEvp/E

CPEIE

(5.35)

(5.36)

141



•
5.L APPLICATION OF THE UNIVARIATE TO THE FK PROBLEM

Finally, the desired solution reveals itself upon examination of Figure 5.9. One

may immediately deduce

cp - cp' + iJEfEvp

- cp' - iJEvpfE'

(5.37)

(5.38)

(5.39)

(5.40)

PRR and PRP Platforms. The FK solution procedure for these platforms

•
is the. same as for the RRR and RRP platforms just discussed, except that the

information in Table 5.7 must be used. This is due to the fact that the constraint

carves are lines and not circles. Other than that, all the equations for RRR and RRP

platforms, from Equation (5.32) to (5.40) are used in the FK procedure.

Virtual Platform

Fixed frame

Moving frame

Active joint inputs

Moving points on line

Circle coordinates:

K Oi

K li

K 2i

K 3i

P R-Type Platforms

E

Evp

PRR: ~2fE

PRF: d3i

KilEvp

o
IF .
2" zilE sm "II!:.

-~FZiIE cos "II!:.

(FXiIE sin LI/!:. - FYi/E cos "l/!:.)

RP-Type Platforms

E

Evp

RRP: "lIE

PRF: dli

Ki/Evp

o
lM .
2' zilE Slnt21E

-!MZiIE cos L2/E

(MXiIE sin "2/E - MYilE cos L2/E)

•
TABLE 5.7. PR- and RP-type reference frames and univariate constants.
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RRP and P RP Platforms. For these platforms the univariate requires the

description of the displacement of E, the base-fixed frame, with respect to E, the

platform-fixed frame. In these computations, E is considered to move relative to E.

Here, the \'P is an extension of the base. It is a bit confusing, which is unfortunate,

but allows for the use of the univariate, which is fortunate! The VPP are the same

as for the RR- and P R-type platforms, but the reference frame is different.

FIGURE 5.10. Determining the VP pose for RF-type platforms.

Analogous to RRR and P RR platforms using the VB (changing the virtual base

to a virtual platform in Figure 5.4 gives Figure 5.10), the pose of the VP for RRP and

P RP platforms is determined with Equation (5.15), with VB in the right-hand side

changed to read VP, together with the base-fixed joint input for leg A. The vertices

of the VP are the three knee joint centres described in the VP frame, Evp . Consider

Figure 5.10, the pose information obtained by using Equation (5.15) can be used to

transform the the knee joint coordinates in the following way:

(5.41)
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where,

cos {}r.vp/r.

- sin {)r.Vp/E

o

sin {}r.vp/E

cos {}EVp/E

o

-(OXEVp/E cos {}EVp/E + 0YEvp/E sin {}EVp/E)

OXEvp/E sin'l9EVp/ E - 0YEvp/E cos'l9Evp/ E

1

After the input data is suitably transformed, it can be used, together with the

rest of the information listed in Table 5.7, to compute the univariate coefficients. The

output from the roots of the univariate is the pose of Evp in E,

a' 0 XEVp/E

b' °YEvp/E

cpl 'PEVp / E

However, what is required is

• a OXE/E

b °YE/E
-

cp 'PE / E

(5.42)

(5.43)

First, the pose of E with respect to E vp is determined, using a transformation

derived analogously to Equation (5.8):

0 - cos 'PEVp / E - sin CPEVp/E 0 al
XE/EVp

0 - sin'PEvp/E - cos 'PEvp / E 0 b' (5.44)
YE/Evp

1 0 0 1 1

These coordinates are then transformed to the base frame using

a cos "J EV P lE - sin "JEvp/!:. 0 0XEvp/E XE/!:.vp

b - sin "J!:.v pIE cos {)Evp /!:. 0 °YE/EVp
(5.45)

YEvp/E

1 0 0 1 1
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Finally, the orientation is computed, completing the solution procedure:

{/'} - iJ - rn
y EI'E - 'Evpl'E Y'EVpIE'

5.2. Mixed-Leg Platforms

(5.46)

•

•

As mentioned in Chapter 4, some topologically asymmetric platforms can be anal­

ysed using the univariate. However, due to the limitation imposed by the derivation

that /Co he the same for alliegs (see Section 4.3), combinations must all belong to

one of the three types: RR-, PR- or RP-type. For example the platform may be

comprised of one RRR leg, one RPR leg, and one RRP leg. The procedure is simply

a combination of the virtual base, reguIar and virtual platform procedures. A detailed

example is gÏven in Appendix A.7.

AlI combinations within a leg type are possible, the issue becomes a matter of

keeping track of the transformations required to compute the univariate coefficients

and, if needed, solutions in the base frame. As shown in the introduction to Chapter

4, this amounts to 168 different manipulators. The FK problem of the remaining

504 can not be solved by directly evaluating the univariate. The process instead

involves computing the intersections of the three constraint surfaces, which requires

the simultaneous solution of three quadratic equations. However, this procedure will

not be further discussed, instead the reader is referred ta [2, 64, 69, 79, 130].

5.3. Lower-Pair Jointed Platform Summary

The following three tables, 5.8, 5.9, and 5.10, provide a summary of the informa­

tion needed to apply the univariate to the FK problem for any of the 168 manipulators,

including the 18 PSGP, discussed earlier.
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RRR

RPR

PRR

RRR

RRP

Platform Geometrie constraints

Hip points Mi, with fixed
positions in E move on
fixed circles centred on
stationary ankle points,
Fi, in E. The circle radii
are detennined by the
intermecliate R-pair
anguIar- inputs.

Kinematically isomorphic
to the RRR platform.

Hip points Mi, with fixed
positions in E move on
fixed circles centred on
stationary knee points,
ICi, in Eva. These circle
centres, determined by
the base R-pair inputs,
are vertices of the YB.

Kinematically isomorphic
to f1RR platforms.

Knee points, Kit with
fixed positions in Evp,
determined by the
platfonn R-pair inputs,
move on fixed circles in
E. The Ki are the
vertices of the VP.

Kinematically isomorphic
ta RRR platforms.

Circle and point coordinates

ICOi = 1,
K:1i =F~ïlE,

K:2i = F lI./E'
1C3. = ICi. + K:i. - r~ ,

where
ri = [(il. +l2. cos 1.2/1)2 +(l~. sin 1.2/1)2] ! .
Note: iE {A,B,C} and 1. E {a,,8,-y}.

ICO. = 1,
K:l i = F~./E'

K:2. = FI/' /E '
K:3. = K:i i + K:i. - rl,
where
ri = d2••

/COi = 1,
K:l. = K~ïlEvB'

K:2. = KYdEVB'
K:3. = K:i. + K:i. - rl'
where ri =12i'
[K~dE : K lIdE : K"i/E] =
[(FZiIE + lli cos 1.1/E) : (FI/dE + lli sin 1.1/E) : 1},
and ki/EvB = TE/Ev B ki/E' see Equation (5.16).

See f1:RR platform and set il. = dl.'

/COi =1,
K:l i = F~dE,

K:2i = F lli/E ,
K:3i = ICi. + K:t - rl,
where, Ti = lli'
[K~dE:KI/dE: K::i/E] =
[(M~i/E +l2i COSL2/E) : (MYdE +l2i SinL2/E) : 1],
and kilEvp =TEIEvpki/E' see Equation (5.34).

See R.R.E. platform and set l2i = d3i .

•
TABLE 5.8. RR-type platform constraints and parameters needed for the
FK solution procedure. Frame E moves relative to E .
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•

•

PRR

RPR

PPR

PRR

PRP

Platform Geometrie constraints

Hip points, Mi, with
6xed positions in E move
on 6xed VL paralIel to
the translation direction
of the grounded P-pairs.

Kinematically isomorphic
to P l!:R platforms.

Hip points, Mi, with
6xed positions in E move
on 6xed lines in E. The
line coordinates for each
leg are detennined by the
base R-pair inputs.

Hip points, Mi, with
fixed positions in E move
on fixed lines in :Eva.
The three knee points,
Ki, are the vertices of the
YB. The line coordinates
are determined by the
grounded P-pair inputs.

Knee points, Ki, with
fixed positions in Evp,

determined by the
platfonn R-pair inputs,
move on 6xed !ines in E.
The three knee points,
Ki, are the vertices of the
VP.

Kinematically isomorphic
ta PRE. platforms.

Circ1e and point coordinates

ICli = ~F::;/Esin'l/E'
IC2i = -~F::i/E COS'I/E,
IC3i = (F:I:&!E + l2; cos '2/E) sin 'l/E-

(Fl/i/E + l2; sin '2/E) cos 'lIE·

Note: ICo; = 0 for aIl P R-type platforms and
i E {A,B,C} and (, E {o,,8,-y}.

See P l1:fi platfonn and set l2; = d3; •

ICI. = iF::;/E sinLI/E'
IC2; = -~F::;/E cos 'lIE,
IC3. = F:::;/E sin 'lIE - FI/;/E cos l.l/E·

ICI. = îK::;/EVB sinl,2/EVB'
IC2; = -iK::;/EvB COSL2/EVB'
/C3. = K:::;/EVB Sinl.2/EVB -KI/i/EvB COSL2/EvB'

where (K:r;/E : KYi/E : K::;/E] =
[CF:::;/E + dl; cos l.l/E) : (F,u/E + dl; sin LI/E) : 1),

and ki/EvB =TE/EvBkiIE, see Equation (5.16).

/Cl; = îF::dE sin (,l/E.
/C2i = -iF::i/E cos l,l/E.
/C3i = F:::&!E sin 'lIE - Fl/iE cos LI/E.

with [K"'i/ E : KI/dE: K=i./E] =
[(M:::dE+l2icOSl.2/E) : (MYdE+l2isizlL2/E) : 1),

and k i / Evp = TE/Evpki / E , see Equation (5.34).

See PRE platform und set l2i = d3; •

•
TABLE 5.9. PR-type platform constraints and parameters needed for the
FK solution procedure. Frame E moves relative ta E .
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•

•

RPR

RPP

RRP

Platform Geometrie eonstraints

AnkIe points, Fi, with
fixed positions in E move
on fixed VL paralleL to
the translation direction
of the platform-fixed
P-pairs.

Kinematically isomorphic
to RB.P platfonns.

Ankle points, Fi, with
fixed positions in E move
on fixed lines in E. The
line coordinates for each
leg are determined by the
platform-fbced R-pair
inputs.

Ankle points, Fi, with
fixed positions in E move
on fixed lines in EvB.

The three knee points,
Ki, are the vertices of the
YB. The line coordinates
are determined by the
platform P-pair inputs.

Knee points, Ki, with
fixed positions in Evp,
determined by the base
R-pair inputs, move on
fixed lines in E. The
three knee points, Ki, are
the vertices of the VP.

Kinematically isomorphic
to ERP platforms.

Circle and point eoordinates

ICI. = ~k[':i/Esin'2/E'

/C2. = -~M':i/ECOSL2/E'
/C3. = (M:./E +ll. COSf.l/E) sin '2/E­

(MvdE +ll. sin LI/E) cos LZ/E.

Note: /Co. = 0 for all RP-type platfonns and
i E {A,B,C} and L E {n,,B,")'}.

See RB.P platform and set il. = dl•.

/Cl. = ~M':i/Esin'Z/E,

/CZ. = -~M.:ilECOSL2/E'
IC3. = M:iIE sin '2/E - M lIi/ECOS '2/E·

/Cl. = îK",,,/EVB sin Ll/EvB '
!C2" = -iK"',;/EvB cos Ll/EVB ,
!C3" = K:dEvB sin Ll/EvB - KYi COS'l/EvB'

where (K:,;/E : K ydE : K"'i/E] =
(M:iIE +d3. cos L2/E) : (MYi/ E +d3" sin L2/E) : 1],

and ki/EvB =TE/Evaki/E' see Equation (5.25).

!Cl, = ~M.:dEsin'Z/E'
/Czi = -tM=,;/ECOSL2/E,
/C3" = M:./Esin'z/E - MY;/ECOSL2/E.

with (K:i / E : Ky,,/E : K=dE] =
[(F:dE + il. cos LI/E) : (FT/dE + lli sin Ll/E) : Il.
and ki/Ev p = TE/Ev p k i / E , see Equation (5.41).

See ERP platform and set il. = dl".

•

TABLE 5.10. RP-type platform eonstraints and parameters needed for the
FK solution procedure. Roles of E and E reversed: E moves relative ta E.
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5.4. FK Solution Procedure for RRG Platforms

FIGURE 5.11. An RRG platform.

RRG platforms are quite different from those with only lower-pair jointed legs.

Nevertheless, the two classes of platform may be considered as instantaneous compu­

tational equivalents because once the rack tangent angles are fixed, the higher-pair

platform momentarily becomes an RR-type PSGP.

For the platform. shown in Figure 5.11, the three variable joint input parameters

are the change in rack tangent angles, due to the change in contact points measured

along each of the three racks. They are gÏven by the three numbers tldi = T tlTi,

i E {A, B, C}, where the tldi are the changes in arclength, the radius of the pinion

is T, and the tl7i are the change between the initial and final rack tangent angles.

Since tangential contact between rack and pÏnion is always maintained, the change

in tangent angle is the same as the change normal angle, !:lTJi. This is illustrated in
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Figure 5.12 (i). The parameters required ta fix the pose of the i th leg are illustrated

in Figure 5.12 (ii).

Ki

(i) (ii)

•

•

FIGURE 5.12. (i) ~Ti = ~1Jij (ii) parameters for the i th leg.

When the active higher pairs are locked the platform may he temporarily con­

sidered an RR-type PSGP. The VP can be used in the solution procedure for the

FK problem. The VP for a given set of input rack tangent angles is illustrated in

Figure 5.13. It is important to emphasise that the pure rolling nature of the higher

pairs make platforms of the type in Figure 5.11 markedly different from lower-pair­

jointed SGP. The FK analysis cannat be directly reduced ta the lower pair SGP case

because of the contact point location ambiguity arising from the rolling constraints.

Furthermore, there exists no such equivalent mechanism which can exactly reproduce

a rack-and-pinion motion (see Hunt [75], p.l06). Methods, such as those discussed

in Gosselin and Sefrioui [50], Wohlhart [142], or Merlet [100] cannot be used un­

less suitably modified to account for the relative rolling. However, these procedures

tend to he poorly suited ta this platform type by virtue of the fact that the platform

attachment points, i. e., the points of contact between the pinion and racks, change

relative to each other from pose ta pose.

150



•

•

•

5.4. FK SOLUTION PROCEDURE FOR RRG PLATFORMS
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FIGURE 5.13. The VP for a given set of inputs.

5.4.1. Involute Inputs. Expressions for the VPP must he developed so they

cau he used as inputs to the kinematic mapping. We want the VPP in terms of

the joint input variables so they can he used to evaluate the univariate coefficients.

Consider, for now, only leg A in Figure 5.14 and observe that the knee joint KA has a

fixed position in the reference frame attached to the rack, RA. We know it moves on a

circle in E, but it also experiences motion relative to the moving disk frame E. vVhat

is required is a description of that motion in terms of the joint inpu.ts. This turns out

to be straightforward: if the pinion is fixed and the relative motion of the rack with

respect to E is pure rolling then the original contact point on the rack moves on an

involute of the pinion [82]. There is a bijective correspondence, that depends on the

change in rack tangent angle, between positions of a given rack point on its involute

and the knee joint positions. This gives a complete description of the motion of the
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FIGURE 5.14. Reference systems in leg A after a rotation LlTA'

knee joints in terms of the input variables. Due to their positional dependence on an

involute, we cali these one parameter sets of knee joint positions involute inputs.

The motion of the knee joints of the remaining two legs must be the same type

as that of leg A relative to E, but the starting points of the involutes are different.

Thus, for every set of three joint input parameters one obtains a set of three VPP

expressed in E. With the VPP transformed as involute inputs the kinematic mapping

can he used.

In what follows the involute inputs will he derived. Figure 5.14 shows the ref­

erence coordinate systems used to transform the position of the knee joint KA from

the moving rack reference frame, RA, to the relatively fixed pinion reference frame,

E. The origin of RA moves along its involute and RA gives the new position of RA

after a change in tangent angle, ~TA. The intermediate system accounting for the
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location of the starting point and orientation of the involute, E~, is fixed relative to

E. Exaroining Figure 5.14, it is easy to see that for each leg the required transforma­

tion to take the coordinates of the knee joint Ki from frame R~ to frame E are the

concatenation of transformations expressing points in frame ~ relative to frame E~

and those expressing points in frame E~ relative to frame E:

-stlTi -cLlTi r(cLlri + LlrisLlri)

CLlTi -SLlTi r(sLlTi - tlTiCLlTi)

TR'JE - TE~/ETR~/E~
1 1 1

c:f)EUE -s'l9Ei!E 0

- S{)EUE c:f)EUE 0

0 0 1

where c =cos, and s =sin.

o o 1

•

•

The geometrical significance ofTR'_/E~ is seen when each column is examined [91].
1 1

The first column is the direction of the disk tangent in E~ (the direction of the x-axis

of frame ~). The second column is the direction in E:, towards the centre of the

pinion, of the normal at the new contact point (the direction of the y-axis of frame

RD. The third column is the position of the origin of frame Ri on the involute, also

expressed in E~. The remaining transformation, TEf/E, depends on the angle between

the x-axis of frame E and the rack normal in the home-position, indicated by {)EUE.

The knee joints, shown in Figure 5.11, aIl have the same coordinates in their

respective Rï and ~ frames:

o

1

Once the changes in rack tangent angle (joint inputs), LlTil are specified the coordi­

nates of the knee joints (involute inputs) in frame E, ki/E, are easily determined by

153



•
5.4. FK SOLUTION PROCEDURE FOR RRG PLATFORMS

1eft multiplying the ki/Ri with the appropriate TRUE,

(5.47)

5.4.2. Remaining Computation Steps. The VPP expressed in the VP

frame, Evp , are needed to evaluate the univariate coefficients. We can not simp1y use

the procedure for RRR or RRP platforms due to the nature of the higher pairs and

becàuse the platform. frame moves with the centre of the pinion, not an attachment

point.

We proceed in a slightly different way from Section 5.104. The first step is to

compute the following for use in the transformation TE/Evp , from Equation (5.34):

•
Oz -EVp/E

o
YEvp/E

(5.48)

(5.49)

(5.50)

The coordinates required to evaluate these equations are determined using Equation

(5.47).

Now we have everything needed to compute the required transformation. The

right-hand sicle of Equation (5.47) is pre-multiplied with the transformation from

Equation (5.34), which is the following concatenation:

(5.51)

(5.52)

•

We can use the simplest expression of the VPP, ki/Ri = [0 : -f.2i : l]T, to obtain the

required coordinates:

(5.53)
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With the VPP obtained from Equation (5.53), together with the base geometry

and lAC, the univariate coefficients can he evaluated. The roots of the univariate

yield the pose of Evp with respect to the base frame, E:

a'

h'

cp'

However, the required information is

a

b

cp

'PEVp / E

epE/E

(5.54)

(5.55)

The solution is evident upon examination of Figure 5.13. The pinion displacement

parameters, then, are given by:

•

•

a = a' + (l2A + r) cos a - d3A sin a,

ep - cp' + iJE / Evp ,

where,

A detailed numerical example is given in Appendix A.8.

(5.56)

(5.57)

(5.58)
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CHAPTER 6

The Inverse KineIllatics Problern

The inverse kinematics (IK) may be stated as: given the position and orientation of

the platform frame E, determine the variable joint inputs and corresponding assembly

modes required for the platform to attain the desired pose. It is generally acknowl­

edged that the IK problem for PSGP is trivial. Closed form algebraic solutions can

usually be found. As for the FK problem, the conventional Cartesian approaches

are architecture and geometry specific. There is, as yet, no unified approach to the

problem for the general case. While the kinematic mapping procedure offered here

is not the desired unified approach, it does represent a step on the road towards this

goal. The main thing to emphasise is that the kinematic mapping allows for the

development of IK algorithms that are independent of the geometry of the platform

and hence, provide solutions ta the IK problem of RRG-type platforms that remain

unsolved by conventional Cartesian approaches [3, 4, 63]. It is mainly for this reason

that the issue of the IK is broached.

To begin, one observes that the FK problem reduces to determining the intersec­

tion points of three constraint surfaces in the projective homogeneous image space.

Each point of intersection represents a platform pose. It follows that the IK problem

cau be solved by working in the opposite direction: start with a given point in the

image space which represents a feasihle platform pose and extract a set of active joint
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inputs from the corresponding pre-image. Because the mapping is not bijective (there

is at most one pre-image for every point in the image space) there are points in this

space that are not the image of a planar displacement.

With the use of kinematic mapping it is a simple matter to determine ail lI(
,

solutions by considering the general eonstraint surface for each leg of the platform in

question. Each leg of the platform can be considered separately because the solutions

are decoupled from leg-to-Ieg. Henee, the Il{ problem of every lower pair jointed

three-Iegged planar platform with three DOF ean be solved by deterrnining the joint

input value from the image point satisfying the associated constraint surface equation.

Moreover, the Il( problem for RRG-type platforms are also easily determined. This

is a new resu1t, which is not possible with conventional Cartesian approaches due ta

the ambiguities introduced by the relative rolling between each rack and the pinion

[63, 67].

6.1. Lower Pair Platforms

The solutions to the IK problem of a given three-Iegged planar platform with

three DOF are uncoupled between legs [49]. That is, the value of the active joint

input in each leg, given a desired platform pose, depends only on the geometry of

the given leg and the pose. Thus, we can solve the IK problem for any of the 1140

possible platforms composed of combinations of the 18 characteristic chains taken

3 at a time using the kinematic mapping. Of course, it is easy to write the three

independent equations for these platforms based on their Cartesian geometry. As a

means-to-an-end this approach is complete. However, each distinct leg type requires

a distinct equation. Solving the IK problem by finding the pre-image of an image

point in the kinematic mapping image space ultimately lands one in the same pot of

stew. However, it is to be hoped that adopting an approach that is independent of
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the geometry of the base and platform. will eventually lead to a unified IK solution

procedure. For this reason the following material is presented.

Because of the trivial nature of the problem from a Cartesian point of view it

is natural to expect that the kinematic mapping procedure he simple and straight­

forward. Indeed, this is the case. There are only two main groups of leg type ta

consider: RR-type and non-RR-type. Recall that the general constraint surface can

he expressed by Equation (4.9), repeated here.

/Coz2(x'f + Xi) + (1/4) [/Co(l - z2)(x2+ y 2) + 2Z(}CIX + K.2Y) + Rz2]xj +

(1{4) [Rz2 + K.o(l - z2)(x2 + y2
) - 2z(K.1x + /C2Y)] xl- (K.1 z2 + K.OXZ)X1 X 3 +

(K.2z2 - K.OYZ)X1X 4 - (K.oyz + }C2z2)X2X3 + (/Coxz - lC1z 2 )X2X 4 +

(6.1)

• Because each platform leg is solved independently the suhscripts indicating the

leg ta which a parameter helongs, i E {A, B, Cl, may be safely dropped. For a

particular leg, Equation (6.1) contains only variables and constants associated with

that leg. Thus, the homogeneous coordinates of points in the platform frame E are

PilE = (x: y : z).

Those of points in the fixed base frame ~ are

Pin: = (X: Y : Z).

6.1.1. RR-type Platforms. For an characteristic passive sub-chains the

•

active joint is either an R-pair or a P-pair. For RR-type platforms the joint input

can always be characterised by the distance between the fixed base point and the

maving platform point, regardless of active joint type. This quantity is the radius, r,

of the constraint circle.
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A given image point [Xl: X2 : X 3 : X 4 ] represents a platform pose. But, it also

represents a point of intersection of a family of constraint surfaces. The image point

is uniquely fixed by the platform displacement parameters, (a, b, if». Each constraint

surface containing this point is a function of the image point itself [Xl: X 2 : X 3 : X 4 ],

the moving platform points (x : y : z), and the circle coordinates (Ka: lCl : lC2 : lC3 ).

Recall that for RR-type characteristic passive sub-chains the circle coordinates are

defined as follows:

ICa - arbitrary homogenising constant,

ICI - Xc,

IC2 - ~,

IC3 - R - ICo(x2 + y2),

R - JC~ + IC~ - r 2 + ICo(x2 + y2).

Examining ail these quantities together, it is to be seen that the only unknown is

the radius r of the constraint circle. Note, this quantity represents the distance

between corresponding base and platform points. After making the substitution

R = Ki + K~ - r 2 + lCO(x2 + y2) in Equation (6.1) and expanding then collecting

terms of r yields a quadratic with the form

where

Ar2 + Br + C - 0, (6.2)

•

B - 0,

G - 4z2Xr(Xl + Xi) + 4ZXI [X4 (Xj + xl) (IC2 Z - y) - X 3 (X; + xl)(x + JCIZ)} +

4z2xi(xj + xl) + 4ZX2[X4(Xj + xl)(x - ICIZ) - X3(xl + xl)(y + JC2 z) +

X:[x2 + y2 + z2(ICî + IC~) + 2Z(JCIX + IC2Y)] + 4z(x4xl + xtx3)(ICIy - IC2x) +

2xlxl[x2 + y2 + z2(IC~ + IC~)] + xt[x2 + y2 + z2(ICî + IC~) - 2z(IC l x + IC2Y)] .
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• This quadratic has a solution of the form:

J-AC
r = ± A . (6.3)

While this result means that there are two real solutions, only one is acceptable since

the quantity represents the radius of a circle, which is, by convention, a positive

non-zero number. Thus, there is but one solution for a given RR-type platform leg:

= IJ-ACIrA' (6.4)

•

The fact that there is but one value for r does not, in general, mean that there

is but one solution to the II( problem. This is only so for RPR-type legs. The

remaining RR-type legs ail have elbow-up and elbow-down solutions, meaning there

is a maximum of 2 solutions for each leg, 23 = 8 for a PSGP. The input parameter

for each leg required to attain the desired pose for these legs is easily obtained from

the calculated r using plane trigonometry and the known design parameters, see the

example in Appendix B.l. The upper bounds on the number of solutions for each

RR-type PSGP are listed in Table 6.1. While for arbitrary rnixed leg platforms there

can be 1, 2, 4, or 8 solutions, depending on the architecture of the constituent legs.

RR-type PSGP Maximum solutions

RRR 8

RPR 1

RRR 8

PRR 8

RRR 8

RRP 8

TABLE 6.1. Maximum number ofIK solutions for RR-type PSGP.
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chains is accomplished by solving the general constraint equation for a single variable:

•
6.1.2. P R- and HP-type Legs. Solving the IK for PR- and RP-type sub-
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the unknown direction of the line joining the Fi and the corresponding Mi. Thus,

unlike the FK problem the two types do not have to be considered separately. The

circle coordinates have the uniform definition: "

ICo - 0,

ICI 1Z .- 2" smL,

IC2
1

- --Zcos{,
2 '

IC3 - R - X sin L - Y cos {"

where the (X : Y : Z) are the homogeneous coordinates of the fixed base point.

Clearly, the unknown is the angle L. Making the appropriate substitutions in

Equation (6.1) gives an equation linear in the sines and cosines of~. Solving for L

gives:

• where

atan2(N, D),

N - 2Z(X1 X4 - X2X3) - 2XX3X4 + (zY + y)xj + (zY - y)Xl

D - 2yX3X4 - 2Z(X1X3 + X2X4) + (zX + x)xj + (zX - x)Xl

(6.5)

•

The input parameter for each P R- or RP-type leg required to attain the given

pose is easily obtained from the calculated value of {, using plane trigonometry and

known design parameters. Two examples are given in Appendix B.2. As for the RR­

type legs, ther~ is one solution for this equation, but not, in general, to the lI( problem

for P R- and RP-type PSGP. The upper bounds on the number of solutions for these

two types of PSGP are listed in Table 6.2. Of course, for arbitrary architectures there

can be 1, 2, 4, or 8 solutions.
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P R-type PSGP Max. soL RP-type PSGP Max. soL

PRR 8 RRP 8

PPR 1 RPP 1

RPR 1 RPR 1

PPR 1 RPP 1

PRR 8 RRP 8

PRF 1 PRF 1

TABLE 6.2. Maximum number ofIK solutions for PR- andRP-type PSGP.

6.2. Higher Pair RRG Platforms

A com.plicating factor in general plane displacement analysis of the RRG plat­

form is the ambiguity that the rolling constraint introduces. That is, cp, the desired

final disk orientation daes not divulge how much of the new position was achieved

by rotation of the grounded and non-grounded links and how much was achieved by

pure rolling between the disk and the legs. By how much has the disk rolled on the

racks and by how much has each rack rolled on the disk? Is there a combination, and

if so, what is the ratio? These questions lead ta difficulties in the determination of

the joint inputs, ~T, if only the trigonometry in the Cartesian plane is considered.

Furtherm.ore, displacement analysis requires the presence of initial assembly condi­

tions (rAC) in the kinematic closure equations. This dependency on the lAC means

that analysis is not possible using only the techniques employed on lower pair jointed

SG type platforms by [50], for instance.

Indee<i, there exists no practical IK solution procedure for these manipulators.

An algari-thm is offered in [3], however, the authors fail to account for the orientation

of the end-effector in the inertial reference frame. They use instead a relative angle

. which cau change for certain displacements while the orientation of the end-effector

remains constant. The only other algorithm, [63], is problematic because it leads to

many sptuious solutions.
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6.2.1. Solution Procedure. The goal is to determine the inputs required to

attain a desired feasible end-effector pose. As for the lower pair PSGP, the constraint

hyperboloids for each leg are first examined. An image point (Xl: X 2 : X 3 : X 4 ) is

fixed by the given pinion displacement parameters (a, b, cp). Furthermore, the con­

stants (lCo : /Cl : /C2 : 1C3 ) are known because the circle centres and radii are all

specified. This leaves the three homogeneous VPP coordinates (x : y : z) as un­

knowns. It is important to note that for the lI( problem the VPP coordinates must

be expressed in the pinion frame, E, and not in the VPP frame, Evp. Thus, we have

three hyperboloid equations and nine unknowns:

i E {A,B,C}. (6.6)

•
Since a detailed example is presented in Appendbc B.3, the leg specific subscripts,

i E {A, B, Cl, are again used.

Since no practical design requires the VP to have points on the line at infinity,

.coo , it is safe to set Zi = 1, reducing the quantity of unknowns to six:

i E {A,B,C}. (6.7)
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(6.8)i E {A, B, C}

At least three more equations are required. Consider the involute input Equa­

tions (5.47). With Zi = 1, these are a set of six equations expressing the knee joint

coordinates in the moving frame, E, in terms of the three unknown rack tangent angle

inputs, ~ri. This gives nine equations and nine unknowns, coming in independent

sets of three. That is, Xi, Yi, .6.ri can be solved independently for each i E {A, B, Cl:

Hi = fi (Xi, Yi)

Xi = 9i(.6.ri)

Yi = hi(~ri)

•
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where fi is a function in the two variables Xi and Yi, which are themselves single

variable functions gi and h il respectively, in terms of Â.'Ti.

Substituting the expressions for Xi = g(Âri) and Yi = h(Âri) into Hi gives the

univariate function

(6.9)

where the ai are coefficients in the field of real numbers:

ao = xi + xi + ~(Xi + xl) (212 r + li + r 2 + 1(3 ) + /Cl (X1X 3 + X 2X 4 ) +

1C2(X2X 3 - X I X 4 ) ,

al - 0,
2

r (2 2)a2 - "4 X 3 +X4 ,

• a3 - (12 + r) [~Kl(Xl-Xl) - X 1X 3 + X 2X 4 + K2 X 3X 4] ,

a4 - (12 + r) [~K2(Xl-Xl) - X 2X 3 - X 1X4 - KIX3X 4] ,

as r [~K2(Xl-Xll +X2X 3 +X,X4 + K1X3X4] ,

[1 2 2 ]a6 - r 2"1C1(X4 - X 3 ) + X 2 X 4 - X I X3 + 1C2 X 3X 4 •

•

Solve Hi(Âri) for Àrï, and use this value to determine Xi and Yi from the gi and

hi. This immediately yields the knee joint coordinates in the moving pinion frame.

Hi(Âri) represents a curve. The roots of this function, i.e., the zero-crossings in the

Àr - H(Âr) plane, give the change in rack tangent angles, which are the solutions

to the lI( problem. The upper bound on the number of solutions depends on the

number of roots. These will now be examined.
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The curve is characterised as a quadratically dominant oscillating curve. That is,

the curve H(6:r) is the locus of points oscillating about the parabola

(6.10)

Examining Figure 6.1, it is evident that the amplitude of the oscillations is minimum

at ~r = O. As D.r moves away from zero, in either direction along the ~r-axis the

amplitude increases and the frequency decreases. The period (the term is used even

though this is not a periodic function, strictly speaking) is about 8 radians. If ao < 0

it is possible to have more than two zeros. If, however, the range of the change in

rack tangent angles is restricted ta a value smaller than 8 radians, more than two full

rotations, the maximum number of zeros is 2. This gives the expected upper bound

on the number of lI( solutions for each leg.

• 140000
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80
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•

FIGURE 6.1. The one parameter curve H(.6.r) oscillating about a parabola
in the D:,.r - H (6.r) plane.

It is a simple matter of plane trigonometry to extract the assembly configura­

tion(s) from the nine parameters, Xi, Yi, and D.Tio The solutions are decoupled among

legs and there is an upper bound on the number of solutions ta the IK problem of

23 = 8. A detailed numerical example can he found in Appendix B.3.
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CHAPTER 7

Workspace and Singularities

One of the general drawbacks of parallel manipulators, as mentioned in Chapter 1,

is the smaller workspace as compared to seriai manipulators. Moreover, the rela­

tively small workspace can be densely packed with singularities. These two issues are

discussed in the fullowing sections.

7.1. Workspace Analysis

Whether or not solutions to the IK problem of a manipulator exist raises the issue

of its workspace. The total workspace of the manipulator, usually called the reachable

workspace, is defined as the area, or volume within which a reference point on the end

effector can be made to coincide wlth a given point [92]. There are various definitions

of subsets of the reachable workspace. For instance, the dextrous workspace is defined

as the set of points in the reachable workspace that the end effector can reach with

any orientation [92].

The workspace of PSGP has received a large amount of attention and has been

fully established by Gosselin [49], Pennock and Kassner [112], Merlet and Mouly

[98]. Indeed, various interactive software packages for design, motion and trajectory
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planning [52, 99] alreadyexist. However, only recently has kinematic mapping been

applied to workspace analysis by Husty [SO]. By virtue of the ruled constraint surfaces

which describe all possible positions of the end-effector it is a useful, informative and

overlooked visualisation aid and design too!. Moreover, it facilitates computations

when more than one end-effector reference point is considered [80] .

FIGURE 7.1. An RPR platform.

7.1.1. Reachable Workspace. Here an RPR platform is considered, as

reported in [80], but the procedure may he adapted ta any PSGP. The following is

a summary of the procedure described by Husty [80]. The image of the reachable

workspace can be obtained in the following way. The leg lengths, di, must be within

the joint limits fkmin < di < dimaz ' i E {A, B, Cl. This condition means that for each

leg there correspond two coaxial constraint hyperboloids. They bound the regjon of all

possible positions and orientations of the platform, assuming the platform attachment

points of the other two legs have been disconnected. Performing the same procedure

for each leg in turn yields three soUd regions bounded by six hyperboloids, each pair
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coaxial. Figure 7.2 shows the three solids for the platform illustrated in Figure 7.I.

Note that the origin of frame E is located on the centroid of the platform.

FIGURE 7.2. The kinematic image of the reachable workspace for an RPR platform.

The parametric equation for the constraint hyperboloid given by Equation (4.22)

is reproduced, and modified by adding the subscript i to the radius T, here as Equation

(7.1) representing the constraint solid:

1
-

2

[(K:I + x)t - K:2 + y] + (TiVt2 + 1) cos (

[(K:2 + y)t + K:i - x] + (rc/t2 + 1) sin (

2t

(E {D, ... , 27r},

t E { -00, ... , <Xl},

imin < i < imax •

(7.1)

•
Note that T.. = d.. and T. = d. and the parameter lines t = constant.mln 6o'FRl.n .rn.az ·T7la%

correspond to those positions which belong to a constant orientation.
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FIGURE 7.3. Pre-Image of a constraint solid for leg A..

The next step is ta obtain the pre-image of the constraint sonds. This is done

by substituting Equation (7.1) into Equation (3.45). The pre-imag:e depends on the

platform reference point (x : y : 1), which makes it relatively easy ta oCompute different

Cartesian workspaces for different points on the end-effector. Figure 7.3 shows the

pre-image of the solid region bounded by the smallest hyperboloid Emin' determined

with dmin , and by the largest H max , corresponding to dmax . The envelopes of the one

parameter families of circles represent the boundaries of the reachable workspace of

the end-effector when the connections for legs Band C between base and platform

have been removed.

For each constraint solid there are four envelops. The two belonging to H imax

are denoted by ~ma:z: and ~ma:z: 1 and those belonging to H imin by eirnin and ~min. To

obtain a description of the workspace four cases must be distinguished:

(1) eima:z: and ~min bath contain ovedapping circles (i.e., valid poses). The

workspace is given by Wi = ~ma:z: - eimin •
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(2) eime: consists of areas of overlapping circles, but not eimin • The workspace is

(3) eiTnin. consists of areas of overlapping circles, but not ei
TJ1a

:. The workspace is

Wi = (eima: - eimin.) - ~min·

(4) Both eima: and eiTnin are devoid of overlapping circles. Then the workspace is

The intersection of the workspaces Wi of the three legs gives the reachable workspace

W:

W - WAnWBnWC • (7.2)

•
7.1.2. Dextrous Workspace. The dextrous workspace is defined by Kumar

[92] as a set of points in the reachable workspace about which the end-effector can

rotate through 3600
• Husty [80] has shown that a necessary condition for the existence

of a dextrous workspace is that the disk D ima:, which is the disk bound by eima:,

contain overlapping circles. Moreover, D îma: should not be completely covered by

any hole in the workspace. This condition can be expressed

(7.3)

•

Figure 7.3 is an example of a dextrous workspace for leg A. In this leg the

dextrous woykspace is located between eimin and eima:l:. The existence of a dextrous

portion of the whole workspace depends on the intersection of the dextrous workspace

of each leg.

7.1.3. PR- and RP-type Platforms. Figure 7.4 shows a PPR platform.

The constraint surfaces for these, and for ail P R- and RP-type platforms are hyper­

bolic paraboloids. The constraint solids consist of pairs of identically shaped, but dis­

placed hyperbolic paraboloids. The Ieft-hand side of Figure 7.5 illustrates the image
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FIGURE 7.4. A PPR platform.

•
space solid corresponding to the reachable workspace of one leg of an P P R platform.

The image of the reachable workspace is the solid bounded by the intersection of the

three pairs of constraint solids representing the joint limits.

._________::!.l

F ~:::·~~~:_~:.~;••,~.7.~~:~~~~~~~~~~~~~~~::.·~::~'~_~~'~ --
. ·\\\::(/'.-~.I>-"-. .

.+-:.':'-~ ~:: :;;:~.~-

o XI -2 -424

05

•
FIGURE 7.5. The kinematic image of the reachable workspace for a PPR
platform and the corresponding pre-image.

171



•

•

•

7.1. WORKSPACE ANALYSIS

The right-hand side of Figure 7.5 shows the pre-image of the solid bounded by the

extreme hyperbolic paraboloids for leg A of the platform. As for the RFR platform

analysed earlier, for each solid there are four envelops. To obtain a description of the

workspace, the same four cases, as in Section 7.1.1, must be distinguished. Examining

the four cases Ieads ta an identical criteria for the existence of a dextrous workspace

as expressed in Section 7.1.2

7.1.4. Workspace of RRG Platforms. The determination of the workspace

of RRG platforms remains, essentially, an unsoived problem. It was attempted by

Agrawal and Pandravada in 1993 [4], but the Il( procedure upon which the workspace

analysis is based is fraught with formulation singularities. This is because of the

seemingly impossible task of modelling pinion displacements in E 2 • A better approach

remains elusive, but should be found in the kinematic mapping image space.

While no means of determining the constraint solid for these platforms has yet

been found, it is worthwhile to study the eifects of displacements on the hyperboloid

axis. This is because the characterisation of the associated family of hyperboloids

may be obtained by characterising the family of lines of their axes. Recall that a line

in a 3D space is uniquely defined by four generalised coordinates. This means that

there are 004 unique lines in space.

If the line coordinates are related by one equation, then 00
1 lines are excluded and

the 003 remaining lines constitute a linear comple:If represented by the equation. A

single equation may also represent a surface, or curve, for there are 003 lines tangent

ta a given surface, or cutting a given curve. Such an equation is called the line

equation.of the surface or curve [136].

IThe terms complex and congruence, used to indicate 003 and 002 systems of lines, were first intro­
duced by Plücker in [116] .
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If the coordinates are related by two simultaneous linear equations then there are

(X)2 lines satisfying these equations, which constitute a linear congruence described

by the set of equations. A congruence contains all congruent lines of two complexes,

it may he regarded as their mutuaI intersection [115].

If three equations are simultaneously verified hy the four coordinates the cor­

responding lines, (X)l in numher, constitute a ruled surface (Strahlenfliiche [115]),

represented by the system of three equations. A ruled surface may he considered

as the mutuaI intersection of three complexes, i.e., as the geometric locus of lines

helonging to all three complexes.

Four equations relating the four coorclinates means that there are a finite number

of lines, 00°, which satisfy the equations. In line geometric terms, such a system can

he represented by the mutuaI intersection of four complexes, or two ruled surfaces

[116]. Ordinarily, no line satisfies five conditions.

The parametric equation of the axis of the constraint hyperboloid for an RR-type

leg is given hy Equation (4.18), reproduced below as Equation (7.4):

y-JC2

1 t
- - ICI -x +-

2 2
0

(7.4)

The radius of a circle in the plane X 3 = const., Equation (4.15), is reproduced below:

(7.5)

•

where r is the constraint circle radius in E 2 • In the image space plane X 3 = 0 this

radius is simply r /2. Clearly, since r is the fixed length of the grounded link, the

constraint hyperholoid striction curve and shape parameters are invariant under any

feasihle planar displacement associated with the corresponding leg.
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FIGURE 7.6. An RRG platform.

For the RRG platform, shown in Figure 7.6, ICI and IC2 are design constants (the

Cartesian coordinates for the base of the given leg expressed in the fixed frame ~)

and x and y arë the knee joint locations with respect to the moving frame E, which

are constants for each distinct displacement considered separately. Equation (7.4)

is a representation of the Hne of the image circle centres in terms of parameter t:

-00 < t < 00.

Let us now consider two distinct arbitrary poses of any leg of the platform. These

poses are characterised by (Xl, YI) for the first and (X2, Y2) for the second. Let t and

s be the parameters for first and second poses, respectively. Clearly, for each distinct

pose the line coordinates of the axis will change. The significance of this is that

the associated hyperboloids are not coaxial. Thus, the constraint solid can not be

obtained as for lower pair PSGP. This is a direct result of the use of higher pair joints.
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For each distinct set of rack tangent angles, the relative location of the pinion contact

points change. In this sense, the platform geometry changes continuously during any

motion. If the axes of the corresponding constraint hyperboloids intersect we 0 btain

the fol1owing relation:

(7.6)

These are three linearly independent equations. We see immediately from the third

equations (2t = 28) that a condition for the two lines to intersect is that 8 = t, i.e.,

the point of intersection occurs when the two parameters take on identical values.

From the first two equations in (7.6) we obtain after setting 8 = t:

•

o 2

t =

o

Y2 - YI Xl - X2

2

(7.7)

We can rearrange Equation (7.7) to read

(7.8)

•

Clearly, there are no real values for the constants Xl, X2, YI, Y2 which satisfy Equa­

tion (7.8). We must conclude that all axes for a given leg are mutually skew and lie in

a ruled surface. Substituting the involute inputs from Equation (5.47) into Equation

(7.4) indicates that the surface is non-algebraic2 , indeed it is transcendental. Figure

7.7 shows the set of axes for a set of displacements of one leg of an RPR platform.

'Vhile we have yet to determine the true nature of this surface, we are certain it is

related to its associated involute.

2The equation of an algebraic surface can be reduced to a finite number of terms involving posi­
tive integer powers of its variables. H the equation contains variables that are the arguments of
transcendental functions, it cannot be 50 expressed and is non-algebraic.
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FIGURE 7.7. The set of axes for a set of displacements of one leg of an RPR platform.

7.2. Singularities

Manipulator singularities occur when different FK and/or II< solutions coincide

[49, 34]. A singularity is defined algebraically as a rank deficiency of the associated

Jacobian3
• The geometric definition amounts to an instantaneous change in the DOF

of the platform.. That is, either one or more DOF is lost, or one or more uncontrollable

DOF are gained. This means that when a platform approaches a singlliarity either

the platform. can undergo infinitesimal motions when the actuators are 10cked, or

finite changes in the inputs produce no platform motion. Both situations are highly

undesirable.

3The Jacobian has come ta mean the matrix that maps the vector of Dutput rates (i.e., the time
rate of change of the platforms generalised coordinates) to the vector of input rates (the time rate
of change of the variable joint inputs) .
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Work in the area of singularity analysis of parallel platforms is extensive. Merlet

[96] uses Plücker's line geometry (called Grassmann geometry by Merlet)4 ta give

a comprehensive enumeration of the conditions on the position and orientation of

the legs of planar and spatial SGP which lead to singular configurations of the plat­

form. Mohamed and Duffy [105] c1assified singularities into three groups based on

the nature of the rank deficiency of the Jacobian. These are stationary configurations

where DüF are gained, immovable structure where DOF are lost, and uncertainty

configurations where the Jacobian is indeterminate. Gosselin [49] presented a similar

classification scheme. Ma and Angeles [94] introduced a somewhat different idea.

Here they are c1assified as: i) configuration singularity which is an inherent manip­

ulator property that occurs at some points within the workspace; 2) architecture

singularity, which is caused by the manipulator architecture and can prevail over the

entire workspace; 3) formulation singularity, caused by the failure of the kinematic

model of the platform for certain configurations.

Singular assembly configurations of parallel platforms have the property that the

set of joint inputs is not sufficient to define the pose. This is due to the gain, or 10ss

of an infinitesimal, or even continuous DOF. Hartmann gives a comprehensive exami­

nation of singular SGP in [62]. Sefrioui and Gasselin [131, 132] examined the loci of

singular positions in the platforms workspace for a fixed orientation. They observed

that the loci are conic sections. Later, Collins and McCarthy [26] employed planar

quaternions ta obtain an algebraic, but implicit, expression of a quartic surface in a

3-D projective space that represents aIl singular poses of aIl possible RFR platforms.

In the most general case, the singularity surface contains a double line at infinity.

They further investigate special architectures where the quartic reduces to a quartic

4The subject of line geometry owes its origin ta Plücker. Types of coordinates of the line were
introduced by Cayley and Grassmann; Plücker line coordinates are a special form. of these, but the
discovery of line geometry itself is entirely Plücker's work [87]. Sa, it is appropriate ta use the term
coined by Plücker himself: line geometry.
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ruled surface, two planes and an hyperboloid of one sheet, and pairs of hyperbolic

paraboloids.

7.2.1. Self-Motions. Notwithstanding the LADD (linear actuation device)

actuator [86], awareness of platfarms with one (or more) DOF continuous motion

while active joints are locked did not seem to e..xist until examples were revealed in

1994 by Husty and Zsombor-Murray [78]. In that paper, line geometry is used to show

that when the six legs of a spatial SGP remain in a specific linear complex, congruence

or hyperboloidal ruled surface then the platform. will execute a finite one DOF motion

while aIl legs remain at constant length. These motions are termed self-motions. Their

existence was essentially identified, and classified ta a certain extent, simultaneously

but independently by Borel [16] and Bricard [18]. They were investigating continuous

motions where sorne points on a rigid body are each constrained to remain on the

surface of as many given fixed spheres, which is the case for spatial SGP. This was the

tapie of a competition conducted by L'Académie des Sciences de l'Institut National de

France in 1903. The prize-winning papers were those of Borel and Bricard [16, 18].

Self-motions are uncontrollable in the context of P-pair actuated SGP and, one might

imagine, would be most unwelcomed by pilots engaged in training exercises on board

a flight simulator prone to such motions. Still, mechanisms that exhibit these motions

may be useful. The LADD actuator is a good example [86].

Research in the area of self-motions is beginning to gain attention. See [88, 93,

125] for example. Nonetheless, it is unnerving that self-motions are only now being

seriously considered because parallel manipulators have been commercially available

since 1979 [102]. Moreover, there exists a patented design for a flight simulator [55]

which has self-motions in every point of the workspace [85]. That means no matter

how the platform is assembled with legs of given fixed length it is movable when it
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is supposed to he a structure! It turns out that the associated Jacobian matrix is

always rank deficient [85].

7.2.2. RR-Type PSGP Continuous Self-Motons. In [79], Husty shows

that it is possible to construct planar RR-type platforms that exhibit self-motions in

one assemhly mode, but are structures in others. It is weil known that two congruent

rigid triangles whose corresponding vertices are joined by legs of equal fixed lengths

can exhibit continuous relative motion. The relative motion is a curvilinear trans­

lation. The reason for this self-motion is that the three constraint hyperboloids ail

share a common circle whieh Ieads to a one parametric set of solutions. Additionaily,

however, this variety contains discrete solutions. Therefore, it is possible to construet

platforms which are continuously movable in one assembly mode and rigid structures

in others.

7.2.3. PP-Type PSGP Continuous Self-Motons. If the image space con-

straint surface corresponding to possible displacements of a PP-type leg is quadratie,

it must be a degenerate quadric that splits into a real and an imaginary plane. This

is because only eurvilinear motion of the platform can result when the two of the

platform attachment joints are disconnected. Once the angular input of the active

R-pair is fixed no rotation of leg or platform is possible. Still, the image of a two

parameter family of displacements must be a two parameter constraint manifold, but

because cp is constant, the image space coordinates X 3 = f (cp) and X 4 = 9 (cp) must

also be constant. Renee, the finite part of the two dimensional constraint manifold is

linear and must be a hyper-plane.

Upon normalising the image space coordinates, by setting X 4 = l, ail planes

corresponding to possible displacements of the PP-type Ieg still eonnected are parailel

to X 3 = o. There are three possibilities:
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(1) AIl three planes are parallel and contain only one line in the plane at infinity

in commoD.. This situation represents CXJ1 solutions at infinity. The platform

cannot he assemhled with the given inputs.

(2) One plane is parallel to two that are incident. Again, this represents 001

solutions a.-t infinity. The platform cannot he assembled with the given inputs.

(3) Ail three planes are incident. This means that there are 002 real solutions.

The platf<>rm can he assemhled, but it is free to translate when it should

he a rigid structure. This t-.fPe of unwanted, unexpected and uncontrollable

motion is a self-motion [88].

From a line geometric perspective, these three cases mean that whenever the platform

can he assemhled given a set of active joint inputs the Jacobian matrix derived from

the line equations :for each of the three legs5 is always rank deficient.

The inescapahle conclusion is that there is no practical design merit associated

with PP-type PSGP as a three nOF platform. This, however, does not preclude

designs of topologically asymmetrical three legged planar platforms with at most one

PP-type leg. On t;he other hand, the self-motion property provides possibilities to

design very stiff on.e nüF planar platforms which are relatively easy to actuate, like

the LAnD actuatoI mentioned ahove.

7.2.4. SinguIarity Detection. Recall the rational factor in the special uni­

variate, Equation (4.47), for PR- and RP-type platforms:

(7.9)

•

Equation (7.9) is a. relation between the directions of the three lines connecting the

fixed and moving platforms. It has the following geometric significance: if it equals

5Merlet [96] shows tha.t the Jacobian matrix of a parallel platform in a given configuration is trans­
pose of the matrix wbose columns are the Plücker coordinates for each leg in the corresponding
pose.
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zero after the input joints are locked then the centre lines of the passive P-pairs form

a planar linear pencil (i.e., the family of alllines passing through one point in the

plane). When the P-pairs are mutually parallel the apex of the pencil is at infinity.

This stems from the fact that the expression is the determinant of the following

homogeneous matrix

Al A 2 1

B 1 B 2 1

Cl C2 1

If the determinant of (7.10) is equal ta zero, there is a linear dependence among the

lines causing the rank deficiency. Either the three lines have a single point in common,

or at least two are incident. If two of the directions are parallel while the leg forces

exert a couple (i.e., with A3 = B 3 = C3 = 1), then two of the lines are coincident

and ail three are still in a pendl.

The vanishing of the rational factor means the selected inputs place the platform

in a singular configuration where the platform exhibits infinitesimal motions. If the

pencil apex is finite the platform can resist no moment about this point and the

platform experiences a transitory mobitity. This means the platform can rotate about

the intersection point. If the apex is at infinity, the platform can resist no force

perpendicular to the direction of the passive prismatics and the platform acquires an

uncontrollable translational DOF.

The above discussion suggests a simple way to detect such singularities in any

planar three-Iegged platform, including RRG type. When active joint inputs are

specified these joints may be taken to he locked. The eight links of the parallel

mechanism are effectively reduced to five [112], two of which are the ba.se and the

moving platform. What remains are three links connecting fi..xed points to moving

points. These three pairs of points define three tines in the plane of the platform.
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Here we may, without 10ss in generality, cali the fixed points Fi and the moving points

Mi, i E {A, B, Cl, even though either the fixed or moving points may, depending on

the leg architecture, he the knee joint Ki. RecalI from Section 3.3 that the line

coordinates for a line .c in the plane are obtained from two points on the line. If the

two points are (Xl: X2 : X3) and (YI: Y2 : Y3) the line coordinates can be written as

Y3 YI YI Y2

The condition for the incidence of three lines, say one for each leg of the manip­

ulator .ci, can he expressed as

The vanishing of this determinant represents exactly the singularity given by the

vanishing of Equation (7.9). The line geometric explanation is that the three lines

lie in a planar linear pendL It is worthwhile pointing out that these singularities are

determined without calculating the Jacobian.

•
.cIA .c2A .c3A

.clB .c2B .c3B

.cIe .c2c .c3c

- Q•

7.2.5. Singularity Quantification. The workspace of a given three-Iegged

•

planar platform is likely to contain sorne points where the platforrn will be in the

singular configuration described above. It is always of interest to know the proximity

to these locations for trajectory and path planning tasks. A simple rneans to quantify

this proximity is to compare the area of the triangle enclosed by the 1:,i lines on the

vertices Vi = 1:,i+l n .ci +2 , i E {A = 1, B = 2, C = 3} [35} with the average area of

the fixed and moving triangles. The ratio A/Aave , or its reciprocal can be used. The

point coordinates of the Vi, indicated by (Vl i : V2i : V3J, are obtained byexpanding
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the singular determinant representing three lines that intersect on the same point:

.cl 1:,2 .c3

.cli+1 .c2i+l .c3i+ 1
- O.

.cli+2 .c2i+2 .c3i+2

This gives the following point coordinates:

( .c2i+ 1 .c3i+ 1 .c3i+ 1 1:,2i+l .c1i+ 1 .c2i+l ) (VIi : V2i : V3J.-

.c2i+2 .c3i+ 2 .c3i+2 .c2i+2 .c1i+ 2 .c2i+2

The area A of triangle VA, Va, Vc is given by the Grassmannian volume [90]

A -
1

(7.11)

• When A vanishes the legs are in a pencil, however when A becomes infinite the

legs are parallel and are still in a pencil, but the apex is on the line at infinity.

Figure 7.8 illustrates three possible singular configurations of RRR platforms. As a

performance indicator, an extremely small area ratio mean the configuration is close

to singular, but sa does an extremely large area ratio.
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CHAPTER 8

Concluding Rernarks

8.1. Conclusions

This thesis has presented a kinematic analysis of planar three-Iegged platforms

in general, and PSGP in particular. This analysis involved the use of a kinematic

mapping procedure to derive a univariate polynomial that can be applied to the FK

problem of every PSGP. The univariate can aIso he applied ta topologicallyasymmet­

ric platforms provided the legs are all of one of three types: RR-, PR-, or RP-type.

Furthermore, it can he used ta solve the FK of PSGP-type manipulators with active

holonomie higher pairs.

As a prelude to the study, a classification of planar three-Iegged platforms was

reviewed, and PSGP were defined in that context. The holonomie higher pair archi­

tecture was detailed and special geometric properties were given. A detailed mobility

analysis was performed.

Relevant geometric and algebraic tools and concepts were reviewed. Next, var­

ious representations of displacements were discussed, leading to derivations of the

kinematic mapping employed in the subsequent kinematic analysis.
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8.L CONCLUSIONS

The application of kinematic mapping to the FK problem was then examined.

First, the relevant kinematic constraints for RR-, P R- and RP-type platforms were

described in the displacement space. Next, the images of these constraints in the

kinematic mapping image space were examined and classified as either hyperboloids

of one sheet, or hyperbolic paraboloids. The hyperboloids all contain the imaginary

points JI (l : -i : 0 : 0) and J2 (1 : i : 0 : 0), while the hyperbolic paraboloids all

have the the intersection of the hypet"-planes X 3 = 0 and X 4 = 0, (Xl: X 2 : 0 : 0),

as a common generator. The variety of the polynomial representation of three such

image space quadrics leads directly to the univariate. It is obtained after eliminating

two image space coordinates from three simultaneous constraint surface equations.

The roots of the univariate yield all solutions to the given FK problem. Because

the coefficients are determined symbolically, not numerically, the effects of design

constants and joint inputs on solutions are immediately quantifiable. The upper

bounds on the number of solutions to the FK problem were rationalised in terms of

image space and Cartesian space representations of the relevant kinematic constraints.

Use of the univariate is limited to RR-, PR- and RP-type architectures. However,

the FK problem of any 3-legged planar fully-parallel platform with 3 DOF, including

those with active holonomie higher pairs, but excluding those with P R- and RP-type

mixed legs, can be solved by solving three simultaneous quadric equations. There are

468 PR-RP-type mixed leg three DOF planar platforms jointed exclusively with R­

and P-pairs. The FK of the remaining 672 lower-pair jointed planar platforms are

solvable either by direct application of the univariate, or by locating the intersection

points of the 3 constraint surfaces.

Not discussed were the possible platforms containing one PP-type leg. These

are 513 in number. Such platforms would seem to be problematic from a design

perspective, nonetheless, their inclusion beings the complete set of planar 3-legged
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lower-pair platforms with 3 DOF to 1653. It would be ideal to refomlulate the

problem such that the FK problem of a111653 platforms could he solved with a single

univariate.

The Il( problem for PSGP was detailed. Closed form solutions are obtained

from the pre-image of points in the image space representing feasihle displacements.

Then a simple variation of the procedure was given for PSGP-type manipulators

with holonomie higher pairs. This procedure, unlike the one in [63], yields all feasihle

solutions without generating spurious ones.

Finally, Husty's investigation of the workspace space analysis for RPR platforms

was generalised to include ail PSGP. This generalisation includes a simple criteria

to test for the existence of a dextrous workspace. Additionally, sorne observations

on the workspace analysis of PSGP-type rnanipulators with holonomie higher pairs

using the kinernatic rnapping image space were discussed. Lastly, a simple test for

self motions, and quantification of these singularities was proposed.

8.2. Suggestions for Future Research

Kinernatic mapping is a valuable visualisation tool for complex problems in planar

and spatial kinematics. It has proven to be useful in our solution procedure for the FK

and lI( problem of PSGP, as weil as for workspace and singularity analysis. Clearly,

it has potential as a mainstream tool in the formulation of manipuiator control and

analysis algorithms. It has not yet acquired wide acceptance because it is rooted in

19th century geometry. Geometry is generally ignored in secondary, post-secondalY,

and advanced education curricula throughout most of the world. It still maintains a

tenuous grip in central Europe, but this too is slipping. Solutions to CUITent research

problems in robot kinematics were solved by geometers of the 19th century. For

example, at the beginning of this century Borel [16] and Bricard [18] predicted self
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motions of SGP. This type of singularity remained essentially hidden until 1994,

when it was rediscovered by Husty and Zsombor-Murray [78]. The lesson is that a

thorough understanding of geometry combined with some algebraic skill is required

to understand and solve a broad range of kinematics problems. Skill at algebraic

manipulation of symbols is not enough. Indeed, there exists an inverse relationship

between the complexity of geometric and algebraic formulations of the same problem

[27].

Having said that, what remains ta complete the kinematic analysis of planar

three-Iegged platforms is to fonnulate the FK problem in such a way that one symbolic

univariate polynomial can be used to obtain solutions for all architectures. This

univariate is likely to be found hiding somewhere in the kinematic image spaee. The

same unified approach may also be brought to bear upon workspace and singularity

analysis. Additionally, variations of the PSGP with holonomie higher pairs should

be investigated. For example, it may be fruitful to examine RPG, RRG, or any of

the three GGG architectures. Moreover, lower and higher pair mixed leg platforms,

if feasible, are probably worth investigation.
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APPENDIX A

FK EXaInples

In what follows severa! examples illustrating how to apply the univariate to the FK

problem are examined in detail. They include procedures for regular PSGP, mixed

leg, and RRG-type platforms. The first two RPR examples demonstrate that the

univariate exactly reproduces published results, thereby verifying the univariate poly­

nomial algorithm.

A.l. Husty RPR Example

This example is taken from [79]. The base geometry and variable joint inputs

listed in Table A.1, are used to compute the corresponding circle parameters. These

/Ci and B.ï, needed to compute the univariate coefficients, are determined with the

appropriate relations found in Table 5.1.

Z Fi/!~ MilE ri = d2i (/COi : /Cli : /C2i : /C3i ) B.ï
A (0 : 0 : 1) (0 : 0 : 1) 1 (1 : 0 : 0 : -1) -1

B (3 : 0 : 1) (2 : 0 : 1) 2 (1 : 3 : 0 : 5) 9

C (1 : 3 : 1) (1 : 2 : 1) 2 (1 : 1 : 3 : 6) Il

TABLE A.l. Husty RPR geometry, joint inputs and circ1e parameters.
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FIGURE A.L The three constraint hyperboloids for the Husty RPR example
where -1 < t ~ 1 and 0.5 ~ t ~ 0.7, respectively.

Substituting these data into the equation for the general univariate yields the

following:

4249X~ -1244X; -1097X: + 200xi - 65Xi + 4X3 + 1 - o. (A.1)

This equation has six distinct roots:

(X3h - -0.5120,

(X3h - -0.0858,

(X3h - 0.1608, (A.2)

(X3 )4 - 0.6345,

(X3 )S - 0.0476 + 0.2241i,

(X3)6 - 0.0476 - 0.2241i.

Back substitution of the four real solutions listed in Equations (A.2) into Equation
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Solution a b cp (deg.)

1 -0.0690 0.9976 -54.2255

2 -0.6290 -0.7773 -9.8079

3 -0.8916 -0.4529 18.2719

4 0.9829 -0.1841 64.7929

TABLE A.2. Husty RPR: four real solutions.

(4.44) and Equation (4.45) gives two equations linear in Xl and X 2 • The values of Xl,

X 2 and X 3 , together with the unit homogenising coordinate, X 4 = 1, are the image

of the FK solutions projected into the hyperplane X 4 = 1. The three constraint

hyperboloids, each generated with Equation (4.22), are shawn in Figure A.l. Two

views of the three hyperboloids are shawn, in the first -1 < t < 1 and in the second

-0.1 < t < 0.1, respectively.
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A.2. GOSSELIN-SEFRIOUI RPR EXAMPLE

The preimages are found by repeated application of Equation (3.45). The four

r~al solutions, i.e., platform poses, are listed in Table A.2, and graphically illustrated

in Figure A.2.

These results agree exactly with those in [79]. But, exactly the same equations

are used to obtain the univariate, and hence agreement of the solutions is not a

convincing validation of the procedure. For this reason, the next example is used

because the methods for deriving the univariate are completely different.

A.2. Gosselin-Sefrioui RPR Exarnple

This example is taken from [50]. The kinematic parameters and links lengths

from that example are used to extract the geometry data listed in Table A.3, while

the circle parameters are determined with the appropriate relations found in Table

5.1.

i FilE MilE ri = d2i (/COi : JC1i : JC2i : JC3i ) ~

A (0 : 0 : 1) (0 : 0 : 1) 14.98 (1:0:0:-224.4004) -224.4004

B (15.91 : 0 : 1) (17.04 : 0 : 1) 15.38 (1:15.91:0:16.58) 305.9238

C (0 : 10 : 1) (13.24 : 16.10 : 1) 12 (1:0:10:-44) 390.5076

TABLE A.3. Gosselin-Sefrioui RPR geometry, joint inputs & circle parameters.

Substituting these data into the equation for the general univariate gives:

•
1977.1359Xg - 4401.4063Xî + 948.1187Xj + 1186.2945X~ - 443.8786X~+

28.5790X3 + 1 = o. (A.3)
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A.2. GOSSELIN-SEFRIOUI RPR EXAMPLE

(X3h - -0.5393,

(X3h -0.0248,

(X3h - 0.1274,

(X3)4 - 0.2977,

(X3h - 0.5487,

(X3)6 - 1.8164.

(A.4)

•

The preimages of the corresponding image points are found by repeated application

of Equation (3.45). The six real solutions to the posed FK problem are listed in

Table A.4. These solutions are in exact agreement with those reported in [50]. This

represents a stronger validation for the procedure used here because the equations,

and indeed the geometry, used are different from those used in [50] .

•

~5

-1

1

1

1 0.6r

1

X3
0.4

0.2

FIGURE A.3. The three constraint hyperboloids for the Gosselin-Sefrioui
RPR example where -1 ~ t ::; 1 and 0.1 ~ t < 0.6, respectively.
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Solution a b cp (deg.)

1 -8.7267 12.1756 -56.6729

2 -5.5442 -13.9163 -2.8424

3 -14.9136 1.4088 14.5208

4 -13.5050 -6.4820 33.1579

5 14.9234 -1.3011 57.5090

6 14.6830 -2.9682 122.3308

TABLE A.4. Gosselin-Sefrioui RPR: six real solutions.

A.3. RRR Example

Without loss in generality, design parameters can be assigned ta an RRR platform

such that for one set of joint inputs the YB, defined by the inputs, has the same

geometry as the base of the RPR platform in the Husty example. The intermediate

links and the platform are dimensionally identical to those from the example. In this

case the solutions ta the FK problem, expressed in the VB frame, are identical to

those from the example. This being the case, the constraint hyperboloids are also

identical.

Therefore, the base geometry and base-fixed R-pair inputs are arbitrary, but must

determine VBP identical ta the Fi in the Husty example. The result is a platform

with the design parameters and joint input angles listed in Table A.5.

i FilE MilE fJ. 1i R.2i L LI IE deg.

A (0:0:1) (0:0:1) 2 1 a 0

B (6:0:1) (2:0:1) 2 2 {3 133.4325

C (3:5:1) (1:2:0) 2.4624 2 1 230.1652

TABLE A.S. RRR geometry and joint input angles.

193



•
A.3. RRR EXAMPLE

Solution a b cp (deg.)

1 1.4567 0.8395 -25.2705

2 1.8260 -0.9847 19.1471

3 1.4391 -0.8279 47.2269

4 2.9492 0.3148 93.7479

TABLE A.6. RRR: four real solutions.

This example is easily solved using the procedure described for RRR platfonns

in Chapter 5. However, we aIready know the solutions with respect to the YB frame;

these are listed in Table A.2. What remains is to transfonn these solutions to the

base frame, E. This is accomplished using Equation (5.17) and Equation (5.18). The

solutions are enumerated in Table A.6 and illustrated in Figure A.4.

•
1

3

2

4

•
FIGURE A.4. The four real solutions for the RRR example.
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A.4. RRR EXAMPLE

A.4. RRR EXaIIlple

In this example the platform geometry and fixed lengths of the platform-attached

links and platform.-fixed R-pair inputs are all selected so the resulting VP is dimen­

sionally identical to the platform in the Husty RPR example. Moreover, the fixed

base points and the fixed lengths of the base-attached links are identical to the same

example. Thus, the base and platform geometry, link lengths, and inputs are listed

in Table A.7

i FilE MilE lli l2i ~ l21E deg.

A (0:0:1) (0:0:1) 1 V13/16 Cl! 213.6901

B (3:0:1) (1/2:0:1) 2 V13/16 {3 326.3099

C (1:3:1) (1/4:1/2:1) 2 1 'Y 90

TABLE A.7. RRR geometry and joint input angles.

The example can be solved with the procedure described for RRR platforms in

Chapter 5. However, the poses of the VP frame, Evp , are already known, and listed

in Table A.2. What remains is to transform these solutions to gÏve the pose of the

platform frame E. This task is accomplished using Equation (5.19) and (5.40). Note,

because the orientation of Evp was contrived to be identical to E the orientations of

the platform in this example agree exactly with the ones in the Husty RFR example.

The four solutions are illustrated in Figure A.5.

Solution a b cp (deg.)

1 0.6810 1.4976 -54.2255

2 0.1209 -0.2773 -9.8079

3 -0.1416 0.0471 18.2719

4 1.7329 0.3159 64.7929

TABLE A.B. RRR: four real solutions.
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A.5. PPR EXAMPLE

2
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•

A.5. PPR Example

This example illustrates the use of the VL procedure. Here the fixed link angles

were selected for convenience. The known design constants and P-pair inputs are

listed in Table A.9.

i FilE MilE d2i [, [,1/1: deg. '-211 '-2/1:

A (0:0:1) (0:0:1) 3/2 a 0 90 90

B (3:0:1) c.lf :0 : 1) 1 {3 90 90 180

C (1:3:1) (3v'5 . 2v'5 . 1) 1 'Y 270 90 010 • 5 •

TABLE A.9. PPR geometry and joint input angles.
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We proceed with the computations described for PPR platforms in Chapter

5. The circ1e coordinates are computed using Equation (5.13). Then, using these

coordinates together with the Mi in Table A.9 the univariate coefficients are evaluated.

The three hyperbolic paraboloids are illustrated in Figure A.6, showing one of the

intersections.

Note that because the VL is used the coordinate 1C3A is, in general, not zero.

Thus the 30 term univariate for P R-type platforms must be used. For this example

the univariate takes the satisfying form:

xi - 4X3 - 1 - o.

FIGURE A.6. A projection of the hyperbolic paraboloids where -1 ~ t < 1
and -10 ~ s ~ 10.
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The preimage of the solutions the roots of this quadratic are the two real solutions

listed in Table A.ID.

Solution a b cp (deg.)

l l 1.5 -26.5651

2 3 1.5 153.4349

TABLE A.ID. PPR: two real solutions.

1

V VL
1

V VL

VL
-~--

FIGURE A.7. The two real solutions for the PPR example.•
1 2

A.6. RPR Example

This example is also based on the Husty RPR example presented eartier. Here,

the inputs are based on solution 4 from that example. The procedure requires that E

moves relative to E. Thus, the moving points are the Fi, while the fixed orres are the

Mi· The variable joint inputs are the platform-fixed revolute angles, ~21E' The circle

coordinates are computed as

lCOi - 0,

/C1i
lM .- 2" Zi sm~2/E'

lC2i
1

- -"2MZi cos ~2IE'

/C3i - MxilE sin ~2/E - MYilE cos ~2IE·
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The platform geometry, joint inputs and circ1e coordinates are given in Table A.11.

i FilE MilE "21E deg. (K1i : K 2i : K3J
A (0 : 0 : 1) (0 : 0 : 1). 104.5980 (0.4839 : 0.1260 : 0)

B (3 : 0 : 1) (2 : 0 : 1) 240.8446 (-0.4367: 0.2436 : -1.7466)

C (1 : 3 : 1) (1 : 2 : 1) -19.2499 (-0.1648 : -0.4720 : -2.2179)

TABLE A.1l. RPR geometry, joint inputs and circ1e parameters.

The data in Table A.11 determine the three image space constraint hyperbolic

paraboloids. A projection of the three surfaces is illustrated in Figure A.8, which­

shows one of the intersection points. Substituting these data into the univariate

FIGURE A.B. A projection of the hyperbolic paraboloids where -1 ~ t ~ 1
and -10 ~ s < 10.

•
equation gives the fol1owing quadratic:

184.3861Xi + 62.9298X3 - 34.5792 - o. (A.5)
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The roots ofEquation (A.5) yield the pose of E with respect to E. These solutions

are transformed, using Equation (5.8), to give the pose of EinE. Both sets of

solutions are listed in Table A.12.

Solution 1 2 Solution 1 2

a EIB -0.2520 0.1248 aBlE 0.9829 0.1559

bEIB 0.9677 0.4793 bEIE -0.1841 0.4701

'PElE (deg.) -64.7929 32.9385 'PEIE (deg.) 64.7929 -32.9385

TABLE A.12. RPR FK solutions.

• 1 2

•

FIGURE A.9. The two real solutions for the RPR example.

Figure A.9 illustrates the two real solutions for this example. Clearly, solution 2

is not realizable. While the base points are on their respective lines, they violate the

joint limits in that for the given input angles the solutions require the base points ta

be on the portion of the line unreachable by the prisrnatic joint. This illustrates that

this procedure requires sorne extra verification that solutions are realizable.

A.7. PR-Type Mixed Leg Exam.ple

Mixed leg platforrns are analysed using the same variety of procedures sum­

rnarised in Tables 5.8, 5.9 and 5.10, however procedures can differ from leg ta leg.
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As mentioned earlier, platform legs must all belong to one of the three types. In the

following example leg A is RFR, leg B is PPR, and leg C is P RP, aU belonging to

the P R-type.

The base and platform points are listed in Table A.13, the fixed link angles in

Table A.14, while the active joint inputs are in Table A.15.

~ FilE MïlE

A (0:0:1) (0:0:1)
B (3:0:1) (2:0:1)

C (1:3:1) (1:2:0)

TABLE A.13. Mixed PR-type leg base and platform points.

Angle deg.

f3I /E 225

{32/1 225

'YliE 350

'Y21E 120

TABLE A.14. Mixed P R-type leg fixed link angles.

Joint input Value

aIlE 67.5107 deg.

dIs 1.9083

d 2c 1.2003

TABLE A.IS. Mixed PR-type leg active joint inputs.

Consulting Table 5.9 the regular procedure can be used by leg A, the virtual base

is required by leg B, and the virtual platform by leg C. The platform is illustrated

in Figure A.10, showing the fixed joint angles together with the virtual components.

Note that the architecture simplifies computations by virtue of the fact that the

platform and VP frames, E and Evp , are coincident. Meanwhile, the origins of E

and EVB are coïncident, but the basis directions are different.

201



•

•

A.7. PR-TYPE MIXED LEG EXAMPLE

FIGURE A.IO. The mixed PR-type leg platform.

Examining Figure A.10, one sees the vertices of the YB are the points FA, K B and

Fe, while the vertices of the VP are MA, M B and K c . Deterrnining the orientation of

DEvBIE requires sorne additionalobservation. Equation (5.14) and (5.15) can not be

used outright as the length d2A is not known a priori. However, this quantity is the

distance between OE and OEvB' Since the origins are coincident, this length vanishes,

and Equation (5.14) is rewritten as Equation (A.6)

•
while Equation (5.15) becomes Equation (A.7)

DEVBIE = atan2(y, x),

(A.6)

(A.7)
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where

Using the data from Tables A.14 and A.15 we obtain

fJEVBIE = 320.7343 (deg.).

The next step is to compute the circle coordinates and VPP required ta evaluate the

univariate coefficients. For leg A we have

•
where

K,OA - 0,

K,lA
1

- 2" sin al/EvB '

K,2A
1

- -'2 cos al/EvB '

lC3A - 0,

al/EYB = aIlE - 'l9EYBIE = 106.7764 (deg.).

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

For leg B the coordinates of KBIEvB are required. First, K B1E are computed

from the given inputs and design constants. These are transformed to K B / EvB with

Equation (5.16). Then the circle coordinates can be evaluated with

K,Os - 0, (A.13)

K,lB
1 . {3 (A.14)'2 sm 2/Eys'

lC2s
1

(A.15)- -2" cos {32/EyS'

JC3s - KxslEvs sin {32/EvB ' (A.16)
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where

(A.17)

•

For leg C the coordinates of FC/ EvB are needed. We simply transform FC / E with

the transformation matrix from Equation (5.16). The coordinates of K C / Evp must

also be determined. But, because of the coincidence of E and Evp, these coordinates

are obtained directly from the input for leg C and the fixed angle 12/E' Then,

/COc - 0, (A.18)

/CIe
1

(A.19)- 2" sin llt~vB '

/C2c
1

(A.20)- -2 cos TI/EvB'

/C3c - Fxc/ EvB sin Tl/EVB - FyC /Ev B cos Il/EV B ' (A.21)

where

(A.22)

The above information, required to evaluate the univariate coefficients, is tahu-

lated as the circle coordinates and VPP in Tables A.16 and A.17.

i /Cli /C2i 1C3i

A 0.4787 0.1443 a
B 0.3871 0.3165 1.6496

C 0.2444 -0.4362 -3.1281

TABLE A.16. Mixed PR-type leg circle coordinates.

Substituting the data from Tables A.16 and A.I7 into the univariate equation

gives the following quadratic:

•
24.6417Xi - 26.7045X3 - 3.9568 O. (A.23)
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i VPPxi/Evp VPPYi/Evp

A al =0 a2 = 0

B bl = 2.000 b2 =0

G Cl = 0.3999 C2 = 3.0395

TABLE A.17. Mixed PR-type VPP.

The roots yield the image points of the FK solutions in the VB frame. A projection

of the three image space constraint hyperbolic paraboloids is shown in Figure A.II.

The coordinates of GE must be transformed using the rotation from ~VB ta ~, while

-1
-8

-6
-4

-2
X2 0

2
4

6

FIGURE A.Il. A projection of the hyperbolic paraboloids where -1 ~ t ~ 1
and -10 < s < 10.

the orientation of E is

(A.24)
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The final FK solutions are illustrated in Figure A.12, while Table A.18 lists both sets

of solutions.

Solution 1 2 Solution 1 2

aEVB -0.3643 -0.5326 a 0.4829 0.7060

b 1.2086 1.7670 b 1.1663 1.7052EVB

CPEv R (deg.) -15.0474 101.1244 cp (deg.) -54.3131 61.8587

TABLE A.IB. Mixed PR-type FK solutions.

FIGURE A.12. The two real solutions for the mixed PR-type leg example.

Note that the two solutions illustrated in Figure A.12 represent two different

platforms because of the difference in the direction of increasing d3c for each one.

Thus, only one assembly configuration is realizablej the result of the fact that joint

limits are not taken into account by the FK solution algorithm. This presents no

practical difficulty in implementation of the algorithm because the workspace of a

given platform. is known a priori and solutions can he quickly checked to see if they

fail within bounds.
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A.S. RRG Exam.ple

This example deals with the FK of an RR-type platform. with active holonomie

higher pairs. For these platforms the initial assembly configuration (rAC) must be

specified. Thus, the lAC is.enumerated in Table A.19. Whereas Table A.20 gives the

coordinates of the base points FA, FB , Fc in the fixed frame :E, the change in rack

tangent ~gles, and the correspondïng knee joint positions in E, as weil as Evp (the

vpp deterrnined by their positions on their respective involutes), given by Equations

(5.47) and (5.53), respectively. The link lengths, in generic units, are: r = 4, lli = 4,

12i = 10.

i d3ilR {) 1 (deg.) L LIlE (deg.) fJ
2/I

(deg.)
E ilE

A 0 225 a 135 270

B 0 315 {3 45 90

C 0 90 7 180 90

TABLE A.19. IAC for the RRG platform..

'Z FXilE FXi / E .6.Ti (deg.) K Xi/ E K Yi/ E KXi/Evp KYi/Evp

A 0 0 -17.5 -11.8540 -7.5482 0 0

B 10v!2 0 -15 7.9069 -11.6008 20.1222 0

C 5V2+4 9V2 + 14 7.5 -1.3082 13.9486 6.0121 23.1771

TABLE A.20. Fixed base points, joint inputs, and VPP in E and Evp.

The three inputs, .6.Ti' determine the geometry of the VP. The VPP are computed

using Equation (5.47). Substituting the VPP from Table A.20 into Equation (4.40)

determines the three constraint hyperboloids illustrated in Figure A.13, showing one

of the intersections. The circ1e coordinates are calculated for each leg using the

relations found in Table 5.6. Then the drcle coordinates, together with the lAC

and k i / Evp from Tables A.19 and A.20 are substituted into the univariate, Equation
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(4.46), giving the following sixth degree polynomial:

8944.3066X; + 5225.3803Xg + 1218.8858Xi + 219.8942X; + 40.5995X;+

4.3567X3 + 0.15898 - O.

The roots consist of two real and two pairs of complex conjugate values for X 3 :

(X3h - -0.1538,

(X3h - -0.0688,

(X3)a - -0.2238 + 0.OO68i, (A.25)

(X3)4 -0.2238 - 0.OO68i,

(X3 )S - 0.0429 + 0.1779i,

(X3)6 0.0429 - O.1779i.

The real values are used to compute the corresponding values of Xl and X 2 • The

preimage of these coordinates yield the pose of E vp in E. Transforming these dis­

placement parameters using Equation (5.58) gives the required FK solutions. Both

sets of solutions, corresponding to the real value of X 3 are listed in Table A.21.

Solution 1 2 Solution 1 2

a Evp / E -2.9833 -1.9109 aE!E 9.5830 9.4289

b 2.6647 3.5141 bE!E 8.9561 11.8146Evp!E

'PEvp!E (deg.) -17.4823 -7.8731 'PElE (deg.) -5.8927 3.7165

TABLE A.21. RRG FK solutions.

The rack tangent angle inputs, Ô-ri, in Table A.20, expressed relative to the

disk frame E, reveal the geometry of the VP. The origin of E is on the disk centre.

Once the orientation and position of the VP, and hence E, are obtained as a triple

of displacement parameters (a, b; 'P), it is a simple matter of plane trigonometry to
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FIGURE A.13. The constraint hyperboloids in the X 4 = 1 projection of the
image space.
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FIGURE A.14. The two real solutions: (i) solution 1; (ii) solution 2.

determine the relative link angles for the assembly configuration that correspond to

the solution. Figure A.14 illustrates the two real assembly configurations, where the

vertices of the VP are on their respective circles.
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APPENDIX B

IK Exarnples

B.l. RR-Type Legs

FIGURE B.l. lI( problem for RPR legs.

Solving the lI{ problem for RPR legs, see Figure B.I, involves a straightforward

application of Equation (6.4), reproduced below.

•
r = d2, = I~I. (B.l)
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B.2. NON-RR-TYPE LEGS

B.2. Non-RR-Type Legs

FIGURE B.2. IK problem for RPR legs.

Solving the IR problem for RPR legs, see Figure B.2,

•
B.2.1. RPR Legs.

involves a straightforward application of Equation (6.5), reproduced below.

L = LIf !; = atan2(N, D). (B.2)

•

B.2.2. RPP Legs. For RFP legs, the IK problem involves some additional

computation. The desired input parameter is d2i , whereas the output from the IK

algorithm is the angle t. Simple trigonometric analysis of Figure B.3 reveals, after

application of the Law of sines:

L2fE and LIf2 are design constants.

t - atan2(N, D).

L/E - f., + 1[" - cp.

p - 1f.,2 fE - L/EI·

d2i
sinp

- r . .
SillLI/2
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B.3. RRG EXAMPLE

FIGURE B.3. IK problem for RPP legs.

B.3. RRG Example

Table B.3 gives the manipulator's initial assembly configuration (lAC). The FXilE

and FYilE are the coordinates of the base of each leg expressed in the fixed frame, E.

The initial rack normal angles in the moving frame, E, are TliIE- The relative angles

between the first link and base, and between the second and first links are ~I/E and

t2/1, respectively. The location of the contact point along a rack measured in the

corresponding rack frame, R;., is d3ilRi' The link lengths, in generic units, are: r = 4;

lli = 4; e2i = 10.

i FXi/E FYilE TlilE tl/E ~2/1 d3ilRi

A 0 0 2250 1350 270° 0

B 10'/'2 0 3150 45° 90° 0

C 5'/'2+4 9v'2 + 14 90° 1800 90° 0

TABLE B .1. Initial assembly configuration (lAC) .
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The desired pose of the end-effector and the corresponding image point are one

of the solutions from the FK example in Appendix A.8:

Xl -11.503
a 9.429

X 2 9.807
b - 11.845 -

X 3 0.065
cp (deg.) 3.716°

X 4 1.999

After making the appropriate substitutions, the following three univariate functions

are obtained.

HA (ÂTA) - 408.489 + 16(ÂTA)2 - 422.777coSÂTA -19.875sinÂ'TA +

ÂTA(5.678 cos Â'TA -120.793sinLlTA),

HB(D..TB) - 341.710 + 16(Â'TB)2 - 3170434 cos ÂIB + 161.514sinL~:ïB ­

LlTB(46.147 cos ÂTB + 90.694sin~TB),

Hc(ÂTc) - 405.104 + 16(ÂTc) - 413.715 cos LlTc + 72.949 sin Â'Tc ­

LlTc(20.843 cosÂ'Tc + 118.204sinÂTc).

The values of ÂTi from each solution are used to evaluate Equations (5.47), giv­

ing the corresponding knee joint coordinates (Xi, Yi). These are listed in Table B.3.

The relative link angles for each assembly configuration are determined using plane

trigonometry and the given position and orientation of the pinion end-effector (i.e.,

the moving frame, E). Note that the solution in the first row of Table B.3 is in exact

agreement from the corresponding FK example in Section A.8. Figure BA iilustrates

one of the eight real assembly configurations.
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6.TA K XA1E KYA1E ~TB K XB1E K YB1E 6.Tc K XC1E K YC1E

-17.5° -11.845 -7.548 -15° 7.907 -11.601 7..5° -1.308 13.949

25.04° -6.422 -12.563 -55.07° 0.783 -14.554 -35.46° 6.106 12.839

TABLE B.2. Change in rack tangent angle and corresponding knee joint
coordinates for each leg.

i
i

i
/

/
/

/
/

./
KA

FIGURE B.4. One of the eight real solutions.
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APPENDIX C

Maple V Worksheet: Univariate

Derivations

In this Appendix the Maple V worksheet used to derive the general univariate is

listed. There are a couple of points to note. Fust, The image space coordinates in

the worksheet are those used in the Study kinematic mapping and not the Grünwald­

Blaschke mapping (the one used in derivations in the text of this thesis), see Equation

(3.44). Second, because it is difIicu1t, if not impossible, to use subscripted variables

in M aple V none are used. As a result equations in the worksheet appear somewhat

different, for instance (2C2B 1br) appear as (2 C2 Bl bl). Finally, only the coefficients

of the 694 and 30 term versions of the univariate are listed. The 3613 term version

produced the following error message when the version that included these terms was

U'IEX'ed:

TeX capacity exceeded J sarry [main memory size=262141].



•

•

File: GenUni3.mws

Last updated: May 13, 1999

This worksheet shows how to determine the one univariate polynomial that
can be used to solve the FK of ANY symmetrical (with respect to leg type)
3-Iegged planar SGP. It is based on Manfred Husty's approach for 3-legged
RPR planar platforms. We start with Study's linear transformation represent­
ing general spatial displacements. The elements in the transformation matrix
are the soma coordinates. The kinematic mapping is defined by the relation­
ship between the following 8-tuples (the second being Study's soma coordinates):
[x1:x2:x3:xO:y1:y2:y3:yO]=[c1:c2:c3:cO:g1/2:g2/2:g3/3:gO/2), where the ci and gi
are defined as in THEORETICAL KINEMATICS, by Bottema and Roth (see
pp. 150-151). (Note, the European representation is used to agree with Man­
fred's worksheet):

> restart;
> withelinalg) :

Warning. ne~ definition for nonn

Warning. new definition for trace

> S:=matrixe4,4.[xO-2+xl-2+x2-2+x3-2,O,O,O.2*e- yl*xO+yO*xl-y3*x2+y2*x3),
xO-2+xl-2-x2-2-x3-2,2*(xl*x2-xO*x3),2*(xl*x3+ xO*x2),2*(-y2*xO+yO*x2-yl*x3+
y3*xl),2*(xl*x2+xO*x3),xO-2-xl-2+x2-2-x3- 2,2*(x2*x3-xO*xl),2*(-y3*xO+yO*x3­
y2*xl+yl*x2),2*(xl*x3-xO*x2),2*(x2*x 3+xO*xl),xO-2-xl-2-x2-2+x3-2]);

s:=
[x0 2 + x1 2 + X~2 + x32

, 0, 0, 0]

[-2 yl xO + 2 yO xl - 2 y3 x~ + 2 y~ x3, x02 + x1 2 - x~2 - x32
, 2 xl x~ - 2 xO x3 ,

2 xl x3 + 2 xO x2]

[-2 y2 xO + 2 yO x~ - 2 yI x3 + 2 y3 xl , 2 xl x~ + 2 xO x3 , x0 2
- x1 2 + x22

- x32 ,

2 x~ x3 - 2 xO xl]
[-2 y3 xO + 2 yO x3 - 2 y~ xl + 2 yI x2 , 2 xl x3 - 2 xO x~ , 2 x~ x3 + 2 xO xl ,

x02
- x1 2

- x2 2 + x3 2
]

Now we restrict the displacement ta the y-z principle plane in the fixed space.
It is easy to verify that this condition requires x2=x3=yO=y1=O:

> S2:=subs(x2=O,x3=O,yO=O,yl=O.op(S));

x02 +x1 2 a a 0

x02 - x1 2 -2 zO xl

2z0 xl x02 - x1 2

•

S~:=
o

-2 y2 xO + 2 y3 xl

-2 y3 zO - 2 y2 xl

o
o

a o
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2xOxl

We can eliminate the second row and eolumn for the following reason. The
only non-zero element in the second row and eolumn is multiplied by x=O.

> S3:=delrowsCS2,2.. 2);

[

x02 + x1 2

S3 := -2 y2 xO + 2 y3 xl

-2 y3 xO - 2 y2 xl

Renee, the planar reduction of S is:
> Syz:=delcols(S3,2..2)j

Syz:= [_2 Y::0++
X
::3X1 x02~X12 _2:X1]

-2y3xO -2y2xl 2xOxl x02 -x1 2

> inverse(Syz);

o

2 xOxl
%1

x02 - x1 2

%1

o1

x02 + x1 2

2 y2 xO + y3 xl x02
- x1 2

%1 %1
2 y3 xO - y2 xl -2 xO xl

%1 %1
%1 := x04 + 2x02 x1 2 + x1 4

> factor(xO-4+2*xO-2*xl-2+xl-4);
(x0 2 + x1 2 )2

In linear algebra terms, Syz is non-singlliar as long as xO~2+xl-2is non-zero.
> Vr:=vectorC[l,x,y])j

•

•

Vr := [1, x, y]
> Vl:=multiplyCSyz,Vr);

Vl := [x0 2 + x1 2
, -2 y2 xO + 2 y3 xl + (x0 2

- x1 2
) X - 2 xO xl y,

-2 y3 xO - 2 y2 xl + 2 xO xl x + (x0 2
- x1 2

) y]
Ne.""rt, we want a general expression for the image space hyperboloid repre­

senting displacements with one point constrained to move on a fixed circle in
the fixed reference frame:

> Circle:=KO*(Xl-2+X2-2)-2*Kl*XO*Xl-2*K2*XO*X2+ K3*XO-2;
Circle:= Ka (X1 2 + X2 2

) - 2Kl XO Xl - 2K2 XO X2 +K3 X0 2

The four Ki are the homogeneous coordinates of the circle (kreis), while the
Xi are those of points on the circle. Four circle coordinates are required since
three parameters are required to determine a circle, whereas two parameters
determine a point.

The LHS of the equation X=Syz*x, where the vectors X and x are given by
VI and Vr, respectively, is then substituted into the circle equation...

> Cirl:=subsCXO=Vl[1],Xl=Vl[2],X2=Vl[3],Circle);
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Cirl := KO((-2 y2 xO + 2 y3 xl + (x0 2 - x1 2) X - 2 xO xl y)2

+ (-2 y9 xO - 2 y2 xl + 2 xO xl x + (x02 - x1 2) y)2)

- 2Kl (x02 +x1 2 ) (-2y2 xO +2y3 xl + (x0 2 - x1 2 ) X - 2xO xl y)

- 2K2 (x02 + x1 2
) (-2 y3 xO - 2 y2 xl +2xO xl x + (x0 2

- x1 2)y) + K3 (x0 2 +x1 2)2
> Cir:=factor(Cirl);

Cir := (x0 2 + x1 2)(-2 x02 K2 y + x02 K3 + x0 2 KO x 2 - 2 x02 KI x + x02 KO y2
-4:J.·0 KO y2x +4xO K2y3 -4xO KO y3y+4xO KI xl y +4xO KI y2 -4xO K2xl x

- 4 KO yS xl x + KS x1 2 + 4 KO y2 2 + KO x1 2 y2 + KO x 2x1 2 + 4 KO y2 xl y + 4 KO y3 2

- 4 KI y3 xl + 4 K2 xl y2 + 2 x1 2 K2 y + 2 x1 2 KI x)
The desired expression is the second of the two factors above. The first

factor may be eliminated because it design parameter independent, as long as
xO-2+xl-2 is non-zero.

> Hgen:=op(2,Cir);

Hgen ;= -2 x02 K2 y + x02 K3 + x02 KO x 2 - 2 x02 KI x + x02 KO y2 - 4 xO KO y2 x
+ 4 xO K2 y3 - 4 xO KO y3 y + 4 zO KI xl y + 4 xO KI y2 - 4 xO K2 xl x - 4 KO yS xl x

+ K3 x1 2 + 4 KO y22 + KO xl 2 y2 + KO x 2 x1 2 + 4 KO y2 xl y + 4 KO yS2 - 4 KI y3 xl

+4K2 xl y2 + 2x1 2 K2y +2x1 2 KI x
> nops(Hgen);

22
> coeff(Hgen,xO,2);

-2K2y +KS +KOx2 -2Kl X+KOy2
> coefÏ(Hgen,xl,2);

K9 + KO y2 + KO x 2 + 2 K2 Y + 2 KI x
> H:=expand(subs(K3=R-KO*(x-2+y-2),Hgen»;

H ;= 4 xO K2 yS - 4 KI y3 xl + 4 K2 xl y2 + 2 x1 2 K2 y + 2 x1 2 KI x - 2 x02 K2 y

- 2 x02 KI x + 4 xO KI y2 + 4 KO y22 + 4 KO y32 + 4 KO y2 xl y - 4 KO y3 xl x

- 4 xO KO y2 z - 4 xO KO yS y + 4 xO KI xl y - 4 xO K2 xl x + x02 R + x1 2 R
> nops(H);

18
> Ha:=subs(Kl=Al,K2=A2,R=Rl,x=O,y=O,z=l,xO=l,y3 =Xl,y2=-X2,xi=X3,H);

Ha:=
4 A2 Xl - 4 Al Xl X9 - 4 A2 X9 X2 - 4 Al X2 + 4 KO X2 2 + 4 KO X1 2 + RI + X9 2 Rl

> Hb:=subs(Kl=Bl,K2=B2,R=R2,x=bl,y=O,z=l,xO=l,y 3=Xl,y2=-X2,xl=X3,H);

Hb ;= 4B2 Xl - 4BI Xl X9 - 4B2 X3 X2 + 2XS2 BI hl - 2 BI hl - 4Bl X2 + 4KO X2 2

+ 4 KO X1 2 - 4 KO Xl X3 hl + 4 KO X2 hl - 4 B2 XS hl + R2 + X3 2 R2
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> Hc:=subs(Kl=Cl,K2=C2,R=R3,x=cl~y=c2,z=1,xO=1, y3=Xl,y2=-X2,xl=X3,H);

Hc := 4 C2 Xl - 4 Cl Xl xa - 4 C2 xa X2 + 2 xa2 C2 c2 + 2 xa2 Cl cl - 2 C2 c2
- 2 Cl cl - 4 Cl X2 + 4 Ka X2 2 + 4 Ka X1 2

- 4 Ka X2 xa c2 - 4 Ka Xl xa cl
+ 4 KO X2 cl - 4 KO Xl c2 + 4 Cl xa c2 - 4 C2 xa cl + Ra + xa2 Ra

> Hab:=Ha-Hb;

Hah := 4 A2 Xl - 4 Al Xl xa - 4 A2 xa X.2 - 4 Al X2 + RI + xa2 RI - 4 B2 Xl
+ 4 BI Xl xa + 4 B2 xa X2 - 2 xa2 BI bl + 2 BI hl + 4 BI X2 + 4 Ka Xl xa hl
- 4KO X2 hl +4B2 xa bl - R2 - X32 R2

> Hac:=Ha-Hc;

Hac := -4 KO X2 cl + 2 C2 c2 + RI - Ra + 4 A2 Xl - 4 Al X2 + xaz RI - 4 C2 Xl
+4 Cl X2 - xa2 Ra -4Al Xl xa -4A2 xa X2 +2 Cl cl +4KO Xl c2 - 2xa2 C2 c2
+ 4 C2 xa X2 + 4 Cl Xl xa - 2 xa2 Cl cl - 4 Cl xa c2 + 4 C2 xa cl + 4 Ka X2 Xa c2
+4KaXl xacl

> collect«Ha/4),[Xl,X2,X3]);

Ka X1 2 +(-Al Xa+A2) Xl +Ka X2 2 +(-A2 Xa-Al) X2+~xaz RI+~RI

> collect«Hb/4),[Xl,X2,X3]);

Ka X1 2 + ((-BI -KO bl) xa +B2) Xl +KO X2 2 + (-BI - B2 xa +KO bl) X2
1 1 1 1

+ ('2 BI bl + 4" R2) xa2
- B2 xa bl - "2 BI bl + 4R2

> collectCHc/4,[Xl,X2,X3]);

KO X1 2 + ((-Cl - KO cl) xa - KO c2 + [;,2) Xl + Ka X2 2

III
+ ((-C2 - Ka c2) xa + Ka cl - Cl) X2 + ('2 C2 c2 + '2 Cl cl + 4 Ra) xa2

1 1 1
+ (Cl c2 - C2 cl) X3 + 4 Ra - '2 C2 .c2 - '2 Cl cl

> collect(Hab/4,[Xl,X2,X3]);

((-Al +Bl +Ka bl) xa - B2 +A2) Xl ~ ((B2 - A2) xa - KO bl - Al + Bl)X2
III 2 III+ (-- R2 + - RI - - BI bl) xa + B~ Ka bl + - RI - - R2 + - BI hl
44244 2

> col1ect(Hac/4,[Xl,X2,X3]);

((Cl - Al + Ka cl) xa + Ka c2 + A2 - C2)Xl
+ ((Ka c2 + C2 - A2) xa - Al + Cl - Ka cl) X2

1 1 1 1 1 1+ (-- Ra + - RI - - Cl cl - - C2 c2) xaz + (- Cl c2 + C2 cl) xa + -2 Cl cl + -2 C2 c2
442 2

1 1
+-RI--Ra

4 4
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> Seql:=solve({Hab,Hac},{Xl,X2}):
> Seq2:=subs(Seql[l],Seql[2],Hc):
> Seq3:=factorCSeq2):
> Uni:=op(2,Seq3):
> Unil:=collect(Uni,[X3]):
> Uni2:=sort(Unil,[X3]):
> nopsCUni);

3613
> degree(Uni,X3);

6
The univariate can be simplified for platforms with three RR-type legs. It

is obtained with the following substitutions in the generaI constraint manifold
equation given by Hgen. HC indicates that at least one point in the moving
plane moves on a circle in the fixed plane...the C stands for circle, the H for
constraint Hyperboloid. Note that the constants are DOW: KO, BI, Cl, C2,
Rl,R2,R3,bl, cl,c2. Here, KO=1.

> HCa:=subs(KO=1,Kl=O,K2=O,x=O,y=O,R=Rl,xO=1,y3 =Xl,y2=-X2,xl=X3,H);
HCa :=4X22 +4X1 2 +Rl +X32 RI

> HCb:=subs(KO=1,Kl=Bl,K2=O,x=bl,y=O,R=R2,xO=1, y3=Xl,y2=-X2,xl=X3,H);

HCb:= -4Bl Xl X3 +2X92 Bl hl - 2Bl hl -4Bl X2 +4X22 +4X1 2 -4Xl X3 bl
+4X2 bl +R2 +X:J2 R2

> HCc:=subs(KO=1,Kl=Cl,K2=C2,x=cl,y=c2,R=R3,xO= 1,y3=Xl,y2=-X2,xl=X3,H);

HCc := 4 C2 Xl - 4 Cl Xl X3 - 4 C2 X3 X2 + 2 X3 2 C2 c2 + 2 X3 2 Cl cl - 2 C2 c2
- 2 Cl cl -4 Cl X2 +4X22 + 4X1 2

- 4X2 X:J c2 - 4Xl X3 cl +4X2 cl - 4Xl c2
+ 4 Cl X:J c2 - 4 C2 X9 cl + R3 + X3 2 R3

> HCab:=HCa-HCb;

HCab := RI + X9 2 Rl + 4 BI Xl X3 - 2 X:J 2 Bl bl + 2 BI bl + 4 Bl X2 + 4 Xl X3 bl
- 4X2 bl -R2 -X32 R2

> HCac:=HCa-HCc;

HCac:= RI +X32 RI - 4 C2 Xl +4 Cl Xl X3 +4 C2 X:J X2 - 2X:J2 C2 c2
- 2 X:J2 Cl cl + 2 C2 c2 + 2 Cl cl + 4 Cl X2 + 4 X2 X9 c2 + 4 Xl X:J cl - 4 X2 cl
+ 4 Xl c2 - 4 Cl X9 c2 + 4 C2 X3 cl - R9 - X3 2 R3

> eqCl:=solve({HCab,HCac},{Xl,X2}):
> eqC2:=subs(eqCl[l],eqCl[2],HCc):
> eqC3:=factor(eqC2):
> UniCir:=op(2,eqC3):
> UniCirl:=collect(UniCir,[X3]):
> UniCir2:=sort(UniCirl,[X3]);
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UniCir2 := (-2 C22 RI R2 +4b1 2 C2 2 B1 2 + 2R32 BI bl + 4c1 2 B1 2 b1 2 + 2R1 2 BI bl

+2Rl BI cl R2 - 2R1 2 BI cl +4Rl B1 2 cl bl +4bl C2 2 BI R2 + C2 2 R1 2

- 2R1 2 BI Cl - 2Rl B1 2 R3 +4 C1 2 c1 2 B1 2 +4 C1 2 B1 2 61 2 + C2 2 R22
- 2 c2 2 R2 RI

+ 4 c22 B1 2 b1 2 + 2 C2 R22 c2 + 2 C2 R1 2 c2 - 2 Ra BI cl R2 - 2 Cl R1 2 bl
-2 C1 2 RI R2 -2Rl b1 2 Ra - 2R1 2 bl cl +4c1 2 BI bl R2 - 4Rl b1 2 Cl cl
+ 2 Cl R22 cl + 2 RI bl cl R2 - 4 C1 2 R2 cl bl + R1 2 b1 2

- 4 Cl RI cl R2
+4 C1 2 RI cl bl + 2 Cl R1 2 cl +4Rl B1 2 C2 2 +4Rl 61 2 c22

- 4 C2 RI c2 R2
+ 8 b1 2 C2 B1 2 c2 - 4 Cl c1 2 bl R2 + 4 C1 2 c1 2 b1 2 + 8 bl C2 BI c2 R2 - 2 c1 2 R2 RI
+ c1 2 R1 2 + R32 b1 2 + 2 cl RI R3 bl + c1 2 R22

- 2 cl R2 R3 bl +4 c2 2 BI bl RI
+ 4 c2 2 BI bl R2 + 4 C1 2 BI bl R2 - 4 Cl B1 2 bl Ra - 4 C1 2 BI 61 RI
+ 4 Cl B1 2 bl RI - 8 C1 2 B1 2 bl cl - 2 R3 BI Cl R2 + 2 R3 BI Cl RI + 2 RI BI Cl R2
-4 C1 2 cl BI R2 +4C1 2 cl BI RI +4 Cl cl B1 2 Ra - 4 Cl cl B1 2 RI + c2 2 R22

+ c2 2 R1 2 + 4 Cl BI b1 2 RI - 4 Cl BI b1 2 R3 - 8 C1 2 BI b1 2 cl + 8 Cl B1 2 b1 2 cl

-4Cl c1 2 BI R2 +8 C1 2 c1 2 BI 61 -8 Cl c1 2 B1 2 bl +4Cl c1 2 BI RI
-4R3 B1 2 cl 61 +4Rl 61 2 C2 2 +4 C2 2 c2 2 B1 2 +4 C2 2 c2 2 61 2

- 4Rl BI R3 bl
+ R32 B1 2 + 2 Cl R2 RI bl + 2 Cl RI R3 bl + R1 2 B1 2 + 8 C2 Cl cl 61 2 c2
- 8 C2 Cl BI 61 2 c2 -4 C2 cl R2 c2 BI +4 C2 RI B1 2 c2 + 4 C2 cl RI c2 bl
+ 4 C2 cl RI c2 BI + 16 C2 Cl cl BI c2 bl + 8 C2 Cl cl B1 2 c2 - 8 C2 Cl B1 2 bl c2
+ 8 C2 R3 BI c2 bl + 4 C2 RI b1 2 c2 + 4 C2 Cl RI c2 bl + 4 C2 Cl RI c2 BI
- 4 C2 Cl R2 c2 bl - 4 C2 Cl R2 c2 BI + 4 C2 R3 B1 2 c2 + 2 R3 BI cl RI
- 8 C2 cl BI b1 2 c2 - 8 C2 cl B1 2 bl c2 - 2 Cl R2 R3 bl + 4Rl b1 2 cl BI + C1 2 R1 2

+ C1 2 R2 2 -4cl BI b1 2 R3 -4c1 2 BI bl RI -8c1 2 BI b1 2 Cl -16 Cl BI bl cl RI
+ 8 Cl BI bl cl R2 + 8 Cl cl BI R3 bl + 4 Cl cl b1 2 Ra + 4 Cl cl 2 bl RI
+4Rl B1 2 c22 +4Rl BI C2 2 bl +8 C2 2 c2 2 BI bl -4 C2 cl R2 c2 bl +4 C2 R3 61 2 c2
)X36 + (8 C1 2 RI c2 bl - 8 C1 2 R2 c2 bl + 8 C22 R2 c2 bl -16 cl RI B1 2 c2

-16 C22 c2 B1 2 cl -16 C1 2 BI 61 2 c2 -16 C2 bl c22 B1 2 + 16 b1 2 Cl B1 2 c2
+ 32 C2 Cl c22 BI bl + 16 C2 2 b1 2 BI c2 - 4 C2 R22 cl - 4 C2 R1 2 cl + 4 C2 R1 2 bl
+8R3B1 2 Cl c2 -32Cl cl B1 2 bl c2 -4C2Rl R3bl +4C2R2R3bl
-4 C2 R2 RI bl -4Bl R1 2 c2 + 4c2 R22 Cl - 4R3 BI c2 R2 +4R3 BI c2 RI
+4c2 R1 2 Cl - 8 Cl c2 B1 2 RI +8 C1 2 c2 BI RI -8 C1 2 c2 BI R2 + 16 c1 2 BI b1 2 C2
- 8 b1 2 C2 BI RI + 8 b1 2 C2 BI R3 -16 bl C2 BI cl R2 +8Rl b1 2 C2 cl
+ 16 bl Cl BI c2 R2 -16 b1 2 C2 B1 2 cl +8 C2 RI cl R2 +8 bl C2 c1 2 R2
- 8 b1 2 C2 cl R3 - 8 bl C2 c1 2 RI - 16 b1 2 C2 cl 2 Cl - 8 R3 B1 2 c2 bl
- 16 cl RI c2 BI bl - 8 RI Cl c2 R2 + 4 BI RI c2 R2 + 8 B1 2 RI c2 bl
- 8 C2 R3 B1 2 cl - 8 C2 c22 R2 BI + 16 C2 b1 2 Cl c22

- 16 Cl cl BI b1 2 c2
+ 8 Cl RI b1 2 c2 -16 b1 2 C2 2 cl c2 - 8 C22 RI c2 bl - 32 C2 2 cl BI c2 bl
- 16 C2 R3 bl cl BI - 16 C2 cl RI Cl bl + 16 C2 cl R2 Cl bl - 8 C2 c1 2 RI BI
+8 C2 c1 2 R2 BI - 32 C2 Cl c1 2 bl BI + 16 C2 Cl c2 2 B1 2 -16 C2 Cl c1 2 B1 2

+ 16 C2 Cl B1 2 bl cl + 8 C2 RI c22 BI + 16 C2 c1 2 B1 2 bl + 16 C2 RI b1 2 Cl
+ 8 Cl b1 2 R3 c2 + 8 C2 Cl R2 cl BI + 16 C2 RI bl cl BI - 8 C2 Cl RI cl BI
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+ 32 C~ cl BI b1 2 Cl - 8 C2 RI B1 2 cl + 16 C~ RI BI Cl bl - 8 Cl cl R2 c2 bl
- 16 Cl cl R~ c~ BI + 16 C1 2 cl B1 2 c2 + 16 Cl cl RI c2 BI + 8 Cl cl RI c2 bl
+ 32 C1 2 cl BI c2 bl -16 C1 2 B1 2 bl c~ + 16 C1 2 cl b1 2 c2 - 16 Cl RI BI c2 bl
+ 16 Cl R3 BI c2 bl)X35 + (-6 C2 2 RI R~ - 4 b1 2 C2 2 B1 2 + 2 R32 BI bl

- 4 c1 2 B1 2 b1 2 +2R12 BI bl + 2Rl BI cl R2 - 2R1 2 BI cl - 4Rl B1 2 cl bl
+4bl C~2 BI R2 + 3 C~2 R1 2

- 6R1 2 BI Cl - 6Rl B1 2 R3 - 4 C1 2 c1 2 B1 2

- 4 C1 2 B1 2 b1 2 + 3 C2 2 R22
- 6 c22 R~ RI - 4 c22 B1 2 b1 2 + 2 C2 R22 c2 + 2 C2 R1 2 c2

- 2R3 BI cl R2 - 2 Cl R1 2 bl -6 C1 2 RI R2 -6Rl b1 2 R3 - 6R1 2 hl cl

+ 4c1 2 BI hl R2 -4Rl h1 2 Cl cl + 2 Cl R22 cl +6Rl hl cl R2 + 4 C1 2 R2 cl bl
+3R1 2 b1 2 -4 Cl RI cl R2 -4 C1 2 RI cl bl +2 Cl R1 2 cl + 12 RI B1 2 C2 2

+ 12Rl b1 2 c2 2
- 4 C2 RI c2 R2 - 24 b1 2 C2 B1 2 c2 - 4 Cl c1 2 hl R2

- 32 cl BI b1 2 C2 2
- 4 C1 2 c1 2 b1 2

- 8 bl C~ BI c2 R2 - 6 c1 2 R2 RI + 3 c1 2 R1 2

+ 3 R32 b1 2 + 6 cl RI R3 bl + 3 c1 2 R22
- 6 cl R2 R3 bl + 4 c22 BI bl RI

+4 c22 BI bl R2 +4 C1 2 BI bl R2 - 4 Cl B1 2 bl R3 - 4 C1 2 BI bl RI
+4 Cl B1 2 bl RI +8 C1 2 B1 2 bl cl -6R3 BI Cl R2 +6R3 BI Cl RI +6Rl BI Cl R2
+ 16b1 2 C!p c1 2 -4C1 2 cl BI R2 +4C1 2 cl BI RI +4 Cl cl B1 2 R3 -4Cl cl B1 2 RI
+ 3 c22 R22 + 3 c2 2 R1 2

- 4 Cl BI b1 2 RI + 4 Cl BI b1 2 R3 + 24 C1 2 BI b1 2 cl
- 24 Cl B1 2 b1 2 cl + 4 Cl c1 2 BI R2 - 24 C1 2 c1 2 BI bl + 24 Cl c1 2 B1 2 bl
- 4 Cl c1 2 BI RI -16 cl R2 C22 bl + 16 cl RI C2 2 bl + 4R3 B1 2 cl bl - 4Rl b1 2 C2 2

-4 C22 c!22 B1 2
- 4 C2 2 c22 b1 2 -4Rl BI R3 bl +3R32 B1 2 +2 Cl R2 RI bl

+2 Cl RI R3 bl +3R1 2 B1 2 -40 C2 Cl cl b1 2 c2 +56 C2 Cl BI b1 2 c2
+20C2cl R2c2Bl +4C2Rl B1 2 c2+4C2cl RI c2bl-20C2cl RI c2Bl
-112 C2 Cl cl BI c2 bl - 40 C2 Cl cl B1 2 c2 +8 C2 Cl B1 2 bl c~

+ 32 C2 RI BI c2 bl - 8 C2 R3 BI c2 bl + 4 C2 RI b1 2 c2 - 20 C2 Cl RI c2 bl
+4C2 Cl RI c2 BI +20 C2 Cl R2 c2 bl -4 C2 Cl R2 c2 BI +4 C2 R3 B1 2 c2
+ 2 R3 BI cl RI + 8 C2 cl BI h1 2 dl + 56 C2 cl B1 2 bl c2 - 2 Cl R2 R3 hl
+4Rl b1 2 cl BI + 3 C1 2 R1 2 +3 C1 2 R22 + 16 Cl C~2 RI BI - 32 Cl c2 2 B1 2 bl
-16 Cl c22 R2 BI + 16 C1 2 RI b1 2 + 16 C1 2 c22 B1 2 - 4 cl BI h1 2 R3 + 16 c1 2 RI B1 2

- 4 c1 2 BI bl RI + 8 c1 2 BI b1 2 Cl - 16 Cl BI bl cl RI - 8 Cl BI bl cl R2
+ 32 C1 2 c!22 BI bl + 16 C22 c1 2 B1 2 + 32 bl C~2 c1 2 BI + 16 C1 2 b1 2 c22

- 8 Cl cl BI R3 bl +4 Cl cl 61 2 R3 +4 Cl cl~ hl RI - 4Rl B1 2 c22 + 4Rl BI C2 2 bl
- 24 C~2 c22 BI bl - 4 C2 cl R2 c~ hl + 4 C2 R3 b1 2 c2)X34 + (32 C1 2 BI b1 2 c2

+ 32 C2 bl C~2 B1 2
- 32 b1 2 Cl B1 2 c2 - 64 C2 Cl c22 BI bl - 32 C2 2 b1 2 BI c~

- 8 C~ R22 cl - 8 C2 R1 2 cl + 8 C2 R1 2 bl + 16 R3 B1 2 Cl c2 + 64 Cl cl B1 2 bl c~

- 8 C2 RI R3 bl + 8 C2 R2 R3 bl - 8 C~ R2 RI hl - 8 BI R1 2 c~ + 8 c2 R22 Cl
- 8R3 BI c~ R2 + 8 R3 BI c2 RI + 8 c~ R1 2 Cl -16 Cl c2 B1 2 RI + 16 C1 2 c~ BI RI
-16 C1 2 c~ BI R2 + 16 RI b1 2 C2 cl + 32 b1 2 C2 B1 2 cl + 16 C2 RI cl R2
+ 16 bl C2 c1 2 R2 -16 b1 2 C2 cl R3 -16 hl C2 c1 2 RI - 32 cl RI c2 BI bl
-16Rl Cl c2 R2 +8Bl RI c2 R2 -16 C2 R3 B1 2 cl + 16 Cl RI b1 2 c2
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+ 64 C2 2 cl BI c2 bl + 64 C2 Cl c1 2 bl BI - 32 C2 c1 2 B1 2 bl + 16 Cl b1 2 R3 c2
+ 16 C2 Cl R2 cl BI - 16 C2 Cl RI cl BI - 64 C2 cl BI b1 2 Cl - 16 C2 RI B1 2 cl
+32 C2 RI BI Cl bl -16 Cl cl R2 c2 bl + 16 Cl cl RI c2 bl -64C1 2 cl BI c2 bl)

X33 + (-6 C22 RI R2 - 4 b1 2 C2 2 B1 2
- 2 R32 BI bl - 4 c1 2 B1 2 b1 2

- 2 R1 2 BI bl

-2Rl BI cl R2 +2R1 2 BI cl -4Rl B1 2 cl bl -4bl C22 BI R2 +3 C22 R1 2

- 6R1 2 BI Cl -6Rl B1 2 R3 - 4 C1 2 c1 2 B1 2
- 4 C1 2 B1 2 b1 2 + 3 C2 2 R22

- 6 c2 2 R2 RI
-4c22 B1 2 b1 2 -2 C2 R22 c2 - 2 C2 R1 2 c2 +2R3 BI cl R2 +2 Cl R1 2 bl
-6 C1 2 RI R2 -6Rl h1 2 R3 -6R1 2 hl cl -4c1 2 BI bl R2 +4Rl h1 2 Cl cl
-2 Cl R22 cl +6Rl bl cl R2 +4C1 2 R2 cl bl +3R1 2 h1 2 +4 Cl Rl cl R2
-4C1 2 RI cl hl -2 Cl R1 2 cl + 12Rl B1 2 C2 2 + 12Rl b1 2 c22 +4 C2 RI c2 R2
+ 24 b1 2 C2 B1 2 c2 + 4 Cl c1 2 hl R2 + 32 cl BI b1 2 C22

- 4 C1 2 c1 2 b1 2

- 8 bl C2 BI c2 R2 - 6 c1 2 R2 RI + 3 c1 2 R1 2 + 3 R32 b1 2 + 6 cl RI R3 bl + 3 c1 2 R22

- 6 cl R2 R3 hl - 4 c22 Bl hl RI - 4 c2 2 BI bl R2 - 4 C1 2 BI bl R2 + 4 Cl B1 2 bl R3
+4 C1 2 BI bl RI -4Cl B1 2 bl RI +8 C1 2 B1 2 bl cl -6R3 BI Cl R2
+6R3 BI Cl RI +6Rl BI Cl R2 + 16 b1 2 C2 2 cl 2 +4C1 2 cl BI R2 - 4 C1 2 cl BI RI
-4Cl cl B1 2 R3 +4Cl cl B1 2 RI +3c22 R22 +3c22 R1 2 -4Cl BI b1 2 RI
+4 Cl BI b1 2 R3 - 24 C1 2 BI b1 2 cl + 24 Cl B1 2 61 2 cl +4 Cl c1 2 BI R2
+ 24 C1 2 c1 2 BI bl - 24 Cl c1 2 B1 2 bl - 4 Cl c1 2 BI RI -16 cl R2 C2 2 bl
+ 16 cl RI C2 2 bl + 4R3 B1 2 cl 61 - 4Rl b1 2 C2 2

- 4 C2 2 c22 B1 2
- 4 C2 2 c2 2 b1 2

+4Rl BI R3 bl +3R32 B1 2
- 2 Cl R2 RI bl -2 Cl RI R3 hl +3R1 2 B1 2

- 40 C2 Cl cl h1 2 c2 - 56 C2 Cl BI b1 2 c2 + 20 C2 cl R2 c2 BI - 4 C2 RI B 1 2 c2
- 4 C2 cl RI c2 bl - 20 C2 cl RI c2 BI + 112 C2 Cl cl BI c2 bl - 40 C2 Cl cl B1 2 c2
+ 8 C2 Cl B1 2 bl c2 + 32 C2 RI BI c2 bl - 8 C2 R3 BI c2 bl - 4 C2 RI b1 2 c2
- 20 C2 Cl RI c2 bl - 4 C2 Cl RI c2 BI + 20 C2 Cl R2 c2 bl + 4 C2 Cl R2 c2 BI
- 4 C2 R3 B1 2 c2 - 2 R3 BI cl RI + 8 C2 cl BI b1 2 c2 - 56 C2 cl B1 2 bl c2
+ 2 Cl R2 R3 hl - 4 RI b1 2 cl BI + 3 C1 2 R1 2 + 3 C1 2 R22 + 16 Cl c22 RI BI
+32 Cl c2 2 B1 2 bl -16 Cl c2 2 R2 BI + 16 C1 2 RI b1 2 + 16 C1 2 c2 2 B1 2

+4cl BI b1 2 R3 +16c1 2 RI B1 2 +4c1 2 BI bl RI +8c1 2 BI b1 2 Cl
-16 Cl BI bl cl RI - 8 Cl BI bl cl R2 - 32 C1 2 c2 2 BI hl + 16 C2 2 c1 2 B1 2

- 32 bl C2 2 cl 2 BI + 16 C1 2 b1 2 c22
- 8 Cl cl BI R3 bl - 4 Cl cl b1 2 R3

- 4 Cl c1 2 bl RI - 4Rl B1 2 c2 2
- 4Rl BI C2 2 hl + 24 C22 c2 2 BI bl

+ 4 C2 cl R2 c2 hl - 4 C2 R3 b1 2 c2)X32 + (-8 C1 2 RI c2 bl + 8 C1 2 R2 c2 bl

- 8 C2 2 R2 c2 bl + 16 cl RI B1 2 c2 + 16 C22 c2 B1 2 cl -16 C1 2 BI b1 2 c2
-16 C2 bl c2 2 B1 2 + 16 b1 2 Cl B1 2 c2 + 32 C2 Cl c2 2 BI hl + 16 C22 h1 2 BI c2
- 4 C2 R2 2 cl - 4 02 R1 2 cl + 4 C2 R1 2 bl + 8 R3 B1 2 Cl c2 - 32 Cl cl B1 2 bl c2
- 4 C2 RI R3 hl + 4 C2 R2 R3 hl - 4 C2 R2 RI bl - 4 BI R1 2 c2 + 4 c2 R22 Cl
-4R3 BI c2 R2 +4R3 BI c2 RI +4c2 R1 2 Cl -8 Cl c2 B1 2 RI +8 C1 2 c2 BI RI
-8 C1 2 c2 BI R2 -16c1 2 BI 61 2 C2 +8b1 2 C2 BI RI -8b1 2 C2 BI R3
+ 16 bl C2 BI cl R2 +8Rl b1 2 C2 cl -16 bl Cl BI c2 R2 -16 b1 2 C2 B1 2 cl
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+ 8 C2 RI cl R2 + 8 hl C2 c1 2 R2 - 8 h1 2 C2 cl R3 - 8 hl C2 c1 2 RI
+ 16 h1 2 C2 c1 2 Cl +8R3 B1 2 c2 hl -16 cl RI c2 BI bl - 8Rl Cl c2 R2
+4Bl RI c2 R2 -8B1 2 RI c2 bl -8 C2 R3 B1 2 c1 +8 C2 c22 R2 BI
-16 C2 h1 2 Cl c2 2 + 16 Cl cl BI 61 2 c2 + 8 Cl RI 61 2 c2 + 16 h1 2 C22 cl c2
+ 8 C2 2 RI c2 hl - 32 C2 2 cl BI c2 61 + 16 C2 R3 61 cl BI + 16 C2 cl RI Cl hl
- 16 C2 cl R2 Cl hl + 8 C2 c1 2 RI BI - 8 C2 c1 2 R2 BI - 32 C2 Cl c1 2 hl BI
- 16 C2 Cl c22 B1 2 + 16 C2 Cl c1 2 B1 2 -16 C2 Cl B1 2 bl cl - 8 C2 RI c2 2 BI
+ 16 C2 c1 2 B1 2 61 -16 C2 RI b1 2 Cl +8 Cl h1 2 R3 c2 +8 C2 Cl R2 cl BI
-16 C2 RI bl cl BI -8 C2 Cl RI cl BI +32 C2 cl BI h1 2 Cl -8 C2 RI B1 2 cl

+ 16 C2 RI BI Cl hl - 8 Cl cl R2 c2 hl + 16 Cl c1 R2 c2 BI - 16 C1 2 cl B1 2 c2
-16 Cl cl RI c2 BI +8 Cl cl RI c2 hl +32 C1 2 cl BI c2 hl + 16 C1 2 B1 2 bl c2
-16 C1 2 cl b1 2 c2 + 16 Cl RI BI c261 -16 Cl R3 BI c2 bl)X3 - 2 C2 2 RI R2

- 2R32 BI bl +4c1 2 B1 2 b1 2 +4b1 2 C2 2 B1 2 -461 C2 2 BI R2 +2R1 2 BI cl
+4Rl B1 2 cl bl - 2Rl B1 2 R3 +4 C1 2 c1 2 B1 2 + C2 2 R1 2 + C2 2 R22

- 2 c22 R2 RI
- 2R1 2 BI 61 +4 C1 2 B1 2 b1 2

- 2 C2 R1 2 c2 + 2 R3 BI cl R2 + 2 Cl R1 2 hl
- 2 C1 2 RI R2 - 2Rl b1 2 R3 - 2R1 2 BI Cl - 4c1 2 BI hl R2 +4Rl b1 2 Cl cl
- 2 Cl R22 cl +2Rl 61 cl R2 -4 C1 2 R2 c1 bl + 4c22 B1 2 b1 2

- 2Rl BI cl R2
+4 C1 2 RI cl hl - 2 Cl R1 2 cl +4Rl B1 2 C22 +4Rl b1 2 c22 + 4 C2 RI c2 R2
-8 h1 2 C2 B1 2 c2 +4 Cl c1 2 hl R2 +4 C1 2 cl 2 61 2 +8bl C2 BI c2 R2 - 2 cl 2 R2 RI
+ c1 2 R1 2 + R32 61 2

- 2 C2 R22 c2 + c1 2 R22
- 2 cl R2 R3 hl - 4 c2 2 BI hl RI

- 4 c22 BI hl R2 - 4 C1 2 BI bl R2 + 4 Cl B1 2 bl R3 + 4 C1 2 BI hl RI
- 4 Cl B1 2 bl RI - 8 C1 2 B1 2 bl cl - 2 R3 BI Cl R2 + 2 R3 BI Cl RI + 2 RI BI Cl R2
+ 2 cl RI R3 hl - 4 C1 2 cl BI RI - 4 Cl cl B1 2 R3 + 4 Cl cl B1 2 RI + c2 2 R2 2

+ c22 R1 2 + 4 Cl BI b1 2 RI - 2 R1 2 bl cl + 8 C1 2 BI h1 2 cl - 8 Cl B1 2 b1 2 cl
-4Cl c1 2 BI R2 -8 C1 2 c1 2 BI bl +8 Cl c1 2 B1 2 hl +4C1 2 cl BI R2
+4 Cl RI c1 R2 -4R3 B1 2 cl bl +4Rl h1 2 C2 2 +4 C22 c2 2 B1 2 +4 C2 2 c2 2 b1 2

+4Rl BI R3 hl +R32 B1 2
- 2 Cl R2 RI bl - 2 Cl RI R3 hl +R1 2 B1 2

+8 C2 Cl cl b1 2 c2 + 8 C2 Cl BI h1 2 c2 - 4 C2 cl R2 c2 BI - 4 C2 RI B1 2 c2
- 4 C2 cl RI c2 bl + 4 C2 cl RI c2 BI - 16 C2 Cl cl BI c2 bl + 8 C2 Cl cl B1 2 c2
- 8 C2 Cl B1 2 bl c2 + 8 C2 R3 BI c261 - 4 C2 RI b1 2 c2 + 4 C2 Cl RI c2 bl
- 4 C2 Cl RI c2 BI - 4 C2 Cl R2 c2 bl + 4 C2 Cl R2 c2 BI - 4 C2 R3 B1 2 c2
- 2 R3 BI cl RI - 8 C2 cl BI b1 2 c2 + 8 C2 cl B1 2 bl c2 + 2 Cl R2 R3 bl
- 4Rl b1 2 cl BI + C1 2 R1 2 + C1 2 R22

- 4 Cl BI b1 2 R3 + 4 cl BI b1 2 R3
+ 4 c1 2 BI bl RI - 8 c1 2 BI b1 2 Cl -16 Cl BI bl cl RI + 8 Cl BI bl cl R2 + R1 2 b1 2

+4 Cl c1 2 BI RI + 8 Cl cl BI R3 bl -4 Cl cl b1 2 R3 - 4 Cl c1 2 bl RI +4Rl Bl 2 c22

- 4 RI BI 02 2 bl - 8 C2 2 c22 BI bl + 4 C2 cl R2 c2 bl - 4 C2 R3 b1 2 c2
> nops(UniCir)j

694
> degree(UniCir,X3);

6
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The univariate may be further simplified for platforms with three PR-type
or three RP-type legs. It is obtained with the following substitutions in the
general constraint manifold equation given by Hgen. HL indicates that at least
one point in the moving plane moves on a line in the fixed plane...the L stands
for Line, the H for constraint hyperbolic paraboloid. PR-type and RP-type
platforms may be viewed as inversions. In this way, the same polynomial may
be used to solve the FK of each, except the results for the type 3 platform will be
in the maving platform reference frame, E. So, these results must be transformed
back: to the fixed frame, Sigma. Note that the constants are now: KO, Al, A2,
BI, B2, B3, Cl, C2, C3, bl, cl,c2. For bath platforms, the point in the moving
frame moves on a real degenerate circle (a line) in the fixed frame. Renee, KO=O
and the other uppercase constants are now planar line eoordinates. Note that
the K3 companents are still K3-R-KO*(x~2+y~2),Renee, this coordinate is
now the moment of the given line about the origine

> HLa:=subsCKO=O,Kl=Al,K2=A2,R=A3,x=O,y=O,xO=1, y3=Xl,y2=-X2,xl=X3,H);
HLa := 4 A,g Xl - 4 Al Xl X3 - 4 A2 X3 X2 - 4 Al X,g + A3 + X3 2 A3
> HLb:=subsCKO=O,Kl=Bl,K2=B2,R=B3,x=bl,y=O,xO=1 ,y3=Xl,y2=-X2,xl=X3,H);

HLb := 4 B2 Xl - 4 BI Xl X3 - 4 B2 X3 X,g + 2 X3 2 BI bl - 2 BI bl - 4 BI X,g

- 4 B2 X3 hl + B3 + X3 2 B3
> HLc:=subs(KO=O,Kl=Cl,K2=C2,R=C3,x=cl,y=c2,xO= 1,y3=Xl,y2=-X2,xl=X3,H);

HLc := 4 C2 Xl - 4 Cl Xl X3 - 4 C2 X3 X2 + 2 X3 2 C2 c2 + 2 X3 2 Cl cl - 2 C,g c,g

- 2 Cl cl - 4 Cl X,g + 4 Cl X3 c,g - 4 C2 xa cl + ca + X3 2 ca
> HLab:=HLa-HLb;

HLab := 4 A2 Xl - 4 Al Xl X3 - 4 A,g xa X2 - 4 Al X2 + Aa + xa2 Aa - 4 B2 Xl
+4Bl Xl X3 + 4B,g xa XI! - 2X32 BI bl + 2 BI bl +4Bl X,g +4B2 xa hl - Ba
-X32 B3

> HLac:=HLa-HLc;

HLac := 4 A2 Xl - 4 Al Xl xa - 4 A2 X3 X2 - 4 Al X2 + A3 + X3 2 A3 - 4 C2 Xl
+ 4 Cl Xl X3 + 4 C2 xa x,g - 2 xa2 C2 c2 - 2 X3 2 Cl cl + 2 c,g c,g + 2 Cl cl + 4 Cl X2

- 4 Cl X3 c2 + 4 C2 xa cl - ca - X3 2 C3
> eqLl:=solveC{HLab,HLac},{Xl,X2}):
> eqL2:=subsCeqLl[1],eqLl[2],HLc):
> eqL3:=factorCeqL2);

eqL3 := -(-2 A2 X3 2 C2 c,g BI - 2 A2 X3 2 Cl cl BI - A2 xa2 C3 BI + A2 X3 2 Cl B3
+ 2 BI A,g Cl cl + 2 BI A2 C2 c,g + 4 BI A2 C2 X3 cl - 2 BI bl Cl A,g - BI C3 A2
- Aa Cl X3 2 B,g - A3 Cl B2 + A3 X3 2 C2 BI +4Al B,g C2 xa hl + Aa C2 BI
- 2 Al bl X3 2 C2 BI + 2 Al X3 2 Cl cl B2 + 2 Al bl C,g BI + 2 Al X3 2 C2 c,g B2
+4AI B2 Cl X3 c2 +AI X3 2 C3 B2 - Al C2 X3 2 B3 + Al ca B2 - 2AI B2 C2 c,g

- 2 Al B,g Cl cl - 4 Al B2 C2 X3 cl - Al C2 B3 + 2 A2 X3 2 bl Cl BI + B3 Cl A2
- 4B,g X3 hl Cl A2 - 4Bl A2 Cl X3 c2)f(
A2 BI - Cl A,g - Al B2 - c,g BI + Cl B2 + C2 Al)
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> UniLine:=op(2.eqL3);

UniLine := -2 A2 X3 2 C2 c2 BI - 2 A2 X3 2 Cl cl BI - A2 X3 2 C3 BI + A2 X3 2 Cl B3
+ 2 BI A2 Cl cl + 2 BI A2 C2 c2 + 4 BI A2 C2 X3 cl - 2 BI bl Cl A2 - BI C3 A2
- A3 Cl X3 2 B2 - A3 Cl B2 + A3 X3 2 C2 BI + 4 Al B2 C2 X3 bl + A3 C2 BI
- 2 Al bl X3 2 C2 BI + 2 Al X3 2 Cl cl B2 + 2 Al bl C2 BI + 2 Al X3 2 C2 c2 B2
+ 4 Al B2 Cl X3 c2 + Al X3 2 C3 B2 - Al C2 X3 2 B3 + Al C3 B2 - 2 Al B2 C2 c2
- 2 Al B2 Cl cl - 4 Al B2 C2 X3 cl - Al C2 B3 + 2 A2 X3 2 bl Cl BI + B3 Cl A2
-4B2 X3 bl Cl A2 -4Bl A2 Cl X3 c2

> nops(UniLine);
30

> degree(UniLine,[X3]);
2

> UniLinel:=collect(UniLine.[X3]):
> UniLine2:=sort(UniLinel,[X3]);

UniLine2 := (-2 BI A2 C2 c2 - 2 BI A2 Cl cl - BI C3 A2 + E3 Cl A2 - A3 Cl B2
+ A3 C2 BI - 2 Al hl C2 BI + 2 Al B2 Cl cl + 2 Al B2 C2 c2 + Al C3 B2 - Al C2 B3
+2Bl bl Cl A2)X32 + (-4B2 bl Cl A2 +4Bl A2 C2 cl +4Al B2 Cl c2
-4Al B2 C2 cl -4Bl A2 Cl c2 +4Al B2 C2 bl)X3 +A3 02 BI +B3 Cl A2
- A3 Cl B2 + 2 Al hl C2 BI + 2 BI A2 Cl cl + 2 BI A2 C2 c2 - 2 BI hl Cl A2
- BI C3 A2 - 2 Al B2 C2 c2 - 2 Al B2 Cl cl - Al C2 B3 + Al C3 B2
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